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Abstract (English)

In several industrial domains such as automotive, railway, avionics, satellite,
health care and energy, a great variety of systems are currently designed and
developed by organizing and integrating existing components (which in turn
can be regarded as systems),that pool their resources and capabilities together
to create a new system which is able to offer more functionalities and perfor-
mances than those offered by the simple sum of its components. Typically,
the design and management of such systems, whose properties cannot be im-
mediately defined, derived and easily analyzed starting from the properties of
their parts when they are considered in stand-alone, require to identify and
face with some important research issues.

In particular, the integration of system components is a challenging task
whose criticality rises as the heterogeneity and complexity of the components
increase. Thus, suitable engineering methods, tools and techniques need to be
exploited to prevent and manage the risks arising from the integration of sys-
tem components and, mainly, to avoid their occurrence in the advanced phases
of the system development process which may result in a significant increase
in the entire project costs. To overcome these issues the adoption of the Sys-
tems Engineering approach represents a viable solution as it provides a wide
set of methods and practices which allow the definition of the system archi-
tecture and behavior at different abstraction level in terms of its components
and their interactions. Moreover, systems requirements are constantly traced
during the different system development phases so to clearly specify how a
system component concurs to the fulfillment of the requirements. However,
in the Systems Engineering field, even though great attention has been de-
voted to functional requirements analysis and traceability, there is still a lack
of methods which specifically address these issues for non-functional require-
ments. As a consequence, the analysis concerning if and how non-functional
requirements are met by the system under development is not typically exe-
cuted contextually to the design of the system but still postponed to the last
stages of the development process with a high risk of having to revise even
basic design choices and with a consequent increase in both completion time
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and development costs. Among all system requirements, Reliability and Safety
are important non-functional requirements. Especially for mission-critical sys-
tems, there is a strong demand for new and more powerful analysis tools and
techniques able not only to verify the reliability indices and safety of a system
but also to flexibly evaluate the system performances and compare different
design choices.

In this context, the research aimed to promote the use of flexible methods
for the analysis of non-functional requirements by focusing on the definition
of: (i) model-based method for system reliability analysis centered on popular
SysML/UML-based languages for systems modeling and on de-facto stan-
dard platforms for the simulation of multi-domain dynamic and embedded
systems (Mathworks Simulink); (ii) a methodological process for supporting
the safety analysis, along with an approach for performing the Fault Tree
Analysis of cyber-physical systems, mainly based on the Modelica language
and OpenModelica simulation environment. Furthermore, in order to support
the representation of system requirements and thus enable their verification
and validation during the design stages, a meta-model for modeling require-
ments of physical systems as well as different approaches for extending the
Modelica language have been proposed. Moreover, an algorithm, which al-
lows trace and evaluate requirements violation through simulation, has been
defined.

Finally, the effectiveness of the proposed methods and approaches, espe-
cially in the modeling and analysis of both the expected and dysfunctional
system behavior, is the result of an intensive experimentation in several in-
dustrial domains such automotive, avionics and satellite.

Arcavacata di Rende (CS), November 2013 Andrea Tundis



Abstract (Italian)

In diversi settori industriali quali automobilistico, ferroviario, avionico, satel-
litare, assistenza sanitaria ed energia, una grande varietà di sistemi sono at-
tualmente progettati e realizzati organizzando e integrando componenti es-
istenti (che a loro volta possono essere considerate come sistemi), che met-
tono insieme le proprie risorse e capacità per originarne uno nuovo, che sia
in grado di offrire sinergicamente maggiori funzionalità e prestazioni migliori
rispetto a quelle che ne deriverebbero dalla semplice somma di quelle offerte
dalle sue componenti. Tipicamente, la progettazione e la gestione di tali sis-
temi, le cui proprietà non possono essere immediatamente definito, derivate
e facilmente analizzate a partire dalle proprietà delle loro parti quando essi
sono considerati in modo isolato, richiedono di identificare ed affrontare alcune
importanti problematiche di ricerca.

In particolare, l’integrazione di componenti di sistema è un compito
molto impegnativo la cui criticità cresce all’aumentare della complessità e
dell’eterogeneità delle componenti. Di conseguenza, strumenti metodologici e
tecniche ingegneristiche dovrebbero essere impiegiegate per prevenire e ge-
stire eventuali rischi derivanti dall’integrazione delle componenti di sistema e,
principalmente, per impedirne il loro verificarsi nelle fasi più avanzate del pro-
cesso di sviluppo, con un impatto negativo sui costi di progetto. Per affrontare
questi problemi l’adozione di approcci tipici dell’Ingegneria dei Sistemi rap-
presentano una soluzione praticabile in quanto forniscono una vasta gamma
di metodi e pratiche ben consolidate che consentono la modellazione del sis-
tema in termini della sua architettura e l’analisi del suo comportamento a
diversi livelli di astrazione nonchè la rappresentazione delle interazioni tra le
singole parti. Inoltre, i requisiti di sistema sono costantemente tracciati du-
rante le varie fasi di sviluppo del sistema in modo da indicare chiaramente
come un componente di sistema concorre al soddisfacimento di quali requisiti.
Tuttavia, nel settore dell’Ingegneria dei Sistemi, sebbene grande interesse è
stato dedicato all’analisi e alla tracciabilità dei requisiti funzionali, poca atten-
zione, invece, è stata rivolta ai requisiti non funzionali, dovuta ad una man-
canza di strumenti metodologici, nell’affrontare specificamente questi temi.
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Di conseguenza, l’analisi relativa a se e come i requisiti non funzionali siano
soddisfatti da un sistema, non è tipicamente affrontata contestualmente alla
progettazione del sistema stesso, ma demandata alle ultime fasi del processo
di sviluppo, con un elevato rischio di dover rivalutare persino scelte di proget-
tazione di base, con un conseguente aumento sia in termini di tempi di comple-
tamento che di costi di sviluppo. Tra tutti i requisiti di sistema, l’affidabilità
(reliability) e la sicurezza (safety) rappresentano due requisiti non funzionali
di primaria importanza. Soprattutto per sistemi mission-critical, infatti, vi è
una forte richiesta di nuovi ed efficaci strumenti e tecniche di analisi in grado
di verificare non solo gli indici di affidabilità e sicurezza di un sistema durante
il design, ma anche di valutare in modo flessibile le prestazioni di sistema e
confrontare le diverse scelte progettuali.

In questo contesto, l’attività di ricerca è stata dedicata a promuovere
l’uso di metodi innovativi per l’analisi dei requisiti di sistema non funzion-
ali, concentrandosi in particolare sulla definizione di: (i) un metodo, basato
su modelli, per l’analisi di affidabilità (reliability) di sistemi centrato sul ben
noto linguaggio OMG SysML/UML per la parte di modellazione di sistema e
su Mathworks-Simulink come piattaforma di simulazione, poichè considerato
uno standard de facto per la simulazione di sistemi dinamici multi-domain
ed embedded systems; (ii) un processo metodologico, basato sul linguaggio
Modelica, in grado di supportare, durante le fasi di progettazione, l’analisi
di sicurezza (safety) di un sistema impiegando come ambiente di simulazione
OpenModelica, insieme ad un approccio in grado di integrarne la Fault Tree
Analysis. Inoltre, al fine di consentire la modellazione di requisiti di sistema
e permetterne la loro verifica e validazione mediante simulazione, è stato pro-
posto un meta-modello per la loro rappresentazione insieme ad alcuni approcci
che ne abilitino la loro integrazione nel design e definendo specifiche esten-
sioni del linguaggio Modelica. La semantica di validazione di tali requisiti e
la logica per la loro tracciabilità è stata specificata attraverso un algoritmo di
tracciabilità.

Infine, l’efficacia dei metodi e degli approcci proposti, con particolare
riguardo alla modellazione e all’analisi sia del comportamento atteso che quello
disfunzionale di sistema, è il risultato di una intensa ed accurata sperimen-
tazione in diversi settori industriali quali quello automobilistico, avionico e
satellitare.

Arcavacata di Rende (CS), Novembre 2013 Andrea Tundis
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Introduction

1.1 Reference context, Motivations and Objectives

Engineering disciplines and their related activities are strongly centered on the
concept of system, whose definition is neither unique nor generally shared; a
starting point can be provided by the definition proposed in [100] and adopted
by the International Council on Systems Engineering (INCOSE)[55]:

”A system is a construct or collection of different elements that together pro-
duce results not obtainable by the elements alone. The elements, or parts, can
include people, hardware, software, facilities, policies, and documents; that is,
all things required to produce systems-level results. The results include sys-
tem level qualities, properties, characteristics, functions, behavior and perfor-
mance. The value added by the system as a whole, beyond that contributed
independently by the parts, is primarily created by the relationship among the
parts; that is, how they are interconnected”.

In several application domains ranging from automotive to aerospace, a great
variety of modern systems are currently designed and developed by organiz-
ing and integrating existing components which in turn can be regarded as
systems. This design approach potentially offers many advantages in terms of
time and cost reductions as promote the (re)usability of existing components
and enable a natural parallel work organization in the system realization; in
fact, system components can be selected, customized, realized separately and
then integrated so to obtain the overall system. However, the integration of
system components is a challenging task whose criticality increases as the
heterogeneity and complexity of the components increase, as a consequence
suitable engineering methods, tools and techniques need to be exploited to
prevent and manage the risks arising from the integration of system compo-
nents and, mainly, to avoid their occurrence in the late phases of the system
development process which may result in a significant increase in the devel-
opment costs.
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In this context, the discipline that aims at providing an integrated and
methodological approach to deal with the development and management of
large-scale and complex systems is indicated as Systems Engineering (SE)
which, according to the INCOSE organization, is defined as [56]:

”an interdisciplinary approach and means to enable the realization of suc-
cessful systems. It focuses on defining customer needs and required function-
ality early in the development cycle, documenting requirements, then proceed-
ing with design synthesis and system validation while considering the complete
problem: operations, performance, test, manufacturing, cost & schedule, train-
ing & support, and disposal. Systems engineering integrates all the disciplines
and specialty groups into a team effort forming a structured development pro-
cess that proceeds from concept to production to operation. Systems engineer-
ing considers both the business and the technical needs of all customers with
the goal of providing a quality product that meets the user needs”.

In particular, the Model Based System Engineering (MBSE) paradigm, which
is defined in [57] as:

”the formalized application of modeling to support system requirements, de-
sign, analysis, verification and validation activities beginning in the concep-
tual design phase and continuing throughout development and later life cycle
phases”,

is becoming one of the main approaches for Systems Engineering (SE) as
it allows to increase the quality both of the development process and of the
system to be realized, by organizing the development activities and using for-
malized representations of systems, called models.

Indeed, MBSE represents a viable solution as it provides a wide set of meth-
ods and practices which allow the definition of the system architecture and
behavior at different abstraction level in terms of its components and their
interactions [48]. Moreover, systems requirements (called also properties [62])
are constantly traced during the different system development phases so to
clearly specify how a system component concurs to the satisfaction of the re-
quirements. However, even though great attention has been devoted to func-
tional requirements analysis and traceability, there is still a lack of models,
methods and practices which address these issues for non-functional require-
ments. Indeed, the analysis concerning if and how non-functional requirements
are met by the system under development is not typically executed contex-
tually to the design of the system but still postponed to the last stages of
the development process (e.g. system verification) with a high risk of having
to revise even basic design choices and with a consequent increase in both
completion time and development cost [58, 80, 122]. To overcome these issues
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several research efforts, which are centered on the exploitation of model-based
design approach as well as on the employment of simulation techniques [88],
are currently on going.

In this context, the research presented in this Thesis has been focused on two
important non-functional requirements, reliability and safety [68, 42], with the
aim of defining methods for supporting their analysis and verification contex-
tually to the system design phase, and by employing computer simulation to
allow not only the evaluation of system performances, but also to compare
different design choices.

The research activity has been conducted in cooperation with the Program-
ming Environment Laboratory (PELAB)[89] of the Linköping University
(Sweden) where I spent one year of my Ph.D. program.

1.2 Main Results

Starting from the research objective above described, the main contributions
resulting from the research activity presented in this Thesis concern the defi-
nition of:

1. a model-based method for the reliability analysis of cyber-physical sys-
tems, called RAMSAS, mainly based on the SysML modeling language
(SysML)[116] and the MATLAB-Simulink simulation environment [74];

2. a methodological process for supporting the safety analysis of cyber-
physical systems which is mainly based on the Modelica language[25, 76]
and the OpenModelica simulation platform [87].

Concerning the first contribution, RAMSAS is a model-based method
which supports the reliability analysis of systems through simulation by pro-
viding a classical iterative process consisting of four main phases: Reliability
Requirements Analysis, System Modeling, System Simulation, and Results
Assessment. For each phase input work-products are defined as well as its
role and the internal process for generating specific output work-products.
Specifically, in the Reliability Requirements Analysis phase the objectives of
the reliability analysis are specified and the reliability functions and indicators
to evaluate during the simulation are defined. In the System Modeling phase,
the structure and behavior (both expected and dysfunctional) of the system
are modeled in SysML (OMG Systems Modeling Language) by using zooming
in-out mechanisms; in the System Simulation phase, the previously obtained
models of the system are represented in terms of the constructs offered by the
target simulation platform, then simulations are executed so to evaluate the
reliability performance of the system also on the basis of different operating
conditions, failure modes and design choices.
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Concerning the second contribution, the result is a model-based method, in-
spired by the ISO-26262 [59], for the development and the analysis of systems
with hard safety requirements. Since it is centered on the Modelica language,
this allows to reduce the need for transformations between different formalisms
and reducing, consequently, the costs of maintenance and modification of the
simulation code, benefiting, additionally, of the variety and capabilities offered
by the simulation environments based on Modelica. Moreover, the object-
oriented features of Modelica promote a modular design and a hierarchical
structure of system models. In the different phases of the method, well-known
model-based formalisms are combined in a global framework; in particular, the
ModelicaML visual modeling language [77], is used in the phases of System
Requirements Analysis and System Modeling, while the Modelica language is
adopted in the process of Virtual Testing. The ModelicaML models are first
transformed into Modelica source code and then analyzed through simulation
by using an extension of the OpenModelica platform for supporting require-
ments validation.

The experience on requirements representation and verification gained during
the definition of the above described methods, has allowed to face with the
more general issue of Requirements Modeling. Specifically, in order to support
the representation of system requirements and thus enable their verification
and validation during the design stages, a meta-model for modeling require-
ments of cyber-physical systems as well as different approaches for suitable
extending the Modelica language has been proposed. Moreover, an algorithm,
which allows to support traceability and evaluate requirements violation and
through simulation, has been defined. Finally, an approach for supporting the
Fault Tree Analysis (FTA) [14] of a system design based on the Modelica
language has been proposed.

1.3 Thesis Overview

This Thesis is organized as follows. In Chapter 2 a background of both Relia-
bility and Safety properties is provided. In particular, in Section 2.1 a mathe-
matical definition of reliability and safety is reported, then well-known analysis
techniques are illustrated in Section 2.2. In Section 2.3 some efforts concern-
ing model-based methods for the reliability and safety analysis of systems are
described, whereas, the main International Standards in the context of safety
and reliability analysis are reported in section 2.4; finally, the main open is-
sues are introduced and discussed in Section 2.5.

In Chapter 3, RAMSAS, a model based method for the reliability analysis
of systems through simulation, is presented in terms of its phases and related
work-products. In particular, in Section 3.1 the Reliability Analysis Require-
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ments phase is introduced; in Section 3.2 the System Modeling phase and
its activities concerning the modeling of system structure and behavior are
presented, with particular emphasis on the representation of the system dys-
functional behavior; then the Simulation phase, along with some best practices
of model to model transformation, is shown in Section 3.3. Finally, how simu-
lation results can be analyzed and organized in technical reports is presented
in Section 3.4.

Chapter 4 provides an experimentation of the RAMSAS method, concerning
the Reliability Analysis of an Attitude Determination and Control System
(ADCS), which has been jointly conducted with the Institute of Statics and
Dynamics of Aerospace Structure of the University of Stuttgart. This expe-
rience has been chosen among several experimentations that have been per-
formed in different application domains to evaluate the suitability of RAMSAS
for supporting the reliability analysis of systems through simulation and thus
obtain useful insights to improve its effectiveness. Concerning the structure
of the Chapter, after a brief introduction on the satellite domain, described
in Section 4.1, the other sections are dedicated to illustrate the concrete ex-
ploitation of the different phases of the RAMSAS process.

Chapter 5 presents a methodological process, inspired by the international
standard ISO-26262, which is dedicated to the automotive domain, for sup-
porting the safety analysis of cyber-physical systems through simulation. The
method exploits some proposed extensions of the Modelica language both for
collecting and representing system requirements as well as for enabling their
verification though simulation. In Section 5.1 the overall process is presented.
Then, in Section 5.2, a comparison between the proposed process and the
ISO-26262 standard is reported; finally, a case study concerning the safety
analysis of a Airbag System is shown in Section 5.3.

In Chapter 6 further research contributions on requirements modeling are
presented. Specifically, a conceptualization of system requirements through
a meta-model is presented in Section 6.1; the description of a Tank System,
which is used in the subsequent Sections as a reference example, is provided
in Section 6.2; then, three different approaches for the modeling of system
requirements and their integration into a Modelica-based design are shown
in Section 6.3. In Section 6.4 some proposed Modelica extensions for mod-
eling system requirements along with an algorithm for their traceability are
discussed; finally, how the proposed Modelica extensions, enriched by a Prob-
ability Model, along with their exploitation for automatically generating a
Fault Tree Analysis of a Modelica-based design are presented respectively in
Section 6.5 and in Section 6.6.

In Chapter 7 the contributions of this Thesis are summarized and ongoing
and future works delineated.
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Background and Challenges

In many industrial domains and, in particular, in those contexts which deal
with mission critical systems, there is the need to guarantee suitable level of
system operation and performances. The collective term used to describe such
important characteristics is called Dependability; one of the most popular def-
inition of Dependability, provided by the IEC (International Electrotechnical
Commission) [68], is:

”The collective term used to describe the availability performance of a sys-
tem and its influencing factors: reliability performance, maintainability per-
formance and maintenance support performance”.

The engineering discipline [42] which aims at providing an integrated and
methodological approach to deal with system dependability is commonly in-
dicated by the acronym RAMS (Reliability, Availability, Maintainability and
Safety) and RAMS analysis indicates the engineering task whose main objec-
tive is to identify causes and consequences of system failures. In particular,
RAMS engineering deals with making systems: (i)Reliable - low probability
of failing; (ii)Available - high probability of working at a given time or when
required; (iii) Maintainable - easy to maintain and keep in optimum condition;
(iv) Safe - low risk of causing hazardous events.

In this Chapter the attention is mainly directed towards Reliability and
Safety properties. In particular, in Section 2.1 a mathematical definition of
Reliability is provided along with a deep description of the concept of Safety; in
Section 2.2 classic methods, available in literature, that are mostly exploited
for performing statically reliability and safety analysis are described; then
the main efforts concerning model-based approaches for analyzing reliability
and safety properties of systems by adopting modern analysis techniques and
centered on Modeling and Simulation are described in Section 2.3; finally,
some open issues are highlighted in Section 2.4.

Reliability represents the ability of a system to perform its required func-
tions under stated conditions, identified during its design, for a specified period
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of time [19]. It is an important property to be considered for a wide range
of systems, and, it becomes even crucial, when systems called mission-critical
are considered, that is to say when the failure of a system may lead to catas-
trophic losses in terms of cost, environmental damages, or even human lives,
as in several industrial and service domains such as avionics, railway, automo-
tive, energy and health care. The formal definition of Reliability relies on the
important concept of time-to-failure which is modeled as a random variable
T and by the following related functions:

1. Reliability function (2.1), which indicates the probability that the system
fails after time t:

R(t) = Pr(T > t) (2.1)

2. Failure distribution (2.2), which is a cumulative distribution function and
indicates the probability that a system fails before time t:

F (t) = Pr(T ≤ t) = 1−R(t) (2.2)

3. Failure density function (2.3), which indicates how the probability of fail-
ure is distributed over the life of the system::

f(t) =
d

dt
F (t) = Ḟ (t) (2.3)

4. Hazard function (or hazard rate) (2.4), which indicates the probability of
a system failure between t and t + ∆t given that it was operating at time
t, and becomes the instantaneous failure rate as Delta t tends to zero:

λ(t) = lim
∆t→0

R(t)−R(t+∆t)

R(t) ·∆t
=
Ṙ(t)

R(t)
(2.4)

For a wide range of mechanical systems the function lambda (t) assumes
a typical shape called Bathtub curve which shows three different stages of
failures during the system life (see Figure 2.1):
- early failures, the failure rate is high due to the infant mortality of

system components but rapidly decreasing;
- random failures, the failure rate is low and constant (useful life of the

system);
- wear-out failures, the failure rate increases as age and wear take their

toll on the system components.
5. Mean Time To Failure (MTTF) (2.5), which represents the expected value

of the time-to-failure random variable T:

MTTF = E(T ) =

∫ ∞

0

f(t)dt (2.5)

In Table 2.1 the expressions of the above introduced functions in terms of
each of them are reported. The valuation and evaluation of these reliability
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Fig. 2.1. Bathtub curve

functions represent a crucial task for a quantitative analysis of the reliabil-
ity properties of a system. Beside quantitative analyses, qualitative analyses,
which aim to identify the possible system failures, their rate of occurrence,
and (local and global) effects on the system, should be also executed [85] so
to complement the information obtained from the quantitative ones.

Table 2.1. Main Reliability Functions

In life data analysis and accelerated life testing data analysis, as well as
other testing activities, one of the primary objectives is to obtain a life dis-
tribution that describes the times-to-failure of a component, subassembly,
assembly or system. This analysis is based on the time of successful operation
or time-to-failure data of the item (component), either under use conditions
or from accelerated life tests. For any life data analysis, the analyst chooses
a point at which no more detailed information about the object of analysis
is known or needs to be considered. At that point, the analyst treats the ob-
ject of analysis as a ”black box”. The selection of this level (e.g. component,
subassembly, assembly or system) determines the detail of the subsequent
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analysis. In this kind of system reliability analysis a model of a system is
built from these component models, that in turn concerns with the construc-
tion of a model in terms of life distribution. The life distribution represents
the times-to-failure of the entire system based on the life distributions of the
components, subassemblies and/or assemblies (”black boxes”) from which it
is composed, as illustrated in Figure 2.2.

Fig. 2.2. Hierarchical composition of a System model

To accomplish this, the relationships between components are considered
and decisions about the choice of components can be made to improve or op-
timize the overall system reliability, maintainability and/or availability. There
are many specific reasons for looking at component data to estimate the over-
all system reliability. One of the most important is that in many situations it
is easier and less expensive to test components/subsystems rather than entire
systems. Many other benefits of the system reliability analysis approach also
exist and will be presented throughout this reference [75].

From the other hand, Safety Analysis is a discipline of Safety Engineering
whose aim is to ensure that engineered systems provide acceptable levels of
safety through the identification of safety related risks, eliminating or con-
trolling them by design and/or procedures, based on acceptable system safety
precedences [80, 81, 23]. Indeed the system safety concept calls for a risk man-
agement strategy based on identification, analysis of hazards and application
of remedial controls using a systems-based approach [45].

System safety uses systems theory and systems engineering approaches
to prevent foreseeable accidents and minimize the effects of unforeseen ones.
It considers losses in general, not just human death or injury. Such losses
may include destruction of property, loss of mission and environmental harm.
Safety of systems needs to be planned in an integrated and comprehensive
engineering framework that requires experience in the application of safety
engineering principles by exploiting well-known analysis techniques to perform
safety analysis for the identification and the management of hazards. The
general definition of Safety is based on the main concept of risk which is the
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combination of the probability of a failure event and the severity resulting
from the failure.

Among non-functional requirements, Safety, which represents an impor-
tant requirement to be satisfied for a wide range of systems [68], becomes
even more crucial in several industrial domains such as nuclear plants, medi-
cal appliances, avionics, automotive and satellite [42, 67, 101]. In particular,
in the automotive domain, although Safety has always played a key role, the
importance that is attributed to it has become far greater in recent times
[47, 83]. In modern automobile design, Safety Requirements can be generally
categorized in three main classes: (i) Passive safety, which aims to minimize
the severity of an accident; examples of passive safety elements are seatbelts,
crumple zones, airbags; (ii) Active safety, which aims to avoid accidents and
to minimize their effects if they occur; examples of active safety elements are:
predictive emergency braking, seatbelt pre-tensioning, anti-lock braking sys-
tems and traction control; (iii) Functional safety, which aims to ensure that
both the electrical and electronic systems (such as power supplies, sensors,
communication networks, actuators, etc.), also including all active safety re-
lated systems, function correctly. In other words, Functional safety aims to
guarantee the absence of unacceptable risk due to hazards caused by malfunc-
tioning behavior of electrical and electronic systems.

Many interests in such disciplines, from both academic institutions and
research centers as well as military and civil international organizations such
as NASA (The National Aeronautics and Space Administration) [79], ESA
(European Space Agency) [21], EADS (European Aeronautic Defence and
Space Company) [20], is even more increasing. Indeed some efforts about
the standardization of methods, processes, tools and practices with particular
focus on the reliability and safety are currently under consideration as it is
shown in the next subsections.

2.1 Classical Methods and Techniques for System
Reliability analysis and Safety

A first classification about Methods and Techniques for System Reliability
analysis and Safety is about performing qualitative and/ or quantitative anal-
ysis, as a consequence the following main categories of analysis and related
techniques have been identified:

Quantitative analysis techniques (such as Series-Parallel and Markov
Chains) are based on the identification and modeling of physical and logical
connections among system components and on the analysis of their reliability
through statistical methods and techniques, but very often probabilistic in-
formation is not so relevant or desired, for example, when one wants to study
the reachability of a state of the system, as a consequence Qualitative analysis
techniques are often preferred [85, 102].
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Qualitative analysis techniques aim to identify the possible system failures,
their rate of occurrence and (local and global) effects on the system so to
individuate corrective actions; two main techniques are currently exploited:
FMECA (Failure Modes Effects and Critical Analysis) [43] and FTA (Fault
Tree Analysis) [63]. To perform quantitative and qualitative RAMS analyses,
several techniques are currently available which are mainly based on statistical
and probabilistic tools and on the hierarchical decomposition of the system
in terms of its components.

Most techniques were originally conceived mainly for electromechanical
systems but, with the increasing adoption of software components in many
modern systems, some extensions for embedded and software intensive sys-
tems have been proposed (e.g. S-FMECA, S-FTA) [68] along with specific
software-oriented techniques (e.g. HSIA, SCCFA, PSH) [22]. Furthermore sev-
eral techniques for performing quantitative and qualitative safety analyses are
currently available. The most adopted techniques for performing quantitative
and qualitative RAMS analyses are reported in subsequent paragraphs (see
Table 2.2).

Table 2.2. Reliability Analysis Techniques

Quantitative Qualitative Suitable for Software
Analysis Analysis Intensive Systems

Series-Parallel (RBD) x − −
Markov Chains x − −
FMEA/FMECA − x x(S − FMEA,

S − FMECA)
FTA − x x(S − FTA)
HAZOP − x x
HSIA − x x
SCCFA − x x
PSH − x x

The Fault Hazard Analysis (FHA) is a deductive method of analysis
that can be used exclusively as a qualitative analysis or, if desired, ex-
panded to a quantitative one [94]. The Fault Hazard Analysis requires a de-
tailed investigation of the subsystems to determine component hazard modes,
causes of these hazards, and resultant effects to the subsystem and its op-
eration. This type of analysis belongs to a family of reliability analysis tech-
niques which comprehends FMEA/FMECA (Failure Mode and Effects Analy-
sis/Failure mode effects and criticality analysis). The main difference between
the FMEA/FMECA and the Fault Hazard Analysis is a matter of depth.
Wherein the FMEA or FMECA looks at all failures and their effects, the
Fault Hazard Analysis deals only with those effects that are safety related.
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Reliability Block Diagrams (RBDs) use logical blocks to link a complex
system state to the states of its components [71]. A block, representing a
component, can be viewed as a ”switch” that is ”closed” when the block
is operating and ”open” when the block is failed. System is operational if
a path of closed ”switches” is found from the input to the output of the
diagram. Blocks can be connected in series (to represent components that
are all required for system functioning), in parallel (to represents blocks of
which at least one is required), in a k-of-n structure (when at least k out of
n components are required). The overall structure can be composed of all
of these kinds of connection, leading either to series-parallel RBDs (that can
be solved by simple series-parallel reductions) or to non-series-parallel RBDs
(that can be solved by state enumeration, factoring, conditioning, or binary
decision diagrams (BDDs).

Fault Tree Analysis (FTA) is a popular and productive hazard identifi-
cation tool [14, 82]. A FTA is a deductive or backward logic representation
which involves specifying a top event to analyze (a system failure), followed
by identifying all of the associated elements in the system that could cause
that top event to occur. It provides a standardized discipline to evaluate and
control hazards. The FTA process is used to solve a wide variety of problems
ranging from safety to management issues. This tool is used by the profes-
sional safety and reliability community to both prevent and resolve hazards
and failures. Both qualitative and quantitative methods are used to identify
areas in a system that are most critical to safe operation. The output is a
graphical presentation providing a map of ”failure or hazard” paths.

Event Tree Analysis (ETA) is an analysis technique for identifying and
evaluating the sequence of events in a potential accident scenario following
the occurrence of an initiating event [65]. ETA is an inductive or forward logic
representation, which starts from an initiating event and includes all possible
paths, whose branch points represent successes and failures. The objective of
ETA is to determine whether the initiating event will develop into a serious
mishap or if the event is sufficiently controlled by the safety systems and
procedures implemented in the system design. An ETA can result in many
different possible outcomes from a single initiating event and it provides the
capability to obtain a probability for each outcome.

Common Cause Failure Analysis (CCFA) is an extension of FTA to iden-
tify ”coupling factors” that can cause component failures to be potentially
interdependent [72]. Primary events of minimal cut sets from the FTA are
examined through the development of matrices to determine if failures are
linked to some common cause relating to the environment, location, secondary
causes, human error, or quality control. A cut set is a set of basic events (e.g.
a set of component failures) whose occurrence causes the system to fail. A
minimum cut set is one that has been reduced to eliminate all redundant
”fault paths”. CCFA provides a better understanding of the interdependent
relationship between FTA events and their causes. It analyzes safety systems
for ”real” redundancy.
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Sneak Circuit Analysis (SCA) is a method for the evaluation of electrical
circuits [95]. SCA employs recognition of topological patterns that are charac-
teristic of all circuits and systems. The purpose of this analysis technique is to
uncover latent (sneak) circuits and conditions that inhibit desired functions or
cause undesired functions to occur, without a component having failed. The
process converts schematic diagrams to topographical drawings and searches
for sneak circuits.

The Energy Trace is a hazard analysis approach addresses all sources of
uncontrolled and controlled energy that have the potential to cause an acci-
dent [5]. Examples include utility electrical power and aircraft fuel. Sources
of energy causing accidents can be associated with the product or process.
The purpose of energy trace analysis is to ensure that all hazards and their
immediate causes are identified. Once the hazards and their causes are iden-
tified, they can be used as top events in a fault tree or used to verify the
completeness of a fault hazard analysis. Consequently, the energy trace anal-
ysis method complements but does not replace other analyses, such as fault
trees, sneak circuit analyses, event trees, and FMEAs.

Even though the above mentioned techniques are fairly popular for the
safety static analysis of systems, nowadays, with the increase of complexity
and heterogeneity of modern systems, more dynamic and flexible analysis
techniques, based on simulation methods as well as compliant with interna-
tional safety standards for specific domains, are even more required. The main
and more significant contributions are presented in the next paragraph.

2.2 Model-based Methods for the Reliability and Safety
analysis of Systems

From a MBSE point of view, a Method can consist of a set techniques for
performing a task. At any level, process tasks are performed using methods.
However, each method is also a process itself, with a sequence of tasks to be
performed for that particular method.

For several years many SE methods, that describe how using modeling
approaches to carried out system design tasks, have been proposed, but few
of them include approaches to deal with verification of requirements, and in
particular with reliability and safety design and analysis of systems in a com-
prehensive and integrated way in order to improve the realization and the
performances of a system during the System Engineering (SE) Development
process and its early design phases. In the following some of me most adopted
and popular model based method present in literature are described. Nowa-
days new emerging techniques for system reliability and safety analysis, which
are centered on model-based approaches [84, 108] and incorporate the use of
simulation [93], are emerging.

One of these method is MéDISIS [16], a deductive and iterative approach
that aims at facilitating crucial reliability analysis and enhancing the use of
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the diverse tools and languages used for dysfunctional behavior validation. It
is used within an industrial project to design a hypersonic aircraft which is a
relevant complex and critical system. MéDISIS applies model based techniques
and combining the advantages of established modeling tools with more formal
analysis methods by providing a tool-based solution and it is domain-specific
oriented. In MéDESIS the inputs to the models are expressed in SysML and
a repository registering and managing the knowledge raised by the activities
performed in a structure modeled in this language has been built, in par-
ticular a model based dysfunctional behind the FIDES [24] guide has been
designed as a reliability database. The main assumption that was made for
the constitution of MéDISIS, was to consider that the method used by the
designer to construct the functional model of the system is let totally free.
This assumption was taken to make it possible to integrate MéDISIS to oth-
ers MBSE methods tackling the other tasks of system development. MéDISIS
includes the following steps: (i)deduction of the dysfunctional behavior with
an FMEA, identification of the impacted requirements; (ii) construction of a
model integrating functional and dysfunctional behaviors with a formal lan-
guage; (iii) analysis and quantification of dysfunctional behavior. To perform
the steps of MéDISIS several tools and analysis routines have been defined
to support each phase and optimize the rapidity and quality of the reliabil-
ity studies. These developments are made to construct a complete System
Development Environment (SDE) supporting MéDISIS and system design.
Analysis techniques and a tool have defined to support FMEA realization.
The results of this study raise the dysfunctional behavior of each component.
They are capitalized in a dysfunctional models repository and reused to con-
struct a formal representation of the system using the AltaRica Data Flow
[8] language. The construction of this formal model, mandatory for system
validation, is also helped by analyses techniques systematizing the creation of
this reliability-oriented view. A service to support embedded systems analy-
sis, which proposes to generate AADL [111] models exploitable for real time
application studies using Cheddar tool, is available in it .

Another effort in the context of model-based engineering and reliability
analysis is centered on AltaRica language. Altarica is a language used to de-
scribe critical systems whose base component of an Altarica model is called
node. Its structure may comprise the following sections: sub, state, event,
init, flow, trans, assert, sync, extern. An Altarica model [3, 99] is a hierar-
chical graph composed of nodes. At the same level of the hierarchy, nodes
communicate through flows and synchronizations. The hierarchy yields a tree
structure, where two types of nodes are possible: component which represents
a single process of the system, it cannot contain definition of subnodes or
synchronizations; equipment which represents a container for nodes; it may
contain declarations of subnodes and synchronizations, but it cannot have
state variables. This structure imposes that the component nodes represent
the leafs, whereas the equipment nodes are containers for the components.
Moreover, there is a special equipment node called main, which represents
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the root of the full Altarica model. The Altarica language was designed to
specify the behavior of a system when faults occur, and and Altarica model
can be evaluated by complementary tool, such as fault tree generator and
model checker. From the Fault model view, a failure mode state of a node
can be achieved using a transition that takes the particular failure event.
The semantics of the Altarica model is defined in terms of Interfaced Transi-
tion Systems (ITSs) [2]. Intuitively, the ITS associated with a component is
given straightforwardly by the state variables (which define the states), the
initial condition, the transitions, the events and flow variables (which define
the observations) of the node. The ITS associated to an equipment node is
given by the composition of the ITSs associated with the subnodes taking
into account synchronizations. The evolution of an Altarica system can be
further constrained by associating events with special laws and priorities. By
default, events are considered stochastic. These events are typically used to
model component failures and can be optionally associated with a probability
distribution law (e.g. Exponential law). These laws are used to establish inter-
operability with commercial RAMS (Reliability, Availability, Maintainability
and Safety) analysis tools and do not affect qualitative behavior of the system.
An Altarica fault tree generator takes in input an Altarica model along with
some unexpected event and generates a fault tree for non-temporal failure
conditions.

In the framework of the probabilistic safety analysis of the Paluel nuclear
power plant, EDF has developed software packages allowing the automation
construction and assessment of reliable models. Our concern for unification of
the software packages, explanation of the reliability expert’s modeling choices,
and generality has led us to design a unique system modeling language (the
FIGARO language) [8, 7] which is independent from the processing method
used afterwards. This language has been worked out in order [6]: (i) to give
a suitable formalism for setting up knowledge bases (with generic component
descriptions), (ii) to be more general than all conventional reliability models,
(iii) to make the best possible compromise between modeling power (or gener-
ality) and processing tractability, (iv) to be as readable as possible, (v) to be
easily associated with graphic representations. On the basis of a FIGARO lan-
guage modeling, different compilers and translators allow to deduce automati-
cally the data which are necessary for the classical reliability model processing
codes: fault trees, Markov chains, Petri nets, etc. Models in Figaro are objects,
and may have properties such as conditions, constraints and relationships to
other objects. Figaro model classes are created by inheriting functionality
from existing classes. Figaro provides a modular, compositional Metropolis-
Hastings algorithm, and gives the modeler optional control over it. FIGARO
is part of the so-called ”hybrid” languages with specific object-oriented type
syntax and semantics, that is to say it takes some of its features from the
object-oriented languages and models the behavior of an object through or-
der 1 production rules. The use of rules offers two advantages (i) The rules are
close to the natural language if their syntax is selected appropriately: their
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use will improve the model readability; (ii) EDF has got the mastery of dif-
ferent tools in this field and, in particular, worked on the validation of 0 order
production rule bases. Conventional model, such as a fault tree, a reliability
diagram, would be built more rapidly than a FIGARO based model, which
obliges to structure and formalize the concepts being handled more or less
consciously in the production of the specific model. In return, it won’t be
at all reusable for carrying out a second study of the same type. FIGARO
gives a very satisfying answer to this request through the possibility it of-
fers to create ”knowledge micro-bases” corresponding to the classical models.
These bases allow graphic model acquisition. More generally, it is important
to notice that any simple graphic language can be supported by means of a
small, quickly written FIGARO knowledge base. Besides, the FIGARO based
modelling allows to access the full available processing set: for example it is
possible to assess the reliability of a system represented through a fault tree
by a Monte Carlo simulation, which is feasible whatever the FIGARO model,
or by the analytical calculations of GSI whereas most of the fault tree codes
do not permit such a calculation (for a repairable system).

Another effort has been performed in a method for the virtual verification
of system designs against system requirements (vVDR) by means of simu-
lation is proposed [107, 70]. It is based on the Modelica language Modelica
is an object-oriented equation-based modeling language primarily aimed at
physical systems [87, 25]. It points out that this method strongly depends
on the design models that are planned to be created and that not all type
of requirements can be evaluated using this method. In the vVDR approach,
formalized requirements, system design and test cases are defined in separate
models and can be reused and combined into test setups in an efficient manner.
In this methodology It is assumed that the requirements from the customer
have been elicited as requirement statements according to common standards
in terms of quality, e.g. according to the work in [51] stating that the individ-
ual requirements should be unique, atomic, feasible, clear, precise, verifiable,
legal, and abstract, and the overall set of requirements should be complete,
non-redundant, consistent, modular, structured, satisfied and qualified. The
methods to achieve this have been well defined and can be considered to be
established.

2.3 Importance of Regulation and main International
Standards

Despite a general consensus on the advantages that could derive from the
exploitation of model-based approaches for system reliability analysis and
safety, the use of these techniques has been traditionally unusual and has not
been recommended by international standards until recently. Nowadays, in-
deed being compliant to international standards for specific domains is even
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more required, and often it is very crucial during all the different develop-
ment phases of a system. In the following paragraphs an overview of the most
common reference standard provided and/or exploited by international or-
ganization such as IEC (International Electrotechnical Commission), NASA,
ESA as well as EADS company [54, 79, 21, 20], is reported.

The standard IEC-61508 [53] includes all aspects of Electrical, Electron-
ical and Programmable electronical Systems, for safety related function and
usability as well as how systems have to be developed, tested, used and main-
tained according national and internationals standards. It enables a system-
atic and risk based methodology for safety related problems. The standard
IEC/EN 61508 is detailed in seven chapters, but only the first four, as listed
below, present normative requirements for the development:

- IEC/EN 61508-1: General Requirements;
- IEC/EN 61508-2: Hardware Requirements;
- IEC/EN 61508-3: Software Requirements;
- IEC/EN 61508-4: Notation and abbreviations;
- IEC/EN 61508-5: Example for calculating different safety integrity levels

(SIL);
- IEC/EN 61508-6: Application guidelines for IEC/EN 61508-2 and IEC/EN

61508-3;
- IEC/EN 61508-7: Overview of techniques and actions.

ISO-26262 represents the reference standard in automotive domain [59].
Its basis resides in the more generic IEC-61508 [53] which has a broad field of
application (industrial process, control and automation, oil/gas, nuclear, etc.).
However, ISO-26262 is totally dedicated to the automotive sector and allows
car manufacturers to indemnify themselves from liability in case a malfunction
remains undetected when following the standard [67]. At the process level, this
standard allows to follow a clear guidance on the development and validation
of electrical and electronic systems, avoiding errors in the design and imple-
mentation, which could otherwise induce more expensive production activities
and delay during the development [119]. Moreover, a well-defined and stan-
dardized development process, which goes from the Requirements Analysis
phases up to the System Testing phases, allows supporting the traceability
of Safety Requirements during all the intermediate development stages. As
an example, the Process Deployment Advisory Service defined on ISO-26262
in order to help identifying gaps in the development processes, including re-
quirements traceability and requirements based-testing, is fully supported by
popular tools such as MATLAB-Simulink [1, 106, 113, 114] .

The RTCA - DO 254 is another important standard prepared by RTCA
Special Committee 180 and approved by the RTCA Program Management
Committee on April 19, 2000 [98]. This document provides guidance for de-
sign assurance of airborne electronic hardware from conception through initial
certification and subsequent post certification product improvements to en-
sure continued airworthiness. It was developed based on showing compliance
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with certification requirements for transport category aircraft and equipment
but parts of this document may be applicable to other equipment. The guid-
ance of this standard is applicable, but not limited to, the following hard-
ware items: Line Replaceable Units (LRUs), Circuit Board Assemblies, Cus-
tom micro-coded components such as Application Specific Integrated Circuits
(ASICs) and Programmable Logic Devices (PLDs) including any associated
macro functions, Integrated technology components such as hybrids and multi-
chip modules and Commercial-Off-The-Shelf (COTS) components.

RTCA - DO 178B are software consideration in airborne systems and
equipment certification [96]. This standard was jointly prepared by EURO-
CAE Working Group 12 and RTCA Special Committee 167, ad accepted by
the Council of EUROCAE on December 10, 1992. The purpose of this doc-
ument is to provide guidelines for the production of software for airborne
systems and equipment that performs its intended function with a level of
confidence in safety that complies with airworthiness requirements. In par-
ticular these guidelines are in the form of: Objectives for software life cycle
processes, Descriptions of activities and design considerations for achieving
those objectives, Description of the evidence which indicate that the objec-
tive have been satisfied.

RTCA - DO 178C Software Considerations in Airborne Systems and
Equipment Certification is the title of the recently published document from
RTCA, Incorporated, in a joint effort with EUROCAE [97]. It was completed
in November 2011 and approved by the RTCA in December 2011. It has been
released to provide clarification and address inconsistencies in Do 178B, as
well as introduce technology advancement in the areas of certifiable software
development through technology supplements: (i) Software Tool Qualification
considerations (in DO-330), (ii) Model-based Development and Verification
Supplement (in DO-331), (iii) Object Oriented Technology and related Tech-
niques Supplement (in DO-332) and Formal Methods Supplement (in DO-
333). Tool Qualification plays a key role in RTCA - DO 178C standard where
the terms ”development tool” and ”verification tool” have been replaced by
three tool qualification criteria that determine the applicable tool qualification
level (TQL) in regards to software design assurance level.

ECSS-Q80-03 is a standard defined by the European Space Agency (ESA)
concerning Methods and techniques to support the assessment of software
dependability and safety [22]. This Standard was prepared by the ECSS-Q-80-
03 Working Group, reviewed by the Product Assurance Panel, and approved
by the ECSS Steering Board. It is one of the series of ECSS Standards intended
to be applied together for the management, engineering and product assurance
in space projects and applications. The scope of this standard is limited to
assessment aspects not including development and implementation techniques
for dependability (e.g. fault tolerance techniques, or development methods like
coding standards are not covered). It provides support for the selection and
application of reliability and safety methods and techniques that can be used
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for the assessment of software intensive systems and the inputs to be provided
for the system level analysis.

NASA/SP-2007-6105 is another efforts which have been accomplished by
the National Aeronautics and Space Administration (NASA) [80]. It provides
top-level guidelines for good systems engineering practices. The approach pro-
vided the opportunity to obtain best practices from across NASA and bridge
the information to the established NASA systems engineering process. It con-
sists of six core chapters: (1) systems engineering fundamentals discussion, (2)
the NASA program/project life cycles, (3) systems engineering processes to
get from a concept to a design, (4) systems engineering processes to get from
a design to a final product, (5) crosscutting management processes in systems
engineering, and (6) special topics relative to systems engineering.

2.4 Conclusion

The increase in both system complexity and accuracy required in the reliabil-
ity and safety analysis often goes beyond the capabilities of the above men-
tioned techniques, which are usually employed for a static/structural analysis
of systems. Moreover, their integration in typical system development pro-
cesses [48], and especially in the design phases, is quite difficult and then
their use is often postponed to the later development stages [61, 110]. Despite
a general consensus on the advantages that could derive from the exploitation
of model-based approaches which incorporate the use of simulation techniques
to analysis the behavior of systems and their evolution, the delay in the adop-
tion is mainly due to the lack of methods able to integrate available modeling
languages, tools and techniques in a consistent modeling framework. So, the
need of emerging methods, which are centered on model-based approaches,
so to benefit from the available modeling practices and which incorporate the
use of simulation to flexibly evaluate during the design the system reliabil-
ity and safety performance and compare different design choices [88, 66], are
nowadays even more required. As a consequence, the present Thesis work has
been conceived by starting from these considerations.
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RAMSAS: a model-based method for the
reliability analysis of systems

In this Chapter, RAMSAS, the proposed model-based method for the reliabil-
ity analysis of systems through simulation, is described [29]. RAMSAS aims
contributing to fill the lack of methods specifically conceived for addressing
the analysis and verification of non-functional requirements. In particular, the
attention is focused on system reliability which is a key requirement to satisfy
especially for mission critical systems where system failures could cause even
human losses. RAMSAS is the result of an intensive experimentation in several
application domains (avionics, automotive, satellite) [27, 28, 30, 31, 34] which
allowed improving the effectiveness of the method especially in the modeling
of both the expected and dysfunctional system behavior.

Fig. 3.1. The RAMSAS Method - A process view
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RAMSAS is based on a classical iterative process consisting of four main
phases (see Figure 3.1): Reliability Requirements Analysis, System Modeling,
System Simulation, and Results Assessment. In the first phase (Reliability
Requirements Analysis), the objectives of the reliability analysis are specified
and the reliability functions and indicators to evaluate during the simulation
are defined. In the System Modeling phase, the structure and behavior of the
system are modeled in SysML (OMG Systems Modeling Language) by using
zooming in-out mechanisms [78]; moreover, beside the intended system be-
haviors, specific dysfunctional behaviors and related tasks, which model the
onset, propagation and management of faults and failures, are introduced. In
the System Simulation phase, the previously obtained models of the system
are represented in terms of the constructs offered by the target simulation
platform (currently MATLAB-Simulink). Finally, simulation results are an-
alyzed with respect to the objectives of the reliability analysis; if necessary,
new partial or complete process iterations are executed. RAMSAS is defined
as a Method Fragment [9, 10, 46] and, as a consequence, it can be integrated
in various phases of a typical System Development Process (e.g. in a V-Cycle
process, see Figure 3.2): (i) in the verification phases to support the verifi-
cation of system reliability after the actual realization of the system; (ii) in
the design phases to support the evaluation and validation of configuration
scenarios and settings of system parameters so to guide and suggest design
choices before the realization of the system.

Fig. 3.2. The RAMSAS method plugged into a V-Model

The contributions provided in this Section is related with Model-based
Methods described in Section 2.2 and, in particular, with MeDISIS [16], a
deductive and iterative approach that aims at facilitating crucial reliability
analysis. Both the RAMSAS method and MeDISIS approach rely on simula-
tion based analysis and verification against description of the required behav-
ior, but RAMSAS provides a more methodological solution whereas MeDISIS
approach provides a tool-based solution and it is domain-specific oriented. In
the following sections a more detailed description of the RAMSAS Method is
provided in terms of models, phases and related work-products.
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3.1 Reliability Analysis Requirements

In the Reliability Requirements Analysis phase the objectives of the system re-
liability analysis are specified. The inputs of this phase are the work-products
typically resulting from previous System Design phases. Starting from this
documentation, the scenarios to be analyzed, the functions that the system
has to perform, the related operative conditions, and the reference time hori-
zons should be clearly individuated along with the reliability functions and
indicators to be derived from the analysis of the simulation results. In partic-
ular, the Reliability Requirements Analysis phase takes as input a description
of the system under consideration in term of both System Requirements (SR)
and System Design Model (SDM).
SR includes functional (FR) and non-functional requirements (NFR), whereas
SDM provides a system representation in terms of its architecture and behav-
ior. Among the NFR, the Reliability Requirements (RR) specify the ability
required for the system in performing the functions identified by the FR un-
der specific stated conditions and for a given period of time.
In addition, a Failure Modes and Effects Analysis (FMEA) can be also pro-
vided to highlight the potential failure modes of the system along with their
severity and likelihood. Starting from the above mentioned SR, in the Relia-
bility Analysis Objectives (RAO) work-product, the reliability indicators and
the scenarios of interests are identified along with the main analysis tech-
niques to be applied to the data gathered from simulation. In the RAO, a
visual representation of the SR can be also provided through SysML Require-
ments Diagrams along with the allocation of these requirements (especially
the reliability ones) to main system components.

3.2 System Modeling

In the System Modeling phase the structure and both the intended (also called
nominal or normal or expected) and dysfunctional behavior of the system un-
der consideration are represented in SysML by executing four modeling activi-
ties (see Figure 3.3): System Structure Modeling, Intended Behavior Modeling,
Dysfunctional Behavior Modeling and Behavior Integration.

The specifications concerning the structure and intended behavior of the
system are derived from the System Design Model (SDM) resulting from previ-
ous design phases; these activities can be straightforward if during the system
design similar structural and behavioral reference models have been adopted
along with a UML based modeling notation. With reference to the dysfunc-
tional behavior of the system, its modeling can be based on the results re-
ported in the RAO document concerning the analysis of the failure modes of
the system (see Section 3.1). Finally, the intended and dysfunctional system
behaviors are suitable integrated so to provide a complete system specifica-
tion for the subsequent simulation phase. In the following Subsections, each
of these modeling activities is discussed more in details.
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Fig. 3.3. System Modeling phase

3.2.1 System Structure Modeling

In the System Structure Modeling activity, the system structure is modeled
by using SysML Blocks following a top-down approach. To this aim, several
decomposition levels should be considered by applying in-out zooming mech-
anisms [78] such as system, subsystems, equipment, and components; however
to allow system analysis at the desired level of details, further abstraction lev-
els along with different and deeper hierarchies can be also introduced. Each
system entity is defined by both a Block Definition Diagram (BDD) and an
Internal Block Diagram (IBD). Specifically, for a given abstraction level, a
BDD describes a block with its interfaces, attributes, operations, constraints,
parts and relationships with other blocks; whereas, an IBD provides a de-
scription of the block internal structure in terms of the organization of its
component blocks.

3.2.2 Intended Behavior Modeling

In the Intended Behavior Modeling activity the intended behavior of the sys-
tem is represented following also a layered approach but combining the top-
down with a bottom-up strategy. The reference model is service and task-
oriented: the behavior of each entity is modeled in terms of the services (or
functions) that the entity is able to provide and which are performed through
tasks. In order to specify the behavior of the system and its component en-
tities, two levels of decomposition are considered: leaf level (e.g. component
level) and non-leaf level (e.g. equipment, subsystem or system level). In partic-
ular, for each entity at the leaf decomposition level (the lowest decomposition
level):

- the services (or functions) provided by the entity, in terms of their input
and output work-products along with pre and post conditions, should be
specified;

- each task (flow of activities/actions) performed by the entity for pro-
viding a specific service (or function) has to be specified through an
Activity Diagram; each task can be scheduled or triggered by incoming
events/messages;
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- for the tasks of the entity that can be naturally represented in terms of
equations, Parametric Diagrams are introduced;

- the exchange of messages between the entity and the external environment
(which can be another entity at the same or at a higher decomposition
level) should be represented through Sequence Diagrams;

- in case the behavior of the entity depends on its internal state, a state
machine which models the entity life cycle can be specified through a
Statechart Diagram.

Moving from the leaf decomposition level to higher decomposition levels
(non-leaf decomposition levels), the representation of the entity behavior is
similar; however, how the component entities (i.e. sub-entities) participate and
determine the behavior of the considered enclosing entity should be taken into
account; as a consequence, for each entity at a non-leaf decomposition level :

- beside the services (or function) provided by the entity, how these services
can be obtained by composing the services provided by the sub-entities
should be also specified;

- each task (flow of activities/actions) performed by the entity for providing
a specific service (or function) has to be specified by an Activity Diagram
possibly highlighting through swim-lanes the responsibility of each sub-
entity in carrying out the activities of the task;

- the exchange of messages between the entity and the external environment
should be represented through Sequence Diagrams possibly highlighting
the role played by its sub-entities in each interaction (e.g. by explicitly
representing them as participants in the diagrams);

- in case the behavior of the entity depends on its internal state, a state ma-
chine that models the entity life cycle can be specified through a Statechart
Diagram; the diagram can adopt advanced constructs, such as composite
states, AND/OR-decomposition and History pseudo-states, for represent-
ing how the behavior of the entity is related to the behavior of its sub-
entities.

3.2.3 Dysfunctional Behavior Modeling

In the Dysfunctional Behavior Modeling activity, the focus is on the modeling
of faults and failures, which are key concepts of the system reliability analysis
[64, 19]. Specifically, the behavior, concerning faults and failures of each sys-
tem entity (i.e. the dysfunctional behavior), is specified as a set of specific tasks
(which can be modeled through Activity Diagrams). The reference model of a
generic system entity, regardless on the considered abstraction level, is shown
in Figure 3.4. An entity is represented by a SysML Block which provides
a set of services/functions; the tasks performed by the entity for providing
these services are modeled during the Intended Behavior Modeling phase (see
Section 3.2.2).
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Beside the intended behavior specified through these tasks, a set of dys-
functional tasks are added so to model the dysfunctional behavior of the entity
[11, 41]. In particular, each block could receive as input a set of failure events
(e.g. due to the failures of other blocks) and could, in turn, produce in output
other failure events due to its failure; moreover, internal faults (represented
as fault events) can be generated and treated inside the block possibly pro-
ducing block failures (and thus output failure events). With reference to the
above described behavioral reference model (see Figure 3.4), six templates
of dysfunctional tasks have been individuated (see Table 3.1): Fault Gener-
ation, Failure Generation, Failure Management, Fault Management, Failure
Propagation and Failure Transformation.

Fig. 3.4. The reference Behavioral Model of a system entity

Tasks of the Fault and Failure Generation type (see Table 3.1.a and 3.1.b
respectively) can generate a fault/failure as a result of specific causes oc-
curring according to a given probability function. In order to allow driving,
during the simulation, the processes of fault/failure generation so as to study
the reliability performances of the system, these tasks can be scheduled or
triggered by specific events. However, whereas a failure is directly associated
to an output failure event (see Table 3.1.b), to produce a failure event starting
from a fault, the fault has to be taken in input from either a Failure Propaga-
tion or a Failure Transformation task. Incoming failures as well as internally
generated faults can be (successfully or not) handled by tasks of the Failure
and Fault Management type (see Table 3.1.c and 3.1.d respectively). Finally,
tasks of the Failure Propagation and the Failure Transformation type take
dysfunctional events in input and produce dysfunctional events in output. In
particular, tasks of the Failure Propagation type (Table 3.1.e) generate output
failure events either through the propagation of incoming failure events or by
combining such incoming failures with internal faults. Tasks of Failure Trans-
formation type (Table 3.1.f) produce output failure events derived from the
transformation or combination either of incoming failure events or of internal
faults.
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Table 3.1. Templates of dysfunctional tasks

(a) Fault Generation

(b) Failure Generation

(c) Failure Management

(d) Fault Management

(e) Failure Propagation

(f) Failure Transformation

To further support this crucial modeling activity, a set of patterns to as-
sociate to each of the above discussed six types of dysfunctional tasks should
be defined.
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The definition of each of these patterns should take into account the type
of the dysfunctional task (e.g. Failure Generation, Propagation or Transfor-
mation) as well as the specific nature of the fault/failure to which the pattern
refers to; in other word, a basic pattern is associated to a couple (dysfunctional
task type; fault/failure type). As a consequence, for the definition of these pat-
terns, beside the individuated six dysfunctional task types (see Table 3.1), a
(possibly hierarchical) classification of faults/failures needs to be introduced.

A first solution could consider the following fault/failure types [41]: (i)
reaction too late; (ii) reaction too early ; (iii) value failure; (iv) commission;
and (v) omission. By combining the individuated six dysfunctional task types
with these five fault/failure types, thirty different basic fault/failure behav-
ioral patterns can be defined.

The modeling of the dysfunctional behavior of each system entity, in terms
of a set of dysfunctional tasks of the above described types and possibly based
on available fault/failure behavioral patterns, is essential to evaluate through
simulation the dysfunctional behaviors of the system and analyze the possible
consequences of failures as well as feasible solutions for their management in
order to improve system reliability.

3.2.4 Behavior Integration

This is the last activity of the System Modeling phase of the RAMSAS method.
In the Behavior Integration activity, the nominal/intended behaviors and the
dysfunctional behaviors modeled in the previous modeling activities (see Sec-
tions 3.2.2 and 3.2.3) are integrated in order to obtain an overall behavioral
model of the system and its component entities. As an example, starting from
the Activity and Sequence diagrams which have been used to model both the
intended and dysfunctional behaviors of the system entities, a complete and
integrated definition of the life cycle of each entity, regardless on the consid-
ered abstraction level, can be obtained and represented through a Statechart
diagram. This activity closes the System Modeling phase by delivering the
System Model for Reliability Analysis (SMRA) work-product.

3.3 System Simulation

The objective of the System Simulation phase is to evaluate, through simula-
tion, the reliability performance of the system and, possibly, compare different
design alternatives and parameters settings; in particular, the following three
main activities are performed (see Figure 3.5): Model Transformation, Param-
eters Setting and Simulation Execution.

In the Model Transformation activity the previously obtained models of
the System in the SMRA are represented in terms of the constructs offered by
the target simulation platform which is, currently, MathWorks Simulink, so
producing an Executable System Model (ESM). This transformation is based



3.3 System Simulation 31

Fig. 3.5. System Simulation phase

on a mapping between the basic SysML and Simulink constructs (see Table
3.2) [31, 110], where the following mapping has been exploited: (i) a (simple)
SysML Block is transformed into a Simulink Block; (ii) a (composite) SysML
Block, consisting of other blocks (its parts), is transformed into a Simulink
Subsystem Block; (iii) SysML FlowPorts are transformed into Input and Out-
put Simulink Blocks; (iv) SysML Flow Specifications, used to type FlowPorts,
are transformed into Simulink Bus Objects.

It is worth to notice that not only the intended behavior of the system
but also the dysfunctional tasks (see Section 3.2.3), which are essential for
analyzing during the simulation the reliability performance of the system,
are generated. Indeed, this allows to suitably injecting faults and failures
during the simulation and setting the parameters of the related generation,
management, propagation and transformation tasks (see Table 3.1).

Table 3.2. Mapping among SysML and Simulink main constructs

Entity SysML Simulink

System, Subsystem, Block Block
Equipment, Component Part Subsystem Block

Activity diagram
Behavior and Sequence diagram S-Function

Constraint Activity diagram Stateflow diagram
Stachart diagram

Input/Output Interface Flow Port I/O Simulink Block
Flow Specification Simulink Bus Object

Association/Binding Connection Signal

In the Parameters Setting activity the ESM is refined so to allow the
flexible setting of system configuration and simulation parameters which can
be tuned according to both the characteristics of the operative scenario to
simulate and the dysfunctional behaviors to analyze.
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In the Simulation Execution activity the ESM is executed by varying the
desired parameters according to the analysis objectives reported in the RAO.
Specifically, the ESM is executed by Simulink according to a synchronous
reactive model of computation: at each step, Simulink computes, for each
block, the set of outputs as a function of the current inputs and the block state,
then it updates the block state. During the simulation faults and failures can
be injected and/or caused to stress and analyze the reliability performance of
the system. At the end, the data generated from the simulations are reported
in the Simulation Results (SIRE) work-product to be analyzed in the next
phase.

3.4 Results Assessment

In the Results Assessment phase, the results reported in the SIRE are elabo-
rated with reference to the objectives of the reliability analysis identified in the
initial phase of the process so to obtain important information on the reliabil-
ity properties of the system under consideration. A large part of these analyses
can be directly performed in Simulink, whereas more advanced analyses can
be performed by external tools by exporting the obtained results through
the MATLAB workspace. As a result, the following two work-products are
produced in output:

- Reliability Analysis Report (RAR), which provides a detailed analysis
about the reliability performance of the system under consideration;

- Design Suggestions Report (DSR), which provides a set of suggestion to
improve the design of the system and/or choose among different design
choices. It is worth to note that the DSR exploits typical FMECA and
FTA notations and representation formats so to make easier the use of
RAMSAS in conjunction with classical RAMS techniques.

As for any iterative process, new (partial or complete) iterations of RAMSAS
can be executed for achieving new or missed analysis objectives.

3.5 Conclusion

This Chapter has presented RAMSAS, a Model-Based method for the Reli-
ability Analysis of Systems, which combines in a unified framework: (i) the
strengths of powerful visual modeling languages (such as OMG SysML), suit-
able to flexibly model the architectural and behavioral aspects of complex,
dynamics, and heterogeneous systems; (ii) mature and popular tools (such as
Mathworks Simulink), suitable for the simulation and analysis of multi-domain
systems.

RAMSAS aims at filling the lack of methods which specifically address the
analysis and verification of non-functional requirements. It is the result of an
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intensive experimentation in several application domains (such as avionics, au-
tomotive and satellite) which allowed improving its modeling and simulation
features especially in the support provided to the modeling of the dysfunc-
tional system behaviors.

The proposed method is not intended to be an alternative to other tradi-
tional RAMS techniques (e.g. FMECA, FTA, RBD) but rather a comple-
ment to them able to provide additional analysis capabilities due to the
jointly exploitation of Systems Engineering modeling and simulation lan-
guages, tools and techniques. Moreover, these distinctive features make the
proposed method particularly suitable to be integrated in various phases of a
typical System Development Process, especially in the design phases. This al-
lows supporting the fulfillment and traceability of an important non-functional
requirement, such as reliability, in the early stages of a development process
with considerable time and cost reductions respect to more traditional relia-
bility analyses techniques which are often carried out in the latest stages of
the development, with the risk of having to revise even basic design choices.





4

Experimenting the RAMSAS Method

Reliability analysis of modern large-scale systems is a challenging task which
could benefit from the jointly exploitation of recent model-based approaches
and simulation techniques, such as the RAMSAS Method, to flexibly evaluate
the system reliability performances and compare different design choices. To
prove the suitability of RAMSAS to support the reliability analysis of systems
through Simulation, and thus obtain useful insights and feedback to improve
its effectiveness, several experimentations in various application domains have
been performed; in particular, RAMSAS has been experimented:

- in the avionics domain for the reliability analysis both of a Landing Gear
System [34] and of a Flight Management System [31];

- in the automotive domain for the reliability analysis of an Electronic Sta-
bility Control (ESC) system [30].

In this Chapter, an actual exploitation of the RAMSAS Method, for the relia-
bility Analysis of an Attitude Determination and Control System (ADCS) of
a Satellite, is presented. This experimentation has been carried out in coop-
eration with the Institute for Statics and Dynamics of Aerospace Structures
of the University of Stuttgart [27].

4.1 Reliability analysis of an Attitude Determination
and Control System (ADCS)

In the following an Attitude Determination and Control System (ADCS) of a
satellite [120, 44], is briefly described and then analyzed through the RAM-
SAS method in order to improve, where necessary, its design and/or its per-
formances before its actual realization.

After the launch of a satellite, there is almost no possibility for the main-
tenance and repair of it. Despite the expensive maintenance missions to the
Hubble telescope [50], satellite missions depend on the faultless operation of



36 4 Experimenting the RAMSAS Method

the system over the whole lifecycle. The analysis of the system reliability
is therefore a major aspect in satellite design. Due to the necessarily high
reliability figures, the reliability analysis and the consequent redundancy in
hardware and software are a major cost driver in satellite design. To ensure
the high reliability for satellite components, the components must prove the
high reliability through different tests. As example, in [15] the multiple test
procedure for thrusters of an Attitude and Determination Control System is
explained. To analyze the behavior of the system and the subsystems for ex-
ample statistical approaches are used. An example for a statistical approach
and the results of this approach are described in [12]. These results are based
on the examination of over 1500 satellite missions, with the analysis of the
failures and anomalies. A similar approach is described in [115] pointing out
that in satellite design, increasing reliability is even more important than
shortening development times.

The statistical data from [12] have a binary scope on the state of the
system - ”Complete failure?” or ”full functionality”. Based on these data in
[11] ”degraded states” between the polarized states of [12] are introduced.
From this starting point, a more distinguished view on the system is given
and a step in direction to the qualitative analysis technique as the Fault
Tree Analysis (FTA) is made (see Chapter 2, Section 2.1). The Fault Tree
Analysis is widely used for the reliability analysis of satellites. This fact is
also represented by the NASA Handbook for Fault Tree Analysis [82], where
the use of the FTA for Aerospace Applications is described. An example for
the actual usage of the FTA in the reliability analysis of a satellite is given in
[4], in the context of the Hermes CubeSat mission. For the different subsystems
of a satellite, different analysis techniques are applied. In [91] the reliability
analysis of a satellite structure with a Finite-Element model is described.
Therefore, parametric and non-parametric models were used.In the satellite
domain, the reliability analysis is not finished with the calculation of the
reliability figures. Due to the impossibility of repairing satellite failures in
orbit, the analysis of failures is implemented in the satellite software system
itself.

The method of Failure Detection, Isolation and Recovery (FDIR) for satel-
lite components is a field of active research [50, 49, 86]. The FDIR method is
intended to firstly detect failures, then isolate the erroneous component and
afterwards, recover the correct functionality of the satellite system to regain
full operational capabilities. In this context, as RAMSAS can be exploited
during the design of the satellite system for evaluating its reliability perfor-
mances through simulation, it could also support the definition and evaluation
of design choices which envisage the use of components dedicated to perform
FDIR tasks, as described in the following Sections.
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4.2 System Description

The satellite under survey is the hypothetical FireSat mission from literature
based on [69] with a refined system design from [38, 39, 40]. The mission
objectives of FireSat are to detect, analyze and monitor forest fires. Therefore
the Attitude Determination and Control System (ADCS) of the satellite has to
provide (among other modes) the ability for the satellite to scan the area below
the satellite on the earth surface to detect fires. The corresponding mode is
called nadir-pointing mode, which means that the satellite is pointing towards
the center of the earth. The satellite is orbiting the earth at an altitude of
700 km over ground, which is called a low-earth orbit (LEO). Resulting from
its altitude, the satellite has to turn with a constant angular velocity once it
is aligned to nadir pointing. In Figure 4.1 the activation of the nadir-pointing
mode is shown. After the acquisition of the attitude, the payload camera of the
satellite surveys a swath of a certain width on the ground below the satellite.

Fig. 4.1. Sketch of the satellite flying over a fire in Nadir pointing mode

The necessary adjustment of the satellite’s attitude and its angular velocity
is attained by applying torques on the satellite. To this aim, the Attitude
Determination and Control System (ADCS) contains thrusters which imply
a torque on the satellite in orbit. By firing different thrusters at the corners
of the box-shaped satellite, the satellite can be turned around all axes (see
Figure 4.2).

4.3 Reliability Requirements Analysis

The ADCS of the satellite has to fulfill the functional requirements for the
alignment of the satellite. The system consists of sensors, actuators and the
on-board computer controlling the system. The thrusters are used as the ac-
tuators in the system. Due to their mission-critical role there are redundant
thruster packs (see Figure 4.2). The sensors determine the angular velocity and
the attitude angles of the satellite. The on-board computer has a navigation
unit, which calculates with the sensor data the target alignment of the satel-
lite. Afterwards, the commands for the actuators are calculated, based on the
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Fig. 4.2. Layout of the Satellite

resulting data of the navigation. This chain of activities (determine attitude,
calculate action, execute commands) has to be fulfilled over the whole lifetime
of the satellite by the ADCS. Since the functional requirements for attitude
control can be reached by several combinations of the redundant thruster
packs, the evaluation of non-functional requirements for system reliability has
to be coupled with the functional analysis of the system.

4.4 System Modeling

In the System Modeling phase the structure and both the intended and dys-
functional behavior of the system under consideration are represented in
SysML by executing four modeling activities (see Chapter 3): System Struc-
ture Modeling, Intended Behavior Modeling, Dysfunctional Behavior Model-
ing and Behavior Integration. Each of these activities will be described in the
following sub-sections with reference to the ADCS, and supported by IBM
Rational Rhapsody [52].

4.4.1 System Structure Modeling

In the System Structure Modeling activity, the system structure is modeled by
using SysML Blocks following a top-down approach so to obtain a hierarchical
decomposition of the system (e.g. system, subsystems, equipment, and com-
ponents). Specifically, each system entity is represented by a SysML Block and
modeled by both a Block Definition Diagram (BDD) and an Internal Block
Diagram (IBD). As an example, the BDD of the ADCS system of Figure 4.3
shows that the ADCS consists of the following subsystems: FlightSoftware, Ac-
tuators, Sensors, VehicleDynamics, and the PointingMode. For each system
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block, its input and output interfaces are specified according to the following
template: ¡SourceBlock DestinationBlock PortName InputOrOutputPortType¿.

Fig. 4.3. Block Definition Diagram of the ADCS

For providing a description of the internal structure of a block in terms of
the organization of its component blocks an IBD is introduced. As an example,
the internal structure of the ADCS is reported in Figure 4.4 in which the
component subsystems, their connections and interaction paths along with
their operations and attributes, are represented.

Fig. 4.4. Internal Block Diagram of the ADCS

By applying zooming-in mechanisms the system block identified after the
first decomposition (see Figure 4.3) can be further decomposed so to reach a
deeper level of decomposition. As an example, the structure of the Actuator
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subsystem in terms of its components (ThrustersControl and ComputeBody-
Forces) is shown by the BDD diagram in Figure 4.5 whereas the connections
among them are highlighted in the IBD diagram in Figure 4.6.

Fig. 4.5. Block Definition Diagram of the Actuators subsystem

Fig. 4.6. Internal Block Diagram of the Actuators subsystem

In Figure 4.7 the structure of the FlightSoftware subsystem in terms of its
components (Navigation and AttitudeControl) is reported exploiting a BDD,
whereas its internal structure is highlighted in Figure 4.8 through an IBD.
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Fig. 4.7. Block Definition Diagram of the FlightSoftware subsystem

Fig. 4.8. Internal Block Diagram of the FlightSoftware subsystem

4.4.2 Intended Behavior Modeling

The Intended Behavior Modeling activity takes as input the hierarchical struc-
ture of the system as obtained during the System Structure Modeling activity
(see Section 4.4.1) and specifies the intended behavior of the system by fol-
lowing a bottom-up approach. Specifically, the behavior of the system entities
at the lowest level in the hierarchy, or leaf level (e.g. component level), are
first specified; then the behavior of the entities at higher levels of abstraction,
or non-leaf levels (e.g. subsystem and system level), are modeled by specify-
ing how the enclosed entities participate and determine the behavior of each
considered enclosing entity.

Depending on both, the characteristics of the behavior and the abstraction
level to represent, different type of SysML diagrams can be exploited to model
the behavior of a given entity: Activity, Sequence, Parametric, and Statechart
Diagrams (see Chapter 3, Section 3.2.2).
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With reference to the ADCS, its behavior depends on the behavior of
its subsystems (FlightSoftware, Actuators, Sensors, PointingMode, VehicleDy-
namics) and their interactions. In particular, the FlightSoftware subsystem is
the brain of the system as it takes the decisions to control the satellite system;
whereas, the Actuators subsystem is used to apply a torque on the satellite.
In turn, the behavior of the FlightSoftware depends on the behavior of both
the Navigation and AttitudeControl components; whereas the behavior of an
Actuators subsystem depends on the behavior of both the ThrustersControl
and ComputeBodyForces components, and so on.

In Figure 4.9 the intended behavior of the ThrustersControl component
is shown using a SysML Activity diagram. In particular starting from the
torque cmds command (or signal), which is received from the FlightSoftware, if
this command is, in one or more axes, over a torque thresh threshold, then the
appropriate thrusters are set on. If the command falls below -1*torque thresh
threshold, then the thrusters are set off; in particular, if the thruster is set off,
then the relative valve for the fuel connection is closed. If the thruster is set
on, then the appropriate valve is open. Because the satellite has at 4 of its 8
corners one thruster pack consisting of 3 thrusters (x,y,z ), see Figure 4.2, the
cycle is executed 12 times. At the end of this task, a signal of thruster forces,
which is composed by the complete settings for each of the four thruster packs,
is produced and sent in output to be processed by the ComputeBodyForces
component.

Fig. 4.9. Intended Behavior of the ThrustersControl component

In the following, the behavior of the ComputeBodyForces component is
described; moreover, one part of it is also represented through the exploita-
tion of a Parametric Diagram (see Figure 4.10). Such behavior is defined as
a set of equations which take as input:(i) the thruster forces signal in terms
of their single packs xyz pack i for i1̄,...,4 (where xyz pack i is a three-element
vector which indicates which thruster of the thruster pack i is on/off); (ii)
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Fig. 4.10. Intended Behavior of the ComputeBodyForces component

the thruster position i for i=1,...,4 (where thruster position i is the coordi-
nate vector of the thruster pack i in relevance to the coordinate system of the
satellite). All those signals are used to compute F Packi for i=1,...,4 (where
F packi is the vector of forces of the thruster pack i) which in turn are ex-
ploited to produce in output a part of the Forces signals.

As described above, after defining the intended behavior of the entities at
the leaf level (e.g. the ThrustersControl and the ComputeBodyForces compo-
nent for the Actuators subsystem), the behavior of the entities at the non-
leaf levels is specified. As an example, the intended behavior of the Actua-
tors subsystem can be derived and represented through a Sequence diagram
(see Figure 4.11) which highlights the iterations among the involved enti-
ties; the behavior specified in Figure 10 and in Figure 11 is invoked by the
computeTh(torques cmds) and computeForce (ThrusterForces) messages re-
spectively.

It is worth noting that, as for the above mentioned case of the Actuators
subsystem, Sequence diagrams can be exploited for representing the exchange
of messages among parts of a composite block (i.e. a block at a non-leaf level
in the structural decomposition of the system). This information complements
that provided by the IBD of the composite block, that highlights the internal
structure of the block in terms of the organization of its component blocks,
their connections and interaction paths along with their operations and at-
tributes. Moreover, as well as the behavior of a component block at leaf level
can be described by using Activity, Statechart and/or Parametric Diagrams
(depending on the type of the component), if necessary, also the behavior of a
composite block can be further represented by using these kinds of diagrams.
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Fig. 4.11. Intended Behavior of the Actuators subsystem

By applying this modeling approach, which relies on the SysML best prac-
tices and is strongly related to that proposed in [16, 93], a SysML-based rep-
resentation of the intended behavior of the whole system has been derived.

4.4.3 Dysfunctional Behavior Modeling

In the Dysfunctional Behavior Modeling activity, the focus is on the mod-
eling of faults and failures, which are key concepts of the system reliability
analysis. Specifically, for each entity represented by a SysML Block (see Sec-
tion 4.4.1), beside the intended behavior, the behavior concerning faults and
failures (i.e. the dysfunctional behavior) is specified as a set of dysfunctional
tasks (see Figure 3.4). These tasks could receive as input a set of failure events
(e.g. due to the failures of other blocks) and could, in turn, produce as out-
put other failure events due to the failure of the block; moreover, internal
faults (represented as fault events) can be generated and treated inside the
block possibly producing block failures (and thus output failure events). For
specifying these dysfunctional tasks six templates have been individuated (see
Table 3.1): Fault Generation, Failure Generation, Failure Management, Fault
Management Failure Propagation, and Failure Transformation. Moreover, five



4.4 System Modeling 45

fault/failure types could be considered [41]: (i) reaction too late; (ii) reaction
too early; (iii) value failure; (iv) commission; and (v) omission. By combin-
ing the individuated six dysfunctional task types with these five fault/failure
types, thirty different basic fault/failure behavioral patterns can be derived
[29].

For each system entity, the instantiation of these fault/failure behavioral
patterns requires to specify all the aspects concerning the fault/failure gener-
ation process as well as fault/failure management and propagation rules and
policies. As an example, if the failure rate of a component increases with time
due to material stress and/or component wear then suitable time-dependent
failure rate functions should be used for the fault/failure generation tasks of
the component; obviously, these functions (and/or their parameters) can be
also left as parameters that can be set during the Parameters Setting activity
of the System Simulation phase (see Section 4.5.2).

As an example, with reference to the system under consideration, both
the FailureGeneration and FailurePropagation templates have been exploited
to model the failure generation and failure propagation events of the Flight-
Software subsystem. In particular, a FailureGeneration task is activated by
a TimedEvent (manually or by a clock) according to a set of StepFunctions
having specific function values and delay times (see Figure 4.12).

Fig. 4.12. Dysfunctional Behavior of the FlightSoftware subsystem

Then, two OutputFailureSignals are produced: (i) a SensorFailure sig-
nal which is directly sent to the Navigation component, and (ii) an Actua-
tor Failure signal, which is propagated outside towards the Actuators subsys-
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tem, by applying a FailurePropagation task. When the Actuator Failure signal
reaches the Actuators subsystem, it is propagated towards the ThrusterCon-
trol component. Beside the intended behavior of the TrusterControl compo-
nent, a FailureManagement task has been also implemented which, starting
from the Actuator Failure signal in input, is able to handle such InputFail-
ureSignal or produces an OutputFailureSignal that, in turn, simulates the
crash of a whole thruster pack after a specific time.

Another example of dysfunctional behavior that will be analyzed during
the simulation (see Section 4.5.3) is that represented by the fault of the valve
between the fuel connection and the related thruster (there is one valve for
each thruster). In this case, two types of fault can be generated: blocking of a
valve (while opening) and sticking of a valve (while closing).

4.4.4 Integrated Behavior

In the Behavior Integration activity, both the intended behaviors and the
dysfunctional behaviors modeled in the previous modeling activities are inte-
grated to obtain an overall behavioral model of the system and its component
entities. As an example, in order to integrate both the FailureGeneration and
FailurePropagation task in the intended behavior of the FlightSoftware subsys-
tem, a new software component, called FailureDetection, has been introduced
(see Figure 4.13) which implements the dysfunctional behavior represented in
Figure 4.12.

Fig. 4.13. Behavior Integration into the FlightSoftware subsystem
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In particular, the FailureDetection component takes as input two signals:
(i) sensor outputs coming from the Sensors subsystem and (ii) torque commands
which is in a feedback. Then, the FailureDetection component produces as out-
put (through the FailureGeneration task) two signals: (i) sensor failure which
is sent to the Navigation component and (ii) an actuator failure which is sent
as output (through the FailurePropagation task) to the Actuators subsystem
(towards the ThrusterControl component). A similar model has been derived
for the Actuators subsystem.

This Behavior Integration activity closes the System Modeling phase by
delivering the System Model for Reliability Analysis (SMRA) work-product.

4.5 System Simulation

The objective of the System Simulation phase is to evaluate through simula-
tion the reliability performance of the system and, possibly, compare differ-
ent design alternatives and parameters settings. In particular, the following
three main activities are performed: Model Transformation, Parameters Set-
ting, and Simulation Execution. Each of these activities is described in the
following Subsections.

4.5.1 Model Transformation

The Model Transformation activity is the first step of the System Simulation
phase and aims to obtain an executable model of the system (ESM, Executable
System Model) represented in terms of the constructs offered by the target
simulation platform. Indeed, in the current version of RAMSAS, the system
under consideration and, in particular, its reliability requirements, structure,
functional and dysfunctional behaviors, are modeled in SysML. Then, the
simulation is performed in MathWorks Simulink which represents a de-facto
standard for the simulation of multi-domain dynamic and embedded systems.
As a consequence, it is necessary to translate the SysML-based model of the
system (SMRA, System Models for Reliability Analysis) into a Simulink model
to be simulated. This model-based approach allows to keep the (conceptual)
Modeling of the system (which is supported by SysML and thus is platform
independent) distinct from its Simulation, which depends on the specific tar-
get simulation platform (Simulink in this case). The transformation of the
SysML-based model of the system into the Simulink-based simulation model
is currently performed manually based on a mapping between the basic SysML
and Simulink constructs (see Table 3.2, Chapter 3); thus, it is not supported
by a specific tool and the consistency among these models has to be guarantee
by the expert manually. Finally, the SysML behavioral diagrams which model
the intended and the dysfunctional system behavior are, in the current version
of RAMSAS, manually transformed in Simulink functions and/or Stateflows
according to specific transformation rules.
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As an example, Figure 4.14 shows an ESM model which has been derived
from the ADCS system represented, through a SysML notation, in Figure 4.3
and in Figure 4.4.

Fig. 4.14. Executable System Model of the ADCS system

Figure 4.15 represents the full ESM model for the Intended Behavior of the
ComputeBodyForces component, which has been derived from the Parametric
diagram in Figure 4.10.

Fig. 4.15. Executable System Model for the Intended Behavior of the Compute-
BodyForces component

Figure 4.16 and Figure 4.17 show the behavior of the thruster packs
through Stateflows after the Behavior Integration activities. In particular,
the Stateflow of the ThrusterLogic (Figure 4.16) simulates the behavior of
the thruster packs. The function, shown in Figure 4.17, is derived from the
behavior of a thruster pack, shown in Figure 4.9. This function includes a
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FailureManagement task (in combination with the Stateflow Data, see Figure
4.16), beside the intended and dysfunctional behavior of the thruster packs.

Fig. 4.16. Stateflow of the Behavior of the Thruster Pack

Fig. 4.17. Thruster Pack failure management for x-torque commands
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In Figure 4.18 the Stateflow for the simulation of the behavior of the valve
between the fuel connection and the related thruster (there is one valve for
each thruster) is reported. The Stateflow simulates both the intended and
dysfunctional behavior of the valve (see Section 4.4.3).

Fig. 4.18. Stateflow of the Behavior of a Valve

4.5.2 Parameters Setting

Before starting the simulation, several system and configuration parameters
can be set to evaluate system reliability performance in different simulation
scenarios. In the Parameters Setting activity, the ESM is refined so to allow
the flexible setting of system configuration and simulation parameters which
can be tuned according to both, the characteristics of the operative scenario
to simulate and the failure modes to analyze (by acting on the component
failure rates and the other settings of the faults and failures generation, prop-
agation and management tasks). It is worth noting that when simulating dif-
ferent operative conditions with different parameters settings, depending on
the complexity of model, probably a large number of scenarios will need to be
simulated. In this case, to master the combinatorial problem, some kinds of
Monte Carlo or statistic methods could be exploited. The current version of
RAMSAS does not provide an explicit support for addressing this issue leav-
ing the expert free to exploit the features of automatic definition of simulation
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scenarios provided by the Simulink environment. For the ADCS different pa-
rameters can be set. One parameter is the torque thresh of which variation
determines the operating range of the thrusters. Further, the specific impulse
(Isp) of the thrusters can be changed, which represents the variation of the
thruster and/or fuel. The position of the thruster packs can also be changed.
This variation changes the lever for the torque calculation. These are only a
few examples, explicit for the actuators, which show the flexibility range of
the system.

As an example, Figure 4.19 shows the Model Explorer panel of Simulink
by which the main parameters of the ADCS system can be tuned opportunely.

Fig. 4.19. A Screenshot of the Parameters Setting activity

In the next Sections some of the main simulations executed to evaluate
the reliability performances of the modeled ADCS are presented and then the
obtained simulation results analyzed and discussed.

4.5.3 Simulation Execution

In the Simulation Execution activity the resulting ESM, which is a complete
executable Simulink model, is executed according to a synchronous reactive
model of computation: at each step, Simulink computes, for each block, the
set of outputs as a function of the current inputs and the block state, then it
updates the block state. During the simulation faults and failures are injected
(by TimedEvent or TriggeringEvent) and/or caused to stress and analyze the
behavior of the ADCS system. At the end of this activity, the data generated
from the simulations are reported in the Simulation Results (SIRE) work-
product to be analyzed in the next phase.

Executing the system allows, beside parameter variation, the simulation of
the system behavior, during the failure of some components. Specifically, first
the intended behavior of the ADCS has been simulated; then, according to
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the dysfunctional behaviors introduced in Section 4.4.3, the following failure
modes have been simulated: (i) the failure of a thruster pack; (ii) the failure of
a valve between the fuel connection and the relative thruster. The simulations
related to these failure modes are described below.

In Figure 4.20 the intended behavior of the ADCS is illustrated.

Fig. 4.20. Diagrams for the Intended System Behavior
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The simulation begins with a start alignment of the satellite. The results
of the simulation are illustrated within the three diagrams plotted over the
simulation time. The topmost diagram shows the torque command, calcu-
lated by the FlightSoftware subsystem. The torque threshold is 0.2 Nm. This
means the maximum difference between the required torque for a target align-
ment and the actual alignment in an axis, which is allowed, is 0.2 Nm. If the
threshold is exceeded, then the thrusters should create a torque to reach the
intended alignment. The three different curves are the separation in the three
different directions (x, y, and z). The second diagram in Figure 4.20 shows
the torque and the direction of the torque which acts on the satellite. It is the
sum of the torques of the different thrusters. The different curves show the dif-
ferent directions. Therefore, if the torque command in one direction exceeds
the threshold, then the actuators counteract (the same colors in both dia-
grams indicate the same direction). The third diagram shows the summarized
hydrazine usage of the four thruster packs.

The failure of a thruster pack with all three thrusters out of order has been
simulated. The failure is compensated through the use of other thrusters (see
Figure 4.17). The intended choice for raising the torque is with the thrusters
in y-axis. However, if one of the used thrusters is defective, then the failure
management tries to use the thrusters aligned in z-axis to fulfill the command.
In Figure 4.21 the diagrams for the failure of thruster pack 1 are shown. The
simulation was executed with the same parameters as in the simulation of
the intended behavior (Figure 4.20). The diagrams show that the failure of
thruster pack 1 can be compensated and the system is still fulfilling its task.
Furthermore, it is visible that the compensation of the start alignment takes
longer and, at the beginning, is not as exact as in the fully functional case.
However, the diagrams show also that the hydrazine usage is lower than with
all thruster packs (curve for the hydrazine usage of the thruster pack 1 is equal
to zero). The lower hydrazine consumption results from the lower angular
velocities used to align the satellite in this case.

Moreover the failure of the valve between the fuel connection and the
related thruster has been simulated. As reported in Figure 4.18, while opening,
the valve could block and stay closed. Further, while closing, the valve could
stick and stay open so two failure modes should be evaluated: blocking of a
valve and sticking of a valve.

The failure mode blocking of a valve causes that the effected thruster can-
not be used anymore. Due to the redundant thrusters (each thruster pack has
three thrusters, one for each axis) the only impact is an increased maneuver
duration, because only half of the thrust for creating the torque will be avail-
able. The system itself will however not fail. An opposite failure is the failure
mode sticking of a valve. This failure mode causes a constant fuel flow and
thruster use. Due to this fault a different failure will happen: the system will
counteract and therefore, the opposite thrusters will be activated. This holds
the satellite in position, but the whole time fuel will be required, until the tank
is empty. This failure leads to a fail of the whole system. Looking on these
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failures, a system design with an extra valve in front of the whole thruster
could be developed. To enable the failure detection, a sensor surveying the
fuel flow is also required.

Fig. 4.21. Diagrams for the Dysfunctional Behavior: ”Failure of a thruster pack”
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4.6 Results Assessment

In the Results Assessment phase, the simulation results (SIRE ) are elaborated
with reference to the objectives of the reliability analysis identified in the ini-
tial phase of the process so to obtain important information on the reliability
properties of the system under consideration. In particular, the analysis of
the resulting graphs or of the obtained data can be conducted. The use of
domain experts should not be underestimated to obtain a good analysis of
the results and their evaluation, since an effective re-design of the system is
also an outcome of a deep knowledge of the domain. These analyses are able
to give information about the reliability performances of the ADCS system
under consideration as reported in the Reliability Analysis Report (RAR) doc-
ument; moreover, they also provide suggestions to improve the reliability of
the system proposing alternative design solutions as reported in the Design
Suggestions Report (DSR) document.

As shown in the above discussed simulations, great part of these analyses
can be directly performed in Simulink, whereas more advanced analyses can be
also performed by external tools after exporting the results obtained through
the MATLAB environment. Moreover, for letting the expert to mainly focus
on problematic simulation traces, additional Simulink blocks for the automatic
indication of requirements violations during the simulation can be introduced
during the definition of the ESM (see Section 4.5.1), starting from the reli-
ability requirements formalized in SysML (by using Requirements Diagrams)
during the Reliability Requirements Analysis phase of RAMSAS and traced
(by using the related SysML constructs) in the System Modeling phase.

The ADCS with its intended and dysfunctional behavior, which is the
system under consideration, can be improved by analyzing the results of the
simulation execution. A variation of the parameters expands the understand-
ing of the reliability of the system. Some failures, which were modeled and
simulated, have a deep impact on the system; therefore, a failure management
task should be introduced to solve these problems, while other failures have
almost no impact on the reliability of the system (see Section 4.5.3).

Furthermore, the reliability simulations lead to investigate other aspects
which could be considered. As an example, the whole system fails when the
fuel tank is empty. On the other hand the system has a longer lifetime, if
less fuel is used. The simulation of the dysfunctional behavior (see Section
4.5.3) showed that with longer acquisition times allowed for the system, the
fuel consumption sinks: the satellite will reach its target but with more time
required for the target acquisition and with larger deviations from the target
attitude. The attitude accuracy is required by the payload camera looking
towards the earth surface under a specific angle. The availability of the camera
drops if the acquisition time increases. This results lead to new requirements
which could lead to a change in the mission specification.
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4.7 Conclusion

In this Chapter, a concrete experimentation of the RAMSAS Method has been
shown. RAMSAS has been exploited for the reliability analysis of an Attitude
Determination and Control System (ADCS) of a satellite. Specifically, accord-
ing to the RAMSAS method, the definition of a SysM-based model, both for
the intended and dysfunctional system behavior, along with the subsequent
derivation of a Simulink based simulation model have been shown. One of the
main reason for the choice of SysML as the reference modeling language and
of MathWorks Simulink as the reference simulation environment was to lower
the learning curve of the RAMSAS method by Systems and Dependability
engineers.

The concrete exploitation of RAMSAS has allowed appreciating its effec-
tiveness and suitability both in the system structural and behavioral mod-
eling and in the evaluation through simulation of the system reliability per-
formances. Moreover, as SysML is one of the standard modeling languages
for Systems Engineering, its exploitation in conjunction with wide adopted
simulation environments, such as Simulink, allows for a seamless model-based
design process: SysML allows to represent in an integrated way both the
system requirements and the intended and dysfunctional system behavior,
whereas Simulation makes it possible to assess the fulfillment of the require-
ments, evaluate system performances and compare different design choices. As
an example, with reference to the presented case study, from the simulation
of both, the intended and dysfunctional system behavior, it was found that
the ADCS system is more fuel efficient in one of the possible failure modes.
The combined simulations can thus lead to interesting insights about the sys-
tem design. In particular, further simulations results are under analysis for
the comparison of different design choices so as to improve the reliability and
overall performances of the ADCS.
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A Modelica-based Method for supporting the
Safety Analysis of Physical Systems

System safety is an important aspect of System Dependability which should
be taken in consideration during the whole system life cycle. However, often
systems are built by considering mainly their functional aspects whereas safety
requirements are verified and validated in the latest stages of the development
process. For this reason and due to the deep integration of modern systems in
the daily life of people, regulatory standards have been defined and have to
be applied during the development of critical systems in order to guarantee a
minimum and acceptable level of safety. Moreover, the significant increase in
the complexity and autonomy of the systems renders the verification of the
(non)functional safety of each individual component as well as of the entire
system a complex task and underlines the need for integrated and model based
approaches that would assist this process [92, 121]. In this context, a model-
based process, inspired by the ISO-26262 standard (see Chapter 2, Section
2.3), which provides a methodological support, based on Modelica language
and tools, for the verification and validation of safety requirements of systems,
has been proposed [104, 33, 32]. In particular, the Method exploits as an
integrated chain of tools both the ModelicaML profile [77] during the System
Modeling phase for representing systems and then, in the Virtual Testing
phase, the OpenModelica environment [87] as the simulation platform for
the execution of the system model generated in the previous phase. Some
proposed Modelica extensions are exploited in all the process phases both
for collecting and representing system requirements as well as for supporting
their verification through communication and propagation mechanisms among
system requirements (see Chapter 6).

The contribution provided in this Section is related with model-based
methods described in Chapter 2, Section 2.2 and, in particular, with the
vVDR method in [107, 70], which is centered on the Modelica language where,
however, neither communication processes nor evaluation mechanisms among
system requirements (properties) have been specified in order to enable the
propagation of assessments among them.
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In Section 5.1, the proposed simulation-driven design process for support-
ing the safety analysis of physical systems is presented; then in Section 5.2 the
main relationships between the ISO-26262 standard and the proposed process
are highlighted; finally, in Section 5.3 the method is exemplified through a case
study in the automotive domain concerning the safety analysis of an Airbag
System.

5.1 Methodological Process From Safety Requirements a
Simulation-Driven System Design

In this Section the proposed methodological process for the development of
safe systems, based on the validation of the design through simulation, is
presented. As it is shown in Figure 5.1, such process, inspired by the ISO-
26262 standard, is defined in terms of three main iterative phases: Require-
ments Analysis, System Modeling and Virtual Testing, that aim to provide a
methodological support according to the ISO-26262 standard.

Fig. 5.1. Main phases of the proposed simulation-driven process for the design of
safe systems

In the Requirements Analysis phase the system safety objectives are ana-
lyzed and Safety requirements, in terms of Functional, Technical and Physical
requirements, are identified [103, 112]. They may consist of properties and
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safety performances to be considered in order to eliminate the risk or to reduce
it to an acceptable level. Specifically, a process for their elicitation, definition,
formalization and validation is defined according to a reference meta-model
proposed by the author in [117] (see Chapter 6).

In particular, the first step consists in the requirements elicitation that, ac-
cording to the proposed meta-model, is obtained through RequirementAsser-
tions. An iterative process between the user and the analyst is typically exe-
cuted in order to state all the requirements, as much as possible, by associating
to each of them a Name for their identification along with a possible Descrip-
tion in a text format by using the natural language in order to provide an
explanation of specific or salient aspects, characteristics, or features (e.g. func-
tional, technical or physical) of the system in a detailed way. At the end of
this step the so called User Requirements (URs) are generated according to
the meta-model.

The second step consists in the refinement of the URs in order to generate
System Requirements (SRs). This step is very crucial to make URs machine
readable and executable in order to enable their verifiability during the sim-
ulation, as a consequence, it is really important what to represent and how
to do it as well as when to use such requirements. First of all a Requiremen-
tAssertion could be involved in several verification tasks grouped in different
RequirementModel, so the membership of each requirement to at least one of
those RequirementModels must be identified. Then, the output values, asso-
ciate to the evaluation of requirements, for describing if a requirement has
been not violated, violated, and so on, have to be fixed. At the end, a Metric
needs to be specified for each RequirementAssertion. In particular, it specifies
the purpose of a RequirementAssertion in terms of verification mechanism. In
Figure 5.2 the relationships among the User Requirements, System Require-
ments and Safety Requirements are represented.

Fig. 5.2. Relationships among User Requirements System Requirements and Safety
Requirements
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The representation of requirements is carried out by using Requirement
diagrams available in SysML [116] and ModelicaML [77] profiles for modeling
systems in order to enable model-based systems engineering. It is worth to
notice that not all the requirements can be formalized into something com-
putable such as ”a cable must be well connected”, if the term ”well connected”
is not represented in a machine readable formalism.

In the System Modeling phase, a possible physical model of the real
system in terms of its components is defined; in particular, the Structural
and the Behavioral views are generated by breaking down the system in
(sub)components. Specifically the first step, according to the Physical side
of the proposed meta-model (see Chapter 6 Section 6.1), consists in building
a possible PhysicalSystemModel, of the actual PhysicalSystem by specifying
the models of its physical components (PhysicalComponentModels) and the
related Attributes and, then, defining the relationships among them as well as
their behaviors. In particular, the structural part of the system is described by
using Block Definition Diagrams and Internal Block Diagrams in a top-down
fashion. The behavior of the system, which is modeled by following a bottom-
up approach, can be defined in terms of Activity, Sequence or Parametric
diagrams in order to model the internal behavior of each system components
as well as the flows of actions and interactions between components.

Then SRs belonging to the RequirementModel concerning Safety Require-
ments, can be further formalized in order to make them machine executable.
In particular, a formal Measure, and its expected input and output values,
can be associated to the defined Metric. Specifically, a Measure can be ex-
pressed by adopting an appropriate ComputationalModel which in turn could
be represented through an Algorithm, a Finite Automata, a Function, a set
of Equations or by their combination to enable the computational process.
Finally, the allocation between the Safety Requirements and the Physical-
SystemModel is performed. Furthermore, inputs, required from the Measure
of a RequirementAssertion for its evaluation, are explicitly included in the
PhysicalComponentModels.

In the Virtual Testing phase, the Models of the system under considera-
tion are transformed into executable models and represented in terms of the
constructs offered by the OpenModelica platform [87, 25, 76]. In particular,
physical components are defined and integrated in order to build the Physical-
SystemModel and then the safety requirements to be verified are introduced
into the overall model by exploiting some extensions of the Modelica lan-
guague proposed by the author [105]. Then, different simulation scenarios are
set and simulations are executed; finally, simulation results can be analyzed
on the basis of the system safety requirements identified in the first process
phase. This analysis allows to evaluate the safety properties of the system,
to compare different design choices for improving, possibly, the safety of the
system under consideration.

As the process is iterative, if necessary, new partial or complete process
iterations can be executed.
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5.2 Relationships between the ISO-26262 standard and
the proposed process

The above described process is inspired by the IEC-61508 standard [53] and, in
particular, by the ISO-26262 [59] whose goal is to demonstrate the capability
to develop certain products with acceptable risks. ISO-26262 is organized in
10 parts as following:

� Part 1 - Vocabulary : which specifies the terms, definitions and abbreviated
terms for application in all parts of ISO 26262;

� Part 2 - Management of Functional Safety : which specifies the require-
ments for functional safety management for automotive applications, in-
cluding (i) project-independent requirements with regard to the organi-
zations involved (overall safety management), and (ii) project-specific re-
quirements with regard to the management activities in the safety lifecycle
(i.e. management during the concept phase and product development, and
after the release for production);

� Part 3 - Concept phase: which specifies the requirements for the concept
phase for automotive applications (e.g. item definition, functional safety
concept, etc.);

� Part 4 - Product Development at system level : which specifies the require-
ments for product development at the system level for automotive appli-
cations, such as the system design and system integration and testing;

� Part 5 - Product Development at hardware level : which specifies the re-
quirements for product development at the hardware level for automo-
tive applications (e.g. hardware design and hardware architectural metrics,
hardware integration and validation);

� Part 6 - Product Development at software level : which specifies the re-
quirements for product development at the software level for automotive
applications such as software architectural design, software unit design and
implementation, software integration and testing;

� Part 7: Production and Operation: which specifies the requirements for
production, operation, service and decommissioning.

� Part 8: Supporting Processes: which specifies the requirements for sup-
porting processes through qualified tools, system engineering approaches
and best practices;

� Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-
oriented analyses: concerning the measures required to avoid unreasonable
risks.

� Part 10: Guidelines on ISO-26262.

In the Table 5.1 the matching between ISO-26262 parts and the phases of
the proposed process are shown, by indicating in which phase of the process a
specific part of such standard should be considered. In particular Vocabulary
and Management of Functional Safety Concept phase can be considered in the
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Requirements Analysis phase for the definition, the organization and catego-
rization of requirements; then Product Development at system level, Product
development at the hardware level and Product development at the software
level can be taken into account in the System Modeling phase, when the design
of the system is under definition, whereas the Supporting Process part can be
considered during the Virtual Testing phase of the proposed process.

Table 5.1. Matching between ISO-26262 and the proposed process

Parts of the Standard ISO-26262 Simulation-Driven Process for
the Design of Safe Systems

Vocabulary Requirements
Management of Functional Safety Analysis

Concept phase phase
Product development at system level System

Product development at the hardware level Modeling
Product development at the software level phase

Supporting Virtual
phase Testing

phase

5.3 Performing Safety Analysis of an Airbag System: A
Case Study in automotive domain

In this paragraph, a case study in the automotive domain concerning the
modeling of an airbag system, and the validation and evaluation of its design
according to the safety requirements through simulation, is analyzed follow-
ing the proposed process. After a brief descriptive introduction of the system
under consideration, its safety analysis is performed. In particular, airbags
are one of the most important components of a motor vehicle system for the
occupant protection. It is used along with and as a supplement to the seatbelt
restraint system to provide passenger protection in case of collision In addi-
tion to the standard airbags for the driver and front passenger, an increasing
number of specialized airbag variants (such as curtain airbags, kneebags, etc.)
are used.

Each airbag should be specifically designed and optimized for its intended
purpose. In addition to the deployment technology, which can in principle
be based on the uniform pressure approach or the more recent corpuscular
method, this includes the selection of the inflow method (such as Wang-Nefske
or hybrid approaches) as well as the verification and validation of the asso-
ciated inflow data. Moreover, the deployment behavior is also determined by
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the correct adjustment of contact, discharge opening and porosity parameters.
As a consequence a sensible and comprehensive simulation of airbag behavior
as part of a simulation of the entire restraint system is indispensable.

An airbag is typically made of synthetic material and equipped with holes
in the rear; it is usually composed by different subsystems such as:

- a sensor that detects the abrupt deceleration of the vehicle caused by an
impact and the pressure;

- an Airbag Control Unit (ACU) that monitors the readiness of the entire
airbag system;

- a detonator that triggers the substance contained in the explosive capsule
through an electric current or a bump of a ferrule;

- a possible second capsule (GasSource) that contains pre-compressed inert
gas which inflates the airbag;

- a warning light which is illuminated if a fault is detected.

Specifically the ACU receives the signal of the sensor, processes it and
sends the command to switch on a detonator ; which in turn blows up the
capsule of the detonator by developing a large amount of gas, to inflate the
container.

5.3.1 Requirements Analysis phase

In this phase of the proposed process all the possible user requirements need
to be identified and elicited- By following the process described in the Section
5.1, in the Requirement Analysis phase all the possible user requirements are
identified and elicited As an example, in the following some URs are reported:

- (Req1 ) when the car decelerates very quickly, as in a head-on crash, the
electrical circuit has to be turned on for initiating the process of inflating
the airbag;

- (Req2 ) the process, from the initial impact of the crash to full inflation of
the airbags, takes less than 40 milliseconds;

- (Req3 ) when a sensor detects a collision an immediate trigger should be
sent to enable the deployment of the airbag;

- (Req4 ) in order for the airbag to cushion the head and torso with air for
maximum protection, the airbag must begin to deflate (i.e., decrease its
internal pressure) by the time the body hits it, otherwise, the high internal
pressure of the airbag would create a hard surface instead of a protective
cushion;

- (Req5 ) the airbag is ignited within a well-define threshold.

Starting from the collected URs the next step consist into their rewrit-
ing in SRs for making them more formal and by identifying their belonging
RequirementModel. For example:
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- AbruptDeceleration (Req1): when the deceleration d is greater than a
threshold, a signal to switch on the electronic circuit has to be sent;

- InflationTime (Req2): The time to inflate the airbag has to take less than
40ms, inflationT ime ≤ 40;

- CollitionDetection (Req3): when the collision is detected by the sensor, a
collitionSignal has to be generated;

- DeflationTime (Req4): the airbag has to be able to deflate in a deflation-
Time lesser than a deflation threshold.

- Activation (Req5): after a crash the airbag is deployed in delayT ime =
45ms.

Specifically, the relationships among the above mentioned safety require-
ments are represented in Figure 5.3. In particular the status of the Deflation-
Time is not violated if at least the status of the requirement InflationTime
is not violated. In turn the status of the InflationTime is not violated if at
least the status of the Activation requirement is fulfilled at least by both
the AbruptDeceleration requirement and the CollitionDetection requirement.
That is to say, the status of both AbruptDeceleration and CollitionDetection
must be not violated. Moreover different scenarios can be analyzed, such as:

1. the airbag is not ignited or is inflated too late even though a critical crash
occurred;

2. the airbag is deployed unintentionally, which means that it is ignited even
though no crash at all or only a non-critical crash has occurred;

Fig. 5.3. Safety System Requirement relationships
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5.3.2 System Modeling phase

In this phase both the physical structure of the system is built by composing
components and then the behavior of each single component is specified. As it
is shown in Figure 5.4, a Block Definition Diagram (BDD) of an Airbag System
is depicted, in terms of its subsystems and ports. Then, the interactions among
these components are better specified by using the Internal Block Diagram
(IBD), as it is shown in Figure 5.5.

Fig. 5.4. Physical System Model: Components of the Airbag System

Fig. 5.5. Physical System Model: Components interactions of the Airbag System
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After the structure is built, Parametric diagrams are employed for repre-
senting the behavior of each subsystem as well as dynamic interactions among
them, by exploiting a Computational Model based on EquationsSet. As an
example, in Figure 5.6 the diagram concerning the behavior of the Airbag
component is reported. In particular, in the first section of the diagram, the
parameters taken in input from the model are defined, secondly a brief de-
scription about the use of such parameters is reported; then the behavior of
the Airbag component, which exploits such input parameters, is represented
in terms of equations.

Fig. 5.6. Computational Model of the Airbag component

Finally, requirements modeled in the previous phase, which need to be
verified, are allocated to (i) a single physical component in order to check
its behavior or (ii) a set of physical components in order to check if the in-
teraction among them is or is not consistent as expected. In Figure 5.7 the
allocation of some requirements to the airbag physical system model, is shown.
In particular, such a scenario wants to verify, the InflationTime of the airbag
when a car-crash occurs. Specifically, the requirement is not violated when
the status of the Activation requirement is not violated and both the Acu
component and the Airbag component fulfill the internal rules specified by
the InflactionTime.

Figure 5.8 shows the design of the Airbag System under consideration in
OMEdit, the graphical editor of OpenModelica, which has been extended to
enable the modeling and verification of requirements.

In particular, a new panel has been introduced in OMEdit of OpenModel-
ica which contains:(i) a button for graphically model the fulfill relationship;
(ii) a button that allows to hide/visualize a RequirementAssertion and all its
relationships between the System Design and the RequirementsModel ; (iii) a



5.3 Performing Safety Analysis of an Airbag System: A Case Study in automotive domain 67

Fig. 5.7. Allocation of Safety Requirements to the Airbag Physical System Model

Fig. 5.8. An extension of OMEdit, an Open Source graphical editor in OpenMod-
elica, supporting Requirements

button that allows to hide/visualize connections defined through the connect
contruct between RequirementAssertion and PhysicalComponentModels, only
in order to make more readable the graphic representation; (vi) other two but-
tons that allow to enable and disable requirements, in order to choose which of
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them will take part of a specific simulation run, as a consequence for defining
which requirement will be evaluated.

5.3.3 Virtual Testing phase

In this phase the virtual testing is executed by exploiting the simulation in
order to study the behavior of the system under consideration and analyze
interesting aspects or, possibly, to discover some issues that are not immedi-
ately obvious when applying static analysis techniques. In order to enable the
simulation, models generated in the previous phase need to be translated into
the desired simulation platform in order to make them executable. In this case
the OpenModelica environment has been chosen as simulation platform since:
(i) it is equation based (by implementing the Modelica Language) and, as a
consequence, compliant with the Computational Model which has been used
to represent the behavior of the overall Airbag System; (ii) it is open source,
thus allowing the possibility to extend both the language and the tool, to
enable modeling of requirements and introduce allocation mechanisms.

In Figure 5.9, a fragment of source code in Modelica language, which
represents the structure of the AirbagSystemDesign, is reported.

Fig. 5.9. Airbag System Design in Modelica

As it is shown by looking at the source code, the transformation between
ModelicaML notation and Modelica constructs, is almost direct. In particular,
each ModelicaML block can be represented as a Modelica Model, whereas con-
nections among ModelicaML blocks can be enabled by the connect construct,
which is already available in the Modelica standard language. In Figure 5.10,
a fragment of Modelica source code concerning the implementation of the
behavior of the airbag component, is shown.

As it is shown in the picture, the component behavior, which is described
in the System Modeling phase (see Figure 5.6), has been is translated in a set
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Fig. 5.10. Representation of the behavior of the Airbag component in Modelica

of equations by using the Modelica language. Similarly, the requirements iden-
tified in the Requirements Analysis phase are formalized by exploiting some
extensions of the Modelica language, proposed by the author in [105]; specif-
ically: (i) the requirement keyword is used for their representations, (ii) the
fulfill relationship is used both for their allocation to the physical system and
for their traceability, (iii) the precondition equation section is used to specify
the conditions when the evaluation of the requirement has to be performed.
In particular, the source code of the formalized requirement InflationTime is
reported in Figure 5.11, where the evaluation is based on the inflation time
that the airbag takes to reach a specific safety level of pressure after the airbag
is activated.

The source code of the extend system design is reported in Figure 5.12,
where the fulfill keyword is employed for creating the matching among the
requirements as well as between requirements and physical components of the
airbag system.

After obtaining the executable models, the tuning of the simulation pa-
rameters is performed in order to reach a safe working state of the system
according to the specified requirements. Several simulations have been exe-
cuted for testing virtually the System in different scenarios and evaluating its
behavior. Moreover three possible values can be reached by a requirement.

In the considered experimentations (see Figure 5.13 and Figure 5.14) a
pressure level (safePressureLevel in yellow color) of 2.5 atmospheres (atm)
has been considered as minimum safe threshold, coupled with a maximum
inflation time (maxInflationTime) of 40 milliseconds (ms) in order to reach
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Fig. 5.11. Formalization of the InflationTime requirement by using Modelica lan-
guage extensions

Fig. 5.12. Formalization of the ExtendedSystemDesign by using Modelica language
extensions

such safe pressure level of the airbag, after that the activation airbag signal
(activateAirbag) is arrived.

As it is shown in Figure 5.13, even though the AbruptDeceleration (in
dark blue color) and CollitionDetection (in dark green color) requirements
are satisfied as well as the Activation (in brown color) requirement, the re-
quirementStatus of the InflactionTime (in red color) is negative, that is to
say it is violated. Indeed, as we can see, the airbagPressure (in light blue
color) is not able to reach the safePressureLevel (in yellow color) within the
maxInflationTime (in 40 milliseconds) as expected.
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Fig. 5.13. Violation of the InflationTime requirement

As it is shown in Figure 5.14, by setting opportunely some parameters of
the airbag system, for example, by increasing the pressure to be provided in
input to the airbag (pressureIn in light green color), it is possible to reach
the necessary parameters tuning which fulfills all the requirements in the
considered scenario.

Fig. 5.14. Fulfillment of the InflationTime requirement
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5.4 Conclusion

This Chapter has presented a model-driven process for supporting the safety
analysis of systems which is inspired by ISO-26262 standard and exploits
simulation techniques. Two powerful languages for modeling systems have
been combined in a comprehensive system engineering framework; specifi-
cally, ModelicaML has been exploited for platform independent representa-
tion of the system; whereas, the Modelica language has been exploited for
the executable representation of the systems according to an equation based
paradigm. A prototype of the OpenModelica simulation platform, able to sup-
port both the modeling of requirements and their allocation, according to a
well-defined reference meta-model, has been used for the simulation. Finally,
a concrete experimentation has been conducted in the automotive domain
which has allowed to point out both the flexibility and the effectiveness of the
overall proposed process for safety analysis.



6

Further Contributions on Modeling of System
Requirements

The experience gained during the definition of the two methods for Reliability
and Safety analysis described in Chapter 3 and 5 respectively, along with
the research activities performed also in the context of a European Research
project (MODRIO project - ITEA 2) [60], allowed me to focus on the more
general problem concerning the modeling of system requirements and their
formal representation in recently proposed and popular modeling language.

In particular, the main contribution is related to the representation of con-
straints and requirements that have an impact on the behavior of the system
so as to enable their verification through real or simulated experiments [26]. It
is strongly related with the work in [62] where the representation of require-
ments is closely bounded and restricted to the exploitation/implementation of
a software library, whereas the contribution described in this Chapter aims at
defining some extensions of modeling languages (such as Modelica language)
so as to allow the requirements modeling as well as to define a mechanism to
enable their traceability in order to support their verification process through
simulation.

The Chapter is structured as follows: in Section 6.1, the proposed refer-
ence meta-model for representing requirements of physical systems is reported
[117]; then the description of a Tank System, which is used in the subsequent
Sections as a reference example, is provided in Section 6.2; in Section 6.3 dif-
ferent approaches for integrating the modeling of system requirements and
their verification during the simulation are proposed in the context of the
Modelica language [117]; then, some Modelica extensions along with an algo-
rithm for dependency tracing of requirements during simulation is described
in Section 6.4 [105]; finally, in Section 6.5 and Section 6.6, a Probability Model
for further enabling static analysis of a Modelica-based design by exploiting
the proposed Modelica extensions, is shown [118].
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6.1 A Meta-model for representing System
Requirements as RequirementAssertions

In this Section a proposed meta-model for representing system requirements
is described. Since the notions of model and meta-model are crucial when we
talk about representation and modeling, often these terms generate confusion,
so it is necessary to clarify the difference between them and the context for
the use of each of them [13].

Firstly the concept of subject can be defined as the main thing that we want
to think/reason about and on which the experiments have to be performed.
This usually belongs to the real world. To solve a problem we construct a
simplified representation of the subject, called model, to which different ex-
periments can be applied, in order to answer questions aimed at the subject.
Since a model captures only a part of the complete subject, it is possible to
define many models which represent the same subject but that are able to
capture different characteristics, aspects, variables and parameters. In order
to perform reasoning on a model it is necessary to know exactly which vari-
ables are available, furthermore, it is necessary to know the structure of the
model. Such information can be expressed through meta-data by defining a
higher abstraction level called meta-model. Hence, a meta-model is a model
that defines the structure of valid models (see Figure 6.1).

Fig. 6.1. Meta-model, model and subject abstraction levels

In the following the definition and description of the proposed meta-model
(see Figure 6.2) is provided. It is a combination of two main parts: the Physical
Meta-Model (in the left-side) and the Requirement Meta-Model (on the right-
side).

As previously stated, before defining System Requirements, it is necessary
to build a representation of the physical model. Thus, the meta-data of the
Physical Meta-Model are used to describe and to represent one among all the
possible physical models of a specific actual system, whereas the meta-data of
the Requirement Meta-Model are exploited to represent System Requirements
in terms of requirement assertions by defining a possible requirement-model
on a specific physical model representation.

Starting from the Physical Meta-Model side, the main concept is the At-
tribute, which represents a characteristic (i.e. temperature, pressure, level of
liquid, age) of an entity (i.e. a system, a sub-system, a component); in the
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proposed meta-model, it is defined by (i) a Name (by which it is referred) (ii)
a Type (type of value which is expected), (iii) a Value (a possible value among
all the range of values related to a specific Type) and (iv) (optionally) a Unit
of measure. Each Attribute is associated with one specific Variability which in
turn can be (i) Constant which means that its Value never changes, (ii) Vari-
able which means that its Value depends on other attributes, (iii) Parameter
which means that its Value can be properly tuned. Moreover, each Attribute
has to specify its access level called Visibility which, according to the meta-
model, could be either Private, if accessible only internally to the component
in which it has been defined, Protected, if accessible by the descendants, or
Public, if accessible externally.

Fig. 6.2. A meta-model for modeling System Requirements

An Attribute can be (i) an AtomicAttribute, which means it cannot be
further decomposed, (ii) a ComplexAttribute, that is, composed by other at-
tributes.

A ComputationalModel, which could be represented through an Algorithm,
a FiniteAutomata (e.g. Timed Automata, Hybrid Automata, etc.), a Func-
tion, an EquationsSet (i.e. a set of Equation concepts), or by their combina-
tion as well as by Other kinds of computational models, defines the behavior
of a PhysicalComponentModel. An Attribute has to belong at least to one
ComputationalModel as well as a ComputationalModel has to use at least one
Attribute. One or more PhysicalComponentModels compose a PhysicalSystem-
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Model, which in turn is one of the many possible models to describe an actual
system called PhysicalSystem.

While the meta-data on the left side of the figure is used for the descrip-
tion of the physical model, moving to the right side of the meta-model, we
can see the concepts used for the modeling of System Requirements. Among
these, the main concept is the RequirementAssertion, which is used to de-
scribe a Requirement of a system. A RequirementAssertion can be (i) a Sim-
pleRequirementAssertion, that means it does not receive any input from any
PhysicalComponentModel, (ii) a ComplexRequirementAssertion, which is con-
nected directly to at least one Attribute and to one PhysicalComponentModel ;
this means that a ComplexRequirementAssertion is based on at least a Physi-
calComponentModel and it is able to receive one or more input values coming
from several attributes of the physical model; moreover, a RequirementAsser-
tion (SimpleRequirementAssertion or ComplexRequirementAssertion) could
be defined in terms of other RequirementAssertions whereas on a single Phys-
icalComponentModel, different RequirementAssertions can be defined.

According to the meta-model a RequirementAssertion belongs at least to
one possible RequirementModel as well as a RequirementModel has to define
at least one RequirementAssertion; each RequirementAssertion being charac-
terized by:

� a Name and a possible Description in a text format by using the natural
language;

� a RequirementAssertionType which specifies the type of the role played
by the RequirementAssertion; in particular a RequirementAssertion can
have (i) a Default behavior type: it is allowed only to monitor a Physical-
ComponentModel without influencing its evolution; (ii) a Parameterized
behavior type: it is able to alter the value of a PhysicalComponentModel
and influence its evolution (the RequirementAssertion has both read and
write capabilities);

� at least two Status in order to represent the status of fulfillment of the
requirement, which in turn is defined in terms of a StatusType and a Sta-
tusValue. The first concept defines the type of value that a state can take
(i.e. a Boolean type, a real type, etc.) whereas the second one represents
the value which is related to a specific StatusType (such as True/False
for a Boolean or NotEvaluated/Satisfied/NotSatisfied for a three valued
logic, etc.). Each Status could be associated to both a Counter counting
how many times the RequirementAssertion has gone in a specific state
and a Timestamp in order to register each occurrence of the event. More-
over, a status can be defined as a DefaultStatus (useful, for example, in
the initialization phase when none value is still provided to the Require-
mentAssertion). A RequirementAssertion has a StatusOfActivation, that
means it can be Enabled and Disabled in order to decide if it takes/does
not take part in a specific scenario or simulation run.
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� at least one EvaluationPeriod to indicate when the RequirementAssertion
has to be evaluated according to possible PreConditions and PostCondi-
tions that could be based on temporal values or on values coming from
Attributes. Moreover for each EvaluationPeriod a Metric must be associ-
ated.

� at least a Metric to describe the objective to be verified for which the Re-
quirementAssertion has been defined (e.g. Mean Time To Failure for the
Reliability); each metric has to define a way which objectively allows its
evaluation in terms of Measure (e.g. the number of failures in a period of
time to measure the Mean Time To Failure). Specifically, a Measure can
be expressed by adopting an appropriate ComputationalModel ; moreover,
one or more Patterns could be applied for representing such Computa-
tionalModels when a sort of recurrent structure occurs (e.g. a threshold
pattern, a derivative pattern, a delay pattern, etc.). Furthermore, each
measure should define a RangeOfValue, within the Value of the Attribute
which is related to, in which it is valid. Such RangeOfValue is specified
by: (i) a LowerBoundThreshold : minimum value of validity in the range;
(ii) UpperBoundThreshold : maximum value of validity in the range; more-
over, further thresholds as LowerBoundOffSet and UpperBoundOffSet can
be exploited when the Value of a RequirementAssertion is respectively
below/above the LowerBoundThreshold and UpperBoundThreshold for a
limited time.

RequirementAssertions can describe the state and the intended behavior
[29, 41] of PhysicalComponentModels, i.e. the expected behavior for which
components are designed. Both Physical Meta-Model and Requirement Meta-
Model are jointly exploited to describe the overall model (hereafter called
Extended System Design - ESD) of an actual system.

To further clarify the meta-model above described, a simple exemplifi-
cation is provided below, where some of the above described concepts are
illustrated in order to define an requirement model upon a physical model in
compliance with the proposed meta-model.

The PhysicalSystem under consideration is a Water System whose model,
i.e. one among all possible PhysicalSystemModels, called WaterSystemModel
is simply composed by a single PhysicalComponentModel of a Tank. The Tank
is modeled through different Attributes such as the current level of liquid lev-
elInTank as well as the height of the tank tankHeight (both as a Real type
and unit=”m”). Such attributes can be accessed externally (Public Visibil-
ity), whereas other Attributes can be used by the descendants of the Tank
(Protected Visibility). All those Attributes (both with Public and Protected
Visibility) are exploited into a ComputationalModel which is defined through
different equations (EquationsSet) in order to model the Behavior of the Tank.

Let us assume to define a RequirementModel on this specific PhysicalSys-
temModel (the above described WaterSystemModel), in order to verify the
following RequirementAssertion of a Tank (hereafter we refer to the model of
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the Tank), whose Description is: ”The level of liquid in the tank shall never
exceed 80% of the tank height” and its Name is ”LevelOfLiquidInTank”. Ac-
cording to the meta-model the status of activation (StatusOfActivation) of this
RequirementAssertion is enabled (Enabled) for all the simulation time, and its
evaluation period (EvaluationPeriod) has a duration equal to the duration of
the simulation run without further specific PreConditions or PostConditions.
The Status of the RequirementAssertion has a StatusType set to Boolean,
consequently, the allowed status value (StatusValue) will range between true
and false (or Satisfied and NotSatisfied).

The fulfillment of this RequirementAssertion is defined by a metric (Met-
ric) based on the current level of fluid in the Tank, which is measured (Mea-
sure) as a percentage according to the maximum height of the tank. Conse-
quently, the definition of the RequirementAssertion exploits the levelInTank
and tankHeight that are both two Public Attributes of the Tank, moreover,
an internal parameter, equal to 0.8, is used to express the percentage. Finally,
this Measure is expressed by adopting as ComputationalModel a set of equa-
tions (EquationsSet). In particular, in this case by a single Equation, which is
defined according to a threshold Pattern (e.g. levelInTank<0.8*tankHeight); a
fragment of the possible Modelica (pseudo) code is reported below (see Figure
6.3).

Fig. 6.3. A fragment of the Modelica Code

In the following, after a brief introduction of a Tank System as reference
example, some approaches for modeling System Requirements through Re-
quirementAssertions, based on the above presented meta-model and centered
on the Modelica language, are described.

6.2 Description of a Tank system

In the subsequent Sections a case-study, concerning a Tank System, is first
described and then used to show how a reference example. The Tank System
is composed by four main physical components: a Source component, a Tank
component, a LevelController component and a Sink component. The Source
component produces a flow of liquid, which is taken in input by the Tank
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component. The Tank, which is managed through the LevelController com-
ponent, provides in output a liquid flow according to the control law defined
by the LevelController. The Sink is the component where a part of liquid is
sent.

After an analysis of the URs, the following main SRs (and many others)
have been identified:

- System Requirement 1 : the system has to be composed by one Source
Component, one Sink Component, at least one Tank Component and at
least one LevelCotroller Component;

- System Requirement 2 : each tank has to provide one port called qIn in
order to receive flow from another possible Tank Component (or from the
Source component if it is the first Tank component in the chain);

- System Requirement 3 : each tank has to be connected to its own Level-
Controller component;

- System Requirement 3 1 : each Tank component has to provide a port
called tSensor in order to provide signal to the LevelController compo-
nent;

- System Requirement 4 : the Source component has to provide a flow port
called qOut ;

- System Requirement 4 1 : the liquid flow produced by the Source compo-
nent has to be equal three times the initial flow after 150 seconds;

- System Requirement 5 1 : the liquid flow produced by the Source compo-
nent should be less than 10 m3/s.

- System Requirement 5 2 : the role of the LevelController should be verified
by exploiting both the h level from the Tank component and the qOut flow.

- System Requirement 5 3 : the validity of both the tActuator (Out-flow)
and the outFlowArea values should be checked according to a specified
function;

- System Requirement 5 4 : both the h level and the tSensor should provide
the same values;

- System Requirement 5 5 : the h level coming from the Thank should be
checked according to a specified function.

Starting from the SRs above described, the main Components of the Tank
System as well as one possible SD have been defined and their Modelica source
code is reported, respectively in Figure 6.4 and in Figure 6.5, whereas in Figure
6.6, the System Design of the Tank System, is represented in ModelicaML.

Then a set of RequirementAssertions to be verified, can be defined on the
SD of the Tank System; in particular:

- RequirementAssertion 1 : LimitInFlow, which takes in input the value of
the qOut port of the Source component. It is satisfied if the liquid flow
produced by the Source component is less than a specific ”maxLevel” (i.e.
liquidFlow¡=maxLevel, in our case maxLevel =10).
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Fig. 6.4. Modelica code of Components of the Tank System

- RequirementAssertion 2 : ControlOutFlow, which takes in input the h level
from the Tank component and the qOut flow to validate the role of the
LevelController ; moreover, to be valid it must be fulfilled by both the
RequirementAssertion 3 and the RequirementAssertion 4.

- RequirementAssertion 3 : ActuateOutFlow, which takes in input both the
tActuator (Out-flow) and the outFlowArea, checks if the outFlowArea value
is proportional at the tActuator signal.

- RequirementAssertion 4 : SenseLevel, which takes in input both the h level
and the tSensor, checks if the sensor output is equals to the h level (i.e.
lLevel=sensorOuput).

- RequirementAssertion 5 : ControlLevel, which takes in input the h level
coming from the Tank component, checks if hLevel¡9 and hLevel¿5; more-
over, to fulfill the RequirementAssertion 5, both the state of Requiremen-
tAssertion 1 and of RequirementAssertion 2 have to be satisfied.
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Fig. 6.5. Modelica code of the System Design of the Tank System

Fig. 6.6. The System Design (SD) of the Tank System

6.3 Candidate Approaches for representing System
Requirements in Modelica language

In this Section different approaches for modeling system requirements and how
they can be used to verify the intended behavior of the system and validate
it through simulation are described. All the approaches are based upon the
Modelica language and ModelicaML.

Although both Modelica and ModelicaML are expressly designed for mod-
eling systems in a coherent framework based on an equation approach, they do
not yet provide concepts to be used in order to represent and trace the occur-
rence of dysfunctional/abnormal behavior (such as faults and failures), that
is to say, an observable deviation from the intended behavior at the system
boundary [16, 29, 41].

In this perspective, the exploitation of the meta-model presented in the
previous Section 6.1, upon the Tank System as a reference case study (de-
scribed in Section 6.2), can be used to enrich both the Modelica language
and ModelicaML to provide them with the capability of modeling system re-
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quirements and to enable model checking. In particular, different approaches
are presented and discussed in the following subsections based on the main
concept of requirement assertion (see Section 6.1).

6.3.1 Approach A

In this approach the concepts of requirement and fulfill are defined as follows:

� requirement : which is represented by a RequirementAssertion able to val-
idate the behavior of a specific PhysicalComponentModel which is related
to, or to validate interactions among different PhysicalComponentModels
(according to the SRs and the SD).

� fulfill : which expresses the entailment relationship between PhysicalCom-
ponentModels and a requirement, as well as among requirements. Moreover,
it provides the propagation process of an assessment among Requiremen-
tAssertions.

An example model, which illustrates these concepts, is shown in Figure
6.7.

Fig. 6.7. A verification model based on requirement assertion and fulfill

In particular, after the declaration of the instances of both PhysicalCom-
ponentModels and RequirementAssertions their relationship is established ac-
cording to the following five connection-rules:

1. the connections enabled through the connect construct among Physical-
ComponentModels are defined to build the SD of the PhysicalModel ;

2. the connections enabled through the connect construct among a Physical-
ComponentModel and a RequirementAssertion are used to provide outputs
coming from PhysicalComponentModels in input to RequirementAsser-
tions.

3. the exploitation of the fulfill keyword is used to define which instance
of an RequirementAssertion has to be satisfied/related from at least one
specific instance of a PhysicalComponentModel.
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4. the exploitation of the fulfill keyword is used among RequirementAsser-
tions to enable the propagation mechanisms of assessment among them;

5. if A1, .., An are RequirementAssertions and C1, .., Cm are PhysicalCompo-
nentModels, then we can define (A2, .., An, C1, .., Cm)fulfill(A1), where
A1 is satisfied if and only if C1, .., Cm satisfy A1 as well as A2, .., An are
all satisfied (fulfill follows the rule of the And logic).

As we can see in Figure 6.7, the connect construct, which is already avail-
able in the Modelica language, is used not only among PhysicalComponent-
Models but also between a RequirementAssertion and a PhysicalComponent-
Model. Even though the connect construct allows to define connections among
attributes of two or more components in an acausal way [25], in this approach
some restrictions are defined on it. As an example, the connection is only able
to provide inputs from a physical component towards a RequirementAssertion.
The reason for such a restriction is to prevent a RequirementAssertion from
providing input to a PhysicalComponentModel and consequently affecting its
behavior.

Figure 6.8 shows an example of ModelicaML-based notation for the dif-
ferent concepts, then some code fragments of the RequirementModel and, in
particular, the implementation of RequirementAssertion 1 and of Requiremen-
tAssertion 5, through the introduction of the new keyword requirement, are
reported, by exploiting the A Approach in Figure 6.9, whereas the Extend-
edSystemDesign (ESD) is shown in Figure 6.10.

Fig. 6.8. Approach A for modeling requirements of the Tank System



84 6 Further Contributions on Modeling of System Requirements

Fig. 6.9. Modelica code for Requirement Modeling according to the A approach

Fig. 6.10. Modelica code for the ESD according to the A approach
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By adopting this approach, the RequirementModel is completely decoupled
from the PhysicalSystemModel of the system under consideration. Indeed, a
requirement model only requires input values of specific types, regardless of
the type and the number of components that the values come from. This means
that a requirement model could be re-used to validate physical components
belonging to different SD, although the semantics of such physical components
could be completely different. The link between the RequirementModel and
PhysicalSystemModel, occurs only in the ESD, through the fulfill relationships
which govern the assignment of a component to a requirement, while the
inputs to be sent to the requirement are provided by the connect construct.

6.3.2 Approach B

Whilst the above mentioned approach allows to model requirements in a sim-
ple and intuitive fashion, with the help of a minimal set of new concepts (i.e.
requirement assertion and fulfill), the addition of extra connections between
requirement assertions and components through connect, could make the ESD
overly verbose and difficult to read from a visual representation point of view,
thus complicating the maintainability of the source code.

Therefore, an alternative approach is a variant of the previous one in which
along with the keyword requirement, another concept (and another keyword)
called On, which is only visible in the source code of a RequirementAssertion,
is introduced. Similar to the extends construct, but with some restrictions
on the inherited elements, the On keyword enables a requirement to be de-
fined on specific PhysicalComponentModels. Such a requirement will inherit
the attributes on which it will carry out the processing.

The process to build the ESD follow the five-connection-rules, which have
been described in Section 6.3.1 except for the rule number 2 ; in this way:

� it allows to avoid the exploitation of extra connect (between Physical-
ComponentModels and RequirementAssertions) in order to provide input
values coming from constants, parameters or variables of physical com-
ponents towards a requirement. Indeed, such relationships are established
during the definition of the RequirementModel through the exploitation of
the On keyword;

� it allows to avoid of having too many connections into a graphical repre-
sentation, as it is in Figure 6.11, by also reducing the lines of the source
code of the Extended System Design.

The concept of fulfill is that explained in Section 6.3.1.
In this example the B Approach is exploited to represent the reference Tank

System including the RequirementAssertions. Figure 6.12 shows the related
ModelicaML-based notation of such a modeling approach. As it is represented,
the picture is less crowded with connections and consequently easier to read.
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Fig. 6.11. Modeling Requirements using the On construct

Fig. 6.12. Approach B for modeling requirements of the Tank System

Furthermore, as it is shown in the next code fragments (see Figure
6.13) illustrating the source code of Requirement Assertion 1 and of Require-
ment Assertion 5, both the keyword requirement along with the On keyword
are combined for the definition of each requirement. Specifically, starting from
the Source model, Requirement1 is defined on it; this means that Requirement1
is able to use (read-only) all the Public attributes, which have been defined by
the Source model. In particular, the qOut attribute of the Source model can
be used by Requirement1 without further referencing or connections with the
Source model.

As for the previous example a fragment of source code combining both
the PhysicalSystemModel and the RequirementModel is presented. As we can
see, no connections which use the connect construct between a PhysicalCom-
ponentModel and a requirement component, are present in the source code of
the ESD model (see Figure 6.14).
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Fig. 6.13. Modelica code for Requirement Modeling according to the B approach

Fig. 6.14. Modelica code for the ESD according to the B approach

By adopting this approach, the RequirementModel is not completely decou-
pled from the PhysicalSystemModel (this makes requirement assertions less
flexible and less reusable) as it knows Public Attributes that are defined in
the PhysicalSystemModel. On the other hand, it allows for a more immediate
exploitation making the ESD model easier to read by hiding the details of the
matching between the PhysicalSystemModel and the RequirementModel. In-
deed, as it is shown both in Figure 6.12 and through the code of the ESD, only
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the fulfill relationships are visible, while the connection (through the connect
construct) among PhysicalComponentModels and RequirementAssertions are
not part of the ESD.

6.3.3 Approach C

Often, it is necessary to have additional mechanisms for generating dysfunc-
tional/abnormal behavior in a physical component, so as to assess the con-
sequences on the whole system. To this end, the C Approach proposes the
possibility of altering the values of the components starting from the B ap-
proach and adding the new notions of tester entity/component entity and the
supersede keyword. The tester entity can be seen as a specific component that
is defined on a PhysicalComponentModel and which is able to generate out-
puts (e.g. signals, events or values) according to specific functions and inject
them into the PhysicalComponentModel in order to alter its intended/nominal
behavior (expected values). The supersede keyword enables the mechanism to
create a reference between an instance of a tester entity and an instance of a
PhysicalComponentModel. In particular, the following rules define the seman-
tics of the supersede keyword and how to use it:

1. the exploitation of the supersede keyword is used to define which specific
instance of a PhysicalComponentModel could be compromised by which
specific instance of a Tester component ;

2. if T1, .., Tn are Tester components and C is a PhysicalComponentModel,
then we can define (T1, .., Tn)supersede(C), where the operation work of
C could be influenced only by one among the T1, .., Tn Tester components
(supersede follows the rule of the XOr logic).

RequirementAssertions can monitor the occurrence of abnormal/dysfunctional
behavior in physical components; the fulfill relationship is exploited by the
RequirementAssertion to check the impact and the consequently propagation
of possible unexpected values in a component on other components (see Figure
6.15). The On keyword enables both RequirementAssertions and Tester com-
ponents to have access directly to the attributes of the physical component
models on which they are defined.

This approach is adopted to model the previously described requirement
assertions on the Tank System. Additionally, the possibility of modeling enti-
ties that alter the intended behavior of components, and consequently of the
system, is taken into account by exploiting tester entities/components. In this
section, three tester components have been defined in order to illustrate their
use:

� AlterSourceFlow and AlterSourceFlow2 on the Source component, respec-
tively producing the double of the liquid in the first case and producing a
negative value of liquid in the second case.

� AlterOut on the Tank component, where the LimitValue function has been
removed from the behavior of the tank.
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Fig. 6.15. Requirements and Tester component for the dysfunctional behavior anal-
ysis

In the following, some code fragments describing the TesterModel and,
specifically, the source code of the AlterSourceFlow and of the AlterOut are
reported (see Figure 6.16).

Fig. 6.16. Modelica code for Requirement Modeling according to the C approach

As we can see in the source code below (see Figure 6.17), the link between
PhysicalSystemModel and TesterModel is defined in the ESD through the
keyword supersede. In Figure 6.18 a ModelicaML-based notation for such a
modeling approach, introducing both Requirement and Tester components as
well as physical components is depicted.



90 6 Further Contributions on Modeling of System Requirements

Fig. 6.17. Modelica code for the ESD according to the C approach

It is worth noting that one possible variant of the C Approach consists in
defining the relationships between a PhysicalComponentModel and a Tester
component in the ESD by using the construct connect, in order to avoid the
exploitation of the On keyword during the definition of the tester components
in the TesterModel. By adopting this version (similar to the A Approach), the
PhysicalSystemModel will be completely decoupled from both the Require-
mentModel and the TesterModel.

Fig. 6.18. Approach C for modeling requirements of the Tank System
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6.4 Modelica Extensions, Requirements Verification and
Dependency Tracing

Compliant with the meta-model proposed in the Section 6.1, starting from an
actual system named Physical System, different Physical System Models, rep-
resenting the specific aspects that each model wants to capture, can be defined.
In particular, following the object oriented paradigm (OOP), a given Physi-
cal System Model can be defined by (re)using new or already defined Physi-
cal Component Models. As a reference, the architectural framework shown in
Figure 6.19 has been followed with the aim of extending the Modelica-based
model by introducing, beside the Physical System Model, which provides one
possible representation of the Physical System, two more key elements: (i)
Requirement Model, which formalizes the expected behavior of the system;
(ii) Monitoring Models, in which possible relationships between the Physical
System Model and Requirement Model are defined.

Fig. 6.19. A reference architectural framework based on Modelica

From the point of view of the models:

1. The goal of the Monitoring Model is to connect together a Physical Sys-
tem Model and a set of requirements to be verified. For a given Physical
System Model, different Monitoring Models with different configurations
and different requirement sets can be defined.

2. Requirement Models are used to describe the expected state and behav-
ior of the Physical System Model. In order to make verification intuitive,
flexible and to benefit from the power of the OpenModelica tools, it has
been chosen to represent requirements in the same formalism by extracting
them from their textual specification, and formalize them in Modelica.
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From the point of view of the language (and in particular on Modelica
language):

1. To represent requirements, a new type of class, a requirement class, has
been introduced. This allowed to adopt a modular development approach
to requirement modeling, wherein the paradigms of object-oriented pro-
gramming such as inheritance and hierarchical structuring can be ex-
ploited. A textual requirement is therefore formalized into a computable
form, by defining the expected behavior of the system as a set of Modelica
equations. A requirement class reads system values through classic Model-
ica ports, however by its definition it does not feed back to the system, as
requirement verification should not influence the behavior of the system

2. A precondition equation section can be also contained in a requirement.
The goal of a precondition is to define the situations in which the require-
ment applies/acts (has to be evaluated/considered).

3. Moreover, because the dependencies between the different components and
requirements are not necessarily deductible from the data flow relation-
ships between the requirements and the related components, an extension
of Modelica language (called fulfill) for explicitly declaring such relations
has been also define. The following equation (6.1):

{r1, ..., rn, c1, ..., cm}fulfillr (6.1)

states that the verification of requirement r depends on requirements r1
to rn and components c1 to cm. This relationship also allows to adopt a
refinement approach to requirement modeling, as bigger requirements can
be fractioned into more refined sub requirements, and their relationships
can be expressed through fulfill equations.

The two steps to requirement verification are the verification of each indi-
vidual requirement and the verification of the fulfill relationships. A require-
ment class contains equation sections, like a normal Modelica model. However
these equations are not interpreted in the same way. Instead of being used to
solve the overall model, they can be viewed as conditions on the different val-
ues in the system that must be verified. To simplify the debugging, analysis
process, a requirement in a system model can either be active, or inactive.
An inactive requirement is not verified at simulation. However a requirement
can only be de-activated if no active requirements depend on it. Specifically
a requirement can be evaluated to three possible states:

- Violated, meaning that under the current simulation parameters the re-
quirement was not validate;

- Not violated, meaning that under the current simulation parameters the
requirement hold;

- Not evaluated, meaning that in the given scenario, the preconditions of the
requirement are never fulfilled, thus is never evaluated.
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Different simulation configurations are possible: a requirement can either
be verified at each step of the simulation, registering the number of violations,
or the simulation can stop at the first violation of a requirement. Once the
individual requirement values are computed, the fulfill relationships must be
verified. In the following a first effort of requirement verification and trace-
ability process in Modelica through an algorithm, has been formalized. This
algorithm aims to provide an answer to the following questions:

- When is a RequirementAssertion violated?
- How can the component responsible for violating the RequirementAsser-

tion be identified?

A requirement can be violated, not only when a single component fails,
but also when the interactions among two or more components are wrong.
Basically, the verification and traceability process requires to trace all the ful-
fill relationships for a given requirement, to reach a set of components that
the requirement depends on. This set can be then analyzed, to detect that
(i) either a component is not properly working or (ii) the interaction among
a set of components is not consistent as expected. Two types of Requiremen-
tAssertions (RAs) are distinguished:

- A RA upon a single Physical Component, that defines its expected behav-
ior;

- A RA upon a two or more Physical Components that defines the expected
behavior in terms of interactions among a set of Physical Components.

As a consequence, it can be identified a single component as a possible
culprit or a set of components within which one or more components are re-
sponsible for violating the requirement. To illustrate the difference between
these two notions, let us suppose that two components are working properly
when considered individually, meaning that they are well-defined. However,
when they are used together, their interaction could not work as expected.
In such a case this means that this part of the physical model should be re-
designed/reviewed, because the behavior of components is correct but their
interaction is not. In order to address both issues, the following algorithm has
been proposed:

Let A be a set of RequirementAssertions (RAs) {A1, A2, ..., Ai, ..., An} with
1 ≤ i ≤ n ; Let C a set of PhysicalComponentModels {C1, C2, ..., Cj , ..., Cm}
to be verified using A, with 1 ≤ j ≤ m. Let C ′ a subset of C, and A′ a subset
of A, such that card(C ′) > 1, card(A′) > 1, Ai /∈ A′ and Cj /∈ C ′. Moreover
the functions holds and preconditions have been defined, that for a given RA
can check whether the equations in its equation and precondition sections,
respectively, are verified.
For each Ai ⊂ A the status is initialized to not evaluated. Then, for each
Ai ⊂ A if preconditions(Ai) are valid,then check(Ai){
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Using verification at simulation, we can only assert that a given compo-
nent has not violated a given set of requirements under the current runtime
configuration. Therefore for each requirement this algorithm returns its state,
as evaluated with the given simulation parameters, and if it was violated, a
set of components possibly responsible for the violation.

The two steps to requirement verification are the verification of each indi-
vidual requirement and the verification of the fulfill relationships. For simplic-
ity the relationships among requirements and physical component are briefly
reported in the follow:
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1. liquidSource fulfill limitInFlow;
2. {tank1, levelController} fulfill actuateOutFlow;
3. tank1 fulfill senseLevel;
4. {limitInFlow, controlOutFlow} fulfill controlLevel;
5. {tank1, levelController, actuateOutFlow, senseLevel} fulfill controlOut-

Flow;

The algorithm, which has been just described, is applied on the Modelica
design of the Tank system, for each of the possible cases, by analyzing the five
fulfill relationships which have been reported above.

Case 1: This evaluation is only based on the inputs/variables, provided
by a single component, which must fulfill some rules/equations defined in-
side a requirement class. As an example (considering the fulfill relationship
1) limitInFlow is going to verify whether the component liquidSource is work-
ing according to some rules/equations specified in limitInFlow by exploiting
only the input provided by liquidSource, so limitInFlow is violated if such
rules/equations are violated, otherwise limitInFlow is not violated ; as well as
(considering the fulfill relationship 3) senseLevel is going to verify only if
the component tank1 is working according to some rules/equations specified
in senseLevel by exploiting only the input provided by tank1, so senseLevel
is violated if such rules/equations are violated, otherwise senseLevel is not
violated.

Case 2: This evaluation is based on the inputs/variables, provided at least
by two different components, which must fulfill some rules/equations defined
inside a requirement class. As an example, considering the fulfill relationship
2, actuateOutFlow is going to verify only if the interactions between tank1
and levelController happen according to some rules/equations specified in ac-
tuateOutFlow by exploiting the inputs provided by tank1 and levelController,
so actuateOutFlow is violated if those rules/equations are violated, otherwise
actuateOutFlow is not violated.

Case 3: This evaluation is only based on the Status of each single re-
quirement in the left side of the fulfill equation. As an example, consider-
ing the fulfill relationship 4, controlLevel does not take any inputs/variables
from any component, so no rules/equations are specified in controlLevel. As a
consequence controlLevel is not violated if and only if both limitInFlow and
controlOutFlow are not violated.

Case 4: This evaluation is based both on the inputs/variables, provided
at least by one component, which must fulfill some rules/equations defined
inside a requirement class as well as on the Status of each single requirement
in the left side of the fulfill equation. In this case, considering the fulfill rela-
tionship 5, controlOutFlow verifies that both the interactions between tank1
and levelController happen according to some rules/equations specified in
controlOutFlow by exploiting both the inputs provided by tank1 and level-
Controller. Furthermore, since actuateOutFlow and senseLevel are on the left
side of the fulfill equation, controlOutFlow is fulfilled if both the actuateOut-
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Flow and the senseLevel are fulfilled. As a consequence, controlOutFlow is
violated when some rule/equation, defined in controlOutFlow, is violated OR
when at least the Status of a requirement (in this case actuateOutFlow or
senseLevel) in the left side of the fulfill equation computes to violated, other-
wise controlOutFlow is not violated.

By running the simulation for the monitoring model described in this Sec-
tion, with a configuration that respects the constraints defined by limitInFlow,
controlOutFlow and controlLevel, it can be seen that the three requirements
are valid throughout the simulation (see Figure 6.20).

Fig. 6.20. Red, blue and green lines represent controlLevel, controlOutFlow and
limitlInFlow requirements respectively. They are all evaluated to non violated
throughout the execution

Then by modifying the flow level from the source triple after 150 seconds
(see Figure 6.21), we can see that the system reports a violation of the re-
quirement limitInFlow, which in turn means that controlLevel is also violated.
Currently, the fulfill relationships are only being used to verify the require-
ments, however in the future they could be used to assist the designer in
analyzing and debugging his model by integrating tool support for tracing
the failures to the components that must fulfill the requirements.

Although the requirement model is used for dynamic verification at run-
time, and due to the classic reliability and safety techniques are widely
adopted, in the next Section is shown how has been natural exploits the pro-
posed Modelica models and related extensions to generate diagram of System
for performing further static analysis.
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Fig. 6.21. After 150 seconds, the Status of controlLevel and limitInFlow require-
ments changes to violated

6.5 Extending the Modelica language through a
Probability Model

In this Section a formalism for modeling probabilities in Modelica and its
exploitation to analyze the behavior of physical systems under specific oper-
ative conditions is shown in the context of an integrated modeling process.
According to the process represented in Figure 6.22, which can be integrated
into the System Modeling phase of the methods presented in Chapter 5, the
system to be analyzed is defined in terms of:

- PhysicalComponentModels which represent basic or complex elements of a
PhysicalSystem;

- RequirementAssertions, used to model requirements, which in turn consti-
tute a RequirementsModels that a PhysicalSystem has to satisfy.

Starting from a set of PhysicalComponentModels (PCMs) and Require-
mentsModels (RMs), a specific ExtendedSystemDesign (ESD) to be analyzed
can be generated. Then, a Probability Model (PM) is introduced into the ESD
model through annotations. This composite model can be used to generate
data for static analysis. For instance, Fault Tree Diagrams (FTDs) can be
exported, by exploiting OpenModelica APIs, in different machine readable
XML formats which can be used by external tools for performing Fault Tree
Analysis.

The ExtendedSystemDesign (ESD) is a composite model which is defined
by integrating both the PCMs of the PhysicalSystem and the RMs to be ver-
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Fig. 6.22. The reference process for supporting Fault Tree Analysis in Modelica

ified. In particular, the PCMs of the PhysicalSystem are generated by using
standard Modelica language, whereas the RMs are expressed by exploiting
some proposed extension of the Modelica language called RequirementAsser-
tions for modeling requirements (see Section 6.1).

In Figure 6.23 a template of a requirement represented as a Requiremen-
tAssertion is shown.

Fig. 6.23. Structure of a requirement represented as a RequirementAssertion

This template contains a new type of Modelica class defined through the
keyword requirement, the class has a precondition equation section that defines
the situations in which the requirement applies and an equation section that
specify how the requirement has to be evaluated. Moving to the ESD model,
the concept of fulfill is used for tracing requirements. A representation of the
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ESD, which is built using the proposed extensions of the Modelica language,
is shown in Figure 6.24.

Fig. 6.24. Exploitation of the fulfill relationship into the ESD model

The fulfill relationships are exploited both to allocate RMs to PCMs and
to generate the hierarchical structure of the Fault Tree Diagram.

Then, a Probability Model (PM), which allows to introduce additionally
information and as a consequence to enrich a Modelica-based system design,
is introduced. A PM consists of a list of possible states in which a component
can be (i.e. operating, operating in degraded mode, broken) and, eventually,
of a set of characteristics associated with each state. In order to avoid the
definition of this model for every individual component, it is defined separately
and then referenced by every component that needs to use it; such a model
allows:

- identifying the cause(s) of a failure;
- identifying the weaknesses in a system design;
- assessing a proposed design for its reliability or safety;
- assessing the effects of human errors;
- prioritizing the contributors to failure;
- making effective upgrades to a system;
- quantifying the failure probability and contributors.

The model is represented by using the Modelica standard language (see
Figure 6.25); this makes it reusable in different simulation tool implementing
the Modelica specifications.

A PM could be introduced without any reference to an ESD. Starting from
the PCMs and the RMs, where models of components and requirements are
defined as a sort of ”component library”, a PM can be associated to them as a
kind of initialization (”Probability Initialization” or PI for short). This means
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Fig. 6.25. Definition of a Probability Model based on equations by using the Mod-
elica languague

that all the instances, derived from models with the same PI, will have the
same probability distribution and, as a consequence, the same initial values.

PhysicalComponentModels and ExtendedSystemDesign models generated
by combining through the fulfill relationships both RequirementsModels and
PhysicalComponentModels can be augmented by introducing a Probability
Model (PM).

In particular, Modelica Annotations are used to combine the Probability
Model with a Modelica-based Design. In Figure 6.26 a fragment of code which
exemplifies how to use probability annotation is reported.

Fig. 6.26. Exploiting the Probability Model for annotating the Modelica-based
System Components
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As an example, the PhysicalComponentModel ModelComponent1, which is
defined in the PhysicalComponentModel package, is annotated with the PM
called ProbabilityModelComponent1 which is defined in the ProbabilityModel
package; similarly the PhysicalComponentModel called ModelComponentM,
which is defined in the PhysicalComponentModelN package, is annotated with
the PM called ProbabilityModelComponentN which in turn is defined in the
ProbabilityModel package.

Furthermore, as a component can work in different environments and un-
der specific working conditions which can influence its actual life cycle (for
example the temperature), the probability model of any component can be
defined/modified during its instantiation. As a consequence, a second annota-
tion step can occur during the definition of the ESD as it is shown in Figure
6.27.

Fig. 6.27. Exploiting the Probability Model for annotating the Modelica-based
ExtendedSystemDesign

If there is also a probability model associated with the type of the com-
ponent that associated with the instance will override it (see the probabil-
ity annotation of ModelComponent1 in Figure 6.27 and the example reported
in Figure 6.32). The generation of Fault Tree Diagrams (FTDs), is enabled
in OMEdit through the implementation of Modelica APIs. This generation is
completely automatic and allows the choice among different formats (in the
current prototype an XML format, based on the GeNIe tool [37], has been
implemented); specifically: (i) the top event is the event to analyze; (ii) the
middle events are the intermediate ones; (iii) a basic event is represented by
the probability of a failure of a component; (vi) the logical relationships follow
basically the And-logic.

The diagram is generated by exploiting two main information sources: (i)
the fulfill relationships (see Section 6.3), for extracting the structure of the
Fault Tree Diagram from the ExtendedSystemDesign; (ii) the information
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provided by the Probability Model concerning both the operating states and
the related values of probability for each component of the Modelica-based
design.

In Figure 6.28 a fragment of the template of a FTD in XML is shown.

Fig. 6.28. The XML template of a Fault Tree Diagram generated from a Modelica-
based System Design

6.6 Performing Fault Tree Analysis of the
Modelica-based Design of the Tank System

In order to show how to exploit the Probability Model presented in Section 6.5
the Tank System, which is described in Section 6.2, has been considered. It is
composed by four PhysicalComponentModels (PCMs) (i. g.Source component,
a Tank component, a LevelController component and a Sink component), fur-
thermore five RequirementAssertions (RAs) (LimitInFlow, ControlOutFlow,
ActuateOutFlow, SenseLevel, ControlLevel) are considered in such analysis.

It is worth noting that further details about the PhysicalComponentModels
and the RequirementsModel of the tank system are not required for the FTA
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analysis of the Modelica-based design because the hierarchical organization
and the structure of the system is sufficient for performing this analysis.

Fig. 6.29. An example of the Modelica-based System Design extended through the
RequirementsModels and by exploiting the fulfill relationship

In order to make the Modelica system design ready to be analyzed stati-
cally, the ESD (see Figure 6.29 is further enriched through a ProbabilityModel.
In this phase a Probability Model for the Tank System is defined; in particular,
the definition of a PM is provided for each PhysicalComponentModel as well
as for each RequirementModel.

In Figure 6.30 a fragment of source code of the PM for the physical side
of the system is reported; in this case each model defines two possible states:

- Success: which represents the probability of success of a component per-
forming its work.

- Failure: which represents the probability of failure of a component per-
forming its work.
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In the PM of Figure 6.30, the probabilities associated to each status of
each probability model have the same initial value (0.50); in general, the
number of states as well as their probability values can be freely initialized
(i.e. Success=0.75, Failure=0.25); the only constraint is that the sum of these
probabilities has to be equal to 1.0.

Fig. 6.30. An example of a Probability Model based on the Modelica language

6.6.1 Augmenting the Tank System design through the
Probability Model by using Annotations

In this phase the Modelica design can be enriched through the Probability
Model in two steps: (i) during the definition of both PhysicalComponentMod-
els and RequirementsModels; (ii) during the instantiation of the PhysicalCom-
ponentModels or of the RequirementsModels.

In the first case the Probability Model defined for a specific component is
valid for all its instances; as an example, in Figure 6.31 the definition of the
LiquidSource component model, that is annotated with its probability model,
is shown.

In the second case the validity of the Probability Model is limited only to
a specific instance of a component model; as an example, with reference to
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Fig. 6.31. A PhysicalComponentModel annotated with a Probability Mode

the ExtendedSystemDesign of the Tank System in Figure 6.32, a specific in-
stance of the LiquidSource component is annotated through a new Probability
Model by overriding the default values of probabilities (i.e. Success=0.50 and
Failure=0.50) with new values of probabilities (i.e. Success=0.80 and Fail-
ure=0.20). In this case, these new values of probabilities are valid only for
such specific instance of the LiquidSource component model.

Fig. 6.32. An instance of PhysicalComponentModel annotated with a Probability
Model

6.6.2 Generation of the Fault Tree Diagram

Finally the Fault Tree Diagram (FTD) of the Modelica-based design aug-
mented with the Probability Model is generated by using the OpenModelica
simulation environment [87].

In Figure 6.33 the user interface of OMEdit, the Open Source graphical ed-
itor of OpenModelica, which has been extended for supporting the generation
of FTDs in an XML format, is shown.

Specifically, OMEdit has been extended by introducing a minimum set
of features supported by APIs and some GUI buttons which allow to anno-
tate components with the proposed Probability Model and then to export the
Modelica design in terms of FTD.
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Fig. 6.33. An extension of OMEdit, for supporting modeling and generation of
Fault Tree Diagrams

Fig. 6.34. Graphical representation of the ExtendedSystemDesign of the Tank Sys-
tem by using the GeNIe analysis environment

Above, a fragment of the generated XML code, representing the Fault Tree
Diagram of the Modelica design, is reported. Then starting from the FTD
generated in the previous step (see Figure 6.35), its graphical representation
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for the Fault Tree Analysis in the GeNIe environment is obtained (see Figure
6.34). This generation is completely automatic and compliant with the GeNIe
[37] tool format; the so generated FDT is ready to be simulated without need
for further modifications.

Fig. 6.35. A fragment of the generated XML code representing the Fault Tree
Diagram

It is worth noting that in order to make more readable the picture repre-
sented in Figure 6.34 both physical components (i.e. the Tank, the Sink, the
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LiquidSource and the LevelController) and the top requirement to be verified
(i.e. the ControlLevel) are depicted by using a square shape, whereas all the
other intermediate requirements are depicted by using a round shape.

Starting from the probability values associated to the Tank System model,
the Fault Tree Analysis of the system with the top level represented by the re-
quirement ControlLevel shows that the probability of Failure is equal to 14%,
whereas the probability of Success is equal to 86%; these values are obtained
by considering the propagation through the system of the initial probability
values of Failure and Success associated to the PhysicalComponentModels of
the Tank System.

6.7 Conclusion

This Chapter has described further contributions focused on the modeling of
requirements in an equation-based context. In particular, a reference meta-
model for representing System Requirements in terms of RequirementAsser-
tions has been presented along with three different approaches for the mod-
eling of System Requirements that adhere to the proposed meta-model. All
of them aim to provide support for model verification by defining extensions
of the Modelica language, and, one of them also aims to extend such model
verification by supporting the modeling of system failures and thus allowing
to analyze the behavior of the system in presence of faults, according to a
proposed pseudo-algorithm for tracing requirements.

Then, a model-driven process for performing Fault Tree Analysis of a
Modelica-based System Design by modeling probabilities through a Probabil-
ity Model has been presented. In particular the methodological process aims to
support the reliability analysis of systems by combining the benefits of graph-
ical editors for the system design and annotations, such as OMEdit, with ded-
icated analysis tools, such as GeNIe. The possibility to combine through an
annotation mechanism the system design model with a Probability Model al-
lows to support the analysis of important system properties and thus to reduce
incoherences and simplify model modification and reuse. Specific annotations
have been introduced to integrate a Modelica-based system design with the
proposed Probability Model ; then, dedicated OpenModelica APIs have been
defined and implemented for generating Fault Tree Diagrams. Such contribu-
tions have been experimented by considering a reference example consisting
of a Tank System as well as by prototyping a specific OpenModelica version
in order to experiment the above mentioned extensions.
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Conclusions

7.1 Main contribution

The research presented in this Thesis aimed at contributing to fill the lack
of methods which specifically address the analysis and verification of non-
functional requirements. The research has been focused on the Reliability
and Safety properties of systems using Model-Based System Design (MBSD)
approaches and Simulation techniques to support their representation and
analysis. In particular, the benefits deriving from the adoption of a MBSD
approach have concerned the improvement of the system development pro-
cess with a significant reduction of both time and development costs as well
as models integration, thanks, also, to its modularly approach that enabling
(re)usability of models; whilst the strength of Simulation techniques have been
employed for making more effective the verification process of the system in
order to validate its design against requirements, as well as for studying its
evolution. In this context, two main contributes have been provided:

- RAMSAS, a model-based method for system reliability analysis through
simulation;

- a Modelica-based method for supporting the safety analysis of cyber-
physical systems.

RAMSAS allowed leveraging the strengths both of powerful visual lan-
guages, suitable to flexibly model the architectural and behavioral aspects
of complex, dynamics, and heterogeneous systems, and of mature and pop-
ular tools, suitable for the simulation and analysis of multi-domain systems.
Indeed, it combines in a unified framework the benefits of popular OMG
modeling languages (UML, SysML) with the widely adopted Mathworks sim-
ulation and analysis environment (MATLAB-Simulink), so as to keep lower
the learning curve of the method. RAMSAS is the result of an intensive ex-
perimentation in several application domains (avionics, automotive, satellite)
which allowed improving its modeling and simulation features especially in
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the support provided to the modeling of the dysfunctional system behav-
iors, where the focus is on the modeling of faults (a defect in a component)
and failures (an observable deviation from the intended behavior at the sys-
tem boundary). In particular, six templates of dysfunctional tasks have been
identified (Fault Generation, Failure Generation, Fault Management, Fail-
ure Management, Fault Propagation and Failure Propagation) as well as five
fault/failure types for support this crucial modeling activity; then a set of pat-
terns have been introduced as a combination of dysfunctional task type and
fault/failure type. Finally, RAMSAS is defined as a Method Fragment and,
as a consequence, it can be integrated in various phases of a typical System
Development Process (e.g. in a V-Cycle process): (i) in the verification phases
to support the verification of system reliability after the actual realization of
the system; (ii) in the design phases to support the evaluation and validation
of configuration scenarios and settings of system parameters so to guide and
suggest design choices before the realization of the system.

The second contribution has concerned the definition of a Modelica-based
method, inspired by the ISO-26262 standard, for the development, the analysis
and the verification of systems with hard safety requirements. The method is
mainly centered on the Modelica language by adopting an equation based style
with acausal features, so as to allow defining hybrid physical systems models
(e.g. systems containing mechanical, electrical, electronic, hydraulic, thermal,
control, electric power components) in a declarative manner; furthermore the
strength of well-known simulation techniques is employed. In particular, the
Method exploits, as an integrated chain of tools, both the ModelicaML pro-
file during the Requirement Analysis and the System Modeling phases for
representing systems and then, in the Virtual Testing phase, the OpenMod-
elica environment as the simulation platform for the execution of the system
model generated in the previous phases. The exploitation of a common lan-
guage/formalism in the different phases of the method allows to reduce the
need for transformations between different formalisms and reducing, conse-
quently, the costs of maintenance and modification of the simulation code,
benefiting, additionally, of the capabilities offered by the simulation environ-
ment based on the Modelica language. Moreover, the object-oriented features
of the approach promote the modular design and the hierarchical organization
of the models. Some extensions of the Modelica language, that allow to rep-
resent the system requirements according to the classic design model adopted
by Modelica , have been proposed. In particular, a new type of class (require-
ment class) has been introduced, to support not only the definition of a system
requirements, but also to validate the behavior of one or more components
associated to a requirement. Furthermore, for expressing the relationships be-
tween system components and requirements as well as among requirements,
another new construct (fulfill equation) has been introduced. An algorithm,
which specifies the semantic of fulfillment of requirements and their relation-
ships, has been defined as well as a mechanisms which allows their assessment
propagation and traceability has been formalized. The effectiveness of this
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process has been evaluated through a case study in the automotive domain
concerning the safety analysis of an Airbag System.

The experience gained during the definition of the above mentioned meth-
ods allowed to face the more general issue concerning the Modeling of Sys-
tem Requirements. In this context, a meta-model for modeling requirements
of cyber-physical systems as well as different approaches for integrating the
modeling of system requirements according to the Modelica model have been
defined. These approaches have the goal of providing support for the allo-
cation, traceability and verification of requirements through appropriate ex-
tensions of the Modelica language; in addition, the proposed Modelica-based
method for safety analysis has been enhanced for supporting the Fault Tree
Analysis of a system design based on the Modelica language. In particular,
it has been enriched through a Probability Model, which has been integrated
into the design of the Physical System Model by using standard Modelica
annotations, for representing the probability of Success or Failure of compo-
nents. By exploiting specific Modelica APIs, the obtained Physical System
Model can be exported in several formats so to enable its Fault Tree Anal-
ysis through different external tools. This approach allows to (re)use design
models without additional efforts, in terms of time and development costs,
to be spent in (re)defining models of physical systems, already represented in
Modelica language.

7.2 Ongoing and Future Work

The results presented in this Thesis constitute a starting point for ongoing
and future research activities.

One of these concerns how to extend RAMSAS for supporting the reliabil-
ity analysis of Systems of Systems (SoS) [17]. The current version of RAMSAS,
has been conceived for large-scale systems, i.e. systems which are constituted
by a multitude of components organized so to form a whole with clearly de-
fined boundaries. Examples of this kind of systems are military and commer-
cial aircraft, spacecraft, satellites, power plant automobiles, etc. The reliability
analysis of these systems is challenging task which, as proved by RAMSAS,
could benefit both from model-based approaches and from simulation. How-
ever, although the structure of these large-scale systems is rather complex (or
better complicated) it remains quite the same during the system life cycle;
moreover, a great part of the system components manifest a reactive behavior
and pro-activeness is limited to a narrow subset of components. Moving from
large-scale system to the System of Systems (SoS) context, these assumptions
typically do not hold [17, 73]. Indeed, a SoS (e.g. a Coast Guard Integrated
Deep-water System or an Air Traffic Management System) is constituted by
a set of interconnected, and often geographically distributed, systems which
interact for achieving common goals and are capable of autonomous and in-
dependent behaviors; moreover, the set of involved systems typically changes
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during the SoS life as new systems join the SoS and others dynamically leave
it. In this context, some aspects are currently under investigation. First of all
the definition of Reliability needs to be clearly defined. Indeed, in case of a
system (even complicated such an aircraft) is normally clear when the system
fails to perform its mission and thus the system failure modes and consequent
effects could be clearly identified (e.g. by an FMECA analysis); whereas, in
case of a SoS, the concept of failure is not so easily identifiable. Then the mod-
eling of the SoS structure, which is fundamental for performing its reliability
analysis, has to be identified. Indeed, differently to what typically happens for
a system (such as for an aircraft), the structure of a SoS changes dynamically
(new entities could take part into the SoS as well as others could leave it) so
as to its configuration; moreover, the boundaries of a SoS are often not well
identifiable as it is not clear when to consider an entities as part of the SoS
and when belonging to the environment in which the SoS is situated [109].
How to represent the organizational structure of a SoS and of the norms, rules
and protocols that govern the SoS operation and its evolution should be ad-
dressed. Indeed, SoSs are typically characterized by distributed organizational
structures (organization charts, command chains, etc.) which envisage roles,
permissions, responsibilities, rights, and so on [18, 90]. Moreover the model-
ing of dynamic and goal-driven behaviors of the entities, which are typically
characterized by autonomous and goal-oriented behaviors, as well as how to
represent both indented and dysfunctional behavior of the SoS, which could
require distributed approach, need a deeper research activity. On the light of
the above open discussion upon the reliability analysis of SoSs, if and how to
extend the RAMSAS method is under investigation [35]

Another future work includes the improvements of the proposed Modelica-
based method and its extensions towards a version RAMSAS-like, by intro-
ducing some approaches and possible patterns for representing dysfunctional
behavior and fault injection to be integrated into the development process
along with software tools able to fully support the entire development and
verification process through simulation, in order to analyze the system in
presence of faults and/or failures. It should open RAMSAS to the adoption
of different free and commercial tools which strongly rely on the Modelica
language. This could improve the tool support for the different phases of the
method as well as a more seamless and automatic transition from the concep-
tual to the simulation model of the system. As a starting point, a full version
of RAMSAS, called RAMSAS4Modelica, is currently under definition [36].
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