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Chapter 1

General overview of Turbulene

The understanding of turbulent behavior is one of the most intriguing, frustrating

and important, problem in physis. The problem of turbulene has been studied

by many of the greatest physiists and engineers of the 19
th and 20

th Centuries,

and yet we do not understand in omplete detail how or why turbulene ours,

nor an we predit turbulent behavior with any degree of reliability, even in very

simple �ow situations. First of all, there is no onsensus on what is the problem

of turbulene, neither is there an agreement on what are the goals of turbulene

researh and theories and what would onstitute its solution. Therefore lots of

formalisms are avoided, sine the methods mostly brought in from linear analysis

(suh as various deompositions, perturbation methods, et.) failed, and genuinely

nonlinear analyti methods appliable to turbulene mostly do not exist. Anymore,

the existing theoretial material is rather ompliated and extremely large in sope.

Many existing books are overloaded with tehnial details, the unprepared reader is

totally lost in the enormous oean of existing referenes. It seems that in turbulene

there are more of questions than '"solutions". For those reasons, the subjet of

turbulene remains and probably will remain as the most exiting one for the mind

of researhers in a really enormous variety of �elds. It is a fat that most �uid �ows

are turbulent, and at the same time �ow our, and in many ases represent the

dominant physis, on all marosopi sales throughout the known universe, from the

interior of biologial ells, to irulatory and respiratory systems of living reatures,

to ountless tehnologial devies and household applianes of modern soiety, to

geophysial and astrophysial phenomena inluding planetary interiors, oeans and

atmospheres and stellar physis, and �nally to galati and even supergalati sales

(in Fig. 1.1 two examples of turbulent �ows). Thus, study of turbulene is motivated

both by its inherent intelletual hallenge and by the pratial utility of a thorough

understanding of its nature.

Trying to give a de�nition (even if there is not a preise de�nition), we an say

that turbulene is a state of a physial system with many interating degrees of

freedom deviated far from equilibrium. This state looks irregular and haoti both

in time and in spae.

1.1 Fluid Turbulene - Brief history and introdution

We experiene turbulene everyday, in fat, wherever �uids are set into motion, and

the veloity is high enough, turbulene tends to develop. The boundary layers and

the wakes around and after blu� bodies suh as ars, aeroplanes and buildings are

1



General overview of Turbulene

Figure 1.1: Turbulene in terrestrial (left) and jovian atmosphere (right)

turbulent. Also the �ow and ombustion in engines, both in piston engines and

gas turbines and ombustors, are highly turbulent. Air movements in rooms are

also turbulent, at least along the walls where wall-jets are formed. Hene, when we

ompute �uid �ow it will most likely be turbulent. It is interesting to reognize the

fat that, when we take a piture of a turbulent �ow at a given time, we see the

presene of a lot of di�erent turbulent strutures of all sizes whih are atively present

during the motion. The presene of these strutures was well reognized long time

ago (XV-th entury) by L. da Vini, that termed suh phenomena �turbolenza� and

in Fig. 1.2 it an be seen the beautiful pitures of vorties observed and reprodued

by him (�gure from (11)). When we look at a �ow at two di�erent times, we an

observe that the general aspet of the �ow has not hanged appreiably, say vorties

are present all the time but the �ow in eah single point of the �uid looks di�erent.

We reognize that the gross features of the �ow are reproduible but details are not

preditable.

Turbulene beame an experimental siene sine O. Reynolds who, at the end

of XIX-th entury (5), observed and investigated experimentally the transition from

laminar to turbulent �ow. He notied that the �ow inside a pipe beomes turbulent

every time a single parameter, a ombination of the visosity oe�ient η, a har-

ateristi veloity U , and length L, would inrease. This parameter Re = UL/η is

now alled the Reynolds number that ompletely haraterizes �ow behavior in this

situation. At lower Re (Fig. 1.3(a))the �ow is regular (that is the motion is lami-

nar), but when Re inreases beyond a ertain threshold, the �ow beomes turbulent

(Fig. 1.3()). As Re inreases, the transition from a laminar to a turbulent state

ours over a range of values of Re with di�erent harateristis and depending on

the details of the experiment. In the limit Re → ∞ the turbulene is said to be in

a fully developed turbulent state. Fig. 1.3 provides the original sketh of three �ow

regimes identi�ed in the Reynolds experiments as Re is varied.

The analytial desription of turbulene was born with the Navier�Stokes (NS)

equations, whih are now almost universally believed to embody the physis of all

2



1.1 Fluid Turbulene - Brief history and introdution

Figure 1.2: L. da Vini sketh of �turbolenza�

�uid �ows, inluding turbulent ones. They are nothing but the momentum equation

based on Newton's seond law, whih relates the aeleration of a �uid partile to

the resulting volume and body fores ating on it. These equations have been

introdued by L. Euler, however, the main ontribution by C. Navier was to add a

frition foring term due to the interations between �uid layers whih move with

di�erent speed. This term results to be proportional to the visosity oe�ients η

and ξ and to the variation of speed. By de�ning the veloity �eld u(r, t) the kineti

pressure p and the density ρ, the equations desribing a �uid �ow are the ontinuity

equation to desribe the onservation of mass

∂ρ

∂t
+ (u · ∇)ρ = −ρ(∇ · u) (1.1)

the equation for the onservation of momentum

ρ
∂u

∂t
+ (u · ∇)u = −∇P + η∇2u + (η +

ξ

3
)∇(∇ · u) (1.2)

and an equation for the onservation of energy

ρT

[

∂s

∂t
+ (u · ∇)s

]

= ∇(χ∇T ) +
η

2

(

∂ui

∂xk
+
∂uk

∂xi
+

2

3
δik∇ · u

)2

+ ξ(∇ · u)2 (1.3)

where s is the entropy per mass unit, T is the temperature, and χ is the oe�ient

of thermoondution. An equation of state loses the system of �uid equations.

These equations are nonlinear and di�ult to solve. As is well known, there are

few exat solutions, and all of these have been obtained at the expense of introdu-

ing simplifying, often physially unrealisti, assumptions. Thus, little progress in

the understanding of turbulene an be obtained via analytial solutions to these

3



General overview of Turbulene

Figure 1.3: The original pitures by O. Reynolds whih show the transition to a turbulent state

of a �ow in a pipe, as the Reynolds number inreases from top to bottom

equations, and as a onsequene early desriptions of turbulene were based mainly

on experimental observations. The above equations onsiderably simplify if we on-

sider the tratable inompressible �uid, where ρ = onst., so that we obtain from

the the Navier�Stokes momentum equation

∂u

∂t
+ (u · ∇)u = −

(∇p
ρ

)

+ ν∇2u (1.4)

where the oe�ient ν = η/ρ is the kinemati visosity. The inompressibility of the

�ow translates in a ondition on the veloity �eld, namely the �eld is divergene�free,

i.e., ∇·u = 0. The non�linear term in equations represents the onvetive derivative.

Of ourse, we an add on the right hand side of this equation all external fores,

whih eventually at on the �uid parel. It is usual to desribe the NS equations

in a dimensionless form, to this purpose there an be de�ned: the veloity sale U

and the length sale L to de�ne dimensionless independent variables, namely r =

r
′
L (from whih ∇ = ∇′

/L) and t = t
′
(L/U), and dependent variables u = u

′
U

and p = p
′
U2ρ. Then, using these variables in Eq.(1.4), we obtain

∂u
′

∂t′
+ (u

′ · ∇′
)u

′
= −(∇p′) +Re−1∇′2u

′

(1.5)

The Reynolds number Re = UL/ν is evidently the only parameter of the �uid �ow.

This de�nes a Reynolds number similarity for �uid �ows, namely �uids with the

same value of the Reynolds number behaves in the same way. Looking at Eq.(1.4)

it an be realized that the Reynolds number represents a measure of the relative

4



1.1 Fluid Turbulene - Brief history and introdution

strength between the non�linear onvetive term (u · ∇)u and the visous term

ν∇2u. The higher Re, the more important the non�linear term is in the dynamis

of the �ow. Turbulene is a genuine result of the non�linear dynamis of �uid �ows.

When Re is small the motion of the elements of �uid is dominated by di�usive e�et,

while when Re is large there are the onvetive e�ets to dominate the dynamis. It

an be reognized that the e�ets have di�erent harateristi times, preisely the

onvetive time τL ∼ |(u·∇)|−1 ∼ L/U and the di�usive time τD ∼ |ν∇2|−1 ∼ L2/ν.

The Reynolds number an also be de�ned as the ratio of the two times

Re =
τd
τl
. (1.6)

From the above de�nitions of harateristi times it an be extrated the rate of

energy injeted (for mass unit), ǫL ∼ u2
L/τL ∼ u3

L/L, and the rate of dissipated

energy, ǫD ∼ u2
L/τD ∼ u2

Lν/L
2, and �nally we an note that

Re ∼ ǫL
ǫD
, (1.7)

at sale L the injetion energy rate is Re times the dissipation rate. To be dissipated,

energy must be transferred to small sale, this statement introdue the onept of

energy asade. Another important harateristi of the NS equations is that they

possess saling properties (11), this means that there exist a lass of solutions whih

are invariant under saling transformations. In partiular, in the invisid ase, the

introdution of a lenght sale ℓ, for whih the resulting saling transformations are

ℓ → λℓ
′
and u → λu

′
, leaves invariate the NS equations for any saling exponent

h (I refer the reader to the leture of (109) for more informations). When the

visid term is taken into aount, a harateristi length sale is introdued, say

the dissipative sale ℓD. From a phenomenologial point of view, this is the sale

where dissipative e�ets start to be experiened by the �ow. Of ourse, sine ν is in

general very low, we expet that ℓD is very small. At this point, if it is onsidered a

omplete separation of sales, at very large Re, between the injetion sale, L, and

the dissipative one, ℓD, and the regime is stationary, the energy injetion rate must

be balaned by the energy dissipation rate and must also be the same as the energy

transfer rate ǫ measured at any sale ℓ within the inertial range ℓD ≪ ℓ≪ L.

When the saling invariane holds, all the statistial properties of the �eld depend

on the lenght sale ℓ, the mean energy dissipation rate ǫ and the visosity ν, and

with some assumptions and some math, it an be shown that in the inertial range

E(k) ∼ ǫ2/3k−5/3 (1.8)

that represent the Kolmogorov spetrum largely observed in all experimental inves-

tigation in turbulene. The above onsideration, about the saling invariane and

the energy transfer in the inertial range, are the main results of the K41 theory

of A.N.Kolmogorov (12)�(11) and, historially, they represented a great step in the

understanding of the phenomenology of the turbulene and, as some sientists af-

�rm, perhaps the only serious result that we know about turbulene. Throughout

5



General overview of Turbulene

the 1940's there were numerous additional ontributions to the study of turbulene;

I mention only a few seleted ones here. For the most part, this deade produed a

onsolidation of earlier statistial work. Works of (16), (17), (18), (19) and (20) are

among the most often ited, with those of (21; 22) involving experiments.

In the last �fty years, new interesting insights in the theory of turbulene derive

from the point of view whih onsiders a turbulent �ow as a omplex system, a sort

of benhmark for the theory of dynamial systems. The theory of haos reeived

the fundamental impulse just through the theory of turbulene developed by Ruelle

and Takens (6) who, ritiizing the old theory of Landau and Lifshitz (7), were

able to put the numerial investigation by Lorenz (8) in a mathematial framework.

Gollub and Swinney (10) set up aurate experiments on rotating �uids on�rming

the point of view of Ruelle and Takens (6) who showed that a strange attrator in

the phase spae of the system is the best model for the birth of turbulene. This

gave a strong impulse to the investigation of the phenomenology of turbulene from

the point of view of dynamial systems (9).

To lose this setion I present a list of physial attributes of turbulene, that

for the most part summarizes the preeding disussions, and whih are essentially

always mentioned in desriptions of turbulent �ow. In partiular, a turbulent �ow

an be expeted to exhibit all of the following features:

1. disorganized, haoti, seemingly random behavior;

2. nonrepeatability (i.e., sensitivity to initial onditions);

3. extremely large range of length and time sales (but suh that the smallest

sales are still su�iently large to satisfy the ontinuum hypothesis);

4. enhaned di�usion (mixing) and dissipation (both of whih are mediated by

visosity at moleular sales);

5. three dimensionality, time dependene and rotationality (hene, potential �ow

annot be turbulent beause it is by de�nition irrotational);

6. intermitteny in both spae and time.

1.2 Plasma Turbulene

Turbulene is not only a prerogative of lassial �uids, but manifest itself also in

eletrially onduting �uids. The most natural onduting �uid is a ionized gas,

alled plasma, that is a system of harged partiles whose dynamis is dominated by

olletive e�et, i.e. eah partile feels the average eletromagneti �elds generated

by the distribution and the motion of the other partiles of the system. In other

words, �plasma� is used in physis to designate the high temperature ionized gaseous

state with harge neutrality and olletive interation between the harged partiles

and waves. By an �ionized� gas it is meant that there are signi�ant numbers of free

6



1.2 Plasma Turbulene

(unbound) eletrons and eletrially harged ions in addition to the neutral atoms

and moleules normally present in a gas.

Most of the matter that we an observe diretly is in the plasma state and the

universe abounds with plasma turbulene. Researh on plasmas is an ative si-

enti� area, motivated by energy researh, astrophysis and tehnology. In spae

physis and in astrophysis (23; 24; 25), numerous data from measurements have

been heavily analyzed and reviewed (27; 28). In nulear fusion researh, studies

of on�nement of turbulent plasmas have lead to a new era, namely that of the

international thermonulear (fusion) (14) experimental reator, as ITER. In addi-

tion, plasmas play important roles in the development of new materials with speial

industrial appliations.

The plasmas that we enounter in researh are often far from thermodynami

equilibrium: hene various dynamial behaviours and strutures are generated be-

ause of that deviation. Turbulene plays a key role in produing and de�ning

those observable strutures. Common to these turbulent systems is the presene

of an inertial range, an extent of sales through whih energy asades from the

large sales at whih the turbulene is stirred to the small sales at whih dissipa-

tive mehanisms onvert the turbulent energy into heat. Plasmas are nearly always

found to be magnetized and turbulent, and in partiular, the turbulent motions are

aompained by magneti �eld �utuations.

Turbulene in plasmas has several harateristi features. The �rst is that the

�utuation level beomes high through the instabilities driven by the inhomogeneity.

The turbulent level and spetrum are greatly in�uened by the spatial inhomogene-

ity and plasma on�guration. Inhomogeneities exist for plasma parameters (e.g.,

density and temperature) as well as for the �elds (magneti �eld and radial eletri

�eld). These inhomogeneities ouple together to drive and/or suppress instabilities

and turbulent �utuations. In partiular, the anisotropy along and perpendiular

to strong magneti �elds indues various shapes in �utuations: �utuations often

have a very long orrelation length along the magneti �eld lines and are quasi�two�

dimensional. In addition, the mobilities of eletrons and ions learly di�er. The

inhomogeneities, the anisotropy due to a strong magneti �eld, and the di�erene in

ion and eletron mobilities, all have a strong in�uene on the linear properties of the

plasma waves as well as on the turbulent transport in plasmas. Theoretial meth-

ods developed for �uid turbulene are helpful for the study of these phenomena. In

the quest to understand anomalous transports in on�ned plasmas, investigation of

turbulent �utuations has been a entral theme. In partiular, after the disovery

of high-on�nement (H) modes in tokamaks (15), it was widely reognized that the

plasma pro�les vary and that the hanges between them our as sudden transitions.

One of the keys to understanding the strutural formation and transitions in plas-

mas is to study the mutual interations among plasma inhomogeneities, eletri-�eld

strutures and �utuations.

Before presenting a more detailed desription of the plasma turbulene, it is useful

to go one step bak to brie�y desribe the theoretial approah to plasma physis.

The theoretial desription of a plasma is extremely di�ult, more spei�ally, the
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distributions and motions of the partiles generate �elds that, in turn, are respon-

sible for those distributions and motions and, onsidering the huge number of par-

tiles (N ∼ NA), this means solve exatly a set of NA equations of motion oupled

with Maxwell's equations. The last onsideration obliged physiists to �nd a good

ompromise between rigor, mathematial tratability and ommon sense, to �nally

elaborate some theoretial shemes. There are basially three levels of desription in

plasma physis: the exat mirosopi desription (or orbit theory), kineti theory,

and the marosopi or �uid desription. In a mirosopi desription, one imagines

to diret study of the partile motion, that is writing down Newton's law, F = ma,

for something like 1023 partiles and solving for all 1023 interating trajetories, that

it is still unimaginable today, even by the most advaned omputers. Nonetheless,

the mirosopi desription is useful as a formal starting point from whih to derive

soluble, pratial desriptions. In the following two subsetion, it will be desribed

in more detail the kineti and �uid plasma theories and their turbulent �impliation�,

emphasizing the role of the magnetohydrodynami approximation and turbulene.

1.2.1 Kineti plasma theory

The mirosopi theory passed to kineti theory by the appliation of statistial,

probability onepts. The kineti theory represent, probably, the best possible trade-

o� between ompleteness of information and mathematial simpliity. Sine one is

not interested in all the mirosopi partile data, one onsiders statistial ensembles

of systems. In order to desribe the properties of a plasma, it is neessary to de�ne

a distribution funtion that indiates partile number density in the phase spae

whose ordinates are the partile positions and veloities. What just said means

that all the relevant informations are ontained in the partile distribution funtion

(PDF ), fα(r,u, t), for speies α de�ned suh that fα(r,u, t)drdu = dN(r,u, t) is

the number of partiles in the element of volume dV = drdu in phase spae (r and

u represent, respetively, the position and veloity vetors that de�ne the partiles

positions in phase spae). By averaging out the mirosopi information in the

exat theory, one obtains statistial kineti equations that desribe the evolution of

partile distribution funtion in spae and time. If the ollision between partiles

annot be negleted, some suitable physial model has to be adopted (di�erent

models give rise to di�erent kineti equations, like the Boltzmann equation or the

Fokker-Plank-Landau equation), while, if the ollision an be negleted (for example

when the plasma is rari�ed), the kineti equation an be redued to a simplest

form, alled the Vlasov equation (or the ollisionless plasma kineti equation). The

nominal ondition for negleting the ollisional e�ets is that the frequeny of the

relevant physial proess(es) be muh larger than the ollision frequeny: d/dt ∼
−iω ≫ νL, in whih νL is the Lorentz ollision frequeny and ω represents whihever

of the various fundamental frequenies (e.g., ωp , plasma; kcS , ion aousti; ωc ,

gyrofrequeny; ωD , drift) are relevant for a partiular plasma appliation.

As already said, the kineti equation has to be oupled with Maxwell's equations

and this give rise to a nonlinear integro-di�erential system, that for the Vlasov
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approximation assumes the following form :

∂fα

∂t
+

∂fα

∂r
+

qα

mα
(E + u×B) · ∂fα

∂u
= 0 (1.9)

∇× E = −∂B

∂t
; ∇× B = µ0j +

1

c2

∂E

∂t

∇ · E =
ρ

ǫ0
; ∇ · B = 0

ρ =
∑

α

qαnα =
∑

α

qα

∫

fαd3u

j =
∑

α

qαnαUα =
∑

α

qα

∫

fαud3u (1.10)

The above set of equations (6-dimensional in phase spae), ompleted with the

equations for the harge and the urrent density Eq. (1.10), are the fundamental set

of equations that provide a omplete kineti desription of a plasma and desribe

phenomena in whih ollisions are not important, keeping trak of the (statistially

averaged) partile distribution funtion. Plasma waves are the most important

phenomena overed by the Vlasov�Maxwell equations. In the Vlasov model the dis-

tribution funtion f is onstant along the partile orbit in phase spae, the entropy

is onserved and, beause the Vlasov equation has no disrete partile orrelation

(Coulomb ollision) e�ets in it, it is ompletely reversible (in time) and its solu-

tions follow the ollisionless single partile orbits in the six-dimensional phase spae.

Although the above properties and onsiderations, exat solutions of the Vlasov�

Maxwell system, unfortunately, an be found only in very partiular ases. All the

kineti theories present some lak, in partiular it is still too ompliated to deal

with realisti ases and it is ompliated to diret ompare results with observation

data (partile distribution funtions are very di�ult to measure and the only exep-

tion is the ase of solar wind that permit in situ measurement). In plasma theories

some physially relevant parameters (density, �ow veloity, temperature), diretly

omparable with the observations, an be obtained from the moments of the partile

distribution funtion integrating low order powers of the veloity u times the dis-

tribution funtion f over veloity spae in the laboratory frame:
∫

d3uujf(r,u, t),

j = 0, 1, 2. The integrals are all �nite beause the distribution funtion must fall

o� su�iently rapidly with speed so that these low order, physial moments (suh

as the energy in the speies) are �nite. That is, we annot have large numbers of

partiles at arbitrarily high energy beause then the energy in the speies would be

unrealistially large or divergent. Fluid moment equations are derived by taking

veloity�spae moments of the relevant kineti equation.
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1.2.2 Fluid plasma theories

Just as the veloity moments of the distribution funtion give important marosopi

variables, so the veloity moments of the plasma kineti equation give the equations

that desribe the time evolution of these marosopi parameters. Beause these

equations are idential with the ontinuum hydrodynami equations, the theories

using the low�order moments are alled �uid theories. Fluid theories provide the

equations that determine the dynamis of the moments of the PDF , but, sine

there are an in�nite number of moments, physiian are in priniple led from a single

kineti equation to an in�nite system of oupled equations, in fat, it is important to

reognize that while eah �uid moment of the kineti equation is an exat equation,

the �uid moment equations represent a hierarhy of equations whih, without further

spei�ation, is not a omplete (losed) set of equations. The sequene must be

terminated by some reasonable proedure, so it is neessary to �nd a way to trunate

to a small number of onsistent equations, and usually this is e�eted by setting the

third veloity moment of f to zero. This is known as the losure problem that

underlies �uid model and that does not have a unique solution.

In �uid theories all information on veloity distribution is lost, but the quantities

appearing in those theories have diret physial meaning in on�guration spae and

are therefore diretly omparable with measurable physial parameters. There are

three main approahes in the �uid desription of a plasma: multi�uid models, single

�uid models and magnetohydrodynamis, but I will onentrate on the last one, thus

it will only be a brief presentation of the other two approahes.

Multi�uid models are used whenever the interation between di�erent speies

in the plasman are weak, so that eah speies evolves almost indipendently of the

others, with oupling through the eletromagneti �elds and ollision. Sine there

are at least two speies of partiles in a plasma, there are at least two sets of �uid

equations (ions and eletrons). When ollision and visosity an be negleted, the

omplete set of equation (ontinuity, eq. of motion and eq. of state) for the two��uid

model assume the form:

∂nα

∂t
+ ∇ · (nαuα) = 0 (1.11)

mαnα

[

∂uα

∂t
+ (uα · ∇)uα

]

= qαnα(E + uα × B) −∇pα (1.12)

pα = Cαnγα
α (1.13)

for speies α=i,e and supplemented by Maxwell's equations for the eletri and

magneti �elds. Charge and urrent densities are de�ned, respetevely, as σ =

niqi + neqe and j = niqiui + neqeue, while pα is the salar pressure, C is a onstant

and γα is the ratio between spei� heats. These two sets of equations provide 16

independent equations for the 16 unknowns ni, ne, pi, pe, ui, ue, E and B.

Single �uid models replae the entire set of equations for the di�erent �uids with

just one set of equation for an equivalent �uid.

Finally, Magnetohydrodynamis is a partiular regime of single �uid models,

spei�ally it is a ombination of a one-�uid (hydrodynami-type plus Lorentz fore
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e�ets) model for the plasma and the Maxwell equations for the eletromagneti

�elds. Magnetohydrodynamis (MHD, hereafter) is the name given to the non�

relativisti single �uid model of a magnetized, small gyroradius plasma. The MHD

desription is derived by adding appropriately the two��uid equations to obtain a

�one-�uid� desription and then making suitable approximations. It an be distin-

guished two level of MHD desription: ideal and resistive MHD. In the ideal MHD

desription one has to obtain density, momentum and equation of state equations

that govern the marosopi behavior of a magnetized plasma on fast time sales

where dissipative proesses are negligible and entropy is onserved. Thus, ideal

MHD proesses are isentropi. In the resistive MHD there is an extention of the

time sale beyond the eletron ollision time sale (∼ 1/νe) by adding to ideal MHD

the irreversible, dissipative e�ets due to the eletrial resistivity in the plasma.

The MHD sheme ahieves a onsiderable simpli�ation of the single��uid equa-

tions. The plasma variables, that is the total mass density of plasma ρ , the �ow

veloity of plasma u , the plasma pressure p and the urrent density j are de�ned

as follows:

ρ = mene +mini ≃ mini (1.14)

u =
meneue +miniui

ρ
≃ ui (1.15)

p = pe + pi = 2nkBT (1.16)

j = −nee(ue − ui) (1.17)

A one��uid mass density (ontinuity) equation for the plasma is obtained by mul-

tiplying the eletron and ion density equations by their respetive masses to yield

∂ρ/∂t + ∇ · ρu = 0. Multiplying the density equations by their respetive harges

(qα) and summing over speies yields the harge ontinuity equation ∂ρq/∂t+∇ · j
= 0. In MHD the plasma is presumed to be quasineutral beause we are interested

in plasma behavior on time sales long ompared to the plasma period (ω ≪ ωp)

and length sales long ompared to the Debye shielding distane (λD/δx ∼ kλD ≪
1). In the MHD model the harge ontinuity equation simpli�es to ∇ · j = 0, sine

MHD plasmas are quasineutral and have no net harge density (ρq = 0), for this

reason the Gauss' law Maxwell equation ∇ · E = ρq/ǫ0 annot be used to deter-

mine the eletri �eld in the plasma. Rather, sine a plasma is a highly polarizable

medium, in MHD the eletri �eld E is determined self�onsistently from Ohm's

law (E = j/σ − u × B), Ampere's law (∇ × B = µ0j) and the harge ontinuity

equation (∇ · j = 0).

The omplete set of �one��uid� equations (ontinuity, momentum, energy and in-

dution) reads:
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∂ρ/∂t+ ∇ · ρu = 0 (1.18)

ρ
∂u

∂t
+ (u · ∇)u = −∇P +

1

µ0
(∇× B) × B+

+ Fext +

[

ρν

(

∇2u +
1

3
∇(∇ · u

)]

(1.19)

ρ

(

∂w

∂t
+ (u · ∇)w

)

p∇ · u =

[

j2

σ
−∇ · Q − Lrad +H

]

(1.20)

∂B

∂t
= ∇× (u × B) + η∇2B (1.21)

where σ is the ondutivity of the medium, w = p/ρ(γ−1) is the internal energy, Q

is the heat �ux vetor, Fext represent the sum of external fores, while H and Lrad

are the heat soure term and the radiation loss term. The terms in square brakets

are the �non�ideal� terms.

The ontinuity equation desribes hanges in mass density due to advetion and

ompressibility by the mass �ow veloity u. The harge ontinuity equation is the

quasineutral (ρq ≃ 0) form of the general harge ontinuity equation that results

from adding equations for the harge densities of the eletron and ion speies in the

plasma. The momentum equation, whih is also known as the equation of motion,

provides the fore density balane for a �uid element that is analogous to ma = F

for a partile. The MHD Ohm's law is just the basi laboratory frame Ohm's law

E = ηj for a �uid moving with plasma mass �ow veloity u : E′ = E + u × B.

The equation of motion (1.19) and the equation of magneti di�usion (1.21) are

fundamental equations of magnetohydrodynamis. It is important to note that in

(1.21) the ratio of the �rst term to the seond term of the right-hand side (in order

of magnitude) de�ned by

|∇ × (u × B)|
|η∇2B| ≈ U0L0

η
= Rm (1.22)

is alled the magneti Reynolds number, where L0 and U0 are typial size and ve-

loity of the onsidered system. Magneti Reynolds number is equal to the ratio

of magneti di�usion time τR = µ0L
2/η to Alfvèn transit time τH = L/uA (it is

assumed that u ≈ uA = B0/
√

4πρ, the Alfvèn speed related to the large-sale L0

and mean magneti �eld B0), that is, Rm = τR/τH . When Rm ≫ 1, the magneti

�eld in a plasma hanges aording to di�usion equation. When Rm ≪ 1, it an be

shown that the lines of magneti fore are frozen in the plasma.

The usual approximations of MHD are to use the assumption of inompressible �uid

(∇·u = 0), adiabati �uid (d/dt (pρ−γ) = 0) and isothermal �uid (d/dt (p/ρ) = 0).

All the MHD desription is ertainly invalid if the frequeny is too high or the

wavelenght is too short and implies a ertain ordering of lenght an time sales in

the dynamis of the plasma. Another limitations stay in the negleting of harge

separation that, as already said, restrit the MHD equations to wavelenght λ≫ λD
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and implies that eletrons and ions move together; the last onsideration adds an-

other restrition to the time sale of MHD dynamis, T ≫ ω−1
ci , beause motions as

rapid as ylotron motions will a�et the ions di�erently from the eletrons. Again,

the assumption of salar pressure, on a ollisionless time sale, in a magneti �eld,

it is not lear beause it is not known what time and spae sales are required to

justify the assumption. Even the last onsideration, the MHD model desribes a

very wide range of phenomena in small gyroradius, magnetized plasmas, maro-

sopi plasma equilibrium and instabilities, Alfvèn waves, magneti �eld di�usion.

It is the fundamental, lowest order model used in analyzing magnetized plasmas.

1.2.2.1 Criteria for the right hoie of Plasma desription

In the last two setion I brie�y and roughly introdued the main aspet of the

kineti and MHD plasma desription and their limitations. At this point, one may

ask whih kind of plasma desriptions has to be taken into aount for desribing

various types of plasma proesses in magnetized plasmas.

The fastest, �nest sale proesses require kineti desriptions, but then over longer

time and length sales more �uidlike, marosopi models beome appropriate. In

a magnetized plasma there are many more relevant parameters, and their relative

magnitudes and onsequenes an vary from one appliation to another. MHD

depend on the assumption that the plasma is strongly ollisional , so that the time

sale of ollisions is shorter than the other harateristi times in the system, and the

partile distributions are Maxwellian. This is usually not the ase in fusion, spae

and astrophysial plasmas. When this is not the ase, or we are interested in smaller

spatial sales, it may be neessary to use a kineti model whih properly aounts for

the non-Maxwellian shape of the distribution funtion. However, beause MHD is

relatively simple and aptures many of the important properties of plasma dynamis

it is often qualitatively aurate and is almost invariably the �rst model tried.

1.2.3 Plasma instabilities and turbulene

So far, I introdued the main aspet of plasma turbulene without any detail. Now,

after the general overview on the two main desription of the plasma physis, I an

brie�y talk about how a plasma beomes unstable and turbulent and present the

main harateristi of kineti and MHD turbulene.

A plasma ould be onsidered always instable, this omes from the fat that a

plasma is a system with a enormous number of degrees of freedom. The last a�r-

mation implies that there exist a great number of ways to lost the equilibrium, so

that it is estremely easy to found some unstable degree of freedom. An instability is

a proess in whih a small perturbation in a plasma equilibrium state grows larger

in time (note that instabilities develop at di�erent rates and timesales). In a pra-

tial sense, an instability often represent the ability of a plasma to esape from a

on�guration of �elds that would otherwise ontain a single harged partile inde�-

nitely. The study of instabilities has a entral role in plasma physis. On one hand,
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the understanding of the mehanism underlying the development of instabilities is

fundamental to ontrolling them, on the other hand the observation of on�gura-

tion lasting longer than expeted learly proves that there are in nature ways to

ontrol at least the fastest instabilities. The objetive of muh plasma researh has

been dediated to devie on�gurations for the on�nement of a high-temperature

plasma where instabilities tend to deassemble the on�nement. In many of this kind

of plasma experiments an equilibrium state is never estabilished, beause the lenght

of time required to produe the plasma is already omparable with an instability

growth time. A given equilibrium may be unstable in a variety of ways, and a given

instability may be ommon to several plasma equilibria.

1.2.3.1 Kineti plasma turbulene

Kineti plasma instabilities are driven by the veloity anisotropy of plasma parti-

les residing in a temperature anisotropy, or in a bulk relative motion of a ounter

streaming plasma or a beam-plasma system. The exitations an be eletromag-

neti or eletrostati in nature and an release di�erent forms of free energy stored

in anisotropi plasmas. These instabilities are widely invoked in various �elds of

astrophysis and laboratory plasmas. Thus, the so alled magneti instabilities of

the Weibel-type an explain the generation of magneti �eld seeds and the ael-

eration of plasma partiles in di�erent astrophysial soures (e.g., ative galati

nulei, gamma-ray bursts, Galati miro quasar systems, and Crab-like supernova

remnants) where the nonthermal radiation originates, as well as the origin of the

interplanetary magneti �eld �utuations, whih are enhaned along the thresholds

of plasma instabilities in the solar wind. Furthermore, plasma beams built in ael-

erators (e.g., in fusion plasma experiments) are subjet to a variety of plasma waves

and instabilities, whih are presently widely investigated to prevent their develop-

ment in order to stabilize the plasma system. At a sale larger than the partile

mean free path, the plasma is stirred by some external mehanism, driving an as-

sortment of MHD Alfven, fast, slow, and entropy mode �utuations in the plasma.

At this driving sale, a turbulent asade develops nonlinearly to transfer the �u-

tuation energy to smaller sales. The ompressive modes beome damped as the

asade reahes sales of order or smaller than the ollisional mean free path, but the

Alfveni asade ontinues undamped down to the sale of the ion Larmor radius.

At this kineti sale, the eletromagneti �utuations may be damped ollisionlessly

by the Landau resonane with the ions. In the absene of ollisions, this proess

onserves the free energy removed from the eletromagneti �utuations that gen-

erates nonthermal struture in veloity spae of the ion distribution funtion. The

remaining eletromagneti �utuation energy ontinues to asade below the sale

of the ion Larmor radius as a kineti Alfven wave asade. Upon reahing the sale

of the eletron Larmor radius, the eletromagneti �utuations of the kineti Alfven

wave asade are ompletely damped via the Landau resonane with the eletrons;

again, a generalized energy is onserved in this proess, leading to the reation of

nonthermal struture in veloity spae of the eletrons. But the damping of the ele-
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tromagneti �utuations and onsequent generation of struture in veloity spae

does not orrespond to heating. The thermalization of the turbulent energy by ol-

lisions is ultimately ahieved thanks to a asade to small sales in veloity spae of

the partile distribution funtions (an entropy asade). The entropy asade drives

the distribution funtion struture in veloity spae to sales small enough that even

weak ollisions are su�ient to smooth out that struture towards the Maxwellian,

ausing entropy to inrease, and this is the �nal step in the onversion of the energy

of the turbulent �utuations to thermal energy of the plasma partiles. The entire

proess desribed above is one of the possible numerial model to desribe, in a

kineti generalization, the familiar asade of energy in a �uid turbulent system.

1.2.3.2 MHD plasma turbulene

A plasma �ow beomes unstable when the gradient of veloity, pressure, or mag-

neti �eld exeed a ertain treshold, whih ours when the onvetive transport of

momentum, heat, or magneti �ux is more e�ent than the orresponding di�usive

transport by visosity, thermal ondution, or resistivity. In the marosopi de-

sription of plasma dynamis, there are three main types of instabilities whih play

a fundamental role : the Kelvin�Helmholtz instability driven by a veloity shear;

the Rayleight�Taylor instability aused by the buoyany fore in a strati�ed sys-

tem; and urrent�driven MHD instabilities in a magnetized plasma, in partiular

the tearing instability. Additionally, the presene of magneti �elds, rotation, or

stable strati�ation may exert a stabilizing in�uene on a otherwise unstable �uid.

In many systems several instability mehanisms may beome ative.

Many dynamial proesses observed in plasma �uids an be attributed to the

e�et of some instability of a stationary system. After the onset of instability the

struture of the �ow is very omplex and irregular and, most importantly, the further

behaviour is imprediable. Instabilities may give rise to rather oherent dynamis

suh as the kinking of a plasma olumn, but more often, espeially at high Reynolds

number, turbulene will be generated. MHD turbulene is haraterized by nonlin-

ear interations among �utuations of the magneti �eld and �ow veloity over a

range of spatial and temporal sales. MHD turbulene ours almost inevitably in

plasmas in motion and is therefore a widespread phenomenon in astrophysis, for

instane in the solar system, where we enounter turbulent magneti �elds in the

onvetion zone and in the solar wind, and in aretion diss, where MHD turbu-

lene is responsible for the angular momentum transport. It plays an important role

in plasma heating, the transport of energeti partiles, and radiative transfer and is

ubiquitous in spae and astrophysial plasmas.

By following similar equations one may apply, and generalize, the formalism devel-

oped in hydrodinami turbulene, but in the MHD turbulene the physis is more

omplex than the �uid ase. There are two oupled vetor �elds, veloity u and

magneti B, and two dissipative parameters, visosity and resistivity. In addition,

we have mean magneti �eld B0 whih annot be transformed away. The mean

magneti �eld makes the turbulene anisotropi, further ompliating the problem.
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Exat solutions given initial and boundary onditions will not be very useful even

when they were available, this beause �eld variables are typially random both in

spae and time. However statistial averages and probability distribution funtions

are reproduible in experiments under steady state, and they shed important light

on the dynamis of turbulene. For this reason many researhers study turbulene

statistially. The idea is to use the tools of statistial physis for understanding

turbulene. The statistial desription of turbulent �ow starts by dividing the �eld

variables into mean and �utuating parts. Then there are omputed averages of var-

ious funtions of �utuating �elds. Unfortunately, only systems at equilibrium or

near equilibrium have been understood reasonably well, and a good understanding

of nonequilibrium systems is still laking. In the reent era of researh, availability

of powerful omputers and sophistiated theoretial tools have helped us understand

several aspets of MHD turbulene. Numerial simulations have provided many im-

portant data and lues for understanding the dynamis of turbulene. They have

motivated new models, and have veri�ed or rejeted existing models. In that sense,

they have beome another type of experiment. Beause of large values of dissipative

parameters, MHD turbulene requires large length and veloity sales. This make

terrestrial experiments on MHD turbulene impossible. However, astrophysial plas-

mas are typially turbulent beause of large Reynolds number, say non�linear e�ets

strongly prevails over dissipative e�ets. Taking advantage of this fat, large amount

of solar-wind in-situ data have been olleted by spaerafts. These data have been

very useful in understanding the physis of MHD turbulene. Solar wind data fa-

vors Kolmogorov's k−5/3 spetrum and also shows that MHD turbulene exhibits

intermitteny.

To lose this part of the thesis, I will show, as in the �uid ase, an exat relation-

ship in the MHD turbulene. So far, I have been disussing about the inertial range

of �uid turbulene. In this regard, a very important result on turbulene, due to

Kolmogorov (12), was the so alled �4/5�law�. Under the hypothesis of homogeneity,

isotropy, and, in the limit of in�nite Reynolds number, assuming that the turbulent

�ow has a �nite nonzero mean dissipation energy rate ǫ (11), the third-order veloity

struture funtion behaves linearly with ℓ, namely

S
(3)
ℓ = −4

5
ǫℓ (1.23)

Following a similar approah developed by Yaglom (20), Politano and Pouquet

(29), derived an exat relation, from MHD equations, for the third-order orrelator

involving Elsässer variables (30):

Y ±
ℓ = 〈[δz±ℓ ]2δz∓ℓ 〉 = −4

3
ǫ±ℓ (1.24)

Both Equations (Eq. 1.23, 1.24) might be used, as a formal de�nition of inertial

range. Sine they are exat relationships derived from Navier�Stokes and MHD

equations under usual hypotheses, they represent a kind of �zeroth-order� ondi-

tions on experimental and theoretial analysis of the inertial range properties of

turbulene.
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Chapter 2

Turbulene in Solar Wind

Analytial results are impossible in turbulene researh, apart for the 4/5�law, be-

ause of omplex nature of turbulene. Therefore, experiments and numerial sim-

ulations play very important role in turbulene researh. In �uid turbulene, engi-

neers have been able to obtain neessary information from experiments (e.g., wind

tunnels), and suessfully design omplex mahines like aeroplanes, spaeraft, et.

Unfortunately, terrestrial experiments exhibiting MHD turbulene are typially im-

possible beause of large value of resistivity and visosity of plasmas. For a typial

laboratory setup magneti Reynolds numbers result far from turbulent regime. On

the other hand, astrophysial plasmas have large length and veloity sales, and are

typially turbulent. They are a natural testbed for MHD turbulene theories. We

have been able to make large set of measurements on nearest astrophysial plasma,

the solar wind, using spaerafts. The data obtained from these measurements have

provided many interesting lues in understanding the physis of MHD turbulene.

2.1 The Solar Wind plasma laboratory

Our Sun lose mass by a ontinuous radial �ow alled Solar Wind. In the solar orona

the plasma is at very high temperature, and beause it is not gravitationally bound,

it expands (as wonderfully skethed in Fig. 2.1) into interplanetary spae in the

form of a supersoni plasma �ow that extend itself radially up to distane beyond

the planetary system until it is slowed down by the termination shok. It forms a

bubble struture that extend in the spae and it is alled heliosphere. The solar

wind plasma onsist prinipally of fully ionized atomi partiles, eletrons and ions

(the ion omponent is omposed by a 96% of hydrogen and a small ontribution of

helium and heavier nulei).

The solar wind is strutured and variable, it varies in density, speed, and tem-

perature, and in the strength and orientation of the magneti �eld embedded in its

�ow. The density of the wind dereases approximately as r−2 . The mean mag-

neti �eld is largely polar in north�south diretion, but spirals out in the equatorial

plane. Typial Sound speed (Cs ≈ kBT/mp ) is of the order of several hundred

km/s. The density �utuation δρ/ρ ≈ (u/Cs)
2 ≈ 0.01, hene solar wind an be

treated as inompressible �uid. The solar wind is also ollisionless, in fat his mean

free path is very large (for example it is about λmfp ∼ 1011 at 1 AU, i.e. of the

order of the length sale of the system itself). The ollision frequeny is then typi-

ally ν ∼ 10−5 Hz, muh smaller that the other typial frequenies. Sine ollisions

are very unlikely on the typial length sale and time sales of interest, the plasma
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Turbulene in Solar Wind

Figure 2.1: A artoon of the propagation of the Solar Wind in the interplanetary spae.

omponents are usually far from their equilibrium, exhibiting di�erent anisotropies

and suprathermal omponents. The basi physis of the solar wind is desribed by

a one��uid hydrodynami model in whih it is assumed that there is a stationary

radial �ow driven only by pressure and gravity. In view of the ollisionless harater

of the plasma, a �uid approah might appear inappropriate, but, on the large global

sales, kineti e�ets are indeed negligible.

Again, the solar wind is far from steady but arries �utuations of substantial

amplitudes. Suh �utuations are seen in all variables, namely veloity, magneti

�eld, density, and temperature. The u and B �utuations are highly orrelated at

all sales and almost undoubtedly Alfvéni. Instabilities in the solar wind driven by

sheared �ows, shoks, beams, or anisotropries give rise to a ontinous driving of the

turbulene, whih would otherwise deay following one or the other of the seletive

deay routes. Solar wind turbulene omes mainly in two forms, either with a high

veloity-magneti �eld orrelation, orresponding to outgoing Alfvèni �utuations,

or as essentially unorrelated fully developed turbulene exhibiting a Kolmogorov

spetrum. The solar wind provides an almost ideal laboratory for studying high-

Reynolds number MHD turbulene that is free to evolve unonstrained and unper-

turbed by in situ diagnostis, satellite-mounted magnetometers, probes and parti-

le detetors. Measurements performed by spaerafts represent a unique hane

to investigate a wide range of sales of low�frequeny turbulene in a magnetized

medium.

In the �rst part of this thesis work it will be treated two aspet of solar wind
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2.2 In situ plasma turbulene - The STEREO mission and the S/Waves experiment

turbulene : i) nonlinear oupling between eletron and ion dynamis as wave-

partile interation in the ontext of weak plasma turbulene, and ii) the eletro-

stati ativity at high frequenies, that an results from nonlinear saturation of the

wave�partile interation proess, as one of the physial mehanisms that replae

the energy dissipation in a ollisionless turbulent plasma. To realise those goals

it was done a sistemati study of in�situ measurements of eletri waveforms ob-

tained by the WAVES experiment on board of STEREO spaeraft. In the rest of

the hapter it will be �rst introdued the tools used for those studies, that is the

S/WAVES instruments onboard the STEREO spaerafts (Se. 2.2), then it will be

desribed the nonlinear wave�partile oupling as the generation of density �utu-

ations through a ponderomotive fore aused by the high amplitude osillation of

loalized paket of Langmuir waves (Se. 2.3), and, �nally, a sistemati ompar-

ison of observational datasets with numerial results of hybrid-Vlasov simulations

to onjeture that high�frequeny ativity in solar wind should be a onsequene of

the nonlinear saturation of the wave-partile interation proess (Se. 2.4).

2.2 In situ plasma turbulene - The STEREO mission

and the S/Waves experiment

The Solar TErrestrial RElations Observatory is a NASA mission (31; 32) that

onsist of two idential spaeraft (one ahead of Earth in its orbit, the other trailing

behind), both in helioentri orbit in the elipti plane at nearly 1 Astronomial

Unit. The main objetive of the mission is to provide the �rst�ever stereosopi

measurements to study the Sun and the nature of its oronal mass ejetions, as

skethed in Fig. 2.2.

The main goals of the mission are:

1. understand the auses and mehanisms triggering oronal mass ejetions;

2. haraterize the propagation of oronal mass ejetions through the heliosphere;

3. disover the mehanisms and sites of energeti partile aeleration in the low

orona and the interplanetary medium;

4. and develop a 3-D, time�dependent model of the magneti topology, temper-

ature, density and veloity struture of the ambient solar wind.

To realize those purposes, the STEREO observatory arries four omplementary

sienti� instruments (in Fig. 2.3an overview one satellite with the various instru-

ment):

1. the Sun-Earth Connetion Coronal and Heliospheri Investigation

(SECCHI) (34): study the 3-D evolution of CME's from birth at the Sun's

surfae through the orona and interplanetary medium to its eventual impat

at Earth;
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Turbulene in Solar Wind

Figure 2.2: Artist's illustration of the twin STEREO satellites on opposites sides of the Sun.

2. the STEREO/WAVES (S/WAVES) (35; 36): that is an interplanetary ra-

dio burst traker that traes the generation and evolution of traveling radio

disturbanes from the Sun to the orbit of Earth;

3. the In situ Measurements of PArtiles and CME Transients (IMPACT) (37;

38) : sample the 3-D distribution and provide plasma harateristis of solar

energeti partiles and the loal vetor magneti �eld;

4. the PLAsma and SupraThermal Ion Composition (PLASTIC) (39): provide

plasma harateristis of protons, alpha partiles and heavy ions. This ex-

periment will provide key diagnosti measurements of the form of mass and

harge state omposition of heavy ions and haraterize the CME plasma from

ambient oronal plasma.

To the purposes of this thesis, it was made use of data obtained by the S/WAVES

experiment. It onsists of (i) three radio reeivers (�xed, high and low frequeny

reeivers) that trak eletromagneti disturbanes through the heliosphere and (ii)

a Time Domain Sampler (TDS, hereafter) that measures in situ eletri waveforms.

S/WAVES use three mutually orthogonal wire antenna, eah one 6 meters long, with

an e�etive length of about 1 meter, to measure the eletri �eld. The TDS makes

rapid samples of waveforms and is intended primarily for the study of Langmuir

waves, waves at the plasma frequeny and the preursors of type II and III radio
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2.2 In situ plasma turbulene - The STEREO mission and the S/Waves experiment

Figure 2.3: Illustration of a spaeraft in its deployed on�guration. The SECCHI instruments

always point at the Sun, while SWAVES antennas are in the wake of the satellite.

bursts. Other wave modes, suh as ion aousti waves, an also be studied. The TDS

works like a modern digital osillosope. It samples the voltage on the S/WAVES

antennas quikly and ontinuously. When the sampled amplitude exeeds a om-

mandable threshold, a triggering system takes a snapshot with the largest part of

the signal at the enter of the time series. The TDS should aquire events in two

di�erent ways: with three orthogonal antennas monopole hannels (the measured

signal is the di�erene between the antenna potential and the spaeraft potential

that is usually onsidered onstant) as well as a pseudo�dipole hannel obtained by

taking the di�erene of two monopoles. The seleted analog signal is �rst �ltered

with a ommandable bank of low pass �lters to avoid aliasing and then digitized.

Sine the S/WAVES A/D onverter is aurately linear, arti�ial nonlinear artifats

are not introdued so that studies of nonlinear e�ets on the waveforms are possible.

The instrument is set to work primarily using two di�erent sampling rates of about

∆t = 4 µs and ∆t = 8 µs registering up to 16384 samples for eah event (in Table

2.1 are showed all the available sampling times of the TDS instrument).

In the frequeny domain, the eletri �eld waveforms over a maximum range that

goes from 15 Hz to 125 kHz, enabling, in priniple, the detetion of signatures from

below the eletron ylotron frequeny (typially 100 Hz in the solar wind) to above

the plasma frequeny (10�20 kHz).
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Sample speed (#/s) ∆t (µs) Pass band �lter (kHz) Total duration(µs)

I 250,000 4 0.1�108 66

II 125,000 8 0.1�54 131

III 31,250 31 0.1�13.5 524

IV 7812 128 0.1�3.38 2,097

Table 2.1: Table of parameters of the runs. The seond olumn is the resolution of the simulation,

third olumn the Reynolds numbers, fourth olumn reports the dissipative sale of the system and

the last olumn shows the Hall parameter.

Figure 2.4: Example of TDS eletri waveform along the three spaeraft oordinates.

The measured voltage on the three antennas, in monopole mode, is onverted

into an eletri �eld, and projeted in the spaeraft oordinates, using the set of

parameters alled w/base aps (Graz) (35), in order to take into aount the e�etive

length and diretion of the STEREO antennas. In its �nal orbit the spaeraft

oordinates (X,Y,Z) are de�ned as follows: the X�omponent is sunward along the

radial diretion, the Z�omponent is normal to the elipti plane, southward for

STEREO A and northward for STEREO B, and the Y�omponent omplete the

diret orthogonal frame(in Fig. 2.4 an example of eletri waveforms along the three

antennas in the new referene frame).

2.2.1 Plasma waves measurements with STEREO

Prinipally, the S/WAVES system was built to the purpose of understanding the

mehanism by whih eletromagneti waves, the type II and III solar bursts, are

generated: the Sun or a shok wave emits energeti eletrons whih are formed into a

beam, the beam generates Langmuir waves by a bump-on-tail instability, and these

Langmuir waves are onverted to eletromagneti waves. Additionally, a seond

objetive was to ontinue studies of the �utuating eletri �eld at frequenies of the

order of the ion ylotron frequeny, whih has been shown (40) to exert strong fores

on ions and is believed to be the major proess determining ion heating and isotropy
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2.2 In situ plasma turbulene - The STEREO mission and the S/Waves experiment

in the solar wind, and play a major role in determining the distribution funtion and

equation of state of the ions. However, as already pointed out (41), the response

of the unbiased S/WAVES antennas to density �utuations ompletely dominates

the response to eletri �elds in this important frequeny range, that means it is at

present not possible to measure eletri �elds in this frequeny and amplitude range.

In addition, we need to onsider the e�et of impating partiles; an eletri impulse

is assoiated with eah partile impating the surfae, produing an antenna shot

noise. The larger the total antenna surfae, the more impated harged partiles are

olleted inreasing the shot noise and limiting the signal-to-noise ratio and this is

the ase of STEREO. The TDS noise level in spae ondition is thus dominated by

the shot noise resulting from impating harged partile on both the antennas and

the spaeraft. It is typially about 0.1 mV. On the S/WAVES 1-meters equivalent

length antennas, this noise level enable to observe eletri �eld signals with an

amplitude larger than 0.1 mV. The eletri �eld �utuation δES assoiated to an

ion aousti-like density �utuation δn/n, by onsidering a Boltzmanian equilibrium

of the eletrons, is of the order δES ≃ 10−4 V m−1 . Suh eletri �eld �utuation

would produe a voltage δV ≃ 0.1 mV on the S/WAVES antennas. This voltage is

omparable to the level of noise, that is the eletri �eld assoiated to the ion aousti

mode is too low to be observed by S/WAVES. Instead, the density �utuations

themselves have to be observed.

2.2.1.1 Few physis of Langmuir waves : non�linear dynamis and pon-

deromotive e�et

Langmuir, or eletron�plasma, waves are waves in whih eletrons and ions osillate

out of phase. Eletrostati fores resulting from harge separation provide the restor-

ing fore, while eletrons provide inertia. In a thermal plasma, the frequeny ωL

and wave number k of this high�frequeny eletrostati wave satisfy the dispersion

relation

ωL ≈ ωp(1 + 3k2λ2
D/2) (2.1)

where the plasma frequeny ωp is given by ωp = nee
2/meǫ0, ne is the number density

of eletrons, λD = Ve/ωp is the eletron Debye length, Ve = (kBTe/me)
1/2 is the ele-

tron thermal veloity, Te is the eletron temperature, and me is the eletron mass.

Langmuir waves are found in spae plasma wherever there are eletron beams prop-

agating parallel to the magneti �eld. They are observed assoiated with eletron

beams generated by �ares, beam indued by shoks, or in the presene of magneti

depressions (also alled magneti holes). Langmuir waves are usually thought to

result from bump�on�tail instabilities indued by beams propagating in the solar

wind. Unless the phase veloity is muh greater than the eletron thermal veloity

(ωL/kL ≫ vthe
), the Langmuir wave is damped by the Landau damping (a linear

phenomenon that desribes the loal e�et (in veloity spae) of the distribution

funtion on the waves).

Study of the Langmuir wave system provides a relatively simple illustration of the
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relevant e�ets, a strong basis for study of other ollapsing and turbulent systems,

and many useful tools with whih to do so. Non�linear Langmuir waves are also

important in their own right, with numerous appliations in the laboratory and

nature, inluding ionospheri modi�ation experiments, planetary radio emissions,

relativisti�eletron�beam systems, and laser�plasma experiments. Langmuir waves

depend on the plasma density through ωp, hene density �utuations, suh as those

assoiated with ion sound waves, will a�et the high frequeny waves, ausing them

to refrat into regions of low density and high refrative index. This provides a

non�linear mehanism to ouple high�frequeny waves to ion sound waves. Suh

Figure 2.5: Regimes of monohromati, plane-wave Langmuir instabilities as funtions of kλD

and W (the ratio of Langmuir wave energy density to thermal energy density). Approximate

boundaries are as labeled. Region I: Eletrostati deay. Region II: Modulational instability.

Region III: Subsoni modulational instability. Region IV: Supersoni modulational instability.

Region V: Modi�ed deay instability.

nonlinearity (essential to Langmuir ollapse and strong turbulene) is desribed by

the Zakharov equations (42). In the framework of the Zakharov model, Langmuir

waves evolve through di�erent kinds of wave�wave instabilities (deay instabilities,

modulational instabilities) depending on the wavelength and amplitude. Fig. 2.5,

extrated from (43), summarizes the eletrostati instabilities of interest in the ase

of the non�linear evolution of a monohromati Langmuir wave. The �rst Zakharov
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2.3 Observations of Langmuir ponderomotive e�ets

equation shows how density �utuations a�et Langmuir waves. To obtain a losed

system of equations, the e�et of Langmuir waves on density �utuations is also

inluded. An intense paket of oherent Langmuir waves an produe a density de-

pression via the ponderomotive fore. This fore omes out when the osillations of

a wave indues an energy density proportional to the square of its amplitude, equiv-

alent to a pressure. When this energy density varies in spae, a fore proportional

to its gradient is exerted on the plasma. It is de�ned as

FP =
−q2

4meω2
p

∇|E|2 (2.2)

where E is the slowly varying eletri �eld amplitude in spae. The ponderomotive

e�et is an essential nonlinear ingredient for the desription of modulated, or loal-

ized, large�amplitude high�frequeny osillations of the eletri �eld. This fore is

muh stronger for eletrons than ions, owing to the inverse dependene on mass in

Eq. (2.2). Hene eletrons are expelled from the paket, setting up an ambipolar

�eld, whih then drags ions out to maintain quasineutrality. Loalized Langmuir

wave pakets with large enough amplitude an for instane dig ion avities via this

ponderomotive fore. As time progresses, the initial wave paket narrows and be-

omes more intense, i.e., it ollapses. The orresponding density well also deepens

and narrows as the ponderomotive fore beomes stronger, as shown shematially

in Fig. 2.6 (extrated from (44)). The relative density �utuation δn/n nonlinearly

generated by high frequeny osillations of the eletri �eld through this pondero-

motive fore is expeted to saturate at a level omparable to the eletri to thermal

energy ratio assoiated to the Langmuir wave:

δn/n ≃ WL = ǫ0E
2/nkBT. (2.3)

2.3 Observations of Langmuir ponderomotive e�ets

The above phenomena is known to physiists and studied sine the 70's, but spae

observational evidene were laking beause it is di�ult to simultaneously observe

eletri �eld and plasma density variations at omparable spatial sales. In the

following, I will desribe a method, developed in ollaboration with P. Henry, C.

Briand and N. Vernet�Meyer at the observatory of Meudon�Paris, that allows suh

simultaneous observations and reently published on Physis of Plasma review (45).

Using waveforms observations from the STEREO/WAVES experiment, we identi-

�ed for the �rst time signature of suh nonlinear oupling in the solar wind. To our

knowledge, this was the �rst diret quantitative study of density �utuations non-

linearly oupled to �nite amplitude Langmuir waves in spae, based on simultaneous

observations of eletri �eld and density �utuations. In Se. 2.2.1 it was brie�y

introdued that at low frequenies the response of the TDS results dominated by

density �utuations. This e�et is identi�ed observing that, from 100 Hz to few kHz,
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Figure 2.6: Shemati of a ollapsing Langmuir wave paket and its assoiated density well,

indiating the self-fousing and intensi�ation of the paket and the deepening and ontration of

the density well aused by the ponderomotive fore.

the signal reorded by the TDS is often idential on the three monopole antenna

hannels. Following (41), we reall that this is not a manifestation of waveforms

polirized along the bisetrix of the antennas, beause that diretion is related to the

spaeraft geometry and is usually di�erent from any solar wind speed or magneti

�eld diretions, but it omes from the fat that the signal results dominated by

loal density �utuations in whih the spaeraft is embedded, induing quasistati

hanges in the spaeraft harging. The origin of this loal density �utuation has to

be found in the eletrial harging of a onduting body due to the lost and olle-

tion of harged partiles as interation with the ambient plasma (46). In partiular,

its eletri potential permanently adjusts to the variations of the ambient plasma

to ensure the urrents balane. At 1 Astronomi Unit (AU) the balane is given

between the outgoing photoeletron urrent and the inoming solar wind eletron

urrent. The omplete disussion about the urrent balane, the alibration of the

antennas and the way to measure the density �utuations from the spaeraft po-

tential was left in the appendix A and also in (45). From the disussion, it emerges

that, in a quasi�stati equilibrium, the level of density �utuations, as a funtion of

the spaeraft body potential, results approximatively equal to:

δn/n ≃ −
(

e

kBTph
+

e

kBTe
+

1

1 + eΦSC

kBTe

)

δΦsc (2.4)

where Tph is the temperature of the photoeletrons esaping the spaeraft and Te

the solar wind eletron temperature. The value of Tph was evaluated by various

author (46; 47; 48; 49) in the range Tph ≃ [1−4]×104 K, while the ambient eletron
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2.3 Observations of Langmuir ponderomotive e�ets

temperature is a order of magnitude greater (Te ≃ [1 − 2] × 105 K, and this means

that density �utuations are mainly determined by the �rst term in Eq. (2.4) (details

in A). We an now express the variation of the saperaft potential in funtion of

the level of density �utuations rossing the spaeraft as :

δΦsc ≃ −
(

kBTph

e

)

δn/n. (2.5)

Following the preeding disussion about the ponderomotive e�et, we expet that,

if density �utuations an be measured in this way, then we should be able to ob-

serve a strong orrelation between the level of density �utuations and the level of

Langmuir eletri energy WL. From the alulations and the disussion about the

antennas and spaeraft alibration it omes out that S/WAVES antennas enable to

measure simultaneously (i) eletri �eld and (ii) density �utuations. The eletri

�eld is measured through the high frequeny variations of the antenna potential

ΦA, while density �utuations are measured through the low frequeny osillations

of the spaeraft potential Φsc. To verify the e�etive non�linear oupling mediated

by the ponderomotive e�et, we identi�ed among the TDS events (data spanning

from November 2006 to Deember 2009.) those that ontained (i) the signature

of Langmuir osillation and (ii) the signature of density �utuations. Langmuir

osillations were seleted by onsidering the waveforms with a loalized frequeny

peak above 5 kHz, while density �utuations were isolated by onsidering waveforms

whose low frequeny part (< 5 kHz) was idential on the three monopole antennas

(we reall that the frequeny range of detetion of density �utuations is [100 Hz �

1 kHz℄, while Langmuir waves are observed at the eletron plasma frequeny that

is typially 10�20 kHz in the solar wind at 1 AU). After the seletion of the events,

for eah one the high frequeny part of the voltage �utuations measured on the

three antennas is onverted into an eletri �eld EL, assoiated to Langmuir waves,

and projeted in the spaeraft oordinates to take into aount the e�etive length

and diretion of the STEREO antennas. The eletri energy is normalized to the

eletron kineti energy to evaluate WL in Eq. (2.3), with the density n estimated

from the Langmuir frequeny and the hoie Te ≃ 105 K. Finally, the voltage �u-

tuations observed identially on the three monopoles in the low frequeny part are

onverted into relative density �utuations δn/n via Eq. (2.5), assuming a photo-

eletron temperature Tph = 3 eV. As example, Fig. 2.7 shows a ase in whih the

Langmuir energy is large enough (WL ≃ 10−2) to generate density �utuations by

ponderomotive e�ets. As expeted from the non�linear theory, the level of density

�utuations is of the order of WL (the eletri�to�thermal energy ratio).

2.3.0.2 Langmuir ponderomotive e�ets in S/WAVES data

As said above, we hoose TDS events form November 2006 to Deember 2009, but at

the very beginning of the STEREO mission (11/2006 � 02/2007) the two satellites

were inside the Earth enviroment, in partiular they were immersed in the Earth

eletron foreshok region, a region where Langmuir waves are known to be intense,
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Figure 2.7: TDS waveform in whih Langmuir waves, plotted here in term of WL(t) (blak), and

density �utuations δn/n(t) (red) are observed.

so we separeted the treatment of data in two parts. For eah waveform in whih

both Langmuir waves and density �utuations are simultaneously observed, we on-

sider (i) the maximum density �utuation (δn/n)max during the whole waveform

event and (ii) the maximum normalized Langmuir eletri energy WL,max observed

during the same waveform event. Results (eah single point represent a single mea-

sured waveforms) are diplayed in Fig. 2.8. The �gure shows the maximum density

�utuation (δn/n)max as a funtion of the maximum normalized Langmuir eletri

energy WL,max. The blak dotted lines represent the 3σ detetion level to take in

aount the noise level.

Depending on WL, two di�erent behaviors are observed. For low energy Langmuir

waves (WL,max < 10−4), the level of density �utuations is independent on the level

of Langmuir osillations, that is the density �utuations are not a�eted by the

propagation of Langmuir waves (linear regime of Langmuir waves). At higher ener-

gies, the nonlinear evolution of Langmuir waves a�ets the density bakground until

it reahes at saturation a level of density �utuations (δn/n)max ≃ WL,max. The

blue line of Fig. 2.8 is the expeted saturation level of density �utuations fored by

Langmuir ponderomotive e�ets. The transition between the linear and non�linear

domain is observed for a normalized Langmuir eletri energy WL,max ∼ 10−4.

This result shows how simultaneous in�situ observations of eletri �eld and density

�utuations give observational evidene for non�linear oupling between Langmuir

osillations and density �utuations. Non�linear ponderomotive e�ets are at the

basis of weak and strong Langmuir turbulene. Following and developing the il-

lustrated metodology to observe ontemporaneously �nite amplitude Langmuir os-

illations and assoiated density �utuations will give new insights in non�linear

Langmuir proesses ourring in the solar wind. To lose the disussion, we justi�ed

the hoie of the photoeletron temperature Tph ≃ 3 eV. Fig. 2.9 show the same

points of Fig. 2.8, without the enviromental lassi�ation(foreshok region, free so-

lar wind), but here the red dotted lines show the level of δΦsc orresponding to

δn/n)max ≃ WL,max for di�erent values of Tph, i.e. Tph = 1, 3 and 5 eV, taking
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2.4 Eletrostati ativity in the high�frequeny range of solar wind turbulene

Figure 2.8: Maximum observed density �utuations (δn/n)max vs. maximum Langmuir energy

WL,max in the Earth eletron foreshok (blak diamonds) and in the free solar wind (red diamonds).

The blue line represents the expeted saturation level of density �utuations generated by Langmuir

ponderomotive e�ets.

into aount the 3σ noise level of the spaeraft potential. The observed level of

the spaeraft potential �utuations is onsistent with Tph = 3 ± 1 eV. This value

is onsistent with previously published values, whereas the linear slope is onsistent

with the expeted saturation level of density �utuations generated by non�linear

Langmuir evolution.

2.4 Eletrostati ativity in the high�frequeny range of

solar wind turbulene

The solar wind plasma, as already said, is usually observed in a physial state of

well developed turbulene and represents one of the best natural laboratory for the

analysis of the evolution of the turbulent energy asade, from large MHD length-

sales (low frequenies) towards short kineti wavelengths (high frequeny), in the

absene of ollisional visosity. While the system dynamis of the solar wind plasma

is well established at large wavelengths, thanks to many in situ measurements, key

aspets of the physis of turbulene in magnetized plasmas are poorly understood, in

partiular, the features of the physial evolution at sales of the order of the typial

kineti sales (ion/eletron inertial length or gyroradius) are still unlear. The

energy of very large�sale �utuations generated by the Sun is transported down to
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Figure 2.9: Flutuations of potential δΦsc,max simultaneous to Langmuir osillations of normal-

ized energies WL,max. The dotted lines show the expeted level of density �utuations generated

by Langmuir ponderomotive e�ets, assoiated to δΦsc,max via Eq. (A.10, for di�erent Tph.

small sales, into the kineti range, by a turbulent asade (54; 56) , (27; 65; 66).

In this lassial senario of magnetohydrodynami turbulene, �utuations in the

plasma are driven at some large �outer� sale and deay by interating loally in

k spae. Eddies at some sale k−1 exhange energy with eddies at nearby spatial

sales with the resulting net �ow of energy to smaller spatial sales (larger k); this

asade of energy ours over an �inertial subrange� of k�spae and it was shown

(56) to predit a power spetrum that sales as k−5/3 (Fig. 2.10). As the sales

of the �utuations reah the proton kineti range, the observed properties of the

solar wind turbulene start to hange (showing the presene of a spetral break at

sales of the order of the ion�ylotron frequeny fci, where fci=0.1 Hz at 1 AU)

(57; 55; 58; 59; 40), ions beome demagnetized and the plasma an no longer behave

as a simple �uid, thus the �uid desription breaks down and kineti representation

is needed. At these sales, the turbulent �utuations an be dissipated and heat the

solar wind (60), (61; 62) (64; 67; 68; 63), but the details of this damping proess

are not known and there are few reported measurements in this regime of k spae.

The ourrene of a nonlinear energy asade and the Kolmogorov's energy spe-

trum both depend on the existene of a dissipative proess working at small sales.

In lassial turbulene visosity provides that dissipation, but the ollisionless har-

ater of the solar wind plasma requires some physial mehanisms that provide the

neessary dissipation of energy in absene of ollisional visosity and resistivity. Un-

derstanding these mehanisms is a step of ruial importane for understanding the
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Figure 2.10: Total magneti �eld power spetral density S and the spetrum of ompressible

magneti �utuations S|| (dash-dotted line) measured by Helios 2 (up to 0.08 Hz) and by Cluster

(up to 12.5 Hz) as showed by (138). In the same �gure, the straight lines show power-law �ts

and the vertial dotted lines indiate the ion ylotron frequeny fci and the Doppler�shifted ion

inertial length fλi
(in the third hapter it will be made use of di instead of λi to represent the ion

inertial lenght).

origin and nature of the solar wind and in the problem of high�frequeny turbu-

lene in spae plasmas. For those reasons, the study of the short�wavelength (high�

frequeny) region of the solar wind turbulent asade represents a subjet of reent

ative interest in spae plasma physis. The �rst analysis of the high�frequeny

range of the energy spetra in the solar wind (69; 70) revealed a signi�ant level of

eletrostati ativity at frequenies of the order of few kHz, identi�ed as ion�aousti

�utuations propagating along the ambient magneti �eld (71). Reent observations

(59; 73; 74), foused on the analysis of the solar wind data from spaeraft, aiming

to investigate how the energy of large�sale Alfvèni �utuations an be transferred

toward short sales and eventually turned into heat, need a better desription of the

physial proesses whih allow the energy asade to make the transition between

the �uid�like turbulent behavior at large sales and kineti e�ets whih happen

at very small sales (75; 76). The presene of eletrostati ativity beyond fci has

been attributed to Kineti Alfvèn Waves (KAW) (59; 72) whih an eventually be

dissipated at frequenies higher than the eletronylotron frequeny f ≥ 100 Hz

(73). However, the piture of the energy asade is yet ontroversial, and the role

of KAW has been questioned (93; 94). Reently, many authors (77; 78; 79; 80)

have used kineti numerial simulations to reprodue the solar wind phenomenon

at short spatial lenght sale, that is, the generation of longitudinal proton�beam

veloity distributions assoiated with the propagation of eletrostati �utuations.

These simulations reprodued the temperature anisotropy in the ion distribution

funtion and indiates the generation of beams of fast ions assoiated with a strong
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Figure 2.11: An example of the wavepaket observed from S/WAVES onborad STEREO (upper

panel), along with the orresponding Fourier spetrum (lower panel). The eletri �eld here is

normalized to E0 = miuAΩci/e, mi being the ion mass, uA the loal Alfvèn speed, Ωci the loal

ion�ylotron frequeny and e the eletri harge.

eletrostati ativity in the short�sale termination of the eletri energy spetra

at frequenies higher than f > 10fci. In the following it will presented results

oming from a sistemati omparison between high�frequeny observations of ele-

tri �eld signals in the solar wind from the STEREO spaeraft with numerial

results of hybrid�Vlasov simulations (79; 80; 81). This analysis shows that the

high�frequeny spetral region, is made by wavepakets of �nite extension where

�utuations have sinusoidal, non�sinusoidal and ompletely irregular waveforms.

The systemati omparison of observational datasets with numerial results of the

hybrid�Vlasov simulations, shows lear evidenes that the observed high�frequeny

peak is onsistent with the exitation of ion�bulk eletrostati �utuations, resulting

from resonant partile trapping assoiated with veloity distributions of ions that

display marked plateaus in the viinity of the thermal speed, as a onsequene of

the nonlinear saturation of the wave�partile interation proess.

2.4.1 STEREO WAVES data

We foused on signal deteted in the range of frequenies 1 kHz ≤ f ≤ 5 kHz whih

are not dominated by loal density �utuations in the low frequeny domain (Set.2.3

and appendix A). We seleted and analyzed 3 years data from both STEREO spae-

rafts, from 01/2007 to 12/2009, by extrating more than 900 eletri wavepakets. In

Fig. 2.11 it is reported one of the loalized wavepaket of eletri ativity (top panel)

and its assoiated Fourier power spetrum (lower panel), showing the presene of

the eletri peak at some few kHz and a broad tail. A arefull analysis of the various
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2.4 Eletrostati ativity in the high�frequeny range of solar wind turbulene

Figure 2.12: The time evolution of the eletri �eld E deteted by S/WAVES for three di�erent

ases (upper panels). Middle panels report the orresponding phase spae dE/dt vs. E, while the

lower panels report the Fourier power spetra. The eletri �eld is normalized to E0 = miuAΩci/e.

signals reveals that eah wavepaket deteted by STEREO is made by a sequene

of di�erent waveforms, namely di�erent osillating behavior of modulated ampli-

tude. We an learly distinguish periods where the waveform is purely sinusoidal

and other periods where it looks periodi but remarkably non-sinusoidal. During

the remaining period the waveform is haraterized by irregular osillations, say the

amplitude varies stohastially. In Fig. 2.12 three examples of the time behavior of

the deteted eletri �eld E, along with the relative phase spae (E, dE/dt) (middle

panels) and the frequeny spetra (lower panels) are shown. Of partiular interest is

the remarkable presene of harateristi periodi non�sinusoidal wavepakets (pan-

els b in Fig. 2.12) whih are made by the exitation of seondary harmonis. These

osillations beome irregular in time and the high-frequeny part of the Fourier

spetrum inreases (panels  in Fig. 2.12).

2.4.2 Hybrid-Vlasov simulations data

To gain more insight into the origin of the high�frequeny eletri signals, the

wavepakets observed from S/WAVES have been also ompared with results of

hybrid�Vlasov numerial simulations. The ode (78), solves numerially the Vlasov
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equation for the ion speies distribution funtion f(x, u, t) (eletron being treated

as a �uid) whih in absene of ollisions and under the e�et of the eletri E and

magneti B �elds reads:

∂f

∂t
+ (u · ∇)f +

q

m

[

E+
u×B

c
) · ∇uf

]

= 0 (2.6)

(∇u being the gradient in the veloity spae). The above equation is the same as

Eq.1.9, where I removed the subsript α that denoted the speies. The Maxwell

equations are used to evolve self�onsistently the eletromagneti �elds. Numer-

ial simulations have been arried out in the 1D�3V phase spae (one dimension

in physial spae and three dimensions in veloity spae), disretized using 2048

gridpoints in the physial domain and 51 gridpoints in eah diretion in the veloity

domain. Turbulene is triggered by injeting the energy in Afvèni �utations at

low frequenies (about 10% lower than the ion�ylotron frequeny) and the system

evolution is investigated along the energy transfer towards short sales aross the

ion inertial length. Here we present results obtained using plasma β = 0.5, am-

plitude of the pump magneti �eld �utuations ∆B/B ≃ 0.5, and eletron to ion

temperature ratio Te/Ti ≃10. However, our results an last even for relatively lower

Te/Ti ≃1 (82) and for lower amplitudes of the pump �utuations 0.05 ∆B/B ≃ 0.2

(81; 83). The dispersion relation obtained from the numerial signals (Fig. 2.13)

shows two branhes of aousti type eletrostati waves. Apart for the usual ion�

aousti waves, the new branh of eletrostati waves, identi�ed as ion�bulk waves

(78; 79), present phase veloity lose to the ion thermal speed. The exitation of

these waves is due to the generation, through resonant interation of ions with ion-

ylotron waves (86), of di�usive plateaus in the longitudinal veloity distribution.

As the result of this proess, short wavelength pakets are reovered in the eletri

�eld omponent parallel to the ambient magneti �eld. The hybrid simulation re-

sults in sequenes of di�erent wavepakets of �nite duration, one of them is reported

in Fig. 2.14 along with the orresponding Fourier power spetrum. A omparison

with observations shows that they should orrespond to a ion�ylotron frequeny

of about Ωci ≃ 50÷100 Hz. Even in this ase, a areful analysis of eah wavepaket

shows the presene of signals of small duration whih looks similar to what is ob-

served through S/WAVES, as reported in Fig. 2.15. In the example reported here

the sinusoidal waveform shows a peak at a frequeny of about ω ≃ 50Ωci . A om-

parison with observations results in Ωci ≃ 60 Hz for solar wind plasma. As reported

above for real data, a non�sinusoidal periodi signal is due to two dominant harmon-

is in the Fourier power spetrum, while the irregular ase involves the enhanement

of a high�frequeny broad spetrum. From the omparison between spaeraft data

and numerial results, one noties that the amplitude of the eletri �utuations

deteted from observations is larger than that reovered in the simulations. These

di�erenes an be due to the fat that the numerial model an desribe only a

limited portion of the omplex phenomenology that drive the turbulent asade in

the real solar wind plasma. Due to omputer limitations, atual numerial simu-

lations annot desribe frequenies as high as that observed from spaerafts, and
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Figure 2.13: k − ω spetrum of the parallel eletri energy for a simulation with Te/Ti= 10. It

an be distinguished two di�erent branhes of aousti waves, the IA waves (upper branh) and

the IBk waves (lower branh). The upper dashed line represents the theoretial predition for the

ion�sound speed cs (3), while the lower dashed line represents the IBk waves phase speed.

the evolution of the eletrostati omponent of the simulated short�sale spetrum

is ruially a�eted by the numerial dissipation.

Waveforms similar to that found in the solar wind small�sale turbulene of

Fig. 2.12 and in hybrid�Vlasov simulations of Fig. 2.15 represent a property of

modulated non�linear waves. They an be obtained for example by using a simple

model obtained from a two��uids desription of plasma with an external soure of

ions. This model, whih results in a Van der Pol equation (85; 88; 87; 92), desribes

self�osillations of plasma with an amplitude that exibits spontaneous exponential

growth, resulting from a ion-beam instability, followed by a stabilization due to

wave-wave oupling nonlinear saturation. A brief explaination of the model and a

some results of the numerial integration of its equations are showed in appendix B

2.4.3 Conlusions

In onlusion, we investigated small�sale turbulene in the interplanetary spae

whih is haraterized by an high level of �utuations. Even if the available instru-

ments onboard spaerafts do not allow us to aess informations at high�frequenies

on the partile veloity distributions assoiated with these �utuations or on the spe-

i� polarization properties of �elds, a systemati omparison of the observed peaks
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Figure 2.14: An example of the wavepaket of hybrid�Vlasov numerial simulations deteted at

a given spatial point x0 (upper panel) along with the orresponding Fourier power spetrum (lower

panel).The eletri �eld is normalized to E0 = miuAΩci/e.

at few kHz with those obtained in hybrid-Vlasov numerial simulations sueeds in

identifying the small�sale wavepakets as due to ion�bulk eletrostati �utuations,

assoiated with veloity distributions of ions that display marked plateaus in the

viinity of the thermal speed. The small sale eletrostati �utuations observed in

solar wind turbulene represent one of the the way turbulent energy, asading from

large-sales, is �nally �dissipated� in a ollisionless plasma.
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Figure 2.15: The time evolution of the eletri �eld E from hybrid�Vlasov numerial simulations

for three di�erent ases (upper panels). Middle panels report the orresponding phase spae dE/dt

vs. E, while the lower panels report the Fourier power spetra. The eletri �eld is normalized to

E0 = miuAΩci/e
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Chapter 3

Magneti Reonnetion as an

element of Turbulene

In the introdution, I reported the fat that most of the Universe is in the state

of plasma that is nearly always found to be magnetized and turbulent. The exis-

tene of this magneti �elds in the presene of plasma �ows inevitably leads to the

proess of magneti reonnetion, in fat, when twisted or sheared, the megneti

�eld lines may break and reonnet rapidly, onverting magneti energy into heat,

kineti energy, and fast�partile energy. Magneti reonnetion is a proess that

ours in many astrophysial and laboratory plasmas (95; 97; 98). Systems like

the solar surfae (99), the magnetosphere (96), the solar wind (100; 102; 101), the

magnetosheath (103; 104), and laboratory plasmas (105; 106; 108) represent just

some of the lassial systems in whih magneti reonnetion ours (in Fig. 3.1 two

of the most known situation in whih magneti reonnetion takes plae in spae

plasma, solar �ares and the reonnetion in the Earth magnetoshere). Another un-

derlying ommon feature of the above systems is the presene of turbulene (109),

so a simultaneous desription of both reonnetion and turbulene is needed. In tur-

bulene, magneti reonnetion may behave in a less preditable way. Reonnetion

in turbulene is a very fasinating topi of researh, but only reently a quantitative

study of reonnetion in turbulene has been presented (120; 121). It was showed

that multiple�reonnetion events are present in turbulene and their properties

depend on the topology of the magneti �eld and the loal turbulene ondition.

Again, turbulene provides a kind of unbiased and natural loal boundary ondition

for reonnetion, produing muh faster reonnetion events than one would expet

from laminar experiments. Although the ombined e�ets of turbulene and reon-

netion are likely to be important in a variety of physial systems, the investigations

that will be to desribed in the following are arried out in the limited ontext of

inompressible MHD, for whih the turbulene problem, as well as the well�resolved

reonnetion problem, are already very demanding. First, it will be explained the

proess of reonnetion during turbulent relaxation, following in time the dynamis

of 2D MHD turbulene and haraterizing the statistial properties of the dynamial

system. After this part, it will be shown the statistial study of magneti reon-

netion events in two�dimensional turbulene omparing numerial simulations of

magnetohydrodynamis (MHD) and Hall magnetohydrodynamis (HMHD). In fat,

besides turbulene (124), another ingredient that may aelerate the proess of re-

onnetion is the Hall e�et (144; 145). In partiular, it has been proposed that

the Hall e�et in reonnetion auses a atastrophi release of magneti energy,
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Figure 3.1: Left: Solar �are image as obtained by the TRACE satellite (from apod.nasa.gov).

Right: Shematis of magneti reonnetion in the magnetoshepe (from (126))

leading to fast magneti reonnetion onset (125), with reonnetion rates faster

than the Sweet�Parker expetation. The objetive of this work was to ombine the

above ideas, namely that reonnetion is loally enhaned by both turbulene and

by the Hall e�et, investigating the statistis of magneti reonnetion in 2D Hall

magnetohydrodynami (HMHD) turbulene. Using high resolution pseudo�spetral

numerial simulations, it will be ompared the statistial properties of reonnetion

in MHD and HMHD turbulene, by inreasing the strength of the Hall e�et. In

the next setions, there will be the desription of the magneti reonnetion from a

theoretial point of view (Set. 3.1), illustrating the main ideas behind the reon-

netion proess and the basi equations, then, in Set. 3.2, the overview of the main

features of 2D MHD simulations in turbulene, the methodology and the statistial

analysis of reonnetion, establishing a link between length�sales in turbulene and

the di�usion region geometry. Then, in Sets. 3.3-3.4, it will be shown results of

a MHD simulation in time to show how muh turbulene in�uene the reonne-

tion proess and, �nally, the results oming from a omparison between the MHD

and the HMHD simulations, together with the new features produed by the Hall

physis.

3.1 The physis of magneti reonnetion

The idea of magneti reonnetion �rst originated in the attempts to understand

the heating of the solar orona and the origin of the enormous energy observed in

solar �ares in whih it appeared that energy was �rst slowly built up and stored in

the magneti �eld, and then suddenly released into thermal and kineti energy. It

was reognized (110; 111) that magneti X points an serve as loations for plasma

heating and aeleration in solar �ares. In partiular Giovanelli showed that the

hanging �eld strengths in the sunspot �elds would produe large voltages that
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were apable of aelerating harged partiles to high energies. Some years after,

Cowling (112) pointed out that, if a solar �are is due to ohmi dissipation, a urrent

sheet is needed to power it. Then, Dungey (113) showed that suh a urrent sheet

an indeed form by the ollapse of the magneti �eld near the X point and was the

�rst to introdue the onept of brokening and rejoining of the �eld lines. Some

years after the above pioneering works, Parker (115) and Sweet (114) developed an

MHD model to desribe steady�state reonnetion in a urrent sheet formed at a

null point. Their proposal was to apply the model to solar �ares, onsidering a mag-

neti �eld with an X�point produed by soures in the photosphere. They showed

that the problem was essentially a boundary layer problem, and they estimated the

rate of reonnetion from a boundary layer analysis. This analysis shows the release

of magneti energy over a period of time several orders of magnitude longer than

the observed, so the Sweet�Parker model represent a model for slow reonnetion.

In 1964, Petshek (116) developed an alternative model where the lenght of the

urrent sheet was many orders of magnitude lower than that in the Sweet�Parker

model. For this to happen, the rest of the boundary layer region should onsist of

slow shoks that ould aelerate the matter that did not pass through the di�usive

region. In this ase, the predited reonnetion rate is lose to the rate needed in

solar �are. Petshek model was the �rst model of fast reonnetion to be proposed.

Sine then, a new generation of more general uniform and non�uniform model has

been developed. During the past deades, progress in understanding the physis

of magneti reonnetion has been made using spae and astrophysial observa-

tions, theory and numerial simulations, and laboratory experiments. Spae and

astrophysial observations (96; 100; 102; 103) have provided evidene that mag-

neti reonnetion plays an important role in natural plasmas and generated strong

motivations for fundamental researh. Theory and numerial simulations provide

insights to help in breaking down the omplex reonnetion phenomena into a set of

simpler proesses and to gain improved physis understanding of eah proess, even

if, usually, breaking a problem in subsets of smaller problems gives as onsequene

further ompliations in understanding the phenomenology. Magneti fusion exper-

iments provide examples of magneti reonnetion through selforganization of their

on�gurations.

Magneti reonnetion is a proess ourring at the boundary between two mag-

netized plasmas where the frozen�in ondition for the magneti �eld breaks down,

more spei�ally in a region of plasma where the magneti �eld hanges diretion

over a �nite distane, implying the existene of a urrent sheet in this region. This

urrent sheet an beome unstable, allowing the sheared �eld lines to e�etevely an-

nihilate by ross onneting, whih release heat and aelerates the plasma to high

veloities. The above violation is desribed in the framework of Magnetohydrody-

namis introdued in the �rst hapter, that is, the plasma in magneti reonnetion

proesses is treated as a ondutive �uid and no distintion is made between the

dynamis of ions and eletrons and we will limit to the ase of ollisionless plasma.

This hoie is justi�ed by the fat that many of the enviroment in whih reon-

netion ours are plasmas where the mean�free path for binary ollision is muh
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greater than the harateristi sale�lenght of the system.

3.1.1 Magneti reonnetion : equations and the Sweet�Parker

model

A magneti �eld is viewed as emerging from and embedding in a heavy ondut-

ing plasma on two parallel surfaes separated by a substantial length. At one or

both ends the �eld lines are dragged around by a onvetive motion in the plane,

and the highly onduting but more rare�ed plasma between the planes responds

dynamially. This is usually modeled using magnetohydrodynamis or Redued

magnetohydrodynamis (RMHD). In the MHD approximation, all bulk plasma �ow

at veloity u = cE×B/B2 is due to the drift introdued by the E×B term. From

the ondition in whih there's no distintion between di�erent speies dynamis,

eletrons and ions �ow at the same speed and this gives, for the urrent, j ≪ neu.

In presene of a �nite ondutivity σ the equation that govern the magneti �eld

(the indution equation Eq. (1.21) is given by:

∂B

∂t
= ∇× (u × B) +

1

µ0σ
∇2B (3.1)

where, as said in setion 1.2.2, the ratio between the onvetive term and the di�usive

term (respetevely, �rst and seond term in the right hand side) de�ne the magneti

Reynolds number, Rm = µ0σL0U0. Reall that the eletri �eld omes from the

Ohm's law and it is equal to E = j/σ − u × B. The ondutivity σ in Eq. (3.1)

depends on the rate of ollisions, so that, in absene of the latter, σ results in�nite

and the di�usive term is zero giving the ondition of frozen�in for the magneti

�eld in an in�nitevely ondutive plasma. The mathematial formulation stay in

the redued equation for E and B:

E = −u × B (3.2)

∂B

∂t
= ∇× (u × B). (3.3)

From this ondition, the magneti �ux through a losed urve (bounding a surfae

S) does not hange, that is if the urve moves or ompress, the magneti �eld moves

or ompress with it (to illustrate this ondition we an look at Fig. 3.2). When

frozen�in ondition apply, all plasma elements and all magneti �ux ontained at a

given time in a magneti �ux tube will remain inside the same �ux tube at all later

times :
∫

S
B · dS =

∫

S
[∂B/∂t−∇× (u × B)] · dS = 0. (3.4)

During frozen�in there is a onservation of the loal topology of the magneti �eld

lines for whih two elements onneted at the same �eld line, at t = t0 line, will lie

on it also at later time though the magneti �eld lines are deformed by the plasma

�ow. In addition, the veloity of magneti �eld lines (v = E×B/B2) is equal to the

veloity of plasma elements and any omponent of the eletri �eld E|| parallel to
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3.1 The physis of magneti reonnetion

Figure 3.2: Shematis of the frozen�in ondition : the �ux through C1 at t1 equals the �ux

through C2 at t2 (image from (117))

Figure 3.3: Shematis view of 2D magneti reonnetion (image from (107))

the magneti �eld diretion must vanish. When the magneti reonnetion is going

on, in a little region of plasma, namely di�usion region, the frozen�in ondition is

violated and earlier separated magneti �elds lines, with di�erent topoligies, get

interonneted at an X�point, where they break and reonnet forming new �eld

lines with a di�werent topology from the initial ones (in Fig. 3.3 the shemati 2D

view of the proess). The hange of magneti topology and onnetivity of plasma

elements is due to the presene of a parallel eletri �eld E|| within the di�usion

region, and there is also the aeleration of plasma in form of heated reonnetion

jets due to the transformation of the magneti energy partially in kineti energy

and partially in thermal energy of the plasma. Magneti reonnetion is a 3D

problems, but the 2D steady�state desription provides a good physial insight and

it is often onsistent with the observations. In this piture (represented in Fig. 3.4),

the opposite direted magneti �eld lines get interonneted in the X�point loated

in the enter of the di�usion region (the shaded region). The line onneting all the
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Magneti Reonnetion as an element of Turbulene

Figure 3.4: Shematis diagram of 2D magneti reonnetion (image adapted from (117))

X�points in the diretion out of the reonnetion plane is the X�line. The magneti

separatries are the surfaes separating magneti �elds with di�erent topologies

and they interset in the X�line, while their projetion onto the reonnetion plane

are the magneti �eld lines onneted to the X�point. Many theoretial models

have been proposed to desribe the proess of magneti reonnetion, but I will

present the �rst one, resulting from the ollaboration between Sweet and Parker

that, though not always realisti from an observational point of view, illustrate the

main properties of magneti reonnetion.

3.1.1.1 Sweet�Parker reonnetion model

Parker and Sweet were the �rst to formulate magneti reonnetion as a loal prob-

lem in whih the in�ow of plasma was onneted with an out�ow from the di�usion

region. An example of the Sweet�Parker shematization is represented in Fig. 3.5.

Consider two oppositely direted magneti �elds, in a plasma (it is onsidered in a

steady state) with density ρ and ondutivity σ, that are arried toward the neutral

line at speed uin over a harateristi distane 2L. At the enter of the on�guration

there is a null point and also a layer of width 2δ in whih the �eld reonnets and

is expelled at speed uout. The Sweet�Parker theory predits the reonnetion rate

(uin) and establishes the basi energetis and geometry of the reonnetion region

based on the following three assumption: (i) The out�ow speed is the Alfvèn speed

uA = B/4πρ. (ii) Mass is onserved. For an inompressible �ow, uinL = uAδ. (iii)

The eletri �eld E, given by the resistive MHD form of Ohm's, is perpendiular

to the plane of the �ow and must be onstant in a steady state, i.e. it is indutive

everywhere exept near the X�point where it is primarly resistive. From the last
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3.2 Overview on 2D MHD turbulene

Figure 3.5: Shematization of the Sweet-Parker layer. In a steady state the magneti di�usion

veloity ηc/4πδ balanes the inoming reonnetion veloity uR, and the in�owing mass 4uRL

balanes the outgoing mass 4δuA.(image adapted from (118))

this statement we have:

uinB/c ∼ j/σ, (3.5)

where j ∼ cB/(4πδ) omes from the Ohm's law. Introduing the magneti di�usiv-

ity η = c2/(4πσ) we obtain an important results of the model:

δ

L
=

uin

uA
= S−1/2, (3.6)

where S is the Lundquist number that is the same as the magneti Reynold's number

Rm with the veloity taken as the Alfvèn veloity. From the energeti estimation

of the Sweet�Parker reonnetion it an be showed that the Poynting �ux (that

represent the in�ow rate of eletromagneti energy) into the layer is of the same order

as both kineti energy �ux out of the layer and the Ohmi dissipation rate inside the

layer, so, roughly speaking, during reonnetion magneti energy is onverted half

to plasma kineti energy and half to thermal energy. Problems omes out when the

expeted reonnetion rate is ompared with real astrophysial rate of reonnetions.

Most astrophysial systems have very large S, while in the model, beause the size

of the reonnetion region is equal to the whole size of the di�usion region and all

the plasma must go through the di�usion region to be aelerated, reonnetion is

quite slow (orresponding to low S) and the reonnetion rate is often not realisti.

3.2 Overview on 2D MHD turbulene

Reognizing that reonnetion is an ongoing and statistial aspet of a turbulent

medium, and with modern omputers having the resoures to study these e�ets,

Servidio et al. (120; 121) introdued a diret quantitative study of the reonnetion

that ours in turbulene. The approah was to simulate 2D MHD turbulene

in a parameter regime in whih there are many magneti islands with the goal

45



Magneti Reonnetion as an element of Turbulene

of identifying the basi physial priniples at work in the turbulene�reonnetion

dynamial system. From these onlusions started this reserh works in the ontext

of reonnetion in turbulene. In the following, it will be explained the main aspet

of the 2D MHD simulated dynamial system, how to identify loal reonnetion

in turbulene with a step�by�step analysis and show the link between magneti

reonnetion and turbulene. First of all, it is neessary to introdue the equations

of the 2D inompressible MHD. It was hosen a uniform density, ρ = 1, and the set

of equations, that ould be written in terms of the magneti potential a(x, y) and

the stream funtion ψ(x, y), read:

∂ω

∂t
= −(u · ∇)ω + (b · ∇)j +R−1

ν ∇2ω (3.7)

∂a

∂t
= (u · ∇)a+R−1

µ ∇2a (3.8)

where the magneti �eld is b = ∇a × ẑ, the veloity u = ∇ψ × ẑ, the urrent

density j = ∇2a, and the vortiity ω = ∇2ψ. Eqs. (3.7-3.8) are written in Alfvèn

units (124) with lengths saled to L0 (a typial large sale length suh that the

box size is set to 2πL0). Veloities and magneti �elds are normalized to the root

mean square Alfvèn speed uA and time is saled to L0/uA. Rµ and Rν are the

magneti and kineti Reynolds numbers, respetively (at sale L0). Eqs. (3.7-3.8)

are solved in a periodi Cartesian geometry using a well tested dealiades (2/3 rule)

pseudospetral ode (127). It was employed a standard Laplaian dissipation term

with onstant dissipation oe�ients. The latter are hosen to ahieve both high

Reynolds numbers and to ensure adequate spatial resolution. A detailed disussion

of these issues has been given by Wan et al. (129). It will be reported on runs with

resolution of 40962 with Reynolds numbers Rν = Rµ = 1700 evolved using a time

integration of the seond order Runge-Kutta in double preision. Energy, initially,

is onentrated in the shell with 4 ≤ k ≤ 10 (the wavenumber k is in unit of 1/L0)

with mean value E = (1/2)〈|u2| + |b2|〉 ≃ 1 (< ... > means spatial average), and

we hoose the same initial value for kineti and magneti energy. The statistial

analysis was performed at the time in whih the turbulene is fully developed, that

is the state of the system at whih the mean square urrent density 〈j2〉 is very near
to its peak value. Computing the omnidiretional power spetra, sine turbulene

is homogeneous and isotropi, it an be seen in (Fig. 3.6) that appears of a broad

inertial range, typial of turbulene. When turbulene is fully developed, oherent

strutures appear and they an be identi�ed as magneti islands (or vorties). A

typial omplex pattern of 2D MHD turbulene is shown in Fig. 3.7 where it is

represented a ontour plot of the urrent j, together with the in�plane magneti

�eld (line ontour of a). As it an be seen, the urrent density j beomes very high

in narrow layers between islands. The urrent results bursty in spae (see Fig. 3.8

that represent a zoom into the turbulent �eld) and this is related to the intermittent

nature of the magneti �eld (130; 131) and an be interpreted as a onsequene of

fast and loal relaxation proesses (119). Both the magneti and veloity �elds in
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3.2 Overview on 2D MHD turbulene

Figure 3.6: Power spetra of magneti �ed.

Figure 3.7: Shaded ontour of the urrent jz togheter with the line ontour of the magneti

potential a.
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Magneti Reonnetion as an element of Turbulene

Figure 3.8: Current density pro�le jz in a sub-region of the simulation box. The magneti �ux

a is also represented as a line ontour. As expeted in 2D turbulene, strong and narrow peaks of

urrent density are present between magneti islands.

MHD show a strong tendeny to generate inreasing levels of phase oherene at

smaller sales (128). Between these interating islands the perpendiular (out-of-

plane) omponent of the urrent density jz beomes very high, as it an be seen in

Fig. 3.9 and its probability distribution funtion (PDF) show enhaned tails. The

magneti strutures that haraterize the turbulent pattern interat non�linearly,

merge, strath, onnet, attrat and repulse eah other. Reonnetion is a major

elements of this omplex interation.

3.2.1 Loal reonnetion in turbulene

To understand reonnetion in 2D turbulene, we need to examine the topography

of a(x, y) and the reonnetion rates in detail. In partiular we need to identify the

neutral points. To this end we examine the Hessian matrix with the seond�order

partial derivatives of the potential a de�ned as :

Hi,j(x) =
∂2a

∂xi∂xj
. (3.9)

At eah neutral point, i.e. where∇a = 0, we ompute the eigenvalues ofHa
i,j . If both

eigenvalues are positive (negative), the point is a loal minimum (maximum) of a

(an O�point). If the eigenvalues are of mixed sign, it is a saddle point (an X�point).
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3.2 Overview on 2D MHD turbulene

Figure 3.9: PDF of jz, normalized to its own rms value. The longer tails present are the signature

of intense small-sale ativity, due to the intermittent nature of the magneti �eld.

Beause of the omplex topology of turbulene, ritial points an be very lose to

eah other, they are usually not loated on the verties of a hosen omputational

grid. This a�ets the preision of the interpolation tehnique, produing false ritial

points. To avoid this inonveniene we make use of a Fourier zero-padding and

interpolation tehnique. See Refs. (120; 121) for more details on this analysis. The

step�by�step proedure ould be summarized as follow:

1. Identify ritial points (∇a = 0) at x∗.

2. Compute the Hessian matrix at x∗.

3. Compute eigenvalues λ1 and λ2 of Ha
i,j(x

∗), with λ1 > λ2.

4. Classify the ritial points as maximum (both λi < 0, minimum (both λi > 0

and X�points (λ1λ2 < 0).

5. Compute eigenvetors at eah X�point. The assoiated unit eigenvetors are

ês and êl, where oordinate s is assoiated with the minimum thikness δ of

the urrent sheet, while l with the elongation ℓ. It is important to note that

the loal geometry of the di�usion region near eah X�point is related to the
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Magneti Reonnetion as an element of Turbulene

Figure 3.10: Line-ontours of of the magneti potential a in a sub-region of the simulation box.

The position of the ritial points is reported as well: O-points (blue stars for the maxima and

open red diamonds for the minima) and X-points (blak ×). Magneti reonnetion loally ours

at eah X-point.

Hessian eigenvalues, in partiular

λ1 =
∂2a

∂s2
, (3.10)

λ2 =
∂2a

∂l2
. (3.11)

In Fig. 3.10 an example of a magneti potential landsape together with its ritial

points, obtained with the above proedure, is reported for a subregion of the simu-

lation box. From a saling analysis of the Eqs. for (3.10�3.11), the aspet ratio of

the di�usion region an be well approximated by

ℓ

δ
≃
√

λR where λR = |λmax

λmin
|. (3.12)

One we obtained the position of all the ritial points, a preise way to measure the

reonnetion rate of two islands is to ompute the eletri �eld at the X�point. This

is related to the fat that the magneti �ux in a losed 2D island is omputed as

the integrated magneti �eld normal to any ontour onneting the entral O�point

with any other spei�ed point. Choosing that point to be an X�point bounding the

island, we �nd that the �ux in the island is just a(O − point)a(X − point) (132).

Flux is always lost at the O�point in a dissipative system, so the time rate of hange

in the �ux due to ativity at the X�point is

∂a

∂t
= −E× = (R−1

µ j)×, (3.13)
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3.2 Overview on 2D MHD turbulene

where E× and j× represent, respetively, the eletri �eld and the urrent measured

at the X�point. The expression for the eletri �eld omes from the Ohm's law,

E = −u×b+R−1
µ j, from whih we take the z omponent (note that at the X�point

the omponent (u×b)z is smaller ompared with the urrent omponent). The dis-

tribution of the evaluated reonnetion rates PDF(|E×|) is shown in Fig. 3.11 and

it an be seen that it is broad and peaked around zero. The mean value of the

distribution is ≃ 0.05, but there are strong variation from this value, that is reon-

netion rates are found in the range |E×| ∈ [10−6, 0.32]. The typial reonnetion

Figure 3.11: Probability distribution funtion of reonnetion rates in turbulene (lin-log sale).

Vertial dotted line represents the mean value of the distribution.

rate in turbulene is found to be far higher than what is expeted based on a simple

global appliation of the Sweet�Parker rate E× ∼ R
−1/2
µ . In the desription of the

Sweet�Parker model, I show that the rate of reonnetion (I reall that it onsider

the system is in a steady�state) depends on the aspet ratio (Eq. (3.6), de�ned in

our ase by λR, so it satisfy the saling

E× ∼ ℓ

δ
∼
√

λR. (3.14)

This trend an be viewed in Fig. 3.12 that is a satter plot of the reonnetion rates

against the aspet ratio λR. This suggest that loally the reonnetion proesses

depend on the geometry and that therefore are in a quasi steady�state regime.

Further details about this analysis on (121).
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Magneti Reonnetion as an element of Turbulene

Figure 3.12: The relation between the reonnetion rate and the geometry of the reonnetion

region. The presene of a power-law �t (blak solid line) demonstrates that there is a relation

between the reonnetion rate and the geometry of the di�usion region.

3.2.2 The link between magneti reonnetion and turbulene

To estabilish a link between reonnetion and 2D MHD turbulene properties it is

neessary to take a loser look at the reonnetion sites. Beause of the omplexity

of the geometry we foused only on the X�lines with higher reonnetion rates.

We needed to �nd a methodology to quantitatively haraterize every reonnetion

region and extrapolate important information, inluding δ and ℓ. Sine we know

the ratio of the eigenvalues (λR) obtained from the Hessian matrix analysis, the

problem redues to �nd just one of these lengths, suh as the urrent sheet thikness

δ. The eigenvetors of the Hessian matrix, omputed using the above summarized

proedure, identify the diretions assoiated with in�ow (s) and out�ow (l) regions.

One we ompute these eigenvetors, it is possible to onstrut a system of referene

for eah reonnetion region, given by the unit vetors {ês, êl} and then evaluate

the pro�les of δ and for the magneti �eld using a �tting proedure. For eah X-

point the �t has been optimized by an iteration proedure in order to minimize

the error of the interpolation. In Fig. 3.13(a) an example of the urrent density

pro�le along the s�diretion is shown. A onsequene of the asymmetri nature of

turbulent reonnetion implies that in most of the ases the urrent density has

a peak not entered preisely on the X-point. One we have the new referene

frame, we all bt(s) and bn(s) the tangential and normal omponent of the magneti

�eld, respetively, obtained projeting the inplane magneti �eld along the diretion

de�ned by the eigenvetors:

bt = êl · b
bn = ês · b. (3.15)
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3.2 Overview on 2D MHD turbulene

Figure 3.13: Pro�les of the urrent density (a) in the viinity of a X-point. The X-point is loated

at s=0. In the panel (b) the tangential (bt, blak) and the normal (bn, red) omponents of the

magneti �eld are shown. Horizontal dashed lines represent zero values.

Figure 3.14: (a) histograms of thiknesses (δ, grey bars) and elongations (ℓ, blue bars). (b) the

magneti �eld autoorrelation funtion (solid blak line) is represented. The arrows (left to right)

represent, respetively, dissipation sale λdiss, Taylor mirosale λT , and orrelation length λC .

Vertial lines are average values < δ > (dashed grey) and < ℓ > (blue solid).

and an example is reported in Fig. 3.13(b). Note that a pile up of the magneti

�eld, in the upstream region of the reonnetion event, is observed (133). Note

that, the proes of reonnetion in turbulene is often asymmetri (125), so we

de�ne δ1 and δ2 the left and right part of the urrent thikness δ (δ = δ1 + δ2)

and two upstream magneti �eld b1 and b2 (suppriming the subsript t). Then,

using the iterating proedure we alulate the lenghts of the di�usion region and

the upstream tangential magneti �eld. One obtained, for eah strong reonnetion

event, the dimension of the di�usion region, we evaluate the PDFs of both δ and

ℓ, the latter from Eq. (3.14, that are reported in Fig. 3.14(a), showing that they

are well separated. To estabilish a link between reonnetion geometry and the

statistial properties of turbulene, we omputed the auto�orrelation funtion of

the magneti �eld. First, the orrelation lenght, that represent a measure of the size
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of the energy ontaining islands, is de�ned as

λC =

∫ ∗

0
C(r)dr (3.16)

where the upper limit is unimportant if the eddies are unorrelated and the orre-

lation lenght, C(r), is expressed as

C(r) =
〈b(x+ r) · b(x)〉

〈b2〉 . (3.17)

In the above equation, r represent the diretion of arbitrary displaement for

isotropi turbulene in the plane. The auto�orrelation funtion is illustrated in

Fig. 3.14(b) as well as < δ > and < ℓ > (reported as vertial lines for omparison).

In the plot, indiated by arrows, are also present the dissipation lenght, at whih

turbulene is ritially damped, is de�ned as λdiss = R
−1/2
µ 〈ω2 + j2〉−1/4, while

the Taylor miro�sale, the ratio of mean square �utuations to a measure of the

mean square spatial derivatives of �utuations, is λT =
√

〈|b2|〉
〈j2〉

. From the �gure it

appears that the average elongation ℓ is strongly related to teh orrelation lenght,

where the struture funtion �attens, or, analogously, where C(r → 0. We found

that the values of di�usion layer thikness δ are distributed in the range between the

Taylor sale and the dissipation sale, while the length ℓ sales with λC . The main

features of this ensemble of reonneting events, inluding the key length sales, are

evidently ontrolled by the statistial properties of turbulene, setting the range of

values of length and thikness of the di�usion regions aording to the orrelation

length and the dissipation sale.

3.3 Time behavior of reonnetion in turbulene

In the previous setions I examined the statistis of magneti reonnetion in turbu-

lene, at a given time t∗ showing that turbulene is a main ingredient of the magneti

reonnetion proess. One may ask how the omplex pattern of reonnetion evolves

in time, during the deaying evolution of 2-D MHD turbulene. In the �rst part of

this setion, I will answer the above question, showing results from simulation in

turbulene for longer times. One showed these results, I will present in Set 3.4 a

statistially inspetion of the role of the Hall e�et on the proess of reonnetion

in turbulene.

In analogy with simulations introdued in the previous setion, we used a resolution

of 40962 mesh points, impose random (Gaussian) �utuations, for both veloity and

magneti �elds, in the range 4 < k < 10, and hoose as the �nal time of the simula-

tion t = 3.0. Again, the peak of non�linear ativity is reahed at t∗ = 0.5 and all the

feature desribed before are observed. From a marosopi point of view, during

the relaxation proess, magneti islands reonnet, merge, repel, and the system

hanges its magneti topology. In Fig. 3.15 the urrent density is shown for two

di�erent times of the simulation. The line�ontours of the potential and the posi-

tion of the X�points are superposed on the same �gure. As it an be immediately
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Figure 3.15: Shaded ontour of the urrent density j at di�erent times of the simulations, t = 0.5

(left) and t = 3.0 (right). Lines ontour represent the magneti potential a, while blak rosses

indiate the positions of the reonnetion events.

notied, the urrent sheets redue both in number and intensity at t = 3.0, where

the turbulent pattern is haraterized essentially by bigger islands. As an example,

the number of reonnetion sites at t = 0.5 is 133, reduing to 114 at the end of the

simulation. This proess will eventually ontinue in time until only few X�points

survive to the turbulent evolution. Note that is di�ult to explore this �nal stage of

the relaxation, sine it may our after thousands of nonlinear times (123). In terms

of the reonnetion rate, the time behaviour show that these rates are higher when

the turbulene ativity reah the maximum. This statement results evident looking

at Fig. 3.16 where PDFs of reonnetion rates (properly normalized to δbs(t)
2) at

di�erent instants of the simulation are ompared, namely at the beginning (t = 0.0),

at the peak of non�linear ativity (t = 0.5), at an intermediate time (t = 1.5) and at

the end of the simulation (t = 3.0). This further evidene that fully developed tur-

bulene and fast reonnetion events may strongly be related in plasma dynamis.

In the preeding setion, it was found that the strongest reonnetion rates depend

on the loal geometry of the di�usion region, more preisely the reonnetion rate

sales with the aspet ratio
√

λR = ℓ/δ. In Fig. 3.17 it is shown the same satter

plot at di�erent times. At the beginning of the simulation there is no lear saling,

that is related to the fat that initial onditions are Gaussian and there's not o-

hereny in the magneti �eld. When the peak of ativity is reahed (t > 0.4) the

expetation given by Eq. (3.14) is reovered. At later times, the fastest reonnetion

events vanish, but the aspet relation is still valid.
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Figure 3.16: Time evolution of the PDF of |E×|, for t = 0.0 (blak stars), t = 0.5 (red rombus),

t = 1.5 (blue squares) and t = 3.0 (green triangles).

Figure 3.17: Relation between the reonnetion rates |E×| and the geometry of the reonnetion

region λR, for di�erent times of the simulation. After the peak of non�linear ativity is reahed,

the saling (solid line) appears.
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3.4 The Hall e�et in the reonnetion proess in turbu-

lene

As antiipated in the introdution of the hapter, another important ingredient in

the proess of magneti reonnetion is the Hall e�et. The introdution of the

latter in the equations take us in the ontext of Hall MHD (HMHD hereafter), an

extension of the standard MHD where the ion inertia is retained in Ohm's law. In

fat, the prinipal points of distintion between MHD and HMHD lies in the Ohm's

law that, with the introdution of the Hall terms, reads :

E = −u × b + ηj − (j × b)

nee
(3.18)

where ne is the eletron density and e is the eletri harge. The last term in the

above equation is attributed to the Hall urrent and annot exist unless the j × b

fore exists. The Hall e�et beomes relevant when we intend to desribe the plasma

dynamis up to length sales shorter than the ion inertial length di (di = c/ωpi,

where c is the speed of light and ωpi is the ion plasma frequeny) and time sales

of the order, or shorter, than the ion ylotron period ω−1
ci . In other words, for

large sale phenomena this term is negligible and we reover the standard MHD

equations. It is one of the most important manifestations of the veloity di�erene

between eletrons and ions when kineti e�ets are not taken into aount. In the

HMHD regime we have �eld-freezing of the magneti �eld to the eletron �ow, not

to the whole bulk veloity �ow and, in pratial terms, this means that eletron

motion an be pareled out from the aggregate motion or simpli�ed one��uid�type

motion of standard MHD. Generally, the Hall e�et is though to be fundamental

for astrophysial plasmas, sine it modi�es small sale turbulent ativity, produing

a departure from MHD preditions (134; 135; 136; 137; 93; 138) and, when di/L0

is large enough, hanges in the deay rate of the turbulene at moderate Reynolds

number (139).. The importane of the Hall e�et in astrophysis has been pointed

out to understand, for example, the presene of instabilities in protostellar disks

(140), the magneti �eld evolution in neutron star rusts (141), impulsive magneti

reonnetion (142). In the past years, the role of the ion skin depth on reonnetion

has been matter of several numerial investigations (143; 145; 146). In the following,

I will introdue the HMHD inompressible equations and present a global overview

of the turbulene properties for all the simulations performed.

3.4.1 Overview of numerial simulations in HMHD turbulene

Analogously to MHD, the equations of inompressible Hall MHD an be written

in dimensionless form. In 2.5D (2 dimensions in the physial spae for three�

dimensional omponents) the equations read:

∂u

∂t
= −(u · ∇)u −∇P + j × b +R−1

ν ∇2u, (3.19)
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Run Eqs. resolution Rµ(Rν) λdiss ǫH(k−1
H )

I MHD 40962 1700 1/196 0

II HMHD 40962 1700 1/195 1/400

III HMHD 40962 1700 1/188 1/100

IV HMHD 40962 1700 1/179 1/50

Table 3.1: Table of parameters of the runs. The seond olumn is the resolution of the simulation,

third olumn the Reynolds numbers, fourth olumn reports the dissipative sale of the system and

the last olumn shows the Hall parameter.

∂b

∂t
= ∇× [(u − ǫHj) × b] +R−1

µ ∇2b. (3.20)

The �elds an be deomposed in perpendiular (in�plane) and parallel (out�of�

plane, along z) omponents, namely b = (b⊥, bz) and u = (u⊥, uz). For the

magneti �eld b⊥ = ∇a × ẑ, where a is the magneti potential. The oe�ient

ǫH = di/L0 is the Hall parameter and is proportional to the amount of dispersive

e�ets present in the system. Note that, for ǫH → 0, Eqs. (3.19)-(3.20) redue to

MHD (see Eqs.(3.7)�(3.8)). Generally speaking the Hall term beomes a signi�-

ant fator at wavenumbers k suh that kL0ǫH = kdi ∼ 1. The above equations

are solved with the same algorithm used for the MHD ase and same initial on-

ditions. To remark, I used double periodi (x, y) Cartesian geometry, with a box

size of 2πL0, using 40962 grid points, and with Rµ = Rν=1700. I �x the above

parameters for all the simulations reported here and we vary ǫH , going from the

MHD ase (ǫH = 0) to the Hall ase, hoosing ǫH = 1/400, 1/100, 1/50. For all the

runs, the energy is initially onentrated in the shells with 4 ≤ k ≤ 10 (wavenum-

bers k in units of 1/L0) with mean value E=(1/2)〈|v|2 + |b|2〉 ≃ 1, where 〈. . . 〉
indiates a volume average. Using the above set of parameters, the dissipation

wavenumber is kdiss = R
1/2
µ 〈j2〉1/4 ∼ 200. For the HMHD simulations, the Hall

wavenumbers are kH = ǫ−1
H = 400, 100, 50. The maximum resolved wavenumber

in all the simulations (allowed by the simulation resolution and the 2/3 rule) is

kmax = 4096/3 ∼ 1365. A summary of the simulations is reported in Table 3.1,

where λdiss = 1/kdiss = 1/[R
1/2
µ 〈j2〉1/4] is the dissipation wavenumber.

Again, I performed the analysis at the time of the peak of non�linear ativity that

is the same for all the runs performed, namely t ∼ 0.5τA. One way to quantify the

di�erenes between MHD and HMHD turbulene is to ompute the power spetra

for b⊥ and u⊥ (in-plane omponents), the former is plotted in Fig. 3.18. We remark

that the ase with kH = 400 (Run II) shows no appreiable di�erene from MHD

(Run I). This may be due to the fat that the Hall e�et beomes signi�ant in this

ase in the dissipation range, and not in the inertial range, sine in this simulation,

kdiss < kH (see Table I). In ontrast, Runs III and IV learly di�er from the MHD

ase, for wavenumbers > kH . This di�erene in the power spetra has been already

notied in previous works, and is generally attributed to the dispersive e�ets. These

e�ets an break, in fat, the Alfvéni orrelations that are typial of MHD (134; 94).
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One again, when the turbulene is fully developed, oherent strutures, in the

Figure 3.18: Power spetra of the �perpendiular� magneti energy, for all the Runs reported in

Table I. The vertial lines represent the Hall k-vetor for Run II, III and IV, that is, respetively,

kH = 400 (red dot-dashed), kH = 100 (blue dot-dashed) and kH = 50 (green dot-dashed).

form of magneti interating islands, appear. Between these interating islands the

perpendiular (out�of�plane) omponent of the urrent density jz beomes very

high, as it an be seen from Fig. 3.19, where a omparison between MHD and

HMHD is shown. Another interesting feature seems to be that the urrent sheets are

shorter and thinner. This is reminisent of the systemati shortening and thinning

of urrent sheets seen in isolated laminar reonnetion simulations (143). As I said

before, the urrent density is an important quantity sine it aptures many of the

small sale features in both turbulene and in reonnetion. I show in Fig. 3.20

the PDF of jz (out of plane omponent), for the runs in Table 3.1. The ore of the

distributions is very similar for all the simulations, but, in the HMHD ases, the tails

are more pronouned. This implies that the Hall e�et ause an enhanement of the

small sale ativity, that is responsible for inreasing intermitteny in the system.

I now examine the quantitative onnetion between enhaned intermitteny and

reonnetion rates.

3.4.2 Reonnetion in turbulene: Hall MHD vs. MHD

As reported in Fig. 3.21, the magneti potential a reveals a olletion of magneti

islands with di�erent size and shape. Very similar patterns are observed for all

the runs. Note that the potential a is very similar in both ases sine this �eld is

generally large-sale and very smooth. To apture the in�uene of the Hall physis,

one should look at the loal struture of the urrent, shown in Fig. 3.22(left). When

Hall e�et is signi�ant, a lear bifuration of urrent sheets is observed.
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Figure 3.19: Current density pro�le jz in a sub-region of the simulation box, for both MHD (left)

and HMHD with ǫH = 1/50 (right). The magneti �ux a is also represented as a line ontour.

As expeted in 2D turbulene, strong and narrow peaks of urrent density are present between

magneti islands. As an be seen in Fig. 3.20, urrent density are higher in HMHD.

Figure 3.20: PDF of jz, normalized to its own rms value, for ǫH = 0 (blak), 1/400 (red), 1/100

(blue), and 1/50 (green). The longer tails present in Run IV may be the signature of more intense

small-sale ativity, due to stronger dispersive e�ets.
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Figure 3.21: Line-ontours of of the magneti potential a for Run I (left) and Run IV (right),

in a sub-region of the simulation box. The position of the ritial points is reported as well: O-

points (green stars for the maxima and open red diamonds for the minima) and X-points (blak

×). Magneti reonnetion loally ours at eah X-point.

Figure 3.22: (Left) A ontour plot of the out-of-plane omponent of the urrent jz in a sub-

region of the simulation box for Run IV. It is learly visible the bifuration of the sheet and the

typial struture of a reonnetion region. (Right) A ontour plot of the out�of�plane omponent

of the magneti �eld bz, in the same sub-region of the simulation box. The magneti �ux a is also

represented as a line ontour. A quadrupole in the magneti �eld an be identi�ed, revealing the

presene of Hall ativity.
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To further investigate the role of the Hall e�et on the proess of reonnetion

in turbulene, I analyzed the out-of-plane magneti �eld bz around some X-points.

As expeted from theory(147), an out-of-plane magneti quadrupole forms nearby

reonnetion sites; this is shown in Fig. 3.22(right). The magneti �eld shows four

distintive polarities, organized with respet to the X�point. This e�et is thought

to be a strong signature of Hall ativity during reonnetion in astrophysial plas-

mas (103), and in laboratory plasmas (148; 149) and here we on�rm that this is

a lear signature of Hall e�et in turbulent reonnetion. In order to understand

quantitatively the Hall e�ets on reonnetion, we analyze the magneti �eld topol-

ogy and reonnetion rates. The metodoligy of analysis is the same presented in

Set. 3.2.1 that made use of the Hessian matrix. The number of X-points is ∼ 127,

and is similar number for all the runs, indiating that the number of X�points does

not depends on small-sale features, but rather on initial onditions. One I have

obtained the position of all the ritial points, it is possible to measure the reon-

netion rate of interating islands as the rate of hange of the magneti �ux at eah

X�point that, I reall, is:

∂a

∂t

∣

∣

∣

∣

×

= −E× = (R−1
µ j)×. (3.21)

The reonnetion rates have been normalized to the mean square �utuation δb2rms

(∼ 1 for all the runs). Note that Eq. (3.21) gives exatly the reonnetion rate for a

fully 2D (MHD) ase, while, in the HMHD ase (2.5D), this expression gives the rate

of omponent-reonnetion. The PDFs of E×, for the runs in Table I, are reported

in Fig. 3.23. All the distributions show a broad range with strong tails, the averaged

lying near E× ∼ 0.05−0.06 while the full range spans |E×| ∈ [10−5, 0.4]. The PDF's

have been onstruted using onstant weight m per-bin (variable amplitude PDF),

with m = 6. The distribution of reonnetion rates for the weak Hall ase (Run II)

is very similar to the MHD results (Run I), as expeted from previous disussions.

In the stronger Hall ase (Run III and IV), instead, higher tails appear in the PDF.

Apparently, for higher values of ǫH the frequeny of ourene of large reonnetion

rates is substantially inreased. The inreased frequeny of large rates in�uenes

the means. As an example, for both Run I and II I obtained the mean value

〈|E×|〉 ≃ 0.05, while for Run IV 〈|E×|〉 ≃ 0.06. This analysis on�rm that the Hall

term plays an important role in turbulene, where magneti islands simultaneously

reonnet in a omplex way. In partiular, when the Hall parameter is enhaned,

being this the ratio between the ion skin depth and the system size, distributions of

reonnetion rates have higher tails, revealing more frequently ourring explosive

(very large) reonnetion events than in the MHD ase.

As already pointed out in (121) and showed in Set. 3.2.1, there is a relation

between the stronger reonnetion rates and the geometry of the reonnetion region,

in fat these strong reonneting eletri �elds satisfy the saling relation

E× ∼ l

δ
=
√

λR =

√

λmax

λmin
(3.22)

62
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Figure 3.23: PDF of the reonnetion rates for ǫH = 0 (MHD, blak rombus), ǫH = 1/400 (red

triangles), ǫH = 1/100 (blue stars) and ǫH = 1/50 (green squares). The vertial dash-dotted line

represents the mean value of the distribution 〈|E×|〉 for Run I (blak), Run II (same as Run I),

Run III (blue) and Run IV (orange).

where, I reall, l and δ are related, respetively, to the elongation and to the min-

imum thikness of the urrent sheet, i.e. to the geometry of the reonneting re-

gion, while λmax and λmin are the Hessian eigenvalues evaluated at the X-point. In

Fig. 3.25, I reported the reonnetion rates, assoiated to eah X-point, as a funtion

of λR, for Runs I, III, and IV. All distributions follow the proposed power-law (at

least for stronger reonnetion events), but in the HMHD ase the values are more

sattered and are bounded by lower λR. I evaluated, for eah run, the evolution

of 〈λR〉 in funtion of ǫH (not shown here), and I observed that, for the strongest

Hall e�et ase ǫH = 1/50, the omputed value of 〈λR〉 is redued to half the value

obtained in the MHD ase. Following the methodology adopted in Set. 3.2.1,

to qualitatively haraterize every reonneting region, I extrat information about

urrents, magneti �elds and about the geometry of the di�usion regions. Sine I

know the ratio of the eigenvalues obtained from the Hessian matrix analysis, the

problem redues to �nd just one of these lengths, suh as the urrent sheet thikness

δ. Again, for eah X-point, it was neessary to build a system of referene that has

the origin at the X-point and, using the eigenvetors obtained in the Hessian anal-

ysis, then to de�ne a loal oordinate system based on the unit vetors {ês, êt, },
where the oordinates s and t are related to δ and l respetively. With respet to

this new referene system, the tangential and normal omponent of the magneti

�eld are evaluated as bt = êt ·b and bn = ês ·b, while the urrent pro�le is obtained
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Magneti Reonnetion as an element of Turbulene

Figure 3.24: Current density jz(s) (left) and tangential omponent of the magneti �eld bt (right),

in the viinity of the same X-point, for both MHD (blak) and HMHD with ǫH = 1/50 (green). s

is the diretion along ês - the steepest gradient of the Hessian of a. In HMHD urrent sheets are

narrower and more intense.

Figure 3.25: The relation between the reonnetion rate (the eletri �eld at the X-point) and the

geometry of the reonnetion region (the ratio of the eigenvalues) for both MHD (blak rombus)

and HMHD (blue and green). The presene of a power-law �t (red solid line) demonstrates that

there is a relation between the reonnetion rate and the geometry of the di�usion region.
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3.4 The Hall e�et in the reonnetion proess in turbulene

ǫH 〈δ〉 〈l〉 〈E×〉 MAX{E×}

0 0.014 0.286 0.049 0.315

1/400 0.013 0.272 0.050 0.326

1/100 0.008 0.172 0.057 0.362

1/50 0.005 0.077 0.059 0.364

Table 3.2: Charateristi lengths and reonnetion rates for eah run. The �rst olumn is the

Hall parameter, seond olumn the average thikness of reonnetion regions, the average length

of reonnetion sites is reported on olumn 3, while the average and the maximum reonnetion

rates are reported on olumn 4 and 5 respetively.

Figure 3.26: Histograms of thiknesses δ, (red bars), and elongations l, (azure bars) for MHD

(left) and HMHD with ǫH = 1/100 (right). Vertial lines are average values 〈δ〉 (red) and 〈l〉

(azure), the vertial dotted line represent the Taylor mirosale λT . In HMHD, the reonnetion

sites seem to have, in average, smaller thikness and elongation.

with an iterating �t proedure along the s oordinate. The above analysis has been

performed only for stronger reonnetion sites. For the present simulations, this

means |E×| > 10−2 (for all runs), together with the restrition λmax/λmin > 150

(Run I, II, III), and λmax/λmin > 90 for HMHD (Run IV). In Fig. 3.24 we ompare

results from MHD (Run I) and HMHD (Run IV), showing the urrent pro�le and

the loal magneti �eld near a partiular X-point. The urrent density jz(s) and the

projeted tangential magneti �eld bt(s) has been interpolated along the diretion

of ês. As already observed in Fig. 3.20, two main features are at work when the Hall

e�et is not negligible, namely, the thikness δ is redued with respet the MHD

ase, and jz reahes stronger values. This example serves to illustrate this e�et,

whih we on�rm statistially through an analysis of the values of δ and l for all the

stronger X-point regions. The assoiated PDFs of δ and l have been omputed, for

both MHD and HMHD, and the omparison is reported in Fig. 3.26. In the Hall

ase, in average, the urrent sheets are both thinner and shorter than in the MHD

ounterpart. These harateristi average lengths are reported in Table 3.2.
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3.5 Generalized Sweet�Parker theory for magneti re-

onnetion

The turbulent reonnetion ativity identi�ed in this hapter takes plae in an en-

vironment in whih the symmetri loal onditions envisioned in standard laminar

models are unlikely. It is therefore appropriate to employ the extension of the

standard piture to asymmetri on�gurations. The Sweet�Parker�type analysis

for asymmetri anti�parallel reonnetion has been studied in an earlier work by

(150). In partiular, this analysis allows the reonneting magneti �eld strengths

and plasma densities to be di�erent on opposite sides of the dissipation region. Here

we will summarize some of their main results. Asymmetri reonnetion has also

reeived reent attention in observations (152; 151) and kineti simulations (153).

In the inompressible ase and in our notation, the Cassak-Shay (150) asymmetri

reonnetion rate is given by

Eth.
× ≃

√

b
3/2
1 b

3/2
2

Rµℓ
. (3.23)

being b1 and b2 the upstream magneti �elds on eah side of the X-point. For this

purpose we hose the magneti �elds evaluated at 2δ1,2, namely bi = bt(2δi). Here we

examined whether the observed ensemble of turbulent reonnetion events sales as

asymmetri �Sweet-Parker� in this sense, with resistivity ausing the dissipation. To

aquire a broader piture of the saling, we evaluated Eq. (3.23), �rst for simulations

desribed in Sets. 3.3 to view in whih way the reonnetion rates sale in time

with respet the expeted rates desribed in the model, and then for HMHD Runs.

In Fig. 3.27, the reonnetion rates, for di�erent times of the simulation desribed

in Set. 3.3, are ompared with the asymmetri Sweet-Parker predition given by

Eq. (3.23). It is evident that the model niely desribes the proess of reonnetion

in 2D MHD turbulene: during the time relaxation of turbulene, the reonnetion

events still obey the theory proposed by (150).using several runs (listed in Fig. 3.27).

Fig. 3.27 shows that in all the simulations the reonnetion rates are onsistent with

the predition given by Eq. (3.23). In this senario turbulene plays a ruial role,

determining loally the parameters that ontrol the Sweet-Parker reonnetion rate,

namely, the lengths and loal magneti �eld strengths. Apparently, reonnetion is

an integral part of the turbulent asade. Fig. 3.28 show the omparison between

Run I (MHD), Run III (ǫH = 1/100) and Run IV (ǫH = 1/50) reonnetion rates

versus the expetations. Apparently, in the Hall ases the reonnetion rates are

more broadly distributed, and depart from the MHD behavior. In partiular, there

appears to be a onstant frational inrease in reonnetion rate that grows with

inreasing Hall parameter.
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Figure 3.27: (Asymmetri Sweet�Parker predition at di�erent times of the simulation. This

theory aurately desribes the dynamis of reonnetion in 2D MHD turbulene indiating that

the system is reonneting in a asymmetri Sweet-Parker senario.

3.6 Conlusions

The nonlinear dynamis of magneti reonnetion in turbulene has been investi-

gated through diret numerial simulations of deaying 2D MHD and HallMHD. In

the high resolution simulations, many reonnetion events are seen, involving simul-

taneously many magneti islands of various size. The reonnetion is spontaneous

but loally driven by the �elds and boundary onditions provided by the turbu-

lene.

Computing the eletri �eld at the X-points, we see that turbulene produes a

broad range of reonnetion rates, with values in exess of 0.1 to 0.3 in dimen-

sionless global Alfvén units. In addition, the strongest reonnetion rates vary in

proportion to ℓ/δ, the aspet ratio of the reonnetion sites that haraterize the

geometry of the di�usion regions. This saling appears super�ially to di�er greatly

from lassial laminar theories (114; 115), but taking into aount the nearby mag-

neti �eld produed by the turbulene, a generalized form of Sweet-Parker saling

(150) is restored. These results explain how rapid reonnetion ours in MHD tur-

bulene in assoiation with the most intermittent non�Gaussian urrent strutures,

and also how turbulene generates a very large number of reonnetion sites that

have very small rates. Reonnetion, like other transport proesses, is greatly af-

feted by turbulene (154) and reonnetion rates, like other turbulene parameters,

have a broad distribution of values. In ontrast to laminar reonnetion models that

provide a single predited reonnetion rate for the system, turbulent resistive MHD

gives rise to a broad range of reonnetion rates that depend on loal turbulene

parameters. Many potential reonnetion sites are present, but only a few are se-
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Figure 3.28: Computed reonnetion rates vs expetation from Eq. (3.23), for Run I (blak

diamonds), Run III (open blue diamonds), and Run IV (green triangles). The Hall ases seem to

slightly depart from the Sweet-Parker asymmetri expetation.

leted by the turbulene, at a given time, to display robust reonnetion eletri

�elds. We have seen that reonnetion beomes an integral part of turbulene, as

suggested previously (123; 155). In fat, results of the present type may shed light

on possible salings as Reynolds numbers are inreased, even though diret om-

putational salings remain greatly hallenging. In partiular, we expet that the

distribution of reonnetion rates an be related to the issue of maintaining �nite

energy dissipation in the in�nite Reynolds numbers. A detailed examination of this

onnetion remains for future study.

From the freely deaying turbulene, time dependent study, it was found that the re-

onnetion rate distribution evolves rapidly from a state that has essentially no fast

reonnetion sites, and develops a �hard� distribution that has a highly enhaned

tail of strong rates, in a time of the order of the peak turbulene dissipation time

sale. Subsequently, as the turbulene ages and begins to slow down, so also does

the reonnetion rate distribution soften, with the tail of strong rates diminishing

in just a few non�linear times.

It was also provided a diret omparison of the statistis of reonnetion rates ob-

tained from simulations of MHD turbulene and Hall MHD turbulene for ases with

inreasing Hall parameter ǫH = di/L0. For small values of Hall parameter there is

very little di�erene in distributions of eletri urrent density or reonnetion rates.

However for stronger Hall parameter ǫH > 0.01 one begins to see enhanements of

reonnetion. In partiular while there is a modest inrease in average reonne-

tion rate, there is a more dramati inrease in the frequeny of ourrene of large

reonnetion rates. Assoiated with this is the shortening and thinning of urrent

sheets, and the appearane of bifurated urrent sheets, all previously reported as
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properties of laminar reonnetion with Hall e�et.

Evidently the impat of Hall e�et depends ruially on whether this term in

Ohm's Law beome signi�ant at wavenumbers kH lower than the reiproal dis-

sipation sale kdiss, so that it in�uenes the upper inertial range, or if it beomes

signi�ant only at sales smaller than where dissipation beomes strong. Therefore

in HMHD simulations with salar resistivity and visosity suh as the ones I ar-

ried out, the simulator has omplete ontrol over the relationship of the relevant

wavenumbers kH and kdiss. What is less lear is how to estimate this relationship

in a low ollisonality plasma. Typially, as suggested in (156), in kineti theory di

is near the sale at whih dissipative e�ets beome signi�ant, but it is not lear

to us whether one an make general statements onernig the preise value of the

ratio kH/kdiss. If dissipation sets in at sales muh smaller than di, e.g., through

dominane of eletron dissipation e�ets, the present work suggests that the Hall

e�et an be important in establishing the most robust reonnetion rates that will

be observed in turbulene. We have not however examined ases with very large Hall

parameters ǫH ∼ 1, whih beome omputationally prohibitive. I �nd that as the

Hall parameter (ratio of ion inertial length to energy ontaining length) is inreased

from zero to 1/50, the distribution of reonnetion rates develops a more pronouned

tail at the highest values. Meanwhile the median rate is inreased by only a few tens

of perent. This is onsistent with the idea that Hall e�et an in�uene the fastest

rates of reonnetion most e�etively. However many �slow� reonnetion rates sites

are found both with and without Hall e�et. Further study will be required to on-

�rm and omplete an understanding of how Hall e�et in�uenes reonnetion rates

in turbulene.
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Conlusions

This thesis work onerns the study of turbulene in two physial system, i.e., the

solar wind and the reonnetion sites. In partiular, we tried to emphasize the

di�erent way in whih turbulene appears, manifests itself and evolves, sometimes

representing the main physis in the dynamial evolution of the onsidered sys-

tem. During the last years, a strong e�ort was spent by reserahers in the quest

to understand turbulene. Indeed, the knowledge of this omplex phenomenon has

shown remarkable progress reently, thanks to the advanement in theoretial mod-

els, numerial simulations and to the various spae missions available. For all these

reasons, reognition of turbulene has matured; however, it still remains a "terra�

inognita". Beause of the omplexity of turbulene, it was not easy to write down

a simple overview that brie�y desribes the enormous theoretial bakground, try-

ing to establish a link between the di�erent representations and desriptions, but,

�nally, the goal was ahieved.

In this thesis work, we approah the study of turbulene from two di�erent per-

spetives. First of all, using a kineti desription, we start from an observational

point of view to look at some non-linear phenomena, i.e, the ponderomotive e�et

and the dissipation in ollisionless plasma, related with the presene and the growth

of turbulene in plasma waves. Then, from the point of view of numerial simula-

tions, using a magnetohydrodynamis desription, we move our attenption on the

proess of magneti reonnetion.

In the �rst part of this work, we studied the eletri signals, obtained by the

instruments S/WAVES onboard the two spaeraft of the STEREO/NASA mis-

sion. We tried to understand the ponderomotive e�et generated by an osillating

Langmuir wave on the density bakground of the solar wind and the possible gen-

eration of ion�bulk waves viewed as dissipation mehanism in ollisionless plasmas.

It was shown that the voltages, observed identially on the three STEREO anten-

nas at frequenies (102 − 103) Hz, are onsistent with the variations observed in

the spaeraft potential, due to small sale density �utuations present in the solar

wind. A alibration for suh density �utuations was provided too, using simultane-

ously measurements of Langmuir waves at high frequenies and density �utuations

observed in the low frequeny omponent. This alibration enable us to retrieve

a more preise value of the photoeletron urrent. It was given a diret observa-

tional evidene for non�linear oupling between solar wind density �utuations and

Langmuir waves, with an eletri�to�kineti energy ratio WL > 10−4. This is the

�rst time that the ponderomotive e�et is observed in natural plasma. The above

frequeny range orresponds to solar wind density �utuations with typial wave-

lengths λ ∼ [500 − 5000] m. To the best of our knowledge, it was the �rst time

that small�sale density �utuations in the solar wind at suh wavelength range are

measured. These small sale density measurements provide a new opportunity to

diretly observe the physial proesses ourring lose to the dissipation range of
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solar wind turbulene. See Ref. (45) for more details.

In a more general ontext, we point our interest on the dissipation mehanisms

in ollisionless plasma, a step of ruial importane for understanding the origin

and the nature of the solar wind and the problem of high�frequeny turbulene

in spae plasmas. Reent kineti numerial simulations simulated the dissipation

mehanisms, ating in the solar wind at short spatial length sales. In this stud-

ies, the dispersion relation shows two branhes of aousti type eletrostati waves,

the usual ion�aousti waves and a new branh of eletrostati waves, identi�ed as

ion�bulk waves. The exitation of these waves is due to the generation, through

resonant interation between ions with ion�ylotron waves, of di�usive plateaus in

the longitudinal veloity distribution. As a result of this proess, short wavelength

pakets are reovered in the eletri �eld omponent parallel to the ambient magneti

�eld. It was observed that both eletri signals, oming from the S/WAVES instru-

ments in the frequeny range from [1 − 5] kHz, and the ion�bulk waves, obtained

in hybrid�Vlasov simulations, present a high �utuations level in the form of loal-

ized wavepakets. From a systemati omparison of the observed peaks at few kHz

with those obtained in hybrid�Vlasov numerial simulations, it was hypothesized

that the identi�ed small�sale wavepakets are related to the ion�bulk eletrostati

�utuations. These �utuations are assoiated with ions veloity distributions, that

display marked plateaus in the viinity of the thermal speed and represent one of

the main dissipation mehanism in ollisionless plasma. A publiation, (84), on this

subjet was submitted to international physis journals.

In the last part of this thesis, we study the proess of magneti reonnetion

in two-dimensional, high resolution, MHD simulations, trying to extrat the in�u-

ene of turbulene on the entire phenomenology. It was shown that the presene of

turbulene enhanes the small�sales ativity, produing a broad range of reonne-

tion events with reonnetion rates more similar to that observed in spae plasmas.

Magneti reonnetion is a spontaneous phenomenon, but loally driven by the �elds

and the boundary onditions provided by turbulene. Many potential reonnetion

sites are present, but, at a given time, only a few of them are seleted by turbu-

lene to display robust reonnetion eletri �elds, E×. In addition, the strongest

reonnetion rates vary in proportion to the aspet ratio of the reonnetion sites,

ℓ/δ.

Reent results in this line of study, involving turbulent reonnetion rates at dif-

ferent times, and a �rst look at how Hall e�et in�uenes reonnetion in turbulene

have also been highlighted. From a time dependent study, in whih turbulene is

freely deayed, we have found that the reonnetion rate distribution evolves rapidly

from a state that has essentially no fast reonnetion sites and develops a "hard"

distribution that has a highly enhaned tails of strong rates, in a time sale of the

order of the peak turbulene dissipation time sale. Subsequently, as the turbulene

ages and begins to slow down, so also does the reonnetion rate distribution soften,

with the tail of strong rates dereasing in just a few nonlinear times.

The results onernig the in�uene of the Hall e�et in the Ohm's law on the

distribution of reonnetion rates in turbulene appear very intriguing. Indeed, we
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�nd that, as the Hall parameter (represented by between the ratio of the ion inertial

length and the energy ontaining length) inreases from zero to 1/50, the distribu-

tion of reonnetion rates develops a more pronouned tail at the highest values.

Meanwhile, the median rate inreases by only a few tens of perent. This results are

onsistent with the idea that the Hall e�et an in�uene the fastest rates of reon-

netion more e�etively. However, many "slow" reonnetion rates sites are found

both with and without the presene of the Hall e�et in our numerial simulations.

Further, more study are required to on�rm and omplete our understanding of how

the Hall e�et an in�uene the reonnetion rates in turbulene. See Ref. (122) for

more details.
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Appendix A

Using the STEREO spaeraft as

a density probe

In monopole mode, an antenna measure the di�erene of potential between the an-

tenna potential and the spaeraft �oating potential, where the last one is usually

onsidered a ground to study eletri �eld osillations measured on the antenna.

Therefore, the voltage waveforms are generally interpreted and alibrated in term of

in�situ eletri �eld waveforms. In ontrast, we used expliitly in this alulations

the spaeraft potential variations, taking advantage of the large di�erene in sur-

fae between the spaeraft and the antennas whih makes their equilibrium time

sales very di�erent, so that there is a large frequeny range in whih the voltage

�utuations measured in monopole mode reveal the density �utuations.

A.1 Floating potential of spaeraft and antennas

The spaeraft body emits and ollets harged partiles, and its eletri potential

permanently adjusts to the hange of the ambient plasma parameters, to ensure

the urrents balane. The harging of the STEREO body is due to some physial

proesses (51): (1) inident energeti photons induing photoeletron emission (50);

(2) inident energeti eletrons striking the surfae, induing seondary emission of

eletrons; and (3) ambient eletrons and ions striking the surfae and transferring

their harge.

To be more detailed :

1. the impat of energeti photons indue the emission of photoeletrons from

the spaeraft by solar ultraviolet radiation and the omparison of the pho-

toeletron urrent Iph. To have an estimation, we onsider that the average

solar ultraviolet radiation at 1 AU is ∼ 10−3 Wm2 that orresponds to an

average �ux of ionising photons F⊙ ≃ 1014 m−2s−1 . On a surfae at zero

potential at 1 AU, the photoemission �ux jph depends on the average surfae

photoemission e�ieny:

jph = δ1014m−2s−1
(A.1)

per unit of projeted sunlit surfae, with δ ∼ 1�4 for typial spaeraft overs

(46; 47; 48; 49). Photoeletrons esape from the sunlit fae of the spaeraft

of surfae S⊥ , so that Iph = jphS⊥.
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2. The seondary emission of eletrons aused by the impat of energeti eletrons

is important only for striking eletrons with energy greater than 10eV, and is

pratially negligible for the two STEREO spaerafts.

3. The third physial e�et ould be divided in two part, (i) the olletion of solar

wind eletrons and (ii) protons (we negleted the very small ontribution of the

heavier ions). (i) Solar wind eletrons have a thermal veloity (vth,e ≃ 1200

km s−1) larger than the solar wind speed (vSW ≃ 300�800 km s−1), so that

the assoiated inoming eletron �ux on a spaeraft at zero potential is the

ambient eletron random �ux je ≃ ne

√

kBTe/2πme < 1013 m−2s−1 (me , ne

and Te are respetively the eletron mass, density and temperature) and solar

wind eletron are olleted on the total surfae Stot so that Ie = jeStot. (ii)

Solar wind protons have a thermal veloity (vth,p ≃ 50 km s−1) muh smaller

than the solar wind speed, so that solar wind protons are olleted on one fae

only and the assoiated attahment �ux is better estimated from the mean

proton �ux jp ≃ npVSW ∼ 1012 m−2s−1. With Stot ≃ 6Sperp (onsidering a

ubi shape), the proton urrent is more than an order of magnitude lower

than the proton urrent Ip = jpSperp ≪ jeStot = Ie. I reall that the values of

the parameters are those typial for the free solar wind at 1 AU.

Summarizing, Iph ≫ Ie ≫ Ip, so that we negleted the seondary emission and the

protons attahment and we onsidered, as main harging proesses, the photoele-

tron urrent and the ambient eletron urrent. Beause the esaping eletrons are

more than the attahed ones, STEREO surfaes harge positively, until its positive

eletri potential Φ binds su�iently the photoeletrons to make their net outward

�ux balane the inward �ux of solar wind eletrons, and this means that, to have

the balane, the potential of the bodies (spaeraft and antennas) provide the pho-

toeletrons with a potential energy that outweights their typial kineti energy of a

few eV. To obtain the urrent balane, we onsidered that both eletron populations

are Maxwellian with temperature Te and Tph, so that the expressions for ambient

eletrons and photoeletrons urrent, respetevely, are given by (52):

Iph ≃ jpheS⊥

(

1 +
eΦ

kBTph

)α

exp

( −eΦ
kBTph

)

(A.2)

Ie ≃ ne

(

kBTe

2πme

)

eS

(

1 +
eΦ

kBTe

)β

(A.3)

where e is the eletron harge, α and β are both equal to 0, 1/2 and 1 for respetively

plane, ylindrial and spherial geometry of the onsidered harging proess.

A.2 Equilibrium potential

One we estabilished the harging proessess and their expressions, we ould show

the spaeraft equilibrium potential. Before proeding in this way, it is useful to
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A.3 Charging time sales

give some geometrial informations. The sale length of the spaeraft body Lsc is

larger than the photoeletrons' Debye length (10 m at 1 AU), the photoemission

is onsider to take plae in plane geometry so that αsc = 0. On the other hand,

sine Lsc is smaller than the solar wind eletron Debye length (10 m at 1 AU),

plasma eletrons are olleted in 3D so that βsc = 1. The urrent balane ondition

Iph = Ie applied to Eqs.(A.2)�(A.3) for the spaeraft body then gives its equilibrium

potential Φsc:

Φsc = −kBTph

e
logn

[

n

N0

(

1 +
eΦsc

kBTe

)]

(A.4)

where N0 = jph(kBTe/2πme)
−1/2S⊥

sc/Ssc. The above alulations also hold for the

equilibrium potential of the antenna ΦA in ylindrial geometry so that αA = βA =

0.5 in Eqs. (A.2)�(A.3), whih gives:

ΦA ≃ −kBTph

e
logn

[

n

NA
0

(

1 + eΦA/kBTe

1 + eΦA/kBTph

)1/2
]

(A.5)

where NA
0 = jph(kBTe/2πme)

−1/2S⊥
A/SA. To solve Eqs. (A.4�A.5) we made use

of STEREO spaeraft parameters (note that Eq. (A.5) is a rough approximation

beause the antenna length is of the order of the Debye length, but this does not

signi�antly a�et the �nal result). In detail, The dimensions of the spaeraft are

L1×L2×L3 = 1.14 × 1.22 × 2.03 meters, with a sunlit surfae Ssc
⊥ = L2×L3 ≃ 2.5

m−2. The solar wind eletrons are olleted from all the spaeraft surfae, exept

the fae loated in the wake, so that the surfae Ssc ≃ 9.9 m−2. The S/WAVES

antennas are 6 m long, with an average diameter of 23.6 mm and inlination of

125° to the sun�spaeraft diretion. This gives a sunlit projeted surfae of about

SA
⊥ = 0.12 m−2 and a total surfae area of about SA

tot = 0.45 m−2 per boom. To

omplete the alulations, we hoosed, Tph = 3 eV and typial solar wind densities

n = [1�10℄ cm−3 and temperature Te = 10 eV. Eqs. (A.4�A.5) yield to Φsc = [3�8℄

Volts and ΦA = [5�10℄ Volts.

A.3 Charging time sales

The above results are valid as long as the solar wind density �utuates with fre-

quenies lower than the typial harging frequeny of the onsidered objet, so that

the equilibrium remains quasistati. We onentrated on density �utuations with

frequenies fδn lower than the harging frequeny of the spaeraft fsc, but larger

than the harging frequeny of the antenna fA. Indeed, for δn/n to produe a signal

on the monopole antenna voltage, the density �utuation must modify the spae-

raft potential without modifying the antenna potential, that is density �utuations

that have frequenies fδn suh that fA < fδn < fsc. To evaluate the two frequenies

we alulated the harging e�folding time τ = RC, where C is the apaitane and

R the resistane of the onsidered objet (and it was neessary to made other ge-

ometrial assumption). Sine the dimension of the spaeraft Lsc and the antenna
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radius a are both muh smaller than the ambient Debye length λD, the eletri �eld

surrounding them an be onsidered a Coulomb �eld loally, vanishing at distane

λD. The spaeraft apaitane Csc an be roughly evaluated as the apaitane of

a spherial ondutor of radius Lsc ≃ 1 m, �nding Csc ≃ 4πǫ0Lsc ≃ 110 pF. A better

estimation using two ubes instead of a sphere atually gives Csc ≃ 200 pF, that

was the �nal hoie. The antenna apaitane CA is evaluated as the low frequeny

apaitane of a ylindrial ondutor of length L and radius a in a plasma of Debye

length λD (53). In the limit L≫ λD the antenna apaitane is:

CA ≃ 2πǫ0L

logn(λD/a)
≃ 47pF (A.6)

while for L≪ λD it redues to the apaitane in vauum:

CA ≃ 2πǫ0L

logn(L/a) − 1
≃ 64pF. (A.7)

To take in aount the fat that STEREO antennas have lenght of the same order as

the Debye lenght, we hoosed an intermediate value, i.e. CA ≃ 60 pF. The resistane

ould be alulated as the inverse of the variation of the urrent with respet the

potential (R = |dI/dΦ|), but sine the photoeletron urrent is the fastest harging

proess we obtained R ≃ |dIph/dΦ| ≃ (e/kBTph). From the balane Iph = Ie, it

omes out for the resistane:

R−1
i ≃ eSi e

kBTph
n

(

kBTe

2πme

)1/2(

1 +
eΦi

kBTe

)βi

(A.8)

with i = sc or A, βsc = 1, βA = 1/2. The harging frequenies fi = 1/(2πRiCi)

are solved numerially and shown in Fig. A.1 as a funtion of the plasma density,

the eletron temperature and the photoeletron temperature. They are nearly inde-

pendent to the eletron temperature in the range of solar wind parameters (entral

panel). The dotted line in the right panel indiates the photoeletron temperature

around 3 eV. Summarizing, for typial solar wind parameters, density �utuations

with frequenies between ∼ 100 Hz and a few kHz produe a hange in spaeraft

potential, but no hange in antenna potential. Signals of muh higher frequeny

vary too fast for hanging the �oating potential of the spaeraft and antennas.

Signals of muh smaller frequeny similarly modify the �oating potentials of the

spaeraft and antennas, so that the voltage di�erene between them is too small to

be observed. For density �utuations signals, the antenna ats as a ground while the

potential of the spaeraft varies with the density �utuation; whereas eletri �eld

osillations behave just opposite: spaeraft potential is a ground and the antenna

potential osillates with the eletri �eld.
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A.4 Variations of spaeraft potential assoiated to density �utuations

Figure A.1: Frequeny range of detetion of density �utuations (in grey) between the spaeraft

(blue line) and antenna (red line) harging frequenies as a funtion of density n (left panel), ele-

tron temperature Te (entral panel) and photoeletron temperature Tph (right panel). The vertial

dotted lines show typial solar wind parameters, in the third panel it shows the photoeletron

temperature assoiated with the STEREO spaeraft Tph ≃ 3 eV.

A.4 Variations of spaeraft potential assoiated to den-

sity �utuations

At this point of the disussion, di�erentiating Eq. (A.4), we obtained an expression

in whih eah small variation δn of the plasma density, in the above mentioned

frequeny range, produes a hange in spaeraft potential δΦsc:

δn/n ≃ −
(

e

kBTph
+

e

kBTe
+

1

1 + eΦSC

kBTe

)

δΦsc (A.9)

Sine Tph < Te, δn/n is mainly determined by the �rst term in Eq. (A.9), thus it

is roughly proportional to δΦsc with a proportionality fator set by Tph. A relative

variation in plasma density δn/n thus indues a voltage δΦ ≃ −δΦsc deteted on

all monopole antenna hannels whih an be roughly expressed as:

δn/n ≃ 1

Tph[eV ]
δΦ[V olt] (A.10)

that an be veri�ed numerially using typial solar wind parameters. Numerial

results of Eq. (A.9) (blak line), and Eq. (A.10) (red line) are shown in Fig. A.2.

The variation of the spaeraft potential indued by density �utuations does not

depend muh on the plasma density and the eletron temperature (two �rst panels),

but mainly depends on the photoeletron temperature (third panel). 1

1The approximation (red value) only underestimates the atual solution Eq. (A.9) by about

20%. It is thus not stritly neessary to know the atual value of the spaeraft potential Φsc, but

only its variations, to have a good estimation of the assoiated density �utuations.
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Figure A.2: Ratio of density �utuations to spaeraft potential variations (−(δn = n)/δΦ) in

funtion of plasma density, eletron temperature and photoeletron temperature. Both the full

expression Eq. (A.9), in blak, and the approximation Eq. (A.10), in red, are shown. The vertial

dotted lines show typial solar wind parameters, in the third panel it shows the photoeletron

temperature assoiated with the STEREO spaeraft Tph ≃ 3 eV.
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Appendix B

A simple Van der Pol model

The waveforms observed in 2.4.2 should be di�erent manifestations of ion-bulk

waves, exited by a plasma instability as results from numerial simulations (78; 79).

Following (88), a Van der Pol equation an be obtained from the two��uid model

of plasma in artesian geometry, whih an reprodue the observed waveforms. The

eletron equation of motion, negleting the ve × B term, is given by

m
dve

dt
= −e∇φ +

Te

n
∇n (B.1)

where ve is the eletron veloity, Te the eletron temperature, m the eletron mass

and n = ni + ne the total plasma density. Assuming spatial variations of the form

exp(ikxx), where kx is the axial wavenumber assoiated to disturbanes whih gen-

erate the burst, and introduing the density �utuations through n = n0 + δn(x, t),

where n0 is a steady state average, in the low frequeny approxiamtion neglet-

ing eletron inertia density �utuations are proportional to potential �utuations

δn ≃ (en0/Te)δφ. The dissipationless ion equation of motion, by ignoring pressure

gradient term due to a strong temperature anisotropy, is given by

M
dvi

dt
= −e∇φ (B.2)

where M is the ion mass. The evolution equation for density is modeled through

∂n

∂t
+ ∇ · (nvi) = S (B.3)

where S is a soure term due to the presene of �utuations loally reated by

eletron heating e�ets (88). By eliminating the veloities, and using the relation

between plasma density and potential, we obtain a di�erential equation whih de-

sribes the time behavior of the density

d2n

dt2
−
(

dS

dn

)

dn

dt
+ ω2

0n = 0 (B.4)

where ω0 = kxcs is the ion-sound frequeny and cs = (Te/M)1/2 is the ion sound

veloity. The same equation an be derived for the eletrial potential φ. From

thermodynamis arguments it an be shown (88) that the funtion S is desribed

as a power of density �utuations S = αn− βn2 − γn3 − . . . . Under the hypothesis

that ω0 ≫ α, βn and γn2, equation (Eq. (B.4) redues to a Van der Pol equation
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(85). By adding an external foring term osillating at a frequeny ω we obtain the

fored equation in dimensionless form

ẍ − ǫ(1 − ξx − ζx2)ẋ + x = Γ cos(Ωτ) (B.5)

whih will be used for numerial simulations. Here Ω = ω/ω0 is the ration between

the external frequeny and the internal frequeny, ǫ is the ratio between the growth

rate of perturbations and the nonlinear damping oe�ient while τ = ω0t and dots

indiate derivative with respet to τ . In the following we will use the lassial ase

where ξ = 0 and ζ = 1. The Van der Pol equation, whih desribes a system with

a noninear damping, has been widely used in plasmas. For example the equation

desribes the nonlinear mode-mode oupling mehanism through whih an ion-sound

plasma instability should saturate (87; 88), the feedbak stabilization of a drift-type

instability (89), the saturation of unstable modes in a beam-plasma system (91),

mode loking and frequeny pulling in a Q mahines aused by �utuations of a

plasma olumn during the urrent-driven, ion aousti instability in a ollisionless

plasma (90), and as a nonlinear mehanism desribing the transition to turbulene in

a bounded plasma haraterized by weakly unstable modes, where the various modes

are represented by an ensemble of Van-der-Pol osillators (92). For a �xed value of Γ

and ǫ, the dynamis is drived by the external frequeny ω. As ω ≪ ω0, no interation

between osillations takes plae and both frequenies appears in the spetrum. On

the ontrary, when ω inreases and ω = ω1 < ω0, the internal frequeny is suppressed

by the external osillation and a single frequeny ω appears in the spetrum. When

ω is further inreased and ω = ω2 > ω0, the internal frequeny ω0 reappers in the

spetrum. The interval ∆ω = ω2−ω1 is alled the synhronization region beause the

osillation synronizes at a given frequeny, while lose to both ω1 and ω2 periodi

pulling is observed. Solutions of Eq.B.5 are obtained as osillations where both

amplitude and phases are modulated in time, whih an explain the modulations

observed in spae plasma. Numerial experiments have been arried out by keeping

�xed all parameters but Ω in Eq. (B.5) to show qualitative agreements between the

simple model and the observational results. In Fig. B.1 I show the results obtained

for three di�erent values of Ω and Γ = 1.0, ǫ = 0.5, ξ = 0.01 and ζ = 0.1 (hanging

the values of these �xed parameters don't hange qualitatively the results). Looking

at the di�erent kind of behavior, it an be reognized the frequeny synhronization,

both frequenies outside the synhronization region and a kind of periodi pulling

that look very similar what observed in STEREO/Waves data and hybrid�Vlasov

simulations data (Fig. 2.12 and Fig. 2.15).
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Figure B.1: Examples of osillation regimes (upper panels) obtained from simulations of the

Van der Pol equation, with their relative phase spae (middle panels) and power spetrum (lower

panels). The parameters used for the ase a) are: ǫ = 0.5, Γ = 1.0 and Ω = 3.0, for ase b) are:

ǫ = 0.5, Γ = 1.0 and Ω = 0.45, while for the ase ) are: ǫ = 0.5, Γ = 1.0 and Ω = 0.45.
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