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Introduction

AdS/CFT duality is actually one the most interesting field of research in theoretical
Physics. String theory is the best model we have now for describing a complete Quantum
Theory of Fundamental Interactions including Gravity. Non-renormalizability of Grav-
ity reduces usual Quantum Field Theory only to an effective Theory and suggests that
there should be a more fundamental level in description of Nature. String theory appears
for the first time in Quantum Physics as a candidate for Strong Interactions. For many
reasons, Strings cannot describe exactly Strong interactions and now we have QCD as a
right description of that. However, some stringly behaviours remain in some approxima-
tions in QCD: hadron spectrum organizes into so called Regge-trajectories that represent
an appropriate linear relationship, with universal slope, between the squared masses of
hadronic resonances and their spins and this is what exactly a string theory on flat space
predicts; then, another manifestation of stringy behaviour in gauge theory is the presence
of flux tubes of the Chromodynamic field: they form, between two quarks when they
are pulled apart. Using some approximation, they could be seen as one dimensionale ob-
jects with costant tension, i.e. strings. AdS/CFT duality goes even further: it propose
an exact correspondence between a String Theory and a Gauge Theory. First proposed
by Maldacena in 1998 (Maldacena conjecture, see first of [1]) and successively by others
(see other works in [1]), this duality connects a String theory, living on a background
composed by an Anti-de-Sitter space in five dimension times a five dimension maximally
symmetric space (AdS5×S5), with a Conformal Field Theory, living in a four dimensional
flat-spacetime, that is the boundary of the AdS5 spacetime. Stringy observables in AdS5

have correspondent gauge observables on the boundary and thier values are expected to
match.

Importance of AdS/CFT duality is the possibility to study a complicated String Theory
in extra dimensions in a more usual and comfortable Gauge Theory. Facilities could be
given also by the strong/weak nature of the duality: weak coupling regime on gauge side is
dual to strong coupling regime in strings and vice-versa. So, we could have the possibility
to explore on both sides strong coupling regimes making easy perturbative calculations
on the other side. It could be also a great advantage on the gauge side. Conformal
Field Theory is a “cousin” of QCD, richer in symmetries. It is a very difficult task but
not impossible in principle that we can, from CFT, obtain some insights in QCD. So,
AdS/CFT duality, also in studying String through a simpler gauge theory, might permit
to get some results at strong coupling in QCD. Unfortunately, AdS/CFT duality has not a
formal proof yet! Without a formal proof, strong/weak duality becomes a great obstacle:
tests of duality are difficult beacuse the two perturbative regimes do not overlap.

In this picture, a miracolous aspect emerges, that permits the possibility of a greatful
test for the duality. In the framework of the duality, we can analyze the most symmetric
setting choosing as partners type IIB String Theory on string side and N = 4 Super
Yang Mills Theory on gauge side. The latter is a supersymmetric and conformal field
theory with the maximal number of supercharges (N = 4). In the planar limit of this

3



theory aspects of integrability emerge. Planar limit was first studied bu t’Hooft [2]: This
is a limit for gauge theories with gauge symmetries SU(Nc), SO(Nc) or Sp(Nc), where
Nc is the number of colors of the model, and consists in taking the rank of the group
to infinity, i.e. Nc → ∞, keeping the rescaled gauge coupling λ = gYMNc finite. In this
limit, dominating Feynman diagrams are those drawingable on a plane, whereas the others
with crossing lines are suppressed. We can define local operators O(x) as compositions of
fundamental fields all at the same space-time point: two points correlation functions are
determined by scaling dimension ∆(λ), where λ is the t’Hooft coupling:

〈OAOB〉 ∝
δAB

|x− y|2∆(λ)
(1)

where
∆(λ) = L+ γ(λ) . (2)

Parameter L is the classical dimension, i.e. it is the number of constituent fields that
generate local operator O, while γ(λ) is the anomalous dimension, a quantum correction
due to interaction among constituent fields. In the picture of AdS/CFT, anomalous di-
mensions are dual ti string energies. We can find anomalous dimensions as eigenvalues of
some operators, called Dilatation Operators. Integrability emerges because it is possible to
show that these Dilatation operators, in the planar limit defined above, could be written
as some Hamiltonians of some integrable spin chains. An integrable system is a system
with a number of conserved charges equal to the number of Hilbert spaces that constitutes
the quantum space in which the system is defined. Integrability gives the possibility to
compute anomalous dimensions, as energies of the spin chains, for all values of coupling
λ. Through integrability, we can so test the duality, making the wanted overlaps between
results on both sides.

First proof of integrability was given for the pure bosonic subsector of N = 4 SYM, at
one loop [3]. Dilatation operator of this subsector can be written as the Hamiltonian of

the Heisenberg XXX spin
1

2
chain. It is an integrable system [18] and it could be solved

through a mathematical approach, the Bethe Ansatz. Bethe Ansatz permits to obtain,
in an integrable system, all the conserved charges in terms of the so-called Bethe roots,
solution of an algebraic trascendental set of equations, related to the system, that emerge
naturally during the diagonalization of the conserved charges.

Subsequently, integrability was extended to all gauge sectors and at all loops in a
weaker sense: any local operator has been seen as a state of a “spin chain” whose Hamil-
tonian is the dilatation operator related, although the latter does not have an explicit
expression of the spin chain form, but for first few loops. Neverthless, large size (asymp-
totic) spectrum has turned out to be exactly described by certain Asymptotic Bethe
Ansatz-like equations: the so called Beisert-Staudacher equa- tions [4, 5]. This approach,
called Asymptotic Bethe Ansatz (ABA), suffers of a problem: its greatest limitation is
the so-called wrapping problem [10]. When many loops contributions were computed in
dilatation operator, related spin chains presents hamiltonian with interactions that have
a growing complexity: one loop corresponds to nearest neighbour interaction, two loops
corresponds to interaction involving three sites of the chain and so on. A spin chain of
length L can describe in a right picture only dilatation operator until L − 1 loops. Over
this point, phenomena of self-interaction makes losing of sense in this picture. Wrapping
should be under control in some limits, as we will see immediatly.

Recently, great progresses have been made in application of other techniques of inte-
grable models, as Thermodynamic Bethe Ansatz (TBA) [6], the equivalent Y-system [7]
[8]. These techiques permit to solve exactly the models and to find anomalous dimensions,
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without the problem of wrapping corrections. Very recently [9] is has been showed that
TBA equations could be reformulated as a finite set of integral equations. However, it
has been showed that TBA equations present some difficulties when we have to disentagle
excited state equations. In many cases, only numerical approach seems to be the possible
way. So, it could be convenient to study what are the limit of validity of ABA approach.
TBA computations are not argument of this work, but our interest is in study integrability
through ABA, its limits and a way to better understand how wrapping corrections work.

Our main field of interest are anomalous dimensions related to dilatation operators
belonging to sl(2) gauge sector of N = 4 SYM. Local operators in this sector are defined
as

O = Tr
(
DsZL + · · ·

)
(3)

where we have s covariant derivative acting on L bosonic complex field in all possible
combinations. Parameters s and L are called respectevely spin and twist. Importance of
this gauge sector is due to their connection to twist operator in QCD [11, 12]. This gauge
sector is usually studied in large spin limit s → ∞. Integrability of sl(2) sector is well
studied in [4, 5] at all loops. Also, in [13] it is showed by perturbative calculations up
to six loops that, for short operators (L = 2, 3) wrapping corrections start with terms of

order O
(

(ln s)2

s2

)
. In high spin limit, anomalous dimension for sl(2) sector expands as:

γ(g, L, s) = f(g) ln s+ fsl(g, L) +
∞∑
n=1

γ(n)(g, L)(ln s)−n+

+
1

s

∞∑
n=−1

γ̌(n)(g, L)(ln s)−n +O
(
s−1(ln s)−∞

)
, (4)

where g is linked to the t’Hooft coupling λ via the relation λ = 8π2g2 and where the

notation O
(
s−1(ln s)−∞

)
denotes terms going to zero faster than

1

s
times any inverse

power of ln s. Leading orders functions f(g) and fsl(g, L) are well-known and studied (see
introduction to Chapter 3). In this thesis, we present a scheme of calculation based on
Asymptotic Bethe Ansatz and the equivalent Non-linear Integral Equation (NLIE) that
permits to obtain generalised expression, at all loops, for subleading functions γ(n)(g, L)
and γ̌(n)(g, L). Main purpose of this computations is to obtain suggestions in order to

extend wrapping-free limit point O
(

(ln s)2

s2

)
to all loops and twist. Our computations,

we will see, give very strong insights in confirming this idea. Shortly, this is due to the
verification of some functional relation in N = 4 SYM. Anomalous dimension should
satisfy this ’self-tuning’ property [14]:

γ(g, L, s) = P

(
s+

1

2
γ(g, L, s)

)
(5)

where the function P , when s→ +∞ expands as follows,

P (s) =
∞∑
n=0

an(lnC(s))

C(s)2n
, (6)

the quantity C(s) being given by

C(s)2 =

(
s+

L

2
− 1

)(
s+

L

2

)
. (7)
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Second relation expresses the so-called ’reciprocity property’ (in Mellin space). An analo-
gous of these realtions exists also in QCD in the framework of Altarelli-Parisi equations,
but it is valid only at one loop. Instead, it is supposed that in the framework of sl(2)
sector of N = 4 SYM it is valid at all-loops. We have verified that. Also, these properties
produces some constraint relations among functions γ(n)(g, L) and γ̌(n)(g, L) that we can
use to obtain strong insight about wrapping limits we have mentioned above.

Another limit is studied in this thesis: we perform the double limit s → ∞ , L → ∞
with a relation among the parameters that reads as

j =
L− 2

ln s
fixed . (8)

Main importance of this limit is that is completely wrapping free, because spin chains
related have infinite lenghts. Anomalous dimension expansion is, in this case:

γ(g, L, s) = f(g, j) ln s+ fsl(g, j) +

∞∑
n=1

γ(n)(g, j) (ln s)−n +O((ln s)−∞) . (9)

Leading function f(g, j) is well known and studied (see introduction in Chapter 4). We
present in this work a systematic scheme for analyzing subleading term fsl(g, j). We show
also explicit computations at weak coupling up three loops in the limit j � 1. Also, we
give strong coupling limit.

Our computations are effectively made using an alternative, but equivalent, method
to Bethe equations. Instead of solving a set on non-linear algebric equations, in the case
of operators with high values of twist L it is more convenient to transform this set in
a Non-Linear Integral Equation (NLIE). Problem of non-linearity still remains, but it is
possible to show, under the limits we work in, that all non-linear terms in equations could
be evaluated discarding terms of orders we do not need in results.

Outline of the Thesis

This work is divided into four chapters. First two chapters are introductory, last two
contain the work.

In the first chapter we present integrable system techniques we use. After defining
the Integrability of a system, we present Bethe Ansatz equations adopting the scheme
presented in [18]. Subsequently, we show how to obtain the equivalent picture based on
the Non-Linear Integral Equation, giving a general description of the method. All the
chapter contains, for simplicity and for an example, continuos references to the practial
case of the Heisenberg XXX1/2 spin chain. We will get, at the end, the energy of the chain
of L sites in the limit of large L through NLIE approach. In particular, we will see how
evaluate non-linear terms and the right corrections these terms give.

The second chapter regards the topic of AdS/CFT duality. It is showed a short
overview of the subject, motivations behind it and all regards the various aspects men-
tioned also above, as advantages of a gauge/string duality, strong/weak duality, etc. We
will introduce also the aspects of integrability, introducing it through the example of one-
loop su(2) gauge sector. We will show how one-loop dilatation operator belonging to this
sector is exactly the Hamiltonian of the Heisenberg XXX1/2 spin chain.

Third chapter starts the investigation of anomalous dimensions of sl(2) gauge sector,
specifically here we will analyze high spin and fixed twist limit. We present a general
method that permits to make a systematic study of anomalous dimension. In particular
we apply this picture to compute generalized expression at all loops for functions γ(n)(g, L)
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and γ̌(n)(g, L). Functional relations belonging to reciprocity and self-tuning are verified
at all loops, up to the order (ln s)−5. Mixing these two results, we will give some insights

about wrapping problem: appearing of correction at order O
(

(ln s)2

s2

)
would seem a

reasonable limit valid for all loops. We will not give a formal proof of it, but our results
will give strong suggestions. Finally it is given a short discussion about excited states.

Fourth chapter, finally, presents the high spin and high twist double limit computa-
tions. We will focus on the first subleading function. We will give weak coupling results
up to three loop showing how they are obtained, then it is given a general method that
permits to make a systematic study. At the end, we show some strong coupling results.

Original contributions

Chapter 3 is based on results from [15] and from the non yet published work [16] (soon in
archives). Original personal contributions are in the latter, in particular in computations
of γ̌(n)(g, L) functions and in verifications of functional relation costraint belonging to
reciprocity. The scheme of calculation presented has been obtained as a natural extension
of that used in [15]. Also, a personal contribution is all regards excited states, these results
has not been included, by now, in a work.

Chapter 4 is based on results from [17]. Original personal contributions reside in
one-loop computation up to the order j5.
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Chapter 1

Integrability

1.1 Integrability of a system

1.1.1 Definition

A dynamical system with n degrees of freedom is called integrable if it has n quantities Qj ,
j = 1, · · · , n, including the Hamiltonian of the system, that commute among themselves:

[Qi, Qj ] = 0 , i, j = 1, · · · , n . (1.1)

For a classical system, definition (1.1) has a clear meaning: a system is integrable
if it has the same number of constants of motion as the number of degrees of freedom.
For a quantum system instead, we have an integrable system if we have a number of
conserved charges equal to the number of Hilbert spaces we need to describe the system.
For example, a spin chain described by a lattice of N sites is integrable if there are N
conserved charges associated to the system. We now give immediatly an example, showing
the integrability of the Heisenberg spin chain.

1.1.2 The Heisenberg XXX1/2 spin chain

Now we show the integrability of a lattice made up by N sites where a vector of spin s =
1

2
is associated to each site. The interaction is nearest neighbour like, so the Hamiltonian of
the system is:

H =
N∑
n=1

[
1

4
− ~sn · ~sn+1

]
=

1

4

N∑
n=1

[1− ~σn · ~σn+1] (1.2)

where ~sn =
1

2
~σn are the spin matrices, with ~σn Pauli matrices, and periodic boundary

conditions are imposed. This system is called Heisenberg model. It is also called XXX
model because the interaction is the same for all the components of the spin. In general,
a XYZ system has the Hamiltonian:

H =
N∑
n=1

[
1

4
− Jαsα,nsα,n+1

]
, α = 1, 2, 3 . (1.3)

The quantum space that describe the system is, naturally:

H =
N∏
n=1

⊗hn (1.4)
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where hn is the Hilbert space associated to each site, in this case h = C2. A spin matrix
~sn acts nontrivially only on the Hilbert space associated as follows:

~sn = I⊗ I⊗ · · · ⊗ ~s︸︷︷︸
n-th place

⊗ · · · ⊗ I . (1.5)

Now we can give a short demonstration of the integrability of this system. What
follows is based on [18], where one can find the complete proof of all the relations that
will appear here. First, let us introduce a permutation operator:

P =
1

2
(I⊗ I + ~σ ⊗ ~σ) . (1.6)

We can rewrite, using it, the Hamiltonian as follows:

H =
1

2

N∑
n=1

(1− Pn,n+1) . (1.7)

Now define a local operator, called Lax operator, acting on the space hn ⊗ V , where V is
an auxiliary space:

Ln,a(λ) = λ(In ⊗ Ia + ~sn ⊗ ~σa) (1.8)

where the label a indicates the auxiliary space. In our example, V coincides with C and it
is the same of hn but in general it does not have to be the same. The complex parameter
λ is called spectral parameter. From (1.6) we have:

Ln,a(λ) =

(
λ− i

2

)
In,a + Pn,a . (1.9)

This relation permits to better understand the meaning of the Lax operator. Let ψn to
be vector from H ⊗ V associated to each site of the chain. Lax operator defines parallel
transport of the chain, through the relation:

ψn+1 =
1

λ
Lnψn . (1.10)

In other words, Lax operator is a connection on the lattice. Alternatively, we can put the
Lax operator in the form of a 2× 2 matrix, acting on V , with entries as operators in hn:

Ln,a(λ) =

(
λ+ is3

n is−n
is+
n λ− is3

n

)
(1.11)

where s±n = s1
n ± is2

n.
The next task is to define commutation relations among Lax operators. Since Lax

operator is a 4× 4 matrix, there are 16 matrix elements whose commutation relations we
have to write. Compactly, we can write this set of relations as follows:

Ra1,a2(λ− µ)Ln,a1(λ)Ln,a2(µ) = Ln,a2(µ)Ln,a1(λ)Ra1,a2(λ− µ) , (1.12)

that is a relation in H ⊗ V1 ⊗ V2 where the indices a1 and a2 and the variables λ and µ
are associated respectevely to V1 and V2. In our case, the matrix Ra1,a2 reads as:

Ra1,a2(λ) =
1

λ+ i
(λIa1,a2 + iPa1,a2) . (1.13)
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Having introduced the Lax operator as a connection on the chain, we can define an
operator that describes parallel transport once around the chain as follows:

Ta(λ) = LN,a(λ)LN−1,a · · ·L1,a(λ) . (1.14)

This operator is called Monodromy Matrix and, obviously, obeys the same commutation
rule as Lax operator (1.12):

Ra1,a2(λ− µ)Ta1(λ)Ta2(µ) = Ta2(µ)Ta1(λ)Ra1,a2(λ− µ) . (1.15)

We can put the Monodromy Matrix in the form of a 2 × 2 matrix on V , analogously to
what we have made with Lax operator (1.11), obtaining :

Ta(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
(1.16)

where the matrix A,B,C,D act on the full quantum space H. From the definition, it is
clear that Monodromy Matrix is polynomial in λ of order N .

We now introduce the family of operators

F (λ) = Tra(Ta(λ)) (1.17)

that, after tracking on the auxiliary space, act on H. Operators F (λ) are also polynomial
in λ and have a non-trivial expansion:

F (λ) = 2λN +

N−2∑
l=0

Qlλ
l . (1.18)

Using (1.15) and (1.13) it is possible to prove that

[F (λ), F (µ)] = 0 , (1.19)

so, from (1.18), we have that all the N − 1 operators Ql commute among themselves. We
are very close to the proof of integrability of the system. Next step is to show that the
Hamiltonian is one of the Ql. Precisely, Hamiltonian is the operator Q2 and its expression
is, from [18]:

H =
N

2
− i

2

d

dλ
lnF (λ)


λ=i/2

. (1.20)

Now, adding the third component of the total spin S3, we complete a family of N com-
muting operators including the Hamiltonian, i.e., the system is integrable.

1.2 The Bethe equations

Let us continue the analysis of integrable systems, in particular of the XXX Heisenberg
model, finding the eigenstates and the eigenvalues for the Hamiltonian. Integrability says
that eigenstates of the Hamiltonian are also eigenstates of the other N − 1 commuting
operators. We can simultaneously diagonalize all of them diagonalizing the operator F (λ).
We prooced as usual it is done in Quantum Mechanics: first we try to define a pseudo-
vacuum state for F (λ) and subsequently we shall build the other eigenstates using a kind
of raising operator on the pseudo-vacuum state.
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Let us start to build up the pseudo-vacuum state. For the n−th site of the chain, the
vector that represents the spin up state is:

|+〉n =

(
1
0

)
, (1.21)

that, under the action of the raising spin operator s+
n , obeys to the relation

s+
n |+〉n = 0 (1.22)

and, under the action of Lax operator we have

Ln,a(λ)|+〉n =

(
λ+ is3

n is−n
is+
n λ− is3

n

)
|+〉n =

(
λ+ i

2 ∗
0 λ− i

2

)
|+〉n , (1.23)

where the term ∗ is not relevant now. The last relation show that the Lax operator has
a upper triangular form when applied on |+〉n. We define as pseudo-vacuum state, or
reference state, the state

Ω =

N∏
n=1

⊗|+〉n . (1.24)

From (1.23) we can immediatly see that the Monodromy Matrix is also upper triangular
when applied to Ω:

Ta(λ) =

N∏
n=1

Ln,a(λ)Ω =

((
λ+ i

2

)N ∗
0

(
λ− i

2

)N
)

Ω (1.25)

and, finally, we get that Ω is an eigenstate of F (λ) = A(λ) +D(λ):

F (λ)Ω = [A(λ) +D(λ)]Ω =

[(
λ+

i

2

)N
+

(
λ− i

2

)N]
Ω . (1.26)

Now we pass to construct the other eigenstates of F (λ). We follow a method presented
by Bethe in [19], called Bethe ansatz, that is based on the crucial assumption to use B(λ)
as a raising operator, i.e., getting other eigenstates applying successively the operator
B(λ) to Ω:

Φ({λ}) = B(λ1)B(λ2) · · ·B(λl)Ω . (1.27)

We will see now that Φ({λ}) is an eigenstate of F (λ) only for a specific set of values
λ1, · · · , λl of the spectral parameter. We need to analyze commutation rules between
B(λ) and A(λ) and D(λ): they follow from (1.15), (1.13) and (1.17):

[B(λ), B(µ)] = 0 (1.28)
A(λ)B(µ) = α(λ− µ)B(µ)A(λ) + β(λ− µ)A(µ)B(λ) (1.29)
D(λ)B(µ) = γ(λ− µ)B(µ)D(λ) + δ(λ− µ)D(µ)B(λ) (1.30)

where α(λ) =
λ− i
λ

and γ(λ) =
λ+ i

λ
, while explicit form of functions β(λ) and δ(λ) are

now not relevant. If the second term on the right sides of (1.29) and (1.30) were absent,
Φ({λ}) would have been an eigenstate of F (λ) for all values of λ. The presence of these
terms generates some uwanted terms but they could be erased for a specific set of values
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of λ, so, for them, Φ is at the end eigenstate of F (λ). This set is determined by solving a
trascendental equation. For this particular set, the eigenvalue equation reads as:

F (λ)Φ({λ}) =

[
l∏

m=1

(
λm − λ+ i

λm − λ

)(
λ+

i

2

)N
+

N∏
m=1

(
λm − λ− i
λm − λ

)(
λ− i

2

)N]
Φ({λ}).

(1.31)
Right side of (1.31) has to be analytic as left side, so we have to cancel the poles λ = λm.
Poles are removed if these relations are valid:(

λk + i
2

λk − i
2

)N
=

l∏
m=1;m 6=k

λk − λm + i

λk − λm − i
, k = 1, · · · , l . (1.32)

The set {λ1, · · · , λl} is the same set mentioned above that we need for erasing unwanted
terms in commutation relations (1.29) and (1.30). Thus, self-consistency of (1.31) provides
the set of λ’s for which it is valid. Equations (1.32) are called Bethe equations and the
elements of the set {λ1, · · · , λl} are called Bethe roots.

Bethe equations contain all the information about diagonalization of conserved charges
of the system. It is possible to show that Bethe roots play a fundamental role in deter-
mining the eigenvalues of these physical quantities. Let see some examples (see [18] for
completeness). Consider the shift operator:

U = eiΠ = i−NF (λ)

λ=i/2

. (1.33)

When we apply U to Φ, since the second term of right side of (1.31) is zero for λ =
i

2
,

we find a multiplicative spectrum for U and, subsequently, an additive spectrum for the
momentum operator:

ΠΦ =
l∑

m=1

p(λm)Φ (1.34)

where

p(λ) =
1

i
ln

(
λ+ i

2

λ− i
2

)
. (1.35)

From (1.20) we can see that also the Hamiltonian has an additive spectrum:

HΦ =

l∑
m=1

h(λm)Φ (1.36)

where
h(λ) = −1

2

dp(λ)

dλ
=

1

2

1
1
4 + λ2

. (1.37)

The parameter λ can be interpreted as the “rapidity”. (Recall that the energy and the
momentum of a relativistic particle can be parametrized in terms of the rapidity θ as
p = m sinh θ, E = m cosh θ.) Eliminating the parameter λ we get the dispersion relation:

h(p) =
1

2
(1− cos p) . (1.38)
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1.3 The Non-linear Integral equation

1.3.1 General idea

We present now a method completely equivalent to Bethe equations for solving integrable
models. Before, we want to underline and summarize how Bethe ansatz works:

1. Starting from an integrable system, we find a set of Bethe-like equations as (1.32)
for XXX Heisenberg model;

2. Solving Bethe-like equations, we find a set of M Bethe roots uk, k = 1, · · · ,M ;

3. Important Physical quantities have additive spectrum eigenvalues, i.e., they could
be expressed in terms of sums of values of certain functions O(u) computed in Bethe
roots:

M∑
k=1

O(uk) . (1.39)

Solving Bethe equations is not a difficult task for short chains. For long chains it could be
difficult so it is better fo use an alternative method we now show. This method transforms
the set of non-linear Bethe equations in only one non-linear integral equation. The starting
idea is this: we want to evaluate a sum like (1.39) and, if we make the hypothesis that all
Bethe roots uk lie in a real interval [A,B], we can compute “easily” the sum using Cauchy
thorem:

2πi
M∑
k=1

O(uk) =

∮
C
dz O(z)f(z) , (1.40)

where C is a contour of integration in the complex plane (see fig. (1.1)) and function f(z)
has to satisfy two conditions:

• f(z) has poles in Bethe roots uk;

• Resz=uk (f(z)) = 1.

Figure 1.1: Contour of integration for Cauchy theorem
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1.3.2 The Counting function

We have now to develop the idea showed above, introducing first a right function f(z)
satisfying the two properties listed above. We can choose

f(z) =
iδZ ′(z)eiZ(z)

1 + δeiZ(z)
(1.41)

with δ = ±1 and the property for f(z) to have poles in Bethe roots with residues equal
to one is satisfied if the function Z(z) satisfies:

eiZ(uk) = −δ , k = 1, · · · ,M , (1.42)

with the interval [A,B] defined through:

eiZ(A) = eiZ(B) = δ . (1.43)

Function Z(z) plays the central role in this picture. It is called counting function (it will
be clear later the motivation). Focus on property (1.42): it is an equation for Bethe roots
and, more precisely, it replies Bethe equations. This property is the link between Bethe
equations method and the picture we are developing now. In practical cases we will see
that, starting from Bethe equations, we will define a counting function Z(u) satisfying
(1.43) and (1.42). It is not necessary, but we prefer choose counting function with another
feature: we want Z(u) monotone. This choice permits to fix a one-to-one correspondence
between Bethe roots values on the axis and corresponding values Z(uk). We are completely
free in choosing increasing or decreasing monotonicity. We now fix once for all our counting
function as monotonously decreasing.

1.3.3 Developing the idea

Let us now enter in the main developing part of the method. First we explicit (1.40) using
(1.41) and separating the countur C:

2πi
M∑
k=1

O(uk) =

∫ B

A
dvO(v − iε) iδZ

′(v − iε)eiZ(v−iε)

1 + δeiZ(v−iε) +

∫ A

B
dvO(v + iε)

iδZ ′(v + iε)eiZ(v+iε)

1 + δeiZ(v+iε)
+

+

∫ ε

−ε
idyO(B + iy)

iδZ ′(B + iy)eiZ(B+iy)

1 + δeiZ(B+iy)
+

∫ −ε
+ε

idyO(A+ iy)
iδZ ′(A+ iy)eiZ(A+iy)

1 + δeiZ(A+iy)
.

(1.44)

We are now in front of a crucial point: we note that function f(z) could be written in a
simple compact way:

f(z) =
d

dz
ln
[
1 + δeiZ(z)

]
(1.45)

but we cannot make easily this substitution in the integrals due to the fact that we are
integrating in the complex plane. We define the branch of the complex logarithm along
the negative real semi-axis. So we must request that the argument of the logarithm in
(1.45) does not be on the branch cut, i.e.

Re
[
1 + δeiZ(z)

]
= 1 +

∣∣∣eiZ(z)
∣∣∣ cosφ > 0⇒

∣∣∣eiZ(z)
∣∣∣ cosφ > −1 . (1.46)

We have two cases: if
∣∣eiZ(z)

∣∣ ≥ 1 relation (1.46) could not be verified for cosφ ∈ [−1, 0];
if
∣∣eiZ(z)

∣∣ < 1 relation (1.46) is verified for all values of φ. So, with the goal of introducing
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complex logarithms, equation (1.44) is well defined only if the exponentials in it have the
property

∣∣eiZ(z)
∣∣ < 1. If ε is suffiecient small (it is an arbitrary parameter) we have:∣∣∣eiZ(v+iy)

∣∣∣ ' e−yZ′(v) . (1.47)

Due to our choice of mononously decreasing counting function, we have that last relation
is smaller than one only if y < 0, i.e. in the complex semi-plane with negative imaginary
part. So, in equation (1.44), in all integrals in which variable of integration z lives in the
upper complex semi-plane, we have to manipulate expression to have exponentials of the
kind e−iZ(v+iy). In this case we have the correct behaviour:∣∣∣e−iZ(v+iy)

∣∣∣ ' eyZ′(v) < 1 if y > 0 . (1.48)

With this prescription, (1.44) becomes:

2πi

M∑
k=1

O(uk) =

∫ B

A
dvO(v − iε) iδZ

′(v − iε)eiZ(v−iε)

1 + δeiZ(v−iε) +

∫ A

B
dvO(v + iε)

iZ ′(v + iε)

1 + δe−iZ(v+iε)
+

+

∫ 0

−ε
idyO(B + iy)

iδZ ′(B + iy)eiZ(B+iy)

1 + δeiZ(B+iy)
+

∫ ε

0
idyO(B + iy)

iZ ′(B + iy)

1 + δe−iZ(B+iy)
+

+

∫ −ε
0

idyO(A+ iy)
iδZ ′(A+ iy)eiZ(A+iy)

1 + δeiZ(A+iy)
+

∫ 0

ε
idyO(A+ iy)

iZ ′(A+ iy)

1 + δe−iZ(A+iy)
. (1.49)

Now we can further manipulate these expression in order to introduce the derivative of
logarithms. We obtain, in few steps:

2πi
M∑
k=1

O(uk) = −
∫ B

A
dvO(v + iε)iZ ′(v + iε) + 2iIm

∫ B

A
dvO(v − iε) d

dv
ln
[
1 + δeiZ(v−iε)

]
−

−
∫ ε

0
idyO(A+ iy)iZ ′(A+ iy) + 2iIm

∫ −ε
0

dyO(A+ iy)
d

dy
ln
[
1 + δeiZ(A+iy)

]
−

−
∫ 0

ε
idyO(B + iy)iZ ′(B + iy) + 2iIm

∫ 0

−ε
dyO(B + iy)

d

dy
ln
[
1 + δeiZ(B+iy)

]
. (1.50)

Now, look to the first elements of every lines in (1.50). We can rewrite them in a compact
and smart form in the following way: define a rectangular contour C ′ in the complex plane
with the lower base coinciding with [A,B]; if there are no poles of Z(v) and O(v) in the
area closed by C ′ we have: ∮

C′
O(v)iZ(v) = 0 (1.51)

from which we have:∫ B

A
dvO(v + iε)iZ ′(v + iε) +

∫ ε

0
idyO(A+ iy)iZ ′(A+ iy)+

+

∫ 0

ε
idyO(B + iy)iZ ′(B + iy) = −

∫ A

B
dvO(v)iZ ′(v) . (1.52)

Putting (1.52) in (1.50) we finally obtain:
M∑
k=1

O(uk) = −
∫ B

A

dv

2π
O(v)Z ′(v) + Im

∫ B

A

dv

π
O(v − iε) d

dv
ln
[
1 + δeiZ(v−iε)

]
+

+ Im
∫ −ε

0

dy

π
O(A+ iy)

d

dy
ln
[
1 + δeiZ(A+iy)

]
+ Im

∫ 0

−ε

dy

π
O(B + iy)

d

dy
ln
[
1 + δeiZ(B+iy)

]
.

(1.53)

15



Equation (1.53) is what we call Non-Linear Integral Equation (NLIE). Note that
discarding the non-linear terms, we have an usual and well-known equation, interpreting
the function −Z ′(v) as a density (of Bethe roots in this case). So NLIE shows the exact
structure of equations involving densities.

1.3.4 NLIE for the counting function

We are very close to complete our picture. What we still need is a way to evaluate counting
function that is not completely known because, as we will see in practical case, it contains
a part that depends on the Bethe roots themselves:

Z(u) = Φ(u)−
k∑

m=1

φ(u, uk) . (1.54)

We can evaluate Z(u) applying (1.53) to the second term in the last equation:

Z(u) = Φ(u) +

∫ B

A

dv

2π
φ(u, v)Z ′(v)− Im

∫ B

A

dv

π
φ(u, v − iε) d

dv
ln
[
1 + δeiZ(v−iε)

]
+

− Im
∫ −ε

0

dy

π
φ(u,A+ iy)

d

dy
ln
[
1 + δeiZ(A+iy)

]
− Im

∫ 0

−ε

dy

π
φ(u,B + iy)

d

dy
ln
[
1 + δeiZ(B+iy)

]
.

(1.55)

Our scheme is now complete: given an integrable system, we can derive Bethe-like equa-
tions or, alternatively, the counting function Z(u) linked to them via (1.42), satisfying
also (1.43). Then, we can work out the dipendence of Z(u) on Bethe roots solving the
NLIE (1.55) and, finally, we use the function so obtained for solving (1.53) an finding the
eigenvalues of physical quantities such energy and momentum. Clearly, the main obstacle
in this picture is the presence of non-linear terms. How to deal with non-linear terms
depends on the specific system we are analyzing. Obviously, in this picture results should
not depend on the kind of contour C choosen for the implementation of Cauchy theorem,
i.e. on the thickness of the rectangle. So, making the limit ε→ 0 in (1.53) and (1.55) we
get:,

M∑
k=1

O(uk) = −
∫ B

A

dv

2π
O(v)Z ′(v) + Im

∫ B

A

dv

π
O(v)

d

dv
ln
[
1 + δeiZ(v−i0+)

]
(1.56)

and

Z(u) = Φ(u) +

∫ B

A

dv

2π
φ(u, v)Z ′(v)− Im

∫ B

A

dv

π
φ(u, v)

d

dv
ln
[
1 + δeiZ(v−i0+)

]
. (1.57)

1.4 NLIE application: energy of the XXX Heisenberg chain

We now present an example of application of the NLIE picture studying the already seen
Heisenberg model. Recall that a XXX chain state is described by Bethe equations:(

uj − i
2

uj + i
2

)L
=

M∏
k=1;k 6=j

uj − uk − i
uj − uk + i

, j = 1, · · · ,M (1.58)

where L is the number of nodes of the lattice and M is the number of Bethe roots uj that
describe the state. We want to apply NLIE scheme in order to calculate the energy of
the chain in the case of large L. We will able to compute the leading term and the first
correction.
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1.4.1 Counting function for the Heisenberg model

Let us start defining a counting function for the XXX chain. In order to do it, let start
working on Bethe equations (3.48) applying the logarithm to both sides of the equation:

L ln

(
uj − i

2

uj + i
2

)
−

M∑
k=1;k 6=j

ln

(
uj − uk − i
uj − uk + i

)
= 2πinj , j = 1, · · · ,M (1.59)

where the integers nj appear due to the polidromy of the complex logarithm and are
related to each Bethe root position. Now, using the property

i ln

(
x− ib
x+ ib

)
− i ln

(
ib− x
ib+ x

)
= π (1.60)

we can manipulate (1.59) and obtain:

iL ln

(
i
2 + uj
i
2 − uj

)
− i

M∑
k=1

ln

(
i+ uj − uk
i− uj + uk

)
= π(2nj + L−M + 1) , j = 1, · · · ,M. (1.61)

Now we introduce a parameter that gives information about the parity of the chain:

∆ = (L−M)mod 2 ⇒ L−M = ∆ + 2l (1.62)

where l = 0, 1 and its specific value is related to the particular state of the chain, i.e. to
the numbers of Bethe roots. We can so define a new parameter in the equations that takes
account of distribution of roots for a specific state:

Ij = nj + l + 1 . (1.63)

The set I1, · · · , IM is a set of quantum numbers describing a specific state of the chain.
With the introduction of ∆ and Ij , we can finally put Bethe equations in the form:

iL ln

(
i
2 + uj
i
2 − uj

)
− i

M∑
k=1

ln

(
i+ uj − uk
i− uj + uk

)
= π(2Ij + ∆− 1) , j = 1, · · · ,M. (1.64)

We are now able to define the right counting function for this model. Let start with
identify the interval [A,B] with all the real axis. Then, define a function φ(x, b) as follows:

φ(x, b) = i ln

(
ib+ x

ib− x

)
, b > 0 (1.65)

and the counting function as

Z(u) = Lφ

(
u,

1

2

)
−

M∑
k=1

φ(u− uk, 1) . (1.66)

With this definition we can write (1.64) in the compact form:

Z(uj) = π(2Ij + ∆− 1) , j = 1, · · · ,M . (1.67)

This last way of writing Bethe equations permits to verify immediatly that the choosen
counting function fulfills the property (1.42) necessary to define a correct counting function
for NLIE picture:

eiZ(uj) = eiπ(2Ij+∆−1) = eiπ(∆−1) = (−1)∆−1 = ±1 = −δ . (1.68)
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Property (1.43) is also easily verified noting before that

lim
x→±∞

φ(x, b) = ±π ⇒ lim
u→±∞

Z(u) = ±(L−M) . (1.69)

So we have

eiZ(u→±∞) = e±iπ(L−M) = (−1)L−M = (−1)∆ = −(−1)∆−1 = δ . (1.70)

Note also that Z(u) is monotone, but with increasing behaviour. It is not a problem
beacuse we have said that the important feature we want to have is monotonicity.

1.4.2 Energy of the chain

Now we can apply NLIE scheme, using (1.56) with, for energy

O(u) =
1

u2 + 1
4

(1.71)

and (1.57) for the counting function (1.66). Note that some differences in signes are present
due to the specific for the model increasing counting function, respect to decreasing one
present in the general derivation. We have:

E = 2 ln 2− Im
∫ +∞

−∞
dv

1

coshπv

d

dv
ln
[
1 + (−1)∆eiZ(v+i0+)

]
(1.72)

and

Z(u) = 2L arctan eπu − πL

2
+ 2Im

∫ ∞
−∞

dvG(u− v) ln
[
1 + (−1)∆eiZ(v+i0+)

]
(1.73)

where

G(x) =

∫ +∞

−∞

dk

2π
eikx

1

e|k| + 1
. (1.74)

Evaluation of non-linear terms

We want now to put non-linear terms in (1.53) in a form that gives the possibility to
better estimate them in some certain limits. Formulae we now present are not valid in
general, but under certain conditions. It is possible to show, by direct calculations, that
they are valid for non-linear terms we will compute in the example we are analyzing. We
start with

NL = Im
∫ B

A

dv

π
O(v − iε) d

dv
ln
[
1 + δeiZ(v−iε)

]
+ Im

∫ −ε
0

dy

π
O(A+ iy)

d

dy
ln
[
1 + δeiZ(A+iy)

]
+

+ Im
∫ 0

−ε

dy

π
O(B + iy)

d

dy
ln
[
1 + δeiZ(B+iy)

]
. (1.75)

We can replace logarithmic terms in this way:

ln
[
1 + δeiZ(z)

]
=
∞∑
n=1

(−1)n+1δn
einZ(z)

n
(1.76)
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obtaining

NL = Im
∫ B

A

dv

π
O(v − iε) d

dv
+
∞∑
n=1

(−1)n+1δn
einZ(v−iε)

n
+

+ Im
∫ −ε

0

dy

π
O(A+ iy)

d

dy

∞∑
n=1

(−1)n+1δn
einZ(A+iy)

n
+

+ Im
∫ 0

−ε

dy

π
O(B + iy)

d

dy

∞∑
n=1

(−1)n+1δn
einZ(B+iy)

n
. (1.77)

We can estimate such terms using these formulae:∫ v

dvO(v − iε) d
dv
einZ(v−iε) = einZ(v−iε)

∞∑
k=0

(
i

nZ ′(v − iε)
d

dv

)k
O(v) (1.78)

∫ y

dyO(c− iy)
d

dy
einZ(c−iy) = einZ(c−iy)

∞∑
k=0

(
i

nZ ′(c− iy)

d

dy

)k
O(c− iy) (1.79)

(1.80)

which permit to obtain, exchanging series with integrals:

NL =

∞∑
n=1

(−1)n+1δn

πn

∞∑
k=0

[
i2k

n2k
sin(nZ(v))

(
1

Z ′(v)

)2k d2k

dv2k
O(v) +

+
i2k+1

n2k+1
cos(nZ(v))

(
1

Z ′(v)

)2k+1 d2k+1

dv2k+1
O(v)

]v=B

v=A

. (1.81)

Last step is valid if series in (1.78) and (1.79) are convergent or could be truncated. It could
be verified, in practical cases, by direct calculations. Because the condition δ = eiZ(A) =
eiZ(B) we have sin(nZ(A)) = sin(nZ(B)) = 0 and cos(nZ(A)) = cos(nZ(B)) = δn. So,
in (1.81), only the term containing cosine function survives when we evaluate functions in
the extrema. Finally, summing over n we are left with:

NL = −
∞∑
k=0

(2π)2k+1

(2k + 2)!
B2k+2

(
1

2

)[(
1

Z ′(v)

d

dv

)2k+1

O(v)

]v=B

v=A

(1.82)

where Bk(x) is a Bernoulli polynomial. We can immediatly note from (1.82) that depen-
dence on ε is canceled (as we want).

Recalling that we are in the limit of large L, let us now evaluate non-linear terms in
(1.72) using (1.82), with the identification:

O(v) =
π

coshπv
. (1.83)

From (1.73) we have
Z ′(v) = L

π

coshπv
+ · · · (1.84)
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so we can note that the k = 0 term in (1.82) gives a term of order
1

L
. We can so estimate

the non-linear term of the energy as follows:

NL = 2πB2(1/2) lim
v→∞

O′(v)

Z ′(v)
+O

(
1

L2

)
(1.85)

where, with (1.83), we get

lim
v→∞

O′(v)

Z ′(v)
=
−π
L

+O

(
1

L2

)
. (1.86)

Since B2(1/2) = − 1

12
we finally have

NL =
π2

6L
+O

(
1

L2

)
(1.87)

and

E = 2L ln 2− π2

6L
+O

(
1

L2

)
. (1.88)
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Chapter 2

The AdS/CFT duality

2.1 Maldacena conjecture

We now present a general and short overview about AdS/CFT duality. This correspon-
dence, first introduced through the so-called Maldacena conjecture [1], matches two dif-
ferent physical models: on a side, we have a Quantum Field Theory with exact conformal
spacetime symmetry, while on the other side there is a Superstring Theory with strings
living on a background which contains an Anti-de-Sitter (AdS) space-time as a factor.
We follow for this general description [20]. More precisely, the duality is formulated in
these terms: the boundary of an AdSd+1 spacetime is a conformally flat d−dimensional
spacetime on which CFT is formulated. The AdS/CFT duality relates the string partition
function, with sources φ for string vertex operators fixed to value J at the boundary of
AdSd+1, to the CFTd partition function with sources J for local operators:

Zstr[φ|∂AdS = J ] = ZCFT [J ] .

In other terms, for every string observable at the boundary of AdSd+1 there is a corre-
sponding observable in the CFTd (and vice versa) whose values are expected to match.
AdS/CFT duality is suggested in [1] by some considerations about black holes geometries:
they shows near horizon AdS backgrounds.

2.2 String/Gauge dualities

Main importance of AdS/CFT duality is due to the evidence, through it, of a relation
between a string theory and a gauge theory. Insights about similarities among these two
kind of models are as old as string theory itself. It is well known that hadron spectrum
organizes into so called Regge-trajectories that represent an appropriate linear relation-
ship, with universal slope, between the squared masses of hadronic resonances and their
spins. This is what exactly a string theory on flat space predicts, so, for some time,
String theory was considered a good candidate model for strong interactions. For many
reasons this picture doesn’t work and we have QCD as the right model describing strong
interactions, but it is clear that, under some conditions, string theory could be a useful
approximation to gauge theory phenomena. Another manifestation of stringy behaviour
in gauge theory is the presence of flux tubes of the Chromodynamic field: they form,
between two quarks when they are pulled apart. Using some approximation, they could
be seen as one dimensionale objects with costant tension, i.e. strings.

AdS/CFT duality regards these aspects of relationship between Strings and Gauge
theory in a deeper way. It proposes that in some cases a Gauge Theory is exactly dual to
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a String one. A very important aspect immediatly arises from the duality: today, String
Theory is the best model able to describe a complete Quantum Theory of all interactions,
including Gravity. If the duality is exact, we will be able to study Quantum Gravity using
a more comfortable and usual Gauge Theory.

However, today it does not exist a formal proof of the duality. What we are able to
do is testing duality predictions. A milestone in this direction has been given by t’Hooft
in 1974 [2] with the discovery of the planar limit. This is a limit for gauge theories with
gauge symmetries SU(Nc), SO(Nc) or Sp(Nc), where Nc is the number of colors of the
model. It consists in taking the rank of the group to infinity, i.e. Nc → ∞, keeping the
rescaled gauge coupling λ = g2

YMNc finite. In this limit, dominating Feynman diagrams
are those drawingable on a plane, whereas the others with crossing lines are suppressed.
Now, main attention in testing AdS/CFT duality regards the most symmetric setting:
on the gauge side we have the N = 4 Super Yang-Mills theory, while on string side the
partner is type IIB Superstring theory on AdS5 × S5 background, where S5 represents a
maximally symmetric five-dimensional factor in a total space in which the other factor
is an Anti de Sitter space in five dimensions. Suprisingly, in the planar limit of N = 4
SYM there is the miracolous appearing of integrability. Before exploring how exactly
integrability works and enters in N = 4 SYM, we have to understand why appearing of
integrability is so important in AdS/CFT duality, focusing on a specific feature of the
duality, i.e. its strong/weak behaviour.

2.2.1 Strong/weak duality

The AdS/CFT duality is of the kind strong/weak. For understanding what it means,
let discuss now about the mapping of the parameters of both theories. On the gauge
side, two parameters are relevant: the t’Hooft coupling λ = g2

YMNc and the number of
colors Nc that define the rank of the gauge group. On string side, we have the effective

string tension T =
R2

2πα′
, where α′ is the inverse string tension and R is the radius of

AdS5/S5. Effective string tension also obeys to the relation of proportionality T ∝ ~−1.
The AdS/CFT correspondence relates them as follows:

λ = 4π2T 2 ,
1

Nc
=

gstr
4π2T 2

. (2.1)

On the gauge side, the weak coupling regime is the region of parameter space where
λ → 0. In this regime, perturbative calculations on Feynman diagrams permit to find
reliable results. Vice-versa, on the string side perturbative regime is in the parameter
region around the point gstr = 0, λ = ∞. This double limit describes free and classical
strings, this second feature is due to (2.1): λ→∞⇒ T →∞⇒ ~ ∼ 0. The main difficult
is that this perturbative limit on the string side corresponds to the strong coupling limit
on the gauge side. The two perturbative limits of the two theories do not overlap! This
creates a strong obstacle in testing the duality, because we cannot compare directly results
in calculations of matched observables into the duality. On the other hand, if we had a
formal proof of the duality, we could have a great possibility from the strong/weak duality:
we could get on a side exact results in strong coupling regime through perturbative results
on the other side and vice-versa. This is where integrability comes to help. Let see it in
details.
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2.3 Integrability in N = 4 Super Yang-Mills

2.3.1 N = 4 Super Yang-Mills Lagrangian

In order to introduce integrability, we show briefly the field content of N = 4 SYM theory.
The Action reads:

S =
1

g2
YM

∫
d4xTr

−1

2
FµνF

µν +Dµφ
2 −

∑
i<j

[φi, φj ]
2 + iψ̄ΓµDµψ − ψ̄Γi[φi, ψ]

 .

(2.2)
The theory contains a gauge field Aµ, (µ = 0, 1, 2, 3), six scalar fields Φi, (i = 1, · · · , 6)
and four Majorana fermions ψAα (ψ̄Aα̇ ), (A = 1, · · · , 4). Covariant derivative Dµ and the
strenght field Fµν are defined as usual:

Dµ(∗) = ∂µ(∗)− i[Aµ, (∗)] , Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (2.3)

and, finally, ΓA = (Γµ,Γi) are ten 16x16 Dirac matrices. This model has a much richer
set of symmetries: first it has supersymmetry, i.e. bosonic degrees of freedom are in the
same number as fermionic ones; then, it is present conformal symmetry, that implies that
there are no massive particles whose spectrum we might wish to compute.

2.3.2 Spectrum of Scaling Dimensions

Let us take another step to the integrability. Let start with a comparison with QCD. An
old (and never reached) target in QCD is to derive a quantitative description of the mass
spectrum of hadronic particles and their excitations, expressing them (for example focus
on masses of proton and neutron) as functions of the parameters of the theory:

mp = f1(αs, α, µreg, · · · ) , mn = f2(αs, α, µreg, · · · ) .

In QCD, this result has to remain a dream: at low energies, coupling costant αs is too
large for meaningful approximation, so non-perturbative contributions dominate. Then,
self-interactions of Chromodynamic field lead to a non-linear and highly complex problem.
Clearly, confinement obscures the nature of fundamental particles in QCD at low energies.

However, an analogous to this scheme is present in N = 4 SYM. This model, roughly,
is a cousin of QCD with a richer content of symmetries and fields. Conformal symmetry
implies that non masses are present, but there is an analogue quantity that could play a
similar role of mass, giving a spectrum depending on fundamental parameters: the local
operators, defined as compositions of fundamental fields all residing at a common point
in spacetime. Like in QCD, the color charges are balanced out making local operators
gauge-invariant objects. Then, there is a characteristic quantity to replace the mass,
the so-called scaling dimension, related to two points correlation function among local
operators. Classically, scaling dimension equals the sum of constituents dimensions and,
like the mass, it receives quantum corrections from interactions between constituents. This
correction is called anomalous dimension and it is the eigenvalue of a quantum operator,
the so-called Dilatation Operator :

DOO = f(λ)O (2.4)

where DO is the dilatation operator related to the local operator O and f(λ) is the anoma-
lous dimension itself. Here, finally, we reach the point where integrability joins the picture:
in planar limit of N = 4 SYM equation (2.4) can be written as an eigenvalue equation

23



for a Hamiltonian of an integrable system, i.e. dilatation operator assumes the form of
a known integrable Hamiltonian. Integrability ensures that we can compute anomalous
dimension f(λ) using techinques belonging to integrable models at arbitrary values of λ.
In AdS/CFT duality picture, anomalous dimensions are matched with string energies. So,
integrability permits to obtain a wonderful test for AdS/CFT: the possibility to compute
anomalous dimensions at arbitrary values of λ connects the regime of perturbative gauge
theory with the perturbative regime of String theory.

The Thermodynamic Bethe Ansatz

Integration of the model means finding a solution for function f(λ) through (2.4). In
general, it is got as the solution of a set of integral equations: recently, great progresses has
been showed: a set of Thermodynamic Bethe Ansatz (TBA) equations [6] or an equivalent
Y−system of functional equations [7], together with certain additional information [8],
provides a solid ground for exact predictions for anomalous dimensions of planar N = 4
SYM. Finally, a very recent work [9] shows the possibility of a reformulation of TBA
equations as a finite set of integral equations.

TBA equations are not argument of this work. However, it is true that disentagling
the TBA equations for excited states is a quite difficult task and at present a numerical
approach seems to be the only viable strategy providing explicit results. Therefore, it is
still convenient to study all the domains and all the limits in which it is possible to use
the simpler Asymptotic Bethe Ansatz, showed in the previous chapter, in order to obtain
correct anomaolous dimension. We will soon show a case as example and, subsequently,
we give some insights about the limit of validity of ABA approach.

2.3.3 Integrability: the su(2) sector of N = 4 SYM

Let us show now an example that gives evidence of integrability in N = 4 SYM. We are
interesting in anomalous dimensions associated to the following local operators:

O = Tr
(
ZL−MWM + permutations

)
(2.5)

where
Z = φ1 + iφ2 , W = φ3 + iφ4 . (2.6)

We have local operators composed by L complex scalar fields, divided into L−M of kind
Z and M of kind W . The composition contains all possible permutations among these set
of field operators. Operators defined in this way realize a subgroup SU(2) of symmetry in
the global symmetry of the model.

Integrability of this model is prooved in [3]. We give now a short overview. Starting
point is the two point correlator 〈Om(x)On(y)〉: it has a UV divergence we can erase
through renormalization. We renormalize, substantially, performing a linear superposition
of all local operators:

OrenA = ZmAO
bare
m (2.7)

which permits us to get:

〈OrenA OrenB 〉 ∝
δAB

|x− y|2∆(λ)
(2.8)

where
∆(λ) = L+ γ(λ) (2.9)

where L is the classical dimension, while γ(λ) is the anomalous dimension we want to
analyze. It is clear now what we have said previously: anomalous dimension is, from
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(2.8), an effect due to the mixing of bare fields through renormalization. It is possible to
find an operator for which anomalous dimension is an eigenvalue, i.e. what we have called
dilatation operator. Of course, dilatation operator should be related to renormalization
coefficients. In this case we have (see [3]):

ΓO = γ(λ)O , Γ = Z−1 dZ

d ln Λ
(2.10)

where Λ is a UV cut-off.
We now see the explicit form of Γ for one-loop planar diagrams. Three cases are

possible (see fig. 2.1): exchange of boson field, crossing and self-interaction. Computing

Figure 2.1: One loop planar diagrams in su(2) sector

all these contributions, it is possible to write dilatation operator in the following form:

Γ =
λ

16π2

L∑
l=1

(1− Pl,l+1) (2.11)

where Pl,l+1 are permutation matrices. But we have yet seen this operator. Recalling

(1.7), it is exaclty the Hamiltonian of a XXX1/2 Heisenberg chain times a factor
λ

8π2
.

We well know that this Hamiltonian is exaclty solvable due to integrability, using Bethe
Ansatz equations or NLIE approach. Substantially, we can solve the problem making
these identifications

ΓO = γO ↔ H|ψ〉 = E|ψ〉 , (2.12)

O = Tr(ZZZWWWZWZZ · · ·+permutations)↔ |ψ〉 = | ↑↑↑↓↓↓↑↓↑↑ · · ·+permutations〉,
(2.13)

where H is (1.2) and E could be, for example in the case of large L, (1.88).

2.3.4 Limits of ABA integrability: the wrapping problem

We have seen in the previous subsection a natural way for appearing of integrability in
N = 4 SYM model. Substantially, dilatation operators could be written as hamiltonian
operators of such integrable spin chains. Proof of integrability was extended to all gauge
sectors of the theory and at all loops in a weaker sense: any local operator has been seen as
a state of a “spin chain” whose Hamiltonian is the dilatation operator related, although the
latter does not have an explicit expression of the spin chain form, but for first few loops.
Neverthless, large size (asymptotic) spectrum has turned out to be exactly described by
certain Asymptotic Bethe Ansatz-like equations: the so called Beisert-Staudacher equa-
tions [4], [5]. This picture suffers of a problem: focus now for simplicity on the su(2)
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sector just seen. It could be interesting find two-loops contributions to anomalous dimen-
sion: drawing all possible planar diagrams and computing all contributions, one finds a
spin chain Hamiltonian with an interaction that is no more of the kind nearest neighbour:
the new interaction involves three fields. Continuing on this path, growing in number of
loops corresponds to growing of number of internal fields involved in the interaction of the
Hamiltonian related. Building these Hamiltonian is a very high diffcult task, as we have
just said it is possible for few first loops but it is possible to derive, however, Bethe-like
equations. The problem is that this approach ceases to be well defined when number of
loops becomes equal to L, i.e. the length of the spin chain: in corresponding Hamiltonian
interactions should now involve L+ 1 fields. These phenomena of self-interactions of the
chain give uncorrect results in ABA picture. ABA calculations are so limited: exact re-
sults seem to be only until L− 1 loops. This problem is called wrapping. We will return
more precisely on this problem in the next chapter, when we will study sl(2) sector of the
theory. We can anticipate that it is possible to discard wrapping corrections under certain
limits, in which ABA works correctly at all loops.
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Chapter 3

High spin twist operators in sl(2)
sector of N = 4 Super Yang-Mills
Theory

3.1 Introduction

The set of composite operators
Tr(DsZL) + · · · , (3.1)

where D is a covariant derivative acting in all possible ways on the complex scalar field Z,
constitutes the so-called sl(2) sector of N = 4 SYM theory. The integer numbers s and L
are called respectevely spin and twist. In the framework of AdS/CFT duality, this set of
operators received particular attention, also because their connection to twist operators
in QCD [11, 12].

Integrability in the sl(2) sector is well known and studied [4, 5]. As it happens in su(2)
sector (showed in the previous chapter), every composite operator of the kind (3.1) can
be thought as a state of a ’spin chain’, whose hamiltonian is the dilatation operator itself.
Although it is possible to find explicit expressions for these hamiltonians only for the first
few loops, it is possible to describe exactly the spectrum of infinitely long operators up
the desired loop order applying an approach based on Asymptotic Bethe Ansatz (ABA),
obtaining Bethe-like equations, the Beisert-Staudacher equations [4, 5]. However, as we
have mentioned in the previous chapter, anomalous dimensions of operators with finite
size depend also by wrapping corrections [10], that start to play a role from L loops
contributions. High spin limit of fixed twist operators seems to offer a partial solution.
In the high spin (at fixed twist) limit the minimal anomalous dimension shows a leading
high spin behaviour with the logaritmh of s. In this chapter we show that the high spin
expansion goes on as follows:

γ(g, L, s) = f(g) ln s+ fsl(g, L) +
∞∑
n=1

γ(n)(g, L)(ln s)−n+

+
1

s

∞∑
n=−1

γ̌(n)(g, L)(ln s)−n +O
(
s−1(ln s)−∞

)
, (3.2)

where g is linked to the t’Hooft coupling λ via the relation λ = 8πg2. Peturbative calcula-
tions [13] (up to six loops) shows that for short (twist two and three) operators, wrapping

contributions behave as O
(

(ln s)2

s2

)
. It is natural to ask if this property extends to
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higher and possibly to all loops. If it is true, all functions appearing in (3.2) should be
wrapping-free. Main purpose of this chapter is to show and provide strong evidence of
this hypothesis.

Scaling functions f(g) and fsl(g, L) are well-known and studied. Universal scaling
function f(g) [21, 22, 23] is twice the cusp anomalous dimension of Wilson loops [21]. It
was obtained through the solution of a linear integral equation directly derived from the
asymptotic Bethe ansatz via the root density approach [5]. Moreover, it was carefully
studied and tested both in the weak [24, 5] and strong coupling limit [25, 26, 27, 28]. The
subleading term fsl(g, L) has been derived as solution of a non-linear integral equation
(NLIE) [29], while in [30] it has been obtained starting from a linear integral equation
(LIE). Explicit weak and strong coupling expansions are showed in [31]. It is important to
remark that strong coupling expansions of f(g) and fsl(g, L), found in these works, agree
with string theory computations [32]. This shows that there are good reasons to believe
that these functions are wrapping-free and so anomalous dimension is wrapping-free at
orders ln s and (ln s)0.

In this chapter we will focus on functions γ(n)(g, L) and γ̌(n)(g, L). Using NLIE method
described in the first chapter, applyed to the ABA equations for the sl(2) sector (the
already mentioned Beisert-Staudacher equations), we are able to find all-loops general
expressions for these functions. It is possible to show strong evidences of wrapping-
free behaviour of these functions, using a very interesting costraining property acting on
anomalous dimension [14]. Anomalous dimension should satisfy the following ’self-tuning’
property:

γ(g, L, s) = P

(
s+

1

2
γ(g, L, s)

)
, (3.3)

where the function P , when s→ +∞, expands as follows,

P (s) =
∞∑
n=0

an(lnC(s))

C(s)2n
, (3.4)

the quantity C(s) being given by

C(s)2 =

(
s+

L

2
− 1

)(
s+

L

2

)
. (3.5)

Relation (3.4) expresses the so-called ’reciprocity property’ (in Mellin space). An analo-
gous of these realtions exists also in QCD in the framework of Altarelli-Parisi equations,
but it is valid only at one loop. Istead, it is supposed that in the framework of sl(2) sector
of N = 4 SYM it is valid at all-loops. Relations (3.3), (3.4) provide exact and nontrivial
information on the high spin limit of anomalous dimensions of twist operators. Firstly, we
will show that our general expressions of the functions γ(n)(g, L) and γ̌(n)(g, L) fit exaclty
these results from reciprocity. Subsequently, this exact fitting contains (finally) strong
suggestions about the wrapping-free property of functions γ(n)(g, L) and γ̌(n)(g, L).

Results of this chapter are based on works [15] and [16].

3.2 Non-linear integral equation for sl(2) sector of N = 4
SYM

We start our path working to obtain the Non-linear integral equation for the sl(2) sector,
using the general method showed in the first chapter and already applied for the su(2)
sector - Heisenberg chain.
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3.2.1 Algebraic Bethe ansatz equations for sl(2) sector

Let start introducing the ABA equations for sl(2) sector (Beisert-Staudacher equations)
[4, 5]:

(
uk + i

2

uk − i
2

)L1 + g2

2x−(uk)2

1 + g2

2x+(uk)2

L

=
s∏
j=1

j 6=k

uk − uj − i
uk − uj + i

1− g2

2x+(uk)x−(uj)

1− g2

2x−(uk)x+(uj)

2

e2iθ(uk,uj) , (3.6)

where

x±(uk) = x(uk ± i/2) , x(u) =
u

2

[
1 +

√
1− 2g2

u2

]
, λ = 8π2g2 , (3.7)

λ being the ’t Hooft coupling. The so-called dressing factor [33, 5] θ(u, v) is given by

θ(u, v) =
∞∑
r=2

∞∑
ν=0

βr,r+1+2ν(g)[qr(u)qr+1+2ν(v)− qr(v)qr+1+2ν(u)] , (3.8)

the functions βr,r+1+2ν(g) = g2r+2ν−221−r−νcr,r+1+2ν(g) being

cr,r+1+2ν(g) = 2
∞∑
µ=ν

g2r+2ν+2µ

2r+µ+ν
(−1)r+µ+1 (r − 1)(r + 2ν)

2µ+ 1
·

·
(

2µ+ 1
µ− r − ν + 1

)(
2µ+ 1
µ− ν

)
ζ(2µ+ 1) (3.9)

and qr(u),

qr(u) =
i

r − 1

[(
1

x+(u)

)r−1

−
(

1

x−(u)

)r−1
]
, (3.10)

being the expression of the r-th charge in terms of the rapidity u. Operators (3.1) of
twist L correspond to zero momentum states of the sl(2) spin chain described by an even
number s of real Bethe roots uk which satisfy (3.6). For a state described by the set of
Bethe roots {uk}, k = 1, . . . , s, the eigenvalue of the r-th charge is

Qr(g, L, s) =
s∑

k=1

qr(uk) . (3.11)

In particular, (asymptotic) anomalous dimension of (3.1) is

γ(g, L, s) = g2Q2(g, L, s) . (3.12)

3.2.2 Counting function

Recall now the formula for the NLIE introduced in the first chapter (1.56):

∑
k

O(υk) = −
∫ +∞

−∞

dv

2π
O(v)Z ′(v) +

∫ +∞

−∞

dv

π
O(v)

d

dv
Im ln[1 + (−1)L eiZ(v−i0+)] . (3.13)

Equation (3.13) is solved for the counting function Z(u) that, in the case (3.6), has the
form:
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Z(u) = Φ(u)−
s∑

k=1

φ(u, uk) (3.14)

where, distinguishing among one loop and higher loops contributions, we have:

Φ(u) = Φ0(u) + ΦH(u) , φ(u, v) = φ0(u− v) + φH(u, v) , (3.15)

with

Φ0(u) = −2L arctan 2u , ΦH(u) = −iL ln

1 + g2

2x−(u)2

1 + g2

2x+(u)2

 , (3.16)

φ0(u− v) = 2 arctan(u− v) (3.17)

φH(u, v) = −2i

ln

1− g2

2x+(u)x−(v)

1− g2

2x−(u)x+(v)

+ iθ(u, v)

 . (3.18)

Z(u) is choosen as monotonously decreasing function. In addition, in the limit u→ ±∞,
since

φ(u, v) + φ(u,−v)→ ±2π − 4

u
+

2ig2

u

(
1

x−(v)
− 1

x+(v)

)
+O

(
1

u3

)
, (3.19)

the asymptotic behaviour is:

u→ ±∞ , Z(u)→ ∓(L+ s)π +
L+ 2s+ γ(g, L, s)

u
+O

(
1

u3

)
. (3.20)

This means that there are L+ s real points υk such that eiZ(υk) = (−1)L+1. It is a simple
consequence of the definition of Z(u) that s of them coincide with the Bethe roots uk. For
Bethe equations (3.6) Bethe roots are all real and are contained in an interval [−b, b] of
the real axis. The remaining L points are called ’holes’ [22, 29]. They are ’fake’ solutions
of Bethe equations, they are real and they will be denoted as xh. Applying (3.13) we are
evaluating a sum on the right side that contains both roots and holes. In order to evaluate
correctly charges, that are given by sums on the roots, we have to specialize equation
(3.13) subtracting to the left side holes contributions:

s∑
k=1

O(uk) = −
∫ +∞

−∞

dv

2π
O(v)Z ′(v)−

L∑
h=1

O(xh)+

+

∫ +∞

−∞

dv

π
O(v)

d

dv
Im ln[1 + (−1)L eiZ(v−i0+)] . (3.21)

We should distinguish between L − 2 internal or ’small’ holes xh, h = 1, ..., L − 2, which
reside inside the interval [−b, b], and two external or ’large’ holes xL−1 = −xL, with
xL > b > 0.

Application of (3.21) to (3.14) gives:

Z(u) = Φ(u) +

∫ +∞

−∞

dv

2π
φ(u, v)[Z ′(v)− 2L′(v)] +

L∑
h=1

φ(u, xh) , (3.22)

where
L(u) = Im ln[1 + (−1)L eiZ(u−i0+)] . (3.23)
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Introducing the function σ(u) =
d

du
Z(u) (also known as density function) we can derive

immediatly the following NLIE:

σ(u) = Φ′(u) +

∫ +∞

−∞

dv

2π

d

du
φ(u, v)[Z ′(v)− 2L′(v)] +

L∑
h=1

d

du
φ(u, xh) . (3.24)

3.2.3 NLIE for the auxiliary function S(k)

Now we use a general method for obtaining anomalous dimension working on a simpler
NLIE written for an auxiliary function S(k) linked to the Fourier transform σ̂(k) of σ(u).
So let us pass to Fourier space using

f̂(k) =

∫ +∞

−∞
due−ikuf(u) ,

we have:

Φ̂0(k) = −2πLe−
|k|
2

ik
, (3.25)

Φ̂H(k) =
2πL

ik
e−
|k|
2 [1− J0(

√
2gk)] , (3.26)

φ̂0(k) =
2πe−|k|

ik
, (3.27)

φ̂H(k, t) = −8iπ2 e
− |t|+|k|

2

k|t|

[ ∞∑
r=1

r(−1)r+1Jr(
√

2gk)Jr(
√

2gt)
1− sgn(kt)

2
+

+ sgn(t)

∞∑
r=2

∞∑
ν=0

cr,r+1+2ν(g)(−1)r+ν
(
Jr−1(

√
2gk)Jr+2ν(

√
2gt)−

− Jr−1(
√

2gt)Jr+2ν(
√

2gk)
)]
. (3.28)

If we apply Fourier transform to (3.24) and use relations (3.25),(3.26),(3.27),(3.28), we
obtain this following NLIE for σ̂(k):

σ̂(k) = −2πLe−
|k|
2

1− e−|k|
+

2πLe−
|k|
2 [1− J0(

√
2gk)]

1− e−|k|
− 2e−|k|L̂′(k)

1− e−|k|
+

+
2πe−|k|

1− e−|k|
L∑
h=1

eikxh +
ik

1− e−|k|
L∑
h=1

∫ +∞

−∞

dt

2π
eitxh φ̂H(k, t)+

+
ik

1− e−|k|

∫ +∞

−∞

dt

4π2
φ̂H(k, t)[σ̂(t)− 2L̂′(t)] . (3.29)

We can immediatly separate one-loop contributions:

σ̂0(k) =
−2πLe−

|k|
2 + 2πe−|k|

∑L
h=1 e

ikx̄h φ̂0(k)

1− e−|k|
− 2e−|k|

1− e−|k|
L̂′0(k) , (3.30)

where x̄h are one loop contributions to holes positions and

L̂′0(k) =

∫ +∞

−∞
du e−iku

d

du
Im ln[1 + (−1)L eiZ0(u−i0+)] . (3.31)
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On the other hand, we can write the NLIE for higher loops density function σ̂H(k) =
σ̂(k)− σ̂0(k):

σ̂H(k) +
2e−|k|

1− e−|k|
L̂′H(k) =

2πLe−
|k|
2 [1− J0(

√
2gk)]

1− e−|k|
+

+
2πe−|k|

1− e−|k|
L∑
h=1

(
eikxh − eikx̄h

)
+

ik

1− e−|k|
L∑
h=1

∫ +∞

−∞

dt

2π
eitxh φ̂H(k, t)+

+
ik

1− e−|k|

∫ +∞

−∞

dt

4π2
φ̂H(k, t)[σ̂(t)− 2L̂′(t)] , (3.32)

where L̂′H(k) = L̂′(k)− L̂′0(k).
We can now show that there is a direct connection among the right side of the (3.32)

and the anomalous dimension. Let start with the NLIE for anomalous dimension:

γ(g, L, s) = g2
s∑

k=1

e(uk) = −g2
L∑
h=1

e(xh)− g2

∫ +∞

−∞

dv

2π
e(v)[σ(v)− 2L′(v)] , (3.33)

where
e(u) = q2(u) = i

[
1

x+(u)
− 1

x−(u)

]
. (3.34)

Then, passing to Fourier space, we have:

γ(g, L, s) = −g2
L∑
h=1

∫ +∞

−∞

dt

2π
eitxh ê(t)− g2

∫ +∞

−∞
ê(t)[σ̂(t)− 2L̂′(t)] (3.35)

where

ê(t) =

∫ +∞

−∞
du e−itue(u) =

2
√

2π

gt
e−
|k|
2 J1(

√
2gt). (3.36)

Now we perform the limit for k → 0 of the right side of(3.32). The first two terms of the
left side are trivially equal to zero. Then, from the (3.28) we can compute the following
limit:

lim
k→0

ik

1− e−|k|
φ̂H(k, t) = −πg2ê(t) (3.37)

and with this result we obtain:

lim
k→0

[
σ̂H(k) +

2e−|k|

1− e−|k|
L̂′H(k)

]
= πγ(g, L, s) . (3.38)

Now we finally define the ausiliary function S(k) as follows:

S(k) =
sinh |k|2
π|k|

{
σ̂H(k) +

2e−|k|

1− e−|k|
L̂′H(k)− ikφ̂0(k)

1− e−|k|
L∑
h=1

[
eikxh − eikx̄h

]}
. (3.39)

It is evident, using (3.38) that the connection between S(k) and the anomalous dimension
is:

lim
k→0

2S(k) = γ(g, L, s) . (3.40)
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Again, using (3.39) and the equation for one-loop density in Fourier space (3.30) into
(3.32), we have a NLIE for S(k) that reads as follows:

S(k) =
L

|k|
[1− J0(

√
2gk)] +

ike
|k|
2

2π|k|

∫ +∞

−∞

dt

4π2
φ̂H(k, t)

[
π|t|

sinh |t|2

S(t)−

− 2L̂′(t)

1− e−|t|
− 2πLe

−|t|
2

1− e−|t|
+

2π

1− e−|t|
L∑
h=1

eitxh

]
. (3.41)

We can make another semplification for the previous equation introducing the magic Ker-
nel [5] K̂(t, t′):

K̂(t, t′) =
2

tt′

[ ∞∑
n=1

nJn(t)Jn(t′) + 2
∞∑
k=1

∞∑
l=0

(−1)k+lc2k+1,2l+2(g)J2k(t)J2l+1(t′)

]
(3.42)

that has the property:∫ +∞

−∞
dt φ̂H(k, t) f(t) = 8iπ2g2

∫ +∞

0
dt e−

t+k
2 K̂(

√
2gk,

√
2gt)f(t) (3.43)

with f(t) even function. Using (3.42) and (3.43) we can rewrite (3.41), restricting to k ≥ 0,
as follows:

S(k) =
L

k
[1− J0(

√
2gk)]− g2

∫ +∞

0

dt

π2
e
−t
2 K̂(

√
2gk,

√
2gt)

[
πt

sinh t
2

S(t)−

− 2L̂′(t)

1− e−t
− 2πLe

−t
2

1− e−t
+

2π

1− e−t
L∑
h=1

eitxh

]
. (3.44)

3.3 High spin limit

The non-linear integral equation (3.44), together with relation (3.40), is the central point
of our computations. Solving this NLIE we can obtain directly informations about anoma-
lous dimension. Observing (3.44), we immediatly note that the solution depends on the
positions of the holes xh on the real axis. These positions are undeterminated and we need
to evaluate them using the property that they are ’fake’ solutions of Bethe equations, i.e.
counting function in the holes positions satisfies (1.67), with a certain set of quantum
numbers Ij which depend on the state we are analyzing. For simplicity, we will study now
the minimal anomalous dimension state. For this state, positions of the internal holes
satisfy the relation:

Z(xh) = π(2h+ 1− L) , h = 1, · · · , L− 2 (3.45)

while positions of external holes satisfy

Z(xL−1) = −Z(xL) = π(s+ L− 1) . (3.46)

A part of positions of holes, the other non-trivial term in the equation (3.44) is the
term that contains the non linear function L̂′(h). If we work in the high spin limit, i.e.
for s → ∞, we are able to evaluate the non linear term of the equation and the position
of internal holes exactly, discarding terms of order O(s−2).
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3.3.1 High spin limit of the non-linear term

Let start evaluating the high spin limit of the nonlinear terms appearing in our integral
equations. In one loop equation (3.30) nonlinearity appears through the term

− 2e−|k|

1− e−|k|
L̂′0(k) , (3.47)

while, in ’all loops’ equation (3.44), it appears in the following integral:

NL = g2

∫ +∞

0

dt

π
e−

t
2 K̂(
√

2gk,
√

2gt)
2it

1− e−t
L̂(t) . (3.48)

It is convenient to pass to the coordinates space and to define

Iα(u) =

∫ +∞

−∞

dt

2π
eitu
−2e−α|t|

1− e−|t|
L̂′(t)

=

∫ +∞

−∞

dv

iπ

[
ψ′(α− iu+ iv)− ψ′(α+ iu− iv)

]
L(v) . (3.49)

The case α = 1 (specialised at one loop) is the Fourier antitransform of (3.47). The case
α = 1

2 is connected to the all loops case (3.48). In all cases, following Appendix A of [29],
we can restrict the integration to the region where no roots nor holes are present: what
we miss are terms O

(
1
s2

)
:

Iα(u) =

∫
|v|> s√

2

dv

iπ

[
ψ′(α− iu+ iv)− ψ′(α+ iu− iv)

]
L(v) +O

(
1

s2

)
. (3.50)

Developing the ψ functions for large v we get

Iα(u) =

∫
|v|> s√

2

dv

iπ

[
ψ′(iv)− ψ′(−iv) +O

(
1

v3

)]
L(v) +O

(
1

s2

)
. (3.51)

From the definition (3.23), using (3.20), we have for large v that:

L(v) =
L+ 2s+ γ(g, L, s)

2v
+O

(
1

v3

)
, (3.52)

so we can also write

Iα(u) =

∫
|v|> s√

2

dv

iπ

[
ψ′(iv)− ψ′(−iv)

]
L(v) +O

(
1

s2

)
. (3.53)

The integral contained in such formula coincides with minus the derivative of the function
I(u), evaluated at high spin in Appendix A of [29], the only difference being that in our
case the counting function contains all loops contributions. However, in the computation
of [29] only the asymptotic behaviour of L(v), (3.52), is relevant. This means that in the
high spin limit the only difference between the one loop and the all loops case is that the
spin s should be replaced by s + O

(
ln s
s

)
. This allows us to easily follow all the steps of

[29], finding eventually

Iα(u) = −2 ln 2 +O

(
u2

s2

)
. (3.54)

Therefore, in the region around the origin the non linear term is under control. The term
Iα=1(u) appears in the expression (3.30) of the one loop density, which, consequently,
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is estimated using (3.54) only sufficiently close to the origin. Iα= 1
2 (u) appears through

(3.48) in the equation (3.44) for S(k): since in the coordinate space the kernel K(u, v) is
depressed for v large, we can safely plug (3.54) into (3.48) and find

NL = 2g2 ln 2K̂(
√

2gk, 0) +O

(
1

s2

)
. (3.55)

3.3.2 Position of external holes

When the spin is large, Bethe roots near the two ’extrema’ ±b scale with s. In the
proximity of ±b, it is therefore convenient to rescale the variable u of the counting function
Z(u): we will write u = ūs, where ū will stay finite. From the definitions (3.14), (3.16),
(3.18) of the counting function, we have

Z(ūs) = −2L arctan 2ūs− 2

s∑
k=1

arctan(ūs− ūks) +
γ(g, L, s)

ūs
+O

(
1

s2

)
. (3.56)

We observe that the only ’higher loops’ effect is in the last term, proportional to the
anomalous dimension.

For ū = ūl, where ūls is a Bethe root, we expand the various functions for large s
and evaluate the sum over the Bethe roots contained in (3.56) as an integral term plus an
’anomaly’ [34, 35]. We get

Z(ūls) = −πLε(ūl) +
γ(g, L, s) + L

ūls
+ 2

∫ b̄

−b̄
dv̄ρ(v̄)P

1

ūl − v̄
+

+
π

s
ρ′(ūl) cothπρ(ūl)−−π

s∑
k=1
k 6=l

ε(ūl − ūk)−

− π
L−2∑
h=1

ε(ūl − x̄h) + 2(L− 2)

[
π

2
ε(ūl)−

1

ūls

]
+O

(
1

s2

)
, (3.57)

where x̄h = xh
s ,

ρ(ū) = − 1

2πs

d

dū
Z(ūs) (3.58)

and where we used the relation [34, 35]

− 2
s∑

k=1

arctan(ul − uk)− 2
L−2∑
h=1

arctan(ul − xh) + π
s∑
k=1
k 6=l

ε(ūl − ūk)+

+ π

L−2∑
h=1

ε(ūl − x̄h) =

=
1

i

s∑
k=1
k 6=l

ln
ul − uk + i

ul − uk − i
+

1

i

L−2∑
h=1

ln
ul − xh + i

ul − xh − i
=

= 2

∫ b̄

−b̄
dv̄ρ(v̄)P

1

ūl − v̄
+
π

s
ρ′(ūl) cothπρ(ūl) +O

(
1

s2

)
. (3.59)
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We can make the identification

Z(ūls) = −π
s∑
k=1
k 6=l

ε(ūl − ūk)− π
L−2∑
h=1

ε(ūl − x̄h) (3.60)

which allows to simplify equation (3.57) as follows

0 = −2πε(ūl) +
4− L+ γ(g, L, s)

ūls
+ 2

∫ b̄

−b̄
dv̄ρ(v̄)P

1

ūl − v̄
+

+
π

s
ρ′(ūl) cothπρ(ūl) +O

(
1

s2

)
. (3.61)

At the leading order, O(s0), we know that the equation to be satisfied, for all ū, is:

0 = −2πε(ū) + 2

∫ b̄

−b̄
dv̄ρ(v̄)P

1

ū− v̄
(3.62)

whose solution is the well known Korchemsky [36] density

ρ(ū) =
1

π
ln

(
b̄+

√
b̄2 − ū2

ū

)2

. (3.63)

Using (3.63), we give an estimate of the last term in (3.61),

π

s
ρ′(ūl) cothπρ(ūl) =

1

s

[
1

2b̄+ 2ūl
− 1

2b̄− 2ūl
− 2

ūl

]
+O

(
1

s2

)
, (3.64)

which allows to find the function ρ(ū) which satisfies (3.61):

ρ(ū) =
1

π
ln

(
b̄+

√
b̄2 − ū2

ū

)2

− (2 + γ(g, L, s)− L)δ(ū)

2s
−

− δ(ū+ b̄) + δ(ū− b̄)
2s

+O

(
1

s2

)
. (3.65)

Using the form (3.65) of the solution, we can determine the position of the extremum b̄
through the relation ∫ b̄

−b̄
dūρ(ū) = 1 +

L− 2

s
, (3.66)

which gives

b̄ =
1

2

(
1 +

L− 1 + γ(g, L, s)

2s

)
+O

(
1

s2

)
. (3.67)

We now pass to determine the position xL = x̄Ls, x̄L > b̄, of the positive external hole.
We first compute equation (3.56) for ū = x̄L:

Z(x̄Ls) = −2L arctan 2x̄Ls− 2

s∑
k=1

arctan(x̄Ls− ūks) +
γ(g, L, s)

x̄Ls
+O

(
1

s2

)
. (3.68)
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As before, we develop this equation for large s, use (3.59) and simplify the term containing
coth using (3.64). We get the equation

Z(x̄Ls) =− (L+ s)π +
γ(g, L, s)− L+ 2

x̄Ls
+

1

2s

1

b̄+ x̄L
− 1

2s

1

b̄− x̄L
+

+ 2

∫ b̄

−b̄
dv̄ρ(v̄)

1

x̄L − v̄
+O

(
1

s2

)
. (3.69)

Inserting (3.65) into the last term of this equation and using the result

∫ b̄

−b̄

dv̄

x̄L − v̄
ln

(
b̄+

√
b̄2 − v̄2

v̄

)2

= iπ ln

√
b̄2 − (x̄L)2 − b̄√
b̄2 − (x̄L)2 + b̄

, (3.70)

we get

Z(x̄Ls) = −(L+ s)π + 2i ln

√
b̄2 − (x̄L)2 − b̄√
b̄2 − (x̄L)2 + b̄

. (3.71)

Since Z(x̄Ls) = −(L+ s)π + π, we get

x̄L =
√

2b̄⇒ x̄L =
1√
2

(
1 +

L− 1 + γ(g, L, s)

2s

)
+O

(
1

s2

)
(3.72)

and finally

xL = −xL−1 =
s√
2

(
1 +

L− 1 + γ(g, L, s)

2s
+O

(
1

s2

))
(3.73)

3.3.3 High spin NLIE for S(k) and high spin expansions

Now, plugging (3.55) and (3.73) into (3.44), after some calculations, we obtain the high
spin limit NLIE for S(k) in the following form in which we are discarding terms of order
O
(
s−1(ln s)−∞

)
:

S(k) = 4g2 ln sK̂(
√

2gk, 0) + 4g2

∫ +∞

0

dt

et − 1
K̂∗(
√

2gk,
√

2gt) +
L

k
[1− J0(

√
2gk)]+

+ 4g2γEK̂(
√

2gk, 0) + g2(L− 2)

∫ +∞

0
dte−

t
2 K̂(
√

2gk,
√

2gt)
1− e

t
2

sinh t
2

−

− g2

∫ +∞

0
dtK̂(

√
2gk,

√
2gt)

∑L−2
h=1 [cos txh − 1]

sinh t
2

+ (3.74)

+
2g2

s
(L+ γ(g, L, s)− 1)K̂(

√
2gk, 0)− g2

∫ +∞

0
dte−

t
2 K̂(
√

2gk,
√

2gt)
t

sinh t
2

S(t)+

+O
(
s−1(ln s)−∞

)
,

where K̂∗(t, t′) = K̂(t, t′)− K̂(t, 0).
Let analyze now equation (3.74): the first two lines contain driving terms of order ln s

and (ln s)0. The term on the third line has the sum on internal holes. From the relation
(3.45) we note that the leading order in s for internal holes should be (ln s)−1 so the sum
starts to contribute with terms of order at least (ln s)−2. The first term on the fourth line
has a recursive element due to the presence of γ(g, L, s) that has the same s dependence
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of S(k) due to the relation (3.40). So, these considerations suggest directly that S(k)
expands as follows:

S(k) =
∞∑

n=−1

S(n)(k)

(ln s)n
+

∞∑
n=−1

Š(n)(k)

s(ln s)n
+O

(
s−1(ln s)−∞

)
(3.75)

and subsequently

γ(g, L, s) = f(g) ln s+ fsl(g, L) +
∞∑
n=1

γ(n)(g, L)(ln s)−n+

+
1

s

∞∑
n=−1

γ̌(n)(g, L)(ln s)−n +O
(
s−1(ln s)−∞

)
. (3.76)

We anticipated this result (eq. (3.2)) in the introduction of this chapter .

3.3.4 High spin first results: Š(−1)(k) and Š(0)(k)

We have already spoken about the well known scaling functions f(g) and fsl(g, L). We
can quickly show now that, thanks to the equation (3.74), it is very simple to obtain
coefficients Š(−1)(k) and Š(0)(k) of the expansion (3.75). Let us start writing the NLIE
for the leading order term S(−1)(k):

S(−1)(k) = 4g2K̂(
√

2gk, 0)− g2

∫ +∞

0
dte−

t
2 K̂(
√

2gk,
√

2gt)
t

sinh t
2

S(−1)(t) (3.77)

from which we have, using (3.40),

f(g) = 2S(−1)(0) . (3.78)

Next, let write NLIEs for the terms Š(−1)(k) and Š(0)(k):

Š(−1)(k) = 2g2f(g)K̂(
√

2gk, 0)− g2

∫ +∞

0
dte−

t
2 K̂(
√

2gk,
√

2gt)
t

sinh t
2

Š(−1)(t) (3.79)

Š(0)(k) = 2g2 (L− 1 + fsl(g, L)) K̂(
√

2gk, 0)− g2

∫ +∞

0
dte−

t
2 K̂(
√

2gk,
√

2gt)
t

sinh t
2

Š(0)(t) .

(3.80)

Comparing (3.79) and (3.80) with (3.77) we immediatly have:

Š(−1)(k) =
f(g)

2
S(−1)(k) , Š(0)(k) =

fsl(g, L) + L− 1

2
S(−1)(k) , (3.81)

which translate in terms of anomalous dimensions to the equalities [31, 32]

γ̌(−1)(g, L) =
1

2
[f(g)]2 , γ̌(0)(g, L) =

1

2
f(g)[L− 1 + fsl(g, L)] . (3.82)

3.4 High spin results: γ(n)(g, L) and γ̌(n)(g, L)

Now we focus on the computations of coefficients of expansion of the anomalous dimension
at orders (ln s)−n and s(−1)(ln s)−n, with n ≥ 1. A central role in this computation is
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played by internal holes. Equation (3.74), together with condition (3.45), suggests this
expansion for position of internal holes:

xh =
∞∑
n=1

(
αn,h +

α̌n,h
s

)
(ln s)(−n) +O

(
s−1(ln s)−∞

)
. (3.83)

The first step of the computation is determining coefficients αn,h and α̌n,h. It is possible to
obtain them from the relation (3.45), using a mathematical trick known as Faà di Bruno.

Faà di Bruno

Suppose to have two functions f and g that expands in seres of powers of the same variable
x:

f(x) =
∞∑
n=1

fn
n!
xn g(x) =

∞∑
n=1

gn
n!
xn . (3.84)

Now, we want to evaluate the composite function g (f(x)):

g (f(x)) =

∞∑
n=1

gn
n!

( ∞∑
m=1

fm
m!
xm

)n
. (3.85)

It is natural to write the composite function also as a single power series in x:

g (f(x)) =

∞∑
n=1

hn
n!
xn . (3.86)

Faà di Bruno permits to relate coefficients hn of the (3.86) with the coefficients fn and gn
of the power series (3.84). It is simple to verify that:

hn = n!

n∑
k=1

gk
∑

{j1,··· ,jn−k+1}

n−k+1∏
m=1

(fm)jm

jm!(m!)jm
(3.87)

where the notation
∑
{j1,··· ,jn−k+1} means that we can do the product summing contributes

for all set of integers j1, · · · , jm costrained by the conditions:
n−k+1∑
m=1

jm = k ,
n−k+1∑
m=1

mjm = n . (3.88)

3.4.1 Determination of αn,h and α̌n,h

We can use Faà di Bruno for extracting expressions of coefficients αn,h and α̌n,h from the
relation (3.45)

Z(xh) = π(2h+ 1− L) . (3.89)

In order to apply Faà di Bruno, we have to expand in Taylor series the function Z(u):

Z(u) =
∞∑
n=1

dnZ(u)

dun


u=0

un

n!
=

∞∑
n=1

dn−1σ(u)

dun−1


u=0

un

n!
(3.90)

where the first term of the series, Z(0), is zero because Z is an odd function. Trivially,
function σ(u) has the same high limit expansion of function S(k), so we introduce the
following notation:

dr

dur
σ(u = 0) =

∞∑
n=−1

Σ(n)
r (ln s)−n +O

(
s−1(ln s)−∞

)
, (3.91)
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where

Σ(n)
r = σ(n)

r +
σ̌

(n)
r

s
. (3.92)

Write in a similar way the expansion of the positions of internal holes:

xh =

∞∑
n=1

An,h(ln s)−n +O
(
s−1(ln s)−∞

)
, An,h = αn,h +

α̌n,h
s

. (3.93)

Using (3.90), (3.91) and (3.93) we can immediatly write:

Z(xh) =

∞∑
n=1

( ∞∑
l=−1

Σ
(l)
n−1(ln s)−l

)
1

n!

( ∞∑
m=1

Am,h(ln s)−m

)n
+O

(
s−1(ln s)−∞

)
. (3.94)

Now we can apply Faà di Bruno to (3.94) with

gn =

∞∑
l=−1

Σ
(l)
n−1(ln s)−l , fm = m!Am,h (3.95)

and obtain

Z(xh) =

∞∑
n=1

∞∑
l=−1

n∑
k=1

(ln s)−(n+l)Σ
(l)
k−1

∑
{j1,··· ,jn−k+1}

n−k+1∏
m=1

(Am,h)jm

jm!
(3.96)

where the sets j1, · · · , jn are costrained by conditions (3.88). Now, comparing (3.89) and
(3.96), working on the formula, we obtain the following equation for the An,h coefficients:

π(2h+ 1− L) = Σ
(−1)
0 A1,h +

∞∑
p=1

(ln s)−p
p+1∑
r=1

Σ
(−1)
r−1

∑
{j1,...,jp−r+2}

p−r+2∏
m=1

(Am,h)jm

jm!
+

+
∞∑
p=1

(ln s)−p
p−1∑
l=0

p−l∑
r=1

Σ
(l)
r−1

∑
{j1,...,jp−r−l+1}

p−r−l+1∏
m=1

(Am,h)jm

jm!
(3.97)

where the jm contained in the second term of the r.h.s. are constrained by the conditions∑p−r+2
m=1 jm = r,

∑p−r+2
m=1 mjm = p + 1, the ones in the third term by

∑p−r−l+1
m=1 jm = r,∑p−r−l+1

m=1 mjm = p − l. Equating l.h.s. and r.h.s. at all orders in ln s we obtain the
following recursive equation

Ap+1,h = −
p∑
r=1

Σ
(−1)
r

Σ
(−1)
0

∑
{j1,...,jp−r+1}

p−r+1∏
m=1

(Am,h)jm

jm!
−

−
p−1∑
l=0

p−l∑
r=1

Σ
(l)
r−1

Σ
(−1)
0

∑
{j1,...,jp−r−l+1}

p−r−l+1∏
m=1

(Am,h)jm

jm!
, p ≥ 1

A1,h =
π(2h− 1 + L)

Σ
(−1)
0

, (3.98)

where now the jm contained in the first term of the r.h.s. are constrained by the con-
ditions

∑p−r+1
m=1 jm = r + 1,

∑p−r+1
m=1 mjm = p + 1 and the ones in the second term by∑p−r−l+1

m=1 jm = r,
∑p−r−l+1

m=1 mjm = p− l.
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Now, we proceed restoring explicit expression for Σ
(n)
r and Am,h (3.92,3.93). We can

disentagle equations (3.98) developing for s → ∞ and equating terms at the same order
in powers of s (discarding terms of order O(s−2). We obtain:

αp+1,h = −
p∑
r=1

σ
(−1)
r

σ
(−1)
0

∑
{j1,...,jp−r+1}

p−r+1∏
m=1

(αm,h)jm

jm!
−

−
p−1∑
l=0

p−l∑
r=1

σ
(l)
r−1

σ
(−1)
0

∑
{j1,...,jp−r−l+1}

p−r−l+1∏
m=1

(αm,h)jm

jm!
, p ≥ 1

α1,h =
π(2h− 1 + L)

σ
(−1)
0

(3.99)

and

α̌p+1,h = −
p∑
r=1

[
σ

(−1)
r

σ
(−1)
0

p−r+1∑
m′=1

jm′(α̌m′,h)

(αm′,h)
+
σ̌

(−1)
r

σ
(−1)
0

− σ
(−1)
r σ̌

(−1)
0

(σ
(−1)
0 )2

]
×

×
∑

{j1,...,jp−r+1}

p−r+1∏
m=1

(αm,h)jm

jm!
−

−
p−1∑
l=0

p−l∑
r=1

[
σ

(l)
r−1

σ
(−1)
0

p−r−l+1∑
m′=1

jm′(α̌m′,h)

(αm′,h)
+
σ̌

(l)
r−1

σ
(−1)
0

−
σ

(l)
r−1σ̌

(−1)
0

(σ
(−1)
0 )2

]
×

×
∑

{j1,...,jp−r−l+1}

p−r−l+1∏
m=1

(αm,h)jm

jm!
p ≥ 1

α̌1,h =
−πσ̌(−1)

0 (2h+ 1− L)

(σ
(−1)
0 )2

. (3.100)

In both sets of equations, coefficients jm are costrained in the same way of those appearing
in (3.98). These formulae are recursive, we show now for example the first coefficients of
both sets:

α1,h =
π(2h+ 1− L)

σ
(−1)
0

, α2,h = −π(2h+ 1− L)σ
(0)
0

(σ
(−1)
0 )2

α3,h =
π(2h+ 1− L)

σ
(−1)
0

− σ
(1)
0

σ
(−1)
0

+

(
σ

(0)
0

σ
(−1)
0

)2

− π2

6
(2h+ 1− L)2 σ

(−1)
2

(σ
(−1)
0 )3


α4,h = −π(2h+ 1− L)(

σ
(−1)
0

)2


(
σ

(0)
0

)3

(
σ

(−1)
0

)2 + σ
(2)
0

+

+
π3(2h+ 1− L)3(

σ
(−1)
0

)4

(
2σ

(−1)
2 σ

(0)
0

3σ
(−1)
0

− σ
(0)
2

6

)
, (3.101)

41



α̌1,h = −π(2h+ 1− L)σ̌
(−1)
0

(σ
(−1)
0 )2

α̌2,h = −π(2h+ 1− L)σ̌
(0)
0

(σ
(−1)
0 )2

+
2π(2h+ 1− L)σ

(0)
0 σ̌

(−1)
0

(σ
(−1)
0 )3

α̌3,h = π(2h+ 1− L)

[
2σ

(0)
0 σ̌

(0)
0

(σ
(−1)
0 )3

− 3(σ
(0)
0 )2σ̌

(−1)
0

(σ
(−1)
0 )4

]
−

− π3(2h+ 1− L)3

6

[
σ̌

(−1)
2

(σ
(−1)
0 )4

− 4σ
(−1)
0 σ̌

(−1)
0

(σ
(−1)
0 )5

]
(3.102)

α̌4,h = π(2h+ 1− L)

[
4(σ

(0)
0 )3σ̌

(−1)
0

(σ
(−1)
0 )5

− 3(σ
(0)
0 )2σ̌

(0)
0

(σ
(−1)
0 )4

+
2σ

(2)
0 σ̌

(−1)
0

(σ
(−1)
0 )3

− σ̌
(2)
0

(σ
(−1)
0 )2

]
+

+
2π3(2h+ 1− L)3

3

[
−5σ

(−1)
2 σ

(0)
0 σ̌

(−1)
0

(σ
(−1)
0 )6

+
σ

(0)
0 σ̌

(−1)
2

(σ
(−1)
0 )5

+
σ

(−1)
2 σ̌

(0)
0

(σ
(−1)
0 )5

+

+
σ

(0)
2 σ̌

(−1)
0

(σ
(−1)
0 )5

− σ̌
(0)
2

4(σ
(−1)
0 )4

]
.

The expressions found are still quite involved. Substantially, we have ’inverted’ relation
(3.89), so now we express holes expansion coefficients in terms of expansions coefficients of
the derivatives of the counting function. It is sufficient (we will see) for the main purpose
of this work, but not in general: to obtain complete solutions, one should solve the NLIE
for Z(u). At weak coupling it is very easy. We will come back on this point later.

3.4.2 Sum on internal holes

In (3.74) we see that driving terms for orders (ln s)−n and s−1(ln s)−n, with n ≥ 1, contain
the sum on internal holes that reads as follows:

P (s, g, t) =
L−2∑
h=1

[cos tx
(i)
h − 1] . (3.103)

Obviously, function P (s, g, t) expands as:

P (s, g, t) =
∞∑
n=1

(
P (n)(g, t) +

P̌ (n)(g, t)

s

)
(ln s)−n +O

(
s−1(ln s)−∞

)
. (3.104)

It is possible to obtain coefficients P (n)(g, t) and P̌ (n)(g, t) using again the Faà di Bruno.
First, write (3.103) as follows:

P (s, g, t) =
L−2∑
h=1

[cos tx
(i)
h − 1] =

L−2∑
h=1

∞∑
n=1

cos
(πn

2

) tn
n!

(x
(i)
h )n =

=

L−2∑
h=1

∞∑
n=1

cos
(πn

2

) tn
n!

[ ∞∑
m=1

(
αn,h +

α̌n,h
s

)
(ln s)−m

]n
. (3.105)

Comparing (3.104) and (3.105) we can use Faà di Bruno with

gn = cos
(πn

2

)
tn , fm = m!

(
αn,h +

α̌n,h
s

)
(3.106)
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obtaining:

P (n)(g, t) +
P̌ (n)(g, t)

s
=
∑
r=1

tr cos
(πr

2

) ∑
{j1,··· ,jn−r+1}

L−2∑
h=1

n−r+1∏
m=1

(
αm,h +

α̌m,h
s

)jm
jm!

,

(3.107)
where set {j1, · · · , jn−r+1} is costrained by (3.88). We can easily disentagle orders s0 and
s−1 remembering that we are in the high spin limit and developing on the right side. We
have:

P (n)(g, t) =
∑
r=1

tr cos
(πr

2

) ∑
{j1,··· ,jn−r+1}

L−2∑
h=1

n−r+1∏
m=1

(αm,h)jm

jm!
(3.108)

P̌ (n)(g, t) =
∑
r=1

tr cos
(πr

2

) ∑
{j1,··· ,jn−r+1}

L−2∑
h=1

n−r+1∏
m=1

(αm,h)jm

jm!

n−r+1∑
m′=1

jm′
α̌m′,h
αm′,h

. (3.109)

3.4.3 Solution of Linear Integral equation: order (ln s)−n

We are finally ready to conclude our computations. Let us write the order (ln s)−n con-
tributions of (3.74):

S(n)(k) = −g2

∫ +∞

0
dtK̂(

√
2gk,

√
2gt)

P (n)(g, t)

sinh t
2

−

− g2

∫ +∞

0
dte−

t
2 K̂(
√

2gk,
√

2gt)
t

sinh t
2

S(n)(t) . (3.110)

Now we use a general procedure in the case of integral equation with separable kernel [37].
First step is the Newmann expansion for S(k):

S(k) =

∞∑
p=1

Sp(g, L, s)
Jp(
√

2gk)

k

Sp(g, L, s) =

∞∑
n=−1

[
S(n)
p (g, L) +

1

s
Š(n)
p (g, L) +O(1/s2)

]
(ln s)−n (3.111)

γ(n)(g, L) =
√

2gS
(n)
1 (g, L) , γ̌(n)(g, L) =

√
2gŠ

(n)
1 (g, L) .

The Newmann expansion tranforms (3.110) into an infinite set of linear systems:

S
(n)
2p−1(g) = −(2p− 1)

∫ +∞

0

dt

t

Pn(g, t) J2p−1(
√

2gt)

sinh t
2

− 2(2p− 1)

∞∑
m=1

Z2p−1,m(g)S(n)
m (g) ,

S
(n)
2p (g) = −2p

∫ +∞

0

dt

t

Pn(g, t) J2p(
√

2gt)

sinh t
2

− 4p

∞∑
m=1

Z2p,m(g)(−1)mS(n)
m (g) , (3.112)

where

Zn,m(g) =

∫ +∞

0

dt

t

Jn(
√

2gt)Jm(
√

2gt)

et − 1
. (3.113)
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Plugging (3.108) into (3.112) we get:

S(n)
p (g, L) = −2π

n∑
r=1

S̃(r/2)
p (g) cos

πr

2

∑
{j1,...,jn−r+1}

L−2∑
h=1

n−r+1∏
m=1

(αm,h)jm

n−r+1∏
m=1

jm!

(3.114)

n−r+1∑
m=1

jm = r ,
n−r+1∑
m=1

mjm = n ,

where the ’reduced coefficients’ S̃(r)
p (g) satisfy the systems (see last of [29])

S̃
(r)
2p−1(g) = I(r)2p−1(g)− 2(2p− 1)

∞∑
m=1

Z2p−1,m(g)S̃(r)
m (g) ,

S̃
(r)
2p (g) = I(r)2p (g)− 4p

∞∑
m=1

Z2p,m(g)(−1)mS̃(r)
m (g) , (3.115)

with

I(r)p (g) = p

∫ +∞

0

dh

2π
h2r−1Jp(

√
2gh)

sinh h
2

. (3.116)

For n = 1, 2, 3, 4, 5 we have

S(1)
p (g, L) = 0 (3.117)

S(2)
p (g, L) = 2πS̃(1)

p (g)
L−2∑
h=1

(α1,h)2

2!
(3.118)

S(3)
p (g, L) = 2πS̃(1)

p (g)
L−2∑
h=1

(α1,h)(α2,h) (3.119)

S(4)
p (g, L) = 2πS̃(1)

p (g)

L−2∑
h=1

[
(α2,h)2

2!
+ (α1,h)(α3,h)

]
−

− 2πS̃(2)
p (g)

L−2∑
h=1

(α1,h)4

4!
(3.120)

S(5)
p (g, L) = 2πS̃(1)

p (g)

L−2∑
h=1

[(α1,h)(α4,h) + (α2,h)(α3,h)]−

− 2πS̃(2)
p (g)

L−2∑
h=1

(α1,h)3

3!
(α2,h) (3.121)
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and, plugging explicit expressions (3.101) for the coefficients αn,h we obtain:

S(1)
p (g, L) = 0 , (3.122)

S(2)
p (g, L) =

π3

3(σ
(−1)
0 )2

(L− 3)(L− 2)(L− 1)S̃(1)
p (g) , (3.123)

S(3)
p (g, L) = −2

π3σ
(0)
0

3(σ
(−1)
0 )3

(L− 3)(L− 2)(L− 1)S̃(1)
p (g) , (3.124)

S(4)
p (g, L) = 2π(L− 3)(L− 2)(L− 1)


π2

(
σ

(0)
0

)2

2(σ
(−1)
0 )4

− (3.125)

− π4σ
(−1)
2

90(σ
(−1)
0 )5

(5 + 3L(L− 4))

]
S̃(1)
p (g)− π4

360(σ
(−1)
0 )4

(5 + 3L(L− 4))S̃(2)
p (g)

}

S(5)
p (g, L) = (L− 3)(L− 2)(L− 1)



5π5

3

σ
(−1)
2 σ

(0)
0(

σ
(−1)
0

)6 −
π5

3

σ
(0)
2(

σ
(−1)
0

)5

×
× (5 + 3L(L− 4))

15
+

−4π3
(
σ

(0)
0

)3

3
(
σ

(−1)
0

)5 −
2π3σ

(2)
0

3
(
σ

(−1)
0

)3


 S̃(1)

p (g)+ (3.126)

+
π5σ

(0)
0

45
(
σ

(−1)
0

)5 S̃
(2)
p (g)(5 + 3L(L− 4))

 .
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We finally obtain expressions for γ(n)(g, L) functions using (3.111):

γ(1)(g, L) = 0 ,

γ(2)(g, L) =
√

2g
π3

3(σ
(−1)
0 )2

(L− 3)(L− 2)(L− 1)S̃
(1)
1 (g) ,

γ(3)(g, L) = −2
√

2g
π3σ

(0)
0

3(σ
(−1)
0 )3

(L− 3)(L− 2)(L− 1)S̃
(1)
1 (g) ,

γ(4)(g, L) = 2
√

2gπ(L− 3)(L− 2)(L− 1)


π2

(
σ

(0)
0

)2

2(σ
(−1)
0 )4

− (3.127)

− π4σ
(−1)
2

90(σ
(−1)
0 )5

(5 + 3L(L− 4))

]
S̃

(1)
1 (g)− π4

360(σ
(−1)
0 )4

(5 + 3L(L− 4))S̃
(2)
1 (g)

}

γ(5)(g, L) =
√

2g(L− 3)(L− 2)(L− 1)



5π5

3

σ
(−1)
2 σ

(0)
0(

σ
(−1)
0

)6 −
π5

3

σ
(0)
2(

σ
(−1)
0

)5

×
× (5 + 3L(L− 4))

15
+

−4π3
(
σ

(0)
0

)3

3
(
σ

(−1)
0

)5 −
2π3σ

(2)
0

3
(
σ

(−1)
0

)3


 S̃(1)

1 (g)+

+
π5σ

(0)
0

45
(
σ

(−1)
0

)5 S̃
(2)
2 (g)(5 + 3L(L− 4))

 .

3.4.4 Solution of Linear Integral equation: order s−1(ln s)−n

We now follow the same procedure as the previous subsection to compute γ̌(n) functions.
Start with LIE at order s−1(ln s)−n:

Š(n)(k) = 2g2γ(n)(g.L)K̂(
√

2gk, 0)− g2

∫ +∞

0
dtK̂(

√
2gk,

√
2gt)

P̌ (n)(g, t)

sinh t
2

−

− g2

∫ +∞

0
dte−

t
2 K̂(
√

2gk,
√

2gt)
t

sinh t
2

Š(n)(t) . (3.128)

Newmann expansions (3.111) transforms (3.128) into the following system:

Š
(n)
2p−1(g, L) =

√
2gδp,1γ

(n)(g, L)− (2p− 1)

∫ +∞

0

dt

t

P̌ (n)(g, t) J2p−1(
√

2gt)

sinh t
2

−

− 2(2p− 1)

∞∑
m=1

Z2p−1,m(g)Š(n)
m (g, L) , (3.129)

Š
(n)
2p (g, L) = −2p

∫ +∞

0

dt

t

P̌ (n)(g, t) J2p(
√

2gt)

sinh t
2

− 4p

∞∑
m=1

Z2p,m(g)(−1)mŠ(n)
m (g, L) .
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Plugging (3.109) into the system (3.129) we get:

Š(n)
p (g, L) = −2π

n∑
r=1

S̃(r/2)
p (g) cos

πr

2
×

×
∑

{j1,...,jn−r+1}

L−2∑
h=1

(
n−r+1∏
m=1

(αm,h)jm
)
n−r+1∑
m′=1

jm′
α̌m′,h
αm′,h

n−r+1∏
m=1

jm!

+

+
S

(−1)
p (g)

2
γ(n)(g, L) ,

n−r+1∑
m=1

jm = r ,
n−r+1∑
m=1

mjm = n , (3.130)

with the coefficients S̃(r)
p (g) satisfying (3.115). For n = 1, 2, 3, 4, 5 we get

Š(1)
p (g, L) = 0

Š(2)
p (g, L) = 2πS̃(1)

p (g)

L−2∑
h=1

α1,hα̌1,h +
S

(−1)
p (g)

2
γ(2)(g, L)

Š(3)
p (g, L) = 2πS̃(1)

p (g)
L−2∑
h=1

(α2,hα̌1,h + α1,hα̌2,h) +
S

(−1)
p (g)

2
γ(3)(g, L) (3.131)

Š(4)
p (g, L) = 2πS̃(1)

p (g)

L−2∑
h=1

(α1,hα̌3,h + α2,hα̌2,h + α3,hα̌1,h)−

− π

3
S̃(2)
p (g)

L−2∑
h=1

(α1,h)3α̌1,h +
S

(−1)
p (g)

2
γ(4)(g, L)

Š(5)
p (g, L) = 2πS̃(1)

p (g)

L−2∑
h=1

(α1,hα̌4,h + α2,hα̌3,h + α3,hα̌2,h + α4,hα̌1,h)

− π

3
S̃(2)
p (g)

L−2∑
h=1

(
3(α1,h)2α2,hα̌1,h + (α1,h)3α̌2,h

)
+

+
S

(−1)
p (g)

2
γ(5)(g, L) .
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and, inserting expressions (3.102) we obtain:

Š(1)
p (g, L) = 0

Š(2)
p (g, L) = −2π3

3
S̃(1)
p (g)

σ̌
(−1)
0(

σ
(−1)
0

)3 (L− 1)(L− 2)(L− 3)+

+
S

(−1)
p (g)

2
γ(2)(g, L)

Š(3)
p (g, L) =

2π3

3

S̃
(1)
p (g)(
σ

(−1)
0

)3

[
3σ

(0)
0 σ̌

(−1)
0

σ
(−1)
0

− σ̌(0)
0

]
(L− 1)(L− 2)(L− 3)+

+
S

(−1)
p (g)

2
γ(3)(g, L)

Š(4)
p (g, L) =

2π3

3

1(
σ

(−1)
0

)4

{
π2

6σ
(−1)
0

[
S̃(1)
p (g)

(
5σ

(−1)
2 σ̌

(−1)
0

σ
(−1)
0

− σ̌(−1)
2

)
+

+σ̌
(−1)
0 S̃(2)

p (g)
] (5 + 3L(L− 4))

5
+ 3σ

(0)
0 S̃(1)

p (g)

[
σ̌

(0)
0 −

2σ
(0)
0 σ̌

(−1)
0

σ
(−1)
0

]}
×

× (L− 1)(L− 2)(L− 3) +
S

(−1)
p (g)

2
γ(4)(g, L)+ (3.132)

Š(5)
p (g, L) =

2π3

3

1(
σ

(−1)
0

)3

 π2

2
(
σ

(−1)
0

)2

[
S̃(1)
p (g)

(
σ

(0)
2 σ̌

(−1)
0

σ
(−1)
0

+
σ

(0)
0 σ̌

(−1)
2

σ
(−1)
0

+
σ

(−1)
2 σ̌

(0)
0

σ
(−1)
0

−

− σ̌
(−1)
2

5
− 6σ

(−1)
2 σ

(0)
0 σ̌

(−1)
0(

σ
(−1)
0

)2

+ S̃(2)
p (g)

(
5σ̌

(0)
0 −

σ
(0)
0 σ̌

(−1)
0

σ
(−1)
0

) (5 + 3L(L− 4))

3
+

+S̃(1)
p (g)

[
−σ̌(2)

0 +
3σ

(2)
0 σ̌

(−1)
0

σ
(−1)
0

− 6(σ
(0)
0 )2σ̌

(0)
0

(σ
(−1)
0 )2

+
10(σ

(0)
0 )3σ̌

(−1)
0

(σ
(−1)
0 )3

]}
×

× (L− 1)(L− 2)(L− 3) +
S

(−1)
p (g)

2
γ(5)(g, L)
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and for anomalous dimension, using (3.111):

γ̌(1)(g, L) = 0

γ̌(2)(g, L) = −
√

2g
2π3

3
S̃

(1)
1 (g)

σ̌
(−1)
0(

σ
(−1)
0

)3 (L− 1)(L− 2)(L− 3)+

+
√

2g
f(g)

2
γ(2)(g, L)

γ̌(3)(g, L) =
√

2g
2π3

3

S̃
(1)
1 (g)(
σ

(−1)
0

)3

[
3σ

(0)
0 σ̌

(−1)
0

σ
(−1)
0

− σ̌(0)
0

]
(L− 1)(L− 2)(L− 3)+

+
√

2g
f(g)

2
γ(3)(g, L)

γ̌(4)(g, L) =
√

2g
2π3

3

1(
σ

(−1)
0

)4

{
π2

6σ
(−1)
0

[
S̃

(1)
1 (g)

(
5σ

(−1)
2 σ̌

(−1)
0

σ
(−1)
0

− σ̌(−1)
2

)
+

+σ̌
(−1)
0 S̃

(2)
1 (g)

] (5 + 3L(L− 4))

5
+ 3σ

(0)
0 S̃

(1)
1 (g)

[
σ̌

(0)
0 −

2σ
(0)
0 σ̌

(−1)
0

σ
(−1)
0

]}
×

× (L− 1)(L− 2)(L− 3) +
√

2g
f(g)

2
γ(4)(g, L) , (3.133)

γ̌(5)(g, L) =
√

2g
2π3

3

1(
σ

(−1)
0

)3

 π2

2
(
σ

(−1)
0

)2

[
S̃

(1)
1 (g)

(
σ

(0)
2 σ̌

(−1)
0

σ
(−1)
0

+
σ

(0)
0 σ̌

(−1)
2

σ
(−1)
0

+
σ

(−1)
2 σ̌

(0)
0

σ
(−1)
0

−

− σ̌
(−1)
2

5
− 6σ

(−1)
2 σ

(0)
0 σ̌

(−1)
0(

σ
(−1)
0

)2

+ S̃
(2)
1 (g)

(
5σ̌

(0)
0 −

σ
(0)
0 σ̌

(−1)
0

σ
(−1)
0

) (5 + 3L(L− 4))

3
+

S̃
(1)
1 (g)

[
−σ̌(2)

0 +
3σ

(2)
0 σ̌

(−1)
0

σ
(−1)
0

− 6(σ
(0)
0 )2σ̌

(0)
0

(σ
(−1)
0 )2

+
10(σ

(0)
0 )3σ̌

(−1)
0

(σ
(−1)
0 )3

]}
×

× (L− 1)(L− 2)(L− 3) +
√

2g
f(g)

2
γ(5)(g, L) .

3.5 Reciprocity and self-tuning:
1

s
contributions from func-

tional relations

3.5.1 Relations between γ(n)(g, L) and γ̌(n)(g, L)

Relations (3.127) and (3.133) are the prediction of Asymptotic Bethe Ansatz at orders
(ln s)−n and s−1(ln s)−n with n = 1, · · · , 5. These relations are not completely final re-
sults, because it is not explicited the g dependence, hidden in the presence of coefficients
S̃

(n)
p and of coefficients σ(n)

r and σ̌(n)
r , belonging to the derivatives of the counting func-

tions. However, these relations are valid at all-loops. Furthermore, in these relations are
contained some important informations about wrapping. To obtain them, first we have to
rewrite in a compact way expressions (3.132) and (3.133). Using the following relations:

f(g) = 2
σ̌

(−1)
0

σ
(−1)
0

= 2
σ̌

(−1)
2

σ
(−1)
2

, (3.134)
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fsl(g, L) = 2
σ̌

(0)
0

σ
(−1)
0

− (L− 1) , (3.135)

γ(2)(g, L) = 2
σ̌

(2)
0

σ
(−1)
0

+ 4
σ

(2)
0 σ̌

(−1)
0

(σ
(−1)
0 )

2 . (3.136)

that we prove at the end of this section and comparing (3.132) and (3.133) respectevely
with (3.122) and (3.127), we end up with:

Š(1)
p (g, L) = 0 (3.137)

Š(2)
p (g, L) =

S
(−1)
p (g)

2
γ(2)(g, L)− f(g)S(2)

p (g, L) (3.138)

Š(3)
p (g, L) =

S
(−1)
p (g)

2
γ(3)(g, L)− (fsl(g, L) + L− 1)S(2)

p (g, L)−

− 3

2
S(3)
p (g, L)f(g) (3.139)

Š(4)
p (g, L) =

S
(−1)
p (g)γ(4)(g, L)

2
− 2S(4)

p (g, L)f(g)−

− 3

2
S(3)
p (g, L)(fsl(g, L) + L− 1) (3.140)

Š(5)
p (g, L) =

S
(−1)
p (g)

2
γ(5)(g, L)− 5

2
S(5)
p (g, L)f(g)− (3.141)

− 2S(4)
p (g, L)(fsl(g, L) + L− 1)− S(2)

p (g, L)γ(2)(g, L) .

For anomalous dimensions, such relations read

γ̌(1)(g, L) = 0 , (3.142)

γ̌(2)(g, L) = −f(g)

2
γ(2)(g, L) , (3.143)

γ̌(3)(g, L) = −f(g)γ(3)(g, L)− (fsl(g, L) + L− 1)γ(2)(g, L) , (3.144)

γ̌(4)(g, L) = −3

2
f(g)γ(4)(g, L)− 3

2
(fsl(g, L) + L− 1)γ(3)(g, L) , (3.145)

γ̌(5)(g, L) = −2f(g)γ(5)(g, L)− 2(fsl(g, L) + L− 1)γ(4)(g, L)−
(
γ(2)(g, L)

)2
. (3.146)

Relations (3.142-3.146) together with relations (3.82) show that the anomalous dimension

at order
1

s
completely depends on itself at order s0. We want to stress that these con-

clusions holds for all values of the coupling g, i.e. it is a nonperturbative statement on
the high spin expansion on anomalous dimension. In the following subsection, we will see
that these results also belong from reciprocity and self-tuning properties.

3.5.2 1
s
contributions from functional relations

Self-tuning and reciprocity relations were summarised in formulæ (3.3, 3.4, 3.5). We
remember expression (3.2) for the high spin expansion of the anomalous dimension:

γ(g, L, s) = f(g) ln s+ fsl(g, L) +
∞∑
n=1

γ(n)(g, L)

(ln s)n
+

+

∞∑
n=−1

γ̌(n)(g, L)

s(ln s)n
+O

(
s−1(ln s)−∞

)
. (3.147)
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Comparing (3.147) with (3.3, 3.4, 3.5), we get that the leading terms of P (s) should read

P (s) = f(g) lnC(s) + fsl(g, L) +
∞∑
n=1

γ(n)(g, L)

(lnC(s))n
+O(1/C2) . (3.148)

Developing C(s) in the same regime

C(s)2 =

(
s+

L

2
− 1

)(
s+

L

2

)
⇒ C(s) = s+

L− 1

2
+O(1/s) , (3.149)

and putting it together with (3.4, 3.148), we end up with the following prediction for the
anomalous dimension

γ(g, L, s) = f(g) ln s+ fsl(g, L) +

∞∑
n=1

γ(n)(g, L)

(ln s)n
+

+
ln s

2s
[f(g)]2 +

1

2s
f(g)(L− 1 + fsl(g, L)) +

f(g)

2s

∞∑
n=1

γ(n)(g, L)

(ln s)n
− (3.150)

−
∞∑
n=1

n
γ(n)(g, L)

2s(ln s)n+1

[
f(g) ln s+ fsl(g, L) + L− 1 +

∞∑
m=1

γ(m)(g, L)

(ln s)m

]
+

+O
(
s−1(ln s)−∞

)
.

Working out this formula for orders 1
s(ln s)n , n = −1, ..., 5, we find formulæ which coincide

with (3.82), for n = −1, 0 and with (3.142, . . . , 3.146), for n = 1, ..., 5. Therefore, our
findings in the previous subsection agree with self-tuning and reciprocity predictions. We
have already underlined in the introduction if this chapter that the analogous of these
properties in QCD holds only at one loop. We now have seen that, at the analyzed orders,
reciprocity and self-tuning hold for all values of g. It is a strong hint in order to consider
reciprocity and self-tuning as exact symmetries of the theory.

3.5.3 Useful relations

We want to prove now relations (3.134), (3.135) and (3.136). Let us start with equations
(3.108) and (3.109). Comparing them, we find the following relation:

P̌ (2)(g, t) = −2
σ̌

(−1)
0

σ
(−1)
0

P (2)(g, t). (3.151)

Now, using the linear integral equation (3.74) we are able to find the following relations
(we have already seen and used the first two of them, (3.82)):

Š(−1)(k) =
f(g)

2
S(−1)(k) , (3.152)

Š(0)(k) =
fsl(g, L) + L− 1

2
S(−1)(k) , (3.153)

Š(2)(k) =
γ

(2)
as (g, L)

2
S(−1)(k)− f(g)S(2)(k) . (3.154)

For what concerns σ̂(k) we have the exact expression:

σ̂(k) = −2πLe−
|k|
2

1− e−|k|
+

2πLe−|k|

1− e−|k|
+ Ĝ(k)− (3.155)

− 2e−|k|

1− e−|k|
L̂′(k) +

2πe−|k|

1− e−|k|
L∑
h=1

(cos kxh − 1) ,
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where
Ĝ(k) =

π|k|
sinh |k|2

S(k) . (3.156)

Then, applying inverse Fourier transform, we obtain:

σ(u) = L

[
ψ

(
1

2
− iu

)
+ ψ

(
1

2
+ iu

)]
− (L− 2)[ψ(1− iu) + ψ(1 + iu)]−

− ψ(1− ixL − iu)− ψ(1 + ixL − iu)− ψ(1− ixL + iu)− ψ(1 + ixL + iu)+

+

∫ +∞

−∞
dkeiku

e−|k|

1− e−|k|
P (s, g, k) +G(u)−

[
2 ln 2 +O

(
u2

s2

)]
. (3.157)

Using the position of the external holes (3.73) and computing σ(u) at u = 0, we get

σ(0) = −4 ln s− 4γE − 4L ln 2 +G(0)− 2f(g)
ln s

s
− 2

fsl(g, L) + L− 1

s
+

+
∞∑
n=1

∫ +∞

−∞
dk

e−|k|

1− e−|k|

(
P (n)(g, k) +

P̌ (n)(g, k)

s

)
(ln s)−n

− 2

∞∑
n=1

γ(n)(g, L)

s
(ln s)−n +O

(
s−1(ln s)−∞

)
. (3.158)

(3.159)

It is obvious that, expanding G(0) in the same way of S(k) (3.75), relations (3.152), (3.153)
and (3.154) are also valid for the corresponding coefficients of G(0). Using these relations
and also (3.151) it is possible to find, from (3.158) and remembering notation (3.91), the
following relations:

f(g) = 2
σ̌

(−1)
0

σ
(−1)
0

, fsl(g, L) = 2
σ̌

(0)
0

σ
(−1)
0

− (L− 1) (3.160)

γ(2)(g, L) = 2
σ̌

(2)
0

σ
(−1)
0

+ 4
σ

(2)
0 σ̌

(−1)
0

(σ
(−1)
0 )

2 . (3.161)

Computing from (3.157) the second derivative of σ(u) at u = 0, it is also possible to show
that:

f(g) = 2
σ̌

(−1)
2

σ
(−1)
2

. (3.162)

3.6 Conclusions

We now summarize what we have seen in this chapter and try to give some important
hints about wrapping problem. We have already commented that leading terms f(g) and

fsl(g, L) are wrapping free up to the order O
(

(ln s)2

s2

)
: it is prooved until six loops cal-

culations, but agreement at strong coupling with perturbative string calculations suggests
that it holds at all loops. Then, if we suppose that self-tuning and reciprocity are exact
symmetries, from (3.82, 3.150) it follows that also γ̌(−1) and γ̌(0) are wrapping-free. Then,
one could expect that all the terms that are in between fsl(g, L) and γ̌(−1)(g, L) (the vari-
ous γ(n)(g, L)) are also not affected by wrapping. If we suppose this, use again self-tuning

52



and reciprocity and compare (3.142-3.146) with (3.150), we are able to conclude that all
the functions γ̌(n)(g, L) do not depend on wrapping diagrams.

Even if we are aware that our arguments do not provide a proof of the fact that at
high spin wrapping diagrams start contributing at orders (ln s)2

s2
, we however think that

our results provide some nonperturbative hints of this property.
Formulæ (3.81) and (3.137,...,3.141) seems to indicate that more generally functional

relations similar to (3.3, 3.4) should hold for the high spin limit of the function S(k).
On the basis of our results, we are naturally led to make the following proposal for a
self-tuning relation involving the coefficients of the Neumann expansion of the function
S(k),

Sp(g, s, L) = Pp

(
s+

1

2
γ(g, s, L)

)
, (3.163)

where Pp satisfies an high spin expansion analogous to (3.4):

Pp(s) =

∞∑
n=0

a
(n)
p (lnC(s))

C(s)2n
, (3.164)

where C(s) is given by (3.5). Formula (3.163) agrees with results in [38], where the
following self-tuning relations involving also the higher conserved charges

Qr(g, L, s) = Pr

(
s+

1

2
γ(g, s, L)

)
, (3.165)

were proposed.

3.7 Weak coupling computations

Let come back to what we have written at the beginning of subsection (3.5.1). Relations
(3.127) and (3.133) are valid for all values of g but are still implicit. It is very easy to
explicit these relations at weak coupling.

Firstly, we need to solve system (3.115). At weak coupling, it is very simple to find a
recursive solution that permits to find coefficients S̃(n)

p up to the desired order in g. Then,
it is necessary to find coefficients σ(n)

r and σ̌(n)
r , solving (3.24) up to the necessary order

in function of s in high spin limit. In [15], using a program of symbolic manipulation,
Mathematica R©, it is showed the possibility to reach order g22, eleven loops, for functions
γ(n)(g, L). It is possible to reply all steps for functions γ̌(n)(g, L) but it is more convenient
to obtain them using relations from reciprocity and self tuning (3.142-3.146). We report,
for an example, some weak coupling results from [15]:

γ(2)(g, L) = [(L− 2)3 − (L− 2)]

[
g2 7π2

24
ζ(3) + g4

(
35π4

144
ζ(3)− 31π2

8
ζ(5)

)
+

+ g6

(
−73π6

4320
ζ(3)− 155π4

48
ζ(5) +

635π2

16
ζ(7)

)
+ (3.166)

+ g8

(
7π8

1728
ζ(3) +

91π2

24
ζ3(3) +

7π6

60
ζ(5) +

3175π4

96
ζ(7)− 17885π2

48
ζ(9)

)
+ · · ·

]
,
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γ(3)(g, L) = −[(L− 3)3 − (L− 2)]

[
g2 7π2

12
(L ln 2 + γE)ζ(3)+ (3.167)

+ g4π
2

72

(
−147Lζ2(3)− 558L ln 2ζ(5) + 35γEπ

2zeta(3)− 558γEζ(5) + 7(11L− 6)π2 ln 2ζ(3)
)

+

+ g6 π2

2160

(
135(651ζ(3)ζ(5) + 1270 ln 2ζ(7))L− 15π2(2046 ln 2ζ(5)L+ 385ζ2(3)L−

− 1116 ln 2ζ(5)) + γE(−73π4ζ(3)− 13950π2ζ(5) + 171450ζ(7)) + (767L− 840)π4 ln 2ζ(3)
)
−

− g8 π2

4320

(
π6 ln 2ζ(3)(307L− 342) + 18π4(1184 ln 2ζ(5)L+ 91ζ2(3)L− 1240 ln 2ζ(5)+

+ 105ζ2(3))− 15π2(41910 ln 2ζ(7)L+ 15011ζ(3)ζ(5)L− 22860 ln 2ζ(7) + 1302ζ(3)ζ(5))−
− 90(L(756 ln 2ζ3(3)− 8649ζ2(5)− 17780ζ(3)ζ(7)− 35770 ln 2ζ(9))− 392 ln 2ζ3(3))−

− γE(35π6ζ(3) + 1008π4ζ(5) + 285750π2ζ(7) + 1260(26ζ3(3)− 2555ζ(9)))
)

+ · · ·
]
.

We want to stress that obtaining easily pertirbative results up to eleven loops is a great
computational result compared with perturbative results in non-supesymmetric gauge
theories without aspects of integrability.

3.8 About excited states

We have worked in this chapter, for simplicity, on minimal anomalous dimension. But it
is not too much difficult working on excited states. The element that defines a state is the
distribution of Bethe roots, and subsequently of holes, on real axis. The minimal state is
described by L−2 holes near the origin, with no roots within. Internal holes are described
by the relation (3.45):

Z(xh) = π(2h+ 1− L) , h = 1, · · · , L− 2 . (3.168)

In general, for an excited state, we have:

Z(xh) = πf(h) , (3.169)

where f(h) contains the right quantum numbers that describe the distribution of the holes
for the excited state considered. If we watch the general method showed in this chapter,
we note that the starting point in which the distribution of holes appears is the set of
relations (3.99) and (3.100). So, in general, calculations of excited states are the same
made for ground state, substituting to the already used αn,h and α̌n,h, coefficients α(e)

n,h

and α̌(e)
n,h, through the substitution (2h+ 1− L)→ f(h). Due to the recursive behaviour

of (3.99) and (3.100) we just have to perform the substitution in the first ones of both
sets:

α
(e)
1,h =

πf(h)

σ
(−1)
0

, α̌
(e)
1,h = −πf(h)σ̌

(−1)
0

(σ
(−1)
0 )2

. (3.170)

Let focus now, only for shortness, to orders (ln s)−n with n ≥ 1. For excited states we
have (analogously to (3.114)):

S(e)(n)
p (g, L) = −2π

n∑
r=1

S̃(r/2)
p (g) cos

πr

2

∑
{j1,...,jn−r+1}

L−2∑
h=1

n−r+1∏
m=1

(α
(e)
m,h)jm

n−r+1∏
m=1

jm!

(3.171)
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where jm are costrained in the usual way (3.88). In order to get excited state is simpler
to compute the difference S(e)(n)

p (g, L)− S(n)
p (g, L):

∆S(e)(n)
p (g, L) = −2π

n∑
r=1

S̃(r/2)
p (g) cos

πr

2

∑
{j1,...,jn−r+1}


L−2∑
h=1

n−r+1∏
m=1

(α
(e)
m,h)jm

n−r+1∏
m=1

jm!

−

−

L−2∑
h=1

n−r+1∏
m=1

(αm,h)jm

n−r+1∏
m=1

jm!

 . (3.172)

Difference on the right side, when we develop the sum on internal holes, is made from
differences from couples of terms linked to the same holes in the excited state and in the
ground state. We now underline a specific property of function f(h): an excited state
configuration differs from the ground state configuration only for the position of those
holes that change their position with respect to the ground state, i.e. for those holes that
migrate from their ground state positions near the origin. So, function f(h) differs from
function f0(h) = 2h+ 1− L only in correspondece of migrated holes. Excited states very
close to ground state differ for few migrated holes, while high excited states could contain
configurations in which all holes are migrated. However, the difference (3.172) depends
only on migrated holes:

∆S(e)(n)
p (g, L) = −2π

n∑
r=1

S̃(r/2)
p (g) cos

πr

2

∑
{k1,··· ,kl}

∑
{j1,...,jn−r+1}


n−r+1∏
m=1

(α
(e)
m,k)

jm

n−r+1∏
m=1

jm!

−

−

n−r+1∏
m=1

(αm,k)
jm

n−r+1∏
m=1

jm!

 , (3.173)

where the set of indexes k1, · · · , kl represents the set of migrated holes.
Now we give an example, proposed and discussed also in [39]. On the ground state,

two consecutive positions of holes differs of 2π. The first excited state has the two holes
on edge positions (of the set of internal holes) that jump of 2π in the external directions.
Function f(h) is the following:

f(h) =


1− L , h = 1

2h+ 1− L , h = 2, · · · , L− 3

L− 1 , h = L− 2

(3.174)

In this case, we have only two migrating holes, so it is very simple to evaluate (3.173).
For example, we give now the first results (remembering (3.111)):

∆γ(2)(g, L) =
√

2g
8π3

(σ
(−1)
0 )2

(L− 2)S̃
(1)
1 (g) (3.175)

∆γ(3)(g, L) = −16
√

2g
π3σ

(0)
0

(σ
(−1)
0 )3

(L− 2)S̃
(1)
1 (g) . (3.176)
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Chapter 4

High spin and high twist expansion
in sl(2) sector of N = 4 Super
Yang-Mills Theory

4.1 Introduction

In this chapter we study the same sector sl(2) of N = 4 SYM in the following double
scaling limit:

s→ +∞ , L→ +∞ , j =
L− 2

ln s
fixed , (4.1)

for which anomalous dimension expansion (3.2) reads as:

γ(g, L, s) = f(g, j) ln s+ fsl(g, j) +
∞∑
n=1

γ(n)(g, j) (ln s)−n +O((ln s)−∞) . (4.2)

The leading logarithmic divergence has been well understood in a sequel of papers [22, 23,
29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], for both weak and strong coupling.

Importance of this limit is due mainly to the absence of wrapping effects, i.e., to
the possibility to completely investigate (4.2) by using Asymptotic Bethe Ansatz. We
can conjecture the absence of wrapping corrections because the spin chains associated to
dilatation operators are infinite (L→∞).

At small j, the generalised scaling function f(g, j)

f(g, j) =
∞∑
n=0

fn(g)jn (4.3)

has been well studied: at weak coupling [29], at strong coupling [42, 43, 44, 46]; for j � g,
g → +∞, was also shown [43] to coincide with the energy density [45] of the nonlinear
O(6) sigma model embedded into AdS5×S5, thus confirming the related previous proposal
[40] by Alday and Maldacena. Results for j � g are also available [50].

Object of our investigation is the subleading function fsl(g, L) for small j:

fsl(g, j) =
∞∑
n=0

fsl,n(g)jn . (4.4)

We can use the same NLIE approach used in the previous chapter, but in this case we
are interested only to the subleading term, so we can neglect all contributions of orders
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(ln s)−n, n ≥ 1. This brings to a quite simple linear integral equation that we will solve
perturbatively at weak coupling up to the order j5 at one loop and j4 for two and three
loops, as an example. Next, it is showed a generalised and systematic study of subleading
terms and strong coupling limits. All results showed in this chapter are contained in [17].

4.2 Summing on holes

Working in the double scaling limit (4.1) has a great main difference respect to compu-
tations made in the previous chapter: summing on holes. We have seen that the main
difficult in computations is to estimate position of holes on the real axis, in order to eval-
uate sums like those contained in (3.30) and (3.44). Now, we have an infinite numbers
of holes! For the minimal anomalous dimension, we have still two external holes, outside
the two bands containing Bethe roots, and infinite internal holes (L− 2) near the origin,
simmetrycally distributed. First, we have to fix the interval [−c, c] on the real axis in
which internal holes condensate. Counting function counts on the real axis L+ s points,
jumping of 2π between two consecutive points. Relation (3.45) is still valid, so, most
external holes of the group of internal ones are in the positions defined by:

Z(x1) = −π(L− 3) , Z(xL−2) = π(L− 3) . (4.5)

Jumping of 2π to the right, for example, the next position Z(uk) = −π(L− 1) (remember
that the counting function is monotonously decreasing) should be occupied by a root. So,
the only condition on the interval [−c, c] is:

−π(L− 3) < Z(c) < −π(L− 1) . (4.6)

We can freely choose the exact relation and, for convenience that we will show later, we
choose to fix c by the relation:

Z(c) = −π(L− 2) +O

(
1

ln s

)
, (4.7)

where the introduction of the second term on the right is necessary because the first, for
(4.1), is of order ln s.

4.2.1 How to sum on internal holes

Let see now how the compute the sum on internal holes in the case of L→∞. Start with
the NLIE:

s∑
k=1

O(uk) +
L∑
h=1

O(xh) = −
∫ +∞

−∞

dv

2π
O(v)σ(v) + NL-terms . (4.8)

We can restrict the interval of integration to [−c, c]: in this case sum over roots is zero
because no roots are in [−c, c] and the sums on holes reduces only to the sum on internal
ones. So we have an easy way to evaluate the sum on internal holes through a NLIE:

L−2∑
h=1

O(xh) = −
∫ c

−c

dv

2π
O(v)σ(v) + NL-terms . (4.9)

We have showed in the first chapter a way to evaluate non-linear terms in a NLIE (eq.
(4.9)). This formula works in this case, for which we have:

NL = −
∞∑
k=0

(2π)2k+1

(2k + 2)!
B2k+2

(1

2

) [( 1

Z ′(v)

d

dv

)2k+1

O(v)

]v=c

v=−c

, (4.10)
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from which we can note, using (4.7) and (4.1), that

NL ∼ O
(
(ln s)−(2k+1)

)
, (4.11)

so we are left with a linear integral equation, discarding terms of order (ln s)−n, n ≥ 1:

L−2∑
h=1

O(xh) = −
∫ c

−c

dv

2π
O(v)σ(v) +O

( 1

ln s

)
. (4.12)

In our calculations, we write for simplicity sum on internal holes in the following way
(see for example (3.74), using symmetric distribution of holes around the origin:

L−2∑
h=1

(
cos(txh)− 1

)
(4.13)

so we have

L−2∑
h=1

(
cos(txh)− 1

)
= −

∫ c

−c

dv

2π

(
cos(tv)− 1

)
σ(v) +O

( 1

ln s

)
(4.14)

and, passing to Fourier space,

L−2∑
h=1

(
cos(txh)− 1

)
= −

∫ +∞

−∞

dh

2π2
σ̂(h)

[
sin
(
(t− h)c

)
t− h

− sin(hc)

h

]
+O

( 1

ln s

)
. (4.15)

4.2.2 External holes

In the section (3.3.2) we have studied position of external holes, we have obtained equation
(3.73):

xL = −xL−1 =
s√
2

(
1 +

L− 1 + γ(g, L, s)

2s
+O

(
1

s2

))
. (4.16)

In our computations in the previous chapter, this formula enters specifically in the fol-
lowing way: seeing for example equation (3.74), leading terms of (4.16) gives the leading
term of order ln s, while subleading terms bring to terms of order s−1. In this chapter
we are only interested in analysis of subleading contributions fsl(g, j) so we can neglet
subleading terms in (4.16) and consider, from now, positions of external holes as:

xL = −xL−1 =
s√
2

(
1 + +O

(
1

s

))
. (4.17)

4.3 Weak coupling results

We show in this section perturbative results (g � 1) for fsl(g, j) We separe one-loop
contributions, i.e. order g2, from many-loops ones.

4.3.1 One loop results

Our discussion starts from equation (3.30). It is simple to adapt this equation to our
actual purposes. Keeping in mind that we are interested only in orders ln s and (ln s)0,
we can discard in our computations all terms of orders (ln s)−n, n ≥ 1 and O(s−1). So,
for external holes, we can use (4.17). Sum of internal holes could be easily written in the
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form (4.13), so we can evaluate it using (4.15), but taking the one-loop part of the interval
[−c, c], say [−c0, c0].

For what concerns the non-linar term, we can refer to subsection (3.3.1) and we can
make the substitution

− 2e−|k|

1− e−|k|
L̂′0(k)→ −4πδ(k) ln 2 (4.18)

discarding terms of order O(s−2). So we finally have:

σ̂0(k) = −2π

j ln s+2
2

(
1− e−

|k|
2

)
+ e−

|k|
2

(
1− cos ks√

2

)
sinh |k|2

− 4πδ(k) ln 2−

− e−
|k|
2

sinh |k|2

∫ +∞

−∞

dh

2π
σ̂0(h)

[
sin(k − h)c0

k − h
− sinhc0

h

]
+O

(
1

ln s

)
. (4.19)

We have to solve this equation together with the one-loop part of the condition (4.7), that
reads:

Z(c0) =
1

2

∫ c0

−c0
duσ0(u) = −πj ln s+O

(
1

ln s

)
(4.20)

and, in Fourier space:

2

∫ +∞

−∞

dk

2π
σ̂0(k)

sin kc0

k
= −2π j ln s+O

(
1

ln s

)
. (4.21)

Equation (4.19) and (4.21) suggest that c0 depends on j and ln s and expands, for j � 1,
as

c0 =
∞∑
n=1

c
(0,n)
0 jn + [

∞∑
n=1

c
(1,n)
0 jn]

1

ln s
+O

(
1

(ln s)2

)
. (4.22)

Equations (4.19), (4.21) and (4.22) are the starting point of our computations. Using the
notation

drσ(u)

dur


u=0

= σ0,r(0) (4.23)

we can expand condition (4.21) and get:

2σ0,0(0)c0 +
1

3
σ0,2(0)c3

0 + . . . = −2πj ln s . (4.24)

For such quantities expansions similar to (4.22) hold, e.g.

σ0,0(0) = [

∞∑
n=0

σ
(−1,n)
0 (0)jn] ln s+ [

∞∑
n=0

σ
(0,n)
0 (0)jn] +O

(
1

ln s

)
. (4.25)

Looking to (4.19), the term on the second line is of leading order c3
0, so it is a term of

order O(j3). We can neglect the integral term and evaluate (4.19) up to order j3. From
it we can get:

σ0,0(0) = [−4− 4j ln 2 +O(j3)] ln s− [8 ln 2 + 4γE +O(j3)] +O

(
1

ln s

)
(4.26)

and also that
σ0,2(0) = [56ζ(3) +O(j)] +O

(
1

ln s

)
. (4.27)
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Now, inserting the expansion (4.22) in the condition (4.24) and using also (4.26) we can
start finding, by equating equal powers in j and ln s, the various coefficients c(0,n)

0 , c(1,n)
0 .

We get, without much ado

c(0,1) =
π

4
, c(0,2) = −π

4
ln 2 , c(0,3) =

π

4
(ln 2)2 , c(1,1) = −π

4
(2 ln 2 + γE) ,

c(1,2) =
π

2
ln 2(2 ln 2 + γE) , c(1,3) = −3

4
π(ln 2)2(2 ln 2 + γE) +

7

192
π3ζ(3) ,

in such a way that one can write

c0 =
[π

4
j − π

4
ln 2 j2 +

π

4
(ln 2)2j3 +O(j4)

]
+
[
−π

4
(2 ln 2 + γE)j+ (4.28)

+
π

2
ln 2(2 ln 2 + γE)j2 −

(
3

4
π(ln 2)2(2 ln 2 + γE)− 7

192
π3ζ(3)

)
j3 +O(j4)

] 1

ln s
+

+O

(
1

(ln s)2

)
.

We can use these results to compute anomalous dimension. At one loop, equations
(3.7), (3.10), (3.11) and (3.1) bring to:

γg2 = g2
s∑

k=1

e(u) = g2
s∑

k=1

1

u2
k + 1

4

. (4.29)

We use the usual NLIE approach, so we have:

γg2 = −g2

∫ +∞

−∞

du

2π
e(u)σ0(u) + NL + g2

L∑
h=1

e(xh) . (4.30)

We can easily evaluate Non-linear terms using (4.10) but on the interval (−∞,+∞).
Keeping in mind (4.1), we see from (3.20) that Z(u → ∞) ∼ s so we get NL ∼ O(s−1).
From (4.29) and (4.17) we immediatly see that external holes give contributions of order
O(s−2). Sum on internal holes can be evaluated using what we have said in (4.2.1), with
its non-linear terms that are of order O((ln s)−1). We can discard all of these terms for
our purposes so we are left with:

γg2 = −g2

∫ +∞

−∞

du

2π
e(u)σ0(u) + g2

∫ c0

−c0

du

2π
e(u)σ0(u) (4.31)

and, in Fourier space, using (4.21) in computations:

γg2 = −
∫ +∞

−∞

dk

4π2
ê(k)σ̂0(k) +

∫ +∞

−∞

dk

4π2
ê(k)× (4.32)

×
∫ +∞

−∞

dh

2π
σ̂0(h)

[
2

sin(k − h)c0

k − h
− 2

sinhc0

h

]
− ln sje(0) ,

with
ê(k) = 2πe−

|k|
2 . (4.33)
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Inserting all results collected, we get, expanding in powers of j:

γg2 = g2 ln s
[
4− 4 ln 2 j +

7ζ(3)π2

24
j3 − 7ζ(3)π2 ln 2

12
j4 +

+

(
7π2(ln 2)2ζ(3)

8
− 31π4ζ(5)

640

)
j5 +O(j6)

]
+ (4.34)

+ g2
[
4γE −

7ζ(3)π2

12
(2 ln 2 + γE) j3 +

7ζ(3)π2 ln 2

4
(2 ln 2 + γE)j4 −

−
(

7π2(ln 2)2ζ(3)

2
− 31π4ζ(5)

160

)
(2 ln 2 + γE)j5 +

+
49π4ζ2(3)

960
j5 +O(j6)

]
+O

(
1

ln s

)
.

4.3.2 Higher loops results

Let us now pass to compute weak coupling expansions in powers of j of anomalous di-
mension. In order to do that, we study the minimal anomalous dimension as a function
of the coupling costant following the scheme showed in (3.2.3), introducing the auxiliary
function S(k). We can easily pass to the actual limit (4.1) we are working in, in the same
way we have just used for one-loop computations. It is important to stress the validity of
the relation (3.40):

γ(g, j) = 2S(0) . (4.35)

For our purposes, we start to analyze the NLIE for S(k) in the form (3.41):

S(k) =
L

|k|
[1− J0(

√
2gk)] +

ike
|k|
2

2π|k|

∫ +∞

−∞

dt

4π2
φ̂H(k, t)

[
π|t|

sinh |t|2

S(t)−

− 2L̂′(t)

1− e−|t|
− 2πLe

−|t|
2

1− e−|t|
+

2π

1− e−|t|
L∑
h=1

eitxh

]
. (4.36)

Let us evaluate the various terms. Let begin from the non-linear term

− 2L̂′(t)

1− e−|t|
. (4.37)

Referring to the subsection (3.3.1) and using property (3.43), we can make the substitution:

− 2L̂′(t)

1− e−|t|
→ −4πδ(t) ln 2 (4.38)

discarding terms of order O(s−2). Then, even distribution of holes around the origin
permits to write the sum on holes as follows:

L∑
h=1

eitxh =

L∑
h=1

[cos(txh)− 1] + L (4.39)
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so we can evaluate sum on holes using (4.15) and (4.17). We get at the end:

S(k) =
j ln s+ 2

|k|
[1− J0(

√
2gk)]+ (4.40)

+
1

π|k|

∫ +∞

−∞

dt

|t|

[ ∞∑
r=1

r(−1)r+1Jr(
√

2gk)Jr(
√

2gt)
1− sgn(kt)

2
e−
|t|
2 +

+ sgn(t)

∞∑
r=2

∞∑
ν=0

cr,r+1+2ν(g)(−1)r+νe−
|t|
2 ×

×
(
Jr−1(

√
2gk)Jr+2ν(

√
2gt)− Jr−1(

√
2gt)Jr+2ν(

√
2gk)

)]
·

·
{ π|t|

sinh |t|2

S(t)− 4π ln 2 δ(t)− πj ln s
1− e

|t|
2

sinh |t|2

− 2π
1− e−

|t|
2 cos ts√

2

sinh |t|2

−

− e
|t|
2

sinh |t|2

∫ +∞

−∞

dp

2π
σ̂(p)

[
sin(t− p)c
t− p

− sin pc

p

]}
+O

(
1

ln s

)
.

This relation has to be solved together with the condition (4.7), that reads in Fourier
space as:

2

∫ +∞

−∞

dk

2π
σ̂(k)

sin kc

k
= −2πj ln s+O

(
1

ln s

)
. (4.41)

Two loops anomalous dimension

Let us expand the linear equation for S(k) at order g4. Before doing this, it is convenient
to write the expression for S(k) at the order g2. From the general expression (4.40) we
get, neglecting terms O(1/ ln s),

Sg2(k) =
g2

2
L|k|+ 1

π|k|

∫ +∞

−∞

dh

|h|

√
2gh

2

√
2gk

2

1− sgn(kh)

2
e−
|h|
2 × (4.42)

×
{
−4π ln 2 δ(h)− πj ln s

1− e
|h|
2

sinh |h|2

− 2π
1− e−

|h|
2 cos hs√

2

sinh |h|2

−

− e
|h|
2

sinh |h|2

∫ +∞

−∞

dp

2π
σ̂0(p)

[
sin(h− p)c0

h− p
− sin pc0

p

]}
.

Comparing (4.35) with (4.42) we get

Sg2(k) =
g2

2
L|k|+ 1

2
γg2 . (4.43)
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Let us pass now to the order g4. In this case the relevant equation reads, neglecting terms
O(1/ ln s),

Sg4(k) = −g
4

16
L|k|3 +

1

π|k|

∫ +∞

−∞

dh

|h|

√
2gh

2

√
2gk

2

1− sgn(kh)

2
e−
|h|
2 × (4.44)

×
{ π|h|

sinh |h|2

Sg2(h)− e
|h|
2

sinh |h|2

[∫ +∞

−∞

dp

2π
σ̂(p)

(
sin(h− p)c
h− p

− sin pc

p

)]
g2

}
+

+
1

π|k|

∫ +∞

−∞

dh

|h|

[
−1

8
g4k2h2 − (

√
2gh)3

16

√
2gk

2
− (
√

2gk)3

16

√
2gh

2

]
×

× 1− sgn(kh)

2
e−
|h|
2

{
−4π ln 2 δ(h)− πj ln s

1− e
|h|
2

sinh |h|2

− 2π
1− e−

|h|
2 cos hs√

2

sinh |h|2

−

− e
|h|
2

sinh |h|2

∫ +∞

−∞

dp

2π
σ̂0(p)

[
sin(h− p)c0

h− p
− sin pc0

p

]}
.

It follows that the two loops contribution to the anomalous dimension, γg4 , is given by1

γg4 = − g
2

2π

∫ +∞

−∞
dhe−

|h|
2

{ π|h|
sinh |h|2

Sg2(h)− (4.45)

− e
|h|
2

sinh |h|2

[∫ +∞

−∞

dp

2π
σ̂(p)

(
sin(h− p)c
h− p

− sin pc

p

)]
g2

}
+

+
g4

8π

∫ +∞

−∞
dhh2e−

|h|
2

{
−4π ln 2 δ(h)− πj ln s

1− e
|h|
2

sinh |h|2

−

− 2π
1− e−

|h|
2 cos hs√

2

sinh |h|2

− e
|h|
2

sinh |h|2

∫ +∞

−∞

dp

2π
σ̂0(p)

[
sin(h− p)c0

h− p
− sin pc0

p

]}
+

+O(1/ ln s) .

It is not difficult to compute, neglecting orders 1/ ln s, the contributions to γg4 coming
from the term in the first line, the terms in the third line and the first term in the fourth
line. For these contributions we get

γg4,1 = −2g4ζ(3)(j ln s+ 2)− g2

6
π2γg2 + 6g4ζ(3)j ln s− 2g4ζ(3) =

= −6g4ζ(3) + 4g4ζ(3)j ln s− g2

6
π2γg2 . (4.46)

The computation of the contribution, which we indicate with γg4,2, coming from the last
term in (4.45) relies on the one loop results. If one wants to restrict to terms containing
powers of j not higher than 4, the relevant integral to compute is simple:

γg4,2 =
g4

24π
c3

0σ0(0)

∫ +∞

0
dh

h4

sinh h
2

=
g4

π
62ζ(5)c3

0σ0(0) . (4.47)

1In this section and we will use the notation [. . .]g2 (and analogous ones) to indicate the order g2 of
the quantity inside the square brackets.
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Using one loop results we have, up to the desired order

c3
0σ0(0) =

[
−π

3

16
j3 +

π3

8
j4 ln 2

]
ln s+

+
[π3

8
(2 ln 2 + γE)j3 − 3

π3

8
j4 ln 2(2 ln 2 + γE)

]
+O

(
1

ln s

)
,

in such a way that the corresponding contribution to the energy reads

γg4,2 =
g4

π
62ζ(5)

[
−π

3

16
j3 +

π3

8
j4 ln 2

]
ln s+

+
g4

π
62ζ(5)

[π3

8
(2 ln 2 + γE)j3 − 3

π3

8
j4 ln 2(2 ln 2 + γE)

]
+

+ O

(
1

ln s

)
. (4.48)

We are now left with the calculation of the contribution - γg4,3 - to the anomalous di-
mension coming from the term in the second line of (4.45). Since we restrict to terms
containing powers of j not higher that 4, at the relevant order such contribution equals

γg4,3 = − g
2

6π
[c3σ(0)]g2

∫ +∞

0
dh

h2

sinh h
2

= −g2 14

3π
ζ(3)[c3σ(0)]g2 . (4.49)

We have now to compute σ(0) and c up to the order g2. For what concerns σ(0) we have

σ(0) = [−4− 4j ln 2 +O(j3)] ln s− [8 ln 2 + 4γE +O(j3)] + [σH(0)]g2 +O

(
1

ln s

)
, (4.50)

where, from (3.39) (focusing only on leading terms of our actual interest), (4.43), one has,
neglecting terms O(j3),

[σH(0)]g2 =

∫ ∞
−∞

dh
|h|

2 sinh |h|2

[S(h)]g2 = 14(j ln s+ 2)g2ζ(3) +
π2

2
γg2 +O

(
1

ln s

)
. (4.51)

On the other hand, the condition (4.41) for c at the desired order reads as

2σ(0)c = −2πj ln s . (4.52)

Using such relation, we can get c at the order g2 and up to the orders j2 and 1/ ln s:

[c]g2 =

[
π

16 ln s
j(1− 2 ln 2j) +

π

16(ln s)2
(γE + 2 ln 2)(−2j + 6 ln 2j2)

]
·

· [28g2ζ(3) +
π2

2
γg2 + 14jg2ζ(3) ln s] +O

(
1

(ln s)2

)
. (4.53)

Coming back to the energy, we have

γg4,3 = g2 14

3π
ζ(3)πj ln s [c2]g2 +O(j5, ln s) , (4.54)

which, after using the one loop expression for c0 up to the order j2,

c0 =
[π

4
j − π

4
ln 2 j2 +O(j3)

]
+
[
−π

4
(2 ln 2 + γE)j + (4.55)

+
π

2
ln 2(2 ln 2 + γE) j2 +O(j3)

] 1

ln s
+O

(
1

(ln s)2

)
,
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gives

γg4,3 =
7

48
ζ(3)g2π2j3

[
(1− 3j ln 2) +

2 ln 2 + γE
ln s

(−3 + 12 ln 2 j)
]
·

· [28g2ζ(3) +
π2

2
γg2 + 14jg2ζ(3) ln s] +O

(
1

ln s

)
. (4.56)

Summing together (4.46, 4.48, 4.56) we get the energy at the order g4 and up to the order
j4:

γg4 = −6g4ζ(3) + 4g4ζ(3)j ln s− g2

6
π2γg2 +

+
g4

π
62ζ(5)

[
−π

3

16
j3 +

π3

8
j4 ln 2

]
ln s+

+
g4

π
62ζ(5)(2 ln 2 + γE)

[π3

8
j3 − 3

π3

8
j4 ln 2

]
+ (4.57)

+
7

48
ζ(3)g2π2j3

[
(1− 3j ln 2) +

2 ln 2 + γE
ln s

(−3 + 12 j ln 2)
]
·

· [28g2ζ(3) +
π2

2
γg2 + 14j g2ζ(3) ln s] +O

(
1

ln s

)
.

Alternatively, we can write

γg4 = −π
2

6
g2γg2 + g4 ln s

[
4ζ(3) j − 31

8
π2ζ(5) j3 +

7

24
π4ζ(3) j3+

+
31

4
π2 ln 2 ζ(5) j4 +

49

24
π2ζ(3)2 j4 − 7

6
π4ζ(3) ln 2 j4 +O(j5)

]
+

+ g4
[
−6ζ(3) +

31

4
π2ζ(5)(2 ln 2 + γE) j3 +

49

12
π2ζ(3)2 j3−

− 7

12
π4ζ(3)(3 ln 2 + γE)j3+ (4.58)

+
7

4
π4ζ(3) ln 2(5 ln 2 + 2γE) j4 − 93

4
π2ζ(5) ln 2(2 ln 2 + γE) j4−

− 49

8
ζ(3)2π2(4 ln 2 + γE) j4 +O(j5)

]
+O

(
1

ln s

)
.

Three loops anomalous dimension

For the three loops anomalous dimension, the calculation follows the same route as in the
two loops case. We simply report the final result. The three loops anomalous dimension
γg6 expands as

γg6 = ln s
∞∑
n=0

fn,g6 j
n +

∞∑
n=0

fsl,n,g6 j
n +O(1/ ln s) , (4.59)
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where the coefficients fn,g6 were already computed [29] (at least, explicitly up to n = 4)
and the new coefficients fsl,n,g6 , still up to n = 4, read as

fsl,0,g6 = 20ζ(5) +
2

3
π2ζ(3) +

11

45
π4γE , (4.60)

fsl,1,g6 = fsl,2,g6 = 0 , (4.61)

fsl,3,g6 = − 331

1080
π6ζ(3)(2 ln 2 + γE) +

1

144
π6ζ(3)(42 ln 2 + 49γE)+

+
31

3
π4ζ(5)(2 ln 2 + γE)− 31

8
π4γEζ(5) +

385

72
π4ζ(3)2

− 635

8
π2ζ(7)(2 ln 2 + γE)− 651

8
π2ζ(3)ζ(5) , (4.62)

fsl,4,g6 =
1905

8
π2 ln 2(2 ln 2 + γE)ζ(7) +

1953

16
π2(2 ln 2 + γE)ζ(3)ζ(5)+

+
1953

8
π2 ln 2ζ(3)ζ(5)− 341

8
π4 ln 2(2 ln 2 + γE)ζ(5)− 93

4
π4(ln 2)2ζ(5)−

− 385

48
π4(2 ln 2 + γE)ζ(3)2 − 413

12
π4 ln 2ζ(3)2 +

343

8
π2ζ(3)3+

+
767

720
π6 ln 2(2 ln 2 + γE)ζ(3) +

35

12
π6(ln 2)2ζ(3) . (4.63)

4.4 Systematics of the subleading term

We now want to put the linear integral equation (4.40) in a form which is more suitable
for analysis of both the weak and the strong coupling limit. In brief, instead of working
with one linear integral equation (4.40), we will be concerned with linear infinite (i.e.
containing infinite equations) systems. As far as the dependence on ln s is concerned,
equation (4.40) and its solution split in a part proportional to ln s and a part proportional
to (ln s)0. Since the former has been extensively studied [29, 46], we concentrate on the
latter, which we call S(0)(k). We restrict to the domain k ≥ 0 and expand S(0)(k) in series
of Bessel functions

S(0)(k) =
∞∑
r=1

S(0)
r (g)

Jr(
√

2gk)

k
. (4.64)

As a consequence of (4.40), the coefficients S(0)
r (g) satisfy the following system of equations,

S
(0)
2p−1(g) = 2

√
2gγEδp,1 + 4(2p− 1)

∫ +∞

0

dh

h

J̃2p−1(
√

2gh)

eh − 1
+A

(0)
2p−1(g)−

− 2(2p− 1)
∞∑
m=1

Z2p−1,m(g)S(0)
m (g) ,

(4.65)

S
(0)
2p (g) = 4 + 8p

∫ +∞

0

dh

h

J2p(
√

2gh)

eh − 1
+A

(0)
2p (g) + 4p

∞∑
m=1

Z2p,2m−1(g)S
(0)
2m−1(g)−

− 4p
∞∑
m=1

Z2p,2m(g)S
(0)
2m(g) ,

where, as usual, we introduced the notation

Zn,m(g) =

∫ +∞

0

dh

h

Jn(
√

2gh)Jm(
√

2gh)

eh − 1
, (4.66)
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and where we introduced the function J̃2p−1(x) which coincides with the Bessel function
J2p−1(x) for p ≥ 2 and with J1(x)− x

2 when p = 1. In (4.65) the terms A(0)
r (g) is the term

proportional to (ln s)0 of the quantity:

Ar(g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

∫ +∞

−∞

dp

2π
2

[
sin(h− p)c
h− p

− sin pc

p

]
σ̂(p) . (4.67)

Eventually, anomalous dimension at order (ln s)0, γ(0), is extracted from S
(0)
1 (g) by means

of the formula
γ(0) =

√
2gS

(0)
1 (g) . (4.68)

To be complete, we write down also the equations satisfied by the part of S(k), which is
linear in ln s. Let us call such part S(−1)(k). Expanding in series of Bessel functions

S(−1)(k) =

∞∑
r=1

S(−1)
r (g)

Jr(
√

2gk)

k
, (4.69)

we find the following system of equations for the coefficients S(−1)
r (g),

S
(−1)
2p−1(g) = 2

√
2gδp,1 − 2(2p− 1) j

∫ +∞

0

dh

h

J2p−1(
√

2gh)

e
h
2 + 1

+A
(−1)
2p−1(g)−

− 2(2p− 1)
∞∑
m=1

Z2p−1,m(g)S(−1)
m (g) ,

(4.70)

S
(−1)
2p (g) = 2j − 4p j

∫ +∞

0

dh

h

J2p(
√

2gh)

e
h
2 + 1

+A
(−1)
2p (g) +

+ 4p
∞∑
m=1

Z2p,2m−1(g)S
(−1)
2m−1(g)− 4p

∞∑
m=1

Z2p,2m(g)S
(−1)
2m (g) ,

where A(−1)
r (g) is the term proportional to ln s of the quantity (4.67).

This system has been used in the series of papers [42, 44, 46] in order to compute the
(strong coupling limit of) the generalised scaling function f(g, j). In the next subsections
we will adapt the steps of [42, 44, 46] to system (4.65) in order to study the subleading
function f (0)(g, j) as series in j, up to the order j5.

4.4.1 Slicing in powers of j

In the limit (4.1) the function S(0)(k) admits an expansion in powers of j:

S(0)(k) =

∞∑
n=0

S(0,n)(k)jn . (4.71)

And, this way of expanding extends to the coefficients S(0)
r (g) (4.64) as well:

S(0)
r (g) =

∞∑
n=0

S(0,n)
r (g)jn . (4.72)
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In expansion (4.72) the coefficients S(0,0)
r (g) - which give the part of the function

S(0)(k) independent of j - satisfy the system of equations

S
(0,0)
2p−1(g) = 2

√
2gγEδp,1 + 4(2p− 1)

∫ +∞

0

dh

h

J̃2p−1(
√

2gh)

eh − 1
−

−2(2p− 1)

∞∑
m=1

Z2p−1,m(g)S(0,0)
m (g) ,

(4.73)

S
(0,0)
2p (g) = 4 + 8p

∫ +∞

0

dh

h

J2p(
√

2gh)

eh − 1
+ 4p

∞∑
m=1

Z2p,2m−1(g)S
(0,0)
2m−1(g)−

− 4p

∞∑
m=1

Z2p,2m(g)S
(0,0)
2m (g) .

This system of equations is studied in the contemporaneous paper [51] - the coefficients
S

(0,0)
r (g) being there denoted as Sextrar (g). Therefore, we pass to study the function
S

(0,n)
r (g), when n ≥ 1. For simplicity’s sake we limit to the cases n = 3, 4, 5 (for n = 1, 2,
S

(0,n)
r (g) = 0). The forcing terms A(0,n)

r (g) appearing in the system for S(0,n)
r (g), n ≥ 3,

S
(0,n)
2p−1(g) = A

(0,n)
2p−1(g)− 2(2p− 1)

∞∑
m=1

Z2p−1,m(g)S(0,n)
m (g) ,

(4.74)

S
(0,n)
2p (g) = A

(0,n)
2p (g) + 4p

∞∑
m=1

Z2p,2m−1(g)S
(0,n)
2m−1(g)− 4p

∞∑
m=1

Z2p,2m(g)S
(0,n)
2m (g) ,

are obtained after developing (4.67) for small c up to c5:

A(0,n)
r (g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

[
−1

3
h2c3σ(0) +

1

60
h4c5σ(0)− 1

10
h2c5σ2(0)

]
(ln s)0,jn

(4.75)
with 3 ≤ n ≤ 5 and where σ2(0) stands for the second derivative of σ(u) at u = 0. Now,
from the expansions in powers of ln s:

σ(0) = ln s σ(−1)(0) + σ(0)(0) +O

(
1

ln s

)
, σ2(0) = ln s σ

(−1)
2 (0) + σ

(0)
2 (0) +O

(
1

ln s

)
,

c = c(0) + (ln s)−1 c(1) +O

(
1

(ln s)2

)
, (4.76)

we get (3 ≤ n ≤ 5):

A(0,n)
r (g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

[
−1

3
h2
(
c(0)3

σ(0)(0) + 3c(0)2
c(1)σ(−1)(0)

)
+ (4.77)

+
1

60
h4
(
c(0)5

σ(0)(0) + 5c(0)4
c(1)σ(−1)(0)

)
− 1

10
h2
(
c(0)5

σ
(0)
2 (0) + 5c(0)4

c(1)σ
(−1)
2 (0)

)]
jn
.

Keeping in mind the expansions in powers of j:

c(k) =
∞∑
n=1

c(k,n)jn , σ(k−1)(0) =
∞∑
n=0

σ(k−1,n)(0)jn , σ
(k−1)
2 (0) =

∞∑
n=0

σ
(k−1,n)
2 (0)jn , k = 0, 1,

(4.78)
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we can now specialise (4.77) to the cases n = 3,

A(0,3)
r (g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

[
−1

3
h2
(
c(0,1)3

σ(0,0)(0) + 3c(0,1)2
c(1,1)σ(−1,0)(0)

)]
,

(4.79)
n = 4,

A(0,4)
r (g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

[
−1

3
h2
(

3c(0,1)2
c(0,2)σ(0,0)(0) + 3c(0,1)2

c(1,1)σ(−1,1)(0)+

+ 3c(0,1)2
c(1,2)σ(−1,0)(0) + 6c(0,1)c(0,2)c(1,1)σ(−1,0)(0)

)]
(4.80)

and n = 5:

A(0,5)
r (g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

[
−1

3
h2
(

3c(0,1)2
c(0,3)σ(0,0)(0) + 3c(0,2)2

c(0,1)σ(0,0)(0)+

+ 3c(0,1)2
c(1,3)σ(−1,0)(0) + 6c(0,1)c(0,2)c(1,2)σ(−1,0)(0) + 6c(0,1)c(0,3)c(1,1)σ(−1,0)(0)+

+ 3c(0,2)2
c(1,1)σ(−1,0)(0) + 3c(0,1)2

c(1,2)σ(−1,1)(0) + 6c(0,1)c(0,2)c(1,1)σ(−1,1)(0)
)

+

+
1

60
h4
(
c(0,1)5

σ(0,0)(0) + 5c(0,1)4
c(1,1)σ(−1,0)(0)

)
−

− 1

10
h2
(
c(0,1)5

σ
(0,0)
2 (0) + 5c(0,1)4

c(1,1)σ
(−1,0)
2 (0)

)]
. (4.81)

On the other hand, the c can be expressed in terms of the σ(0) by means of the condition
(4.41). At the relevant order in c such condition reads

2σ(0)c+
1

3
σ2(0)c3 = −2πj ln s . (4.82)

The order (ln s)0 of such equation gives

2σ(−1)(0)c(1) + 2σ(0)(0)c(0) + σ
(−1)
2 (0)c(0)2

c(1) +
1

3
σ

(0)
2 (0)c(0)3

= 0 . (4.83)

Specialising such equation at order j, we get the condition 2

c(1,1) = − σ(0,0)(0)

σ(−1,0)(0)
c(0,1) = π

σ(0,0)(0)

[σ(−1,0)(0)]2
. (4.84)

At order j2 we have

c(1,2) = −σ
(−1,1)(0)

σ(−1,0)(0)
c(1,1) − σ(0,0)(0)

σ(−1,0)(0)
c(0,2) = −2π

σ(0,0)(0)σ(−1,1)(0)

[σ(−1,0)(0)]3
. (4.85)

Going at order j3 we get

c(1,3) = −σ
(−1,1)(0)

σ(−1,0)(0)
c(1,2) − σ(0,0)(0)

σ(−1,0)(0)
c(0,3) − 1

2

σ
(−1,0)
2 (0)

σ(−1,0)(0)
c(0,1)2

c(1,1) − 1

6

σ
(0,0)
2 (0)

σ(−1,0)(0)
c(0,1)3

=

= 3π
σ(0,0)(0)[σ(−1,1)(0)]2

[σ(−1,0)(0)]4
− 2

3
π3σ

(0,0)(0)σ
(−1,0)
2 (0)

[σ(−1,0)(0)]5
+
π3

6

σ
(0,0)
2 (0)

[σ(−1,0)(0)]4
. (4.86)

2We remember the formulæ (relations (5.18-5.20) of [46]):

c(0,1) = − π

σ(−1,0)(0)
, c(0,2) = π

σ(−1,1)(0)

[σ(−1,0)(0)]2
, c(0,3) =

π3

6

σ
(−1,0)
2 (0)

[σ(−1,0)(0)]4
− π

[σ(−1,1)(0)]2

[σ(−1,0)(0)]3
.
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In such a way, we obtain

A(0,3)
r (g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

(
−2

3
π3h2

)
σ(0,0)(0)

[σ(−1,0)(0)]3
, (4.87)

and, also,

A(0,4)
r (g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

2π3h2σ
(0,0)(0)σ(−1,1)(0)

[σ(−1,0)(0)]4
. (4.88)

For what concerns the term proportional to j5, we get, after some calculation:

A(0,5)
r (g) = r

∫ +∞

0

dh

2πh

Jr(
√

2gh)

sinh h
2

[
−1

3
h2
(π5

5

σ
(0,0)
2 (0)

[σ(−1,0)(0)]5
+

+ 12π3σ
(0,0)(0)[σ(−1,1)(0)]2

[σ(−1,0)(0)]5
− π5σ

(0,0)(0)σ
(−1,0)
2 (0)

[σ(−1,0)(0)]6

)
+

1

15
h4π5 σ(0,0)(0)

[σ(−1,0)(0)]5

]
. (4.89)

Now, in analogy to what done in [46], we introduce the ’reduced’ coefficients S̃(k)
r (g)

which satisfy the system (4.23) of [46], i.e. the ’usual’ system with the BES kernel and
with forcing terms

I(k)
r (g) = r

∫ +∞

0

dh

2π
h2k−1Jr(

√
2gh)

sinh h
2

. (4.90)

Using notations of [46], we can write the various fn, n = 3, 4, 5, in terms of S̃(k)
1 (g) and of

the density (of Bethe roots and holes) and its derivatives in zero

fsl,3(g) = −2

3
π3 σ(0,0)(0)

[σ(−1,0)(0)]3

√
2gS̃

(1)
1 (g) , (4.91)

fsl,4(g) = 2π3σ
(0,0)(0)σ(−1,1)(0)

[σ(−1,0)(0)]4

√
2gS̃

(1)
1 (g) , (4.92)

fsl,5(g) =
[
−1

3

(π5

5

σ
(0,0)
2 (0)

[σ(−1,0)(0)]5
+ 12π3σ

(0,0)(0)[σ(−1,1)(0)]2

[σ(−1,0)(0)]5
− π5σ

(0,0)(0)σ
(−1,0)
2 (0)

[σ(−1,0)(0)]6

)
×

×
√

2gS̃
(1)
1 (g) +

π5

15

σ(0,0)(0)

[σ(−1,0)(0)]5

√
2gS̃

(2)
1 (g)

]
. (4.93)

Expressions (4.91, 4.92, 4.93) are valid for all g, so they interpolate from weak to strong
coupling. Their weak coupling expansion in powers of g2 (at least for f (0)

3 (g), f (0)
4 (g))

were given, up to g6, in Section (4.3). In the next subsection, we will study and explicitly
find their strong coupling limit.

Finally, for comparison, we write corresponding formulæ for the coefficients fsl,n(g) of
the function f(g, j), (5.30-32) of [46],

f3(g) =
π3

3

1

[σ(−1,0)(0)]2

√
2gS̃

(1)
1 (g) , (4.94)

f4(g) = −2

3
π3 σ(−1,1)(0)

[σ(−1,0)(0)]3

√
2gS̃

(1)
1 (g) , (4.95)

f5(g) =
[
π3 [σ(−1,1)(0)]2

[σ(−1,0)(0)]4
− π5

15

σ
(−1,0)
2 (0)

[σ(−1,0)(0)]5

]√
2gS̃

(1)
1 (g)− π5

60

1

[σ(−1,0)(0)]4

√
2gS̃

(2)
1 (g) .

(4.96)
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We notice the interesting proportionality between fsl,n(g) and fn(g) for n = 3, 4,

fsl,3(g) = −2
σ(0,0)(0)

σ(−1,0)(0)
f3(g) , fsl,4(g) = −3

σ(0,0)(0)

σ(−1,0)(0)
f4(g) , (4.97)

which, however, seems to be lost when n = 5. This could suggest a deep relation between
f (0)(g, j) and f(g, j), but at the moment our data are not conclusive about its presence
and form.

4.4.2 Strong coupling

It is interesting to consider the strong coupling limit of the equations obtained in the last
subsection. For that purpose, we need to know the values of the density and its derivatives
in zero and the quantities S̃(k)

1 (g) as well. Results concerning σ(−1,n), i.e. the part of the
density proportional to ln s, and S̃(k)

1 (g) are reported in [46]. We remember [40, 43] that
the contribution to the anomalous dimension proportional to ln s, i.e. f(g, j), in the limit
(4.1) and when j � g, g → +∞, coincides with the energy density of the O(6) sigma
model. The nonperturbative (infrared) regime of the sigma model, j � m(g), where (the
dots stand for subleading corrections)

m(g) = kg
1
4 e
− πg√

2 + . . . , k =
2

5
8π

Γ
(

5
4

) , (4.98)

makes contact with the double limit j � 1, g →∞, considered in this subsection (and also
in [46]). In such regime the scale of the mass is given by m(g) and expansion of f(g, j) for
small j and large g was successfully checked [44, 46] against analogous non perturbative
expansions [45] in the sigma model.

Due to proportionality (4.97), one could ask if, as well as f(g, j), also f (0)(g, j) shows
connections with quantities of the O(6) sigma model. This is a further motivation which
leads to study the strong coupling limit of f (0)(g, j), which however is an important
problem in itself, since it can be checked against string theory data. We concentrate on
f

(0)
n (g), for n = 3, 4, 5: as follows from (4.91, 4.92, 4.93), the calculation of their strong
coupling limit can be finalised if we know the large g behaviour of the density and its
second derivative in zero, σ(0,0)(0) and σ

(0,0)
2 (0). From results of [51], we know that at

large g and at the leading order

S(0,0)
r (g) = − ln g S(−1,0)

r (g) + . . . , (4.99)

where S(0,0)
r (g) is a solution of (4.73) and S(−1,0)

r (g) of (3.112) with j = 0 (i.e. the BES
system). From this relation we can deduce that, at the leading order, the density in zero
reads as

σ
(0,0)
H (0) = − ln g σ

(−1,0)
H (0) + . . . = − ln g[4− πm(g)] + . . .⇒ σ(0,0)(0) = −4 ln g + . . .

(4.100)
Analogously, for what concerns the second derivative, we get

σ
(0,0)
2 (0) = 56ζ(3) + . . . (4.101)

since the higher loops contributions, π
3

4 ln gm(g), are exponentially depressed.
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Using the results contained in [46], we get the strong coupling relations, which are valid
only at the leading order, i.e. with m(g) given by only its leading contribution (4.98),

fsl,3(g) = − 8 ln g

πm(g)
f3(g) + ... = − π ln g

3m(g)2
+ ... (4.102)

fsl,4(g) = − 12 ln g

πm(g)
f4(g) + ... =

ln g

m(g)3

(
ln 2 +

π

2

)
+ ... (4.103)

fsl,5(g) = − 16 ln g

πm(g)
f5(g) +

π3 ln g

120m(g)4
+ ... =

= − 2 ln g

πm(g)4

(
ln 2 +

π

2

)2
+

π3 ln g

30m(g)4
+ ... . (4.104)

The simple relation between fsl,n(g) and fn(g) at strong coupling could be the signal of a
possible presence of the O(6) sigma model also at the level of the subleading, order (ln s)0,
scaling function fsl(g, j). We hope to address in a more general way this issue in the next
future.
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Conclusions

We summarize now all the results collected. First of all, this work contains a general
mathematical method very useful to solve Non-linear integral equation in the high spin
limit, for dilatation operators related to sl(2) operators. We have seen how to evaluate

non-linear terms, discarding terms of order O
(

1

s2

)
. Great attention has been given to

contribution of holes. We have seen that passing to NLIE approach costs the introduction
of contributions due to these fake solutions of Bethe equations that we have to erase
to obtain correct results. Evaluating position of holes has played a central role in our
computations, but we have showed how to deal with them. In particular, in the case of
fixed twist, it has been showed a recursive scheme that permits to express positions of
internal holes in terms of derivatives of the counting function in zero. For external holes,
we have computed exactly their position in high spin limit, discarding terms of order

O

(
1

s

)
. In high spin and high twist limit, summing on internal holes has been treated

using again a Non-linear integral equation approach and performing a specific evaluation

for related non-linear terms that are of order O
(

1

ln s

)
, discarded in this limit. Presence

of holes and various evaluation of non-linear terms emerging in computations are the two
greatest obstacle in NLIE picture. We have showed how to overcome them up to the
desired order we are interesting in.

Let us now pass to specific results obtained. Main purpose in analyzing high spin
and fixed twist limit was to understand the limit of validity of Asymptotic Bethe Ansatz
approach without the introduction of wrapping corrections. We have obtained some gen-
eral expressions, valid at all loops, for subleading terms of minimal anomalous dimension,
up to orders (ln s)−n and (ln s)−ns−1, with n = 1, · · · , 5. These expressions are not a
complete solution, because they depend on derivatives of counting function in zero, that
we should compute solving NLIE for the counting function. This has been made at weak
coupling but we might, by a numerical approach, try to solve it at all values of coupling
constant. This could be a natural following step for this work. However, expressions
we have obtained have permitted to find some general relations among subleading terms:
functions at order (ln s)−ns−1 completely depend on functions at order (ln s)−n. This is a
very important result: it gives strong hints for the validity of the appearing of wrapping

contributions only at order
(ln s)2

s2
at all loops (for details, see Chapter 3). This limit for

wrapping is formally prooved for short operators of twist two or three and up to six loops.
What we have obtained is far away a formal proof, but it contains strong suggestions.
Then, relations among subleading functions we have found fit exactly what is expected
by reciprocity and self-tuning properties. We know that these properties are also valid in
some aspects in QCD at one loop. We have found validity of them in sl(2) subsector of
N = 4 SYM at all loops.

For what concerns high twist limit, we have studied it because in this limit wrapping
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does not appear, because it is an effect due to the eventual finite values of twist of oper-
ators. High spin and high twist limits are connected by the definition of the parameter

j =
L− 2

ln s
that we kept finite. We have focused our analysis on the subleading term

of order (ln s)0, in the case j � 1. we have first obtained weak coupling results, giving
explicit computations and results up to three loops. Subsequently, we have showed a more
general systematic study of the subleading term and, at the end, we have obtained some
results at strong coupling. Strong coupling results are very important in the framework of
AdS/CFT duality, beacuse we can directly compare them with string theories. At strong
coupling, our results show a possible presence of the O(6) sigma model at the subleading
(ln s)0 order. Very recently, relations between O(6) sigma model and subleading correction
has been explicitely showed in [52].
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