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Introduction

This thesis involves the study of mobile wireless sensors, robots and UAV
networks, in particular it deals with techniques and algorithms that allow the
network to exploit nodes mobility through the optimization of some network’s
parameters, such as coverage and energy consumption.

Wireless sensor networks (WSN) are multi-hop high density networks with-
out any specified topology, that sense the environment, collect data and com-
municate within the neighborhood. When a node is equipped with mechanic
devices that allow it to move and specific mechanisms that permit to control
and coordinate individual’s and group’s behavior, it belongs to a Robot Net-
work or to a UAV network, in case of aerial vehicles. More general terms exist
in literature that try to define such networks. An interesting definition that
could embrace these new kinds of networks is the concept of Wireless Sensor
and Actor Network (WSAN) in [40].

The network issues have been addressed using different approaches: from
the theoretical studies aimed at finding the maximum achievable performance
benchmarks through the introduction of appropriate optimization models,
to the proposal of distributed heuristics and more realistic communication
protocols, and to the use of biology-inspired mechanisms, such as genetic
algorithms (GA), particle swarm optimization (PSO) and neural networks
(NN). The purpose of this type of approach is to move in the direction of
networks that are able to self-organize by adapting to different environmental
conditions and dynamic as well as complicated scenarios.

The remainder of this thesis is organized as follows. In Chapter 1, the
background on Wireless Mobile Networks is given. Optimization models for
the minimization of the energy consumption and of the distances travelled
by the nodes are presented in Chapter 2, distributed heuristics and commu-
nication protocols in Chapter 1 and finally several bio-inspired approaches
in Chapter 4. Chapter 5 concludes this work with a case of study where all
previous mentioned approaches are used and compared.





1

Wireless Sensor, Robot and UAV Networks as
a Self-Organized Networked System

1.1 Introduction

The aim of this chapter is to introduce the concept of Wireless Mobile Net-
works (Wireless Sensor, Robot and UAV Networks) by emphasizing the fea-
tures of this kind of networks, the main parameters used to measure the
Quality of Service (QoS) and by proposing the mobility as a primitive of the
network. Using coordination and cooperation mechanisms in an appropriate
way, such kind of network could be considered as a Self-Organizing System
(SOS) where mobility is exploited in a way to achieve self-deployment and op-
timize some network’s performance parameters such as coverage and energy
consumption.

The remainder of the chapter is organized as follows. In section 1.2 back-
ground on Wireless Sensor Networks is given with focus on different features
of sensor, robot and UAV networks. Main performance parameters useful to
give a measure of effectiveness of the networks are investigated in section 1.3.
The analysis of mobility as control primitive of such communication devices
composing the network is described in section 1.4. Finally in section 1.5 will be
introduced the innovative concept of Self-Organizing System with particular
focus on his potentiality on network issues.

1.2 Wireless Sensor, Robot and UAV Networks

A wireless sensor network (WSN) consists of low-cost, low-power, multifunc-
tional, autonomous sensor nodes deployed either randomly or according to
some predefined statistical distribution, over a geographic region of inter-
est to monitor physical or environmental conditions, such as temperature,
sound, vibration, pressure, motion or pollutants and to cooperatively pass
their data through the network to a main location usually a sink node with
more energy and processing and communication capabilities. The develop-
ment of wireless sensor networks was motivated by military applications such
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as battlefield surveillance; today such networks are used in many industrial
and consumer applications, such as industrial process monitoring and con-
trol, machine health monitoring, transportation, entertainment, crisis man-
agement, homeland defense, home automations and smart spaces.

The WSN is built of nodes, from a few to several hundreds or even thou-
sands, where each node is connected to one (or sometimes several) sensors.
Each such sensor network node consist of communication capabilities through
a radio transceiver with an internal antenna or connection to an external an-
tenna, processing capabilities through a microcontroller, possibilities of stor-
ing data using different type of memories and finally an electronic circuit for
interfacing with the sensors and an energy source, usually a battery or an
embedded form of energy harvesting. A sensor node might vary in size from
some centimeters down to the size of a grain of dust. Also the cost of sensor
nodes is variable in the ranging from a few to hundreds of dollars, depending
on the complexity of the individual sensor nodes. Size and cost constraints
on sensor nodes result in corresponding constraints on resources such as en-
ergy, memory, mobility features, computational speed and communications
bandwidth.

A sensor node by itself has severe resource constraints, such as low battery
power, limited signal processing, limited computation and communication ca-
pabilities, and a small amount of memory; hence it can sense only a limited
portion of the environment. However, when a group of sensor nodes collabo-
rate with each other, they can accomplish a much bigger task efficiently. One
of the primary advantages of deploying a wireless sensor network is its low
deployment cost and freedom from requiring a messy wired communication
backbone, which is often infeasible or economically inconvenient.

Due to these constraints, resource management is of critical importance to
these networks. Sensor nodes are scattered in a sensing field with varying node
densities. Typical node densities might vary from nodes 3m apart to as high as
20nodes/m3. Each node has a sensing radius within which it can sense data,
and a communication radius within which it can communicate with another
node. Each of these nodes will collect raw data from the environment, do
local processing, possibly communicate with each other in an optimal fashion
to perform neighborhood data or decision fusion (aggregation), and then route
back those aggregated data in a multi-hop fashion to data sinks, usually called
the base-stations, which link to the outside world via the Internet or satellites.
Since an individual node measurement is often erroneous because of several
factors, the need for collaborative signal and information processing is critical.

One important criterion for being able to deploy an efficient sensor network
is to find optimal node placement strategies. Deploying nodes in large sensing
fields requires efficient topology control. Nodes can either be placed manually
at predetermined locations or be dropped from an aircraft. However, since the
sensors are randomly scattered in most practical situations, it is difficult to
find a random deployment strategy that minimizes cost, reduces computation
and communication, is resilient to node failures, and provides a high degree
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of area coverage. The notion of area coverage can be considered as a measure
of the quality of service (QoS) in a sensor network, for it means how well
each point in the sensing field is covered by the sensing ranges. Once the
nodes are deployed in the sensing field, they form a communication network,
which can dynamically change over time, depending on the topology of the
geographic region, inter-node separations, residual battery power, static and
moving obstacles, presence of noise, and other factors.

Routing protocols and node scheduling are two other important aspects of
wireless sensor networks because they significantly impact the overall energy
dissipation. Routing protocols involve primarily discovery of the best routing
paths from source to destination, considering latency, energy consumption, ro-
bustness, and cost of communication. Conventional approaches such as flood-
ing and gossiping waste valuable communication and energy resources, sending
redundant information throughout the network. In addition, these protocols
are neither resource-aware nor resource-adaptive. Challenges lie in designing
cost-efficient routing protocols, which can efficiently disseminate information
in a wireless sensor network using resource-adaptive algorithms. On the other
hand, node scheduling for optimal power consumption requires identification
of redundant nodes in the network, which can be switched off at times of
inactivity.

Synthesizing the main characteristics of a WSN include:

• power consumption and processing capabilities constrains;
• dynamic network topology;
• heterogeneity of nodes;
• mobility of nodes;
• scalability to large scale of deployment;
• ability to cope with node failures;
• ability to withstand harsh environmental conditions.

More recently the communication devices composing the WSN are not
only equipped with sensors but also with mechanical devices that allows the
movement on the ground or the fly of such nodes. In this contest we will refer
to these kinds of networks respectively as Robot networks and UAV networks.
In literature such networks with more intelligence and abilities are reported
as Wireless Sensor and Actor Networks (WSANs) [40]. More specific details
about these networks will be given in the followings subsections.

1.2.1 Robot networks

The technological development of the last decade in robots, computing and
communications has led to envisage the design of robotic and automation sys-
tems consisting of networked vehicles, sensors, actuators and communication
devices. These developments enable researchers and engineers to design new
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robotic systems that can interact with human beings and other robots in a co-
operative way. This new technology has being denominated “Network Robot
Systems” (NRS) and includes the following elements [39]:

• Physical embodiment: any NRS has to have at least a physical robot which
incorporates hardware and software capabilities;

• Autonomous capabilities: a physical robot must have autonomous capa-
bilities to be considered as a basic element of a NRS;

• Network-based cooperation: the robots, environment sensors and humans
must communicate and cooperate through a network;

• Environment sensors and actuators: besides the sensors of the robots, the
environment must include other sensors, such as vision cameras and laser
range finders, and other actuators, such as speakers and flickers;

• Human-robot interaction: in order to consider a system as NRS, the system
must have a human-robot related activity.

The European study group Research Atelier on Network Robot Systems
inside of EURON II has given the following interesting definition of NRS:
“A Network Robot System is a group of artificial autonomous systems that
are mobile and that make important use of wireless communications among
them or with the environment and living systems in order to fulfill their
tasks”. Network Robot Systems (NRS) call for the integration of several fields:
robotics, perception (sensor systems), ubiquitous computing, artificial intel-
ligence, and network communications. Some of the key issues that must be
addressed in the design of Network Robot Systems are cooperative localiza-
tion and navigation, cooperative environment perception, cooperative map
building, task allocation, cooperative task execution, human-robot interac-
tion, network tele-operation, and communications. The topic Network Robot
Systems transcends conventional robotics, in the sense that there exists, for
these type of distributed heterogeneous systems, an interrelation among a
community of robots, environment sensors and humans. Applications include
network robot teams (for example to play soccer), human-robot networked
teams (for example a community of robots that assist people), robots net-
worked with the environment (for example for tasks on urban settings or in
space applications) or geminoid robots (a replication of a human with own
autonomy and being partially tele-operated through the network).

1.2.2 UAV networks

Advances in control engineering and material science and low cost and high
performance of commercial wireless equipment made it possible to develop
small-scale unmanned aerial vehicles (UAVs) equipped with cameras, sensors
and communication devices. The technology originates from military applica-
tions, recently, have also been offered this kind of products also for the com-
mercial market and have gained much attention. In civil applications UAVs
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can act for example as relays between ground stations that could not other-
wise communicate due to distance or obstructed line of sight. Multiple UAVs
could simultaneously detect, record and track wildfires. Last but not least,
UAV networks can be deployed on demand to create an instant communica-
tion infrastructure for example to facilitate temporary hot spots and compen-
sate network outages in case of public events and emergencies. Today such
UAVs are used specially for aerial imaging, police and fire rescue operations,
and military missions.

An UAV network can be regarded as an autonomous system that flies in
the air, senses the environment, and communicates with the ground station.
Typically it is controlled by a human operator by remote control. Despite
these advances, the use of a single UAV has severe drawbacks, demanding for
a system in which several UAVs fly in a formation and cooperate in order
to achieve a certain mission. Potential opportunities and benefits of multiple
cooperating UAVs include the following [38]:

• a single UAV cannot provide an overall picture of a large area due to its
limited sensing range, limited speed, and limited flight time. Furthermore,
it has only a limited view onto the ground due to buildings, trees, and
other obstacles. A formation of UAVs can cover a much larger area. In
addition, multiple views on a given scene, taken by different UAVs at the
same time instant, can help to overcome the problem of occlusion;

• by intelligently analyzing different views, the image quality can be im-
proved and even depth information can be computed, leading to a three-
dimensional model of the environment;

• using GPS system based navigation and sophisticated on-board electronics
that lead to high stability in the air, by communicating each other the
direction of provenience, when a meeting occur, is possible to achieve full
coverage in a minimum time [151];

• last but not least, an aerial imaging system working with a multitude of
UAVs can be made more robust against failures and allows a certain level
of task sharing among the UAVs.

A vision for the future is to have an aerial imaging system in which UAVs
will build a flight formation, fly over an area of interest, and deliver high-
quality sensor information such as images or videos. These images and videos
are communicated to the ground, fused, analyzed in real-time, and finally
presented to the user. The main tasks for collaborative UAVs are as follows:

• Flying in a structured and controlled manner over a predefined area;
• Sensing the environment, i.e., taking pictures, recording video data, and

possibly fuse it with the data from other sensors, e.g., infrared sensors and
audio sensors;

• Analyzing sensor data, either off-line at the ground station or on-line,
during flight, and in a collaborative manner and presenting the results to
the user;



8 1 Wireless Sensor, Robot and UAV Networks as a Self-Organized Networked System

• Processing the sensor data on-board during flight, performing object de-
tection, classification and tracking.

Adding properly specifics mechanisms for autonomous control flying, and
cooperation with other UAVs, such a UAV formations behaves as a Self-
organizing system such as swarm of birds.

1.3 Performance parameters

In order to evaluate the performances of the networks, obtained using different
algorithms and protocols, some parameters need to be defined. In the contest
of WSNs the most significant parameters are coverage and lifetime. Coverage
is known being the first QoS parameters because better is the coverage higher
is the number of events detected reliably, while lifetime is directly related
to energy consumption and represents the time that the network can works
properly. In this section major performance parameters will be defined and
discussed, while in subsection 1.4.1 will be summarized as, some schemes of
controlled mobility known in literature, are able to improve some of these
parameters.

1.3.1 Energy consumption and lifetime

Network lifetime has become the key characteristic for evaluating sensor net-
works in an application specific way. Especially the availability of nodes, the
sensor coverage, and the connectivity and more in general the quality of ser-
vice have been included in discussions on network lifetime. Network lifetime is
perhaps the most important metric for the evaluation of sensor networks. Net-
work lifetime as a measure for energy consumption represent an upper bound
for the utility of the sensor network as the network can only fulfill its purpose
as long as it is considered ”alive”, but not after that. In a scenario where de-
ployment is not straightforward, if the metric is used in an analysis preceding a
real-life deployment, the estimated network lifetime can also contribute to jus-
tifying the cost of the deployment. Network lifetime strongly depends on the
lifetimes of the single nodes that constitute the network, thus, if the lifetimes
of single nodes are not predicted accurately, it is possible that the derived net-
work lifetime metric deviates in an uncontrollable manner. The major amount
of energy is consumed by a sensor node during sensing, communication, and
data processing, but among these activities the data transmission and recep-
tion is the activity that requires more energy [25]. Many researchers have
focused on lifetime studies because the recharging or replacement of batteries
is not feasible in many scenarios (too many nodes, hostile environment, etc.),
and thus the lifetime of the network cannot be extended infinitely. For this
reason, the design of algorithms and protocols that are able to save energy has
become strategic. Naturally, lifetime was then discussed from different points
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of view, which led to the development of various lifetime metrics. Depending
on the energy consumers regarded in each metric and the specific application
requirements considered, these metrics may lead to very different estimations
of network lifetime. Some of the metric that we have found in literature are
the followings [33]:

• Network lifetime based on the number of alive nodes - The definition found
most frequently in the literature is n-of-n lifetime. In this definition, the
network lifetime ends as soon as the first node fails.

• Network lifetime based on sensor coverage - the time that the region of
interest is completely within the sensing range of at least one sensor node,
i.e. the region is covered by at least one node.

• Network lifetime based on connectivity - number of successful data gather-
ing trips [31]. In [32] this is further confined to the number of trips possible
without any node running out of energy.

1.3.2 Coverage and connectivity

As already mentioned optimal resource management and assuring reliable QoS
are two of the most fundamental requirements in ad hoc wireless sensor net-
works. Sensor deployment strategies play a very important role in providing
better QoS, which relates to the issue of how well each point in the sensing
field is covered (i.e. within the sensing radius). However, due to severe resource
constraints and hostile environmental conditions, it is nontrivial to design an
efficient deployment strategy that would minimize cost, reduce computation,
minimize communication, and provide a high degree of area coverage, while
at the same time maintaining a globally connected network [34]. The degree of
coverage at a particular point in the sensing field can be related to the number
of sensors whose sensing range cover that point. It has been observed and pos-
tulated that different applications would require different degrees of coverage
in the sensing field. For example, a military surveillance application would
need a high degree of coverage, because it would want a region to be moni-
tored by multiple nodes simultaneously, such that even if some nodes cease to
function, the security of the region will not be compromised, as other nodes
will still continue to function, whereas some of the environmental monitoring
applications, such as animal habitat monitoring or temperature monitoring
inside a building, might require a low degree of coverage. On the other hand,
some specific applications might need a framework, where the degree of cov-
erage in a network can be dynamically configured. An example of this kind
of application is intruder detection, where restricted regions are usually mon-
itored with a moderate degree of coverage until the threat or act of intrusion
is realized or takes place. At this point, the network will need to self-configure
and increase the degree of coverage at possible threat locations. A network
that has a high degree of coverage will clearly be more resilient to node fail-
ures. Thus, the coverage requirements vary across applications and should be
kept in mind while developing new deployment strategies.
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Many wireless sensor network applications require one to perform certain
functions that can be measured in terms of area coverage. In these applica-
tions, it is necessary to define precise measures of efficient coverage that will
impact overall system performance. Two main types of coverage have been
defined by Gage [35] as follows:

• Blanket coverage to achieve a static arrangement of sensor nodes that
maximizes the detection rate of targets appearing in the sensing field;

• Sweep coverage to move a number of sensor nodes across a sensing field,
such that it addresses a specified balance between maximizing the detec-
tion rate and minimizing the number of missed detections per unit area.

In this thesis, we will focus on both blanket and sweep coverage. In first
case the objective is to deploy sensor nodes in strategic ways such that an
optimal area coverage is achieved according to the needs of the underlying
applications. Here, it is worth mentioning that the problem of area coverage
is related to the traditional art gallery problem (AGP) [36] in computational
geometry. The AGP seeks to determine the minimum number of cameras
that can be placed in a polygonal environment, such that every point in the
environment is monitored. Similarly, the coverage problem basically deals with
placing a minimum number of nodes, such that every point in the sensing field
is optimally covered under the aforementioned resource constraints, presence
of obstacles, noise and varying topography. In latter case the objective is not
a deployment but to find a mobility patter for UAV nodes that is able to reach
full coverage of a given area of interest in a minimum time.

Along with coverage, the notion of connectivity is equally important in
wireless sensor networks. If a sensor network is modeled as a graph with sen-
sor nodes as vertices and the communication link, if it exists, between any
two nodes as an edge, then, by a connected network we mean that the un-
derlying graph is connected, that is, between any two nodes there exists a
single-hop or multi-hop communication path consisting of consecutive edges
in the graph. Similar to the notion of degree of coverage, we shall also intro-
duce the notion of degree of network connectivity. A sensor network is said to
have k-connectivity if removal of any (k − 1) nodes does not render the un-
derlying communication graph disconnected. Like single degree of coverage,
single-node connectivity is not sufficient for many sensor network applications
because the failure of a single node would render the network disconnected.
It should be noted that robustness and throughput of a sensor network are
directly related to connectivity. Area coverage and connectivity in wireless
sensor networks are not unrelated problems. Therefore, the goal of an optimal
sensor deployment strategy is to have a globally connected network while op-
timizing coverage at the same time. By optimizing coverage, the deployment
strategy would guarantee that optimum area in the sensing field is covered
by sensors, as required by the underlying application. By ensuring that the
network is connected, it is also ensured that the sensed information is trans-
mitted to other nodes and possibly to a centralized base-station that can make
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valuable decisions for the application. An interesting well-known result is that
given a sensor network with degree of coverage k, if the transmission radius
is at least twice than the sensing radius then the network is also k-connected
[126]. This assumption regarding the relation between transmission and sens-
ing radius will be often used in this thesis so that k-coverage guarantees also
k-connection.

1.3.3 Throughput and delay

In a wireless ad hoc network with n nodes each of them equipped with an
omnidirectional antenna, under a random network configuration, each node
has a throughput capacity in the order of Θ(1/

√
n log n) [37]. Even under

an optimal arbitrary network configuration where the location of nodes and
traffic pattern can be optimally controlled, the network could only offer a per-
node throughput of Θ(1/

√
n). The per-node throughput is decreased when

the number of nodes increases. In fact, all the nodes in such network are shar-
ing the same medium to transmit. When a node transmits, its neighboring
nodes are prohibited from transmitting due to the interference. Therefore, the
network throughput is interference-limited. As a consequence of [37] is that
a small transmission range is necessary in order to limit the interference and
thus improve the throughput. For this reason most of recent studies in WSNs
assume a small transmission range for each sensor node, however, a smaller
transmission range means that a packet needs to be transmitted through more
hops, which inevitably leads to higher transmission delay [111]. In summary
increasing the transmission radius can reduce the average number of hops and
can reduce the transmission delay even if it will inevitably cause higher inter-
ference which leads to the lower throughput. Exist a lot of studies concentrate
on optimizing the trade-off of the delay and the capacity. What we wanted
point out in this brief subsection is the relation between transmission range
in respect to number of hops, throughput and delay. Observations that need
to be taken into account every time that some nodes parameters need to be
tuned at priori or in a self-organizing way.

1.4 Mobility

Recently, wireless self-organizing networks are attracting a lot of interest in
the research community. Moreover, in the last decade many mobile devices
have appeared in the market. Exploiting mobility in a wireless environment,
instead of considering it as a kind of disturbance, is a fundamental concept
that the research community is beginning to appreciate now. Of course, the
advantages obtainable through the use of the mobility imply the knowledge
of the different types of mobility and the way to include it in the management
architecture of the wireless networks [42].
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We can identify three macro-categories of mobility: random, predictable
and controlled. In the first category, mobile devices are supposed to move ac-
cording to a random mobility pattern. Many probabilistic models have been
proposed in order to foresee devices’ movements. Unfortunately random mo-
bility represents more of a problem to solve than an advantage to exploit.
A network access point mounted on a means of public transportation that
moves with a periodic schedule represents a case of predictable mobility. A
predictable schedule permits an easier, programmable accomplishment of some
desired target, but mobility is not considered as a network primitive yet. Fi-
nally, controlled mobility generally consists of mobile devices introduced in the
network and moving to specified destinations with defined mobility patterns
for specific objectives. We can figure out many goals that could be achieved
through controlled mobility, such as: coverage management [9, 10, 11], energy
consumption reduction [5, 6, 7, 8], transport layer parameters’ improvement
[16, 17, 18].

1.4.1 Advantages and Limitations of Controlled Mobility

Controlled mobility has been a hot research topic of the robotics community
for many years. It concerns the motion coordination of a group of robots for
a common objective, typically the coverage of a geographical area. But, the
number of applications where controlled mobility is beneficial is enormous,
and it spreads from underwater monitoring of seismic movements to planet
exploration, from environmental sensing to site surveillance and localization of
intruders. The coordination requires communication, computation and control
among the robots. All these aspects are covered by the vast literature of the-
oretical and practical results in the control theory. Instead, in the networking
research world, mobility has always been seen as an issue to face more than as
a facility to exploit. Only recently, has controlled mobility gained an impor-
tant role also for communications matters. In the two following subsections
we intend to give an overview of the possible advantages, mostly taken from
recent research works, and of the limitations and the choices that a network
designer should consider in order to profitably use controlled mobility.

Advantages

As witnessed by the recent contributions in the wireless sensor, multihop, mesh
and mobile ad hoc networking, controlled mobility offers several advantages
to all those kinds of wireless networks which aim to an autonomous self-
organization.

The first class of parameters which can be optimized by introducing con-
trolled mobility in wireless networks is related with power efficiency. In [5]
the authors present a distributed, self-adaptive scheme of mobility control for
improving power efficiency while maintaining connectivity in a wireless sensor
network. More important is that they introduce mobility as a network control
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primitive.
Power consumption is also investigated in [6] and [7]. In [6] the authors dis-
cuss the usage of controllably mobile elements in a network infrastructure in
order to reduce the energy consumption. They show that for increasing nodes
densities, the presence of a mobile base station reduces the energy usage with
respect to a network of static nodes. The mobility pattern of the mobile node
is designed so that the path is fixed, but the speed profile followed along the
path is flexible.
In [7] the authors split the nodes of a Mobile Ad-Hoc Network (MANET)
in two categories: relay nodes, which are considered all mobile, and tracking
nodes, which are static and used for getting information on a possible intruder
of the network. They incrementally find the relays positions that minimize the
total required transmission power for all the active flows in the MANET. A
distributed annealing algorithm has been used for governing the motion of
nodes.
A different approach is considered in [8], where only one node is considered
mobile. It can be the sink or a relay node. For the case where the sink is
mobile, the upper bound on the network lifetime is analytically determined
to be four times that of the static network. The authors claim that a mobile
sink is not feasible, because the sink is expected to be static since it acts as
gateway to a backbone network. For this reason they assume the mobile node
is a relay and they construct a joint mobility and routing algorithm in order
to make the network lifetime come close to the upper bound.

An even more intuitive benefit comes from the ability to control the cov-
erage and connectivity of the network, by modifying the positions of the
nodes. A static network suffers from several disadvantages in covering a geo-
graphical area. First, even when the initial deployment did not leave regions
uncovered, a static network can not cope with the dynamics of the envi-
ronment and with the local disconnections. Second, the fixed positions of
the nodes represent an easy target for a malicious attacker. In [87] the au-
thors established necessary and sufficient conditions for the coverage to imply
connectivity. In [85] authors investigated k-coverage and k-connectivity. K-
coverage implies that every sensor node is linked with at least k sensors, and
k-connectivity implies that for every pair of nodes there exist at least k dif-
ferent and disjoint paths that link these nodes. In [88] and [89] sensors are
mobile nodes and are able to self-configure through some specific criteria that
guarantee coverage of a region. Specifically, in [88], the authors implement an
optimal placement strategy based on the concept of potential field. In [89] the
authors develop a greedy algorithm based on controlled mobility. Controlled
mobility can be efficiently exploited during the deployment phase, when the
optimal displacement is too expensive or difficult to attain. In [18], the authors
deform the topology of a multi-hop wireless network, by moving nodes in or-
der to create new links. They show how this deformation reduces the average
end-to-end delay and performs better than the approach where an increased
capacity is assigned to the most congested data channel. The algorithm they



14 1 Wireless Sensor, Robot and UAV Networks as a Self-Organized Networked System

propose is centralized and needs the knowledge of the network topology. The
algorithm changes the connections between the moving nodes at each step.
At each step connectivity is preserved and the average delay decreases.

Furthermore, if a specific nodes displacement is shown to be optimal
for some objective, controlled mobility is the way to achieve it.
In [9] the authors design adaptive and distributed algorithms, based on
Voronoi diagrams, in order to coordinate a multi-vehicle network to meet
on an event point following a predefined distribution.
Butler and Rus in [10] obtain the same objective making nodes cover a given
area and converge on specific points of interest in a distributed fashion. The
novelty is in the absence of placements defined a priori, and in the presence
of new constraints, added so as not to leave any portion of the environment
uncovered.
A more theoretical study is presented in [11], where the authors consider two
metrics of quality of coverage (QoC) in mobile sensor networks: the fractions
of events captured and the probability that an event is captured. They pro-
vide analytical results on how these two performance metrics scale with the
number of mobile sensors, their velocity patterns, and event dynamics. They
also develop an algorithm for planning sensor motion such that the probabil-
ity that an event is lost is bounded from above. In our opinion, an algorithm
based on this work, would need each sensor to be programmed accordingly
with the mobility pattern computed by a centralized unit.

Controlled mobility can be effectively used during the network deploy-
ment phase, when an optimal placement of the nodes is too expensive or
impossible due to environmental impedimenta. Reference [12] exploits the vir-
tual force field concept for enhancing coverage. Sensors start from an initial
random configuration, and, by using a combination of attractive and repul-
sive forces, they move to a final placement, where the area covered by each
of them is maximized. The authors of [13] design two sets of distributed pro-
tocols, based on Voronoi diagrams, for controlling the movement of sensors
to achieve target coverage. One set minimizes communications among the
sensors, while the other minimizes movements. Coverage, deployment time,
energy consumption and moving distances are the performance evaluation
parameters used to show the effectiveness of their algorithms.

Controlled mobile sensors can also be used for exploration and local-
ization, as in [14]. The cited work defines a hybrid architecture, made of a
certain number of mobile actuators and a larger number of static sensors. The
actuators move in the sensor-field and get information from the static sensors
in order to perform site exploration, coverage repair and target localization.
The algorithms which drive the actuators in their tasks are based on potential
field and swarm intelligence.

Load balancing in wireless sensor networks is studied in [15]. The nodes
closest to the base station are the bottleneck in the forwarding of data. A
base station, which moves according to an arbitrary trajectory, continuously
changes the closest nodes and solves the problem. The authors find the best
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mobility pattern for the base station in order to ensure an even balancement
of network load on the nodes.

It is well known that, in a wireless network, the throughput degrades
with the number of hops. A node, which can act as a mobile relay, would
limit the number of hops and increase network performance. In literature
we can find many works on data mules, whose predictable mobility is also
used for improving the delivery ratio of data. In delay-tolerant networks,
Message Ferrying exploits controlled mobility in order to achieve the same
task of transporting data with a high delivery ratio and also where end-to-
end paths do not exist between nodes. In [16] the authors propose a scheme
which manages with multiple ferries and is able to meet the traffic demands
while minimizing the average data delivery delay.

A sensed phenomenon may require different rates of sampling by the sensor
nodes, this leads to a non-uniform distribution of sensed data on the network
and, without an accurate scheduling strategy of data collection, to a possible
overflow of the buffers. In [17] the authors use mobile nodes for data gathering.
First they show that the scheduling of multiple mobile elements with no data
loss is a NP-complete problem, then they compare the performance of some
computationally practical algorithms for single and multiple mobiles in terms
of amount of overflow and latency in the collection of data.

In [18] the authors deform the topology of a multi-hop wireless network
by moving the nodes to create new links. They show a reduction in the mean
end-to-end delay of the network, even more effective than the alternative
approach of increasing the capacities of the most congested network links.
The algorithm is centralized and it takes as inputs: the network topology,
the coordinates of the wireless nodes and the network load. Then it tries to
change the network connectivity by moving the non-static network nodes in
small steps. This is done such that, at each step, the network remains con-
nected and its characteristic timescale goes down. In [20] authors propose an
algorithm for joint relay node placement and node scheduling in wireless net-
works. They consider a system that consists of a relay node with controllable
mobility and multiple nodes that communicate with each other via the relay
node. The objective of their algorithm is to maximize the lowest weighted
throughput among of all nodes. In [21] authors propose DARA, a Distributed
Actor Recovery Algorithm. In particular they consider two versions of the
algorithm to address different connectivity requirement. They claim DARA
minimize the movement overhead imposed on the involved actors. Akkaya et
al. DAPRA algorithm to detect possible partitions and restore network con-
nectivity through controlled relocation of movable nodes [22]. In [23] authors
propose two deployment algorithms to achieve sensor energy balancing and
small amount of deployment energy consumption. They also consider mobility
of nodes and exploit it.

In Table I all the cited works are shown along with the type of wireless
network under investigation and the objective of the research. In order to offer
a better categorization, in the three following columns, we put the number of
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devices which are considered mobile, the scheme and the type of controlled
mobility used in the algorithm.

Table 1.1. Related Works

Algorithm Type of Network Objective # of Mobile Scheme Type of Controlled
Devices Mobility

Mobility Multihop WN Connectivity All Distributed Adaptive
Control [5] Energy Consumption

Adaptive WSN Energy Consumption Sink - Programmed
Motion [6]

Distributed MANET Energy Consumption All Distributed Adaptive
Annealing [7]

ARALN [8] WSN Network Lifetime Single node - Programmed

Coverage WSN Coverage All Distributed Adaptive
Behavior [9]

Local WSN Coverage All Distributed Adaptive
Voronoi [10]

BELP [11] WSN Quality of Coverage To be computed Centralized Programmed

VFA [12] WSN Deployment All Distributed Adaptive

VEC, VOR, WSN Deployment All Distributed Adaptive
Minimax [13]

TARANTULAS [14] WSAN Localization Some Distributed Adaptive

Joint Mobility WSN Load Balancing Sink - Programmed
and Routing [15]

MURA [16] DTN Delivery Ratio Some Centralized Programmed

MES [17] WSN No Data Loss Some Distributed Adaptive

CD [18] Multihop WN End-to-end delay All Centralized Adaptive

Joint relay node Wireless Networks Throughput Single Node Centralized Adaptive
placement and

node scheduling [20]

DARA [21] WSN Connectivity Some Nodes Distributed Adaptive

PADRA [22] WSN Connectivity Some Nodes Distributed Adaptive

Deployment WSN Coverage and Connectivity - Distributed Adaptive
Algorithms [23]

Another work worth mentioning is [19]. It is not listed in Table I because
the authors do not present an algorithm for the optimization of some pa-
rameters, instead they propose Morph as a new vision of sensor networking,
where controlled mobility is considered as an additional design dimension of
the communication protocols. They argue that, in Morph, controlled mobility
can be employed for the sustainability of the network, which consists in both
alleviating the lack of resources and improving the network performance.

Limitations

In spite of all the expected advantages that controlled mobility provides for
self-organizing networks, it also poses many new questions which need to be
answered before designing a protocol which envisions its employment.
First: Can the benefits introduced by controlled mobility counterbalance the
expenses required by the additional hardware? A mobile node might need
several extra devices for the motion, such as steering, positioning and naviga-
tion systems, in some cases it could be helpful to foresee also a remote control.
Second: Does the energy budget allow the movements of one or many nodes
of the network? It is necessary to define an energy model related with nodes’
motion and one related with the communication needed for their coordi-
nation. For the former a simplified model is a distance proportional model



1.4 Mobility 17

Em(d) = kd+ γ, where d is the distance to cover, k[J/m] takes into account
the kinetic friction, while γ[J ] represents the energy necessary to overcome
the static friction, both these constants depend on the environment (harsh or
smooth ground, air, surface or deep water). For the latter, usually the energy
required to send one bit at the distance d is Ec(d) = βdα, where α is the
exponent of the path loss (2 ≤ α ≤ 6) depending on the environment and β
is a constant [J/(bits ·mα)].
Third: If it is needed by the application, can the controlled mobility guarantee
the connectivity at the intermediate steps in the process of new displace-
ment of the nodes? Applications with real-time, delay-sensitive, continuous
flow of data constraints do not tolerate node failures or local disconnections.
For these kinds of applications, mobility should only operate when connectiv-
ity is not compromised by nodes movement.
Fourth: What number of nodes should be mobile? How is the mobility
pattern chosen? Considering that only the sink is mobile brings evident ad-
vantages [6, 8, 15] but, usually, that specific node is in charge of bridging
self-organizing and backbone networks. However, a reduced number of mobile
nodes represents a viable answer to the power consumption problem and an
effective solution for some parameter optimization [14, 16, 17]. A trade-off
between the number of mobile nodes and the energy consumption has to be
determined depending on the application demands. This compromise has to
take into consideration also the determination of a mobility pattern that, if it
is not selected appropriately, can cause a larger waste of resources.
Fifth: What happens if network dynamics are too fast with respect to nodes
convergence through mobility? And if, for some reason, nodes can not reach
the final, expected configuration, may an intermediate displacement be
disadvantageous? A wrong placement of the nodes can transform the positive
effects that controlled mobility was meant to introduce into a worse overall
performance of the network. As seen in Table I, many schemes give the nodes
the ability to move adaptatively to a task to perform or an event to track.
This behavior is a primary concern in self-organizing networks design, since it
gives the system the ability to react, in a distributed or a centralized fashion,
to the changes in the applications demands and in the time-space constraints.

1.4.2 Challenges layer by layer

Fig. 1.1 (a) describes a self-organizing sensor network where, initially, nodes
are monitoring their Voronoi cells. Reactively to specific events, as in Fig. 1.1
(b), nodes move in order to accomplish different objectives:

1. Establish a data flow between two points of the area, by moving according
to a placement which guarantees the improvement of some figures of merit,
such as throughput, end-to-end delay, power consumption, etc.

2. Surround, as quickly as possible, the place where an event happened,
in order to gather all the required information on the phenomenon and
monitor, as long as it is needed, its effects on the area under investigation.
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3. Search for an intruder in the network, localize it, analyze its behavior and
follow its movements.

(a) (b)

Fig. 1.1. Wireless sensors monitoring their Voronoi Cells (a), Wireless sensors ac-
complishing different tasks (b).

To attain such diverse goals, nodes move according to adaptive, dis-
tributed, task-aware motion coordination and communication protocols. In
this section we try to focus on the research challenges issued by the incor-
poration of mobility control and task coordination in the protocol stack of
a wireless self-organizing sensor network. Since the number of possible ob-
jectives that nodes are called to carry out in a self-organizing network can
be large, but it is still limited, in our discussion, we decide that nodes can
switch among different operational modalities. Each modality corresponds to
a task that nodes are trying to achieve. The behavior of the protocol stack will
depend on the current modality and the modality is selected and managed
by the Mobility and Task Control Plane which is transversal to the protocol
stack., as shown in Fig. 1.2.

Physical layer

If the physical layer could order nodes to move, it would be, first of all, to
avoid or to limit wireless channel problems. In fact, the presence of environ-
mental obstacles and multipath effects may cause the quality of connectivity
to be vastly different in different regions of the network [6]. When, instead, a
task has been assigned to a node, the physical layer can highly improve the
performance by determining the most suited modulation and error control
coding schemes or the nodes positions which allow the least energy consump-
tion. Lately, the physical layer community is putting a lot of effort toward
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Fig. 1.2. Protocol stack including Mobility and Task Control Plane.

the direction of exploiting cooperation among nodes through recent research
works which include Virtual MIMO and physical layer relaying.

Data Link Layer

The continuous exchange of information between the data link layer and the
mobility control can be very advantageous for the network. By knowing posi-
tions, velocities and trajectories of the nodes, the data link layer can optimize
the multiplexing of data streams and build accurate collision domains. In such
a dynamic environment a fine time-space scheduling policy is needed in order
to avoid wasteful retransmissions and prolong network lifetime by allowing a
power-saving mode of operation. Also classical problems of this layer, such
as the hidden terminal or the exposed terminal, should be newly investigated
because through the usage of nodes motion they could be overcome.

Network Layer

Many procedures, typical of the network layer, are affected by the controlled
mobility. Because of the dynamicity of the network, neighbour discovery be-
comes even more important, and it should be integrated with task discovery
in order to facilitate the network organization. The network organization, in
turn, is substantially modified by the movements of nodes and the assigned
tasks. If sensing a phenomenon requires a clustered or a hierarchical scheme,
establishing a data flow between two nodes of the network needs a linear
topology. Routing has to be newly designed, because before it determined the
most efficient path among deployed and static nodes, now it can look at the
optimal positions where nodes have to move.

Transport Layer

Depending on the task, the transport layer issues several research challenges.
In general, the end-to-end paradigm does not seem to be able to keep track
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of dynamic multi-hop network characteristics in a responsive manner, so it
should be replaced by hop-by-hop schemes, both for the rate and congestion
controls. More specifically, the behavior of this layer cannot be dictated by the
Round Trip Time (RTT), which can vary remarkably in different areas of the
network or for different tasks. The scheduling and the fairness of data flows
should take into account the availability of good quality links at programmable
time instead of constant lower quality connections [19]. The measurements
of the data to be transmitted, the data aggregation and the multiple flows
relaying have to be reconsidered in order to meet application layer constraints.

Cross-layer Integration

Cross-layer integration is a “must” for controlled mobility in self-organizing
networks. Different layers of the protocol stack will probably ask the nodes for
diverse mobility patterns or final positions. For example, in Fig. 1.1 (b), when
the assigned task is the establishment of a data flow between two points of
the network, the network layer expects nodes to be arranged in a line in order
to reduce energy consumption [5], instead, for the presence of an obstruction
in the linear route, the physical layer is likely to demand a different optimal
solution, even for the same objective. Likewise, the data link layer and the
transport layer can have contrasting requirements in chasing an intruder -
the former would try to isolate the latter, in order to have a more responsive
information swap among the nodes involved in the pursuit. Generally, mobility
and task control plane should constantly exchange data and requests with
any layer of the stack, so as to represent the joint which makes a real cross-
integration possible.

1.5 Self-organizing Systems (SOS)

Self-organization is a great concept for building scalable systems consisting
of a large number of subsystems. Key factors in similar environments are co-
ordination and collaboration of the subsystems for achieving a shared goal.
Self-organization is not an invention but its principles have been evolved in
nature and in the last few years, the concept of self-organization has been ap-
plied to technical systems and finally to wireless networks. Also, in this context
the self-organization concept can be summarized as the interaction of multiple
components on a common global objective. This collaborative work may be
without any central control and the primary objectives of similar networks are
scalability, reliability and availability [19]. Scalability is the ability of a sys-
tem to handle growing amounts of work in a graceful manner or its ability to
be enlarged to accommodate that growth, reliability is ability of a system to
perform and maintain its functions in routine circumstances, as well as hostile
or unexpected circumstances, finally availability regards the possibility to use
the network whenever is needed consequently Self-Organization should not
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require special maintenance periods. Scientific community is not completely
agree about the definition of Self-Organization but the main characteristics
can be summarized as follows:

Self-organization is a process in which pattern at the global level of a system
emerges solely from numerous interactions among the lower-level components
of a system. The rules specifying interactions among the systems components
are executed using only local information, without reference to the global pat-
tern [26].

Moreover is important to distinguish between self-organized systems and
systems that are only self-ordered, critical is the distinction between pattern
and function, so in Self-Organization the global order that emerge through a
formation or a specific pattern need to be functional to something [28]. Two
more properties emerge from such definition:

• is not straightforward to guess the final pattern looking only to the local
interactions (emergent behaviour);

• the missing of determinism of the algorithms [27].

For these features to hold, the following are some of the conditions that
must be met [28]:

1. the system must have inputs and some measurable output;
2. the system must have a goal or goals;
3. the units must change internal state based on their inputs and the states

of other units;
4. no single unit or non-communicative subset of units can achieve the sys-

tem’s goal as well as the collection can;
5. as it gains experience in a specified environment, the system achieves its

goals more efficiently and/or accurately, on average.

One key research issue in designing and operating WSNs is to gain such
self-* properties as:

• Self-configuration - allows WSN applications to configure their own oper-
ational parameters (e.g. routing decision parameters or sleep periods) de-
pending on the current situation in terms of environmental circumstances,
e.g. connectivity, quality of service parameters and self-organize into desir-
able structures and patterns (e.g. routing tables or duty cycling patterns);

• Self-management - capability to maintain devices or networks depending
on the current parameters of the system;

• Self-optimization - allows WSN applications to constantly seek improve-
ment in their performance by adapting to network dynamics with minimal
human intervention;

• Self-healing - allows WSN applications to autonomously detect, localize
and recover automatically from disruptions in the network (e.g. node or
link failures).
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The self-* properties are important in WSNs because they are often re-
quired to operate in unattended areas (e.g. forest or ocean), physically un-
reachable areas (e.g. inside a building wall) or potentially harsh/hostile areas
(e.g. nuclear power plants).

The design of self-organizing systems is not top down as in traditional
systems which are typically built starting considering the overall system and
then approach the singles components and modules. Typically in design Self-
Organizing systems the approach starts from thinking at the local interaction
among components that, if they are modeled properly, could led to some kind
of organization even if there is no guarantee about that [30].

Self-organization can be realized through different approaches [27]:

• Location-based mechanisms - Geographical positions or affiliation to a
group of surrounding nodes such as clustering mechanisms, are used to
reduce necessary state information to perform routing decisions or synchro-
nizations. Usually, similar methods as known for global state operations
can be employed in this context. Depending on the size of active clusters
or the complexity to perform localization methods, such location-based
mechanisms vary in communication and processing overhead.

• Neighborhood information - Further state reduction can be achieved by
decreasing the size of previously mentioned clusters to a one-hop diam-
eter. In this case, only neighborhood information is available to perform
necessary decisions. Usually, hello messages are exchanged in regular time
periods. This keeps the neighborhood information up-to-date and allows
the exchange of performance measures such as the current load of a sys-
tem. Such methodology is exploited in Chapter 3 through some algorithms
and protocols of controlled mobility.

• Probabilistic algorithms - in some cases for examples if messages are very
infrequently exchanged or in case of high mobility, pure probabilistic meth-
ods can lead to optimal results without any use of state information. Sta-
tistical measures can be used to describe the behavior of the overall system
or the behavior of single components in terms of next action to perform.
Obviously, no guarantee can be given that a desired goal will be reached.
This approach will be used in Section 3.4 for analysis and description of
mobility patterns for UAV networks.

• Bio-inspired methods - Biologically inspired methods build a category that
is composed of neighborhood-depending operations very similar to be-
haviour of some species present in nature as ants or fishes and birds. All
objectives are addressed by using positive and negative feedback often us-
ing a reinforcement learning. Different techniques that use this kind of
approach for coverage problem will be explored in Chapter 4.

With miniaturization of computing elements we have seen many mobile
devices appear in the market that can collaborate in an ad hoc fashion with-
out requiring any previous infrastructure control consequently mobility has
a large impact on the behaviour of ad hoc networks [29]. This latter con-
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sideration allows us to consider the mobility as a fundamental aspect of the
self-organizing networks.

1.6 Conclusion

In this chapter we have given several notions in order to define the context
of this thesis. First of all we gave the definition of Wireless Sensor and Actor
Network as a classical WSN that possess feature of taking decision and act
accordingly. In the works introduced in the next chapters the ”action” is ac-
complished using the mobility in order to improve the networks performances,
consequently the nodes of our networks are mobile robots or UAV that are
equipped not only with sensors and communication devices but also with me-
chanical devices that allow the movement. To this end the concept of mobility
in communication networks is investigated showing some related works that
use mobility for network issues. Finally the concept of Self-Organized System
is defined, focusing on techniques of coordination, cooperation and learning
process that allow the network to behave in a self-organized fashion.





2

Modelling and Solving Optimal Placement
problems

2.1 Introduction

A wireless sensor network (WSN) consists of a large number of energy-
constrained, low-cost and low-power sensor nodes. Each sensor node is a de-
vice, equipped with multiple on-board sensing elements, wireless transmitter-
receiver modules, computational and power supply elements and it is charac-
terized by limited computational and communication capabilities.

The WSNs are becoming increasingly popular for monitoring spatial phe-
nomena. Indeed, they are deployed to an area of interest to collect data from
the environment, process sensed data and take action accordingly.

Typical applications of the WSNs include environmental control such as
fire fighting or marine ground erosion, but also sensors installation on bridges
or buildings to monitor earthquake vibration patterns and various surveillance
tasks such as intruder surveillance on premises.

In many real situations the designer of the network has little control over
the exact deployment of the network and this produces the irregular placement
of sensor nodes. Furthermore, even when the initial deployment is regular, as
time progresses nodes will consume energy and stop working in a non-uniform
fashion. Other factors (e.g. the edge effect) can also cause the energy distri-
bution to be non-uniform. Therefore, not only irregular initial deployment
but also non-uniform energy consumption has to be taken into serious con-
sideration in order to allow better performance in terms of network lifetime
[5],[6],[7],[8]. If we allow the nodes to use self-aware actuation in order to reor-
ganize the available resources and form a new functional topology in the face
of run-time dynamics, we will improve energy consumption and consequently
the lifetime of the network. At the same time, mobility of nodes can help to
achieve a higher resolution in collecting data from the sensor field. In this
case the sensing advantages outweigh the cost of motion if appropriate design
choices are made [17]. Mobility in wireless networks has been considered for
many years as an issue to be hidden from higher layers of the protocol stack.
In the recent past, the perspective of mobility has changed a lot and it became
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an advantage to exploit [9] - [16]. In fact, in this work we consider and focus
on mobile nodes by considering mobility as a fundamental aspect of the net-
work. Actuation ability introduces a new design dimension in wireless sensors
networks, allowing the network to adaptively reconfigure and repair itself in
response to unpredictable run-time dynamics.

We focus on a multi-task, self-organizing WSN, that can carry out different
functional roles. For this reason, the mobile nodes are also capable of moving
towards positions, which are optimal for the specific task, that the network
has to perform. Depending on the specific application at hand, a particular
criterion should be chosen and optimized.

Different single-objective optimization models are presented to mathemati-
cally describe the optimal sensor displacement problem in a WNS. Each model
tries to capture the main features of the specific situation under consideration
and attempts to optimize the most significant objective for the considered
scenario. The energy consumption and the travelled distance are the main
measures used to evaluate the sensor placement, determined by a central com-
putation unit.

The models we developed here can also help to move sensors towards new
positions in order to spend the energy in a more uniform fashion and improve
the total energy consumption.

The validity of the considered optimization models, in terms of solution
quality and computational effort, is evaluated experimentally, by considering
different scenarios. The solutions obtained by applying the centralized strat-
egy are also compared with different distributed approaches. In particular,
the evenly spaced [5], the bidirectional energy spaced [43] and four other in-
novative distributed heuristic strategies, proposed here, are considered in the
experimental phase.

It is worth observing that the mathematical models considered in this sec-
tion have been also presented during SENSORCOMM 2009 [44]. The main
differences between this work and [44] are mainly related to the strategies
used to heuristically solve (in a distributed environment) the sensor placement
problem. In particular, in [44] only the evenly spaced algorithm, taken from
the scientific literature [5], has been considered. In this section, we propose
and test four innovative heuristic approaches, that allow us to obtain satisfac-
tory results, outperforming the state-of-art distributed approaches (i.e., evenly
spaced and bidirectional energy spaced strategies) considered for comparison.

The rest of the chapter is organized as follows: the next section gives a
brief overview of the related works. Section 3 presents the main features of the
problem under study and gives the description of the proposed optimization
models. section 4 is devoted to the presentation of the defined distributed
strategies. The computational results, that confirm the validity of the pro-
posed mathematical models, are reported in section 5; finally, conclusions are
drawn in section 6. This work is presented in [1].
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2.2 State of art

Many contributions regarding the adoption of optimization-based approaches
to sensor networks problems have been proposed in scientific literature. In
[45], the authors proposed an interesting approach to the dispatch problem,
that is how to determine from a set of mobile nodes a sub-set of sensor nodes
to be moved to an area of interest with certain objective functions, such that
the coverage and the connectivity properties are satisfied. They developed two
solutions to the dispatch problem: a centralized one and a distributed one. The
former is based on a previous placement and they converted the problem to
the maximum-weight maximum-matching problem with the constraint that
energy spent to move sensors has to be minimized or the constraint that the
average remaining energy after sensors moved has to be maximized. In the
distributed version constraints are the same of the centralized version, but
sensors are allowed to independently determine their moving direction.

However, the proposed distributed approach achieves poor results, because
the distances that nodes have to travel are not included in the optimization
model and the algorithm is based on greedy choices. Furthermore, authors in
[45] do not focus on the data flows but on the coverage and connectivity of
the whole network.

In [46], the authors formulated a constrained multi-variable non-linear
programming problem to determine both the locations of the nodes and the
data transmission pattern. Constraints they considered are: maximization of
the network lifetime and minimization of total cost. They studied a planar
network where they applied results obtained through optimal strategies and
performance bounds for linear networks. The authors do not consider the
possibility to move the sensors, instead they think of replacing dead nodes,
which is more expensive and more difficult. Furthermore, they assume all
nodes have the same energy, which makes the approach suitable only for the
initial deployment of the network.

In [47], the authors proposed a Multi-Objective Metric (MOM), taking
into account 4 different metrics for base station placement in WSNs. First,
they considered coverage as the ratio of sensor nodes which can communicate
with a BS via either single-hop or multi-hop. Second, they introduced fault
tolerance as the ratio of sensor nodes after the failure of base stations. Third,
the energy consumption computed as the average distance between sensor
nodes and their nearest BS. Finally, they introduced the metric of average
delay as the standard deviation of the degree of base stations, that is a measure
of network congestion. However, in [47], authors only consider base station
optimal placement. In our work, we assume all the nodes are equipped with a
mobility support and every node is able to move toward an “optimal” location.

In [48], the authors modelled the coverage problem as two sub-problems:
floor-plan and placement. The former consisting of sub-dividing the service
area into well-defined geometric cells and the placement problem is, in this
case, to assign the sensor nodes into a set of cells. The next step consists of
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solving a single optimization problem, where the objective function is to max-
imize the coverage of the service area while not exceeding the given budget. In
their work, the authors only consider the coverage as objective. For this rea-
son, their approach cannot be configured as multi-objective as we considered
in our work. Moreover, they consider a first phase called floorplan, in which
the exact position of sensors is known. This latter aspect can not be considered
available in many realistic applications of wireless sensors networks.

In [49], the authors formulated the placement problem as a combinatorial
optimization problem where the objective function is the minimization of the
maximum distance error in a sensor field under certain constraints. In [49],
the authors face the placement problem, so they did not take into account the
mobility of nodes. In practice, they did not consider a dynamic “environment”,
in the sense that objectives and tasks could change over time. As a result our
approach is entirely innovative.

In [50], the authors investigated the problem of optimal sensor placement.
They reformulated the problem such that the dimension of the non-linear
problem NLP is independent of all decision variables. Moreover, they extended
the sensor placement problem, based on static process conditions, to linear
dynamic processes. An additional contribution of this work is the exact con-
version of the general NLP into a convex program. All these results show how
the sensor placement problem can be solved using a branch-and-bound search
algorithm.

In [51], the authors introduced the concept of lifetime per unit cost, that
is the lifetime divided by the number of sensors deployed. They analyzed both
large and small networks and found that it is not an easy task to determine
the optimal configuration, in terms of lifetime per unit cost. For this reason,
they tried to determine the optimal number of sensors to be deployed and
the best strategy to deploy them in order to maximize the lifetime per unit
cost. To this aim they developed a two step procedure: in the first phase, a
greedy strategy is applied to optimize the sensor placement; the second step is
a numerical approximation to determine the optimal number of sensor nodes.
On the contrary of our approach, in [51] the authors consider the possibility to
introduce and, consequently, to use an “optimal” number of sensors. Instead,
we base our work on a pre-existing configuration and we try to exploit nodes
in the best possible way. Certainly, this matches real network conditions in
the case of wireless sensors networks, where nodes cannot be added in an easy
fashion and nodes cannot be easily recharged.

2.3 Problem Statement and Mathematical Formulation

In this section, we describe the main features of the problem under inves-
tigation and we present the mathematical models, developed to address the
optimal sensor placement problem, under different scenarios.
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In what follows, we consider an event-driven wireless sensor network and
we assume that the number N of sensor nodes involved in the relaying are
known.

In this respect, it is worth observing that the N value is determined by
taking into account the density of the nodes in the field and the length of
flow. In fact, from the density of nodes in the network we can compute the
area that, on average, each node should be able to cover in order not to
leave any uncovered region. In turn, from the coverage area it is possible
to determine the maximum transmission radius (r in Table 2.1). This is an
upper bound on the transmission radius, because the random deployment can
make it unnecessary for the node to transmit at the computed maximum. By
dividing the length of the flow for the maximum transmission radius we obtain
the minimum number of sensors needed for establishing a data flow between
the source-destination pair.

Node N is the sink node, whereas node 1 represents the source node.
It is worth noting that we focus only on a single source at each time

because we suppose that all the nodes in a certain area that detect the same
event will aggregate their sensed data and elect, with some criteria, one of
them to be the only source, as is typical in wireless sensor networks. Details
about data aggregation and the mechanism of election of the source node are
out of the scope of this section.

It is assumed that each sensor is powered by a non-rechargeable battery
and Ei, i = 1, . . . , N represents the initial energy of sensor i.

In what follows, Ft denotes the flow time length and vi, i = 1, . . . , N is
the initial position of node i, whereas Ẽi and ṽi, i = 1, . . . , N represent the
residual energy and the position of the nodes in the new placement.

Let Prec be the minimum required power for a bit to be correctly received
in an area of one squared metre and k the spent energy for a space-unit
movement of a sensor [5].

On the basis of the previous considerations, it is evident that for each
sensor node i, the residual energy Ẽi can be determined as follows:

Ẽ1 = E1 − k ‖ṽ1 − v1‖ − Ft · Prec ‖ṽ2 − ṽ1‖2 (2.1)

Ẽi = Ei − k ‖ṽi − vi‖ − Ft · Prec

[

‖ṽi+1 − ṽi‖2

+ ‖ṽi − ṽi−1‖2
]

, i = 2, . . . , N − 1 (2.2)

ẼN = EN − k ‖ṽN − vN‖ − Ft · Prec ‖ṽN − ṽN−1‖2 (2.3)

In this set of constraints we are taking into consideration two different
sources of energy consumption: movement and data transmission through the
distance travelled by each node ‖ṽi − vi‖ and the final distance between each

couple of neighbour nodes ‖ṽi+1 − ṽi‖2, respectively.
It is worth observing that the conditions (2.1)-(2.3) are non linear and

represent the first set of constraints, shared by all the proposed models.
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In addition, a sensor placement is feasible if for each node i, i = 1, . . . , N
the residual energy Ẽi is non-negative. Thus, the satisfaction of the conditions
reported below should be also ensured:

Ẽi ≥ 0, i = 1, . . . , N. (2.4)

As in [52] the lifetime of a sensor is simply defined as the time before the
sensor runs out of battery and it is not usable for forwarding data anymore.

In what follows, we introduce five optimization models, in which different
specific performance measures are taken into account. Indeed, for each model,
the optimality criterion is chosen by considering the specific task the network
has to carry out.

2.3.1 Model 1: Maximization of the total residual energy

The main aim of the first model is to find the sensor placement for which the
total duration of the network is maximized. In other words, the objective is
to maximize the total residual energy. It can be represented as follows:

max

N
∑

i=1

Ẽi

subject to constraints (2.1)-(2.4).

In most WSN deployments, there is only a finite source of energy. In fact,
sensor nodes are usually battery-powered. Besides, the nature of such devices
preclude battery replacement as a feasible solution, while many sensor network
applications demand that the network must operate for a long period of time.
It is challenging to use energy resources in the most efficient way. The model
considered represents a possible general solution to this and it can be used in
all the situations in which it is not economically and logistically convenient to
replace dead nodes. Typical cases are represented by environmental applica-
tions. In particular, we cite air quality monitoring, water quality monitoring,
fire detection, etc. [53], [54], [55].

2.3.2 Model 2: Maximization of the minimum residual energy

The second model has been developed with reference to the practical situation
in which the sensor network is characterized by a low value of density. In
these cases, it is required that each sensor lasts as long as possible, in order
to not lose the coverage of its area. In static WSNs, the common solution for
maintaining connectivity is to deploy redundant sensor nodes. When sensor
nodes fail, redundant nodes can be used for repairing connectivity. However,
in many cases it is difficult to ensure that redundant nodes are available for
replacement, especially for a network in which sensors nodes are deployed
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with a low value of density. In this case it could be useful to consider the
second model proposed here. A typical example is represented by the scenario
considered in [56], in which mobile nodes are used as data carriers and forward
data between disconnected components of the network to the base station.
From a mathematical point of view, the second proposed model takes the
following form:

max
N
min
i=1

Ẽi

subject to constraints (2.1)-(2.4).

In particular, the main aim is to find the sensor placement, in order max-
imize the lifetime of the critical sensor, i.e., the sensor with the minimum
value of residual energy.

2.3.3 Model 3: Maximization of the number of nodes with residual
energy above a threshold

The third model can be viewed as a middle way between the two models
introduced above. Indeed, the main aim is to find a sensor placement which
maximizes the number of sensor nodes, whose residual energy is above a chosen
threshold value Ethr. This model can be used in all the practical situations
in which the network is sub-divided in clusters and cluster heads should be
powerful devices because they act as a router for many slaves [57].

In order to give a mathematical representation of this model, it is necessary
to introduce a set of binary variables. In particular, to each sensor i, i =
1, . . . , N , is associated a binary variable xi with the following meaning: xi is
equal to 1 if the residual energy Ẽi of i is greater than the threshold Ethr and
is equal to 0 otherwise.

Model 3 takes the following form:

max

N
∑

i=1

xi

subject to

xi ≤
Ẽi

Ethr
, i = 1, . . . , N

xi ∈ {0, 1}, i = 1, . . . , N

and constraints (2.1)-(2.4).

2.3.4 Model 4: Minimization of the total travelled distance

Till this moment, we have considered the travelled distance only as a source
of energy consumption (section 2.3), without giving to this parameter the im-
portance it deserves for several reasons: first, in some practical applications,



32 2 Modelling and Solving Optimal Placement problems

a high mobility level could be dangerous or difficult to achieve because of the
environmental conditions nodes have to work in; second, a longer travelled
distance means not only a higher consumed energy, but also a higher usage of
the electro-mechanical system in place for the movement; third, sub-optimal
placement would ensure good results in terms of nodes’ lifetime without mak-
ing nodes move too much. At the same time, we already showed in section 2.1
how important and beneficial mobility is for the network, not only in relation
to the consumed energy. Hence, the term ‖ṽi − vi‖ has a central role in deter-
mining the tradeoff between the exploitation of mobility advantages and the
constraints in its usage. Therefore, the last two models focus on the travelled
distance as the optimization objective.

Typical examples of the aforementioned dangerous or environmentally dif-
ficult situations arise in the military field. In fact, WSNs can be used for bat-
tlefield surveillance and position tracking of the enemy [58], [59] and [60].
Whenever the total distance travelled by all the sensors to get to the final
positions has to be minimized, we can use the mathematical representation of
model 4, which is given in what follows:

min
N
∑

i=1

‖ṽi − vi‖

subject to constraints (2.1)-(2.4).

2.3.5 Model 5: Minimization of the maximum travelled distance

The distance travelled by the sensors, considered in model 4, is also taken
into account in model 5 as performance measure. In this case, the main aim
is to find the sensor placement for which the distance travelled by the sensor
that moves the most is minimized. Similar to the previous model, in military
applications it could be needed to move few nodes as little as possible.

Model 5 takes the following form:

min
N

max
i=1

‖ṽi − vi‖

subject to constraints (2.1)-(2.4).

The presented models can be used for different tasks and applications.
Depending on the sensed data, the central solver determines the appropriate
task/application, it maps it into the most suitable model and computes the
solution as a new optimal placement.

2.3.6 Centralized Placement Algorithm

In this section we introduce the steps performed by an algorithm that allows
the computation of the placement that is optimal for some specific objective.
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In order to specify the behaviour of the algorithm, we need to make some
general assumptions:

• sensor field is plane and free of obstacles;
• nodes know their own positions;
• nodes monitor their own residual energy;
• nodes are not equipped with directional antennae, so their transmissions

are always considered omnidirectional;
• nodes are provided with the same mechanical devices, so they all move at

the same velocity;
• residual energies are considered different for all the nodes;

Throughout this work this algorithm has been considered centralized, because
it requires a central computation unit for:

• collecting the information from the nodes, specifically, residual energies,
current positions and characteristics of sensed events,

• selecting the particular model depending on the objective,
• solving the model and determining the optimal placement,
• communicating the new placement to the nodes.

The algorithm to achieve the best placement uses the following steps:

1. when a new event is sensed by one or more nodes of the sensor field, the
computation centre is informed about the most important characteristics
of the event;

2. depending on the event’s characteristics, the computation centre deter-
mines the objective and, consequently, it chooses the model to solve;

3. everytime a new event has been sensed, a bidirectional data flow between
two nodes is activated1;

4. everytime a new flow has been activated, a routing protocol occurs, estab-
lishing a path of mobile nodes between two static communicating nodes.
We give more details about the used routing protocol in the next sub-
section;

5. when the data path is established, nodes report their current position and
residual energy status to the central computation unit, so to allow it to
store and use this information;

6. once the central computation unit has collected the information on all the
nodes involved in the data flow, it solves the chosen model;

7. the result from the model is a new nodes placement that is forwarded to
the nodes;

8. all the nodes that are ordered to reach a new position move towards it;
9. the new placement is achieved when the node that has to travel further

reaches its optimal position. The time needed for this operation can be cal-
culated in advance by the computation centre. Once this time has passed,
the source is triggered to start the transmission.

1 for sake of simplicity we assume that all the possible events trigger the activation
of a bidirectional data flow between a source and a destination node.
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In the performance evaluation section we will show the results obtained
by this algorithm for different targets in comparison with a distributed one.

2.3.7 A routing technique

In this subsection we give some details about the used routing technique for
selecting the sensor nodes in the establishment of a path between the terminal
nodes. It is important to point out that the determination of the best routing
scheme is out of the scope of this section which focuses on the optimization
of the path-lifetime and the minimization of the energy spent in a data flow
by exploiting nodes mobility. Thus, our choice of a routing procedure is only
motivated by a fair comparison of performance, for this reason we considered
a routing technique based on the results of [5]. For the same reason, in this
work, we do not consider all the costs related to the information exchange for
the routing. Indeed, the routing scheme selects the nodes which are close to
the straight line between the two terminal nodes, and specifically, it selects
the closest nodes to the evenly spaced positions. In order to better understand
this mechanism we can observe the Figure 2.1, in which the full circles along
the straight line represent the optimal solution as obtained in [5]. It is useful to
outline that [5] did not consider residual energies of sensor nodes to compute
the optimal solution. The marked empty circles, in Figure 2.1, are the nodes
selected by the routing technique. These nodes are the nearest to the evenly
spaced positions along the straight line between the terminal nodes. In our case
the routing selection is realized by a central computation unit, but there are
many distributed routing protocols for Ad Hoc or Wireless Sensor Networks
that can be adapted for this matter [41].

D

S

Fig. 2.1. An example of routing selection.
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2.4 Distributed Heuristic Strategies

The centralized approach described in the previous section, which represents
a sort of “exact” solution to the sensor placement, cannot be always imple-
mentable in a real-life setting. Moreover, computational times and commu-
nication issues could reduce the effectiveness of proposed solutions for each
problem. Here we propose a set of distributed heuristic strategies which can
be implemented locally for each node or group of nodes. They are based on the
common evenly-spaced approach, even if other approaches with a minimal in-
formation communication among neighbor nodes can be adopted as well, like
for example energy-spaced approach. These strategies could be implemented
separately or, similarly to the previous approach, could be selected according
to the specific application.

In order to illustrate these strategies we consider a simple network with
just six nodes as depicted in Figure 1. Node 1 is the source node and 6 the
sink node.

Fig. 2.2. Example sensor network

We suppose that at each node the position of its neighbors is known and
that the process at each node can be asynchronous. The following schemes and
figures describe the heuristic strategies we propose. In all the figures, white
circles represent starting positions and light grey circles final positions, that
is before and after each step of the procedures. At each step dark grey circles
are not interested by the movement.

Procedure A - For each node i, i = 1, ..., 4, define position of node i+ 1
without moving node i (Figure 2).

• Process node 1: define position of node 2 without moving node 1.
• Process node 2: define position of node 3 without moving node 2.
• Process node 3: define position of node 4 without moving node 3.
• Process node 4: define position of node 5 without moving node 4.
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Fig. 2.3. Graphical Representation of Procedure A

Procedure B - For each node i, i = 2, ..., 4, define position of nodes i and
i+ 1 (Figure 3).

• Process node 2: define position of nodes 2 and 3.
• Process node 3: define position of nodes 3 and 4.
• Process node 4: define position of nodes 4 and 5.

Fig. 2.4. Graphical Representation of Procedure B
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Procedure C - For each node i, i = 2, ..., 5, define position of nodes i
(Figure 4).

• Process node 2 and 4: define position of nodes 2 and 4, without moving
nodes 3 and 5.

• Process node 3 and 5: define position of nodes 3 and 5, without moving
nodes 2 and 4.

Fig. 2.5. Graphical Representation of Procedure C

Procedure D - For each node i, i = 2, 4, define position of nodes i and
i+ 1 (Figure 5).

• Process node 2: define position of nodes 2 and 3.
• Process node 4: define position of nodes 4 and 5.

The proposed heuristic strategies are easy to implement, because each
sensor node needs just the information about its neighbors position and are
very efficient since for every procedure each step requires only the execution
of an arithmetic operation.
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Fig. 2.6. Graphical Representation of Procedure D

2.5 Computational experience

In order to validate the effectiveness of proposed models and heuristics strate-
gies a set of computational experiments has been carried out. In particular,
the aim of this activity has been twofold. First of all, we have tested the
significance and the performance of the optimization models, outlining how
a centralized approach could improve the overall network performance. Sec-
ondly, we have analyzed the behavior of the proposed distributed heuristic
strategies for each applicative problem considered w.r.t. the exact optimiza-
tion models.

The models have been formulated and solved using LINGO2, an integrated
system with an algebraic modelling language and several linear and nonlinear
solution kernels.

In order to evaluate the performance of our techniques we implemented the
algorithms and the reference scenario in Matlab. We have considered as a test
case a field area of 1000 m x 1000 m, where mobile sensors are deployed in a
uniform random fashion and a bidirectional flow has been activated between a
couple of nodes located in two opposite corners of the field. Relay nodes start
with different residual energies in the range 15-20 J and they are characterized
by a maximum transmission radius r, a transmission rate rT and a minimum
required power for a bit to be correctly received Prec.

The energy expenditure needed for the movement of the sensors has been
considered, according to a simple distance proportional cost model: EM = kd,
where d is the travelled distance and k is a movement constant. The energy
model used for the transmission is taken from [61]. We have considered five
different values for the node density (200, 400, 600, 800 and 1000 sensors in

2 www.lindo.com
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the network). Table 2.1 summarizes all the parameters set in the simulation
environment.

Table 2.1. Evaluation Parameters

Field Area (LxL) 1000m x 1000m

Nodes Density (ρ) [2÷10]·10−4 nodes

m2

Source position (v1) (0,0)
Destination position (vN ) (1000,1000)

Flow Time Length (TF ) 87.6·103h
Flow Length (l) 1000

√
2m

Max Transmission Radius (r) 1/(2
√
ρ) m

Relay nodes (N) l/r
Initial Residual Energy Range (Ei) 15÷20 J

Min Req Power (Prec) 3.16·10−12W/m2

Transmission Rate (rT ) 1 kb/s
Movement Constant (k) 0.1 J/m
Energy Threshold (ET ) 10 J
Runs for each scenario 100
Confidence Interval 95%

We have considered several instances of the test problem obtained consid-
ering different randomly generated values for initial positions and energies.
The following figure (i.e., Figure 6) summarizes the results in terms of the
criteria mean values measured on the considered test cases for each one of the
proposed optimization models, together with those of two placement strate-
gies, the evenly spaced one and the bidirectional energy spaced. The first one
is a commonly adopted strategy, which however is effective just under specific
conditions [5]. The second one is due to a recent contribution of Natalizio et
al. [43], which shows how this placement strategy is optimal for sensors which
are located along the flow direction.

As we can see, each specially tailored optimization model outperforms the
other ones and the two benchmark strategies w.r.t. the criterium it has been
designed for. Table 2.2 reports the percentage worsening of the placements
proposed by the optimization models and the benchmark strategies w.r.t. the
optimal placement for each one of the considered criterium.

Table 2.2. Models comparison (% worsening)

Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5

Model 1 0 61.51 23.69 40.81 52.39
Model 2 40.19 0 87.78 152.61 49.29
Model 3 15.13 100 0 88.46 63.28
Model 4 14.19 100 39.65 0 36.41
Model 5 53.38 74.8 76.56 158.94 0

Evenly spaced 17.63 53.69 54.61 154.2 57.41
Bidir. energy spaced 14.66 26.72 45.69 125.56 56.34
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(a) Mean Overall Residual Energy

(b) Mean Minimum Residual Energy

(c) Mean number of nodes over the threshold

(d) Mean Overall Travelled Distance

(e) Mean Maximum Distance

Fig. 2.7. Computational Results obatined with the proposed Optimization Models
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Even if the benchmark strategies could seem to be an acceptable choice,
in particular due to their easy implementation, it is worthwhile noting that in
some cases the placement they provide can be infeasible, that is some nodes
do not have a sufficient energy level to guarantee the movement and the flow
transmission.

We have also analysed the performance of proposed heuristic strategies by
means of their comparison with each specially tailored model, which we call
Best Optimization Model (BOM), and the benchmark strategies aforemen-
tioned. Figure 7 shows the results for the five criteria.

Similarly to the previous one, table 2.3 reports percentual worsening of
each heuristic strategy w.r.t. BOM and benchmark policies.

Table 2.3. Heuristics comparison (% worsening from BOM)

Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Avg.

Heuristic A 10.26 21.86 41.71 118.91 35.96 45.74
Heuristic B 8.85 35.99 38.08 114.18 43.5 48.12
Heuristic C 8.34 22.57 40.04 111.23 35.37 43.51
Heuristic D 9.3 26.57 40.43 116.16 37.64 46.02

Evenly spaced 17.63 35.58 54.61 154.2 57.41 63.89
Bidir. energy spaced 14.66 26.72 45.69 125.56 56.34 53.79

As we can see, the heuristics performances are quite similar and are almost
always better than those of benchmark strategies.

In particular, except for objective 4, the performance worsening w.r.t.
optimization models is acceptable, varying from 8% to about 40%. Analysing
the performance of the proposed strategies, we can observe that strategy C
can be considered as the best one, because it outperforms the other ones in
almost all the cases. The column of table 2.3 confirms that strategy C is
globally preferrable to the other ones.

Moreover, the comparison with the performances of the aforementioned
benchmark strategies shows that the proposed strategies are more effective for
all the considered criteria, allowing significantly minor worsening levels. For
example, as regards the first objective the worsening of benchmark strategies
is twice that of the best heuristic strategy.

All these results, together with the difficulty concerning the implementa-
tion of centralized optimization-based policies, show how the proposed heuris-
tic strategies could be a good approach in a real-life setting. From an applica-
tive standpoint, since the placements suggested by the proposed heuristic
strategies are similar in terms of the objective criteria, there is not a real ad-
vantage in switching from a strategy to another one. A good trade-off could
be the implementation of just one (local) strategy, chosen according to its
overall performance or to the most frequent applicative problems the network
is expected to face.
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(a) Mean Overall Residual Energy

(b) Mean Minimum Residual Energy

(c) Mean number of nodes over the threshold

(d) Mean Overall Travelled Distance

(e) Mean Maximum Distance

Fig. 2.8. Computational Results obtained with the proposed Heuristic Approaches
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2.6 Conclusions

In this chapter, the optimal sensor placement in wireless sensor networks
has been addressed. Some optimization models, in which different criteria
are taken into account, have been considered. The considered models, imple-
mented through a centralized scheme, allow us to determine the most suitable
sensors placement, depending on the specific task the network has to execute.

The centralized scheme has been compared with the performance achieved
by a set of state-of-art and innovative distributed strategies, that require only
local information.

The computational results obtained by applying the proposed distributed
schemes are very encouraging. Indeed, the sensor displacements obtained with
the distributed heuristics are comparable with those determined by the cen-
tralized approach. In addition, the proposed approaches outperform the state-
of-art distributed strategies.





3

Controlled Mobility: algorithms and protocols

3.1 Introduction

In this chapter we will propose some distributed algorithms that, by using
controlled mobility, allow each node to autonomously move towards a position
that is optimal in terms of energy consumption during for the transmission
of a data flow. The classical assumption in literature to optimize the energy
consumption is to place nodes along the straight line between source and
destination in the ”‘evenly spaced”’ positions. This is the best placement when
the initial residual energy is the same for all nodes, obviously this assumption
is not realistic, so we want to remove it and determine the new placement
for relay nodes based on the energy level (we refer to this scheme as ”‘energy
spaced”’ algorithm). A further improvement is proposed by making nodes
move towards the final optimal placement introducing a mechanism named
”‘virtualization of movements”’ that is able to significantly reduce the energy
consumed for the movement.

A similar algorithm of mobility is also put to work along with a routing
protocol that is ”mobility aware” and consequently it is able to choose the
relay nodes for a multi-hop communication. The chosen nodes are the closest
to the final optimal position in order to minimize the travelled distances,
taking into account also the residual energies of the nodes.

These algorithms show as mobility can impact the performance of the
network so, finally, an analytical tool is proposed to measure the performance
of different patterns of mobility in terms of coverage that is the main QoS
parameter for such kind of networks.

In next section we show the existence of placements that are optimal in
terms of energy consumption for data transmission. In section 3.3 a routing
protocol using controlled mobility will be introduced, finally in section 3.4 an
analytical tool for measuring the effectiveness of different mobility patterns
in terms of coverage will be presented.
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3.2 Optimal placements and Mobility Schemes for
Improving Energy Efficiency

3.2.1 State of art

Wireless sensor networks are made up of a large number of sensors deployed
in the area to be monitored. Due to their weight and size limitations, energy
conservation is the most critical issue. Usually, the sensor nodes are deployed
randomly and after the deployment, these nodes are generally stationary and
self-organized into networks. Energy saving in a wireless sensor network can
be achieved by deploying sensor devices in an ad hoc manner based on some
specific task. Self-organizing is a fundamental concept to build scalable and
dynamic systems. In similar systems, the key factors are coordination and co-
operation among system’s agents, in order to achieve a common task. In the
last few years, the concept of mobility has been strictly related to sensor net-
works. A concept not deeply investigated for telecommunications applications
is controlled mobility. This last concept is logically connected to design specific
mobility control algorithms that usually need to be distributed. The design
of mobility control algorithms is challenging, because different issues need to
be addressed. Some of these issues have been addressed in [5]. Specifically, a
totally distributed scheme, which enables mobility control in an asynchronous
fashion, is developed. In order to prove the effectiveness of controlled mobil-
ity, the authors considered different application scenarios. However, the usage
of nodes mobility is a new source of energy consumption. In this section we
focus on the development of a new strategy, which takes advantage of wireless
devices controlled mobility without this side effect. Specifically, a new concept
of nodes movement is introduced: virtual movement. At each iteration, nodes
compute their new position depending on the task they have to achieve, but
they do not move immediately. Instead, the calculated position is considered
“virtual”. The algorithm converges when nodes are not able to find a different
position in respect of the last one computed, and they physically move towards
this position. The new concept of “virtual” movement of sensor nodes allows
us to exploit the advantages of controlled mobility without wasting energy
related to the movement.

For many years controlled mobility has been deeply investigated by the
robotic research community, where the movement coordination of a group
of robots was considered in order to achieve a common task. Several appli-
cations exist where the advantages of controlled mobility could be exploited.
Traditionally the mobility of devices in a telecommunication network was con-
sidered a problem to overcome but in the last few years controlled mobility
has become a new network design dimension. Controlled mobility can be con-
sidered in order to optimize different parameters in wireless sensor networks
such as lifetime. In [5] the authors propose a controlled mobility algorithm
that is distributed and adaptive. Their algorithm achieves better control of
power management and specifically, it pursues better energy consumption in a
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wireless sensor network, where nodes are always connected during their move-
ment. The key factor of this work is that authors use controlled mobility as a
new design primitive of the sensor network. In [6] and [7] energy consumption
has been studied. In [6], the authors aim to obtain improvements in terms
of energy consumption by exploiting controlled mobility. They show that, by
using a mobile station, if the node density increases, the energy consumption
decreases. They considered a mobility pattern where the path is previously
known and speed varies. In [7] the authors consider two types of nodes: relay
nodes, that are mobile nodes and tracking nodes, that are static nodes. Track-
ing nodes give information about network intruders. Mobile relays are used
to find optimal positions while minimizing power transmission for each active
flow. Nodes movement is driven by a distributed algorithm. In [8] the authors
propose a different approach, in which only one node is mobile. This mobile
node can be a sink or simply a relay node. Through an analytical approach,
they show an upper limit for the network lifetime, when the mobile node is the
sink. In this case, lifetime is four times larger than in the case where all the
nodes are static. However, since the sink is usually a gateway and it should be
static, they consider a relay node as mobile and develop a routing algorithm,
whose performance is close to the upper limit.

Another interesting field of research related to the controlled mobility is
the network coverage-connectivity area. In [87] the authors established neces-
sary and sufficient conditions for the coverage to imply connectivity. In [85]
authors investigated k-coverage and k-connectivity. K-coverage implies that
every sensor node is linked with at least k sensors, and k-connectivity implies
that for every pair of nodes there exist at least k different and disjoint paths
that link these nodes. In [88] and [89] sensors are mobile nodes and are able
to self-configure through some specific criteria that guarantee coverage of a
region. Specifically, in [88], the authors implement an optimal placement strat-
egy based on the concept of potential field. In [89] the authors develop a greedy
algorithm based on controlled mobility. Controlled mobility can be efficiently
exploited during the deployment phase, when the optimal displacement is
too expensive or difficult to attain. In [12] Zou and Chakrabarty exploit the
concept of virtual force to improve the coverage of a geographical area. At
the beginning, nodes are placed randomly, each node is subject to attractive
and repulsive forces from the other nodes, so that they all move towards a
final displacement, where the area covered is maximized. In [90], the authors
develop a distributed algorithm based on the concept of artificial potential
fields, where the objective is to maximize the area covered and let every node
have at least four sensors in its own transmission range. Controlled mobility
can be exploited to reduce end-to-end delay. In [18], the authors deform the
topology of a multi-hop wireless network, by moving nodes in order to create
new links. They show how this deformation reduces the average end-to-end
delay and performs better than the approach where an increased capacity is
assigned to the most congested data channel. The algorithm they propose is
centralized and needs the knowledge of the network topology. The algorithm
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changes the connections between the moving nodes at each step. At each step
connectivity is preserved and the average delay decreases. In [14] exploration
and localization are obtained through controlled mobility. Authors introduce
an hybrid architecture where a certain number of nodes is mobile and the
others are static. Mobile nodes move inside a certain area and pick up infor-
mation from static nodes to explore the area. The algorithm that makes nodes
move is based on potential fields and swarm intelligence.

Another interesting field of research regards the optimal placement of mo-
bile nodes for some specific target. Specifically, [5] is the first work where
controlled mobility is used to place nodes in an evenly spaced manner on the
straight line between the terminal nodes of a flow. In [24], the final positions of
the nodes are not evenly spaced, because their initial energy level is considered
in the positions calculation.

3.2.2 Optimal placements

In this section we report the mathematical framework introduced in [24, 43] for
the determination of the optimal nodes placement in a Wireless Sensor Net-
work. The optimality of the solution is meant in terms of energy consumption
for a monodirectional or a bidirectional data flow. One of the novelty of our
approach in [24, 43] is the consideration of different levels of residual energy
for the nodes involved in a data flow between a source and a destination node.
This assumption paves the way to the next step of our work, which consists in
moving the nodes to the optimal positions by dynamically reacting to some ex-
ternal or internal trigger. Thus, this section presents the preliminaries which
will be used by the real and virtual movement algorithms presented in the
following sections, and it considers the monodirectional and the bidirectional
data flow cases separately.

Monodirectional data flow

In [24] we investigated the problem of placing sensors involved in a monodi-
rectional data flow in order to maximize their lifetime, when their residual
energies are different.

The energy model we used to characterize the physical layer of our math-
ematical scheme is taken from [91]. By simplifying this model we obtain that
the energy required to send one bit at distance d is E = 2Eelec + βdα, where
Eelec [J/bit] is a distance independent term that takes into account the en-
ergy needed by the transceiver circuitry to transmit or receive one bit, α is
the exponent of the path loss (2 ≤ α ≤ 5) and β is a constant [J/(bit·mα)].
Eelec is counted twice, because it is assumed that Eelec = Etrans

elec = Erec
elec as

in [91]. We set α equal to 2 and β equal to 10pJ/(bit·m2), which are typical
values of the free space model.

Next, we introduce the mathematical model of the system. Let v1 and vn

denote the known source and destination positions, respectively. Let {vi}n−1
i=2
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be the positions of the n−2 relay nodes. Let {Ti}n−1
i=1 and {Ei}n−1

i=1 be the life
times and the residual energies of the nodes, respectively. Let Prec denote the
minimum required power in order for a bit to be correctly received in an area
of one squared metre. We assume a power control system is in place so that
the transmitter adjusts its power in order to deliver Prec at the receiver. This
implies that each Ti is a function of the positions of nodes i and i + 1, i.e.
Ti =

Ei

Prec‖vi−vi+1‖2 . The distance between two successive nodes in the path

is ‖vi − vi+1‖.
Problem: Find {vi}n−1

i=2 such that min {Ti}n−1
i=1 is maximized.

This can be immediately solved by placing the nodes on the segment with
the extremes v1 and vn, the distance between adjacent nodes being chosen in
order to have T1 = T2 = · · · = Tn−1 = TPL, where TPL is the path-lifetime.
This gives

vi = vi−1 +

√

Ei−1

PrecTPL
u

= v1 +
i−1
∑

k=1

√

Ek

PrecTPL
u, i = 2, . . . , n− 1 (3.1)

where

u =
vn − v1

‖vn − v1‖
(3.2)

and TPL can be found from

vn = v1 +
n−1
∑

i=1

√

Ei

PrecTPL
u, (3.3)

i.e.,

TPL =
1

Prec ‖vn − v1‖2

(

n−1
∑

i=1

√

Ei

)2

. (3.4)

The obtained positions vi guarantee that the energy consumption is at a
minimum for each node in the data flow. Thus, nodes are closer or further
from the following neighbour depending on their residual energies. In [24]
we set up a simulation scenario and compared the performance of random
placement, evenly spaced placement and energy spaced placement in terms of
path-lifetime, defined as the value of the minimum time duration that a node
can be active in the current data flow, until its battery is completely out of
energy, as in [94]. Evaluation parameters and results are reported also here in
Table 3.1 and Fig. 3.1, respectively.

Bidirectional data flow

When the data flow is bidirectional, nodes spend energy to send data both in
the backward and in the forward direction. Hence, their placement should vary



50 3 Controlled Mobility: algorithms and protocols

Table 3.1. Evaluation Parameters for Placement Algorithms without Nodes Mo-
bility

Field Area (LxL) 1000 m x 1000 m

Nodes Density (ρ) [2÷10]·10−4 nodes
m2

Source position (v1) (0,0)

Destination position (vn) (1000,1000)

Residual Energy Range (Ei) 15÷20 J

Maximum Transmission 1/(2
√
ρ) m

Radius (rmax)

Transmission Rate (rT ) 1 kb/s

Number of run 100
for each scenario
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Fig. 3.1. Path Lifetime for the three schemes.

accordingly. Unfortunately, the relaxation of monodirectionality assumption
implies that the solution can not be derived in close-form. In [43] we stated
the bidirectional optimal placement problem as follows:

maxmini Ti

s.t. :
T1 ≤ E1

Prec‖v1−v2‖2

Ti ≤ Ei

Prec(‖vi−vi+1‖2+‖vi−vi−1‖2)
, 1 < i < n

Tn ≤ En

Prec‖vn−vn−1‖2

(3.5)
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where Ti is a function of the distances between node i and its neighbours.
The proposed model is of max-min type with nonlinear constraints [95]. The
objective consists of the maximization of the shortest node lifetime.

We called this model simply “bidirectional” since it is an extension of the
“monodirectional” energy spaced model presented in [24]. It allows us to find
the best placement when the energy of the nodes is used for both the forward
and the backward flows.

A different approach is given by the “bidirectional energy-splitable” (BES)
model also presented in [43]:

maxΓ
s.t.
Γ ≤ Ti, 1 ≤ i ≤ n
T1 ≤ E1

Prec‖v1−v2‖2

Ti ≤ λ∗Ei

Prec‖vi−vi+1‖2 , 1 < i < n

Ti ≤ (1−λ)∗Ei

Prec‖vi−vi−1‖2 , 1 < i < n

Tn ≤ En

Prec‖vn−vn−1‖2

(3.6)

where there are two different constraints for the lifetime of the generic relay
node i, one for the backward and one for the forward flow and the residual
energy of the device is split between the two directions depending on the factor
λ. When 0 ≤ λ < 0.5 more energy is allocated for the forward flow, while with
0.5 < λ ≤ 1 the backward flow has higher priority. For λ = 0 or λ = 1 we
have completely asymmetric flows in the forward and backward direction,
respectively, while for λ = 0.5 the flow is completely symmetric. In the former
case, the optimal placement coincides with the solution computed with the
monodirectional model (3.1). Model (3.6) is more flexible than (3.5) and more
suitable to different flows’ requirements. In fact, λ could be considered as a
function of some flow parameter, such as the load, the delay or the jitter and
the scheme would find the best nodes placement depending on the chosen λ.

In Fig. 3.2 we investigated the best solution, in terms of path-lifetime, for
the BES model when λ varies and ρ = 5 · 10−4 nodes/m2. In Fig. 3.3 we
compared the three placement schemes for a completely symmetric (λ=0.5)
bidirectional data flow in the same conditions of Table 3.1 and when the
energy spaced scheme has been optimized through the BES model. Still the
energy spaced scheme outperforms the other two schemes, but in this case
the evenly spaced scheme almost equals the performance of the energy spaced
scheme. Let us recall here that the evenly spaced scheme assumes the same
residual energy for all the nodes, therefore the resulting placement is implicitly
computed for completely symmetric bidirectional flows.

The main disadvantage of the bidirectional models is that a central man-
agement station is required in order to collect the current information about
residual energy, the positions of the involved nodes and find their most energy-
efficient placement.
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Fig. 3.2. Path Lifetime for the BES model when λ varies.
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Fig. 3.3. Comparison of the lifetime for three placement schemes (λ = 0.5)
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3.2.3 Real movement

In the previous section we showed that an energy-wise placement exists for
both monodirectional and bidirectional data flows when different levels of
nodes residual energy are considered. Since a human intervention is not pos-
sible every time that a new data flow occurs, the only viable approach for
the nodes to reach their optimal positions is to let them self-organize in re-
sponse to some event. Self-organization calls for a feasible technique that
drives nodes to the optimal placement in a distributed and asynchronous way.
A viable solution in this context is given by controlled mobility. In this sec-
tion we discuss two controlled mobility algorithms for completely symmetric
bidirectional data flows, based on the real movement of nodes towards the
placements determined by the models of Section 3.2.2, in comparison with
the random placement obtained in the deployment phase without any move-
ment of the nodes. Since the routing problem is out of the scope of this
work, we assume that, for both the algorithms, the routing protocol already
chose the relay nodes which are initially located in the closest positions to
the evenly spaced positions on the straight line between source and destina-
tion. The evenly spaced real movement algorithm (EvSRM), presented in [5],
moves nodes towards the evenly spaced positions on the straight line between
source and destination nodes. For the energy spaced real movement algorithm
(EnSRM), we cannot use directly the placement computed by the mathemat-
ical framework in Section 3.2.2 because, as we said, that model requires a
central management station. Thus, we conceived the algorithm in Fig. 1 that
is distributed and uses only local information. At each iteration, each node
involved in the data flow calculates, through EnSRM, the best backward and
forward position to move using only the information on its position and its
residual energy, and the positions and the residual energies of its closest neigh-
bours. Then it physically moves to the central position between the computed
backward and forward positions. Besides being distributed, EnSRM is also
asynchronous, because each node runs the algorithm independently from any
time reference. The Algorithm 1 considers EnSRM at the generic iteration k
for the generic node i.

In order to determine the new position in an asynchronous and distributed
way, EnSRM uses two coefficients: −→γi and ←−γi that take into consideration the
residual energy ratios of the node i in the forward and backward directions,
respectively. Furthermore the movement of the node is damped, in order to
avoid large oscillations, by the damping factor g as in the EvSRM algorithm
[5].

In Fig. 3.4 we can see the tracking of nodes when they are running EvSRM
(a) and EnSRM (b). In both the figures, the full black circles represent the
nodes chosen by the routing algorithm, the full grey circles indicate the evenly
(a) and energy (b) spaced positions, while the empty grey circles in (b) are
the evenly spaced positions. From this figure, we have an example of a path
travelled along by the nodes, in order to reach the evenly or energy spaced
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Algorithm 1 Energy Spaced Real Movement Algorithm

vi(k): position of node i;
vi−1(k): position of node i− 1;
vi+1(k): position of node i+ 1;
Ei(k): residual energy of node i;
Ei−1(k): residual energy of node i− 1 ;
Ei+1(k): residual energy of node i+ 1;
−→vi (k): temporary variable for storing the new position of node i in the forward
direction;
←−vi (k): temporary variable for storing the new position of node i in the backward
direction;
−→γi (k): residual energy coefficient of node i in the forward direction;
←−γi (k): residual energy coefficient of node i in the backward direction;
repeat

send vi(k) to neighbours i− 1 and i+ 1;
send Ei(k) to neighbours i+ 1
receive vi−1(k), vi+1(k), Ei−1(k) and Ei+1(k);

set −→γi (k) =
√

Ei−1(k)√
Ei−1(k)+

√
Ei(k)

;

set ←−γi (k) =
√

Ei+1(k)√
Ei+1(k)+

√
Ei(k)

;

set −→vi (k) = ((1−−−→γ(i)(k))vi−1(k) +
−−→
γ(i)(k)vi+1(k));

set ←−vi (k) = (
←−−
γ(i)(k)vi−1(k) + (1−←−−γ(i)(k))vi+1(k));

set v′i(k) = (−→vi (k) +←−vi (k))/2;
move to v′′i (k) = vi(k) + g(v′i(k)− vi(k));
vi(k + 1) = v′′i (k)

until (convergence condition is satisfied)

positions on the straight line between the terminal nodes of a bidirectional
data flow. In Section 3.2.5 we will show the energy spent for travelling along
such a winding path. In the following subsections, first we will analyze the
EnSRM scheme by giving the proof of convergence and connectivity; secondly
we will present EnSRM and EvSRM behavior in terms of nodes residual en-
ergy, travelled distances and number of iterations, when the damping factor
varies; finally we will compare the two schemes which use real movement of
nodes with the random placement scheme, in order to substantiate the need
for the virtualization of nodes’ movements.

Convergence and connectivity

Convergence
Assume that the number of nodes involved in the data flow between the
source node S and the destination node D is n-2 and that the position of
node i at the kth iteration of the algorithm is vi(k). Let γi be the ratio
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(a)

(b)

Fig. 3.4. a) Tracking of nodes movement for the EvSRM scheme and b) the EnSRM
scheme

γi(k) =

√
Ei−1(k)√

Ei−1(k)+
√

Ei(k)
at the kth iteration. The update equation for node

i is:

vi(k + 1) = vi(k) + g[(1− γi(k))vi−1(k) +

+ γi(k)vi+1(k)− vi(k)], k = 1, 2, . . . (3.7)

where g ∈ (0, 1] is called damping factor and it is used as in [5] for avoiding
possible oscillations.

Let the position error be:

ei(k) = vi(k)− vi, i = 1, 2, . . . , n. (3.8)
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Where vi is the optimal position of node i calculated in (3.1). In order to
show the convergence of our algorithm we will show that the position error
will go to zero by iterating (3.7). At this point we observe that:

vi−1(k) = ei−1(k) + vi −
√

Ei−1(k)

PrecTPL
u. (3.9)

and

vi+1(k) = ei+1(k) + vi +

√

Ei(k)

PrecTPL
u. (3.10)

The error at the (k + 1)th iteration is:

ei(k + 1) = vi(k + 1)− vi

= vi(k) + g[(1− γi(k))vi−1(k)] +

+ g[γi(k)vi+1(k)− vi(k)]− vi

= (1− g)ei(k) + g[(1− γi(k))ei−1(k) +

− (1− γi(k))

√

Ei−1(k)

PrecTPL
u

+ γi(k)

√

Ei(k)

PrecTPL
u+ γi(k)ei+1(k)] (3.11)

In order to establish if the error goes to zero in a limited number of itera-
tions, we introduce a vector E(k) = (e1(k), e2(k), . . . , en(k)). In this way we
obtain:

ei(k + 1) = g(1− γi(k))ei−1(k) +

+ (1− g)ei(k) + gγi(k)ei−1(k). (3.12)

Using a matrix notation, it is possible to rewrite (3.12) as E(k + 1) = A(k +

1)E(k) = (
∏k+1

i=1 A(i))E(0) for each iteration, where A(k) is the matrix:



















1− g gγ1(k) 0 0 0
g(1− γ2(k)) (1− g) gγ2(k) 0 0

...
...

...
...

...
0 g(1− γi(k))(1− g) gγi(k) 0
...

...
...

...
...

0 0 0 g(1− γn(k))(1− g)



















(3.13)
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Theorem 1 Matrix A constant. If the entries of the matrix A are constant
(i.e. the γi coefficients are constant) then the mobility scheme will drive nodes
to the stable configuration in (3.1).

Proof: The matrix we obtained is classified as a tri-diagonal matrix. Since
the entries of our matrix A are all non-negatives, we can exploit the Perron-
Frobenius theorem [96]. Let Ri and Tj denote the sum of the absolute values
of the entries in the ith row and the sum of the absolute values of the entries
in the jth column, respectively, so that R = maxi Ri, T = maxj Tj, then
Perron-Frobenius theorem states the first inequality in the following:

λi ≤ min(R, T ) ≤ 1, (3.14)

where the second inequality comes from the maximum value of Ri for matrix
A.

Given (3.14) and applying a standard result in the matrix theory [97] we
have limk→∞ Ak = 0 which implies that limk→∞ E(k) = 0. In practice, this
means that the algorithm converges to the configuration given in (3.1), where
nodes are positioned along the line between the source node S and the desti-
nation node D and their positions depend on their initial energies.

However, matrix A is time-varying. Indeed, the γi coefficients could vary
at each iteration of the algorithm. Hence, not so much can be said about the
stability of the system. We studied the stability radius of the matrix A by
using the theory of matrix perturbations [93]. The stability radius expresses
the “distance” of the system from the instability region. By using the values
for γi(k) taken from our simulations, we found out what it follows:

Theorem 2 Matrix A time-varying. The stability radius of Matrix A is al-
ways greater than the largest perturbation that could affect the system.

From (3.13) we can write A at the iteration k + 1:





























1 − g gγ1(k + 1) 0 0 0
g(1 − γ2(k + 1)) (1 − g) gγ2(k + 1) 0 0

.

.

.
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.

.

.

.

.

.

.
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.

.

0 g(1 − γi(k + 1)) (1 − g) gγi(k + 1) 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 g(1 − γn(k + 1)) (1 − g)





























(3.15)

Both matrices (3.13) and (3.15) are tri-diagonal and their elements are
non-negative and smaller than 1. Furthermore, matrix A is stable because of
the Perron-Frobenius theorem and the result in [97] Therefore, we can consider
A(k + 1) as a perturbation of A(k):

A(k + 1) = A(k) +B∆C, (3.16)

where B and C are non-negative matrices and ∆ is the perturbation matrix:
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∆ =













p11δ11 . . . p1nδ1n
...

...
...

pn1δn1 . . . pnnδnn






: pij ≥ 0






. (3.17)

Hence, we apply the results in [93], which allow us to calculate the stability
radius of the system:

rdR =
1

ρ(C(I−A)−1BP)
, (3.18)

where ρ(·) denotes the spectral radius. In our case B and C are the identity
matrix, P gives the tri-diagonal structure to the perturbation:

P =







p11 . . . p1n
...

...
...

pn1 . . . pnn






=





0 1 0
1 0 1
0 1 0



 , (3.19)

thus resulting in the perturbation matrix (for the sake of simplicity we write
∆ as a 3-by-3 matrix):

∆ =









0 δ1 0
−δ2 0 δ2
0 −δ3 0



 : δi = g(γi(k + 1)− γi(k))



 (3.20)

Authors in [93] also define:

‖∆‖ := max
i,j
{|δij | : pij 6= 0} (3.21)

in order to determine the entry of ∆ which causes the largest perturbation.
If the stability radius is not greater than the largest perturbation, then the
perturbation would lead the system to an instability region.

We analyzed the stability radius for our simulated scenarios by introducing
the perturbations of the γi coefficients. Let us recall the definition of γi(k) =√

Ei−1(k)√
Ei−1(k)+

√
Ei(k)

. We define the difference between the energy coefficient of

node i at the iteration k+1 and k as ∆γi , γi(k+1)−γi(k). In our simulations,
the initial energy of nodes is in the range 15÷20 J , therefore for the energy
coefficients at the first iteration, it stands 0.4641≤ γi(1) ≤ 0.5359 ∀i. We
extensively studied the evolution of these coefficients, when the damping factor
varies, in order to determine the distance of the system from the instability.
In Fig. 3.5a and 3.5b we reported the plot of two groups of γi that show a
similar behaviour.

As we can see, the value of γi increases or decreases quickly and after few
iterations it converges to a constant value. These plots have been drawn for
g = 0.75, but the same behaviour has been verified for smaller (and larger)
values of the damping factor on a larger (and smaller) number of iterations.
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Fig. 3.5. Evolution of two groups of γi with the number of performed iterations for
g = 0.75.

In Table 3.2 we reported the values of the number of iterations needed in
a scenario with high nodes density (10 · 10−4 nodes

m2 ) to satisfy the convergence
condition (10−2m of movement in the last iteration) when g varies. Further-
more, we reported the maximum value of ∆γi registered on all the iterations.
In the following column, we reported the same value multiplied by the damping
factor, because it represents the largest perturbation that will be compared to
the stability radius, which is in the last column. As we can see the stability
radius calculated as in (3.18) from the simulation data is greater than the
largest perturbation for all the values of the damping factor. The number of
iterations for achieving a stable value (variation from the value at the previous
iteration smaller than 1 · 10−4) varies depending on the damping factor as in
Table 3.2. Number of iterations and max∆γi have been statistically averaged
over 100 runs.

Table 3.2. Energy coefficients at the convergence

g Number of iterations max∆γi g ·max∆γi rdR
0.25 212 0.0093 0.002325 0.019

0.5 159 0.0167 0.00835 0.039

0.75 144 0.0286 0.02145 0.057

1 126 0.0303 0.0303 0.075

Connectivity

Theorem 3 By using the mobility scheme presented in Algorithm 1, the con-
nectivity is not lost at each iteration for all the meaningful cases.
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Proof: Without loss of generality we assume that all the nodes involved in
the data flow at the generic iteration k are connected.

{

‖vi(k)− vi−1(k)‖2 ≤ r2max

‖vi(k)− vi+1(k)‖2 ≤ r2max

(3.22)

Where rmax, defined in Table 3.1, is the maximum transmission radius allowed
in order for a data packet to be considered correctly delivered to the destination
node.

When the iteration (k+1) for node vi is considered, the connectivity con-
dition becomes:

{

‖vi(k + 1)− vi−1(k)‖2 ≤ r2max

‖vi(k + 1)− vi+1(k)‖2 ≤ r2max

(3.23)

The proof that connectivity is preserved at each iteration is based on the
update equation:

vi(k + 1) = vi(k) + g[(1− γi(k))vi−1(k) +

+ γi(k)vi+1(k)− vi(k)]. (3.24)

So that (3.23) becomes:















‖vi(k) + g[(1− γi(k))vi−1(k)+

+γi(k)vi+1(k)− vi(k)]− vi−1(k)‖2 ≤ r2max

‖vi(k) + g[(1− γi(k))vi−1(k)+

+γi(k)vi+1(k)− vi(k)]− vi+1(k)‖2 ≤ r2max

(3.25)

Working on the left-hand sides we have:

{

‖(1− g + gγi(k))xi(k) + gγi(k)yi(k)‖2 ≤ r2max

‖g(γi(k)− 1)xi(k) + (gγi(k)− 1)yi(k)‖2 ≤ r2max

(3.26)

where xi(k) = vi(k)−vi−1(k) and yi(k) = vi+1(k)−vi(k) (see Fig. 3.6).
Since both ‖xi(k)‖ ≤ rmax and ‖yi(k)‖ ≤ rmax, we can re-write (3.26) as:















(r2max[(1− g + gγi(k))
2 + g2γi(k)

2+
+2(1− g + gγi(k))gγi(k) cos θi(k)] ≤ r2max)
(r2max[(g(γi(k)− 1))2 + (gγi(k)− 1)2+
+2g(γi(k)− 1)(gγi(k)− 1) cos θi(k)] ≤ r2max)

(3.27)

where θi(k) is the angle between xi(k) and yi(k) as in Fig. 3.6.
By solving (3.27) we found that g can range in the intervals:







(

0, 2(1−γi(k)−γi(k) cos θi(k))

1−2γi(k)+2γi(k)2−2γi(k) cos θi(k)+2γi(k)2 cos θi(k)

)

,
(

0, 2(γi(k)+γi(k) cos θi(k)−cos θ(k))

1−2γi(k)+2γi(k)2−2γi(k) cos θi(k)+2γi(k)2 cos θi(k)

) (3.28)



3.2 Optimal placements and Mobility Schemes for Improving Energy Efficiency 61

By imposing that the upper bound of the intervals (3.28) must be positive,
which guarantees that g > 0, we can find the sufficient conditions on γi(k)
and θi(k) to preserve connectivity:















0 ≤ γi(k) ≤ 0.5, 0 ≤ cos θi(k) ≤
(

γi(k)
1−γi(k)

)

∪
0.5 ≤ γi(k) ≤ 1, 0 ≤ cos θi(k) ≤

(

1−γi(k)
γi(k)

)

(3.29)

Fig. 3.6. Conditions for preserving the connectivity.

The shadowed area in Fig. 3.7 represents the region of values for γi(k) and
cos θi(k) that guarantees that the connectivity is not lost.

As we can see in all the meaningful cases (i.e.: 0 ≤ γi(k) ≤ 1,−1 ≤
cos θi(k) ≤ 0) the connectivity is guaranteed. The region 0 ≤ cos θi(k) ≤ 1
includes unwanted values, because it represents a case where the connecting
nodes depart significantly from the main direction of the source-destination
link. Since we had to use an upper bound for ‖xi(k)‖ and ‖yi(k)‖, we can-
not conclude anything on the region of values of γi(k) and cos θi(k) that are
outside the shadowed region but in our extensive simulation experiments the
connectivity has never been lost.

Dependence from the damping factor

Both the Algorithm 1 in this section and the algorithm in [5] use the damping
factor g, when the nodes have to move to a new position. This factor varies in
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Fig. 3.7. Admissable region of values for γi(k) and cos θi(k).

the interval (0,1] and is used to avoid that nodes oscillates around the straight
line between source and destination. In this subsection we want to illustrate
the effects of the damping factor on the performance of the algorithms. In
particular, by using the same simulation scenario of Section 3.2.2 and the
parameters listed in Table 3.3 (with ρ = 6 · 10−4 nodes

m2 and l = 600
√
2m),

we simulated the behavior of EvSRM and EnSRM when the damping factor
varies, in order to understand the impact of this factor on the performance of
the two algorithms. Specifically, we investigate the role of the damping factor
on residual energy, travelled distance and number of iterations to reach the
optimal placement.

Table 3.3. Evaluation Parameters for Placement Algorithms by Using Nodes Mo-
bility

Field Area (LxL) 1000m x 1000m

Nodes Density (ρ) [2÷10]·10−4 nodes

m2

Flow Time Length (TF ) 87.6·103h
Source-Destination Distance (l) [200÷1000]

√
2m

Maximum Transmission Radius (r) 1/(2
√
ρ) m

Relay Nodes Number (N) l/r
Initial Residual Energy Range (Ei) 15÷20 J

Minimum Required Power (Prec) 1.0·10−11W/m2

Transmission Rate (rT ) 1 kb/s
Movement Constant (m) 0.1 J/m

Damping Factor (g) [0.25÷1]
Number of runs for each scenario 100
Statistical confidence interval 95%



3.2 Optimal placements and Mobility Schemes for Improving Energy Efficiency 63

In Fig. 3.8a we can see the average residual energy of the nodes after a data
flow of duration TF has been forwarded from the source to the destination
node. The energy expenditure of the nodes is composed of two contributions:

• Relaying data: as already mentioned in Section 3.2.2, the energy model
used for data transmission is taken from [91].

• Physical movement: the energy consumed for travelling a distance d is
assumed to be proportional to the travelled distance by a constant factor
m that takes into account only the dynamic friction, as in [163]. A more
accurate energy model would take into consideration also the energy spent
by nodes to win the static friction, every time that they stop and move.

The impact of damping nodes’ movement on the energy performance is
remarkable. When nodes’ movement is highly damped (g = 0.25), the energy
saved is up to 11% for EnSRM and 14% for EvSRM in respect of no damping
(g = 1). The difference of the energy saved for the two schemes is due to a
general quicker convergence of the EnSRM algorithm in respect of the EvSRM.
The same effect is evident also in the average travelled distance diagram (Fig.
3.8b). When the movement is not damped, nodes move 10m for EvSRM and 8
m for EnSRM more on average than when movement is highly damped, which
means 16% and 13% of more movements, respectively. Finally, damping the
movement has the largest impact on the number of iterations needed for the
nodes to converge to the optimal placement in Fig. 3.8c. In these simulations,
the convergence condition is satisfied, for each node, when it moved less than
1 · 10−6m in the last iteration. When nodes are free to move to the computed
positions, it takes around 80% (83% for EvSRM and 81% for EnSRM) less
time to reach the optimal positions than when nodes’ movement is highly
damped. From these results, we understand that the damping factor could be
tuned in order to meet the time constraints required for the data flow. When
the data flow does not generate large quantities of data or does not have strict
time constraints, the damping factor can be low in order to save energy and
move nodes slowly. On the contrary, for tight schedules or large quantity of
data to relay, it is convenient to move nodes to their optimal positions as
quick as possible in order to meet the constraints and save energy for the
communication.

3.2.4 Virtual movement

Motivations

In this section, we discuss the reasons why we consider nodes mobility as a
profitable feature in WSN, but, at the same time, we want to illustrate what
is required by a movement scheme in order to guarantee that the mobility
does not become wasteful in terms of network’s resources.

The first motivation is general and concerns the advantages of controlled
mobility in WSN, while the second and the third are more specific and regard
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Fig. 3.8. a) Nodes residual energies b) Average travelled distances c) Number of
iterations needed to achieve the optimal placement when g varies
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the optimality of some nodes placement and the correct usage of controlled
mobility for achieving those placements, respectively. Thus, in the second mo-
tivation we show the performances of two placement schemes, without taking
into consideration the movement of the nodes:

1. evenly spaced scheme, which places the nodes along the straight line be-
tween the terminal nodes, in evenly spaced positions [5];

2. energy spaced scheme, which places the nodes along the straight line be-
tween the terminal nodes, according to the different levels of nodes’ resid-
ual energies [24].

In [5], the authors also introduce a movement algorithm for the nodes. It has
been comparatively evaluated with the version modified by taking into account
the residual energy of the nodes, according to the energy spaced scheme, in
order to illustrate the third motivation.

To substantiate and illustrate our arguments, we also set up an evaluation
environment. We perform the simulations over a 1000m x 1000m deployment
field consisting of a variable number of nodes, distributed randomly over the
field. A bidirectional data flow is activated between a pair of static terminal
nodes and a geographical routing algorithm chooses the nodes that are closest
to the evenly spaced positions, over the straight line between the terminal
nodes. The effect of placement and mobility on the network is also studied by
investigating scenarios with nodes density of 2, 4, 6, 8 and 10 ·10−4nodes/m2,
respectively. For each simulation, we run 100 experiments with different seeds
and take the average of the measured values, in order to reach a confidence in-
terval of 95%. The details of the energy model and the simulation environment
can be found in Section 3.2.5.

Advantages of controlled mobility

The first motivation for using controlled mobility is that it enriches the com-
munication paradigm with a new design dimension. Controlled mobility moves
the focus from the best node for performing a task to the best node in the
optimal position. As we already saw, mobility of devices can improve the most
important performance parameters: coverage, capacity and energy consump-
tion. More specifically sensor networks are deployed in order to monitor a
certain geographical area or some interesting places. Hence, nodes must have
the capacity to communicate with each other, through a multi-hop transmis-
sion, thus creating a fully connected network. Two main disadvantages of a
network constituted only by static nodes are: the unadaptability to the dy-
namics of the environment and to the local disconnections, the vulnerability
of the fixed positions of the nodes to a malicious attacker. Intuitively, by
modifying the positions of the nodes it is possible to optimize and extend the
coverage and connectivity of the network and overcome the cited disadvan-
tages. Also regarding the network capacity, the controlled mobility can highly
improve the performance. Both the “data mules”, whose mobility is also used
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for improving the delivery ratio of data and, in delay-tolerant networks, the
“message ferrying” exploit controlled mobility in order to achieve the same
task of transporting data with a high delivery ratio, also where end-to-end
paths do not exist between nodes. Concerning energy consumption and effi-
ciency, which are the focus of this work, we discuss them in the two following
subsections.

Existence of optimal placements

Most of the schemes that improve coverage and capacity of a sensor network
depend on the continuous movement of nodes in the field. Regarding the
energy consumption, some analytical schemes have been proposed in order
for the nodes to move only between their original position and the optimal
one. Through these schemes, it is possible to improve the energy efficiency of
the network by using controlled mobility. In this subsection, we want only to
show the advantages of the final optimal placement, in respect of a random
deployment of nodes in the field, without taking into consideration the energy
spent by the movement of nodes. In Fig. 3.9, the two cited placement schemes
are compared with the random one, when nodes density increases. In order
to calculate the lifetime of the path of nodes involved in a bidirectional data
flow, we assume that the data flow has an infinite duration and when nodes
start the relay, they have different residual energies. The results show that a
better placement means a longer lifetime.

2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

Nodes density (nodes/m2) · 10−4

p
a
th

-l
if
et

im
e

(y
ea

rs
)

 

 

Randomly Spaced Evenly Spaced Energy Spaced

Fig. 3.9. Comparison of the lifetime for three placement schemes

In fact, both of the schemes improve the lifetime of the network, and the
energy spaced one, by considering different residual energy levels, outperforms
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the other. Thus, the second motivation for designing a controlled mobility
scheme is that it is possible to compute optimal placement of the nodes for
some specific target, and controlled mobility is the way to achieve it. On
the other hand, a specific placement could be attained directly in the nodes
deployment phase, but it would hardly be practical, expensive and not reac-
tive to the environment changes. Since our focus is on the energy efficiency,
we used two schemes that aim to lifetime maximization, but mathematical
formulations could be contrived also for different targets.

Energy consumption with mobile sensors

In this last subsection, we want to show the effects of moving the nodes from
one position to another one. Continuous or uncontrolled movements of the
sensor nodes introduce the side effect of wasting more energy than the nodes
would save by reaching different positions. Our concern is to show that, also
when the movement is controlled, the trajectories followed by the nodes for
arriving at the best positions can be energy inefficient. In Fig. 3.10 (a), the full
blue circles represent the nodes chosen by the routing algorithm, the full green
circles indicate the energy spaced positions, while the empty green circles are
the evenly spaced ones. In the same figure, we have an example of a winding
path travelled along by the nodes, in order to reach the energy spaced posi-
tions, on the straight line between the terminal nodes of a bidirectional data
flow. As shown in 3.2.3, the movement algorithm makes each node, in each
iteration, move to the position computed according to the residual energy of
the previous and the following nodes in the path. The same figure could be
plotted also for the evenly spaced algorithm, which moves each node, iteration
by iteration, to the central position between its two most adjacent nodes in the
path. In Fig. 3.10 (b) the residual energies of the nodes, after they completed
the movement and the transmission phase, are shown. We recall that both the
cited mechanisms are completely distributed, use only local information and
allow nodes to work together toward the common purpose of achieving the
wanted placement. A centralized scheme that could use the complete knowl-
edge of nodes positions and energies would determine the optimal placement
much quicker, but it would show all the disadvantages of this kind of approach.
In both the mechanisms the movement is damped by the damping factor g,
which is a multiplicative constant that varies in the interval [0, 1]. The initial
values of energy, damping factor and transmission flow time-length are listed
in Table 3.3. We compare the two schemes of placement and movement with
the case that nodes did not move at all from their initial random positions,
in terms of residual energy. It is possible to see that the movement makes
the nodes have a lower level of residual energy. In respect of the comparison
of the previous subsection, here the duration of the flow is finite. This more
realistic assumption allows us to study the network when dynamic changes in
the environment happen. Apparently, this suggests us not to move the nodes,
in order to react better to birth and death of the flows or other changes in the
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network. This conclusion will be contrasted by the introduction of our new
scheme in the next section.
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Fig. 3.10. a) Tracking of nodes movement for the energy spaced scheme b) Nodes
residual energies after the movement

Since the damping factor contributes to control the movement of nodes,
we also performed simulation in order to discover how the residual energy and
the number of iterations to reach a final placement vary, when g varies.
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As we can see in Fig. 3.8, the residual energy (a) is higher when the move-
ment is more damped, because oscillations are attenuated and the average
travelled distances are shorter (b), but this leads to a slower convergence (c).
The purpose of these plots is to show that a new scheme that adds up both a
quick convergence and a good energy efficiency has to be designed.

In conclusion, the expected features that a mobility mechanism should
possess are: distributed, quickly convergent, adaptative, energy efficient and
suitable to be used in a self-organizing network. From the explained moti-
vations, we are pushed to think that the only viable solution is represented
by controlled mobility, which intrinsically requires the cooperation among the
nodes, thus creating the right set for developing a distributed scheme in the
self-organizing systems context. In the following section, we will introduce a
new mechanism based on controlled mobility that will be shown to exhibit all
the cited features.

Virtual Movement Scheme

In this section we introduce our scheme of placement and movement of nodes.
This mechanism will be tested and evaluated in order to be used for sen-
sors applications with energy constraints, although it could be used for other
objectives in different distributed, self-organizing contexts as well. The basic
idea of the Virtual Movement Scheme is to use a distributed approach for
calculating the nodes final positions which adds up the energy efficiency in
the movement phase and the quickness of the centralized approach. By using
the usual distributed approach, nodes reach their final positions after several
iterations, which include movements and exchange of messages among the
nodes. With the virtualization of the movements, after a sequence of itera-
tions, which do not include any movement, the nodes will know their final
positions, as if they were calculated by a central computational unit, and only
then, will they move toward those positions.

The algorithm in [5], one of the first in WSN related with controlled mo-
bility directed to energy saving, presents at least two improvements:

1. the optimal positions definition and determination;
2. the nodes movement toward the final positions.

Regarding the first, it has been shown in [24] that the more realistic as-
sumption of nodes with different residual energies leads to a different place-
ment, which remarkably improves the network lifetime. The virtualization of
the movements focuses on the second improvement. As we have shown in the
previous section, the movement of nodes towards the final positions follows
trajectories that are expensive in terms of energy, in fact, the travelled dis-
tances are never the shortest between initial and final positions. In [5], one
of the reasons for the introduction of the damping factor, g, is to attenuate
the oscillations in the movement of the nodes. Although the abrupt oscilla-
tions are effectively smoothed, we have shown in the previous section that the
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residual energies after the movement or the number of iterations to reach a
stable placement still display an unsatisfying performance. The proposed al-
gorithm improves the performance by making each node, ordered by a chosen
direction from one static terminal node to the other, follow asynchronously
this scheme:

1. The node computes its new position, which can be both evenly spaced or
energy spaced. The position is calculated only by using local information:
neighbours’ positions and, for the energy spaced scheme, residual energies.
This position is saved by the node and considered as a virtual position.

2. The node communicates its new virtual position to its closest neighbours
in the path. In turn, the neighbour that follows in the chosen direction, will
calculate its new virtual position depending on this new information. No
movement of nodes has been performed in the network till this moment.

3. The algorithm for each node converges when the node calculates, as a new
virtual position, the same position of the previous iteration. When this
happens, the last saved virtual position is the optimal place, where the
node can move following the best path from its initial and actual position.

4. We assume that all nodes move at the same velocity, so that, once the node
that is the furthest from its optimal position completes its movement, it
will trigger the beginning of the transmission phase. The furthest node can
be determined by a simple election mechanism, usual in the distributed
systems.

It is important to notice that the connectivity has to be guaranteed only
for both the initial and the final positions, because intermediate placements
are not allowed anymore. Furthermore, once the optimal position has been
computed, it is possible to move the node following the trajectory that best
suites the application’s target. In our case, since we are interested in mini-
mizing the energy consumption, and we will assume a planar, free of obstacle
sensor field, the best path is the shortest path, which minimizes the travelled
distances by making the node move along the straight line between the actual
position and the virtual position.

The implementation of the algorithm for the Energy Spaced Virtual Move-
ment scheme in pseudo-code follows:

As for the algorithm in section 3.2.3, this scheme computes both a for-
ward and a backward position for each node, and the new virtual position is
calculated as the mean between the two computed positions. Similarly, it is
possible to provide the pseudo-code for the Evenly Spaced Virtual Movement
scheme.

In Fig. 3.11 we can see a simulation of the algorithm Energy Spaced Virtual
Movement. This plot uses the same symbology of Fig. 3.10 (a), with which it
must be compared in order to see the different trajectories. With the Energy
Spaced Virtual Movement, the movements are not performed at each iteration,
but once for all as a last step of the algorithm. Thus, in the Fig. 3.11 it is
shown in blue the straight and shortest path performed by the nodes.
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Algorithm 2 Energy Spaced Virtual Movement

xi: current position of node i;
xi−1: current position of node i− 1;
xi+1: current position of node i+ 1;
Ei: residual energy of node i;
Ei−1: residual energy of node i− 1;
Ei+1: residual energy of node i+ 1;
repeat

send xi and Ei to neighbours i− 1 and i+ 1;
receive xi−1, xi+1, Ei−1 and Ei+1;

set λ(i)fw =

√
Ei√

Ei+
√

Ei−1

;

set position(i)fw = (λ(i)fwxi−1 + (1− λ(i)fw)xi+1);

set λ(i)bw =

√
Ei√

Ei+
√

Ei+1

;

set position(i)bw = (λ(i)bwxi+1 + (1− λ(i)bw)xi−1);
set x′

i = (position(i)fw + position(i)bw)/2;
set xi = x′

i;
until (convergence)
move to xi;

Fig. 3.11. Tracking of nodes movement for the energy spaced virtual movement
scheme

In what follows, we summarize the advantages introduced by the virtual-
ization of movements:

• Travelled distances: when nodes move all at once, and not iteration by
iteration, they can select the most advantageous path to travel in order to
reach the final placement. This can all be done with a distributed approach
by using local information.

• Iterations number: a damping factor, generally, increases the number of
iterations needed for an algorithm to converge. Obviously, since the virtual
movement does not need to be damped by any factor, we assume that the



72 3 Controlled Mobility: algorithms and protocols

number of iterations required for the convergence is the same as for g = 1,
which is the smallest, as shown in Fig. 3.8 (c). Hence, the convergence is
guaranteed to be the quickest.

• Protocol overhead: for each iteration, nodes are called to compute their
new position and communicate it to their neighbours. Thus, we require
that the number of iterations is the minimum, in order not to increase the
protocol overhead because of the messages’ exchange.

• Movement’s time cost: we have not designed yet a model that takes into
account accelerations and velocities of the nodes, when they move towards
their new positions, but it is evident that many intermediate movements
are more time consuming than one single movement. Thus, not only does
our proposal converge to the algorithmic solution in a smaller number of
iterations, but even the execution of the solution is faster than the other
algorithm in literature.

• Movement’s energy cost: the energy model used for the movement is a
simple distance proportional cost model, valid for wheeled devices: E =
k ·d, where k is a constant movement [J/m] and d is the travelled distance.
This model considers the dynamic friction but it should be enriched by
taking into account also the static friction, which represents the resistance
to be overcome by a device, in order to start moving: E = k ·d+Es, where
Es is the energy needed to overtake the static friction [J ]. If the iterations’
number increases, also the energy needed for overtaking the static friction
will increase. With our scheme, the node moves only once and the term
Es will contribute only once to the total energy expenditure, and for this
reason it can be neglected.

Besides these additional advantages, we can conclude that our scheme is:
distributed, adaptative, quickly convergent and suitable to be used in self-
organizing systems. In respect of the features listed in Section 3.2.4, we need
only to show with better proofs, that it is also energy efficient. This will be
done in the next section.

Complexity analysis

The complexity of the algorithms ”Real Movement” and ”Virtual Movement”
is closely related to the computation complexity of the ”repeat-until” loop.
This analysis of complexity should be performed considering best and worst
cases that, in our problem, are related to initial positions of the nodes respect
to the straight line between two terminal nodes. Rather than a real complex-
ity analysis in this paragraph we focus on the improvement performed by our
”Virtual Movement” scheme compared to using damping factor. The mean
difference between the two schemes stay in the operation of nodes movement
which in ”Virtual Movement”’s case is outside of the loop with considerable
benefit for the algorithm’s convergence. In fact we’ll show such a operation,
if put within the loop, it increases artificially the number of iterations needed
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for the convergence, and then, the time complexity and communication com-
plexity will be higher.

Let the equation of the nodes movements towards their final position:

v′i = vi + g(v′i − vi) = (1− g)vi + gv′i (3.30)

we assume, without loss of generality, that nodes previous and successive are
fixed.

The final positions due to damped movements of the nodes will be achieved
through little steps. These steps by a mathematical point of view can be see
as part of a sum that step by step arrive to final position. Accordingly we
can write the following succession of partial sums, each for one algorithm’s
iteration:

S1 = (1− g)vi + gv′i
S2 = (1− g)S1 + gv′i
S3 = (1− g)S2 + gv′i

· · ·
Sn+1 = (1− g)Sn + gv′i (3.31)

By explicit the previous equations according to the positions vi and v′i we
obtain:

S1 = (1− g)vi + gv′i
S2 = (1− g)2vi + g(1− g)v′i + gv′i

S3 = (1− g)3vi + g(1− g)2v′i + g(1− g)v′i + gv′i
· · ·

Sn = (1− g)nvi +
n
∑

k=1

g(1− g)n−kv′i (3.32)

Before understand how many iterations n are needed for the algorithm’s
convergence when the damping factor g varies, we make some observations:

1. (1− g)n +
∑n

k=1 g · (1− g)n−k = 1
2. limn→∞(1− g)n = 0
3. limn→∞

∑n
k=1 g(1− g)n−k = 1

In substance the coefficients (1 − g)n and
∑n

k=1 g(1− g)n−k can be con-
sidered as a weights on position in the previous iteration and final position
respectively, this for each node. Then the final position lie on the straight
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line between these two positions because we assumed that previous node and
successive node are fixed and will be spaced according on these coefficients
just computed. Moreover we know that the sum of these coefficients is always
equal to one, and their trend is the same in respect to g and n, then we focus
only on the analysis of the first one.

The (1−g)n coefficient has an exponential trend as showed in Figure 3.12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# iterations (n)

(1
−

g)
n

 

 

g=0.25

g=0.5

g=0.75

g=1

Fig. 3.12. Trend of (1− g)n when g and n varies

Each node achieve own final position when (1− g)n = 0. Figure 3.12 show
as this result is obtained for increasing values of n when g decreases. Therefore
if we choose a small value of g to smooth the oscillation during the movement
phase, the number of iteration to the algorithm’s convergence exponentially
increases. Finally we remind that virtualizing the movement means choose
g = 1 that graphically is the case of immediate convergence for n = 1.

3.2.5 Results and Discussion

In Sections 3.2.2 and 3.2.2 we showed that the placement of nodes involved in
relaying a data flow affects their lifetime significantly. We found out that the
choice of the new placement should be driven by the initial residual energy
of the nodes. In case this information is not available, we showed that also
the evenly spaced placement outperforms the random placement. However,
the determination of the best placement requires a central management unit
to collect all the needed information and to compute the new positions. In
addition to the disadvantages of this centralized approach, if nodes are not
provided with controlled mobility, the cost to place them through human
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intervention could be very high and often impossible due to environmental
limitations. Therefore, we have assumed that nodes are able to communicate
with each other and move according to a new distributed and asynchronous
algorithm that drives them to the most energy efficient positions. In this
Section we want to motivate better the need for this algorithm by showing
some simulative results. The simulation scenario and the energy model are
the same presented in Section 3.2.3, whose parameters are in Table 3.3. We
carried out two simulation campaigns:

• by varying the nodes density ρ, between 2 and 10 ·10−4 nodes
m2 and for a

fixed distance source-destination 600
√
2m;

• by varying the source-destination distance l, between 200
√
2 and 1000

√
2

m and for a fixed nodes density 6·10−4 nodes
m2 .

The output parameters that we have considered to evaluate random place-
ment, EvSRM and EnSRM are:

• the average residual energy (and the average energy consumption) of the
nodes involved in the data flow, after they moved to the optimal positions
and they relayed the data flow;

• the average distance travelled by nodes to reach the optimal positions.

In Fig. 3.13, we can see the average residual energy when the nodes density
(a) and the source-destination distance (b) vary. In respect of a similar study
we conducted in [92], here we have used a higher value of the parameter Prec

(1.0 · 10−11W/m2 instead of 3.16 · 10−12W/m2), calculated from [91], in order
to give more importance to the correct transmission/reception of data.

In fact, for this value of Prec we can see from Fig. 3.13a and 3.13b that
the residual energy of nodes in their original random placement is always
lower than the performance achieved by both the schemes of movement and
relaying. In the case of very low nodes density, the random placement does
not guarantee the correct termination of the data relaying, because at least
one of the nodes of the path dies before completing the task. For sake of
clarity, we mention again that our definition of path lifetime is taken from
[94]. The same observation that we made in Section 3.2.2 for the bidirectional
placement computation still applies in this case: we are implicitly assuming
to have a perfect bidirectional flow, this assumption contributes to improve
the performance of ”symmetric“ solutions as the EvSRM algorithm. However,
even when energy for the movement is taken into consideration, the EnSRM
algorithm keeps a margin of improvement in respect of the EvSRM for all
the nodes densities, from 3% up to 30%, as in Fig. 3.13a, and this margin
increases when the source-destination distance increases, from 2% up to 10%,
as in Fig. 3.13b.

The improvements achieved by EnSRM are explained in Fig. 3.14a and
3.14b. In Fig. 3.14a we can see that EnSRM makes nodes move 7% less than
EvSRM for all the nodes densities. A higher nodes density means a shorter
transmission radius (from Table 3.3), which, in turn, increases the number of
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Fig. 3.13. Nodes average residual energy when a) nodes density, b) source-
destination distance vary.
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Fig. 3.14. Nodes average travelled distance when a) nodes density, b) source-
destination distance vary.
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nodes involved in the data relaying. A higher number of nodes for the same
source-destination distance decreases the average distance travelled by each
node. In fact we observe a decreasing trend for both the algorithms when
nodes density increases. When the source-destination distance increases (Fig.
3.14b), the number of nodes involved in the data relaying increases propor-
tionally, since the nodes density is fixed. Consequently, the probability for
the routing protocol to choose all nodes close to the straight line slightly de-
creases. Thus, the average distance travelled by nodes should increase. In fact,
this is the behaviour of both EvSRM and EnSRM. If we take into consider-
ation the difference between the shortest and the longest source-destination
distance, the former requires nodes to move 30% more, while the latter only
16% more. Hence, the gain of EnSRM over EvSRM increases from 4% for the
shortest distance up to 16% for the longest distance. If we consider that the
routing protocol chooses the nodes that are initially located in the positions
closest to the evenly spaced positions on the straight line between source and
destination, then we can affirm that the EnSRM makes nodes move, iteration
by iteration, along more energy-efficient trajectories.

Considered the energy models used for relaying data and movement, we
are aware that the largest energy expenditure is due to the movement. In
order to quantify this cost, in Fig. 3.15a and 3.15b we plot the average energy
consumption for the two actions separately. These plots are complementary
to those in Fig. 3.13, but they provide us with some insights into the two
sources of energy consumption for the nodes. In Fig. 3.15a we can see that,
for both the algorithms, when nodes density is low, the energy consumption for
relaying data is very similar to that for moving nodes, but the latter exceeds
the former by almost three times when nodes density is high. In Fig. 3.15b
we can see that the source-destination distance does not have any impact on
the energy used for relaying data. However, it affects the energy used for the
movement, as we knew from the travelled distances in Fig. 3.14.

In conclusion, as we already saw in Fig. 3.13, it is always convenient, in
terms of energy consumption, to let nodes move and find the optimal place-
ment by any movement algorithm. From Fig. 3.15 we get a more precise idea
on the direction to choose in order to improve the algorithms.

Performance Evaluation

In this last section, we show the results of the Energy Spaced Virtual Move-
ments (EnSVM) and the Evenly Spaced Virtual Movement (EvSVM) schemes,
in comparison with the schemes with real movements, in terms of residual en-
ergy and travelled distances.

In addition to the assumptions reported in Section 3.2.4 about the evalu-
ation environment, we give here the details and the initial values of the sim-
ulation’s variables in Table 3.4. The reported value of the damping factor is
only used for the schemes without virtualization. We study the performance
of the proposed mechanisms by investigating scenarios with variable nodes
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Fig. 3.15. Average energy consumption when a) nodes density, b) source-
destination distance vary.
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Fig. 3.16. Average residual energy for increasing nodes density

density, ρ, and flow length, l. For all the scenarios, the simulations have been
statistically validated by averaging the results over 100 runs, which allows us
to reach the wanted interval of confidence (95%).

The energy required to send one bit at the distance d is E = βdα, where
α is the exponent of the path loss (2 ≤ α ≤ 6), β is a constant [J/(bits ·mα)].
For α and β we used values typical of the free space model [91].

As we have seen in Table 3.4, the nodes density is considered variable and
the schemes performance has been evaluated for 5 different number of nodes:
200, 400, 600, 800 and 1000 in the 1000m x 1000m sensor field. The flow length
is set to 600

√
2m. With this campaign, we want to study how the number of

nodes affects the behaviour of the network, when nodes can move.

Table 3.4. Evaluation Parameters

Field Area (LxL) 1000m x 1000m

Nodes Density (ρ) [2÷10]·10−4 nodes

m2

Flow Time Length (TF ) 87.6·103h
Flow Length (l) [200÷1000]

√
2m

Maximum Transmission Radius (r) 1/(2
√
ρ) m

Relay Nodes Number (N) l/r
Initial Residual Energy Range (Ei) 15÷20 J

Minimum Required Power (Prec) 3.16·10−12W/m2

Transmission Rate (rT ) 1 kb/s
Movement Constant (k) 0.1 J/m
Damping Factor (g) 0.75

Number of runs for each scenario 100
Statistical confidence interval 95%



3.2 Optimal placements and Mobility Schemes for Improving Energy Efficiency 81

Fig. 3.16 shows the average residual energy of the nodes involved in the
data flow, after they moved and they relayed the data for the given flow time
length, TF . As we can see the level of energy of the virtual schemes is always
larger than the schemes with real movements. In respect of the Evenly Spaced
scheme, it improves the performance by about 15-32%, while for the Energy
Spaced that is able to take better advantage of higher densities, we have a
decreasing improvement that varies between 23% and 13%.
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Fig. 3.17. Average distance travelled by nodes for increasing nodes density

We have to recall that in the energy model for the movement there is no
consideration of the energy needed to overcome the static friction, which would
decrease even more the residual energy of the schemes without virtualization
of the movements. As we can see, both EvSVM and EnSVM achieve similar
performances, because they both save the energy for the movement, which is
the highest part in the total energy consumption.

In fact, in Fig. 3.17 we see that the distances travelled by the schemes
with virtualization of the movements are from 25% up to 42% less than the
distances travelled by the schemes without virtualization. Besides the direct
effect on the residual energy, this means also that there is a smaller possibility
of damaging or consuming the mechanical devices used for the movement.

In the second simulation campaign, we want to show the algorithms’ per-
formance when the physical distance between the two static terminal nodes
varies between 200

√
2m and 1000

√
2m, with an increase step of 200

√
2m,

while the nodes density is set to 6 ·10−4 nodes
m2 . The upper limit is given by

the size of the sensor field and it represents the case that the fixed terminals
are placed at the two furthest corners of the field. This campaign is useful to
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Fig. 3.18. Average residual energy for increasing flow length
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Fig. 3.19. Average distance travelled by nodes for increasing flow length

understand if longer flows make nodes use more energy for travelling longer
distances, as it was for the schemes with real movement. As we can see in
both Fig. 3.18 and 3.19, when the movement is virtual, residual energy and
travelled distance are not affected by the length of the flow, in fact they are
quite constant for all the values of flow length.

In Fig. 3.18 we can see that, for this scenario, the improvement reported
by the virtual movement schemes is 10%÷20% and 9%÷18% in respect of
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evenly spaced and energy spaced with real movement, respectively. Fig. 3.19
shows that, even for this scenario, the virtual movement schemes make the
nodes move from 28% to 45% and from 29% to 36% less than the distances
travelled by the evenly spaced and the energy spaced scheme, respectively.
For our simulations the damping factor is set to 0.75, but, when the damping
factor goes down to 0.25, the results would still be remarkable: 20%÷30% less
of the distances travelled by the schemes with real movement (see as reference
also Fig. 3.8 (b)).

Conclusion

In this work we considered the concept of controlled mobility in a novel fash-
ion. Specifically, controlled mobility is used as a new design dimension of the
WSN to move nodes towards the best placement for prolonging the lifetime
and for maximizing the energy efficiency. In this section we developed a dis-
tributed algorithm based on virtual movement of nodes. The movement virtu-
alization is a smart and very simple approach for exploiting the advantages of
better nodes placement, without wasting energy because of the mobility. This
new mechanism exhibits all the important features that a WSN placement
and movement algorithm should possess: it is distributed, adaptive, quickly
convergent and suitable to be used in self-organizing systems. Furthermore,
it has been deeply analyzed through simulations, and it has been compared
with other existing schemes that use real movement. In all the simulation
scenarios, our mechanism outperforms the existing mechanisms in terms of
energy consumption and travelled distances.

3.3 Controlled mobility assisted Routing protocol

There are many challenges to face while designing wireless networks and proto-
cols, such as obtaining a good throughput, minimizing data delay, minimizing
energy waste, etc. In fact, most of the wireless networks are characterized by
battery-equipped devices, thus the minimization of the energy consumption
is a key factor. With the miniaturization of computing elements, we have seen
many mobile devices appear in the market that can collaborate in an ad hoc
fashion without requiring any previous infrastructure control. This gave birth
to the concept of self-organization for wireless networks, which is intrinsically
tied to the capability of the nodes to move to different placements. In the
last few years, the research community has become interested in the synergic
effect of mobility and wireless networks. Controlled mobility is a new concept
for telecommunication research field and can be defined as a kind of mobility
where mobile devices are introduced in the network and move to specified
destinations with defined mobility patterns for specific objectives. In practice,
controlled mobility is a new design and control primitive for the network.
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The use of controlled mobility as a new design feature to enhance the perfor-
mance of wireless networks represents a recent, innovative and revolutionary
concept. In fact, while opportunistic use of external mobility has been exten-
sively investigated, the use of controlled mobility is largely unexplored. This
new design dimension can effectively be used to improve system performance
by allowing devices equipped with mobility support to reach favourable lo-
cations. Although many communication protocols for wireless networks have
been proposed, to the best of our knowledge there is no routing protocol based
on controlled mobility. In fact, in [102] authors consider jointly mobility and
routing algorithms but the solution they propose is for Wireless Sensor Net-
works (WSNs) and only the base station is mobile. Among the main routing
protocols proposed for Mobile Ad hoc NETworks (MANETs), we have the
Ad hoc On Demand Distance Vector (AODV) routing [103] and [104] and the
Temporally Ordered Routing Algorithm (TORA) [105]. Both are examples of
demand-driven algorithms that eliminate most of the overhead associated with
table update in high-mobility scenarios. However, the path discovery phase
incurs in high energy costs. On the other hand, our system is quasi-static, in
the sense that the only mobility we consider is controlled mobility, which is
used by nodes to reach specific locations, then, for energy efficiency matters,
it is convenient to use a table-driven system. Another interesting routing pro-
tocol is [101], where the minimum metric paths are based on two different
power metrics:

• Minimum energy per packet
• Minimum cost per packet

However, this routing algorithm does not take into account the mobility as
a new design dimension. In this section, we take the controlled mobility into
account by investigating the performance of a wireless network, where all the
devices are equipped with mobility unit. The idea is to use existing multi-hop
routing protocol, specifically we consider the well-known routing algorithm
AODV, and achieve further improvements in terms of network performance
as throughput, data delay and energy spent per packet, by explicitly exploiting
mobility capabilities of the wireless devices. Previous analytical results formu-
lated in [106], [107] and [108] suggests that controlled mobility of nodes helps
to improve network performance. Based on these results, we consider jointly
controlled mobility and routing strategies. We perform simulations through a
well-known simulation tool [109] to quantify the throughput, delay and energy
spent per packet compared with wireless network where AODV is used. This
work is presented in [2].

3.3.1 State of art

In the recent past a lot of works studied the effects of mobility in the net-
works. Often, devices’ mobility has been regarded as a negative fact that
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causes link break, disconnections, etc. From a certain moment it has been
understood that mobility of nodes can potentially be used to improve per-
formance of the network. Grossglauser and Tse [110] showed that mobility
increases capacity of a network. Unfortunately, they did not take into account
the delay in their work. The research community investigated throughly the
delay-throughput trade-off and some interesting results have been obtained.
In fact, Gamal [111] determined the throughput-delay trade-off in a fixed and
mobile ad hoc network. He showed that, for n nodes, the following statement
holds D(n) = Ω(nT (n)), where D(n) and T (n) are the delay and the through-
put, respectively. For a network consisting of mobile nodes, he showed that the
delay scales as Ω(n1/2/v(n)), where v(n) is the velocity of the mobile nodes.
Once the trade-off between delay and throughput has been characterized, some
algorithms that attain the optimal delay for each throughput value, have been
proposed. Another model makes it possible to exploit the random waypoint
mobility of some nodes, in order to design a routing algorithm that allows high
throughput with low delays, where the delay depends on the nodes’ mobility,
while the throughput is independent of it [112]. De Moraes [113] showed that
there is a trade-off among mobility, capacity and delay in ad hoc networks. A
first step in taking advantage of the possibilities that mobility introduces has
been made by the research community when predictable mobility became an
important research focus. In fact, researchers studied many specific network
objectives, under a random mobility-based communication paradigm, never-
theless the mobility of the sinks, for example in military applications, is based
on soldier or fire fighter movements, thus, it is predictable, in substance. Gen-
erally, the existing research in wireless sensor networks considers sink move-
ment based on random mobility. However, the trajectories of the sink, in many
practical applications, can be determined in advance. Based on these consider-
ations, Lee [114] proposed a predictable mobility-based algorithm, which uses
the existing dissemination protocols and it is based on the random mobility-
based communication paradigm. He showed the improvements and the various
advantages of using the predictable mobility-based communication paradigm
as the energy consumption decreases and the network lifetime increases. Pre-
dictable mobility of nodes has also been exploited to help in packets delivering
[115]. In this work, nodes routing tables are updated with link state and tra-
jectory information, which are received from other nodes. The problem of
routing related to the predictable mobility has also been analyzed by [116]. In
this work, paths are created by the movements of nodes, which will deliver the
message they are carrying when they find other suitable nodes. The space-time
routing framework it proposed leverages the predictability of nodes motion.
Controlled mobility has been a hot research topic of the robotics community
for many years. It concerns the motion coordination of a group of robots for a
common objective, typically the coverage of a geographical area. In [117], the
authors consider the problem of deploying a mobile sensors network composed
of a distributed collection of nodes equipped with locomotion capability. Such
mobile nodes use their ability to move in order to maximize the area covered



86 3 Controlled Mobility: algorithms and protocols

by the network. Their approach is based on a potential-field approach and
nodes are treated as virtual particles, subject to virtual forces. The concept
of controlled mobility is also used by [118] by considering a hybrid network
with both static and mobile nodes, which fully exploits the movement capa-
bility of the sensors. In [102] authors consider jointly mobility and routing
algorithms, but the solution they proposed is based on the base station as the
only controlled mobile device. In this work we are interested to consider the
mobility of devices in a controlled fashion along with the routing algorithm.
Specifically, we base our proposal on the analytical results obtained in [106]
and [108] that show the potential advantages obtainable through controlled
mobility. In [108], it was not possible to take into account all the constraints
of a real routing algorithm and, for this reason, we implemented RPCM in a
well-known simulation tool, ns2.

3.3.2 Practical Applications of Controlled Mobility

In this section we will give some practical applications of Controlled Mobil-
ity, which covers several research areas such as robotics, software engineering,
optimization, swarm intelligence, etc. There is an interesting real applica-
tion of controlled mobility to reduce power consumption realized by Intel,
that showed as a few motes equipped with 802.11 wireless capabilities can
be added to a sensor network in order to act as wireless hubs [98]. Load
balancing through controlled mobility in wireless sensor networks is studied
by Luo and Hubaux in [15]. The nodes closest to the base station are the
bottleneck in the forwarding of data. A base station, which moves according
to an arbitrary trajectory, continuously changes the closest nodes and solves
the problem. The authors find the best mobility pattern for the base station
in order to ensure an even balance of network load on the nodes. Recently,
Intel installed a small sensor network in a vineyard in Oregon and a second
one in Northern California to monitor microclimates and Redwood canopies,
respectively. In this context, the mobile sensors had to measure, share and
combine the collected data regarding temperature, humidity, and other fac-
tors. At the gateway, the data was interpreted and used to help avoid mold,
frostbite, and other agricultural problems. The agricultural environment is
just an example of how a sensor network can take advantage of mobile robot’s
capabilities for data gathering and interpretation. Furthermore, sensors often
need to be recalibrated and a robot could act as a gateway to the sensor
network and perform calibration tasks. An interesting application of sensor
devices with mobile robots, related to coverage, is for people with disabilities
[99] and [100]. In fact, technical devices, such as mobile robots can aid per-
sonal assistance. A mobile robot requires a sensing system in order to control
the path of movement and the surrounding environment. The robot can be
equipped with sensors for detecting distances and obstacles. Another work
worth mentioning has been conducted by Kansal in [19]. The authors do not
present an algorithm for the optimization of some parameters, instead they
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propose Morph as a new vision of sensor networking, where controlled mo-
bility is considered as an additional design dimension of the communication
protocols. They argue that, in Morph, controlled mobility can be employed
for the sustainability of the network, which consists in both alleviating the
lack of resources and improving the network performance.

3.3.3 A new Routing Protocol based on Controlled Mobility
(RPCM)

The network scenario we consider consists of all nodes able to move and con-
trol their movements. The communication strategy used in this work considers
different paths for each pair source-destination nodes and the best path is se-
lected to be used for data communication. The choice of the best path is
based on a metric. Specifically, in this context we consider the path whose
nodes have to travel the total minimum distance to reach the evenly spaced
positions on the straight line between the source-destination pair. The same
metric has been proposed in an optimization model in [108], where the model
determines the placement that minimizes the total travelled distance of the
sensor nodes. This kind of movement could be useful in all situations where
a mobility too high can be dangerous (i.e. military applications such as mine-
fields monitoring) or difficult because of a high presence of obstacles.

Some Assumptions

Assume n nodes deployed randomly in a square area. All the nodes have the
same transmission range. If two nodes are within each other’s transmission
range, they can communicate directly and they are neighbours. Otherwise
they have to rely on intermediate nodes to relay the messages for them. Any
node in the network may have data to be sent to any other node. The path
from a source to a destination may not be direct but involves other intermedi-
ate nodes. We assume that several paths, from the source s to the destination
d, have already been discovered by a routing protocol. Specifically, we apply
the Route Request phase of the AODV protocol, with some additional infor-
mation such as the nodes’ position. We need this information for implementing
our protocol as explained in the follow. We also assume nodes move only in
order to reach specific locations when they belong to a path. Our mobility
control scheme is not directly incorporated into a specific layer of the classi-
cal ISO/OSI layer structure (i.e. physical layer, routing layer, etc.), because
mobility management is transversal to all the layers and controlled mobility
can be exploited by any of the layers, as we can observe in Fig. 3.20. In fact,
controlled mobility could be exploited at different levels.

The Routing Protocol based on Controlled Mobility

In this section we detail the routing protocol along with the mobility algo-
rithm. Assume a source node s needs to establish a communication with a node
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Fig. 3.20. Protocols’ stack integrated with mobility management.

d. The source node will broadcast a Request Packet, which will be forwarded
by its neighbours. Each node includes in the request packet its geographical
coordinates in the network. Once the Request Packet reaches the correct des-
tination, the node d will not send a Reply Packet immediately, but it will wait
for processing other requests. In order to avoid unuseful delay, a destination
node, will wait for a specific time, and then it will send a reply packet by build-
ing the best selected path. The metric we introduced to evaluate the goodness
of a path is based on the total travelling distance. In practice, the algorithm
will choose the path that minimizes the sum of nodes’ travelled distances.
Other metrics, such as the minimization of the maximum travelled distance,
could be considered and implemented. In Fig. 3.21 the request phase of the
routing protocol is explained. We can observe that the source node starts
a request phase by sending a Route Request and every intermediate node
stores the position of the previous node, the ID of the previous node and
re-broadcasts the request packet. The mechanisms to avoid loop and control
packet storms are the same as in AODV. Once the Request Packet reaches
the destination node, if the request is processed for the first time, the destina-
tion node d activates a timer and continues to process other Request Packets
of the same source node s. Otherwise, d compares the previous path with
the current path and selects the best one (in this case the path whose nodes
travel the minimum total distance). Once the timer expires, d sends a Reply
Packet to the first node of the selected path in the backward direction. This
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node computes its new position depending on the number of nodes involved
in the path (this information is sent from the d node) and forwards the Reply
Packet to the following node in the backward direction (this information has
been stored in the Routing Table during the Route Request phase). Hence,
this node will move to the evenly spaced position on the straight line between
the source and the destination. When each relay node knows its position, the
optimal configuration of relay nodes for an active flow is established as in [106]
and [5]. It is worth to note that in this case the solutions found in [106] and
[5] are the same, because the initial energy of nodes is the same. In practice,
the nodes will reach the evenly spaced positions on the straight line between
the source and the destination.

In Fig. 3.22 the Reply phase is explained. Once the source node s receives
the Reply Packet, all the nodes belonging to the path have already moved to
their new position and s will start the data communication flow.

In practice, nodes compute their new positions based on the total number
of nodes belonging to the current path and considering they have to be evenly
distributed on the straight line between the source and the destination. The
Mobility Algorithm can be summarized as follows:

Mobility Algorithm: Mobility control at each relay node.

• Each node knows the position of the source from the request packet, and
acquires the information regarding the position of the destination, the
number of nodes involved and its position in the path from the reply
packet. From the source and destination positions, it calculates the dis-
tance between the two terminal nodes. From the number of hops and its
position in the path, it is able to compute its new evenly spaced position
between source and destination;

• Each node that received a reply packet moves towards its new position.

In [5], authors had to introduce a damping factor g to avoid oscillations
in the network. In fact, nodes exchange local position information with neigh-
bours and some iteration of the distributed algorithm is needed to reach the
final optimal displacement of the nodes. Thus, we do not need to introduce
any damping factor, because nodes already have all the information they need
to reach the new location. Furthermore, we do not have any convergence con-
cern. In fact, nodes start to move once they receive the reply packet and reach
the final destination.

From the description of the routing protocol is clear the reason why no
damping factor is needed, even if our protocol is totally distributed and the
Mobility Control Algorithm is orthogonal to the network layer. The new pro-
tocol requires few changes to the classical schemes, the information that need
to be added are:

• in the Request Packet: the positions and the IDs of source and forwarding
nodes;

• in the Reply Packet: the positions of the destination node and the hop
number of the source-destination path;
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• in the nodes’ routing tables: source’s position and hop number of the
source-destination path.

Fig. 3.21. Routing Request phase of RPCM.

The effect of applying the RPCM protocol is shown in Fig.3.23 and
Fig.3.24.

In Fig.3.23 we can observe the selection of many potential paths for the
pair source-destination, node 0 and 99, respectively. Specifically, the paths
discovered are: 0-53-89-72-38-99, 0-77-15-8-98-99, 0-16-70-71-19-99, 0-12-9-74-
97-99 and 0-32-17-38-99. Among the different paths, the one whose nodes
travel the total minimum distance is chosen. In this case the selected path
based on our metric is 0-32-17-38-99. When the reply phase begins, the first
node that receives the reply packet is node 38, it computes its new location
and sends the reply packet to the node 17, then it moves towards its best
location. In similar fashion, node 17 receives the reply packet from the node
38, computes its new destination, sends the reply packet and moves to the new
location, etc. Once node 0 receives the reply packet from the node 32, then
all the nodes belonging to the path (in this case, nodes 38, 17 and 32) already
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Fig. 3.22. Reply phase of RPCM.

moved to their new positions and node 0 starts the data communication flow
to node 99. Note that source node and destination do not move.

3.3.4 Simulation and Results

As we already said in the previous subsections, the optimization model includ-
ing the minimization of the nodes’ total travelled distances along with other
possible metrics has been introduced in [108]. Unfortunately in that analytical
work, many practical details could not be taken into consideration. For this
reason, we chose to implement one of those possible metrics in a complete
routing algorithm and simulate its behaviour in a well-known network simu-
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Fig. 3.23. A snapshot of the network before to applying the Routing Protocol.

Fig. 3.24. A snapshot of the network after RPCM is applied.
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lator: ns2, in order to evaluate the realistic effects of controlled mobility in
the routing process in comparison with the AODV protocol.

Reference Environment

In Table 3.5, all the most important environment and simulator parameters
are reported. We chose to implement our algorithm in a square area of 500m x
500m, where a variable number of wireless nodes has been randomly deployed,
according to the reported nodes density (2, 3, 4, 5, 6 nodes

m2 , which correspond to
50, 75, 100, 125, 150 nodes). Also the number of concurrent flows is considered
variable. Depending on the density, nodes have a different transmission area
to cover. All nodes have initially the same energy and transmit at the same
transmission rate, when they move the energy expenditure EM is proportional
to the travelled distance d by a movement factor k. When nodes mobility is
allowed, the set of limitations becomes enriched with new elements. In fact,
the definitions of an energy model related with the motion of nodes and of
another model related with the communication needed for their coordination
are required. For the former a simplified model is a distance proportional
model EM (d) = kd + γ , where d is the distance to cover, k[J/m] takes into
account the kinetic friction, while γ[J ] represents the energy necessary to win
the static friction, both these constants depend on the environment (harsh or
smooth ground, air, surface or deep water). For the latter, usually the energy
required to send one bit at the distance d is EC(d) = βdα, where α is the
exponent of the path loss (2 ≤ α ≤ 4) depending on the environment and β
is a constant [J/(bits mα)]. In this work we assumed a smooth ground and
we fixed the values of the constant k = 0.1 and the constant γ = 0, that are
typical values used in simulations. Regarding the simulator, we used a two-ray
ground propagation model and both the simulated routing protocols (AODV
and RPCM) are mounted on top of the IEEE 802.11 MAC. The energy spent
in sleep, wake-up and active mode are reported in the table. The output
parameters taken in consideration are:

• throughput,
• delay,
• energy spent for received packet.

We ran 10 simulations for each scenario and average the results in order to
reach the 95% of statistical confidence.

Performance Evaluation

We performed two simulation campaigns: the first consists of increasing nodes
density for a fixed number of flows (f = 6), in the second the number of
flows varies between 4 and 12 and the nodes density is set to ρ = 4nodes

m2 .
Figures 3.25, 3.26 and 3.27 show the performance of the two algorithms for
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Fig. 3.25. Performance of AODV and RPCM in terms of throughput, when f = 6.
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Fig. 3.26. Performance of AODV and RPCM in terms of delay, when f = 6.
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Fig. 3.27. Performance of AODV and RPCM in terms of energy spent for received
packet, when f = 6.

the first simulation campaign in terms of throughput, delay and energy spent
for received packed, respectively.

As we can see, for all the output parameters our scheme outperforms the
AODV achieving 30%, 80% and 40% of improvements for throughput, delay
and energy spent for received packet, respectively. Furthermore, the behaviour
of the RPCM scheme is more robust and scalable than the AODV, since it is
almost constant for all the output parameters when density increases, while, in
the AODV scheme, delay and energy spent are affected by the nodes density.

Table 3.5. Evaluation Parameters

Environment

Field Area (LxL) 500m x 500m

Nodes Density (ρ) [2÷6]·10−4 nodes

m2

Flows Number (f) [4÷12]
Maximum Transmission Radius (r) 1/(2

√
ρ) m

Initial Residual Energy Range (Ei) 100 J
Transmission Rate (rT ) 32 kb/s
Movement Constant (k) 0.1 J/m

Simulator

Propagation Model Two-Ray Ground
MAC Type IEEE 802.11
Packet Size 512 byte

set val(rxPower) 0.00175 W
set val(txPower) 0.00175 W
Wake-Up Time 0.005 s
Number of runs 10

Statistical confidence interval 95%
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Figures 3.28, 3.29 and 3.30 show the performance of the two algorithms
for the second simulation campaign in terms of throughput, delay and energy
spent for received packed, respectively.
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Fig. 3.28. Performance of AODV and RPCM in terms of throughput, when ρ =
4nodes

m2 .
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Fig. 3.29. Performance of AODV and RPCM in terms of delay, when ρ = 4nodes
m2 .
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Fig. 3.30. Performance of AODV and RPCM in terms of energy spent for received
packet, when ρ = 4nodes

m2 .

Also when the number of simultaneous flows varies between 4 and 12, the
throughput of RPCM results 30% higher than the AODV on average. The
delay is still lower for the RPCM, even if, when the number of flows increases,
the improvement tends to reduce. From Fig. 3.28 and 3.29 we see that, for
RPCM, we can determine a “threshold ” on the number of concurrent flows,
until it is below 6, the performance is constant with very high throughputs
and very low delays, when the number of flows is higher than 6, then the
performance worsens. This result gives the designer a good hint about the
number of concurrent flows to allow into the network, in order to have high
performance. At last, the energy spent for received packet shows two different
trends for AODV and RPCM, the first is not very affected by the number
of flows and oscillates between 0.012 and 0.015 J , while the second shows a
negative exponential behaviour, for f = 4 the energy spent on average is 0.025
J but it reduces till 0.005 J when the number of flows increases.

3.3.5 Conclusion

In this work we focused on both the novel concept of controlled mobility and
the routing algorithms. The concept of controlled mobility has been intro-
duced in some previous recent work, but it has only been considered from an
analytical point of view or in a marginal fashion, such as only a mobile base
station in the network. In this section we focus on the controlled mobility
as a new design dimension and we exploit it by implementing a new routing
protocol based on controlled mobility. The most important aspect of this is
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related to the evaluation performance based on the usage of a well-known sim-
ulation tool, ns2. In fact, in previous works the analytical approach limited
the use of controlled mobility while in this context, thanks to the simulator,
we have been able to consider many realistic aspects of the network, while a
routing protocol is implemented. Extensive simulations have been conducted
and simulation results have shown how the new routing protocol outperforms
a well-known routing algorithm, the AODV. Furthermore, results obtained
suggest that other metrics can be easily realized and tested by simulation. In
fact, as future works, we intend to study other optimization metrics such as
the maximization of the network lifetime or the minimization of the average
(or the maximum) distance travelled by nodes belonging to a path.

3.4 A Discrete Stochastic Process for Coverage Analysis

This section considers a network of unmanned aerial vehicles (UAVs). Each
UAV is equipped with a certain kind of on-board sensor, for example, a camera
or a different sensor, taking snapshots of the ground area. The general aim of
the UAV network is to explore a given area, i.e., to somehow “cover” this area
using several snapshots. Such a goal is relevant to several applications: target
or event detection and tracking in an unknown area; monitoring geographically
inaccessible or dangerous areas (e.g., wildfire, volcano), or assisting emergency
personnel in case of disasters. Recently, several researchers in the domains of
robotics and mobile networking have focused on designing such UAV networks.
Research takes place in various areas, e.g., control engineering, communication
networking, mission planning, and image processing. A UAV is sometimes also
called drone.

Our objective is to provide a simple analytical method to evaluate the per-
formance of different UAV mobility patterns in terms of their coverage distri-
bution. To this end, we propose a stochastic model using a Markov chain. The
states are the locations of drones, and the transitions are determined by the
mobility model of interest. Such a model can easily be created for independent
mobility models, such as the random walk and random direction. However, for
a cooperative network, in which each drone decides where to move based on
the information received from other drones in its communication range, creat-
ing a simple Markov model is not straightforward. Therefore, in this work, in
addition to providing the necessary transition probabilities for random walk
and random direction, we also propose an approximation to these probabilities
for a cooperative network. While we choose intuitive rules for the movement
paths when two or more drones “meet each other,” the proposed model can
be extended such that other rules can be incorporated. We show the validity
of the proposed tool by comparing the analytical results with simulations for
several scenarios with different network sizes as well as different geographical
area sizes. With this tool, steady-state coverage distribution, average and full
coverage times for random walk, direction and cooperative mobility models
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are evaluated, where the analysis and simulation are in good agreement. This
work is presented in [4].

3.4.1 State of art

Several mobility models for autonomous agents have been proposed recently.
Some of these are synthetic like the random walk and random direction others
are realistic and, all of them, are used mainly to describe the movement of the
users in a given environment. In the UAV domain, such models are good for
comparison of different approaches, but can give incorrect results when UAVs
are performing cooperative tasks [142].

Recently, several research works have shown how mobility can increase
throughput [110], energy efficiency [5], coverage [150], and other network pa-
rameters. Therefore, the analysis of mobility models has become a highlight
to design the mobility of the nodes in a way to improve the network per-
formance. A tool to analyze mobility models is proposed in [149], where the
authors model random waypoint-like models as a renewal process to show
the steady-state distribution of the speed, while a spatial analysis of different
mobility models is provided in [147].

Also, the robotics community is involved in problems related to the cov-
erage of an unknown environment also known as the sweeping problem [140].
Basically, the problem can either be solved by providing abilities for localiza-
tion and map building first or by directly deriving an algorithm that performs
sweeping without explicit mapping of the area. In [139], an exploration algo-
rithm that allows multiple robots to cooperatively sweep an area is described.
Instead of a measure of coverage, the authors measure the average event de-
tection time for evaluating their algorithm. In addition, coverage problem is
sometimes referred to as mapping of an unknown environment and there are
useful methods summarized next for motion control and navigation, but they
are not directly applicable to coverage or sweeping analysis. In [143], the au-
thors introduce the concept of occupancy grid that is a stochastic estimate
of the obstacle coverage of the cells obtained by sensing the environment and
can be used for both mapping and navigation. Another technique proposed
in [148] permits not only the mapping, but also the localization of the robot
on the map.

In this section, we focus on the sweeping of an unknown area by prob-
abilistic mobility patterns. Our contribution is to provide an analytical tool
to represent existing and possibly new mobility models. We achieve this by
providing transition probabilities among positions on a discrete grid and we
give a means to compare different mobility patterns in terms of achieved area
coverage at a given time or, even better, to design a new model that is able
to achieve a desired coverage.
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3.4.2 Markov Chain and Coverage Metrics

Markov Chain

We introduce a discrete-time, discrete-value stochastic process that can be
used to analyze the coverage performance of a UAV network. Nodes can op-
erate independently or in a cooperative manner. The system area is modeled
as a two-dimensional lattice where drones move from one grid point to an-
other in each time step. We assume that a drone can only move to the 4
nearest neighboring grid points (the von Neumann Neighborhood of radius 1
[141]). The probability of moving to a neighboring grid point is determined
by the mobility model of interest. In the following, we present the two main
components of the proposed Markov chain: state probabilities and transition
probabilities.

In our model, the states are defined as [(Current Location);(Previous

Location)] and Fig. 3.31 illustrates the potential states for a 3x3 grid. De-
pending on the location, the number of associated states is different. Observe
from Fig. 3.31 that if the current location is at a corner, boundary, or middle
grid point, there are 2, 3, and 4 associated states, respectively. The arrows in
the figure represent potential transitions between the states.

(0,0);(1,0)

(0,0);(0,1)

(0,2);(0,1)

(0,2);(1,2)

(2,2);(2,1)

(2,2);(1,2)

(2,0);(1,0)

(2,0);(2,1)

(1,0);(0,0)

(1,0);(2,0)

(1,1);(1,2)

(1,0);(1,1)

(0,1);(0,0)

(0,1);(1,1)

(0,1);(0,2)

(2,1);(2,0)

(2,1);(1,1)

(2,1);(2,2)

(1,2);(1,1)

(1,2);(0,2)

(1,2);(2,2)

(1,1);(1,0)

(1,1);(0,1)

(1,1);(2,1)

Fig. 3.31. The potential states of the Markov-chain for a 3x3 grid

As an example, Fig. 3.32 shows the state transitions for the state [(1, 1); (0, 1)]
in more detail, where PF , PB , PL, and PR are the probabilities to move for-
ward, backward, left, and right, respectively. Since the previous location is
given to be (0, 1), there can be a transition from all 3 associated states of
location (0, 1) to [(1, 1); (0, 1)]. For this state, the corresponding forward di-
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rection from [(1, 1); (0, 1)] is toward (2, 1), then left direction is toward (1, 0),
right direction is toward (1, 2), and finally, backward direction is (0, 1).

(1,1);(0,1) (2,1);(1,1)

(1,2);(1,1)

PF

PR

PL

PB

PB

PL

PR

(1,0);(1,1)

(0,1);(0,0)

(0,1);(1,1)

(0,1);(0,2)

……

…
…

Fig. 3.32. State transition example for state [(1,1);(0,1)]

We denote the steady state probabilities of this Markov chain by π =
[π(i,j;k,l)] and the transition probability matrix by T, where the entries of
the matrix are the transition probabilities between the states [(i, j); (k, l)].

Accordingly, we denote the transient state probabilities by π(n) = [π
(n)
i,j;k,l],

at time step n. Then, we can write the following well-known relations for the
steady-state and transient state probabilities [144]:

π = πT (for steady-state)

π(n) = π(0)Tn (for transient state)

lim
n→∞

π(n) = π (3.33)

where
∑

π(i,j;k,l) = 1 and without loss of generalization the initial-state π(0)

can be chosen to be [1, 0, ..., 0] (since the solution for π is independent of the
initial condition). From these linear equations, we can obtain the steady and
transient state probabilities, which will be used to determine the coverage of
a given mobility pattern.

Coverage Metrics

We denote the steady state coverage probability distribution for an axa grid
by P = [P (i, j)], 1 ≤ i ≤ a,1 ≤ j ≤ a. This probability matrix represents the
percentage of time a given location (i, j) is occupied and can be computed by
adding the corresponding steady state probabilities obtained from (3.33):
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P (i, j) =
∑

k,l

π(i,j;k;l), (3.34)

where (k, l) = {(i − 1, j), (i, j − 1), (i + 1, j), (i, j + 1)} for the non-boundary
states. The (k, l)-pairs for boundary-states can be determined in a straight-
forward manner.

The transient coverage probability distribution, P(n) = [P (n)(i, j)], is com-
puted similarly as:

P (n)(i, j) =
∑

k,l

π
(n)
(i,j;k;l) (3.35)

Using the obtained P(n), we can compute the probability that location
(i, j) is covered by time step n as follows:

C(n)(i, j) = 1−
n
∏

ν=0

(1− P (ν)(i, j)) (3.36)

In the case of multiple drones, the state probabilities can easily be com-
puted. Given the steady-state coverage distribution matrix of the drone k is
Pk (entries obtained using (3.34)) and assuming independent/decoupled mo-
bility, the steady-state coverage distribution of an m-drone network can be
obtained as:

Pmulti(i, j) = 1−
m
∏

k=1

(1− Pk(i, j)) (3.37)

The transient behavior of the m-drone network can be computed similarly,
by substituting the (i, j)-th entry of the transient coverage probability matrix

(P
(n)
k ) (from (3.35)) into (3.37).
We now define some potential metrics of interest besides the coverage

distribution of a mobility model in a grid: average coverage (E{C(n)}) and
full coverage probability (ξ(n)) at time step n for a grid of size a× a:

E{C(n)} =
∑

i,j C
(n)(i, j)

a2

ξ(n) = Pr(C(n) = 1axa) =
∏

i,j

C(n)(i, j) (3.38)

where 1axa is an a× a matrix of ones.
These metrics carry some valuable information regarding the coverage per-

formance, e.g., how well a given point is covered, how well the whole area is
covered, or how much time would be necessary to cover the whole area.

In the next section, we provide the corresponding state transition proba-
bilities for some representative independent and cooperative mobility models.
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3.4.3 Transition Probabilities

Independent Mobility

In this section, we first shortly provide the state transition probabilities for
the well-known random walk and random direction mobility models, where
the transition probabilities are very intuitive. Note that for random walk the
knowledge of the previous location is not necessary. Therefore, the states of
the analytical tool (i, j; k, l) can be further simplified to (i, j), however, we
omit this step for consistency with the other models. For random walk, we
assume that at each time step, the drone can go to any one of the neighboring
grid points with equal probability. Clearly, the number of neighboring points
change depending on the location (see Fig. 3.33 for a representation of the
different areas). On the other hand, for random direction model, the direction
is changed only when the drone reaches the boundary of the grid. Therefore,
the previous location, which is also equivalent to direction for the lattice, needs
to be taken into account. For both of these schemes as well as the cooperative
scheme proposed in the next section, at the boundaries and corners the next
location is chosen randomly among the available neighboring points with equal
probability. Table 3.6 shows the forward, backward, left, and right transition
probabilities for random walk and direction models, respectively. The entries
are organized as [transition probability, location, direction of movement].

Fig. 3.33. Location classification: corner (Ci), boundary (Bi), and middle (M)

Cooperative Mobility

In this section, we propose a method to approximate the coverage performance
of a cooperative mobile network. In such a network, the nodes interact with
each other (i.e., exchange information) whenever they meet. The amount or
content of exchanged information is not within the scope of this section. The
objective is to come up with an appropriate transition probability matrix that
can be used by the proposed stochastic tool. Recall that the proposed Markov
chain is for a single drone. For independent mobility, it can easily be extended
to multiple drones. However, for cooperative mobility this Markov chain is
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Table 3.6. Random walk (RW) and direction (RD)
Corners Boundaries Middle Middle

RW RD

PB 1/2 (Ci ↑→↓←) 1/3 (Bi ↑→↓←) 1/4 0

PF 0 (Ci ↑→↓←) 1/3 (Bi=1,3 ↑↓, 1/4 1
Bi=2,4 ←→)

PL 1/2 (C1 ←, C2 ↑, 1/3 (B1 ←↓, B2 ↑←, 1/4 0
C3 →, C4 ↓) B3 →↑, B4 ↓→)

PR 1/2 (C1 ↑ C2 →, 1/3 (B1 ←↑, B2 ↑→, 1/4 0
C3 ↓, C4 ←) B3 →↓, B4 ↓←)

not sufficient to model the interactions. The states of a Markov-chain that
exactly models all the interactions would grow exponentially with the number
of drones. Therefore, in this section, we propose an approximate method to
model the behavior of the drones in a way that would allow us to treat the
cooperative mobility as independent mobility.

To “decouple” the actions of the drones from each other we define the
following for an m-drone network:

PX =

m−1
∑

k=0

PX|k Pr(k+1 nodes meet), X ∈ {B,F, L,R} (3.39)

where the backward, forward, left-turn and right-turn probabilities are given
by the decision metric (PX|k) of the cooperative mobility as well as the number
of drones that meet. Clearly, probability of a meeting depends on the mobility
model. However, for simplicity, in this work, we make the strong assumption
that any node can be anywhere in the grid with equal probability. The im-
plications of such an approximation will later be quantified by simulations.
With this assumption, from the perspective of a drone at location (i, j) of a
grid of size (a× a), probability that exactly k other nodes out of a total of m
drones will also be at (i, j) is given by the binomial distribution:

Pr(k+1 nodes meet) =

(

m− 1

k

)(

1

a2

)k (

1− 1

a2

)m−1−k

(3.40)

The entries of the corresponding transition probability matrix can then
be computed using (3.39) and (3.40), given the decision metric (PX|k). If you
have a cooperative rule quantified by decision metric PX|k, these equations
along with the analytical model from Section III can be used to quantify the
coverage performance.

In the following, we provide an application of this method for simple coop-
erative mobility. It uses only the previous locations and number of the meeting
drones in the decision criteria (e.g., as in [151]). The objective is to cover a
given area as fast and as efficiently as possible. With such an objective, an
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intuitive rule is that the drones move to a previously unoccupied location
with a high probability. Clearly, since we consider only the previous direc-
tion, the final decision might be good only locally and might not contribute
to global coverage. The mobility rules at a grid point (i, j) is summarized in
Algorithm 3, where n0 denote the number of unoccupied neighbors of (i, j) at
the previous time step.

Algorithm 3 Cooperative Mobility Algorithm

1. If (i, j) is not in the boundaries or corners of the grid:
a) If k = 0, i.e., there is only one drone at (i, j), the drone keeps going forward

until it meets another drone or until it hits the boundary.
b) If k ≥ 1, the drones determine the unoccupied neighbors, n0, of (i, j) at the

previous time step and
i. If n0 ≥ 2, then the drones move to any one of the unoccupied grid

points with probability 1
n0

ii. If n0 = 1, then the drones move to the unoccupied grid point with
probability p0 and the other 3 occupied grid points with probability
1−p0

3
. Clearly, if p0 = 1, this rule is equivalent to above rule (i). A

non-zero p0 option is given to prevent all drones from moving into the
same location.

iii. If n0 = 0, then the drones move any one of the 4 neighboring grid points
with probability 1/4.

2. If (i, j) is in one of the boundaries or corners of the grid, then the same rules as
the independent random mobility models are applied regardless of the presence
of a meeting.

Next, we derive the transition probabilities for the middle grid points.
Observe that due to the symmetry of the decisions PF |k = PL|k = PR|k,
when k ≥ 1. Therefore, if we compute PB|k, all other probabilities would be
determined as well. From the rules above, PB|k is non-zero only when n0 ≤ 1.
To this end, we first compute the probability that n0 = 1 and n0 = 0 given
k + 1 nodes meet.

There are 4k+1 different ways that k+1 nodes can meet. Assume that each
of these meetings happen with equal probability 1

4k+1 . Using combinatorics
for selection with repetitions, we can derive the probabilities that n0 = 1 and
n0 = 0, respectively, when k + 1 nodes meet as follows:

Pr(n0 = 1) =

∑k−1
i=1

∑k−i
j=1

(

k+1
i

)(

k+1−i
j

)

4k
(3.41)

and

Pr(n0 = 0) =
∑k−2

i=1

∑k−i−1
j=1

∑k−i−j
l=1

(

k+1
i

)(

k+1−i
j

)(

k+1−i−j
l

)

4k+1
. (3.42)
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Table 3.7 presents these probabilities for different k values. As the number
of nodes that meet, i.e., k+1 increases, as expected, Pr(n0 = 0) increases and
correspondingly, Pr(n0 = 1) starts decreasing after a certain point.

Table 3.7. Pr(n0 = 0) and Pr(n0 = 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Pr(n0 = 0) 0 0 0.09 0.23 0.38 0.51

Pr(n0 = 1) 0 0.375 0.56 0.59 0.53 0.44

Using (3.41) and (3.42), PB|k for m > 3 is given by:

PB|k =
3
∑

i=0

Pr(n0 = i)PB|ki

=







0, k < 2

Pr(n0 = 1) 1−p0

3 , k = 2

Pr(n0 = 1) 1−p0

3 + Pr(n0 = 0) 14 , 2 < k ≤ m− 1
(3.43)

When m < 3, PB|k = 0, and when m = 3, PB|k = Pr(n0 = 1) 1−p0

3 .
Finally, substituting (3.40) and (3.43) into (3.39) we can compute PB . Sim-

ilarly, PF , PR, and PL can be computed substituting the following relations
into (3.39):

PF |k =

{

1, k = 0
1−PB|k

3 , 0 < k ≤ m− 1
(3.44)

and

PR|k = PL|k =

{

0, k = 0
1−PB|k

3 , 0 < k ≤ m− 1.
(3.45)

Then, the transition probability matrix for each drone can be obtained
using the derived PX ’s for the middle cells and the boundary/corner grid be-
havior described in the previous subsection. The overall coverage performance
of an m-drone cooperative network can then be determined using (3.37).

3.4.4 Coverage Performance and its Discussion

In this section, we evaluate the validity of the proposed analytical method
for several different scenarios by comparing the analysis with Monte Carlo
simulations (where the coverage distributions are obtained by averaging over
10000 runs). For the cooperative mobility model, we use p0 = 0.25. Different
number of drones (m), grid sizes (axa), and time steps (n) are evaluated.
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First, we evaluate the steady-state coverage distribution, which corre-
sponds to the percentage of time a given point would be covered. Fig. 3.34
(a) and (b) show the average time coverage versus number of drones m and
the grid dimension a. The steady-state coverage distribution matrix is com-
puted using (3.33) and (3.34). Both the analytical and simulation results in
the figure are then obtained by averaging overall points in the grid. Observe
that the steady-state performance of all schemes are the same, shown by both
simulation and analysis. While the limiting distributions of all the schemes are
the same, the time required to reach this distribution varies between mobility
models.
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Fig. 3.34. Average steady-state (time) coverage.

Next, we look at the transient behavior of the mobility models under study.
Fig. 3.35 shows a snapshot of the coverage at time step n = 10 for different
number of drones and grid dimensions. As expected, the coverage increases
with increasing number of drones and decreases with grid size. While for
a = 5 coverage over 90% can be achieved with 10 drones, the achievable
coverage drops below 40% when the grid size is increased to 10x10. Observe
that the simulation and analysis results are in agreement in general. The
highest deviation is observed as the number of drones increase. Recall that the
average coverage is computed over all grid points, and hence, the deviations
in the coverage of each grid point, however small they maybe, propagate and
could become significantly large when added. Therefore, to check the similarity
of the coverage probability distributions obtained from the analysis and the
simulation, we use the following Euclidean distance metric:

MSE(n) = E
{

(C
(n)
anl(i, j)− C

(n)
sim(i, j))2

}

. (3.46)

Fig. 3.36 presents the mean square error obtained using (3.46), when n =
10 and a = 10. Observe from these results that while the average coverage
obtained from the analysis and simulation may deviate from each other, the
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individual coverage of the grid points on average deviate around 0.18%. We are
currently in the process of determining a distance metric that does not suffer
from numerical approximation limitations to better identify the deviations.
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Fig. 3.35. Average spatial coverage when n = 10 steps.
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Fig. 3.36. MSE versus m, when n = 10 and a = 10.

Finally, we illustrate the progress of coverage with time. Fig. 3.37 shows
the MSE, average and full spatial coverages (from (3.38)), when a = 5 and
m = {1, 5}. The MSE reduces as the number of time steps increase and is less
than 2% for m = 1 and less than 0.4% when m = 5. As a result, the average
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and full spatial coverages from analysis and simulation also deviate from each
other less, when m = 5. Comparing average and full coverages, we observe
that while the likelihood that each point is covered on average can be above
99% around n = 200 (when m = 1), full coverage requires significantly more
time. Therefore, a threshold-based coverage metric can be more suitable than
average or full coverage for some applications. Nevertheless, the analytical tool
can provide some insight into how much time would be required to achieve a
certain coverage level and allows for testing different performance metrics of
interest.
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Fig. 3.37. Transient behavior comparison
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3.4.5 Conclusions

In this work, we proposed an analytical model to evaluate the coverage perfor-
mance of a networked UAV system. We showed the validity and the limitations
of the analytical tool by comparing with simulations for several scenarios. The
performance metrics of interest focused on in this section were coverage dis-
tribution, average and full coverages. We observed that while the coverage
distributions can be estimated well with the analytical model, the average
and full coverages can deviate from the simulations for certain system param-
eters due to error propagation.

3.5 Conclusions

In this chapter we introduced some schemes of placements for nodes, that are
optimal for energy consumption. In order to further improve the lifetime of the
network we proposed some distributed and efficient algorithms for movement
coordination among nodes. Afterwards, some features of these algorithms have
been added to a routing protocol that is able to choose opportunely the path
for data forward taking into account the residual energies and the distances
to travel towards the final optimal positions. All algorithms and protocols
proposed show the impact of mobility on some performance parameters of the
networks. We proposed an analytical tool to valuate the coverage obtained
using different mobility patterns, while focusing on the coverage in UAV net-
works.



4

Bio-Inspired mechanism for Self-Organization

4.1 Introduction

All methodologies and algorithms that we have used until now are distributed
but they are not reactive in regard to unforeseen situations. Furthermore, we
have assumed that all the capabilities of nodes are embedded, nothing can be
learned from the environment.

In this chapter we want to overcome these limitations using mechanisms
inspired by biology, such as swarm intelligence and evolving neural networks
in order to move towards Self-Organization in Wireless Sensor, Robot, and
UAV Networks.

The social insect metaphor for solving problems has become a hot topic
in the last years. This approach emphasizes distributedness, direct or indi-
rect interactions among simple agents, flexibility and robustness. In practice,
Swarm Intelligence is a methodology to solve many problems and it is inspired
to swarms of animals such as ants, bees, birds, etc. The single animal typically
has limited capabilities, but a group of individuals is able to solve complex
problems such as the nest building, or the path search from a food source
to the nest, etc. Many research activities conducted to design metaheuristics
based on the behaviors of natural swarms.

Furthermore we want to introduce a process of learning that allows nodes
to infer new behaviours in order to meet the dynamics of the surrounding
environment. In this chapter we will use reinforcement learning algorithms
within an evolving neural network, based on an genetic algorithm used to
determine the weights of neurons connections.

The remainder of the chapter is organized as follows: in section 4.2 different
techniques for coverage issues based on Virtual Forces and Particle Swarm
Optimization are investigated. In sections 4.3 and 4.4 two different evolving
neural networks are proposed for optimal placement and efficient mobility
patterns, respectively, both of them focus on achieving full coverage of an
area of interest.
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4.2 Distributed Algorithm to Improve Coverage for
Mobile Swarms of Sensors

This section focuses on Mobile Wireless Sensor Network. Mobility of the de-
vices is achieved by the design of algorithms based on Particle Swarm Opti-
mization (PSO) and Virtual Forces. Mobility is exploited in order to improve
both the power consumption and the coverage of specific Zone of Interest (ZoI)
that can change dynamically. We will show how the proposed algorithms are
reactive, i.e. they are able to capture in an effective fashion the events in the
sensor field even if the position of the events changes during the simulation.
We modify the classical PSO approach in order to be able to design totally
distributed algorithms, which need only local information from neighbors to
update the velocity of the devices (PSO-S). This new distributed version of the
PSO is combined with a distributed version of the Virtual Forces Algorithm
(VFA). Furthermore, we also design and propose a distributed implementa-
tion of the VFA that we call VFA-D. In order to show the effectiveness of the
the proposed techniques, we perform many simulations to compare the PSO-S
and the VFA-D schemes with a centralized version of the VFA. Simulation
results show the good performance in terms of coverage and energy consump-
tion as well as the high reactivity of both PSO-S and VFA-D when the ZoI
changes.

4.2.1 Introduction

Swarm Intelligence is a new discipline inspired by the behavior of social bugs
or animals such as ants, bees, birds, fish, etc. [155] The main characteristic of
this kind of animals is that individually they have limited capacity, but in a
group they are able to perform very complex tasks, including nest building,
navigation, foraging, food storage, tending the young, garbage collection, etc.
In the last years, animal systems have been the inspiration source for several
heuristics used to solve hard optimization problems in various disciplines. One
of the most used heuristic is the Particle Swarm Optimization (PSO) [154].
Specifically, the PSO can be considered as a stochastic optimization technique
based on flocks of birds and schools of fish. In the PSO, a set of software agents
called particles are placed in a search space of an optimization problem and
move in this space according to certain rules and global information to find
the best solution for the problem. We are convinced that this approach can
be beneficial for several Mobile Wireless Sensor Network (MWSN) problems.
Specifically, we focus on the problem of dispatching mobile sensors in a field of
interest to monitor dynamic events. No knowledge about either the position
or the duration of the events is given a priori. Thus, mobile sensors have to
discover the events, monitor them and move towards a new Zone of Interest
(ZoI) when the previous monitored event is over. An efficient, distributed and
localized solution of this problem would be immediately exploitable by several
applications domains, such as civil, environmental, military, etc.
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This sction proposes a modified version of the PSO, where particles (mobile
sensors, nodes or devices in the following) update their velocity by using only
local information coming from their neighbors. In practice, the update of the
velocity is performed by the means of a consensus algorithm, a well-known
technique in the field of multi-agent systems. The concept of the “neighbor”
is intended in the classical telecommunications sense, that is two nodes are
neighbors if they are placed within the communication range of each other.
Our modified version of the PSO is also integrated with a distributed version
of the Virtual Force Algorithm (VFA). The Virtual Force technique is able to
drive nodes in a way that there is no overlap in the position of sensors, by using
attractive and repulsive forces based on the distance between the devices. We
also proposed, test and evaluate the performance of the distributed version
of the VFA by itself. The techniques we propose are able to reach high levels
of coverage and show a satisfying reactivity when the ZoI changes. This last
output parameter is measured in terms of the capability for the sensors to
”follow” a sequence of events happening in different ZoI.

The main contributions of this work can be summarized as follows:

• We propose a modified distributed version of the classical PSO (modified
PSO);

• We propose a modified distributed version of a classical Virtual Force
approach (VFA-D);

• We propose a “combined” version (PSO-S) of the modified PSO and the
VFA-D.

In order to show the effectiveness of our techniques we perform a series
of simulations and we compare our algorithms with the classical VFA that
needs a centralized unit to collect from and distribute to the nodes global
information about their positions [165].

4.2.2 Related Work

Wireless Sensors Networks have been successfully considered for many appli-
cations such as monitoring and surveillance [156]. In [12] authors introduce
the concept of Virtual Forces in order to obtain an improved coverage of a
specific geographic area. Initially, nodes are randomly deployed and then they
are subject to attractive and repulsive forces from other nodes that makes
them move toward a new position, where the area coverage is maximized.
Even though VFA is a very efficient algorithm for coverage, some improve-
ments have been proposed in recent years, in order to enhance connectivity
and fault tolerance while saving energy [158], and provide self-repairing and
anti-splitting abilities[161]. A common assumption in these works is that all
nodes exert forces on every other node, thus requiring global information
on nodes positions. In our work, we remove this assumption and use only
neighborhood information. Authors of [164] and [157] use evolutionary and
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learning mechanisms to let nodes find their best placement, which does not
make the schemes suited when the ZoI change dynamically. The PSO tech-
nique has been considered with different objectives and in different scenarios
[159]. In telecommunications, many applications focus on clustering in ad-hoc
networks in order to minimize the energy consumption [153]. by using Voronoi
and PSO jointly. Even this scheme does not consider the possibility for the
nodes to move in reaction to a topological change of the events placement.

4.2.3 Proposed Algorithms

In this section we give the details of the techniques we designed. Before con-
sidering the specific techniques we recall some elements of both the classical
VFA and the PSO, useful to understand the difference with our proposals.

Centralized Virtual Force Algorithm

The Virtual Forces Algorithm is based on the concept of the virtual forces
field and the main objective is the maximization of the coverage in a Wireless
Sensors Network (WSN) [165]. In the same way electro-magnetic particles
attract or repel each other based on the value of the potential field, sensor
nodes attract or repel each other based on their mutual distance.

The model presented in [165] is the following:

Fi =

k
∑

j=1,j 6=i

Fi,j +

M
∑

m=1

FiRm
+

N
∑

n=1

FiAn
(4.1)

where the total force exerted on node i is given as the sum of three forces:

1. Fi,j is the total force (attractive and repulsive) that all the k nodes present
in the field exert on node i;

2. FiR is the total repulsive force that all the M obstacles exert on node i;
3. FiA is the total attractive force that all the N areas to be monitored exert

on node i.

The first force can be expressed by the following formula:

Fi,j =















(wA(dij − dth), αij) if dij > dth

0 if dij = dth
(

wR(
1
dij

), αij + π
)

if otherwise

(4.2)

where dij and αij are respectively the Euclidean distance and the angle
between nodes i and j, dth is the threshold distance for nodes to attract or
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repel each other, wA and wR are the weights of the attractive and repulsive
forces, respectively. The novel position is calculated in [160] from, Fxy the
magnitude of Fi and its x and y components, Fx and Fy, respectively, as
follows:

xnew = xold + (
Fx

Fxy
) ·MaxStep · e

−1
Fxy (4.3)

ynew = yold + (
Fy

Fxy
) ·MaxStep · e(

−1
Fxy

)
(4.4)

where MaxStep is the predefined single maximum moving distance.
In the classical version of this algorithm, a central entity is requested to

collect all the information from the nodes in order to compute the total force
exerted on each of them, for this reason we will refer to this technique as
VFA-C (Virtual Force Algorithm - Centralized). Besides the complexity and
the problems caused by a single point of failure, introduced with a central
coordinator, we will show that the VFA-C fails in the case that ZoI are on
opposite sides of the field.

The Distributed Virtual Force Algorithm: VFA-D

In this work we modified and implemented by simulation a new version of the
VFA that avoids the usage of a central entity to calculate the forces because it
does not require global information for the computation of the forces applied
on the nodes. In fact, VFA-D introduces a maximum distance in order for the
nodes to retrieve information. This maximum distance, which we call C in the
following, is related to the sensing range of the nodes. When another node, an
obstacle or a ZoI are farther than C from the current node, then their effects
on the node are considered negligible and will be neglected.

The Particle Swarm Optimization Algorithm (PSO)

The Particle Swarm Optimization is an extremely versatile technique of swarm
intelligence based on the position of the particles [154]. The particles of the
PSO are localized inside a searching space and evaluate an objective function
depending on their own position. These particles can also move around the
searching space and combine their own knowledge with those received from
one or more neighbors. By assuming that particles move in a 2D searching
space, the velocity of the units will be computed iteration by iteration as
follow:

vi(t+ 1) = ω · vi(t) + φp · rp ◦ (pi − xi(t)) + φg · rg ◦ (pg − xi(t)) (4.5)
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where xi(t), vi(t), pi pg, rp and rg are R2 vectors. Specifically, xi(t) and
vi(t) are the current position and the velocity of the particle i; pi is the
best personal position of the particle, pg is the best position of the swarm;
rp and rg are two random vectors in the domain U(0, 1); w, φp and φg are
selected parameters to control the efficiency of the PSO technique and ◦ is
the Hadamard multiplicative operator. The three components are also referred
as inertia, cognitive component and social component, respectively. The new
updated position of the particle at the next step is:

xi(t+ 1) = xi(t) + vi(t+ 1) (4.6)

where the new position is given incrementally from the previous position
when the new velocity has been applied in the time instant under observation.

The Modified Particle Swarm Optimization: Modified-PSO

We designed and implemented our modified PSO by using the concept of con-
sensus. The term “consensus” in multi-agent systems indicates the process of
reaching an agreement on a certain quantity of interest that depends on the
state of all agents. A consensus algorithm states the information exchange
between an agent and all of its neighbors in the network [162]. Usually, in the
PSO scheme, the social component is the best position achieved globally by
the swarm in the research space. For our matters, it is not useful to consider a
global best position, because it implies a centralized scheme of control or, at
least, the capacity of the nodes to communicate with every other node in the
sensor field. In order to take into account the limited communication capabili-
ties of sensors, we stated that the social term involves the position that enjoys
the maximum consensus within each node’s neighborhood, where a neighbor-
hood is composed only of the sensors within its transmitting/receiving range.
Thus, we assume that at each iteration of the modified PSO algorithm, the
sensors exchange information and determine the maximum consensus in their
neighborhood. The velocity update equation is modified as follows:

vi(t+ 1) = ω · vi(t) + φp · rp ◦ (pi − xi(t)) + φg · rg ◦ (li) (4.7)

where:

li =
xk − xi

‖xk − xi‖
· ‖xk − xi‖

drep
(4.8)

In 4.8, xk is the position of the nodes in the set of neighbors of i that
obtained the best value of the objective function in the previous iteration and
drep is a repulsive coefficient that avoids the overlap of nodes. The inertial
weight w varies between wmax and wmin.
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The Serial Particle Swarm Optimization: PSO-S

This algorithm is designed by considering separately the modified PSO and
the VFA-D. Specifically, we first apply the modified-PSO and when a sub-
optimum solution is achieved, we apply the VFA to optimize the final coverage
solution. Since the resulting algorithm applies the two presented schemes in a
serialized way, we named it PSO-S (PSO - Serialized). Of course, in this case
we need to specify the exact times of stop (for the Modified-PSO) and start
(for the VFA-D). We formulate three convergence conditions, which will be
used in the simulation:

1. nodes position does not change significantly in last iteration (travelled
distance smaller than dc),

2. nodes coverage does not change significantly in a certain number of iter-
ations (coverage improvement smaller than cth),

3. nodes have already run the algorithm for a certain number of iterations
(number of iterations larger than itmax).

When any of the previous condition is verified the Modified-PSO stops
running and the VFA-D enters into action. Specifically, the third condition is
useful when nodes keep moving without finding an optimal solution.

4.2.4 The Simulation Environment

In order to evaluate the effectiveness of the algorithms proposed, we considered
a square sensor field of 100m x 100m, where a certain number of events occur
simultaneously, and a fixed number of mobile sensors are randomly placed.
We assume that the ZoIs change dynamically during the simulation time, in
order to simulate a sequence of events that appear and disappear in the field.

Our first objective is to achieve a high level of coverage for the ZoI where
events occur, but we also evaluate the energy consumption for the movement.
The energy model for the movement used for this work is taken from [163], it
takes into account the traveled distance by nodes by a constant k ranging from
0.1 and 1 J/m. We set this constant equal to 0.1J/m. The most interesting
parameters used in the simulation are summarized in Table 4.1.

In order to evaluate the effectiveness of the techniques we proposed in
this work we figured out many particular scenarios with different and specific
events distributions. In Figure 4.1, we show the simulated scenarios.

The white zones represent the ZoIs, which are the areas of the field where
events happen and have to be monitored, the black zones are areas where no
events occur.

The choice of these specific scenarios is related to the capability of the
technique we designed to adequate in a dynamic fashion to many different
situations and we will show how our algorithms are able to capture the events
in a distributed fashion.
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Table 4.1. Evaluation Parameters

Field Area (LxL) 100 m x 100 m

Number of Mobile Sensors (N) 80

Sensing Radius (Rs) 7 m

Communication Radius (Rc) 2rs
Convergence Distance (dc) 0.5 m

Maximum Number of Iterations (itmax) 500

Threshold Coverage (cth) 0.5− 0.9

Inertia Weights (wmin − wmax) 0.1− 0.7

Attractive Force (wA) 0.01

Repulsive Force (wR) 1000

Coverage Threshold (cth) 0.5− 0.9

Threshold Distance for
forces among nodes (dth) 2rs
Threshold Distance of

virtual force vanishing (C) 4rs
Repulsion Coefficient for PSO (drep) 2rs

Confidence Interval 95%

Number of Runs 100

Simulation Results

In this section we show the behavior of the different techniques considered in
this work: the Virtual Force (VFA-C), the distributed version of the Virtual

(a) (b)

(c) (d)

Fig. 4.1. Simulated scenarios. (a) Scenario 1: events are concentrated in the cor-
ners, (b) Scenario 2: events are uniformly distributed, (c) Scenario 3: events are
concentrated in one square, (d) Scenario 4: events are concentrated in two squares.
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Force algorithm (VFA-D), the combined version of the Modified-PSO and the
VFA-D (PSO-S). In order to evaluate the effectiveness of these techniques,
we consider three output parameters: 1) the coverage, as the fraction of ZoI
covered by sensors, 2) the energy consumed by nodes movement, which rep-
resent the cost of the algorithm and 3) the number of iterations, which helps
understanding the reactivity of the algorithm. As we assume a probabilistic
model for Virtual Forces [165], a generic point of the field can be considered
covered only when its coverage is larger than a certain coverage threshold, the
evaluation of these parameters is made by varying the coverage threshold cth.

It is worth to recall that the algorithms terminate for any of the three
different conditions enumerated in Section 4.2.3. In Figures 4.2 and 4.3 we
show the results for Scenario 1, in terms of coverage and energy consumption
achieved by VFA-C, VFA-D and PSO-S. We can notice that in this particular
scenario the VFA-C fails completely to cover the ZoIs. This behavior is related
to the centralized characteristic of the algorithm. In fact, each node exerts a
force on every other node in the field and the “extreme” situation considered
does not allow the nodes to find a correct position.

In Figure 4.3 we show the energy spent by each technique. Not only the
VFA-C fails to accomplish the coverage task, also it spends more than the
other two approaches. This is due to the fact that nodes move a lot in order
to find a good position to capture the events.

This is confirmed from Figure 4.4, where we can notice that the algorithm
VFA-C converges only when it reaches the maximum number of iterations
fixed to itmax.

There are not specific reasons regarding the ZoIs we considered for chang-
ing the scenario. Simply, we considered many different changes of scenario and
we present in this work the most meaningful to evaluate the behaviors and
the characteristic of the proposed techniques.

In Figure 4.5 we show the coverage achieved by the three algorithms, when
the position of the events changes from Scenario 4 to Scenario 3.
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Fig. 4.2. Coverage achieved for Scenario 1.
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Fig. 4.3. Energy spent for movement in Scenario 1.
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Fig. 4.4. Number of iterations to reach the convergence in Scenario 1.
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Fig. 4.5. Coverage achieved when the scenario changes from Scenario 4 to Scenario
3.

We can observe that for this specific change of the ZoIs, the VFA-C is able
to reach good results in terms of coverage. The evaluation of the energy in
this case shows that the three algorithms make nodes travel similar distances,
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Fig. 4.6. Energy spent when the scenario changes from Scenario 4 to Scenario 3.
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Fig. 4.7. Number of iterations when the scenario changes from Scenario 4 to Sce-
nario 3.

as observed in Figure 4.6. In practice, the cost of the algorithms is similar for
this change of scenario.

In Figure 4.7 we report the number of iterations each technique needs in
order to converge towards the best solution. We can observe that the average
number of iterations for convergence is similar when the cth changes for VFA-C
and PSO-S but changes significantly when the VFA-D is considered.

In Figure 4.8 we show the coverage for VFA-C, VFA-D and PSO-S, when
the ZoI change from Scenario 2 to Scenario 1. Once again the VFA-C fails to
accomplish the coverage task while the other two techniques are able to cover
sufficiently the ZoIs.

In Figure 4.9 we consider the energy spent when the ZoIs change from
Scenario 2 to Scenario 1. VFA-D and PSO-S have similar behaviour in this
case, while VFA-C spends more energy without covering the ZoIs.

On the other hand, in Figure 4.10 we can observe that VFA-C terminates
when it reaches the maximum number of iterations. The fastest algorithm is
the PSO-S, which, in different situations, employs the same number of itera-
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Fig. 4.8. Coverage achieved when the scenario changes from Scenario 2 to Scenario
1.
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Fig. 4.9. Energy spent when the scenario changes from Scenario 2 to Scenario 1.
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Fig. 4.10. N of iterations when the scenario changes from Scenario 2 to Scenario 1.

tions to converge. This suggests that the PSO-S is the most stable algorithm
among those tested.
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In conclusion, we saw how the VFA-C is not robust for all the scenarios
and above all when the ZoIs changes in a dynamic fashion. On the other hand,
our techniques show an inherent capability to make nodes adapt their position
to the variations of ZOIs position.

4.2.5 Conclusion

In this section we considered particular distributions of events in a sensors
field. We assumed mobile sensors able to communicate to each other. The
specific task of the sensors is the coverage of portions of a square area where
events occur. Specifically, we considered a known coverage technique based on
potential field, the centralized Virtual Force Approach (VFA-C). Furthermore,
we introduced a distributed version of the VFA-C, the VFA-D and a technique
that combines a modified and distributed version of the PSO and the VFA-D,
the PSO-S. Through extensive simulations we show the effectiveness of the
new techniques to cover the Zones of Interest (ZoI), that is, the zones where
the events occur. Even when these zone are at the extreme of the sensor
field and the distributions of the events change in a dynamic fashion, our
technique showed remarkable performance. In practice, we show the reactivity
as an inherent property of these techniques. In future work, we would try to
determine an automatic association between the choice of the weights of both
the PSO and the VFA-D.

4.3 Nodes self-deployment for coverage maximization
using an evolving neural network

Wireless Sensor and Robot Networks (WSRN) are composed by a high num-
ber of nodes that need to cooperate to accomplish several tasks (i.e. detect the
presence of a malicious intruder in a region of interest, monitor the occurrence
of a specific event, etc.). They have been applied in military applications and
health care, as well as environmental monitoring and smart agriculture [62].
One of the fundamental issue in such a network is coverage. It is used to de-
termine how well an interest area is monitored and a service can be provided.
Nodes deployment is a critical issue for coverage, because it affects costs and
detection capability of a WSRN. In literature, existing nodes deployment al-
gorithms can be classified into the following categories: 1) Stationary sensors
[63], [64] 2) Mobile Sensors [65] [13] and 3) Mobile Robot [66] [67]. Usually
stationary sensors are random deployed in the area of interest. Random de-
ployment is very simple, but the number of nodes to deploy has to be much
larger than what is actually required for the full coverage. Furthermore, a
random deployment of static nodes could be inefficient since some areas could
be densely deployed in respect of others and some coverage holes or network
partitions can occur. In some work [65] [13], a large number of stationary
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nodes and a few mobile sensors are considered. Unfortunately, when the ini-
tial deployment of static nodes is random, this kind of approach is not useful
to overcome the hole problems. In order to face these issues, it is possible
to use only mobile nodes, but in this case it is necessary to implement an
efficient and effective technique to allow nodes to move towards a certain
position, in order to ensure the best coverage with the smallest amount of
movement. In fact, energy consumption and probability to lose connectivity
increase when nodes movement increases. These schemes are also known as
movement-assisted techniques. An alternative is to use robots for deploying
static nodes in a given region. Robot deployment can achieve full coverage
with fewer nodes and can guarantee connectivity too. However, the presence
of obstacles can challenge robot deployment and have a great impact on the de-
ployment efficiency. To reduce the impact of obstacles in [67] authors propose
four traveling orders for the robot movement. Unfortunately, this approach
cannot guarantee full coverage and may introduce several sensing redundan-
cies when the robot encounters obstacles. The approaches for coverage can
be categorized into three groups: 1) force based [74], 2) grid-based [68] and
3) computational geometry based [69]. All the three categories can be con-
sidered as a sub-class of the movement-assisted category. With the focus on
the self-organizing capabilities of nodes in WSRN, we propose a movement-
assisted technique for nodes self-deployment. Specifically, we propose to use of
a neural network as a controller for nodes mobility and a genetic algorithm for
the training of the neural network through unsupervised learning. This kind
of scheme is extremely adaptive, since it can be easily modified in order to
consider different objective and/or QoS parameters. In fact, it is sufficient to
consider a different input for the neural network to aim to a different objective.
In this work we will show how the scheme works by considering the neural
network as a controller for nodes mobility, when the objective is to maximize
the coverage area and minimize the number of time steps to achieve the ob-
jective. To the best of our knowledge for deployment of wireless nodes able
to self-organize, this is the first work based on neural networks and genetic
algorithms. This technique has the clear advantage to make nodes able to
learn from the environment and adapt their behavior. Based only on local
information, nodes ensure a high coverage even when obstacles of irregular
shapes are present in the area of interest. Another evident advantage of our
algorithm is its simplicity: by the simple introduction of a new input, a dif-
ferent QoS parameter or objective can be taken into account. In respect of
other approaches, our algorithm can be considered as a synthesis. In fact, our
technique is grid based since it focuses on an interest area divided into cells. It
can also be considered as a kind of virtual-force scheme based, because nodes
are attracted or rejected from certain positions depending on the presence of
other nodes. Finally, our technique belongs to the computational geometry
based approach because the only local information needed at the nodes is
the relative distance with other nodes and obstacles, and this leads to spatial
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distributions of the nodes in the area of interest that follow geometric rules
(e.g., uniformly spaced position).

The contributions of this work are the following:

• the approach makes behavior emerge from the interaction instead of being
pre-programmed in the nodes;

• the methodology used in this work exploits both the flexibility of neural
networks and the capability to learn of genetic algorithms, which makes it
suitable to implement all the self-* properties;

• the proposed solution is simple, effective, distributed and feasible, even in
presence of obstacles. It does not require any specific hardware/software
that is not already included in mass products and needs only local infor-
mation to work.

This work is presented in [3].

4.3.1 State of art

The problem of coverage in WSN and WSRN is closely related to deployment,
because a good deployment can improve all the functionalities of the network.
Indeed, Meguerdichian in [70] argues that coverage is the primary metric that
provides indication about quality of service.

An important categorization regarding deployment for wireless networks
as summarized in [71], classify algorithms as belonging to random deploy-
ment, incremental deployment and movement-assisted deployment. Random
deployment is the fastest and most practical way to deploy a network, even
if it does not ensure a uniform distribution. For this reason it is often used,
as in our case, only in the initial phase of the movement-assisted deployment.
Incremental deployment is a centralized approach, which places nodes one at
time. The computation of optimal location for each node is based on informa-
tion gathered by nodes already deployed. Hence, computation and time costs
explodes when nodes number increases. In the last years, the most used ap-
proach to deploy a network is the movement-assisted, because it can achieve
a uniform coverage with reasonable time and costs.

In [72] and [73], the approaches for coverage are categorized in three
groups: force based [74] [165], grid-based [68], [75], [76] and computational
geometry based [77], [78] and [69]. All these approaches can be considered as
a sub-group of the movement-assisted approach.

In particular for the first group, in [165] authors propose a virtual force
algorithm (VFA) to improve the coverage after an initial random placement
over a region with obstacles. Even if their method works in presence of obsta-
cles, it seems massively dependent on the mobility and energy of the sensors.
Also authors of [79] consider obstacles. They develop an efficient technique
to place sensors by means of a robot. Algorithm in [69] first deploys sensors
along the boundaries and the region based on the sensing radius of the sen-
sors. Successively, they apply delaunay triangulation and add some sensors in
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order to reach full coverage. Both in [79] and [69], the methods developed seem
suitable for simple regular regions and obstacles, like areas consisting of long
straight lines. When obstacles and regions become sufficiently and arbitrar-
ily irregular, these methods become inefficient. To consider obstacle in [12],
authors introduce the concept of virtual force. Using this kind of Coulomb
force proportional to the distance with other nodes or obstacles each nodes is
able through attraction and repulsion to maximize the covered area. This is a
cluster-based approach, so it shows all the drawbacks related to a centralized
scheme. In [76] the whole region is divided into single-row and multi-row re-
gions, in order to guarantee both coverage and connectivity. Specifically, holes
are covered through sensors deployed along the boundaries, and connectivity
is preserved by maintaining a constant distance computed from sensing and
communication radii. Also this method seems suitable only for regular regions
and obstacles.

Concerning the Grid quorum based movement [65], typically the sensors
field is partitioned into many cells and the number of sensors in a cell is the
load of the cell. Coverage and connectivity depend on the size of the cell.
This deployment strategy cannot guarantee connectivity and cannot provide
Points of Interest (PoI) coverage.

Regarding the computational geometry based approaches, in [13] authors
propose an algorithm based on Voronoi regions. Each node, after the compu-
tation of its own Voronoi region, compares it with its sensing range in order
to determine the presence of holes. In this case, the node moves to an im-
proved location and recalculate the new Voronoi region until convergence is
reached. This approach provides an uniform deployment in a distributed way,
but is not suitable to use in scenarios with obstacles. Another distributed al-
gorithm, known as pull & push [80], produce an hexagonal tiling, by attracting
the nodes in low density regions and repulsing nodes from high density re-
gions. This algorithm does not require manual tuning of variables related to
the particular working scenario, even if it works only in absence of obstacles.
Coulumb’s law is also the base of [81], in this work authors propose a dis-
tributed algorithm inspired by equilibrium of molecules to obtain an uniform
coverage. Each node calculates its lowest energy point and the distance from
other nodes in a distribute manner, all computation requires exact location
information and does not take in account the presence of obstacles.

The technique we propose in this work can be considered as a movement-
assisted approach, in which the region of interest is sub-divided in specific cells
(grid-quorum approach) and by the usage only of node-node and node-obstacle
distance (computational geometry approach) attracts or repulses other nodes
(virtual force approach) towards the best position for improving the coverage.
A desirable property of our technique is its evolutionary nature, namely, its
behavior varies in a “natural” fashion depending on the the evolution process
of the network. In previous schemes, such as Voronoi and VF schemes, the be-
havior is imposed in a pre-programmed fashion. Instead, our approach allows
self-organization of nodes and it does not need any prior knowledge of the
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environment, even in presence of obstacles. The novelty is that the deploy-
ment is not based on some geometric or physic rule pre-implemented in the
nodes but the way to behave is learned directly from the environment during
the training phase. The rules of movement learned are very general and not
strictly related to any particular scenario.

4.3.2 A Genetic Algorithm for Nodes Self-Deployment

In order to solve the coverage problem through self-deployment of nodes in a
wireless sensor and robot network, we propose to use neural networks and ge-
netic algorithms in a combined approach. The neural network is used to model
the behavior of the single node, whereas the objective of the genetic algorithm
is to select the most performing population of nodes as a whole. In Section
4.3.3, we will show the effectiveness of the combined algorithm. Instead, in this
Section we will illustrate the simplicity in the usage of the two main elements
of the combined approach and we will introduce background and assumptions
used in this work. The flowchart in Figure 4.11 describes the most relevant
steps of the nodes self-deployment algorithm. The first three steps illustrate
the initialization of simulation setup, neural network and genetic algorithm,
while the following four contain the core algorithm.

In the following subsections we will refer to the flowchart as a general
scheme of the proposed algorithm and we will provide details on each step.

Background and assumptions

The model proposed in this work is discrete in both time and space. We
decided to use discretization for sake of simplicity, even though the method
could be easily extended to a continuous model, where we would expect even
better results at the cost of some complication in the computation required
from the nodes. Hence, the field to cover is a square grid constituted of square
cells, where also physical obstacles can be present. We consider one cell and
one time step as discrete units of space and time, respectively. Also the sensing
radius r of the nodes becomes a positive integer, and it expresses the number
of cells that nodes are able to cover in each of the four main direction (north,
south, east and west). Therefore, the coverage area of a node is a square area
composed of (2r + 1)2 cells. In Figure 4.12, the area covered by a node is
coloured in light green. Cells coloured with a higher intensity of green have a
higher degree of coverage (also referred to as k-coverage).

In the described scenario, we use the following assumptions regarding the
behavior of nodes:

• In one time step nodes can move of one cell in one of the four main direction
(north, south, east and west).

• Nodes are able to estimate the distance (in number of horizontal and ver-
tical cells) between themselves and other nodes, and between themselves
and obstacles.
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Fig. 4.11. Description of the neural network training phase.

The first assumption is necessary to express a maximum amount of dis-
tance that a node can travel in a single time step. We decided, again for sake
of simplicity, to exclude four secondary directions (north-east, north-west,
south-east and south-west). However, it would be very easy to extend the set
of possible movements to include also the missing directions, and the algo-
rithm would improve its performance. The second assumption allows nodes to
avoid other nodes and obstacles, and to calculate the right position to move to
in order not to create unwanted overlapping coverage areas with their neigh-
bors. The boundaries of the field are considered from the nodes as obstacles.
For nodes to measure the relative distances with other nodes or obstacles is
possible through the measurement of the round trip time or by infrared [82],
ultrasonic [83] or visual techniques [84]. In order to guarantee connectivity,
we could also assume that the communication range of the nodes is at least
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Fig. 4.12. Representation of sensing radius and cell overlapping.

twice their sensing range, as in [85], nonetheless this assumption is not strictly
necessary for the coverage algorithm. When the mentioned assumptions are
satisfied, no additional hardware or software is needed onboard the nodes, and
also no localization systems are required. Basically, nodes are able to place
themselves and maximize the coverage only with the knowledge of the local
environment around themselves.

Neural Network (NN)

The behavior of each node is controlled by a fully connected, recurrent and
time-discrete artificial neural network. The neural network is composed by in-
put, output and hidden neurons, as classified also in Figure 4.13. The number
of hidden neurons depends on the complexity of the problem, and in our case
2 hidden neurons are sufficient for our objective.

The input of the neural network is detected from the environment and is
related to the goal of interest. In our case, the input for each node is consti-
tuted by:

1. the number of cells already covered by the neighbors, one input for each
direction;

2. the distance from obstacles, one input for each direction;
3. the number of nodes placed in the same cell.

The first set of input has to objective to make node spread and maximize
the coverage by avoiding overlapping. The second aims to allow nodes to
learn how to avoid obstacles that constitute an impediment to movement,
sensing and communication. The last set of input is specifically useful when
many nodes are initially deployed in the same cell. Regarding the input, it is
important to make the following remarks:
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Fig. 4.13. Neural network architecture of one node for the self-deployment problem.

• all the mentioned input can be computed at each node from the measure-
ment of the distance with other nodes (input 1 and 3) and between node
and obstacles (input 2);

• the measurement is limited to the coverage range of each node.

Therefore, as mentioned in the previous subsection, only local information
about relative distances is enough to feed the neural network and make the
algorithm work.

In order to map the n-dimensional input into the m-dimensional output,
each neuron uses a real-valued activation function and a time-varying real-
valued connection with every other neuron of the network.

outj(k) = F

(

∑

i ∈ N

wij · outi(k − 1) + bj

)

(4.9)

The output of neuron j, at the time step k is the same for all the connec-
tions originating in j, therefore we indicate with outj the output of neuron j
towards all other neurons of the network. The output of neuron j is computed
as in (4.9), where N is the set of all the neurons of the neural network, wij is
the weight of the incoming connection from neuron i to neuron j and bj is the
bias of neuron j. Weights can have either an excitatory or inhibitory effect.
In our case, the activation function F is a simple linear threshold function as
expressed in equation 4.10:

F (x) =

{−1.0 if x ≤ −1.0
x if − 1.0 < x < 1.0
1.0 if x ≥ 1.0

(4.10)

The output of the two output neurons is the output of the neural network
for each node. It is composed of two real numbers that can vary in the interval
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[−1 ÷ 1], as it is clear from (4.10). Depending on these two real values, the
node decides the action to make. The set of possible actions is limited to move
of one cell in one of the four admitted directions or stay still in the current
cell.

The whole process described above is executed in one time step, for each
node of the WSRN, as shown in Step 4 of the flowchart in Figure 4.11. This
phase of the training of the neural network consists in the execution of the
described process until a termination condition is satisfied, as in Step 5 of the
flowchart. In our case, the termination condition is either the execution of a
certain fixed number of time steps or the complete coverage of the field.

Evolutionary genetic algorithm (GA) for the neural network
training phase

In order to train the neural network, in a self-organizing perspective, unsu-
pervised reinforcement learning is used. In fact, the performance of the neural
network is evaluated by a fitness function.

The global optimization method used for training the neural network is
a genetic algorithm. The genetic algorithm is encoded in the neural network
through the genes, which are the values of the weights of the connection
between each couple of neurons. A chromosome (also referred as a member of
a population in the following) is constituted by an evolving set of genes, and
a population is constituted by a fixed number of chromosomes. The goal of
genetic algorithms is to improve the fitness function through the transmission
of genes of a part of the current population from one generation to the next, as
in Step 6 of the flowchart in Figure 4.11. The transmission of genes to newer
generations continues until a termination condition for the genetic algorithm
occurs (Step 7). In our work, the condition to terminate the genetic algorithm
is the simulation of a fixed number of generations.

The transmission of genes to the new generation is based on the selection,
mutation and crossover of the members of the old generation that achieved
the highest value of fitness function. Thus, the fitness function has a very
important role in the evolution process, since it is used as a feedback for
successive generations. The objective of our work is to improve the coverage
of the field. Hence, we have to relate the fitness function to the coverage
achieved by each member of a population. The coverage achieved is computed
by counting the distinct cells covered by all the nodes of each member of the
population, upon the termination condition of Step 5 is satisfied. Thus, the
fitness function could be simply represented by the number of covered cells.
However, we want also to take into account the “speed” of a chromosome in
reaching the maximum coverage. Therefore, we define the fitness function as
follows:

fitness function = #covered cells+(#time steps max−#time steps actual)
(4.11)
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In (4.11), #time steps max is the maximum number of time steps fixed
as a termination condition of Step 5 and #time steps actual is the actual
number of time steps used in that phase of the training by the member of the
population. When the difference between these two terms is not zero, it means
that the neural network covered the whole field in a number of time steps lower
than the maximum allowed. Therefore, an increase of the fitness function by
one unit in respect of the value achieved by the previous generation can result
as an effect of one the two following causes:

• one more cell has been covered in the same number of time steps;
• the same number of cells has been covered in one time step less.

Communication complexity

The proposed algorithm is based on local communication only. Indeed, a node
only needs to know the position of its neighboring nodes and the surrounding
obstacles to take a movement decision. In the sequel, the term “broadcast”
stands for message propagation in a node’s neighborhood and the term “flood-
ing” refers to network-wide message propagation.

After a node’s movement, an update on node’s position is broadcasted.
The information contained in the broadcasted message consists of the node
Id and the node position (x, y). Here it is worth noting that, the message size
is constant, therefore the message size is in O(1).

Nodes will update their positions and broadcast their new information at
each time steps. Since the number of time step is a constant value given as
a parameter in our algorithm, this leads to a message sending complexity of
O(n) where n is the number of nodes. In order to select the best population
to generate the next generation of our genetic algorithm, each node needs to
flood the parameters of its genetic algorithm (constant number of parameters)
and the value of its fitness function (number wiht a constant size), the message
size for the flooding is thus in O(1). A flooding algorithm from the literature
can be used to disseminate the information. For example, MPR [86] provides
a complexity in O(∆2) where ∆ is the maximum node degree, which is the
maximum number of one-hop neighbors of a node.

4.3.3 Performance evaluation

In this section we will first introduce the simulation setup and then we will
show the qualitative and quantitative results of our approach, when used
to solve the problem of coverage. We are mainly interested in the coverage
achieved by our scheme in respect of the achievable coverage. Nonetheless, we
will investigate the mechanisms of genetic transmission and learning that lie
behind the usage of the fitness function. The neural network approach does
not share the basic assumption of the usual approaches, because while in the
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usual approach the behavior of nodes is pre-programmed (e.g., the attraction-
repulsion forces in the force-based approach), neural network makes the be-
havior emerge from learning and interaction of the nodes. Our first objective
is to focus on this emerging behavior, its effectiveness in its simplicity. Thus, a
performance comparison of our scheme with a scheme using another approach
would not be fair and it would be out of the scope of this work.

Simulation setup

The proposed scheme is evaluated by simulations using FREVO 1, which is an
open source framework for evolutionary design. In Table 4.2, we reported all
the simulation parameters used in this work. We consider a 40 cells x 40 cells
field, where a variable number of nodes (n) is deployed according to a random
uniform distribution and a variable number of obstacles is present (o). Also
obstacles are placed according to a random uniform distribution in the field,
but they can not create areas inaccessible for the nodes. Cells containing ob-
stacles are subtracted from the achievable coverage. In our scheme, obstacles
are considered impenetrable, thus limiting both nodes movement and cover-
age. In fact, all the cells in the coverable area of a node that are shadowed
by an obstacle are not considered covered. The shadow area depends on the
sensing range of the node. From some simple calculations, we can derive an
overestimation of the average number of cells shadowed (cs) when an obstacle
is present in the coverage area of a node:

cs =

∑r−1
l=0 (l + 1)m(r − l)2

4r(r + 1)
(4.12)

where m is the number of cells in the first frame of cells around the node
(8 when cells are square). If we assume r = 2, from (4.12) we can see that the
presence of an obstacle inside the coverage area of a node creates a shadow
effect that involves, on average, 2 cells (one for the physical presence of the
obstacle and one because of the shadow). This is actually an overestimated
value that does not take into account the possible overlapping shadow areas
of obstacle, in fact the exact average value is slightly lower (1.94 cells for each
obstacle). In any case, this means that even when the number of nodes is exact
to cover the whole field, there will be areas uncovered due to the shadow effect
of obstacles.

For our quantitative analysis, we will take into account only the physical
presence (and not the shadow effect) of the obstacles by using the term cov-
erable area, which indicates the total number of cells where no obstacles are
present. Before starting the real simulation, we ran some test simulations in
order to determine the right number of time steps and generations needed to
reach a stable coverage. These results are illustrated in the next subsection,
but the values used for the simulations are reported in Table 4.2, along with

1 http://www.frevotool.tk



134 4 Bio-Inspired mechanism for Self-Organization

Table 4.2. Simulation parameters

Scenario parameters

Grid height (h) 40 cells
Grid width (w) 40 cells

Number of nodes (n) 32÷96
Sensing radius (r) 2 cells

Percentage of obstacles (o) 0÷20 %
Maximum number of time steps (#time steps max) 100

Number of runs (runs) 10

Neural network parameters

Total number of neurons (N) 13
Number of input neurons (I) 9

Number of hidden neurons (H) 2
Number of output neurons (O) 2

Genetic algorithm parameters

Population size (P) 300 chromosomes
Number of generation (g) 100 generations

Percentage of elite selection (e) 15%
Percentage of mutation (mu) 45%
Percentage of crossover (c) 30%

Percentage of randomly created offsprings (off c) 5%
Percentage of randomly selecting an offspring from previous generation (off s) 5%

the parameters related to the neural network setup and the genetic algorithm
setup. All the results have been averaged over 10 different runs in order to
respect a confidence interval of 95%.

Results

A representation of the initial random deployment of the nodes is reported
in Figure 4.14a and 4.14b, the figures show the scenario with 64 nodes, no
obstacles (a) and 10% of obstacles (b), respectively. The figures are also useful
to understand how the discretization has been realized, how the coverage area
of a node and the overlapping areas are intended, and finally how obstacles
impact on movement, coverage and communication. In Figure 4.14c and 4.14d
we show the snapshot of the same scenarios after a training phase of 100
generations. It this possible to appreciate how nodes have been able to learn
the correct placement, in order to cover the whole field when no obstacle are
present (c) and as much as possible when obstacles are present (d).

Before discussing the results about the coverage, we want to justify our
choice to use 100 time steps and 100 generation in the neural network simu-
lation and the genetic algorithm, respectively.

Figure 4.15a shows the achieved coverage (in % in respect of the achievable
coverage) after 100 time steps for variable number of nodes (32, 64 and 96)
and percentage of obstacles (0%, 10% and 20%). As we can see, after a few
number of time steps (less than 30), nodes have learnt enough to reach a stable
placement and they are not be able to improve furtherly their coverage. Only
the case with 64 nodes and no obstacles shows that nodes continue learning



4.3 Nodes self-deployment for coverage maximization using an evolving neural network 135

(a) (b)

(c) (d)

Fig. 4.14. Initial random deployment of 64 nodes (r = 2 cells) in a 40x40 cells grid
with no obstacles (a) and with 10% of obstacles (b). WSRN self-deployment using
the evolved neural network with no obstacles (c), and with 10% of obstacles (d).

till the 80th time step. In any case, 100 steps is a good value for all the
simulated scenarios. In the same way, Figure 4.15b shows the value of the
fitness function (that includes coverage and “speed” in covering the area) in
the same aforementioned scenario. In all the simulated scenarios, the neural
network is able to learn how to maximize the fitness function after about 25
generation, therefore 100 generations seems a good termination condition for
the training phase.
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Fig. 4.15. Progress of the achieved coverage over the time by using the neural
network (a). Evolution of the neural network over generations in terms of achieved
fitness value (b).

From Figure 4.15b we can also appreciate other valuable information,
which is the “quantity” of information that generation by generation is learnt
from the nodes, and also their “speed” in learning new information. In order
to give a quantitative idea of these two information, we defined the index IL,
which stands for incremental learning, as follows:

IL =
fitness(g)− fitness(1)

fitness(100)
(4.13)
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where fitness(x) is the value of the fitness function at the generation x. In
Table 4.3, we reported the values of IL for all the simulated scenario, when the
generation increases. We can observe that when the number of nodes is enough
to cover the whole field (64 and 96 nodes), an increase in the percentage of
obstacles affects the capacity to learn. This is not the case when the number of
nodes is low (32 nodes) and they have more space to move without interfering
with each other. When no obstacles are present, the configuration with 64
nodes is the “optimal” to cover the whole simulated field with no overlapping
areas. In the Table we can see that in the configuration with 64 nodes, nodes
are able to learn more and quicker than the corresponding configurations with
32 and 96 nodes. This means that an “optimal” number of nodes turns into
an optimal number of learners. Improvements in the learning process would
not come from an increase in the number of nodes beyond the optimal value
but by an evolutionary step, such as a new input for the neural network on
the nodes.

Table 4.3. Incremental learning generation-by-generation for different scenarios

g n=32 o=0 n=32 o=10 n=32 o=20 n=64 o=0 n=64 o=10 n=64 o=20 n=96 o=0 n=96 o=10 n=96 o=20

5 0.06625 0.08665 0.07993 0.24768 0.15798 0.09034 0.29268 0.11959 0.07245

10 0.09000 0.11932 0.10480 0.31872 0.19664 0.13188 0.33583 0.15921 0.10376

20 0.09000 0.14631 0.12078 0.36195 0.22185 0.17342 0.34209 0.17461 0.15116

30 0.09000 0.14773 0.12966 0.38851 0.23445 0.19626 0.34209 0.19002 0.16011

40 0.09000 0.15483 0.13854 0.39222 0.23782 0.20872 0.34209 0.19369 0.16637

50 0.09000 0.16193 0.13854 0.39222 0.24706 0.21703 0.34209 0.19516 0.17174

60 0.09000 0.16761 0.14387 0.39222 0.24706 0.21703 0.34209 0.19736 0.17174

70 0.09000 0.17188 0.14387 0.39222 0.24706 0.22118 0.34209 0.19809 0.17352

80 0.09000 0.17188 0.14565 0.39222 0.24706 0.22534 0.34209 0.19809 0.17800

90 0.09000 0.17614 0.14920 0.39345 0.24706 0.22845 0.34209 0.19809 0.17979

100 0.09000 0.17756 0.15275 0.39345 0.24706 0.22845 0.34209 0.19883 0.17979

Figure 4.16a shows the percentage of coverage achieved calculated in re-
spect of the coverable area. The neural network approach is compared with
the maximum achievable coverage and the coverage achieved by a random
deployment, which we consider as the best and the worst case, respectively.
The figure is drawn for 10% of obstacles when the number of nodes increases.
From Figure 4.16a, we can see that for very low and very high number of
nodes the curve of the neural network approach and the maximum achievable
coverage are very close to each other. For intermediate number of nodes the
two curves are more distant, in particular for 64 nodes we have both the best
improvement in respect of the random deployment and the highest distance
from the maximum achievable. This behavior is even more evident in Fig-
ure 4.16b, where we plotted the coverage efficiency of a single node, in terms
of average number of cells covered by a node. Also in this figure the neu-
ral network approach, the random deployment and the maximum achievable,
are plotted when the node number increases. Note that the average value of
maximum achievable coverage per node is constantly 22.5 cells (and not 25,
because 10% of obstacles is uniformly ditributed on the field) for number of
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Fig. 4.16. Comparison of achieved coverage percentage (a) and nodes coverage
efficiency (b) between the neural network approach, the random deployment and
the maximum achievable coverage, when the number of nodes increases and 10% of
obstacles are present.

nodes lower than 64, and then it decreases more than linearly, whereas the
coverage efficiency for the neural network approach decreases linearly in the
interval considered.

For all the aforementioned considerations about the configuration with 64
nodes, and because it is the exact number of nodes to cover the whole con-
sidered area without overlapping, we decided to analyse its performance more
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in detail. In Figure 4.17 we plot the achieved coverage in respect of the per-
centage of obstacles present on the field for both the neural network approach
and the random deployment. We have not plotted the achievable coverage,
because in the scenarios with 64 nodes the whole area (100%) is coverable.
Obviously, in the presence of obstacle, our neural network has the possibility
to exploit the learning capabilities and outperform the random deployment
approach. The interesting consideration is that for an increasing percentage of
obstacles, the neural network approach decreases its performance more than
linearly. As we already mentioned, the presence of a one-cell obstacle counts
almost as two cells lost in the coverage, because of the physical impediment
and the shadow effect, therefore a high percentage of obstacles strongly limits
the evolutionary capabilities of the nodes. The only solution to change the
slope of the curve in Figure 4.17 is to allow nodes to make an evolutionary
step by including more input related to the presence of obstacles.
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Fig. 4.17. Comparison of achieved coverage percentage between the neural network
approach and the random deployment, when the number of nodes is fixed to 64 and
the percentage of obstacles varies.

Finally, we want to understand the effect of the time in the learning pro-
cess of the nodes. We designed the fitness function in a way that would award
quick populations to transmit their genes to successive generations. Figure
4.18a shows the time step when a given coverage threshold is achieved by the
population of different generations. The scenario is still 64 nodes and 10% of
obstacles. We can see that, when the generation increases, higher percentage
of field are covered by the nodes, and, above all, that the same percentage of
coverage is achieved in a shorter time. This is exactly the behavior we tried to
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Fig. 4.18. Time step in which a given coverage percentage threshold is reached for
the scenario with 64 nodes and 10% of obstacles (a), Average number of movements
needed by each node to reach a stable coverage, when the number of nodes is fixed
to 64 and the percentage of obstacles varies (b).

impress into population genes by including the time into the fitness function.
Since we claim that the proposed neural network approach is feasible and
appliable to a real case, we also investigated the number of nodes movements
needed to reach the expected coverage. In Figure 4.18b, we plotted the move-
ments needed in the scenario with 64 nodes and an increasing percentage of
obstacle. The number of movements gives a measure of the energy needed for
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the deployment. In our scheme only one movement is admitted for each time
step. Thus, the energy consumption is implicitly reduced when the the num-
ber of time steps needed to reach a certain coverage is reduced, by exploiting
the learning capabilities of the nodes.

4.3.4 Conclusion and future direction

In this section an algorithm for nodes self-deployment aimed to maximize
coverage in WSRN has been proposed. The algorithm is based on neural net-
works and genetic algorithms. Results show how the evolving neural network
approach is suitable to solve the given problem even in presence of obsta-
cle. The approach used represents a synthesis of the most usual approaches,
because it uses concepts belonging to all the three most important cate-
gories of movement-assisted deployment algorithms. But, while in the usual
approaches, the behavior of the nodes is pre-programmed and can lead to un-
wanted situations, in the neural network approach the behavior emerges from
the learning process and the interactions with the surrounding environment.
The proposed algorithm achieves an high coverage of the field while minimiz-
ing the time steps needed, and consequently the number of movements and
the energy consumption. The most interesting observation is that the same
approach can be used, by introducing few modifications, to solve different
problems and pursue different objectives. Future works can include: the defi-
nition of new input for the neural network in order to allow an evolutionary
step and improve the coverage in presence of a massive quantity of obstacle:
the determination of a new neural network for the implementation of another
self-* property for autonomous WSRNs, and the design of new algorithms for
several simultaneous objectives.

4.4 Evolving neural networks for self-control mobility to
address coverage problem

An Unmanned Aerial Vehicle (UAV) is an aerial vehicle without any human
operator on board that can fly autonomously or be controlled remotely. In
this work we aim at a group of small, cost-efficient UAVs to achieve a com-
mon goal with better performance and/or lower cost than a system of few
centrally controlled powerful but expensive UAVs. Due to unpredictability of
atmospheric conditions (wind, rain, etc.), to the uncertainty of the environ-
ment (presence of obstacles, interferences, etc.) and to the dynamism of the
topology of the UAV network, the setup of a predefined mobility path to fol-
low is not feasible and due to limited bandwidth, wireless control from ground
station becomes difficult, especially in presence of several UAVs. Moreover in
such scenario mobility heavily impacts network performance. Consequently,
an efficient mobility pattern in respect to network performance parameters
is required. In this section we focus on coverage as the primary metric that
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provide indication about quality of service in mobile ad-hoc networks [70].
Furthermore, the coverage problem is strictly related to target search: the
higher the achieved coverage, the higher the probability of finding a given
target.

A desirable way to control the UAVs’ movement under such conditions is
self-organizing control that means to achieve a proper coverage without any
remote control or centralized scheme or pre-programmed flight path. However,
the rules for such self-organizing behavior are typically hard to find, and the
effects of a local rule change are often counter-intuitive [146]. Therefore, we
propose the use of an evolutionary algorithm to explore the rule space. We
propose the use of a neural network for drone’s mobility controller since neural
networks are well-suited for evolution operators such as mutation and recom-
bination [145]. The training of the neural networks is done by reinforcement
learning (without an immediate feedback) since the fitness of a particular neu-
ral network can only be evaluated after a simulation has been run for some
time.

4.4.1 Proposed Model

In this work we propose a discrete time and space model based on an evolving
neural network for drone’s mobility controller in order to find independent
and cooperative mobility patterns for UAVs such that a given area of interest
is accurately covered in a efficient way.

The area of interest is discretized and for this reason we will refer it as a
grid or cells. In such grid each drone starts from an initial random position
(grid’s cell) and in each discrete time (step) is able to move in one of four
admitted direction: north (N), south (S), east (E), west (W). A cell is admitted
if it is inside the grid and obstacle free.

In such model for sake of simplicity we make the following assumptions:

• the speed is fixed and similar for all UAVs;
• there is a constant radius turns of multiples of 90 degrees;
• each drone is equipped with a collision avoidance mechanism (or different

altitudes are chosen);

The behavior of each drone of the network is controlled by a fully con-
nected, recurrent and time-discrete artificial neural network. Each neuron unit
in the network has a directed connection to every other unit. Each unit has a
real-valued activation. Each connection has a modifiable real-valued weight.
The network is composed by a layer of input neurons and a layer of output
neurons and two hidden neurons (H). Usually, the number of hidden neurons is
related to the problem’s complexity and to the neural network expressiveness.
The neural network is responsible of the mapping between the n-dimensional
input and the m-dimensional output where the input of the networks is de-
tected from the environment and is related to the goal of interest.
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Independent model

In order to define a neural network for independent drones mobility the only
information needed for the learning process is related to the environment. No
information is acquired directly or indirectly by other drones. Focusing on our
goal: maximization of the coverage, a useful input is if the movement towards
each of four possible directions is admitted or not, due to the presence of an
obstacle or a border. Such an input is requested from drones to have a spatial
cognition and learn how to navigate the area.

The architecture of proposed neural network is shown in Figure 4.19. Four
inputs are requested for obstacles presence correspondent to four direction,
two outputs are needed as actuator to move in west-est or north-south direc-
tion and two hidden neuron are used.

Fig. 4.19. Neural network to for independent drone’s mobility controller

Through the weighted neural network connections the inputs are mapped
into the output that is simply the movement toward the new position for
the node chosen among the four admitted neighbor cells. In particular at
each step, each neuron i computes the sum over the current output of the
neurons j feeding the connection weighted by the factor wji of the incoming
connection and its bias bi (see eq. 4.14). Weights can have either an excitatory
or inhibitory effect.

oi(k + 1) = F (

n
∑

j=0

wjioj(k) + bi) (4.14)

The output of the neuron for next step k + 1 is calculated through an
activation function F over the weighted sum. In our case F is a simple linear
threshold function as expressed in equation 4.15:

F (x) =

{−1.0 if x ≤ −1.0
x if − 1.0 < x < 1.0
1.0 if x ≥ 1.0

(4.15)
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Summarizing, given an input for the network the output is a movement
towards a direction that could increase the achieved coverage, in this sense
the neural network is the mobility controller of the drones.

Cooperative model

As many works has been shown, the cooperation can increase the performance
of a network especially when the goal is shared among the components of
the network. In the problem of coverage of a given area, the exchange of
information among drones regarding the already covered area by each ones,
could increase the coverage performance and minimize the time needed to
the full area coverage. In particular, in our model, when two or more drones
meet (for our discretized grid means that they are in the same cell) they are
aware that a meeting is occurred and consequently the neural network get
some inputs regarding the meeting. The input for the meeting is defined in a
way that the neural network is able to learn the follows information:

• how many drones have met;
• from which direction each meeting is occurred.

The architecture of this new neural network is shown in Figure 4.20 and it
is very similar to previous neural network for independent model the only
difference is in four more input for detecting how many drones are met in
each of four directions.

Fig. 4.20. Neural network to for cooperative drone’s mobility controller

All neural network computations to map inputs into outputs are done
using equations (4.14) and (4.15) as for the independent model.

Evolutionary algorithm for training the neural network

In order to train the network, in a self-organizing perspective, reinforcement
learning is used. Instead of a supervisor a fitness function is provided to eval-
uate the neural network’s performance.
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The global optimization method used for training the neural network is a
genetic algorithms and it is based on the one presented in [152]. The genetic
algorithm is encoded with the neural network weights in a predefined manner
where one gene in the chromosome represents one weight link or a bias of a
neuron. There are many chromosomes that make up the population, there-
fore, many different neural networks are evolved until a stopping criterion is
satisfied as in our case the maximum number of training generations has been
reached. The goal of the genetic algorithm is to maximize the fitness function
that is evaluated during the training phase and influences the genetic selection
process.

For our problem the fitness function is defined in the simplest way to take
in account the achieved coverage in terms of number of covered cells and the
time needed for that coverage by the following equation:

fitness function = #covered cells− time (4.16)

At each generation the fitness function in equation (4.16) is evaluated and
the new population encoding the weights and bias values of the neural network
is generated by selection, mutation and crossover of the previous member of
population that guarantee an high fitness function’s value.

4.4.2 Performance evaluation

The proposed schemes are evaluated by simulations using FREVO tool 2

and has been compared with some well-known synthetic mobility models like
random-walk and random-direction. In this section will be detailed the simu-
lations setup, afterwards, a results analysis is provided.

Simulations setup

The parameter of our interest is the coverage percentage of a given area. The
input for the neural network are related to the possibles meeting of others
drones and to the obstacles so the coverage is evaluated in respect of the
increasing number of drones and in respect of the increasing percentage of
obstacles in the area. The results are averaged on different scenarios where
in each scenario the initial position of the drones and the obstacles are ran-
domly placed. Among different algorithms the same random seed is used so
the comparison is done on the same random scenarios. All parameters for the
simulations are summarized in table 4.4.

Results

In this subsection will be illustrated some qualitative and quantitative results.
Figures 4.21 and 4.22 show a scenario of a given discretized area of interest

2 http://www.frevotool.tk
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Table 4.4. Simulation parameters

Scenario parameters

Grid height 40
Grid width 40

Number of drones 2÷20
Coverage area 25 cells

Percentage of obstacles 0÷20 %
Time steps 400

Number of runs 50

Neural network parameters

Number of input neurons 8
Number of hidden layers 2

Number of output neurons 2

Genetic algorithm parameters

Population size 300
Maximum number of generations 5000

Percentage of elite selection 15
Percentage of mutation 45
Percentage of crossover 30

Percentage of randomly created offspring 5
Percentage of randomly selecting an offspring from previous generation 5

respectively without obstacles and with 10% of obstacles in which 10 drones
move in order to cover it after the evolution of the neural network. In these
snapshot of the simulations the difference between independent and cooper-
ative models doesn’t emerge because it is strictly related to occurence of a
meeting that doesn’t happen at time when Figures 4.21 and 4.22 are taken.

An interesting behavior emerging in the case without obstacles as de-
ducible from Figure 4.21 is sweeping while in the case with obstacle shown in
Figure 4.22 sweeping is not still the best way to cover the area.

In tables 4.5 and 4.6 there is a measure regarding the learning process for
independent and cooperative schemes respectively in different scenarios. This
quantity measure is calculated using the equation 4.17:

fitness(g)− fitness(1)

fitness(5000)− fitness(1)
(4.17)

Looking at this metric it is possible to extract the following information:

• the performance in a given number of generation (g);
• how fast is the process of learning.

First scenario regards the case with the lowest number of drones and 10%
of obstacles. This is the case with the slowest learning process. Next three
columns show the cases with no obstacles, 10% and 20% of obstacles respec-
tively. The values in the entries show as for an obstacles free environment the
drones learn quickly while the learning process became slower when the per-
centage of obstacles increase. Finally, the last column represents the case with
higher number of drones and 10% of obstacles. Fixed the percentuage of ob-
stacles greater is the number of drones faster is the learning process especially
for the cooperative scheme.
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Fig. 4.21. Simulation of neural network drone’s mobility controller in absence of
obstacles

In order to enable the comparison with random walk and random direction,
these two models are been implemented according to our discretized model
that permits only four direction of movement. Such implementation is the
following:

• Random walk: in each position, each drone can choose with the same prob-
ability the new direction among those admitted.

• Random direction: in each position in which the neighborhood (north, est,
south and west cells) is obstacle free the drone keeps going without any
change of direction, otherwise if some cell in the neighborhood is blocked
the drone is free to change direction choosing with the same probability
among those admitted.

For all scenarios shown in tables 4.5 and 4.6 respectively the 90% and
95% of learning process is done within the 400th generation. Figure 4.23 show
the fitness function values for the same scenarios from first generation to the
400th.

Figure 4.24 shows the percentage of coverage achieved by the two different
schemes: independent and cooperative. The cooperative is able to learn from
the other drones and get the highest coverage. The gap between cooperative
and independent is around 5% and rise to 15% in respect to the random-
direction.
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Fig. 4.22. Simulation of neural network drone’s mobility controller in presence of
obstacles
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Fig. 4.23. Fitness function value with (d) drones and (o) obstacles for Cooperative
(C) and Independent (I) schemes

Coverage percentage versus percentage of obstacles is shown in Figure
4.25. Neural network approach gives good results especially in absence of
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Table 4.5. Cumulative learning measure generation-by-generation for Independent
scheme in different scenarios

g d=2 o=10 d=10 o=0 d=10 o=10 d=10 o=20 d=20 o=10

10 0.2301 0.6955 0.3553 0.2449 0.3543
20 0.4224 0.8045 0.4934 0.3561 0.5250
30 0.5205 0.8802 0.6312 0.4512 0.6331
40 0.6325 0.9037 0.6902 0.5401 0.7255
50 0.6713 0.9337 0.7628 0.6260 0.7935
60 0.7123 0.9408 0.8136 0.7440 0.8312
70 0.7452 0.9445 0.8338 0.8147 0.8600
80 0.7802 0.9624 0.8459 0.8496 0.8972
90 0.8023 0.9624 0.8705 0.8907 0.9040
100 0.8152 0.9624 0.8777 0.8987 0.9175

200 0.8966 0.9901 0.9267 0.9209 0.9570
300 0.9052 0.9930 0.9445 0.9382 0.9739
400 0.9084 0.9934 0.9550 0.9401 0.9862
500 0.9170 0.9944 0.9654 0.9419 0.9901
600 0.9359 0.9948 0.9654 0.9472 0.9908
700 0.9494 0.9962 0.9659 0.9611 0.9918
800 0.9531 0.9967 0.9715 0.9648 0.9918
900 0.9531 0.9967 0.9745 0.9688 0.9942
1000 0.9537 0.9967 0.9763 0.9688 0.9942

2000 0.9564 1.0000 0.9793 0.9852 0.9959
3000 0.9903 1.0000 0.9879 0.9883 0.9976
4000 0.9968 1.0000 0.9933 1.0000 0.9983
5000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.6. Cumulative learning measure generation-by-generation for Cooperative
scheme in different scenarios

g d=2 o=10 d=10 o=0 d=10 o=10 d=10 o=20 d=20 o=10

10 0.2788 0.8360 0.3333 0.3447 0.4073
20 0.4419 0.8970 0.5907 0.5431 0.6257
30 0.6163 0.9308 0.7441 0.6384 0.6873
40 0.7166 0.9358 0.8209 0.6946 0.8124
50 0.7521 0.9493 0.8590 0.7355 0.8701
60 0.7927 0.9555 0.8957 0.7830 0.9051
70 0.8133 0.9597 0.9138 0.8294 0.9387
80 0.8297 0.9620 0.9244 0.8517 0.9492
90 0.8374 0.9664 0.9343 0.8880 0.9568
100 0.8513 0.9716 0.9477 0.9074 0.9636

200 0.9192 0.9827 0.9636 0.9565 0.9794
300 0.9475 0.9870 0.9685 0.9647 0.9828
400 0.9501 0.9898 0.9760 0.9682 0.9847
500 0.9599 0.9898 0.9765 0.9713 0.9850
600 0.9681 0.9902 0.9814 0.9732 0.9870
700 0.9712 0.9902 0.9854 0.9756 0.9898
800 0.9794 0.9905 0.9861 0.9756 0.9898
900 0.9805 0.9905 0.9881 0.9769 0.9907
1000 0.9805 0.9924 0.9881 0.9804 0.9915

2000 0.9933 0.9950 0.9943 0.9936 0.9949
3000 0.9959 0.9967 0.9988 0.9971 0.9955
4000 1.0000 0.9987 0.9995 0.9992 0.9969
5000 1.0000 1.0000 1.0000 1.0000 1.0000
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Fig. 4.24. Coverage percentage with increasing number of drones

obstacles. When the percentage of obstacles increase the achieved coverage
decrease but the cooperative scheme obtain always at least a 15% of coverage
more than the random direction. Also in this case the cooperative scheme
outperforms the independent except for the case with 15% of obstacles. The
highest difference among cooperative and independent schemes is achieved in
correspondence of 20% of obstacles where the difficulties in navigation due
to obstacles are smoothed thanks to collaboration among drones. The initial
increasing of coverage in random-direction is probably due to the particular
implementation of this mobility model adapted to our needs.

4.4.3 Conclusion

In this section a drone’s mobility controller using neural network has been
proposed. An evolutionary algorithm is used to train the network in order
to maximize the coverage of an interest area. Two different approaches are
compared: the independent approach, where the drone’s neural network only
receives information related to the environment (presence of obstacles), and
the cooperative approach where UAVs exchange information when a meeting
occurs and, in this case, each drone’s neural network also receives information
regarding the direction of provenience of the drones met. The proposed ap-
proaches have been compared with random-walk and random direction. The
results, obtained by extensive simulation, show that the cooperative neural
network approach outperform the other schemes except for the case when
there is an high presence of obstacles, where the independent scheme has the
best performance.
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4.5 Conclusion

In this chapter we have shown that nodes of a network, which act as a swarm,
can cover a given area of interest even in case the distribution of the events
is not uniform. Moreover, PSO can be used for target tracking. A similar
problem has been investigated through an evolving neural network. We have
shown that each node is able, after a training phase, to learn some general
rules that bring out an efficient behaviour for achieving full coverage, even in
presence of obstacles. A similar neural network is then used for the problem of
sweeping an area by using collaborative UAVs. Also in this latter case UAVs
are able to learn how to achieve a full coverage of the area in the minimum
time.





5

A case of study: Efficient Coverage for
Grid-Based Wireless Sensor Networks

5.1 Introduction

In this final chapter a case of study is analyzed where all the used methodolo-
gies are compared: optimization model, distributed heuristic and bio-inspired
mechanism. In particular a genetic algorithm, previously illustrated in this
thesis, is applied in order to achieve an efficient coverage for Grid-Based
Wireless Sensor Network. A new coverage technique is proposed, totally dis-
tributed and based on local information, for wireless sensor networks in which
the sensors are arranged in a square grid. We show how this extremely simple
technique is able to reach good performance in terms of coverage even though
different configurations of networks are considered. Specifically, we focus on
networks with and without obstacles with different densities of nodes and we
show how this coverage technique is effective. In order to demonstrate the ef-
fectiveness of our coverage technique on square grid networks, we consider an
optimization model and other two coverage algorithms: the first one is based
on a genetic approach and the latter is based on the well-known concept of
virtual forces. Results of simulations show how in the worst case the heuristic
coverage is 14 % smaller than the coverage obtained with the optimization
model and the results of our approach are very close to those obtained with
the virtual forces based technique. When the size of the network increases the
searching space of our scheme increases too and we obtain better performance
in terms of coverage. In fact, for greater network size the euristic outperforms
the virtual forces approach, both without and with obstacles. Moreover, we
will show how our approach is extremely flexible and adaptive to the changes
of the networks by considering different interest zones. In fact, our technique
is able to detect zones that need to be monitored by more nodes and a higher
concentration of nodes will be obtained in these zones.
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5.2 State of art

In recent years, advanced VLSI and radio frequency (RF) technologies have ac-
celerated the development and applications of wireless sensor and distributed
networks [124], [125]. This kind of networks are starting to play an important
role in a wide range of applications such as medical treatment [119], battlefield
surveillance [120], habitat monitoring [121], [122] and so forth. In distributed
Wireless Sensor Networks (WSNs), design of the placement of sensors devices
in the sensor field is a very important issue. Efficient sensor placement strate-
gies allow to minimize cost and reach an high level of accuracy [123]. In the
art gallery problem, cameras are deployed such that the whole gallery is thief-
proof [36], [135]. A wireless sensor network must achieve the specified coverage
level of the application so that the quality of service provided by the wire-
less sensor network can be guaranteed. Many sensor deployment algorithms
attempt to fully cover a sensor field using the minimum sensors or the min-
imum cost of sensors. In [79] authors propose a method to deploy sensors to
provide full coverage on a sensor field with obstacles. In [126] authors propose
a distributed algorithm in order to activate a subset of sensors to fully cover
the entire sensor field at one time. In [127] authors try to ensure that each
point in a sensor field is covered by at least k sensors. In order to cover in an
effective way the field, they select a subset of sensors for ensuring k-coverage
and k′-connectivity. Some coverage techniques consider the components in the
sensor fields such as sensors, obstacles or preferential fields as virtual forces
sources and try to balance virtual forces through the deployment of the de-
vices [128] and [89]. In [129] authors propose CCAN that selects a connected
dominating set in a dense wireless sensor network such that the coverage prob-
abilities of the given points (i.e. specific targets or given points in a sensor
field that need to be more monitored), are larger than a given parameter. In
many applications, some specific areas need to be more monitored and in this
case the problem is of constructing a wireless sensor network to fully cover
critical grids. In [130] authors consider the problem of constructing a wireless
sensor network to fully cover critical grids of equilateral triangles by deploy-
ing the minimum sensors on grid points and they show that this problem is
NP-Complete. In the circle covering problem, usually equal circles are used
to fully cover equilateral triangles [137], rectangle [136], and squares [138].
The circle covering problem is different from the covering problem considered
in this sction since the circles are independent and can be moved anywhere.
Moreover, we have to consider the constraint of connectivity, so the poten-
tial available position in the sensor field are limited. Usually a sensor field
is divided into square grids [123], [75] and in [131] the problem of deploying
the minimum number of sensors on grid points to construct a wireless sensor
network fully covering critical square grids is considered and authors show
that this problem is NP-Complete. In this chapter we focus on a grid sensor
field in which different situations may occur, i.e. a uniform coverage could be
necessary and the sensor field is free in the sense that there are not obstacles.
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Another application could consider a grid sensor field where obstacles occupy
some grid points that can not be occupied by sensor devices. Eventually, some
specific application could require that some specific critical grid points need
to be more monitored than other points. In this chapter we propose a very
simple heuristic only based on local information and in a totally distributed
way is able to move sensor devices to the closer position in order to satisfy
the specific coverage requests as those considered above. In order to show
the effectiveness of this simple technique we introduce an optimization model
that is able to find the best position in terms of coverage and two approaches,
the first one is a centralized technique based on a genetic algorithm and the
latter is a virtual forces based approach. Simulation results show how our
techniques is able to obtain coverage degrees close to the optimization model
and the genetic approach and when the size of the network increases our tech-
nique overcomes the virtual forces techniques both when the obstacles are
considered and not. The reminder of the chapter is organized as follows. In
Section 2 we consider square grids. In Section 3 we present the optimization
model used as benchmark. Section 4 is to explain the genetic approach and the
virtual forces technique. In Section 5 we give the detail of the simple heuristic
we propose. Section 6 is to explain the results and finally, we conclude the
chapter and consider a discussion of future research in Section 7.

5.3 Square Grid Networks

A wireless sensor network is said grid-based if is consists of a (potentially
unbounded) number of identical sensors arranged in a square grid as shown
in Figure 5.1. Let a sensors has a maximum transmission range said tr, each
node is able to communicate with all nodes within the circle of radius tr in
a direct way. In a grid-based network we need to model this in a different
way, i.e. a Lee sphere of appropriate radius [132]. Let the length of the sides
of the squares of our grid be 1. The distance among the squares in the grid
can be measured in terms of Manhattan metric, that is the distance between
two square is the sum of the horizontal and vertical distances between the
centers of the squares. With “horizontal” and “vertical” we indicate the two
perpendicular directions that are parallel to the sides of the squares in the
grid.

Definition 1 A Lee sphere of radius r centered at a given square consists of
the set of squares that lie at Manhattan distance at most r from that square
as shown in Fig. 5.2(a) and 5.2(b)

This approximation facilitates the representation of the coverage in the
grid-based networks. In this chapter we refer to the Lee sphere of radii 2 as
shown in Fig. 5.2(b). In practice, all the points that are within the squares
are considered covered by a node at the center of the Lee sphere.
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Fig. 5.1. Arrangement of sensors in a square grid.

(a) (b)

Fig. 5.2. Lee spheres of radii 1 (a) and 2 (b).

5.4 The optimization model

In this section, we give the mathematical formulation of the problem under
study, as an integer nonlinear programming model. It is assumed that the
sensor field is represented by a two-dimensional grid. The parameters used for
the formulation are the following: h: the grid height, w: the grid width; d: the
discretization step, n: the number of available sensors; r: the coverage radius;
M : a large positive number.

The variables of the proposed model are: (xk, yk), k = 1, . . . , n the Carte-
sian coordinates that indicate the location of the sensor k in the sensor field;
φijk, i = 1, . . . , ⌈h/d⌉, j = 1, . . . , ⌈w/h⌉, k = 1, . . . , n a binary variable that
takes the value one if the location (i, j) is covered by sensor k, and zero oth-
erwise; δij , i = 1, . . . , ⌈h/d⌉, j = 1, . . . , ⌈w/d⌉, a binary variable that takes
the value one if the location (i, j) is covered by at least one sensor, and zero
otherwise.
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The considered problem can be mathematically stated as follows:

max

⌈h/d⌉
∑

i=1

⌈w/d⌉
∑

j=1

δij (5.1)

r −
√

(i− xk)
2
+ (j − yk)

2 ≥M (φijk − 1), ∀i, j, k (5.2)

δij ≤
n
∑

k=1

φijk, ∀i, j (5.3)

M δij ≥
n
∑

k=1

φijk, ∀i, j (5.4)

0 ≤ xk ≤ ⌈h/d⌉ , 0 ≤ yk ≤ ⌈w/d⌉ , ∀k (5.5)

xk, yk integer, ∀k (5.6)

φijk binary, ∀i, j, k (5.7)

δij binary, ∀i, j (5.8)

The objective function in (5.19) maximizes the number of locations covered
by at least one sensor. Conditions (5.2) state that if the euclidean distance
between the sensor k and the location (i, j) is lower than or equal to the
coverage radius r than the variable φijk takes the value one, otherwise it is set
to zero. Constraints (5.3) and (5.4) are logical constraints and ensure that the
indicator variable δij takes on a value of one if the location (i, j) is covered by
at least one sensor and zero otherwise. Finally, conditions (5.5)-(5.8) represent
the variable domain constraints.

The mathematical formulation reported above is an integer nonlinear pro-
gramming model, where the nonlinearity is confined to the constraints (5.2).

In order to derive an integer linear model, the euclidean distance has been
replaced by the following expression: dxik

+ dyjk
− 0.5min(dxik

, dyjk
), where

dxik
= |i− xk| and dyjk

= |j − yk|. This approximation, introduced in [133],
overestimates distance and yields error in interval 0% to 12%.

To eliminate the terms with the absolute value, we introduce the additional
constraints reported below ([134]):

dxik
≥ i− xk ∀i, k (5.9)

dxik
≥ −i+ xk ∀i, k (5.10)
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dyjk
≥ j − yk ∀j, k (5.11)

dyjk
≥ −j + yk ∀j, k (5.12)

Thus, constraints (5.2) are replaced by the following conditions:

r − dxik
+ dyjk

− 0.5 minijk ≥M (φijk − 1), ∀i, j, k (5.13)

where the variables minijk, ∀i, j, k take the minimum value between dxik
and

dyjk
. Consequently, the following constraints need to be satisfied:

minijk ≤ dxik
∀i, j, k (5.14)

minijk ≤ dyjk
∀i, j, k (5.15)

The proposed integer linear model optimizes the function (5.19) subject
to constraints (5.9)-(5.15) and (5.3)-(5.8).

It is worth observing that the mathematical formulation reported above
can be easily extended to handle the specific situation in which some obstacles
are present in the sensor field.

In this particular case, it is sufficient to impose that the locations occupied
by the obstacles cannot be considered as feasible positions where the sensors
can be localized.

Let OBS = {(̃i, j̃) | ĩ ≥ 1 and ĩ ≤ ⌈h/d⌉ and j̃ ≥ 1 and j̃ ≤ ⌈w/h⌉}
be the set of the positions in which the obstacles are located, the mathe-
matical formulation of the problem in which the obstacles are considered, is
obtained by replacing in the model reported above the constraints (5.5) with
the following conditions:

0 ≤ xk ≤ ⌈h/d⌉ , 0 ≤ yk ≤ ⌈w/d⌉ , (xk, yk) 6∈ OBS ∀k (5.16)

In some applications, there are the needs to guarantee that some zones
(the so-called zones of interest) are covered up to a certain degree.

The proposed mathematical models can be easily extended to handle
also this specific situation. In particular, let coverij denote the minimum
number of sensors that have to cover the location (i, j), i = 1, . . . , ⌈h/d⌉,
j = 1, . . . , ⌈w/h⌉, the problem under consideration can be represented math-
ematically by the models introduced above in which the following constraints
are added:

n
∑

k=1

φijk ≥ coveri,j , ∀i, j (5.17)

It is worth observing that an alternative way to address the problem in
which zones of interest are specified is to maximize the number of sensors
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that cover these zones, by ensuring that each location is covered by at least
one sensor. In particular, let ZOI denote the set of locations corresponding
to the zone of interests, the objective function to be maximized assumes the
following form:

n
∑

k=1

∑

(̃i,j̃)∈ZOI

φĩj̃k (5.18)

subject to constraints (5.3)-(5.15) and the condition reported in what follows:

⌈h/d⌉
∑

i=1

⌈w/d⌉
∑

j=1

δij ≥ γ (5.19)

where γ is set to ⌈h/d⌉ × ⌈w/d⌉, if each location has to be covered by at
least one sensor. It is important to observe that it is possible to carry out a
sensitive analysis on the value of the parameter γ in order to find the best
trade-off between the maximization of number of sensors that should cover
the locations belonging to ZOI and the ensuring of an acceptable coverage
for the remaining locations.

5.5 Coverage Techniques

In this section we describe two different coverage techniques: the first one
based on a genetic approach and the latter based on the virtual forces ap-
proach. All the techniques considered in this chapter are based on the grid-
based model described in Section 2 as far as the sensing model is concerned.
As already outlined, we consider Lee sphere of radii 2.

5.5.1 Genetic Algorithm

The proposed genetic algorithm is used as optimization method in order to
find an optimal solution reducing the solution space through this evolutionary
approach. A particular placement is coded as a member of a population of
the genetic algorithm, such representation is given by the sequence of x and
y coordinates of all sensors in the grid as illustrated in Figure 5.3.

Fig. 5.3. Placement coded in a chromosome

The optimization problem is formalized as the minimization of uncovered
cells, consequentially, the fitness function used for the evolution of the popu-
lation is the following:
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f = # total cells−# covered cells (5.20)

This function takes as an input a given placement and, where specified, also
the positions of the obstacles on the grid and gives as output a fitness value
that represents the number of holes in the grid. Substantially, the population
evolves through the genetic algorithm using the fitness function as supervisor
of the evolution process.

The steps of the algorithm are the following:

1. random initialization of a population;
2. ranking of population members according to the fitness function;
3. selection, mutation and crossover of best members of populations;
4. repeat from point (1) until termination condition (maximum number of

generations) is satisfied.

5.5.2 Virtual Forces Algorithm (VFA)

VFA is a well-known technique used for deployment in wireless sensor net-
works and allow to reach good performance in terms of coverage from a ran-
dom placement using a weighted combination of repulsive and attractive forces
based on mutual distances among nodes. Pros of this approach is the flexi-
bility in adapting in different scenarios also in presence of obstacle or zones
of interest that are considered as repulsive and attractive forces respectively.
Cons regard the difficult to tune opportunely some algorithm’s parameters
like ωa and ωr that depends on particular scenario and the nature of the al-
gorithm that is centralized and in particular is based on clustering so it has
all disadvantages of having a central unit of elaboration.

5.5.3 A Map-assisted coverage heuristic

In this section we give the details about the coverage map assisted technique.
It is worth to notice that this technique is totally distributed and based on
local information.

The proposed algorithm is based on a local coverage grid map as depicted
in Figure 5.4. It is worth observing that a node can exploit information that are
within the secondary frame (we consider a transmission range greater than the
sensing range) even if the coverage is computed by considering the Lee sphere
model as shown in Fig. 5.2 (b). Each node, communicating with neighbors
is able to calculate the partial map map needed to compute the movement
towards the right direction. The black cells are the location occupied by nodes
while the number in each free cell is the degree of coverage of that cell (number
of nodes that cover the cell). Of course, the number in the cell could also
acquire different meanings as the degree of interest of a specific point and/or
zone.

The basic idea of the algorithm is to make move the nodes toward the
direction that seems less covered looking only at the map in correspondence
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Fig. 5.4. Coverage grid example with r = 2, the gray cells indicate the presence of
a sensor in the specific cell.

of the cells at the borders of coverage area of each node. In particular given
the sum over (2r+1) cells, on eight area coverage borders (North (N), North-
East(NE), East (E), South-East (SE), South (S), South-West (SW), West(W)
, North-West (NW)) each node moves toward the direction opposite to the
direction with the higher coverage value. In Figure 5.4 in order to figure out
how the borders are considered the North and South-East borders are high-
lighted in red. The algorithm considers the information as shown through the
blue frame.

The details of the algorithm are given in the following pseudo-code:

Algorithm 4 Coverage Map based Movement Algorithm
(x, y): current position of node;
r: coverage radius;
repeat

calculate map;
set N coverage =

∑x+r
j=x−r map(y + r, j);

set E coverage =
∑y+r

i=y−r map(i, x + r);

set S coverage =
∑x+r

j=x−r map(y − r, j);

set W coverage =
∑y+r

i=y−r map(i, x − r);

set NE coverage =
∑x+r

j=x map(y + r, j) +
∑y

i=y+r map(i, x + r);

set SE coverage =
∑x+r

j=x map(y − r, j) +
∑y

i=y−r map(i, x + r);

set SW coverage =
∑x

j=x−r map(y − r, j) +
∑y

i=y−r map(i, x − r);

set NW coverage = +
∑x

j=x−r map(y + r, j) +
∑y+r

i=y map(i, x − r);

set N − S = N coverage − south coverage;
set NE − SW = NE coverage − SW coverage;
set W − E = N coverage − S coverage;
set SE − NW = SE coverage − NW coverage;
set max difference = max(|N − S|, |NE − SW |, |W − E|, |SE − NW |);
move

|max difference|
(2r+1)

step choosing in a equiprobable way among one of

maximum difference direction standing still if all direction obtain the same value;
until (x(t), y(t)) == (x(t − 2), y(t − 2))or(x(t), y(t)) == (x(t − 3), y(t − 3))or(x(t), y(t)) ==
(x(t − 4), y(t − 4))
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5.6 Performance Evaluations

In this section, we evaluate the performance of the proposed heuristic and
we compare our technique with a centralized coverage algorithm based on a
genetic approach and a virtual forces based approach. In Fig. 5.5 we show
percentage of coverage achieved with the 4 techniques previously described.
It is worthwhile to notice how an increased size of the network corresponds
to a better behavior of the Heuristic. In fact, when we compare coverage
achievability obtained with our technique and the virtual forces approach, we
can observe how the heuristic outperforms the virtual force technique when
size of the networks increases. This result is encouraging because it implies
that our heuristic is scalable. This better behavior is related to an increased
movement space. In practice, with the 15x15 grid, the heuristic can exploit
more information and for that results are better. These considerations are
confirmed when we consider a 25x25 size of the grid as shown in 5.5 (c).

It is worth to notice that for 25x25 sensor field size we reported results of
neither the Optimization Model nor the Genetic Algorithm (GA). The reason
is that when the size of the networks and the number of nodes increase,
the number of potential solution to be evaluated increase too and both the
approaches are extremely inefficient and time-consuming.

In 5.6(a) and 5.6(b) we show the results of the 4 techniques when in the
grid are present a certain percentage of obstacles. In this chapter we refer
to obstacle as something that occupies either a part of a square or a whole
square. Specifically, we consider a number of obstacles ranging from 0 to 20
% in respect of the number of squares of the field. In this case the coverage
is computed by eliminating the squares occupied by the obstacles. The op-
timization model and the genetic approach are able to reach the maximum
achievable coverage. This is due to the fact that both, the optimization model
and the genetic approach are based on global information and know perfectly
the positions already occupied that can not be occupied by others sensor de-
vices. Also in the case we can observe how the heuristic works well when the
number of information that can exploit increases. In fact, also in this case the
achieved coverage is higher when the size of the grid is 15x15 and increases
more when the 25x25 size of the grid is considered.

5.6.1 Zone of Interest

In this subsection we introduce the concept of Zone of Interest (ZoI). In a
realistic sensor field covered by a wireless sensor network it could happen that
some points is “more” interesting than other points and need to be “more”
monitored than others points. Specifically, we show this situation in Fig. 5.7,
where we show a specific point that could be characterized with different
“degree” of interests. Darker is the color higher is the interest of the specific
zone and consequently more nodes are needed in the specific point.
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Fig. 5.5. Percentage of coverage when the grid size is 10x10 (a) 15x15 (b) and 25x25
(c).

The “degree” of interest of either a certain zone or a point in a field can be
defined in different ways, i.e. we can explicitly declare the number of nodes we
need to cover a specific point/zone such as in the Optimization Model defined
above or we can simply define a certain degree of interest through a weight
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Fig. 5.6. Percentage of coverage when the grid size is 10x10 (a) 15x15 (b) and 25x25
(c) respectively and obstacles are considered .

associated to this more interesting zone. This second approach was followed
with the Heuristic. In practice, we associated a certain “weight” to a specific
zone/pixel that represents more interest to cover the zone without associating
the specific number of sensor we need to cover this point/zone. Related to the
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Fig. 5.7. An interesting zone (point) in the sensor field. The different degrees of
gray correspond to different degrees of interest.

Zone of Interest (ZoIs) we introduced a modified version of the Basic-Heuristic
considered, and we will refer to this as Ext-Heuristic (Extended-Heuristic).
Specifically, in the Ext-Heuristic we take into account the information we
have not only about the exterior frame as shown in Figure 5.1 but also the
information regarding the interior frame. This extension is necessary when
different “degrees” of interest are taken into account since an increased ne-
cessity to cover a certain zone could not be captured by only considering the
second (exterior) frame. Specifically, we apply the same principle of the Basic-
Heuristic and we calculate the total degree of coverage of a frame but nodes
will move towards the zone with lesser coverage. In practice, let us consider
the field as shown in Fig. 5.1 and focus on the gray node 1 inside the blue
square, with the Basic-Heuristic we only take into account the more external
frame (i.e., [2, 2, 3, 2, 2],[1, 0, 1, 0, 0], [1, 1, 2, 2, 3], [1, 0, 0, 1, 1], etc. and
we make the difference between the opposite sides (i.e., [2, 2, 3, 2, 2] with [1,
0, 1, 0, 0], [1, 1, 2, 2, 3] with [1, 0, 0, 1, 1], etc). This difference give us the
“direction” toward the current node has to move and the orientation will be
determined by considering the lesser value of the weights (i.e. in the case of
[2, 2, 3, 2, 2] and [1, 0, 1, 0, 0] the node will move toward the second). In our
extended version we also take into account the contribution of the weight of
the more internal frame by applying the same concept of the Basic-Heuristic
(i.e. [2, 3, 2], etc). The greater difference between the “opposite” frames will
determine the direction of movement. It is worth to recall that where we do
not explicit a different value of the sensing radius r we consider r equal to 2
as in this case.

In Fig. 5.8 we can observe as the Optimization Model is able to put exactly
the number of nodes to “cover” the specific point and in Fig. 5.9 we observe
as the coverage is kept.
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Fig. 5.8. The coverage of a specific ZoI (field size 10x10 and 26 nodes).
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Fig. 5.9. The coverage of the whole field when a specific ZoI is defined (field size
10x10 and 26 nodes).

On the x− axis we put the “degree” of interest. In practice, we say that
a specific zone of the sensor field needs to be highly monitored. It is worth to
recall that the Optimization Model exactly defines the number of more nodes
necessary to cover the ZoI that correspond to 5 nodes for 1 in Figs. 5.8 and
5.9, 10 nodes for 2, 15 nodes for 3 and 20 nodes for 4. This kind of definition
of interest implies that a ZoI will be “covered” but in some other zone of
the field there could be some holes as we can observe in Fig. 5.9. Both the
Basic-Heuristic and the Ext-Heuristic move nodes in a soft way toward the
ZoI by better keeping the general coverage of the field. It is worth to recall
that both our techniques, the Basic-Heuristic and the Ext-Heuristic are only
based on local information that could not be enough to answer to an increased
request of nodes, but they are able to move some more nodes to the ZoI and
simultaneously they keep the general coverage of the network. In practice, we
observe that the number of nodes in the ZoI increase when the “degree” of
requested nodes increases too, but not in an incisive manner. On the other
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Fig. 5.10. The coverage of a specific ZoI (field size 15x15 and 38 nodes).
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Fig. 5.11. The coverage of the whole field when a specific ZoI is defined (field size
15x15 and 38 nodes).

hand, we observe that the shape of the curve tend to be stable even if the zone
is more “interesting”. this is due to two reasons: 1) as we already outlined the
Basic-Heuristic is only based on local information and is not able to move
far nodes towards more “interesting” zones; 2) the Basic-Heuristic tries to
“respond” to the requests of the other zones and will try to arrange nodes to
cover all the zones except the specific zone with obstacles. This means that we
do not have all the nodes available for the ZoIs. A similar behavior is shown
in Figs 5.10, 5.11, 5.12 and 5.13. In Fig. 5.10 we show the reactiveness of
our coverage techniques when the sensor field is 15X15 and the “degree” of
interest increases as we already explained.

It is very interesting to notice as the greater is the sensor field, the worst
the Optimization model is able to manage the coverage. On the other hand
when the size of the field increases, both the heuristic, but above all the Ext-
Heuristic, are able to arrange nodes in a way to smoothly “over-cover” the
ZoI and at the same time to keep a good general coverage of the whole sensor
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Fig. 5.12. The coverage of a specific ZoI (field size 25x25 and 120 nodes).
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Fig. 5.13. The coverage of the whole field when a specific ZoI is defined (field size
25x25 and 120 nodes).

field. This behavior is really interesting since in real situation we can have
the necessity to “over-cover” some specific zones for a limited time but we
need to monitor the rest of the field in order to be able to move nodes in an
appropriate fashion whether something interesting happens.

We considered another interesting kind of simulations based on the in-
creasing of the sensing (coverage) radius r when a ZoI is defined in a sensor
field of 15X15, the total number of nodes is 38 and the “degree” of interest is
2. In Fig. 5.14 we considered the Basic-Heuristic-COV and the Ext-Heuristic-
VIS. The terms COV and VIS are respectively for COVerage and VISibility.
In practice, we assume two kinds of radius, the first one is the coverage radius,
that is the classical definition of radius, all the points that are inside a Lee
sphere with radius r are covered from a sensor at the center of the Lee sphere.
The visibility radius is the capability of a node to acquire the information (in
this case the maps) at the distance r, but the coverage is always equal to 2.
We retained useful the introduction of this different concept of radius in order
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Fig. 5.14. The coverage of a specific ZoI with COV and VIS radius (field size 15x15,
38 nodes and “degree” of interest equal to 2).

to evaluate the effectiveness of more information in terms of maps and we
considered that this kind of information can be easily obtained by considering
a communication protocol where neighbor nodes change data (in a communi-
cation protocol we can easily figuring out that nodes can exchange maps till
two-hops of distance). In Fig. 5.14 we show the behavior of the Optimization
Model the Basic-Heuristic-COV with a variable coverage radius ranging from
1 to 5. To the contrary, the Ext-Heuristic-VIS considers the radius coverage r
equal to 2, but it is able to obtain the maps until the variable distance ranging
from 1 to 5. In Fig. 5.14 we can notice how only for the last point (where the
coverage radius is equal to 5) there is an increasing of the coverage of the ZoI.
On the other hand it is worth to outline that the same number of nodes cover
more zones when the coverage radius is higher. In fact, the interesting aspect
of these last Figures is in the observation of the Ext-Heuristic-VIS, where we
only give our nodes more information by keeping the same coverage radius.
As we can observe in Fig. 5.14 it seems that the more available information
does not improve the concentration of the nodes in the ZoI.

On the other hand, the more information worsens the general coverage as
we can observe in Fig. 5.15 where we show the coverage of the whole field
with the conditions of the Fig. 5.14. In practice, our Ext-Heuristic behaves
and reacts better when no too information are available since otherwise nodes
will be pushed in many different direction simultaneously.
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Fig. 5.15. The coverage of the whole field when specific ZoI is defined, with COV
and VIS radius (field size 15x15, 38 nodes and “degree” of interest equal to 2).

5.7 Conclusion

In this chapter we proposed a new heuristic technique to move in an op-
portunistic fashion sensor devices in order to accomplish different coverage
requests. This heuristic is extremely flexible, adaptive and works in a dis-
tributed fashion. In fact, based on local information it is able to “capture”
the situation in the surrounding and nodes move in a greedy fashion by try-
ing to cover the lesser covered zones. The surrounding information can both
represent the information of how much a close point is covered and how much
a node needs to be covered. This latter point allow to introduce the concept
of “more interesting zone”, that is a zone that for many reasons needs to be
highly monitored. The heuristic is extremely simple and can easily be imple-
mented in simple sensor devices, because does not require much computation
resources. In order to evaluate the effectiveness of this simple technique we
considered three coverage approaches: an optimization model that give the
optimal solution in terms of coverage, a genetic based approach that works in
a centralized way and a virtual forces based technique. The different scenarios
we considered show that our approach allows to reach results close to those
of the optimization model and the genetic approach and in certain scenarios,
when the size of the sensor field increases, our scheme is able to outperform the
virtual based approach. Moreover, we introduced some obstacles in the sensor
field in order to understand if our approach is able to adapt the movement of
nodes in an effective way when obstacles are present. Results are encouraging
also in this specific condition.



Conclusion

This PhD thesis has focused on communication networks composed of devices,
whose tasks are no longer limited to data transmission. In fact, devices can
be equipped with sensor for event detection, and several actuator also for
allowing nodes to move.

The work done has shown as such devices need to be programmed in a
new way through methodologies that permit the learning process and the
emergence of behaviors that fit with the network issues. Methodologies useful
for this purpose have been shown; some of them take inspiration from other
disciplines, such as swarm intelligence and evolving neural networks, both
inspired by biology.

Through this new way of ”’programming”’ the nodes, the network be-
comes a self-organized system where the components act in a cooperative way
through simple locale rules learned from both the environment and the in-
teractions with other nodes, and the global behaviour that emerges responds
adequately to the dynamics of the surrounding environment that can also be
particularly hostile.
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Applied Mathematical Modelling.

2. Simulations of the impact of Controlled Mobility for Routing Protocol, V. Loscŕı,
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