

UNIVERSITÀ DELLA CALABRIA
Facoltà di Ingegneria

Dipartimento di Elettronica, Informatica e Sistemistica

Dottorato di Ricerca in Ingegneria dei Sistemi ed Informatica
XXIV ciclo

Settore Scientifico Disciplinare ING/INF-05

Tesi di Dottorato

The Generative Aspects of Count Constraints:
Complexity, Languages and Algorithms

Coordinatore
Prof. Luigi Palopoli

Supervisore
Prof. Domenico Saccà

Edoardo Serra

Anno Accademico 2010/2011

to my Mother

Acknowledgments

I owe my deepest gratitude to my mentor Prof. Domenico Saccà who, under his
direction, has been able to bring out the best of me and give me the right space to
take confidence with my capabilities, without never suppress my creativity.

I wish to express my gratitude to Dr. Antonella Guzzo and Dr. Luigi Moccia
(Antonella and Luigi) that with their suggestions always help me, proving to be true
friends.

Special thanks to Prof. Carlo Zaniolo that during my visit to UCLA (Los Angeles,
CA) has been present and under his supervision I spent a productive year.

I wish to thank Prof. Francesco Scarcello (Francesco) whose door are always
opened for any theoretical question.

Last but not the least I would like to thank my Dad and my girlfriend Francesca.

Rende,

November 2011 Edoardo Serra

Contents

1 Introduction . 1
1.1 Inverse Frequent set Mining (IFM) . 2
1.2 Count constraints and the inverse OLAP problem 6
1.3 Datalog with frequency support goals . 9
1.4 Contributions of the thesis . 11
1.5 Organization of the thesis . 12

2 Inverse Frequent Itemset Mining Problem (IFM) 15
2.1 Introduction . 15
2.2 Problem Formalization and Complexity Issues 16
2.3 A Level-Wise Solution Approach for IFMS . 19

2.3.1 Description of the Algorithm . 19
2.3.2 Optimization Issues . 21
2.3.3 An Example of computation . 22

2.4 Solving the General Case of IFM . 23
2.5 Computational Result . 24

2.5.1 Test instance . 25
2.5.2 Results . 25

3 A New Generalization of IFM . 29
3.1 Introduction . 29
3.2 Problem Formalization . 32

3.2.1 The κ-IFMσ′ as an Integer Linear Program 35
3.2.2 The κ-IFMσ′ as a Linear Program . 38

3.3 Column Generation Algorithm to solve LP . 39
3.3.1 Column Generation Algorithm . 39
3.3.2 Complexity of the Pricing Problem . 41
3.3.3 A Heuristic Algorithm for the Pricing Problem 44
3.3.4 Heuristic Column Generation Algorithm 45

3.4 Computational results . 47
3.4.1 Test instances . 47

X Contents

3.4.2 Results . 50
3.5 Related Works . 55

3.5.1 Solving FREQSAT with Heuristic Column Generation
Algorithm . 57

3.5.2 Comparison with IPF . 58
3.6 Applications of IFM . 59

4 Count Constraints and the Inverse OLAP Problem 61
4.1 Introduction . 61
4.2 Preliminaries and related work . 63

4.2.1 From IFM to Inverse OLAP . 63
4.2.2 Data Exchange . 64

4.3 Count Constraints . 64
4.3.1 A Motivating Example . 68

4.4 The Inverse OLAP Problem: Definition and Complexity 70
4.4.1 Binary Domain Inverse OLAP . 70
4.4.2 Binary Attribute Inverse OLAP . 77
4.4.3 Data Complexity of Inverse OLAP . 78

4.5 A Step towards Aggregate Data Exchange . 79

5 Datalog with frequency support goals . 83
5.1 Introduction . 83
5.2 Related Work . 84
5.3 DatalogFS by Examples . 85
5.4 Semantics of DatalogFS . 88

5.4.1 Rewriting of DatalogFS into Datalog . 88
5.4.2 Stratified DatalogFS . 89
5.4.3 Recursive DatalogFS . 89

5.5 Multi-Occuring Predicates . 90
5.6 Implementation & Optimization . 93

5.6.1 Differential Fixpoint . 93
5.6.2 Magic Sets . 95
5.6.3 Avoiding Expansions . 96

5.7 Scaling . 98
5.8 More Advanced Applications . 99

5.8.1 Diffusion Models with DatalogFS . 100
5.8.2 Markov Chains with DatalogFS . 102

6 Conclusions . 107

References . 109

1

Introduction

Important elements of database models are the integrity constraints . The integrity
constraints are used to enhance the expressiveness of data model; In other words
the integrity constraints represent properties that the data structure of database must
have. If the data satisfy the integrity constraints, such data are said consistent. A
typical database model is the relational model, where the data structure is represented
as a set of relations and each relation identifies an entity described through a set of
attributes. In the relational schema there are more types of constraints as functional
dependencies, primary key, foreign key and attributes domain [AHV95]. Consider
a classical example of a database of a university where students attend courses and
each course is done in a specific quarter of the year. A possible relational schema is
the following:

student(idn, name), attend(student, course), course(id, quarter)

and we have the following integrity constraints:

• Functional dependencies: Given a relation R, a set of attributes X in R is said to
functionally determine another attribute Y in R, X → Y , if, and only if, each X
value is associated with precisely one Y value. A special case of functional de-
pendency is the primary key constraint that imposes that each record of a relation
is uniquely identified by a specific set of attributes, called key, i.e. in a relation
cannot exist two records with the same assignment of values of the key set. In
our example course(id, quarter) the key is the underline attribute id that can be
express as functional dependency id→ quarter.

• Foreign key constraints: A foreign key imposes that a specific attribute in a rela-
tion has values take out of values of a key attribute in an other table, for example
with the notations attend(, X)→ ∃Y : course(X,Y) we indicate that the val-
ues of attribute course in relation attend are at most the values in attribute id in
relation course.

• Attribute domain constraints: An attribute domain constraint imposes that all
value of a specific attribute in a relation must belong to a specific domain. For

2 1 Introduction

example with the notation course(, Y)→ Y ∈ {fall, winter, spring} we im-
poses that each values of the attribute quarter in the relation course must belong
to the set {fall, winter, spring}.

• Cardinality constraint: A cardinality constraint is a special constraints that im-
poses that the cardinality of a specific projection over a relation, belongs to a
particular range of values. We recall that the projection operation extracts only
the specified attributes from a tuple or set of tuples [AHV95]. In the example we
have that every course must have at least 20 students and at most 25.

Common problems dealing with integrity constraints are: data consistency check-
ing and constraints consistency checking. Since the integrity constraints imply that
the data in the database must have a particular structure, the first problem consists in
verifying if the data in the database satisfy the given constraints (this phase is also
called check phase). Typically data consistency check is done after a change (update
or insert) of the data, and the validation depends on the result of the check phase.
When there is a lot of constraints (especially in the context of ontology), an other
interesting problem consist in verifying if there exists at least a data structure that
satisfy them, in such case the constraints are said consistent (constraints consistency
checking). Actually, current literature focused on the decisional version of both two
problems, while the generation of data has not been enough investigated. Conversely,
we consider the constraints discussed above, from a different point of view, that is
by investigating on the generative aspect, i.e. the way to materialize the data that sat-
isfy them. Moreover, we focus on a special type of constraint over aggregate value,
called count constraint, which is described by two elements: a description of the set
in which the count aggregate is applied and a numeric interval in which the value of
the count aggregate must belong. We will briefly show in the Section 1.2 how our
count constraints are able to express all previous integrity constraints.

We consider the generative aspect of count constraint in the following three con-
texts:

1. Transaction database and support constraints (Section 1.1);
2. Relational database and count constraints (Section 1.2);
3. Deductive database: datalog with frequency support goals (Section 1.3).

1.1 Inverse Frequent set Mining (IFM)

Transaction databases are databases where each tuple, called itemset (or transac-
tion), is defined as a subset of a fixed set of items I (e.g. in market data, a transaction
corresponds to one purchase event and each item is a salable product). Given an item-
set J and a transaction database, two measure are defined: (i) number of duplicates,
i.e. the number of times that the itemset appears in the transaction database, and (ii)
support, i.e. the number of itemsets in the transaction database that contain the spec-
ified itemset. An example of transaction database over the items I = {a, b, c, d} is
the following:

1.1 Inverse Frequent set Mining (IFM) 3

transaction NDUP
{a, b, c} 8
{a, b, d} 14
{a, b} 4
{d} 2

where the field transaction represents the itemsets and NDUP are its numbers of
duplicates for the itemsets. Over such database, given an itemset subset of {a, b, c, d}
we can compute its support; for example, the support of {a, b} is equal to 8+14+4 =
26 because {a, b} is contained in {a, b, c}, {a, b, d} and {a, b}.

The Inverse Frequent set Mining problem (IFM) [Mie03] is the following. Given
a set S of frequent itemsets subset of I and a specified range of support for each
itemset in S, construct a transaction database D (if any exist) that satisfies a set of
support constraints over S. A support constraint is a triple composed by an itemset I
and two non negative integers σmin and σmax that represents the extremes of range
[σmin, σmax] . Such support constraint is satisfied in a database D if the support of
the itemset I belongs to [σmin, σmax]. It is important to notice that, since the support
of an itemset is the number of transactions that contain this itemset, then a support
constraints can be seen as a specialization of count constraint. Its major applications
concern privacy preserving and generator for benchmarking data.

For example, consider the following instance of IFM over a set of items {a, b, c, d}:

I σmin σmax

{a, b, c} 8 10
{a, d} 10 14
{b, d} 18 20
{d} 20 40

where the field I represents the itemset and [σmin, σmax] is the ranges of its
support. The following two databases satisfy this constraints:

transaction NDUP
{a, b, c} 8
{a, b, d} 14
{b, d} 4
{d} 2

transaction NDUP
{a, b, c, d} 6
{a, b, c} 2
{a, b, d} 8
{b, d} 6

Normally, the itemsets provided in S are only the frequent ones, i.e. the itemsets
whose support is greater or equal than a fixed threshold. However, with classical IFM
formulation this assumption is not holds. In fact IFM formulation does not impose
that each itemset not in S must be infrequent i.e. with a support below than the
frequency threshold. As an example, we can see in the previous two databases, that
the support of {a, b} is 22 in the first database and 16 in the second. If we compare
the support of {a, b} with respect to the support of other itemset in S we cannot say
that {a, b} is infrequent. Therefore the itemset {a, b} results frequent even if it is not
specified. We consider this aspect as an anomaly of the formulation.

4 1 Introduction

To solve this anomaly we initially define a new version of IFM, called IFMS .
Such formulation, under the assumption that each itemset not in S must be infre-
quent (not significant), imposes that each itemset not in S has support equal to zero
or equivalently the number of duplicates is zero. We prove that this subproblem is
NP-complete, and provide an heuristic algorithm that always satisfies the maximum
support constraints, but that treats minimum support constraints as soft ones that are
enforced as much as possible. In fact, a thorough experimentation evidences that
minimum support constraints are hardly violated in practice, and that such negligible
degradation in accuracy is compensated by very good scaling performances.

Despite the IFMS solves this anomaly, the assumption that each itemset not in S
must have a support equal to zero, can be restrictive. Consider the following instance
over items I = {a, b, c}.

I σmin σmax

{a, c} 4 4
{b, c} 3 3
{c} 5 5

Since the number of duplicates or the support of itemsets not in S must be equal to
zero, then the itemset in D can only be the itemset in S. Thus, there is not solution
to the IFMS problem in fact the database that satisfies the previous constraints must
have the following structure:

transaction NDUP
{a, c} ?
{b, c} ?
{c} ?

It is easy to see that, if we satisfy the first two constraints over itemsets {a, c} and
{b, c}, automatically the constraint over itemset {c} is violated because its support
is equal to 4 + 3 = 7.

If we admit that can exist in the database other itemsets not defined in S but with
limited support (in this case less or equal 2), then it is possible generate a database
that satisfies the above constraints. Such database is the following:

transaction NDUP
{a, b, c} 2
{a, c} 2
{b, c} 1

It is important to notice that the support of {a, b, c} is less than of the one of other
itemset in S, therefore it can be considered infrequent.

To tackle this problem we propose a pregeneration method. The pregeneration
method consists to generate a new instance of IFMS over an extended set of itemsets
S ∪ S+ where S+ is a the set of new itemsets different from S. The pregeneration
method heuristically builds by using itemsets in S, a limited number of itemsets not
in S that puts in S+. In the new instance of of IFMS is imposed that the support of
each itemset in S+ is lesser or equal to a fixed support threshold σ′.

1.1 Inverse Frequent set Mining (IFM) 5

At this point it is important to show that not all itemsets not in S can be con-
strained. Consider, in fact, the following instance over a set of items {a, b, c}:

I σmin σmax

{a, c} 4 4
{c} 5 5

If we impose that the threshold of new itemsets σ′ is equal to 2, then the itemset {a},
not contained in S, must have a support less or equal to 2, and therefore the itemset
{a, c} cannot have a support equal to 4 but only 2. For this reason, we constraint only
the itemsets not in S such that does not exist an itemset in S that contains them, such
set is called S′

S′ = {I ∈ UI \ S |@I ′ ∈ S : I ⊂ I ′}
where UI is the set of all itemsets contained in I. We think that the information about
of itemsets in S are more accurate w.r.t the succinct information given by the thresh-
old support for the itemsets not in S. In Chapter 2 are reported the IFMS formaliza-
tion, the IFMS heuristic, the pregeneration method, and their relative experimental
results.

Nevertheless the experimental results of previous methods are satisfactory, the
pregeneration of a limited set of itemset is not always sufficient, because it is difficult
to establish what are the itemsets that can improve the satisfying of the constraints in
S.

An alternative approach that significantly improve the previous results consists in
a generation of itemsets not in S of the type step by step, i.e. starting with a fixed set
of itemsets, solve the problem with such set and after try to find a new itemset that
can improve the current solution. Such process continues until the current solution
satisfies each constraint or does not exist an other itemset that improves the solution.

The big problem in such approach is that we must always guaranty that the sup-
port of itemsets in S′ is less or equal than a fixed threshold. For this reason, we
provide a new formulation called IFMσ′ , that imposes that each itemset not in S has
a support less or equal than a fixed threshold σ′. We will show that this problem is
NEXP-complete and such complexity is caused by imposing that each itemset not
in S has a support less or equal to σ′. In fact to verify that a database satisfies all the
constraints, we must compute for each itemset, its support and the number of each
itemset in S′ can be exponential in the size of I.

Even if the monotonicity property of the support allows to verify only the support
of the minimal itemsets in S′, i.e. the set BS′ defined as follow:

BS′ = {I ∈ S′| 6 ∃J ∈ S′ : J ⊂ I}

the cardinality of BS′ can be exponential in the size of S. In fact, consider the fol-
lowing set of itemsets S over the items I = {a0, a1, b0, b1, c0, c1}:

S
{b0, b1, c0, c1}
{a0, a1, c0, c1}
{a0, a1, b0, b1}

6 1 Introduction

the set BS′ is :

BS′

{a0, b0, c0}, {a0, b0, c1}
{a0, b1, c0}, {a0, b1, c1}
{a1, b0, c0}, {a1, b0, c1}
{a1, b1, c0}, {a1, b1, c1}

As it is possible to see, the cardinality of BS′ is equal to 23, where 3 is the number
of the itemsets in S. In same way, it is possible to produce exponential examples
(|BS′ | = 2n) with n itemsets in S and 2 ∗ n items.

Because BS′ can still be exponential in the size of S, we individuate a parameter
k relative to the number of items. If this parameter is bounded, then also the cardinal-
ity of BS′ is bounded. Such parameter allows to define a parametrization of IFMσ′ ,
called κ-IFMσ′ , that can be reduced to the original IFM problem, thus they have the
same complexity: NP-hard and PSPACE.

Moreover we will show that the IFMσ′ can be formulated as an integer linear
problem with huge number of variables and constraints, in general both exponential
in the size of the input. At the same time it will showed that the parametric versions
can be solved as an integer linear problem only with a huge number of variables.

In order to concretely solve κ-IFMσ′ , we relax the integer constraints over the
number of duplicates and use the column generation method [DT03, DDS05] that is
an efficient way to solve particular linear problem with a huge number of variables.

In order to use the column generation method, it is necessary solve its specific
pricing problem. In our context the pricing problem is NP-complete and we solve
this in exact way by an efficient integer linear formulation and a heuristic way by
using a greedy dept-first algorithm.

The experimental results prove that our new approach is efficient and effective
and the relaxed integer approximation does not compromise the quality of results.
Moreover, despite the IFMσ′ presents a strong complexity, the real life instances
considered, present a very small value of the k parameter, and, therefore, they are
tractable with our approach. The problem IFMσ′ with its parametrization κ-IFMσ′

and column generation methods are discuss Chapter 3.

1.2 Count constraints and the inverse OLAP problem

In the context of relational databases, we propose integrity constraints based on the
first order predicate calculus. Such a constraint is represented by a rule of following
form:

∀X (α → βmin ≤ #({Y : γ }) ≤ βmax).

The head of such rule represents an integer interval where the value of count aggre-
gate #({Y : γ}) must belong, and the body α is a conjunction of atoms. For brevity,
in this section we explain part of the syntax and semantics of our count constraints
by some examples.

1.2 Count constraints and the inverse OLAP problem 7

Consider the initial examples of integrity constraints over the schema:

student(idn, name), attend(student, course), course(id, quarter)

We can rewrite the previous constraints by using our count constraints:

• the functional dependency (the primary key) can be express as

∀ID (Did(ID)→ 0 ≤ #({Q : course(ID,Q)}) ≤ 1)

where Did is the domain of attribute id in the relation course. Such constraint
can be intuitively read as: for the each value of domain Did there is at most one
tuple with such a value of id.

• the foreign key can be expressed as

L = #({ID : attend(, ID)})→
L ≤ #({ID : attend(, ID), course(ID,)}) ≤ L

Such constraint can be intuitively read as: let L the number of id values of the
relation attend then the number of id of relation attend that are also present in
the id values of the relation course is equal to L .

• in the same way of foreign key we can model the domain attribute constraint:

L = #({Y : course(, Y)})→
L ≤ #({Y : course(, Y), Y ∈ {fall, winter, spring}}) ≤ L

• The cardinality constraint can be express as

∀C (course(C,)→ 20 ≤ #({S : attend(S,C)}) ≤ 25)

Such constraint can be intuitively read as: for each course C the number of stu-
dents that attend the course C is between 20 and 25.

Actually, our language is more complex and provides the using of sets definitions.
Consider the relational schema formed by only one relation trans(tid, item) with
domains Dtid and Ditem. Such relation schema plus count constraints can be used to
express the problem of Inverse Frequent Itemset over transaction Databases defined
in Section 1.1. In fact the following transaction database can be transformed in an
instance of the relation trans:

transaction NDUP
{a, c} 2
{b, c} 1

⇒

trans
id tid
1 a
1 c
2 a
2 c
3 b
3 c

8 1 Introduction

where Dtid = {1, 2, 3} and Ditem = {a, b, c}. Therefore, if we want to describe
some constraints over the support of itemsets we can use our count constraints with
the set definition. For example, if we want to say that the support of itemset {a, b, c}
is between 4 and 6 we can use the following count constraint:

I = {a, b, c} → 4 ≤ #({TID : I ⊆ {ITEM : trans(TID, ITEM)}}) ≤ 6

This constraint can be read in the following way: let I be the set {a, b, c} then the
number of tid (transactions) s.t. I is a subset of the set of items belonging to tid is
between 4 and 6.

In the following, similarly to the problem of Inverse Frequent set Mining, we
define the inverse OLAP problem where, instead of find a transaction database that
satisfies a specific set of constraints over the support of the itemsets, we want to find
a relational database that satisfies a set of our count constraints.

We focus on a relation schema typical in the world of OLAP [CD97, LL03,
Han05], i.e. the star schema (see Fiugure 1.1) that consists of one fact table refer-
encing any number of dimension tables.

Fig. 1.1. Star schema

The fact table represents the relation where the values to aggregate are contained.
In our case, we consider only count aggregates, and then the fact table is only a
relation R(A1, . . . , An) with n > 0, where the domains D1, . . . , Dn are specified.
The dimension tables are configured as hierarchy domains, i.e. binary relation linked
to some attribute in R. Thus, the inverse OLAP problem is the following: given a
set of of domains D1, . . . , Dn with possibly a fixed additional number of hierarchy
domains and a set of count constraints, decide whether there exists (or to find) a
relational table R(A1, . . . , An) that satisfies the count constraints.

Similarly to the query problems in databases it is possible to consider for this
problem several type of complexity [Var82]: data complexity (in input only the do-
mains), program complexity (in input only count constraints) and combined com-
plexity (in input domains and count constraints). We prove that inverse OLAP is
NEXP-complete under data, program and combined complexity. Note that, since

1.3 Datalog with frequency support goals 9

our count constraints are very expressive (see the previous integrity constraints ex-
pressed with our count constraints), consider only star schema is not a limitation.

In Chapter 4 are describe in a extensive way the syntax and semantics of count
constraints, the inverse OLAP problem, and its special cases with complexity anal-
ysis; in addition, in the last part of the chapter, some examples showing that our
framework is step toward the data exchange problem with count constraints are de-
scribed. We recall that this is the problem of migrating a data instance from a source
schema to a target schema such that the materialized data on the target schema satis-
fies the integrity constraints specified by it.

We belive that the strict connection between inverse OLAP and IFM problem, can
help us to export the efficient approach used for IFM in the case of inverse OLAP.

1.3 Datalog with frequency support goals

Similarly to the language of count constraints above presented, we introduce a simple
extension of Datalog [Hel10, dMMAG, HGL11], called DatalogFS , that enables us
to query and reason about the number of distinct occurrences satisfying given goals,
or conjunction of goals, called Frequency Support goal (or FS-goal), in rules. The
form of FS-goal is the following:

Kj : [exprj(Xj, Yj)]

where Kj is the counting variable and exprj(Xj, Y j) is a conjunction of positive
atoms. Such count atom is satisfied, intuitively, if there exist Kj different satisfying
ground instances of exprj(Xj, Y j). In the following, we show a simple program in
DatalogFS that computes the persons that will come to a particular event.

willcome(X)← sure(X).
willcome(Y)← 3 : [friend(Y, X), willcome(X)].

The last rule is based on the assumption that a person will come to an event if at least
three friends will come to this event. In fact, as it is possible to see by the FS-goal
3 : [friend(Y, X), willcome(X)], in the program we derive the predicate wilcome(y)
if y has at least three different friends x1, x2, x3 (friend(y, x1), friend(y, x2)
and friend(y, x3)) such that x1, x2, x3 will come to the event (wilcome(x1),
wilcome(x2) and wilcome(x3)).

In the previous program the counting variable Kj is fixed to the value 3. How-
ever, in a general program Kj is not fixed and can be present in other predicates in
the body or directly present in head of the a rule, as in the last rule of the following
example that computes the number of friends of a person.

friend(x0, x1)
friend(x0, x2)
friend(x0, x3)
nFriend(X, K)← K : [friend(X, Y)].

10 1 Introduction

In this case, the facts nFriend(x1, 1), nFriend(x1, 2) and nFriend(x1, 3) are de-
rived. Actually, we are only interested in the fact nFriend(x1, 3) that contains the
maximum value of the counting variable K. For this reason, we introduce the m-
predicates (multiplicity predicates) that, instead of storing a fact for each value as-
sumed by K , it directly stores the multiplicity fact with the maximum value of K. In
this case the last rule of the previous program is rewritten by using an m-predicates
as follows:

nFriend(X) : K← K : [friend(X, Y)].

and the derived facts are only nFriend(x1) : 3. It is important to notice that we
do not change the semantics but only the way of computing. More specifically, the
fact nFriend(x1) : 3 is a compact way to represents the three facts nFriend(x1, 1),
nFriend(x1, 2) and nFriend(x1, 3) i.e. if we know nFriend(x1) : 3 then we also
know nFriend(x1) : 2 and nFriend(x1) : 1.

Consider now the following program, where, given a complex object formed
by a fixed number of subpart (a subpart can be a basic object or an other complex
object), it able to compute the number of elementary part of the complex object. Let
basic(part) be facts that describe the basic part and assbl(part, sub, qty) be the
facts that describe the number (qty) of sub-part (sub) that are present in a complex
object (part), the program is the following:

cassb(Part, Sub) :Qty ← assbl(Part, Sub, Qty).

cbasic(Pno) :1← basic(Pno).
cbasic(Part) :K← K : [cassb(Part, Sub) : K1, cbasic(Sub) : K2].

In this example we can see two m-predicates cassb and cbasic were the respective
multiplicity variable are Qty (first rule) and K (second rule). The first rule transforms
the quantity information Qty stored in assbl(Part, Sub, Qty), in a multiplicity of
predicate cassb, e.g. if there exists the fact assbl(p1, p2, 2) the first rule derives
two multiplicity facts cassb(p1, p2) :1 and cassb(p1, p2) :2, and in the interpreta-
tion are stored only the fact cassb(p1, p2) : 2. The last two rules with m-predicate
cbasic are used to compute the number of basic elements of a particular complex
object. In the last rule the FS-goal K : [cassb(Part, Sub) : K1, cbasic(Sub) : K2]
computes the number of basic element. Consider the following example wsere we
have two basic part s cbasic(p1) : 1 and cbasic(p2) : 1, and the complex object
p is formed by two basic object of p1 and one basic object of p2 (cassb(p, p1) : 2
and cassb(p, p2) : 1). Therefore, we have the following three ground instance that
satisfy cassb(Part, Sub) : K1, cbasic(Sub) : K2 conjunction:

cassb(p, p1) : 2, cbasic(p1) :1
cassb(p, p1) : 1, cbasic(p1) :1
cassb(p, p2) : 1, cbasic(p2) :1

The derived result is cbasic(p1) :3.

1.4 Contributions of the thesis 11

Moreover, as it possible to see in the last rule of the previous example, we can
give recursive definitions that use the FS-goal, this because the FS-goal is monotone.
We prove, by an elegant rewriting of the FS-goal by using lists, that the immediate
consequence operator of DatalogFS is monotone. We show how this simple extension
is able to express more queries in the context of social networks, and work with
Markow chains. More details are given in Chapter 5.

1.4 Contributions of the thesis

In this section we summarized our contributions in each of the contexts above dis-
cussed.

Inverse Frequent set Mining

• We define IFMS problem where the itemset not in S has support equal to zero,
prove that its complexity is NP-complete and provides an heuristic level-wise
algorithm for its resolutions.

• We provide a pregeneration method to extract new itemsets not contained in S.
• We give some experimental results showing that the heuristics algorithm for

IFMS problem combined with the pregeneration is a good approach to IFM prob-
lem.

• We define the IFMσ′ problem where the itemset not directly specified in input
instance are constrained to be infrequent i.e. they have a support less or equal to
a specified unique threshold. Its complexity is NEXP-complete.

• We find a parameter K relatives to the number of items. Such parameter allows to
define a parametrization of IFMσ′ , called κ-IFMσ′ , that can be reduced to origi-
nal IFM problem, thus they have the same complexity NP-hard and PSPACE.

• We show that the IFMσ′ can be formulated as an integer linear problem with
huge number of variables and constraints, in general both exponential in the size
of the input. At the same time we show that the parametric versions can be solve
as an integer linear problem only with huge number of variable.

• In order to concretely solve κ-IFMσ′ we relax the integer constraints over the
number of duplicates and used the column generation method that is an efficient
way to solve particular linear problem with an huge number of variable.

• Since to use the column generation method it is necessary solve its specific pric-
ing problem, we study its complexity (NP-complete) and proposed a formulation
of ILP and a polynomial heuristic.

• We show by experimental results that the approach for IFMσ′ is efficient and
effective and the relaxed integer approximation did not compromise the quality
of results. Moreover, despite the problem presents a strong complexity, the real
life instances considered, present a very small value of k parameter, and therefore
they are tractable with our approach.

12 1 Introduction

Count constraint and inverse OLAP problem

• We provide a new language to define count constraints in relational schema
whose special cases are well known relational integrity constraints.

• Similarly to IFM problem we define the inverse OLAP problem: given a set of at-
tribute domains and a set of count constraints verify if there exists (and eventually
find) a relational database over the given domains that satisfies the constraints.

• We prove that inverse OLAP is NEXP-complete under data-complexity, program-
complexity and combined complexity.

• We individuate many significative sub-problems of inverse OLAP.
• We show how the Inverse OLAP problem can be a step toward data exchange

with aggregate constraints.

Datalog with frequency support goals

• We provide an extension of Datalog, called DatalogFS , that enables us to query
and reason about the number of distinct occurrences satisfying given goals, or
conjunction of goals, in rules.

• We prove by an elegant rewriting of frequency support goal that the immediate
consequence operator of DatalogFS is monotone and continuos. This allow as to
also write aggregate recursi ve query in our language.

• We extend the traditional techniques for classical Datalog programs optimiza-
tions as differential fixpoint and magic set to DatalogFS .

• We introduce an optimization technique that compute in efficient way DatalogFS

program with the count variable is in the head.
• We show as DatalogFSextends the application range to support page-rank and

social-network queries

1.5 Organization of the thesis

The thesis is organized as follows:
In Chapter 2 we describe the IFMS problem with its complexity analysis and

a heuristic solution. Moreover we provide the pregeneration methods and show the
experimental results.

In Chapter 3 we give a formalization of IFMσ′ problem, its parametrization
κ-IFMσ′ and the integer linear programming formulation of both. Moreover we pro-
vide an approximation of κ-IFMσ′ based on the relaxation of integer constraints. In
addition we proposed a resolution method based on the column generation approach
and provide its relative pricing problem. In this Chapter, we also study the com-
plexity of the pricing problem, its integer linear programming formulation and an
heuristic algorithm as its solution. Finally we show the experimental results.

In Chapter 4 we provide an extensive language to define count constraints. Next,
we give the formulation of inverse OLAP and we analyzed its complexity in depth.
Moreover, several examples are used to show the applicability of our results, and

1.5 Organization of the thesis 13

in particular we describe how inverse OLAP is a step toward data exchange with
aggregates .

In Chapter 5 we define an extension of Datalog with frequency support goals,
called DatalogFS . We provide the syntax and semantic of the new language. Then,
many applications about page rank and social networks queries are formulated with
our language.

Finally, in Chapter 6 concludes the thesis.

2

Inverse Frequent Itemset Mining Problem (IFM)

The Inverse Frequent itemset Mining (IFM) is the problem of computing a transac-
tion database D satisfying specified support constraints on a given set S of itemsets,
that are typically the frequent ones. Earlier studies focused on investigating computa-
tional and approximability properties of this problem, that is NP-hard. In particular,
a interesting subproblem formulation is considered where the transaction (itemset)
in D are the only itemset in S and minimum and maximum support constraints can
be defined on each itemset. Within this setting, an algorithm is proposed that al-
ways satisfies the maximum support constraints, but which treats minimum support
constraints as soft ones that are enforced as long as it possible. In fact, a thorough
experimentation evidences that minimum support constraints are hardly violated in
practice, and that such negligible degradation in accuracy (which is unavoidable due
to the theoretical intractability of the problem) is compensated by very good scaling
performances.

2.1 Introduction

The inverse frequent set mining problem is the problem of computing a database
on which a given collection of itemsets must be “frequent” [Mie03]. This prob-
lem attracted much attention in the recent years, due to its applications in privacy
preserving contexts [WW05, WWWL05] and in defining generators for benchmark
data [RMZ03]. In particular, earlier studies mainly focused on investigating its com-
putational properties, by charting a precise picture of the conditions under which
it becomes intractable (see, e.g., [Cal04, Cal08, Mie03]), and by observing that
in its general formulation it is NP-hard even if one looks for approximate solu-
tions [WW05].

In this chapter, the inverse frequent set mining problem is reconsidered from
a pragmatic point of view instead. Indeed, we concentrate on defining heuristic
approaches that are able to efficiently and efficaciously solve the problem in real-
world scenarios. In particular, we consider the original formulation of the problem in
[Mie03], where the “frequency” of any itemset in the database is measured in terms

16 2 Inverse Frequent Itemset Mining Problem (IFM)

of its support, i.e., as the number of the transactions in which it occurs. Note that
other approaches to the inverse frequent set mining problem (e.g., [Cal04, Cal08])
considered the actual frequency, i.e., the support divided by the total number of trans-
actions; however, as discussed in [Mie03], supports convey more information than
frequencies and hence the perspective of [Mie03] is adopted here. In fact, while
keeping this perspective, we investigate a more general setting obtained by relax-
ing the simplifying assumption in [Mie03] that the size of the output database must
be known beforehand, and by furthermore considering a minimum and a maximum
support constraint (over each itemset required to occur in the database) in place of a
single support value.

2.2 Problem Formalization and Complexity Issues

Let I = {o1, . . . , on} be a finite domain of elements, also called items. Any sub-
set I ⊆ I is called an itemset over I. The universe of itemsets UI is the set of all
non-empty itemsets over I. A database D over I is bag of itemsets, each one usu-
ally called transaction. The number of transactions in D is denoted by |D|. Given a
database D over I, for each itemset I over I (I ∈ UI), the support of I , denoted by
σD(I), is the number of transactions containing I , and the number of duplicates of
I , denoted by δD(I), is the the number of transactions equal to I . We say that I is a
frequent itemset in D w.r.t. a given support threshold s if σD(I) ≥ s. Observe that
supports are also represented in the literature as a percentage w.r.t. the dimension of
D, i.e. by σD(I)/|D|. Finding all the frequent itemsets in D is the well-known fre-
quent itemset mining problem. The anti-monotonocity property holds for supports:
given two itemsets I and J with I ⊂ J , σD(J) ≤ σD(I).

We denote the set of natural numbers by N0 that will be used for bound. We also
introduce the symbol∞ to denote an unlimited bound and define Ñ0 as N0 ∪ {∞}
— we therefore assume that for each i ∈ N0, i < ∞ holds. Finally, we denote the
set of pairs {(a, b) : a ∈ N0, b ∈ Ñ0, a ≤ b} by Ñ2. In the chapter, we consider the
inverse frequent itemset mining problem: Given a set S of itemset, finding a database
in which each element of S is frequent. This is formalized below.

Definition 2.1 (IFM Problem).
Let:

1. S be a given set of itemsets over the items in I
2. Γσ = {(I, σI

min, σ
I
max) : I ∈ S, (σI

min, σ
I
max) ∈ N2} be a given set of triples

assigning a minimum and the maximum support to each itemset in S

Then, the Inverse Frequent Itemset Mining Problem on I, S and Γσ (short: IFM(I, S, Γσ))
consists of finding a database D over I such that the following condition hold (or
eventually state that there is no such a database):

∀I ∈ S : σI
min ≤ σD(I) ≤ σI

max (2.1)

2

2.2 Problem Formalization and Complexity Issues 17

It is worthwhile noticing that the inverse frequent mining problem was mainly
formulated and analyzed in the literature within contexts where the frequency of
an itemset (i.e. its support σD divided by the total number of transactions in D) is
considered in place of the support in the problem formulation. When using this per-
spective, IFM is generally referred to as the FREQSAT problem, and various com-
plexity results are known for it. For instance, it is well-known that FREQSAT is
NP-complete (even if the size of each transaction is bounded by some given input
parameter or if σmin = σmax) and PP-hard—hence, intrinsically more complex—if
the maximal number of duplicates of any transaction is bounded by some parameter
[Cal04].

Considering the support of the itemsets rather than their frequency received con-
siderably less attention instead. In particular, in [Mie03], a slight variation of IFM
was studied where the size |D| of the output database D is fixed beforehand (short:
IFM|D|). This variation was observed to be NP-hard, even if σmin = σmax. How-
ever, the complexity of the main problem IFM (i.e., in absence of such an additional
constraint on the size ofD) was not derived in earlier literature. Our first contribution
is precisely to complete the picture of the complexity issues arising with the decision
version of the inverse frequent mining problem. Indeed, we shall evidence that IFM
is computationally intractable too, thereby calling for (heuristic) solution approaches
that are efficient in actual scenarios.

Proposition 2.2. IFM is NP-hard, also when σI
min = σI

max for all I in S.

Note that there are several sources of intractability in the formulation of IFM.
The first one is that the “structure” of the various transactions to be inserted into D
is not known beforehand. Therefore, when building such database we are uncertain
on which kinds of transaction to exploit. Towards devising heuristic approaches for
IFM, a natural idea is then to consider a simplification of IFM where for each itemset
J in UI\S not frequently, σD(J) = 0 or δD(J) = 0, i.e. all the possible transactions
are taken from the set S of itemsets provided in input.

Definition 2.3 (IFMS Problem).
Let:

1. S be a given set of itemsets over the items in I
2. Γσ = {(I, σI

min, σ
I
max) : I ∈ S, (σI

min, σ
I
max) ∈ N2} be a given set of triples

assigning a minimum and the maximum support to each itemset in S

Then, the IFMS Problem on I, S and Γσ (short: IFMS(I, S, Γσ)) consists of finding
a database D over I such that the following two conditions hold (or eventually state
that there is no such a database):

∀I ∈ S : σI
min ≤ σD(I) ≤ σI

max

∀J ∈ UI \ S : δD(J) = 0

2

Rather surprisingly, we next show that even IFMS is intractable in general.

18 2 Inverse Frequent Itemset Mining Problem (IFM)

Theorem 1 IFMS is NP-complete in general whereas it is feasible in polynomial
time if σI

min = σI
max for all I in S.

Proof.
Let us first consider the general case. To prove that IFMS is in NP, we observe

that the size of the output database D is certainly bounded by |S| and by the largest
support required in the specification. Hence, in polynomial time a non-deterministic
Turing machine may first guess such database (basically, the support for each itemset
I in S) and then verify whether it satisfies the constraints σi

min and σi
max, by simply

computing the support σD(Ii) on D.
We now prove that IFMS is NP-hard by exhibiting a reduction from the graph

3-colorability problem of deciding whether, given a graph G = (V,E), there is a
3-coloring c : V → {r, g, b} such that c(i) 6= c(j) for each pair of edges (i, j) ∈ E.

Based on the input graph G = (V,E), we construct an instance of the IFMS(I, ΓS)
problem such that: the set I of items is {r, g, b, l1, l2, l3}∪{vx|x ∈ V }∪{ez,y|(z, y) ∈
E}, where conceptually the item r, g, b are the colors in G, l1, l2, l3 are labels imple-
menting an encoding of the three colors, vx is an item for each node in G and ez,y
is an item for each edge in G. The encoding of colors by label is such that any two
colors share exactly one label; in the proof we shall use the encoding r = {l1, l2},
g = {l1, l3} and b = {l2, l3}.

The set ΓS contains two groups of constraints:
Group (I): these constraints are repeated for each node x ∈ V and enforces

that x must be colored with exactly one color. There are 7 itemsets associated to x
organized on 3 levels:

• 3 itemsets at the highest level 2: there is an itemset for each possible color c for
x, containing the items corresponding to the node x, to all the arcs leaving x, to
the color c and to the encoding of the color — the support for such itemsets can
be either 0 or 1;

• 3 itemsets at level 1: there is an itemset for each of the 3 encoding labels, contain-
ing the item corresponding to the label and the item corresponding to the node x
– the support must be exactly 1;

• 1 itemset at level 0 containing the item corresponding to the node x – its support
must be exactly 2;

We explicit the constraints below:

• (Ix,r, 0, 1), (Ix,g, 0, 1), (bx,r, 0, 1), where Ix,r = {vx, r, l1, l2} ∪ I , Ix,g =
{vx, g, l1, l3} ∪I , Ix,b = {vx, b, l2, l3} ∪ I , and I = {ex,y|(x, y) ∈ E};

• ({l1, vx}, 1, 1), ({l2, vx}, 1, 1) and ({l3, vx}, 1, 1);
• ({vx}, 2, 2).

Because of the support constraints for the itemsets at level 1, {l1, vx} cannot occur as
transaction in D as it inherits support from those itemsets; in addition, as the support
of {l1, vx} is 2 and there are 3 itemsets at level 1 with obligatory support 1, exactly
one of the itemsets at level 1 must occur as transaction, whereas the other two inherit
support from a same itemset at level 2. It turns out that exactly one itemset at level 2

2.3 A Level-Wise Solution Approach for IFMS 19

can occur as transaction whereas all others must have support 0 - the itemset selected
as transaction will then fix the unique color for the node x.

Group (II): these constraints are repeated for each edge (x, y) ∈ E and enforce
that two end nodes of the edge have different color. There are 3 itemsets, one for
each possible color; the constraints are:

• ({r, ez,y}, 0, 1), ({g, ez,y}, 0, 1), ({b, ez,y}, 0, 1).

The above itemsets inherit support from two itemsets at level 2: one for x and the
other for y. The constraints of Group (II) enforces that the two itemsets at level 2
cannot be of the same color, thus any two adjacent nodes cannot share the same
color. It follows that the existence of a solution to IFMS witnesses the fact that the
graph G admits a 3-coloring; on the other hand, if IFMS has no solution then the
graph cannot be 3-colored. Hence, IFMS is NP-hard in general.

To conclude the proof, we observe that in the special case where σI
min = σI

max

holds for all itemsets I in S, one may encode the solutions of IFMS in terms of a
system of linear equations over |S| variables and constraints. The result then follows,
since it is well-known that deciding whether a system of linear equations admits a
solution is feasible in polynomial time — note that in this case an integer number
solution is also required. 2

2.3 A Level-Wise Solution Approach for IFMS

In order to devise an efficient and effective algorithm for IFM, we find convenient
to firstly tackle the special case where the output database must be constructed by
using as transactions the input itemsets only (cf. IFMS problem), and then to build
the general algorithm for IFM on top of the solution approach for IFMS .

In fact, given that it is not possible to efficiently enforce both the minimum and
the maximum support on each itemset in S (cf. Theorem 1), we shall propose in this
section an approach to face IFMS which takes care for all I in S of the constraint
over σI

max only, while treating the constraint over σI
max as a soft constraint that must

be satisfied as long as it possible. Here, it is worthwhile anticipating that a thorough
experimental activity conducted on our solution approach evidenced that the output
of our technique will hardly violates for all I in S the constraint on σI

min (though
they are treated as soft ones).

2.3.1 Description of the Algorithm

Recall that IFMS(I, S, Γσ) amounts to finding a database D that is built over the
itemsets in S (each one possibly occurring with multiple repetitions) and where con-
straints associated to the set Γσ are satisfied. Thus, a natural approach to face IFMS

is to iterate over the elements in S and decide how many copies have to be added
in the output database for each of them. However, various strategies can be used to
process the elements in S and to decide about the number of copies to be added for
each of them. Our strategy is based on two key ideas.

20 2 Inverse Frequent Itemset Mining Problem (IFM)

Input: Set S of itemsets over I, set Γσ .
Output: Database D.
Method:

1 let S1, .., Sk be the succession as in Section 2.3.1;
2 D := ∅;
3 for each “level” i : 1 to k do
4 optimizeSelection(i);
5 for each itemset I ∈ Si such that 4σD

min(I) > 0 do
6 insert 4σD

min(I) copies of I in D;
7 end for
8 return D;

Procedure optimizeSelection(i: level in {1, ..., k});
P1 B := bestCandidates(Si,D);
P2 while B 6= ∅ do
P3 select an itemset I ∈ B;
P4 insert inc(I, Si,D) copies of I in D;
P5 B := bestCandidates(Si,D);
P6 end while

Fig. 2.1. Solution Algorithm for IFMS .

Firstly, we propose to process the itemsets of S that are candidates for being
added to the output database D by means of a level-wise approach, where larger
(w.r.t. set containment) itemsets are processed first. Formally, let S1, S2, .., Sk be a
succession of subsets of S such that: (i) Si∩Sj = ∅ for each i 6= j; (ii)

⋃k
i=1 Si = S;

and, (iii) for each pair of subsets Si and Sj with i < j, and for each itemset J ∈ Sj ,
there is an itemset I ∈ Si s.t. I ⊃ J and there is no itemset I ′ ∈ Si s.t. I ′ ⊆ J .
Note that the succession S1, S2, .., Sk can efficiently be computed from S, and that
by processing itemsets according to their order of occurrence in the succession, we
can enforce that each itemset is processed prior to its subsets.

Secondly, whenever processing the i-th element Si of the above succession and
for each itemset I ∈ Si, we propose to add in D the minimum possible number of
copies of I that suffices to satisfy σI

min and that do not lead to violate the maximum
support constraints on the subsets of I , which have in fact to be still processed.
Formally, let ∆D(I) = minJ∈S|J⊂I(σ

J
max − σD(J)). Then, such number of copies

is given by the expression4σD
min(I) = min(σI

min − σD(I),∆D(I)). Note that one
may obtain 4σD

min(I) ≤ 0, thereby implying that the algorithm fails in providing
the minimum required support for I .

An algorithm implementing these ideas is shown in Figure 2.1. The input of
the algorithm is a set of itemsets S and a set Γσ denoting the support constraints
associated with such itemsets. The output is a database with itemsets as transactions,
which is meant as a heuristic solution to IFMS(I, S, Γσ).

2.3 A Level-Wise Solution Approach for IFMS 21

The algorithm starts by setting the database D to the empty set, and then applies
the level-wise exploration of the itemsets in S in order to add elements into D—for
the moment let us get rid of step 4 that implements an optimization discussed in
Section 2.3.2. In fact, given that each update on D preserves the maximum support
constraint on all the subsets of the processed itemset and given that itemsets are
processed according to their set inclusion, it is immediate to check that the resulting
databaseD is such that for each item I ∈ S, σD(I) ≤ σI

max holds. However, we have
no theoretical guarantee on the fact that the minimum support constraint is satisfied
over each itemset. In an extreme case, no copy of some itemset might be added to D
even though a certain number of them are required.

As for the running time, note that the dominant operation in step 6 is repeated
|S| times, i.e., once for each itemset in S. Moreover, computing ∆σD

min(I) requires
iterating over all the subsets of I , which are |S| at most. In total, O(|S|2 × |I|) is
a bound on the running time of the algorithm in Figure 2.1, where the |I| factor
accounts for the cost of manipulating (e.g., comparing) itemsets composed by |I|
items at most after an arbitrary ordering is fixed on them.

2.3.2 Optimization Issues

In the algorithmic scheme we have discussed, at each level i of the search, itemsets
from Si only are added into D. In practice this might be too restrictive. Indeed, we
might think of enforcing the support of each itemset I ∈ Si by adding an itemset
J ⊃ I contained in some set Sj with j < i, rather than by directly adding I . In fact,
note that such an itemset Sj is guaranteed to exists (except for i = 1), by construction
of the succession S1, ..., Sk.

This optimization founds on the idea that enforcing the support of I by includ-
ing copies of one of its supersets has the side-effect of incrementing the support of
other itemsets included in J and, hence, belonging to same level subsequent to Sj .
This is very relevant in our approach, given that this effect goes in the direction of
amplifying the chances of ending up with a database satisfying the minimum sup-
port constraints over all itemsets, which is a critical issue as we discussed above.
In practice, to implement this strategy, the algorithm in Figure 2.1 accounts for an
optimization step that is performed before that itemsets at the current level Si are
analyzed. This optimization is next discussed in detail.

Let 4σD
max(I) = min(σI

max − σD(I), ∆D(I)) be the maximum number of
copies of I that can be added toD while still satisfying σI

max and while not violating
the maximum support constraints on the subsets of I . For any itemset I ∈ Sj and for
any element Si with i > j, define then inc(I, Si,D) as the value:

min

4σD
max(I), min

I′ ∈ Si ∧ I′ ⊂ I∧
σmin(I

′) > σD(I′)

(σI′

min − σD(I ′))

 .

Intuitively, this is the maximum increment allowed on the support of I computed
by also considering as a bound the minimum support which suffices to satisfy the

22 2 Inverse Frequent Itemset Mining Problem (IFM)

constraints σIs
min on any of its subsets Is that have still to be satisfied (i.e., for which

σIs
min > σD(Is) currently holds). In practice, we do want to increment the support of

I by affecting as less as possible the support of its subsets. Based on the increment
values computed at the level associated with Si, we want to compute the set of all the
itemsets in some level below Si that leads to reduce as much as possible the number
of itemsets to be added to D.

To this end, define first gainSet(I, S, J,D) as the itemsets whose minimum
support is not yet satisfied and that are subsets of I and supersets of J , i.e.,
gainSet(I, S, J,D) = {I ′ ∈ S | I ′ ⊂ I ∧ I ′ ⊃ J ∧ σI′

min < σD(I ′)}. Define
then gain(I, Si, J,D) as the value:

inc(I, Si,D) ∗ (|gainSet(I, S, J,D)| − 1)

4σD
max(I)

.

Intuitively, this is a normalized value that is meant to denote the advantage of
adding inc(I, Si,D) copies of I to D w.r.t. an itemset J that have still to be pro-
cessed. By averaging this gain over all the itemsets that have to be processed, we
define the value avgGain(I, Si,D) as:∑

J∈
⋃k

j=i+1 Sj∧J⊃I gain(I, Si, J,D)

|
⋃k

j=i+1 Sj |
.

Finally, let bestCandidates(Si,D) be the set of all itemsets in
⋃i−1

j=1 Sj on which the
maximum value (not equals to zero) of the average gain is achieved . These itemset are those
that we consider the most promising for being added to D. These itemsets are computed in
step P1 of the optimization procedure and updated in P5, after that inc(I, Si,D) copies of an
itemset I (arbitrarily picked from bestCandidates(Si,D)) have been actually added to D.

As for the running time, note that while without optimization we need to iterate only over
the sets in |S| (as to compute ∆σD

min(I)), we now need to compute the set bestCandidates(Si,D)
which is feasible in O(|S2|). In total, the complexity is now O(|S3| × |I|).

2.3.3 An Example of computation

We conclude the description of the algorithm in Figure 2.1 by illustrating an example of com-
putation over an IFMS problem defined over the set I = {a, b, c, d} of items, and such that:
S = {I1, ..., I9} where I1 = {a, c, d}, I2 = {a, b, c}, I3 = {c, d}, I4 = {c, a}, I5 = {b, c},
I6 = {d}, I7 = {a}, I8 = {c}, and I9 = {b}; and where the functions σmin and σmax are
those defined in the following table:

I1 I2 I3 I4 I5 I6 I7 I8 I9

σmin 1 1 1 4 5 1 4 5 5
σmax 4 5 4 5 6 4 5 6 6

Fig. 2.2. Example in Section 2.3.3: Input Itemsets (top). Database Generation (bottom).

2.4 Solving the General Case of IFM 23

Note that itemsets in S can be arranged into the three levels S1, S2, and S3, as for they
are graphically depicted in the topmost part of Figure 2.2. Thus, at the first iteration of the
algorithm, all the elements in S1 are processed. No optimization can be performed on them
since this is the first level of the hierarchy, and hence the algorithm performs steps 5 and 6
by updating the database D (initially empty) by adding one copy of I1 and one copy of I2. In
fact, note that 4σD

min(I1) = 4σD
min(I2) = 1.

In the second iteration, the algorithm processes the second level S2. This time, the
optimization procedure can be applied to S1. Note that we have: gain(I1, S2, I6,D) =

gain(I1, S2, I7,D) = gain(I2, S2, I7,D) = 3∗(1−1)
3

= 0, gain(I1, S2, I8,D) = gain(I2, S2, I8,D) =
3∗(2−1)

4
= 0.75, and finally gain(I2, S2, I9,D) = 3∗(1−1)

5
= 0.

Thus, avgGain(I1, S2, S3,D) coincides with the value:

gain(I1, S2, I6,D) + gain(I1, S2, I7,D) + gain(I1, S2, I8,D)

4
= 0,

whereas avgGain(I2, S2, S3,D) is the value:

gain(I2, S2, I7,D) + gain(I2, S2, I8,D) + gain(I2, S2, I9,D)

4
= 0.18.

It follows that, at the end of the second iteration, the algorithm updates D by adding
inc(I2, S2,D) = 3 copies of I2 into D. The reader may now check that the subsequent
iteration ends up by adding one copy of I5. After this update, the database D turns out to
satisfy all the constraints (see the bottom part of Figure 2.2).

2.4 Solving the General Case of IFM

Now that a solution approach for IFMS has been described, we can move to discussing a
solution approach for the more general IFM problem. In fact, it it worthwhile observing that
the algorithm in Figure 2.1 can already be seen as a heuristic approach to face IFM. Indeed,
in addition to the specific heuristic used to deal with the support constraints, this algorithm
heuristically solves IFM by restricting the set of all the possible transactions to those in S.

In practice, focusing on the set S might be too restrictive to solve IFM. Thus, we propose
to enlarge the original set S by including various novel itemsets (built from those in S), whose
exploitation is envisaged to be beneficial for improving the effectiveness of the algorithm in
Figure 2.1.

The approach, illustrated in Figure 2.3, constructs a novel set S′ to be used as input for the
algorithm in Figure 2.1 by merging k itemsets at most from S. The merging function is carried
out recursively, by picking an itemset at time from a set of candidates itemsets (Scand).

In particular, it is worthwhile observing that itemsets are merged together if and only if
their intersection is not empty (which motivates the initialization in step 2 and the check in
F5). Indeed, this is in line with the approach discussed in Section 2.3.2, where the gain of
two itemsets having no subset in common is equals to zero. In addition, note that the merging
process is restricted to maximal itemsets only, i.e., to those which are included in the first level
S1.

We conclude the section by noticing that as for the support constraints, for each itemset
I ∈ S′, we set σ′

min(I) as the value:{
σI
min I ∈ S

max(0,max(σ′
min(Y)|Y ∈ S′ ∧ I ⊂ Y)), I /∈ S

24 2 Inverse Frequent Itemset Mining Problem (IFM)

Input: Set S of itemset, integer k.
Output: Set S′ of itemset.
Method:

1 let S1, .., Sk be the succession as in Section 2.3.1;
2 Scand = {I ∈ S1|∃Y ∈ Si>1 : Y ⊂ I};
3 S′ = {∅};
4 for each itemset I ∈ Scand do
5 Scand = Scand − {I};
6 Sfusion = {I};
7 S′ = S′ ∪ recursGen(Sfusion, Scand, k − 1);
8 end for
9 return S’;

Function recursGen(Sfusion, Scand: set of itemsets, k: integer): set of itemsets;
F1 if k = 0 then return {∅};
F2 let S∗ = {∅};
F3 for each itemset I ∈ Scand do
F4 Scand = Scand − {I};
F5 if

⋂
Y ∈Sfusion

Y ∩ I 6= ∅ then
F6 S∗ = S∗ ∪ {

⋃
Y ∈Sfusion

Y ∪ I} ∪
∪recursGen(Sfusion ∪ {I}, Scand, k − 1);

F7 end for
F8 return S∗;

Fig. 2.3. Preprocessing for IFM.

and we set σ′
max(I) as the value:{

σmax(I) I ∈ S

min(st,min(σ′
max(Y)|Y ∈ S′ ∧ I ⊃ Y)), I /∈ S

where st is a user bound on the support of the new itemset.
Given these novel input specifications, the algorithm for IFMS′ is then applied and used

as a heuristic approach to solve IFM on S. Eventually, note that for any fixed natural number
k, the above preprocessing step is not an overhead for the running time of the algorithm in
Figure 2.1.

2.5 Computational Result

The above solution approach for IFM has been implemented, and a thorough experiential
activity has been conducted to assess its efficiency and effectiveness. Details on this activity
are discussed in the remaining of the section.

2.5 Computational Result 25

2.5.1 Test instance

Experimentation is carried out over three distinct datasets [ZKM01], which have been often
used as reference benchmarks for frequent itemsets discovery algorithms: The artificial dataset
T10I4D100K, and the two real datasets BMS-WebView-1 and BMS-WebView-2. These latter
databases contain clickstream data from two e-commerce web sites (each transaction repre-
sents a web session and each item in a page viewed in that session). Summary information on
these three datasets (in particular, the total number of transactions, the maximum transaction
size, and the average transaction size, the number of distinct items, and the average frequency
of an item) are illustrated in Table 3.4.

Fig. 2.4. Characteristics of used data set.

For each of the above databases, the idea of the experimentation is to firstly extract the set
S of the itemsets that are actually frequent (by standard itemsets discovery algorithms). For
each itemset I ∈ S whose frequency is σ, we define σI

min = σ−α∗σ and σmax = σ+α∗σ,
where α is a normalized real number (that will be varied in the experimentations). Then, the
whole set S together with the support constraints constructed as above will be supplied as
input to our algorithm for the IFM problem.

To evaluate the scalability of the algorithm we shall just refer to its running time. Instead,
to evaluate its effectiveness in solving IFM, we shall take care of the following relative error
index:

er(%) =
1

|S| ∗
∑

I∈S:σD(I)<σI
min

σI
min − σD(I)

σI
min

.
It is worthwhile observing that the above index accounts for how may itemsets from S

occur in the output database with a support that is below the required constraint. In fact, recall
from Section 2.3.1 that the maximum support constraint is always satisfied with our approach.
Clearly enough, values of er(%) close to 0 are desirable.

All the results discussed below have been obtained by experimenting with an Intel dual
core with 1.8GB memory, running windows XP Professional.

2.5.2 Results

A first series of experiment was aimed at assessing the scalability of our approach w.r.t.
some key input parameters. In particular, we considered the real datasets BMS-WebView1
and BMS-WebView2 by varying the parameter α (from 0 to 0.3). Execution times are re-
ported in Figures 2.5 and 2.6, for increasingly larger support and size of the set S. Note that
execution times are not affected by the size of the interval over the support constraints.

In a second series of experiments, we assessed the effectiveness of the approach by com-
puting the relative index error over the three detasets, by varying the support and the α param-
eter. Results are reported in Figure 2.7. The figures evidence that the error rate is below 2%

26 2 Inverse Frequent Itemset Mining Problem (IFM)

(a) Increasingly larger support. (b) Increasingly larger set of input item-
sets.

Fig. 2.5. Execution Times on BMS-WebView1 (for different α values).

(a) Increasingly larger support. (b) Increasingly larger set of input item-
sets.

Fig. 2.6. Execution Times on BMS-WebView2 (for different α values).

for BMS-View-1 and T10I4D100K dataset, while is below 10% for BMS-View-2. It comes
with no surprise that accuracy improves by increasing α. Moreover, it is relevant to notice that
the error is always equals to 0 when α > 0.3, i.e., when a sufficiently large support constraint
window is defined.

In a further set of experiments, we considered the experimentation perspective discussed
in [WWWL05]. There, it is argued that the effectiveness of inverse frequent itemsets mining
algorithms has to be assessed (1) by comparing the itemsets that can be actually rediscovered
on the syntectic database with those occurring in the original one, and (2) by comparing the
performances of a mining algorithm (e.g., Apriori) over the syntectic and the original dataset.

In order to deal with (1) above, we used the Jaccard, Dice, and Overlap [WWWL05]
indices to compare similarities between original frequent itemsets and those occurring in the
syntectic output database. Results on the real input datasets are reported in Figure 2.8. The
figure evidences that very high accuracy measures are obtained, and that support threshold
values are greater or equal to the support threshold used for data generation.

Finally, as for (2), we report in Figure 2.9 the difference between execution times of
Apriori when running on the original dataset and when running on the syntetic one (build on
T10I4D100K by using the three supports values: 0.5, 0.6 and 0.7). Note that the lower is the
support used in the generation of dataset, the smaller is the difference of performances.

2.5 Computational Result 27

(a) BMS-WebView1. (b) BMS-WebView2.

(c) T10I4D100K.

Fig. 2.7. Accuracy of the Approach.

(a) Accuracy measured on BMS −
V iew − 1.

(b) Accuracy measured on BMS −
V iew − 2.

Fig. 2.8. Accuracy Measured on Generated data.

Fig. 2.9. Difference of Execution Times with Apriori (Generated VS Original Data).

3

A New Generalization of IFM

The Inverse Frequent itemset Mining problem is the problem of computing a transaction
database D satisfying a given set S of support constraints on some itemsets that are typically
the frequent ones. Earlier studies focused on investigating computational and approximability
properties of this problem. However, this classical formulation does not enforce any constraint
on the other itemsets, and permits that D contains additional (and, perhaps, unsuspected or
even undesired) frequent itemsets. A possibility for removing this anomaly is to introduce a
more general formulation of the IFM problem in which itemsets that do not belong to S might
be explicitly constrained (e.g., to admit ”non-frequent” transactions provided their supports
are below some given threshold). Despite this formulation solve the anomaly, its complexity
is NEXP-complete. In this chapter we investigate this formulation, define a parametrization
whose complexity is PSPACE, show how it can be encoded as an integer linear program
with a huge number of variables (in general exponential w.r.t. the constraints), and consider
an approximation based on relax integer constraints that turns NP-complete. In order to solve
such approximation we use column generation technique that is a method designed to solve
optimization problems with a huge number of variables. In our context, it requires at each step
the solution of an auxiliary integer linear program, which we prove being still NP-complete.
Thus, a constructive heuristic for this auxiliary problem has also been defined, which enjoys
very good scaling, thereby paving the way for its application over real-life scenarios.

3.1 Introduction

Transaction databases are databases where each tuple, called transaction, is defined as a sub-
set of an underlying fixed set of items I. As an example, in market data, a transaction corre-
sponds to one purchase event and each item is a salable product; in document indexing and
search engine applications, a corpus of document can be represented as a transaction database
whose transactions are one-to-one associated with the documents, each one viewed as the set
of the words occurring in it; in web mining applications, a collection of web pages is yet an-
other example of transaction database, where the items are the links occurring in the various
pages and where, for each web page in the collection, there is one transaction containing its
outgoing (or alternatively incoming) links.

A popular mining task over transaction databases is to single out the set of the frequent
itemsets, i.e., all the subsets of I (called itemsets) which are contained in a significant fraction

30 3 A New Generalization of IFM

(user-specified as a minimum support threshold) of the given transactions [WHH00]. This
problem attracted relevant research efforts in recent years, and several solution approaches
and generalizations have indeed been discussed in the literature. In some cases, however, the
perspective of the frequent itemset mining problem is naturally inverted; that is, we might be
given in advance a set of itemsets and our goal would then be to decide whether there is a
transaction database over which these itemsets are actually frequent (and, of course, compute
the database whenever the answer is positive). This problem, called inverse frequent itemset
mining problem (IFM for short), has been introduced in the context of defining generators for
benchmarks of mining algorithms [Mie03], and has been subsequently reconsidered in privacy
preserving contexts [WW05, WWWL05], where the goal is to publish some data while avoid-
ing disclosing sensitive or private knowledge. A more extensive discussion on the possible
applications of IFM is reported in Section 3.6.

From a technical viewpoint, earlier studies on the inverse frequent itemset mining prob-
lem investigated its computational properties, by charting a precise picture of the conditions
under which it becomes intractable (see, e.g., [Cal04, Cal08, Mie03]), and by observing that
the problem is NP-hard even if one looks for approximate solutions [WW05]. In this chapter,
the inverse frequent set mining problem is considered from a pragmatic point of view even
though our approach is driven by novel theoretical results. We concentrate on studying heuris-
tic solution approaches that are able to scale over large instances, by contextualizing them
within the basic inverse frequent itemset mining setting of [Mie03], where the “frequency”
of any itemset in the database is measured in terms of its support, i.e., as the number of the
transactions in which it occurs1.

Given a set S of itemsets and support constraints on them as input, our goal is to solve
the search problem by providing an approximated solution (i.e., a transaction database) for
which the supports on the itemsets in S are satisfied and whose size is polynomially bounded
by the input. We assume that, in place of a single support value, each itemset I ∈ S comes
with a range of admissible supports, so that the emergence of unsatisfiable instances can be
dramatically decreased by properly enlarging the ranges of tolerance over each itemset. This
version of the problem introduces more flexibility and is not at all a limitation as the two range
interval extremes may coincide.

We point out that we introduce an important extension to the original framework of
[Mie03] pertaining to the role played by the itemsets not in S (itemsets in S′ for short). In
the current literature, the question of imposing some generic support restriction on itemsets
in S′ has largely being ignored. Classical approaches take a ”liberal” position that there are
no constraints on the itemsets in S′. Therefore, some of them could eventually result to be
highly supported in the solution database and the designer could be eventually disappointed
in discovering such unexpected patterns, that would even be undesired when s/he has listed all
the frequent ones in S.

To avoid any undesired behavior of the itemsets non in S, some approaches (see, e.g.,
[GSS09a, GTTY06]) drastically impose them not to occur as transactions in the generated
database. However, this assumption is too restrictive as these approaches are often unable to
find any solution, whereas admitting a limited number of transactions built with itemsets in
S could make the instance solvable. Moreover, only focusing on the itemsets belonging to S

1 Note that other approaches to the inverse frequent set mining problem (e.g., [Cal04, Cal08])
considered the actual frequency, i.e., the support divided by the total number of transac-
tions; however, as discussed in [Mie03], supports convey more information than frequen-
cies and hence the perspective of [Mie03] is adopted here.

3.1 Introduction 31

does not provide any benefit from a computation viewpoint, as the problem remains NP-hard
[GSS09a].

Our framework explicitly considers an extra input parameter which is meant to define a
maximum support over the itemsets in S′ (i.e., over those that are not explicitly provided in
input). Therefore, we provide some extra flexibility to the search algorithm, which can built ar-
bitrary transactions; however, by keeping the support small, we can avoid making these “extra”
itemsets frequent in the resulting database. Unfortunately, the introduction of this maximum
generic support introduce a further complexity explosion of the problem. In fact, the original
decision IFM problem as in [Mie03] as well as several variants introduced by [Cal04, Cal08]
are in PSPACE whereas our version with a unique maximum support for all itemsets in S′

turns out to be NEXP-complete [].
The negative complexity results did not discourage us for the attempt of finding anyway

a solution. Nowadays there is a strong attitude to surrender to intractability or to look for
tractable cases even at the cost of futility. Our belief is that intractability must be dealt with
more every day and a negative complexity result for a problem cannot refrain us from attempt-
ing to solve it. Actually most of the data mining problems are indeed intractable but yet there
are a lot of approaches aimed at finding either solutions for small-sized instances or approx-
imated solution. Passing to a more general context, since centuries human brain effectively
solves NP-hard problems and it has been a fortune that complexity theory did not have the
time to discourage it to do so. The theory cannot be a curb to search solutions but a powerful
tool for driving the search. Having this clear in mind, we then embarked on a long journey
thru the following stages:

1. We first singled out a particular parameter k measuring the level of overlapping of the
input itemsets in S and define a k-parameterized definition of our problem.

2. We showed that for ”small” values of k, an instance of our problem can be re-conducted
to an instance of the original IFM problem, where S is extended with some of the itemsets
in S′ (forming a set we call BS′), whose number is polynomial in the initial input and
in k. The surprising result is that this number is exponential only for very artificially
constructed instances with a very intricate overlapping of the itemsets in S, thus the jump
to NEXP does not really happen in practice

3. Once landed back to NEXP, we were still in anguish: even coping with NEXP is a
very tough adventure! So we formulated the problem as an integer linear program (ILP)
with a polynomial number of constraints (corresponding to the supports of the itemsets
in S ∪BS′) and an exponential number of variables xj (corresponding to the occurrence
number of every possible itemset j) — the ILP input is obviously given in a succinct
representation. As the relaxation of the integer constraint does make sense in this case,
we can replace ILP with a linear program (LP) whose decision version turns out to be
NP-complete.

4. We have crisscrossed two stormy complexity oceans, but the complexity of NP is not
at all a quiet sea. We then have given a careful look to the behavior of the classical old
simplex algorithm, being aware it continues to be effectively and efficiently used to solve
LP problems notwithstanding it may get exponential time. The reason for the simplex to
be still largely used depends from the fact the exponential time only arises for few cases.
In a sense, there must be some input parameter responsible for a possible exponential
execution but the value of such a parameter is small for most of the classical applications
of LP – indeed exponential time has been recognized only for some artificial instances.
We than decided to board the ship of the simplex method to eventually find a solution to
our problem.

32 3 A New Generalization of IFM

5. The final stage is now applying the simplex to a LP with a polynomial number of con-
straints and an exponential number of variables. The literature gives an interesting solu-
tion

Within the extended framework for inverse frequent itemset mining discussed above, our
contribution is then to study an efficient and effective solution approach based on linear pro-
gramming. In more detail,

I We first propose a novel formulation of the inverse frequent set mining problem, where
the size of the database is fixed beforehand and some itemsets are constrained to be infre-
quent. Computation of the problem is still NP-hard and, hence, unlikely to be efficiently
solvable.

I We describe how the κ-IFMσ′ can be encoded as an integer linear program (ILP). The
multi-criteria version of the κ-IFMσ′ is presented as an extension of this ILP.

I We shown how a relaxed version of the κ-IFMσ′ can be solved by column generation
which is a classical technique of large-scale linear programming. The proposed method
requires at each step the solution of an auxiliary integer linear program which we prove
being NP-hard. We devise an improved formulation and a constructive heuristic for this
auxiliary problem. Moreover, the devised solution method is also able to tackle the multi-
criteria version of the κ-IFMσ′ .

I Finally, we conduct a thorough experimental activity over both syntectic and real-life data.
Results evidence that our solution approach emerged to be effective for real application
scenarios. In addition, the results show that our approach enjoys very good scaling, thereby
paving the way for its application over real-life scenarios.

Organization. The chapter is organized as follows. Section 3.2 defines (i) the formal setting
of the inverse frequent itemset mining problem, and (ii) its parametrization with respectively
complexity, (iii) describes how it can be formulated as an integer linear programming task of
reasonable size, and (iv) shows the integer relaxing approximation. In Section 3.3 we show the
column generation technique applied on our problem and the relative pricing problem. In par-
ticular, for the pricing problem, we show the complexity analysis and solution methods. The
efficiency and effectiveness of our approach is illustrated in Section 3.4 and the related works
are discussed in Section 3.5. Finally, a set of relevant application are discussed in Section 3.6.

3.2 Problem Formalization

Let I = {o1, . . . , on} be a finite domain of elements, also called items. Any subset I ⊆ I is
called an itemset over I. The universe of itemsets UI is the set of all non-empty itemsets over
I. A database D over I is bag of itemsets, each one usually called transaction. The number of
transactions in D is denoted by |D|. Given a database D over I, for each itemset I over I (I ∈
UI), the support of I , denoted by σD(I), is the number of transactions containing I , and the
number of duplicates of I , denoted by δD(I), is the the number of transactions equal to I . We
say that I is a frequent itemset in D w.r.t. a given support threshold s if σD(I) ≥ s. Observe
that supports are also represented in the literature as a percentage w.r.t. the dimension of D,
i.e. by σD(I)/|D|. Finding all the frequent itemsets in D is the well-known frequent itemset
mining problem. The anti-monotonocity property holds for supports: given two itemsets I and
J with I ⊂ J , σD(J) ≤ σD(I).

We denote the set of natural numbers by N0 that will be used for bound. We also introduce
the symbol ∞ to denote an unlimited bound and define Ñ0 as N0 ∪ {∞} — we therefore

3.2 Problem Formalization 33

assume that for each i ∈ N0, i < ∞ holds. Finally, we denote the set of pairs {(a, b) : a ∈
N0, b ∈ Ñ0, a ≤ b} by Ñ2.

Thanks to the above notation, we now formally introduce the κ-IFMσ′ problem:

Definition 3.1. Let:

i I be a given set of n items and UI be the set of all non-empty itemsets over I
ii S be a given set of m itemsets over the items in I

iii S′ denotes {I ∈ UI | @I ′ ∈ S : I ⊆ I ′}
iv Γσ = {(I, σI

min, σ
I
max) | I ∈ S, (σI

min, σ
I
max) ∈ Ñ2} be a given set of triples assigning

a minimum and the maximum support to each itemset in S
v σ′ ∈ Ñ0 be the maximum support threshold for all itemsets in S′

vi size = (size1, size2) ∈ Ñ2 be the minimal and the maximal dimension for a database.

Then, the σ′−inverse frequent itemset mining problem on I, S, Γσ , σ′ and size, shortly de-
noted as IFMσ′ , consists of finding a database D over I such that the following conditions
hold (or of eventually stating that there is no such a database):

∀I ∈ S : σI
min ≤ σD(I) ≤ σI

max (3.1)

∀I ∈ S′ : σD(I) ≤ σ′ (3.2)

size1 ≤ |D| ≤ size2. (3.3)

If σ′ = ∞ then the problem is simply called the inverse frequent itemset mining problem,
shortly IFM. Finally, if σ′ = 0 then the problem is denoted by IFMS . 2

The above constraints do formalize the intuitive points we have discussed in the introduc-
tion. Indeed, constraints (3.1) state that σI

min and σI
max induce a range of admissible supports

for each itemset I ∈ S. Constraints (3.2) impose that each intemset which neither belongs to
the set S nor is a subset of some itemset in S must have a support σD(I) less or equal than
the threshold σ′. Finally, the size of the database, i.e., the total number of transactions, is con-
strained in a range indicated by the constraint (3.3). Observe that the classical IFM problem
does not contemplate constraints (3.2) so that the solution may contain unexpected frequent
itemsets beside to the ones in S.

The complexity of the decision versions (i.e., deciding the existence of a solution) of the
two problems in Definition 3.1 has been analyzed in the literature and is summarized next.

Fact 1

i The decision version of IFMσ′ is NEXP-complete [].
ii The decision version of IFM is NP-hard and in PSPACE [Mie03, Cal04].

iii The decision version of IFMS is NP-complete [GSS09a]. 2

Next we shall concentrate on a special case of IFMσ′ that turns to be computationally
equivalent to IFM. To this end, consider the set of the bottom elements of S′: BS′ = {I ∈ S′ |
@I ′ ∈ S′ : I ′ ⊂ I}, say with cardinality q′. By the anti-monotonocity property, constraints
(3.2) can be replaced by:

∀I ∈ BS′ : σD(I) ≤ σ′ (3.4)

Then it is easy to see that, if the number q′ of elements in BS′ were polynomial in the size
n of I and the size m of S, IFMσ′ would reduce to IFM by extending S with the elements of
BS′ . But, as shown in [], in general q′ is exponential in n and m. Nevertheless, we next present
a condition for the problem instances under which q′ is instead polynomial in the number of
the items that are included in the itemsets in BS′ . We need some preliminary definitions to
describe such a condition:

34 3 A New Generalization of IFM

• Ŝ ⊆ S is the set of maximal frequent itemsets, i.e., Ŝ = {I ∈ S | @I ′ ∈ S : I ′ ⊂ I} – let
m̂ ≤ m denote the cardinality of Ŝ

• n̂ ≤ n is the number of items in IS = ∪I∈SI = ∪I∈ŜI

• ∀I ∈ Ŝ and ∀i, 2 ≤ i ≤ m̂− 2:
– ∀J ∈ Ŝ, J 6= I:

· II,J,i = {o | o ∈ I ∩ J and o also belongs to at least other i − 2 itemsets in Ŝ}
– note that II,J,2 = I ∩ J

· nI,J,i is equal to | II,J,i | if | II,J,i | ≥ i or to 0 otherwise – obviously n̂ ≥
nI,J,2 ≥ nI,J,3 · · · ≥ nI,J,m̂−2

– II,i = ∪J: nI,J,i≥ i II,J,i and nI,i = | II,i|
• ∀i, 2 ≤ i ≤ m̂− 2, ni = | ∪I∈Ŝ II,i| - – obviously n̂ ≥ n2 ≥ n3 · · · ≥ nm̂−2

Finally we define:

q̃′≥2 =

m̂−1∑
i=2

∑
I,K∈Ŝ:nI,K,i≥ i

(
nI,K,i

i

)
(nI,i − nI,K,i) (nK,i − nI,K,i).

The following lemma is proved in the appendix.

Lemma 1 Given an instance inst of κ-IFMσ′ with n items, m itemsets in S and 0 < σ′ <
∞:

q′ = |BS′ | ≤ n− n̂+
n̂ (n̂− 1)

2
+ q̃′≥2.

where n̂ and q̃′≥2 are as defined above. 2

As explained in the Appendix, the itemsets in BS′ with cardinality 1 are exactly n − n̂,
those with cardinality 2 are at most n̂(n̂− 1)/2, while q̃′≥2 is an upper bound for the itemsets
with cardinality ≥ 3.

Given an instance inst of IFMσ′ , we define an integer parameter κ that provides an upper
bound for q′ = |BS′ |:

κ(inst) =

 d 100 · logn̂(
n̂ (n̂−1)

2
+ q̃′≥2) e if 0 < σ′ < ∞

0 if σ′ = 0 ∨ σ′ = ∞.

As discussed below, a value for κ(inst) less than or equal to 300 indicates that the itemsets
in Ŝ do not have a high number of intricate overlaps for i ≥ 2. So we can say that a value
below 300 is ”small”. The next result shows that q′ is polynomially bounded by n and κ.

Proposition 1 Given an instance inst of κ-IFMσ′ with n items, m itemsets in S and 0 <
σ′ < ∞:

q′ = |BS′ | ≤ n− n̂+ n̂k/100

where k = κ(inst), n and n̂ are as defined above.

Proof. By using the Lemma 1 we have that:

q′ ≤ n− n̂+
n̂ (n̂− 1)

2
+ q̃′≥2.

To prove the theorem it is sufficient to prove that n̂ (n̂−1)
2

+ q̃′≥2 ≤ n̂k/100. If we substitute k

with 100 · logn̂(
n̂ (n̂−1)

2
+ q̃′≥2) we have that:

3.2 Problem Formalization 35

n̂ (n̂− 1)

2
+ q̃′≥2 = n̂logn̂(

n̂ (n̂−1)
2

+q̃′≥2)

Since that κ(inst) is defined by the ceiling operator d 100 · logn̂(
n̂ (n̂−1)

2
+ q̃′≥2) e then

n̂ (n̂− 1)

2
+ q̃′≥2 = n̂d logn̂(

n̂ (n̂−1)
2

+q̃′≥2) e

It turns out that if k ≥ 300 then q′ − (n − n̂) is at most cubic in n̂. In our experiments,
the parameter k is at most 221 and then q′ − (n− n̂) ≤ n̂2.21. Actually in almost all cases k
is less than 200 so that q′ − (n − n̂) is less than quadratic in n̂. Probably only very artificial
instances get a high value for κ(inst).

Next we introduce a parametrized version of IFMσ′ using the definition of κ. Parame-
terized complexity is a measure of complexity of problems with multiple input parameters:
typically, in addition to the actual input describing a problem instance, a parameter is used a
second input to measure the problem complexity in terms of the value assumed by an instance
for that parameter. More formally, a parameterized problem is a language L ⊆ Σ × N0,
where Σ is the finite alphabet used for representing the problem (see [] for an overview on
parametrized problems). The second component is called the parameter of the problem. A
parameterized problem L is fixed-parameter tractable if the question (x, k) ∈ L? can be de-
cided in running time f(k) · |x|O(1), where f is an arbitrary function depending only on k.
The corresponding complexity class is called FPT.

Definition 3.2. The language {(inst, κ(inst) | inst is an instance of IFMσ′} is called the
κ-bounded σ′−inverse frequent itemset mining problem, κ-IFMσ′ for short. 2

Proposition 2 The decision version of κ-IFMσ′ is not in FPT unless P = NP and an
instance (x, κ(x)) of it can be solved in space polynomial in |x| and κ(x).

Proof. We proceed by contradiction to prove that the decision version of κ-IFMσ′ is not in
FPT unless P = NP. Suppose that κ-IFMσ′ ∈ FPT. Then take any instance x of IFMσ′ .
We can reformulate x as an instance (x, 0) of κ-IFMσ′ . Then, as κ(x) = 0, a solution can be
found in polynomial time - contradiction with Fact 1-(iii).

To see that any instance (x, κ(x)) of κ-IFMσ′ can be solved in space polynomial in |x|
and κ(x), observe that (x, κ(x)) can be seen as an instance of IFM by extending S with the
itemsets of BS′ . Then the proof is a direct consequence of Fact 1-(iii), since the number of
additional itemsets is polynomial in the size of x and in κ(x) by Proposition 1,

We point out that parameterized complexity has been introduced in the literature to in-
vestigate under which conditions an intractable problem can be made tractable. In our case,
parameterization is used to make less intractable the κ-IFMσ′ problem passing from NEXP
to PSPACE. In the next section we shall continue our work of scaling down the complexity:
indeed our target is NP. At that point we shall shall eventually concentrate in finding effective
heuristics for solving the κ-IFMσ′ problem.

3.2.1 The κ-IFMσ′ as an Integer Linear Program

The κ-IFMσ′ searches for a mapping between each itemset belonging to the universe UI
and the integers in {0, ..., size2}, which expresses the number of transactions of each itemset
occurring in the resulting database D (complying with the constraints in Definition 3.1). We
next encode this problem as an integer linear program.

36 3 A New Generalization of IFM

W.l.o.g., we select any ordering of UI , say {I1, . . . , I2n−1} — for example we fix an
ordering of items and take a lexicographic order based on it. Then the vector T = {1, . . . , 2n−
1} provides a suitable representation of all possible itemsets. Let Q = {i1, ..., im} and Q′ =
{j1, ..., jq′}represent the indices of the itemsets, respectively in S and in BS′ , listed in the
order fixed for UI . We use a function Q from Q to {1, . . . ,m} to return the position of an
index in Q, i.e., for each jk in Q, Q(jk) = k.

Let l and u be two vectors of m integers such that for each j ∈ Q, lQ(j) = σ
Ij
min and

uQ(j) = σ
Ij
max.

Let x be a vector of 2n − 1 non-negative integer variables whose intended meaning is
that its i-th coordinate, xi, denotes the number of duplicates for the transaction Ii. Moreover,
consider a (2n − 1) · (2n − 1) matrix A where each entry aij ∈ 0, 1 is associated with the
pair of itemsets Ii and Ij with the intended meaning that aij = 1 if and only if Ij ⊇ Ii holds.

We finally introduce a vector v of 2 × m + 1 non-negative rational number artificial
variables, whose values represent the costs of violating some support constraints. In particular,
v1, . . . , vm and vm+1, . . . , v2·m are the costs of violating respectively lower-bound and upper-
bound support constraints on the itemsets in S and v2·m+1 is the cost of violating the lower
bound constraint on the database size.

We are now ready to recast the problem in terms of the following integer linear program,
whose objective function measures the cost of violating the constraints corresponding to the
artificial variables:

ILP: minimize
2m+1∑
i=1

vi (3.5)

subject to

vQ(i) +
∑
j∈T

aijxj ≥ lQ(i) i ∈ Q (3.6)

vm+Q(i) −
∑
j∈T

aijxj ≥ −uQ(i) i ∈ Q (3.7)

−
∑
j∈T

aijxj ≥ −σ′ i ∈ Q′ (3.8)

v2·m+1 +
∑
j∈T

xj ≥ size1 (3.9)

−
∑
j∈T

xj ≥ −size2 (3.10)

vi ∈ Q0 1 ≤ i ≤ 2m+ 1 (3.11)

xi ∈ N0 i ∈ T. (3.12)

Whenever the bound of some of the constraints (3.7), (3.8) and (3.10) is equal to ∞ or the
bound of some of the constraints (3.6) and (3.9) is equal to 0, the corresponding constraint is
just dropped. The non-negative rational number variables in V are artificial in the sense that
their role is to absorb possible violations of the constraints (3.9), (3.6) and (3.7): the mini-
mization of its value entails the search for a solution with the minimal number of violations.
For example, assume that

∑
j∈T aijxj < lQ(i) for a specific i ∈ Q, then the variable vQ(i)

will be forced by (3.6) to a value at least equal to lQ(i)−
∑

j∈T aijxj , i.e. a value greater than
zero. The objective function (3.5) minimizes the values of the artificial variables. Therefore,

3.2 Problem Formalization 37

the optimal solution of the presented ILP consists in a database (as induced by variables x
in the optimal solution) with minimal violation of the mimimal database size constraint. We
only insert the artificial variables in the Constraints (3.6,3.7,3.9), because we want that the re-
maining constraints are directly satisfied. This is always possible as an initial feasible solution
can be constructed as follows: v2·m+1 = size1, vQ(i) = lQ(i), v2·m+Q(i) = 0 and xj = 0,
∀i ∈ Q, ∀j ∈ T .

Let:

• XOPT
ILP be a (feasible) solution of ILP and b[XOPT

ILP] be the number of non-zero elements in
it — thanks to the artificial variables, a solution always exists;

• XOPT0
ILP be a solution XOPT

ILP for which the objective function is equal to 0 - instead, the
existence of such an optimal solution is not guaranteed;

• D[XOPT0
ILP] be the database defined by a solution for the objective function is equal to 0 (if

any).

Next we prove that the ILP defined by the objective function (3.5), and by the constraints
(3.6) – (3.12) is instrumental in solving the κ-IFMσ′ .

Proposition 3 A database D satisfies the κ-IFMσ′ problem if and only if there exists an
optimal solution XOPT0

ILP for which D = D[XOPT0
ILP].

Proof. To prove the theorem we show how it is possible to build an admissible solution XOPT0
ILP

by using a database D solution of κ-IFMσ′ and vice versa.
The first transformation consists to take each different transaction in D and compute its

number of duplicates, since in the ILP model to each different transaction (or itemset) Ij
corresponds a variable xj then such xj will have value equal to number of duplicates of Ij .
Obviously, since the database D exists, then each variables vi with 1 ≤ i ≤ 2m+1 has value
zero.

The inverse transformation consist into take each variable xj of ILP problem with value
greater than zero and insert in the database D a number of transactions Ij equal to the value
of xj . It is important notice that if the optimal solution of ILP problem is not zero then does
not exist a database D that satisfy the κ-IFMσ′ instance, in fact will exist at least one itemset
such that its support does not satisfy its constraint, or the size of database does not satisfy its
lower bound.

Note that the total number of constraints is r = 2 · m + q′ + 2 and the total number of
variables is c = 2n+2·m, i.e., the number of columns (variables) is exponential in the number
of rows (constraints). But the problem can be easily represented in a succinct format with size
n · (m+ q′)+ (2 ·m+3) ·w: the indices of the m+ q′ itemsets in Q∪Q′ can be represented
by n bits (one for each item in I) and each of the 2 · m + 3 bounds (2 support bounds for
each itemset in S, the unique support bound σ′ for each itemset in BS′ and the 2 size bounds
for the database) can be represented by at most w bits. For simplicity we assume that w is a
constant so that the size of the succinct representation is simply n · (m+ q′) + 2 ·m+ 3.

The next complexity results assume that the input includes q′ and is given in a succinct
format so that the number r of rows is polynomial in the input whereas the number c of
columns is exponential. Thus we can easily transform an instance of κ-IFMσ′ in an instance
of IFM by considering the constraints of itemsets in BS′ as constraints in S; and therefore by
the Fact 1 we have the following corollary.

Corollary 1

i Deciding whether there exists a solution XOPT0
ILP is in PSPACE and it is in NP if and only

decision IFM is in NP;

38 3 A New Generalization of IFM

ii if decision IFM /∈ NP then there exist instances of ILP for which every b[XOPT0
ILP] is

exponential in the size of the succinct input representation.

Because of part (ii) of the corollary, we expect that in general b[XOPT0
ILP] is exponential. As

shown in the next subsection, an approximate solution with a polynomial number of non-zero
elements can be obtained by the continuos relaxation of the integer restrictions, i.e. all the
variables are allowed to be rational numbers. So an advantage of such an approximation is the
capability of returning an approximated solution with polynomially bounded size.

3.2.2 The κ-IFMσ′ as a Linear Program

The relaxation of the κ-IFMσ′ can be stated as a linear program with an exponential number
of variables but only a polynomial number of constraints:

LP: minimize
2m+1∑
i=1

vi (3.13)

subject to the constraints (3.6) – (3.11) of the ILP problem and by replacing the constraint
(3.12) with;

xi ∈ Q0 i ∈ T. (3.14)

We assume that the input of the above linear program is given in a succinct format and q′

is part of the input as for the ILP problem. Let XOPT
LP be a (feasible) solution of LP (if any)

and XOPT0
LP be a solution for which the objective function is equal to 0.

Proposition 4

i Given a solution XOPT
LP of LP, b[XOPT

LP] ≤ r = 2 ·m+ q′ +2, i.e., the number of non-zero
elements in the solution is less than or equal to r.

ii Given z ∈ Q0, deciding whether there exists a solution XOPT
LP for which the objective

function is less than or equal to z is in NP.

Proof.

i The first proposition directly derive of the fact that a base solution in a linear program-
ming has the same size of the number of constraints.

ii In order to decide if exist a solution XOPT
LP for which the objective function is less than

or equal to z, it is sufficient only consider the base solution, then in polynomial time
with a nondeterministic Turing machine we can guess a base solution i.e. we can guess r
different transactions with respectively number of duplicates. Thus, after the guessing of
the base, it is sufficient a polynomial time to verify the feasibility of the base and verify
that the objective function is less than or equal to z. Therefore the problem is in NP.

Let D[XOPT
LP] be the database defined by round[XOPT

LP], that is obtained from XOPT
LP by

rounding the values of its elements. We point out that ordinary rounding (i.e. the nearest inte-
ger) is not necessarily considered for some variables floor or ceiling can be enforced; then it
turns out that there are many instances of round[XOPT

LP].

Proposition 5 Given an optimal solution XOPT0
LP of LP, there exists a rounding for XOPT0

LP

such that round[XOPT
LP] is a solution of ILP whose objective function value is less than or

equal to r · (m+ 1).

3.3 Column Generation Algorithm to solve LP 39

Proof. To prove the theorem we use the more simple rounding that is the floor operator b·c,
but is important to notice that there exist more powerful rounding that in practical case allows
a more restrictive gap between the objective function with or without rounding. If we consider
the round bXOPT0

LP c then we have that the vm+Q(i) variables for i ∈ Q, of Constraints 3.7, are
equal to zero. Instead the vQ(i) variables for i ∈ Q, of Constraints 3.6, have values at most r,
since in each of them constraints are present at most r value great than zero (because of it is
a base solution), and the round operator is the floor that produce for each variable an error at
most 1. The same thing happens for the variable v2·m+1 of Constraints 3.9. Thus the gap is at
most r · (m+ 1) where (m+ 1) represent the number of constraints of type 3.6 and 3.9.

Experimental results prove that in practice the approximate solution is instead far below
the above bound.

The relaxation of integer constraints opens an interesting perspective for an effective so-
lution of κ-IFMσ′ . But finding an optimal solution of LP is not an easy task because of the
exponential number of variables. In the next section we present an algorithm which at each
step explicits a polynomial number of variables.

3.3 Column Generation Algorithm to solve LP

Column generation, see e.g [DT03] and [DDS05], is a method of dealing with linear programs
with a large number of variables. This method solves a linear program without explicitly in-
cluding all columns (i.e., variables), in the coefficient matrix but only a subset of them with
cardinality equal to the number of rows (i.e., constraints). Columns are dynamically generated
by solving an auxiliary optimization problem called the pricing problem.

We present and discuss the specialization of the column generation algorithm for our prob-
lem in Section 3.3.1. In Section 3.3.2 we prove that the decision version of the pricing problem
is NP complete, so it is unlikely that a polynomial algorithm exists for this problem and show
that a solution can be computed using an integer linear program. As the PRICE problem is not
tractable, we present a heuristic algorithm for the pricing problem in Section 3.3.3. Finally, in
Section 3.3.4 we present the heuristic version of the column generation algorithm that will be
used in our experiments.

3.3.1 Column Generation Algorithm

The linear program to be solved is denoted as the master problem (MP). In our case the MP
problem consists of r = 2 · m + q′ + 2 rows (i.e., the 2 · m support constraints for the
itemsets in S, the q′ support constraints for the itemsets in BS′ and the 2 size constraints for
the database) and c = 2n + 2 ·m columns (i.e., the 2n − 1 variables in T and the 2 ·m + 1
artificial variables). As discussed in Section 3.2.1, the MP problem is represented in a succinct
format with size n · (m+ q′) + 2 ·m+ 3.

The linear program with only a subset of the MP columns with cardinality c′ equal to the
number r of rows is called the restricted master problem (RMP) – it turns out that an RMP
problem does not need a succinct representation as r is polynomial in the succinct size of the
input. Actually the number of columns c′ passed to RMP can be greater than r, provided that
c′ is polynomial in r. From linear programming theory we know that if there is an optimal
solution then there also exists an optimal solution corresponding to a basis of the coefficient
matrix (in our case any basis consists of r columns). The columns of an optimal basis are

40 3 A New Generalization of IFM

those strictly necessary, all other columns can be ignored. Thus, to solve the MP is equivalent
to solve the RMP with only the columns defining an optimal basis.

The column generation method looks for an optimal basis as within the simplex algorithm.
The simplex algorithm starts from an initial basis and moves from a current basis to a new basis
by removing from the basis one column and adding to the basis a column with a negative (here
and in the following we refer to the minimization case) reduced cost (iteration step). Primal
feasibility is maintained and the objective function is non-increasing during this search. The
reduced cost of a column can be computed by using the current dual variables. If there is not
a column with a negative reduced cost, then the simplex algorithm terminates and the current
basis is proved to be optimal. This scheme is maintained within the column generation method.
However, the task of providing a column with a negative reduced cost, or certifying that there
is not such a column, is delegated to the pricing problem.

The pseudo-code of the column generation algorithm is presented in Figure 3.1. The al-
gorithm starts by initializing B, that is the list of variables to be given as input to the method
RMP at the first call. We include in B the columns corresponding to all 2 ·m+1 artificial vari-
ables, to the m itemsets in S and to the q′ itemsets in BS′ , i.e., c′ = |B| is r = 3 ·m+ q′+1.
As discussed in Section 3.2.1, a feasible solution can be easily found using such columns. The
output of RMP is: B′ (the list of variables in the computed basis), Z (the list of values for
the basis variables), D (the values of the r dual variables). Observe that, in addition to B, the
method RMP uses additional data that are necessary to construct the projection of the linear
program to the basis variables - such data are taken from the succinct representation of the
problem instance.

The method PRICE receives as input D and returns (j, c̃j), where j is a column with
a minimum reduced cost c̃j . Also this method uses data from the succinct representation of
the problem instance to find a column with a negative reduced cost. If c̃j happens not to be
negative, the current basis is optimal and the ”while” cycle stops; otherwise, the column j and
all the columns in V are added to the previous basis B′ to update B and the cycle continues.
Note that adding the columns in V would not be necessary. However, as the number 2 ·m+1
of artificial variables is polynomial, we also include all such variables in B, so that at each
step the column j returned by PRICE corresponds to a variable in Q, whose size is instead
exponential — this technicality will help in simplifying notation in the next subsection where
the complexity of PRICE will be investigated. After having updated B, a new step of the
algorithm is performed and the iterations continue until there exists a column with a negative
reduced cost.

The overall algorithm is a particular implementation of the a simplex method and, there-
fore, it eventually terminates. In the worst-case it has to explore all the bases, whose number
is exponential in the number of constraints and variables. In our problem the number of vari-
ables is itself exponential, leading to worrying worst-case conditions. As we shall show in
Section 4, the number of iterations is such that the algorithm can have practical use. This is
coherent with the practice were the simplex algorithm shows a remarkably fast convergence.
The real problem is the implementation of the method PRICE. As we shall prove in the next
sub-section, the function PRICE cannot be computed in polynomial time unless P = NP.

Despite the intractability of the function PRICE, the column generation algorithm has
an attractive characteristic: columns that exit the basis can be dropped from the RMP. By so
doing the algorithm has bounded use of the space, proportional to the number of constraints,
i.e. the dimension of a basis. Therefore, by using a heuristic polynomial-time implementation
of PRICE, the column-generation algorithm may act as the simplex method for which each
iteration is executed in polynomial time although the number of variables is exponential.

3.3 Column Generation Algorithm to solve LP 41

Input: Succinct representation of LP.
Output: B′ (list of variables in the solution basis), Z (list of values for the basis variables)
Algorithm:

1 Initialize B = V ∪Q ∪Q′ and set STOP = false;
2 while not STOP do
3 (B′, Z,D) := RMP(B);
4 (j, c̃j) := PRICE(D);
5 if c̃j < 0 then
6 B = B′ ∪ V ∪ {j};
7 else
8 set STOP = true;
9 end if
10 end while
11 return (B′, Z)

Fig. 3.1. Column Generation Algorithm

3.3.2 Complexity of the Pricing Problem

We are given a set D of dual variable rational number values. We represent them by the m-
element vectors λ and π, the q′-element vector ξ, and the scalars τ1, and τ2 of the RMP, that
are associated to the constraints (3.6), (3.7), (3.8), (3.9) and (3.10) respectively.

Given a column j corresponding to any itemset variable in T , the reduced cost c̃j is:

c̃j = 0− (τ1 − τ2 +
∑
i∈Q

aijλi −
∑
i∈Q

aijπi −
∑
i∈Q′

aijξi−m) (3.15)

= −τ1 + τ2 +
∑
i∈Q

aij(πi − λi) +
∑
i∈Q′

aijξi−m.

For notational simplicity, we define R = Q ∪ Q′, τ = τ1 − τ2 and φ as the (m + q′)-

element vector
π − λ
ξ

. Then, as aij = 1 if Ii ⊆ Ij or aij = 0 otherwise, where the itemsets

Ii and Ij correspond respectively to the columns i and j, the reduced cost can be reformulated
as:

c̃j = −τ +
∑
i∈R

aijφi = −τ +
∑

i∈R,Ii⊆Ij

φi.

We are now ready to define the PRICE problem and its decisional version.

Definition 3.3 (PRICE Problem).
Given R, φ and τ , the PRICE problem consists in finding a column j in T such that c̃j ≤ c̃i,
∀i ∈ T .

The Decisional PRICE problem is: given a rational number α, does there exist a column
j in T such that c̃j ≤ α . 2

Theorem 3.4. The Decisional PRICE problem is NP-complete

42 3 A New Generalization of IFM

Proof. The Decisional Price is in NP because a non-deterministic Turing machine can guess
in polynomial time a IJ contained in I and verify in polynomial time that c̃j < 0.
To prove the hardness of the problem, we next exhibit a reduction from the graph 3-
colorability problem. This problem consists in deciding whether, given a graph G = (N,E),
there is a 3-coloring col : N → {r, g, b} such that col(i) 6= col(j) for each adjacent pair of
nodes, i.e. (i, j) ∈ E.

Based on the input graph G = (N,E), we construct an instance of the Decisional Price
problem such that: the set I of items is {rw|w ∈ N} ∪ {gw|w ∈ N} ∪ {bw|w ∈ N}, where
conceptually the items rw, gw, bw are the colors that can be associated to each node in N ,
τ = −(|N | − 1) and R contains all index of the following two groups of itemsets. For each
node w ∈ N , there are the following itemsets—Group (I):

• Iiw,1 = {rw} and φiw,1 = −1
• Iiw,2 = {bw} and φiw,2 = −1
• Iiw,3 = {gw} and φiw,3 = −1
• Iiw,4 = {rw, bw} and φiw,4 = 3 · |N |
• Iiw,5 = {bw, gw} and φiw,5 = 3 · |N |
• Iiw,6 = {rw, gw} and φiw,6 = 3 · |N |

Moreover, for each edge (w, v) ∈ E, there are the following itemsets—Group (II):

• Iiw,v,7 = {rw, rv} and φiw,v,7 = 3 · |N |
• Iiw,v,8 = {bw, bv} and φiw,v,8 = 3 · |N |
• Iiw,v,9 = {gw, gv} and φiw,v,9 = 3 · |N |

Note that the itemsets in Group (I) model each of the three possible assignments of a
color to any node in the graph. Instead, itemsets in Group (II) guarantee that two adjacent
nodes in G cannot be colored with the same color. It is easy to note that for each coloring
colh of G is associated a unique column h and if colh is a valid coloring for G then c̃h = −1
otherwise c̃h ≥ 0. Hence, the Decisional Price is NP-complete in general.

Let T̃ be the set of columns j corresponding to itemsets obtained by the union of a number
of itemsets in R, thus T̃ = {j | ∃j1, . . . , jp ∈ R s.t. Ij = Ij1 ∪ · · · ∪ Ijp}. The next result
shows that the search for the column j with minimum reduced cost c̃j can be restricted to the
columns in T̃ .

Proposition 6 Let c̃ be the minimum reduced cost. Then there exists a column j in T̃ such
that c̃j = c̃

Proof. Let Iy ∈ UI be a solution with minimum reduced cost c̃, we can build an itemset Ij
in the following way:

Ij =
⋃

i∈R, Ii⊆Iy

Ii.

By definition of reduced cost we have that c̃j = c̃. Since the construction of Ij is a union of
some itemsets with index in R the Ij belongs to T̃ .

In order to give an effective procedure for solving the PRICE problem, next we formu-
late it in terms of an integer linear program that computes an itemset U∗, say with index
j, such that j ∈ T̃ and c̃j is minimum. U∗ is represented by a vector of binary variables
β = [β1, . . . , βn]

T , corresponding to the n items: each component βh indicates whether
U∗ contains the item oh (βh = 1) or not (βh = 0). We use the vector of binary variables
y = [y1, . . . , y|R|]

T , corresponding to the itemsets in R, to model the inclusion of such item-
sets in U∗: thus, if Ii ⊆ U then yi = 1, otherwise yi = 0. Then U∗ is the union of all itemsets
i in R for which yi = 1.

3.3 Column Generation Algorithm to solve LP 43

The ILP formulation to solve the pricing problem, denoted as F1, follows:

minimize
∑
i∈R

φiyi (3.16)

∑
oh∈Ii

βh + 1 ≤ |Ii|+ yi i ∈ R, (3.17)

βh ≤
∑

i∈R,oh∈Ii

yi h ∈ {1, . . . , n}, (3.18)

yi ≤ βh i ∈ R, oh ∈ Ii, (3.19)

yi ∈ {0, 1} i ∈ R, (3.20)

βh ∈ {0, 1} h ∈ {1, . . . , n}. (3.21)

The objective function (3.16) represents the reduced cost c̃j (modulo the constant τ) of
a generic column j ∈ T̃ , that we want to minimize to compute U∗. The constraints (3.17)
impose that, given any i ∈ R, if βh = 1 for all oh ∈ Ii then yi = 1; in other words, if U∗

contains all items of an itemset i ∈ R, then Ii must be declared to be an itemset included in
U∗. The constraints (3.18) impose that if βh = 1 then ∃i ∈ R : oh ∈ Ii ∧ yi = 1; thus, an
item oh is in U∗ only if at least one of the itemsets included in U∗ contains oh. The constraints
(3.19) impose that if ∃ oh ∈ Ii : βh = 0 then yi must be equal to zero, i.e., an itemset Ii
cannot be declared included in U∗ if any of its items is not contained in U∗. The constraints
(3.19) also enforce that if Ii is declared to be an itemset included in U∗ (yi = 1) then all items
of it must be in U∗ as well (βh = 1, ∀h ∈ Ii).

Proposition 7

• F1 solves the PRICE problem;
• F1 solves the PRICE problem also if the constraints (3.20) are replaced by:

0 ≤ yi ≤ 1 i ∈ R. (3.22)

Proof.

• The prove that F1 solves the PRICE problem straightforward from the previous descrip-
tion of F1 formulation;

• We prove that it is sufficient imposes the integer constraints only on the variables β. In
fact for each i ∈ R we have that two case are possible: (i) each variable βh with oh ∈
R has value 1, or (ii) exist at least one variable βh with oh ∈ R that has value 0. In
the first case, by Constraints 3.17 the value of variable yi is ore. Instead in the second
case, by Constraints 3.19 the value of variable yi is zero. Thus It is not necessary the
integer constraints over the y variables because if the β variables are integer variables
then variables y can be one or zero.

It turns out that if we relax the binary integer constraints (3.20) the formulation remains
correct and if n � m this relaxation can increase the performance of the ILP solver.

44 3 A New Generalization of IFM

3.3.3 A Heuristic Algorithm for the Pricing Problem

In the following we present a heuristic algorithm for the pricing problem that runs in poly-
nomial time. The heuristic starts by computing an initial (possibly empty) itemset U0 ⊆ I,
computed as the union of all itemsets Ii, i ∈ R, with φi < φ0 = max(0, τ), thus:

U0 =
⋃

i∈R, φi<φ0

Ii (3.23)

Observe that, even though U0 is constructed by the union of all itemsets i in R with φi < φ0,
it may eventually happen that U0 also contain also some itemset i ∈ R with φi ≥ φ0.

Proposition 8 If the the minimum reduced cost c̃ is negative then there exists U∗ with reduce
cost c̃ such that U∗ ⊆ U0

Proof. By using the Proposition 6 without loss of generality we can consider only the itemset
with index in T̃ . Let Ij with j ∈ R be an itemset with c̃j = c̃ and such that does not exist an
other index x ∈ T̃ such that c̃j = c̃x and Ix ⊂ Ij . Suppose now that Ij is not contained in
U0, therefore exist at least one itemset Iy with y ∈ R contained in Ij that is not contained in
U0. Obviously, since Ij is not in U0 then c̃j > 0. Thus the itemset Ij \ (Ij \U0) has a reduced
cost less than c̃ and Ij cannot be optimal.

It turns out that if U0 is empty then the reduced cost of U∗ is not negative.
We restrict the search space for U∗ to the itemsets U that are subsets of U0. The outline

of the heuristic is presented in Figure 3.2. We start by setting U = U+ = U0, where U+ is
the current sub-optimum (actually, heuristic optimum). At each iteration, in a greedy fashion,
we reduce the size of the current itemset U of one item. The search of the best item o ∈ U to
remove from U is done by minimizing the function cost(U \ {o}), returning the reduced cost
(modulo the constant −τ) of the column associated to the itemset U :

cost(U) =
∑

i∈R, Ii⊆U

φi. (3.24)

(The cost is 0 if there are no itemsets i satisfying the conditions of the sum.) Note that,
after the removal of an item o, the itemset U ′ = U \ {o} may contain some items that are
contained in none of the itemsets i in R that are included in U ′. Because of Proposition 6, all
such items can be removed. So, the algorithm replaces U ′ by

reduce(U ′) =
⋃

i∈R, Ii⊆U

Ii.

Obviously cost(U ′) = cost(reduce(U ′)); moreover, if U∗ ⊆ U ′ then U∗ ⊆ reduce(U ′) as
well.

We then update the current itemset U by setting U = reduce(U \ {o}) (step 6); in
addition, if its cost is lower than the one of the current sub-optimum U+, U becomes the new
sub-optimum (step 8). The while cycle stops when either U becomes empty or cost<0(U) <
cost(U+) where cost<0(U) is the sum of φi values of all itemsets i in R that are contained
in U and for which φi is negative:

cost<φ0(U) =
∑

i∈R, Ii⊆U, φi<φ0

φi (3.25)

Note that cost<0(U) is always less than or equal to cost(U). Moreover, it represents a
lower bound for the costs for subsets of U :

3.3 Column Generation Algorithm to solve LP 45

Input: Set H of itemsets over I, function Φ.
Output: U+ subset of I.
Algorithm:

1 compute U0, CU0 = cost(U0) and C<φ0,U0
= cost<φ0(U0);

2 U = U0; CU = CU0 ; C<φ0,U = C<φ0,U0
;

3 U+ = U ; CU+ = CU0 ;
4 while (U 6= ∅ and C<φ0,U < CU+)
5 o∗ = argmino∈U (cost(U \ {o}));
6 U = reduce(U \ {o∗}); CU = cost(U); C<φ0,U = cost<φ0(U);
7 if (CU < CU+)
8 U+ = U ; CU+ = CU ;
9 end if
10 end while
11 return U+;

Fig. 3.2. Heuristic PRICE Algorithm

cost<φ0(U) ≤ cost(Û), ∀Û ⊆ U

Obviously, if cost<0(U) ≥ cost(U+) then it is not possible to find a subset of U that has a
cost less than or equal to cost(U+); therefore, we can stop the iterations and return the current
sub-optimum U+.

Proposition 9 The heuristic PRICE algorithm runs in time O(n3 × (m+ q′)).

Proof. To compute U0 (step 1) it is sufficient to verify for each itemset i in R whether Ii ⊆ U0

or not and, if the test is successful, to include the items of Ii in U0 (cost procedure). As the
cardinality of R is m+ q′ and each inclusion test can be easily implemented in time linear in
the total number n of items, the computation of U0 can be done in time O(n×(m+q′)). With
some minor variations to the cost procedure, also computing cost(U0) and cost<φ0(U0) (step
1) as well reduce(U \ {o∗})m cost(U), cost<φ0(U) (step 6) can be done in the same time.
Step 5 requires to repeat the cost procedure at most n times and, then, has a time complexity
O(n2 × (m+ q′)). This step is repeated at most n times since at least one item is dropped out
at each ”while” iteration, So the overall algorithm runs in time O(n3 × (m+ q′)).

3.3.4 Heuristic Column Generation Algorithm

Let us now turn our attention to the exact Column Generation Algorithm described in Figure
3.1. The method PRICE at step 4 computes an exact solution of the pricing problem; so we
can think that the method is an implementation of a solver for the ILP problem defined in Sec-
tion 3.3.2. A straightforward heuristic version of the Column Generation Algorithm could only
consist in replacing PRICE with the method HPRICE implementing the heuristic price
algorithm described in Figure 3.2. But, then, if the reduced cost returned by HPRICE is not
negative, we are not anymore guaranteed that we have found the optimal solution. Therefore,
instead of stopping the iteration, we decide to call at this point the exact pricing procedure.
As this procedure is computationally expensive, we introduce an alternative stop criterion: if

46 3 A New Generalization of IFM

Input: Succinct representation of LP, a global time limit, an ILP time limit ITL, a unfeasibil-
ity tolerance.

Output: B′ (list of variables in the solution basis), Z (list of values for the basis variables)
Algorithm:

1 Initialize B = V ∪Q ∪Q′ and set STOP = false;
2 while not STOP and the global time limit has not been reached do
3 (B′, Z,D) := RMP(B);
4 (j, c̃j) := HPRICE(D);
5 if c̃j < 0 then
6 B = B′ ∪ V ∪ {j}; FOUND = true;
7 else
8 if the unfeasibility tolerance is satisfied then;
9 STOP = true;
10 else
11 (j, c̃j) := PRICE(D, ITL);
12 if c̃j < 0 then
13 B = B′ ∪ V ∪ {j};
14 else
15 STOP = true;
16 end if
17 end if
18 end if
19 end while
20 return (B′, Z)

Fig. 3.3. Heuristic Column Generation Algorithm

the heuristic procedure fails in finding a new column with negative reduced cost and we have
reached a satisfactory, user defined, level of unfeasibility we can end the algorithm. Recall
that, due to the artificial variables, a solution different from 0 for the objective function im-
plies that some constraints are not satisfied, i.e., the solution is unfeasible. It does then make
sense to fix a satisfactory level of unfeasibility. This is further motivated by the fact that, be-
cause of the LP relaxation of the original ILP problem, some constraints would not be satisfied
even when the objective function is equal to 0.

In case we are obliged to call the exact pricing procedure, to avoid excessive computa-
tional times, we introduce a user-defined time limit ILP for its execution. But a high com-
putational cost could also derive by the fact that the simplex algorithm, in the worst-case,
would explore a very large number of the feasible bases. As discussed in Section 3.3.1, in
practice the simplex algorithm shows a remarkably fast convergence. However, in terms of
worst-case computational complexity, we cannot rule out the possibility of getting excessive
computational times. Therefore, we have to provide a global time-limit for termination.

The heuristic column generation algorithm that includes all variation discussed above is
presented in Figure 3.3. The algorithm stops for one of the the following three conditions: (i)
the global time-limit has been reached, (ii) the heuristic pricing algorithm fails and a satis-
factory level of unfeasibility is reached and (iii) the exact pricing algorithm does not return a

3.4 Computational results 47

column with negative reduced cost. The latter condition indicates that the current solution is
optimal whenever the exact pricing algorithm does not terminate because of the imposed time
limit.

3.4 Computational results

We now present quantitative results to assess the effectiveness of the proposed solution
method. We first describe how we have built test instances, and we then discuss extensive
computational experiments.

3.4.1 Test instances

Datasets

We experiment our solution method on problem instances for which known solutions (i.e.
the original dataset itself from which they are taken) exist. To this purpose, we refer to three
distinct datasets2, which are often used as benchmarks for frequent itemsets discovery algo-
rithms [ZKM01]: the artificial dataset T10I4D100K, that is generated by the IBM Almaden
association rule synthetic data generator, and the real datasets BMS-WebView-1 and BMS-
WebView-2, that contain clickstream data from two e-commerce web sites. In the latter two
datasets, each itemset represents a web session consisting of all the product detail pages
viewed in that session and each product detail view represents an item.

The characteristics of these three datasets are described in Fig. 3.4. The first column of
Fig. 3.4 indicates the name of the dataset, and the other columns report (from left to right) the
following data: the number of itemsets |D| (i.e., the size of the dataset), the maximum itemset
size, the average itemset size, the total number of items n = |I|, the average frequency of an
item in the itemsets, and the number of distinct itemsets (i.e., without duplicates).

Max. Avg. Avg. Num.
D |D| Trans. Trans. n = |I| Item Dist.

Size Size Freq. Trans.
BMS-WebView-1 59602 267 2.5 497 0.0050 18473
BMS-WebView-2 77512 161 4.6 3340 0.0013 48684

T10I4D100K 100000 300 10.0 870 0.0116 89135

Fig. 3.4. Characteristics of the three datasets used to generate test instances.

Basic test instances

A number of test instances are built as follows. We call them basic as we shall later derive
additional instances from them.

For each dataset D, we extract—by using standard itemsets discovery algorithms—the set
S of all itemsets that are frequent in D w.r.t. a given threshold s. We express the threshold s in

2 Datasets can be downloaded from the KDD-Cup 2000 competition website [KDD].

48 3 A New Generalization of IFM

percentage points w.r.t. the number of itemsets in the dataset. We use values of the threshold
s belonging to the set {0.2%, 0.3%, . . . , 0.9%, 1%}. These very low support thresholds are
necessary to yield a significant number of frequent itemsets, since for s > 1% there are few
frequent itemsets in the original datasets, see [ZKM01, KDD] for a detailed description of the
datasets.

In order to characterize the unfrequent itemsets, for each s we need to fix a suitable value
for σ′, that is the maximum support that each itemset not belonging to S can have in order to
prevent undesired frequent itemsets. Obviously, 100× σ′/D must be less than s. So it would
be sufficient to set σ′ equal to the greatest integer number that divided for the size of D is
smaller than s · 10−2; we call this value σ′

max. However, in order to prevent rounding errors,
we decrease σ′

max of a small factor equal that, on the basis of our experiments, we have fixed
to 4 · 10−4|D|. In sum σ′ = σ′

max − 4 · 10−4|D|.
So we have constructed 9 instances (one for each of the values of s) for each of the

3 datasets: in total 27 instances. For each instance (I, S, Γσ, σ
′, size), D must satisfy the

constraint Γσ , that contains a triple of the form (I, σI
min, σ

I
max) for each I ∈ S. We set

σI
min = σI

max = σD(I), where σD(I) is the actual support of the itemset I in the database
D.

The table of Fig. 3.5 reports the cardinality of the sets S and BS′ = Q′ in the generated
instances according to the original dataset and the threshold s. We recall that the cardinality
q′ of Q′ is the number of constraints (3.8) in Section 3.2.1. On the other hand the number of
both groups of constraints (3.6) and (3.7) is equal to the cardinality m of S. The values of
m, q′ and n characterize our basic test instances of κ-IFMσ′ .

BMS-WebView-1 BMS-WebView-2 T10I4D100K
n = 497 n = 3340 n = 870

s(%) m q′ m q′ m q′

0.20 798 36506 3683 167688 13255 273436
0.30 435 25530 1340 61083 4552 238332
0.40 286 16605 676 30343 2001 197796
0.50 201 11498 408 17642 1073 161617
0.60 162 8732 257 11255 772 133080
0.70 133 6260 187 8614 603 113368
0.80 105 4226 138 6927 494 98294
0.90 90 3260 113 6051 421 81858
1.00 77 2633 81 4827 385 70611

Fig. 3.5. Values of m = |S| and q′ = |Q′| in the basic test instances.

Boundedness of BS′

In Table 3.6 we show the values of n̂ (i.e., the total number of items that are included in
the itemsets in S), of m̂ (i.e., the number of maximal itemsets in S) and of the values of
k = κ(inst) for each basic test instance inst. The highest values for k are taken by the
instances corresponding to the lowest support s = 0, 2%.

We point out that all the values of k are indeed small in the sense that the estimated
number q̃′ of itemsets in Q′ is a bit more than quadratic in n̂ for a few instances whereas in
general is less than quadratic. Recall that q̃′ − (n − n̂) = n̂k/100, where q̃′ − (n − n̂) is

3.4 Computational results 49

BMS-WebView-1 BMS-WebView-2 T10I4D100K
n = 497 n = 3340 n = 870

s (%) n̂ m̂ k n̂ m̂ k n̂ m̂ k

0.2 268 483 181 573 1257 221 741 1938 200
0.3 225 296 188 340 617 202 692 1293 190
0.4 181 217 187 233 379 193 630 761 190
0.5 150 162 187 170 251 189 569 585 190
0.6 130 136 186 127 173 187 516 511 189
0.7 109 115 186 104 130 186 476 455 189
0.8 88 90 185 86 108 185 443 432 189
0.9 76 76 184 75 91 184 404 397 189
1.0 67 67 184 56 67 183 375 370 189

Fig. 3.6. Values of m̂ = |Ŝ|, n̂ = | ∪I∈Ŝ I| and of the parameter k

the estimated number of singleton itemsets in Q′ and n̂k/100 is the estimated number of those
itemsets with at least two items. The latter value is in great part determined by n · (n− 1)/2,
that is the estimated number of itemsets with exactly two items. This confirms our belief that
q′ is exponential only for artificial datasets having strange overlaps of the itemsets in Ŝ.

Table 3.7 compare the values of k/100 with the exponent d of the formula q′− (n− n̂) =
n̂d, where q′ is the actual number of itemsets in Q′. The values of k/100 practically coincide
with those of d for all instances except the one of the dataset T10I4D100K for s = 0.2% and
the ones of BMS-WebView-2 for s = 0.2, 0.3, 0.4. Observe that the number of itemsets in Q′

with two items is at most n · (n − 1)/2. So it is interesting to compare the values of k/100
and d with e = logn̂(n̂ · (n̂ − 1). As depicted in the same table, the three values practically
coincide in all most cases. Probably (n − n̂) + n̂ · (n̂ − 1) gives a good estimation of q′ in
most real problem instances.

BMS-WebView-1 BMS-WebView-2 T10I4D100K
s (%) k d e k d e k d e

02 1.89 1.88 1.88 2.21 1.90 1.90 2.00 1.90 1.90
03 1.88 1.88 1.88 2.02 1.89 1.89 1.90 1.90 1.90
04 1.87 1.87 1.87 1.93 1.88 1.88 1.90 1.90 1.90
05 1.87 1.86 1.87 1.89 1.87 1.87 1.90 1.90 1.90
06 1.86 1.86 1.86 1.87 1.86 1.86 1.89 1.89 1.89
07 1.86 1.85 1.86 1.86 1.85 1.85 1.89 1.89 1.89
08 1.85 1.85 1.85 1.85 1.85 1.85 1.89 1.89 1.89
09 1.84 1.84 1.84 1.84 1.84 1.84 1.89 1.89 1.89
1 1.84 1.84 1.84 1.83 1.83 1.83 1.89 1.89 1.89

Fig. 3.7. Values of k/100, d = logn̂(q
′ − (n− n̂)) and e = logn̂(n̂ · (n̂− 1)/2)

Additional test instances

So far we have constructed 9 instances (one for each of the values of s) for each of the 3
datasets – in total 27 instances. Now we expand each of the 27 instances into 5 instances (for

50 3 A New Generalization of IFM

a total number of 135 instances) as follows. Given a set S of frequent itemsets constructed at
Step1, we construct five κ-IFMσ′ instances (I, S, Γσ, σ

′, size) as follows. For each I ∈ S,
Γσ contains the triple (I, σI

min, σ
I
max), where σI

min = σD(I) · (1 − α), σI
max = σD(I) ·

(1 + α) and α is one of the values in {0.0, 0.05, 0.1, 0.15, 0.2}. Thus the basic instances are
the one with α = 0.0.

We observe that α plays a crucial role. Indeed, for α = 0, the support of an itemset in S
is constrained to its support in the original dataset. In this case, there is at least one solution,
i.e., the original dataset, and the accuracy of the method can be computed by some similarity
measure between the obtained dataset and the original one. Instead, for α > 0, we constrain
the support of each itemset within an interval [σmin, σmax] with σmin < σD(I), and an
itemset may happen to be frequent in the original dataset but not in the synthesized one.

A wide range of experiments were conducted to study the trend of the performance when
α varies. We have fixed an upper bound of 0.2 for α, since a deviation larger than 20% w.r.t.
the actual support is unlikely to be desirable.

In synthesis, for each dataset D, for each support s in {0.2%, 0.3%, . . . , 0.9%, 1%}, and
for each α in {0.0, 0.05, 0.1, 0.15, 0.2}, we create an κ-IFMσ′ instance (I, S, Γσ, σ

′, size)
where:

• I is equal to the set of items in the original dataset D;
• S is equal to the set of all frequent itemsets according to the threshold s;
• Γσ = {(I, σI

min, σ
I
max) : I ∈ S} is built by setting for each itemset I ∈ S whose

support in the original dataset is σD , σI
min = σD · (1− α) and σI

max = σD · (1 + α);
• σ′ = σ′

max − 4 · 10−4|D|, where σ′
max is the greatest integer number that divided for the

size of D is smaller than s · 10−2;
• size is fixed to (|D|, |D|), i.e. size1 and size2 are set to the number of transactions in

the original dataset, indicated as |D| in Fig. 3.4, e.g., for BMS-View-1 size1 = size2 =
59602.

3.4.2 Results

The heuristic column-generation algorithm proposed in 3.3.4 was coded in Java with the Ilog
cplex 12.0 library, and the computational experiments were performed on a server with an
Intel Xeon E5450 3.0GHz platform, 16GB of RAM, and Linux 64bit as OS. We imposed a
time limit of 3 hours to each test.

We assess the effectiveness of the algorithm by a new accuracy index defined in the fol-
lowing. Let D′ be the synthesized dataset, D be the original dataset, and FD′

,FD be frequent
itemsets extracted from D′ and D, respectively. The proposed accuracy index is:

A(D′) =
1

|FD ∪ FD′ |
∑

I∈FD∪FD′

1−

∣∣∣σD′
(I)− σD(I)

∣∣∣
max(σD(I), σD′(I))

(3.26)

By construction, A(D′) values range between 0 and 1, with values close to 1 being rather
desirable. Figures 3.8, 3.9, and 3.10 show the accuracy of the algorithm on instances derived
from BMS-View-1, from BMS-View-2, and from T10I4D100K, respectively. We now dis-
cuss the trend of the accuracy when α varies. It comes as no surprise that accuracy degrades
when α increases, and, in fact, the larger a support window, the larger is the gap between the
original dataset and the computed solution. However, the figures indicate that very high accu-
racy measures are obtained in general. Specifically, the accuracy on instances derived from the
two real datasets is always greater than 0.89, when α = 0. Moreover, it is relevant to notice

3.4 Computational results 51

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
(D

’)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

BMS-WebView-1

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.8. Accuracy on instances derived from the BMS-View-1 dataset.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
(D

’)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

BMS-WebView-2

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.9. Accuracy on instances derived from the BMS-View-2 dataset.

that the accuracy trend in the artificial dataset T10I4D100K is very different w.r.t. the real
datasets. Specifically, the accuracy is always below 0.95 and it seems that the algorithm does

52 3 A New Generalization of IFM

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
(D

’)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

T10I4D100K

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.10. Accuracy on instances derived from the T10I4D100K dataset.

not take any advantage from the type of instance. This is very strange, suggesting the need for
researchers to improve the artificial datasets or to use real-world datasets.

1

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

E
xe

cu
tio

n
T

im
e

(m
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

BMS-WebView-1

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.11. Execution Times on instances derived from BMS-WebView1

3.4 Computational results 53

1

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

E
xe

cu
tio

n
T

im
e

(m
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

BMS-WebView-2

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.12. Execution times on instances derived from BMS-WebView2

1

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

E
xe

cu
tio

n
T

im
e

(m
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

T10I4D100K

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.13. Execution times on instances derived from T10I4D100K

Figures 3.11 – 3.13 report execution times. Differently from the accuracy which improves
when α decreases, the execution time worsen with smaller α. We observe that execution time

54 3 A New Generalization of IFM

on the real datasets is affected by α specially for low values of the threshold (s < 0.5%).
These results again evidence a completely different trend when the algorithm run on the in-
stances derived from the artificial dataset. In fact, the execution time on instances derived from
T10I4D100K is always 107ms, i.e. the value of the time limit. The encouraging result is that,
also on these instances, we achieve a high level of accuracy (always greater than 0.75, when
α = 0).

The table of average execution times, reported in Fig. 3.14, shows that our method exibits
reasonable execution times (ranging from seconds to a few hours in the worst cases). As
aspected, a high execution time occurs when there is a large number of constraints in the
linear program. To appreciate this, we report in Fig. 3.14 the cardinality of S and Q′, since
the number of constraints of the linear program is polynomial in these values. We observe that
the method allows us to handle linear programs with an enormous number of variables using a
reduced amount of space and time. Limitation on space can be guaranteed in all cases whereas
exponential time cannot be ruled out. However, our experiments suggests that exponential time
is not encountered in practice, similarly to what happens with the classical simplex algorithm.

BMS-WebView-1 BMS-WebView-2
s (%) |S| |Q′| time(s) |S| |Q′| time(s)

0.2 798 36506 519.090 3683 167688 11084.022
0.3 435 25530 12.216 1340 61083 10811.477
0.4 286 16605 0.928 676 30343 10803.061
0.5 201 11498 0.528 408 17642 10.352
0.6 162 8732 0.361 257 11255 2.192
0.7 133 6260 0.207 187 8614 0.885
0.8 105 4226 0.130 138 6927 0.408
0.9 90 3260 0.099 113 6051 0.166
1.0 77 2633 0.070 81 4827 0.98

Fig. 3.14. Average execution times and cardinality of S and Q′ on instances derived from the
two real datasets.

In the third series of figures we present results for a compactness measure, dt, defined as
the ratio between the number of different transactions of the synthesized dataset, trans(D′),
and the number of different transactions of the original dataset, trans(D):

dt =
trans(D′)

trans(D)
.

Figures 3.15, 3.16 and 3.17 show values of dt for instances derived from BMS-View-1, from
BMS-View-2, and from T10I4D100K, respectively. Note that only for the artificial dataset
with threshold values of 0.8%, 0.9%, 1%, the dt value is high. Instead, for other cases the
number of different transactions in the synthesized dataset is much less than in the original
dataset. This means that our method yields datasets more compact than real ones.

3.5 Related Works 55

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

dt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

BMS-WebView-1

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.15. Compactness measure for instances derived from BMS-View-1.

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

dt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

BMS-WebView-2

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.16. Compactness measure for instances derived from BMS-View-2.

3.5 Related Works

IFM has been firstly introduced in [Mie03], where the problem was analyzed from the com-
putational complexity point of view, by showing that deciding whether there is a dataset com-

56 3 A New Generalization of IFM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

T10I4D100K

=0
=0.05
=0.10
=0.15
=0.20

Fig. 3.17. Compactness measure for instances derived from T10I4D100K.

patible with the given frequent sets is NP-hard. Differently from our research, the lower and
upper bounds of support in the formulation were assumed to coincide and no restriction was
enforced on the itemsets which do not belong to the set S – such assumptions may result to be
too simplistic in some case, as already discussed in the introduction.

fThis problem was subsequently considered by Calders, who introduced the FREQSAT
perspective [Cal04, Cal07, CG07, Cal08] where the support of the itemsets is measured in
terms of their frequency. Under this novel formulation, several variants of FREQSAT have
been studied and a complete parameterizations of their intrinsic difficulty was provided. For
example, in FREQSAT{NTRANS} the dimension of the database is fixed to NTRANS value
and it is proved that this problem is in PSPACE and NP-hard; in FREQSAT{NDUP} each
transaction in the database can appear at most NDUP times and it is proved that this problem
is in PSPACE and PP-hard; finally in FREQSAT{NTRANS,NDUP} both the constraints of
FREQSAT{NTRANS} and FREQSAT{NDUP} hold and it is proved that this problem has the
same complexity of FREQSAT{NTRANS}.

Observe that NDUP constraints introduce a duplicate threshold also for itemsets not in
S but, unfortunately, such a threshold is the same for all transactions and, then, also for the
itemsets in S, that should instead have larger bounds. Furthermore, there is no limitations on
the supports for itemsets not in S. This is a serious drawback, because permits that ”unwished”
frequent itemsets may arise even in presence of an upper bound on the number of duplicates.
Our approach fix a maximum support for all itemsets not in S thus avoiding this possibility.

It is worth noting that the classical IFM formulation introduced in [Mie03] can be special-
ized in FREQSAT problems for the case with a constraint on the database size, since supports
can be transformed in frequencies and vice versa.

In the light of the intractability of the inverse frequent itemset mining problem, approx-
imation strategies have been discussed in [WW05]. In particular, the authors introduce the
ApproSUPP problem, where they asked whether it is possible to satisfy the various support

3.5 Related Works 57

constraints in an approximate fashion. The approach adopted here is a ILP formulation of
ApproSUPP, and a relaxed version of the integer formulation is used with heuristic strategies
to generate approximate transaction database, by providing rounding methods to get an integer
solution. However such formulation uses binary variables, meaning that an item belong or not
to a transaction in the resulting database solution, thus the main drawback in this approach
is that the relaxed version of the formulation introduces strong approximations that should
compromising the reliability of the results.

A heuristic approach to generate a database satisfying the given frequency constraints
was firstly proposed in [WWWL05]. The approach founds on the Iterative Proportional Fit-
ting (IPF) method to estimate contingency tables for each itemsets, and on graphical decom-
position techniques to decompose items into independent components in order to reduce the
exponential explosion of such a tables and then apply IPF algorithms only on the irreducible
components. As a consequence, the feasibility of this approach depends on the assumption
that many of the items are (conditionally) independent.

Another heuristic approach was discussed in [RMZ03], where a method to generate basket
datasets for benchmarking activities is discussed which is applicable when the length distri-
butions of frequent and maximal frequent itemset collections is available. Unfortunately, as
discussed in [CO05], even though the generated synthetic data set preserves the length distri-
butions of frequent patterns, the problem is that the size of transactions generated usually is
much larger than that of the original database while the number of items generated is much
smaller.

In a previous work [GSS09b], we have investigated the IFMS problem obtained by consid-
ering a minimum and a maximum support constraint over each itemset in S, while itemsets not
in S have support zero. Even though the size of the output database is not fixed in the formula-
tion, such size can be imposed by further constraining the support of itemsets in S. Moreover,
within this setting, we proposed an algorithm that always satisfies the maximum support con-
straints, but which treats minimum support constraints as soft ones that are enforced as long
as it possible. This algorithm has inspired us in designing the heuristic column-generation
algorithm.

3.5.1 Solving FREQSAT with Heuristic Column Generation Algorithm

We observe that FREQSAT can be directly formulated as an LP problem using our notation as
follows:

minimize
2m+1∑
i=1

vi (3.27)

subject to

vQ(i) +
∑
j∈T

aijxj ≥ lQ(i) i ∈ Q (3.28)

vm+Q(i) −
∑
j∈T

aijxj ≥ −uQ(i) i ∈ Q (3.29)

v2·m+1 +
∑
j∈T

xj = 1 (3.30)

vi ∈ Q0 1 ≤ i ≤ 2m+ 1 (3.31)

xi ∈ Q0 i ∈ T. (3.32)

58 3 A New Generalization of IFM

For each i ∈ V (thus, for each itemset Ii in S), the variable xi represents the frequency
of Ii as a rational number so that the usage of integer linear programming is not anymore
necessary. The number of constraints as well as of artificial variables is strongly reduced as
there is no restriction for the itemsets non in S. The constraint (3.30) imposes that the sum
of all frequencies be 1. Obviously this problem can be effectively solved using the heuristic
column-generation algorithm. In the conclusion we shall discuss some experiments we have
already done in such an application of the algorithm.

3.5.2 Comparison with IPF

In this subsection, we compare our method with the IPF method proposed in [WWWL05].
The method expoits similarity measures between original frequent itemsets (FD) and those
occurring in the output dataset (FD′

). To this aims, the authors in [WWWL05] compute the
Jaccard, Dice, and Overlap indices (see [HK06] chapter 5, for general background and dis-
cussion of similarity measures):

Jaccard(FD,FD′
) = |FD∩FD′

|
|FD∪FD′ |

Dice(FD,FD′
) = 2·|FD∩FD′

|
|FD|+|FD′ |

Overlap(FD,FD′
) = |FD∩FD′

|
min(|FD|,|FD′ |)

As in [WWWL05], we applied our κ-IFMσ′ method on two instances generated with
(D =BMS-View1, s = 0.6, α = 0), and (D =BMS-View2, s = 0.7, α = 0), respectively.
Results on these instances are reported in Fig. 3.18. Please note that a similarity index is
computed only when the support threshold value used for mining is greater than or equal to
the support threshold used for data generation. On the other hand, when support threshold
values used for mining (the column indicated by s (%) in the table) are smaller than that used
for data generation (s = 0.6 and s = 0.7), statistics on original dataset are not available.

BMS-Web s (%) Jaccard Dice Overlap
κ-IFMσ′ IPF κ-IFMσ′ IPF κ-IFMσ′ IPF

View-1 0.7 1.000 0.940 1.000 0.969 1.000 0.992
s=0.7 0.8 1.000 0.883 1.000 0.938 1.000 0.934

0.9 1.000 0.893 1.000 0.944 1.000 0.954
1.0 1.000 0.887 1.000 0.940 1.000 0.959

View-2 0.6 1.000 0.696 1.000 0.768 1.000 1.000
s=0.6 0.7 1.000 0.708 1.000 0.739 1.000 0.964

0.8 1.000 0.710 1.000 0.830 1.000 0.928
0.9 0.991 0.722 0.995 0.838 1.000 0.976
1.0 1.000 0.701 1.000 0.824 1.000 0.910

Fig. 3.18. Comparison of κ-IFMσ′ accuracy vs. IPF method

This comparison highlights that very high similarity measures are obtained by our method,
outperforming those obtained by IPF. Even though the Jaccard, Dice, and Overlap indices are
the most common way to formalize the concept of similarity, the accuracy index that we have
proposed, see equation (3.26), provides a more fine-grained evaluation of the effectiveness

3.6 Applications of IFM 59

of the inverse frequent mining. In fact, these three indices assess similarity of two transac-
tional datasets by looking for the set of frequent itemsets, but do not take into account the
frequency values of these itemsets. In our opinion, ignoring the number of occurrences of
frequent itemsets, i.e. their support, does not properly evaluate similarity of two transactional
datasets (especially when at least one of them is of a large size). On the contrary, our accuracy
measure looks inside the frequent itemset, and strongly penalizes the mismatches among the
number of occurrences of such itemsets in the two datasets.

3.6 Applications of IFM

To better appreciate the practical relevance of the results of this chapter, we stress that the IFM
problem arises in a number of novel applications. We discuss a few of them below.

Database generation method for benchmarking

Consider a scenario in which a data set is needed as an input of data mining applications, for
analysis purposes or simply for testing the implementation of new reasoning methods. The
unavailability of real data often exacerbates in the case of lowly structured multi-organization
virtual enterprises where the partners will never agree to share their own information, or no
tracking infrastructure exists for collecting and storing log data. In fact, such a situation is
likely to happen in many real-world application scenarios falling in the contexts of indus-
trial districts and supply chains, as we experienced in the industrial research project ”TO-
CAI: Knowledge-oriented technologies for enterprise aggregation in Internet”. A major prob-
lem that we have faced in this project is the scarcity and/or low quality of real log data,
mainly due to privacy reasons or to commercial strategies. On the other hand, the usage of
artificial data sets in place of those reals has demonstrated impracticable since the former
may not reflect the actual properties of real processes, and in fact there have been extensive
study [ZKM01, Jea05, HK06, TF09] proving that the artificial data sets have very different
characteristics from the real-world data sets and as consequence, the results of the mining al-
gorithms are very different when obtained over syntectic datasets instead of the real ones. This
is also true for frequent itemset mining as demonstrated in [ZKM01, HCXY07]. In order to
ensure high quality experimental findings in TOCAI, we have applied an inverse set mining
technique for generating benchmark datasets with features mined from real-world datasets.
Specifically, we have used frequent itemsets together with their supports provided by the or-
ganizations involved in TOCAI as the features. As result we have devised a privacy aware
database generation method, since the high complexity of the inverse frequent set mining
problem somewhat guarantees that it is very hard to break the privacy. This argumentations is
first discussed in [WWWL05] as motivating example.

Privacy preserving data publishing

As a further motivating application scenario for IFM, assume you are the owner of a transac-
tion database which is willing to make available its data to any interested party, but you are
wondered how to keep private information or sensitive knowledge from being disclosed. This
is also the scenario depicted in a lot of contributions in the privacy preserving data publish-
ing field [DN03, AS00, ESAG02, AA01, JA05, WWWL05, ABE+99, SVC01, RH02, JX08],
where approaches proposed in the last decade are mainly devoted to modify the original

60 3 A New Generalization of IFM

database before publishing it by means of various sanitization methods, such as anonymiza-
tion, hiding, perturbation. Notably, the drawback of these approaches is that modifying
the original database to limit the disclosure of sensitive knowledge may impact on other,
non-sensitive, knowledge [EGS03, LKT08, OZ03]. For example, in [JA05] a downside of
anonymizing transaction database is that the data mining results computed from such database
are not always very informative. When you decide to hide association rule based data saniti-
zation techniques, as in [ESAG02], you cannot control the hiding effects of confidential rules
obviously, which can only be validated after sanitization.

Conversely, recent literature has proposed a solution to the data sanitization problem
which is inspired to inverse frequent set mining. Even though in a preliminary form, this
idea is first depicted in[COL04], where a data reconstruction algorithm for hiding sensitive
frequent itemsets is based on a coarse Constraint-based Inverse Itemset Lattice Mining pro-
cedure (CIILM). Inspired from this intuition are the works in [NLO06, GTTY06], where the
inverse mining method is the basic technique for data reconstruction while hiding association
rule.

Condensed and succinct representations of databases

Another possible application is the construction of condensed representations [CRfB05] of
database. Condensed representation of a transactional database is a minimal representation of
dataset storing a non-derivable cover of all frequent itemsets, in place of the complete collec-
tion of all frequent itemsets. The problem here is to define scalable methods discovering item-
sets for which the support can be derived, so they can be removed without loosing information,
thus resulting in the so called Non-Derivable Itemsets representation. In [CG07, Cal08, CG03]
it is argued that inverse frequent mining methods can be an interesting building block solution
to the question of what can be derived from some given frequencies and can be used to see
whether the frequency of a certain itemset in a collection is uniquely determined by the other
itemsets in that collection. This is also the approach applied in [CG07].

We note that a classical database scheme together with a number of integrity constraints
can be thought of as a condensed (”succinct”)representation of all admissible database in-
stances. In analogy with this point of view, IFM can be seen as transactional database scheme
where the integrity constraints are represented by support thresholds. The IFM decision prob-
lem then consists in verifying whether the scheme admits instances and a search solution
returns one of them. Within this more general framework the IFM problem can be considered
under a new perspective and we are currently conducting some research in this direction. In
particular, as an extension of support constraints, we have introduced count constraints that
require the results of given count operations on a relation to be within a certain range, and we
have formulated a new decisional problem, the Inverse OLAP: given a schema (that typically
represents a star schema of an OLAP application), does there exist a relation instance satisfy-
ing a set of given count constraints? We have shown that IFM is as a special case of inverse
OLAP.

Even though this chapter will not addressed all these issues, we believe the research prob-
lem formulated and addressed in this work takes a solid step in this direction, and particularly
sheds light on a list of important challenges related to devising effective procedure to solve
the inverse mining of transactional databases.

4

Count Constraints and the Inverse OLAP Problem

A typical problem in database theory is to verify whether there exists a relation (or database)
instance satisfying a number of given dependency constraints. This problem has recently re-
ceived a renewed deal of interest within the context of data exchange, but the issue of handling
constraints on aggregate data has not been much investigated so far, notwithstanding the rele-
vance of aggregate operations in exchange systems. This chapter introduces count constraints
that require the results of given count operations on a relation to be within a certain range.
Count constraints are defined by a suitable extension of first order predicate calculus, based
on set terms, and they are then used in a new decisional problem, the Inverse OLAP: given
a schema (that typically represents a star schema of an OLAP application), does there exist
a relation instance satisfying a set of given count constraints? The new problem turns out to
be NEXP complete under various conditions: program complexity (i.e., number of attributes
in the relation scheme and the size of constraints), data complexity (i.e., size of attribute do-
mains) and combined complexity. We illustrate how count constraints can be used into a data
exchange system context, where data from the source database are transferred to the target
database using aggregate operations.

4.1 Introduction
The problem of inverse frequent set mining (IFM) [Mie03, Cal04, Cal07], consists in verifying
whether there exists a transaction database D satisfying a given set ΓS of support constraints
on some itemsets, that are typically the frequent ones

The original aim of our research was mainly to present a general formulation of the IFM
problem in which support constraints on unfrequent itemsets are given in a succinct and flexi-
ble way using generic properties of them. We eventually realized that the IFM problem repre-
sents the succinct description of an itemset dataset in the same way as the integrity constraints
of a relational database schema are a succinct description of all satisfying databases.The search
for a general framework stimulated us to consider the problem under a new perspective: as a
special case of constraint satisfaction for an OLAP star schema. Indeed IFM can be formu-
lated as a particular problem of integrity constraint satisfaction on a relational scheme R(T, I)
with two attributes T (the ID of a transaction) and I (the ID of an item) with domain I. Given
a relation r on R, G = Group(r)By(T) divides r into a number of groups, one for each
transaction ID. Then, for each K ⊆ I, Gσ(K) = G(I⊇K) filters the groups in G for which
K is a subset of the projection on I .

62 4 Count Constraints and the Inverse OLAP Problem

We then consider a new type of integrity constraint for R, called count constraint, requir-
ing that, for each relation r and for each K ⊆ I, the number of filtered groups in Gσ(K) be
within a given range — thus enforcing support restrictions. More in general count constraints
prescribe that the results of given count operations on a relation to be within a certain range.
To enable an expressive description of count constraints, we adopt a simple logic formalism
with set terms and count aggregates. This formalism is similar to the one used in the data
exchange setting [FKP05] and allows us to express count constraints on a star schema, used in
OLAP analysis, which is characterized by multidimensional data cubes that enable manipula-
tion and analysis of data stored in a source database from multiple perspectives in a fast way
[CD97, LL03, Han05]. Each dimension of a multidimensional data cube stores the values of
an attribute and each cell contains an aggregate value, called measure (e.g., count), based on
aggregation criteria that depend on coordinates of this cell in the data cube. As tangible proof
of the capabilities of our logic-based language to enforce count constraints on a star schema,
we illustrate its usage in a ”non-toy” example (not another employee - department example
variation) that, in our believe, witnesses the potential relevance of our proposal.

Count constraints are later used to define a new decisional problem, the Inverse OLAP:
given a schema (that typically represents a star schema of an OLAP application), does there
exist a relation instance satisfying a set of given count constraints? Inverse OLAP is relevant
for the generation of synthetic datacubes having the same characteristics of real-world ones
in terms of aggregation patterns. The formulation of this problem shows a strict relationship
between classical integrity constraint satisfaction on database schemes and inverse mining
problems: both problems provide a succinct description of satisfying instances. We prove that
the new problem is NEXP-complete under various conditions: combined complexity (i.e,
both attribute number, size of count constraints and domain sizes are part of the input), pro-
gram complexity (i.e., the domain sizes are constant) and data complexity (i.e, the number of
attributes and the size of constraints are constant). This result is in our view important for three
reasons. The first one is that it precisely characterizes the complexity of the problem. The sec-
ond reason is that it shows an exemplary of NEXP-complete problem different from classical
ones that are deterministic succinct representations of NP-complete problems, deterministic
in the sense that there is a unique expanded description although it is generally computed in
exponential time; instead the General Inverse OLAP problem is a non-deterministic succinct
representation in the sense that expansion process requires non deterministic exponential time.

The third reason is that Inverse OLAP can be easily extended to provide a new setting
for data exchange that is capable to handle migration of aggregate data. We show a first step
towards this direction, that for the moment consists just in the illustration of two meaningful
examples: privacy preserving data migration and datacube construction. Note that privacy pre-
serving sharing of data is an important motivation for Inverse OLAP: organizations may be
interested in exchanging some patterns of their own data but not actual raw data.

The chapter is organized as follows. In Section 2 we present some useful background to
our research. We start from some basic notions on inverse frequent set mining problem, that
can be considered the ancestor of Inverse OLAP, then review some basic notions on constraint
satisfaction on OLAP and relational database relations and finally overview the main issues
of data exchange setting. In Section 3 we introduce the logic language for describing count
constraints and illustrate their usage in a motivating example in Section 3.1. In Section 4 we
present the formulation of the Inverse OLAP and prove that it is in NEXP. To prove complete-
ness, we introduce in Section 4.1 a program-complexity version of it, called Binary Domain
Inverse OLAP, that is proved to be NEXP-complete using a reduction from succinct Hamil-
tonian circuit. Then in Section 4.2 we define another simple, complementary specialization of
Inverse OLAP, called Binary Attribute Inverse OLAP, that is a sort of rewriting of the IFM

4.2 Preliminaries and related work 63

problem. Binary Attribute Inverse OLAP is thereafter used to prove that also the data com-
plexity of Inverse OLAP is NEXP-complete. In Section 5 we illustrate how count constraints
can be used into a data exchange system context, where data from the source database are
transferred to the target database using aggregate operations. Finally in Section 6 we draw the
conclusion and argue that, following the approach used in a recent paper for finding efficient
solutions to IFM, Inverse OLAP could be solved in a reasonable amount of time also for a
large input size.

4.2 Preliminaries and related work

The main problems we deal with in this chapter (count constraints and Inverse OLAP) are
rather novel and, at the best of our knowledge, there is not much direct related work. Never-
theless, there is an important connection with another inverse problem, called inverse frequent
itemset mining - actually this problem has inspired the initial lines of our research. In per-
spective, we also believe that our work could have some interesting relationships with another
important problem: data exchange systems.

4.2.1 From IFM to Inverse OLAP

The starting point for generalizing IFM in a more general context is that it can be formulated
as a particular problem of integrity constraint satisfaction on a relational scheme R(T, I) with
two attributes T (the ID of a transaction) and I (the ID of an item). Let T and I be the
domains on T and I respectively. Given a relation r ⊆ T × I on R, G = Group(r)By(T)
divides r into a number of groups, one for each transaction ID. Then, for each K ⊆ I,
Gσ(K) = GHaving(I⊇K) filters the groups in G for which K is a subset of the projection on
I .

Consider now a new type of integrity constraint for R, called count constraint, requiring
that, for each relation r and for each K ⊆ I, the number of filtered groups in Gσ(K) be within
a given range — thus enforcing support restrictions. Under this perspective, IFM becomes a
particular case of the problem of integrity constraint satisfaction for a relation scheme: does
there exist a relation r on R such that r satisfy all count constraints?

To strengthen the relationship between inverse mining problem and relation integrity con-
straint satisfaction, in the next section we further elaborate on the structure of the relation
R(T, I) and count constraints. This relation is a a simple case of star schema, that is a relation
scheme whose attributes are measures and (possibly layered) dimensions. A star schema is
used in OLAP analysis, which is characterized by multidimensional data cubes that enable
manipulating and analyzing data stored in a source database from multiple perspectives in a
fast way [CD97, LL03, Han05]. Each dimension of a multidimensional data cube stores the
values of an attribute and each cell contains an aggregate value, called measure (e.g., count),
based on aggregation criteria that depend on coordinates of this cell in the data cube.

A data cube is defined by designing a relational database schema as a multidimensional
view on the source database, typically a star schema representing a fact table, where both mea-
sures and dimensions are stored. After the definition of the star schema, the data cube is built
by performing a number of Projection/Selection/GroupBy queries over the source database.
In case of two dimensions A and B for which the functional dependency A → B holds
(layered dimensions), the dimension B can be removed from the fact table and stored into
an additional ad-hoc (dimension) table D(A,B) having A as key, thus obtaining a so called

64 4 Count Constraints and the Inverse OLAP Problem

snowflake schema; in this case an inclusion dependency is added which enforces that all val-
ues of the dimension A in the fact table be contained in the corresponding column of the
dimension table.

In the next sections we shall define count constraints for a star schema and define a new
inverse problem, called Inverse OLAP: given a star schema R(A1, . . . , An) and a number of
count constraints, does there exist a fact table (i.e., a relation) on R satisfying the integrity
constraints?

The problem of deciding the existence of a database satisfying a given set of integrity
constraints is tightly related with the implication problem of integrity constraints and with the
problems of query answering and containment under inclusion dependencies. Many decidabil-
ity results in these settings have been established for classes of constraints which admit a finite
chase [BV90], i.e., a finite “canonical” database, witnessing the satisfiability of the constraints
at hand. In particular, most of such classical studies in database theory focused on inclusion
dependencies and functional dependencies [ZO97, Ros06, CKV90].

4.2.2 Data Exchange

As we shall illustrate later in the chapter, Inverse OLAP may have strict relationships with
the data exchange problem, first defined in [FKP05]. This is the problem of migrating a
data instance from a source schema to a target schema such that the materialized data on
the target schema satisfies the integrity constraints specified by it. Data exchange is differ-
ent to data integration [Len02] because the data is indeed materialized at the target schema,
which is not always the case for data integration settings. The mapping of the data from the
source to the target schema is given by source- to-target TGDs (Tuple Generating Dependen-
cies). Additionally, the target schema specifies target constraints in form of EGDs (Equal-
ity Generating Dependencies) and TGDs, which the imported data must satisfy. Fagin et al.
[FKP05] introduced the notion of universal solutions, and argued that these should be the
preferred solutions to materialize in data exchange (i.e. a universal solution can be mapped
through a homomorphism into any other solution). Moreover, it was proved in that, the an-
swer of a conjunctive query on a universal solution, is contained in all answers of the same
query on each mapping solution. Other important results on data exchange can be found in
[FKP05, GLLR07, GN08, FKPT09, APR11]. Aggregate queries in the data exchange setting
has been investigated in [AK08].

4.3 Count Constraints

Let U = {A1, . . . , An} be a set of attributes on the domains D1, . . . , Dn with given
cardinalities d1, . . . , dn. We denote ∪i=1,nDi by D and

∑
i=1,n di by d. Given a sub-

set L = {Ai1 , . . . , Aik} of k ≥ 0 attributes in U , a tuple a on L is a mapping from
Ai1 × · · · × Aik to Di1 , . . . , Dik — assuming an implicit ordering of the attributes in L,
we represent a simply as a tuple [a1, . . . , ak] such that for each j, 1 ≤ j ≤ k, aj ∈ Dij .
We denote the set of all tuples on L by DL; a subset (not necessarily proper) of DL is called
a table on L. If k = 0 then DL only contains the empty tuple. In addition, given k > 0,
[a1, . . . , ak] with a1, . . . , ak ∈ D will be called an untyped tuple and we shall write that
[a1, . . . , ak] ∈ Dk.

A relation scheme is a pair consisting of a relation name and a list of attributes. In
this chapter we shall only deal with exactly one relation scheme containing all attributes in

4.3 Count Constraints 65

U , say R(A1, . . . , An). We also assume that the domains of the attributes D1, . . . , Dn are
stored in suitable tables of mono-attribute relation schemes — we call such relation schemes
D1, . . . ,Dn. The size of the description of R and the involved domains is then d and a rela-
tion on R (also called an instance of R) is any table on U . R represents a typical star schema
whose dimensions are stored into a unique fact table, that is a relation on R - as we are only
interested to count aggregation, we omit to include measures. Some of the dimensions could
be organized in layers by means of Functional Dependencies (FDs) — for instance the FDs
A → B and B → C state that the values of dimension A are grouped at a first level B
and at a second level C. In correspondence of FDs we may have additional domain relations
describing hierarchies among two dimensions, e.g., DA,B and DB,C .

We next introduce an extension of first order predicate calculus to define count con-
straints on the instances of R. The predicate symbols only are R, the domain relation schemes
D1, . . . ,Dn and possible dimension hierarchy domains. The constants of the language are the
domain values (domain constants) and all (non-negative) integers.

Besides to the constants, the Herbrand universe includes constant set terms defined as
follows: given any subset S of U , a constant set term is a set of tuples (i.e., a table) over S.
To avoid to have a super-exponential number of set terms in the universe, we fix a maximum
size k̂ for the arity of S, thus k̂ is a (typically small) constant given as part of the input of our
problem — this is not an actual limitation in practical applications for which the value of k̂ is
often 1. Let Hk̂ denote the Herbrand universe; furthermore, given p ≥ 0, Hp

k̂
denotes the set

of all p-tuples on the the Herbrand universe.
Given the attributes A and B with domains {a1, a2, a3} and {b1, b2} respectively, ex-

amples of constant set terms on {A,B} are {[a1, b1], [a2, b1], [a3, b2]} and {[a2, b1]}, while
{[a1], [a3]} and {[a2]} are constant set terms on {A}. There is an interpreted function symbol
count (denoted by #) that can be applied to a set term T to return the number of tuples in T
(i.e., the cardinality of the table represented by T).

Our language is equipped with a countable number of variables (denoted by capital letters)
and makes use of the following types of terms:

• simple term: it is either a domain constant or a variable;
• set term: it is either a constant set term or a formula term, defined as {X1, . . . , Xs : α},

where X1, . . . , Xs are variables, s ≤ k and α is a count formula, defined next, in which
X1, . . . , Xs occur as free variables (similar notation for set terms and aggregate predicates
has been used in the dlv system [FPL+08]);

• integer term: it can be either an integer or a function term #(T), where T is either a
variable or a set term.

An atom can have one of the following formats:

• R(t1, . . . , tn), where t1, . . . , tn are simple terms (relation predicate);
• Di(t), ∀1 ≤ i ≤ n, where t is a simple term, and for each dimension hierarchy domain on

a pair of attributes Ai and Aj , DAi,Aj (t1, t2), where t1 and t2 are simple terms (domain
predicates);

• comparison predicates of the following types:
– t1 = t2 and t1 6= t2, where t1 and t2 are terms (equality predicate and disequality

predicate, respectively);
– t1 < t2 and t1 ≤ t2, where t1 and t2 are either variables or integer terms (less

predicates) — we shall use t1 ≤ t2 ≤ t3 as a shorthand for t1 ≤ t2 ∧ t2 ≤ t3;
– t1 ⊆ t2, t1 ⊂ t2 and t1 6⊂ t2, where t1 and t2 are variables or set terms (subset

predicate, strict subset predicate and non-subset predicate, respectively).

66 4 Count Constraints and the Inverse OLAP Problem

A count constraint C is a formula of type:

∀X (α → βmin ≤ #({Y : γ }) ≤ βmax)

where:

• X and Y are disjunct lists of variables - X can be empty;
• βmin and βmax are integers, but βmax can be set to ∞ to denote that the right hand side

count predicate simply reduces to βmin ≤ #({Y : α});
• α is a (possibly empty) conjunction of domain and comparison predicates, whose variables

are in X — a possible non-constant set term occurring in α must be of the form {W : δ},
where δ is a conjunction of domain predicates and the variables in W are distinct from
the ones in X and all occur in δ;

• every variable X ∈ X must be bound in α, that is:
– X occurs in a domain predicate, or
– X occurs in a comparison predicate X = t, t = X , X ⊂ t or X ⊆ t such that t is a

constant or a bounded variable or a set term {W : δ} in which all the variables in δ
are bound;

• γ can be either
i ∀Z R(t1, . . . , tn), where Z is a possibly empty list of variables, distinct from the

ones in X and Y, t1, . . . , tn are simple terms, all variables in Y ∪ Z occur as terms
in R and all variables in R are in X ∪Y ∪ Z (tuple count constraint), or

ii t ∗ { Z1 : ∀Z2 R(t1, . . . , tn) }, where ∗ can be = or ⊂ or ⊆, t is either a constant
set term or a variable in X, Z1 and Z2 are disjunct lists of variables distinct from
the ones in X and Y (Z2 can be empty), t1, . . . , tn are simple terms, all variables in
Y ∪ Z1 ∪ Z2 occur as terms in R and all variables in R are in X ∪ Y ∪ Z1 ∪ Z2

(group count constraint).

Given a relation scheme R together with its domain relations and a relation r on R, a con-
straint C as above is evaluated on r as follows:

• a relation (resp., domain) predicate with all constant terms is true if the corresponding
tuple is in r (resp., the domain relation) and false otherwise;

• a comparison predicate t1∗t2 is evaluated to true if the evaluation function eval is defined
for both t1 and t2 and eval(t1) ∗ eval(t2)1 or to false otherwise - for each term t, eval is
defined as follows:
– if t is a constant then eval(t) = t;
– if t = #(t′) and eval(t′) is a set s then eval(t) = |s| (i.e., cardinality of s);
– if t = {W : δ[W)]}, say with |W| = p > 0, and the variables occurring in delta

are only those in W, then eval(t) = {w ∈ Dp | δ[W/w] is evaluated to true};
– if t = {Y : ∀Z R(t1, . . . , tn)[Y,Z]}, say with |Y| = p > 0 and |Z| = q ≥ 0,

and the variables in R are exactly those in Y ∪Z, then eval(t) =
⋃

z∈Dq{y ∈ Dp |
R(t1, . . . , tn)[Y/y,Z/z] is evaluated to true};

– if t = { Y : s ∗ { Z1 : ∀Z2 R(t1, . . . , tn)[Y,Z1,Z2] } }, say with |Y| =
p > 0, |Z1| > 0 and |Z2| ≥ 0, s is a constant, and the variables in R are
exactly those in Y ∪ Z1 ∪ Z2, then eval(t) = {y ∈ Dp | s ∗ eval({ Z1 :
∀Z2 R(t1, . . . , tn)[Y/y,Z1,Z2] }) };

– eval is not defined in all other cases;

1 The semantics of the various comparison operators * on evaluated terms is the classical
interpretation of comparisons between constants

4.3 Count Constraints 67

• α[X/x] = α1[X/x], . . . , αp[X/x], p ≥ 0, for which variables X are replaced by con-
stants x, is evaluated (i) to true if ∀i, ≤ i ≤ p, αi[X/x] is evaluated to true, and (ii) to
false otherwise;

• ∀X (α[X] → βmin ≤ #({Y : γ[X] }) ≤ βmax), say with |X| = p ≥ 0, is evaluated
(i) to true if for each x ∈ Hp

k̂
, either both α[X/x] and βmin ≤ #({ Y : γ[X/x] }) ≤

βmax are evaluated to true or α[X/x] is evaluated to false, and (ii) to false otherwise —
x is any p-tuple on the Herbrand universe as it can be a set.

Observe that in the above definitions we have used untyped tuples to simplify notation
- this simplification is not a restriction as the correct domain type is eventually enforced by
the occurrence of tuple values in the appropriate domain in the relation R. Also note that, on
the basis of its semantics, { Z1 : ∀Z2 R(t1, . . . , tn) }, is actually a shorthand for { Z1 :
∧Z∈Z1D(Z) ∧ ∀Z2 R(t1, . . . , tn) }.

We finally remark that the actual range of a variable X in a count constraint is restricted
by the bound conditions we have introduced — we can then say that computation is in general
safe. A potential range explosion could arise in a comparison predicate X ⊂ t or X ⊆ t, but
this risk is mitigated for the term t eventually unifies with a constant set of tuples and by the
restriction on the maximum set arity k̂.

A relation r satisfies a count constraint C (and we write C |= r) if the evaluation of C on
r is equal to true. Accordingly, r satisfies a set of count constraints C (and we write C |= r)
if for each C ∈ C, C |= r.

As stated in the proposition below, checking a count constraint satisfaction may require
exponential time.

Proposition 10 Given a relation scheme R(A1, . . . , An) with n > 0, the domains D1, . . . , Dn

with possibly a fixed additional number of hierarchy domains, a maximal set arity k̂, a count
constraint C and a relation r on R, deciding C |= r is in EXP. 2

Proof.

Let C be a count constraint:

∀X (α → βmin ≤ #({Y : γ }) ≤ βmax).

The size of the input is d+ c+ g, where d is the total size of the domains, c is the size of
the constraint and g is the size of the relation r. Let Hk̂ be the Herbrand universe and let h be
the size of Hk̂. Let v ≤ c be the number of variables in X.

Consider the following procedure:
Count Constraint Check Procedure

i set check = true;
ii for each s in Hv and while (check is true)

2.1 set checkα = eval(α);
2.2 if (checkα is true)

set check = eval (βmin ≤ #({Y : γ }) ≤ βmax);
iii return check;

Steps 2.1 can be done in time polynomial in d× c, Step 2.2 in time polynomial in g. Steps
2.1 and 2.2 are repeated as many times as the number of elements in Hv

k̂
, say p.

68 4 Count Constraints and the Inverse OLAP Problem

Suppose first that C is a tuple count constraint. Then h ≤ d; so p ≤ dv ≤ dc. So the
overall procedure runs in time polynomial in dc × (d× c+ g) and, therefore, it is exponential
in the size of the input.

Suppose now that C is a group count constraint. Then h = O(2d
k̂

); so p = O((2d
k̂

)v) =

O(2v×dk̂)dn×v). As k̂ is a constant, p is exponential in the size of the input. Hence, as the
overall procedure runs in time polynomial in p × (d × c + g), the check is done in time
exponential in the size of the input also in this case. 2

Particularly interesting are constraints for which the number of iterations p is polynomial,
thus the structure of such constraintsallows us to perform the iterations only over a polynomial
subset of the domain. We say that count constraints with this property are well structured.

4.3.1 A Motivating Example

We refer to a classical example of point-of-sales transaction star schema. The attributes of U
are: T (Transaction), I (Item), B (Brand), S (Store), A (Area) — their (finite) domains can
be suitably defined. We are also given the following functional dependencies (FDs): T → S,
S → A. It turns out that {T, I, B} is the relation key. The domains of the attributes are
denoted by DT , DI and so on. We next present a number of meaningful count constraints that
clarify their usage:

(i): Enforcing FDs and relation key
We can use count constraints to enforce the FDs. For instance T → S can be expressed

as follows:

∀T (DT (T) → 0 ≤ #({S : ∀I, B,A R(T, I,B, S,A)}) ≤ 1)

The relation key {T, I,B} can be enforced as:

∀T, I,B (DT (T) ∧ DI(I) ∧ DB(B) →
0 ≤ #({S,A : R(T, I,B, S,A))}) ≤ 1)

(ii): Enforcing the overall number of tuples
There must be between 50000 and 100000 tuples in any instance of R:

→ 50000 ≤ #({T, I, B, S,A : R(T, I,B, S,A)}) ≤ 100000

(iii): Enforcing the total number of transactions in an area
There must be between 1000 and 2000 transactions in every region, except in

”Cal” (Calabria, not California!) for which the upper bound is increased to 9000:

→ 1000 ≤ #({T : ∀I, B, S R(T, I,B, S, ”Cal”)}) ≤ 9000;

∀A (DA(A) ∧A 6= ”Cal” →
1000 ≤ #({T : ∀I,B, S R(T, I, B, S,A)}) ≤ 2000).

If we wish to enforce the above transaction constraint in every store of an area,
we can use the dimension hierarchy domain DS,A:

4.3 Count Constraints 69

∀S (DS,A(S, ”Cal”) →
1000 ≤ #({T : ∀I,B R(T, I,B, S, ”Cal”)}) ≤ 9000);

∀A,S (DS,A(S,A) ∧A 6= ”Cal” →
1000 ≤ #({T : ∀I,B R(T, I,B, S,A)}) ≤ 2000).

(iv): 1-arity group count constraints
Both the set of items i = {[a], [b], [c]} and j = {[b], [c], [d]}) must be present

in at least 100 and in at most 200 transactions, whereas every other set s of items
cannot appear in more than 15 transactions if s contains more than 10 elements or
20 otherwise, except for all subsets of i and j that have no limits (for space reasons
we below write i and j to represent the two constant set terms):

∀Î (Î = i ∨ Î = j →

100 ≤ #({T : Î ⊆ {I : ∀B,S,AR(T, I,B, S,A)}}) ≤ 200);

∀Î (Î ⊆ {I : DI(I)} ∧ Î 6⊂ i ∧ Î 6⊂ j ∧#(Î) ≤ 10 →

0 ≤ #({T : Î ⊆ {I : ∀B,S,AR(T, I, B, S,A)}}) ≤ 20);

∀Î (Î ⊆ {I : DI(I)} ∧ Î 6⊂ i ∧ Î 6⊂ j ∧#(I ′) > 10 →

0 ≤ #({T : Î ⊆ {I : ∀B,S,AR(T, I, B, S,A)}}) ≤ 15).

Note that the first of the above constraints has a disjunction in the left hand side:
it is only a shorthand to represent two constraints having the same right hand side.

Observe that constraint define an instance of an IFM problem for which, in addi-
tion to fixing support constraints for a number of pre-defined itemsets (typically the
frequent ones, in this case i and j), there are generic support constraints for all other
itemsets (the unfrequent ones).

If we now replace the operator⊆with = in the count terms on the right hand sides
of the above constraints, then the count bounds hold only when an itemset indicated
by Î contain exactly all items of a transaction. So, in terms of the mentioned IFM
problem, this revised formulation introduces duplicate constraints.

(iv): 2-arity group count constraints
There must be at least 100 and at most 200 transactions containing an item ”sm”

(smartphone) of the brand ”nd” (ndrangtung), whereas the same set of pairs of item
and brand are sold together in at most 10 transactions, except for the ones containing
the pair (”sm”, ”nd”) for which the limit is 50 (for space reasons we write t to
represent the singleton constant set term {[”sm”, ”nd”]}):

→ 100 ≤ #({T : t ⊆ {I, B : ∀S,AR(T, I,B, S,A))}}) ≤ 200;

∀X̂ (X̂ ⊆ {I,B : DI(I) ∧ DB(B)} ∧ t ⊂ X̂ →
0 ≤ #({T : X ⊆ {I,B : ∀S,AR(T, I,B, S,A))}}) ≤ 50);

∀X̂ (X̂ ⊆ {I,B : DI(I) ∧ DB(B)} ∧ t 6⊂ X̂ →

0 ≤ #({T : X̂ ⊆ {I,B : ∀S,AR(T, I,B, S,A))}}) ≤ 10).

70 4 Count Constraints and the Inverse OLAP Problem

(Recall that⊂ denotes strict subset relationship.) The above constraints define an
instance of an IFM problem in which classical itemsets are replaced by sets of object
pairs.

4.4 The Inverse OLAP Problem: Definition and Complexity

In this section we define a new inverse problem over a star schema that is relevant
for OLAP applications.

Problem 4.1 (Inverse OLAP).
Given a relation scheme R(A1, . . . , An) with n > 0, the domains D1, . . . , Dn with
possibly a fixed additional number of hierarchy domains, a maximum set arity k̂ and
a set of general count constraints C on R, the Inverse OLAP problem consists in
deciding wether there exists a relation r on R such that C |= r. 2

Proposition 11 The Inverse OLAP problem is in NEXP.

Proof sketch.
Let p be the size of the input. A nondeterministic machine can guess a table r over R.
The number k of tuples in r will be at most d1×· · ·×dn tuples, that is exponential in
p. Satisfaction of each general count constraints in C can be done in exponential time
in p by Count Constraint Check Procedure. Hence the overall procedure is executed
in exponential time by a non-deterministic machine. 2

In the next subsection, we shall prove that the problem is indeed NEXP-
complete. We point out that, in our general setting, we are considering the so-called
”combined complexity” [Var82]: both the number of attributes, the size of constraints
and the domain sizes are not fixed and are part of the input. The ”program complex-
ity” version of the problem consists in considering domain sizes as constants. On
the other hand, the ”data complexity” version of the inverse OLAP problem fixes the
number of attributes and the size of constraints and considers domain sizes as the
only problem input.

In the next sub-section we present a simple case of the Inverse OLAP problem
with binary domains and prove its NEXP-hardness. It will then turn out that the
”program complexity” of Inverse OLAP is NEXP-complete and, therefore, the In-
verse OLAP problem is NEXP-complete under the combined complexity as well.
In addition, as the constraints we shall use are well structured, we also derive that
NEXP-hardness holds if we restrict our attention to well-structured constraints only.

4.4.1 Binary Domain Inverse OLAP

In this section we assume that all attributes A1, . . . , An in U have the same binary
domain D = {0, 1}. We denote a k-tuple of 0-1 values by ak and the i-th element of
ak by ak[i]. We also assume that, let X = {Ai1 , . . . , Aim} be a subset of attributes
in U and {Ay1 , . . . , Ayk

} be the attributes in U \ X , count constraints have one of
the following two formats:

4.4 The Inverse OLAP Problem: Definition and Complexity 71

• fixed tuple count constraint, briefly denoted by (X, ak, l, h), in the following
form:

Ai1 = ak[1] ∧ · · · ∧Aim = ak[m] →
l ≤ #({Ay1 , . . . , Ayk : R(A1, . . . , An)}) ≤ h

• generic tuple count constraint, briefly denoted by (X, l, h), in the following
form:

∀Ai1 , . . . , Aim : D(Ai1) ∧ · · · ∧ D(Aim) →
l ≤ #({Ay1 , . . . , Ayk : R(A1, . . . , An)}) ≤ h

Example 4.2. Consider the binary relation R on attributes A1, A2, A3, A4, let C1 =
({A1, A2}, [1, 0], 1, 2) be a fixed tuple count constraint and C2 = ({A1, A3}, 1, 2)
be generic tuple count constraint, then C1 is represented in the following way:

A1 = ”1” ∧A2 = ”0” →
1 ≤ #({A3, A4 : R(A1, A2, A3, A4)}) ≤ 2

and C2 is represented in the following way:

∀A1, A3 : D(A1) ∧ D(A3) →
1 ≤ #({A2, A4 : R(A1, A2, A3, A4)}) ≤ 2

2

It is easy to see that both fixed and generic tuple count constraints are well-
structured since the count constraint check procedure can be done in polynomial
time.

Problem 4.3 (Binary Domain Inverse OLAP).
Given a relation scheme R(A1, . . . , An) on binary domains, a set of fixed tuple count
constraints C on R and a set of generic tuple count constraints C ′ on R, the Binary
Domain Inverse OLAP problem consists in deciding wether there exists a relation r
on R such that (C,C ′) |= r. 2

Theorem 2 The Binary Domain Inverse OLAP problem is NEXP-complete.

Proof.
Membership to NEXP immediately derives from Proposition 11.

To prove NEXP-hardness we use a reduction of the Succinct Hamiltonian Cycle
Problem, that has been proved to be NEXP-complete [PY86],[Pap94]. In this prob-
lem a graph GBC

, say with 2n nodes, is represented in a succinct way. The nodes
are coded with n bits and the edges are defined by a Boolean circuit BC with 2n
input and one output such that, the output value is 1 if and only if the pair of nodes
described by the 2 ∗ n bits of the circuit input is connected by an edge. The Succinct
Hamiltonian Cycle Problem (SHC) is formulated as follows: given a Boolean cir-
cuit BC with k gates, 2n inputs and one output, does the graph thus represented have
an Hamiltonian cycle?

72 4 Count Constraints and the Inverse OLAP Problem

We next exhibit a reduction from SHC following the lines used by Kolaitis and
Papadimitriou in [KP88] to prove that deciding whether a DATALOG program with
negation has a fixpoint or not is NEXP-complete.

Given a graph GBC , say with 2n nodes, its succinct representation is done as
follows. The nodes are coded with n bits and the edges are defined by a Boolean
circuit with 2n input and one output such that, the output value is 1 if and only if
the pair of nodes described by the 2 ∗ n bits of the circuit input is connected by an
edge. The boolean circuit encoding the graph contains k gates and is defined as a set
of quadruples BC = {Gu = (u, au, in

1
u, in

2
u)| u = 1, ..., k}, where k > 2n is the

number of gates, u identifies the gate, au ∈ {OR,AND,NOT, IN} is the kind of
gate and in1

u, in
2
u are its input. The first 2n gates are of kind IN According to the

value of au, the meaning of in1
u and in2

u change:

• if au ∈ {OR,AND} then in1
u and in2

u represent the two inputs of the gate,
encoded by the indices of the two gates, whose outputs enter au — for instance,
(7, AND, 5, 9) denotes that the inputs of the AND gate 7 are the outputs of gates
5 and 9;

• if au = NOT then in1
u = in2

u represents the unique input of the gate — for
instance, (9, NOT, 5, 5) denotes that the input of the NOT gate 9 is the output
of gate 5;

• if au = IN then in1
u = in2

u = 0 and u represents the (i − 1)-th input bit of
the circuit — for instance, (3, IN, 0, 0) denotes that the input of the IN gate 3 is
the second bit of the circuit (note that the input bits are numbered starting from
0 whereas the gates from 1).

Let BC = {Gu = (u, au, in1,u, in2,u)| u = 1, ..., k} be any instance of SHC
with 2n input gates. We build in polynomial time an instance of Binary Domain
Inverse OLAP as follows. The relation schema R contains the following 5n + k
attributes:

• A1, . . . , An, An+1, . . . , A2n: sub-tuples on them encode pairs of nodes that are
entered into the circuit inputs 0, . . . , 2n − 1 — we shall introduce constraints
such that a sub-tuple t on these attributes indicates the presence of an edge from
the node coded by t.[A1, . . . , An] to the node coded by t.[An+1, . . . , A2n]; even-
tually the constraints will select sub-tuples encoding an Hamiltonian circuit (if
any);

• B1, . . . , Bn, Bn+1, . . . , B2n: sub-tuples on them encode fictitious pairs of nodes
— we shall introduce constraints to construct the cycle
< (0, 1), (1, 2), . . . , (2n−1, 2n−1), (2n−1, 0) >, that will serve to enforce that
the sub-tuples on the Ai attributes (see the previous point) form a Hamiltonian
circuit; the constraints will construct the sub-tuples starting from the node 0 by
implementing a simple increment operator;

• C1, . . . , Ck: sub-tuples on them encode the output values of the k gates;
• D1, . . . , Dn−1: sub-tuples on them encode the possible n− 1 remainders for the

increment operator (see the description for Bi attributes);
• E: the value on this attribute enables to divide a table on r into two horizontal

fragments: we call them fragment 0 and fragment 1.

4.4 The Inverse OLAP Problem: Definition and Complexity 73

Let us now construct the set of fixed tuple count constraints C. They are divided
into 3 groups :

Group (I): The constraints implement gate operations on the values represented
in the Ci attributes, by enforcing that the wrong results cannot be present in a table -
the constraints operate on the fragment 0 of a table, singled out by setting the value
of column E to 0:

i for each gate Gu = (u,AND, in1
u, in

2
u) ∈ BC — the constraints enforce sup-

port 0 for the negated AND truth table (we represent the 4 constraints in para-
metric way):
• ({Cu, Cin1

u
, Cin2

u
, E}, α, 0, 0), for each α = [0, 1, 1, 0], [1, 0, 0, 0], [1, 1, 0, 0],

[1, 0, 1, 0]
ii for each gate Gu = (u,OR, in1

u, in
2
u) ∈ BC — the constraints enforce support

0 for the negated OR truth table:
• ({Cu, Cin1

u
, Cin2

u
, E}, α, 0, 0), for each α = [0, 1, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0],

[0, 0, 1, 0]
iii for each gate Gu = (u,NOT, in1

u, in
2
u) ∈ BC :

• ({Cu, Cin1
u
, E}, α, 0, 0), for each α = [0, 0, 0], [1, 1, 0]

iv for each gate Gu = (u, IN, in1
u, in

2
u) ∈ BC — the constraints enforce the

support 0 for the negated value of the (u− 1)-th bit, that is the input to Gu:
• ({Cu, Au, E}, α, 0, 0), for each α = [0, 1, 0], [1, 0, 0]

v this constraint enforces the fragment 0 to have 2n ”yes” outputs (stored into the
Ck column), so that the fragment eventually stores 2n edges of the graph in the
Ai columns :
• ({Ck, E}, [1, 0], 2n, 2n)

Group (II): This group too of constraints works on fragment 0 and enforces the
construction of the fictitious cycle to be stored on the Bi attributes — given a sub-
tuple on attributes B1, . . . , Bn representing a node, say x, the constraint enforces
that the sub-tuple on attributes Bn+1, . . . , B2n of the same tuple represents the node
x+1, by implementing an increment operator (we use the usual approach of imposing
support 0 to the results that are not performed by the operator); we also observe that
operator computes the node 0 as successor of the last node:

i ({Bn, B2n, E}, α, 0, 0) for each α = [1, 1, 0], [0, 0, 0] — increment of the low
order bit of the node x

ii for i = 1, . . . , n − 1 — increment of the other n − 1 bits of the node x using
remainders stored on attributes Di

• ({Bi, Di, Bn+i, E}, α, 0, 0) for each α = [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0],
, [1, 1, 1, 0]

iii ({Bn, Dn−1, E}, α, 0, 0) for each α = [1, 0, 0], [0, 1, 0] — storing the remainder
of the low order bit

iv for i = 2, . . . , n−1 — storing the remainders of the other bits except the highest
order bit, whose remainder can be neglected:
• ({Bi, Di, Di−1, E}, α, 0, 0) for each α = [0, 0, 1, 0], [1, 0, 1, 0], [0, 1, 1, 0],

, [1, 1, 0, 0]

74 4 Count Constraints and the Inverse OLAP Problem

Group (III): These constraints work on fragment 1 and enforce that the two edges on
Ai and Bi attributes, respectively, be self loops, i.e., respectively (x, x) and (y,y) with
x not necessarily different from y — these constraints will serve for constructing a
bijection between Ai nodes and Bi nodes so that, because of the bijection and of the
fictitious cycle on Bi, a isomorphism is realized for which the edges on Ai form a
Hamiltonian cycle (more details on the issue will be given later in the proof, here we
only anticipate that the node y is actually encoded using one’s complement):

i For i = 1, . . . , n:
• ({Ai, An+i, E}, α, 0, 0) for each α = [1, 0, 1], [0, 1, 1] — enforcing (x, x)

on Ai attributes
• ({Bi, Bn+i, E}, α, 0, 0) for each α = [1, 0, 1], [0, 1, 1] — enforcing (y, y)

on Bi attributes

Let us now construct the set of generic tuple count constraints C ′. There are two
groups of constraints, all working on both fragments 0 and 1: Group (IV): These
constraints enforce that, for each of the two fragments 0 and 1, all nodes are stored
into the Ai and Bi columns exactly once:

i ({A1, . . . , An, E}, 1, 1) — first node in the pair stored on Ai attributes
ii ({An+1, . . . , A2n, E}, 1, 1) — second node in the pair stored on Ai attributes

iii ({B1, . . . , Bn, E}, 1, 1) — first node in the pair stored on Bi attributes
iv ({Bn+1, . . . , B2n, E}, 1, 1) — second node in the pair stored on Bi attributes

Group (V): These constraints, together with the ones of Group (III), realize the
bijection between Ai nodes and Bi , thus enforcing the construction of a Hamilto-
nian circuit — they work for the whole table and not separately for each of the two
fragments as in the Group (IV):

i For each Bj with j = 1, . . . , n
({A1, . . . , An, Bj}, 1, 1) — a first node in a pair stored on Ai attributes (say x)
is associated to exactly one of the first nodes in the pairs stored on Bi attributes,
say y; moreover, since x is present once in fragment 0 and once in fragment 1,
the association inside fragment 1 is between x and the one’s complement of y in
order to respect the constraints;

ii For each Bi with i = n+ 1, . . . , 2n
({An+1, . . . , A2n, Bi}, 1, 1) — association for the second node in a pair stored
on Ai attributes; note that, because of constraints of Group (III), the association
for the node is the same as the one enforced when the node appears as first node
in a pair (see constraints 1 of this group).

As mentioned before, the constraints enforces that a table r on R has 2n+1 tuples
and can be segmented by a selection on E into fragments 0 and 1, each with 2n

tuples: F0 = σE=0(r) and F1 = σE=1(r). Let us now further consider the following
sub-fragments of r obtained by suitably projecting the fragments F0 and F1:

4.4 The Inverse OLAP Problem: Definition and Complexity 75

A = πA1,...,A2n(F0) B = πA1,...,A2n(F0)
A1 = πA1,...,An(A) A2 = πAn+1,...,A2n(A)
B1 = πB1,...,Bn(B) B2 = πBn+1,...,B2n(B)
A′ = πA1,...,A2n(F1) B

′ = πA1,...,A2n(F1)
A′

1 = πA1,...,An(A
′) A′

2 = πAn+1,...,A2n(A
′)

B′
1 = πB1,...,Bn(B

′) B′
2 = πBn+1,...,B2n(B

′)
The sub-fragments A1, A2, B1, B2, A′

1, A′
2, B′

1 and B′
2 are depicted in Figure

1:

A1.. An+1.. B1.. Bn+1.. L.. D1.. E
..An ..A2n ..Bn ..B2n ..Ck ..Dn−1

0
..

A1 A2 B1 B2 0
..
0
1
..

A′
1 A′

2 B′
1 B′

2 1
..
1

Fig. 4.1. Table r on R.

Each of sub-fragments A1, A2, B1, B2, A′
1, A′

2, B′
1 and B′

2 has n columns
and 2n tuples and stores all the 2n nodes of the graph.

We have the following claims — with a little abuse of notation, given a tuple t
and a fragment X , tX will denote the projection of t on the attributes of X:

Claim. 2 For each tuple t in A, the sub-tuples tA1 and tA2 represent two vertices
u, v of the succinct graph such that there exists an edge between u and v in the graph.

Proof of the claim.
The count constraints of group (I) implements the Boolean Circuit and the constraint
4 of the group imposes that the circuit must have output value 1, thus there is an edge
between u and v. 2

Claim. 3 For each tuple t in B, int(tB2) = int(tB1 + 1) mod 2n where int(tB1)
and int(tB2) are the non negative integer values represented by the binary tuples
tB1 and tB2 , respectively.

Proof of the claim.
The count constraints of group (II) implement a binary incremental circuit that take
in input a tuple tB1 and returns the tuple tB2 such that int(tB2) = (int(tB1) +
1) mod 2n. 2

76 4 Count Constraints and the Inverse OLAP Problem

Claim. 4 Let t ∈ F0 and t′ ∈ F1. Then:
1. if tA1 = t′A′

1
then t′B′

1
= neg(tB1) where neg(tB1) is the one’s complement of

tuple tB1 ,
2. if tA2 = t′A′

2
then t′B′

2
= neg(tB2).

Proof of the claim.
The proof is a direct consequence of the generic tuple count constraints of group (V).
2

Claim. 5 For each tuple t ∈ F1, tA′
1
= tA′

2
and tB′

1
= tB′

2
.

Proof of the claim.
The proof is a direct consequence of the count constraints of group (III). 2

By Claim 2, the tuples in A represent 2n distinct edges of the graph GBC
such that

each node has exactly two incident edges. However, this condition is not sufficient to
establish the existence of Hamiltonian Cycle because the situation shown in Figure
4.2 may arise: each node of the graph in figure are two adjacent edges and the edges
are 2n but the graph is not a Hamiltonian cycle.

Fig. 4.2. It is not hamiltonian cycle (0 < k < k + 1 < 2n − 1).

To actually enforce that the edges in A form a Hamiltonian cycle, we have con-
structed a fictitious Hamiltonian cycle in B and defined a bijection between nodes
in A and in B so to have a isomorphism between the two cycles. By Claim 3, B
represents a lexicographic cycle from the node 0 to 2n−1 and back to 0 — we stress
that this cycle is not in general present in the graph.

By Claims 4 and 5, there must be a isomorphism between the edges in A and B
and this implies that the graph must have a Hamiltonian circuit. We can then conclude
that the succinct graph GBC

has a Hamiltonian circuit if and only if there exists a
relation r on R that satisfies the count constraints in C and C ′. This concludes the
proof. 2

From this theorem we immediately derive the following important corollary.

Corollary 2 The Inverse OLAP problem is NEXP complete under both the scheme
complexity and the combined complexity. 2

4.4 The Inverse OLAP Problem: Definition and Complexity 77

4.4.2 Binary Attribute Inverse OLAP

Let us now assume that U contains only two attributes, say U = {AT , AI} with
domains T and I = {o1, . . . , on}. Let Y denote any given subset of I. We also
assume that count constraints have one of the following two formats:

• k-support constraint, briefly denoted by σ(Y, k, l, h), in the following form:

∀I ′ : I ′ ⊆ Y ∧#(I ′) = k →
l ≤ #({T : I ′ ⊆ {I : R(T, I)}}) ≤ h

• k-duplicate constraint, briefly denoted by δ(Y, k, l, h), in the following form:

∀I ′ : I ′ ⊆ Y ∧#(I ′) = k →
l ≤ #({T : I ′ = {I : R(T, I)}}) ≤ h

Problem 4.4 (Binary Attribute Inverse OLAP).
Given a relation scheme R = {AT , AI} on domains T and I, a set of support
constraints Γσ on R and a set of duplicate constraints Γδ on R, the Binary Attribute
Inverse OLAP problem consists in deciding wether there exists a relation r on R such
that (Γσ, Γδ) |= r. 2

Theorem 3 The Binary Attribute Inverse OLAP is NEXP-complete.

Proof.
Membership to NEXP is obvious. Let us now prove NEXP-hardness. To this end,
we perform a reduction from the Binary Domain Inverse OLAP problem.

Consider any instance of the Binary Domain Inverse OLAP problem. We are
given a relation scheme R(A1, . . . , An) on binary domains, a set C of fixed tuple
count constraints and a set C ′ of generic tuple count constraints.We construct an
instance of the Binary Attribute Inverse OLAP Problem as follows.

For each attribute Ai, 1 ≤ i ≤ n, we introduce two items in I: A0
i and A1

i ,
corresponding to the two values that can be taken by the attribute. The set of items I
then consists of 2× n items and any tuple t on R can be represented by an itemset I
as follows: for each Ai, 1 ≤ i ≤ n, I contains A0

i if t.Ai = 0 or A1
i otherwise. For

example, given a relation R(A,B,C), we have I = {A0, B0, C0, A1, B1, C1} and
the tuple [0, 1, 1] on R is represented by the itemset {A0, B1, C1}. Next we enforce
that all transactions represent tuples on R.

First of all, we have to enforce that no transaction contains two items corre-
sponding to the same attribute. To this end, we include in Γσ the support con-
straint σ({A0

1, A
1
i }, 2, 0, 0), . . . , σ({A0

n, A
1
n}, 2, 0, 0). Note that the support con-

straint σ(Y, |Y |, l, h) means that inR the number of transaction that transaction that
contains L are between l and h.

Next we require that each transaction to have exactly n items by setting Γδ =:
{(I, l, 0, 0)| 1 ≤ l ≤ 2 × n, l 6= n}∪ {(I, l, 0, 1)| l = n}. We also enforce the
duplicate constraint (0, 0) for all itemsets in S.

78 4 Count Constraints and the Inverse OLAP Problem

Now we express fixed tuple count constraints in terms of support constraints. Let
(X, ak, l, h) be a fixed count constraint in C, where L = [Ai1 , . . . , Aik]. We define
I as {Ap

ij
| 1 ≤ j ≤ k and p = 0 if ak[j] = 0 or p = 1 otherwise} and insert the

support constraint (I, k, l, h) into Γσ .
Let us now implement any generic tuple count constraint (X, l, h) in C ′, where

L = [Ai1 , . . . , Aik]. We define I as {A0
ij
| 1 ≤ j ≤ k}∪ {A1

ij
| 1 ≤ j ≤ k}

and include the constraint (I, k, l, h) into Γσ. The presence of specific constraints
({A0

1, A
1
i }, 0, 0) in Γσ overrules the generic constraints for all itemsets that do not

correspond to tuples.
It is easy to see that the above procedure for constructing an instance of the

Binary Attribute Inverse OLAP problem starting from an instance of the Binary Do-
main Inverse OLAP problem can be performed in time polynomial in the size of
the latter instance. It is also easy to see that the instance of the Binary Attribute In-
verse OLAP problem is a ”yes” answer if and only if so is the instance of the Binary
Domain Inverse OLAP problem. 2

4.4.3 Data Complexity of Inverse OLAP

In this section we will define a special case of Inverse OLAP problem, called Fixed
Hierarchy Inverse OLAP, whose input instance is formed by a fixed number of hi-
erarchy domains. The sizes of the schema relation and of the count constraints are
fixed. This problem is useful in order to establish the Data Complexity of Inverse
OLAP.

Problem 4.5 (Fixed Hierarchy Inverse OLAP).
Let R be a relation scheme of form

R(Cσ, Yσ,Kσ, Lσ,Hσ, Cδ, Yδ,Kδ, Lδ,Hδ, T, I)

DCσ,Yσ , DCσ,Kσ , DCσ,Hσ , DCσ,Lσ , DCδ,Yδ
, DCδ,Kδ

, DCδ,Hδ
, DCδ,Lδ

be the hier-
archy domains, and C be a set of two count constraints of constant size, the Binary
Attribute Inverse OLAP problem consists in deciding wether there exists a relation r
on R such that (C |= r). 2

Theorem 4 The Fixed Hierarchy Inverse OLAP problem is NEXP-complete.

Proof.
Membership to NEXP is obvious. Let us now prove NEXP-hardness. To this end,
we perform a reduction from the Binary Attribute Inverse OLAP problem.

Consider any instance of the Binary Attribute Inverse OLAP problem. We are
given a relation schema R = {AT , AI} on domains T and I, a set of k-support
constraints Γσ = {σ1, . . . , σp} and a set of k-duplicate constraints
Γδ = {δ1, . . . , δo}.We construct an instance of the Fixed Hierarchy Inverse OLAP
Problem as follows.

For each support constraint σi = σ(Y, k, l, h), with i = 1, . . . , p, we adopt the
following procedure:

4.5 A Step towards Aggregate Data Exchange 79

• for each domain element a ∈ Y insert in input
DCσ,Yσ (”i”, ”a”),

• and insert DCσ,Kσ (”i”, ”k”), DCσ,Lσ (”i”, ”l”),
DCσ,Hσ (”i”, ”h”).

As shown above, we use the hierarchy domains to take in input the k-support
constrains. In the same way, it is possible to transform the k-duplicate constraints in
elements of hierarchy domains (DCδ,Yδ

, DCδ,Kδ
, DCδ,Hδ

, DCδ,Lδ
).

To this end, we impose only two constraints that generalize the k-support con-
straint and k-duplicate constraint taking the parameters of each k-support and k-
duplicate constraint directly by the hierarchy domains. The fixed count constraints
considered, respectively for k-support and k-duplicate constraints, are:

∀C, I ′ : I ′ ⊆ {I : DCσ,Yσ (C, I)} ∧ DCσ,Hσ (C,H)∧
DCσ,Lσ (C,L) ∧ DCσ,Kσ (C,K) ∧#(I ′) = K →
L ≤ #({T : I ′ ⊆ {I : ∀Cσ, . . . , Hδ R(Cσ, . . . , Hδ, T, I)}}) ≤ H

∀C, I ′ : I ′ ⊆ {I : DCδ,Yδ (C, I)} ∧ DCδ,Hδ (C,H)∧
DCδ,Lδ (C,L) ∧ DCδ,Kδ (C,K) ∧#(I ′) = K →
L ≤ #({T : I ′ = {I : ∀Cδ, . . . , Hδ R(Cδ, . . . , Hδ, T, I)}}) ≤ H

Consider now the first constraint: it imposes that for each constraint C a for each
I ′ subset of Y
(I ′ ⊆ {I : DCσ,Yσ (C, I)}) of cardinality K (#(I ′) = K ∧ DCσ,Kσ (C,K))
must be contained in number of transactions between L (DCδ,Lδ

(C,L)) and H
(DCδ,Hδ

(C,H)).
Note that the definitions of this count constraints are independent by Γδ, Γσ.
It is easy to see that the above procedure for constructing an instance of the Fixed

Hierarchy Inverse OLAP problem starting from an instance of the Binary Domain
Inverse OLAP problem can be performed in time polynomial in the size of the latter
instance. It is also easy to see that the instance of the Fixed Hierarchy Inverse OLAP
problem is a ”yes” answer if and only if so is the instance of the Binary Domain
Inverse OLAP problem. 2

Since the schema relation and the count constraints are fixed in Fixed Hierarchy
Inverse OLAP, then the following corollary holds.

Corollary 3 The Inverse OLAP problem is NEXP- complete under data complexity.

4.5 A Step towards Aggregate Data Exchange

In this sections we present some meaningful example of how count constraints can
be exploited for aggregate data exchange. We first recall the classical data exchange
setting (S, T,Σst, Σt), where S is the source relational scheme, T is the target re-
lational database scheme, ΣT is a logical formula on T and Σst are source-to-target
dependencies of the form ∀X(φS(X) → χT (X)), where φS(X) and χT (X) are

80 4 Count Constraints and the Inverse OLAP Problem

formula on S and T , respectively. More detailed descriptions of this setting and of
related properties and results can be found in [FKP05, GLLR07, GN08, FKPT09,
APR11].

Aggregate data exchange for preserving privacy
The target relational database scheme consists of a unique relation scheme, that

is the one used in Section 4.3.1: R(T, I,B, S,A). Recall that the meaning of the
attributes is: T (Transaction), I (Item), B (Brand), S (Store), A (Area), and that the
following FDs hold: T → S, S → A.

The source relational database scheme consists of three relation schemes: TR(T, I,B),
ST (T, S) and AR(S,A). Observe that this scheme is the normalized version of the
target scheme.

We want that the target relation be the natural join of the source relation but, for
privacy reasons, the associations between transactions and pairs of item and brand
must be perturbed: the transactions IDs of the same store are permuted. For instance,
if the store s has n transactions t1, . . . , tn, the block of item-brand pairs of a trans-
action ti are moved to a transaction tj , then the block of tj is moved to another
transaction and so on.

Let us first use the classical setting to implement two natural joins of the source
relations instead of only one so that we can later perform a permutation of transac-
tions inside every store:

∀T, I, B, S,A (TR(T, I,B) ∧ ST (T, S) ∧ AR(S,A) →
∃T ′ R(T ′, I, B, S,A));

∀T, S, (ST (T, S) → ∃I, B,A R(T, I,B, S,A));

We now use a count constraint to enforce that the total number of tuples in TR
is equal to the total number of tuples in R so that the target relation cannot store
additional tuples:

∀C (C = #({T, I,B : TR(T, I, B)}) →
C = #({T, I,B, S,A : R(T, I,B, S,A)}));

So we have lost the correspondence between transactions in the source and in the
target scheme but with the following constraint imposes that the original structure of
transactions is preserved modulo permutation of transactions IDs:

∀S, T, X̂ (ST (T, S) ∧ X̂ = {I,B : TR(T, I, B)}) →

∃T ′ (X̂ = {I, B : ∀A R(T ′, I, B, S,A)})).

The above constraint can be equivalently rewritten using a count predicate instead
of the existential quantifier:

4.5 A Step towards Aggregate Data Exchange 81

∀S, T, X̂ (ST (T, S) ∧ X̂ = {I,B : TR(T, I,B)}) →

1 ≤ #({T ′ : X̂ = {I,B : ∀A R(T ′, I, B, S,A)} })).

Thus the count predicates is able to emulate an existential quantifier.
Data exchange to an OLAP scheme
We now assume that the relationR(T, I,B, S,A) represents the source scheme.

The target scheme is an OLAP scheme SN (S, I,B,N) that, for every store, repre-
sents in N the total number of item-brand pairs that are in all transactions of that
store.

We aggregate data in the target relation using a count predicate in the following
constraint:

∀I,B, S,A,N (N = #({T : R(T, I, B, S,A) →
SN (S, I,B,N));

A final count constraint imposes that the target relation cannot store additional
tuples:

∀C (C = #({S, I,B : ∀T,A R(T, I,B, S,A) →
C = #({S, I,B : ∀N SN (S, I,B,N)}));

5

Datalog with frequency support goals

We introduce a simple extension of Datalog, called DatalogFS , that enables us to
query and reason about the number of distinct occurrences satisfying given goals,
or conjunction of goals, in rules. This simple extension preserves all the desirable
semantic and computational properties of logic-based languages, while significantly
extending their application range to support page-rank and social-network queries.

5.1 Introduction

Due to the emergence of many important application areas we are now experiencing
a major resurgence of interest in Datalog [Hel10, dMMAG, HGL11]. A first such
research area focuses on the use of logic-based declarative specifications and design
of Internet protocols and services [LCG+09]; recent extensions of this work seek to
generalize this approach by developing Datalog-based foundations for parallel and
distributed programming languages [Hel10]. On the Semantic Web front, a novelty
of great interest is represented by the introduction of Linear Datalog for expressing
and supporting efficiently subsets of Description Logic for reasoning in ontological
queries [GOP11]. Yet another very important development is represented by the use
of Datalog in program analysis [HGL11]. Furthermore, other lines of work exploring
the execution of Datalog queries in new computational environments have studied the
optimization of recursive queries in the MapReduce framework [ABC+11], and the
declarative and operational semantics of continuous Datalog queries in Data Stream
Management Systems [Zan11].

This torrent of new applications underscores the need to tackle and solve crucial
Datalog problems that were recognized more than twenty years ago but still remain
unsolved and restrict the range of practical effectiveness of this elegant declarative-
programming paradigm. For database applications in particular, the most vexing of
these problems is represented by the constraints placed upon aggregates in recursive
Datalog programs. Indeed, with the introduction of OLAP functions and massive
analytics for decision support and web mining, the usage of aggregates in modern
information systems and web applications has grown by leaps and bounds—making

84 5 Datalog with frequency support goals

limitations upon aggregates increasingly undesirable. Therefore, Datalog extensions
that can improve its ability to deal with aggregates would represent a big step for-
ward. Technically, however, the problem is very challenging since the requirement of
monotonicity is deep-rooted in the fixpoint semantics of Datalog, and the many so-
lution approaches attempted by researchers in the past were not general and practical
enough to gain wide acceptance.

In this chapter, we introduce DatalogFSa generalization of Datalog that is very
effective at expressing a broad range of new applications requiring count-based ag-
gregates, such as Apriori, Bill of Materials, social networks, and Markov Chains.
Concepts such as stratification and magic-sets, and in general all the techniques and
methods that provide the enabling technology for traditional Datalog, remain valid
and effective for DatalogFS , paving the way for a faster deployment and spreading
of this powerful extension.

5.2 Related Work

Logic-based query languages were quintessential in the introduction of the relational
data model by E.F. Codd in the 70s; through major efforts in scalable implemen-
tation and query optimization this led to the development of relational DBMS in
the 80s. Over time, the excitement generated by the extraordinary success of rela-
tional DBMS, on both research and business fronts, gave way to the realization that
query languages more expressive than relational algebra and SQL-2 were needed;
this motivated the work on Datalog and related languages that support rules and re-
cursive queries. Recursive Datalog programs come with a simple and elegant least-
fixpoint semantics, which is also equivalent to both the logic-based model-theoretic
and proof-theoretic semantics of the program clauses [Llo87, ZCF+]. Furthermore,
the least-fixpoint semantics can be efficiently supported by the iterated execution of
the rules enhanced by:

(i) The differential fixpoint (a.k.a. seminaive fixpoint) method [AHV95, Ram98,
ZCF+, UW97] that avoids redundancy in the bottom-up computation (i.e., from
the database to the goal) of the rules, and

(ii) Top-down methods, such as the Magic-Sets methods and the specialization of
left/right recursive rules, that propagate constants and constraints from query
goals downwards to restrict and expedite the bottom-up computation [AHV95,
Ram98, ZCF+, UW97].

However, these great properties only hold when the rules define monotonic trans-
formations (w.r.t. set-containment), and negation or aggregates in rules compromise
their monotonicity along with the nice properties above. Much research work has
therefore sought ways to generalize (i) the semantics of Datalog and (ii) its efficient
implementation when negation and aggregates are used in the rules. This work has
produced the notion of stratification that satisfy both properties, and is also quite sim-
ple for users to master [AHV95, Ram98, ZCF+, UW97]. Unfortunately, stratification
(into a finite number of strata) is too restrictive and does not allow the expression of

5.3 DatalogFS by Examples 85

popular optimization and data-mining algorithms, which typically require the com-
putation of extrema and counts in recursion. The importance of optimization and
data-mining applications have therefore motivated much research work seeking to
solve these problems. In general, said proposals follow three main approaches. The
first consists in supporting infinite levels of stratifications using Datalog1S programs
[ZAO93, LLM98, ZCF+]; a second approach instead attempts to preserve the fix-
point computation via continuous aggregates and non-deterministic choice constructs
[GGZ91, GPSZ91, GZ01, AOT+03]. Finally, the third approach seeks to achieve
monotonicity by using partial orders that are more general than set-containment
[MPR90, RS97, Gel93]. These works developed very ingenuous solutions that, while
being technically very sound, did not gain widespread popularity in the field for a
number of reasons. One reason could be that this research was indeed ‘before its
time’; but on a more serious note, we observe that the approaches mentioned above
require constructs and semantics that were quite complex for users to master and for
the system to support (e.g., it was quite difficult for the compiler to decide if the
program at hand was monotonic or not [Gel93]). On the other hand, DatalogFS is
timely, and manages to be friendly to both users and compilers.

This chapter is organized as follows. In the next section, we introduce DatalogFS

via some simple examples, and in Section 4, we define its formal semantics. In Sec-
tion 5, we introduce constructs that support the assertion of facts and the derivation
of predicates having multiple occurrences. In Section 6, we outline a simple plan for
the efficient implementation of DatalogFS and show how differential fixpoint and
magic-set techniques extend naturally to DatalogFS . In Section 7, we introduce the
notion of scaling which allow us to reason with frequencies that are decimal numbers
rather than integers. Then, in Section 8, we review some important new applications,
such as social networks and Markov chains, that follow from these extensions.

5.3 DatalogFS by Examples

For example, our database could contain facts as follows:

person(adam). person(marc). person(jerry).
person(tom).
son(marc, tom). son(marc, jerry). son(tom, eddy).
son(tom, adam). son(tom, john).

Then the following rule defines fathers that have at least two sons:

twosons(X)← person(X), son(X, Y1), son(X, Y2), Y1 6= Y2.

DatalogFS allows the following equivalent expression for our twosons rule:

twosons(X)← person(X), 2 : [son(X, Y)].

The goal, I:[B-expression], will be called a frequency support goal (an FS
Goal for short), and I: where I is a positive integer will be called its FS-test clause.

86 5 Datalog with frequency support goals

The bracketed expression B-expression can either consists of a single goal or a
conjunction of goals.

The convenience of FS-goals becomes clear if we want to find people who have
a large number of sons. For instance:

sixsons(X)← person(X), 6 : [son(X, Y)].

will retrieve all persons who have at least six sons (i.e., 6 is the frequency support
required for the predicates or conjunction of predicate withing brackets).

Naturally, an equivalent rule can be expressed using the 6= operator. Indeed we
can start as follows:

sixsons(X)← person(X), son(X, Y1), 5 : [son(X, Y2), Y2 6= Y1].

and then proceed inductively, and obtain a rule containing six goals son(X, Yj),
where j = 1, . . . , 6 and 6 × 5 goals specifying, that every Y must be different from
(i.e., 6=) every other Y. Of course, if rather than paternity between people we are in-
terested in links between web pages, which could easily be in number of thousands, it
becomes clear that the approach based on 6= becomes totally impractical, and without
FS-goals we would need a COUNT aggregate to deal with these applications. How-
ever, aggregates bring in the curse of non-monotonicity making the use of recursion
very difficult if not impossible. In DatalogFS our rules can instead be expressed as
standard Horn rules (although long and impractical ones). Thus DatalogFS preserves
the standard monotonicity-based semantics of negation-free Datalog; moreover, as
we shall see later, the well-known implementation techniques used for Datalog can
also be extended to DatalogFS .

The next examples clarify the meaning and the scope of variables in DatalogFS .
We will use the predicae friend(X, Y) denoting that the person with name X views
the person with name Y as his/her friend (no assumption of symmetry is made):

Example 5.1. Pairs of friends (F1, F2) where F1 has at least three friends and, and
F2 also has three friends:

popularpair(X, Y)← friend(X, Y),
3 : [friend(X, V1)], 3 : [friend(Y, V2)].

The next one requires that F1 and F2 have at least three friends in common (un-
like the previous query where F1 and F2 are not required to have friends in common):

Example 5.2. The following rule returns the pairs of friends (F1, F2) who have at
least three friends in common

sharethree(X, Y)← friends(X, Y),
3 : [friend(X, V), friend(Y, V)].

There are two kinds of variables in rules with FS-goals. The first are those, such
as X and Y in the rule of Example 5.2, that appear in the head of the rule or in some

5.3 DatalogFS by Examples 87

goal not contained in a b-expression. These will be called global variables in the
rule. Global variables are basically the universally qualified variables of the standard
Horn Clauses, and have the whole rule as their scope. Thus the variables X and Y in
Example 5.1 are also global for that rule.

The remaining variables are those that only appear in b-expressions and their
scope is local to the b-expression where they appear. For instance V1 and V2 in Ex-
ample 5.1, and V in Example 5.2 are local variables. These variables can be naturally
viewed as existential variables with the following minimum frequency support con-
straint: There exist at least K occurrences of b-expression. For instance, Example 5.2
states that there exist at least 3 distinct V occurrences each denoting a person who is
viewed as friend by both X and Y.

It is also important to remember that the scope of such existential variables is
local to the b-expression where they appear: thus, in Example 5.1 replacing both V1

and V2 with a V would not change the meaning of our rule.
For a more interesting example, let us express the often used guideline that an

assistant professor to be advanced to associate professor should have an H-index
[Hir10] of 13 or higher. This can be expressed with the following rules:

Example 5.3. Our candidate must have authored at least 13 chapters each of which
has been referenced at least 13 times. The database table author(Author, PaperNo)
lists chapters (co-)authored by a person, while refer(PnoFrom, PnoTo) denotes that
paper PnoFrom contains a reference to paper PnoTo.

atleast13(Pno)← 13 : [refer(PnFrom, Pno)].
hindex13(Author)← 13 : [author(Author, Pno),

altleast13(Pno)].

These simple examples could also be easily expressed using the count aggregate.
However count and other aggregates are non-monotonic and thus cannot be used in
recursive rules. Indeed, the meaning and efficient implementation, of Datalog pro-
grams with recursive rules, are based on their least fixpoint semantics1, which is
only guaranteed to exists when the program rules define mononotonic mappings. A
solution to this problem proposed by Ross and Sagiv [RS97] to exploit partial order-
ings between sets that are different than the standard set-containment ordering used
to define the semantics of Datalog and other logic programs. While several inter-
esting programs with aggregates are in fact mononotonic under this revised notion,
many others are not and it would be quite difficult for a compiler to decide which
is which [Gel93]. As we shall see next, the standard notion of monotonicity w.r.t
set-containment ordering is instead used for DatalogFS programs, whereby the basic
properties and techniques of deductive databases (e.g., stratification and differential
fixpoint) remain valid.

1 Naturally, by “least fixpoint” of a program, we mean “least fixpoint of its immediate con-
sequence operator” [Llo87].

88 5 Datalog with frequency support goals

5.4 Semantics of DatalogFS

In this section, we define the semantics of DatalogFS programs by their rewriting
into equivalent Datalog programs. The rewritings of twosons and sixsons rules in
Section 5.3 are correct but require the integer in the FS-test clause to be a constant.
We next specify a re-writing that does not depend on this assumption.

5.4.1 Rewriting of DatalogFS into Datalog

Each frequency support goal will be re-written separately. Thus, let the jth such a
goal be

Kj : [exprj(Xj, Yj)]

where Xj and Yj, respectively denote the global variables and the local ones. For
instance, for the FS-goal in the first rule of Example 5.3 then, the 13 is its FS-test
clause, PnFrom, and Pno are respectively the global variables and the local variables.
Then, our rewriting replaces Kj : [exprj(Xj, Yj)] in the rule by conj(Kj, Xj,)
where the underscore denotes the anonymous variable and conj is defined as fol-
lows:

conj(1, Xj, [Yj])← exprj(Xj, Yj).
conj(N1, X, [Yj|T])← exprj(Xj, Yj), conj(N, Xj, T),

notin(Yj, T), N1 = N+ 1.
notin(Z, []).
notin(Z, [V|T])← Z 6= V, notin(Z, T).

For instance, the second rule in Example 5.3 becomes:

hindex13(Author)← con2(13, Author,).

Where con2 is defined as follows:

con2(1, Author, [Pno])← author(Author, Pno),
altleast13(Pno).

con2(N1, Author, [Pno|T])← author(Author, Pno),
altleast13(Pno),
con2(N, Author, T),
notin(Pno, T),
N1 = N+ 1.

The rules defining notin are instead generic and can be shared by the different
conj definition. In this example, we only have one local variable and one global
variable. However, generalizing to the case where we have an arbitrary number of
global variables and local variables is straightforward, since we can arranged then
into a list of local variables and global variables. The definition of notin use goals
such as Z 6= V denoting inequality between single variables. In general, we might
have several local variables which can be organized in lists (or other complex object).

5.4 Semantics of DatalogFS 89

Then the inequality condition between two lists can simply express the fact that not
all the corresponding elements in the list are equal.

This rewriting of DatalogFS into standard Datalog ensures major benefits. We
can now use our FS constructs in recursive programs with the assurance of formal
semantics (model-theoretic, proof-theoretic and least-fixpoint). Beyond that, we can
use negation defined through the closed world assumption, and the formal theory
of programs with negated goals, starting from stratified negation and proceeding to
stable model semantics. Furthermore efficient implementation methods are not far
behind: as we will briefly discuss later, techniques such as differential fixpoint, and
magic set methods can be easily extended to DatalogFS .

As we shall see later, the rewriting of DatalogFS into Datalog that was used for
defining its declarative semantics will not be used in its actual implementation: we
will instead use a more direct approach that avoids the complexities and inefficiencies
of the rewritten rules, while producing the same results.

5.4.2 Stratified DatalogFS

Stratified negation extends naturally to DatalogFS . Also, the rewriting rules previ-
ously defined make it possible to use variables rather than constants in the specifica-
tion of FS goals. This is useful in many situations.

For instance, to find the actual number of sons that a person has, we can write:

Example 5.4. How many sons does a person have?

csons(Name, N)← person(Name), N : [son(Name,)],
N1 = N+1,¬N1 : [son(Name,)].

Thus csons must belong to a stratum that is strictly higher than son, whereas with
respect to person it could be in the same stratum or in the one above it. The need
to find the maximum value satisfying a FS-test clause is so common that DatalogFS

provides the special construct =! to express it. Thus the previous rule can also be
expressed as:

Example 5.5. How many sons does a person have?

csons(Name, N)← person(N), N =![son(Name,)].

Now, =! will be called the exact frequency construct and its semantics is defined by
the rewriting exemplified by the rewriting of Example 5.5 into Example 5.4. In terms
of concrete semantics, however, the exact frequency construct will be given a more
direct and efficient implementation.

5.4.3 Recursive DatalogFS

A first example illustrating the uses of DatalogFS is based on an example by Ross
and Sagiv [RS97]:

90 5 Datalog with frequency support goals

Example 5.6. Some people will come to the party for sure. Others will also come
once they learn that three or more of their friends will come.

willcome(X)← sure(X).
willcome(Y)← 3 : [friend(X, Y), willcome(X)].

Another interesting example is the Apriori computation. Say that our database
represents market-basket data as

baskets(basketNo, ListofItems)

where the items in ListofItems are kept in lexicographical order. For instance,
“baskets(b467, [beer, cereals, diapers]).” could be one such fact. Then the
rules below compute the list of items with frequency support of, say, 35:

Example 5.7. The APRIORI computation of item sets with frequency support 35.

freq(1, [Itno])←35 : [baskets(BID, List), in([Itno], List)].
cand(2, [A, B])← freq(1, [A]), freq(1, [B]), A < B.
cand(N1, ML)← freq(N, [A|L]), freq(N, [B|L]), A < B,

ML = [A|[B|L]], M = N−1,
M : [freq(N, L1), L1 6= [A|L], L1 6= [B|L],
in(L1, ML)], N1 = N+1.

freq(N1, ML)← cand(N1, ML),
35 : [baskets(BID, List), in(ML, List)].

in([], L).
in([A|L], [A|List])← in(L, List).
in([B|L], [A|List])← A < B, in([B|L], List).

Therefore, our first rule finds frequent items with the help of the predicate
in(L1, L2) which is true whenever L1 is a sublist of L2: the rules implementing
in(L1, L2) exploit the fact that L1 and L2 are sorted. The next two rules in Example
5.7 generate candidate itemsets. Candidate pairs are simply obtained by combining
singleton sets. Then, as we move to longer patterns, to construct candidate patterns
of size N+1 ≥ 3 we combine two patterns of size N that are identical except for their
lead item into the pattern ML and verify that ML contains M = (N + 1) − 2 = N − 1

subpatterns of size N that are frequent. Finally, we go back to our fact base to test
which of the ML patterns so obtained have frequency support of 35 or better.

5.5 Multi-Occuring Predicates

In the examples considered so far, base predicates and derived predicates were al-
ways counted as providing support of one. However, there are numerous examples

5.5 Multi-Occuring Predicates 91

where it is desirable that we specify that certain predicates should be counted as
providing a support level greater than one. For instance, we might use the follow-
ing representation to denote that the paper with DBLP identifier “MousaviZ11” has
currently 6 references:

ref(“MousaviZ11”) :6.

Naturally, Pno = “MousaviZ11” now contributes with a count of six to the b-
expression of the following rule:

Example 5.8. Total reference count for an author.

tref(Author) :N← N : [author(Author, Pno), ref(Pno)].

The clauses ":6" and ":N" respectively used in the above fact and rule head
will be called frequency assert clauses. The semantics of programs P with frequency
assert clauses is defined by expanding its P̄ equivalent, which is obtained as follows:

i Each rule in P having head q(X1, . . . , Xn) :K and body Body is replaced by

q̄(X1, . . . , Xn, J)← lessthan(J, K), Body.

where lessthan(J, K) is a distinguished predicate used to generate all positive
integers up to K, included.

lessthan(1, K)← K ≥ 1.
lessthan(J1, K)←lessthan(J, K), K>J, J1 = J+ 1.

ii Each occurrence of q(X1, . . . , Xn) in the body of rules of the program so obtained
is replace by: q̄(X1, . . . , Xn, J)

Thus, the meaning of our program,

ref(“MousaviZ11”) :6.
tref(Author) :N←N : [author(Author, Pno), ref(Pno)].

is defined by its expansion into the following program:

ref(“MousaviZ11”, J)← lessthan(J, 6).
tref(Author, J)←N : [author(Author, Pno), ref(Pno, J)].

As a result of this expansion, Example 5.8, “MousaviZ11” contributes with number
6 to the reference count for each of its authors.

If staff(Lab, Name) describes the current staff in each lab, the following rule
can be used to determine the total number of references pointing to (papers by re-
searchers in) each lab.

labref(Lab) :Tot← Tot : [staff(Lab, MTS), totalref(MTS)].

In our previous examples, the frequency assigned to the head has the same value as
the FS test clause in the body, but this needs not to be always the case. For instance, if

92 5 Datalog with frequency support goals

we estimate that, on the average, every paper authored by an MTS in a particular lab
is co-authored by another MTS in the same lab, then a better estimate of the papers
published by the lab will be Tot÷ 2. Thus a better estimate of a pseudo H-factor for
each lab is:

Example 5.9. Pseudo H-factors for Laboratories.

labref(Lab) :H← Tot : [staff(Lab, MTS), totalref(MTS)],
H = Tot÷ 2.

An important property of frequency statements is that, when multiple statements hold
for the same fact (base fact or derived fact) only the largest value is significant, the
others are subsumed and ignored. Thus, if the following two predicates are derived,

ref(“MousaviZ11”) :6.
ref(“MousaviZ11”) :4.

the second fact carries no additional information and can be simply dropped. This
property leads to important applications, discussed below. However, if instead of the
maximum frequency we would like to take the sum of frequencies, we can simply
add an additional argument. Indeed the following two facts imply a total count of 10.

ref(“MousaviZ11”, aaa) :6.
ref(“MousaviZ11”, bbb) :4.

Bill-of-materials (BOM) applications represent a well-known example of the
need for recursive queries. For instance, our database might contain records such
as

assbl(Part, Subpart, Qty)

which, for each part number, give the immediate subparts used in its assembly and
the quantity in which they are used. For instance a bicycle has 1 frame and two
wheels as immediate subparts. At the bottom of the BOM DAG, we find the basic
parts that are purchased from external suppliers and provide the raw materials for our
assembly. Basic parts are described by basic(Pno, Days) denoting the days needed
to obtain a basic part. Several interesting BOM applications are naturally expressed
by combining aggregates and recursion, as follows:

Example 5.10. How many basic parts does an assembled part contain?

cassb(Part, Sub) :Qty ← assbl(Part, Sub, Qty).

cbasic(Pno) :1← basic(Pno,).
cbasic(Part) :K← K : [cassb(Part, Sub), cbasic(Sub)].

Of course the total count of basic parts used by a part, such as frame, should not
be retrieved directly using a goal such as N : [cbasic(frame)] since this will return
all the positive integers up to the max N value. A goal such as N =![cbasic(frame)]

5.6 Implementation & Optimization 93

should be used instead inasmuch as this returns the exact count of the basic subparts
for frame. Similar observations hold for the other examples.

Simple assemblies, such as bicycles, can be put together the very same day in
which the last basic part arrived. Thus the time till delivery is the maximum number
of days required for all the basic parts to be delivered:

Example 5.11. How many days till delivery?

delivery(Pno) :Days ← basic(Pno, Days).
delivery(Part) :Days ← assb(Part, Sub,),

Days : [delivery(Sub)].

Thus, for each assembled part, we find each basic subpart along with the number
of days this take to arrive. The number of days is retained but not the basic part
associated with it, whereby the maximum number of days required by any assembly
is computed.

Mumick, Pirahesh and Ramakrishnan proposed the following interesting appli-
cation [MPR90]:

Example 5.12. Companies can purchase shares of other companies; in addition to its
directly owned shares, a company A controls the shares controlled by a company
B when A has a controlling majority (50%) of B’s shares (in other words, when A
bought B).

cshares(C1, C3, direct) : P ← owned shares(C2, C3, P).
cshares(C1, C3, indrect) : P ← P : [bought(C1, C2),

cshares(C2, C3,)].
bought(C1, C2) ← C1 6= C2, 50 : [cshares(C1, C2)].

5.6Implementation & Optimization

Datalog compilers [AOT+03] perform a binding passing analysis on the program to
determine whether top-down methods such as magic sets are applicable, and (a) if
they are not, the compiler applies the differential fixpoint (a.k.a. seminaive fixpoint)
method, otherwise (b) the compiler first applies the best suitable top-down rewriting
method, and then applies the differential fixpoint method to the transformed program
thus generated. Modulo simple modifications, this process and methods remain valid
and effective for DatalogFS programs. We will now illustrate these operations with
the help of our previous examples.

5.6.1 Differential Fixpoint

Say that we want to find all people who will come to the party. Then, we can ask the
following query ?willcome(Name) on the program in Example 5.6.

94 5 Datalog with frequency support goals

willcome(X)← sure(X).
willcome(Y)← 3 : [friend(X, Y), willcome(X)].

Since Name is a variable, no top-down compilation method is applicable here and we
simply apply the basic differential fixpoint method. The application of the differential
fixpoint method begins with a factorization step whereby the original recursive rule
is re-written by factoring out one occurrence of the b-expression, as follows:

willcome(Y)← friend(X1, Y), willcome(X1),
2 : [friend(X2, Y), willcome(X2), X2 6= X1].

Then, the symbolic differentiation is only applied to the factored out b-expression
producing

δwillcome(Y)← δ(friend(X1, Y), willcome(X1)),
2 : [friend(X2, Y), willcome(X2), X2 6= X1].

Indeed, while the recursive predicate willcome could be viewed as occurring three
times in the body of our recursive rule all the recursive goals are identical, and their
order is immaterial: thus they all produce the same delta rule.

Since friend is not a recursive predicate, then the conjunct δ(friend(X1, Y), willcome(X1)) is
rewritten into
friend(X1, Y), δwillcome(X1) (if friend were also recursive then one more rule
would be needed). The meaning of the rule we have constructed is clear: We take the
new δwillcome(X1) obtained in the last iteration step, and we check if the following
FS goal holds:

2 : [friend(X2, Y),willcome(X2), X2 6= X1].
A more relaxed factorization is preferable for recursive rules, such as the fol-

lowing one from Example 5.10, where the value of the FS test clause K is simply
transferred to the head of the rule (whereas in the previous example the existence of
three distinct occurrences had to be actually tested):

cbasic(Part) :K← K : [cassb(Part, Sub), cbasic(Sub)].

In the relaxed factorization, the 6= condition is omitted and the b-expression inside
and outside the brackets are the same, whereby the previous rule is re-written as:

cbasic(Part) :K← cassb(Part, Sub), cbasic(Sub),
K : [cassb(Part, Sub), cbasic(Sub)].

This is then compiled into a single delta rule with a single delta goal:

δcbasic(Part) :K← cassb(Part, Sub), δcbasic(Sub),
K : [cassb(Part, Sub), cbasic(Sub)].

5.6 Implementation & Optimization 95

5.6.2 Magic Sets

Let us now consider the case where top-down methods can be used. For instance, to
know if Tom will come to the party, we can use the goal ?willcome(tom). After the
binding passing analysis, we can apply the magic-set method, yielding the following
magic predicates:

m.willcome(tom).
m.willcome(X)← 3 : [m.willcome(Y), friend(X, Y)].

This magic rule starts with Y = tom and, provided that Y has at least three friends
Y, propagates the magic condition to those X friends. Now, the original goal remains
unchanged ?willcome(tom) while the original rules are re-written as follows:

willcome(X)← sure(X), m.willcome(X).
willcome(Y)← 3 : [willcome(X), friend(X, Y)],

m.willcome(Y).

The first rule so obtained shows that the sure people who are in the magic set need
to be considered. Moreover, the second rule cannot be dropped as in the case of
standard right-linear rules. In fact, while the magic set rules discarded everyone that
does not have three friends, the modified rules remain necessary to ensure that three
at least of those remaining friends will come to the party. The standard differential
fixpoint will then be applied to rules so re-written.

Consider now Example 5.10, and assume that we use the goal N =![cbasic(frame)]
to find out how many basic parts an assembled frame contains. After performing the
binding passing analysis, our DatalogFS compiler would here produce the follow-
ing magic-set rules (which only propagate bound values, and thus K is not in the
magic-set rules):

m.cbasic(frame).
m.cbsasic(Sub)← m.cassb(Part, Sub), cbasic(Part).

and modified rules:

cbasic(Pno) :1← basic(Pno,), m.cbasic(Pno).
cbasic(Part) :K← K : [cassb(Part, Sub), cbasic(Sub),

m.cbasic(Part)].

Observe that the modified recursive rule must be retained since it is needed to com-
pute the values of K. This and the previous willcome example illustrate that the full
magic set method must be often applied once the FS test clauses are also considered
in the binding passing analysis—whereas without the FS–test clauses those would
have been treated as right-linear rules.

96 5 Datalog with frequency support goals

5.6.3 Avoiding Expansions

The rewriting of our FS predicates that defined their semantics could also be used
for their implementation. In practice however, this naive approach is prone to major
inefficiencies and must be avoided. As we shall see next, efficient implementations
can be achieved via simple syntactic constraints that avoid expansions without com-
promising the power and usability of DatalogFS .

FS-test Clauses

These are easily implemented using aggregates. The COUNT aggregate will be used
when all the predicates in the b-expression are single predicates (i.e., they are not
among those defined as multi-occurring via FS-assert clauses). Thus, in the first rule
of Examples 5.3, we will count PnoFrom for each Pno—i.e., count PnoFrom grouped
by Pno in SQL parlance. In general, the operation that a compiler/interpreter will use
on single predicates is counting the occurrences of local variables grouped by the
global ones. For instance, in the second rule of Example 5.3 we have a conjunct
where Author is the global (i.e., group-by) variable, and Pno is the local variable
whose occurrences will be counted: when the count is equal or exceeds 13, then
Author is returned to the head. In the recursive rule of Example 5.6 we must instead
count occurrences of (X, Y) grouped by X.

The SUM aggregate must instead be used for b-expressions containing one or
more multi-occurring predicates. Take for instance Example 5.10: both cassb and
cbasic are multiple-occurring predicates, Part is the global variable and Sub is
the local one. Moreover, each tuple in cassb has a multiplicity Qty and each tuple
in cbasic has multiplicity K. Thus for each Part, we must sum up the products
Qty× K over all Sub values that satisfy the join condition, and transfer the resulting
sums to the head2. Likewise, in the first rule of Example 5.3, we will inspect refer
and count the occurrences of the local variable PnFrom grouped by the global one
Pno3.

FS-assert Clauses

Returning to our Example 5.10, we see that FS-assertions are simple to imple-
ment. Whenever during the computation, a new instance of cbasic(Part1) : K1
is produced from the body of the rule, we store it, and delete previously recorded
cbasic(Part0) : K0 where Part0 = Part1 and K0 < K1. Thus only the current
maxima of FS values are kept. Therefore, while in rules such as the second one of
Example 5.10, the body is satisfied by several values of K, only the max of these
2 If this information were stored in SQL tables, then the head

of the rule would be updated using the following information:
select cassb.Part, sum(cassb.Qty*cbasic.K)

from cassb, cbaic where cassb.Sub=cbasic.Sub
group by cbasic.Sub

3 Determining local and global variables is already part of the binding passing analysis per-
formed by current Datalog compilers [AOT+03].

5.6 Implementation & Optimization 97

values is of interest since it is the one that determines the range of the FS value in the
head. Therefore the very re-writing that defines the semantics of FS-assert clauses
provides a built-in maximization feature, which is very useful in many optimization
applications, including Example 5.11 where we want to find the maximum number
of days needed for all parts to be delivered.

Example 5.9 shows that the FS values transferred from the body to the head
can be mapped through functions (÷2 in the example). However, these functions
must map maxima into maxima: thus they must be monotonic for positive numbers.
In fact, if arbitrary functions were allowed, we would normally have to enumerate
all FS values that satisfy the rule arguments. Monotonicity is likewise required for
boolean conditions that test conditions on FS values in the body4. Conditions on
FS-values specified using monotonic boolean functions only need to be checked for
max FS-values, rather than all the integers up to the max value. We recommend that
a basic DatalogFScompiler should enforce this condition but allow simple equality
condition as an exception. For example, the recursive rule of Example 5.6 could have
also be specified as follows:

willcome(Y)← K : [friend(X, Y), willcome(X)], K = 3.

Our basic compiler would allow this rule, and actually implement it in the same way
as that of the original Example 5.6. However a basic DatalogFS compiler should
reject the following rule, although in terms of abstract semantics is equivalent to the
previous rule (since K = 3 is the only integer that satisfies those inequalities):

willcome(Y)← K : [friend(X, Y), willcome(X)],
K ∗ K > 8, 2 ∗ K < 7.

Indeed these monotonicity restrictions are only meant to simplify the task of our
basic compiler, and could be relaxed in more sophisticated compilers. Therefore a
basic compiler (or interpreter) only needs to be smart enough to be able to verify
that all the arithmetic and boolean expressions that use FS values as their arguments
are indeed monotonic w.r.t. such arguments. An error message is returned when our
system is not able to make such a determination. This requirement can be easily
realized in practice since even simple compilers are able to infer monotonicity for
simple functions or expressions: for more complex ones, users will be allowed to
declare that certain functions are monotonic.

In general, the DatalogFS compiler should reject user queries that require the use
of the expansion rules. Therefore, predicates such as cbasic in Example 5.10 and
delivery in Example 5.11 can only be called via an exact frequency goal, or a goal
that checks if they hold for a particular frequency value. In our applications, we have
found that these rules are easy to live with.

In summary, we have shown that (i) the powerful techniques that were devel-
oped for deductive databases and then used for recursive SQL:2003 queries [AHV95,
4 A boolean function B(T) is monotonic w.r.t. the integer values T whenever B(T) evalu-

ating to true implies that B(T ′) is true for every T ′ > T .

98 5 Datalog with frequency support goals

Ram98, ZCF+, UW97] can now be used for DatalogFS , and (ii) the need for any ex-
pansion step can be easily avoided in practical applications. The elimination of any
expansion step also allows us to further extend DatalogFS by scaling, as discussed
in the next section.

5.7 Scaling

Although the abstract semantics of DatalogFS is based on counting the repeated oc-
currences of predicates, i.e., on integer arithmetic, it can be generalized for floating-
point computation and models in a straightforward manner. All is needed is a scaling
factor that maps floating point numbers into integers. For instance the percentages
commonly used in real life assume a scaling factor of 100.

For instance, returning to our party example we might want to say that our level of
confidence in John coming to the party is 82%. Thus we write: confidence(“John”) :
0.82, and similar confidence rankings can be assigned to every person who could
possibly attend the party. Then our program becomes:

confidence(“John”) :0.82.
%...therestofthefacts....
willcome(X) :C← C : [confidence(X)].
willcome(Y) :1← 3 : [friend(X, Y), willcome(X)].

Since the confidence is normally less than one, we will need to add the confidence
of four or more people coming to the party before we cross the threshold of 3.

In this example we were working with percentages, and thus a scale-up factor of
100. A scale factor of 100 means that all the frequency statements will be multiplied
by 100 and thus will become integers. Any constant applied to FS values will also
have to be multiplied by 100. Thus the program above is viewed as a more compact
statement of the following program that defines its formal semantics:

confidence(“John”) :82.
%...therestofthefacts....
willcome(X) :C ← C : [confidence(X)].
willcome(Y) :100← 300 : [friend(X, Y), willcome(X)].

This program was obtained from the previous one by multiplying FS constants by
the scaleup factor of 100. This second program defines the semantics of the first one
with the provision that the FS values returned by this second one will be divided by
100.

Thus by assuming scaling, we allow the use of floating point numbers in our
FS-assert and FS-test clauses. This significantly expands the application range of
DatalogFS . For instance, say that arc(a, b) :0.66 denotes that a trip started at point a
will actually take us to point b in 66 % of the cases. Then the following program com-
putes the probability of completing a trip from a to Y along the maximum-probability
path:

5.8 More Advanced Applications 99

Example 5.13. Maximizing the probability of reaching various nodes of the graph if
we start from node a.

reach(a) :1.00.
reach(Y) :V ← reach(X), V : [reach(X), arc(X, Y)].

Thus, we reached a with probability 1. Then, the probability of reaching Y via an arc
from X is the product of the probability of being in X times the probability that the
segment from X to Y can be completed. In the head of the rule, we only retain the
maximum V—i.e., we only retain the path with largest probability to succeed.

In terms of implementation it is clear that the approach and compilation tech-
niques we used to implement DatalogFS when FS values were integers, remain valid
and can now be used when FS values are arbitrary positive numbers (however SUM
rather than COUNT will be used in the FS-test Clauses). This follows directly from the
fact that, as we have described in the last section, we avoid expansions in DatalogFS

implementation. This also makes the semantics of our programs independent from
the scale-up factor used—modulo some round-off issues discussed next.

Consider the equivalent for the program of Example 5.13 above, when the scale-
up factor is 100. This scale-up multiplies by 100 both the reach and arc, for a
combined scaling of 100 × 100. Therefore, we must normalize back the resulting
sums by dividing the results by 100.

Thus the equivalent DatalogFS program for a scale-up factor of 100 is:

reach(a) :100.
reach(Y) :W ← reach(X), V : [reach(X), arc(X, Y)],

W = V÷ 100.

This example also illustrates that an implicit round-off effect is connected with the
scale-up factor. For instance if V = 0.0048, for a scale-up factor of 100, we obtain
W = 0.00, whereas with scale up factor of 10,000 we obtain W = 0.0048. There-
fore there is a round-off dependency connected with the round-off factor, and this
dependency can be minimized by selecting higher scale-up factors. Thus we will as-
sume that our DatalogFS implementation can use the max scale-up factor that can be
efficiently supported by the target hardware (32-bit or 64-bit). With that, round-off
issues will not occur in most applications; in the few situation where they are cause
for concern, they should addressed using “double precision” declarations and various
numeric computation techniques that are used in everyday computing.

5.8 More Advanced Applications

In this section we discuss web-oriented applications, including social networks and
page rank.

100 5 Datalog with frequency support goals

5.8.1 Diffusion Models with DatalogFS

The Jackson-Yariv Diffusion Model (JYDM) [JY05] was extended to elegant logic-
based formalizations [SSS10], which however can lead to inefficient (NP-hard) com-
putations [SSS10]. We will now show that JYDM can be expressed by simple and
efficient DatalogFS programs. In JYDM, a set V of agents is represented by a graph
G = 〈V,E〉 where E are edges that represent the relationship between two agents.
Each agent has a default behavior (A) and a new behavior (B). An agent i decides on
whether to adopt behavior B depending on:

(i) A constant bci which quantifies the extent to which agent i is susceptible to
make a change (typically, bci measures the reward/cost tradeoffs of making the
change).

(ii) The percentage of the neighbors of the agent that took action B (e.g., the percent-
age of partners of the twitter user who have forwarded this tweet).

(iii)A function g : {1, . . . , |V |} → [0, 1] that modifies criterion (ii) to take into
account, in addition to percentage of neighbors who took action B, their number5.
Observe that g does not directly depend on the node, it only depends on the
number of its neighbors; however, g and bc combined provide JYDM with much
power and flexibility in characterizing the response w.r.t. both the numbers and
percentages of neighbors agents who took action B.

Now, if Bi denotes the pressure experienced by agent i to adopt behavior B, the
Jackson-Yariv diffusion model is represented by the following equations:

Bi = bci ∗ g(Γi) ∗
1

Γi
∗

∑
(j,i)∈E

Bj , ∀i ∈ V (5.1)

where
Γi =

∑
(j,i)∈E

1

is the count of the neighbors.
When a Bi crosses a threshold, then agent i switches from behavior A to behavior

B. Typically, this threshold can be set to 1, given that the bci can be scaled up/down
to match the application requirements.

The JYDM-based diffusion of retweets can easily expressed in DatalogFS . We
represent the twitter network using atom followd(X, Y) to indicate that user X is
followed by user Y. Moreover, in order to apply the diffusion model, we introduce
the following facts:

• bc(X, K) means that the node X has coefficient bcX equal to K.
• g(N, K) means that the function g(N) returns value K.

5 For instance, this function can be used to express the fact that an agent who sees, say, all
his 89 partners switching to B experiences a much stronger push than another twitter user
who sees his only partner moving to B (although percentage-wise the two situations are the
same).

5.8 More Advanced Applications 101

The default behavior A means that a user will not retweet, while behavior B
means that the user will retweet. Now BX represent the fact that X will retweet and
we represent this by the predicate b(X). We assume that there is an agent source(X)
who first posts the tweet and starts its diffusion.

Thus, Equation 5.1 is modelled by the following rules.

Example 5.14. Equation 5.1 in DatalogFS .

coeff(X, C)← K2 =![followd(Y, X)], bc(X, V1),
g(K2, V3), C = V1 ∗ V3/K2.

b(X)← source(X).
b(X)← coeff(X, C), K=1/C, K : [follwd(Y, X), b(Y)], .

Note that in Equation 5.1 the product

bci ∗ g(Γi) ∗
1

Γi

is not recursive and depends only on the features of the node i. Therefore we compute
separately this value for each user by the first rule. The first goal in this rule deter-
mines the number of neighbors of node X; the next three goals in the rule compute
the increment C, that must be added to b(X) for each of its neighbors who switched
to B. Since there are K of these neighbors, the test condition for setting the head b(X)
to true is K × C ≥ 1; this is equivalent to the condition K ≥ 1/C used in our rule
(which is much preferable in terms of compilation for the reasons discussed in the
last section).

The answer to the query ?b(Y) will thus list all the users that propagated the tweet
that originated from the node specified by source, as illustrated by the Example 5.15
below:

u1

u4

u2 u3

fol
low

d

followdfol
low

d

followd

Fig. 5.1. A Diffusion Model for Twitter

Example 5.15. Consider the network in Figure 5.1 where user u1 tweets about some-
thing. We add the following facts to previous program and compute for each user if
he will retweet the post or not.

102 5 Datalog with frequency support goals

follwd(u1, u2). bc(u1, 1). g(1, 1.2). source(u1).
follwd(u1, u3). bc(u2, 0.9). g(2, 2.3).
follwd(u2, u4). bc(u3, 0.5).
follwd(u3, u4). bc(u4, 1).

And we obtain the following result:

M = {. . . , coeff(u2) :1.08, coeff(u3) :0.6, coeff(u4) :2.3,
b(u1), b(u2), b(u4)}

Thus, first u2 and then u4 will retweet u1’s post.

5.8.2 Markov Chains with DatalogFS

A Markov chain is a memory-less stochastic process that is represented by the tran-
sition matrix W of s× s components where the component wij is the probability to
go from the state i to state j in one step. For each node i of the Markov chain we
have:

∑s
j=1 wij = 1. A Markov chain is called irreducible if for each pair of states

i, j, the probabilities to go from i to j and from j to i in one or more steps is greater
than zero.

Computing stabilized probabilities of a Markov chain has many real-world appli-
cations, such as estimating the distribution of population in a region and determining
the Page Rank of web nodes. Let P be a vector of stabilized probabilities of cardi-
nality s, then for each component pi of P the following property holds:

pi =

s∑
j=1

wji · pj (5.2)

This is the equilibrium condition that in terms of matrices can be expressed trough
the fixpoint equation:

P = W · P
It is not a trivial task to compute this fixpoint. The simplest approach consists in
assigning an initial value (e.g., 1) to all nodes and then iterating until the computation
stabilizes. Unfortunately this approach could fail to converge even for irreducible
chains that are guaranteed to have a non-trivial equilibrium solution. As shown in
Example 5.16, below, this problem occurs even in very simple networks.

Example 5.16. Consider the simple and irreducible Markov chain in Figure 5.2. The
computation of its stabilized probabilities is the following:

step a b c
1st 1.0 1.0 1.0
2nd 0.5 2.0 0.5
3rd 1.0 1.0 1.0
4rd 0.5 2.0 0.5
5rd 1.0 1.0 1.0
· · · ·
∞ · · ·

5.8 More Advanced Applications 103

a b

c

a

b

c

a b c

0.0

0.0

0.0

0.0

0.5

1.0

0.5

0.0 1.0

1.0

1.0

0.5

0.5

Fig. 5.2. Irreducible Markov Chain

We can see that the computation flip-flops between two states and fails to converge
to the equilibrium solution.

Markov chains can be modeled quite naturally in DatalogFS , and this approach
provides a simple analysis and efficient algorithms for dealing with this much-
studied problem.

Thus, if p state(X) : K denotes that K is the probability of node X, 1 ≤ X ≤ s,
and w matrix(Y, X) :W denotes that the arc from Y to X has weight W, then our Markov
chain is represent by the following program:

Example 5.17. A DatalogFS model for equilibrium P = W · P in a Markov Chain.

p state(X) :K← K : [p state(Y), w matrix(Y, X)].

w matrix(1, 1) :w11.
w matrix(1, 2) :w12.
...
w matrix(s, s) :wss.

Thus we have obtained a positive logic program which comes endowed with
well-known properties, including the fact that it defines a fixpoint equation that has
one or more solutions. The least-fixpoint solution is when all pstate(X) are false.
This is the null solution which is not of any interest in practice, since it corresponds
to every city being empty, or every page having rank 0. Thus the case of interest is
when there is some non-null solution. Clearly if we take a non-null solution vector
and multiply each of its components for the same constant we obtain another solution
vector. We refer to this transformation as scaling of solutions: clearly if there is a
non-null solution scaling produces an infinite number of solutions.

Now irreducible Markov chains are guaranteed to have non-null solutions; thus
some of their p state node are true, i.e., p state(X) :K holds for some node X and
some K > 0 (i.e., node X has a positive solution). But since each node is reachable
from every other node, via non-zero probability paths, this implies that p state(X) :
Kx with KX > 0 holds for every node X—i.e., our Markov chain has a positive solution
at every node. Now for Markov chains that have positive solutions at every node, we
can use DatalogFS to express and compute efficiently such solutions. All is needed

104 5 Datalog with frequency support goals

is to state baseline facts that assert the same non-zero multiplicity for each node of
our Markov chain. For instance, we can use the multiplicity of 1 and add the facts:
p state(j), j = 1, . . . , s. These will be called baseline facts, and the resulting
program will be called baseline program. Thus, for the example at hand we have the
following DatalogFS program where the three baseline facts are listed last.

Example 5.18. A baseline Program for the Markov Chain of Figure 5.3

p state(X) : K← K : [p state(Y), w matrix(Y, X)].

w matrix(a, b) : 1.0.
w matrix(b, a) : 0.5.
w matrix(b, c) : 0.5.
w matrix(c, b) : 1.0.
p state(a).
p state(b).
p state(c).

The least fixpoint computation for this DatalogFS program is as follows:

step a b c
1st 1.0 1.0 1.0
2nd 1.0 2 .0 1.0
3rd 1.0 2 .0 1.0

Therefore, the iteration converged in three steps to a solution that is a fixpoint for
the above program and captures the correct ratio between the probabilities (or the
population) of the various nodes. This might in fact be all is needed in applications
such as page rank where we are primarily interested in determining the rank order
of pages. For other applications, we might need to normalize these results to satisfy
constraints about total population or probabilities. For instance, assuming that the
sum of probabilities must add up to 1, then the probability at each node can be derived
using the following rule:

p norm(X, Pr)← K1 =![p state(X)], K2 =![p state(Y)],
Pr = K1/K2.

Thus for the example at hand the normalized probability values are: a = 0.25, b =
0.5 and c = 0.25.

Therefore, in order to find the fixpoints for program P that models our Markov
chain, we added baseline facts and obtained the bas-line program Pbl. Pbl is a
DatalogFS program for which we can compute the least fixpoint efficiently. More-
over every fixpoint of Pbl is also a fixpoint for P . Indeed, for any interpretation I
that contains all the baseline facts, the respective immediate consequence operators
produce the same results: i.e., TP (I) = TPbl(I). Therefore any fixpoint of TP that
contains all the baseline facts is also a fixpoint for TPbl and vice-versa. But since, by

5.8 More Advanced Applications 105

its very definition, the least model of Pbl contains all the baseline facts, we have that
every fixpoint for TPbl is also a fixpoint for TP . The opposite of course is not true
since the null fixpoint of TP , and possibly others, are not fixpoint for TPbl. However,
if TP has a fixpoint that is positive at all nodes, then by multiplying the frequency at
all nodes by a large enough finite constant, we obtain a fixpoint for TP that contains
all the baseline facts of TPbl. Since, for each irreducible Markov chain TP has a fi-
nite non null fixpoint then there exists a finite fixpoint for TPbl. Therefore, the least
fixpoint for TPbl is finite. That is, we can state the following theorem:

Theorem 5.19. The least fixpoint of the baseline DatalogFS program that models an
irreducible Markov chain is finite.

The operation of multiplying the frequency of the solution at each node by a
positive constant is called scaling. Now since irreducible programs have positive
solutions at every node we can state the following theorem:

Theorem 5.20. Every non-null solution of an irreducible Markov chain can be ob-
tained by scaling the least fixpoint solution of its baseline DatalogFSmodel.

In summary, while there has been a significant amount of previous work on
Markov chains, the use of DatalogFShas provided us with a simple solution for all
irreducible Markov chains. In fact this solution approach holds for all Markov chains
that have positive solutions at every node, and therefore for all irreducible Markov
chains.

a b

c

a

b

c

a b c

0.0

0.0

0.0

0.0

1.0

1.0

0.0

0.0 1.0

1.0

1.0
1.0

Fig. 5.3. A Reducible Markov Chain

Obviously there are many Markov chains that are not irreducible, as the one in
Figure 5.3 where, using 0.1 as base line, the computation of the least fixpoint is as
follows:

step a b c
1st 0.1 0.1 0.1
2nd 0.1 0.2 0.1
3rd 0.1 0.2 0.2
4rd 0.1 0.3 0.2
5rd 0.1 0.3 0.3
· · · ·
∞ 0.1 ∞ ∞

106 5 Datalog with frequency support goals

Thus, the computation only converges at the first ordinal, producing infinite val-
ues and the corresponding least fixpoint is not finite. A practical solution for these
situations, which is used e.g., in the Page Rank algorithm, is to introduce a dumping
factor that transforms the chain in an irreducible chain. We are also investigating a
different approach, where instead of modifying the original network configuration
we use techniques inspired by the computation of greatest fixpoints. This research
line is still at its initial stage and will be discussed in future reports.

6

Conclusions

In this thesis we considered the count constraints in a generative way, i.e. we stud-
ied how it is possible to materialize data that satisfy them, and we proposed some
contexts in which the count constraints are meaningful. As first context, we con-
sider the inverse frequent set mining problem. Initially, under the assumption that
the itemset not in S must have support equal to zero, we defined IFMS in which the
transactions to be added in the output database must be picked from the given set
S. Motivated by the intractability (NP-complete) of the problem, we proposed two
heuristic approaches that have been tested with a thorough experimental activity over
both synthetic and real data with good results. However, since there exist some cases
in which this assumption is not valid, we provided a more general formulation, called
κ-IFMσ′ , that is able to control the supports of itemset not in S by a unique maxi-
mal threshold support for all itemset not in S. Despite this generalization is proven to
be NEXP-complete, we provided an effective and efficient algorithm based on tech-
niques of linear programming. The problem is modeled by a integer linear program
with an exponential number of variables that has the property of being efficiently
solved with column generation techniques. finally, we conduct an intensive activity
of experimentation that highlights the quality and the efficiency of our algorithm.
Interesting applications of IFM are benchmark database generation and privacy pre-
serving data publishing. For the first one, consider a scenario in which a data set
is needed as an input of data mining applications, for analysis purposes or simply
for testing the implementation of new reasoning methods. The unavailability of real
data often exacerbates in the case of lowly structured multi-organization virtual en-
terprises where the partners will never agree to share their own information, or no
tracking infrastructure exists for collecting and storing log data. In this scenario, we
can apply an inverse set mining technique for generating benchmark datasets with
features mined from real-world datasets. In the second application, assume you are
the owner of a transaction database which is willing to make available its data to any
interested party, but you are wondered how to keep private information or sensitive
knowledge from being disclosed. Recent literature has proposed a solution to the
data sanitization problem which is inspired to inverse frequent set mining, where the

108 6 Conclusions

inverse mining method is the basic technique for data reconstruction while hiding
association rule.

As second context, we focused on relational databases and we introduced a new
type of constraints based on first order logic. Based on this constraints, a new inverse
problem, called Inverse OLAP, has been formulated that is a powerful extension of
Inverse Frequent itemsets Mining: given a star schema and a number of count con-
straints, does exist a satisfying relation database? The new problem turns out to be
NEXP-complete under various conditions: combined complexity, program complex-
ity and data complexity. We have also shown that the setting for expressing count
constraints can be used for performing aggregate data exchange. Despite the high
complexity of the Inverse OLAP problem, also for data complexity, an approximate
solution can be found for some cases, by adopting an extension of the technique used
for κ-IFMσ′ . Moreover we showed as the count constraints in inverse OLAP repre-
sent a step toward aggregate data exchange. In this respect, we believe that inverse
OLAP can be an opportunity of research for treating data exchange with aggregate
contraints.

Finally, we have considered (i) DatalogFS programs as synopses of (ii) expanded
Datalog programs. While (ii) tends to be large and inefficient, they provide the per-
fect venue for defining abstract semantics, given that they are standard Datalog pro-
grams endowed with all the very desirable formal properties of this declarative logic-
based paradigm. On the other hand, (i) is perfect for operational semantics since
synopses can be computed very fast using aggregates. In other words, DatalogFS

combines the best of the two worlds, and this mix is further enhanced by the fact that
all the powerful implementation and optimization techniques of deductive databases,
e.g. magic sets, remain valid and effective in DatalogFS . We believe that this will
promote the incorporation of DatalogFS powerful constructs into past and future sys-
tems. The many examples presented in this context suggest that the application range
of deductive databases has been significantly broadened. Furthermore, the treatment
of Markov Chains demonstrates that, by providing a simple and effective model for
the analysis and solution of complex problems, DatalogFS can also enrich different
application domains. This opportunity provides a natural topic for future research.

References

[AA01] D. Agrawal and C. Agrawal. On the design and quantification of privacy preserv-
ing data mining algorithms. In Proc.20th Symposium on Principles of Databas-
eSystem (PODS), 2001.

[ABC+11] Foto N. Afrati, Vinayak R. Borkar, Michael J. Carey, Neoklis Polyzotis, and Jef-
frey D. Ullman. Map-reduce extensions and recursive queries. In EDBT, pages
1–8, 2011.

[ABE+99] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios. Disclosure
limitation of sensitive rules. In Proceedings of the IEEE Knowledge and Data
Engineering Exchange Workshop, pages 45–52, 1999.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[AK08] Foto N. Afrati and Phokion G. Kolaitis. Answering aggregate queries in data
exchange. In PODS, pages 129–138, 2008.

[AOT+03] Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. The
deductive database system ldl++. TPLP, 3(1):61–94, 2003.

[APR11] Marcelo Arenas, Jorge Pérez, and Juan L. Reutter. Data exchange beyond com-
plete data. In PODS, pages 83–94, 2011.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In ACM SIGMOD,
pages 439–450, 2000.

[BV90] Catriel Beeri and Moshe Y. Vardi. Polynomial-time implication problems for
unary inclusion dependencies. J. of the ACM, 37:15–46, 1990.

[Cal04] Toon Calders. Computational complexity of itemset frequency satisfiability. In
PODS, pages 143–154, 2004.

[Cal07] Toon Calders. The complexity of satisfying constraints on databases of transac-
tions. Acta Inf., 44(7-8):591–624, 2007.

[Cal08] Toon Calders. Itemset frequency satisfiability: Complexity and axiomatization.
Theor. Comput. Sci., 394(1-2):84–111, 2008.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and
olap technology. SIGMOD Record, 26(1):65–74, 1997.

[CG03] T. Calders and B. Goethals. Minimal k-free reppresentations of frequent sets. In
Knowledge Discovery in Databases: PKDD 2003, 2003. Atificial Inteligence.

[CG07] Toon Calders and Bart Goethals. Non-derivable itemset mining. Data Min.
Knowl. Discov., 14(1):171–206, 2007.

110 References

[CKV90] Stavros S. Cosmadakis, Paris C. Kanellakis, and Moshe Y. Vardi. Polynomial-
time implication problems for unary inclusion dependencies. J. of the ACM,
37:15–46, 1990.

[CO05] Xia Chen and Maria E. Orlowska. A further study on inverse frequent set mining.
In ADMA, pages 753–760, 2005.

[COL04] X. Chen, M. Orlowska, and X. Li. A new framework for privacy preserving data
sharing. In 4th IEEE ICDM Workshop: Privacy and Security Aspects of Data
Mining, pages 47–56, 2004.

[CRfB05] Toon Calders, Christophe Rigotti, and Jean françois Boulicaut. A survey on
condensed representations for frequent sets. In In: Constraint Based Mining and
Inductive Databases, Springer-Verlag, LNAI, pages 64–80. Springer, 2005.

[DDS05] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Column
Generation. Springer, 2005.

[dMMAG] Oege de Moor Molham Aref and Georg Gottlob. Datalog 2.0: The resurgence of
datalog in academia and industry. In Proceedings of the March 2010 Proceeding
held at Magdalen College, Oxford.

[DN03] I. Dinur and K. Nissim. Revealing information while preserving privacy. In
Proc. 22nd Symposium on Principles of Database Systems(PODS), pages 211–
222, 2003.

[DT03] G. B. Dantzig and M. N. Thapa. Linear Programming 2: Theory and Extensions.
Springer Series in Operations Research. Springer-Verlag, New York, 2003.

[EGS03] A. Evfimievski, J. Gehrke, and R. SriKant. Limiting privacy breakes in privacy
preserving data mining. In Proceedings of the 22nd Symposium on Principles of
Database Systems, pages 211–222, 2003.

[ESAG02] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving min-
ing of association rules. In Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 217–228, Edmon-
ton, Canada, July 2002.

[FKP05] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: getting to
the core. ACM Trans. Database Syst., 30(1):174–210, 2005.

[FKPT09] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Reverse
data exchange: coping with nulls. In PODS, pages 23–32, 2009.

[FPL+08] Wolfgang Faber, Gerald Pfeifer, Nicola Leone, Tina Dell’Armi, and Giuseppe
Ielpa. Design and implementation of aggregate functions in the dlv system.
TPLP, 8(5-6):545–580, 2008.

[Gel93] Allen Van Gelder. Foundations of aggregation in deductive databases. In DOOD,
pages 13–34, 1993.

[GGZ91] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. Minimum and maximum pred-
icates in logic programming. In PODS, pages 154–163, 1991.

[GLLR07] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. On reconciling data exchange, data integration, and peer data manage-
ment. In PODS, pages 133–142, 2007.

[GN08] Georg Gottlob and Alan Nash. Efficient core computation in data exchange. J.
ACM, 55(2), 2008.

[GOP11] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Ontological queries: Rewriting
and optimization. In ICDE, pages 2–13, 2011.

[GPSZ91] Fosca Giannotti, Dino Pedreschi, Domenico Saccà, and Carlo Zaniolo. Non-
determinism in deductive databases. In DOOD, pages 129–146, 1991.

References 111

[GSS09a] A Guzzo, D Saccà, and E Serra. An effective approach to inverse frequent set
mining. In Proc. of the Int. IEEE Conf. on Data Mining (ICDM’09), pages 806–
811, 2009.

[GSS09b] Antonella Guzzo, Domenico Saccà, and Edoardo Serra. An effective approach
to inverse frequent set mining. In ICDM, pages 806–811, 2009.

[GTTY06] Yuhong Guo, Yunhai Tong, Shiwei Tang, and Dongqing Yang. A fp-tree-based
method for inverse frequent set mining. In BNCOD, pages 152–163, 2006.

[GZ01] Sergio Greco and Carlo Zaniolo. Greedy algorithms in datalog. TPLP, 1(4):381–
407, 2001.

[Han05] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-
lishers Inc., 2005.

[HCXY07] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining:
current status and future directions. Data Min. Knowl. Discov., 15(1):55–86,
2007.

[Hel10] Joseph M. Hellerstein. Datalog redux: experience and conjecture. In PODS,
pages 1–2, 2010.

[HGL11] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and emerg-
ing applications: an interactive tutorial. In SIGMOD Conference, pages 1213–
1216, 2011.

[Hir10] Jorge E. Hirsch. An index to quantify an individual’s scientific research out-
put that takes into account the effect of multiple coauthorship. Scientometrics,
85(3):741–754, 2010.

[HK06] J. Han and M. Kamber. Data mining: Concepts and techniques. 2006.
[JA05] Roberto J. Bayardo Jr. and Rakesh Agrawal. Data privacy through optimal k-

anonymization. In ICDE, pages 217–228, 2005.
[Jea05] Daniel R. Jeske and et al. Generation of synthetic data sets for evaluating the

accuracy of knowledge discovery systems. In KDD, pages 756–762, 2005.
[JX08] Pawel Jurczyk and Li Xiong. Privacy-preserving data publishing for horizontally

partitioned databases. In Proceeding of the 17th ACM conference on Information
and knowledge management, CIKM ’08, pages 1321–1322, 2008.

[JY05] Matthew O. Jackson and Leeat Yariv. Diffusion on social networks. Economie
Publique, 2005.

[KDD] KDDCUP2000. http://www.ecn.purdue.edu/kddcup.
[KP88] Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fix-

point? In PODS, pages 231–239, 1988.
[LCG+09] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. Declarative networking. Commun. ACM, 52(11):87–95, 2009.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages
233–246, 2002.

[LKT08] Li Liu, Murat Kantarcioglu, and Bhavani M. Thuraisingham. The applicability of
the perturbation based privacy preserving data mining for real-world data. Data
Knowl. Eng., 65(1):5–21, 2008.

[LL03] Mark Levene and George Loizou. Why is the snowflake schema a good data
warehouse design? Information Systems, 28:225–240, 2003.

[LLM98] Georg Lausen, Bertram Ludäscher, and Wolfgang May. On active deduc-
tive databases: The statelog approach. In Transactions and Change in Logic
Databases, pages 69–106, 1998.

[Llo87] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.

112 References

[Mie03] T. Mielikainen. On inverse frequent set mining. In IEEE Computer Society, ed-
itor, Proc. of 2nd Workshop on Privacy Preserving Data Mining (PPDM), pages
18–23, 2003.

[MPR90] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic
of duplicates and aggregates. In VLDB, pages 264–277, 1990.

[NLO06] J. Natwichai, X. Li, and M. Orlowska. A reconstructionbased algorithm for clas-
sification rules hiding. In Seventeenth Australasian Database Conf. (ADC’06),
pages 49–58, 2006.

[OZ03] S. Oliveira and . Zaiane. Protecting sensitive knowledge by data sanization. In
Proceedings of the 3rd IEEE Intenational Conference on Data Mining, pages
211–218, Melbourne, Florida, Nov 2003.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, Read-
ing, Massachusetts, 1994.

[PY86] Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct represen-
tations of graphs. Information and Control, 71(3):181–185, 1986.

[Ram98] Raghu Ramakrishnan. Database Management Systems. WCB/McGraw-Hill,
1998.

[RH02] S. Rizvi and J. Haritsa. Maintaning data privacy in association rule mining. In
Proceedings of the 28th International Conference on Very Large Data Bases,
pages 682–693, August 2002.

[RMZ03] Ganesh Ramesh, William Maniatty, and Mohammed Javeed Zaki. Feasible item-
set distributions in data mining: theory and application. In PODS, pages 284–
295, 2003.

[Ros06] Riccardo Rosati. On the decidability and finite controllability of query processing
in databases with incomplete information. In PODS, pages 356–365, 2006.

[RS97] Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive
database. J. Comput. Syst. Sci., 54(1):79–97, 1997.

[SSS10] Paulo Shakarian, V. S. Subrahmanian, and Maria Luisa Sapino. Using general-
ized annotated programs to solve social network optimization problems. In ICLP
(Technical Communications), pages 182–191, 2010.

[SVC01] Y. Saygin, V. Verykios, and C. Clifton. Using unknowns to prevent discovery of
association rules. Sigmod Record, 30(4):45–54, 2001.

[TF09] Ajay Kumar Tanwani and Muddassar Farooq. Performance evaluation of evo-
lutionary algorithms in classification of biomedical datasets. In GECCO ’09:
Proceedings of the 11th Annual Conference Companion on Genetic and Evolu-
tionary Computation Conference, pages 2617–2624, 2009.

[UW97] Jeffrey D. Ullman and Jennifer Widom. A First Course in Database Systems.
Prentice-Hall, 1997.

[Var82] Moshe Y. Vardi. The complexity of relational query languages (extended ab-
stract). In STOC, pages 137–146, 1982.

[WHH00] Ke Wang, Yu He, and Jiawei Han. Mining frequent itemsets using support con-
straints. In VLDB, pages 43–52, 2000.

[WW05] Yongge Wang and Xintao Wu. Approximate inverse frequent itemset mining:
Privacy, complexity, and approximation. In ICDM, pages 482–489, 2005.

[WWWL05] Xintao Wu, Ying Wu, Yongge Wang, and Yingjiu Li. Privacy aware market
basket data set generation: A feasible approach for inverse frequent set mining.
In Proc. 5th SIAM International Conference on Data Mining, 2005.

[Zan11] Carlo Zaniolo. The logic of query languages for data streams. In Logic and
Databases 2011. EDBT 2011 Workshops, pages 1–2, 2011.

References 113

[ZAO93] Carlo Zaniolo, Natraj Arni, and KayLiang Ong. Negation and aggregates in
recursive rules: the ldl++ approach. In DOOD, pages 204–221, 1993.

[ZCF+] Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T. Snodgrass, V. S. Sub-
rahmanian, and Roberto Zicari. Advanced Database Systems. Morgan Kauf-
mann.

[ZKM01] Zijian Zheng, Ron Kohavi, and Llew Mason. Real world performance of associ-
ation rule algorithms. In KDD, pages 401–406, 2001.

[ZO97] Xubo Zhang and Z. Meral Ozsoyoglu. Implication and referential constraints:
A new formal reasoning. IEEE Trans. on Knowledge and Data Engineering,
9:894–910, 1997.

	Digitalizzato a 29-11-2011 19-37 (2)
	Serra_PhD_Thesis

