

UNIVERSITÀ DELLA CALABRIA

Facoltà di Ingegneria

Dipartimento di Elettronica, Informatica e Sistemistica

Dottorato di Ricerca in Ingegneria dei Sistemi ed Informatica

XXIV ciclo

Settore Scientifico Disciplinare ING/INF-05

Tesi di Dottorato

ON THE PROBLEM OF CHECKING

CHASE TERMINATION

Coordinatore
Prof. Luigi Palopoli

Supervisore
Prof. Sergio Greco

Francesca Spezzano

Anno Accademico 2010/2011

Preface

Several database areas such as data exchange and data integration share the
problem of fixing database instance violations with respect to a set of in-
tegrity constraints. The chase algorithm solves such violations by inserting
tuples and setting the value of nulls. Unfortunately, the chase algorithm may
not terminate and the problem of deciding whether the chase process termi-
nates is undecidable. In recent years, the problem know as chase termination
has been investigated. It consists in the detection of sufficient conditions,
derived from the structural analysis of dependencies, guaranteeing that the
chase fixpoint terminates independently from the database instance. Several
criteria introducing sufficient conditions for chase termination have been re-
cently proposed (weak acyclicity, stratification, super-weak acyclicity, induc-
tive restriction, etc.). Most of these criteria concentrate on tuple generating
dependencies (TGDs).

The aim of this thesis is to present more general criteria and techniques
for chase termination.

We first present extensions of the well-known stratification criterion and in-
troduce a new criterion, called local stratification (LS), which generalizes both
super-weak acyclicity and stratification-based criteria (including the class of
constraints which are inductively restricted).

Next the thesis presents a rewriting algorithm transforming the original
set of constraints Σ into an ‘equivalent’ set Σα and verifying the structural
properties for chase termination on Σα. The rewriting of constraints allows
to recognize larger classes of constraints for which chase termination is guar-
anteed. In particular, we show that if Σ satisfies chase termination condition
C, then the rewritten set Σα satisfies C as well, but the vice versa is not true,
that is there are significant classes of constraints for which Σα satisfies C and
Σ does not.

A more general rewriting algorithm producing as output an equivalent set
of dependencies and a boolean value stating whether a sort of cyclicity has
been detected is also proposed. The new rewriting technique and the checking
of acyclicity allow us to introduce the class of acyclic constraints (AC), which

VI Preface

generalizes LS and guarantees that all chase sequences are finite with a length
polynomial in the size of the input database.

Finally, a system prototype that allows users to design data dependencies
and apply different criteria and algorithms for checking chase termination is
presented. The tool is also able to execute the chase procedure in order to
repair the possible incomplete database provided by the user, and to execute
(restricted) SQL queries over the repaired database.

Acknowledgments

My full gratitude goes to my supervisor Prof. Sergio Greco for his excellent
and always present guidance during my doctoral course and all opportunities
offered to me.

A special thank to my colleague and friend Irina Trubitsyna for her help
and good suggestions.

I am also grateful to Prof. Phokion Kolaitis for giving me the opportunity
to spend a year abroad at UCSC, and have interesting research meetings with
him.

Last but not the least, I would like to thank for their support my Mum
and Dad, my sister Annachiara and my love Edoardo.

Rende,

November 2011 Francesca Spezzano

Contents

1 Introduction . 1

2 Theoretical Background . 9
2.1 Relational Model . 9
2.2 Relational Dependencies . 10
2.3 Homomorphisms and Universal Solutions 12

3 The Chase Algorithm . 15
3.1 Standard Chase Algorithm . 15
3.2 Other Kinds of Chase . 16

3.2.1 Oblivious Chase . 16
3.2.2 Core Chase . 18

3.3 Chase Termination Conditions . 18
3.4 Relationship among Chase Termination Conditions 25

4 Applications . 29
4.1 Data Dependencies Implication Problem . 29
4.2 Database Design . 30
4.3 Query Containment under Constraints . 31
4.4 Query Optimization . 32
4.5 Query Answering on Incomplete Data . 33
4.6 Data Integration . 35
4.7 Data Exchange . 37

5 New Chase Termination Conditions . 39
5.1 WA-Stratification . 39
5.2 Local Stratification . 43

6 Checking Chase Termination by Constraints Rewriting 47
6.1 Constraints Rewriting . 47
6.2 Cyclicity Detection during Rewriting Process 52

VIII Contents

7 The ChaseTEQ System Prototype . 61
7.1 System Description . 61
7.2 Implementation . 64
7.3 Application Scenario . 66

8 Conclusions . 69

References . 71

1

Introduction

The Chase is a fixpoint algorithm enforcing satisfaction of data depen-
dencies in databases. It has been proposed more than thirty years ago
[ABU79, MMS79] and has received an increasing attention in recent years
in both database theory and practical applications. Indeed, the availability of
data coming from different sources easily results in inconsistent or incomplete
data (i.e. data not satisfying data dependencies) and, therefore, techniques for
fixing inconsistencies are crucial [Ber06, Cho07]. The chase algorithm is used,
directly or indirectly, on an everyday basis by people who design databases,
and it is used in commercial systems to reason about the consistency and
correctness of a data design. New applications of the chase in meta-data man-
agement, ontological reasoning, data exchange and data cleaning have been
proposed as well [BKL11, CGP10, DLLR07].

The execution of the chase algorithm involves the insertion of tuples with
possible null values and the changing of nulls which can be made equal to
constants or other null values. However, the insertion of tuples with new (null)
values could result in a non-terminating execution. The following example
shows a case where a given database does not satisfy a set of data dependencies
(also called constraints) and the application of the chase algorithm produces
a new consistent database by adding tuples with nulls.

Example 1.1. Consider the set of constraints Σ1.1:

∀x N(x)→ ∃ y E(x, y)
∀x∀y S(y) ∧E(x, y)→ N(y)

where the relations N and S store normal nodes and special nodes, respec-
tively, whereas E stores edges. The second constraint states that if there exists
an edge from x to y and y is a special node, then y must also be a (normal)
node. The first constraint states that every normal node must have an outgo-
ing edge.

Assume that the database contains the tuples S(a), E(b, a). Since the se-
cond constraint is not satisfied, the tuple N(a) is inserted. This update ope-

2 1 Introduction

ration fires the first constraint to insert the tuple E(a, n1), where n1 is a
new labeled null. At this point the chase terminates since the database is
consistent, i.e. the second constraint cannot be fired because n1 is not in
the relation S. The output database is consistent as both dependencies are
satisfied. 2

However, it is important to observe that if we delete the atom S(y) from
the second constraint, the chase will never terminate as an infinite number of
tuples will be added to the database.

The problem recently investigated, known as chase termination, consists
in the identification of sufficient conditions, based on structural properties of
the input set of constraints, guaranteeing that the chase fixpoint terminates
independently from the database instance.

Several criteria guaranteeing chase termination for all chase sequences and
for all database instances have been recently defined.

Fagin et al. [FKMP05] introduced the class of weakly acyclic sets of con-
straints (WA). Informally, weak acyclicity checks that the set of constraints
does not present cyclic conditions for which a new null value forces (directly or
indirectly) the introduction of another null in the same position. In the previ-
ous example we have that the presence of a value in N1, i.e. in the first position
of the predicate N , forces the introduction of a new null value in position E2,
i.e. in the second position of the predicate E, and it is denoted as N1 →∗ E2;
this value is then introduced in position N1 (denoted as E2 → N1) and next a
new null value is introduced in E2. The cycle going through the special edge
N1 →∗ E2 means that an infinite number of nulls could be introduced.

The class of weakly acyclic sets of constraints has been generalized in
several works [DNR08, Mar09, MSL09a].

Deutsch et al. proposed an extension of weak acyclicity called stratification
(Str) [DNR08]. The idea behind stratification is to decompose, by construct-
ing a chase graph, the set of constraints into independent subsets, where each
subset consists of constraints that may fire each other, and to check each com-
ponent separately for weak acyclicity. However, in [MSL09b] it has been shown
that stratification is not able to check termination of all chase sequences , but
it is sufficient to state that if a set of constraints is stratified, then there is
at least one terminating chase sequence which can be determined from the
chase graph. Thus, a variant of stratification, called c-stratification (CStr)
[MSL09b], has been proposed to guarantee the termination of all chase se-
quences.

Meier et al. proposed a different extension of weak acyclicity called safety
(SC) [MSL09a]. The improvement is based on the fact that only the effective
propagation of null values should be considered in the graph. Thus, a variable
can propagate nulls only if all its occurrences appear in ‘affected’ positions, i.e.
positions which may actually contain null values [CGK08]. The Example 1.1
presents a set of constraints which is both safe and stratified, but not weakly
acyclic. In fact, according to the safety condition, we have that E2 does not

1 Introduction 3

propagate null values to N1 as the variable y also appears in the relation S
which does not contain null values. So, position N1 cannot contain nulls, i.e.
it is not affected. From the motivation that S cannot contain null values, we
have that firing r1 cannot cause r2 to fire, and then Σ1.1 is also stratified.

Stratification and safety are not comparable (i.e. there are sets of con-
straints which only satisfy one of the two criteria), but are both generalized
by the inductive restriction (IR) criterium [MSL09a, MSL09b].

A different extension of weak acyclicity, not comparable with inductive
restriction, has been introduced in [Mar09] under the name of super-weak
acyclicity (SwA). Basically, SwA takes into account the fact that variables
may appear more than once in body atoms of constraints and, therefore, when
different nulls are inserted in positions associated with the same variable,
constraints are not fired.

The idea underlying stratification, also used in its variation and exten-
sions (CStr and IR) and in the super-weak acyclicity, is to consider, in the
propagation of nulls, how constraints may fire each other. However, there are
simple cases where current criteria are not able to understand that all chase
sequences are finite.

Example 1.2. Consider the following set of constraints Σ1.2 consisting of the
TGD

∀x∀y E(x, y) ∧E(y, x)→ ∃z E(y, z) ∧ E(z, x)

We can distinguish two cases. If we suppose to have a database instance
D1 = {E(a, b), E(b, a)} we have that the TGD is not satisfied, but the
constraint will be applied only once by the chase as the resulting database
D′

1 = {E(a, b), E(b, a), E(b, η1), E(η1, a)} is consistent. Otherwise, if we sup-
pose to have a database instance D2 = {E(a, a)}, it is already consistent, and
no chase step will be applied. It is easy to see that the chase is always termi-
nating for all database instances, but none of the existing criteria guaranteeing
the termination of all chase sequences is able to recognize it as terminating. 2

In order to cope with this problem, we propose extensions of the well-
known stratification criterion and then introduce a new criterion, called
local stratification (LS), which generalizes both super-weak acyclicity and
stratification-based criteria (including the class of constraints which are in-
ductively restricted) and guarantees the termination of all chase sequences,
for all database instances, in polynomial time.

Nevertheless, despite the previously mentioned results, there are still im-
portant classes of terminating data dependencies which are not identified by
none of the previous mentioned criteria.

Example 1.3. Consider the set of constraints Σ1.3:

∀x N(x)→ ∃y E(x, y)
∀x∀y S(x) ∧ E(x, y)→ N(y)

4 1 Introduction

that is a variant of Example 1.1 where the second constraint states that if
there exists an edge from x to y and x is a special node, then y must be a
(normal) node. Assume that the database contains the tuples S(a), N(a). The
first step of the chase algorithm will add the tuple E(a, n1), where n1 is a new
labeled null, to the database. At this point, since the second constraints is
no more satisfied, the second constraint fires to insert the tuple N(n1) which
in turn fires the first constraint so that the tuple E(n1, n2) is added to the
database. At this point the chase terminates (since the the tuple S(n1) is not
in the database), and both dependencies are satisfied. 2

Thus, we present an orthogonal technique which enlarges the classes of
dependencies recognized by the above criteria. This technique rewrites the
input set of constraints Σ into an equivalent, but more informative, set Σα

and checks classical criteria satisfaction on Σα. The rewriting of constraints
allows to recognize larger classes of constraints for which chase termination
is guaranteed. In particular, we show that if Σ satisfies chase termination
conditions C, then the rewritten set Σα satisfies C as well, but the vice versa
is not true, that is there are significant classes of constraints for which Σα

satisfies C and Σ does not.
In the presence of constraints that are TGDs and EGDs, the previous

described criteria and technique are quite weak, as it may happen that a
solution can be found even if the set of TGDs are non-terminating.

Example 1.4. Consider the set of constraints Σ1.4, stating that each node has
an outgoing edge (r1), each edge ends in a node (r2) and the resulting graph
must contain at most one node (EGD r3).

r1 : ∀x N(x)→ ∃y E(x, y)
r2 : ∀x∀y E(x, y)→ N(y)
r3 : ∀x∀y N(x) ∧N(y)→ x = y

The alternating application of constraints r1 and r2 (r1, r2, r1, r2, . . .) could
be not terminating, whereas the alternating application of constraints r1, r2
and r3 (r1, r2, r3, · · ·) always terminates. Indeed, assuming that the database
D contains only the tuple N(a), a solution for D and Σ is obtained by intro-
ducing the tuple E(a, a). This solution is obtained as follows: by applying the
first constraint which is not satisfied, the tuple E(a, η1) is introduced. Then,
from the second constraint, the tuple N(η1) must also be inserted. At this
point the application of the third constraint updates the null value η1 to a. 2

Thus, the right selection of dependencies to be applied could inhibit the
firing of constraints which may cause the cyclic introduction of null values,
guaranteeing the presence of at least one terminating chase sequence.

Contributions

The main contributions of this thesis are the following:

1 Introduction 5

• We first analyze the relationship among current criteria and show that
super-weak acyclicity is not comparable with (c-)stratification, but it ex-
tends safety.

• We analyze the stratification conditions and propose a new stratification
criterion, called WA-stratification, which builds a different chase graph
Γ (Σ), called firing graph, and overcomes some limitations of both stratifi-
cation and c-stratification; since WA-stratification checks weak acyclicity
over strong components of Γ (Σ), two further, more powerful, conditions
checking safety and super-weak acyclicity over Γ (Σ) are defined. These
criteria are called SC-stratification and SwA-stratification.

• SwA-stratification, the most general of the above new criteria, is not
comparable with inductive restriction. Thus, we propose a further cri-
terion, called Local stratification (LS) which uses more refined conditions
of SwA during the construction of the firing graph. LS generalizes SwA-
stratification and is more powerful than IR.

• As a minor result, since our criteria are based on the construction of a fir-
ing graph, an algorithm solving the firing problem (i.e. checking whether
a constraint r1 could fire a constraint r2) is presented. It is shown that,
although its complexity is exponential in the number of atoms in the body
of r2, because it depends on the number of atoms in the head of r1 uni-
fying with each single atom in the body of r2, for some standard classes
of constraints (e.g. multivalued dependencies, inclusion dependencies) it
performs very well (recall that the firing problem for the (c-)stratification
criterion is in NP [DNR08, MSL09a]).

• Next, we present a technique for rewriting a set of constraints into an
‘equivalent’ set by adorning predicate symbols and show that the checking
of termination criteria over the target set allows to detect larger classes of
source constraints for which all chase sequences terminate;

• We extend the rewriting technique to capture even larger classes of con-
straints for which the chase terminates by analyzing affected positions
(positions which may hold nulls); this is carried out by adorning predi-
cates and using different adorning symbols in cases where we can statically
establish that two affected positions cannot contain the same null value;

• The rewriting technique permits us to introduce a new class of terminating
constraints consisting of a set of dependencies which are detected as acyclic
by our rewriting algorithm. This class, called Acyclic (AC) generalizes LS
and, considering static criteria for checking chase termination, is the most
general criterion so far proposed 1.

• Checking termination criteria and rewriting techniques have been imple-
mented into a system prototype downloadable from the web. This system
also allows to execute the chase fixpoint to repair and querying a given
database on the base of the input dependencies.

1 In this thesis we will use calligraphic style C in order to denote the terminating
class of constraints recognized by criterion C.

6 1 Introduction

Organization

This thesis is organized as follows.
Chapter 2 introduces the basic notions that we shall use throughout the

thesis.
Chapter 3 presents the chase algorithm and its variants and gives a survey

on the well-known chase termination criteria proposed in the literature. In
particular, weak acyclicity, safety, (c-)stratification, super-weak acyclicity, safe
restriction and inductive restriction are explained.

Chapter 4 discusses several problems and applications using the chase al-
gorithm, namely implication of data dependencies, database design, query
optimization, query answering and containment under constraints, data inte-
gration and data exchange.

Chapter 5 presents some improvements for termination conditions dis-
cussed in Chapter 3 and then describes the class of locally stratified depen-
dencies, that generalizes previously known classes, for which termination of
the chase algorithm is guaranteed.

Chapter 6 presents a technique for checking chase termination based on
rewriting the original set of TGDs into an ‘equivalent’ set Σα, whose struc-
tural properties allow to detect larger classes of source constraints for which
all chase sequences terminate. Section 6.2 extends the rewriting technique by
analyzing affected positions (positions which may hold nulls) and by intro-
ducing cyclicity detection in the rewriting process. This approach allows us
to further enlarge the class of terminating dependencies and obtain the most
general criterion so far proposed.

Chapter 7 briefly presents ChaseTEQ, a system prototype available on
the web which implements some of the criteria and techniques for checking
chase termination presented in this thesis, and allow the user to repair and
querying the possible incomplete database.

Finally, in Chapter 8 conclusions are drawn.

Summary of Publications

Some of the results presented in this thesis appeared in the conference papers
[GS10], presented at the 36th International Conference on Very Large Data
Bases (VLDB 2010) and [GST11] presented at the 37th International Confer-
ence on Very Large Data Bases (VLDB 2011). The system prototype has been
presented in [DST11] at the 19th Italian Symposium on Advanced Database
Systems (SEBD 2011) and in [DGST11] at the 5th International Conference
on Scalable Uncertainty Management (SUM 2011).

2

Theoretical Background

In this chapter we define the basic notions that we shall use throughout the
thesis.

2.1 Relational Model

We introduce the following disjunct sets of symbols: (i) an infinite set Consts
of constants, (ii) an infinite set Nulls of labeled nulls and (iii) an infinite set
V ars of variables.

A relational schema R is a pair ⟨R, Σ⟩ where:

• R is a set of relational predicates R, each with its associated arity ar(R)
that indicates the number of its attributes X, and

• Σ is a set of (integrity) constraints expressed on the relations in R, i.e.
assertion on the relations inR that are intended to be satisfied by database
instances.

When no integrity constraints are defined in R, we simply denote the
relational schema with R.

An instance of a relational predicate R of arity n is a set of ground atoms
in the form R(c1, . . . , cn), where ci ∈ Consts ∪ Nulls. Such (ground) atoms
are also called tuples or facts. A database instance, or simply an instance
or a database, for a relational schema R = ⟨R, Σ⟩ is a set of instances for
the relations in R. A database instance for a schema R is said to be con-
sistent with R if it satisfies all constraints expressed on R. We denote by
D a database instance constructed on Consts and by J,K the database in-
stances constructed on Consts∪Nulls. Given an instance K, Nulls(K) (resp.
Consts(K)) denotes the set of labeled nulls (resp. constants) occurring in K.
An atomic formula (or atom) is of the form R(t1, . . . , tn) where R is a rela-
tional predicate, t1, . . . , tn are terms belonging to the domain Consts∪ V ars
and n = ar(R).

8 2 Theoretical Background

Let K be a database over a relational schema R and S ⊆ R, then
K[S] denotes the subset of K consisting of instances whose predicates are
in S (clearly K = K[R]). Analogously, if we have a collection of databases
KC = {K1, . . . ,Kn} where each Ki is defined over a schema Ri and let
S ⊆ ∩i∈[1...n]Ri, then KC [S] = {K1[S], . . . ,Kn[S]}.

A position Ri is a pair (R, i), where R is a relation predicate belonging to
the schema R and i denotes the i-wise attribute of R.

Given a relation schema R(X,Y) with sets of attributes X and Y , we
denote by R[X] the projection of the relation R onto attributes X.

An n-ary conjunctive query (CQ) over a schema R is a formula of the form

Q(x)← ∃y Φ(x,y)

where Q is a predicate not appearing in R, and Φ(x,y) is a conjunction of
atoms constructed with predicates from R. The arity of a query is the arity
of its head predicate Q: if Q has arity 0, then the query is called Boolean.
The answers to a query Q evaluated on the database instance K is denoted
as Q(K).

2.2 Relational Dependencies

The set of integrity constraints that we consider are tuple generating depen-
dencies (TGDs) and equality generating dependencies (EGDs).

Given a relational schema R, a tuple generating dependency over R is a
formula of the form

r : ∀x ∀z ϕ
R
(x, z)→ ∃y ψ

R
(x,y) (2.1)

where ϕ
R
(x, z) and ψ

R
(x,y) are conjunctions of atomic formulas over R;

ϕ
R
(x, z) is called the body of r, denoted as Body(r), while ψ

R
(x,y) is called

the head of r, denoted as Head(r).
An equality generating dependency over R is a formula of the form

∀x ϕ
R
(x)→ (x1 = x2) (2.2)

where x1 and x2 are among the variables in x.
Tuple and equality generating dependencies will be also called embedded

dependencies or simply (data) dependencies. A constraint is said to be full if
all variables are universally quantified.

In the following we will omit the subscript R from formulas, whenever
the database schema is understood and the universal quantification, since we
assume that variables appearing in the body are universally quantified and
variables appearing only in the head are existentially quantified. In some cases
we also assume that the head and body conjunctions are sets of atoms.

2.2 Relational Dependencies 9

Special classes of data dependencies

A functional dependency, or FD [Cod72] is a constraint between two sets of
attributes in a relation from a database. Given a relation schema R(X,Y, Z),
a set of attributes X in R is said to functionally determine another attribute
Y , also in R, (written X → Y) if, and only if, each X value is associated with
precisely one Y value. We call X the determinant set and Y the dependent
attribute. Thus, given a tuple and the values of the attributes in X, one can
determine the corresponding value of the Y attribute. In simple words, if X
value is known, Y value is certainly known. For the purposes of simplicity,
given that X and Y are sets of attributes in R, X → Y denotes that X
functionally determines each of the members of Y (in this case Y is known as
the dependent set). A functional dependency FD: X → Y is called trivial if
Y is a subset of X.

A key dependency, or KD is a minimal set of attributes that functionally
determine all of the attributes in a relation.

A functional dependency X → Y over a relation schema R(X,Y, Z), where
Y is a single attribute, is a special case of EGD as it is a binary unirelational
EGD and can be expressed using the form (2.2) as

R(x, y, z), R(x, y′, z′)→ y = y′

Functional dependencies are certainly the most important and widely-
studied integrity constraints for relational databases.

Another important integrity constraint is the inclusion dependency, or ID
[Fag81]. As an example, an inclusion dependency can say that every MAN-
AGER entry of the R relation appears as an EMPLOYEE entry of the S
relation. More generally, an inclusion dependency can say that the projection
onto a given m columns of the R relation are a subset of the projection onto
a given m columns of the S relation. Hence, IDs are valuable for database de-
sign, since they permit us to selectively define what data must be duplicated
in what relations.

Consider two relation schemes Ri(X,Z) and Rj(Y,W) (not necessarily
distinct), if X is a set of k distinct attributes of Ri, and if Y is a set of k
attributes of Rj , then an inclusion dependency is a constraint of the form
Ri[X] ⊆ Rj [Y].

An inclusion dependency Ri[X] ⊆ Rj [Y] is a special case of TGDs, as it
can be expressed using the form (2.1) as

Ri(x, z)→ ∃w Rj(x,w)

A foreign key is a field in a relational table that matches a key of another
table. The foreign key can be used to cross-reference tables.

Constraints skolemization

Given a TGD r of the form (2.1) we denote with

10 2 Theoretical Background

sk(r) : ∀x∀zϕ(x, z)→ ψ(x, sk(y))

the skolemized version of r, where each existentially quantified variable
yi ∈ y is replaced by a skolem term fryi

(w) where fryi
in a skolem func-

tion and w denotes the set of universally quantified variables in r defin-
ing the scope of the variables y 1. In order to clearly identify universally
quantified variables denoting the scope of existentially quantified variables
we use parenthesis. For instances, in a TGD r of the form ∀x(∀zϕ(x, z) →
∃y1, ..., ynψ(x, y1, ..., yn)) variables in x denote the scope of existentially quan-
tified variables and, therefore, sk(r) (obtained after the rewriting of r in
prenex normal form, the skolemization of existentially quantified variables
and the re-rewriting of the constraint with the implication operator) is equal
to ∀x(∀zϕ(x, z) → ψ(x, fry1

(x), ..., fryn
(x))), whereas if r is of the form

∀x ∀z (ϕ(x, z) → ∃y1, ..., ynψ(x, y1, ..., yn)), the corresponding skolemized de-
pendency sk(r) is equal to ∀x ∀z (ϕ(x, z)→ ψ(x, fry1

(x, z), ..., fryn
(x, z))). For

full data dependency r (including EGDs), sk(r) = r. Since the resulting set
of skolemized dependencies sk(Σ) is satisfiable with respect to a database in-
stance if and only if the original set Σ is, constraints in sk(Σ) can be applied
to database instances and ground skolemized terms appearing in the derived
facts are mapped to database values (i.e. terms in Consts ∪Nulls).

2.3 Homomorphisms and Universal Solutions

Definition 2.1 (Homomorphism). LetK and J be two instances over rela-
tional schema R with values in Consts∪Nulls. A homomorphism h : K → J
is a mapping from Consts(K) ∪ Nulls(K) to Consts(J) ∪ Nulls(J) such
that: (1) h(c) = c, for every c ∈ Consts(K), and (2) for every fact Ri(t)
of K, we have that Ri(h(t)) is a fact of J (where, if t = (a1, ..., as), then
h(t) = (h(a1), ..., h(as))). K is said to be homomorphically equivalent to J if
there is a homomorphism h :K→J and a homomorphism h′: J → K. 2

Similar to homomorphisms between instances, a homomorphism h from a
conjunctive formula ϕ(x) to an instance J is a mapping from the variables x
to Consts(J) ∪ Nulls(J) such that for every atom R(x1, . . . , xn) of ϕ(x)
the fact R(h(x1), . . . , h(xn)) is in J .

A homomorphism h : K → J such that J ⊆ K and h(x) = x for each x in
J is called retraction. A retraction is proper if it is not surjective. An instance
is a core if it has no proper retractions. A core of an instance K, denoted as
core(K), is a retract of K which is a core. Cores of an instance K are unique
up to isomorphism.

For any database instance D and set of constraints Σ over a database
schema R, a solution for (D,Σ) is an instance J such that D ⊆ J and J |= Σ

1 If the set of variables w is empty, then the skolem function of arity 0 results in a
skolem constant.

2.3 Homomorphisms and Universal Solutions 11

(i.e. J satisfies all constraints in Σ). A universal solution J is a solution such
that for every solution J ′ there exists a homomorphism h : J → J ′. The set of
solutions for (D,Σ) will be denoted by Sol(D,Σ), whereas the set of universal
solutions for (D,Σ) will be denoted by USol(D,Σ).

All universal solutions have the same core (up to isomorphism) which is
the smallest universal solution. The complexity and the efficient computa-
tion of the core of a universal solution has been studied in [FKP05, GN08].
Methods for directly computing the core by SQL queries in a data exchange
framework where schema mappings are specified by source-to-target TGDs
has been presented in [tCCKT09, MPR09].

3

The Chase Algorithm

If a data dependencies is not satisfied by a database instance, it is possible
to repair the database instance by extending it with new atoms, or by re-
naming nulls values. The procedure that enforces the validity of a set of data
dependencies is called the chase.

3.1 Standard Chase Algorithm

Definition 3.1 (Chase step [FKMP05]). Let K be a database instance.

1. Let r be a TGD ϕ(x, z) → ∃yψ(x,y). Let h be a homomorphism from
ϕ(x, z) to K such that there is no extension of h to a homomorphism h′

from ϕ(x, z) ∧ ψ(x,y) to K . We say that r can be applied to K with
homomorphism h. Let K ′ be the union of K with the set of facts obtained
by: (a) extending h to h′ such that each variable in y is assigned a fresh
labeled null, followed by (b) taking the image of the atoms of ψ under h′.

We say that the result of applying r to K with h is K ′, and write K →r,hK ′.
2. Let r be an EGD ϕ(x) → x1 = x2. Let h be a homomorphism from ϕ(x)

to K such that h(x1) ̸= h(x2). We say that r can be applied to K with
homomorphism h. More specifically, we distinguish two cases.
(a) If both h(x1) and h(x2) are in Consts the result of applying r to K

with h is “failure”, and K →r,h ⊥.
(b) Otherwise, let K ′ be K where we identify h(x1) and h(x2) as follows:

if one is a constant, then the labeled null is replaced everywhere by the
constant; if both are labeled nulls, then one is replaced everywhere by
the other. We say that the result of applying r to K with h is K ′, and

write K →r,hK ′. 2

Definition 3.2 (Chase [FKMP05]). Let Σ be a set of TGDs and EGDs,
and let K be an instance.

14 3 The Chase Algorithm

• A chase sequence of K with Σ is a sequence (finite or infinite) of chase

steps Ki →
r,hi

Ki+1, with i = 0, 1, ..., K0 = K and r a dependency in Σ.

• A finite chase of K with Σ is a finite chase sequence Ki →
r,hi

Ki+1, 0 ≤
i < m, with the requirement that either (a) Km =⊥ or (b) there is no
dependency r of Σ and there is no homomorphism hm such that r can be
applied to Km with hm. We say that Km is the result of the finite chase.
We refer to case (a) as the case of a failing finite chase and we refer to
case (b) as the case of a successful finite chase. 2

The chase of K with respect to a set of dependencies Σ, denoted by
chase(D,Σ), is the instance obtained by applying all applicable chase steps
exhaustively to K.

Two very important properties of the chase algorithm have been individ-
uated.

The first one regards the fact that the chase algorithm produces a univer-
sal solution. More specifically, in [FKMP05] it has been shown that, for any
instance D and set of constraint Σ: (i) if J is the result of some successful
finite chase of (D,Σ), then J is a universal solution; (ii) if some failing finite
chase of (D,Σ) exists, then there is no solution.

The second one deals with the undecidability on the chase algorithm, since,
as seen in the Introduction, the are cases in which the chase is non-terminating.

Theorem 3.3. [DNR08] Consider an instance J and a set Σ of TGDs.

1. It is undecidable whether some chase sequence of J with Σ terminates;
2. It is undecidable whether all chase sequences of J with Σ terminate.

The undecidability holds even over a fixed schema, and even if J is an empty
instance. 2

Because of the undecidability of the chase termination problem, several
sufficient criteria have been defined to ensure the termination of the algorithm
(see Section 3.3). Moreover, in this thesis, new and more general conditions
and techniques guaranteeing chase termination will be proposed (see Chapter
5 and Chapter 6).

3.2 Other Kinds of Chase

3.2.1 Oblivious Chase

Generally, in the literature two different chase procedures are considered: stan-
dard and oblivious. Intuitively, a standard chase step applies only when there
exists a mapping from the body of a constraint to the database instance and
the head of the constraint is not satisfied, while an oblivious one always ap-
plies when there exists the mapping from the body to the instance, even if
the constraint is satisfied. In [PS11] it has been shown that the problem of

3.2 Other Kinds of Chase 15

checking if K |= r, where r is a TGD, is ΠP
2 -complete in the size of r.

Two different types of oblivious chase have been used in the literature: naive
[CGK08, MSL09a, tCCKT09] and skolem [Mar09].

Example 3.4. Consider the constraint

r : E(x, z)→ ∃y E(x, y)

and the database D = {E(a, b)}. Under the standard chase, the constraint
is satisfied and the chase terminates without any application of a chase step.
Under the oblivious skolem chase only a tuple E(a, n1) is added, whereas
under the oblivious naive chase an infinite number of tuples E(a, n1), E(a, n2),
E(a, n3), . . . is added. Consider now the set of TGDs

r1 : E(x, z)→ ∃y E(x, y)
r2 : E(x, z)→ E(z, x)

and the above database D. In this case, under standard chase only the tuple
E(b, a) is added to D, whereas under the oblivious skolem chase an infinite
number of tuples is added. 2

Definition 3.5 (TGD oblivious chase step). Let K be an instance, r a
TGD ϕ(x, z) → ∃yψ(x,y) and h a homomorphism from ϕ(x, z) to K. Then,
we say that r can be applied to K with homomorphism h. Let K ′ be the union
of K with the set of facts obtained by: (a) extending h to h′ such that each
variable in y is assigned a fresh labeled null, followed by (b) taking the image
of the atoms of ψ under h′. We say that the result of applying r to K with h

is K ′, and write K →∗,r,hK ′. 2

Since the oblivious chase analyzes only the body of a constraints, the
oblivious chase step for an EGD remains the same as in Definition 3.1 (with
the only difference that we add an * on the arrow that indicate the step, as
in the case of a TGD).

In [CGK08] an important property of the oblivious chase has been ex-
plicited, i.e. the fact that there always exists a homomorphism from the obliv-
ious chase to the standard chase. As a consequence, the oblivious chase also
produces a universal solution and can be used in lieu of the standard one.

A different kind of oblivious chase is the oblivious skolem chase proposed
in [Mar09]. Let Σ be a set of TGDs. Then, P(Σ) is the logic program obtained
from Σ by skolemizing each TGD of the form (2.1) r ∈ Σ, i.e. by replacing
each existentially quantified variable yi ∈ y in r with a skolem function fryi

(x).
The result of a oblivious skolem chase sequence of an instance D w.r.t. a set
of constraints Σ is given by the least fixed-point of D∪P(Σ). It worth noting
that this kind of chase introduces, instead of null symbols, skolem terms built
upon the constants presents in D and the function symbols present in P(Σ).
Moreover, it has been proved that if the oblivious skolem chase terminates, it
terminates in polynomial time in the size of D.

16 3 The Chase Algorithm

3.2.2 Core Chase

In [DNR08] it has been shown that, even if the result of a chase sequence is a
universal solution, the chase is not a complete algorithm for finding universal
solutions. In fact, we have that, whenever several alternative chase steps could
be applied, the chase picks one nondeterministically so that in some cases there
is not a unique canonical universal solution, whereas in other cases there is no
finite chase; thus, there are instances and sets of constraints for which certain
choices lead to terminating chase sequences, while others to non-termination
and, in some cases, we cannot produce a universal solution by the chase, as
all chase sequences are non-terminating, although a finite solution does exist.

In order to identify a universal solution whenever it exists, a variant of the
chase, called core chase, has been introduced [DNR08].

Definition 3.6 (Core chase step [DNR08]). Let Σ be a set of constraints
and let I, J,K be three database instances defined over a database schema
R. We say that I is derived from K through a parallel chase step and write
K →Σ I if i) K ̸|= Σ and ii) I =

∪
r∈Σ,K→r,hK′ K

′. Moreover, we say that J is

derived from K through a core chase step and write K →Σ↓ J if K →Σ I and
J = core(I). 2

The definition of core chase sequence derives from the chase sequence by
using a core chase step instead of a chase step. Observe that core chase se-
quences are determined up to isomorphism as well.

In addition, it has been shown that if D is a database instance and Σ is a
set of TGDs and EGDs, then there exists a universal solution for Σ and D if
and only if the core chase of D with Σ terminates and yields such a solution,
that is the core chase is complete for finding universal solutions.

3.3 Chase Termination Conditions

As said in the Introduction, several criteria identifying sufficient conditions for
chase termination have been defined in the recent literature: weak acyclicity,
safety, stratification, c-stratification, safe restriction, inductive restriction and
super-weak acyclicity.

Weak Acyclicity

The first and basic criterion concerning the identification of sufficient condi-
tions, determined by the structure of TGDs, guaranteeing chase termination,
is known as weak acyclicity (WA); it was given in [FKMP05, DT03] and in-
spired by [HY90]. The criterion is based on the structural properties of a graph
dep(Σ), called dependency graph, derived from the input set of TGDs Σ.

Let Σ be a set of TGDs over a database schema R, then pos(Σ) denotes
the set of positions Ri such that R denotes a relational predicate of R and
there is an R-atom appearing in Σ.

3.3 Chase Termination Conditions 17

Definition 3.7 (Weakly acyclic set of TGDs [FKMP05]). Let Σ be
a set of TGDs over a fixed schema. Construct a directed graph dep(Σ) =
(pos(Σ), E), called the dependency graph, whose nodes correspond to the po-
sitions in pos(Σ) and the set E of edges is obtained as follows: for every TGD
ϕ(x, z)→ ∃yψ(x,y) in Σ and for every x in x that occurs in ϕ in position Ri:

1. for every occurrence of x in ψ in position Sj, add an edge Ri → Sj (if it
does not already exist).

2. for every existentially quantified variable y and for every occurrence of y
in ψ in position Tk, add a special edge Ri →∗ Tk (if it does not already
exist).

Then, Σ is weakly acyclic if the corresponding dependency graph dep(Σ) has
no cycle going through a special edge. 2

Weak acyclicity criterion guarantees that all chase sequences terminate.
Clearly, the problem of checking whether a set of TGDs is weakly acyclic is
polynomial in the size of Σ. In [FKMP05] it has been shown that if Σ is
the union of a weakly acyclic set of TGDs with a set of EGDs, and D is a
database instance, then there exists a polynomial in the size of D that bounds
the length of every chase sequence of D with Σ.

Stratification

The idea behind stratification criterion (Str) is to decompose the set of con-
straints into independent subsets, where each subset consists of constraints
that may fire each other, and to check each component separately for weak
acyclicity.

Definition 3.8 (Precedence relation [DNR08]). Given a set of con-
straints Σ and two constraints r1, r2 ∈ Σ, we say that r1 ≺ r2 iff there exists a
relational database instance K and two homomorphisms h1 and h2 such that

i) K →r1,h1
J ,

ii) J ̸|= h2(r2) and
iii)K |= h2(r2). 2

Intuitively, r1 ≺ r2 means that firing r1 can cause the firing of r2.

Definition 3.9 (Stratified constraints [DNR08]). The chase graph G(Σ) =
(Σ,E) of a set of constraints Σ contains a directed edge (r1, r2) between two
constraints iff r1 ≺ r2. We say that Σ is stratified iff the constraints in every
cycle of G(Σ) are weakly acyclic. 2

Example 3.10. [DNR08] Consider the set Σ3.10 consisting of the constraint

r : E(x, y) ∧E(y, x)→ ∃z ∃w E(y, z) ∧ E(z, w) ∧ E(w, x)

stating that each node involved in a cycle of length 2 is also involved in a
cycle of length 4 and the two cycles share an edge. Since r ̸≺ r (i.e. r does not
fire itself), G(Σ3.10) is acyclic and, therefore, Σ3.10 is stratified. 2

18 3 The Chase Algorithm

Observe that the set Σ1.1 from Example 1.1 is also stratified since the
chase graph G(Σ1.1) contains the unique edge r2 → r1 and, consequently, is
acyclic. Indeed, r1 ̸≺ r2 since the new labeled null value introduced in the
second position of the predicate E cannot be present in the relation S.

In [DNR08] it has been shown that the problem of deciding whether a set of
constraints is stratified is in coNP and that stratification strictly generalizes
weak acyclicity criterion.

C-stratification

Stratification guarantees, as shown in [MSL09b], that, for every database D,
there is a chase sequence (but not all) which terminates in polynomial time
in the size of D. The following example shows such a case.

Example 3.11. Consider the following set of constraints Σ3.11:

r1 : N(x)→ ∃y E(x, y)
r2 : N(x)→ E(x, x)
r3 : E(x, y) ∧E(x, x)→ N(x)

Σ3.11 is stratified since r3 ≺ r1, r3 ≺ r2 ≺ r3(but r1 ̸≺ r3) and the set of
constraints {r2, r3} is weakly acyclic. Moreover, assuming that the database
only contains the tuple R(a), the chase firing repeatedly r1, r2 and r3 never
terminates (R(a), E(a, η1), E(a, a), R(η1), . . .), while the chase which never
fires r1 terminates successfully. 2

In order to cope with this problem, a variation of stratification, called c-
stratification criterion (CStr), has been proposed by [MSL09b]. Basically, c-
stratification defines a different chase graph and applies a constraint whenever
its body is satisfied (i.e. it uses the oblivious naive chase).

Definition 3.12 (C-Stratified constraints [MSL09b]). Given two con-
straints r1, r2 ∈ Σ, we say that r1 ≺c r2 iff there exists a relational database
instance K and two homomorphisms h1 and h2 such that:

i) K →∗,r1,h1
J ,

ii) J ̸|= h2(r2) and
iii)K |= h2(r2)

The c-chase graph Gc(Σ) = (Σ,E) of a set of constraints Σ contains a
directed edge (r1, r2) between two constraints iff r1 ≺c r2. We say that Σ is
c-stratified iff the constraints in every cycle of Gc(Σ) are weakly acyclic. 2

Clearly, the class of c-stratified constraints is strictly included in the set of
stratified ones. Considering the two previous examples we have that the set
of constraints Σ3.11 in Example 3.11 is stratified, but not c-stratified, whereas
the set of Constraints Σ3.10 of Example 3.10 is c-stratified.

The problem of checking whether a set of constraints is c-stratified is in
coNP(as well as stratification). As well as weak acyclicity, c-stratification
guarantees that for every database D there exists a polynomial in the size of
D that bounds the length of every chase sequence of D with Σ [MSL09b].

3.3 Chase Termination Conditions 19

Safety

A different extension of weak acyclicity, called safety criterion (SC), which
takes into account only affected positions has been proposed in [MSL09a].
An affected position denotes a position which could be associated with null
values, that is it can also take values from Nulls.

Definition 3.13 (Affected positions [CGK08]). Let Σ be a set TGDs.
The set of affected positions aff(Σ) of Σ is defined as follows. Let Ri be a
position occurring in the head of some TGD r ∈ Σ, then

• if an existentially quantified variable appears in Ri, then Ri ∈ aff(Σ);
• if the same universally quantified variable x appears both in position Ri

and only in affected positions in the body of r, then Ri ∈ aff(Σ). 2

Definition 3.14 (Safe set of TGDs [MSL09a]). Let Σ be a set of TGDs,
then prop(Σ) = (aff(Σ), E) denotes the propagation graph of Σ defined as
follows. For every TGD ϕ(x, z) → ∃yψ(x,y) and for every x in x occurring
in ϕ in position Ri then

• if x occurs only in affected positions in ϕ then for every occurrence of x
in ψ in position Sj there is an edge Ri → Sj in E;

• if x occurs only in affected positions in ϕ then, for every y in y and for
every occurrence of y in ψ in position Sj there is a special edge Ri →∗ Sj

in E.

A set of constraints Σ is said to be safe if the corresponding propagation graph
prop(Σ) has no cycles going through a special edge. 2

Consider again the set Σ1.1 from Example Σ1.1. It is safe since the unique
affected position is E2 and the propagation graph prop(Σ1.1) does not have
any edge. Remember that Σ1.1 is stratified but not weakly acyclic.

On the other hand, the stratified set Σ3.10 is not safe as all positions are
affected and the associated propagation graph contains cycles with special
edges. The following example presents a set of safe constraints which is not
stratified.

Example 3.15. Let Σ3.15 be the set of below constraints:

r1 : S(x), E(x, y), E(y, z)→ ∃w E(w, x)
r2 : E(x, y), E(y, z)→ S(z)

stating that each special node having an outgoing path of length 2 has an
incoming edge (r1) and that each path of length 2 ends in a special node (r2).
Since aff(Σ3.15) = {E1} the propagation graph does not contain any edge
and, therefore, Σ3.15 is safe. Observe that Σ3.15 is not stratified since r1 ≺ r2,
r2 ≺ r1 and the dependency graph of {r1, r2} contains cycles with special
edges. 2

20 3 The Chase Algorithm

Clearly, safety criterion strictly generalizes weak acyclicity criterion, is
not comparable with (c-)stratification (see examples 3.10 and 3.15), and the
problem of checking whether a set of TGDs is safe is polynomial in the size
of |Σ|. Moreover, for every Σ being the union of a safe set of TGDs with a
set of EGDs, and for every database instance D, there exists a polynomial in
the size of D that bounds the length of every chase sequence of D with Σ.

Safe Restriction

A more refined extension of c-stratification and safety criteria has been pro-
posed in [MSL09a, MSL09b] under the name of safe restriction (SR) criterion.
Basically, safe restriction refines stratification by considering constraints firing
and possible propagation of null values together.

In order to introduce this concept we need some further definitions. For
any set of positions P and a TGD r, aff(r, P) denotes the set of positions
π from the head of r such that i) for every universally quantified variable x
in π, x occurs in the body of r only in positions from P or ii) π contains an
existentially quantified variable.

For any r1, r2 ∈ Σ and P ⊆ pos(Σ), r1 ≺P r2 if 1) r1 ≺c r2 (i.e. there
exists a database instance K and two homomorphisms h1 and h2 such that

i) K →r1,h1
J , ii) J ̸|= h2(r2) and iii) K |= h2(r2)) and 2) there is null value

propagated from the body to the head of h2(r2) s.t. it occurs in K only in
positions from P .

Definition 3.16 (Safe restriction [MSL09a, MSL09b]). A 2-restriction
system is a pair (G′(Σ), P), where G′(Σ) = (Σ,E) is a directed graph and
P ⊆ pos(Σ) such that:

• for all (r1, r2) ∈ E: if r1 is TGD, then aff(r1, P) ∩ pos(Σ) ⊆ P , whereas
if r2 is TGD, then aff(r2, P) ∩ pos(Σ) ⊆ P , and

• r1 ≺P r2 ⇒ (r1, r2) ∈ E.

Σ is called safely restricted if and only if there is a restriction system
(G′(Σ), P) for Σ such that every strongly connected component in G′(Σ) is
safe. 2

A 2-restriction system is minimal if it is obtained from ((Σ, ∅), ∅) by a
repeated application of the constraints from bullets one and two (until all
constraints hold) s.t., in case of the first bullet, P is extended only by those
positions that are required to satisfy the condition. In [Mei10] it has been
shown that Σ is safely restricted if and only if every strongly connected com-
ponent in G′(Σ) is safe, where (G′(Σ), P) is the minimal 2-restriction system
for Σ.

Example 3.17. [MSL09a] Consider the below set of constraints Σ3.17:

3.3 Chase Termination Conditions 21

r1 : S(x) ∧ E(x, y)→ E(y, x)
r2 : S(x) ∧ E(x, y)→ ∃z E(y, z) ∧ E(z, x)

asserting that each special node with an outgoing edge has cycles of length
2 and 3, respectively. As position S1 is not affected the insertion of nulls in
position E1 does not contribute to introduce further tuples with null values.
Assuming P = {E1, E2} we have that r1 ̸≺P r1, r1 ̸≺P r2, r2 ≺P r1 and
r2 ̸≺P r2. Thus, G

′(Σ3.17) = ({r1, r2}, {(r2, r1)}) and, consequently, Σ3.17 is
safely restricted. 2

It is worth noting that Σ3.17 is neither safe (since the propagation graph
prop(Σ3.17) has a cycle E2 →∗ E2 nor c-stratified (since the chase graph
Gc(Σ3.17) has a cycle r1 ≺c r2 ≺c r1).

Inductive Restriction

Safely restriction has been extended into a criterion called inductive restriction
(IR), whose main idea is to decompose a given constraint set into smaller
subsets (in a more refined way than safe restriction). In particular, IR first
computes the system (G′(Σ), P) and partition Σ into Σ1, ..., Σn, where each
Σi is a set of constraints defining a strongly connected components in G′(Σ),
next, if n = 1 the safety criterion is applied to Σ, otherwise the IR criterion
is applied inductively to each Σi.

Example 3.18. Assume to add to Σ3.17 the constraint r3 : → ∃x∃y S(x) ∧
E(x, y). The new set of constraints, denoted as Σ3.18, is not safely restricted,
but is inductively restricted since by partitioningΣ3.18 into strongly connected
components we obtain the two components {r3} and {r1, r2} which are both
safely restricted. 2

The problem of checking whether a set of constraints is inductively re-
stricted is in coNP. As well as c-stratification and safety, inductive restriction
guarantees that for every database D there exists a polynomial in the size of
D that bounds the length of every chase sequence of D with Σ [MSL09b]. In
that work it has been also shown that CStr SR IR and SC SR.

Inductive restriction has been further extended by considering not only
the relationships among pairs of constraints, but general sequences of m con-
straints, with m ≥ 2 [MSL09a]. The use of sequences of m ≥ 2 constraints
allows a hierarchy of classes where each class is characterized by m and de-
noted by T [m], with T [2] = IR and T [m] (T [m+ 1].

Example 3.19. The set of constraints Σn
3.19 consisting of the TGD

S(x) ∧ E(x, y1, ..., yn)→ E(x, y1, ..., yn, z)

belongs to T [n+ 1]− T [n]. 2

22 3 The Chase Algorithm

In the following we do not further discuss the T -hierarchy as i) the com-
plexity of checking whether a set of constraints is in T [m] increases, with
respect to IR, with a factor |Σ|m; ii) we do not have any criterion to fix m,
and iii) the same extension can be also defined for other stratification-based
criteria such as the ones proposed in this thesis.

Super-weak Acyclicity

Super-weak acyclicity (SwA) [Mar09] builds a trigger graph Υ (Σ) = (Σ,E)
where edges define relations among constraints. An edge ri rj means that a
null value introduced by a constraint ri is propagated (directly or indirectly)
into the head of rj .

Let Σ be a set of TGDs and let sk(Σ) be the logic program obtained
by skolemizing Σ, i.e. by replacing each existentially quantified variable y
appearing in the head of a TGD r by the skolem function fry (x), where x is
the set of variables appearing both in the body and in the head of r. A place
is a pair (a, i) where a is an atom of sk(Σ) and 0 ≤ i ≤ ar(a). Given a TGD
r and an existential variable y in the head of r, Out(r, y) denotes the set of
places (called output places) in the head of sk(r) where a term of the form
fry (x) occurs. Let r be a TGD r and let x be a universal variable of r, In(r, x)
denotes the set of places (called input places) in the body of r where x occurs.

Example 3.20. Consider the below set of TGDs Σ3.20

r1 : N(x)→ ∃y∃z E(x, y, z)
r2 : E(x, y, y)→ N(y)

The logic program obtained by skolemizing Σ3.20 is:

P (Σ3.20) =

 r′1 : S(x)→ E(x, f
r
1

y (x), f
r
1

z (x))
p1 p2 p3 p4

r′2 : E(x, y, y)→ S(y)
p5 p6 p7 p8

and Out(r1, y)={p3}, Out(r1, z)={p4}, In(r2 , y)={p6, p7}. 2

Given a set of variables V , a substitution θ of V is a function mapping
each v ∈ V to a finite term θ(v) built upon constants and function symbols.
Two places (a, i) and (a′, i) are unifiable, denoted as (a, i) ∼ (a′, i), iff there
exist two substitutions θ and θ′ of (respectively) the variables a and a′ such
that θ(a) = θ′(a′). Given two sets of places Q and Q′ we write Q ⊑ Q′ iff for
all q ∈ Q there exists some q′ ∈ Q′ such that q ∼ q′.

For any set Q of places, Move(Σ,Q) denotes the smallest set of places Q′

such that Q ⊆ Q′, and for every constraint r = Br → Hr in sk(Σ) and every
variable x, if Πx(Br) ⊑ Q′ then Πx(Hr) ⊆ Q′, where Πx(Br) and Πx(Hr)
denote the sets of places in Br and Hr where x occurs.

3.4 Relationship among Chase Termination Conditions 23

Definition 3.21 (Trigger graph and Super-weak Acyclicity [Mar09]).
Given a set Σ of TGDs and two TGDs r, r′ ∈ Σ, we say that r triggers r′ in
Σ and we write r r′ iff there exists an existential variable y in the head of
r, and a universal variable x′ occurring both in the body and head of r′ such
that In(r′x′) ⊑ Move(Σ,Out(r, y)). A set of constraints Σ is super-weakly
acyclic iff the trigger graph Υ (Σ) = (Σ, {(r1, r2)|r1 r2}) is acyclic. 2

Example 3.20 (cont.) Since Move(Σ3.20, Out(r1, y)) = {p3}, Move(Σ3.20,
Out(r1, z)) = {p4} and In(r2, y)) = {p6, p7}, we have that In(r2, y) ̸⊑
Move(Σ3.20, Out(r1, y)) and In(r2, y) ̸⊑ Move(Σ3.20, Out(r1, z)). Conse-
quently, r2 is not triggered by r1 (as well as r1 ̸ r1) and, therefore, Σ3.20 is
super-weakly acyclic. 2

Observe that the set of constraints Σ3.20 is also c-stratified (the activation
of r1 cannot fire r2 since two different nulls are introduced in positions E2 and
E3), but it is not safe as all positions are affected and the propagation graph
contains cycles with special edges.

With respect to other criteria, SwA also takes into account the fact that
a variable may occur more than once in the same atom. SwA extends WA
and guarantees the termination of all chase sequences in polynomial time in
the size of the input database. Moreover, it has been proved in [Mar09] that
the problem of deciding whether a set of constraints is super-weakly acyclic
is in PTIME.

3.4 Relationship among Chase Termination Conditions

We now analyze more deeply the relationship among the criteria proposed in
the literature. The relationship among WA, Str, CStr, SC, SR and IR have
already been investigated in [DNR08] and [MSL09b]. In particular, it has been
shown that

• WA SC, WA CStr and CStr ∦ SC1, i.e. CStr and SC criteria both
generalize WA criterion, but they are not comparable,

• CStr SR, SC SR and SR IR, i.e. CStr and SC criteria are
generalized by SR criterion. Obviously CStr Str.

Let us start by an observation about the relation CStr SR by means of
an example.

Example 3.22. Consider the below set of TGDs Σ3.22 derived from Σ3.10 by
adding constraint r2:

r1 : E(x, y) ∧ E(y, x)→ ∃ z∃ w E(y, z) ∧ E(z, w) ∧E(w, x)
r2 : E(x, y)→ T (x, y)

1 The notation A ∦ B is a shorthand for A * B and A + B.

24 3 The Chase Algorithm

Σ3.22 is c-stratified since Gc(Σ3.10) is acyclic. On the other hand, since
r1 <∅ r2, the minimal 2-restriction system is (G′(Σ3.22), P), where P =
{E1, E2, T1, T2}, graph G′(Σ3.22) contains the unique edge {(r2, r1)} and its
strongly connected components are {r1} and {r2}. Since {r1} is not safe, Σ3.22

is not safely restricted. 2

The problem is that we should consider just nontrivial components (com-
ponents containing at least one edge, i.e. cyclic components), as acyclic ones
cannot induce infinite chase sequences. Although the formal definition of safe
restriction refers to components, probably the authors referred to cyclic com-
ponents. Therefore, from now on we assume that Σ is safely restricted if and
only if every nontrivial strongly connected component in G′(Σ) is safe, where
(G′(Σ), P) is the minimal 2-restriction system for Σ.

We now analyze the relationship between the above discussed classes and
SwA. Firstly, consider again the set of constraints Σ3.20 of Example 3.20. The
set Σ3.20 is super-weakly acyclic, but not safe, consequently SwA ̸⊆ SC, that is
SC criterion is not more general that SwA criterion. Therefore, the question
is: “does SC ⊆ SwA”? In order to present the following results we need to
introduce some notation.

For any place pj = (a, i), where a is an atom of the form A(x1, ...xn) oc-
curring in a constraint r and 1 ≤ i ≤ n, we denote by Π(pj) the corresponding
position Ai. Analogously, for a given set of places Q, Π(Q) = {Π(pj)|pj ∈ Q}
denotes the set of positions associated with the places in Q.

Lemma 3.23. Let Σ be a set of TGDs, then

1. For every existentially quantified variable y appearing in a constraint r ∈
Σ, Π(Move(Σ,Out(r, y))) ⊆ aff(Σ) holds;

2. For any two sets of places Q and Q′ occurring in Σ, Q ⊑ Q′ implies that
Π(Q) ⊆ Π(Q′). 2

Proof.

1. Let as denote by Q the set of positions in Move(Σ,Out(r, y)). We show
that in the computation of Q, at each step Π(Q) ⊆ aff(Σ).
(Base case): Initially Q = Π(Out(r, y)); since y is existentially quantified
we have that Q ⊆ aff(Σ).
(Inductive case): Assume to have a set of places Q such that Π(Q) ⊆
aff(Σ) and consider a constraint r = Br → Hr in Σ and a universally
quantified variable x appearing in both Br and Hr. If Πx(Br) ⊑ Q we
have thatΠ(Πx(Br)) ⊆ aff(Σ), i.e. all positions of Br in which x appears
are affected and, consequently, the positions of Hr in which x appears are
affected as well, i.e. Π(Πx(Hr)) ⊆ aff(Σ). Therefore, assuming that the
new value of Q is Q′ = Q ∪Πx(Hr), we have that Π(Q′) ⊆ aff(Σ).

2. Q ⊑ Q′ means that for all q ∈ Q there is a q′ ∈ Q′. such that q ∼ q′.
Moreover, since q ∼ q′ implies that Π({q}) = Π({q′}) we have that
Π(Q) ⊆ Π(Q′). 2

3.4 Relationship among Chase Termination Conditions 25

Fig. 3.1. Relationships among WA, SC, CStr, IR and SwA classes.

Theorem 3.24. SC SwA. 2

Proof. First of all observe that for any TGD r and for any existentially quan-
tified variable y in r, we have that for all Ri ∈ Π(Out(r, y)) and for all
Sj ∈ Π(Move(Σ,Out(r, y))) there is a path Ri → · · · → Sj in prop(Σ),
denoting that a (null) value could be propagated by means of universally
quantified variables.

Assume now that there is a TGD r′ (not necessarily distinct from r)
such that r′ r. Then, there must be an existentially quantified variable
z in r′ and a universally quantified variable x in r such that In(r, x) ⊑
Move(Σ,Out(r′, z)). From Lemma 3.23 we have thatΠ(In(r, x)) ⊆ Π(Move(
Σ,Out(r′, z))). Moreover, we also have that for every Ri ∈ Π(In(r, x)) and
for every Sj ∈ Π(Out(r, z)) there is an edge Ri →∗ Sj in prop(Σ). Of course,
we also have that for every Tk ∈ Π(Out(r′, z)) there is a path Tk → · · · → Ri,
as Π(In(rx)) ⊆ Π(Move(Σ,Out(r′, z))).

Consequently, if there is a cycle in Υ (Σ), then there must be a cycle with
a special edge in prop(Σ). This implies that if Σ ̸∈ SwA, then Σ ̸∈ SC as well,
that is SC ⊆ SwA. The strict containment derives from the fact that there are
sets of TGDs, such as Σ3.20 in Example 3.20, which are SwA, but not SC. 2

The below corollaries present two minor results which have been also in-
dependently achieved in [Mei10].

Corollary 3.25. SwA ∦ CStr. 2

Proof. The set of constraints of Example 3.10 is (c-)stratified, but not super-
weakly acyclic, thus CStr ̸⊆ SwA. Since SC ̸⊆ CStr and SC SwA, then
SwA ̸⊆ CStr. Therefore, the two criteria are not comparable. 2

26 3 The Chase Algorithm

Example 3.26. The following set of constraints Σ3.26 is neither in IR nor in
SR but it belongs to the class SwA:

r1 : N(x)→ ∃y ∃z E(x, y, z)
r2 : E(x, y, z)→ T (x, y, z)
r3 : T (x, y, y)→ N(y)

Indeed, Σ′
3.26 is not IR (and, obviously, SR) since r1 <P r2 <P r3 <P r1,

where P = {E2, E3, T2, T3, N1, E1, T1} and the unique component is not safe
(i.e. N1 →∗ E2, E2 → T2, T2 → N1). Moreover, Σ3.26 is in SwA since the
corresponding trigger graph is acyclic. 2

Corollary 3.27. SwA ∦ SR and SwA ∦ IR. 2

Proof. Straightforward from Examples 3.26 and 3.10. 2

The previous results state that super-weak acyclicity generalizes safety
and is not comparable with c-stratification and inductive restriction criteria.
A complete characterization of the relationships among termination condition
criteria is summed up in Figure 3.1. Notice that a set of constraints Σi in
Figure 3.1 refers to the constraints used in the correspondent Example i.

4

Applications

This chapter describes several database applications in which some typical
database problems arise and where the chase represents a fundamental algo-
rithm for their solution. In every case, the termination of the chase algorithm
guarantees the applicability of the proposed resolution methods.

4.1 Data Dependencies Implication Problem

The chase was first introduced in [BV84] for the data dependencies implication
problem. Let Σ be a set of dependencies (TGDs and EGDs), and σ be a
dependency. The implication problem is to decide whether Σ |= σ, that is
to determine whether σ is true in every database in which each dependency
of Σ is true (Σ logically implies σ). Let SAT (Σ) be the set of all relations,
only composed of constants, that satisfy all the dependencies in Σ, then the
implication problem is equivalent to decide whether SAT (Σ) ⊆ SAT (σ).

The implication problem can also be considered under a different view:
that of finite implication problem. The finite implication problem is to decide
whether σ is satisfied by every finite relation that satisfies all dependencies in
Σ. However, as detailed below, this problem admits no proof procedure.

The chase procedure has been designed to solve the implication problem.
Intuitively speaking, if the dependency to be proven is the TGD of the form
σ : ∀x ϕ

R
(x, z) → ∃y ψ

R
(x,y) , or the EGD σ : ∀x ϕ

R
(x) → (x1 = x2),

the chase procedure takes ϕ
R
(x, z) (resp. ϕ

R
(x)), and treats it as if it formed

a set of tuples. Then it applies repeatedly the dependencies of Σ by using
the chase procedure. We say that Σ |= σ if there exists a homomorphism h
s.t. h(ψ

R
(x,y)) ⊆ chase(ϕ

R
(x, z), Σ) (if σ is a TGD), or (x1 = x2) is true in

chase(ϕ
R
(x), Σ) (if σ is an EGD).

This proof procedure has been shown to be sound and complete in [Var84].
Moreover, it has been shown that the implication problem is decidable for
inclusion dependencies (actually it is PSPACE-complete), but it results un-
decidable for functional and inclusion dependencies.

28 4 Applications

4.2 Database Design

The most important logical criteria in database design are reduction / elimina-
tion of redundancy and maintenance of database consistency. Therefore, the
principle goal in relational design is to design relations that store each fact
(tuple) only once in the database and remain consistent following database
operations (updates, insertions and deletions). Such relations are said to be
in normal form.

There are a number of different normal forms, e.g. for functional depen-
dencies there are the Third Normal Form [Cod71, Zan82], the Boyce-Codd
Normal Form [Cod74], the Fourth Normal Form [Fag77], etc. Each normal
form satisfies specific criteria for that form, eliminating a different kind of
redundancy. The goal is usually to get relations into the highest (or at least
a high) normal form, without loss of information.

A relation is converted into a normal form by the process of decomposition:
dividing the relation into smaller relations (i.e. relations that each have fewer
attributes). This must be done in such a manner that the original relation
can always be recovered (using a natural join). Such decomposition is called
lossless. The general term for converting relations of a database into relations
in a particular normal form is called normalization.

In the following definition, we use the symbol ◃▹ to denote the natural join
operator.

Definition 4.1 (Lossless join decomposition). Let R(Z) be a relation
schema with attributes Z, FD a set of functional dependencies for R and
⟨R1(X1), . . . , Rn(Xn)⟩ a decomposition of R, where Xi ⊆ Z, for i = 1, . . . , n.
We say that ⟨R1(X1), . . . , Rn(Xn)⟩ is a lossless join decomposition, w.r.t. FD,
if for each instance r of R that satisfies FD we have r = r[X1] ◃▹ r[X2] ◃▹
. . . ◃▹ r[Xn]. 2

Lossless join property is necessary if the decomposed relation is to be
recovered from its decomposition, and can be tested by using the chase as
follows.

Let R(Z) be a relation schema with attributes Z = {Z1, . . . , Zk}, FD a set
of functional dependencies for R and ⟨R1(X1), . . . , Rn(Xn)⟩ a decomposition
of R, where Xi ⊆ Z, for i = 1, . . . , n. Construct a tableau T with n rows
and k columns. Set the element (i, j) of T equal to aj if the attribute Zj is
present in the relation Ri, or equal to bij otherwise. Then, chase the table T
with the constraints FD considering the aj symbols as constants and the bij
symbols as null values. At the end of the chase process, if a row of T is equal
to (a1, . . . , ak), then the decomposition ⟨R1(X1), . . . , Rn(Xn)⟩ is lossless.

The Third Normal Form and the Boyce-Codd Normal Form are both loss-
less join decompositions, while the Third Normal Form is also dependencies
preserving.

4.3 Query Containment under Constraints 29

4.3 Query Containment under Constraints

Query containment under constraints is the problem of checking whether for
every database satisfying a given set of constraints, the result of one query
is a subset of the result of another query. Containment of queries over rela-
tional databases has long been considered a fundamental problem in query
optimization especially query containment under constraints such as TGDs
and EGDs.

Definition 4.2 (Query containment). Consider a relational schema R and
two queries Q1 and Q2 expressed over R. We say that Q1 is contained in Q2,
denoted as Q1 ⊆ Q2, if for every database D we have that Q1(D) is contained
in Q2(D). 2

We say that the queries Q1 and Q2 are equivalent, Q1 ≡ Q2, if both
Q1 ⊆ Q2 and Q2 ⊆ Q1 holds.

The following algorithm tests query containment in the case of conjunctive
queries.

Let Q1 and Q2 be two conjunctive queries.

1. freeze body(Q1) and head(Q1) by turning each variable into a distinct
(fresh) constant;

2. evaluate Q2 over the frozen body of Q1;
3. Q1 ⊆ Q2 iff the evaluation returns the frozen head of Q1.

However, checking query containment in the presence of constraints be-
comes more difficult, as it is needed to reason on the constraints imposed by
the schema.

Definition 4.3 (Query containment under constraints). Consider a re-
lational schema R, a set Σ of constraints on R, and two queries Q1 and
Q2 expressed over R. We say that Q1 is contained in Q2 under Σ, denoted
Q1 ⊆Σ Q2, if for every database instance K for R such that K |= Σ we have
Q1(D) ⊆ Q2(D). 2

The following theorem shows that the chase is used to reduce the con-
junctive query containment under tuple generating dependencies to classical
query containment.

Theorem 4.4. [JK84, DNR08] Consider a relational schema R, a set Σ
of TGDs on R, and two conjunctive queries Q1, Q2 on R. We have that
Q1 ⊆Σ Q2 iff h(head(Q1)) ∈ Q2(chase(h(body(Q1))), Σ), where h is a ho-
momorphism that maps every distinct variable in Q1 into a distinct fresh
constant. 2

30 4 Applications

The idea is that, once we freeze Q1 we are constructing a generic database
that provides an answer to Q1; but this database must satisfy the set of
constraints Σ and we do that by constructing the chase of the frozen query.

Unfortunately, the previous result can be applied only when the chase is
terminating for the set of embedded dependencies Σ. To test containment of
conjunctive queries under IDs alone or key-based dependencies (a special class
of FDs and IDs that is more general than the combination of key and foreign
key dependencies), Johnson and Klug proved that it is sufficient to consider
a finite portion of the chase; this leads to the decidability of the problem
of containment, and it is also shown that the complexity of the problem of
testing containment is PSPACE-complete. The problem is undecidable for
general functional dependencies and inclusion dependencies. Other decidable
classes of dependencies have been studied in the last ten years in the context
of query answering on incomplete databases; in fact, query containment and
answering under constraints have been shown to be tightly connected (see
Section 4.5), as the implication problem can be reduced to both problems.

4.4 Query Optimization

The query optimization problem consists in finding a query Qm equivalent to
a given query Q such that Qm has a minimal execution cost with respect to
the original query Q.

The query reformulation problem is defined as follows: given a query Q1

and a set of constraints Σ, decide whether there exists a query Q2 such that
Q1 ≡Σ Q2. Of course, there may be infinitely many queries Q2 equivalent
to Q1, and then, since we want to actually compute a Q2 when it exists, we
choose among all possible Q2 by using cost criteria. The query minimization
problem consists, instead, in searching for an equivalent query Q2 that satisfy
some syntactically determined minimality condition.

In the case in which we deal with conjunctive queries and the constraints
are TGDs and EGDs, the chase and backchase algorithm has been proposed
to solve the query minimization problem [DPT99, PDST00, DPT06]. In this
case the minimality criterium adopted is the following: a conjunctive query
Q is Σ-minimal if there are no queries P1 and P2 where P1 is obtained from
Q by replacing zero or more variables with other variables of Q, and P2 by
dropping at least one atom from P1 such that Q ≡Σ P1 ≡Σ P2.

The chase and backchase algorithm proceeds in two phases:

1. in the chase phase, the original query Q is chased with the constraints in
Σ, yielding the query U called a universal plan;

2. then the backchase phase enumerates all Σ-minimal subqueries SQ of U
such that SQ ≡Σ Q.

The backchase phase is so called because it needs to test SQ ≡Σ Q and
then query containment by using again the chase procedure.

4.5 Query Answering on Incomplete Data 31

The applicability of the backchase algorithm requires that the chase with
the set of constraints Σ is terminating.

4.5 Query Answering on Incomplete Data

Let R = ⟨R, ΣR⟩ be a relational schema where a set of constraints ΣR is
defined over R, and let D be a database for R, i.e. a database over the schema
R. Traditionally, the database theory essentially specifies a single database
instance for such a schema R. This means assuming that each relation R in R
has to be considered exact, i.e., given a database instance D consistent with
R, R is satisfied by exactly the tuples that satisfy R in D.

On the other hand, different assumptions can be adopted for interpreting
the tuples that D assigns to relations in R with respect to tuples that actually
satisfy R. In particular, tuples in D can be considered a subset or a superset
of the tuples that satisfy R, or exactly the set of tuples satisfying R. These
interpretations give raise to three different semantics, called sound, complete,
and exact, respectively.

More specifically, the semantic of R w.r.t. D, denoted semx(R, D), where
x ∈ {s, c, e} (for sound, complete and exact semantics, respectively) is the set
of all databases B for R such that:

1. B is a database consistent with R, i.e. a database over R that satisfies
the constraints in ΣR;

2. D satisfies the assumptions specified on D, namely:
• B ⊇ D when x = s, i.e. D is a sound, but not complete database;
• B ⊆ D when x = c, i.e. D is a complete, but not sound database;
• B = D when x = e, i.e. D is a consistent database.

In this section we deal with the problem of conjunctive query answering
on incomplete databases, where integrity constraints are TGDs (and EGDs).
In addition, we also assume that the database is sound, i.e. it satisfies the
EGDs specified by the schema (the chase does not fail). In this case, if the
TGDs are not satisfied, we may add suitable facts to the database in order to
satisfy them (according to the sound semantics we cannot delete facts from
the database to solve such violations). Of course, the new tuple added to the
database must be consistent w.r.t. the EGDs.

The (decisional) problem of conjunctive query answering on incomplete
data is the following: given a relational schema R = ⟨R, Σ⟩ where Σ is a set
of TGDs and EGDs on R, a database instance D, that may not satisfy the
TGDs in Σ, a conjunctive query Q and a tuple of values t, is t an answer to
Q in every database instance B ∈ sems(R, D)?

The set of all ground atoms t such that for every B ∈ sems(R, D), t ∈
Q(B) holds is denoted as Q(D,Σ).

32 4 Applications

Theorem 4.5. [DNR08] Consider a relational schema R = ⟨R, Σ⟩ where
Σ is a set of TGDs on R, and an atom t; we have that t ∈ Q(D,Σ) iff
chase(D,Σ) |= t. 2

This important results holds because the (possibly infinite) chase is a uni-
versal solution and then a representative of all the databases in sems(R, D).

The following well-known result shows the tightly connection between the
conjunctive query containment and the conjunctive query answering in in-
complete data.

Theorem 4.6. Under TGDs, the (decisional) problem of conjunctive query
answering on incomplete data, and the problem of conjunctive query contain-
ment are mutually PTIME-reducible. 2

In this scenario, conditions guaranteeing the termination of the chase al-
gorithm over a set of TGDs for all database instances become a useful tool
to allow query answering on incomplete databases. Recently, very interesting
results have been exhibited for classes of TGDs for which the problem is de-
cidable even if the chase does not halt, since it is sufficient to consider only a
finite portion of the chase [CLR03, CGK08, CGL09, CGP10]:

• inclusion dependencies,
• guarded TGDs, that is TGDs characterized by the presence of a guard,

namely an atom in the body that contains all the (universally quantified)
variables in the TGD body;

• weakly guarded TGDs, that are characterized by the presence of a weak
guard containing all the (universally quantified) variables in the TGD body
appearing in affected positions;

• linear TGDs, that is TGDs having exactly one atom in the body and one
body and one in the head; they are the class which is closest to inclusion
dependencies, and they correspond to inclusion dependencies with repeti-
tion of columns.

• sticky sets of TGDs, which are sets of TGDs with a restriction on multiple
occurrences of variables (including joins) in the TGD bodies.

Adding equality generating dependencies to the constraint may in general
lead to undecidability of query answering, in fact the problem is undecidable
already for inclusion dependencies and key dependencies [CLR03]. However,
in order to deal with EGDs, the notions of separability has been proposed in
[CLR03].

Definition 4.7 (Separability). Consider a set ΣT of TGDs over a schema
R, and a set ΣE of EGDs over R. We say that the set Σ = ΣT ∪ ΣE

is separable if, for every database D for R, either chase(D,Σ) fails, or,
chase(D,Σ) |= Q iff chase(D,ΣT) |= Q, for every boolean conjunctive query
Q over R. 2

4.6 Data Integration 33

In other words, if the property of separability holds, EGDs do not play any
role in query answering, and queries can be answered by considering the TGDs
only (apart from an initial check whether the chase fails). Some examples
of separable classes of TGDs and EGDs are non-key-conflicting (NKC) IDs
[CLR03] and non-key-conflicting TGDs [CGL09]. Further classes have been
defined in [CGP10, CP11].

4.6 Data Integration

The task of a data integration system is to combine data residing at different
sources, providing the user with a unified view of them, called global schema.
User queries are formulated over the global schema, and the system suitably
queries the sources, providing an answer to the user, who is not obliged to
have any information about the sources.

A central aspect of query processing is the specification of the relationship
between the global schema and the sources; such a specification is given in
the form of a so-called mapping.

More formally, an information integration system I is a triple ⟨G, S,M⟩,
where G = ⟨G,ΣG⟩ is the global schema specified by a set of relations G and
a set of integrity constraints ΣG on G, S is the source schema andM is the
mapping between S and G.

The global schema is a representation of the domain of interest of the
data integration system: integrity constraints are expressed on such a schema
to enhance its expressiveness, thus improving its capability of representing
the real world. Regarding the mapping, there are basically two approaches
for specifying it. The first approach, called global-as-view (GAV), requires
that a view over the sources is associated with every relation of the global
schema. Conversely, the second approach, called local-as-view (LAV), requires
the sources to be defined as views over the global schema [Len02, DL97]. A
GAV schema mapping is specified by a set of TGDs of the form

∀x ∀z ϕS (x, z)→ U(x)

where ϕ
S
(x, z) is a conjunction of atoms over the source schema S and U is

a relation of the global schema G, while a LAV schema mapping is specified
by a set of TGDs of the form

∀x ∀z R(x, z)→ ∃y ψ
G
(x,y)

where ψ
G
(x,y) is a conjunction of atoms over the global schema G and R is

a relation of the source schema S.
Sources are in general autonomous and the data that they provide are

likely not to satisfy the constraints on the global schema. For this reason,
the integrity constraints ΣG have to be taken into account during query
processing; otherwise, the system may return incorrect answers to the user

34 4 Applications

[FKMP05, CCGL04]. Another significant issue is that the sources may not
provide exactly the data that satisfy the corresponding portion of the global
schema; in particular, they may provide either a subset or a superset of the
data satisfying the mentioned portion, and the mapping is to be considered
sound or complete respectively. Mappings that are both sound and complete
are called exact.

The semantics for a data integration system I is the set of all databases
that satisfy I, i.e., the logical models of I. Given a source database D on the
source schema S (called a source database for I), the set of all databases for
G that satisfy I relative to D is denoted as semx(I, D), where x ∈ {s, c, e}
(for sound, complete and exact semantics, respectively), and consists of all
the databases B that satisfy G and that satisfyM w.r.t. D.
Let I be a data integration system and D a source database for I, we call
retrieved global database, denoted ret(I, D), the global database obtained by
evaluating each query of the mappingM on D, i.e. ret(I, D) = chase(D,M).
Observe that ret(I, D) is not necessarily consistent with G.

The semantics for queries is the following. Given a source database D for I
we call answers to a query Q of arity n w.r.t. I and D, the set Q(D, I) defined
as follows: Q(D, I) = {⟨c1, . . . , cn⟩| for each B ∈ semx(I, D), ⟨c1, . . . , cn⟩ ∈
Q(B)}.

Dealing with Incomplete Data

The problem of query answering in the presence of incomplete data also arises
in data integration scenarios. Query processing in LAV (without global con-
straints) has been traditionally considered a form of reasoning in the presence
of incomplete information. In fact, sources in LAV data integration systems
are generally assumed to be sound, but not necessarily complete (each view
is assumed to store only a subset of the data that satisfy the corresponding
view on the global schema).

Query processing in GAV (without global constraints), instead, is less in-
volved as the form of the mapping straightforwardly allows for the compu-
tation of a global database instance, i.e. the retrieved global database, over
which the query can be directly evaluated. It is worth noting that, proceeding
in this way, is analogous to unfold queries with respect to the mapping, i.e.
substitute each atom in the query with its correspondent view specified by the
mapping, and evaluate the unfolded queries directly on the source database.
In this case, the views in the mapping are exact. However, in GAV it may
also happen that the sources are considered sound rather than exact, in par-
ticular when integrity constraints are specified on the global schema. In this
case the query unfolding is no more sufficient, and reasoning on the constraint
is needed in order to compute the certain answers to a query. Moreover, it
is easy to see that reasoning on the constraints is also needed in the LAV
approach.

4.7 Data Exchange 35

4.7 Data Exchange

In data exchange [FKMP05], data structured under one schema (which we
call a source schema) must be restructured and translated into an instance of
a different schema (a target schema). Let S be the source schema and T be
the target schema, we assume that S and T are disjoint. Moreover, since T is
an independently created schema, it has its own set of constraints, denoted as
ΣT. The mapping of the data from the source schema to the target schema is
expressed as a set of source-to-target TGDs Σst, that specifies how and what
source data should appear in the target.

More formally, the data exchange setting is defined as follows.

Definition 4.8. A schema mapping (or data exchange setting) is a 4-tuple
M = (S,T, Σst, Σt) where:

• S is the source schema,
• T is the target schema,
• Σst is a set of source-to-target TGDs of the form ϕS(x, z) → ∃yψT(x,y)

and,
• Σt is a set of target dependencies, whereas each target dependency in Σt is

either a TGD ϕT(x, z)→ ∃yψT(x,y) or an EGD ϕT(x)→ (x1 = x2). 2

Note that the input to a data exchange problem is a source instance only;
the data exchange setting itself (i.e. source and target schemas and dependen-
cies) is considered fixed.

The data exchange problem associated with a setting M is the following:
given a finite source instance D over S, find a finite target instance J over
T such that ⟨D, J⟩ satisfies Σst and J satisfies Σt. J is called a solution for
D or, simply a solution if D is understood. Observe that there may be many
solutions (or none) for a given instance of the data exchange problem. The
set of all the solutions is denoted by Sol(D,Σst ∪ Σt). However, a special
class of solutions has been identified for the semantics of the data exchange
problem, namely the class of universal solutions for D. This kind of solution
is justified by the fact that a universal solution is representative of the space
of all solutions, as it can be mapped into any other solutions. The set of all
universal solutions for D is denoted by USol(D,Σst ∪ Σt). Given a source
database D, it has been shown that a universal solution J for D and Σst∪Σt

can be computed by using the chase algorithm, i.e. J = chase(D,Σst∪Σt). In
this case J is called a canonical universal solution. Moreover, it is proven that,
if chase(D,Σst ∪Σt) fails, no solution exists for the assigned data exchange
problem. However, in general, for arbitrary sets of dependencies, there may
not exist a finite chase. Thus, special classes of constraints for which the chase
termination is guaranteed in polynomial time data complexity allows to (i)
check the existence of a solution, and, (ii) eventually compute it, in polynomial
time.

36 4 Applications

Moreover, among all universal solutions, the ”best” universal solution was
found to be the core [FKP05]. The core is the smallest universal solution and it
has been shown that it is unique, i.e. all universal solutions have the same core
(up to isomorphism). Thus, the core is the ideal solution to materialize, and,
in particular, an algorithm has been proposed to compute it in polynomial
time when target constraints are a weakly acyclic set of TGDs and EGDs
[GN08].

The semantics of target query answering adopts the notion of certain an-
swers, i.e. the answers to a query Q consist of the set of all tuples t of constants
from the given source instance D such that for every solution J for the the
data exchange problem, we have that t ∈ Q(J). For the class of union of
conjunctive queries it has been shown that computing certain answers to a
query Q is equivalent to evaluate Q over a universal solution J and take all
the tuples of constants in Q(J). This result holds since conjunctive queries
are preserved under homomorphisms.

5

New Chase Termination Conditions

In this chapter we present some improvements for termination conditions dis-
cussed in Chapter 3 and then introduce the class of locally stratified dependen-
cies, that generalizes previously known classes, for which termination of the
chase algorithm is guaranteed. The idea underlying stratification, also used in
its variation and extensions (e.g. CStr, SR) and in the super-weak acyclicity,
is to consider, in the propagation of nulls, how constraints may fire each other.
However, there are simple cases where current criteria are not able to under-
stand that all chase sequences are finite (see, for instance, examples 1.2 and
5.10). Thus, in this chapter we first introduce a new version of stratification,
called WA-stratification (WA-Str) which generalizes CStr and guarantees, for
all databases, termination of all chase sequences.

5.1 WA-Stratification

(C-)stratification does not specify what kind of cycles are checked (i.e. simple
or general) [CLRS01]. Checking simple cycles is not correct as it may not
consider all possible chase sequences, but checking general cycles, means that
for each strongly connected component there is one cycle including all nodes
in the component which subsumes all other cycles on the same component (in
terms of constraints to be considered).

Example 5.1. Consider the following set of TGDs Σ5.1:

r1 : P (x) → ∃y Q(x, y)
r2 : Q(x, y)→ R(x, y)
r3 : R(x, y) → P (x)
r4 : R(x, y) → S(y, x)
r5 : S(x, y) → Q(x, y)

We have that r1≺c r2, r2≺c r3, r3≺c r1, r2≺c r4, r4≺c r5 and r5≺c r2. The
c-chase graph contains two simple cycles, i.e. {r1, r2, r3} and {r2, r4, r5}, that

38 5 New Chase Termination Conditions

are both weakly acyclic, and a general cycle involving all the TGDs in Σ5.1

that is not weakly acyclic. 2

Although considering the constraints involved in every cycle is not wrong,
this is equivalent to just considering the subsets of constraints involved in
every strongly connected component, since if the weak acyclicity property
is satisfied by a set of constraints it is satisfied by all its subsets as well.
Moreover, the number of cycles in a graph could be exponential, whereas
the number of strongly connected components is polynomial. Thus, a first
observation on (c-)stratification (in terms of correctness, if simple cycles are
considered, or in terms of efficiency, if all cycles are considered) is that it refers
to cycles instead of strongly connected components. A further observation is
that it uses oblivious chase for checking termination of standard chase and,
as previously said, its applicability is limited.

Definition 5.2 (WA-Stratification). Given a set of dependencies Σ and
r1, r2 ∈ Σ, we say that r1 < r2 iff there exist a relational database instance
K, homomorphisms h1, h2 and a set S of atoms, such that

(i) K ̸|= h1(r1),

(ii)K →r1,h1
J ,

(iii)K ∪ S |= h2(r2),
(iv)J ∪ S ̸|= h2(r2) and
(v)Null(S) ∩ (Null(J) − Null(K)) = ∅ (i.e. S does not contain new null

values introduced in J).

We say that Σ is WA-stratified (WA-Str) iff the constraints in every
nontrivial strongly connected component of the firing graph Γ (Σ) = (Σ,
{(r1, r2)|r1 < r2}) are weakly acyclic. 2

With respect to stratification, WA-Str also considers in the satisfaction of
constraint r2, in addition to the database K, a set of atoms S (cond. (iii))
and atoms in S cannot contain null values introduced in the application of
the constraint r1 (cond. (v)).

Moreover, since we are considering strongly connected components (in-
stead of cycles) these components must not be trivial, that is they must have
at least one edge, otherwise the constraint cannot be fired cyclically. As a
further important observation, in the above definition we consider standard
chase for both constructing the graph Γ (Σ) and checking weak acyclicity.

Example 5.3. Consider again the set of constraints Σ1.2 of Example 1.2. It
is easy to see that, by considering standard chase, does not exist an initial
database instance such that the constraint can fire itself, while, by considering
the oblivious chase, the constraint fires itself ad infinitum. Thus, the set of
constraints Σ1.2 is WA-stratified, but not c-stratified . 2

5.1 WA-Stratification 39

The following proposition states thatWA-Str criterion is more general than
CStr and is not comparable with SC. Consequently it is not comparable even
with SwA as SC is strictly contained in SwA and CStr is not comparable with
SwA.

Proposition 5.4. CStr WA-Str and SC ∦WA-Str. 2

Proof. (sketch) CStr ⊆ WA-Str derives from the fact that the firing graph
Γ (Σ) is contained in the chase graph Gc(Σ) used by c-stratification. The
containment is strict as it is possible to define constraints which are WA-
stratified and do not satisfy the c-stratification criterion (see, for instance,
the set of constraints Σ1.2 of Example 1.2).

The relationship SC ∦WA-Str derives from the fact that there are exam-
ples belonging to one of these classes, but not to the other. For instance, the
following set Σ is safe, but not WA-stratified:

α : S(x2, x3) ∧R(x1, x2, x3)→ ∃y R(x2, y, x1)
β : R(x1, x2, x3)→ S(x1, x3)

On the other hand, Σ1.2 is WA-stratified but not safe. 2

It is important to observe that WA-Str criterion could be improved by
testing safety instead of weak acyclicity over the firing graph. Further im-
provements could be obtained by considering super-weak acyclicity instead of
safety.

Definition 5.5 (SC-Stratification and SwA-Stratification). Given a set
of TDGs Σ, we say that

• Σ is SC-stratified (SC-Str) if the constraints in every strongly connected
component of the firing graph Γ (Σ) are safe, and

• Σ is SwA-stratified (SwA-Str) if the constraints in every strongly con-
nected component of the firing graph Γ (Σ) are super-weak acyclic. 2

We now analyze the complexity of the above criteria starting by defining a
bound on the complexity of the firing problem, i.e. the complexity of checking
whether r1 < r2.

Lemma 5.6. Let r1 : ϕ1 → A1 ∧ · · ·Ak and r2 : B1 ∧ · · ·Bn → ψ2 be two
TGDs. The problem of checking whether r1 < r2 is bounded by O((k+1)n). 2

Proof. (sketch) We can define a database instance D consisting of body atoms
B1 · · ·Bn (assuming that variables denote constants), and define a set of atoms
satisfying firing conditions S and homomorphisms h1, h2 so that atoms in
B1, ..., Bn unify with some of head atoms A1 · · ·Ak. Let us denote with ki =
|ψ1(Bi)| + 1 the number of atoms in the head of r1 unifying with the atom
Bi appearing in the body of r2 plus one (representing that Bi may not unify
with any head atom). Then, we have k1 choices for unification of B1, k1 × k2

40 5 New Chase Termination Conditions

choices for the sequence B1, B2 and so on. Finally, for the sequence B1, ..., Bn

we have
∏n

i=1 ki choices. Thus, the number of choice arcs in the exploration

tree is bounded by O(
∑n

j=1(
∏j−1

i=0 ki)× kj), where k0 = 1. The complexity of
defining the sets ψ1(Bi), for i ∈ [1..n], is bounded by n × k. Since each ki is
bounded by O(k+1), the global complexity is O(k×n+(k+1)n) = O((k+1)n).
2

Although the theoretical complexity of the ”firing” problem is exponen-
tial, in most cases it is very low (e.g. inclusion dependencies, multivalued
dependencies [AHV95]), as usually the number n of body atoms in the fired
constraint r2 is small and the number of atoms in the head of constraint r1
which could be used to fire r2 through their unification with Bi (i.e. ki > 1)
is even smaller. Indeed, if the number of atoms in the body of r2 is bounded
by a constant, the firing problem is in PTIME. Significative subclasses of con-
straints for which the firing problem becomes polynomial could be identified,
but this is outside the aim of this thesis.

In the following, for a given set of constraints Σ, we shall denote with Cij

the complexity of the problem of checking whether ri < rj , for ri, rj ∈ Σ, and
with Cm = max{Cij |ri, rj ∈ Σ}.

Proposition 5.7. Let Σ be a set of TGDs, D be a database Then:

• the problem of checking whether Σ is WA-stratified (resp. SC-stratified,
SwA-stratified) is bounded by O(Cm × |Σ|2);

• if Σ is WA-stratified (resp. SC-stratified, SwA-stratified), the length of
every chase sequence of Σ over D is polynomial in the size of D. 2

Proof. (sketch)

1. (i) The cost of checking whether ri < rj is denoted by Cij .
(ii) The cost of constructing the firing graph is bounded by
O(

∑
ri,rj∈Σ Cij) = O(|Σ|2 × Cm) where Cm = max{Cij |ri < rj}.

(iii) The detection of strongly connected components in the firing graph is
bounded by O(|Σ|2). Consequently, checking whether Σ is WA-stratified
(resp. SC-stratified, SwA-stratified) is bounded by O(Cm × |Σ|2).

2. Σ can be partitioned into Σ1,, Σk with k ≤ |Σ|, where each Σi consists
of the constraints belonging to a strongly connected component of Γ (Σ).
For any database D, the universal solutions of (D,Σ) can be computed by
taking one Σi at time, following the topological order of the firing graph
Γ (Σ). Since each Σi is weakly acyclic (resp. safe, super-weakly acyclic),
the length of all chase sequences of Σi over D is polynomial in the size
of D and, therefore, the length of every chase sequence of Σ over D is
polynomial in the size of D. 2

The class of constraints satisfying criterion C-Str, for C ∈ {WA,SC, SwA},
will be denoted by C-Str. The next theorem states the relationships among
the above mentioned criteria and other previously defined conditions.

5.2 Local Stratification 41

Theorem 5.8.

1. WA-Str SC-Str SwA-Str,
2. for C ∈ {WA,SC, SwA}, C C-Str and
3. SR ∦ SwA-Str and IR ∦ SwA-Str. 2

Proof.

1. It follows from the fact that WA SC SwA.
2. It follows from the fact that the C-Str criterion first divides the set of

constraints Σ into subsets (strongly connected components of the firing
graph) and then checks the specific criterion C on each subset.

3. It is possible to find examples of sets of constraints that are in SR (and
IR) but not in SwA-Str and viceversa (see Examples 5.9 and 5.10. 2

The following two examples show that both SR and IR criteria are not
comparable with SwA-Str.

Example 5.9. Consider the below set of constraints Σ5.9:

r1 : N(x)→ ∃ y ∃z E(x, y) ∧ S(z, y)
r2 : E(x, y) ∧ S(x, y)→ N(y)
r3 : E(x, y)→ E(x, x)

The set Σ5.9 is SR (and, obviously IR), but not SwA-Str. Indeed, r1 < r3 <
r2 < r1 and Σ5.9 is not SwA. 2

Example 5.10. Consider the following set of constraints Σ′
5.10:

r1 : N(x)→ ∃y ∃z E(x, y, z)
r2 : E(x, y, z)→ T (x, y, z)
r3 : T (x, y, y)→ N(y)

The set Σ′
5.10 is not IR (and, obviously, SR) since r1 <P r2 <P r3 <P r1,

where P = {E2, E3, T2, T3, N1, E1, T1} and the unique component is not safe
(i.e. N1 →∗ E2, E2 → T2, T2 → N1). On the other hand, the below set of
constraints Σ”5.10

r4 : R(x, y) ∧R(y, x)→ ∃u ∃v R(x, u), R(u, v), R(v, x)

is not SwA, but it is stratified and, therefore, safely restricted. The set of
constraints Σ5.10 = Σ′

5.10 ∪ Σ”5.10, is neither IR, nor SwA, but it belongs to
the class of SwA-Str constraints. 2

5.2 Local Stratification

It is trivial that more powerful criteria could be defined by composing criteria
which are not comparable. We next present a different generalization of super-
weak acyclicity which also generalizes the class IR.

42 5 New Chase Termination Conditions

We start by introducing a notion of fireable place. We say that a place q
appearing in the body of constraint r could be fired by a place q′ appearing
in the head of constraint r′, denoted by q′ < q, if q ∼ q′ and r′ < r. Given
two sets of places Q and Q′ we say that Q could be fired by Q′, denoted by
Q′ < Q iff for all q ∈ Q there exists some q′ ∈ Q′ such that q′ < q.

Given a set Q of places, we define MOV E(Σ,Q) as the smallest set of
places Q′ such that Q ⊆ Q′, and for every constraint r = Br → Hr in sk(Σ)
and every variable x, if Q′ < Πx(Br) then Πx(Hr) ⊆ Q′, where Πx(Br) and
Πx(Hr) denote the sets of places in Br and Hr where x occurs.

With respect to the function Move, the new function MOVE here con-
sidered takes into account the firing of places and not only the unification of
places.

Definition 5.11 (Local Stratification). Given a set Σ of TGDs and two
TGDs r1, r2 ∈ Σ, we say that r1 triggers r2 in Σ and write r1 ↪→ r2 iff there
exists an existential variable y in the head of r1, and a universal variable x
occurring both in the body and head of r2 such thatMOVE(Σ,Out(r1, y)) <
In(r2, x). A set of constraints Σ is locally stratified (LS) iff the trigger graph
∆(Σ) = {(r1, r2)|r1 ↪→ r2} is acyclic. 2

Proposition 5.12. For every set of TGDs Σ and for every database D

• the problem of checking whether Σ is locally stratified is bounded by
O(Cm × |Σ|2);

• if Σ is locally stratified, the length of every chase sequence of Σ over D is
polynomial in the size of D. 2

Proof. (sketch)

1. From the polynomial complexity of the function Move [Mar09] and the
complexity of building the firing graph, bounded by O(|Σ|2 ×Cm), it fol-
lows that the complexity of building the trigger graph∆(Σ) is bounded by
O(|Σ|2×Cm). Since the complexity of checking whether the trigger graph
∆(Σ) is acyclic has a cost bounded by O(|Σ|2), the global complexity is
bounded by O(|Σ|2 × Cm).

2. The proof follows the one of Proposition 5.7. 2

The below theorem states that the class of locally stratified constraints
(denoted by LS) is more general than SwA-Str and IR.

Theorem 5.13. SwA-Str LS and IR LS. 2

Proof. (sketch) From the definitions of SwA and LS criteria it follows that
i) MOVE(Σ,Out(r, y)) ⊆Move(Σ,Out(r, y)) and ii) if Q′ < Q then Q ⊑ Q′.
As a consequence, SwA-Str ⊆ LS.

Assume that Σ is SR and that ⟨G′(Σ), P ⟩ is the associated 2-restricted
system. If ri ↪→ rj (i.e. (ri, rj) ∈ ∆(Σ)), then there exists a path from ri

5.2 Local Stratification 43

Fig. 5.1. Criteria Relationships.

to rj in G′(Σ) because, when we construct the set MOVE(Σ,Out(ri, y)),
we take into account both i) the firing relation < between places, and ii)
the propagation of null values introduced in the position associated with the
existentially quantified variable y.

If the relation ↪→ is cyclic, then there exists a cycle in G′(Σ) containing the
constraints involved in the cycle in ∆(Σ) and, consequently, if the constraints
are not locally stratified, then they are neither SwA and nor safe. Moreover,
the constraints appearing in the cycle also belong to the same partition defined
by IR. As a consequence, IR ⊆ LS. To show that the containments are strict
it is sufficient to consider the set of constraints Σ5.14 which is in LS, but
neither in IR nor in SwA-Str. 2

The next example shows that the containment of SwA-Str and IR in
LS is strict, whereas Figure 5.1 resumes the relationships among the above
discussed criteria.

Example 5.14. The following set of constraints Σ5.14 is locally stratified, but
it is neither super-weakly acyclic nor inductively restricted:

r1 : N(x)→ ∃ y ∃z E(x, y) ∧ S(z, y)
r2 : E(x, y) ∧ S(x, y)→ N(y)
r3 : E(x, y)→ E(y, x)

Considering SwA, we have thatMove(Σ,Out(r1, y)) = {p3, p5, p10, p13, p2, p14}
and In(r1, x) = {p1} ⊑ Move(Σ,Out(r1, y)). The trigger graph is cyclic as
r1 r1 and, therefore, Σ5.14 is not super-weakly acyclic. As r1 < r3 < r2 < r1
we have that Σ5.14 is not SwA-Str as well. Σ5.14 is not IR as r1 ≺c r3 ≺c

44 5 New Chase Termination Conditions

r2 ≺c r1 and for each pair of constraints ri, rj such that ri ≺c rj , it is possible
to construct a database containing null values in positions E1, E2, N1 and S2

such that whenever ri fires rj a null value is propagated from the head of ri
to the head of rj .

Moreover, as r1 ̸↪→ r1 (MOV E(Σ, (r1, y)) = {p3, p5, p13} and In(r1, x) =
{p1} ⊑MOV E(Σ, Out(r1, y))), ∆(Σ5.14) is acyclic and, thus, Σ5.14 is locally
stratified. 2

6

Checking Chase Termination by Constraints
Rewriting

In this chapter we present a technique for checking chase termination based on
rewriting the original set of TGDs Σ into an ‘equivalent’ set Σα and verifying
the structural properties for chase termination on Σα. The technique per-
forms a deep analysis of constraints by considering pattern analysis through
the introduction of adornments associated with predicates. The adornments
here considered are similar to those used in binding propagation in deductive
databases (e.g. magic-set) for the optimization of bound queries [BR91].

6.1 Constraints Rewriting

Before presenting our rewriting technique we introduce some definitions con-
cerning constraints equivalence. In particular, the equivalence between two
sets of constraints Σ1 and Σ2 defined, respectively, over two schemas R1 and
R2, is given with respect to two sets of relations R,S ⊆ R1 ∩ R2 called,
respectively, input and output relations.

Definition 6.1 (Sets of constraints equivalence). Given two sets of con-
straints Σ1 and Σ2 over the two database schemas R1 and R2, respectively
and two sets of relations R,S ⊆ R1∩R2, we say that ⟨R1, Σ1⟩ ⊑R/S ⟨R2, Σ2⟩
if for all database D over R, USol(D,Σ1)[S] ⊆ USol(D,Σ2)[S]. Moreover, we
say that ⟨R1, Σ1⟩ and ⟨R2, Σ2⟩ are equivalent with respect to R/S and write
⟨R1, Σ1⟩ ≡R/S ⟨R2, Σ2⟩ if both ⟨R1, Σ1⟩ ⊑R/S ⟨R2, Σ2⟩ and ⟨R2, Σ2⟩ ⊑R/S

⟨R1, Σ1⟩. 2

When R = S = R1∩R2 we simply write ⟨R1, Σ1⟩ ⊑ ⟨R2, Σ2⟩ and ⟨R1, Σ1⟩
≡ ⟨R2, Σ2⟩.

Example 6.2. Consider the database schema R1 = {E(A, B)} consisting of
the binary relation E and the database schema R2 = {E(A,B), Q(C)} con-

46 6 Checking Chase Termination by Constraints Rewriting

sisting of the binary relation E and the unary relation Q. Assume to have the
following sets of TGDs

Σ1 = {E(x, y)→ E(y, x)} and
Σ2 = {E(x, y)→ Q(x), Q(x) ∧E(x, y)→ E(y, x)}

defined over R1 and R2, respectively.
Clearly, USol(D,Σ1)[E] = USol(D,Σ2)[E] for all databases D over R1 ∩

R2 = {E} and, therefore, ⟨R1, Σ1⟩ ≡ ⟨R2, Σ2⟩. 2

Adornments

An adornment α of a predicate p with arity m is a string of length m over
the alphabet {b, f}. A predicate symbol pα is said to be adorned, whereas
an adorned atom is of the form pα1...αm(x1, ..., xm); if αi= b we say that the
variable xi is bounded, otherwise (αi = f) we say that xi is free. Intuitively,
bounded terms can take values from finite domains; consequently, constant
terms are always adorned with the symbol b. If each body variable of a TGD
is associated with a unique adornment we say that the adornment of the body
is coherent. Before introducing how constraints are adorned, let us introduce
some further definitions and notations.

We assume that TGDs are in standard form, that is existentially quantified
variables appear within the scope of universally quantified ones; variables
appearing in constraints with empty body are replaced by Skolem constants.

Given a TGD r : ϕ(x) → ∃yψ(z,y) with z ⊆ x and let α be a coherent
adornment for the body atoms, then HeadAdn(r, ϕα(x)) denotes the adorn-
ment of the head of r (with respect to the adorned body ϕα(x)) obtained by
adorning head atoms as follows: i) every universally quantified variable has
the same adornment of the body occurrences, ii) constants are adorned as b;
iii) existentially quantified variables are adorned as f .

Rewriting Algorithm

Given a set of TGDs Σ over a schema R the corresponding rewriting set
Adn(Σ) consists of the union of four sets of TGDs: the base set Base(Σ), the
derived set Derived(Σ), the input set In(Σ) and the output set Out(Σ).

The rewriting is performed by means of the function Adn reported in
Figure 6.1. It starts by adorning, for each TGD, body predicates with strings of
b symbols and adorning heads according to the body adornments by using the
functionHeadAdn (base set); then, each new adorned predicate symbol is used
to generate new adorned constraints until all adorned predicate symbols are
used (derived set); at the end, TGDs mapping source relations into relations
adorned with strings of b symbols (input set) and TGDs mapping relations
having the same predicate and different adornments into a unique relation
(output set) are added.

6.1 Constraints Rewriting 47

Function Adn(Σ);
Input: Set of TGDs Σ over a schema R;
Output:The set of (adorned) TGDs Base ∪Derived ∪ In ∪Out;
begin
Derived = ∅;
// Let Bodyb(r) be the conjunction obtained by adorning atoms in Body(r)
// with strings of b symbols
Base = {Bodyb(r)→HeadAdn(r,Bodyb(r)) | ∃r ∈ Σ};
Used Pred = {pbr | ∃r ∈ Σ and ∃pb in Bodyb(r)};
New Pred = {pαr | ∃r ∈ Σ and pα(t)∈SkHeadAdn(r,Bodyb(r))} − Used Pred;
while (New Pred ̸= ∅) do begin
Select nondeterministically pα1..αn ∈ New Pred;
New Pred = New Pred− {pα1..αn};
Used Pred = Used Pred ∪ {pα1..αn};
for each r ∈ (Base ∪Derived) do
for each pβ(x1, ..., xn) ∈ Body(r) do begin
B′ = Body(r)−{pβ(x1, ..., xn)} ∪ {pγ1..γn(x1, ..., xn)};
γi=b if xi∈Consts; γi=αi if xi∈V ars; (i ∈ [..n]);
if B′ is coherent then
Derived=Derived ∪ {B′→HeadAdn(Adn-1(r), B′)};
New Pred = New Pred ∪ {pω | pω appears in HeadAdn(Adn-1(r), B′)∧

∧ pω ̸∈ Used Pred};
else
Derived = Derived ∪ {B′ → Adn-1(r)};

end
end for;

end while;
Delete from Derived constraints with unadorned heads;
In = {p(x1, ..., xn) → pb...b(x1, ..., xn) | p(A1, ..., An) ∈ R };
Out = {pα(x1, ..., xn) → p̂(x1, ..., xn) | pα(z1, ..., zn) appears in (Base ∪Derived)};
return Base ∪Derived ∪ In ∪Out;

end.

Fig. 6.1. Constraint Rewriting Function Adn

In the definition of the function Adn we have also used the function
Adn-1(·) which takes in input an adorned first order formula consisting of
a conjunction of atoms or a constraint or a set of constraints and gives in out-
put the same formula without adornments. Clearly, for any set of constraints
Σ, Adn-1(Adn(Σ)) = Σ.

For any input database schema R and set of constraints Σ over R, we shall
denote with (i) R̂ = {p̂(A1, ..., An) | p(A1, ..., An) ∈ R} the output schema

derived from R, (ii) Map(R) = R ∪ R̂ the union of the input and output
schemas, and (iii) Adn(R, Σ) = R ∪ {pα(A1, ..., An) | p(A1, ..., An) ∈ R ∧ pα
appears in Adn(Σ)} ∪ R̂ the schema obtained by adding to R the schemas of
the relations introduced in the rewriting of constraints. Moreover, we shall also
denote with Map(Σ) = Σ ∪ {p(x1, ..., xn) → p̂(x1, ..., xn)|p(A1, ..., An) ∈ R}
the set of constraints containing, in addition to Σ, a set of TGDs mapping
tuples over the input schema to tuples over the output schema.

48 6 Checking Chase Termination by Constraints Rewriting

Example 6.3. Consider the constraintsΣ1.3 of Example 1.3. Initially,Adn(Σ1.3)
contains two constraints derived by adorning the body variables as bound
(Base(Σ1.3))

r1 : N b(x)→ ∃y Ebf (x, y)
r2 : Sb(x) ∧ Ebb(x, y)→ N b(y)

In the second step two new constraints are generated
(Derived(Σ1.3)). Due to the new predicate Ebf , the following constraint, de-
rived from constraint r2, has been introduced:

r3 : Sb(x) ∧Ebf (x, y)→ Nf (y)

At this point the new predicate symbol Nf has been generated and, thus, a
new constraint derived from r1 is added:

r4 : Nf (x)→ ∃y Eff (x, y)

From the new predicate Eff no new constraint is generated since the variable
x in the body of the second constraint is bounded as it also appears in the
predicate Sb.

Moreover,Adn(Σ) also contains TGDs mapping input tuples into “bounded
predicates” (In(Σ1.3)):

r5 : N(x)→ N b(x)
r6 : S(x)→ Sb(x)
r7 : E(x, y)→ Ebb(x, y)

and TGDs mapping tuples of adorned relations into “output” relations
(Out(Σ1.3)):

r8 : N b(x)→ N̂(x)

r9 : Nf (x)→ N̂(x)

r10 : Sb(x)→ Ŝ(x)

r11 : Ebb(x, y)→ Ê(x, y)

r12 : Ebf (x, y)→ Ê(x, y)

r13 : Eff (x, y)→ Ê(x, y) 2

It is important to observe that the set of constraints Σ1.3 is neither
stratified nor super-weak acyclic, while Adn(Σ1.3) is weakly acyclic. In fact,
dep(Adn(Σ1.3)), without considering edges in In(Σ1.3) and Out(Σ1.3), which

do not affect chase termination, contains only the following edges: N b
1→E

bf
1 ,

N b
1→∗ E

bf
2 , Ebb

2→N b
1 , E

bf
2 →N

f
1 , N1f→Eff

1 , Nf
1→∗ E

ff
2 .

Fact 1 Let Σ be a set of standard TGDs. A position Ri belongs to aff(Σ) iff
there is some predicate Rα1...αm

i in Adn(Σ) such that αi = f . 2

From now on we shall denote with Cr the whole set of criteria so
far considered for checking termination of all chase sequences, i.e. Cr =
{WA,CStr, SC, SwA, SR, IR, WA-Str, SC-Str, SwA-Str, LS}.

6.1 Constraints Rewriting 49

Theorem 6.4. For every set of TGDs Σ over a database schema R

⟨Map(R),Map(Σ)⟩ ≡R/R̂ ⟨Adn(R, Σ), Adn(Σ)⟩

2

Proof. We have to prove that for every databaseD overR, USol(D,Map(Σ))[

R̂] = USol(D,Adn(Σ))[R̂], that is for every database J ∈ USol(D,Map(Σ))

there is a database K ∈ USol(D,Adn(Σ)) such that J [R̂] = K[R̂] and vice
versa. To simplify the notation we shall use Σα denoting Adn(Σ) and Σ̄ to
denote Map(Σ).

• (Base case - Step 0) Let K0 be the database obtained by applying a single
step of the core chase, i.e. D −→Σα↓ K0, we have that Adn

−1(K0) = J0 = D

and J0[R̂] = K0[R̂] = ∅. Observe that K0 could be obtained by just
applying TGDs in In(Σ) as at the first step adorned relations are empty.

• (Inductive case - Step i) Assume that Ji−1 and Ki−1 are s.t. Ji−1 ⊆
Adn-1(Ki−1) and Ji−1[R̂] = Ki−1[R̂] (up to nulls renaming).
Let Ji−1 −→Σ̄ J ′

i , Ki−1 −→Σ
α

K ′
i and Ji = core(J ′

i), Ki = core(K ′
i). We

have that Ji ⊆ Adn-1(Ki) and Ji[R̂] = Ki[R̂] since the set of retracted
tuples derived by means of Σα is contained (up to variable renaming)
in the set of retracted tuples derived by means of Σ̄. Indeed, two tuples
p(t1) and p(t2) in J ′

i may ’correspond’ to tuples pα1(t1) and pα2(t2) in
K ′

i and therefore, p(t1) and p(t2) may be isomorphic, while pα1(t1) and
pα2(t2) are not isomorphic because of the different adornments. On the
other side if there are two isomorphic tuples in K ′

i, the ’corresponding’

tuples in J ′
i are isomorphic as well. However, since the relations in J ′

i [R̂]

and K ′
i[R̂] ’eliminate’ adornments for any two isomorphic tuples in J ′

i [R̂]

the ’corresponding’ tuples in K ′
i[R̂] are isomorphic too, and vice versa. 2

The previous theorem states that for every database D over a schema R
and for each universal solution J derived by applying the source TGDs Σ to D
there is a universal solution K derived by applying the rewritten constraints
Adn(Σ) to D such that J [R̂] = K[R̂] and vice versa. In particular, since
pα(t) ∈ K−D implies that there is a p(t) ∈ J and p(t) ∈ J implies that there
is a pα(t) ∈ K, we have that each relation in J is partitioned into relations
of K −D. The tuples in D appear twice in K since they are also copied into
‘bounded’ relations. Note that if the set of constraints Adn(Σ) satisfies some
chase termination criterion, the chase terminates considering both the source
set Σ and the rewritten set Adn(Σ). Clearly, the set Adn(Σ) is only used
to check chase termination conditions (at compile-time), whereas we use the
source set Σ to compute (at run-time) universal solutions.

Example 6.3. (cont.) Consider again the constraints Σ1.3 of Example 1.3
and the source database D = {S(a), N(a)}. The set of constraints Map(Σ1.3)
is equal to

50 6 Checking Chase Termination by Constraints Rewriting

Σ1.3 ∪

S(x)→ Ŝ(x)

N(x)→ N̂(x)

E(x, y)→Ê(x, y)

The application of the chase to ⟨D, Map(Σ1.3)⟩ produces the database
J = {S(a), N(a), E(a, n1), N(n1), E(n1, n2), Ŝ(a), N̂(a), Ê(a, n1), N̂(n1),
Ê(n1, n2)}. The application of the chase to ⟨D,Adn(Σ)⟩ produces the database
K = {S(a), N(a), Sb(a), N b(a), Nf (n1), E

bf (a, n1), Eff (n1, n2), Ŝ(a),
N̂(a), Ê(a, n1), N̂(n1), Ê(n1, n2). Clearly, the two solutions are equivalent
(with respect to {S,N,E}/{Ŝ, N̂ , Ê}). 2

Let C denote the class of TGDs satisfying criterion C, Adn-C denotes
the class of TGDs Σ such that Adn(Σ) satisfies criterion C. From Theorem
6.4 we have that if a set of constraints Σ ∈ Adn-C and C ∈ Cr all chase
sequences terminate, whereas if Σ ∈ Adn-Str there is at least one terminat-
ing chase sequence. Notice that the rewriting functions is applied to sets of
TGDs, while several of the criteria so far analyzed also consider EGDs. It is
also worth noting that although the size of the adorned program increases
and in the worst case it is exponential in number of affected variables in a
constraints (|Adn(Σ)| = O(Σr∈Σ2

|AffV ar(r)|) = O(|Σ| × 2maxAffV ar), where
AffV ar(r) denotes the set of distinct variables occurring only in affected
positions in r and maxAffV ar is the maximum number of distinct vari-
ables occurring only in affected positions in a constraint, i.e. maxAffV ar
= max{|AffV ar(r)| | r ∈ Σ}), chase termination checking is a compile time
operation.

The below theorem states that the rewriting technique allows to recog-
nize (by using classical criteria) larger classes of constraints for which chase
termination is guaranteed.

Theorem 6.5. C Adn-C for C ∈ Cr ∪ {Str}. 2

Proof. Assume that Σ is in C and is not in Adn-C, for C ∈ Cr ∪ {Str}: this
means that Base(Σ) ∪Derived(Σ) is not in C, since In(Σ) and Out(Σ) are
acyclic and do no affect termination conditions. However, as Adn−1(Base(Σ)
∪Derived(Σ)) = Σ, we have that Σ is not in C as well (which contradicts the
hypothesis). In addition, C (Adn-C since there are sets of TGDs Σ such that
Σ is in Adn-C, but not in C (see, for instance, Example 6.3). 2

6.2 Cyclicity Detection during Rewriting Process

Theorem 6.5 in the previous section evidenced that the rewriting function
Adn can still be useful to improve termination criteria and enlarge the class
of constraints for which chase termination is guaranteed. Moreover, there are
still simple sets of constraints which are not recognized by any technique so
far considered, even if constraints are rewritten. The below example shows
such a case.

6.2 Cyclicity Detection during Rewriting Process 51

Example 6.6. Consider the set of constraints Σ6.6:

r1 : R(x
p1

)→ S(x
p2

, x
p3

)

r2 : S(x
p4

1, x
p5

2)→ ∃ z T (x
p6

2, z
p7

) ∧Q(x
p8

2)

r3 : T (x
p9

1, x
p10

2) ∧ T (x
p11

1, x
p12

3) ∧ T (x
p13

3, x
p14

1)→ R(x
p15

2)

The set Σ6.6 is not LS since r2 ↪→ r2. Indeed, r2 < r3 < r1 < r2 and
MOV E(Σ6.6, Out(r2, z)) = {p7, p15,p2, p3, p6, p8} < In(r2, x1) = {p4}. Σ6.6

is not in Adn-LS as well. In fact we have that the set Adn(Σ6.6) is as follows:

s1 : Rb(x)→ Sbb(x, x)
s2 : Sbb(x1, x2)→ ∃ z T bf (x2, z) ∧Qb(x2)
s3 : T bb(x1, x2) ∧ T bb(x1, x3) ∧ T bb(x3, x1)→ Rb(x2)
s4 : T bf (x1, x2) ∧ T bb(x1, x3) ∧ T bb(x3, x1)→ Rf (x2)
s5 : Rf (x)→ Sff (x, x)
s6 : Sff (x1, x2)→ ∃ z T ff (x2, z) ∧Qf (x2)
s7 : T bf (x1, x2) ∧ T ff (x1, x3) ∧ T ff (x3, x1)→ Rf (x2)
s8 : T ff (x1, x2) ∧ T ff (x1, x3) ∧ T ff (x3, x1)→ Rf (x2)

Adn(Σ6.6) is not in LS as constraints s5, s6, s8 reproduce the same structure
of the source constraints which, as discussed in Example 6.6, are not in LS.

However it is easy to check that the chase terminates for all database
instances. 2

Thus, in this section we present a new rewriting technique which allow us to
detect larger classes of constraints for which chase termination is guaranteed.
Our rewriting algorithm is inspired by the one presented in [GS10] and similar
to the algorithm Adn+ there presented, but uses different adornments for free
variables. Before presenting our rewriting algorithm let us recall some further
notations. Let Adn(·) be the function rewriting a set of constraints Σ, defined
over a database schema R, into an adorned set Σα (as proposed in [GS10])
we shall denote with Adn-1(·) the function taking in input an adorned first
order formula consisting of a conjunction of atoms or a constraint or a set of
constraints and gives in output the same formula without adornments. Since
the new rewriting function here introduced adorns constraints using different
free adornments of the form fi, we shall denote with src(rα) (or simply r)
the constraint in the source set Σ from which an adorned one rα has been
derived.1

Head adornment. Given a TGD r : ϕ(x, z)→ ∃yψ(x,y) and let ϕα(x, z)
be a coherent adornment for the body atoms, then
SkHeadAdn(r, ϕα(x, z)) denotes the adorned head of r obtained as follows:
i) every universally quantified variable has the same adornment of the body

1 We shall use src(rα), instead of Adn−1(rα), when we are interested in the con-
straint identifier rather than in the constraint definition.

52 6 Checking Chase Termination by Constraints Rewriting

occurrences, ii) existentially quantified variables appearing in constraints with
empty body and constants are adorned as b; iii) every existentially quantified
variable y is adorned with an adornment fi where the subscript is an integer
value associated to the skolem function fry(α[x]), (here α[x] denotes the sub-
string of α corresponding to x). For instance, for r : R(x, z) → ∃y R(x, y)
we have that SkHeadAdn(r,Rbb(x, z))=∃y Rbf1(x, y), where f1=f

r
y (b), and

SkHeadAdn(r,Rbf1(x, z)) = ∃y Rbf1(x, y).

Adornment substitution. In order to have terminating sequences we will
also use substitutions for adornments sequences. In particular, a substitution
θ is a set of pairs fi/fj such that i ̸= j; obviously, the same symbol cannot
be used in both left and right sides of substitutions, i.e. a symbol fj used to
replace a symbol fi cannot be substituted in θ by a symbol fk.

The algorithm builds a graph E storing dependencies among adorned pred-
icates. In particular, an edge (pαr , q

β
s) states that the predicate pα, appearing

in the head of an adorned constraint derived from r, has caused the creation of
an adorned predicate qβ appearing in the head of a constraint derived from s.
The graph is built for checking cyclic dependencies among adorned predicates
denoting possible non-terminating chase sequences.

Adornment algorithm. The rewriting of constraints is performed by the
function Adn++ reported in Figure 6.2 which differs from the Adn function
defined in [GS10] in several aspects: (i) in the generation of adorned predi-
cates it also considers how constraints may fire each other; (ii) the adornment
of the head is done by applying the function SkHeadAdn which introduces
adornments with subscripts and these different free adornments appear in the
output set; (iii) when a new adorned constraint rα is generated, if there is an
adorned constraint rβ and a substitution θ such that rαθ = rβ , rα is replaced
by Body(rα)→ Head(rβ), to avoid the creation of an infinite set of adorned
constraints; (iv) in addition to the adorned set of TGDs, the algorithm also
returns a boolean taking into account the fact that a form of cyclicity has been
detected and a substitution has been used to unify two adorned constraints
(to avoid an infinite set of adorned TGDs).

It is worth noting that if there are constraints with constants it is possible
to generate adorned constraints with (adorned) body predicates not depending
on the source predicates; these constraints are useless and, therefore, could be
dropped.

Analogously to the function Adn, the function Adn++ receives in input
a set of TGDs Σ, but differently from Adn, it returns a pair consisting of an
adorned set of TGDs (with different free symbols) and a boolean value giving
information about the detection of a form of cyclicity. The two elements
returned by the algorithm (set of constraints and boolean value) are denoted
by Adn++(Σ)[1] and Adn++(Σ)[2], respectively. Adn++(Σ)[1] consists of
four different subsets: Base(Σ), Derived(Σ), In(Σ) and Out(Σ), denoting,
respectively, base, derived, input and output constraints.

6.2 Cyclicity Detection during Rewriting Process 53

Function Adn++(Σ);
Input Set of TGDs Σ over schema R;
Output Set of (adorned) TGDs Base∪Derived∪In∪Out

Boolean value Cyc;
begin
Base = Derived = In = Out = New Pred = E = ∅;
Cyc = false;
// Let Bodyb(r) be the conjunction obtained by adorning atoms
// in Body(r) with strings of b symbols
Used Pred = {pbr | ∃r ∈ Σ and ∃pb in Bodyb(r)};
for each applicable r ∈ Σ do begin
Base=Base ∪ {Bodyb(r)→SkHeadAdn(r,Bodyb(r))};
New Pred=New Pred ∪{pαr|pα(t)∈SkHeadAdn(r,Bodyb(r))}

−Used Pred;
end for;
while (New Pred ̸= ∅) do begin
Select nondeterministically pα1..αns ∈ New Pred;
New Pred = New Pred− {pα1..αns };
Used Pred = Used Pred ∪ {pα1..αns };
for each r ∈ (Base ∪Derived) s.t. s < src(r) do
for each pβ(x1, ..., xn) ∈ Body(r) do begin
B′ = Body(r)−{pβ(x1, ..., xn)} ∪ {pγ1..γn(x1, ..., xn)};
//γi= b if xi∈Consts;
//γi=αi if xi∈V ars; (i ∈ [1..n])
if B′ is coherent then begin
Let H ′ = SkHeadAdn(Adn-1(r), B′);
if (∃rβ ∈Derived and ∃subst. θ s.t. (B′→H ′)θ=rβ)
then begin
Derived = Derived ∪ {B′ → Head(rβ)};
E = E ∪ {(pα1..αns , pωsrc(r))|pω(t) ∈ Head(rβ)};
if (r is exist. quantified and E is cyclic) then

Cyc = true;
end;
else begin
Derived = Derived ∪ {B′ → H ′};
E = E ∪ {(pα1..αns , pωsrc(r))|pω(t) ∈ H ′};
New Pred = New Pred ∪

{pωsrc(r)|pω(t) ∈ H ′ ∧ pωsrc(r) ̸∈Used Pred};
end;

end;
else Derived=Derived ∪ {B′→Head(Adn-1(r))};

end for;
end while;
Delete from Derived constraints with unadorned heads;
for each p(A1, ..., An) ∈ R do
In = In ∪ {p(x1, ..., xn) → pb...b(x1, ..., xn)};

for each p(A1, ..., An) ∈ R do
for each pα(z1, .., zn) appearing inBase ∪Deriveddo
Out = Out ∪ {pα(x1, ..., xn) → p̂(x1, ..., xn)};

return⟨Base ∪Derived ∪ In ∪Out, Cyc⟩;
end.

Fig. 6.2. Constraint Rewriting Function Adn++.

54 6 Checking Chase Termination by Constraints Rewriting

Example 6.7. Consider the set of constraints Σ6.7

r1 : N(x) → ∃y E(x, y)
r2 : E(x, y)→ N(y)

The following set of base adorned constraints are first introduced:

s1 : N b(x) → ∃y Ebf1(x, y)
s2 : Ebb(x, y)→ N b(y)

Next, the below adorned constraints are introduced in the set Derived:

s3 : Ebf1(x, y)→ Nf1(y)
s4 : Nf1(x) → ∃y Ef1f2(x, y)
s5 : Ef1f2(x, y)→ Nf2(y)
s6 : Nf2(x) → ∃y Ef2f3(x, y)
s7 : Ef2f3(x, y)→ Nf3(y)

At this point the constraint

s′ : Nf3(x)→ ∃y Ef3f4(x, y)

should be added, but since there is a substitution θ = {f3/f1, f4/f2}, the TGD

s8 : Nf3(x)→ ∃y Ef1f2(x, y)

is added and the generation of derived constraints terminates. Moreover, the
graph E contains a cycle Ef1f2 → Nf2 → Ef2f3 → Nf3 → Ef1f2 and the
adornment function returns the boolean value Adn++(Σ6.7)[2] = true. 2

The next results state that the rewriting function Adn++ terminates and
gives in output a set of TGDs equivalent to the input set.

Lemma 6.8. For every set of TGDs Σ the function Adn++ always termi-
nates. 2

Proof. (Sketch). Termination of the rewriting algorithm is guaranteed by the
use of substitutions which collapse adorned dependencies deriving from the
same source constraint. 2

Theorem 6.9. For every set of TGDs Σ over a database schema R,

⟨Map(R),Map(Σ)⟩ ≡R/R̂ ⟨Adn++(R, Σ), Adn++(Σ)[1]⟩

where Adn++(R, Σ) = R ∪ {pα(A1, ..., An) | p(A1, ..., An) ∈ R ∧ pα appears

in Adn++(Σ)[1]} ∪ R̂. 2

6.2 Cyclicity Detection during Rewriting Process 55

Proof. (Sketch). The proof follows the one of Theorem 6.4; it is sufficient to
set Σα equal to Adn++(Σ)[1] and Σ̄ equal Map(Σ). 2

Let C denote a class of TGDs for which chase termination is guaranteed
by checking a given criterion (e.g. C ∈ Cr), we shall denote with Adn++C
the class of TGDs Σ such that Adn++(Σ)[1] is in C. The following theorem
shows that the rewriting technique here introduced is useful to enlarge the
class of constraints which are recognized as terminating by a given criterion
C.

Theorem 6.10. C Adn-C Adn++C, for C ∈ Cr ∪ {Str}. 2

Proof. C Adn-C has been stated in Theorem 6.5. To show that Adn-C
Adn++C, we first show Adn-C ⊆ Adn++C by contradiction. We shall use
the function Adn-s which, similarly to the function Adn-1, takes in input an
adorned first order formula consisting of a conjunction of atoms or a con-
straint or a set of constraints and gives in output the same formula without
subscripts, i.e. it elinates subscripts from adornments. Suppose that there is
a Σ and a criterion C such that Adn(Σ) ∈ C and Adn++(Σ)[1] ̸∈ C.
Moreover, since Adn−s(Adn++(Σ)[1]) ⊆ Adn(Σ), every criterion for chase
termination C verified by Adn++(Σ)[1] is verified by Adn(Σ) as well. The
strict containment, for all criteria considered, is proved by the fact that the
set of constraints Σ6.6 is in Adn++WA, but not in Adn-LS. 2

It is important to recall that a rewriting technique using adornments with
subscripts has been first defined in [GS10]. Moreover, differently from the
previous rewriting technique, where new subscripts are introduced any time
a new adorned constraint with existentially quantified variables is generated,
the current technique controls the introduction of subscript (i.e. different free
symbols) using skolem functions applied to adornments of head universally
quantified variables. In addition, different free symbols appear in the output
set of the rewriting function here presented, whereas previous techniques re-
turned in output a set of constraints with just two adornment symbols (b and
f). To better understand the advantages provided by the current rewriting
technique we refer to the following example.

Example 6.11. Considering the below set of constraints:

c1 : R(x, z)→ ∃y T (x, y)
c2 : T (x, y)→ R(x, y)

the current rewriting technique Adn++ generates the dependencies:

r1 : Rbb(x, z) → ∃y T bf1(x, y)
r2 : T bb(x, y) → Rbb(x, y)
r3 : T bf1(x, y) → Rbf1(x, y)
r4 : Rbf1(x, z)→ ∃y T bf1(x, y)

56 6 Checking Chase Termination by Constraints Rewriting

which are acyclic and, therefore, terminating, whereas the technique Adn+
proposed in [GS10] generates the below constraints:

s1 : Rbb(x, z) → ∃y T bf1(x, y)
s2 : T bb(x, y) → Rbb(x, y)
s3 : T bf1(x, y) → Rbf1(x, y)
s4 : Rbf1(x, z) → ∃y T f1f2(x, y)
s5 : T f1f2(x, y) → Rf1f2(x, y)
s6 : Rf1f2(x, z) → ∃y T f2f3(x, y)
s7 : T f2f3(x, y) → Rf2f3(x, y)
s8 : Rf2f3(x, z) → ∃y T f3f4(x, y)
s9 : T f3f4(x, y) → Rf3f4(x, y)
s10 : Rf3f4(x, z) → ∃y T f4f5(x, y)

At this point the rewriting procedure stops because was not able to detect the
termination and returns a set of adorned constraints without subscripts. The
output set does not give any advantage in terms of analysis of its structural
properties. Therefore, the rewriting performed by the function Adn++ is more
effective of the one presented in [GS10]. 2

We conclude by introducing our final class of constraints for which chase
termination is guaranteed.

Definition 6.12 (Acyclicity). A set of TGDs Σ is said to be Acyclic (AC)
if Adn++(Σ)[2] is false. 2

The class of acyclic constraint is denoted by AC. The next theorem shows
that the hierarchy criteria here introduced collapse and coincide with the class
AC when constraints are rewritten using the adornment function Adn++.

Theorem 6.13. AC = Adn++WA = Adn++LS. 2

Proof. (sketch) To show Adn++WA = Adn++LS it is suffi-
cient to demonstrate that Adn++WA ⊇ Adn++LS, as Adn++WA ⊆
Adn++LS is trivial, that is if there is a Σ such that Adn++(Σ)[1] ̸∈ WA,
then Adn++(Σ)[1] ̸∈ LS also holds. Indeed, for any Σα = Adn++(Σ)[1],
Σα ̸∈ WA means that there is a cycle in dep(Σα) with a special edge. It can
be easily shown that in such a case there is a cycle in the firing graph Γ (Σα)
and a cycle in the trigger graph ∆(Σ) as well.

We show now that Adn++WA = AC. We first consider the case of
AC ⊆ Adn++WA showing that for any Σ in AC the set of constraints
Adn++(Σ)[1] is weakly acyclic. In fact, as said above, a cycle in dep(Σα)
means that there is a cycle C in Γ (Σα) where nulls are created and prop-
agated. This means that in the rewriting there is a constraint belonging to
C which is used more than once and, therefore, a substitution is employed
to avoid an infinite number of adorned constraints. Moreover, each predicate
symbol in the (head of a TGD contained in the) path C depends on the other

6.2 Cyclicity Detection during Rewriting Process 57

Fig. 6.3. Criteria Relationships.

predicate symbols. Consequently, in such a case Adn++(Σ)[2] = true. Vicev-
ersa, Adn++WA ⊆ AC holds as for any Σ ̸∈AC we have that Σ ̸∈Adn++WA.
Adn++(Σ)[2] = true means that a cycle where nulls may be propagated has
been detected; this implies that Γ (Σα) is cyclic and that dep(Σα) contains a
cycle with a special arc. 2

The below corollaries derive straightforwardly from the previous theorem
and state that AC is the most general chase termination criterion and, for
acyclic constraints, the length of all chase sequences is polynomial in the size
of the input database.

Corollary 6.14. Let Σ be a set of acyclic TGDs. Then for every database D
all chase sequences of Σ over D terminate in polynomial time in the size of
D. 2

Corollary 6.15. LS AC. 2

The complete relationships among the previously discussed criteria is re-
ported in Figure 6.3.

7

The ChaseTEQ System Prototype

This chapter presents ChaseTEQ, a system prototype for repairing and query-
ing incomplete databases. The system consists of three different modules al-
lowing users to i) design data dependencies and apply different criteria for
checking chase termination, ii) execute the chase fixpoint to produce a (finite)
repaired database with labelled nulls, and iii) execute (restricted) SQL queries
over the repaired database.

7.1 System Description

ChaseTEQ is a system prototype for querying and repairing (using chase
fixpoint algorithms) inconsistent databases. The main features devoted to
support constraint design, database repairing and database querying are im-
plemented by means of three different modules which will be next discussed.
Thus, the user first defines a set of data dependencies Σ associated with a
given database schema R. After have checked that Σ guarantees chase ter-
mination, independently of the input database instance, the input database
D (defined over R) can be uploaded and the chase algorithm is applied to
fix possible inconsistencies. The resulting database D̂ is then used to answer
queries.

Constraints Design

The environment supporting constraints design is implemented by a module
called ChaseT . The user, after having defined data dependencies over a given
database, could check whether a specific criterium guarantees that the chase
algorithm terminates. Alternatively the user could ask whether there exists
a criterium (among those implemented in the system) which guarantees ter-
mination. To this aim, ChaseT provides a library of methods able to check
the termination of the chase procedure for a given set of integrity constraints.

60 7 The ChaseTEQ System Prototype

Fig. 7.1. Termination Criterium Fields

In particular, ChaseT implements weak acyclicity, safety, super-weak acyclic-
ity and c-stratification criteria and two rewriting techniques: Adn and Adn+

(presented in [GS10]). The capacity of implemented criteria to recognize chase
termination is shown in Figure 7.1.

The rewriting techniques, implemented by means of the two functions
Adn and Adn+, produce, for a given set of constraints Σ, equivalent sets of
constraints Adn(Σ) and Adn+(Σ), allowing to extend the application fields
of known termination criteria. From a computational point of view, the test
of WA, SC and SwA criteria is polynomial (in the size of dependencies),
whereas the test of CStr criterium is in coNP . The rewriting functions could
need exponential time in the size of the input constraints.

For a better understanding of possibly non-terminating conditions, ChaseT
allows users to take vision of the graphical simulation of nulls propagation by
showing the constraints graph, representing how constraints may activate each
other, and the position graph, showing how values and nulls may be propa-
gated through positions. In more detail, the constraints graph denotes i) the
c-chase graph if the underlying criterium is CStr, and ii) trigger graph if the
underlying criterium is SwA. Concerning the position graph, it denotes the
dependency graph or the propagation graph according to the selected WA or
SC criterium.

Database Repairing

Databases are repaired by applying the chase fixpoint algorithm which is
implemented by the ChaseE module.

To model the presence of multiple null values, introduced by the chase
procedure, ChaseE duplicates affected attributes (i.e attributes containing
labelled nulls). More specifically, the input databases is first translated into a
textual database D′. Next the chase algorithm is applied to D′ and produces
a new database D” which could contain labelled nulls (represented by special
strings). Finally, the database D” is rewritten into a database D̂ so that each
column has the original format and affected attributes are duplicated, that
is for each affected attribute A there is a “dummy” attribute A d which is
used to store the value of attribute A in database D”, i.e. it is used to store

7.1 System Description 61

labelled nulls or the textual version of values appearing in affected attributes.
Therefore, if the textual database D” has a tuple t” containing a labelled null
nj in attribute A, the corresponding tuple t̂ in the final database D̂ has a
(standard) null value in attribute A and a labelled null value nj in attribute
A d.

Example 7.1. Consider a database containing information concerning courses,
teachers and students stored in four relations whose schemas are Course(Name),
Teaches(Teacher, Course), Follows(Student, Course) and ST (Student, Tea-
cher). The below set of constraints Σ7.1

Course(x)→ ∃y Teaches(y, x)
Follows(x, y) ∧ Teaches(z, y)→ ST (x, z)

states that each course must have a teacher and the teachers of a student are
those teaching a course followed by the student.

Assuming to have the database instance D7.1 consisting of the facts
Course(Db), Follows(Tom,Db) and Follows(Ann, Db). The application of
the chase algorithm gives in output a (textual) database D”7.1 containing the
tuples Course(Db), Follows(Tom,Db), Follows(Ann, Db), Teaches(n1, Db),
ST (Tom, n1) and ST (Ann, n1). The corresponding database D̂7.1 consists of
the tuples Course(Db), Follows(Tom,Db), Follows(Ann,Db), Teaches(⊥,
Db, n1), ST (Tom,⊥, n1) and ST (Ann,⊥, n1), where ⊥ denotes the standard
null value. 2

Query Answering

Users could submit restricted SQL queries corresponding to relational ex-
pressions defining unions of conjunctive queries. The evaluation of queries is
performed by the module ChaseQ which allows users to see a database hav-
ing the same schema of the source one, that is dummy attributes are hidden
and they are just used to check whether two nulls denote the same element.
In particular, each query having equality condition A = B involving affected
attributes A and B, is rewritten by replacing this condition with A d = B d,
where A d and B d are the dummy attributes corresponding to A and B,
respectively. For instance, the following query

SELECT ST1.Student, ST2.Student

FROM ST ST1, ST ST2

WHERE ST1.Teacher = ST2.Teacher

AND ST1.Student < ST2.Student

asking for pairs of students having the same teacher, defined over the database
D7.1 of Example 7.1 is rewritten as

SELECT ST1.Student, ST2.Student

FROM ST ST1, ST ST2

WHERE ST1.Teacher_d = ST2.Teacher_d

AND ST1.Student < ST2.Student

62 7 The ChaseTEQ System Prototype

Fig. 7.2. ChaseTEQ architecture

and applied to the rewritten database D̂7.1.

7.2 Implementation

The top-level architecture of ChaseTEQ is depicted in Figure 7.2.
The Graphical User Interface (GUI) allows the user to provide the set Σ

of data dependencies and three parameters: i) γ, denoting the type of chase
she/he is interested in (standard, skolem oblivious, naive oblivious), ii) τ ,
denoting the selected termination criterium (WA, SC, SwA, CStr), and iii) ρ,
denoting the possible rewriting technique she/he would use (Adn, Adn+ or
none). Through the GUI it is also possible to upload a database D (specifying
the database location and the credentials) and fix its possible inconsistencies
by running the desired chase algorithm.

If the user wants to check the termination of the selected chase algorithm
by applying a rewriting technique, the input set of dependencies Σ is rewritten
(by the auxiliary Rewriter module) into a set of adorned dependencies Σα.
Since the rewriting output also depends on the particular chase procedure
(standard or oblivious) the user would use, the Rewriter module receives in
input Σ and the parameters ρ and γ and gives in output the rewritten set of
constraints Σα.

The system allows users to select a specific termination condition (WA,
SC, etc.), but it is also possible to check termination without indicating any
specific criterium (default option). In such a case, all techniques are applied
and the system returns the properties of the input dependencies (see the

7.2 Implementation 63

Fig. 7.3. ChaseT User Interface

bottom right window in Figure 7.3). The indication of a specific criterium is
useful to identify the origin of possible non-terminating conditions.

Figure 7.3 shows how the user interacts with the system through the GUI.
The left window shows the input set of dependencies, while the rewritten set
of dependencies is showed in the right window; parameters are introduced
through check boxes.

It is worth noting that the data dependencies defined by the user are first
parsed to check syntactic errors and inconsistencies (e.g. the use of predicates
having the same name and different arity).

For the analysis of the structural properties of a set of dependencies Σ,
ChaseT builds two specific graphs for the selected criterium: the constraints
graph and the position graph. The graphs can be visualized using a graph
visualization tool for a better understanding of data dependency properties
(see Figure 7.4).

The module ChaseE applies the desired chase algorithm (specified by the
parameter γ) to the input database D and set of dependencies Σ; it returns
the rewritten repaired database D̂ where multiple null values are stored into
additional dummy attributes. As said above, the presence of dummy attributes
is hidden to the user, and labelled nulls appear as standard null values.

To execute queries ChaseTEQ uses the standard SQL engine. The ChaseQ
module takes in input the query Q, performs its rewriting in Q̂ (as discussed
in the previous section) and submits Q̂ on the rewritten database D̂ through
the DBMS.

The system has been developed in Java using Eclipse IDE and is down-
loadable from wwwinfo.deis.unical.it/chaseteq. The interactions among the

64 7 The ChaseTEQ System Prototype

Fig. 7.4. Graph visualizer

different modules are carried out through interfaces so that each module can
be easily modified without any inference on the other modules. The GUI
has been written using the Swing Java libraries and the open source library
JGraphX for the visualization of graphs. The current version of the system
uses Connector/J driver and supports MySql DBMS, however it is able to
manage different DBMS drivers that can be easily added.

7.3 Application Scenario

In the following, a typical use-case scenario of ChaseTEQ is shown.
Suppose, for instance, that the user wants to check the termination of the

standard chase procedure for the following set of constraints Σ7.3:

σ1 : Published(x)→ ∃y Cites(x, y)
σ2 : Paper(x) ∧ Cites(x, y)→ Published(y)

defined over the schema Paper(PaperId), Published(PaperId) and Cites(
Paper, CitedPaper) representing published papers and their citations.

Figure 7.3 shows the use of the constraint design features, provided by the
ChaseT tool. In order to test the termination of the standard chase procedure
for the given set of constraints Σ7.3, the user introduces it in the “Input data
dependency” window, select “standard” as chase type and apply the known
termination conditions (Run test button), by taking into account that more
general techniques require greater computational effort and the explanation
is more complex.

For the example shown in Figure 7.3 the application of all termination con-
ditions to the original set of dependencies produces a negative result. However,

7.3 Application Scenario 65

Fig. 7.5. ChaseE User Interface

the application of the simplest rewriting generates the equivalent set Adn(Σ),
which is weakly acyclic. The rewritten set (generated using the Adorning but-
ton), is visualized in the “Adorned data dependency” window (in the right side
of Figure 7.3).

The position graphs for the source and rewritten constraints can be visual-
ized (using the See Graphs button) to understand the behaviors of the different
techniques. As shown in Figure 7.4, the dependency graph of Σ contains a
cycle going through a special edge (“Dependency graph” window), whereas
the dependency graph of Adn(Σ) is acyclic (see “Adorned dependency graph”
window).

In order to execute the chase algorithm the user select the “execution
frame” (see Figure 7.5), loads a database instance stored in a relational
database and executes the previous selected chase algorithm by using the
Execute Chase button. The result can be viewed in the Result window and
stored in the source relational database.

Queries are submitted and evaluated on the repaired data-base using the
“query frame” shown in Figure 7.6. SQL queries are written or uploaded
through the “Query window”, whereas the input database can be visualized
in the “DB instance window”. The result of the execution of the input query
on the (repaired) database is showed in the “Result window”. The rewritings
of database and query are hidden to users which see a database having the
same schema of the source database. Concerning the execution of the chase
fixpoint algorithm, the user interacts with a “chase execution frame” which,
from a graphical point of view, is similar to the query frame. This frame allows
users to upload the set of constraints Σ and the input databases D (visualized

66 7 The ChaseTEQ System Prototype

Fig. 7.6. ChaseQ User Interface

in two different windows) and to execute the chase algorithm on Σ and D; the
resulting repaired database is stored and visualized in the “Result window”.

8

Conclusions

This thesis has presented new criteria and rewriting techniques that allow to
recognize larger classes of constraints for which the chase fixpoint algorithm
always terminates, independently from the database instance.

We have first introduced extensions of the well-known stratification cri-
terion and have defined further criteria which generalize both super-weak
acyclicity and stratification-based criteria (including the class of constraints
which are inductively restricted).

Next we have introduced a rewriting algorithm transforming the original
set of constraints into an equivalent set so that structural properties for chase
termination can be checked on the rewritten set. We have shown that signif-
icant classes of constraints for which the chase execution terminates can be
captured by classical criteria after that constraints have been adorned. The
rewriting technique is orthogonal to termination conditions and improves cur-
rent chase termination criteria.

A more general rewriting algorithm producing as output an equivalent set
of dependencies and a boolean value stating whether a sort of cyclicity has
been detected, has also been proposed. The new rewriting technique and the
checking of acyclicity allowed us to introduce the class of acyclic constraints
which guarantees that all chase sequences are finite with a length polyno-
mial in the size of the input database. Acyclicity represent the most general
criterion so far defined.

Regarding the T -hierarchy, it is important to observe that for any fixed
finite m, AC ̸⊆ T [m] and even Adn-C ̸⊆ T [m], for all criteria C, since there
are examples of constraints which are in AC and also in Adn-C, which are not
in T [m]. Moreover it is also important to observe that although the problem of
checking whether ≺P (r1, ..., rm) is in NP, the complexity could be bounded
by O(km×n), where n (resp. k) is the maximum number of atoms in the body
(resp. head) of a constraint (see Lemma 5.6). Even worse, the number of checks
which need to be done is equal to |Σ|m. Therefore, considering sequences of
firing constraints greater than two make these classes not very relevant from
a complexity point of view.

68 8 Conclusions

Finally, we presented ChaseTEQ, a tool for testing chase termination, and,
repairing and querying incomplete databases. We described the architecture
of the system and the use-case scenarios. As future work, we plan to extend
the set of chase termination criteria with new criteria proposed in this thesis.

Dealing with EGDs

In this thesis we have not considered equality generating dependencies.
Current work is addressing this important aspect. A possible solution to
this problem could be based on simple transformations replacing EGDs
with TGDs, such as the ones made in [Mar09]. Moreover, as discussed in
[PLC+08, CGL09, GS10], there are simple cases of EGDs that could be easily
treated such as those defining, in the framework of ontology languages, func-
tional restriction on roles [PLC+08] and keys which are not conflicting with
TGDs [CGL09].

In general, when we consider both TGDs and EGDs, different situations
may happen. We have already seen in Example 1.4, that in some cases the
presence of EGDs allows to have terminating chase sequences in the case
where the set of only TGDs dependencies is non-terminating, but we also
have the opposite case (see next example) where the presence of EGDs allows
to have non-terminating chase sequences in the case where the set of only
TGDs dependencies is terminating.

Consider for instance the following set of constraints Σ:

r1 : N(x)→ ∃y ∃z E(x, y, z)
r2 : E(x, y, y)→ N(y)
r3 : E(x, y, z)→ y = z

The set of TGDs Σ′ = {r1, r2} is terminating for all database instances
as recognized by several criteria (e.g. super-weak acyclicity). Moreover, the
chase fixpoint applied to Σ and the database D = {N(a)} is non-terminating
as it introduces an infinite number of tuples E(a, η1, η1), N(η1), E(η1, η2, η2),
N(η2), . . .

Thus, we are working on extending our framework by also taking into
account EGDs. In particular, we are developing more general rewriting tech-
niques for TGDs and EGDs guaranteeing the termination of all chase se-
quences, or of at least one, for all database instances D in polynomial time in
the size of D.

References

[ABU79] Alfred V. Aho, Catriel Beeri, and Jeffrey D. Ullman. The theory of joins
in relational databases. ACM Trans. Database Syst., 4(3):297–314, 1979.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[Ber06] Leopoldo E. Bertossi. Consistent query answering in databases. SIG-
MOD Record, 35(2):68–76, 2006.

[BKL11] Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. Data
cleaning and query answering with matching dependencies and matching
functions. In ICDT, pages 268–279, 2011.

[BR91] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. J. Log.
Program., 10(1/2/3&4):255–299, 1991.

[BV84] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data depen-
dencies. J. ACM, 31(4):718–741, 1984.

[CCGL04] Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, and Maurizio
Lenzerini. Data integration under integrity constraints. Inf. Syst.,
29(2):147–163, 2004.

[CGK08] Andrea Cali, Georg Gottlob, and Michael Kifer. Taming the infinite
chase: Query answering under expressive relational constraints. In De-
scription Logics, 2008.

[CGL09] Andrea Cali, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a
unified approach to ontologies and integrity constraints. In ICDT, pages
14–30, 2009.

[CGP10] Andrea Cali, Georg Gottlob, and Andreas Pieris. Advanced processing
for ontological queries. PVLDB, 3(1):554–565, 2010.

[Cho07] Jan Chomicki. Consistent query answering: Five easy pieces. In ICDT,
pages 1–17, 2007.

[CLR03] Andrea Cali, Domenico Lembo, and Riccardo Rosati. On the decidability
and complexity of query answering over inconsistent and incomplete
databases. In PODS, pages 260–271, 2003.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2001.

[Cod71] E. F. Codd. Normalized data structure: A brief tutorial. In E. F. Codd
and A. L. Dean, editors, Proceedings of 1971 ACM-SIGFIDET Work-
shop on Data Description, Access and Control, San Diego, California,
November 11-12, 1971, pages 1–17. ACM, 1971.

70 References

[Cod72] E. F. Codd. Relational completeness of data base sublanguages. In: R.
Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM Research
Report RJ 987, San Jose, California, 1972.

[Cod74] E. F. Codd. Recent investigations in relational data base systems. In
IFIP Congress, pages 1017–1021, 1974.

[CP11] Andrea Cali and Andreas Pieris. On equality-generating dependencies
in ontology querying - preliminary report. In AMW, 2011.

[DGST11] Andrea De Francesco, Sergio Greco, Francesca Spezzano, and Irina Tru-
bitsyna. Chaset: A tool for checking chase termination. In SUM, pages
520–524, 2011.

[DL97] Oliver M. Duschka and Alon Y. Levy. Recursive plans for information
gathering. In IJCAI (1), pages 778–784, 1997.

[DLLR07] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. On reconciling data exchange, data integration, and peer
data management. In PODS, pages 133–142, 2007.

[DNR08] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited.
In PODS, pages 149–158, 2008.

[DPT99] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data indepen-
dence, constraints, and optimization with universal plans. In VLDB,
pages 459–470, 1999.

[DPT06] Alin Deutsch, Lucian Popa, and Val Tannen. Query reformulation with
constraints. SIGMOD Record, 35(1):65–73, 2006.

[DST11] Andrea De Francesco, Francesca Spezzano, and Irina Trubitsyna.
Chaset: A tool for checking chase termination. In SEBD, pages 163–
174, 2011.

[DT03] Alin Deutsch and Val Tannen. Reformulation of xml queries and con-
straints. In ICDT, pages 225–241, 2003.

[Fag77] Ronald Fagin. Multivalued dependencies and a new normal form for
relational databases. ACM Trans. Database Syst., 2(3):262–278, 1977.

[Fag81] Ronald Fagin. A normal form for relational databases that is based on
domians and keys. ACM Trans. Database Syst., 6(3):387–415, 1981.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
Data exchange: semantics and query answering. Th. Comp. Sc.,
336(1):89–124, 2005.

[FKP05] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange:
getting to the core. ACM Trans. Database Syst., 30(1):174–210, 2005.

[GN08] Georg Gottlob and Alan Nash. Efficient core computation in data ex-
change. J. ACM, 55(2), 2008.

[GS10] Sergio Greco and Francesca Spezzano. Chase termination: A constraints
rewriting approach. PVLDB, 3(1):93–104, 2010.

[GST11] Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. Stratifica-
tion criteria and rewriting techniques for checking chase termination.
PVLDB, 4(11):1158–1168, 2011.

[HY90] Richard Hull and Masatoshi Yoshikawa. Ilog: Declarative creation and
manipulation of object identifiers. In VLDB, pages 455–468, 1990.

[JK84] David S. Johnson and Anthony C. Klug. Testing containment of con-
junctive queries under functional and inclusion dependencies. J. Com-
put. Syst. Sci., 28(1):167–189, 1984.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In
PODS, pages 233–246, 2002.

References 71

[Mar09] Bruno Marnette. Generalized schema-mappings: from termination to
tractability. In PODS, pages 13–22, 2009.

[Mei10] Michael Meier. On the Termination of the Chase Algorithm. Albert-
Ludwigs-Universit“at Freiburg (Germany), 2010.

[MMS79] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing impli-
cations of data dependencies. ACM Trans. Database Syst., 4(4):455–469,
1979.

[MPR09] Giansalvatore Mecca, Paolo Papotti, and Salvatore Raunich. Core
schema mappings. In SIGMOD Conference, pages 655–668, 2009.

[MSL09a] Michael Meier, Michael Schmidt, and Georg Lausen. On chase termina-
tion beyond stratification. PVLDB, 2(1):970–981, 2009.

[MSL09b] Michael Meier, Michael Schmidt, and Georg Lausen. On chase termina-
tion beyond stratification. CoRR, abs/0906.4228, 2009.

[PDST00] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. A chase
too far? In SIGMOD Conference, pages 273–284, 2000.

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontolo-
gies. J. Data Semantics, 10:133–173, 2008.

[PS11] Reinhard Pichler and Sebastian Skritek. The complexity of evaluating
tuple genarating dependencies. In ICDT, pages 244–255, 2011.

[tCCKT09] Balder ten Cate, Laura Chiticariu, Phokion G. Kolaitis, and
Wang Chiew Tan. Laconic schema mappings: Computing the core with
sql queries. PVLDB, 2(1):1006–1017, 2009.

[Var84] Moshe Y. Vardi. The implication and finite implication problems for
typed template dependencies. J. Comput. Syst. Sci., 28(1):3–28, 1984.

[Zan82] Carlo Zaniolo. A new normal form for the design of relational database
schemata. ACM Trans. Database Syst., 7(3):489–499, 1982.

	Digitalizzato a 29-11-2011 19-35
	Spezzano_Francesca_Tesi_Dottorato

