

UNIVERSITÀ*DELLA*CALABRIA*
*

Dipartimento*di*Elettronica, * *
Informatica*e*Sistemistica*

Dottorato*di*Ricerca*in* *
Ingegneria*dei*Sistemi*e*Informatica*

*

XXVciclo*
*

Settore*Scientifico*Disciplinare: *INGBINF/05*
*
*

Tesi%di%Dottorato%
*
*

*

Pattern*Extraction*from*Data*
with*application*to*Image*

Processing*
*
*
*

*

*
Alessia*Amelio*

*
*
*
*
*
*
*
*
*
*
*

DEIS- DIPARTIMENTO DI ELETTRONICA, INFORMATICA E SISTEMISTICA
Novembre

Settore Scientifico Disciplinare: ING-INF/05*

*

To Anyone interested in reading this work

Contents

Abstract . 1

1 General introduction . 3
1.1 Pattern extraction from images . 4
1.2 Pattern extraction from political data . 5
1.3 Thesis plan . 6

Part I

Summary . 9

2 An Evolutionary and Graph-based method for Image Segmentation . 11
2.1 Introduction . 11
2.2 The image segmentation problem . 11

2.2.1 Quality evaluation for image segmentation . 12
2.3 The evolutionary computation . 12

2.3.1 Genetic algorithmic approach . 13
2.4 State of the art in image segmentation . 14

2.4.1 Image segmentation for multispectral satellite images . 14
2.4.2 Evolutionary computation for image segmentation . 15
2.4.3 Our contribution . 16

2.5 Genetic Normalized Cut for image segmentation . 16
2.6 GeNcut: the methodology . 17

2.6.1 Problem definition . 17
2.6.2 Objective Function . 18
2.6.3 Genetic representation and operators . 19

2.7 Results and discussion . 19

3 Image Compression by 2D Motif Basis . 23
3.1 Introduction . 23
3.2 The image compression problem . 23
3.3 State of the art in image compression . 24

3.3.1 Lossless Compression Techniques . 24
3.3.2 Lossy Compression Techniques . 26
3.3.3 The JPEG Standard . 29
3.3.4 Our contribution . 31

3.4 Image compression algorithm based on 2D Motifs . 32
3.5 Image compression by 2D Motif Basis: the methodology . 34

3.5.1 Basic notions . 34

X Contents

3.5.2 Algorithms and implementation . 36
3.6 Experimental results . 37

4 Conclusion to Part I . 41

Part II

Summary . 45

5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution 47
5.1 Introduction . 47
5.2 State of the art in computational techniques to political field . 47

5.2.1 Parliamentary group cohesion and voting similarity in the Finnish Parliament 47
5.2.2 Community structure in the United States House of Representative 48
5.2.3 Community structure in congressional cosponsorship networks 49
5.2.4 Party polarization in Congress: a network science approach . 50
5.2.5 Community structure in the United Nations General Assembly 50
5.2.6 Analyzing the US Senate in 2003 . 51
5.2.7 Our contribution . 52

5.3 Analysis of voting behavior in Italian Parliament . 52
5.4 The methodology . 54

5.4.1 Data description . 54
5.4.2 Analysis of voting patterns . 55
5.4.3 Parliamentarians similarity . 58
5.4.4 The 7th Semester . 62

6 Conclusion to Part II . 65

7 General conclusion and future work . 67

8 Publications underlying this thesis . 69

References . 71

Abstract

The term Information Extraction refers to the automatic extraction of structured information from data. In
such a context, the task of pattern extraction plays a key role, as it allows to identify particular trends and
recurring structures of interest to a given user. For this reason, pattern extraction techniques are available in a
wide range of applications, such as enterprise applications, personal information management, web oriented
and scientific applications. In this thesis, analysis is focused on pattern extraction techniques from images and
from political data. Patterns in image processing are defined as features derived from the subdivision of the
image in regions or objects and several techniques have been introduced in the literature for extracting these
kinds of features. Specifically, image segmentation approaches divide an image in ”uniform” region patterns
and both boundary detection and region-clustering based algorithms have been adopted to solve this problem.
A drawback of these methods is that the number of clusters must be predetermined. Furthermore, evolutionary
techniques have been successfully applied to the problem of image segmentation. However, one of the main
problems of such approaches is the determination of the number of regions, that cannot be changed during
execution. Consequently, we formalize a new genetic graph-based image segmentation algorithm that, thanks
to the new fitness function, a new concept of neighborhood of pixels and the genetic representation, is able
to partition images without the need to set a priori the number of segments. On the other hand, some image
compression algorithms, recently proposed in literature, extract image patterns for performing compression,
such as extensions to 2D of the classical Lempel-Ziv parses, where repeated occurrences of a pattern are
substituted by a pointer to that pattern. However, they require a preliminary linearization of the image and
a consequent extraction of linear patterns. This could miss some 2D recurrent structures which are present
inside the image. We propose here a new technique of image compression which extracts 2D motif patterns
from the image in which also some pixels are omitted in order to increase the gain in compression and which
uses these patterns to perform compression. About pattern extraction in political science, it consists in detect-
ing voter profiles, ideological positions and political interactions from political data. Some proposed pattern
extraction techniques analyze the Finnish Parliament and the United States Senate in order to discover politi-
cal trends. Specifically, hierarchical clustering has been employed to discover meaningful groups of senators
inside the United States Senate. Furthermore, different methods of community detection, based on the con-
cept of modularity, have been used to detect the hierarchical and modular design of the networks of U.S.
parliamentarians. In addition, SVD has been applied to analyze the votes of the U.S. House of Represen-
tatives. In this thesis, we analyze the Italian Parliament by using different tools coming from Data Mining
and Network Analysis with the aim of characterizing the changes occurred inside the Parliament, without
any prior knowledge about the ideology or political affiliation of its representatives, but considering only the
votes cast by each parliamentarian.

1

General introduction

Information Extraction is defined as the automatic extraction of structured information (entities, relationships
between entities and attributes) from data. The type of data used as origin can be structured, such as for
relational data from databases, semi-structured, such as HTML or XML, and unstructured (i.e. plain text
or images). The extraction process also allows to integrate structured and unstructured data sources and to
perform queries on them.

Pattern Extraction is the main task in information extraction. It consists in identifying the patterns which
are relevant based on the user’s queries. Such patterns can be detected automatically, semi-automatically
and manually. In particular, the pattern discovery automatic procedures support the user in building the
knowledge-bases, taking a set of input data and extracting sets of patterns from them by using various kinds
of learning techniques.

The topic of pattern extraction is relevant in multiple communities including machine learning, informa-
tion retrieval, database, web, image processing and document analysis. In the past, the extraction process
was focused on the identification of named entities, like people and company names and relationship among
them from natural language text. In the last two decades, the introduction of the Internet considerably pro-
moted the diffusion of applications based on various forms of information extraction. Consequently, new
applications of pattern extraction have been adopted, because of the easy online access to both structured
and unstructured data. Furthermore, applications such as comparison shopping, and other automatic portal
creation applications, have increased the research and the commercial activity on this topic.

The techniques of pattern extraction developed over the last years were initially rule-based with manually
coded rules. However, because manual coding of rules quickly becomes hard, algorithms for automatically
learning rules from examples were subsequently introduced. As the extraction systems began to be used on
more noisy unstructured sources, rules were not considered to be suitable. Consequently, statistical learning
techniques were adopted, in particular generative models based on Hidden Markov Models and conditional
models based on maximum entropy. Afterwards, both these approaches were substituted by global conditional
models, called Conditional Random Fields. Furthermore, when the analysis of a documents structure was
required from the extraction systems, techniques from grammar construction were introduced. Finally, hybrid
models have been adopted, trying to embody the benefits of both statistical and rule-based methods.

Pattern extraction is currently used in a wide range of applications, such as enterprise applications, per-
sonal information management, web oriented and scientific applications.

About enterprise applications, a typical example of pattern extraction is automatically keep track of spe-
cific kinds of events from news sources. Some tasks consist of the extraction of structured entities like people
and company names, and relations between them. Other popular tasks are based on tracking disease out-
breaks and terrorist events from news sources. Furthermore, the automatic creation of multimedia news by
the integration of video and pictures of entities and events annotated in the news articles and the hyperlink of
news articles to background information on people, places and companies are two recent applications of pat-
tern extraction on news articles. Other examples of enterprise applications can be found in customer-oriented
enterprises. A customer-oriented enterprise has to manage many types of unstructured data coming from the
customer interaction, which must comply with the structure of the enterprise’s databases and business ontolo-
gies. Some tasks in this direction are based on the identification of special patterns, such as product names and
product attributes from customer emails and links between customer emails and a given transaction in a sales

4 1 General introduction

database, on the extraction of patterns like merchant name and addresses from sales invoices, on the iden-
tification of customer moods from phone conversation transcripts, and on the discovery of product attribute
value pairs from textual product descriptions. Furthermore, in data warehousing, cleaning processes require
to convert addresses that are stored as flat strings, whose structure is little explicit, into their structured forms
such as road name, city, and state. Sometimes, for the same person, different address records are stored in
multiple databases. When the warehouse is built, all these addresses must be converted in a standard canon-
ical format where all the different patterns representing the fields are identified and duplicates eliminated.
Finally, an implicit data structure is also present in classified ads and other listings such as restaurant lists.
These kinds of data can be invaluable for querying if a structured format is not given by extracting from them
the most meaningful patterns.

About Personal information management (PIM) systems, the goal is to organize personal data such as
documents, emails, projects and people in a structured inter-linked format. Basically, such systems should be
able to automatically detect structured patterns from existing file-based unstructured sources.

Regarding pattern extraction in web oriented applications, different examples can be given about. The first
one is related to citation databases on the web that need a complex structure extraction process from sources
such as conference web sites or individual home pages (Citeseer, Google Scholar3, Cora, etc.). Pattern ex-
traction for such databases is composed of multiple levels starting from navigating web sites for finding pages
containing publication records, extracting individual publication records from a HTML page, extracting ti-
tle, authors, and references from paper PDFs, and segmenting citation strings into individual authors, title,
venue, and year fields. A second example is related to opinion databases. Many web sites store unmoderated
opinions about a variety of topics, such as products, books, movies, people, and music, which are in free text
form inside blogs, newsgroup posts, review sites, etc. If these opinions are organized along structured fields
identified by a pattern extraction process, their value can increase. Community web sites such as DBLife and
Rexa are other examples of structured database creation from web documents. They keep information about
researchers, conferences, talks, projects, and events related to a specific community. The main steps for creat-
ing such structured databases consist of locating patterns such as talk announcements from department pages,
extracting patterns like names of speakers and titles from them, structured records about a conference from
a website, and so on. Furthermore, recently much effort has been done in creating comparison shopping web
sites that automatically crawl merchant web sites to find products and their prices, for comparison shopping.
Advertisement placement on webpages and structured web searches are other two important contexts where
pattern extraction processes take place. For example, mentions of products and the type of opinion expressed
on the products can be extracted from web sites to place advertisements.

Finally, pattern extraction process is of prior importance in many scientific fields, such as bio-informatics,
image processing, computational political science, and so on. In bio-informatics, the detection of ”biologi-
cal objects” such as proteins and genes is a meaningful task of pattern extraction. Another central problem
consists of extracting from paper repositories like Pubmed, protein names, and their interaction. This task
favored the development of new computational techniques used for pattern extraction. It is mainly because
the entities in biological field like Gene and Protein names are very different from classical named entities,
such as people and companies in enterprises context.

This thesis focuses of techniques for features extraction, specifically covering the two application domain
of pattern extraction from images and political data. Such two application domains are briefly overviewed
upon next.

1.1 Pattern extraction from images

Patterns in image processing can be considered as features derived from the subdivision of the image in
”uniform” regions or objects, features extracted from the entire image or just regular sub-area of an image or
features which are dependent from the application, such as human faces and fingerprints.

Object pattern extraction in images can be performed by using various techniques, such as edge detection
and image segmentation. An edge is considered as a boundary between two dissimilar regions in an image,
which may indicate different parts of an object, or also a boundary tracing the separation between light and
shadow on a single surface. Most edge detection algorithms assume that a discontinuity in the image intensity

1.2 Pattern extraction from political data 5

function or a very sharp intensity gradient in the image are able to identify an edge. About image segmenta-
tion, it is a process whose aim is to partition a digital image into disjoint and uniform regions. Specifically,
this process should be able to group pixels together into regions based on some similarity criterion.

Sometimes it is important to extract from images specific kinds of patterns such as textures, corners and
point patterns.

Textures are considered as image patterns with properties of homogeneity that do not consist in the pres-
ence of a single color or intensity. Texture is a property which characterizes all surfaces, including cloud,
trees, bricks, hair, fabric, etc. and codifies important information about their structural arrangement and their
relationship to the surrounding environment. Most texture patterns can be classified as random or periodic.
In this context, pattern extraction procedures are based on texture segmentation, whose aim is the identifi-
cation of disjoint regions inside the image based on their texture uniformity. In this context, segmentation is
often performed by adopting three independent subprocesses: texture feature extraction, feature selection or
reduction if the number of features is too large and, finally, application of a segmentation algorithm.

A corner is another important kind of two-dimensional pattern localized inside an image, which can
be characterized by using a mathematical description. It is the feature formed at boundaries between only
two image brightness regions, in correspondence to the ”extremely” high values of the boundary curvature.
Image corner detection is a well known task in computer vision and image processing. Standard approaches
for corner detection consist in a pre-segmentation phase for contours detection and a subsequent extraction
process of corners corresponding to the intersection points or junction points between straight lines.

Finally, point patterns are defined as point sets with finite diameters which are present in various pattern
recognition and image processing tasks. The points may be defined as feature vectors in feature space, pixels
in images, physical objects or even spatial data. The structure in the point set is usually discovered in the
form of clusters, directionality, and intrinsic dimensionality. Generally, it is important to discover the border,
known as the external shape, of a point set.

Another interesting task in image pattern extraction is related to the geometric primitive discovery. In
particular, the surface of the objects inside the image can be defined as a set of patches, where each patch is
a geometric primitive. Consequently, geometric primitive location and discovery is important for identifying
and locating object patterns in the environment. It should evaluate if the set of points can be best fitted by the
given geometric primitive or not. On the other hand, the extraction process of geometric primitives should
find the right primitive that fits the set of points.

1.2 Pattern extraction from political data

In computational political science, voter profiles, ideological positions, political interactions and the content
of political conflict are considered as meaningful patterns that should be discovered from data. In this context,
pattern extraction has been performed by using several computational techniques, including text analysis
methods, social network analysis and agent-based models [82].

About text analysis, data mining techniques are often adopted, in order to discover high-quality informa-
tion like patterns and trends in politics from text automatically. Several proposed techniques generate word
scores from reference texts with a priori known positions, and then score each virgin text by the generated
word scores. Given the features of words, usually the next phase consists in categorize the texts by using
the word features through classification and clustering approaches. Sentiment analysis is another branch of
text analysis used in political science, whose aim is to detect patterns like the attitudes of speakers or writers
with respect to some topic in text. Standard sentiment analysis should analyze the words from the linguistic
point of view, i.e. studying the sentiments on words and phrases and discovering the emotional bias of key
terms. Probabilistic Topic Models are also employed for pattern extraction from political text. They consider
documents as mixtures of topic patterns, which are probability distributions over words. A topic model is a
generative model for documents, which is a simple probabilistic procedure to generate the documents. An
example is given by the topic modeling of the United States Senate speeches. Topic patterns extracted from
the data are then labeled to build meaningful classes.

The analysis of interactions, lives, competitions and cooperations among political subjects is another
means to discover meaningful patterns in political data. In particular, social networks have been adopted for
this purpose. They are defined as social structures composed of nodes representing all the main actors in a

6 1 General introduction

political world, and of edges connecting pairs of nodes, representing specific kinds of relations among them.
Traditional network measures from graph theory and exploratory analysis, such as closeness, betweenness,
and eigenvector centrality, have been employed to analyze these kinds of networks, compute statistics over
the implied graphs, and discover the most central political interest groups. Social network analysis techniques
can also be used to analyze multiple forms of political co-operation.

Finally, in order to simulate political evolution patterns in terms of policy consequences, election out-
comes and trade changes, agent-based approaches represent also useful methods. In particular, parties are
modeled as rationally bounded adaptive agents, and multiple algorithms are adopted to represent different
behaviors of parties to explore election results.

1.3 Thesis plan

In this section we have just presented the variety of aspects and communities involving the information ex-
traction topic, with particular emphasis on the task of pattern extraction. In such context, we have provided
specifically an overview of the main aspects related to image pattern extraction approaches and pattern ex-
traction procedures in computational political science, since the rest of this thesis will be focused on pattern
extraction applications in image processing and political science. The thesis is organized as follows. In Part
I we will introduce two new techniques respectively for image compression and image segmentation that
employ pattern extraction procedures. Segmentation (Section 2) is obtained by an evolutionary algorithm and
it is used as a mean to extract ”uniform” region patterns, while compression (Section 3) is performed by
discovering motif patterns in two dimensions. Section 4 will conclude Part I.

Part II of this thesis will analyze some aspects related to kinds of patterns extracted from political data.
In particular, Section 5 will introduce a new approach that employs social network analysis and data mining
for characterizing trends, alliances, modifications and conflicts incurred inside the Italian Parliament during
the XVI legislature and Section 6 will conclude Part II. Finally, Section 7 will summarize all the presented
approaches and will outline future work.

Part I

Summary

Part I of this thesis will present two new image processing approaches where pattern extraction plays a
relevant role. The first one is an image segmentation algorithm which extracts meaningful region patterns
from natural images while the second one is an image compression technique based on the extraction of
repeated ”not solid” motif patterns.

Specifically, the first technique consists in a graph-based approach for image segmentation that employs
genetic algorithms. An image is modeled as a weighted undirected graph, where nodes correspond to pixels,
and edges connect similar pixels. A fitness function, that extends the normalized cut criterion, is employed,
and a new concept of nearest neighbor, that takes into account not only the spatial location of a pixel, but
also the affinity with the other pixels contained in the neighborhood, is defined. Because of the locus-based
representation of individuals, the method is able to partition images in ”uniform” region patterns that well
adhere to the human visual perception, without the need to set the number of segments beforehand.

The image compression algorithm is based on extensions to 2D of some of the Lempel-Ziv incremental
parsing techniques. In these techniques, an image is decomposed into a number of patches, consisting each
of a square or rectangular solid block. In this new approach, image compression techniques are proposed
based on patches that are not necessarily solid blocks, but are affected instead by a controlled number of
undetermined or don’t care pixels. Such patches are chosen from a set of candidate motifs that are extracted
in turn from the image 2D motif basis, the latter consisting of a compact set of patterns that result from the
autocorrelation of the image to itself. As is expected, it is found that limited indeterminacy can be traded for
higher compression at the expense of negligible loss.

2

An Evolutionary and Graph-based method for Image Segmentation

2.1 Introduction

Next we present a new graph-based algorithm, named GeNCut (Genetic NCut), to solve the image segmenta-
tion problem by using an evolutionary approach. In particular, we represent an image as a weighted undirected
graph. Then, a genetic algorithm optimizing a fitness function is executed in order to find an optimal partition-
ing of the graph and, consequently, a good segmentation of the image. The fitness function is an extension
of the normalized cut concept of Shi and Malik [65] that allows for a simultaneous k-way partitioning of
the image without the need of fixing the number k of divisions beforehand, which is typical of many image
segmentation approaches. In fact, because of the locus-based representation of individuals adopted, k is au-
tomatically determined by the optimal value of the objective function. Experiments on images of different
difficulty show that GeNCut outperforms the method of Shi and Malik by partitioning natural and human
scenes in meaningful objects.

The chapter is organized as follow. In the two next sections the problem of image segmentation is defined
together with some notions of evolutionary computation. Then a detailed review of the state of the art on
image segmentation is presented also contrasting our approach against to previous ones. After that, section
2.5 provides an informal overview of our technique. GeNcut is formally described starting from section 2.6.1
that introduces a formalization of the image segmentation as a graph partitioning problem and a description
of the adopted homogeneity measure. Section 2.6.2 presents the concept of normalized cut and the fitness
function used by GeNCut. Section 2.6.3 explains the employed genetic representation and operators. Finally,
section 2.7 illustrates the experimental results.

2.2 The image segmentation problem

Image segmentation is an important problem in pattern recognition that aims at partitioning an image into
uniform and meaningful regions [18]. More formally, the problem can be stated as follows [28]: let R be an
image constituted by a set of pixels. Segmenting the image R consists in subdividing R into a finite number
of regions R1...Rs

such that

1. R =
S

s

i=1 Ri

.

2. R
i

is a convex set, i = 1...s2.

3. R
i

\R
j

= ;, 8i, j, i 6= j.

4. Q(R
i

) = TRUE, i = 1...s.

5. Q(R
i

S
R

j

) = FALSE, for each pair of adjacent regions R
i

, R
j

.

12 2 An Evolutionary and Graph-based method for Image Segmentation

In this case, Q(R
k

) is a logical predicate defined on all the points of the set R
k

, which is able to specify the
existance of a given property on the set of the points. Two regions R

i

and R
j

are defined adjacent is their
union is a connected set.

Condition 1 implies that the segmentation have to be complete: each pixel must belong to some region.
Condition 2 requires that the points inside a region have to be connected (4 or 8-connected). Remember that,
given two points P and W belonging to a same subset S ⇢ R, we can assert that P is k-connected to W if
a k-path between them exists including only the points in S. A path of length n from P to W is a sequence
of points P = P0, P1, P2, ...Pn

= W such that P
i

is a k-neighbor of P
i�1, 8i = 1...n. A point P of position

(x, y) in R has k=4 neighbors (of position (x, y � 1), (x, y + 1), (x + 1, y), (x � 1, y)) and k=8 neighbors
(of position (x � 1, y � 1), (x, y � 1), (x + 1, y � 1), (x � 1, y), (x + 1, y), (x � 1, y + 1), (x, y + 1),
(x+ 1, y + 1)).

Condition 3 indicates that the regions have to be disjoint. Condition 4 is related to the property Q that
should be satisfied by pixels inside a segmented region R

k

. Finally, the condition 5 indicates that two adjacent
regions R

i

and R
j

should be different considering the Q predicate. As an example, a homogeneity measure
could be defined over pixels that takes into account characteristics such as intensity, color, or texture. Pixels
belonging to the same region should be similar on the basis of the homogeneity measure adopted, while
adjacent regions should be significantly dissimilar with respect to the same features.

Usually, image segmentation is an initial and vital step in a series of processes aimed at understand-
ing an image. Applications of image segmentation include identifying objects in a scene for object-based
measurements such as size and shape. It is a very important aspect in medical imaging for locating tumors
and other pathologies, measuring tissue volumes, performing computer-guided surgery, diagnosis, treatment
planning and study of anatomical structures. It refers also to satellite image segmentation where the main
objects of an earth observation scene should be extracted and to face recognition where the initial step is the
extraction of facial features from a human image. Also, identifying objects in a moving scene is a useful task
in video-surveillance, while identifying objects which are at different distances from a sensor using depth
measurements from a laser range finder is important in path planning for a mobile robot.

2.2.1 Quality evaluation for image segmentation

An image segmentation algorithm should be able to solve the segmentation problem, running until the regions
or objects of interest have all been identified into the image. Consider that segmentation process is in general
one of the most difficult goals to achieve in image processing and the segmentation accuracy determines the
success or the fail of the image segmentation procedures. However, accuracy evaluation of segmentation al-
gorithms remains today a critical point: this is mainly because there is no unique ground-truth segmentation
of an image against which the output of an algorithm may be compared. Consequently, there is no standard
method for objective evalutation of segmentation quality. Common approaches for assessing segmentation re-
sults are based on human intuition or judgment (subjective evaluation) [10]: an ”ad hoc” subjective evaluation
is performed by a representative group of observers. To avoid systematic subjective evaluation, an automatic
procedure, referred to as objective evaluation, is often adopted. Quality metrics used for evaluating objec-
tively the image segmentation may consider segmentation algorithms or segmentation results. The metrics
are referred to as analytical methods or empirical methods, respectively. Analitical methods don’t implement
the algorithms but evaluate segmentation algorithms by considering their principles, their requirements and
their complexity. Empirical methods, on the other hand, assess the segmentation quality by analyzing the
results of the segmentation algorithms. In order to compare segmentation algorithms based on empirical eval-
uation, the different approaches are applied on a set of test data that are relevant to a given application. The
algorithm producing the best quality score is then chosen for that application.

Next, we discuss the evolutionary computation and then analyze the application of evolutionary compu-
tation to the image segmentation problem.

2.3 The evolutionary computation

Similarly to [21], evolution can be defined as a two-phase iterative process, consisting in a random variation
and a selection phase. Similarly to the natural evolution beginning from an initial population, the evolutionary

2.3 The evolutionary computation 13

computation starts by selecting a set of initial contending solutions for a particular problem. These solutions
can be randomly chosen or selected using any available knowledge about the problem . Then, the ”parent”
solutions are joined by a preselected means of random variation, generating ”offspring”. A fitness function is
able to evaluate the effectiveness of the ”children” solutions: those solutions whose fitness value is quite low
are removed and consequently not further considered. So, the process is repeated over successive generations.
One of the advantages and differences of the evolutionary algorithms from the other approaches is that they
do not require many assumptions on how to evaluate the fitness of a solution (i.e. the gradient-based search
requires a smooth, differentiable cost function). Basically, the performance index need only to compare two
solutions to each other, determining which solution is better than another. For this reason, evolutionary algo-
rithms can be used for the resolution of a broad range of non conventional problems. Other two advantages of
the evolutionary computation are the possibility to ”on the fly” generate quickly good enough solutions ready
to use and the property to adapt dynamically the optimization procedure, without restarting.

In an evolutionary procedure it’s very important to define, first of all, the format of the possible solutions
that should be evaluated. Generally, there is no single best choice for this representation. Secondly, the fitness
function, that is necessary to assess any candidate solution, must also be selected. The third step consists
in choosing a random variation operator (or operators) useful to generate offspring solutions from parent
solutions. The fourth step should establish a rule for choosing which solutions will survive for the next
generation. One of the many forms of selection is survival of the very best solutions related to the fitness
value. On the other hand, remaining solutions are thrown away. Finally, the initial population have to be
selected. The solutions can be chosen completely at random from the space of all possible solutions if nothing
is known about how to solve the problem. Alternatively, prior knowledge or bias of other algorithms for good
solutions can be used to generate some reasonable start-points to incorporate in the initial population. Those
solutions will survive in the evolution if they will prove useful; otherwise they will be removed as weak
solutions.

In conclusion, the main point is that the problem-specific knowledge available is not necessary to the
application of an evolutionary technique, although it is possible to integrate and take advantage of it in the
evolutionary computation. This is the reason why evolutionary algorithms can be applied for the resolution
of a broad range of problems.

2.3.1 Genetic algorithmic approach

Genetic Algorithms [26] are a class of adaptive general-purpose search techniques included in evolutionary
computation and consequently inspired by natural evolution. They have been proposed by Holland [33] in
the early 1970s as computer programs that simulate the evolution process in nature. In the last few years
genetic algorithms revealed competitive alternative methods to traditional optimization and search techniques
and they have been applied to many problems in diverse research and application areas such neural nets
evolution, planning and scheduling, machine learning and pattern recognition. A standard Genetic Algorithm
(GA) evolves a constant-size population of elements (called chromosomes) by using the genetic operator of
reproduction, crossover and mutation. Each chromosome represents a candidate solution to a given problem
and it is associated with a fitness value that reflects how good it is, with respect to the other solutions in the
population. Generally, a chromosome is encoded as a string of bits from a binary alphabet. The reproduction
operator copies elements of the current population into the next generation with a probability proportionate
to their fitness (this strategy is also called roulette wheel selection scheme). The crossover operator generates
two new chromosomes by crossing two elements of the population selected proportionate to their fitness.
The mutation operator randomly alters the bits of the strings. GAs are stochastic iterative algorithms without
converge guarantee. Termination may be triggered by reaching a maximum number of generations or by
accepting a solution that satisfies some goodness criterion. GAs can be applied when no domain knowledge is
available. However, domain knowledge can be incorporated in GAs by either modifying the genetic operators,
or choosing a particular initial population, or modifying the quality function.

In the next section, we come back to describe the state of the art in image segmentation. It includes also
an overview of the main evolutionary-based image segmentation techniques.

14 2 An Evolutionary and Graph-based method for Image Segmentation

2.4 State of the art in image segmentation

The image segmentation problem has been intensively investigated with the use of several computational tech-
niques, and many different methods have been proposed. A broad classification divides the existing methods
in two main categories [77]: boundary detection-based approaches and region clustering-based approaches.
The former approaches search for closed boundary contours by detecting pixels that sensibly change in in-
tensity. Boundaries of objects are obtained by linking such pixels in contours. The main limitation of these
approaches is that a threshold value must be set in order to produce a continuous contour [60, 31].

Region cluster-based methods group similar closed pixels into clusters. Many of these approaches use
Fuzzy C-means [13] or the K-means method, such as [11, 54]. A drawback of some of these methods is that
the number of clusters must be predetermined, which implies that a user should know in advance the region
number of the image to segment. In order to overcome these limitations, methods based on representing
an image as a graph have been introduced. One of the earliest graph-based methods dates back over 40
years and it is based on the minimum spanning tree (MST) of a graph [79]. This method gives a weight
to edges on the basis of differences between pixel intensities, and breaks large edges by fixing a threshold.
Improvements on the policy of edge breaking are proposed in [70]. Wu and Leahy [76] present a method
based on the minimization of the concept of cut, which is the weight of edges connecting two regions. To
avoid unnatural cuts of small groups of isolated nodes, in [65] a new measure of dissimilarity between two
groups named normalized cut is introduced. More recently, Felzenszwalb and Huttenlocher [19] define a
measure of evidence of the boundary between two regions by considering both the differences of intensity
across the boundary and among neighboring pixels within a region.

2.4.1 Image segmentation for multispectral satellite images

Looking at the multispectral earth observation images generated from radars or scanners at multiple bands,
there is a huge literature about segmentation techniques that can be contained into well-defined categories.
Histogram thresholding represents spectral variations using the image histogram: an appropriate threshold
value is found on it to separate objects from the background [61]. Threshold can be obtained using some
specific criterion such as maximization of class or entropy [52]. The main advantage of this model is the
easiness and the efficiency of usage for image segmentation, because it considers only two levels. However,
it is not able to represent the high histogram variability because of the threshold value [17]; in this sense, it
cannot be used successfully for complex multispectral images. Furthermore, proximity information of pixels
is not preserved and the histogram describes only global information.
Other approaches are based on the concept of Markov Random Fields. MRF is a model that considers the
neighbourhood dependencies almost pixels [17]. In [7] a modified model considering multi-scale resolution
is presented. It uses structures of quadtree and pyramid graph for scale representation and the expectation
maximization algorithm to provide the parameters values. In some applications [62][78], an approach in two
steps is performed on over-segmented images. A region adjacency graph for a MRF based on intra-region ho-
mogeneity and inter-region dissimilarity was developed. Then, region merging was performed based on the
energy model. MRF is a very appealing approach for its ability to integrate spectral, textural and contextual
information, although the implementation of the model is very complex and it is not able to represent the
properties of shape and size.
Unsupervised neural networks such as Self-organizing Maps (SOM) have also been used for multispectral
image segmentation. In [71] texture features based on co-occurrence matrix are given as input to a SOM for
cloud detection. A Pulse coupled network characterized by the correspondence one to one to image pixels
and the usage of neighbourhood relationship are introduced in [39], while an improvement of this technique
in the sense of linking of neurons and reduced complexity is formulated in [46]. PCNN can be considered
as a very promising approach to perform segmentation, because of the neighbourhood relationship inclusion.
However, the decision of network structure is critical and some problems are related to learning and general-
ization of the network.
Watershed approaches are the edge detection algorithms that are currently used for multispectral image seg-
mentation. The watershed model transforms the image into the corresponding gradient, so that it is considered
as a structure where grey values correspond to elevation values at that position. The flood of water is spread
from the minimum elevation values and when convergence is reached, a boundary is built across them [9].

2.4 State of the art in image segmentation 15

In [12] a different gradient operator which envelopes textural information is presented. Furthermore, other
marker-controlled watershed techniques are introduced in [6]. The main problem of watershed algorithm is
the over-segmentation that it produces because of noise or textured patterns. For this reason, it can be used
successfully as an initial segmentation approach in a multi-scale resolution technique or associated with a
region merging algorithm [12] [14].
Multi-resolution techniques are the most frequently used approaches to segment multispectral images. They
are based on the importance of factor of scale to identify the objects [4]. These approaches can be defined
as top-down or bottom-up. In the first one, multispectral image is segmented at coarse level. Segmentation
is the input for the following step that performs a finer partitioning. In the second one, the segmentation
process goes in the reverse order from finer to coarser [81]. In [48] a fuzzy approach to select automatically
the segmentation parameters used for multi-resolution is presented. Furthermore, a multiscale segmentation
using region merging approach for initial segmentation and minimum heterogeneity rule for merging objects
is introduced in [45]. The strong advantage of multi-resolution lies in the possibility to incorporate spectral,
shape, size, textural and contextual information of regions at various scales for segmentation. Although this
represents a very promising feature, scale and parameters of scale representation and information extraction
from each scale remain a critical problem.
Fuzzy logic has been introduced into more traditional approaches to perform multispectral image segmenta-
tion adding fuzzy boundaries for objects. In [69] an iterative fuzzy clustering that uses spectral, spatial, textu-
ral and frequency information in fuzzy form is described. In [53] fuzzy techniques associated with histogram
thresholding using fuzzy entropy, correlation and geometry are presented. This model is able to solve the
ambiguity in segmentation using fuzzy logic. However, most of the fuzzy segmentation methods are derived
from clustering and histogram thresholding [64], so the same problems mentioned before about histogram
thresholding can be discussed. About clustering, as the image is mapped in the feature space, proximity
information can be lost and regions obtained from segmentation algorithm can appear unconnected.

2.4.2 Evolutionary computation for image segmentation

In the last years much effort has been done in the definition of effective evolutionary-based approaches for
solving complex problems of computer vision. In particular, evolutionary techniques have been successfully
applied to the image segmentation problem, that we know to be of prior importance for facing more complex
higher level problems such as Object Recognition. A survey on the application of genetic algorithms for
image enhancement and segmentation can be found in [56]. Many of the approaches use a representation of
the image based either on the cluster centers or on the label of the cluster a pixel is assigned to. A color image
segmentation algorithm based on evolutionary approach has been proposed by Halder and Pathak in [30].
Each individual is a sequence of cluster centers and the cost function is the inverse of the sum of Euclidean
distances of each point from their respective cluster centers. In order to determine the most appropriate
number k of clusters, the algorithm is repeated for values of k equals to 2 until k

max

. The choice of the
best k is done by computing a cluster validity index based on inter and intra distances between clusters,
while the value of k

max

must be given as input to the algorithm. Jiao in [37] proposed an evolutionary image
texture classification algorithm where the individuals are the cluster representatives, and the total distance
between the pixels and the corresponding centroids is optimized. The distance for a couple of pixels is the
value of the shortest path between them in the undirected weighted graph representing the image. In the same
paper the author defines a Memetic Image Segmentation approach, where a genetic algorithm is applied on a
set of regions previously extracted from a watershed segmentation in order to refine or merge the partitions
into clusters. In this case each gene of a chromosome is the cluster label of the corresponding pixel. The
association of the regions with the clusters is evolved by optimizing the total distance between the pixels and
the corresponding centroids. In the former approach the number of clusters must be fixed a priori, while in the
latter an approximate initial number is obtained by using the watershed segmentation, and then a final local
search procedure merges regions to obtain the optimal number of clusters. Lai and Chang [40] proposed a
hierarchical structure of the chromosome, composed by control genes, representing a partitioning in regions,
and parametric genes, containing the representative gray levels of each region. The goal is to optimize a
fitness function that is the sum of the distances between the gray level of each pixel and the representative
gray level of its region. The number of control genes, as stated by the authors, is a soft estimate of the upper
bound of the number of regions. Merzougui et al. [49] proposed an evolutionary based image segmentation

16 2 An Evolutionary and Graph-based method for Image Segmentation

technique where the individuals are the components of the cluster centers and the fitness is the mean distance
between the pixels and the centroids. In order to determine the optimal number of clusters, a criterion based
on separability and compactness of the clusters is first applied. Di Gesú and Bosco [24] introduced an image
segmentation algorithm where each chromosome represents the position and the region label where the pixel
is located. The fitness function is defined on the similarity value and the spatial proximity between a pixel
(chromosome) and the mean gray value of its corresponding region.

Because of the adopted representation, one of the main problems of the just described evolutionary ap-
proaches is the determination of the number of regions. Though different criteria are used to fix this number
beforehand, the genetic algorithm cannot change this number while executing.

2.4.3 Our contribution

The segmentation method we propose in the following is genetic-based and it is called Genetic Normalized
Cut. To the best of our knowledge, we introduce for the first time a genetic approach extending the Normalized
Cut criterion. In fact, it dynamically computes the number of regions optimizing the fitness function that is
an extension of the Normalized Cut concept of Shi and Malik [65]. However, differently from the traditional
Ncut, we allow for a simultaneous k-way partitioning of the image without the need of fixing the number k
of divisions beforehand. In fact, the adopted locus-based representation of individuals lets us to automatically
determine the optimal value k of the objective function.

Similarly to [65], our approach uses a representation of the image as a weighted undirected graph. Each
node is a pixel and the weights on the graph edges determine the distance between the pixels in terms of
intensity, color or texture. However, in the Ncut approach, given a pixel i, its neighbors are all those pixels
which are no more than r pixels apart from i. We extend this concept by taking into account for the neigh-
bourhood not only the spatial closeness, but also the pixel affinity. Consequently, neighbors of i will be those
pixels which are ”not too far” from i and that have also maximum similarity with i in terms of intensity, color
or texture. It lets to improve the convergence speed of the method and the quality of the results.

2.5 Genetic Normalized Cut for image segmentation

In this section we give an informal description of the Genetic Normalized Cut algorithm and the variation
operators adopted.

As previously mentioned, given an image I , it is represented as a weighted undirected graph G =
(V,E,w), whose nodes are the pixels and the edge weights correspond to affinity values among them. This
means that the weight value associated with the edge linking two pixels will depend on the similarity between
them in terms of intensity, color or texture. It’s important to observe that two nodes of the graph will not have
an edge between them if they are too far spatially or they have a low affinity value. It is mainly because in
image segmentation the space constraint is a necessary but not sufficient condition to ensure that two pixels
belong to the same region. It’s important instead to pursue a trade-off between the spatial proximity and the
similarity.

Given these preliminaries, we introduce GeNcut as a genetic algorithm performing the following steps.

1. Create an initial population of random individuals each representing a segmentation solution.
2. While termination condition is not satisfied, perform the following sub-steps

(a) evaluate the fitness of each individual
(b) create a new population of individuals by applying the variation operators

The algorithm begins to generate a population initialized at random with individuals each representing a
partition in sub-graphs of the image graph G. Consequently, an individual is a possible solution for the
segmentation problem, because each sub-graph corresponds to a possible region of the segmented image.

The population is ”repaired” to produce ”safe” individuals, that is individuals containing connected sub-
graphs of G. This is realized by linking to each node one of its neighbors. The neighbors of a pixel i are
spatially not distant and similar to i in terms of intensity, color or texture. Consequently, an individual gen-
erating this kind of partitioning avoids uninteresting divisions containing pixels which are spatially too far or

2.6 GeNcut: the methodology 17

not quite similar to each other. This process is very useful because it improves the convergence of the method:
in fact, the space of the possible solutions is restricted.

After that, the fitness function must be evaluated on the individuals of the population. Because it is an
extension of the Normalized Cut concept, it measures both the dissimilarity between the different connected
groups and the rest of the graph as well as the total similarity within the groups. Low values of our fitness
function should be preferred: they let us to obtain a partitioning with strongly connected groups which are
maximally dissimilar to the rest of the graph. In terms of image segmentation, this means to pursue a par-
titioning of the image in regions which are dissimilar each to the rest of the image but uniform inside in
terms of intensity, color or texture. But it is exactly the goal that we have to reach if we consider the image
segmentation problem.

About the variation operators, we use the uniform crossover: the child at each position i contains a value
j coming randomly from one of the two parents. Intuitively, it corresponds to generate a new segmentation
of the image from the two parent segmentations. The interesting property of this operator is that it is able
to generate ”safe” children from two ”safe” individuals. It guarantees to moving in the search space through
the only solutions which are connected sub-graphs, that is ”interesting” partitions of the image, as previously
defined.

Another variation operator is the mutation: it randomly modifies the value j of a i-th gene with one of its
neighbors, in order to guarantee the generation of a ”safe” mutated child in which each node is linked only
with one of its neighbors. This means that the generation of the children segmentations will not diverge from
the subspace of the good segmentation solutions: a neighbor is in fact a pixel with high affinity in spatial
distance and similarity.

2.6 GeNcut: the methodology

Next, we formalize the concepts intuitively discussed in the previous section. First of all, the representation
of the image as a weighted undirected graph is described. Then, the concept of normalized cut and the fitness
function used by GeNCut are introduced. Finally, the genetic representation and employed operators are
explained.

2.6.1 Problem definition

An image R can be represented as a weighted undirected graph G = (V,E,w), where V is the set of the
nodes, E is the set of edges in the graph, and w : E ! R is a function that assigns a value to graph edges.
Each node corresponds to a pixel in the image, and a graph edge (i, j) connects two pixels i and j, provided
that these two pixels satisfy some property suitably defined that takes into account both pixel characteristics
and spatial distance. The weight w(i, j) associated with a graph edge (i, j) represents the likelihood that
pixels i and j belong to the same image region and provides a similarity value between i and j. The higher
the value of w(i, j), the more likely the two pixels are members of the same region. Let W be the adjacency
weight matrix of the graph G. Thus W

ij

contains the weight w(i, j) if the nodes i and j are connected,
zero otherwise. Depending on the method adopted to compute the weights, any two pixels may or may not
be connected. In our approach we employed the Intervening Contour method described in [44, 16]. In this
framework, given a generic pixel, the magnitude of the orientation energy at that pixel is considered. If the
maximum image edge magnitude along a straight line connecting the two pixels i and j in the image plan
is large, then a deep change and, consequently, an intervening contour is present, indicating that the two
pixels do not belong to the same segment. Hence, the weight w(i, j) between these pixels will be low. On the
other hand, if the image edge magnitude is sufficiently weak, this usually happens in a region that is flat in
brightness, the affinity between the two pixels will be very high. More formally, the weight w(i, j) between
the pixels i and j is computed as:

w(i, j) =

(
e�max

x2line(i,j)||Edge(x)||2/2a2

if ||X(i)�X(j)||2 < r, i 6= j

0 otherwise.

where a = (max
y2I

||Edge(y)||) ⇥ �, Edge(x) is the image edge strength at position x, I is the image plan,
line(i,j) is a straight line between i and j, X(i) is the spatial location of the pixel i, r is a distance threshold

18 2 An Evolutionary and Graph-based method for Image Segmentation

and � is the image edge variance. In order to compute the weight between the pixels i and j, image edges
across various scales are considered.

2.6.2 Objective Function

In the last few years many different criteria have been defined to partition a graph representing an image into
non-overlapping connected components. Shi and Malik [65] introduced the dissimilarity measure normalized
cut to divide a graph into two subgraphs, that revealed successful for image segmentation. The concept of
normalized cut is an extension of the notion of cut proposed by Wu and Leahy [76] that avoids the bias for
partitioning in small sets of nodes. Given a partition of a graph G in two disjoint sets of nodes A and B, the
cut between A and B is defined as

cut(A,B) =
X

i2A,j2B

w(i, j)

In [65] the authors pointed out that the cut value diminishes when small sets of isolated nodes are gener-
ated. Thus a disassociation measure, that takes into account the total edge weight connecting two partitions,
has been introduced. Let

assoc(A, V) =
X

i2A,t2V

w(i, t)

be the total connection from nodes in A to all the nodes in V , then the normalized cut is defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)

Shi and Malik formalize the problem of minimizing the normalized cut as a generalized eigenvalue prob-
lem and compute an optimal partition by using the eigenvector with the second smallest eigenvalue. Two
extensions of the approach to k-way partitioning are also proposed. The former recursively partitions the
groups obtained in the previous step by checking the values of the eigenvectors, the latter exploits the top n
eigenvectors and the clustering algorithm K-means. A main limitation of this method is that the number k of
desired partitions must be fixed beforehand.

We now introduce an extension of the concept of normalized cut that is used as criterion to partition
a graph in a generic number k of regions. Note that, the value of k in our approach must not be fixed in
advance, but it is determined by the optimal value of the objective function. Let G = (V,E,w) be the graph
representing an image, W its adjacency matrix, and P = {S1, . . . , Sk

} a partition of G in k clusters.
For a generic cluster S 2 P , let

c
s

=
P

i2S,j /2S

W
ij

m
s

=
P

i2S,j2S

W
ij

m =
P

i2V,j2V

W
ij

be respectively the sum of weights of edges on the boundary of S, the sum of weights of edges inside S,
and the total graph weight sum. The weighted normalized cut WNCut measures for each cluster S 2 P the
fraction of total edge weight connections to all the nodes in the graph

WNCut =
kX

s=1

c
s

m
s

+ c
s

+
c
s

(m�m
s

) + c
s

Note that c
s

corresponds to cut(A,B) where B = V � A. Because of the affinity measure w defined in
the previous section, and the relationship between cut and assoc formalized in [65], more uniform regions
can be obtained with low cut values between the subgraphs representing the regions and the rest of the graph.
This implies that low values of WNcut should be preferred.

2.7 Results and discussion 19

2.6.3 Genetic representation and operators

The genetic algorithm uses the locus-based adjacency representation proposed in [55]. In this graph-based
representation an individual of the population consists of N genes g1, . . . , gN and each gene can assume allele
values j in the range {1, . . . , N}. Genes and alleles represent nodes of the graph G = (V,E,w) modelling
an image, and a value j assigned to the ith gene is interpreted as a link between the pixels i and j. This means
that in the clustering solution found i and j will belong to the same region.

The initialization process assigns to each node i one of its neighbors j. This guarantees a division of the
graph in connected groups of nodes. The kind of crossover operator adopted is uniform crossover. Given two
parents, a random binary vector is created. Uniform crossover then selects the genes where the vector is a 0
from the first parent, and the genes where the vector is a 1 from the second parent, and combines the genes
to form the child. The mutation operator, analogously to the initialization process, randomly assigns to each
node i one of its neighbors.

The genetic operators need to determine the neighbors of each node. In our approach we introduced the
concept of neighbors of a node by taking into account not only the spatial closeness, but also the pixel affinity.
More in details, given a generic node i in the graph, let wh

max

= {w1, . . . , wh | w1 �, . . . ,� wh} be the first
h highest weights of row i in the weight adjacency matrix W .

The h nearest neighbors of i, denoted as nnh

i

, are then defined as nnh

i

= {j | w(i, j) 2 wh

max

}.
nnh

i

is thus the set of those pixels that are no more than r pixels apart from i, and that have maximum
similarity with i. It is worth to note that, even if h is fixed to 1, the number of nearest neighbors of i could
be sufficiently large if many of its spatial neighbors have the same maximum weight wh

max

. This definition
of nearest neighbors guarantees to choose the most similar neighbors during the initialization process, and to
bias the effects of the mutation operator towards the most similar neighbors, thus it contributes to improve
the results of the method.

2.7 Results and discussion

In this section we present the results of GeNCut on five images with details of increasing complexity, and
compare the performances of our algorithm in partitioning natural and human scenes in meaningful objects
with the segmentations obtained by the algorithm of Shi and Malik [65] (in the following referred as NCut)
on the same images. The GeNCut algorithm has been written in MATLAB 7.14 R2012a, using the Genetic
Algorithms and Direct Search Toolbox 2. In order to set parameter values, a trial and error procedure has
been employed and then the parameter values giving good results for the benchmark images have been se-
lected. Thus we set crossover rate to 0.9, mutation rate to 0.2, elite reproduction 10% of the population size,
roulette selection function. The population size was 100, the number of generations 50. The value h of near-
est neighbors to consider has been fixed to either 1 or 2. As already pointed out, this does not mean that the
number of neighbors is 1 or 2, but that the first (and second) most similar neighbors are taken into account
for the initialization and mutation operators. The fitness function, however, is computed on the overall weight
matrix. For all the data sets, the statistical significance of the results produced by GeNCut has been checked
by performing a t-test at the 5% significance level. The p-values returned are very small, thus the signifi-
cance level is very high since the probability that a segmentation computed by GeNCut could be obtained by
chance is very low. The version of the Ncut software that we used is written in MATLAB and it is available
at http://www.cis.upenn.edu/ jshi/software/. The weight matrix of each image is the same for both methods,
and, as already described in section 2.6.1, it is based on the Intervening Contour framework by fixing r = 10,
number of scales 3, number of orientations 4 and � = 0.1. Since NCut needs the number k of clusters, we
executed the algorithm by using two different inputs. The first sets the number k of segments to the same
number of clusters found by GeNCut, the second one is a higher value. In the following, for each image, we
compare the segmentation results of GeNCut and NCut by depicting the contours of the regions obtained by
the two approaches. For a more clear visualization, we show two images. The first image reports the boundary
lines of the segmentation obtained on the original color image, the second one delineates the same contours
without the image background.

Fig. 2.1 shows the execution of GeNCut and NCut on an image of a melanoma. In particular, Fig. 2.1(a) is
the original image, Fig. 2.1(b) and Fig. 2.1(c) display the segmentation obtained by GeNCut with and without

20 2 An Evolutionary and Graph-based method for Image Segmentation

the background image resp., while Fig. 2.1(d) and Fig. 2.1(e) are the results of NCut when the number of
segments is fixed to two, and Fig. 2.6(a) when this number is 5. Fig. 2.1(b)(c) show that GeNCut is able to
find the right partitioning and correctly discriminates between the melanoma and the skin, although we do
not set the number of segments a priori. Fig. 2.1(d)(e) and Fig. 2.6(a) point out that if NCut receives the true
number of segments, it is able to find the correct partitioning, otherwise an over-segmentation is obtained. In
general, however, given an input image, it is hard to know the true number of partitions a priori.

(a) (b) (c) (d) (e)

Fig. 2.1. (a) The original image representing a melanoma, (b) the segmentation result on the original image of GeNCut
with h=2, (d) NCut with k = 2 and (c-e) the corresponding contours.

(a) (b) (c) (d) (e)

Fig. 2.2. (a) The original moon image, (b) the segmentation results on the original image using GeNCut with h=1, (d)
NCut with k = 16 and (c-e) the corresponding contours.

(a) (b) (c) (d) (e)

Fig. 2.3. (a) The original image, (b) the segmentation results on the original image using GeNCut with h=1, (d) NCut
with k = 12 and (c-e) the corresponding contours.

The next experiment represents a more complex scenario, due to the presence of irregular shapes (clouds)
around a spherical object (moon) (Fig. 2.2(a)). Fig. 2.2(b)(c) illustrate the results obtained by using the
GeNCut approach, while Fig. 2.2(d)(e) and Fig. 2.6(b) describe the outputs of the NCut method when the
number of segments is set to 16 and 22, respectively. Although the halo makes it difficult to segment the moon,
by using our algorithm we are able to perform a segmentation that is more flexible in capturing the real shape
of the clouds. NCut, instead, realizes a flatter partitioning with an equal number of segments that is not able
to distinguish and capture some inner parts of the original image. Fig. 2.3(a) and Fig. 2.4(a) show two different

2.7 Results and discussion 21

(a) (b) (c) (d) (e)

Fig. 2.4. (a) An X-SAR image of the Vesuvius volcano, (b) the segmentation results on the original image using GeNCut
with h=1, (d) NCut with k = 8, and (c-e) the corresponding contours.

(a) (b) (c) (d) (e)

Fig. 2.5. (a) The original face image, (b) the segmentation results on the original image using GeNCut with h=2, (d)
NCut with k = 12 and (c-e) the corresponding contours.

kinds of landscapes: a natural picture and a snatch from an X-SAR image of the Vesuvius volcano (Italy),
acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR- C/X-SAR) aboard
the Space Shuttle Endeavour in 1994. For both the images, our algorithm is able to discover the meaningful
objects, Fig. 2.3(b)(c) and Fig. 2.4(b)(c), respectively, while a poor segmentation of the major components
like in Fig. 2.3(d)(e) and Fig. 2.6(c) is obtained by Ncut, despite the setting of the same number of segments,
naturally extracted from our technique. The satellite image in Fig. 2.4(a) is a scene where it is quite difficult
to differentiate the meaningful objects due to the details of the terrain. However, as it can be observed in
Fig. 2.4(b)(c), GeNCut is able to separate the volcano area from the landscape and to distinguish the building
barely visible at the bottom right corner and the area of the deep sea. All these significative features are not
visible in the segmentation results of the NCut approach, Fig. 2.4(d)(e), even if we increase the number of
partitions, Fig. 2.6(d). Finally, we used GeNCut to segment a human face image (Fig. 2.5(a)). In this case the
two approaches are comparable. Although more details are discovered from NCut in correspondence of the
eyes, it over-segments the face (Fig. 2.5(d)(e) and Fig. 2.6(e)). On the other hand, GeNCut obtains a uniform
and natural segmentation of the face (Fig. 2.5(b)(c)) that is able to capture also the shape of the nose, although
it appears linked to the eyes, probably due to the similar gray intensities along the contours of the nose and
the contours of the eyes.

(a) (b) (c) (d) (e)

Fig. 2.6. The segmentation results representing the contours using NCut with (a) k = 5, (b) k = 22, (c) k = 20, (d)
k = 12, (e) k = 20.

3

Image Compression by 2D Motif Basis

3.1 Introduction

In this chapter, we study image compression techniques based on patches that are not necessarily solid blocks,
but are affected instead by a controlled number of undetermined or don’t care values. Such patches are chosen
from a special set of candidate motifs that are extracted in turn from the image 2D motif basis, the latter
representing a particularly compact set of patterns resulting from the autocorrelation of the image with itself.
As is expected, it is found that limited indeterminacy can be traded for higher compression at the expense of
negligible loss.

Specifically, our encoding is based on a dictionary of patches consisting each of a suitable 2D motif
possibly containing some unspecified or don’t cares pixels. Whereas the total number of such patches may
scale exponentially with the number of don’t cares, it is possible to identify a subset of patches that is only
linear in the size of the image and yet contains all the information about the entire repertoire of patches. Our
proposed scheme consists of the iterated selection of the patch in this reduced set that conveys the highest
estimated gain in compression. The scheme is thus offline and may be considered an extension to 2D of
similar onedimensional schemata previously presented in, e.g., [1].

The chapter is organized as follows. The next section introduces the image compression problem. Then,
section 3.3 describes the state of the art in image compression together with our personal contribution. After
that, section 3.4 gives a brief overview of our technique. Section 3.5 recaptures from [2, 59] basic notions
about motifs with don’t cares and 2D motif bases and formally defines algorithms and implementations.
Section 3.6 displays preliminary experimental results.

3.2 The image compression problem

Image compression consists in applying data compression on digital images. The main goal of this task is to
reduce redundancy of the image data for storing or transmitting data as efficiently as possible. If graphics,
audio and video are not compressed, they need a huge storage capacity and transmission bandwidth. Although
the development of the modern technology (increase in mass-storage density, high speed processors, and
more powerful communication systems), a strong request for data storage capacity and data transmission
bandwidth is still present. In order to solve this problem, expecially in multimedia-based web applications
where a massive usage of resources is required, the application of data compression to video and audio signals
for storage and communication technology has been adopted.

A way of classifying compression techniques is by distinguishing between lossless and lossy compression.
Lossless compression procedure does not introduce data loss during the compression phase. Consequently, the
reconstructed image, after compression, is numerically identical to the original image. For this reason, lossless
compression is not as powerful as the lossy one. Applying a lossy compression procedure introduces a loss on
the compressed signal with respect to the original one. So, the image reconstructed from lossy compression
is not fully identical to the original image, because redundant information is completely eliminated. For this
reason, lossy compression is able to obtain much higher compression rates than the lossless one.

24 3 Image Compression by 2D Motif Basis

A lossy image compression system is typically composed of three closely connected components called
(a) Source Encoder (b) Quantizer, and (c) Entropy Encoder. Compression procedure applies, first of all, a
linear transform to decorrelate the image data. Then, a quantization of the resulting transform coefficients is
performed. Finally, entropy codifies the quantized values. Next, each component is described more in detail.
Source Encoder (or Linear Transformer). Many linear transforms can be used which include Discrete
Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT).
Quantizer. The main goal of a quantizer is to reduce the number of bits needed to represent the transformed
coefficients by reducing the precision of those values. Since many values can be associated with a single
quantization level, it is a lossy phase and the main source of compression in an encoder. Quantization on each
individual coefficient is called Scalar Quantization (SQ). Quantization on a group of coefficients together, is
called Vector Quantization (VQ). Uniform and nonuniform quantizers can be used depending on the context.
Entropy Encoder. An entropy encoder compresses the quantized values without loss to increase further
the compression rate. A model is used to compute the probabilities for each quantized value. Then, a code
based on these probabilities is produced in order to reduce the size of the input code stream. Generally, the
Huffman encoder and the arithmetic encoder are the most commonly used entropy encoders, together with
the run-length encoding (RLE) useful for applications requiring fast execution.

In the next section, lossless and lossy techniques are described in more detail and the main approaches
constituting the state of the art in image compression are reported.

3.3 State of the art in image compression

Image compression is broadly classified into lossless and lossy techniques. The most important approaches
belonging to these two categories will be described in the following.

3.3.1 Lossless Compression Techniques

Lossless compression is mainly used in medical imaging, because it preserves the quality of an image dur-
ing the compression phase. The most important approaches included in this category are the Run Length
Encoding, the Huffman Encoding, the LZW Coding and the Area Coding [72].

Run Length Encoding

This method counts the number of adjacent pixels with the same value inside the image. Each sequence found
is substituted by the single value followed by the count of the value inside the sequence [27]. In particular,
the repeating string, called a run, is usually encoded into two bytes. The first byte represents the number of
characters in the run and is called the run count. An encoded run may contain 1 to 128 or 256 characters;
the run count usually contains the number of characters minus one (a value in the range of 0 to 127 or 255).
The second byte is the value of the character in the run, which is in the range of 0 to 255, and is called the
run value. A number of variants of run-length encoding is presented for compression in 2D. Image data is
normally run-length encoded in a sequential process where a 1D stream is considered, rather than a 2D array
of data. In sequential mode, the encoding process starts at the upper left corner and proceeds from left to

3.3 State of the art in image compression 25

right across each row (the X axis) to the bottom right corner of the image. Alternative RLE schemes are also
proposed that encode data down the length of the image (the Y axis) along the columns or even that scan the
image along the diagonals in a zig-zag fashion.

Different RLE schemes have been introduced to encode images. They are usually divided into classes
based on the kind of atomic elements that they consider in the encoding phase.

Bit-level RLE schemes. They encode at bit-level considering runs of multiple bits in a scan line. It is
particularly suitable for monochrome (black and white) images. In this kind of scheme, the runs are codified
as single-byte packets from one to 128 bits in length. The seven least significant bits correspond to the run
count minus one, and the most significant bit embeds the value of the bit run, which is 0 or 1. A run longer
than 128 pixels is divided across multiple RLE-encoded packets.

Byte-level RLE schemes. Byte-level schemes are suitable for compressing images that are stored as one
byte per pixel (i.e. grayscale). They encode at byte-level, finding runs of identical byte values and ignoring
individual bits along a scan line. In the byte-level RLE scheme, the runs of bytes are encoded into 2-byte
packets. The first byte is the run count of 0 to 255, and the second byte contains the value of the byte run.
Also, this scheme adapts to the possibility to store literal, unencoded runs of bytes within the encoded data
stream. In particular, the seven least significant bits of the first byte are the run count minus one, and the most
significant bit of the first byte indicates, if it is set to 1, indicates an encoded run. Encoded runs are decoded by
reading the run value and repeating it the number of times indicated by the run count. If the most significant
bit is 0, a literal run is expected: this run, whose number of repetitions is indicated by the run count, should
be read literally from the image.

Pixel-level RLE schemes. It is used when a single pixel value is represented by two or more consecutive
bytes inside the image (i.e. color 24 bit images). At this level, bits are ignored, and bytes are counted as parts
of a pixel. The size of the encoded packet depends on the size of the pixel values being encoded. The number
of bits or bytes per pixel is stored in the image file header. A run of an image composed of 3-byte pixel values
is stored as a 4-byte packet: one run-count byte is followed by three run-value bytes, one for each channel
inside the image (i.e., RGB).

Huffman Encoding

Huffman code is an effective and efficient technique for image compression [34]. It is a variable-length code:
it encodes very frequent characters by using short codewords and characters which occur infrequently by
using long codewords. Huffman code is also a prefix code. This means that there are no codewords which
are prefix of other codewords. This is very important because ambiguity is avoided inside the codified data:
codewords start differently of one another, in such way that the codewords inside the codified file are unam-
biguous. A binary tree is an efficient representation of a prefix code, whose leaves are the characters of the
alphabet. The binary code of a codeword can be considered as the path along the tree from the root to the leaf
representing the codified character.

The Huffman coding for digital image compression is based on entropy coding and realizes the coding
idea discussed above [63]. For example, we usually need n = 8 bits to represent each pixel of a grayscale
image, because the pixels of this kind of images can take 28 = 256 possible brightness values. Furthermore,
nM2 bits are necessary to represent an image of M ⇥M pixels. If the Huffman coding is used, however, it
is possible to reduce the number of bits to codify each pixel (on average fewer than n = 8 bits).

Basically, Huffman coding represents a set of N characters of a digital image (e.g., N = 256 gray levels
in a grayscale image) with binary code of variable length by the following steps to build the binary tree:

1. compute the probability of occurrence P
i

for each of the symbols (i = 1, 2...N);
2. sort these probabilities in ascending order (from the smallest to the highest);
3. combine the two smallest P

i

at the bottom and resort their sum with all other probabilities, repeat this
phase until only two probabilities are left;

4. add a bit (0 or 1) to the binary codes of the two probabilities newly appearing at each step and repeat it
until all the initial N symbols are encoded.

As output of the Huffman coding, all symbols are encoded optimally, such that more frequent symbols are
encoded by shorter binary codes. Consequently, the average length (number of bits) of the codes for these
symbols is minimized.

26 3 Image Compression by 2D Motif Basis

Dictionary Coders

This category includes the Lempel-Ziv algorithms [83, 84]. In particular, the Lempel-Ziv Welch is the base
technique for GIF and often for TIFF image file formats [75]. Using this technique, the input image is linearly
scanned row by row and the repetitions of recurring patterns in the input string are replaced by shorter refer-
ences to a dictionary containing the original pattern. Coding can be static or dynamic: in the static one, the
dictionary is fixed a priori for the encoding and decoding phases while in the dynamic mode, the dictionary
is built in a single pass during data encoding. In this last mode, it is not necessary to transmit the dictionary:
it can be recovered from the decoder while it decompresses the data.

An overview of the encoding algorithm is reported in the following:

1. Initialize the dictionary D to contain all the strings of the alphabet.
2. Search the longest string W in the dictionary matching the current input.
3. The dictionary index for W is the current output; then, remove W from the input.
4. Add W followed by the next symbol of the input to the dictionary D.
5. Repeat from step 2.

A dictionary D is created to contain the single-character strings which are all the possible characters of
the input string alphabet. The algorithm proceeds by scanning step by step the input string by considering
successively longer substrings until it finds one that is not in the dictionary. When such a string is found, the
index associated with the string but the last character (corresponding to the longest substring in the dictionary)
is removed from the dictionary and sent to output, and the new string (including the last character) is added to
the dictionary with the next available code. After that, the last input character begins the next starting point to
continue the scan. Step by step, increasingly long strings are stored inside the dictionary and made available
for subsequent encoding as single output values. The algorithm is particularly suitable for data with repeated
patterns. Consequently, the initial parts of a message will be slightly compressed.

Area Coding

This kind of coding consists in using some special codewords to represent large areas of contiguous 0s and
1s in order to compress a binary image [66]. The technique developes in the following steps:

1. divide the input image into blocks of size m⇥ n pixels, where m and n are fixed a priori;
2. identify each block into the classes of all white, all black, and mixed intensity;
3. assign 1-bit codeword 0 to the class which occurs more frequently and assign 2-bit codewords 10 and 11

to the other two classes;
4. the code assigned to the mixed intensity class is just used as a prefix, which is followed by the mn� bit

pattern of the block.

Compression is obtained because large areas of equal bits are substituted with a single or double bit code,
eliminating the redundant information. It is important to observe that area coding preserves the two dimen-
sional character of images: they are not considered as a sequential stream but as a bidimensional object whose
rectangular regions are used for compression.

3.3.2 Lossy Compression Techniques

Different kinds of lossy compression approaches are available in literature [72] and described in the following.
The main discriminating feature of these methods is the quality of the reconstructed image. Furthermore, their
application depends on their adequacy in specific contexts.

Vector Quantization

Goal of the vector quantization is to codify an input vector extracted from an image with a codeword based
on a error measure criterion [15]. It is a pattern matching procedure: the index associated with the codeword
is sent to the receiver which is able to recreate data by accessing to the codeword from that index.

3.3 State of the art in image compression 27

In particular, the input image is divided into n-dimensional vectors. They can be patches of size n = p⇥q
or a three dimensional vector composed of the pixel RGB values. Each vector extracted from the image is
matched to a set of representative codevectors, X̂

i

, i = 1...S taken from a previously created codebook.
Codevector exhibiting the best match is selected by using a minimum distortion rule (distortion can be com-
puted by using i.e. euclidean distance or mean absolute error). For example, given a vector X and the set of
codewords X̂

i

, i = 1...S, X̂
z

will be chosen, such that d(X, X̂
z

) d(X, X̂
j

) for all j = 1...S. Observe that
d(X, X̂) represents the distortion obtained in replacing the original vector X with the codevector X̂ .

After the codevector exhibiting the minimum distortion has been found, the index k of that codeword is
transmitted to the receiver using log2S bits. When the decoder receives the index, it uses a lookup table to find
the codeword corresponding to that index. The found codeword is a duplicate of the original codeword and
it is useful to reproduce the content of the image. Compression is obtained because the set of the codewords
used to codify the image content is relatively small if compared to the original image vectors.

Fractal Coding

Fractal compression builds an approximation of the original image that is closer to it at higher compression
ratios. Furthermore, compression result is quite accurate. [20].

In order to understand this kind of coding, it is important to discuss briefly about the affine transforma-
tions. An affine transformation of an image is any combination of a rotation, scaling, skew or translation. In
matrix notation, a general affine transformation can be expressed as x0 = Ax + d, where x is a vector of
coordinates, A controls rotation, scaling and skew while d defines the translation.

A special kind of affine transformation is a contractive transformation. An affine transformation f is
contractive if it moves points closer together. More formally, for all x and y, d(f(x), f(y)) sd(x, y),
where s is a constant between 0 and 1 and d(x, y) is the distance between the points x and y. A notable
property of this transformation is that, taking a point and iterating the transformation many times to the
successive results, the generated sequence of points moves closer and closer to a fixed point or limit z. This
can be defined as lim

n!1 f
n

(x) = z. A contractive transformation can generate a fractal: by iterating the
transformation an infinite number of times any image pattern is repeated many times with the same structure
at any level of detail. Remember that this is one of the basic features of a fractal set.

Given a set of contractive transformations with parameters c1, c2, ..., cn, an Iterated Function System (IFS)
can be defined transforming each point inside the image by each transformation. In particular, it computes
c1(x)[c2(x)[...[cn(x). If A is a set of points, IFS works on A by applying each of the affine transformations
and by calculating different images, one for each transformation. The final result of this computation is the
union of the images. Again, if the IFS is iterated many times on the successive results, the output converges
to a particular collection of points, called attractor of IFS, which is the fixed point of the transformation.

Consequently, given the input image to compress, the idea is based on finding an IFS that will generate
the given image and storing the IFS coefficients in place of the original for performing compression. In order
to find an IFS that will generate a given image, two properties should be considered:

1. collage theorem. If an IFS applied once to the input image gives an image that is very similar to the
original one, then, the iteration of the IFS many times will give a result that is even more similar to the
original image;

2. continuity condition. If the coefficients of the IFS are altered, then the changes on the attractor will be
smooth and without any sharp jumps.

Consequently, the compression algorithm should change the control coefficients until it finds an image which
is a suitable copy of the original image itself under a set of contractive affine transformations. This means to
find an affine transformation that maps the whole image onto part of itself.

However, this theory about contractive transformations is still valid if such transformations are con-
strained to work only on parts of the whole image, mapping one part of the image onto another part of
the image. An automatic approach divides the image into domain and range blocks, considering a smaller
set of contractive affine transformations. The domain blocks are without overlaps and cover the entire image
surface. The range blocks are bigger and partially overlapped: they contain parts of the image that will be
mapped to the domain blocks by contractive affine transformations. For this reason, the compression algo-
rithm consists on the following steps:

28 3 Image Compression by 2D Motif Basis

1. Divide the image into range blocks.
2. Divide the image into domain blocks.
3. For each domain block:

a) compute the effect of each transformation on each of the range blocks;
b) find the combination of transformation and range blocks obtaining the highest similarity to the image

in the domain block;
c) store the range block adopted and the transformation.

The output fractal compressed image is just a list of range block positions and transformations.

Block Truncation Coding

In block truncation coding, the input image of N pixels is divided into smaller patches of size m. Every patch
is then processed separately [23], searching for a compact representation of that patch. In the decompression
phase, the compressed patches are transformed back into pixel values so that the decompressed image is
similar to the original one as much as possible.

For every patch, the mean value x̄ and the standard deviation � are computed as defined below:

x̄ =
1

m

mX

i=1

x
i

x̄2 =
1

m

mX

i=1

x2
i

� =
p
x̄2 � x̄2.

After that, a two-level quantization is performed. If a pixel exhibits a value which is less than the quanti-
zation threshold (x

i

< x
th

), it is codified to value a. If a pixel has a value which is greater than or equal to
the threshold (x

i

� x
th

), it is codified to value b.
The mean value x̄ is considered to be the threshold x

th

and the values a and b are computed from the first
and second sample moments (x̄, x̄2), such that mean and standard deviation are preserved in the compression
phase. Consequently, a and b are defined as:

a = x̄� �

r
q

m� q
b = x̄+ �

r
m� q

q

where q represents the number of pixels x
i

� x
th

.
A compressed patch is a triple (x̄,�, B), where x̄ and � are the mean and standard deviation of the pixel

values in the patch and B is the bit plane representing the quantization of the pixel values.

Sub Band Coding

The approach of Sub Band coding subdivides the source output into components based on frequency. In
particular, in this compression approach used also in image processing, digital filters are used to divide the
source output into different bands of frequencies. Then, each of these components will be encoded separately.
The general sub band encoding procedure is described as follows:

1. Choose a set of filters for decomposing the source.
2. By these filters, construct the sub band signals.
3. Decimate the output of the filters.
4. Encode the decimated output.

First of all, the source output is separated into its constituent components by digital filters. It is realized by
passing the source output through a bank of filters. This filter bank covers the range of frequencies the source
output is composed of.

Remember that a filter is a system that selects only certain frequencies. Filters can be classified as:

• low pass filters;
• high pass filters;
• band pass filters.

3.3 State of the art in image compression 29

The passband of each filter defines what kind of frequencies can pass through. Each of the components
obtained from the filtering will be different bands of frequencies which constitute the source. The second step
consists in subsampling of the outputs of the filters in order to reduce the number of samples. Finally, the
decimated output is encoded by one of several encoding schemes, i.e. ADPCM, PCM, or vector quantization.

The inverse of the encoding procedure is the decoding procedure, where the quantized and coded coeffi-
cients are used at the decoder to reconstruct a representation of the original signal.

Transformation Coding

In this kind of coding, an input M ⇥ N image is divided into p ⇥ q sub-images or blocks. Each block is
transformed and coded separately [5]. The transformation of each block of data is performed so that a huge
part of its overall energy is embedded in relatively few transform coefficients. It corresponds to represent the
image as the linear combination of some basis images and to specify the linear coefficients. Such coefficients
are then quantized independently. DFT (Discrete Fourier Transform) and DCT (Discrete Cosine Transform)
are transforms which are adopted to modify the pixels in the original image into transform coefficients.

Coefficients exhibit several properties. Two of such properties are:

• Energy compaction. Most of the energy of the original data is contained in only a few of the meaningful
transform coefficients. This means that few basis images are sufficient to codify a given image.

• Decorrelation. Coefficients for separate basis images are uncorrelated.

Consequently, few coefficients which are particularly meaningful are then chosen and the remaining are
eliminated. The selected coefficients are considered for further quantization and entropy encoding to produce
the codewords.

3.3.3 The JPEG Standard

The most important algorithm for image compression is defined in the JPEG standard (JPEG, 1992) that was
born in the 1980s and introduced by the Joint Photographic Experts Group (from which the name of the
standard). In the last years it began the most used way of compressing pictures in various kinds of important
applications, such as image transmission on the Internet and image storage for digital cameras. This algorithm
is able to efficiently codify colour images in terms of average compression rate with good visual quality.

The JPEG standard works in four modes, three of them are lossy and the other one is lossless. All the
lossy modes use the two-dimensional Discrete Cosine Transform (2D-DCT) to analyse the spatial-frequency
features of the images in order to store with less precision (or even remove) those frequency components least
important for a human observer (according to the human visual system). The DCT is also able to achieve high
compactness of the information: after the application of the DCT, a substantial part of the image information
is reduced in only a few low frequency transform coefficients and thus it can be efficiently represented.

The simplest and best known compression mode that is extensively used is the sequential one. In this
mode, the input image can be a greyscale image or a colour image. A colour image can be represented not
only in the RGB space but also it can be stored more efficiently in YCbCr space, in which the luminance (Y),
the blue and the red chrominance (Cb and Cr respectively) are components which are represented separately
to each other (the remaining green component, Cr, can be inferred from the Cb, Cr and Y components).
The YCbCr colour representation allows us to reduce the size of the chrominance components without a
significant degradation of the perceptual image quality, because the human eye is more sensitive to brightness
information than to colour one.

Consequently, a colour space transform from the input colour space to YCbCr is considered as the first
step of the JPEG algorithm. After that, a chrominance downsampling is performed, where the chrominance
components are reduced by two in both horizontal and vertical directions, or only in the horizontal direction.

In the sequential mode, each image component is divided into 8⇥ 8 non-overlapping blocks, and they are
compressed and transmitted (or stored) in scan order, from left to right, and from top to bottom, so that the
decoder can recover the image step by step, in the same order of the encoding. Each block is then processed
as follows:

1. On the entire block, the two-dimensional DCT is computed (it can be separately computed by using a
1D-DCT, first on the rows and then on the columns).

30 3 Image Compression by 2D Motif Basis

2. Then a quantization of the transform coefficients is performed to reduce information, most of all in high
frequency components. This step introduces information loss in the encoding phase. In the quantization
process each coefficient is divided by an associated constant value from a quantization matrix, rounding
the result obtained to the nearest integer. This matrix is such that the higher frequency a coefficient repre-
sents, the higher the denominator (quantization value) becomes, and this corresponds to more information
reduction.

3. The DC coefficient of the current block is differentially encoded by using as a reference the DC coefficient
of the previous block.

4. The rest of the coefficients are scanned in zig-zag order, from lower to higher frequencies, and joint
run-length and entropy coding are executed. With the run-length coding, the coefficient values and the
count of zero-values are considered. Remember that compression is performed by eliminating an easy
spatial redundancy associated with the sequences of identical pixels. Entropy coding is a statistical com-
pression technique. It represents symbols by a bit sequence whose length is inversely proportional to the
probability of its appearance (i.e., more likely symbols are encoded with fewer bits, and vice versa).

In addition, it is possible to vary the compression ratio by growing the value of elements in the quantization
matrix. This process reduces image quality and it is called rate control.

Fig. 3.1 illustrates the JPEG compression process.

Fig. 3.1. Block diagram for JPEG encoder.

The other two lossy modes of JPEG are the progressive and the hierarchical ones. They are based both on
sequential mode, but differently from it, each image component is not codified in a single scan.

Progressive mode generates and transmits different versions of the image at increasing quality: first It
sends an early version of low quality. Then, the details are added by successive scans (e.g. The DC coeffi-
cients and few AC coefficients are sent first. More AC coefficients are sent in succession until all coefficient
sequence is complete.)

In the hierarchical mode, a first downsampling is performed on the original image by two several times.
Then, an encoding and transmission as in the sequential mode is executed. After that, the encoder transmits
the error committed by upsampling by two the low-resolution version of the image, and it repeats this process
until the original resolution is obtained.

The lossless mode of JPEG has been introduced some years after the JPEG standard release. It is com-
pletely different in concept and usage from the lossy modes, in fact no block-division and transform is pro-
vided.

3.3 State of the art in image compression 31

3.3.4 Our contribution

Let’s recall that in last years, extensions to 2D of the classical LZ parses [42, 43, 74, 83, 84] have been
proposed and used for image compression. Remember that, given an image (a), it is linearly scanned row by
row (b) in order to obtain a linearized version for dictionary computation (c).

(a) An image (b) Linear scan

(c) Linearized for dictionary computation

Although the technical implementation of 2D parses such as, e.g., relying on 2D subword trees [3, 25]
may be quite demanding, the advantages of the 2D parsing over linear parsing are obvious. As an example,
a linear parse of the image in Figure 3.2 would lead to extract a number of linear segments of mixed colors,
but would miss the recurring large rectangular regions that cover almost the whole image.

(d)
(e)

(f)

Fig. 3.2. Linear patches vs rectangular patches in the Pac-man.

Also, with most images, it is safe to omit a fraction of the pixels without compromising quality. The
missing pixels may be approximated by interpolation at the decoder, often with negligible loss.

Consequently, our contribution was mainly focused on the introduction of a new image compression
technique, based on the concept of 2D motif basis, previously defined by A. Apostolico et al. in [2].

In our technique, parsing of the input image in rectangular patches is performed and not limited to the
extraction of solid patches, that is full submatrices of characters from the image. In fact, our patches are
composed of solid characters and don’t cares, indicating that some pixels can be safely omitted from the
decoder in decompression phase. Such patches are chosen from a set of maximal and irredundant motifs
called basis and selected to yield the highest estimated gain in compression. This lets us to obtain higher
compression with negligible loss.

32 3 Image Compression by 2D Motif Basis

3.4 Image compression algorithm based on 2D Motifs

Next, we informally introduce the main steps of our image compression algorithm.
Basically, the technique extracts from an input image I a set of 2D non solid patches occurring in some

points inside the image and which are able to encode the main image content. After that, a procedure is
performed to substitute into the image the patches exhibiting the highest gain in compression with the pointers
to these patches. The result of this procedure is a multiset pixels-pointers and a dictionary of patches sorted
according to the gain.

More specifically, the compression procedure is composed of four main steps which are summarized in
the following:

1. Compute a set of not-solid 2D patches from the input image I , called basis. Every patch occurs in some
points inside I .

2. Compute a dictionary of patches from basis.
a) For every patch, evaluate a measure of compression gain and store the patches into a dictionary sorted

according to the gain.
b) Eliminate all the occurrences of the patches overlapping with some other occurrences inside the

image.
c) If some patches don’t occur anymore inside the image, eliminate them from the dictionary.

3. Associate a pointer to every patch of the dictionary.
4. For every patch, substitute inside the image each occurrence with the corresponding pointer to that patch.

The first step consists in finding a set of maximal and irredundant motifs from the input image, which are
patches with don’t cares whose number is linear in the size of the image. This set of motifs is called basis
and it is able to generate all the other motifs of I . The procedure to find the basis set can be summarized in
the following steps:

1. Compute the set A of the autocorrelations of I .
2. For each autocorrelation in A, find the points where it occurs inside I .
3. Discard redundant motifs from A.
4. Remaining motifs are the basis set B.

The autocorrelation set A is computed by starting from the bottom-right corner of I and moving from
the right to the left and from the bottom to the top. Each submatrix found along this path is matched to the
image by positioning at its top-left corner: a pixel-mismatch between I and the submatrix at a given position
is substituted by a don’t care, while a relative match maintains the common pixel at that position. The same
procedure is repeated by starting from the bottom-left corner of I and moving from the left to the right and
from the bottom to the top. Each submatrix along this path is matched to the image by positioning at its
top-right corner. The new motifs so obtained by scanning the whole image constitute the autocorrelation set
A of I .

An intuitive example of the procedure to compute the basis set is reported below.
Given a binary image I:

I[4,3] =

1 0 0
0 0 1
1 0 1
0 1 0

The autocorrelation A31 is obtained from I by matching the submatrix of I starting at position (3,1) with
the image itself by positioning at its top-left corner. Columns or rows with only don’t cares are eliminated
from the autocorrelation.

The autocorrelation set depicted below is computed by performing the previously described procedure on
the image I . Then, for each autocorrelation, the list of the points where it occurs inside I is found.

From the autocorrelation set A, we eliminate redundant motifs to compute the basis. For example, given
the autocorrelation A23, it is redundant because it is positioned exactly where are the other three autocor-
relations A33, A22, A21 up to some offsets inside I and it is a submotif of the other three autocorrelations.

3.4 Image compression algorithm based on 2D Motifs 33

I[4,3] =

1 0 0
0 0 1
1 0 1
0 1 0

A31 = 1 0
0 �

autocorrelations: A42= 1 0 ([1, 1], [3, 1], [4, 2]) A41= 0 ([1, 2], [1, 3], [2, 1], [2, 2], [3, 2], [4, 1], [4, 3])

A33= 1
0

([1, 1], [3, 1], [3, 3]) A31 = 1 0
0 � ([1, 1], [3, 1])

A23= 1 ([1, 1], [2, 3], [3, 1], [3, 3], [4, 2]) A22 = 0 �
1 0

([2, 1], [3, 2])

A21 = 0 �
0 1

([1, 2], [2, 2]) A12 = � 0
0 � ([1, 1], [1, 2], [3, 1])

Eliminating all the redundant motifs, the basis is obtained from I . After the basis extraction procedure, the
dictionary of the patches must be computed from the basis. It will contain a subset of the motifs of B which
exhibit the highest gain in compression and whose occurrences are not overlapped to each other inside I .

A23= 1 ([1, 1], [2, 3], [3, 1], [3, 3], [4, 2])

A33= 1
0

([1, 1], [3, 1], [3, 3]) A22 = 0 �
1 0

([2, 1], [3, 2]) A21 = 0 �
0 1

([1, 2], [2, 2])

Basis: A33= 1
0

([1, 1], [3, 1], [3, 3]) A31 = 1 0
0 � ([1, 1], [3, 1])

A22 = 0 �
1 0

([2, 1], [3, 2]) A21 = 0 �
0 1

([1, 2], [2, 2]) A12 = � 0
0 � ([1, 1], [1, 2], [3, 1])

The compression gain of a given motif determines how much saving I will obtain if I substitute the
occurrences of the motif with a pointer to that motif inside I . It is function of the size and of the frequency of
the motif inside the image.

For example, given the basis set B = {A33, A31, A22, A21, A12} previously computed, suppose to have
the dictionary D = {A12,A33} extracted from the basis by considering the compression gain. The associa-
tion of the motifs of the dictionary with the corresponding pointers and the substitution of the occurrences of
each motif with the corresponding pointer are depicted below.

I[4,3] =

1 0 0
0 0 1
1 0 1
0 1 0

D = {< A12, 1 >;< A33, 2 >} 2 1
1 2

Now, after the informal description of our technique, we give in Fig. 3.3 an appetizer of how the algorithm
works on a real image.

34 3 Image Compression by 2D Motif Basis

Fig. 3.3. Results of image compression by 2D Motif Basis on a real image. From left to right, the original image and the
compressed image.

3.5 Image compression by 2D Motif Basis: the methodology

In the following section, we formally define the notion of basis. Then, we describe all the features of our
image compression algorithm. Finally, we report some preliminary experimental results.

3.5.1 Basic notions

It is assumed that the input consists of a digitized image represented as a rectangular array of N = m⇥ n of
pixels, where each pixel i

ij

is a character (typically, encoding an integer) over an alphabet ⌃ (see Figure 3.4
(a)). The notion of a suffix for a string translates into that of a bite in 2D. Figure 3.4 (b) shows the bite of I
that starts at position (i, j).

I[m,n] =

i11 i12 . . . i1n
i21 i22 . . . i2n
.
.
.

im1 im2 . . . imn

Sij =

iij iij+1 . . . iin
.
.
.

imj imj+1 . . . imn

Fig. 3.4. (a) An image I over an alphabet ⌃. (b) The bite of I that starts at position (i, j)

In addition to the solid characters from ⌃, we also deal with a special don’t care character, denoted by
‘�’, that is a wildcard matching any character in ⌃ [{�}. Some properties hold for characters:

1. �1 is a don’t care character, then �1 � �2 (a don’t care character is always more general than any other
character in ⌃).

2. If both �1 and �2 are identical characters in ⌃, then �1 = �2.
3. If either �1 � �2 or �1 = �2 holds, then �1 � �2.

An image P of size m
p

⇥ n
p

on ⌃ [{�}, with m
p

 m and n
p

 n, has an occurrence at position [k, l]
(k m �m

p

+ 1 and l n � n
p

+ 1) in I if P [i, j] � I[k + i � 1, l + j � 1] holds for 1 i m
p

and
1 j n

p

. This means that P will occur in I from a given position [k, l] if every character of P is the same
or more general than each character in I by considering the same positions in P and I .

Given an image I on the alphabet ⌃ and a positive integer quorum q m⇥ n, an image M on ⌃ [{�}
is a q-motif of I with location list L

M

= (l1, l2, . . . , lp), where each l
i

is a pair of indices of I , if all of the
following hold:

3.5 Image compression by 2D Motif Basis: the methodology 35

1. there is at least one solid character adjacent to each edge of M ;
2. p � q;
3. M occurs at each l

i

2 L
M

;
4. there is no location l, l 6= l

i

, 1 i p, such that M occurs on I (the location list has maximum size).

Basically, the image M is a q-motif in I if it occurs at least q times in I and if its list of occurrences has
maximum size. For the remainder of this paper, by “motif” we refer to a 2-motif.

Given two motifs M1 and M2 of respective sizes m1 ⇥ n1, and m2 ⇥ n2, with m1 m2 and n1 n2,
M1 � M2 holds if M1[i, j] � M2[i+ c, j + d] for 1 i m1 and 1 j n1, for some fixed c and d, with
0 c m2 �m1 and 0 d n2 � n1. We also say in this case that M1 is a sub-motif of M2, and that M2

implies or extends or covers M1. Consequently, every element in M1 should be more general or equal to the
corresponding element in M2.
It is easy to see that the number of motifs with don’t cares grows exponentially with the size of the input.
This makes the exhaustive extraction of such motifs unfeasible. The following notions of maximality and
irredundancy serve the purpose of reducing the size of the candidate motifs to be taken into account in the
patch-dictionary generation.

Let M1, M2, . . . , M
f

be the motifs in an image I . A motif M
i

is maximal in composition if does not
exist another motif M

l

which occurs exactly when M
i

occurs and such that M
i

is smaller or more general
than M

l

. Consequently, there exist no M
l

, l 6= i, with L
M

i

= L
M

l

and M
i

� M
l

. A motif M
i

, maximal
in composition, is also maximal in length if and only if there exists no motif M

j

, j 6= i, such that M
i

is a
sub-motif of M

j

and |L
M

i

| = |L
M

j

|. A maximal motif is maximal both in composition and in length.
A maximal motif M in I , with location list L

M

, is redundant if there exist maximal sub-motifs M
i

,
1 i p, such that L

M

= L
M1 [L

M2 [. . . [L
M

p

, up to some offsets, and M � M
i

, 1 i p (i. e.,
every occurrence of M on I is already covered by one of the motifs M1, M2, . . . , M

p

). M is also said to be
implied by M1, M2, . . . , M

p

. A maximal motif that is not redundant is called an irredundant motif.
Given an image I on an alphabet ⌃, let M be the set of all maximal motifs on I . A subset B of M is

called a basis of M if the following hold:

• for each M 2 B, M is irredundant with respect to B � {M};
• let G(X) be the set M of all the redundant maximal motifs implied by the set of motifs X : then M =

G(B).

More simply, let’s consider the set M of the maximal motifs of I . We define basis a subset of M such that
each motif is irredundant with respect to the others. Furthermore, from the motifs of the basis it is possible to
generate all the other redundant motifs of I . The following theorem holds [2].

Theorem 3.1. The basis B of k-motifs for the image I on an alphabet ⌃ is unique for any k.

The following operators are also needed for our purposes. Let �1 and �2 be 2 characters on the alphabet
⌃ [{�}. The consensus �1 � �2 of �1 and �2 is defined as:

�1 � �2 =

(
�1, if �1 = �2

�, otherwise

Analogously, let I1 and I2 be 2 images on ⌃ [{�} s.t. |I
i

| = m
i

⇥ n
i

(i 2 {1, 2}). The consensus of I1 and
I2 is obtained by overlaying the two images and replacing the don’t care for each position, if the characters of
the two images at that position are different, or the same solid character if the characters of the two images are
identical at that position. The consensus is denoted by C = I1�I2 of size m⇥n, where m = min{m1,m2}
and n = min{n1, n2} and such that C[h, k] = I1[h, k]� I2[h, k], for 1 h m and 1 k n.

Let I1 and I2 be 2 images on ⌃ [{�}, and let C be their consensus. Deleting all the external rows and
columns only made up of don’t cares from C yields a (possibly empty) image that is the meet of I1 and I2,
denoted by M = [I1 � I2].

Given an image I on ⌃ [{�}, the set of autocorrelations of I is the collection of the meets generated by
I with its bites. The autocorrelation generated by I and S

ij

is denoted by A
ij

.
To entirely cover the image, the selection of the bite is carried out starting from the bottom right of the

image and then gradually moving from right to left and from the bottom upwards; the motifs of the consensus

36 3 Image Compression by 2D Motif Basis

are calculated by superimposing these bites to the image from the top left. The same thing is repeated by
taking the bites from the angle at the bottom left and then gradually moving from left to right and from
bottom to top; the bites are gradually superimposed to the image starting from the upper right in order to
determine the other motifs of the consensus. Each time that a consensus is computed, the external rows or
columns made up of only don’t care characters are removed from it in order to obtain a meet of the image.

The size of an autocorrelation is at most equal to the size of the bite it comes from (this happens only if
the consensus does not have rows or columns with only don’t care characters, otherwise the size of the meet
will be less than the size of the bite).

Considering a basis of 2-motifs for an image I and the set A of autocorrelations of the same image, the
basis is a subset of A and it is unique for each value of the quorum q.

Furthermore, the number of 2-motifs of a basis is linear in N. It is formally expressed by the following
theorem:

Theorem 3.2. ([2]) Let B be a basis of 2-motifs for the image I of size N on an alphabet ⌃, and A be the
set of the autocorrelations of I , then:

• B ✓ A
• the number of motifs in B is O(N)

3.5.2 Algorithms and implementation

The bound of Theorem 3.2 supports efficient algorithms for the extraction of the basis in O(N3) and O(N2)
time, respectively, from images over general and binary alphabets [2, 59]. The top level of these algorithms is
recaptured in Figure 3.5. As an example, assume as input the binary image displayed in Figure 3.6(a). Figure

2D BASIS EXTRACTION
Input:
- an image I
Output:
- the 2D basis B = {M1,M2, . . . ,Mk}

begin
1: compute the set A of the autocorrelations of I
2: eliminate from A possible duplicates
3: for each Mi 2 A
4: compute the list of occurrences LM

i

5 T = A
6: for each Mi 2 T
7: if there exist p motifs M1,M2, . . .Mp 2 A such that LM

i

=
Sp

j=1 LM
j

8: T = T � {Mi}
9: B = T

end

Fig. 3.5. Illustrating the 2D BASIS EXTRACTION procedure

3.6(b) shows the consensus between I and its bite S13, from which the autocorrelation A13 shown in Figure
3.6(c) is generated. The other autocorrelations shown in Figure 3.6(b)(c-h) are extracted similarly. We also
have A41 = ||0 1||, and the two autocorrelations A12 and A42 consist only of the character 0, while A23 and
A33 consist only of the character 1.

Once that the autocorrelations have been extracted from I , steps 2 and 3 compute their occurrence lists,
and after that only irredundant motifs will be kept in the basis (steps 5 � 8). In our example, the resulting
basis is B = {A31, A12, A21, A13}. Note that the basis contains only 4 of the 9 distinct autocorrelations.

The next step consists in building the dictionary of patches, ordered according to an estimate (see, e.g., [1])
of the gain induced by each patch in compression. Figure 3.7 summarizes the DICTIONARY COMPUTATION.
In particular, steps 2 and 3 require O(N) time, thus the overall cost in time of 1-3 is O(N2). Then, starting

3.6 Experimental results 37

I[3,3] =

0 0 1
1 1 1
0 0 1
1 0 1

(a)

C13=

�
1
�
1

(b)

A13=
1
�
1

(c)

A31= 0 0 1
1 � 1

(d)
A12 =

0 �
1 1
0 �

(e)

A21 =
� 1
� 1
0 �

(f)

A32 = 0 �
� 1

(g)
A22 = � 1

0 �
(h)

Fig. 3.6. (a) An image I . (b) The consensus between I and S13. (c-h) Other autocorrelations of I .

from the patch M inducing the maximum gain, the occurrence lists of the other patches are updated by
discarding those occurrences that overlap with some occurrences of M , and this process is repeated until all
patches in the basis with a not yet empty occurrence list are processed. Steps 4� 6 can be performed in time
O(N3). The dictionary D at the outset of DICTIONARY COMPUTATION is an ordered set of patches, each
with those of its occurrences that will be used in the encoding.

DICTIONARY COMPUTATION
Input:
- an input image I
- the 2D basis B of I
Output:
- the dictionary of patches D

begin
1: for each Mi 2 B

begin
2: compute the gain Gi of Mi

3: store Mi in D in a list sorted according to Gi

end
4: for each Mi in D
5: for each Mj that follows Mi in D
6: eliminate from LM

j

possible occurrences overlapping with some (h.k) 2 LM
i

7: for each Mi in D
8: if LM

i

= ;
9: D = D � {Mi}

end

Fig. 3.7. The DICTIONARY COMPUTATION procedure

Figure 3.8 outlines the compression procedure, that outputs a file of intermixed cleartext and pointers
ordered according to their row-major appearance in I . The overall cost of COMPRESSION ALGORITHM is
dominated by the O(N3) time of DICTIONARY COMPUTATION. Figure 3.9 shows how decompression can
be carried out; various kinds of interpolation may be added at the end to fill the gaps.

3.6 Experimental results

We report preliminary experimental results obtained by applying our technique to both real and randomly
generated bitmap images. We implemented the BASIS EXTRACTION procedure by following the incremental
paradigm described in [2], and selected the patches in our final dictionary based on the following gain estimate
from [1]:

G
i

= N � |Mi| · |L
M

i

|+ |Mi|+ � · (|L
M

i

|� 1),

38 3 Image Compression by 2D Motif Basis

COMPRESSION ALGORITHM
Input:
- an image I
Output:
- a multiset F of both pixels and pointers
- a set of patches D

begin
1: call BASIS EXTRACTION on I and obtain B = {M1,M2, . . . ,Mk}
2: call DICTIONARY COMPUTATION on B and I and obtain D ✓ B
3: F I
4: for each Mi in D

begin
5: store in D the pair < Pi, i > of the patch Pi corresponding to Mi and a pointer i
6: substitute in F each occurrence of Mi with the pointer i

end
end

Fig. 3.8. Illustrating the COMPRESSION ALGORITHM

DECOMPRESSION ALGORITHM
Input:
- a multiset F of both pixels and pointers
- a set of patches D
Output:
- an image I

begin
1: for every patch Pi in D
2: substitute the pointer i in F with Pi

3: I F
4: (Optional) interpolate I

end

Fig. 3.9. Illustrating the DECOMPRESSION ALGORITHM

where � represents the size of a pointer, assumed to be a constant. For instance, the gain estimated for the
motif A13 of the basis shown in Section 3.5.2, with size 3 and three occurrences, is:

G
i

= 12� 3 · 3 + 3 + � · (3� 1) = 6 + 2�.

In order to control the loss, a prescribed maximum density of don’t cares is adopted during the generation
of the 2D basis. With general alphabets, our experiments showed an optimal setting of 3.5 for the maximum
allowed density, measured as the ratio between the number of don’t cares in a patch and the size of the patch.
For binary images, a smaller density of 0.5 seemed to yield the best results, perhaps due to the large number
of repetitions in the input image.

For comparison, we also run our basic scheme with linear patches and solid patches. The linear patches
were obtained by setting to 1 the first dimension of the motifs to be extracted. The solid patches were extracted
according to [3].

We ran our tests on two different kinds of data. First we generated 100 random images of integers over
four different alphabets, as shown in Table 3.1. We compared our results with those returned by GZIP and
BZIP. For each method, the table lists the compression ratio, the percentage of improvement (%IMPROV)
over the other methods, and the loss:

%LOSS =
NX

h=1

(p
h

� pe
h

)/N,

3.6 Experimental results 39

where p
h

and pe
h

are the values of the colors in the h-th pixel of I and of the image I
e

obtained by interpo-
lating the image resulting from decompression.

SOLID PATCHES LINEAR MOTIFS 2D MOTIF BASIS GZIP BZIP

512 colors
%COMPR 46.28 36.68 31.2 36.25 36.49
%IMPROV 15.08 5.48 – 5.06 5.3
%LOSS – 0.003 1.990 – –

256 colors
%COMPR 33.76 29.68 20.58 29.67 29.53
%IMPROV 13.18 9.1 – 9.09 8.95
%LOSS – 0.001 4.735 – –

128 colors
%COMPR 27.33 22.46 13.05 24.63 22.42
%IMPROV 14.29 9.41 – 11.59 9.37
%LOSS – 0.006 6.6 – –

binary
%COMPR 7.04 6.39 5.23 6.23 5.32
%IMPROV 1.81 1.16 – 1 0.09
%LOSS – 1.15 0.001 – –

Table 3.1. Results on 100 random integer images generated over alphabets of different sizes

Table 3.1 shows that exploiting 2D motif basis as patches leads to a higher compression rate than with
linear or solid patches (even though no limit on density was set on linear patches), and that this approach
improves also over GZIP and BZIP at the expense of negligible loss.

We performed a second series of tests on bitmap images. Table 3.2 shows the results obtained on the
three bitmap images: Lena, Satellite and Texture, displayed in Figure 3.10. In this case we can compare our
technique also with JPEG1. The last three columns of the table contain the compression ratios of JPEG for
different values of its quality parameter. The improvement and loss percentages for 2D motif basis are shown
in Table 3.3, where the last two columns represent the percentage of loss for both linear and 2D patches.
Also in this case, quantitative results show that our approach leads to a higher compression rate than with
linear or solid patches and that improvements are obtained also over GZIP, BZIP and JPEG at the expense of
negligible loss.

(a) (b) (c)

Fig. 3.10. (a) Lena. (b) Satellite. (c) Texture

1 JPEG cannot be applied to arrays of integers but only to real images in the conventional formats

40 3 Image Compression by 2D Motif Basis

SOLID PATCHES LINEAR MOTIFS 2D MOTIF BASIS GZIP BZIP
JPEG

90 80 70

Lena 92.00 52.00 21.00 88.00 68.00 44.00 39.00 36.76
Satellite 92.68 60.97 36.58 56.09 46.34 39.02 31.70 29.26
Texture 80.36 42.39 29.69 43.74 33.54 38.25 35.8 34.6

Table 3.2. Compression percentage of the considered methods on three sample real images

% IMPROV % LOSS

SOLID PATCHES LINEAR MOTIFS GZIP BZIP
JPEG LM 2DMB

90 80 70

Lena 71 31 67 47 23 18 15.76 0.1 3.17
Satellite 58.1 24.39 19.51 9.76 2.44 �4.88 �7.32 0.074 1.085
Texture 50.67 12.70 14.05 3.85 8.56 6.11 4.91 0.12 3.65

Table 3.3. The percentage of improvement in the compression of 2D MOTIF BASIS w.r.t. the other techniques and its
percentage loss

4

Conclusion to Part I

Part I of this thesis presented two applications of pattern extraction from images: a new image segmentation
approach and a new image compression technique.

Image segmentation is graph-based and employs genetic algorithms. The fitness function extends the
normalized cut criterion and the new concept of nearest neighbor for a pixel takes into account not only the
spatial location of that pixel, but also the affinity with the other pixels contained in the neighborhood. The
locus-based representation of individuals, together with the adopted fitness function, revealed particularly
apt to deal with images modeled as graphs. In fact, as experimental results showed, this approach is able to
segment images in a number of region patterns that well adhere to the human visual perception. Consequently,
it could be successfully used as a preliminary step for Object Recognition.

On the other hand, image compression techniques based on prudently selected 2D patches are seen to
convey performances that compare favorably, both in the lossless as well as in the lossy variants, with those
of the corresponding more traditional linear methods. The methods here presented are inherently offline, and
hence are best fit to the compression of image archives rather than in the context of transmission. By virtue
of the duality between compression and pattern discovery, the patches extracted by this algorithm could be
used in Image Retrieval.

Part II

Summary

Part II of this thesis will provide a new technique for pattern extraction from political data which evaluates
the voting behavior in Italian Parliament during the XVI legislature.

In particular, the roll calls of the Italian Parliament are studied by employing multidimensional scaling,
hierarchical clustering and network analysis to find voting patterns. In order to detect changes in voting
behavior, the roll calls have been divided in seven periods of six months each. All the employed methods point
out an increasing fragmentation of the political parties endorsing the previous government that culminated
in its downfall. By using the concept of modularity at different resolution levels, the community structure of
Parliament and its evolution are identified in each of the considered time periods. The performed analysis
reveals as a valuable tool in detecting trend patterns and drifts of Parliamentarians. It shows its effectiveness
at identifying political parties and at providing insights on the temporal evolution patterns of groups and their
cohesiveness, with no need of prior knowledge about political membership of Representatives.

5

Analyzing Voting Behavior in Italian Parliament: Group Cohesion and
Evolution

5.1 Introduction

In the last years political parties in Italy have been affected by a steady fragmentation, with a high number of
Parliamentarians leaving the group that allowed them to be elected to join another one, often changing party
many times.

In this chapter we investigate Italian Parliament by using different tools coming from Data Mining and
Network Analysis with the aim of characterizing the modifications Parliament incurred in, without any knowl-
edge about the ideology or political membership of its Representatives, but relying only on the votes cast by
each Parliamentarian. We consider the roll calls of the period of three years and an half from April 2008 until
October 2011, after which there was the fall of the center-right coalition that won the elections. This period
has been equally divided in seven semesters and the votes cast by each Parliamentarian have been stored.
Note that in our analysis we do not consider the Italian Senate, but only the House of Representatives.

The chapter is organized as follows. Section 5.2 gives a brief overview of the state-of-the-art applications
of computational techniques to political field together with our personal contribution to this research field.
Then, in section 5.3, an informal description of the techniques used for analyzing the voting records in Italian
Parliament is presented. In section 5.4 the methodology adopted for our analysis is formally introduced. In
particular, in section 5.4.1 we give a brief description of the Italian Parliament organization and the data set
used for the analysis. In section 5.4.2 we describe the application of multidimensional scaling approach to
the voting records. In section 5.4.3 the similarity metric used is defined, and the groups obtained by applying
hierarchical clustering and community detection are discussed. Section 5.4.4 argues about the results obtained
for the last semester.

5.2 State of the art in computational techniques to political field

In the following section, an overview of the most meaningful contributions to the state of the art is reported.
In particular, each paragraph will describe details about each presented approach.

5.2.1 Parliamentary group cohesion and voting similarity in the Finnish Parliament

The investigation of voting records with computational techniques is not new. One of the first paper is that
Pajala et al. [51], where the authors analyze the Finnish Parliament in year 2003.

The Finnish Constitution does not have political parties; the activities are so mined by only parliamentary
party groups. Rules and sanctions for breaking the rules must be written from party groups. The Finnish
Parliament is composed of 200 members elected for a four-year term. The vote of each Parliamentarian
can be expressed as ’yes’, ’no’ or ’abstain’. In most cases, the approval of a legislative proposal or other
issues is performed without a vote. However, usually, the important votes, such as the final considerations
of law proposals, are roll-call votes. All the vote cast by each Parliamentarian are recorded and available
at the Parliament’s website. Analyses here include all votes expressed during the 2003 parliamentary year.
Furthermore, various voting thresholds are provided: the first one is a simple majority of the votes cast. This

48 5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution

means that a proposal can be approved only when the number of ’yes’ votes is greater than the number of
’no’ votes. The second one is for a few special cases and consists in a 2/3 majority from the votes cast which
is required for the approval. The last modality can be adopted when constitutional change is to be declared
urgent and requires a 5/6 majority for the approval. Let’s recall that 2003 was characterized only by simple
majority votes. Now, it’s particularly important to summarize the political situation in 2003 inside the Finnish
Parliament.

In March 2003 elections changed the situation of the cabinet with the decline of the ’rainbow’ coalition
(KOK, SDP, VAS, VIHR, R). From the previous cabinet parties, SDP obtained two seats (into 53 seats),
KOK lost six seats (40), while the main opposition party KESK won the elections obtaining seven more seats
(55). Consequently, KESK proposed the new prime minister, and SDP and R became the other two cabinet
parties. However, R lost three seats (9). Thus, a majority took place in the Finnish Parliament. Considering
this political situation, authors perform some kinds of analysis.

First of all, they compute the agreement index proposed by Hix et al. [32] for assessing the cohesion
inside the parliamentary party groups. They show as the most cohesive group is the Swedish people’s party R
(.965), together with the other two cabinet groups KESK (.961) and SD (.921). The opposition groups are less
cohesive, and only PS (.948) is comparable with the cabinet groups. Other groups KD (.866), VAS (.861),
VIHR (.851) and KOK (.817) exhibit lower cohesion values.

Secondly, they consider the roll calls and the votes cast by each of the Parliamentarians to compute a
dissimilarity matrix between every pairs of Parliamentarians, based on Rajski’s distance that uses mutual
information and joint entropy. The lower the Rajski’s distance between two Parliamentarians, the greater
their similarity. They used the agglomerative hierarchical clustering algorithm agnes [38] with the average
linkage method, and built some dendrograms. All the Parliamentarians are subdivided into clusters by the
hierarchical clustering, so that each Parliamentarian corresponds to a given cluster. The next step consists
in finding from the algorithm the closest pair of clusters and merges them into a single one. The average
linkage method sets the distance between two clusters A and B as the average distance among all pairs of
Parliamentarians from A and B, so that one Parliamentarian in the pair is a member of A, and the other of
B. Hierarchical clustering employed on their distance matrix allowed to distinguish quite precisely between
the cabinet coalition and the opposition. They found that the analysis performed is able to capture the main
characteristics of the Finnish Parliament.

5.2.2 Community structure in the United States House of Representative

Another interesting study regarding the United States House of Representatives from 101st-108th Con-
gresses has been done by Porter et al. [58]. They defined bipartite collaboration networks by the assign-
ments of Representatives to House committees and subcommittees. Each edge in the network between two
(sub)committees has a weight which corresponds to the normalized interlock. The interlock between two
committees is equal to the number of their common members. The normalization is obtained considering
the committee sizes by dividing the interlock by the expected number of common members if assignments
were defined independently and uniformly at random. Thus, links between pairs of subcommittees or pairs of
committees are the normalized degree of joint membership between (sub)committees and links between com-
mittees and subcommittees are considered as the fraction of standing committee members on subcommittees.
However, it is quite difficult to visualize and analyze the two kinds of networks of committee assignments.
Consequently, the authors adopted a different kind of network visualization consisting in a projection of the
network onto either the committees or the Representatives: a network is built whose nodes are the committees
and whose edges represent common membership or interlocks between committees.

Then, they investigated the hierarchical and modular structure of these networks by using different com-
munity detection methods. So, they adopted various methods of hierarchical clustering, in which, from the
network, a hierarchical tree structure is defined. One of these methods is known as single linkage clustering.
To implement single linkage clustering, the authors start with the complete set of committees for a given
Congress. Then, they merge committees sequentially starting with the pair with the highest normalized inter-
lock value, followed by the next highest, and so on. This process is able to construct clusters of committees,
which can be represented by using a tree or dendrogram. From this analysis, four hierarchical levels of clus-
tering have been extracted: subcommittees, standing and select committees, groups of standing and select
committees, and the entire House. These single linkage clustering dendrograms revealed also an organization

5.2 State of the art in computational techniques to political field 49

corresponding to groups of subcommittees inside larger standing committees. In order to perform an analysis
of the obtained hierarchies in the House committee networks, authors used the modularity concept, modified
to mine committee weighted networks. In fact, the projected one-mode networks are weighted. Instead of
counting numbers of edges falling between particular groups, they count the sums of the weights of those
edges. This concept of modularity measures when a particular division of the network has more edge weight
within groups than one would expect on the basis of chance and it is used to evaluate the efficacy of the
organizational grouping of the networks and to compare the dendrograms to each other. Furthermore, the
community structure of the network of committees has been explored by using three other methods: two
based on betweenness values computed on the full bipartite networks of Representatives and committees and
a local community detection algorithm for weighted networks. In this way, the authors identified connections
between committees and correlations among committee assignments and Representatives’ political positions.
Furthermore, changes in the network structure corresponded to change of Senate majority from Democrats to
Republicans.

Moreover, they applied SV D to evaluate the House roll call votes. Here authors apply the multi-
dimensional scaling technique known as singular value decomposition (SVD) in order to analyze voting
records of each session of the House. An n⇥m voting matrix B is defined where each row represents each of
the n Representatives in the House and each column represents each of the m votes taken during a two-year
term. A generic element B

ij

can be +1 if the Representative i voted ”yes” on measure j and �1 if (s)he voted
”no”. If a Representative did not vote because of absence or abstention, the corresponding element is 0. The
SVD analysis is able to identify groups of Representatives who voted in a similar fashion on some measures.
An approximation of the Representatives voting records can be characterized by just two coordinates. The
first one is called ”partisan coordinate” and is able to measure the polarization degree for members of the
two major parties. The second one is called ”bipartisan coordinate” and expresses how often a Representative
votes with the majority. From this analysis, it is possible to observe as Democrats are grouped together and
are almost completely separated from Republicans.

5.2.3 Community structure in congressional cosponsorship networks

Zhang et al. [80] studied the United States Congress by building networks for Members of Congress. In these
”bipartite” networks, a Member of Congress is linked by an edge to each sponsored or cosponsored bill. This
kind of network is represented by using a bipartite adjacency matrix M, whose generic element M

ij

is equal to
1 if legislator i (co-)sponsored bill j and 0 otherwise. This means that there are two types of nodes which are
Congressmen and bills, while the edges in the network represent sponsorships or cosponsorships. By using
information about these Congressional committee and subcommittee assignments, authors create another kind
of network. Inside the bipartite adjacency matrices built from these networks, a generic element M

ij

indicates
the assignment of Representative i to committee or subcommittee j. Analysis is focused on cosponsorship
networks obtained by using ”unipartite” projections. In these networks, the nodes are legislators and the
weighted edges linking them indicate how many bills they together (co-)sponsored.

Network communities are detected by using the concept of modularity. Following this concept, a commu-
nity should have more internal connections among its nodes than connections between its nodes and those in
other communities. Modularity is evaluated for chosen partitions of the network and it measures the degree of
the interactions which are detected between legislators within the identified communities rather than across
them.

Each network is so recursively partitioned in order to generate trees or dendrograms to assess its hierar-
chical structure. This process is able to discover communities of various sizes by iteratively clustering the
legislators by using the partitioning algorithm. Modularity evaluates the number of intra-community versus
inter-community links for a given partition, consequently it has been adopted to quantify the growth in polar-
ization in the U.S. Congress. In particular, during the considered period of 24 years, from the 96th to 108th
Congresses, an increase in modularity has been obtained. This corresponds to an increase in party polarization
of the Congress that caused the control by the Republicans of both chambers.

Authors used also a multidimensional scaling technique called NOMINATE and singular value decom-
position analysis (SVD). They show that a matrix of roll call votes can be approximated by using two coordi-
nates: a generic liberal-conservative dimension and a second social dimension. However, the same approaches
demonstrate that multiple dimensions are needed to adequately approximate a matrix of cosponsorships. The

50 5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution

adopted eigenvector methods detect large communities corresponding to known political cliques. It can be
shown that Members of Congress with similar ideologies are clustered together in the identified communities.

5.2.4 Party polarization in Congress: a network science approach

In [73] the polarization in the United States Congress is evaluated by using also the concept of network
modularity. Each node represents a legislator in the network and each edge is the level of agreement between
two legislators in roll-call voting, indicating the average number of equal votes between them. Generally in
a legislature, groups like parties contain strong connections between legislators within the same group but
relatively weak connections between individuals in different groups.

Authors created similarity matrices from the network, describing voting similarities among legislators in
a single Congress of the House of Representatives or Senate. Each of these networks is thus represented by
an n⇥ n matrix A, where n is the number of legislators and a generic element A

ij

represents the fraction of
equal votes for the two legislators.

Multiple community-detection algorithms are employed on the similarity matrices of legislators to iden-
tify groups that maximize the modularity inside each roll-call network for both the Senate and the House of
Representative. In particular, given a partition of the network into communities, the modularity Q measures
the fraction of total connections embedded within the specified communities minus the expected total strength
of such connections. Modularity is able to assess the quality of community partitioning, consequently, par-
titions with higher modularity are more polarized. The community partition that maximizes modularity for
each Congress is called ”maximum modularity partition”.

Modularity is adopted for measuring the degree of polarization, revealing the main political groups and
the divisions among them. A non-monotonic relationship between maximum modularity and a consequent
majority party switch are explored, demonstrating that the changes in majority are more likely when the
modularity value is moderate, uncommon otherwise. In particular, modularity values in Congress t are used
to predict modifications in the majority party for Congress t + 1. A non-monotonic relationship between
modularity and the stability of the majority party is found in both chambers of Congress. When modularity
is low, a change in majority control seems to be less likely; at high levels of modularity, the minority cannot
overcome the majoritys cohesion. In both of these cases, it is infrequent to have majority-party switches.
However, when modularity exhibits medium values, this corresponds to changes taking place for majority
cohesion and to a less stable party system.This is called ”partial polarization” hypothesis.

At the individual-level, some measures associated with modularity, called “divisiveness” and “solidarity”
are computed to predict the reelection success for individual House members. The divisiveness measures the
effect that each legislator could have on the aggregate polarization of his legislature by using roll-call adja-
cency matrices. About solidity, when its value is close to 1, the legislator and community are strongly aligned;
otherwise, when the solidarity is close to 0, the legislator is not strongly aligned with his or her community.
Performing this kind of analysis, authors find that divisiveness has a negative influence on reelection chances
and that group solidarity has a positive influence. Furthermore, divisiveness is associated with decreased re-
election probability, and the combination of divisiveness and solidarity has a significant positive impact on
reelection.

5.2.5 Community structure in the United Nations General Assembly

Macon et al. [47] investigated the community structure of networks constructed from voting records of the
United Nations General Assembly. The UNGA was founded in 1946. Annual sessions from 1946 to 2008 are
considered and unanimous votes are removed from the data, because they don’t give information about the
network structure of voting agreements and disagreements between countries.

Three different networks are so defined. The first one is a weighted unsigned network of voting simi-
larities, whose nodes are the countries and whose edges between pairs of countries are weighted by using
an agreement measure. This represents the number of agreements on resolutions (yes-yes, no-no, or abstain-
abstain) between the two involved countries. A weighted and unipartite adjacency matrix is built from such a
network, by setting all the elements along the diagonal equal to zero (corresponding to the self-edges inside
the voting similarity matrix). The second kind of network is constructed by considering also the number of
yes-no disagreements in the elements of the voting similarity matrix. The last kind of network is a signed

5.2 State of the art in computational techniques to political field 51

bipartite network of countries voting for individual resolutions. A bipartite network is composed of two types
of node, countries and resolutions, and each edge is a link between a node of one type and a node of the
other. For each session, the adjacency matrix is defined from the bipartite network, whose elements are +1
if country i voted ”yes” on resolution j, �1 if country i voted ”no” on resolution j, 0 in case of absence or
abstention.

Authors find communities on these networks by optimizing the modularity quality function and some of
its generalizations. In particular, they perform a comparison among the community detection results obtained
by partitioning the different network representations in communities on each of the considered sessions of
the UNGA. Partitions of the network of agreements optimizing the modularity are considered at two different
values of the modularity resolution parameter (�1 = 1 and �2 > 1). For each kind of network, dominant
voting pattern including two large communities corresponding to majority and minority coalitions are found,
for each of the considered UNGA sessions. This kind of polarization is clearer for partitions extracted by
optimizing modularity of the network of agreements at the standard resolution parameter value �1 = 1 and of
the bipartite networks. Furthermore, small and medium-size cores of coalitions in the network of agreements
persist for resolution parameter value �2 > 1.

By analyzing the resolutions with respect to the voting agreement, the authors are able to detect historical
trends and changes in the United General Assembly community structure. In fact, observations appear to be
consistent with the expected East-West split of the Cold War and the North-South division of recent sessions
that has been detected by social scientists using qualitative methods.

5.2.6 Analyzing the US Senate in 2003

Jakulin and Buntine in [36] presented an approach to analyze the roll calls in the US Senate in year 2003.
For each roll call, the database of the legislative information contains a list of votes cast by each of the 100
senators and 459 roll calls are considered in the year 2003. For each of those, the vote of every senator is
expressed by using three possible ways: ”Yea”, ”Nay” and ”Not Voting”.

The first kind of analysis employes a mutual information based measure, which is the Rajski’s distance,
to compute the dissimilarity between two senators, given their votes. The greater this distance between their
votes, the lower the similarity between the two senators. Given the distance measure, a graphical matrix is
computed by considering the distances between all pairs of senators. Dissimilarity matrices are then sorted
by using a hierarchical clustering approach, such that similar senators begin adjacent to one another. Fur-
thermore, a graph is created by selecting only a certain number of the strongest similarities, with nodes
corresponding to senators and edges to their connections. An artificial threshold is adopted to discriminate
between a connection and the absence of it. The nodes are labelled with the total number of votes cast, while
the edges are marked with the percentage of roll calls in which both senators cast the same vote.

Another kind of analysis evaluates the influence of a voter by postulating a Shannon information channel
between the outcome and a voter.

Thirdly, principal component analysis is adopted on the roll call data. In particular, a roll call matrix M
is constructed whose rows are senators, and whose columns are roll calls. If a generic element in position
(j, v) is equal to 1, the j-th senator voted ”Yea” in the v-th roll call, and if it is equal to �1, the vote was
”Nay”. If the senator did not vote, some value needs to be used nevertheless. The two new coordinates of
the senators are those columns of the U matrix, (characterizing the decomposition of M), that correspond to
the two highest singular values, multiplied by them. These two columns can be understood as uncorrelated
latent votes that identify the ideological position of the senator. Another adopted approach for analyzing
multidimensional data, such as a senators voting patterns, is the probabilistic version of principal components
analysis. It substitutes the continuous valued variables with fully discrete ones. Here the full set of votes for
each senator is modeled by using several voting patterns, corresponding to the components. A voting pattern
gives the propensity to vote in a particular way and assumes independence between individual senators votes.

Finally, several kinds of analysis are performed based on the identification of discrete blocks. The first
type of analysis investigates the cohesion within a block (some blocks may be more cohesive in the sense
that the voting is more bloc-aligned), evaluated by using an agreement index and the dissimilarities between
blocs (individual blocs can be similar or dissimilar, like senators). It is very difficult for a single senator to
influence the situation, because rarely is one able to change the outcome of a roll call by one vote. However,
once the the blocs voting in a similar way are detected across a number of roll calls, the influence of changed

52 5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution

behavior of a group is analyzed. In particular, two kinds of altered behavior are considered: bloc abstention
and bloc elimination. By using this approach, it is possible to obtain a list of roll calls for which it is deemed
that the behavior of a bloc has affected the outcome.

5.2.7 Our contribution

Let’s recall that a steady fragmentation of the political parties in Italy has taken place in the last years.
In particular, during the XVI legislature, we observed a high number of Parliamentarians leaving their own
group to join another one and many internal changes incurring inside the italian political parties. In particular,
remember that the fragmentation of the majority center-right coalition in those years caused in Italy the
government breakdown.

To the best of our knowledge, automatic tools for analyzing the political scenario inside the Italian Par-
liament have never been adopted beforehand. Consequently, our approach represents the first tentative of
exploring the Italian Parliament by using a Data Mining and Network Analysis framework. In particular, our
main contribution consists in identifying the italian political parties and the organizational structure of the
Parliament and in investigating the changes inside the Italian Parliament, relying only on the votes cast by
each Parliamentarian and without any a priori knowledge about the italian political situation. Furthermore,
we try to keep track of the temporal evolution of the political groups and to analyze the trend of their inner co-
hesiveness along the time. Finally, we adopt our framework also for discovering hidden political information
from the voting records.

5.3 Analysis of voting behavior in Italian Parliament

Next, we informally introduce the main aspects underlying the analysis of voting behavior in Italian Parlia-
ment and we try to give an overview of our technique.

First of all, we extract the vote of each Parliamentarian for every roll call from the Database of the Italian
Parliament. After that, we store the vote cast by each Parliamentarian for each semester in order to analyze
the voting records.

Voting records have been used in two different ways. In the first approach, we build from them some
voting matrices, representing the matrices of the vote cast for each semester. A generic element inside the
matrix can be +1, �1 or 0, depending on whether the Parliamentarian of row i voted ’yes’ or ’no’ on the
measure of column j or whether the Parliamentarian did not vote on that measure (Fig. 5.1).

We start from them and directly use them to show party cohesion during the considered period, by using
a party cohesion index. Then, we apply a multidimensional scaling technique to reveal political affinity of
Parliamentarians, independently of their true party membership. This kind of analysis is interesting because
it is able to reproduce the effective political alliances, without assuming parties as a-priori relevant clusters.

Fig. 5.1. An example of voting matrix.

In the second one, from voting records we computed similarity between each pairs of Representatives
and we built some similarity matrices, one for each semester. We use them to detect structural organization

5.3 Analysis of voting behavior in Italian Parliament 53

and evolution of Parliament by applying hierarchical clustering. Similarity for a pair of Parliamentarians is
computed by using a matching coefficient measuring the fraction of equal votes respect to the total votes they
cast (Fig. 5.2).

SMC(p1, p2) =
yy + nn

yy + nn+ yn+ ny
=

3 + 1
3 + 1 + 2 + 1

Fig. 5.2. An example of similarity matrix construction. yy represents the number of votes when both the Parliamentarians
voted ’yes’ on a given bill, nn when both Parliamentarians voted ’no’, yn when the first one voted ’yes’ and the second
one voted ’no’ and ny when the first one voted ’no’ and the second one voted ’yes’.

Also, performing a ”binarization” of the similarity matrices by using a similarity threshold value, we are
able to graphically represent the similarity matrices, showing intra-group similarity, and to apply community
detection techniques based on the concept of modularity. In particular, from the binary similarity matrix,
we construct an undirected and unweighted network whose nodes represent the Parliamentarians. An edge
between two Parliamentarian exists only if the corresponding entry inside the binary matrix is equal to 1.
By using a genetic algorithm optimizing the modularity function, we are able to discover communities of
Parliamentarians inside the network.

All the approaches conducted to coherent results. Hierarchical clustering is able to represent the political
alliances along all the semesters. However, by using the modularity concept, we identify communities of
members that voted similarly, and investigate how the cohesion of parties evolves along the semesters.

Finally, we decide to analyze the last semester separately from the other ones because of the alteration of
the voting behavior of the Parliamentarians in that period. In particular, we observe as the political party orga-
nization disappears, the number of voted measures is less than the other semesters and each Parliamentarian
seems to vote independently of his group. This kind of situation is shown clearly from our analysis, revealing,
first of all, the loss of polarization in multidimensional scaling. This means that is no longer possible to distin-
guish between the two main political coalitions. Secondly, hierarchical clustering analysis discovers a unique
cluster including all the parties and the visualization of the similarity matrix exhibits a high fragmentation.
Furthermore, Parliamentarians coming from different parties appear as clustered together in the community
detection analysis.

In conclusion, our analysis provides an explicit and clear view of the steady fragmentation of the coalition
endorsing the center-right government, that caused the majority breakdown. Thus modularity allows a more
deep analysis of the internal agreement of parties and demonstrated a powerful means to give insights of
changes in majority party.

54 5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution

5.4 The methodology

In the following sections, we formally present all the concepts defining our analysis, including the used data
format, the party cohesion evaluation, the multidimensional scaling and hierarchical clustering definitions
and the adopted community detection framework.

5.4.1 Data description

The current Italian Parliament has been elected in April 2008 and it is constituted by 630 representatives orig-
inally elected in 5 main political parties: Popolo della Libertá (PDL), Lega Nord (LN), Partito Democratico
(PD), Italia dei Valori (IDV), and Unione di Centro (UDC). The majority of center-right that governed Italy
until November 2011 was composed by the first two parties. To better understand the analysis we performed,
it is important to know that two main events characterized the political organization of Parliament: (1) in July
2010 a group of Representatives divided from PDL to form a new political party named Futuro e Libertá (FL);
(2) in December 2010 Parliamentarians, mainly coming from the center-left coalition, separated from their
party to constitute a new coalition that endorsed the center-right government, allowing it to rule the coun-
try for other almost ten months. Furthermore, along all the three years and an half, several Representatives
abandoned their party to move in a group called Misto.

The Italian Parliament maintains a database of the legislative activity by storing, for each bill voted,
the list of votes cast by each Representative. From the web site http://parlamento.openpolis.it it is possible
to download the voting record of each Parliamentarian, together with some personal information, such as
territorial origin, and actual group membership. For every roll call, the Openpolis database stores the vote of
each Parliamentarian in three ways: ’yes’, ’no’, and ’not voting’. This last kind of vote can be due to either
absence or abstention, but they are treated in the same manner.

Table 5.1. Number of voted measures for each semester.

I II III IV V VI VII
386 422 328 343 373 332 89

1 2 3 4 5 6 7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Semester

Ag
re

em
en

t I
nd

ex

IDV LN PD PDL UDC

Fig. 5.3. Agreement index of parties for all the semesters.

5.4 The methodology 55

−20 −15 −10 −5 0 5 10 15 20
−12

−10

−8

−6

−4

−2

0

2

4

6

BINDI Rosy

CALEARO CIMAN Massimo

CESARIO Bruno

DI PIETRO Antonio

GAGLIONE Antonio

GIULIETTI Giuseppe
LANZILLOTTA Linda

MANNINO CalogeroMISITI Aurelio Salvatore

MOSELLA Donato Renato

PISACANE Michele

PISICCHIO Pino
PORFIDIA Americo

RAZZI Antonio

ROMANO Francesco Saverio
RUVOLO Giuseppe

SCILIPOTI Domenico

Partisan Coordinate

Bi
pa

rti
sa

n
Co

or
di

na
te

FL IDV LN PD PDL PT UDC Mixed

(a) I Semester:April-September 2008

−15 −10 −5 0 5 10 15 20
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

BINDI Rosy

CALEARO CIMAN Massimo

CESARIO Bruno

FASSINO Piero

GAGLIONE Antonio

GIULIETTI Giuseppe

LANZILLOTTA Linda

MANNINO Calogero

MISITI Aurelio Salvatore

MOSELLA Donato Renato

PISACANE Michele

PISICCHIO Pino
PORFIDIA Americo

RAZZI Antonio

ROMANO Francesco Saverio

RUVOLO Giuseppe

SCILIPOTI Domenico

Partisan Coordinate

Bi
pa

rti
sa

n
Co

or
di

na
te

FL IDV LN PD PDL PT UDC Mixed

(b) II Semester:October 2008-March 2009

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

BINDI Rosy

CALEARO CIMAN Massimo

CESARIO Bruno

GAGLIONE Antonio

GIULIETTI Giuseppe

LANZILLOTTA Linda

MANNINO Calogero

MISITI Aurelio Salvatore

MOSELLA Donato Renato

ORLANDO Leoluca

PISACANE Michele

PISICCHIO Pino
PORFIDIA Americo

RAZZI Antonio

ROMANO Francesco Saverio

RUVOLO Giuseppe

SCILIPOTI Domenico

Partisan Coordinate

Bi
pa

rti
sa

n
Co

or
di

na
te

FL IDV LN PD PDL PT UDC Mixed

(c) III Semester:April-September 2009

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

BINDI Rosy

CALEARO CIMAN Massimo

CESARIO Bruno

GAGLIONE Antonio

GIULIETTI Giuseppe
LANZILLOTTA Linda

MANNINO Calogero

MISITI Aurelio Salvatore

MOSELLA Donato Renato

PISACANE Michele

PISICCHIO Pino

PORFIDIA AmericoRAZZI Antonio
ROMANO Francesco Saverio

RUVOLO Giuseppe

SCILIPOTI Domenico

Partisan Coordinate

Bi
pa

rti
sa

n
Co

or
di

na
te

FL IDV LN PD PDL PT UDC Mixed

(d) IV Semester:October 2009-March 2010

−15 −10 −5 0 5 10 15 20
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

BINDI Rosy

CALEARO CIMAN Massimo

CESARIO Bruno

GAGLIONE Antonio

GIULIETTI Giuseppe

LANZILLOTTA Linda

MANNINO Calogero

MISITI Aurelio Salvatore

MOSELLA Donato Renato

PISACANE Michele

PISICCHIO Pino

PORFIDIA Americo

RAZZI Antonio

ROMANO Francesco Saverio

RUVOLO Giuseppe

SCILIPOTI Domenico

Partisan Coordinate

Bi
pa

rti
sa

n
Co

or
di

na
te

FL IDV LN PD PDL PT UDC Mixed

(e) V Semester:April-September 2010

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

CALEARO CIMAN Massimo

CESARIO Bruno

FEDI Marco

GAGLIONE Antonio

GIULIETTI Giuseppe

LANZILLOTTA Linda

MANNINO CalogeroMASTROMAURO Margherita Angela

MISITI Aurelio Salvatore

MOSELLA Donato Renato

PISACANE Michele

PISICCHIO Pino

PORFIDIA Americo
RAZZI Antonio

ROMANO Francesco Saverio

RUVOLO Giuseppe

SCILIPOTI Domenico

Partisan Coordinate

Bi
pa

rti
sa

n
Co

or
di

na
te

FL IDV LN PD PDL PT UDC Mixed

(f) VI Semester:October 2010-March 2011

Fig. 5.4. Singular value decomposition of the Italian Parliament voting behavior for each of the six semesters starting
from April 2008 until March 2011.

5.4.2 Analysis of voting patterns

We collected the roll calls of the Italian Parliament in the period starting from April 2008 until October 2011,
after which there was the fall of the center-right coalition that won the elections. This period of three years
and an half has been equally divided in seven semesters and the votes cast by each Parliamentarian have been
stored in matrices of size n ⇥ m, where n is the number of Parliamentarians, and m is the number of bills
voted in the reference period. Since some Parliamentarians, for several reasons, never voted, they have been
eliminated. Thus the number n of Representatives reduced to 612. As regards m, it assumes a different value,
depending on the semester. The number of bills voted is reported in Table 5.1.

Seven voting matrices have been built in the following way: an element A
ij

of a voting matrix A is +1
if the Representative i voted yes on measure j, -1 if (s)he voted no, and 0 if (s)he did not vote. The voting
matrices are exploited to study the voting behavior of the Italian Parliament in two different ways. In the first

56 5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution

(a) I Semester (b) II Semester

(c) III Semester (d) IV Semester

(e) V Semester (f) VI Semester

Fig. 5.5. Dendrograms obtained by the single linkage clustering algorithm for each semester. Internal colors correspond
to the clusters found by the algorithm, external colors to the true parties. The association color-party is the following: FL:
cyan, IDV: magenta, LN: green, PD: red, PDL: blue, PT: orange, UDC: brown, Misto: violet.

approach we use them to compute party cohesion and to characterize the political affinity of Parliamentarians,
independently of their true party membership. In the second one, we compute similarity between each pairs
of Representatives and try to detect structural organization and evolution by applying hierarchical clustering
and community detection based on the concept of modularity.

5.4 The methodology 57

Party Cohesion

Given the voting matrices, the first investigation that can be performed is to compute the cohesion of each
political party along the considered period and compare the results obtained. To this end, the agreement index
[32] measures the level of cohesion within a party by exploiting the number of equal votes for each roll call.
The agreement index for each roll call is defined as follows:

AI
i

=
max{y

i

, n
i

, a
i

}� y

i

+n

i

+a

i

�max{y
i

,n

i

,a

i

}
2

y
i

+ n
i

+ a
i

where y
i

is the number of members who voted Y es in the voting i, n
i

is the number of members who voted
No, and a

i

is the number of members who did not vote. Group cohesion is then computed as the average
of agreement indices for all the roll calls: AI =

P
m

i

AI

i

m

. The agreement index ranges from 0 (complete
disagreement) to 1 (complete agreement). Figure 5.3 displays the trend of agreement index of the 5 main
political parties during the seven semesters. It is clear from the figure that the opposition parties show an
increasing cohesion, while PDL, that started with a value near to 0.9, has a constant downtrend until the sixth
semester, with a slight increment in the last semester. The variation of internal cohesion well reflects the
actual political situation along the considered periods.

Singular Value Decomposition

We now analyze the voting behavior of Italian Parliament by applying the well known multidimensional
scaling technique known as Singular Value Decomposition (SV D)[67], whose advantages with respect to
other techniques have been discussed in [8]. Let A be an n ⇥ m voting matrix where rows correspond to
Representatives and columns to the votes cast to approve a law. The Singular Value Decomposition of A is
any factorization of the form

A = U ⇥ ⇤⇥ V T

where U is an n⇥n orthogonal matrix, V is an m⇥m orthogonal matrix and ⇤ is an n⇥m diagonal matrix
with �

ij

= 0 if i 6= j. The diagonal elements �
i

are called the eigenvalues of A. It has been shown that there
exist matrices U and V such that the diagonal elements of ⇤ are the square roots of the nonzero eigenvalues
of both AAT and ATA, and they can be sorted such that �1 � �2 � . . . � �

m

[67]. Geometrically this
factorization defines a rotation of the axis of the vector space defined by A where V gives the directions, ⇤
the strengths of the dimensions, and U ⇥ ⇤ the position of the points along the new axis. Intuitively, the U
matrix can be viewed as a similarity matrix among the rows of A, i.e. the Representatives, the V matrix as a
similarity matrix among the columns of A, i.e. the votes cast for each law, the ⇤ matrix gives a measure of
how much the data distribution is kept in the new space [35]. If the singular values �

i

present a fast decay, then
U ⇥⇤ provides a good approximation of the original voting matrix A. In particular, by projecting on the first
two coordinates, we obtain a compressed representation of the voting matrix that approximates it at the best.
The visualization of the projected approximation matrix, allows to identify groups of Representatives that
voted in a similar way on many bills. As observed in [58], the first coordinate correlates to party membership,
thus it is called the partisan coordinate. The second coordinate correlates to how often a Representative voted
with the majority, thus it is called the bipartisan coordinate.

Figure 5.4 shows the application of SV D on the voting records of the Italian Parliament for the first
six semesters of the current legislature. Each point corresponds to the projection of votes cast by a single
Parliamentarian onto the leading two eigenvectors partisan and bipartisan. Each party has been assigned a
different color and symbol. The main objective of this analysis was to study the changes in voting behavior of
those Parliamentarians that moved from the opposition coalition to the majority one. Thus we selected some
members of PT and Misto group, and visualized their names on all the figures. First of all we point out that
the representation of the two coalitions center-right and center-left, and their evolution along the three years,
summarized by the six figures, is rather impressive.

Figure 5.4(a) clearly shows a compact center-right aggregation, a less cohesive, but clearly distinguish-
able, center-left alliance, and a strong connected PD sub-group (left bottom). It is worth to note that this sub-
group maintains its connectedness for all the time periods, with a slight dispersion in the second semester.
The same cohesiveness is shown by PDL and LN, as expected. Moreover FL, which was included in PDL

58 5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution

until July 2010, demonstrated its political disagreement in the sixth semester by coming nearer to UDC, as
actually happened.

As regards the chosen members of PT and Misto groups, we can observe a steady movement from the
center-left coalition to the center-right one since the fourth semester. This shift is much more evident in
the 5th semester, when the voting behavior of these Representatives approached closer and closer to center-
right majority. In fact, all the Parliamentarians located in the central part of Figure 5.4(e), appear at right in
Figure 5.4(f), indistinguishable from the majority coalition. We also notice that there is a PD Parliamentarian
positioned upper, near the right coalition, for five semesters. Because of the interpretation of the bipartisan
coordinate, her location means that she mostly voted with the majority. This dissimilarity from the own
political party, perhaps can be explained by the fact that this Representative is vice-president of the chamber.

Analysis of voting behavior with Singular Value Decomposition is thus a powerful tool to characterize
political point of view of Parliamentarians, and to trace the evolution of their position along consecutive
time periods. SVD is able to find structural patterns and latent information in the voting records without any
knowledge about the political orientation of Representatives.

5.4.3 Parliamentarians similarity

There can be different ways of defining similarity between two Parliamentarians from the voting matrix.
For example, Jakulin and Buntine [36] used the mutual information concept. However, as observed by the
authors, if two members always vote in the opposite way, they also are considered similar. We think that this
kind of proximity measure misrepresents the Representative closeness, thus we employed a different measure.
Considering that when two Representatives cast a vote the values yes and no should be considered equally
important in comparing their political affinity, we adopted the proximity measure known as simple matching
coefficient (SMC) [68]. We ignored the cases when at least one of the two did not vote because, as already
pointed out, this means either abstention or absence, and we cannot distinguish between them. Thus there can
be four different outcomes: (1) yy, both voted yes, (2) nn, both voted no, (3) yn, the first Parliamentarian
voted yes and the second one no, (4) ny, the first Parliamentarian voted no and the second one yes. Then the
SMC of Parliamentarians p1 and p2 is defined as

SMC(p1, p2) =
yy + nn

yy + nn+ yn+ ny

The simple matching coefficient thus computes the fraction of equal votes, both yes or no, with respect to
the total votes they cast.

The defined similarity metric allows us to measure the closeness of each pairs of Parliamentarians on the
basis of their voting behavior. In such a way a symmetric similarity matrix M among all the Parliamentarians
can be built, and their proximity with the members of the same or opposite parties studied. A summarized
view of the affinity between each couple of Representatives can be obtained in different ways. In the following
we first apply a hierarchical clustering algorithm, and then we give a graphical representation of the similarity
matrix.

Hierarchical clustering

We apply the agglomerative hierarchical clustering method known as single linkage clustering [68]. The
algorithm uses the smallest distance between two Parliamentarians and it generates a hierarchical clus-
ter tree known as dendrogram. The dendrogram shows the cluster-subcluster relationships and the hier-
archical structure of the merged groups. Figure 5.5 represents very well the political alliances along all
the semesters. The colors inside the dendrogram represent the clusters found by the algorithm. Attached
to the leaves there are the names of the corresponding politicians, painted with the colors of the true
associated party. For a clearer visibility, all the depicted polar dendrograms are available at the website
https://sites.google.com/site/alessiaamelio/software-tools.
In Figure 5.5(a) we can observe as the two main political parties, PD in red and PDL in blue, correspond
to the two main clusters of the dendrogram for all the semesters. The other parties (IDV in magenta, FL in
cyan, LN in green, PT in orange, UDC in brown, and Misto in violet) are clusters of smaller size, or they are
merged inside the main clusters. For example, LN party is grouped together with PDL in all the semesters,

5.4 The methodology 59

(a) I Semester (b) II Semester

(c) III Semester (d) IV Semester

(e) V Semester (f) VI Semester

Fig. 5.6. Visualization of the binary similarity matrices sorted by party membership, for each of the six semesters. The
row interval corresponding to each party are the following: FL [1:23]; IDV [24:44]; LN [45:98]; PD [99:303]; PDL
[304:521]; PT [522:545]; UDC [546:578]; Misto [579:612].

reflecting the real political (center-right) alliance between PDL and LN. Another similar case is IDV: most of
the members are grouped with the PD while some of them appear in different clusters for all the semesters.
Let us now consider the remaining parties. FL, as already described, was included into PDL until July 2010,
when internal problems caused the movement of FL in the direction of center-left alliance. This phenomenon
is captured by the clustering process. In fact FL is included into the majority for the semesters I-V (Figures
5.5(a-e)), while in the 6th semester all the members of FL are separated from PDL and grouped together with
the opposite part (Figure 5.5(f)).
In order to analyze more clearly the trend of PT and Misto parties, we looked not only at the dendrograms
but also at the confusion matrices generated for all the semesters. They show what really happened along the

60 5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution

semesters of the legislature: the gradual movement of PT and of some members of the Misto group in the
direction of the center-right alliance.
Furthermore, it is interesting to observe that UDC is recognized from the clustering process as a group (Fig-
ure 5.5(a)), while in the 6th semester (Figure 5.5 (f)) it appears together with FL and grouped with PD. This
is due to the political alliance between the UDC and FL and to the movement of both parties in the direction
of the center-left alliance.
It is worth to note as the main voting patterns revealed by hierarchical clustering totally agree with the results
of the SV D analysis illustrated in the previous section.

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Semester

M
od

ul
ar

ity

1
1.5
1.9

(a)

Fig. 5.7. Modulatity values.

Similarity matrix visualization

In order to visualize the similarity matrix M , a binarized matrix B has been built from M by assigning 1 to
the element B

ij

if M(i, j) � 0.6, and zero otherwise. B has been then reordered such that Parliamentarians
of the same party are located as consecutive rows/columns.

Figure 5.6 shows how the two political parties PDL (rows 304:521) and LN (rows 45:98), that supported
the center-right government, progressively reduce their intra-group similarity, while the opposition parties PD
(rows 99:303), IDV (rows 24:44), and UDC (rows 546:578) present the opposite trend, i.e. in the first three
semesters their intra-group similarity slightly diminishes, in the second three semesters, on the contrary, it
increases. It is interesting to note that members of FL (rows 1:23) maintain their high similarity for all the
periods, although they separated from PDL in 2010. Another important observation regards the new formed
group PT, whose Representatives come from the center-left parties. Although this was constituted in the
sixth semester to avoid the government fall, its members showed a good political affinity since the first
semester (rows/columns 522:545). The figures clearly show the boosting of agreement from the first to the
last semester.

Network representation of Italian Parliament voting records

In this section we apply network analysis to the voting records of Italian Parliament to verify if the results
obtained with the approaches employed in the previous sections are comparable when changing the analysis
method. The binary matrix B, derived from the similarity matrix M , can be used to build an undirected and
unweighted network N , where nodes correspond to Parliamentarians and there exists an edge between two

5.4 The methodology 61

0 50 100 150 200 250
1

2

3

4

5

6

7

8

9

Community size

C
om

m
un

ity
 n

um
be

r

PD 1
PDL 1
PD 1.5
PDL 1.5
PD 1.9
PDL 1.9

(a) I Semester

0 50 100 150 200 250
0

2

4

6

8

10

12

Community size

C
om

m
un

ity
 n

um
be

r

PD 1
PDL 1
PD 1.5
PDL 1.5
PD 1.9
PDL 1.9

(b) II Semester

0 50 100 150 200 250
0

2

4

6

8

10

12

14

Community size

C
om

m
un

ity
 n

um
be

r

PD 1
PDL 1
PD 1.5
PDL 1.5
PD 1.9
PDL 1.9

(c) III Semester

0 50 100 150 200 250
1

2

3

4

5

6

7

8

Community size

C
om

m
un

ity
 n

um
be

r

PD 1
PDL 1
PD 1.5
PDL 1.5
PD 1.9
PDL 1.9

(d) IV Semester

0 50 100 150 200 250
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Community size

C
om

m
un

ity
 n

um
be

r

PD 1
PDL 1
PD 1.5
PDL 1.5
PD 1.9
PDL 1.9

(e) V Semester

0 50 100 150 200 250
1

2

3

4

5

6

7

8

Community size

C
om

m
un

ity
 n

um
be

r

PD 1
PDL 1
PD 1.5
PDL 1.5
PD 1.9
PDL 1.9

(f) VI Semester

Fig. 5.8. Number of communities in which the two main parties PDL and PD are split and respective size.

nodes p
i

and p
j

if the entry B
ij

is 1. This means that two Representatives are connected if they voted in the
same way in at least 60% of the overall roll calls. The community structure of N can then be investigated
by optimizing the well known concept of modularity [50]. Remember that it is based on the intuitive idea
that a community should have more internal connections among its nodes than interconnections between its
nodes and those in other communities. Let’s recall that the modularity is defined as

Q =
1

2r

X

ij

(A
ij

� �
k
i

k
j

2r
)�(C

i

, C
j

)

62 5 Analyzing Voting Behavior in Italian Parliament: Group Cohesion and Evolution

where r is the number of edges in the network, k
i

is the degree of node i, C
i

is the community which i
belongs to, and �(C

i

, C
j

) is 1 if nodes i and j belong to the same community, 0 otherwise. � is a resolution
control parameter introduced by Granell et al. [29] to overcome the resolution problem stated in [22] and
study community structure at multiple scales. In fact it has been proved that the optimization of modularity
has a topological resolution limit that depends on both the total size of the network and the interconnections
of groups. This implies that small, tightly connected clusters could not be found. Thus, searching for parti-
tioning of maximum modularity, may lead to solutions in which important structures at small scales are not
discovered. When � = 1 the equation reduces to the standard formulation of modularity [50].

We used an algorithm optimizing modularity [57] extended with the resolution parameter, and executed
the method with three different values of �: 1, 1.5, 1.9. The latter two values have been chosen to analyze the
existence of sub-communities inside those obtained with � = 1 that cannot be found by optimizing modular-
ity because of the resolution problem.
Figure 5.7 shows how modularity values vary during the seven semesters for all the three resolution param-
eters chosen. The figure clearly points out a sharp decrease of modularity in the 6th period and a drastic
reduction in the 7th one. In order to better analyze the community structure detected by the algorithm, Figure
5.8 shows the number of communities in which the two main parties PDL and PD have been split. We do
not report the results for the other parties because their behavior is analogous to the coalition they belong to.
Since the size of the largest community is 218 (i.e. the number of PDL members), the first coordinate varies
between 1 and 218. The second coordinate, for each value of �, reports the number of subgroups of that size
obtained by the algorithm. Figure 5.8(a) shows that, with � = 1 PDL is grouped in a unique community,
while PD is clustered in a big community of 190 members and other 14 members are split in 7 small commu-
nities. When � = 1.5 the situation is almost the same. However, when � = 1.9, PD continues to have a big
community of size 192, while PDL is split in 14 communities of size varying between 1 and 46. The rather
interesting result is that this behavior is maintained for all the semesters. Thus, while PD remains cohesive
for all the semesters, independently of the � value, PDL is divided in many subgroups since the first semester,
when its degree of aggregation was considered very high, and as obtained with the other approaches described
in the previous sections.

Thus modularity allows a deeper analysis of the internal agreement of parties and can provide insights
of early and unexpected changes a political party could encounter. Moreover, it affords an explicit and clear
view of the steady fragmentation of the coalition endorsing the center-right government that culminated in its
fall.

5.4.4 The 7th Semester

The analysis described in the previous sections mainly considered the first six semesters. We decided to
separate the last semester because the voting behavior of Parliamentarians had an abrupt alteration, as testified
also by the results obtained by all the employed methods. First of all, the number of voted measures is less than
the fifth part of the other semesters. Furthermore, it happened that the political party organization completely
disappeared, and each Parliamentarian voted independently of his group.

Figure 5.9 gives a clear representation of this situation. In fact, the application of SV D on this semester
(Figure 5.9(a)) shows a polarization of all the parties on the first coordinate, and distinguishes between center-
left and center-right only on the bipartisan coordinate. Hierarchical clustering returns a unique cluster includ-
ing all the parties (Figure 5.9(b)), and the visualization of the voting matrices (Figure 5.9(c)) depicts high
fragmentation. Finally, Figure 5.9(d) shows that modularity optimization with � = 1 extracts a group of
156 and another of 19 members from PD, and two groups of 94 and 52 members from PDL. However these
groups are clustered together, thus confirming the results of the other approaches. For higher values of �, both
parties are split in small groups of at most 20 Parliamentarians, and the communities found are constituted
by members of almost all the political parties.

It is worth noting that, as already pointed out, Figure 5.7 indicates an abrupt lowering of modularity value
in the 7th semester that explains the loss of community structure.

5.4 The methodology 63

−10 −8 −6 −4 −2 0 2 4
−6

−4

−2

0

2

4

6

8

Partisan Coordinate

Bi
pa

rti
sa

n
C

oo
rd

in
at

e

FL IDV LN PD PDL PT UDC Mixed

(a) (b)

(c)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

Community size

C
om

m
un

ity
 n

um
be

r

PD 1
PDL 1
PD 1.5
PDL 1.5
PD 1.9
PDL 1.9

(d)

Fig. 5.9. Results obtained by applying SVD (a), hierarchical clustering (b), visualization of the similarity matrix (c), and
community detection (d) on the 7th semester.

6

Conclusion to Part II

Part II of this thesis introduced a new approach for extracting patterns from political data.
In particular, it proposed an investigation of the voting behavior of Italian Parliament in the last years to

find voting patterns by employing different computational tools. Though studies of this kind exist for different
political institutions from US and Europe, as far as we know, this is the first tentative of exploring Italian
Parliament with data mining and network analysis methods. Networks among the Parliamentarians have been
generated at consecutive time periods and community structure investigated at multiple scales. By delving the
voting records of Representatives, organizational structure of Parliament has been characterized, and latent
information discovered. All the used methods showed to be effective at identifying political patterns, and at
providing insights on the temporal evolution patterns of groups and their cohesiveness.

7

General conclusion and future work

This thesis presented some results in the field of Information Extraction, where patterns define the informa-
tion to extract and extraction procedures realize how these patterns can be effectively discovered from data.
Because information extraction is a relevant topic in multiple communities characterized by different kinds
of data sources, such as image processing and political science, patterns are strongly dependent on the kind of
input data which they must be detected from and appropriate extraction procedures must be adopted for this
purpose. In particular, patterns in image processing, which are pixels regions or objects, can be discovered by
image segmentation and edge detection techniques. In addition, image compression algorithms could require
the extraction of patterns which will characterize the compression phase. In political science, network anal-
ysis and data mining are able to detect patterns like trends, voting profiles and interactions among political
subjects. Our proposed techniques broaden in these two directions, by proposing new image segmentation
and compression techniques and a new approach analyzing political data. In particular, we proposed an im-
age segmentation technique, which extends the well-known Normalized Cut concept, normally needing the
number of partitions. By adopting a genetic approach, our technique is able to partition the input image in
an arbitrary number of partitions which is dynamically computed during the algorithm execution. In image
compression, we extended the traditional Lempel-Ziv techniques in 2D, by introducing a parser extracting
maximal and irredundant ”not solid” patterns from images in order to improve the compression gain. In po-
litical science, we found automatic tools for characterizing the modifications and changes occurred inside the
Italian Parliament during the XVI legislature, by using data mining and network analysis techniques.

Future work will continue in the direction of pattern extraction from images and political data. In some
contexts, color is a feature of prior importance for characterizing object patterns inside the images. Further-
more, particularly complex images, such as medical and satellite images, are composed of textures whose
detection is relevant for discriminating different region patterns. Consequently, we will focus on the segmen-
tation process to partition more complex images, by combining the contour information considered in our
approach with color and texture features of the regions. Thus we expect a further improvement of our ap-
proach in the segmentation accuracy. In politics, it is sometimes difficult to discover for some subjects their
membership to a given group. This is mainly because their ideology is not completely clear in the political
context and traditional community detection methods tend to force, for their nature, this hard membership
to a single group. Consequently, future work aims at applying overlapping community detection methods to
better uncover hidden collaborations among Parliamentarians of different political membership.

8

Publications underlying this thesis

Alessia Amelio and Clara Pizzuti. An Evolutionary and Graph-based method for Image Segmentation. In Pro-
ceedings of 12th International Conference on Parallel Problem Solving from Nature (PPSN 2012), Taormina,
Italy, 2012.

Alessia Amelio, Alberto Apostolico and Simona E. Rombo. Image Compression by 2D Motif Basis. In Pro-
ceedings of IEEE Data Compression Conference (DCC 2011), Snowbird, UT, USA, 2011.

Alessia Amelio and Clara Pizzuti. Analyzing Voting Behavior in Italian Parliament: Group Cohesion and
Evolution. In Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2012), Istanbul, Turkey, 2012.

References

1. A. Apostolico and S. Lonardi. Compression of biological sequences by greedy off-line textual substitution. In Data
Compression Conference, pages 143–152, 2000.

2. A. Apostolico, L. Parida, and S. E. Rombo. Motif patterns in 2D. Theoretical Computer Science, 390(1):40–55,
2008.

3. S. H. Bae. Information retrieval via universal source coding. Ph.D. dissertation, Georgia Institute of Technology,
2008.

4. U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen. Multi-resolution, object-oriented fuzzy
analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing,
58(3-4):239–258, 2004.

5. A. P. Berg and W. B. Mikhael. A survey of mixed transform techniques for speech and image coding. In ISCAS (4),
pages 106–109. IEEE, 1999.

6. S. Beucher. The watershed transformation applied to image segmentation. Scanning Microscopy Supplement, 6:299–
314, 1992.

7. C. A. Bouman and M. Shapiro. A multiscale random field model for Bayesian image segmentation. IEEE Transac-
tions on Image Processing, 3(2):162–177, 1994.

8. T. J. Brazill and B. Grofman. Factor analysis versus multi-dimensional scaling: binary choice roll-call voting and the
us supreme court. Social Networks, 24(3):201 – 229, 2002.

9. A. P. Carleer, O. Debeir, and E. Wolff. Assessment of very high spatial resolution satellite image segmentations.
Photogrammetric Engineering and Remote Sensing, 71(11):1285–1294, 2005.

10. A. Cavallaro, E. D. Gelasca, and T. Ebrahimi. Objective evaluation of segmentation quality using spatio-temporal
context. In ICIP (3), pages 301–304, 2002.

11. C. W. Chen, J. Luo, and K. J. Parker. Image segmentation via adaptive k-means clustering and knowledge-based
morphological operations with biomedical applications. IEEE Transactions on Image Processing, 7(12):1673–1683,
1998.

12. S. Chen, J. Luo, Z. Shen, X. Hu, and L. Gao. Segmentation of multi-spectral satellite images based on watershed
algorithm. In Proceedings of International Symposium on Knowledge Acquisition and Modeling, pages 684–688,
2008.

13. S. Chen and K. Zhang. Robust image segmentation using fcm with spatial constrains based on a new kernel-induced
distance measure. IEEE Transactions on Systems Man and Cybernetics B, 34:1907–1916, 2004.

14. Z. Chen, Z. Zhao, P. Gong, and B. Zeng. A new process for the segmentation of high resolution remote sensing
imagery. International Journal of Remote Sensing, 27(22):4991–5001, 2006.

15. P. C. Cosman, K. L. Oehler, E. A. Riskin, and R. M. Gray. Using vector quantization for image processing. In Proc.
IEEE, pages 1326–1341, 1993.

16. T. Cour, F. Bénézit, and J. Shi. Spectral segmentation with multiscale graph decomposition. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR 2005)), pages 1124–1131, 2005.

17. V. Dey, Y. Zhang, and M. Zhong. A review on image segmentation techniques with remote sensing perspectives. In
Proceedings of ISPRS TC VII Symposium, volume XXXVIII, pages 31–42, 2010.

18. R. O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, New York, 1973.
19. P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. International Journal of

Computer Vision, 59(2):167–181, 2004.
20. Y. Fisher. Fractal image compression. Technical Report 12, Department of Mathematics, Technion Israel Institute of

Technology, 1992. SIGGRAPH ‘92 COURSE NOTES.
21. D. B. Fogel. What is evolutionary computation? IEEE Spectr., 37(2):26–32, February 2000.

72 References

22. S. Fortunato and M. Barthélemy. Resolution limit in community detection. Proc. National Academy of Science,
USA, 104(36), 2007.

23. P. Fränti, O. Nevalainen, and T. Kaukoranta. Compression of Digital Images by Block Truncation Coding: A Survey.
Research reports / Computer Science, University of Turku. University of Turku, 1993.

24. V. Di Gesú and G. Bosco. Image segmentation based on genetic algorithms combination. In Fabio Roli and Sergio
Vitulano, editors, Image Analysis and Processing (ICIAP 2005), volume 3617 of Lecture Notes in Computer Science,
pages 352–359. Springer Berlin / Heidelberg, 2005.

25. R. Giancarlo and R. Grossi. Suffix tree data structures for matrices. In A. Apostolico and Z. Galil, editors, Pattern
matching algorithms, chapter 10, pages 293–340. Oxford University Press, 1997.

26. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

27. S. Golomb. Run-length encodings. Information Theory, IEEE Transactions on, 12(3):399–401, 1966.
28. R. C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edition). Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 2006.
29. C. Granell, S. Gómez, and A. Arenas. Unsupervised clustering analisys : A multiscale complex network approach.

Journal of Bifurcation and Chaos, in press, 2012.
30. A. Halder and N. Pathak. An evolutionary dynamic clustering based colour image segmentation. International

Journal of Image Processing, 4:549–556, 2011.
31. J. D. Helterbrand. One pixel-wide closed boundary identification. IEEE Transactions on Image Processing, 5(5):780–

783, 1996.
32. S. Hix, A. Noury, and G. Roland. Power to the parties: Cohesion and competition in the European Parliament. British

Journal of Political Science, 35(2), 2005.
33. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1975.
34. D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the Institute of Radio

Engineers, 40(9):1098–1101, September 1952.
35. A.K. Jain and R. Cg. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
36. A. Jakulin and W. Buntine. Analyzing the US Senate in 2003: Similarities, networks, clusters and blocs.

http://eprints.fri.uni-lj.si/archive/00000146/, 2004.
37. L. Jiao. Evolutionary-based image segmentation methods. Image Segmentation, 2011.
38. L. Kaufman and P.J. Rousseeuw. Finding groups in data: an introduction to cluster analysis. Wiley series in

probability and mathematical statistics. Applied probability and statistics. Wiley, 2005.
39. G. Kuntimad and H. S. Ranganath. Perfect image segmentation using pulse coupled neural networks. IEEE Trans-

actions on Neural Networks, 10(3):591–598, 1999.
40. C.C. Lai and C.Y. Chang. A hierarchical evolutionary algorithm for automatic medical image segmentation. Expert

Syst. Appl., 36(1):248–259, January 2009.
41. B. J. Lei, A. Hendriks, and M. J. T. Reinders. On feature extraction from images, June 1999.
42. A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on Information Theory, 22:75–81,

1976.
43. A. Lempel and J. Ziv. Compression of two-dimensional data. IEEE Transactions on Information Theory, 32(1):2–8,

1986.
44. T. K. Leung and J. Malik. Contour continuity in region based image segmentation. In 5th European Conference on

Computer Vision, ECCV’98, pages 544–559, 1998.
45. H.T. Li, H.Y. Gu, Y.S. Han, and J.H. Yang. An efficient multi-scale segmentation for high-resolution remote sens-

ing imagery based on statistical region merging and minimum heterogeneity rule. In Proceedings of International
Workshop on Earth Observation and Remote Sensing Applications, pages 1 – 6, 2008.

46. L. Li, J. Ma, and Q. Wen. Parallel fine spatial resolution satellite sensor image segmentation based on an improved
pulse-coupled neural network. International Journal of Remote Sensing, 28(18):4191–4198, 2007.

47. K. T. Macon, P. J. Mucha, and M. A. Porter. Community structure in United Nations General Assembly. Physica A:
Statistical Mechanics and its Applications, 391(1-2):343–361, January 2012.

48. T. Maxwell and Y. Zhang. A fuzzy logic approach to optimization of segmentation of object-oriented classification.
In Proceedings of SPIE 50th Annual Meeting - Optics and Photonics, pages 1–11, 2005.

49. M. Merzougui, A. EL. Allaoui, M. Nasri, M. EL. Hitmy, and H. Ouariachi. Evolutionary image segmentation by
pixel classification and the evolutionary Xie and Beni criterion - application to quality control. International Journal
of Computational Intelligence and Information Security, 2(8):4 – 13, 2011.

50. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review,
E69:026113, 2004.

51. A. Pajala, A. Jakulin, and W. Buntine. Parliamentary group and individual voting behav-
ior in Finnish Parliament in year 2003 : A group cohesion and voting similarity analysis.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.2295, 2004.

References 73

52. N. R. Pal and S. K. Pal. Entropy: a new definition and its applications. IEEE Transactions on System, Man and
Cybernetics, 21(5):1260–1270, 1991.

53. S. K. Pal, A. Ghosh, and B.U. Shankar. Segmentation of remotely sensed images with fuzzy thresholding, and
quantitative evaluation. International Journal of Remote Sensing, 21(11):2269–2300, 2000.

54. T. N. Pappas. An adaptive clustering algorithms for image segmentation. IEEE Transactions on Signal Processing,
40(4):901–914, 1992.

55. Y.J. Park and M.S. Song. A genetic algorithm for clustering problems. In Proc. of 3rd Annual Conference on Genetic
Algorithms, pages 2–9, 1989.

56. M. Paulinas and A. Uinskas. A survey of genetic algorithms applications for image enhancement and segmentation.
Information Technology And Control, Kaunas, Technologija, 36(3):278 – 284, 2007.

57. C. Pizzuti. Boosting the detection of modular community structure with genetic algorithms and local search. In Proc.
of the 27th Symposium on Applied Computing (SAC 2012), pages –, 2012.

58. M. A. Porter, P.J. Mucha, M. E. J. Newman, and A. J. Friend. Community structure in the United States House of
Representatives. Physica A: Statistical Mechanics and its Applications, 386(1):414–438, December 2007.

59. S. E. Rombo. Optimal extraction of motif patterns in 2D. Information Processing Letters, 109(17):1015–1020, 2009.
60. P. K. Sahoo, S. Soltani, and A. K. C. Wong. A survey of thresholding techniques. CVGIP, 41:233–260, 1988.
61. P. K. Sahoo, S. Soltani, A. K.C. Wong, and Y. C. Chen. A survey of thresholding techniques. Computer Vision,

Graphics and Image Processing, 41(2):233–260, 1988.
62. A. Sarkar, M. K. Biswascand, and K. M. Sharma. A simple unsupervised MRF model based image segmentation

approach. IEEE Transactions on Image Processing, 9(5):801–812, 2000.
63. A. Shahbahrami, R. Bahrampour, M. S. Rostami, and M. A. Mobarhan. Evaluation of huffman and arithmetic

algorithms for multimedia compression standards. CoRR, abs/1109.0216, 2011.
64. B. U. Shankar. Transactions on rough sets vii. chapter Novel classification and segmentation techniques with

application to remotely sensed images, pages 295–380. Springer-Verlag, Berlin, Heidelberg, 2007.
65. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8):888–905, 2000.
66. D. Sinha and E.R. Dougherty. Introduction to Computer-Based Imaging Systems. Tutorial texts in optical engineer-

ing. SPIE Optical Engineering Press, 1998.
67. G. Strang. Linear Algebra and its Applications. IV edition, Thomson Brooks/Cole, 2005.
68. P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson International Edition, 2006.
69. S. G. Tzafestas and S. N. Raptis. Image segmentation via iterative fuzzy clustering based on local space-frequency

multi-feature coherence criteria. Journal of Intelligent and Robotic Systems, 28(1-2):21–37, 2000.
70. R. Urquhart. Graph theoretical clustering based on limited neighborhood sets. Pattern Recognition, 15(3):173–187,

1982.
71. A. Visa, K. Valkealahti, and O. Simula. Cloud detection based on texture segmentation by neural network methods.

In Proceedings of the International Joint Conference on Neural Networks, pages 1001–1006, 1991.
72. J. Vrindavanam, S. Chandran, and G. K. Mahanti. Article: A survey of image compression methods. IJCA Proceed-

ings on International Conference and workshop on Emerging Trends in Technology (ICWET 2012), icwet(1):12–17,
March 2012. Published by Foundation of Computer Science, New York, USA.

73. A. S. Waugh, L. Pei, J. H. Fowler, P. J. Mucha, and M. A. Porter. Party polarization in Congress: A network science
approach. http://arxiv.org/abs/0907.3509, 2009.

74. M. J. Weinberger, J. Ziv, and A. Lempel. On the optimal asymptotic performance of universal ordering and discrim-
ination of individual sequences. In Data Compression Conference, pages 239–246, 1991.

75. T. A. Welch. A technique for high-performance data compression. Computer, 17(6):8–19, June 1984.
76. Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory and applications to image

segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1101–1113, 1993.
77. Y. Xu, V. Olman, and E. C. Uberbacher. A segmentation algorithm for noisy images: Design and evaluation. Pattern

Recognition Letters, 19:1213–1224, 1998.
78. Y. Yang, C. Han, and D. Han. A Markov random field model-based fusion approach to segmentation of SAR and

optical images. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages
802–805, 2008.

79. C. T. Zahn. Graph theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers,
20(1):68–86, 1971.

80. Y. Zhang, A.J. Friend, A. L. Traud, M. A. Porter, J. H. Fowler, and P. J. Mucha. Community structure in Congressional
cosponsorship networks. Physica A: Statistical Mechanics and its Applications, 387(7):1705–1712, March 2008.

81. C. Zhong, Z. Zhongmin, Y. DongMei, and C. Renxi. Multi-scale segmentation of the high resolution remote sensing
image. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 3682–
3684, 2005.

82. L. Zhu. Computational political science literature survey, August 2010.

74 References

83. J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on Information
Theory, 23(3):337–343, 1977.

84. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Transactions on Infor-
mation Theory, 24(5):530–536, 1978.

