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ABSTRACT 

Cable supported bridges are complex structures presenting optimum use 

of structural materials, efficient aesthetic and structural characteristics and low 

maintenance costs. Because of their large size and different features of 

structural elements, which are essentially girder, cable system and pylons, cable 

supported bridges present several problems that need to be addressed. 

One concerns the definition of the initial geometrical configuration of 

the structure. As a matter of fact, especially for long spans, cable supported 

bridges are defined through a large number of cable elements, which lead to 

highly statically indeterminate structures. As a result, post-tensioning forces and 

cross-section dimensions of cables can be considered as design variables which 

must be determined.  

Another one concerns the vulnerability assessment for extreme loading 

conditions as the transit of moving loads or the effects produced by damage 

mechanisms in the cable system, such as corrosion, which strongly reduce the 

structural integrity. Such phenomena produce high dynamic amplification 
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effects in terms of stress and displacement variables. However, effects produced 

by the action of moving load or by damage mechanisms are not independent. As 

a matter of fact, corrosion mechanisms make the structure more sensitive to the 

action of moving loads. On the other hand, moving load induced vibrations can 

cause the deterioration of cables by fatigue or abrasion effects according to the 

known phenomenon of the "fretting-fatigue corrosion". Therefore, moving load 

and damage mechanisms problems should be studied together. 

The last one is relative to the geometric and material nonlinear effects 

on bridge structure behavior.� As a matter of fact, geometric and material 

nonlinearities affect cable supported bridges and, as a consequence, the 

maximum load carrying capacity. Material nonlinearities come from the 

nonlinear stress–strain behavior of materials, whereas geometric nonlinearities 

result from the cable “sag” effect, large displacements and axial force–bending 

moment interaction in the girder and pylon (beam-column effect).  

The aim of the present thesis is to develop advanced structural models 

of cable supported bridges to address previous issues. To this end, a refined 

formulation based on FE approach is adopted to reproduce the structural 

behavior of the main long span cable supported bridges. In particular, the bridge 

formulation is developed by using a geometric nonlinear formulation, in which 

the effects of local vibrations of the cable elements and of large displacements 

in the girder and the pylons are taken into account. 

As far as the definition of the initial geometrical configuration, a design 

methodology to predict optimum post-tensioning forces and dimensioning of 

the cable system for cable supported bridges is proposed. The model is based on 

a combination of the previous FE model with an iterative optimization 

procedure. Such iterative procedure is utilized to optimize the shape of post-

tensioning forces as well as the geometry of the cable system to achieve 

minimum deflections, lowest steel quantity involved in the cable system and 

maximum performance of the cables under live load configurations. In this 

framework, results are proposed in terms of comparisons with existing 

formulations to validate the proposed methodology. Moreover, parametric 

studies on more complex long span structures are also developed to verify 

existing cable-dimensioning rules and to analyze between hybrid cable-stayed 
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suspension bridges and conventional cable-stayed or suspension systems. 

Furthermore, results concerning the self-anchored cable-stayed suspension 

scheme case are presented in detail. 

In order to analyze the structural behavior of cable supported bridges 

subjected to moving loads and affected by damage mechanisms in the cable 

suspension system, further formulations have been added in the FE base model. 

In particular, the coupling effects arising from the interaction between bridge 

deformations and moving system parameters has been taken into account, which 

allow to reproduce the influence of the inertial characteristics of the moving 

loads. Moreover, damage and failure phenomena on the cable system elements, 

produced by preexisting corrosion phenomena or unexpected failure 

mechanisms, are analyzed by using stationary or time dependent explicit laws, 

developed in the framework of the Continuum Damage Mechanics theory. 

At first, analysis focused attention on the dynamic behavior of cable-stayed 

bridges affected by an accidental failure in the cable suspension system.  

Sensitivity analyses of typical design bridge variables are proposed. In 

particular, the effects produced by the moving system characteristics, the tower 

typologies, and the failure mode characteristics involved in the cable system are 

investigated by means of comparisons between damaged and undamaged bridge 

configurations. Subsequently, the behavior of hybrid cable-stayed suspension 

bridge is investigated. To this end, a parametric study is carried out on four 

damage scenarios involving damage mechanisms in the hangers, main cable and 

stays. In particular, in order to point out the advantages presented by such 

bridge topology, comparisons with bridge schemes based on pure cable-stayed 

and suspension cable system are proposed. Results are expressed in terms of 

dynamic amplification factors of typical kinematic and stress design variables. 

The problem of the influence on the maximum load carrying capacity of 

the geometric and material nonlinearities is presented with reference to the self-

anchored cable-stayed suspension scheme. The material nonlinear behavior for 

the girder and pylons elements is accounted for by a refined finite element 

formulation which combine the a gradual yielding theory based on the (CRC) 

tangent modulus concept and a plastic hinge model, whereas for cable elements, 

the finite plasticity theory of Green and Naghdi is adopted. In the framework of 
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geometric nonlinearities, since the FE base model takes into account large 

displacement and cable “sag” effect, which is reproduced by adopting a multiple 

truss element approach, further contributions to reproduce  beam-column effect 

are added. The analysis is based on a limit point instability approach. Since the 

bridge behavior is mostly influenced by the post-tensioning force distributions 

in the cable system, the initial geometrical configuration of the bridge under the 

action of dead loads, is defined in advance. Results are devoted to analyze the 

influence of the nonlinear material behavior as well as the geometrical and 

structural parameters of the bridge on the maximum load capacity of the 

structure. 

�

�

�
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I ponti di grande luce sono strutture complesse che presentano un 

utilizzo ottimale dei materiali strutturali, caratteristiche estetiche e costruttive 

efficienti e bassi costi di manutenzione. A causa delle loro grandi dimensioni e 

delle diverse caratteristiche degli elementi strutturali, che sono essenzialmente 

la trave di irrigidimento, i piloni e il sistema dei cavi, i ponti di grande luce 

presentano diversi problemi che devono essere analizzati. 

Uno riguarda la definizione della configurazione iniziale della struttura. 

I ponti di grande luce, infatti, specialmente per lunghezze elevate, presentano un 

gran numero di cavi, che determinano strutture altamente iperstatiche. Come 

risultato, le forze di pretensione e le dimensioni delle sezioni trasversali dei cavi 

possono essere considerati come variabili di progetto che devono essere 

determinati. 

Un altro riguarda la valutazione della vulnerabilità strutturale nei 

riguardi di condizioni di carico estreme come il transito di carichi mobili o gli 

effetti prodotti da meccanismi di danneggiamento del sistema dei cavi, come la 

corrosione, che riducono fortemente l'integrità strutturale. Tali fenomeni 
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producono significativi effetti di amplificazione dinamica in termini variabili 

tensionali e di spostamento. Tuttavia, gli effetti prodotti dall'azione dei carichi 

mobili o da meccanismi di danno non sono indipendenti. L’effetto della  

corrosione rende la struttura più sensibile all'azione di carichi mobili. D'altra 

parte, le vibrazioni indotte dal transito dei veicoli possono causare il 

deterioramento dei cavi per fatica o abrasione. Per queste ragioni, i problemi dei 

carichi mobili e dei meccanismi di danno dovrebbero essere studiati 

congiuntamente. 

L'ultimo è relativo agli effetti delle nonlinearità geometriche e dei 

materiali sul comportamento strutturale dei ponti. Le nonlinearità geometriche e 

dei materiali, infatti, influenzano la risposta dei ponti di grande luce e, di 

conseguenza, anche la massima capacità portante. Le nonlinearità dei materiali 

derivano dal legame sforzo-deformazione dei materiali, mentre le nonlinearità 

geometriche sono dovute all’effetto “sag” dei cavi, ai grandi spostamenti e ai 

fenomeni di interazione sforzo assiale-momento flettente che insorgono nella 

trave di irrigidimento e nei piloni (effetto beam-column). 

Obiettivo della presente tesi di dottorato è quello di sviluppare modelli 

strutturali avanzati per l’analisi delle problematiche dei ponti di grande luce 

precedentemente descritte. A tal fine, è si è fatto ricorso alla metodologia degli 

elementi finiti per riprodurre il comportamento strutturale dei principali ponti di 

grande luce. In particolare, è stata adottata una formulazione di tipo nonlineare  

geometrico, che ben si presta a riprodurre gli effetti delle vibrazioni locali dei 

cavi e i grandi spostamenti a cui sono soggetti la trave d’irrigidimento e i piloni. 

Per quanto riguarda la definizione della configurazione geometrica 

iniziale, viene elaborata una metodologia di progettazione per l’ottimizzazione 

delle forze di pretensione e per il dimensionamento delle sezioni trasversali dei 

cavi. La metodologia è data dalla combinazione del modello strutturale agli 

elementi finiti descritto in precedenza con una procedura di ottimizzazione 

iterativa. Tale procedura iterativa è utilizzata per ottimizzare la distribuzione 

delle forze di pretensione e le dimensioni delle sezioni trasversali al fine di 

minimizzare la quantità di acciaio e massimizzare le performance strutturali 

sotto l’azione di carichi di natura accidentale. In tale ambito, sono stati elaborati 

dei risultati  per validare la metodologia proposta per mezzo di confronti con   
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formulazioni presenti in letteratura. Inoltre, sono stati sviluppati risultati 

parametrici con riferimento a ponti di conformazione più complessa per 

verificare le regole di dimensionamento e per confrontare i ponti a 

configurazione mista sospesa strallata con le convenzionali configurazioni 

sospese e strallate. Inoltre, dettagliati risultati sono proposti con riferimento al 

caso dei ponti misti auto-ancorati sospesi strallati. 

Al fine di analizzare il comportamento strutturale di ponti di grande luce 

in presenza di meccanismi di danneggiamento del sistema dei cavi, sotto 

l’azione di carichi viaggianti, al modello agli elementi finiti sono aggiunte  

ulteriori formulazioni. In particolare, sono presi in considerazione gli effetti di 

accoppiamento flesso-torsionale della struttura da ponte e quelli associati ai 

contributi di carico e di massa derivanti dal sistema mobile. Inoltre, gli effetti di 

fenomeni di danneggiamento di elementi del sistema dei cavi, prodotti da 

preesistenti fenomeni di corrosione o rotture improvvise, vengono analizzati per 

mezzo di leggi esplicite in funzione del tempo, sviluppate nell’ambito della 

teoria della meccanica del danneggiamento. Inizialmente, le analisi hanno 

focalizzato l'attenzione sul comportamento dinamico di ponti strallati in 

presenza di rottura improvvisa di elementi costituenti il sistema dei cavi. In tale 

contesto sono proposti dei risultati ricavati da analisi sensitive delle variabili dei 

ponti di grande luce. In particolare, l’influenza dalle caratteristiche dei carichi 

mobili, delle tipologia dei piloni e dello scenario di danneggiamento sono 

studiati per mezzo di confronti tra configurazioni del ponte danneggiate e non 

danneggiate. Successivamente, viene analizzato il comportamento dei ponti 

misti strallati sospesi. E’ sviluppato uno studio parametrico sulla base di quattro 

scenari di danneggiamento che prevedono il danneggiamento degli stralli, dei 

pendini e del cavo principale. In particolare, al fine di evidenziare i vantaggi 

presentati dalla configurazione mista, vengono proposi dei risultati sotto forma 

di confronto con sistemi puri strallati e sospesi. I risultati sono espressi in 

termini di fattori di amplificazione dinamica delle tipiche variabili cinematiche 

e tensionali di progetto. 

Il problema della influenza sulla capacità massima di carico delle 

nonlinearità geometriche e del materiale è presentato con riferimento allo 

schema di sospensione strallato-sospeso auto-ancorato. Il comportamento non 
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lineare del materiale della trave di irrigidimento e dei piloni è rappresentato da 

una raffinata formulazione agli elementi finiti che combina la teoria alla base 

del modulo tangente con un modello di cerniera plastica, mentre per i cavi viene 

adottata la teoria della plasticità per deformazioni finite. Nel quadro della non 

linearità geometrica, dal momento che il modello strutturale di base agli 

elementi finiti riproduce i grandi spostamenti e l’effetto "sag" dei cavi, che 

viene riprodotto per mezzo di un approccio multi truss element, sono agiunti 

ulteriori contributi per riprodurre l’effetto di interazione sforzo normale-

momento flettente presente nelle pile e nella trave di irrigidimento. L'analisi si 

basa su un’analisi nonlineare al passo. Poiché il comportamento strutturale del 

ponte è fortemente influenzato dalle distribuzioni delle forze di pretensione del 

sistema dei cavi, come primo step viene determinata la configurazione 

geometrica iniziale del ponte sotto l'azione di carichi permanenti. I risultati sono 

finalizzati ad analizzare l'influenza sulla massima capacità di carico del 

comportamento nonlineare del materiale nonché dei parametri geometrici e 

strutturali.  



1 

INTRODUCTION 

1.1 Current issues in the field of cable supported bridges  

With the advent of high-strength materials for use in the cables and the 

development of digital computers for the structural analysis, great progress has 

been made in cable supported bridges.  

As a consequence, during the last years many problems have been 

resolved and nowadays new research objectives have been identified.  

Most of the current research issues in the field of cable supported 

bridges are addressed to reduce the construction costs of the new structures and 

to analyze the structural performance of the bridges built in the past.  

Furthermore, since the structural analyses of cable supported bridges are 

produced mainly by finite element methodologies, more accurate models based 

on advanced formulations are developed to get more realistic simulations.     

Therefore, the majority of the last research works have focused on the 

following topics:  
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- Development of new design methods to get maximum structural 

performance as well as reduced costs; 

- Analysis of the structural behavior in the presence of damage 

mechanisms; 

- Implementation of advanced computational models able to reproduce 

all source of nonlinearity. 

- Produce more accurate theories to better simulate the effects of the 

worst external actions. 

The present thesis aims to be a scientific contribution to the 

development of these topics. 

1.2 Background of cable supported bridges 

Cable supported bridges are typically employed to overcome medium or 

long spans, because of their structural, economical and aesthetic properties.  

Such characteristics arise from an enhanced combination of the structural 

components of the bridge, which are essentially girder, cable system and pylons.  

Cable supported bridges differ from each other by cable system 

configuration. Typically, cable systems are based on suspension or cable-stayed 

schemes, known as pure systems, which were employed in the most cable 

supported bridges built to date. Furthermore, the cable system may assume 

hybrid configurations, provided by the combination of classical ones.  

The most famous hybrid cable supported bridge is the Brooklyn Bridge 

designed by Roebling in the 1870. Based on his work experiences, Roebling 

guessed that a cable-stayed system is stiffer than a suspension system and a 

combination of them could lead good benefits (Gimsing & Georgakis, 2012).  

In the case of the Brooklyn Bridge, such hybrid configuration was the 

best solution against the wind induced vibrations.  

An evolution of the Roebling’s system was proposed by Dischinger in 

1938. The Dischinger’s system can be obtained by Roebling’s system by taking 

out the hangers in the regions where stay cables are present.  
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Although Dischinger has proposed his scheme on several occasions, it 

was never used. Furthermore, hybrid systems have not been chosen for 

construction of a major bridge since the days of the Brooklyn Bridge.  

Nevertheless, the interest on hybrid schemes has never stopped and 

recent studies have improved knowledge about structural behavior of such 

bridge typology.  

The ultimate proposal of hybrid scheme, whose is receiving 

considerable attention, is consistent with a self-anchored cable-stayed 

suspension scheme. Such cable system configuration combines the best 

properties of pure cable-stayed and suspension systems leading to considerable 

structural and economic advantages (Zhang, Wang, Qin, & Ge, 2009; 

Konstantakopoulos & Michaltsos, 2010).  

As a matter of fact, self-anchored cable-stayed suspension bridge, which 

can be regarded as a self-anchored Dischinger’s system, can provide a stiffener 

and cheaper structure than traditional ones based on pure suspension or cable-

stayed systems and for this reason it is considered a good solution for 

overcoming long spans. 

1.2.1 Suspension System 

The suspension system comprises a parabolic main cable and vertical 

hanger cables connecting the deck to the main cable. The most common 

suspension bridge system has three spans: a large main span flanked by shorter 

side spans. The three-span bridge is in most cases symmetrical with side spans 

of equal size, but where special conditions apply, the side spans can have 

different lengths. However, to transmit the horizontal component of the main 

cable pull acting at the pylon tops, the main cable will have to continue as free 

backstays to the anchor blocks.  

In the traditional earth anchored suspension bridge each main cable is 

supported at four points: at the two anchor blocks and on the two pylon tops. 
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���Figure 1.1   Suspension Bridge

The supporting points at the anchor blocks can generally be assumed to 

be completely fixed both vertically and horizontally, whereas the supporting 

points at the pylon tops often are represented best by longitudinally movable 

bearings (due to the horizontal flexibility of the slender pylon legs).  

Therefore the general arrangement of the suspension bridge cable 

system will be as shown in Fig. 1.1.  

An excellent example of suspension bridge is the Golden Gate Bridge 

whose spans the Golden Gate strait, the mile-wide, three-mile-long channel 

between San Francisco Bay and the Pacific Ocean (Fig. 1.2). The structure links 

the U.S. city of San Francisco, on the northern tip of the San Francisco 

Peninsula, to Marin County, bridging both U.S. Route 101 and California State 

Route 1 across the strait. The bridge is one of the most internationally 

recognized symbols of San Francisco, and the United States.  

It has been declared one of the Wonders of the Modern World by the 

American Society of Civil Engineers.  

�

Figure 1.2   The Golden Gate Bridge
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Figure 1.3   Three-span, suspension bridge cable system

The geometry of the cable system in the dead load condition is generally 

chosen so that the deck and the pylons are moment-free. To achieve this, the 

cable curve must coincide with the funicular curve of the total dead load. 

The main cable geometry can then be expressed by the following 

equations: 

�
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where ( )aM x , ( )mM x  and ( )bM x  are the moments of simply supported 

beams with lengths 
al , 

ml and 
bl  subjected to the total dead load of main cable, 

hangers, and deck.  

It is worth nothing that, although the contribution from the dead load of 

the deck and hangers should be applied to the main cable as concentrated forces 

acting at each cable clamp position and the dead load of the main cable itself 

should be applied as a distributed load, since in suspension bridges hangers are 

spaced very closely, the dead load can be assumed to act as a distributed load.  
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Besides stipulating the position of the supporting points A, B, D and E, 

the general geometric conditions of the bridge often lead to a predetermined 

position of the midspan point C in the main span.  

The horizontal force H can then be found from: 

( / 2)

/ 2

m m

C D

M l
H

h h
=

−
  (1.2) 

�

where ( / 2)m mM l  is the simple moment at the main span center and 

/ 2c Dh h−  the cable sag at midspan. Eq.s (1.1) and (1.2) now define the total 

cable curve when the dead load distribution is known. 

A preliminary determination of the maximum hanger force can be based 

on the assumption that the hanger carries the distributed load acting on a length 

of the deck equal to the hanger spacing ∆ : 

�

( )hT g p= + ∆  (1.3) 

and the cross-sectional area 
hA  of the hanger: 

( )h
h

y y

T g p
A

f f

+ ∆
= =  (1.4) 

where yf  is the allowable stress of the cable steel. 

�

Figure 1.4   Loading case for maximum hanger force
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The maximum force 
mT  of the main cable in the main span can be 

determined by assuming the dead load of the deck and the distributed traffic 

load acting uniformly in the entire main span.  

In the preliminary investigation the dead load of the hangers might be 

ignored as this contribution is quite insignificant. As a further approximation, 

the dead load of the main cable 
cg  is assumed to be uniformly distributed 

horizontally. The simplifying assumptions regarding the dead load of the cable 

system are slightly on the unsafe side, but this is to a large extent balanced out 

by assuming the dead load geometry instead of the deflected geometry.  

For a horizontal main cable, as shown in Fig.1.5, the maximum 

horizontal force 
mH  becomes: 

2( )

8

c m
m

m

g p g l
H

f

+ +
=  (1.5) 

and the maximum cable force 
mT  (at the pylon): 

( )
2 2 2 2( 16 ) 16

8

m m m m

m m m c m

m m

l f l f
T H g p l g l

l f

+ +
= = � + + �� �  (1.6) 

This expression is based on the simplifying assumption that the cable 

curve is a second order parabola. 

�

Figure 1.5   Loading case for maximum main cable force 
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Figure 1.6   Horizontal equilibrium at the pylon top 

The main cable area 
mA  is now found from Eq.(1.6) by replacing 

m m yT A f=   and 
c m cg A γ= , where 

cγ  is the density of the cable material: 

( ) 2 2

2 2

16

8 16

m m m
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y m cb m m m

g p l l f
A

f f l l fγ
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− +

  (1.7) 

The maximum tension 
aT  in the side span main cable is determined by 

expressing horizontal equilibrium at the pylon top, as indicated in Fig. 1.5:

�
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m
a

a

H
T

ϕ
=   (1.8) 

�

where 
mH  is the maximum horizontal force from, with 

c m cg A γ=

found from Eq.(1.7). The preliminary cross-section area 
aA  of the side span 

cable thus becomes: 

�
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1.2.2 Cable-stayed scheme 

The cable-stayed systems (Fig. 1.6) contain straight cables connecting 

the deck to the pylons (De Miranda, 1980; Troitsky, 1988).  

Three basic arrangements have been developed for the layout of the stay 

cables: fan system, harp system and semi-fan system.  

In the fan system all cables are leading to the top of the pylon. 

Structurally, this arrangement is perhaps the best, as by taking all cables to the 

pylon top the maximum inclination to the horizontal is achieved and 

consequently it need the smallest amount of steel.  

The cables carry the maximum component of the dead and live load 

forces, and the axial component of the deck structure is at a minimum. 

�

Figure 1.7   Cable-stayed bridge systems: 

(top) pure fan system; (centre) semi-fan system; (bottom) harp system 

�
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However, where a number of cables are taken to the top of the pylon, 

the cable supports or saddles within the pylon may be very congested and a 

considerable vertical force has to be transferred. Thus the detailing becomes 

rather complex. 

In the harp system the cable are connected to the pylon at different 

heights, and placed parallel to each other. This system may be preferred from an 

aesthetic point of view. However, it causes bending moments in the pylon. In 

addition, it is necessary to study whether the support of the lower cables can be 

fixed at the pylon leg or must be made movable in a horizontal direction. The 

harp-shaped cables give an excellent stiffness for the main span. The quantity of 

steel required for a harp-shaped cable arrangement is slightly higher than for a 

fan-shaped arrangement. The curve of steel quantity suggests choosing a higher 

pylon which will also increase the stiffness of the cable system against 

deflections. 

The semi-fan intermediate stay cable arrangement represents a 

modification of the harp system. The forces of the stays remain small so that 

single ropes could be used. All ropes have fixed connections in the pylon.  

The Russky Bridge is the world's longest cable-stayed bridge and it is 

based on a semi-fan cable system configuration Fig. 1.8. The Russky Bridge is 

built across the Eastern Bosphorus strait, to serve the Asia-Pacific Economic 

Cooperation conference that took place in Vladivostok in 2012.  

Figure 1.8   The Russky Bridge
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The bridge connects the mainland part of the city (Nazimov peninsula) 

with Russky Island, where the main activities of the summit took place. The 

bridge was completed in July 2012 and opened by Russian Prime Minister 

Dmitry Medvedev. Furthermore, the Russky bridge also has the second highest 

pylons after the Millau Viaduct. 

With respect to the pylon types, cable-stayed bridges can be 

characterized by three main shapes: H-frame, A-frame and Y-frame shape.

 The H-frame type pylons were used in the design of early cable-stayed 

bridges. The A-frame pylon is suitable for inclined stay arrangements. A 

variation of the A-frame is the inverted Y-frame where the vertical leg, 

containing the stay anchors, extends above the bifurcation point.  

With respect to the various positions in space which may be adopted for 

planes in which the cable stays are disposed there are two basic arrangements: 

two-planes system and single-plane system.  

In the first case, the cable system may be composed by two vertical or 

inclined planes which linked the external edge of the girder to the pylons, 

whereas, in the last case, the cables are located in a single vertical strip. In 

particular, a single-plane system requires a hollow box main girder with 

considerable torsional rigidity in order to keep the change of cross-section 

deformation due to eccentric live load within allowable limits. 

     

�

Figure 1.9   Pylon types for cable-stayed bridges: 

(left) H-frame; (centre) A-frame; (right) Y-frame 
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It is worth nothing that, all possible variations regarding the longitudinal 

arrangements of the cables used with two plane bridges are also applied to 

single plane central girder bridge. 

The cross sectional stay areas are designed so that the dead loads (g) 

produce constant stress over all the distributed elements, which are assumed 

equal to a fixed design value, namely gσ . As a result, the geometric area of the 

stays varies along the girder, but the safety factors are practically constant for 

each element of the cable system.  

Moreover, for the anchor stays, the cross-section geometric area, that is 

0sA , is designed in such a way that the allowable stress is obtained in the static 

case, for live loads applied to the central span only.  

Therefore, the geometric measurement for the cable system can be 

expressed by the following equations: 

1/ 2
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2 2
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gl l L
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H l
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= + −� � � � �  �
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 (1.10) 

where � is the slope of a generic stay element with respect to the 

reference system, L, l and H are representative geometric lengths of the bridge 

structure, and � is the stay spacing step.  

The bridge analysis is based on the following assumptions: 

- The stress increments in the stays are proportional to the live 

loads, p; 

- A long span fan shaped bridge is characterized by a dominant 

truss behavior. In this framework, the tension  and 0gσ  for 

distributed and anchor stays, respectively, can be expressed by 

the following relations: 
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It is worth noting that the allowable stay stress, 
aσ , represents a known 

variable of the cable system in terms of which the design tension under dead 

loading can be determined by the use of Eq. (1.11). 

1.2.3 Hybrid cable-stayed Suspension scheme 

The bridge scheme, reported in Fig. 1.10, is consistent with a long span 

bridge typology, in which the cable system is composed by the combination of 

suspension and cable-stayed configurations.  

Suspension and cable-stayed cable systems are based on earth and self-

anchored schemes and consist of a double layer of cables arranged in the plane 

containing girder and pylon extremities. The hanger rods and the stays are 

hinged, at both ends, to the girder and main cable or to the girder and pylons, 

whereas the main cable is supported at the top pylon cross-sections consistently 

to a saddle connection.  

The Brooklyn Bridge (Fig. 1.11) is the most famous hybrid cable-stayed 

suspension bridge in New York City and is one of the oldest bridges of either 

type in the United States.  Completed in 1883, it connects the boroughs of 

Manhattan and Brooklyn by spanning the East River. The stay and hanger 

cross-sections of an hybrid cable-stayed suspension bridge are designed in such 

a way that the self-weight loads produce constant tension over all distributed 

elements and equal to a fixed value, namely gσ . Moreover, a proper erection 

procedure is assumed to dispatch the girder’s self-weight load with a rate r 

(0<r<1), namely coupling stayed-suspension parameter, in both bearing 

systems (Gimsing & Georgakis, 2012; Konstantakopoulos & Michaltsos, 2010; 

Bruno, Greco, & Lonetti, 2008) 
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Figure 1.10   Structural scheme of the Hybrid cable-stayed suspension bridge  

Figure 1.11   The Brooklyn Bridge 
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This hypothesis is in agreement with the main theory on combined 

supported bridges, which considers the dead load distribution spitted into 

equivalent loads depending on the amount required of the cable steel quantity 

involved in the cable system (Gimsing & Georgakis, 2012; Gimsing, 1991).  

The constant distribution of the dead loads can be viewed as a realistic 

approximation of the actual solution from an engineering point of view, because 

it is frequently assumed the dead loading is undertaken by equally distributed 

elements, i.e. hangers and stays. From an analytical point of view it corresponds 

to a dead loads distribution factor, equal to the fraction of the total girder dead 

load taken by the suspension system in the regions where both suspension and 

cable stayed systems are present. 

Therefore, the girder self-weight amounts applied to the cable-stayed 

(st) and the suspension (sp) systems, i.e., gst and gsp, respectively, are defined by 

the following expressions: 

(1 )st

sp

g r g

g rg

= −

=
 (1.12) 

where g represents the girder self-weight loads per unit length. 

A generic stay or hanger initial cross-section area is dimensioned by 

means of the following equations: 

(1 )
sin

st
s s

g

sp

h h

g

g
A r A

g
A rA

σ α

σ

∆
= = −

∆
= =

 (1.13) 

where σg is the self-weight design tension for a generic stay, ∆ is the 

stay and hangers spacing step, α is the stay orientation angle with respect to the 

horizontal direction (Fig. 1.10). sA  and hA  are, respectively, the cross-section 

area dimensions expressed by Eq.s (1.4) and (1.11).   
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Similarly for the anchor stays, the geometric area is determined in such 

a way that the corresponding allowable stress, i.e. σg0, is reached in the static 

case for live loads applied on the central span only: 

1/2
2 2

0 0
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2 2
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 (1.14) 

From a practical point of view, the design parameter r is an indicator of 

the ratio between the suspension system steel quantity and that involved in the 

combined bridges. As an example, assuming that r is equal to 0 or 1, the 

combined bridge tends to a perfect cable-stayed or suspension bridge scheme, 

respectively, and consequently, s sA A= , 0 0s sA A=  and h hA A= . Assuming that 

the stress increments in the stays are proportional to live loads, p, the self-

weight design tension for a generic stay, and the anchor ones, i.e. σg and σg0, 

respectively, can be expressed by the following equations: 

2

0 2

1
2

1 1
2

g a

g a

g

g p

L

l

p L

g l

σ σ

σ σ

=
+

	 

− �

� �=
	 
	 


+ − � �
� �� �

 (1.15) 

where σa is the allowable stay stress. The cable stayed system, 

especially for long spans, is affected by high stiffness reduction due to 

Dischinger effects (Irvine, 1981). 

The stays are supposed to be distributed on a reduced portion of the 

main span, namely 2l L lm (Fig. 1.10), which can be estimated, 

approximately, by the following relationship (Gimsing & Georgakis, 2012): 

1
1/2

1
sp c

m

g g
l L L

g

−
� �+	 

� �= − +  �
� �� �� �

 (1.16) 
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where gc is the self-weight main cable suspension distributed loads. 

In the framework of long span bridges, the ratio between sag and 

horizontal main cable projection length, i.e. f/L, is usually small and it vary in 

the range between 0.1 and 0.2. Therefore, the initial main cable configuration 

(y) and the corresponding horizontal axial force (Ht0) can be determined in 

closed form, utilizing a parabolic approximation of the cable profile (Pugsley, 

1968), as: 
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0
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M z
y z
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 (1.17) 

where M(z) is a fictitious bending moment due to distributed self-weight 

loads taken by the suspension system calculated as for a simply supported beam 

and s is the main cable sag.  

In the dead load configuration, the main cable is subjected to the 

transferring stresses arising from the girder, which can be assumed differently 

distributed between the cable-stayed and the suspension systems as a function 

of a dead load factor (r), typically assumed in the range between 0.2 and 0.4 for 

design purposes. 

The main cable dimensioning quantifies the geometric area, in terms of 

maximum main cable axial force, allowable tension, and slope of main cable 

profile, as (Gimsing & Georgakis, 2012): 

( )cos

tq

C

a

H
A

σ φ
=  (1.18) 

where φ is the orientation angle formed by the main cable tangent at 

pylon intersection and the vertical direction (Fig. 1.10) and Htq is the horizontal 

main cable force related to live loads applied to the whole central span.�
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1.2.4 Self-anchored cable-stayed suspension bridge  

The structural scheme, reported in Fig.1.12, is consistent with a self-

anchored cable-stayed suspension bridge in which the cable system is based on 

the combination of suspension and cable-stayed configurations (Wang, Tan, 

Qin, & Zhang, 2013). Suspension and cable-stayed cable systems consist of a 

double layer of cables arranged in the plane containing girder and pylon 

extremities. In particular, the cable-stayed system is based on discrete stays, 

which are mainly arranged in the region close to the pylons, whereas, the 

suspension system is composed by a main cable and several hangers located in 

the central span of the main span.  

The hanger rods and the stays are hinged, at both ends, to the girder and 

to the main cable or to the girder and pylons and they are spaced at constant step 
G∆  along the entire girder length.  

Figure 1.12   Structural scheme of the self-anchored cable-stayed suspension bridge 
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Furthermore, the stays are spaced at constant step P∆ along the pylons 

height and, depending on this step size, the cable-stayed system can be 

characterized by a fan, a semi-fan or an harp configuration. The main cable is in 

the main span only and it is hinged at top pylons. The whole system results as 

self-anchored by an anchor cable which connect stiffening girder extremities to 

the top of the pylons. The stiffening girder is simply supported at its ends and at 

the pylons connections, which are formed by H-shaped. 

�

Figure 1.13   The Zhuanghe Jianshe Bridge 

One of the last self-anchored cable-stayed suspension bridges built is the  

Zhuanghe Jianshe Bridge. The entire bridge is 202 m long, and has a central 

span of 110 m and two side spans of 46 m. The suspended part and the stayed 

part of the central  span are 38.4 m and 39 m, respectively. The pylon and 

stiffening girders are both of concrete structures. The main parameters 

characterizing the self-anchoerd cable-stayed suspension bridge scheme are 

defined as follows (Zhang, Wang, Qin, & Ge, 2009): 

1) The main span length L ; 

2) The pylon height H ; 

3) The rise-span ratio of main cable ζ , that is f L , which vary between 

0.1 and 0.2; 

4) The length of cable-stayed portion of the main span c , which vary 

between 0 and 0.5; 

5) The height-span ratio µ , i.e. h cL , which vary between 0.4 and 0.5; 

6) The distance between the anchor points and the nearest stay L’. 



20                                                   CHAPTER 1

�

It is worth nothing that, the cable system has to be designed considering 

that the total load is carried by the cable-stayed system in the region near pylons 

and by suspension system in the center of the main span (Wang, Qin, Zhang, 

Huang, & Xu, 2010). For this reason, the initial main cable configuration (y) 

and the corresponding horizontal axial force (Ht0) can be determined in closed 

form, utilizing a parabolic approximation of the cable profile (Fig. 1.14): 

�

Figure 1.14   Structural scheme for maximum main cable force 
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where , gc and g, are respectively, main cable and girder self-weights, 

while p is the live load (Gimsing & Georgakis, 2012). M(z) is a fictitious 

bending moment due to distributed self-weight loads taken by the suspension 

system calculated as for a simply supported beam. 

Similarly to the suspended scheme, the main cable cross-section area 

can be expressed in terms of maximum main cable axial force, allowable 

tension, and slope of main cable profile, as (Gimsing & Georgakis, 2012): 
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Assuming, 
1 2cos cosφ φ< , the main cable cross-section area can be 

defined by the following expression: 

( )( )2 2

2

1 4 1 16

1 16
c

a c

g p c L
A

L

λ

σ γ λ

+ − +
=

− +
 (1.22) 

The main cable configuration is described by the following parabola 

expression: 
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           where Ac and γc are the main cable cross-section and specific 

weight.  

A generic stay or hanger initial cross-section area can be dimensioned, 

respectively, by means of the Eq.s (1.10) and (1.9). It is worth nothing that, in 

the case of self-anchored cable-stayed suspension bridge scheme, the initial 

stress design for hangers and stays can be expressed, as: 

gs gh a

g

g p
σ σ σ= =

+
 (1.24) 
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1.3 The longest suspension and cable-stayed bridges built 

to date 

The length of the main span is the most common way to rank cable

supported bridges, often correlating with the height of the pylons. 

Suspension bridges have the longest spans of any type of bridge and 

they can span length about 2000 meters, whereas, cable-stayed bridge are 

practical for spans up to around 1 kilometer. It is worth nothing that, The Strait 

of Messina Bridge, with a total length of 3.1 km, should have been the longest 

suspension bridge in the world.  

As the span length increases, the height of the pylon increases in a 

cable-stayed bridge making it difficult to build the entire structure.  

However, in the last years cable-stayed bridges were used more than 

suspension bridge as they offer all the advantages of a suspension bridge but at 

a lesser cost for spans of 152 to 853 meters. They require less steel cable and 

are faster to build. Moreover, cable-stayed bridges allow the construction of the 

individual segments of the bridge at remote locations. The suspension bridge 

requires the building of suspension cables across the entire span before the deck 

installation begins. A cable-stayed system is stiffener than a suspension one for 

the same midspan length which imply better structural performances. Also 

generally the deflections are less, therefore the girder can be made lighter and 

more slender. Structurally this improves wind resistance and aesthetically the 

appearance. 

Lists of the first five longest suspension and cable-stayed bridges which 

only includes bridges that carry automobiles or trains are reported in Tab.s 1.3 

and 1.4. Such bridge types have been widely used in the past.  

Unfortunately, few cases of combined bridges are available, although 

some new project of long-span cable supported bridges is based on hybrid 

schemes, as the proposal for the Portland-Milwaukie Light Rail Bridge (Fig. 

1.15). The hope is that the use of cable supported bridges based on hybrid 

configurations of cable system may grow in the next future. 
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Name Main span metres Image 

Akashi Kaiky�

Bridge
1991

�

Xihoumen 

Bridge 
1650

�

Great Belt 

Bridge 
1624

�

Yi Sun-sin 

Bridge 
1545

�

Runyang 

Bridge
1490

�

Table 1.3   List of longest suspension bridge spans 
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Name Main span metres Image 

Russky Bridge 1104 

�

Sutong Bridge 1088 

�

Stonecutters 

Bridge 
1018

�

Tatara Bridge 890 

�

Pont de 

Normandie 
856

�

Table 1.4   List of longest cable-stayed bridge spans 
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Figure 1.15   The design proposal for the Portland-Milwaukie Light Rail Bridge 

1.4 Literature review 

1.4.1 Design methodologies 

In the framework of the design methodologies, most of the existing 

studies are based on the use of simple design rules obtained by the experience 

and expertise of the designers, in which relationships typically adopted in the 

framework of pure cable-stayed or suspension configurations are utilized 

(Gimsing & Georgakis, 2012; Troitsky, 1988; Walther, Houriet, Isler, Moia, & 

Klein, 1999). However, during the last decades, many research efforts are 

carried out with the aim to propose proper procedures to calculate the optimum 

configuration of the bridge. In particular, zero displacement methods (ZDMs) 

are based on the use of explicit constraint equations, which enforce the bridge 

structure under dead loading to remain practically undeformed (Wang, Tseng, & 

Yang, 1993; Wang, Tang, & Zheng, 2004). The governing equations, expressed 

as a function of the internal forces of the cable system, introduce a determinate 

equation system, in which the unknown quantities are obtained, prescribing, at 
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discrete points of the structure, zero displacement conditions. Furthermore, 

force equilibrium method (FEMs) consider as control variables to be solved, the 

internal forces of the cable system, which are calculated to reduce bending 

moments and displacements of the girder, achieving a structural scheme of the 

girder approximately equivalent to a simply supported continuous beam (Chen, 

Au, Tham, & Lee, 2000; Kim & Lee, 2001; Janjic, Pircher, & Pircher, 2003).  

Alternatively to direct methods, models, developed in the framework of 

structural optimization (OMs), are frequently adopted in the literature (Wickert, 

Canfield, & Reddy, 2010). In particular, post-tensioning forces are determined 

by solving constrained minimization problems as a function of performance or 

objective scalar valued functions, constraint equations and control variables.  

For cable-stayed bridges, existing models based on optimization method  

utilize an objective scalar function, which is typically expressed in terms of 

norm of displacements (Wang, Vlahinos, & Shu, 1997; Hassan, Nassef, & El 

Damatty, 2012). From the minimization of the objective function, such methods 

are able to calculate the optimum set of post-tensioning forces, which achieves 

minimum deflections and a uniform bending moment distribution under the 

effect of dead loading.  

Advanced techniques for cable-stayed bridges, proposed by Simões and 

Negrão (Simões & Negrão, 2000), are based on a multicriterion optimization 

procedure, in which in the minimization procedure also the characteristics of the 

girder cross-section are included. Moreover, refined formulations based on 

robust optimization algorithms can be recovered in a study proposed by Barbero 

and Makkapati (Barbero & Makkapati, 2000), in which models based on the 

neural-network concepts are able to obtain the optimum structural 

configuration.  

In the framework of suspension bridges, the procedure to calculate the 

initial configuration under dead loads is relatively simple, because the main 

cable extremities are fixed at earth constrains. As a consequence, optimization 

techniques are, frequently, employed with the purpose to identify the structural 

behavior of the bridge with respect more complex external loads, such as 

aeroelastic (Nieto, Hernández, & Jurado, 2009) or seismic (Ferreira & Simões, 

2011) phenomena. It is worth noting that, models described above, developed in 
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the framework of ZDM, FQM or SO, evaluate the initial cable forces directly on 

the final configuration. However, in the literature, several approaches can be 

recovered, in which target stress state is predicted by means of step by step 

procedures based on the actual construction process going from the initial to the 

final configuration. In particular, computational procedures for the shape 

finding analysis based on a forward and a backward process are proposed 

(Behin & Murray, 1992; Wang, Tang, & Zheng, 2004), in which different 

erection stages are investigated in the framework of the free cantilever method. 

In this framework, the unit load model (ULM) developed by Janjic et al. (Janjic, 

Pircher, & Pircher, 2003) evaluate the desired moment distribution in the final 

configuration, computing the post-tensioning strategy of the construction 

method by using additional constraint conditions. An extended and reviewed 

version of the ULM is proposed by Lee et al. (Lee, Kim, & Kang, 2008) also for 

asymmetric cable-stayed bridges, in which a two-step scheme is proposed for 

the optimum evaluation of the initial cable forces. 

1.4.2 Moving loads and damage mechanisms problems 

In the literature, many investigations have been developed to analyze 

the influence of the moving loads on the dynamic behavior of cable supported 

bridges, mainly, for undamaged bridge structures.  

Actually, many models are devoted to predicting dynamic bridge 

behavior by using refined structural schematizations as well as accurate 

descriptions of the moving loads (Cheng, Au, & Cheung, 2001; Zhang & Xie, 

2011; Yang & Fonder, 1998; Wang, Qin, Zhang, Huang, & Xu, 2010). In this 

framework, the bridge behavior is analyzed by means of analytical continuum 

approaches or finite element models, in which, the behavior of the cable 

suspension system is typically described by means of linear equations expressed 

in terms of tangent or secant Dischinger elastic moduli (Au, Wang, & Cheung, 

2001; Au, Wang, & Cheung, 2002; Bruno, Greco, & Lonetti, 2008). This 

assumption is frequently supported by experimental evidence for static analyses 

(Gimsing & Georgakis, 2012; Troitsky, 1988). However, in order to reproduce 
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the dynamic behavior correctly, especially when the bridge is subjected to 

extreme loading conditions, local vibration effects of the cable elements should 

be, properly, taken into account (Zhang & Xie, 2011; Chatterjee, Datta, & 

Surana, 1994). Additional complexities in the prediction of the dynamic 

behavior of long span bridges arise from the description of the interaction 

behavior between moving loads and bridge vibrations. At this aim, many papers 

have been developed to analyze the influence of the external mass and its 

motion on the bridge behavior, introducing an accurate description of the 

inertial forces between bridge deformation and moving load kinematic (Bruno, 

Greco, & Lonetti, 2008; Bruno, Greco, & Lonetti, 2009; Konstantakopoulos & 

Michaltsos, 2010). Cable supported bridges are frequently exposed to severe 

environmental conditions such as marine environment, rain, pollution, etc. Such 

phenomena lead to degradation effects which may cause a reduction of the 

stiffness properties of the structural components. In particular, with reference to 

the cable system, which usually consists of high tensile galvanized steel wires, 

damage mechanisms can lead, in extreme cases, the complete failure of a single 

or multiple cable elements. For this reason, the evaluation of the structural 

behavior of cable structures, subjected to unexpected damage mechanisms, is 

considered to be an important tasks, in health monitoring for the maintenance 

and rehabilitation of older structures or in the design procedure for the analysis 

of new ones. In the literature, damage analyses are mainly developed on a single 

cable or simplified cable systems involving a preexisting inelastic region in the 

cable development. In particular damage behavior of elastic suspended cables or 

cable-stayed beams is analyzed by means of closed form expressions or 

numerical approaches, in which the effects of diffused inelastic damage modes 

are investigated in terms of intensity and location along the cable development 

(Lepidi, Gattulli, & Vestroni, 2007; Zhu, Ye, Xiang, & Chen, 2011). The results 

proposed by these papers show how damage phenomena induce notable tension 

loss and sag augmentation with respect to the cable profile of the undamaged 

configuration. 

Only few comprehensive investigations have been carried out with the 

purpose of analyzing the influence of damage phenomena on cable supported 

bridges (Bruno, Greco, Lonetti, & Nevone Blasi, 2012; Zhang & Au, 2013).  
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In the framework of cable-stayed bridges, behavior under damage 

phenomena in the cable system is typically investigated by means of standard 

linear analyses, in which the allowable stresses in the bridge components are 

obtained by means of proper factored loading combinations, involving self-

weight and accidental loads (Post-Tensioning Institute, 2007; Service d’Etudes 

Techniques des Routes et Autoroutes, 2001). In the framework of suspension 

bridges, the influence on bridge behavior of damage mechanisms in the cable 

system has been scarcely analyzed in the literature. Typically, analyses are 

carried out with the purpose of investigating the fatigue assessment of the 

bridge under traffic or wind loads, in which the performance of the structure is 

evaluated at critical locations of the cable system (Petrini & Bontempi, 2011; 

Xu, Chen, & Xia, 2012). To the Author knowledge, only in (Materazzi & 

Ubertini, 2011) the influence of damage phenomena is considered for the case 

of a single span suspension bridge scheme, in which the relationships between 

vertical vibrations and damage characteristics of the cable system are discussed 

from an analytical viewpoint. 

Finally, in the framework of hybrid cable supported bridges, the 

literature dealing with such bridge schemes was mainly devoted to investigating 

undamaged configurations under static and dynamic loading conditions by 

means of analytical or numerical approaches (Bruno, Greco, & Lonetti, 2009; 

Konstantakopoulos & Michaltsos, 2010). 

1.4.3 Nonlinear behavior of cable supported bridges

The sources of nonlinearity affect the structural behavior and as a 

consequence the maximum load carrying capacity.  

Typically, the maximum load carrying capacity can be evaluated by two 

different approaches, known as limit-point stability approach and bifurcation-

point stability approach, which, respectively, employ a nonlinear static analysis 

and an eigenvalue analysis. In particular, the former is more suitable than the 

latter for structures characterized by a remarkable nonlinear behavior as cable 

supported bridges since it can accurately account for both geometric and 
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material nonlinearities (Yoo & Choi, 2008). However, a good approximation of 

bearing capacity of steel cable-stayed bridges was obtained by a modified 

bifurcation-point stability methodology based on an iterative eigenvalue 

problem combined with the tangent stiffness theory (Yoo & Choi, 2009; Yoo & 

Choi, 2012). The limit point stability procedures present in literature were 

developed mainly for pure cable-stayed and suspension bridges and, to the 

Author’s knowledge, there aren’t works on hybrid typologies. Such 

methodologies differ from each other depending on assumptions and 

formulations adopted for reproducing the inelastic material behavior and 

geometric nonlinearities of each structural element. Most of the work offer 

accurate description of structural behavior of girder and pylons reproducing 

geometric nonlinearities by stability functions or refined finite element 

formulations and material nonlinearities by fiber models or plastic hinge models 

(Thai & Kim, 2011; Thai & Kim, 2012). 

Nevertheless, no accurate formulations have been assumed for cable 

elements in all cases. As a matter of fact, with reference to the geometric 

nonlinearities, if a catenary formulation for the main cable of suspended bridges 

was adopted, in the case of cable-stayed bridges the stays nonlinear behavior 

was modeled widely by approximate approach according to Ernst’s theory 

(Adeli & Zhang, 1995; Thai & Kim, 2012). By this theory, any inclined cable is 

considered as a straight element with uniform properties from end to end 

incorporating the sag effect by means of the equivalent elasticity modulus under 

the hypothesis that the change in tension in the cable during a load increment is 

not large.  

1.5 Objectives and motivations of the thesis

The present thesis aims to achieve three main goals in agreement with 

the current issues on cable supported bridges introduced in the previous 

paragraph 1.1. For each one a brief motivation is provided:  
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i) Develop a design methodology to predict optimum post-tensioning forces 

and dimensioning for each typologies of cable supported bridge. The 

optimum design is defined with respect to both dead and live load 

configurations, taking into account design constrains concerning 

serviceability and ultimate limit states. 

Previous models based on the zero displacement method or force 

equilibrium method, are mainly developed in the frameworks of cable-stayed or 

suspension systems, in which typically, the initial configuration is derived by 

solving a determinate system of equations.  

As a matter of fact, in the cases of hybrid cable-stayed suspension 

bridges, the presence of the two cable systems introduces additional variables in 

the solving procedure and thus further equations are required to impose the 

constraint equations on the bridge configuration (Konstantakopoulos & 

Michaltsos, 2010). On the other hand, models developed in the framework of 

optimization methods, especially in the cases of long span bridges, due to the 

presence of a large number of variables are affected by convergence problems 

in the solving procedure, which may lead to a local minimum of the objective 

function and unpractical results in the bridge definition.  

However, most of the previous methodologies are typically concerned to 

evaluate only the initial stress state and the corresponding cable forces under 

dead loads, without verifying if the cable dimensioning is consistent with the 

design code prescriptions on both stress or deflections, produced by the live 

load application. Such tasks were investigated only recently by few 

methodologies, mainly developed in the framework of cable-stayed bridge 

schemes. In particular, Hassan (Hassan, 2013) introduced a generalized 

formulation by means of a combined approach based on the finite element 

method and an optimization genetic algorithm, in which the distribution of the 

cable cross-sections is expressed by means of B-spline curves.  

Moreover, Baldomir et al. (Baldomir, Hernández, Nieto, & Jurado, 

2010) have proposed an iterative approach, in which, initially, the post-

tensioning cable forces in the dead load configuration are determined by solving 
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compatibility conditions arising from flexibility matrix of the structure. 

Subsequently, the optimization procedure is utilized to minimize the cross-

sections of the cable system, on the basis of the maximum effects on stress and 

displacement variables evaluated on the live load configurations. 

Finally, as far as hybrid scheme cable supported bridges are concerned, 

no works on the optimal design of hybrid cable-stayed suspension bridges or 

self-anchored cable-stayed suspension bridges are available from the literature. 

The proposed methodology want to overcome these limitations and 

ensure a better design of the bridge which meets the structural requirements 

under the action of dead and live load. In particular, under dead loads, the 

analysis is developed with the purpose to calculate the post-tensioning cable 

forces to achieve minimum deflections for both girder and pylons.  

Moreover, under live loads, for each cable elements, the lowest required 

cross-section area is determined, which verifies prescriptions, under ultimate or 

serviceability limit states, on maximum allowable stresses and bridge 

deflections. The final configuration is obtained by means of an iterative 

procedure, which leads to a progressive definition of the stay, hanger and main 

cable characteristics, concerning both post-tensioning cable stresses and cross-

sections. The design procedure is developed in the framework of a finite 

element (FE) modeling, by using a refined formulation of the bridge 

components, taking into account of the geometric nonlinearities involved in the 

bridge components. 

ii) Investigate the structural behavior of cable supported bridges due to the 

presence of damage mechanisms in the cable system under the action of 

moving load. 

The behavior of cable supported bridges under the action of moving 

load is mainly analyzed for undamaged structures, whereas the influence of 

cable failure mechanisms produced by loss of stiffness due to cable degradation 

or due to an accidental failure is rarely analyzed.  
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Existing codes on cable-stayed bridges, that is, P.T.I. (Post-Tensioning 

Institute, 2007) and S.E.T.R.A. (Service d’Etudes Techniques des Routes et 

Autoroutes, 2001), in order to identify the amplification effects provided by the 

failure mechanism in the cable system, recommend to amplify the results 

obtained in the framework of quasi-static analyses by using fictitious 

amplification factors suggested in the range between 1.5 and 2.0. In particular, 

the codes identify the dynamic characteristics of the failure mode of a generic 

element of the cable system, introducing a static loading configuration, in which 

the cable failure is reproduced by means of compression forces to simulate 

cable release. The stress distribution arising from such a loading scheme is 

combined with the effects of other existing loading schemes by means of proper 

factored loading combinations.  

However, recent papers have demonstrated that such a simplified 

approach becomes unsafe in many cases, leading to dynamic amplification 

factors higher than those suggested by existing recommendations (Bruno, 

Greco, Lonetti, & Nevone Blasi, 2012; Starossek, 2009). In particular, some 

parametric studies have been developed for bridge typologies subjected to 

accidental cable failure by using a numerical approach based on classical 

standard linear dynamic framework (Wolff & Starossek, 2009; Starossek, 

2009). Such analyses denote that the results obtained by using such code 

prescriptions are affected by high underestimations in the prediction of typical 

design bridge variables related to the girder and pylons. 

Moreover, codes on cable supported bridges, typically, do not consider 

non-standard inertial contributions arising from the inertial description of the 

moving loads in the definition of the moving load forces. Such effects, taken 

only by using coupled dynamic analyses, combined with those introduced by 

the presence of damage mechanisms in the cable system, can cause notable 

underestimations in the prediction of the actual bridge deformability and 

internal stress distribution. However, additional developments are required to be 

simulate the effect produced by the nonlinearities and damage mechanisms 

involved cable system and by the inertial coupling between girder and moving 

loads deformations. Furthermore, the future design requirement of heavy traffic 

bridges should consider the application of the ‘‘fail-safe” concept (Sih, Tang, 
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Li, Li, & Tang, 2008; Sih & Tang, 2008; Zhang Y. , 2003). This should be 

distinguished from the use of safety factor and redundant structural members. In 

general, fail-safe applies to local failure while the structure remains intact 

globally and can still support load. 

Comprehensive analyses that include nonlinear dynamic effects are 

quite rare and thus further investigations to verify code prescriptions and to 

quantify the influence on the bridge behavior of the dynamic excitation 

produced by the failure mode characteristics of the cable system are much 

required. Furthermore, as far as hybrid cable supported bridges are concerned, 

the structural behavior has been mostly analyzed in the context of undamaged 

configuration and, to the best of the Author knowledge, no work on dynamic 

bridge behavior of combined bridges affected by damage mechanisms is 

available in the literature. As a consequence, the influence on bridge structures 

damage mechanisms is in need of investigation, in order to reach a better 

understanding of bridge vulnerability behavior subjected to both long term and 

sudden failure mechanisms due to unpredictable events. 

The inertial description of the moving loads is reproduced by means of a 

refined schematization of the inertial forces produced by the moving system and 

girder bridge interaction. Comparisons between cable-stayed, suspension and 

combined cable-stayed suspension bridge schemes are proposed to quantify the 

vulnerability index of the structure and to point out the enhanced properties of 

the hybrid bridges, also in the light of existing codes on cable supported 

bridges. In particular, as far as cable-stayed bridge typology, a parametric study 

to investigate the influence on the bridge behavior of the dynamic excitation 

produced by damage mechanisms in the cable system and the transit of moving 

loads is proposed. 

iii) Propose an efficient numerical model for predicting the ultimate strength 

and behavior capacity of self-anchored cable-stayed suspension bridges 

considering both geometric and material nonlinearities of each structural 

element. 
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As far as geometric nonlinear of cable elements, most refined 

formulation of stays nonlinear behavior have been developed by finite element 

procedure where the response of a single stay has been modeled combining 

finite strain formulation with multiple truss element approach.  

In such a way, one can reproduce the stays nonlinear behavior more 

accurately than the factious elasticity model approach, and although it has been 

adopted in several works on cable-stayed bridges, it has been taken into account 

only in few studies on the nonlinear behavior of cable supported bridges 

(Bruno, Greco, Nevone Blasi, & Bianchi, 2013).  

Similarly, only in rare cases the inelastic behavior of cables material 

was considered, although several studies have shown how it greatly affects the 

maximum load-bearing capacity of a cable supported bridge (Ren, 1999; Nagai, 

Iwasaki, & Nogami, 2003). As a matter of fact, in most studies it was assumed a 

cable post-elastic behavior in such a way that each element vanish when it reach 

yield stress. Such a disadvantageous approach could be too cautionary since 

neglects the cable mechanical properties leading to an over-sizing structure. 

1.6 Thesis Structure 

The three topics introduced in the previous section are analyzed in three 

distinct chapters of this thesis.  

Chapter 2 treats the optimum design methodology. After a brief 

description of the various design methodologies available from the literature, 

the formulation of the proposed design methodology is presented. In particular, 

many efforts are devoted to illustrate the application of such methodology with 

reference to the hybrid cable-stayed suspension bridge since it is the most 

complex case. The extension to the other bridge configurations as pure cable-

stayed and suspension scheme or self-anchored cable-stayed suspension scheme 

is obtained as simplification of the formulation of the previous case. 

Subsequently, the numerical implementation is presented, which is based on a 

combination of an finite element approach and an iterative optimization 

procedure. In order to prove the effectiveness and the robustness of the 
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proposed design methodology, comparisons with existing formulations 

available from the literature and application to a fictitious case of a self-

anchored cable-stayed suspension bridge with noticeably reduced number of 

design variables are performed. Furthermore, the long-span bridge cases, which 

are composed by a high number of elements which have to be designed, are 

treated. In this framework, parametric studies in terms of cable system 

configurations  are proposed. 

Chapter 3 is devoted to the analysis of the dynamic behavior of cable 

supported bridges subjected to moving loads and affected by damage 

mechanisms in the cable system is given. The main aim of the study is to 

investigate the vulnerability behavior of cable supported bridges in the presence 

of damage mechanisms, which are simulated by using a damage formulation to 

reproduce static or time dependent evolution laws. Furthermore, the purpose of 

this investigation is to analyze the amplification effects of the bridge structure 

produced by the moving load application and damage mechanisms in the cable 

system. In the first part of the chapter, the damage law and moving load 

problem coupled with the bridge structure formulation are presented. 

Afterwards, the numerical implementation of such problems as well as the 

evaluation of the initial configuration of the bridge structure under self-weight 

loads are illustrated.  

In the last part of the chapter, numerical results are proposed. At first,  

results are proposed to investigate the behavior of cable-stayed bridge subjected 

to an accidental failure in the cable system. To this end, parametric studies in 

terms of bridge and moving loads characteristics and failure mode typology in 

the cable system are reported. In the last part, comparisons between cable-

stayed, suspension and hybrid cable-stayed suspension bridge schemes are 

proposed to quantify the vulnerability index of the structure and to point out the 

enhanced properties of the hybrid cable-stayed suspension bridges, also in the 

light of existing codes on cable supported bridges. 

In Chapter 4, the numerical model for analyzing the nonlinear behavior 

of self-anchored cable-stayed suspension bridges considering both geometric 

and material nonlinearities of each structural element is reported. In particular, 

the proposed model is employed for predicting the ultimate strength and 
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behavior capacity of such cable supported bridge typology pointing out the 

influence of materials nonlinear behavior. At first, the formulations of 

geometric and material nonlinearities for cables, girder and pylons are 

presented. Subsequently, the numerical implementation is explained. In this 

framework, a detailed description of the nonlinear analysis employed is given. 

In the last part of the chapter, numerical results are reported which are 

devoted to analyze the influence of the nonlinear material behavior as well as 

the geometrical and structural parameters of the bridge on the maximum load 

capacity of the structure.  

Finally, Chapter 5 presents a number of conclusions that may be 

formulated from the topics treated in the present thesis and includes 

recommendations for future research works. 



2 

OPTIMUM DESIGN METHODOLOGY

2.1 Introduction 

In the framework of cable supported bridges most of the existing design 

methodologies are devoted to evaluate the post-tensioning cable forces 

distribution to achieve the initial configuration of the bridge under the effect of 

the self-weight of the structure. In particular, post-tensioning cable forces are 

determined so that girder and pylon displacements are eliminated or at least 

reduced as much as possible. In such a way, girder and pylons would be mainly 

compressed. 

Recently, new methodologies were proposed to evaluate both post-

tensioning forces and cross-section areas of the cable system. As the previous 

approaches, such methods determine the post-tensioning cable forces 

distribution under dead load and, in addition, they regulate cable cross-sections 

in order to improve the structural performances under the effect of live loads.  

The methodologies which find just the post-tensioning cable forces 

distribution under the action of dead loads are known as direct methods and 
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they are characterized by a slender mathematical problem which requires less 

computational efforts. Such methods was mainly developed for standard 

geometries based on cable-stayed and suspension bridge schemes in which the 

minimization of the material utilized in the construction were not considered. 

The direct methods are: 

- The Unit Load Method (ULM); 

- The Zero Displacement Method (ZDM); 

- The Force Equilibrium Method (FEM); 

On the other hand, methodologies allows to design cross-section 

dimension and post-tensioning cable forces have been defined in the framework 

of optimization methods (OMs).  

The optimization methods are based on  more complicated mathematical 

models than direct methods. Such a feature can lead to several problem in the 

definition of the design of the cable system as convergence problems. 

Moreover, in the case of high number of variables, unphysical results in the 

definition of the structural elements could be obtained. 

It is worth nothing that, models introduced above evaluate the initial 

cable forces directly on the final configuration.    

Briefly, the main features of the previous design methods are presented 

in the following. 

2.1.1 The Unit Load Method (ULM) 

The Unit Load Method is a procedure to determine post-tensioning 

cable forces in order to obtain a desired bending moments or displacements 

distribution at specific degrees of freedom (cable-girder and cable-pylons 

connections). It was developed mainly in the framework of cable-stayed bridges 

and takes into account all relevant effects in the design of the structure, 

including construction sequence, second-order behavior, large displacements, 

sag effect as well as time-dependent factors. Due to its simplicity and easy hand 
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calculation, such method is usually used by designers in the tender and 

preliminary design.  

From a practical point of view, the unit load method works as follows: 

Bending moments or displacements at specific DOFs are first calculated 

due to unit forces applied successively along each cable of the system. 

Subsequently, the bridge is analyzed under the action of the dead load. 

From these data, a system of linear equations can be established with 

one equation for each DOFs. This system of equations can be directly solved for 

the unknown cable forces that are used to achieve the desired bending moment  

or displacement distribution. 

With respect to the case of the cable-stayed bridge represented in Fig. 

2.1, the system of equations to get the desired bending moment distribution can 

be obtained starting from the maximum bending moment in the stiffening girder 

due to dead load 
rM .  

�

Fig. 2.1   Post-tensioning forces in cables. Basic system 

To reduce such a bending moment to 
0 rC M , where 

0C  is a reduction 

factor less than unity, the basic linear equation is 

1 12

1 12 0( 1)r r rM X M X M C+ + = −� (2.1)

In Eq. (2.1), 
i

r
M  is the bending moment at location r due to the action of 

a unit load applied along i-th cable and 
iX  is the post-tensioning force to be 

applied in i-th cable to reduce bending moment from 
rM  to 

0 rC M .

On the other hand, the procedure to obtain the desired displacements 

consists of determining first the matrix of displacements D
�

 at n selected 
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locations, where n is the number of cables. The displacements are due to a unit 

force applied successively along each cable to the bridge.  

For this reason the size of this matrix is n x n and as far as the cable-

stayed system of Fig. 2.1, the size is 12 x 12 .  

Further, the vector d
�

 of displacements due to dead load at the points 

selected is determined. Also in this case, considering a reduction factor 
0C , the 

system of equations is 

0d DX C d+ =
� �� �

(2.2) 

where X
�

 is the vector of post-tensioning cable forces which can be determined 

easily.  

2.1.2 The Zero Displacement Method (ZDM) 

The Zero-Displacement Method identifies girder and pylons profile 

under permanent loading by adjusting the initial cable forces to give zero-

displacements at the cable anchorages. The method takes into account 

nonlinearities due to large displacement ( P−∆  effect) and cable sag effects. 

The zero displacement method is based on the use of a set of explicit 

constraint equations and it can be employed for cable-stayed, suspension and 

self-anchored cable-stayed suspension schemes. 

With reference to the scheme reported in Fig. 2.2, which is a self-

anchored cable-stayed suspension scheme, the unknown quantities are 

represented by the post-tensioning stresses in the cables ( , ,S H M

i iS S S ), which are 

designed by means of the following relationships: 

{ }1 1
, , , , , ,S H

S S H H M

C N N
S S S S S S= � �
�

(2.3)

where 
SN  is the number of stays, 

HN  is the number of hangers and 

the superscripts ,S H  and M refer to the stays, hangers and main cable, 

respectively.  
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Fig. 2.2   Displacements and control variables for “zero configuration” 

The displacement conditions to achieve zero displacement at the cable 

anchorage, are expressed as follows: 

( )

( )

( )

1 1

1 1

, , , 0

, , , 0

, 0

S S

H H

S S S S S

S N N

H H H H H

H N N

M M M

M

L S S S S U

L S S S S U

L S S U

� �+ ∆ + ∆ =� �

� �+ ∆ + ∆ =� �

� �+ ∆ =� �

�
� �

�
� �

�

(2.4) 

�

where SL
�

, HL
�

 and ML
�

 are the constraint operators referred to the stays, 

hangers and main cable variables, respectively. In the constrain equations (2.4), 
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SU
�

 and HU
�

 are the vector containing, respectively, the horizontal displacements 

of the top pylon left (L) and right (R) cross-sections and the vertical 

displacements of the stays at the girder connections ( 3(1) 3(N )
, , S

G GU U� ) and the 

vertical displacement of the hangers at the girder connections ( 3(1) 3(N )
, , H

G GU U� ): 

1 1 3(1) 3(N )
, , , ,L R

S

P PS G GU U U U U� �=
� �

�
�

(2.5) 

3(1) 3( )
, , H

H G G

N
U U U� �=

� �
�

�
(2.6) 

�

Finally, 
MU  is the vertical displacement of the main cable at the 

midspan cross-section. It is worth noting that, in previous equations (2.4) the 

total initial stress is expressed as the sum of a constant quantity ( )
, ,S H M

iS   and an 

incremental one ( ) , ,S H M

iS∆ . The former is a set of trial initial post-tensioning 

cable forces which are estimated by means of simple design rules commonly 

adopted in the context of long-span bridges, whereas the last are the additional 

amounts which are the unknowns of the problem. The problem is resolved 

iteratively. 

2.1.3 The Force Equilibrium Method (FEM) 

The Force Equilibrium Method searches for a set of cable forces which 

will give rise to achieve target bending moments at selected locations along the 

stiffening girder. As the method works only on the equilibrium of forces rather 

than deformation, there is no need to deal with nonlinearity caused by cable sag 

and other effects. 

With respect to the cable-stayed bridge reported in Fig. 2.3, in which it 

is only necessary to consider one half of the bridge with appropriate boundary 

conditions at the middle section to account for symmetry, the target bending 

moments (dead load condition) are determined by replacing all supports from 

the cables and tower by rigid simple supports, as shown in Fig. 2.4. 
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�

Fig. 2.3   Model of a cable-stayed bridge 

�

Fig. 2.4   Rigid simple supports model

The conditions to achieve target bending moments at the selected 

locations (cable anchorages) can be obtained by imposing at the entire structure 

expressions as follows: 

( )1 1 , , , 0
DL

S S

S S S S G G

S i iN N
L S S S S M M� �+ ∆ + ∆ − =
� �

�
� � �

(2.7)

In Eq. (2.7), ( )1 1
, , S S

S S S S

N N
S S S S+ ∆ + ∆� represents the vector containing 

the initial post-tensioning cable forces expressed as the sum of a trial value and 

an incremental one, which is the unknown of the problem. Further, 
G

i
M
�

is the i-

th bending moment of the i-th control section, refer to the entire structure and 
DLG

iM
�

 is the bending moment obtained by rigid simple support model under the 

action of dead load. The constrain operator 
SL
�

 finds the post-tensioning cable 

forces distribution which ensures that the bending moments (
G

i
M ) are equal to 

the target bending moment (
DLG

i
M
�

). In the force equilibrium method it is 
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difficult to control bending moments at girder-pylon junctions and pylon 

sections. In addition, incorrect selections of the target moments can lead to 

singularities in the system of equations. The method can easily account for the 

effect of prestressing and the vertical profile of the bridge deck. 

2.1.4 The Optimization method (OM)

In general, an optimization problem is composed by three fundamental 

parts: the control variables, the objective function and the constraint equations. 

The optimization problem finds the value of the control variables that 

minimizes (or maximizes) the objective function, subject to a number of 

constraints. The constraints collectively define a set, the feasible set, of 

permissible values for the control variables. The typical formulation of an 

optimization problem can be written as: 

min ( )Q x

x C

�
�

∈�
(2.8)

where x denotes the control variable, ( )Q x  the scalar-valued objective 

function and C the feasible set. Such a feasible set can be expressed as a set of 

inequality constraints under the hypothesis of sufficient continuity: 

{ }: lb ( ) ubC x F x= ≤ ≤ (2.9)

where ( )F x  is a vector-valued function or a scalar-valued function 

depending on the possibility to have multiple or single constraints. In the first 

case, the inequality defining C is to be interpreted component-wise and lb and 

ub are the corresponding vectors containing, respectively, the upper and lower 

bounds. As far as cable supported bridges, the design of cable system is based 

on the optimization of certain objective functions which may either be related to 

structural performances or economic efficiency, such as the total strain energy 

or the construction cost. In the optimization method of determining the stresses 
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of the stay cables under permanent loads, the objective function are chosen so 

the material used in girders and pylons is minimized. When the internal forces, 

mainly the bending moments, are evenly distributed and small, the quantity of 

material reaches a minimum value. Also the stresses in the structure and the 

deflections of the deck are limited to prescribed tolerances. With reference to a 

cable-stayed bridge, since the shear deformations in the girder and pylons are 

neglected, the strain energy can be represented by 

2 2

0 0

1 1

2 2 2 2

L LM N
U dx dx

EI EA
= +� � (2.10)

where EI is the bending stiffness of girder and pylons and EA is the 

axial stiffness. It can be given in a discrete form when the structure is simulated 

by a finite element model as 

2 2 2 2

1 4

n
i j i jk

k k k k

M M N NL
U

E I A=

	 
+ +
= +� �� �

 �
� (2.11)

where n is the total number of the girder and pylon elements, 
kL  is the 

length of the k-th element, 
kE  is the modulus of elasticity, 

kI  and 
kA  are the 

moment of inertia and the sections area, respectively. , , ,i j i jM M N N are the 

ends moments and the ends normal forces of the i-th element. Under the 

application of dead loads and cable forces the bending moments and normal 

forces of the deck and pylon are given by 

{ } { } { } { } [ ] { }0D P D MM M M M S P= + = + ⋅ (2.12) 

{ } { } { } { } [ ] { }0D P D NN N N N S P= + = + ⋅ (2.13)

where { }DM  and { }PM  are the bending moment vectors induced by 

dead loads and the cable forces, respectively; [ ]MS  is the moment influence 

matrix; [ ]NS  is the normal force influence matrix, the component ijS  of 

influence matrix represents changes of the moment or the normal force in the i-
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th element induced by the j-th unit cable force. { } { },D PN N  are the normal 

force vectors induced by dead loads and cable forces, respectively. { }0P is the 

vector of cable forces. The corresponding displacements in deck and pylon are 

given as: 

{ } { } { } { } [ ] { }0D P D FF F F F S P= + = + ⋅ (2.14)

where { }F  is the displacement vector, [ ]FS  is the displacement 

influence matrix, { }DF  and { }PF are the displacement vectors induced by dead 

loads and by cable forces respectively. Substitute Eq.s (2.12) and (2.13) into Eq. 

(2.11), the shear deformations is expressed as a function of the cable forces. 

In the optimization problem the minimization of the strain energy of the 

structure will be expressed as follows: 

0

0
U

P

∂
=

∂
(2.15)

Under the following constraint conditions: 

a) The stress range in girders and pylons must satisfy

{ } { } { }
L U

σ σ σ≤ ≤ (2.16)

in which { }σ  is the maximum stress value vector. And { } { },
L U

σ σ

are vectors of the lower and upper bounds. 

b) The stresses in stay cables are limited so that the stays can work 

normally

{ } { }0C

LC UC
C

P

A
σ σ

� �
≤ ≤� �
� �

(2.17)

in which 
CA  is the area of a stay, 

0CP  is the cable force and 

{ } { },
LC UC

σ σ  represent the lower and upper bounds, respectively. 
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c) The displacements in the deck and pylon satisfy

{ } { }iD ≤ ∆ (2.18) 

in which the left hand side of Eq. (2.18) is the absolute value of 

maximum displacement vector and the right-hand side is the 

allowable displacement vector. 

It is worth nothing that, it is necessary to impose the constraints for 

optimization very carefully, or else the resulting schemes may sometimes 

become impractical. 

2.2 The proposed design methodology

 An efficient methodology to design the cable system of cable supported 

bridges should be based on the following features: 

- Easy to implement; 

- Wide applicability; 

- Provide consistent results from a structural point of view; 

- No require excessive computational efforts. 

The proposed design method evaluate post-tensioning forces and optimum 

cross-section areas of the cable system to satisfy structural and design 

requirements in either dead and live configurations. In particular, under the 

action of dead loads (DL), the post-tensioning cable forces are calculated in 

such a way that the bridge structure should behave as a simply supported 

continuous beam, thus presenting reduced displacements of the girder and 

pylons. Moreover, from the design point of view, the cross-sections of the cable 

system elements should be designed consistently to the "maximum performance 

criterion", which, basically, consists to verify, under the worst live load (LL) 

combinations, the equality condition between the maximum absolute or 
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incremental applied stresses and the corresponding allowable strength values. 

Such task is developed by means of an iterative procedure defined by a two-step 

algorithm, based on the results arising from both dead load and live load 

configurations. In the first step, the structure is analyzed under the action of 

dead loading and the design variable of the cable system are defined (STEP 1 – 

Optimization Phase). In the second step, starting from the structure designed in 

the previous step, the structure is analyzed under the action of live loading and 

displacement and stresses variables are calculated and checks are carried out 

(STEP 2 – Correction Phase). In the following, the proposed design method is 

presented for the cable supported bridge typology described in chapter 1. 

2.2.1 Hybrid cable-stayed suspension bridge scheme 

With reference to the hybrid cable-stayed suspension bridge scheme 

reported in Fig. 2.5, the design variables, are represented by the cross-sections�

( ), ,S H M

i iA A A �and the post-tensioning forces of the cable system ( ), ,S H M

i iS S S

and are designed by means of the following relationships: 

{ }
{ }

1 1

1 1

,...., , ,..., ,    

,..., , ,..., ,

S H

S H

S S H H M

C N N

S S H H M

N N

S S S S S S

A A A A A A

=

=

�

�

(2.19) 

�

where SN  is the number of stays, HN  is the number of hangers and 

the superscripts S, H and M refer to the stays, hangers and main cable, 

respectively. Such design variables are derived in the dead load configuration 

by solving an optimization modeling of the bridge aimed to reduce the steel 

quantity involved in the cable system. The design variables relative to stays and 

main cable are assumed to be expressed in terms of the optimization factors 

( ), S

i iξ ψ ∈Ξ  and ( ),M M Mξ ψ ∈Ξ  for a better convergence of the problem 

�

,     

,   

S
S S S

ii i i i i

MM M M M M

A A S S

A A S S

ξ ψ

ξ ψ

= =

= =
(2.20)
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Fig.2.5   Design and control variables to be determined in hybrid cable-stayed suspension bridge 

scheme 

where 1.. Si N= , and S MΞ Ξ  are the domain spaces of the optimization 

variables associated to the cable-stayed system (S) and the main cable (M) and 

the quantities reported with the superscript ( )•  refer here and in the following to 

the values arising from previous iteration step or, in the case of the first step, 

assumed by trial variables obtained by preliminary dimensioning rules reported 

in chapter 1. As a consequence, the factors ( ),i iξ ψ  and ( ),M Mξ ψ  should be 

considered as a variable to be changed during the optimization procedure. 

Moreover, the cross-sections of the suspension system elements, i.e. H

iA , are 

changed from their previous estimated values, i.e. H

iA , introducing additive 

incremental variables, i.e. H

iA∆ , as a function of explicit constraint equations, 

which enforce the stresses in the hangers to be equal to the design quantity 
H

giS

: 
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( ) ( )
1

, , 0,     with 1.. ,H H H H H H H

S i i i gi iL A A S S i N Aξ ψ� �+ ∆ − = = ∆ ∈Ξ
� �� � �

(2.21)

where 
1SL
�

, with 
1
: H

SL Ξ →Ξ
�

, is the constrain operator, which ensures 

that the stress variables are equal to the design value, i.e.
H

giS  (discussed 

subsequently), 
HΞ  and Ξ  are the domain of the hanger cross-sections or the 

global bridge solution, respectively, and ( ),ξ ψ
� �

are the vectors collecting the 

optimization factors of the stays and main cable, i.e. ( ),i iξ ψ and ( ),M Mξ ψ , 

respectively. The displacement conditions to achieve the “zero configuration” 

are expressed by the operator 
UL
�

, with : S H M

UL Ξ × Ξ × Ξ → Ξ
�

, which 

reproduces the undeformed configuration on the basis of a proper set of post-

tensioning stresses in the suspension system ,  with 1.. ,H H

iS i N=  in the main 

cable MS  and the anchor stays as follows: 

( ) ( )1 1, , , , , , , 0S S

H H S S S S M M M M

U j j N N
L S S S S S S S S U ξ ψ ξ ψ� �+ ∆ + ∆ + ∆ + ∆ =� �� �� � � �

(2.22)

where 1.. Hj N= , U
�

with 
1 1 1 13(1.. )

, , , ,L R L R
H

P P M P M PT G

N
U U U U U U

− −� �= � ��

is the 

vector containing the vertical displacements at the hangers/girder connections 

(NH
) and the horizontal displacements at the top pylon left (L) and right (R) 

cross-sections (
1 1,L RP PU U ) and at the intersection points of the left and right top 

pylon cross-sections with the main cable ( ,

1 1,L RM P M PU U− −  ). The objective 

function, which is minimized during the optimization procedure, is represented 

by the scalar valued function Q, which describes the total steel quantity 

involved in the cable system: 

( )
( )

( ), ,
1 1

 ,

HS NN
S S H H M M

i i i i

i i

Min Q Min L A L A A L
ξ ψ ξ ψ

ξ ψ γ
= =

	 

= + +� �� �

 �
� �

� � � �
� �

(2.23)

where γ  is the specific weight of the cables and ( ), ,S H M

i iL L L  are the 

lengths of the i-th stay, hanger or main cable, respectively. Additional 

conditions on the stress distribution in the cable system are imposed by explicit 
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constraint equations, ensuring that the stresses in the stays and main cable under 

dead loading are fixed to a design quantity, i.e. ( ),S M

gi gS S

( )
2

, 0,     with 1,S S

S i gi SL S S i Nξ ψ� �− = =
� �� � �

(2.24) 

( )( )
3

max , 0M M

S gL S Sξ ψ� �− =
� �� � �

(2.25) 

It is worth noting that the optimization procedure, defined by Eq.s (2.21)

-(2.25), is concerned to determine the optimum bridge configuration, which 

involves the lowest steel quantity in the cable system and verifies constrain 

equations on design displacement and stress variables of the bridges. However, 

the initial post-tensioning stresses in the cable systems, namely 

( ), ,  with =1..N , 1..H S M S H

gi gj gS S S i j N= , should be considered as known variables 

when the optimization problem is solved. To this aim, in order to calculate such 

quantities an iterative procedure, namely two-step algorithm, is required, going 

between the optimization and the correction steps, iteratively. In the former the 

optimization problem is considered by solving Eq.s (2.21)-(2.25), whereas in 

the latter the initial post-tensioning stresses are quantified on the basis of the 

live load results. In particular, in the framework of live load combinations, 

based on ultimate, fatigue and serviceability, i.e. ULS, FLS and SLS, the 

following conditions, concerning maximum and relative stresses and maximum 

absolute displacements should be verified:  

( ) ( )

( ) ( )

( ) ( )

max , , max ,   with 1,

max , , max ,    with 1,

max , , max ,      

H H H

i A i A
ULS FLS

S S S

i A i A
ULS FLS

M M

A i A
ULS FLS

S S S S i N

S S S S i N

S S S S

ξ ψ ξ ψ

ξ ψ ξ ψ

ξ ψ ξ ψ

� � � �≤ ∆ ≤ ∆ =
� � � �

� � � �≤ ∆ ≤ ∆ =
� � � �

� � � �≤ ∆ ≤ ∆
� � � �

� � � �

� � � �

� � � �

(2.26) 

G P

3 3 1 1max ,  maxG P

A A
SLS SLS

U Uδ δ� � � �≤ ≤� � � � (2.27)

where 
AS  and 

AS∆  are the maximum or incremental allowable values 

in the cables, G

3Aδ is the maximum vertical displacement of the girder and P

1Aδ  is 
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the maximum displacement of the pylon. It is worth noting that the maximum 

value of the internal stresses can be associated to the effects of live loads or 

produced by seismic or aeroelastic loading schemes. Similarly, proposed 

formulation can be generalized in such a way to be consistent with respect to 

enhanced reliability formulations such as the one reported for instance in 

(Barbero, Sosa, Martínez, & Gutiérrez, 2013). The initial stresses for the cable 

elements ( ), ,S H M

g g gS S S
� �

are evaluated as a function of two sets of factors 

associated to stays, hangers and main cable, namely 
iΦ  and 

iΩ , which are 

introduced to verify code prescriptions defined by Eq.s (2.26) and (2.27), 

ensuring that the predicted values should be equal in the worst loading 

combination to the corresponding permissible values, leading to the optimum 

utilization of the bridge components and thus the lowest steel quantity involved 

in the cable system. Such quantities must be considered as variables, which are 

solved for during the iteration procedure by using as secant approach as a 

function of the values arising from the previous iteration steps. The main 

purpose of the optimization factors is to modify the stiffness or the stress 

distribution of the cable elements, in such a way to verify prescriptions on 

bridge deformability, reducing the material volume involved in the cable 

system. In particular, the performance factors 
iΦ  optimize the stress 

distribution in the cable system, in such a way that the maximum value should 

be close to the strength of the material, reaching the optimum solution in terms 

of material utilization and volume involved in the cable system. On the 

contrary, variables 
iΩ  define the allowable level of strength and stiffness for 

each cable element, enforcing the pylons and girder to have lower 

displacements than the maximum permissible values. In the proposed modeling, 

the stiffness of the stays in the lateral or in the central spans are designed to 

reduce horizontal and vertical displacements of the girder and pylon, 

respectively, whereas that of hangers is designed to reduce vertical 

displacements of the girder. Moreover, the stiffness of the main cable is utilized 

to reduce maximum vertical displacements of the girder. Such choices can be 

considered reasonable, from the physical point of view, especially in the cases 

of long span bridges, in which girder deformability is mostly influenced by the 

stiffness of the cable system in relationship to the prevailing truss behavior of 
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the bridge structures. Therefore, in order to satisfy prescriptions on allowable 

displacements and stresses, the evaluation of the performance factors 
iΩ  and 

iΦ  is defined by the following assumptions: 

- the performance factors for the cable-stayed system elements, lateral 

and central stays, i.e. S

iΩ , are defined to reduce the horizontal 

displacements of the pylons and vertical deflections of the girder, 

whereas for the hanger members the variables H

iΩ are associated to 

reduce the vertical displacements of the girder (see Fig. 2.6); 

- the factor MΩ  concerning the main cable dimensioning is modified to 

verify prescriptions on girder displacements with respect to the 

maximum absolute value observed in the girder deflections; 

- for all cable elements ( ), ,S H M

i iΦ Φ Φ  factors are defined enforcing that 

the maximum stresses should be equal to the allowable quantity; 

- the definition of the performance factors is based on a linear

approximation of the displacement and stresses, based on the secant 

description, whose path can be thought defined by the line connecting 

two states, represented by the final, i.e. the maximum allowable status, 

and the current solution arising from the last converged configuration, 

i.e. at k - 1. 

Therefore, on the basis of the previous remarks, introducing the 

following limit functions concerning the horizontal and vertical displacements 

of the pylon and girder and allowable stresses 

( )

( )

( )

1

3

1

U

1

3

U

3

1

g 1 
max

g 1          , ,
max

1  

k
i

k
i

k
Ai

P
P A

k
P

LL i

G
G A

k
G

LL i

k
J

A i

S
A

U

j S H M
U

S
g

S

δ

δ

−

= −

= − =

= −

(2.28) 
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Fig.2.6   Identification of the performance factors and design variables on the bridge scheme 

the relationships, which quantify the performance factors iΩ  for the 

cable-stayed system, are defined by the following expressions: 

( )

( )

( )

( ) ( )

( )

1

max

1

max

1 1

               if     g 0                    
max

   if      0  and  g 0

max ,

1                                                  if      

i

iAi

k

A ki

k
A

iLL
kk

Ai k ki

Sk k
A

i iLL

S

S

S

S
g

S

g

−

∆

−

∆

− +

∆
≤

� �∆
� �

Ω = ∆
< >

� �∆ ∆
� �

0  and  g 0
iAi

k k

∆

�
�
�
�
�
�
�
�
�

≥ >��

(2.29)

with: 

( )
( )

1

3

3

1 max 1 U

3 max 3 U

3 max 3 U

,    ,    g   g                      

,    ,    g  g                      

,    ,    g  g                      

 –   

 –   
i

i

i

P P P

A

G G G

A

G G G

A
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Stays mai

U

U n

U

span

Hanger

δ

δ

δ

∆

∆

∆

∆ = ∆ = =

∆ = ∆ = =

∆ = ∆ = = ( )

( ) ( ) ( )
3

3 max 3 U
max ,  ,  g  max g       k

i

G G G

AU Main ca e

s

blδ ∆∆ = ∆ = =

(2.30) 
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where k represents the number of iterations during the solving 

procedure. It is worth noting that in Eqs. (2.29) and (2.30), the expressions 

utilized in the case of negative values of the displacement functions, i.e. 

3U
g 0k

i

≤  or 
1U

g 0k
i

≤ , indicate the need to increase the stiffness of the cable 

system, since the displacements do not verify girder and pylon displacement 

prescriptions. Contrarily, when the displacement functions are strictly positive 

the cable stiffness is released enforcing the equality with maximum permissible 

value, which is achieved only for positive values of the allowable stress 

function, i.e. 0k
AiS

g ≥ . The factors concerning the stresses, namely 
iΦ , can be 

derived by the ratios between the allowable stress and the maximum value 

observed in the live load combinations: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
,   ,   

max max max

k k kA A AS H M

k k ki iS H M

LL LL LLi i iLL LL LL

S S S

S S S
Φ = Φ = Φ = (2.31)

A synoptic representation of the variables reported in Eq.s (2.29)–(2.31) 

are reported in Fig. 3. Starting from Eq.s (2.29)–(2.31), the estimate the design 

initial stresses on the basis of the following relationships: 

( ) ( )

( ) ( )

( ) ( )

1

1

1

,

,

k kk
S S S S

gi gi i

k kk
H H H H

gi gi i

k kk
M M M M

g gi

S S

S S

S S

−

−

−

� �= Φ Ω� �

� �= Φ Ω� �

� �= Φ Ω� �

(2.32) 

It is worth noting that Eq. (2.32) predict, by means of the factors , ,S H C

iΦ

, the initial stresses on the basis of a linear approximation of the stress and 

displacement increments between dead and live load configurations, enforcing 

the maximum stresses, reached in all cable-system elements or the 

displacements on the girder and pylon cross-sections, to be equal approximately 

to the corresponding allowable values. Moreover, the piecewise functions 

defined by Eq.s (2.29) and (2.30) modify the allowable stress levels, increasing 
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the stiffness of the cable system and verifying prescriptions on maximum 

displacements on both girder and pylons. Finally, once the new values of the 

stress levels in the dead load configuration are evaluated by means of Eq.s 

(2.32), the procedure goes back to find the new cross-sections of the cables and 

the post-tensioning forces on the basis of the optimization method by means of 

Eq.s (2.29)–(2.30). This procedure is repeated until achieving the convergence 

conditions of the algorithm defined on the basis of the following expression: 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1

1
1

1

1
1

1

1

,

max , .

S

H

k k
S SN
gi gi

k
S

i
gi

k k
H HN
gi gi

k
H

i
gi

k k
M M

g g

k
M

g

S S

S

S S
toll

S

S S

S

−

−
=

−

−
=

−

−

� �� �−
� �� �
� �� �
� �� �
� �

� �−� �� �� � ≤� �� �� �� �� �
� �−
� �
� �
� �� �

�

� (2.33)

A synoptic representation of the optimization procedure is reported in 

Fig. 2.7. It is worth noting that the previous procedure can be easily specialized 

for the cases of pure cable-stayed and suspension bridge schemes. It is worth 

nothing that, the design method, is quite general to be applied to several 

schemes based on small, medium or long spans and can be, easily, specialized 

for pure cable-stayed, suspension and self-anchored cable-stayed suspension 

schemes since they can be easily derived as particular cases. Moreover, the 

description of the model is presented with reference to the final configuration, 

but can be easily specialized also for the different steps involved in the bridge 

construction.  As a matter of fact, in the loading scheme concerning the erection 

procedure, only the service prescriptions should be verified, which are less 

restrictive than the ones required by the ULS combinations. Moreover, in such 

analyses, the variables concerning the cable dimensioning can be considered as 

known quantities, which are identified on the basis of the design prescriptions 

defined on the final bridge configuration and with respect to ultimate loading 

conditions. 
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Fig.2.7   Flowchart of the optimization procedure 
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2.2.2 Cable-stayed and suspension schemes – Pure systems 

���

�

Fig.2.4   Design and control variables to be determined in cable-stayed and  suspension 

schemes 

The optimization model presented for hybrid cable-stayed suspension 

bridges is specialized here for the cases concerning pure cable-stayed and 

suspension schemes.  In such cases, since the number of variables is equal to the 

number of equations, the optimization problem is transformed in terms of a 

determinate system equation formed by explicit relationships defined in terms 

of initial post-tensioning stresses, cross-sections of the cable system elements 

and design stresses under dead load. In particular for the cable-stayed bridge 

scheme the control variables are expressed by the post-tensioning stress and 

cable cross-section vectors, as follows: 

{ }
{ }

1

1

,....,    

. ,...,

s

s

S S

C N

S S

N

S S S

A A A

=

=
�

�

(2.34)

The unknown quantities are derived in the dead load configuration by 

solving the set of constraint equations concerned to enforce displacements of 
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girder and pylons to be zero and the internal stresses to be equal to the initial 

design values, namely 
S

giS : 

( )1 1, , , 0
S S

S S S S S S

v i i N NL S S S S S S U� �+ ∆ + ∆ + ∆ =� �� �
(2.35)

( ) ( )
3

, , 0S S S S

S i i i giL A A S Sξ ψ� �+ ∆ − =
� �� � �

(2.36)

with 1.. Si N= , 
1 13(2.. 1)

, ,L R
S

P PT G

N
U U U U

−
� �=
� ��

 is the vector containing vertical 

displacements of the stays except for the anchor ones (
3 ,

G

iU ) and the horizontal 

displacements at the top pylon right and left cross-sections ( 1 1,L RP PU U ). Finally, 

at the k-th iteration, optimization factors ( )
k

S

i
Ω and ( )

k
S

i
Φ are calculated in 

the live load combinations by using Eq.s (2.29) and (2.31). Similarly, the 

control variables for the suspension bridge are defined by the following vectors: 

{ }
{ }

1

1

,...., ,    

,..., ,

H

H

H H M

C N

H H M

N

S S S S

A A A A

=

=

�

�

(2.37)

whereas the constrain equations to impose zero vertical and horizontal 

displacements on the girder and pylons and, horizontal and internal stresses 

equal to the initial design value, 
H

giS : 

( ) ( )
1

, , 0H H H H

S i i i giL A A S Sξ ψ� �+ ∆ − =
� �� � �

(2.38) 

( ), , 0 H H M M

U j jL S S S S U� �+ ∆ + ∆ =� �� �
(2.39)

with 1.. Hi N= , and ,

13(1.. )
, L R

H

M PT G

N
U U U

−� �= � ��

.

Finally, at the k-th iteration, optimization factors ( )
k

S

i
Ω  and ( )

k
S

i
Φ are 

calculated in the live load combinations by using Eq.s (2.29) and (2.31). 
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2.2.3 Self-anchored cable-stayed suspension bridge scheme 

�

�

Fig. 2.9   Identification of the variables involved in the design procedure 

With reference to the bridge scheme reported in Fig. 2.9, the design 

variables are represented by the cross-sections ( ), ,S H M

i iA A A  and the post-

tensioning forces of the cable system ( ), ,S H M

i iS S S , which are designed by 

means of the following relationships: 

{ }

{ }

1 12

1 12

,...., , ,..., ,   

,..., , ,..., ,

S H

S H

S S H H M

C N N

S S H H M

N N

S S S S S S

A A A A A A

=

=

�

�

(2.40) 

where SN is the number of stays of the left or right pylons, HN is the 

number of hangers and the superscripts S, H and M refer to the stays, hangers 

and main cable, respectively. The constraint equations are formulated to enforce 

zero the following displacement conditions : 

- horizontal displacements of the pylons and vertical displacements of 

the stays in the main cable at the girder connections, i.e. 

1 1

( )

1 2 1
, ,.., , ,.....,S S S

S T S S S S S

N N N
U U U U V V

+
� �=
� ��

; 

- vertical displacements of the hangers at the girder connections, i.e. 
( )

1 2, ,...., H

H T H H H

N
U V V V� �=

� ��
; 

- vertical displacement of the main cable at the midspan cross section, 

i.e.
MU .
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Therefore, the required equations to verity the kinematic prescriptions 

are defined as: 

( )

( )

( )

1 1 2 2

1 1

,...., , 0,  

,...., , 0,  

, 0,  

S S

H H

S S S S S

S N N

H H H H H

H N N

M M M

M

L S S S S U

L S S S S U

L S S U

� �+ ∆ + ∆ =� �

� �+ ∆ + ∆ =� �

� �+ ∆ =� �

� �

� �

�

(2.41)

where ,  and 
S H M

L L L
� � �

are multi freedom constraint operators referred to 

the stays, hangers and main cable variables, respectively. Similarly, additional 

constraint equations, which enforce the stresses in the cables to be equal to the 

initial design quantity are introduced: 

( )

( )

( )

, 0,               1,..,2 ,

, 0,             1,.., ,

, 0,            

S S S S S

S i i i gi

H H H H H

H i i i gi

M M M M

M g

C A A S S i N

C A A S S j N

C A A S S

� �+ ∆ − = =� �

� �+ ∆ − = =� �

� �+ ∆ − =� �

�

�
(2.42)

where ,  and S H MC C C
� �

 are the constrain operators, which ensures that 

the stress variables of the cable elements, i.e. ( ),  and S H M

i jS S S , are equal to the 

prescribed values ( ),  and S H M

gi gi gS S S .

�

2.2.4 Application on intermediate erection stages 

In the case of hybrid cable-stayed suspension bridges, during the 

erection procedure, at the k-th construction step, the unknown quantities are 

represented by the post-tensioning forces of the cable system elements:

{ }1 1
,...., , ,..., , ,S S H H M

C k kS S S S S S=
�

(2.43) 

Moreover, the objective function D to be minimized during the 

optimization procedure consists of a scalar valued function defined by the 
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square root of the vertical and horizontal displacements of girder and pylons, 

evaluated at the corresponding nodal points: 

( )
( )

( )
( )Min D Min U

ψ ψ
ψ =

� �
�

(2.44)

where, •  is the Euclidean norm of the ( )•  vector, U
�

 with 

3(1.. ) 1 1 1 1
, , , ,L R L RP P M P M PT G

kU U U U U U− −� �= � �
�

 is the vector containing the vertical 

displacements at the hangers/girder connections at the k-th step erected element, 

horizontal displacements at the top pylon left (L) and right (R) cross-sections (

1 1,L RP PU U ) and at the intersection points of the left and right top pylon cross-

sections with the main cable (
,

1 1,L RM P M PU U− −
).  

In addition, to Eq.s (2.43)-(2.44), constrain equations are necessary to 

guide the optimization procedure through a reasonable solution: 

( )

( )

( )

max   

max ,  

max ,

H

i A
k

S

i A
k

M

A
k

S S

S S

S S

ψ

ξ ψ

ξ ψ

� � ≤
� �

� � ≤
� �

� � ≤
� �

�

� �

� �

(2.45)

For the pure suspension and cable-stayed bridge schemes, the solution 

during the erection procedure is derived by solving a determinate equation 

system. In particular, the unknown quantities are represented by the post-

tensioning forces, which are evaluated reproducing the undeformed 

configuration on the basis of the following constrain relationships: 

, 0

, 0,  

H H

U k

S S

U k

L S U

L S U

� � =� �

� � =� �

� � �

� � �

(2.46) 

where ( ),H S

k kS S
� �

are the vectors containing the stresses of the hangers or 

the stays elements and 
( )

3(1) 3(2) 3( ) 1
, ,..., , ,M PH T G G G

kU U U U U −� �= � �
�

contains the 
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vertical displacements of the girder and the horizontal displacement of the 

pylon. 

2.3 Bridge formulation 

In this section the governing equations for the bridge constituents are 

discussed. Such governing equations represent the basis for the theoretical 

formulation of the model, whose numerical implementation is presented in the 

next paragraph. 

2.3.1 Girder and pylons formulation 

Girder and towers are described by tridimensional geometric nonlinear 

beam elements by means of a formulation based on Euler-Bernoulli kinematic 

assumptions and a Green-Lagrange strain measure. The constitutive 

relationships are defined on the basis of moderately large rotations in which 

only the square of the terms 
1

2

,

G

i X
U  representing the rotations of the transverse 

normal line in the beam are considered. Starting from the status concerning the 

initial configuration in which only dead loading are considered, the following 

relationships between generalized strain and stress variables are obtained: 

             

( ) ( ) ( )
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= +
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1
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(2.47)
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where  G GE A  and 1

Gε are the axial stiffness and strain, 2

Gχ and 3

Gχ  or  

2

G GE I  and 3

G GE I  are the curvatures or the bending stiffnesses with respect to 

the 
2X  and

3X  axes, respectively, 
GΘ and 

G G

tG J are the torsional curvature 

and stiffness, respectively, 1

GN is the axial stress resultant, 2

GM and 3

GM  are 

the bending moments with respect to the 
2X  and

3X  axes, respectively, 1

GM

and 
G G

tG J are torsional moment and girder stiffness, respectively, and ( )0
⋅

represents the superscript concerning the variables associated with the "zero 

configuration". Since the optimum design is defined by Ultimate limit state 

(ULS) and Service load state (SLS), only the application of live loads is 

considered. The external loads are expressed by a vector: 

1 2 3
[ , , ]X X Xp p p p=

�

(2.48)

In particular, for the component 
3Xp , an eccentricity e with respect to 

the geometric axis can be considered. On the basis of Eq.s (2.47) and (2.48), 

taking into account notation reported in Fig. 2.10, the governing equations are 

derived by means of the local form of static equilibrium equations as: 
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Fig. 2.10   Girder cross-section notations 

The pylon governing equations can be easily obtained from Eq.(2.49) by 

removing all the terms related to the external loads and changing the relative 

variables from with the superscript ( )G⋅  to ( )P⋅  and the parameters concerning 

the mechanical and material characteristics: 
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2.3.2 Cable formulation 

The constitutive laws of the cable are defined by the second Piola-

Kirchhoff stress ( )1

CS  and Green-Lagrange strain ( )1

CE  as: 

( ) ( )1 0 1

C C C CS X S C E X= +
� �

(2.51) 

with 

( ) ( ) ( ) ( ) ( )
1 1 1 1

2 2 2

1 1, 1, 2, 3,

1

2

C C

X X X X
E X U X U X U X U X� �= + + +

� �� � � � �
(2.52) 
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where CC is the elastic modulus, 0

CS is the stress referred to the initial 

configuration. The governing equations of a single cable are expressed by 

means of the following partial differential equations: 

1
1 1 1

1 1

2
1

1 1

3
1 2

1 1

0,

0,

0

C
C C

C
C

C
C

dUd
N N b

dX dX

dUd
N

dX dX

dUd
N b

dX dX

� �
+ − =� �

� �

� �
=� �

� �

� �
− =� �

� �

(2.53)

where 1

CN  is the axial force defined as 1 1

C C CN S A=  with  the area of 

generic i-th cable element, 
1ϕ  and 

2ϕ  are the slope angles of the cable along 

the X1X2 and X1X3, respectively, 1b  and 
2b  are the body load projections in the 

X1X2 and X1X3, respectively. 

2.4 Finite element implementation 

The governing equations reported in the previous section introduce a 

nonlinear partial differential system, whose analytical solution is quite complex 

to be extracted. As a consequence, a numerical approach based on the finite 

element formulation is utilized. In particular, starting from Eq. (2.49) and Eq. 

(2.53), the corresponding weak forms for the i-th finite element related to the 

girder (G), pylon (P) and the cable system (C), respectively, are defined by the 

following expressions: 

Girder 
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Cable System 
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where ( )1 2 3 2 3
, , , ,

k

i i i i iN T T M M  with k=C,G,P and i=1,2 represents the 

internal forces applied at the end node i of the generic cable (C), girder (G) or 

pylon (P) element. Finite element expressions are written starting from the weak 

forms previously reported, introducing Hermit cubic interpolation functions 

( )iξ  for the girder and pylon flexures in the X1X2 and X2X3 deformation planes 
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and Lagrange linear interpolation functions ( )iζ  for the cable system variables 

and the remaining variables of the girder and the pylons: 

( ) ( ) ( )

( ) ( )

( ) ( )

,   

,   

,

C C C

G G G

P P P

U r t N r q t

U r t N q t

U r t N q t

=

=

=

� �� � �

�� � �

�� � �

(2.57)

where , ,  C G Pq q q
� � �

 are the vectors collecting the nodal degrees of 

freedom of the cable, girder and pylon respectively, , , C G PN N N
� � �

 are the 

matrixes containing the displacement interpolation function for cable element 

(C), girder (G) and pylons (P), r
�

 is the local coordinate vector of the i-th finite 

element. The discrete equations in the local reference system of the i-th element 

are derived substituting Eq. (2.57) into Eq.s (2.54)-(2.56), leading to the 

following equations in matrix notation: 

G G G GK U P Q= +
� �� �

(2.58) 

P P P PK U P Q= +
� �� �

(2.59) 

C C C CK U P Q= +
� �� �

(2.60)

where
iK
�

is the stiffness matrix, 
iP
�

is the load vector produced by the 

dead and live loading, 
iQ
�

 is the unknown force vector collecting the point 

source. In order to reproduce the bridge kinematic correctly, additional 

relationships to define the connections between girder, pylon and cable system 

are necessary. In particular, the cable system displacements should be equal to 

those of the girder and the pylons at the corresponding intersection points; thus, 

the bridge kinematic is restricted by means of the following constrain equations 

(Fig. 2.11):

( ) ( ) ( )
( ) ( ) ( )

3 1 3

1 3 1

, , ,

, , ,

i i i

i i i

G G C

C C C

G G C

C C C

U X t X t b U X t

U X t X t b U X t

+ Ψ =

− Ψ =
� � �

� � �

(2.61) 
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(2.62)

where
iC

X
�

and 
PX
�

 represent the vectors containing the intersection 

positions of the i-th cable element and the pylon top cross section, respectively, 

and 1 2 3( , , )G G GU U U  and 1 2 3( , , )G G GΨ Ψ Ψ  are the displacement and rotation fields 

of the centroid axis of the girder with respect to the global reference system, 

respectively. It is worth nothing that, Eq. (2.61) are constraint equation imposed 

between the off-set nodes of the girder and those associated to the cable 

elements. Finally, starting from Eq.s (2.58)-(2.60),  taking into account of Eq.s 

(2.61)-(2.62) as well as the balance of secondary variables at the interelement 

boundaries, the resulting equations of the finite element model are: 

KQ P=
� ��

(2.63)

where Q
�

 with C G PQ U U U= ∪ ∪
� � ��

 is the generalized coordinate vector 

containing the kinematic variables associated with the girder, the pylons and the  
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Fig.2.11  Cable connection 

cable system, K
�

 is the global stiffness matrix and P
�

 is the loading vector. 

Since the structural behavior of each element depends on the deformation state 

of the members, the governing equations defined by Eq.(2.63) will change 

continuously as the structure deforms.  

The governing equations are solved numerically, using a user 

customized finite element program, i.e. COMSOL Multiphysics TM version 4.4 

(COMSOL, 2012). Despite existing bridge modeling available from the 

literature, the importance of the proposed bridge formulation can be 

summarized by the following points: 

- from a practical point of view, the proposed formulation, based on one 

dimensional beam or truss descriptions, is able to avoid complexities and 

large computational costs arising when shell and continuum finite 

elements are adopted, whose improvements in terms of global dynamical 

parameters (midspan vertical displacement, bending moment and 

torsional rotation, for instance), can be neglected, especially in the case of 

long span bridges. 
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- The cable system is modeled according to the multi element cable system 

(MECS) approach, where each cable is discretized using multiple truss 

element. Such modeling is suitable in the case of reduced values of 

bending stiffness and small sag at equilibrium. The stiffness reduction 

caused by sagging is accounted for by allowing the cable to deform under 

applied loads. Large deformations are reproduced by using Green 

Lagrange formulation and the axial strain is calculated by expressing the 

global strains in tangential derivatives and projecting the global strains on 

the cable edge: 

T

n t Etε =
�� �

(2.64)

In the equation (2.64), E
�

 and t
�

 are, respectively, the Green-Lagrange 

strain tensor and the tangent element versor.  

2.5 Numerical implementation of the design methodology�

The numerical algorithm was implemented by using an external 

subroutine, which combines Comsol Multiphysics and LivelinkTM for Excel 

package (COMSOL, 2012). The former is is required to calculate the current 

solution on the basis of the FE method, whereas, the latter is employed to 

evaluate the design factor 
iΦ  and 

iΩ . Therefore, both steps can be easily 

developed by using several computational frameworks, since it is based on data, 

which can be easily extracted and handled from quite standard commercial FE 

software. The numerical algorithm is based on the following different steps, 

which are executed, iteratively: 

- generation of the finite element model  (Fig. 2.12), evaluation of the 

initial post-tensioning forces and the cable cross-sections in the cable 

system by means of the optimizations procedure;  

- calculation of the maximum stresses and displacements under live loads 

and prediction of the new set of the initial stress quantities on the basis of 

the performance factors. 
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Fig. 2.12   FE model of an hybrid cable-stayed suspension bridge  

At first, the generation of the FE model is defined on a 3D description, 

whose initial configuration, only for the first iteration, is designed on the basis 

of practical design rules, typically, accepted in the framework of cable-

supported bridges and defined in paragraph 1.2. In particular, the configuration 

of the main cable can be expressed by expression (1.17). Moreover, only for 

first iteration, i.e. for k = 1, the initial cable cross-sections for stays ( S

iA ), 

hangers ( H

iA ), main cable (
MA ) and the initial stresses ( ,S H

g gS S ) are estimated 

from Eq.s (1.13)-(1.15).The evaluation of the post-tensioning forces and the 

optimum cable cross-sections is developed by solving the governing equations 

concerning equilibrium (EQ), optimization (OBJ) and constrain equations, (CE) 

defined by Eq.s (2.21)–(2.25) and (2.63), whose compact form can be expressed 

as follows: 
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where 
1 2 1, ,..., , , ,S S

T H H H S S M

N N
S S S S S S S� �∆ = ∆ ∆ ∆ ∆ ∆ ∆

� ��
, K
�

is the global 

stiffness of the structure, U
�

is the global displacement vector, F
�

is the 

external force vector associated to the dead loading configuration, 
0

HS
�

and 
HS∆
�

 are the initial and incremental stress vectors of the hanger elements, C
�

is 

the corresponding flexibility matrix, ( , ,H S MK K K
� � �

) are the matrixes collecting 

the stiffness coefficients of the hangers, cable-stayed and main cable, 

respectively, HA∆
�

 and SA∆
�

 are the vectors containing the cross-sections of the 

hangers and the stays and MA∆  is the cross-section of the main cable element. It 

is worth noting that Eq. (2.65) introduce a nonlinear constrained optimization 

problem, in which the unknown quantities are represented by displacements and 

cable dimensioning of the cable systems. However, since the structural behavior 

is essentially nonlinear an iterative integration procedure must be performed. At 

this aim, the solving procedure is defined in the framework of gradient-based 

solver algorithms based on SNOPT solver, in which the optimal solution is 

computed by the evaluation of the gradients of both the objective function and 

all constraints by using numerical differentiation (Ohsaki, 2011).  

The objective function and constrain conditions are interpolated by 

means quadratic and linear polynomial approximations, respectively. Once the 

configuration under dead loads is evaluated, the analysis is developed to 

determine maximum effects on the bridge components produced by the live 

loads in terms of stresses and displacements. However, since the bridge 

behavior is essentially nonlinear, the analysis under live loads should be 

considered as a continuation from the previously converged configuration under 

the dead load, taking into account also the construction steps involved in the 

erection procedure. In particular, all the variables involved in the solving 

procedure or in the definition of the structural elements of the bridge are taken 

from the last converged solution, i.e. under dead loads. At this point, the solving 

procedure is defined by a restarting analysis, in which the initial values are 

scaled as a function of the current solution. The solution is performed for a 

fixed number of loading conditions, i.e. N
LL

, which collect, for all bridge 

components, maximum stress and displacement effects: 
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( ) ( ) ( )0, , , - ,          i=1,..,N
LL

i iK U U G Pξ ψ ξ ψ ξ ψ∆ =
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(2.66) 

with 
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DL
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S H S S H
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ψ ψ
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=
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� �

� �
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(2.67)

where P0 is the vector of nodal point forces corresponding to the 

increment in element displacements and stresses from the dead load to the live 

load configurations, U∆
�

are the incremental displacement vector, ( , ,S H MS S∆ ∆
�

) are the variable associated to the incremental value of internal stress evaluated 

starting from the last converged values, i.e. (
,

,
S H M

S S
�

), and Gi is the live load 

vector force of the i-th loading configuration. From the loading combinations 

defined by Eq. (2.66), the new estimates of initial stresses are derived on the 

basis of Eq.s (2.29)–(2.32). Subsequently, convergence conditions defined by

Eq.(2.33) are checked and if they are not satisfied, the analysis goes back to 

evaluate the configuration of the bridge under dead loading with the new values 

of the initial stresses.  

2.6 Results 

At first, results are presented in order to validate the proposed model in 

terms of convergence of the solution during the iterations steps and efficiency of 

the formulation to predict the cable system dimensioning and post-tensioning 

stresses of the cable elements. In this framework, the analysis is developed with 

respect to two different cases: in the first case a cable-stayed bridge is 

considered and the proposed model is validated by comparisons with existing 

optimization techniques on cable-stayed bridges available from the literature.  

The second case refers to the optimum design of a self-anchored cable-

stayed suspension bridge with a small central span and a reduced number of 

elements, which is useful to verify the consistency and robustness of the 
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proposed design methodology. Subsequently, further results are developed for 

more complex structures involving several configurations of the cable system 

and a large number of variables such as those involved in long span bridges. 

This to prove the wide applicability of the proposed methodology. 

2.5.1 Validation of the proposed design method based on design 

methodologies available from literature  

The cable-stayed bridge considered is the Quincy Bayview Bridge, 

located in Illinois (USA) (Fig. 2.13). The bridge is based on H-shaped concrete 

towers, 79 m high from the foundation structure, a double layer of cable system 

formed by 80 cables and a composite precast concrete-steel deck. The central 

and lateral spans are equal to 285.6 m and 128.1 m, respectively, as depicted in 

Fig. 2.14 (a). The precast concrete deck has a thickness of 0.23 m and a width of 

14.2 m as illustrated in Fig.2.14 (b). It also has two steel main girders that are 

located at the outer edge of the deck. These girders are internally attached by a 

set of equally spaced floor beams. The pylons have two concrete legs as they 

are connected internally with a pair of struts. The lower legs of the pylon are 

connected by a 1.12 m thick wall (Wilson & Gravelle, 1991).   

�

Fig.2.13   Quincy Bayview Bridge Wilson and Gravelle (1991) 
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Fig.2.14   Geometry of the Quincy Bayview Bridge 
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Tab. 2.1 Mechanical and geometric properties of Quincy Bayview Bridge 

�

Fig.2.15 Finite element modeling of the structural scheme of the Quincy Bayview Bridge 

The elevation view of this bridge is depicted in Fig. 2.14 (c). As one can 

see, the pylon has a H-shape with two concrete legs. The cross-section of the 

pylons is also given in Fig. 2.14 (d). The data utilized for the simulations are 

presented in table 2.1, whereas the FE model utilized in the results is reported in 

Fig. 2.15. It is worth nothing that nine possible live load cases have been 

considered (Fig. 2.16). The entire model has been discretized by a regular mesh. 

In particular, each stay and each hanger are divided, respectively, in fifteen and 

in three linear truss elements, whereas the stiffening girder and pylons are 

meshed by a maximum element length approach so that five and ten meters are 

the size of the girder and pylons elements, respectively.  
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Fig. 2.16   Live load cases used in the optimization design technique 

At first, results in terms of distribution of optimized cable cross-sections 

are presented in Fig. 2.17, in which comparisons between the data predicted by 

proposed model and those obtained in (Hassan, 2013) are analyzed. Moreover, 

in the same figure, the evolution of the total steel quantity as a function of the 

percentage number of iterations is also reported. The analyses show that the 

distribution of cable cross-sections determined by the proposed formulation is 

always below the cross-section values obtained in (Hassan, 2013) and the 

corresponding percentage reduction of the total steel quantity is almost equal to 

26%. The proposed formulation appears to be quite stable in reaching the 

optimum configuration, since a low number of iterations is required to obtain 

the convergence of the solution. The comparison in terms of cross-section 

distribution denotes, that, despite results obtained in (Hassan, 2013), the 

proposed modeling finds the largest values of the cable areas in proximity of the 

anchor stays, in which, typically, maximum transferring stresses arising from 

stays of the central span are observed.  
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Fig.2.17   Comparisons with results obtained in (Hassan, 2013) in terms of cross-section 

distribution of the cables (Ai), total steel quantity (Q) as a function of the number of iterations. 

Such results can be considered reasonable also with common design 

procedures and experimental evidences on cable-stayed bridges, since the 

anchor cables are responsible of both pylon and girder deformability, much 

more than adjoining elements. 

Additional analyses, reported in Fig. 2.18, are developed with the 

purpose to investigate the stress distribution observed in the cable system 

produced by the application of live loads. In particular, the envelope of 

maximum internal stresses for each element of the cable system is reported as 

function of the position of the cable along girder profile.  

A synoptic representation of the stress distribution also in relationship to 

the assumed loading combination is reported in Fig. 2.19.  

The results denote that the optimum solution, obtained by the proposed 

model, presents values of the stresses in the cables equal or mostly close to the  
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Fig.2.18   Comparisons in terms of maximum stresses produced by live loads and percentage 

error (e) with the values determined in (Hassan, 2013). 

�

Fig.2.19   Synoptic representation of the live load configurations, maximum stresses and 

comparison with data obtained in (Hassan, 2013).
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allowable quantity; the comparison with respect to values obtained in (Hassan, 

2013) denote percentage errors ranging from -41.37 to 81.31 with an average 

value of 28.88. The equality to the permissible value is not verified for all the 

cables in the lateral span, whereas those of the central span under live load are 

designed to reach a value exactly equal to their strength. Such condition 

determines the best optimization of the cable-system cross-sections, which leads 

to strong reductions of the total steel quantity involved in the cable system. 

However, for those elements of the lateral span, including also the 

anchor stays, the stress rate is lower than the allowable value, since more a 

stiffness amount in such elements is required in order to verify prescriptions on 

maximum girder deflections.  

Fig.2.20   Comparisons in terms of girder displacements produced by live loads with values 

determined in (Hassan, 2013), convergence behavior of the cross-sections, maximum and initial 

post-tensioning stresses as a function of the percentage value of the iteration steps (nIT%). 
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Fig.2.21   Comparisons in terms of pylon displacements produced by live loads with 

values determined in (Hassan, 2013), convergence behavior of the cross-sections, maximum and 

initial post-tensioning stresses as a function of the percentage value of the iteration steps (nIT%). 

Finally, in Figs. 2.20 and 2.21, comparisons with results developed in 

(Hassan, 2013) are proposed in terms of envelope of vertical and horizontal 

displacements of girder and pylons, respectively.  

The analyses show how prescriptions on maximum deflections for both 

girder and pylons are below the permissible values. Moreover, in the same 

figures the evolution of the midspan vertical displacement (Fig. 2.20) the top 

pylon horizontal displacement (Fig. 2.21) and the cross-sections of the cables as 

well as the stress ratios between maximum stress and allowable value are 

reported as a function of the number of iteration steps. The analyses show how 

from the initial value the displacements are modified to verify bridge 
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deformability; such task is performed reducing the maximum working stresses 

of the cables much below the allowable value and thus increasing the stiffness 

or the area of the elements of the cable system.  

Finally, the results show that the solutions present a convergent 

behavior toward the final optimum configuration. 

2.5.2 Robustness test: The self-anchored cable-stayed suspension 

scheme with reduced number of cable element 

Results are developed with reference to a bridge structure with central 

span (L) and total length (LT) equal to 100 m and 180 m (Fig.5), whose aspect 

ratios f/L and H/cL are equal to 0.12 and 0.45, respectively. Without loss of 

generality, as before, in analyses only live loads concerning traffic loads are 

considered, which are combined with dead loading by using factored or 

unfactored loading combinations equal to 1.2DL+ 1.7LL or to DL+LL in cases 

of ULS or SLS, respectively. The main purpose is to present a benchmark 

analysis, involving a low number of the stays and hangers having a large 

spacing step. In such configuration, it is quite difficult to verify prescriptions on 

girder and pylon deformability or in terms of maximum or incremental cable 

strength. The cable system consists of a double layer formed by only 10 stays 

and 3 hangers and the main cable, whose elements present an allowable stress 

(Sa) equal to 
86.4 10  Pa× .  

The displacement limits of both girder and pylons are assumed to be 

equal to 1/600 of the corresponding lengths. The girder and pylons present steel 

rectangular single box sections, whose data are reported in Tab. 2.2. Moreover, 

the dead loads on the girder   include contributions arising from the weight of 

structural and non-structural elements, which are equal to 44.15 kN/m and 60 

kN/m, respectively. Moreover, the ratio between live and dead loads, i.e.  , is 

equal to 0.57. Such value is consistent with specification reported in (American 

Association of State Highway and Transportation Officials, 2007; Yoo & Choi, 

2009) in which approximately a number of six uniform traffic lanes are 

considered. 
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Fig.2.22   Synoptic representation of the self-anchored cable-stayed suspension scheme 

Tab. 2.2 Bridge parameters of the girder and pylons 

Finally live loads are applied on the structure to produce maximum 

effects in terms stresses or displacements by using the loading combinations 

reported synoptically in Fig. 2.22. 

Results concerning the cross-section area distribution of all cable 

elements are reported in Fig. 2.23, whereas the convergence behavior of the 

predicted solution is reported in Fig. 2.24. The analysis denotes that with 

respect to the initial values, essentially based on preliminary design rules 

reported in the paragraph 1.2, the cross-section areas are strongly modified. In 

particular, in the cable-system, the anchor stays and the main cable are 

dimensioned with larger values than the remaining elements. The convergence 

of the solution toward the optimum solution is reached with a relatively low 

number of iterations especially for the internal cable elements, i.e. from cable 2 

to 5, whereas for the anchors stays and the main cable a larger number of 

iterations is required to verify prescriptions on maximum displacements. 
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Fig.2.23   Cross-section distribution: initial and final evaluations 

Fig.2.24   Convergence behavior of the cross-sections as a function of the iteration number 
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 In Fig.s 2.25, 2.26 results in terms of bridge deformability under dead 

load and live load are presented for both girder and pylons. In particular, in Fig. 

2.25, the analysis shows that under dead load the deflections of the girder are 

practically negligible in comparisons to those observed in the case of live load.  

The initial configuration, predicted by the proposed model in terms of 

the cable forces, is able to constraint to zero the displacements of the girder at 

the connections with the cables. Moreover, in Fig.2.26, the bridge deformability 

is presented in terms of convergence behavior to evaluate the optimum solution. 

Such results show how the maximum value of the normalized girder 

displacements, which is equal to -0.003 in the initial configuration, is reduced to 

a value almost close to its half and thus in agreement with design prescriptions 

on girder deflections. Moreover, the analysis denotes that the iterative procedure 

is based on a quite convergent and stable behavior, without jumps or 

singularities of the solution toward the final configuration. 

Fig.2.25   Envelope of the girder deflections under DL and LL 
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Fig.2.26   Comparisons between initial and final evaluations of the girder deflections, 

convergence behavior of the top pylon horizontal displacement and midspan vertical deflections 

The distribution of the optimization factors  and  i iΩ Φ for all elements 

of the cable system from the initial to the final configurations is reported in Fig. 

2.27, whereas the initial stresses under dead load for each cable element are 

analyzed in Fig. 2.28. It is worth noting that factors 
iΦ have the role to 

constrain the equality of the stresses with the allowable quantity, whereas the 

factors 
iΩ are responsible of the prescriptions regarding bridge deformability. 

Both of them during the iterations, modify the stiffness of the cables, reducing 

or increasing the quantity of material involved in the cable system. During the 

iterative procedure, the internal cables, namely from 2 to 6, present increasing 

values of the factors 
iΦ  and 

iΩ , except for the anchor stays and the main 

cable, since both of them are directly responsible of the midspan girder 

deflections and the horizontal top pylon displacements. Therefore, in order to 

verify prescriptions on bridge deformability, sin such elements lower values 

than the unity of 
iΩ  are predicted by the iterative procedure.  
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Fig.2.27   Stress and displacement optimization factors: initial and final prediction 

Fig.2.28  Distribution of the initial stresses (SI) under DL and convergence behavior of the values 

observed in the main cable as a function of the percentage value of the iteration steps (nIT%) 
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Similarly, the initial stresses presented in Fig. 2.28, are modified from 

the initial distribution, in such a way that the anchor stays and main cable 

during the iterations are forced to have lower post-tensioning forces, larger 

stiffness and cross-section than the remaining elements. In particular, in such 

cables, the maximum allowable stresses are modified from the standard value 

arising from the material characteristics, i.e. SA, introducing lower thresholds 

under live loads. Such behavior can be also discussed on the basis of the results 

presented in Fig. 2.29, in which the distribution of the maximum stresses under 

live load for all cable elements is considered. In particular, during the iterations 

the most of the elements of the cable system are designed consistently with 

P.B.A., since the ratio between actual and allowable stresses, i.e. max(SLL)/SA, is 

close to the unity; contrarily for that elements with values lower than one, in 

order to verify design constrains on bridge deformability, larger values of cross-

sections than the remaining elements are predicted. 

Fig.2.29 – Distribution of the maximum stresses under LL and convergence behavior of the 

maximum stresses as a function of the iteration percentage number (nIT%). 
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2.5.3 The long span bridges case: comparisons between hybrid and 

pure systems

The analysis is developed for three different bridge schemes based on 

hybrid cable-stayed suspension, pure cable-stayed or suspension systems, 

whose main span is equal for all cases to 1000 m. The deck is made of steel 

with aerodynamic cross-section, 4 m depth and 20 m wide; the vertical moment 

of inertia (
2

GI ), the transverse moment of inertia (
3

GI ), the cross-section area (
GA ) and the torsional constant ( GJ ), the modulus of elasticity of steel (

GE ) for 

the bridge deck are 3.41 m4
, 31 m4

, 2.1 m2
, 15 m4

, 2.1x108 kN/m2
, respectively.  

The towers are formed by H-shaped steel components, whose elements 

present vertical moment of inertial (
2

PI ), transverse moment of inertia (
3

PI ), 

cross-section area ( PA ), torsional constant ( PJ ), modulus of elasticity (
PE ) and 

in plane flexural top pylon stiffness (
PK ) are 20.57 m4

, 9.78 m4
, 1.97 m2

, 21.13 

m4
, 2.1x108 kN/m2

 and 50 gG
 respectively.  

Moreover, the aspect ratio (H/l) between pylon height and lateral span is 

equal to 0.4 for the hybrid cable-stayed suspension and pure suspension bridges

or equal to 0.66 for the pure cable-stayed bridge.  

The stays and the hangers present a distance equal to 20 m and an 

allowable stress (Sa) equal to 1.6x106 MPa and a minimum fatigue strength 

stress variation equal to 200 MPa (Strand). Dead loading of the girder including 

also permanent loads (gG
) are equal to 3.0x105 N/m, whereas the ratio between 

live and dead loads, defined consistently to the code prescriptions established in 

(Eurocode 1, 2003), is equal to 0.18 for ULS.  

In particular, results concerning the valuation of stress distribution are 

analyzed under ULS (factored) or FLS (unfactored), whereas results concerning 

displacements are considered under SLS (unfactored). The data utilized for the 

simulations are summarized in Tab. 2.3. 
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Tab.2.3   Parametric study: mechanical and geometric properties of bridge 

�

Fig. 2.30   HCS bridges: distribution of the cable cross-sections and envelope of the stresses in the 

cable-system in the stays, hangers and main cable. 
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At first, results concerning hybrid cable-stayed suspension bridges are 

presented in Fig. 2.30, in which the variability of the cross-sections of the cable 

system elements and their stress ranges observed under dead and live loads are 

reported. The cross-section distribution in the cable stayed-system presents its 

largest values in the anchor stays and in the longest stays of the main span, 

which, mostly, influence the deformability of the bridge. The hanger 

dimensioning presents a constant distribution of the cross-sections in the lateral 

and in the main spans, except in the midspan region, in which the cable-system 

of the HCS bridge behaves as a pure suspension scheme. 

As a matter of fact, in such region, the absence of the stays, produces a 

reduction of stiffness against vertical displacements, which are, mostly, 

influenced by the main cable characteristics. Such concept can be highlighted 

also analyzing the envelope of stresses, presented in the same figure.  

The results shows how most of the cable system elements, i.e. hangers 

and stays, are designed in such a way that under the application of live load, 

worst observed stress reaches the allowable value. However, for the anchor 

stays or in the midspan region, the design methodology predicts values of the 

cross sections, which produce maximum working stresses, locally, lower than 

the corresponding allowable value. Such predictions in terms of both stress or 

cross-sections can be explained due to the fact that the optimization procedure, 

in order to verify prescriptions on maximum displacements automatically 

modifies the cable stiffness of the most active elements, which produce the 

optimum stiffness effects and distribution on girder and pylon deflections. 

Stress and displacement distributions as a function of the iteration steps 

to reach the optimum solution are presented in Figs. 2.31 and 2.32, respectively.  

Results concerning bridge deformability or stress distribution denote 

that from the initial configuration, girder displacements and maximum stresses 

in the cable system present a convergent behavior toward the final solution.  

In particular, such configuration is obtained by means of 25 iterations, 

in which the cross-sections of the cables as well as their initial stresses under 

dead load are modified to verify code prescriptions on bridge deformability and 

cable strength. However, most of the optimization process is performed in the 

initial substeps, i.e. before 12 iterations, in which both displacements and 
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stresses present values equal approximately to the corresponding design 

quantities, whose maximum error with respect to the final optimized values is 

lower than 7%. Moreover, maximum stresses in the cable system are strongly 

modified from the initial trial values, namely from k = 1, which, basically, 

correspond to the application of preliminary dimensioning rules available from 

the literature. From such values, the optimization method modifies the cable 

cross-sections according to stress and displacement requirements provided by 

the code prescriptions, leading to a reduced steel quantity involved in the cable 

system.  

�

Fig. 2.31   HCS bridges: convergence behavior of the predicted maximum stresses in the cable 

system as a function of the iteration steps 
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Such behavior can be observed from the results presented in Fig. 2.33, 

in which the evolution of cable stresses and girder displacements at discrete 

points of the bridge are presented as a function of the number of iterations 

obtained in the solving procedure.  

The results show how the proposed method adjusts the maximum 

working stresses and thus the cross-sections of the cable system, providing 

improvements in the bridge deformability, which is reduced to verify 

prescription on maximum displacements. 

�

Fig. 2.32   HCS bridges: convergence behavior of the girder and pylon displacements in the cable 

systems as a function of the iteration steps. 
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Finally, a comparison in terms of cable-system configurations is

developed, in which results obtained by the proposed methodology are analyzed 

with respect to long span bridge configurations based on hybrid cable-stayed 

suspension bridge or pure cable-stayed (CS) or suspension (SP) cable systems.  

The key of these results is to analyze the applicability, in terms of 

convergence and stability, of the proposed formulation for different bridge 

schemes and to investigate the differences in terms of cable dimensioning 

between the bridge configurations. Results in terms of cross-section distribution 

and dead load and live load stresses are reported in Figs. 2.34 and 2.35, 

respectively.  

�

Fig. 2.33 – HCS bridges: comparisons between maximum stresses in the cable system and 

vertical displacements in the girder at discrete points of the bridges as a function of the iteration 

steps. 
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The analyses denote that the cable cross sections of the HCS bridge 

scheme are always below the corresponding ones obtained from the 

configurations based on pure CS and SP schemes.  

For pure CS configuration, the distribution of the cross-sections is 

similar to that of the HCS bridge, since the largest values are predicted in 

proximity of the anchor stays and the longest stays of the central span.  

Analogous conclusions can be drawn for the distribution of the stresses 

in the cable elements, which are in both cases, under live load, equal or lower 

than the corresponding allowable value.  

Contrarily, the suspension system dimensioning presents larger value of 

required steel quantity than those observed in the case of HCS bridge for both 

main cable and hangers cross-sections, i.e. larger than 3.45 and 3.89 times, 

respectively. Moreover, the distribution of the hanger cross-sections is not 

constant as in the case of HCS bridge, since it presents a maximum value at a 

position on the girder profile equal to X1/LT = 0.35. 

�

Fig. 2.34   Comparisons between predicted values of the cross-sections in the cable-system 

between hybrid cable-suspension (HCS), cable-stayed (CS) and suspension (SP) bridges. 
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Fig. 2.35   Comparisons between predicted values of the maximum stresses in the cable-system 

between hybrid cable-suspension (HCS), cable-stayed (CS) and suspension (SP) bridges.�

Such prediction can be explained by the fact that SP bridges are mostly 

influenced by the characteristics of the main cable, which is typically affected 

by large displacements in the case of unsymmetrical loading distributions on the 

girder main span length.  

Similarly, results concerning SP system denote that the stress 

distribution presents at X1/LT = 0.35 a reduction of the maximum allowable 

stresses, since in that region, the bridge scheme is affected by large 

deformability and thus the cable dimensioning requires important contributions 

to verify prescriptions on maximum displacements. The analyses on HCS 

configurations do not denote such behavior, because of the presence of the 

cable-stayed system, which partially balances the reduced stiffness of the main 

cable, producing a regular distribution of cross-sections in the hanger cable-

system.  

Finally, the working rate of the main cable cross-section is much larger 

than that observed in the case of SP dimensioning, since HCS bridges are 
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characterized by an improved stiffness behavior because of the presence of the 

stays in the cable system. As a matter of fact, the stiffness behavior of the SP 

system is mainly influenced by main cable dimensioning, which is increased 

during the design procedure to verify deformability and stress prescriptions, 

leading to low values of the working stress rates and thus large amount of steel 

quantity involved in such bridge component.  

Finally, the evolution of the total required steel quantity involved in the 

cable system for each bridge scheme as a function of the number of iteration 

steps to obtain the optimum solution is reported in Fig. 2.35.  

Results denote for all bridge schemes a convergent behavior, since a 

limited number of iterations are required to derive the design configuration.  

The SP system presents the maximum steel quantity, which is mainly 

given by the contribution of the main cable, whereas the lowest configuration in 

terms of steel quantity is achieved by using CS system.  

The optimum solution of HCS bridge presents lower cross-sections of 

the main cable and stays than those observed in SP or in the CS systems. In 

particular, the main cable cross-section, which produces the most relevant 

contribution in the total steel quantity, from the pure SP system is reduced 

almost of 62%. Contrarily, the contribution arising from the hangers can be 

considered comparable, even if the corresponding steel quantity is much less of 

the one observed in the main cable.  

Finally, the configuration, which is characterized by the lowest steel 

quantity involved in the cable system is the one associated to the CS system.  

However, such results should be considered also in relationship to the 

geometry of the bridge scheme, which presents, typically, larger ratios between 

pylon and lateral span than those observed in SP or HCS bridge configurations.  

Therefore, the reduced values of total steel quantity in the cable-system 

are partially compensated by the costs involved in the pylon construction. 
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Fig. 2.35   Comparisons between predicted values of the maximum stresses in the cable-system 

between hybrid cable-suspension (HCS), cable-stayed (CS) and suspension (SP) bridges.�

2.5.4 The long span bridges case: the self-anchored cable-stayed 

suspension scheme 

Additional results are presented for a long span self-anchored cable-

stayed suspension bridge structure, similar to the one proposed in (Wang et al., 

2013), whose main span length (L) and total length (LT) are equal to 800 m and 

1337 m, respectively (Fig.2.36). Moreover, the aspect ratios f/L and H/cL are 

equal to 0.12 and 0.46. The stays and the hangers present a distance equal to 

12.5 m and an allowable stress (Sa) equal to 86.4 10 Pa× , whereas the 

geometrical properties of girder and pylons are reported in Tab. 2.4. 

�

Fig.2.36   Structural model of the long span self-anchored cable-stayed suspension bridge 
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  Cross sectional area [m2] Second moment of cross section [m4] 

Girder 1.60 4.96 

Pylon (vertical strut) 2.72 49.64 

Tab. 2.4 Bridge parameters of the girder and pylons

Dead loads of the girder including also the permanent contributions are 

equal to 60 2.06 5 /DL s sQ A E kN mγ= + = , whereas live loads, according to 

bridge design specifications reported in (American Association of State 

Highway and Transportation Officials, 2007; Yoo & Choi, 2009) consist of 

eight uniform traffic lanes with a value equal to 76.2LLQ kN m= .  

In the analysis, the displacement limits of both girder and pylons are 

assumed equal to 1/800 and 1/600 of the corresponding lengths. From the 

mechanical and geometric characteristics defined above, dimensionless 

parameter concerning the ratio between stiffness of the girder (G) and the cable 

system, i.e. 
2

2G

tEI H Lα =  and ( ) ( ) ( )
2 2

8 /
C C

e tf L L L E A Hλ = × × , are 

equal to 
2

0.092α =  and 
2

223λ = , where
GEI is the bending stiffness of the 

girder and
tH is the dead load horizontal component of the cable tension.  

Such values are consistent with data available from the literature, whose 

range, obtained on existing cable-supported bridge structures are equal to 

[ ]
2

30.5 10 10α −= − × and [ ]
2

170 800λ = −  (Enrique Luco & Turmo, 2010). 

Results in terms of cross-sections of the cable and post-tensioning 

stresses as a function of the normalized positions on the girder projection are 

reported in Fig.2.37 and Fig.2.38, respectively. 

The analysis denotes that the design procedure defines a cross section 

distribution, whose maximum values are observed in the main cable and anchor 

stays. Moreover, the remaining stays present their largest values at the 

extremities of the cable-stayed system. Finally, the hangers are affected 

essentially by a constant distribution of the cross-sections. Such dimensioning 

predicted by the proposed modeling can be assumed quite reasonable from the 

structural and physical viewpoints.  
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Fig. 2.37   Normalized cross-sections distribution (AiSA/gL) in the cable-system as a function of 

the normalized position on the girder projection (X/LT). 

�

Fig. 2.38   Initial stresses (S/SA) in the cable-system as a function of the normalized position on 

the girder projection (X/LT).�
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In particular, the high values of the cross-section in the anchor stays are 

due to the development of the internal force arising from the main cable, which 

carries out most of the loading contributions arising from the central span. For 

this reason, in self-anchored schemes, the cross-sections of both anchor stays 

and main cable should be comparable. Moreover, the reduced values of the 

cross-sections of the stays located close to the pylons can be explained by the 

fact that in such regions the elements present their maximum efficiency in terms 

of loss stiffness due to sag effects. In addition, the prescriptions on girder or 

pylon displacements are not restrictive as the ones at the mid-span girder cross-

section, because such cables are placed in proximity to the girder support. As a 

consequence, a low cable dimensioning is required. 

In Fig.s 2.39-2.40, results concerning bridge deformability are 

presented. In particular, girder deflections or horizontal displacements of the 

pylons are reported as function of the percentage number of iterations to obtain 

the final configuration. Moreover, in the same figure the evolution of the cross-

sections of the main cable and the anchor stays are analyzed. The results denote 

that the anchor stays are mostly responsible of the horizontal displacements of 

the pylons, which is reduced as far as the cross-sections of such cable elements 

increase.  Moreover, the girder deformability of the central span at the midspan 

cross-section is mostly affected by the stiffness of the main cable.  

Actually, the hangers have the role to transfers the loads from the girder 

to the main cable, without providing any important contributions in terms of 

stiffness improvement; the stays, which are the most stiffness elements in 

combined cable-stayed suspension bridge schemes, are far from the midspan 

and thus their effect on the girder deformability is negligible.  

In both cases, the results show that during the iterations the solutions is 

strongly modified from the initial trial solution. In particular, the cross-sections 

of the cable elements are increased to verify prescriptions on bridge 

deformability. Such behavior can be also analyzed by the envelope of maximum 

displacements reported in the same figures, which show how all the 

displacements at the final step are below the corresponding allowable limits 

typically adopted for design purposes. 
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Fig. 2.39   Normalized girder ( )3

GU L  displacements produced by live loads; convergence 

behavior of the cross-sections and the displacements as a function of the percentage value of the 

iteration steps (nIT%).�

�

Fig. 2.40   Normalized pylon ( )1

GU L  displacements produced by live loads; convergence 

behavior of the cross-sections and the displacements as a function of the percentage value of the 

iteration steps (nIT%).�
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Fig. 2.41   Normalized maximum tensile stresses ( )( )max /LL AS S  under live loads �

Additional results are presented in Fig.2.41, in which tensile stresses in 

the cables resulting from the ULS combinations are reported as function of the 

iteration steps. In particular, consistently with the PBA, during the iterations, 

maximum cable stresses are forced to reach the equality with the allowable 

strength value. Such condition cannot be reached in the first iterations since 

initially the conditions regarding the bridge deformability are more restrictive 

than the ones related to the cable strength. However, once a number of iterations 

is developed, the cable dimensioning as well as the post-tensioning forces are 

calibrated to verify such proscriptions.  

Finally, in Fig.2.42, the convergence behavior of the solution is 

investigated, by means of the relationships between the maximum stresses of 

some cable elements and percentage number of iterations developed by the 

iterative procedure.  
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Except for the main cable, whose dimensioning is quite constrained by 

the displacements prescriptions on bridge deformability, all the cables after a 

low number of iterations present a stress rate equal to the allowable strength 

value, reaching, consistently with the PBA, the optimum design. 

�

Fig.  2.42   Normalized maximum tensile stresses ( )( )max /LL AS S  evolution as a function of the 

percentage value of the iteration steps (nIT%) 
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VULNERABILITY AND FAILURE ANALYSIS 

OF CABLE SUPPORTED BRIDGES 

SUBJECTED TO DAMAGE MECHANISMS 

UNDER THE ACTION OF MOVING LOADS

3.1 Introduction 

Cable supported bridges are affected by several actions, which can be 

distinguished mainly in direct and induced type ones. 

The most frequent direct actions are moving loads, which induced 

dynamic structural vibrations. Vehicles such as trucks and trains passing bridges 

at certain speeds will cause dynamic effects, among them global vibration and 

local hammer effects. The dynamic loads for moving vehicles are considered 

“impact” in bridge engineering because of the relatively short duration.  

The magnitude of the dynamic response depends on the bridge span, 

stiffness and surface roughness, and vehicle dynamic characteristics such as 

moving speed. Cable supported bridges are frequently employed in the context 

of long spans, leading to slender structures. As a results, such external loads are 

comparable with those involved by the bridge self-weight ones and an accurate 

description of the effects of the moving loads is needed to properly evaluate 

dynamic bridge behavior.  
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At the same time, new developments in rapid transportation systems 

make it possible to increase the allowable speed range and traffic load capacity. 

As a matter of fact, during the last years the maximum speed range of train 

vehicles has grown significantly (Tab 3.1).  Consequently, the moving system 

can greatly influence the dynamic bridge vibration, by means of non-standard 

excitation modes. 

As far as induced actions, damage mechanisms are the most dangerous.   

As a matter of fact, during their life, cable supported bridges are affected by 

several damage phenomena, which produce a reduction of the mechanical 

properties of the bridge constituents. In particular, the cable system is the main 

structural component which can be subjected to potential damage. 

 The basic element for all cables to be found in modern cable supported 

bridges is the steel wire characterized by a considerably larger tensile strength 

than that of ordinary structural steel. Those wires are cylindrical with a diameter 

ranging between 3 mm and 7 mm and they have a high-grade of carbon (about 

0.8%) and are obtained by cold drawing. 

Although the single wire forms the basic element for cables, several 

wires are often shop-assembled to form pre-fabricated strands, subsequently 

used in the shop or at the site as basic elements for the construction of the final 

cable. Cable damage mechanisms are the consequence of the deterioration of 

the steel wire. Wires of civil engineering cables are submitted to two main 

damage mechanisms: fretting-fatigue, corrosion or a combination of them.

Such phenomena lead to degradation effects, which may cause a 

reduction of the stiffness properties or, in extreme cases, the complete failure of 

a single or multiple cable elements. 

Fretting-fatigue is generally observed near the anchorage where the 

cable is submitted to free bending deformations. Vibrations induced by climatic 

loads (wind, rain, etc.) and traffic loads can lead to small relative displacements 

between wires. On the other hand, the possibility of corrosion phenomena is due 

to the fact that cables are frequently exposed to severe environmental conditions 

such as marine environment, rain and pollution. 

�
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Name Max Speed Operator Image 

CRH380A 486 km/h Ministry of 

Railways 

�

TGV 

Reseau 
379 km/h 

SNCF 

�

KTX 2 350 km/h 
Korail 

�

Eurostar 320 km/h 
SNCF 

�

ETR-500 305 km/h 
Trenitalia 

�

Tab. 3.1 – High speed train 
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Although wires are protected against corrosion in several ways such as 

lubrication and zinc coating, during the cable life such a protection disappear 

and corrosive solution can penetrate inside the cable. Corrosion deterioration of 

cable wires takes different forms: stress corrosion cracking, pitting and 

hydrogen embrittlement. 

Hydrogen embrittlement is the process by which various metals, most 

importantly high-strength steel, become brittle and fracture following exposure 

to hydrogen. Hydrogen embrittlement is often the result of unintentional 

introduction of hydrogen into susceptible metals during forming or finishing 

operations and increases cracking in the material (Fig. 3.1). Reduced ductility 

combined with non-reduced cross-section are suggestive of a brittle regime of 

fracture. The effect of hydrogenation is mirrored in the reduced ductility of the 

wire material and not in the effective cross-section area. Hydrogen 

embrittlement mechanisms involve the ingress of hydrogen into the metal, 

reducing its ductility and load bearing capacity. Stress below the yield stress of 

the susceptible material then causes subsequent cracking and catastrophic brittle 

failures. 

�� �

Fig. 3.1   Hydrogen embrittlement mechanisms and failure of a hard chromium-plated chain 

conveyor bolt 
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Stress corrosion cracking is brittle, practically without material loss, 

and visible corrosion products. It is normally “river branched” (the crack on the 

material is similar to a river – the primary crack, and its tributaries – the 

multibranched secondary ones. The cracks which occur just below the yield 

strength of the material, and could be intergranular or intergranular as showed 

in Fig. 3.2. 

�

Fig.3.2   Stress corrosion cracking propagation: (a) intergranular SCC of an Inconel heat 

exchanger tube (X500 micrography); (b) transgranular: the micrography (X300) illustrates SCC in 

a 316 stainless steel chemical processing piping system

The chemical environment that causes stress corrosion cracking for a 

given alloy is often one which is only mildly corrosive to the metal otherwise. 

Hence, metal parts with severe stress corrosion cracking can appear bright and 

shiny, while being filled with microscopic cracks. This factor makes it common 

for stress corrosion cracking to go undetected prior to failure. Stress corrosion 

cracking often progresses rapidly, and is more common among alloys than pure 

metals. The specific environment is of crucial importance, and only very small 

concentrations of certain highly active chemicals are needed to produce 

catastrophic cracking, often leading to devastating and unexpected failure.  

Stress corrosion cracking mechanisms begin when materials protecting 

prestressing strands are inflected (concrete carbonation, chloride ions 

penetration.). 
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Pitting corrosion, or pitting, is a form of extremely localized corrosion 

that leads to the creation of small holes in the metal. The driving power for 

pitting corrosion is the depassivation of a small area, which becomes anodic 

while an unknown but potentially vast area becomes cathodic, leading to very 

localized galvanic corrosion (Fig. 3.3). The corrosion penetrates the mass of the 

metal, with limited diffusion of ions. The mechanism of pitting corrosion is 

probably the same as crevice corrosion. 

�

�

Fig. 3.3   Pitting corrosion 

Inspections on existing cable supported bridges confirms that steel wire 

had an evolution of the mechanical properties. An example is the Mid-Hudson 

Bridge which across the Hudson River between Poughkeepsie and Highland in 

the state of New York (Fig. 3.4). 

 The Mid-Hudson Bridge, based on a suspension cable system, has a 

total bridge length of 914.4 meters, with a main span of 455.7 m and side spans 

of 228.6 m. 
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Fig. 3.4   The Mid-Hudson Bridge 

Each main cable is composed of 6,080 parallel galvanized cold drawn 

wires. The individual cable wires were constructed into 19 strands; each 

containing 320 continuous, endless wires looped around strand shoes at each 

anchorage. After the wires in each strand were spun and adjusted, the 320 parts 

were compacted by special hand tongs and seized with tin bands at 1.5 meter  

intervals. The compacted cables, excluding the protective wire wrapping, are 

425 mm in diameter and about 1,000 meters long between anchorages.  

The wire was specified to have a modulus of elasticity of 186,000 MPa 

and a minimum ultimate strength of 1,480 MPa. The first limited inspections of 

the interior of the cables began in 1969 as part of a general condition inspection 

of the bridge. Similar inspections were also conducted in 1981 and 1982.  These 

inspections were limited to the exterior wires of the cable and were 

accomplished by removing the wrapping wires over very short distances.  

The 1969 openings indicated little if any corrosion. The areas 

unwrapped in 1981 and 1982 revealed indications of more active corrosion. 

In November 1986, nine main cable locations were selected for 

unwrapping and examination. These locations were at the low points, near mid-

length between low points and the pylons, and in the west anchorage adjacent to 

the splay castings. One or two plies of wrapping wire were removed over a 

length of 100 to 350 mm at the locations, to view the outer wires (Fig. 3.5).  
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White zinc corrosion residue and brown and black steel corrosion 

residue were found in varying degrees at eight of the nine locations. 

Fig. 3.5   Partial removal of wrapping wires 

The exposed wires at the selected location near the mid-point of the 

south cable in the center span (low point) were observed to be more extensively 

corroded than the wires at the other locations. As shown in Fig. 3.6, a length of 

2.0 m was unwrap at this location and probe with wooden wedges. Extensive 

corrosion of the zinc coating was observed on the outer wires between the 2:00 

o'clock and 9:00 o'clock positions on the cable perimeter.  

�
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Fig. 3.6   Expanded Inspection area 

�

The most significant wire section loss was observed on the underside of 

the cable at the location of the black residue formed by the corrosion process.  

The visible surfaces of the outer wires on the upper portions of the 

cables appeared in good condition; however, the red lead coating on the wires 

was dry and brittle and could be easily brushed from the cable. White zinc 

oxidation residue from the galvanizing was noted on all visible interior wires at 

the four positions probed. Some brown steel corrosion residue was noted on 

interior wires at three of the four positions, but no significant loss of wire 

section or broken wires was visible.  

�

Fig. 3.7 – Pitting effect on a wire 
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There was some minor loss of wire section, in the form of flat spots or 

“pitting", noted on some of the outer wires Fig. 3.7. 

These inspections revealed that corrosion had affected wires throughout 

the cable cross-section in a non-uniform manner. Deterioration ranged from 

minor oxidation of the zinc coating on the wires to local depletion of the zinc 

and steel corrosion causing uniform loss of section in the form of flat spots or 

local cavities, accompanied by a black corrosion product. Broken wires were 

discovered both internally and on the cable circumference while unwrapping or 

driving the wooden wedges. 

3.1.1 Code prescriptions 

Regarding design, existing codes on cable supported bridges 

recommend verifications of the robustness and the vulnerability of the bridge 

with respect to extreme and accidental loading conditions.  

A moving vehicle on a bridge generates deflections and stresses in the 

structures that are generally greater than those caused by the same vehicle loads 

applied statically. The dynamic response is commonly presented in terms of 

Dynamic Amplification Factors (D.A.F). These factors suggested to states how 

many times the static response, of a railway bridge due to moving traffic, must 

be magnified in order to cover the additional dynamic loads.  

Many definitions are used in experimental and numerical studies.  

Most frequently, the Dynamic Amplification Factor is defined as a 

dimensionless ratio of the absolute dynamic response to the absolute maximum 

static response. 

Absolute Dynamic response
Dynamic Amplification Factor (D.A.F.) = 

Absolute Maximum Static response

In the American Association of State Highway and Transportation 

Officials (American Association of State Highway and Transportation Officials, 
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2007) specifications effects of moving vehicles on bridges are accounted for by 

a dynamic load allowance, IM, in addition to static live load (LL): 

1
dyn

st

D
IM

D
= −

where dynD  is the maximum dynamic response for deflection, moment, 

or shear of the structural members and stD  is the corresponding maximum static 

response. The total live load effect, LL, can then be expressed as 

stLL AF D= ×

and 

1AF IM= +

where AF is the amplification factor representing the dynamic 

amplification of the static load effect and IM is the impact factor determined by  

empirical formulas in design codes. Such simplified approach in the design 

practice avoids any analysis of vehicle induced vibration. 

However, the impact effect on bridges by moving vehicles is influenced 

by factors such as bridge span, stiffness, surface roughness, speed and 

suspension system of moving vehicles, which lead the impact factor to vary 

within a large range. In (American Association of State Highway and 

Transportation Officials, 2007) the impact factor is simply expressed as a 

function of bridge span 

where L (in ft) is the length of span loaded to create maximum stress.

50
0.30

125
IM

L
= ≤

+
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For railway bridges the ratio of live load caused by moving vehicles 

such as locomotive and trains to the dead load is mostly higher than that in 

highway bridges. It can be two cases: 

• Percentage of live load for rolling equipment without hammer blow, such 

as diesels and electric locomotives, etc., 

23
40          if 50 ft

1600

600
16        if 80 ft

30

L
IM RE L

IM RE L
L

= + − <

= + − ≥
−

• Percentage of live load for steam locomotives with hammer blow: 

2

40               if 100 ft
500For beam spans and floor beams  
1600

10           if 100 ft
40

4000
For truss spans                               10

25

L
IM RE L

IM RE L
L

IM RE
L

= + − <

= + − ≥
−

= + −
+

�

where L is the effective span length. Because of the simplicity, the 

Dynamic Amplification Factor expressions specified in bridge design codes 

can’t characterize the effect of all parameters that influence the dynamic 

response. However, in order to get a more exact behavior of the dynamic 

effects, the additional dynamic loads should be determined in a more accurate 

way. For this reason, the code allows to design high speed railway bridges by 

means of commercial software programs which take into account resonance 

effects and other vibration effects in the particular bridge structure. 

Similarly, the analysis of the structural response of the bridge structure 

due to damage mechanisms in the cable system is based on the use of fictitious 

amplification factors. In particular, verifying the capacity to sustain accidental 

breakage of cables is an essential requirement within design of cable-supported 

structures. In order to verify this requirement, codes and guidelines for the 

design of cable supported structures have traditionally recommended the 
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analysis of the sudden breakage, or loss, of a cable, through static analysis 

amplified by a dynamic amplification factor in the range between 1.5 and 2.0. 

Such approach has been recommended by several associations (Post-Tensioning 

Institute, 2007; Service d’Etudes Techniques des Routes et Autoroutes, 2001) in 

their design guidelines for cable-stayed bridges, and that is also proposed 

implicitly in Eurocode 3 Part 1.11 (The European Committee for 

Standardisation, 1993) and explicitly in Eurocode 1 Part 1.7 (The European 

Committee for Standardisation, 2005). More in detail, such approach identifies 

the undamaged state of the structure which includes possible live loads. In this 

state, the cable force of the considered cable loss T0 is calculated. Subsequently, 

the failed cable is eliminated and it is replaced by corresponding cable force 

amplified by DAF.  

� �

Fig. 3.8 – The PTI and SETRA method 

The stress distribution arising from such a loading scheme is combined 

with the effects of other existing loading schemes by means of proper factored 

loading combinations. It is worth nothing that, the PTI Recommendations (Post-

Tensioning Institute, 2007) additionally allow the determination of a dynamic 

amplification factor in a nonlinear dynamic analysis, because it is assumed that, 

in general, smaller factors can be chosen for cable stayed-bridges. But how this 

factor is to be determined or which assumptions are to be made are not 

described. 
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3.2 The proposed analysis model 

A numerical model for considering the damage and failure behavior on 

the cable system is proposed, which can be utilized for obtaining the response of 

cable supported bridges subjected to moving loads.  

Damage and failure phenomena on the cable system elements, produced 

by preexisting corrosion phenomena or unexpected failure mechanisms, are 

analyzed by using stationary or time dependent explicit laws, developed in the 

framework of the Continuum Damage Mechanics theory.  

The bridge analysis is developed by using a refined finite element 

nonlinear geometric formulation, in which the effects of local vibrations on the 

cable-stayed and suspension systems as well as the influence of large 

displacements in the girder and pylons are taken into account. 

The main aim is to quantify, numerically, the dynamic amplification 

factors of typical kinematic and stress design variables taking into account the 

influence of the inertial characteristics of the moving loads, by accounting 

coupling effects arising from the interaction between girder and moving system.  

In particular, the effects produced by the moving system characteristics, the 

pylon typologies, and the failure mode characteristics involved in the cable 

system are investigated by means of comparisons between damaged and 

undamaged bridge configurations. 

The analysis is performed by means of two different stages. 

Initially, a preliminary analysis is devoted to calculating the initial 

configuration of the bridge structure. Since the loading condition refers to the 

application of dead loading only, the analysis is developed in the framework of 

a static analysis.  

Once the initial configuration is determined in terms of the initial cable 

stress and strain distribution, a sequential dynamic analysis is developed starting 

with all dependent variables evaluated in the previously developed 

configuration. 

In next paragraphs, theoretical formulations relative to damage, moving 

load and bridge structure will be discussed in detail. Subsequently, numerical 

implementation will presented. 
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3.3 Damage formulation 

In order to reproduce failure or damage phenomena in the cable system 

and to perform a dynamic analysis of the bridge structures, a time dependent 

damage modeling should be implemented.  

Among the several approaches available from the literature, the one 

consistent to the Continuum Damage mechanics (CDM) theory (Sacco & 

Lebon, 2012; Lemaitre & Desmorat, 2005; Lemaitre & Chaboche, 1994; 

Wriggers, 2008) is adopted. In particular, the presence of damage mechanisms 

in the cable system involved by degradation phenomena are supposed to 

produce a reduction of the cross-section area, on the basis of the following 

expression (Sacco & Lebon, 2012; Barbero & Lonetti, 2001):  

( )
( ) ( )

( )
, ,

,
,

C C C C

s C C

C A s t C A s t
s t

C A s t
ξ

−
= (3.1)

where 
sξ  is the damage variable, s is the curvilinear coordinate used to 

describe the arc-length of the cable, C CC A  and 
C CC A  are the actual and 

residual stiffnesses of the cable element, respectively.  

In order to investigate not only the presence of preexisting damage 

produced by long-term effects, but also the influence produced by accidental 

failure mechanisms due to sudden loss of stiffness, such as the one occurring 

during a terroristic or vandalism attack and thus is not related to creep damage, 

Eq. (3.1) has been reviewed introducing the dependence of the time variable.  

In particular, according to experimental evidence on the failure 

mechanisms of cable elements, a one dimensional time dependent formulation 

based on a Kachanov's law is utilized to describe the dynamic damage variable  

by the following expressions (Lemaitre & Desmorat, 2005): 

( )
( ) ( )

1 1
1

0
1 1

, 1

m
m

s

d

f

t t
s t

t

ξ
ξ

+
+� �� �− − −

� �� �= −
� �
� �� �

(3.2)
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where m is asymptotic parameter of the damage evolution and ( )0, ft t

are the initial and final times describing the failure mechanism (Fig.3.9a).  

It is worth noting that Eq.(3.2) corresponds to a damage law whose 

degradation function from the undamaged state, i.e. t=t0, evolves in a 

generalized way to include different evolutions of the damage curves. 

The internal parameter m basically controls the evolution of the damage 

function, which is linear for m equal to zero and convex or concave for positive 

or negative values of the exponential parameter, respectively. From the practical 

point of view, the value of the parameter m in the damage definition is typically 

assumed close equal to 0.98. The region in which damage phenomena take 

place is defined in terms of the relative position and extent with respect to the 

element coordinate system as: 

( ) ( ) ( ) [ ]1 2 1 2

0 0

, ,  ,    with   , 0,1
2

X X X X
s t s t

L L

ξ ξ ξ ξ

α β α β
+ −

= = ∈ (3.3)

with ( )1 2,X Xξ ξ
 define the starting and the final region of the damage 

region in the damaged element of the cable system, i.e. main cable, hanger or 

stay, and 
0L  is the development of the cable in the initial configuration.  

A synoptic representation of the damage constitutive laws and region 

affected by the damage mechanisms is reported in Fig.3.9 (b). 

 It is worth noting that the critical damage parameter represents the 

value corresponding to the occurrence of the complete failure of the cable 

element, in which the ��th generic cable element does not have the possibility of 

transferring any internal stresses from the girder and the pylon and thus can be 

considered not to produce any significant effects on the  global behavior of the 

bridge.  

Moreover, the above formulation cannot be considered in the creep 

damage framework, since the cable release phenomenon is produced in a short 

time step and it is concerned to simulate, essentially, an accidental failure in the 

cable system. 
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Fig.3.9   Damage definition and regions affected by the damage scenarios

3.4 Moving load formulation 

The moving loads are described by a vehicle travelling with its own 

mass on the bridge at constant speed, namely (c). In the proposed formulation, 

since the distance between the vehicle axles is small in comparison to the bridge 

length, the moving forces are defined by uniformly distributed vertical forces 

and masses acting on the girder profile at a fixed eccentricity (e) with respect to 

the geometrical axis of the girder.  

As a result, the kinematic parameters of the moving system coincide 

with the ones defined by the girder, neglecting frictional forces arising from the 

external loads, roughness effects of the girder profile, and local loading 

distribution produced by railway load components. 

However, these assumptions are quite recurrent in the framework of 

cable supported bridges with long spans, in which, typically, such interaction 

forces produced by localized dynamic effects are negligible with respect to the 

global bridge vibration (Xia, Xü, & Chan, 2000).  
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Moreover, it is assumed that the damping energy is practically 

negligible. This hypothesis is verified in the context of long span bridges, where 

it has been proved that the bridge damping effects tend to decrease as span 

length increases (Kawashima, Unjoh, & Tunomoto, 1993; Yamaguchi & Ito, 

1997). Detailed results about the influence of damping effects on DAFs have 

been presented in (Au, Wang, & Cheung, 2001; Au, Wang, & Cheung, 2002), 

from which it transpires that the assumption of an undamped bridge system 

leads to greater DAFs.  

As a consequence, the analytic description of the moving mass function 

( )λ , acting on the girder profile, is defined as 

( ) ( ) ( )1 1 1, ML ps t H s L ct H ct sλ λ λ= = + − − (3.4) 

�

where ( )H ⋅  is the Heaviside step function, pL  is the length of the 

moving loads, 1s  is the referential coordinate located at the left end of the 

girder cross section (Fig. 3.10) and Mλ  is the mass linear density of the moving 

system.  

Moreover, the expression of the moving loads, for a fixed inertial 

reference frame ( )1 2 30, , ,n n n
� � �

, is defined by the weight and the inertial forces 

produced by the inertial characteristics and the unsteady mass distribution of the 

moving loads, as follows: 

2

3 3 2
   ,

i

m m m

i i i
s i i

dU dU d Ud d
p g n n g n n

dt dt dt dt dt

λ
λ λ λ λ

� �
= × + = × + +� �

� �� �

� � �

� � � �
(3.5) 

�

where
is

p , with 1,3i = , is the i-th component of the external loads at 

contact points between moving loads and girder and 
m

U
�

is the moving load 

kinematic. 
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Fig. 3.10   Moving load description and girder kinematic�

Since the external forces, defined by Eq.(3.5), are described in terms of 

a moving coordinate, the time dependent description introduces the following 

expressions for the velocity and the acceleration functions: 

( )

2 2 2 2
2

2 2 2
2

m m m

i i i

m m m m

i i i i

s td U U U

dt t t t

d U U U U
c c

dt t t s s

∂∂ ∂
= +

∂ ∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂ ∂

(3.6) 

where the second and the third terms in the acceleration function are 

known in the literature as the Coriolis and Centripetal accelerations, 

respectively (Kwa�niewski, Li, Wekezer, & Małachowski, 2006). 

Finally, on the basis of Eq.s (3.4)-(3.5), assuming that the mass does not 

separate from the beam during its horizontal and vertical vibrations, the external 

load functions are defined by the following relationships: 



130                                                                CHAPTER 3 

�

1

2

3

32 2

31 2 1

2 2

1 1

2

2 2

2

3 31 1

1 1

2 2 2 2

3 3 3 1

2 2

1 1

,

,

2

GG G G

X

G G

X

G GG G

X

G G G G

UU U Ud
p e e

dt t t X t t X

U Ud
p

dt t t

U Ud
p g e c e

dt t t X X

U U U
c c e

t t X X

λ
λ λ

λ
λ

λ
λ

λ λ

� �� � ∂∂ ∂ ∂
= − + − ⋅� �	 


∂ ∂ ∂ ∂ ∂ ∂� �� �

∂ ∂
= +

∂ ∂

� �� � � �∂ ∂∂Ψ ∂Ψ
= + + + + +� �	 
 	 


∂ ∂ ∂ ∂� � � �� �

� �∂ ∂ ∂ ∂ Ψ
+ + + + ⋅� �

∂ ∂ ∂ ∂� �

2 2

1 1

2 2

1 1

2 .
G G

c c
t t X X

� �∂ Ψ ∂ Ψ
+ +� �

∂ ∂ ∂ ∂� �

(3.7)

3.5 Bridge formulation 

In this section the governing equations for the bridge constituents are 

discussed. In particular, the same treatment will be carried out for girder and 

pylons. 

3.4.1 Girder and pylons 

 Girder and pylons are consistent with a beam model based on the Euler-

Bernoulli formulation, in which large displacements are considered by using 

Green-Lagrange strain measure.  

Moreover, the torsional behavior owing to eccentric loading is described 

by means of the classical De Saint Venant theory. With reference to Fig. 3.11, 

the displacements of the cross-section for a generic point located at the 

( )1 2 3, ,X X X coordinate along the girder, i.e. ( )1 2 3, ,
G G G

U U U , are expressed by 

the following relationships: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1 2 3 1 1 2 1 3 3 1 2

2 1 2 1

3 1 2 3 3 1 1 1 2

, , , , , , ,     

, , ,      

, , , , ,

G G G G

G G

G G G

U X X X t U X t X t X X t X

U X t U X t

U X X X t U X t X t X

= + Ψ − Ψ

=

= + Ψ

(3.8) 

where ( )1 2 3, ,G G GU U U and ( )G G G

1 2 3, ,Ψ Ψ Ψ are the displacement and 
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rotation fields of the centroid axis of the girder with respect to the global 

reference system, respectively.  

The constitutive relationships are defined on the basis of moderately 

large rotations in which only the square of the terms 
1

2

,

G

i X
U representing the 

rotations of the transverse normal line in the beam are considered.  

Starting from the status concerning the initial configuration in which 

only dead loading are considered, the following relationships between 

generalized strain and stress variables are obtained: 
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(3.9)

where  G GC A  and 1

Gε are the axial stiffness and strain, 2

Gχ and 3

Gχ  or  

2

G GC I  and 3

G GC I  are the curvatures or the bending stiffnesses with respect to 

the 2X  and 3X  axes, respectively, GΘ and G G

tG J are the torsional curvature 

and stiffness, respectively, 1

GN is the axial stress resultant, 2

GM and 3

GM  are 

the bending moments with respect to the 2X  and 3X  axes, respectively, 1

GM

and G G

tG J are torsional moment and girder stiffness, respectively. 
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Fig. 3.11   Displacements of the cross-section 

On the basis of Eq.(3.9), taking into account of Eq.s (3.4) and (3.7) 

notation reported in Fig. 3.11, the following governing equations are derived by 

means of the local form of dynamic equilibrium equations: 
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(3.10) 

where 0

M Lλ is the per unit length torsional girder mass, Gµ  is the girder 

mass per unit length.  
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Additional equations are required to take into account interelement 

continuity and initial conditions concerned with solving the dynamic problem, 

which can be expressed with reference to the i-th girder element as follows: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) 1( ) 1 1
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l l

− − +

− − +
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Φ = Φ = Φ = Φ Φ = Φ

�
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(3.11) 

where the superscripts i+1 and i-1 indicate the previous or the next 

girder elements and the subscript k, with k=1,2,3 define the displacement and 

rotation directions with respect to the coordinate reference system. 

Moreover, the pylon governing equations can be easily obtained from 

Eq. (3.10), by removing all the terms related to the moving loads and changing 

the relative variables from with the superscript ( )
G

⋅ to ( )
P

⋅ and the parameters 

concerning the mechanical and material characteristics: 
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�� ��
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(3.12)

3.4.2 Cable formulation 

The formulation is presented assuming that the cable element is 

deformed in its initial cable configuration under dead loading , i.e.  
cΩ , and 

thus the deformed configuration of the cable due to the application of the live 

loads can be described by the following additive expression (Fig.3.12): 
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Fig.3.12   Initial and current configurations of the cable, support motion due to girder (G) and 

pylon (P) deformation.  

( ) ( )( ) ( )( ) ( )( )1 1 1 2 2 2 3 3 3, , , ,C C CX t X U X t n X U X t n X U X t nϕ = + + + + +
� � � �� � ��

(3.13) 

where the superscript ( )0
⋅ represents, here and in the following, those 

variables associated to the initial configuration, X
�

, with 1 2 3, ,TX X X X� �= � �
�

,

is the positional vector of the cable with respect to the reference system and 
C

iU , with i = 1,2,3, are the displacement components in the local reference 

system iX  described by the basis ni of the coordinate system (Thai & Kim, 

2011).  

Moreover, the constitutive laws of the cable are defined by the second 

Piola–Kirchhoff stress ( 1

CS ) and Green-Lagrange strain ( 1

CE ) on the basis of the 

damage description defined by Eq. or Eq., as follows: 

( ) ( ) ( )1 0 1, 1 , ,C C C C

iS X t S C X t E X tξ= + � − �� �
� � �

(3.14) 

with 

( ) ( ) ( ) ( ) ( )
1 1 1 1

2 2 2

1 1, 1, 2, 3,

1
, , , , ,

2

C
C C

X X X X
E X t U X t U X t U X t U X t� �= + + +

� �� � � � �
(3.15) 
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where CC  is the elastic modulus, 0

CS  is the stress referred to the initial 

configuration and 
iξ , with i=d,s, refers to the static or dynamic description of 

damage variable. The governing equations of the motion of a single cable are 

expressed by means of the following partial differential equations (Warnitchai, 

Fujino, & Susumpow, 1995): 

( )
( )

1
1 1 1 1
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��

�� (3.16) 

where 1

CN is the axial force defined as 1 1

C C CN S A= with CA the area of 

generic i-th cable element, 1ϕ and 2ϕ  are the slope angles of the cable along the 

X1X2 and X1X3, respectively, 1b and 2b  are the body load projections in the X1X2

and X1X3, respectively. In addition to Eq.s (3.16), boundary conditions on the 

cable kinematic are needed to describe the support motion produced by the 

girder and pylon motion at the corresponding intersection points with the cable 

development: 

( ) ( )

( ) ( )

0 0

0

, ,

, .

C P C P

C G C G

c

U X U U X U

U X U U X U

= =

= =

� �

� �� � � �

� �

� �� � � �

(3.17) 

where 
0X
�

and 
cX
�

correspond to the initial and final cross sections of the 

cable element, ( ),P PU U�
� �

 and ( ),G GU U�
� �

 are the displacement and speed of the 

pylon (P) and girder (G), respectively, at the corresponding intersections with 

the cable development.  
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3.6 Finite element implementation 

As a consequence, a numerical approach based on the finite element 

formulation is utilized. In particular, starting from Eq.(3.10), Eq.(3.12) and 

Eq.(3.16), the corresponding weak forms for the i-th finite element related to the 

girder (G), pylon (P) and the cable system (C), respectively, are defined by the 

following expressions: 
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Pylon 
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Cable system 
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(3.20) 

where ( )1 1 pH H s L ct= + − , ( )2 1H H ct s= − , ( )1 1 ps L ctδ δ= + − , 

( )2 1ct sδ δ= − , ( )δ ⋅  represents the delta Dirac functions, 

( )1 2 3 2 3, , , ,
k

i i i i iN T T M M with k=C,G,P and i=1,2 represents the internal forces 

applied at the end node i of the generic cable (C), girder (G) or pylon (P) 

element.  

Finite element expressions are written starting from the weak forms 

previously reported, introducing Hermit cubic interpolation functions ( )iξ  for 
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the girder and pylon flexures in the X1X2 and X2X3 deformation planes and 

Lagrange linear interpolation functions ( )iζ  for the cable system variables and 

the remaining variables of the girder and the pylons: 

( ) ( ) ( )

( ) ( )

( ) ( )

,   

,   

,

C C C

G G G

P P P

U r t N r q t

U r t N q t

U r t N q t

=

=

=

� �� � �

�� � �

�� � �

(3.21)

where ,  and C G Pq q q
� � �

 are the vectors collecting the nodal degrees of 

freedom of the cable, girder and pylon respectively, ,  and C G PN N N
� � �

 are the 

matrixes containing the displacement interpolation function for cable element 

(C), girder (G) and pylons (P), r
�

 is the local coordinate vector of the i-th finite 

element. The discrete equations in the local reference system of the i-th element 

are derived substituting Eq.(3.21) into Eq.s (3.18)-(3.20), leading to the 

following equations in matrix notation:

( ) ( ) ( )G G G G G G G G G G G

S NS S NS S NSM M U C C U K K U P Q+ + + + + = +�� �

� � � � �� � � � � �

 (3.22) 

P P P P P P P PM U C U K U P Q+ + = +�� �

� � �� � � � �

 (3.23) 

C C C C C C C CM U C U K U P Q+ + = +�� �

� � �� � � � �

 (3.24) 

where iM
�

is the mass matrix, iC
�

 is the damping matrix, iK
�

 is the 

stiffness matrix, iP
�

 is the load vector produced by the dead and live loading, 

iQ
�

 is the unknown force vector collecting the point sources and the subscripts 

( )
S

⋅  or ( )
NS

⋅  refer to standard or nonstandard terms, respectively, introduced in 

the discrete equations. Most of the matrixes reported in Eq.s (3.22)-(3.24) can 

be easily recovered from the literature (Yamaguchi and Ito, 1997). Contrarily, 

the matrixes NSM
�

, NSC
�

and NSK
�

 collect the nonstandard terms arising from the 

inertial description of the live loads and the interaction behavior between 

moving loads and bridge motion and are defined by the following expressions:  
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( ) ( )
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(3.25)

where the matrixes 
1 1,2
,M CΛ Λ

� �
and

1,2KΛ
�

, which assemble the coefficients 

associated with the inertial contribution arising from the moving loads and 

girder interaction, are defined as: 
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(3.26)

In order to reproduce the bridge kinematic correctly, additional 

relationships to define the connections between girder, pylon and cable system 

are necessary. In particular, the cable system displacements should be equal to 

those of the girder and the pylons at the corresponding intersection points; thus, 

the bridge kinematic is restricted by means of the following constrain equations: 

( ) ( ) ( )

( ) ( ) ( )

3 1 3

1 3 1
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i i i

i i i
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(3.28) 
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where
iCX

�
and PX

�
 represent the vectors containing the intersection 

positions of the i-th cable element and the pylon top cross section, respectively.  

Finally, starting from Eq.s (3.22)-(3.24), taking into account of Eq.s 

(3.27)-(3.28) as well as the balance of secondary variables at the interelement 

boundaries, the resulting equations of the finite element model are: 

MQ CQ KQ P+ + =�� �

� � ��� � �

(3.29) 

where Q
�

 with B G PQ U U U= ∪ ∪
� � ��

 is the generalized coordinate vector 

containing the kinematic variables associated with the girder, the pylons and the 

cable system, M
�

, C
�

and K
�

are the global mass, stiffness and damping matrixes 

and P
�

 is the loading vector. Since the structural behavior of each element 

depends on the deformation state of the members, the governing equations 

defined by Eq.(3.29) will change continuously as the structure deforms. 

Moreover, the external loads owing to the presence of its own moving mass 

determine a time dependent mass distribution function on the girder profile. 

Consequently, the discrete equations are affected by nonlinearities in the 

stiffness matrix and time dependence in the mass matrix. The governing 

equations are solved numerically, using a user customized finite element 

program, i.e. COMSOL Multiphysics TM version 4.1 (COMSOL, 2012). The 

algebraic equations are solved by using an implicit time integration scheme 

based on a variable time step-size and backward differentiation formula (BDF). 

In order to guarantee accuracy in the predicted results, particular attention is 

devoted to the choice of the time integration step, which, assuming small 

vibrations about the non-linear equilibrium configuration under dead loads, can 

be defined as a function of the periods of those vibration mode shapes having a 

relevant participation on the response. However, in the case of moving load 

excitation, the dynamic solution strongly depends from the speed of the moving 

system, since different vibration frequencies are activated for low or large 

transit speeds (Xia, Xü, & Chan, 2000). In the present analyses, the initial 

integration time step, which is automatically reduced due to the time adaptation 

procedure, is assumed as at least 1/1000 of the observation period defined as the 
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time necessary for the moving train to cross the bridge. Considering the first 

natural period being the largest one, the integration step turns out to be always 

lower than 1/100 of the 50th natural period of the bridge structure and thus 

almost 1/20 of the time to reproduce cable release. 

3.7 Dynamic amplification factors definition

The purpose of the analysis is to evaluate the amplification effects of the 

bridge structure produced by the moving load application and damage 

mechanisms in the cable system. As illustrated above, from the design point of 

view, existing codes on this argument, i.e. P.T.I. (Post-Tensioning Institute, 

2007) and S.E.T.R.A. (Service d’Etudes Techniques des Routes et Autoroutes, 

2001) recommend to reproduce the effects of such loading scheme by 

performing a quasi-static analysis and taking into account of the dynamic 

amplification effects by means of amplification factors in the range between 

1.5–2.0. For this reason, the purpose of the following results is to identify the 

dynamic amplification effects produced by the cable failure by a using a refined 

dynamical formulation in place of a simplified quasi-static one.  

In particular, in order to quantify the amplification effects produced by 

the moving loads over the static solution, numerical results are proposed in 

terms of dynamic amplification factors for undamaged (UD) and damaged (D)  

bridge structures in terms of the moving loads and the bridge characteristics. It 

is worth noting that UD configurations refer to a bridge structures, in which 

cables are not affected by any damage mechanisms. Contrarily, damaged (D) 

cable system corresponds to bridge configurations, in which one or more cable 

elements are subjected to the explicit damage mechanism defined on the basis 

of Eq. (3.2).  

The dynamic amplification factors (DAFs) for the generic variable X 

under investigation related to damaged or undamaged structural configuration, 

namely  and D UD

X XΦ Φ  are defined by the following relationships: 
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( ) ( )max , 0.. max , 0..
,       ,

D UD

D UD

X XD UD

ST ST

X t T X t T

X X

= =
Φ = Φ = (3.30) 

where T is the observation period and the subscript ( )
ST

•  refers to the 

value of the variable determined in a static analysis. Moreover, an additional 

description of the DAF is proposed to quantify the relationship between 

damaged and undamaged configurations by means of the following expression: 

( )max , 0..D

D UD

X UD

ST

X t T

X

−
=

Φ = (3.31) 

It is worth noting that the formulation of the DAF defined by Eq.(3.31) 

characterizes the dynamical amplification effects of the investigated variable 

with respect to the static response in the undamaged structural configuration of 

the bridge. This parameter can be useful for design purpose, since when this 

kind of DAF is known in advance the designer is able to control the 

amplification effects of a generic bridge variable due to the combined action 

produced by the failure mechanism and the inertial forces, avoiding the analysis 

suggested by the existing codes on the argument (Post-Tensioning Institute, 

2007; Service d’Etudes Techniques des Routes et Autoroutes, 2001). Moreover, 

an additional description of the DAFs is reported in the results is defined 

according to the relationship recommended by the PTI codes (Post-Tensioning 

Institute, 2007): 

( )max , 0..D UD

STPTI

D UD

ST ST

t T
Γ

Γ = − Γ
Φ =

Γ − Γ
(3.32) 

where UD

STΓ  is the static value of the variable before its failure evaluated 

the combination of ALS. Finally, In order to quantify, numerically, the 

vulnerability of a bridge component, a dimensionless parameter, ranging from 0 

to 1, is defined as the reduction ratio of the load multiplier from the undamaged 

to the damaged configurations: 
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U
I

D D

UD

V
Γ − Γ

Γ
= (3.33) 

where UDΓ  and DΓ  are the loading carrying capacities with respect to 

the allowable quantity before and after an unpredictable damage mechanism.

3.8 Results 

The investigation is devoted to analyze the dynamic behavior of bridge 

structures subjected to moving load and affected by damage mechanisms in the 

cable system, which can consist in an accidental failure or an partial damage. 

To this end, two sets of results are proposed: at first, results are 

proposed to investigate the behavior of cable-stayed bridge subjected to an 

accidental failure in the cable system. Sensitivity analyses of typical design 

bridge variables as well as effects produced by the moving system 

characteristics, pylon typologies and the failure mode characteristics involved in 

the cable system are investigated by means of comparisons between damaged 

and undamaged bridge configurations. The first set of results aims to reproduce 

damage cases treated by P.T.I. and S.E.T.R.A. (Post-Tensioning Institute, 2007; 

Service d’Etudes Techniques des Routes et Autoroutes, 2001) and, as a 

consequence, is useful to check the accuracy and effectiveness of the suggested 

simplified method. Subsequently, comparisons with bridge schemes based on 

hybrid cable-stayed suspension, pure cable-stayed and suspension cable system 

are proposed.  

The study is conducted with the purpose of investigating the 

vulnerability of the structure against damage and complete failure phenomena 

produced in the cable system by means of comparisons between damaged and 

undamaged bridge configurations. In particular, the enhanced properties of the 

hybrid cable-stayed suspension bridges are point out, also in the light of existing 

codes on cable supported bridges. 
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3.7.1 Investigation on cable-stayed bridges subjected to an 

accidental failure in the cable system
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Fig. 3.13   Cable-stayed bridge scheme: bridge kinematic, pylons, girder and cable system 

characteristics. 

The study is developed by using dimensionless parameters, which are 

typically utilized to identify the structural and mechanical properties of a long-

span bridge and moving loads. The bridge scheme reported in Fig. 3.13 is 

considered. It is consistent with a fan-shaped and a self-anchored cable-stayed 

bridge scheme in which pylons refer to A- or H-shaped typologies. 

The bridge and moving load dimensioning is selected in accordance 

with the values utilized in practical applications and due, mainly, to both 

structural and economic reasons. The cross-section stay areas are designed 

according to Eq. (1.11) and Eq. (1.12) whereas, the post-tensioning cable forces 

are defined by the zero displacement method, illustrated in chapter 1. Moreover, 

aspect ratio, pylon stiffness, allowable cable stress and bridge and moving loads 

characteristics are assumed as equal to the following representative values 
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(Bruno, Greco, & Lonetti, 2008; Bruno, Greco, & Lonetti, 2009; Gimsing & 

Georgakis, 2012; Troitsky, 1988): 

Bridge Geometry 
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where H is the pylon height CC  is the modulus of elasticity of the cable, 

PK  is the in plane flexural top pylon stiffness, b is half girder cross section 

width, 
0t  is the initial time in which the damage mechanism starts the 

degradation effects, 
0τ  is the normalized failure time and m is the parameter 

which controls the time evolution of the damage curve.  

 At first, the failure condition, located at the girder/cable intersection, is 

supposed to be produced in one anchor stay, located laterally to the longitudinal 

axis of the girder. The time of the failure mode is assumed to be consistent with 

values typically observed in experimental tests, whose representative value in 
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the computations is assumed to be 0.005 sec (Service d’Etudes Techniques des 

Routes et Autoroutes, 2001). It is worth noting that additional analyses, not 

reported for the sake of brevity, show that the influence of the failure time step 

on the dynamical amplification factors is practically negligible and within 8% 

up to very high moving load speeds, i.e. c = 160 m/s. Moreover, in this 

preliminary analysis it is assumed that the failure of the stay starts when the 

moving load front reaches the midspan, i.e. t / 2R c l L= + . This configuration 

can be considered as an average value with respect to the position which 

assumes the moving system on the bridge development, and will be taken as 

reference in the subsequent developments, in which different instants where 

failure starts are considered. The behavior of the bridge is analyzed to 

investigate the relationship between dynamic amplification factors (DAFs) and 

the normalized speed parameter of the moving system, i.e. 

1/2

G g

G
c

E gH

µ σ� �
Θ = 	 


� �
(3.39)

as a function of the pylon topology and the moving mass schematization.  

Moreover, the dynamic response of the bridge is evaluated by means of 

comparisons between damaged (D) or undamaged bridge (UD) structures.  

The results, reported in Fig.s 3.14, 3.15, 3.16 and 3.17, are defined 

through the relationships between moving system normalized speed and 

dynamic amplification factors for the midspan vertical displacement and 

bending moment.  Nevertheless, the DAF evolution curves denote a tendency to 

increase with the speeds of the moving system. The results show that the DAFs 

developed for bridge structures affected by a failure mechanisms in the cable 

system are, typically, larger than those obtained assuming undamaged bridge 

configurations. Moreover, underestimations in the DAF predictions are 

observed in those cases, in which the inertial contributions arising from the 

external moving mass are completely neglected. 
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Fig.s 3.14-3.15: Dynamic amplification factors of the midspan vertical displacement as a function 

of the normalized speed parameter: effect of the failure mechanism, moving load schematization 

and pylon typology.�
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The analyses presented above in terms of the DAFs D UD

X

−Φ   for both the 

damaged and undamaged configurations, point out that bridge structures with A 

or H shaped typologies undergoing damage are characterized by large dynamic 

amplifications with respect to the undamaged case. As a matter of fact, the 

ranges of maximum value of the DAFs increase from [1.47-1.52] in the 

undamaged configuration to [2.5-3.6] in the damaged one for the midspan 

displacement, and similarly from [2.5-4.5] to [5.4-8.3] for the midspan bending 

moment. It is worth noting that the DAFs from the undamaged bridge 

configuration are affected by large amplifications, especially for the variables 

concerning the bending moments. This behavior can be explained in view of the 

prevailing truss behavior of the structure and the nonstandard inertial forces 

arising from the moving load application, which produce larger bending 

moments with respect to the ones obtained in the static configuration (Bruno, 

Greco, & Lonetti, 2009). For all investigated cases, the bridge structures based 

on H-shaped pylon topology are affected by larger dynamic amplifications than 

those structures based on A-shaped pylon. 

This behavior can be explained in view of the differences in the cable 

stress distribution between undamaged and damages structures. In particular, 

the H-shaped pylon bridges with respect to the A-shaped  ones, owing to the 

failure of the lateral anchor stay, are affected by an unbalanced distribution of 

the internal stresses in the cable system, which produce larger torsional rotations 

and vertical displacements of the pylon and the girder, respectively.  

To this aim, in Fig. 3.18(a), a comparison of A- and H-shaped pylons in 

terms of the DAFs ( )
1
GΦ

Φ  and maximum observed value of the torsional 

rotation ( )1
Φ  at the midspan cross section is reported.  

These results show how the H-shaped pylons are much more affected by 

the investigated failure condition than the A-shaped pylons, since lager torsional 

rotations of the pylon and the girder are expected. In Fig. 3.18(b), a synoptic 

representation of this deformation scheme affecting H-shaped pylon bridges is 

reported. 

�
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Fig.s 3.16-3.17: Dynamic amplification factors of the midspan bending moment as a function of 

the normalized speed parameter: effect of the failure mechanism, moving load schematization and 

pylon typology.  
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Fig.9: a)Dynamic amplification factors and maximum value of the midspan torsional rotation as a 

function of the normalized speed parameter �.  b) Schematic deformation produced by the failure

mechanism. 

Finally, the influence of the failure mode characteristics on the DAFs, 

concerning the position which the moving system assumes on the bridge 

development is investigated. In particular, for a fixed value of the moving 

system speed, i.e. 0.102ϑ = , analyses are developed in terms of normalized 

failure time 0τ . The analyzed cases correspond to failure modes in which the 

moving load front is located at the entrance, the exit configurations or at 

specified positions on the bridge development, i.e.: 

1 / 2 2
, , ,

X l l L l L l L

L L L L L

+ + +� �
= � �� �

The results are reported in Tab. 3.2 and Tab 3.3 in terms of DAFs of the 

midspan vertical displacement and bending moment, show how the dynamic 
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behavior is quite influenced by 0τ  variable, since from a numerical point of 

view the values of the DAFs change, significantly, in the investigated ranges.  

Moreover, the results show that DAFs for damaged structures, much 

more for H-shaped pylon bridges, are typically larger than those evaluated for 

undamaged bridge cases. 

H-shaped pylon A-shaped pylon 

τ0 �
D

�
D-UD

�
UD

�
D

�
D-UD

�
UD

0.00 6.26 9.48 2.81 5.85 6.84 3.24 

0.50 5.89 8.92 2.81 5.49 6.42 3.24 

0.87 7.52 11.39 2.81 6.10 7.13 3.24 

1.25 6.45 9.77 2.81 6.20 7.25 3.24 

1.62 4.82 7.30 2.81 5.84 6.82 3.24 

2.00 5.67 8.58 2.81 5.33 6.23 3.24 

2.50 1.38 2.09 2.81 3.26 3.81 3.24 

Tab. 3.2   DAFs of the midspan bending moments as a function of the normalized time of failure 

on the bridge development comparisons in terms of  A and H shaped 

�

H-shaped pylon A-shaped pylon 

τ0 �
D

�
D-UD

�
UD

�
D

�
D-UD

�
UD

0.00 1.973 3.046 1.451 1.62 2.03 1.60 

0.50 1.890 2.918 1.451 1.58 1.98 1.60 

0.87 2.032 3.137 1.451 1.75 2.20 1.60 

1.25 2.096 3.237 1.451 1.72 2.15 1.60 

1.62 2.264 3.495 1.451 1.61 2.02 1.60 

2.00 2.238 3.456 1.451 1.65 2.07 1.60 

2.50 0.940 1.451 1.451 1.26 1.59 1.60 

Tab 3.3   DAFs of the midspan vertical displacements as a function of the normalized time of 

failure on the bridge development comparisons in terms of  A and H shaped 
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Fig.s.3.19-3.20   Dynamic amplification factors of the midspan vertical displacement for damage 

and undamaged bridge structures as a function of the bridge size parameter a. 
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Fig.s 3.21-3.22   Dynamic amplification factors of the undamaged anchor stay axial stress: for 

damage and undamaged bridge structures as a function of the bridge size parameter a. 
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�

Fig.s 3.23-3.24   Dynamic amplification factors of the undamaged anchor stay axial stress: for 

damage and undamaged bridge structures as a function of the bridge size parameter a. 

� �
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Additional results are developed to investigate the effects of the bridge 

geometry on the DAFs and on the maximum values of typical bridge design 

variables for both damaged and undamaged bridge configurations.  

In particular, results are proposed in terms of the dimensionless 

parameter a, which describes the bridge size characteristics of the structure, and 

refer to a failure mechanism involving the complete failure of one lateral anchor 

stay of the cable system. The analyzed structures are consistent with a long-span 

bridge geometry, whose main span length varies from 500 to 1300 m and thus 

with a total length of the bridge between 900 m and 2100 m.  

The results, reported in Figs. 3.19-3.24 concerning the undamaged 

configurations, show a tendency to decrease with increasing values of the bridge 

size variable. Contrarily, for damaged structures, the DAFs as well as the 

maximum values of the investigated kinematic and stress parameters display an 

oscillating behavior and some local peaks in curve development.  

The comparisons between damaged or undamaged bridge structures in 

terms of the pylon typology show, essentially, that H-shaped pylon structures 

are much more affected by damage failure. As a matter of fact, the DAFs 

defined by the ratios between dynamic damage value and the corresponding 

undamaged static quantity, i.e. D UD

X

−Φ , show that, for the analyzed cases 

regarding H-shaped pylon typology, the displacements or the bending moments 

are typically greater than the bridge structures based on A-shaped pylon 

typology.  

Similar conclusions can be drawn in terms of the maximum values of 

the observed variables. In particular, the comparisons between damaged and 

undamaged bridge behavior indicate that the A-shaped pylon is able to reduce 

the increments produced by the failure mechanism, since the ratios defined in 

terms of displacements or bending moments are equal to 1.57 and to 1.66, 

respectively.  

Contrarily, the results concerning H-shaped pylon denote that the 

undamaged variables are amplified with respect to factors equal to 2.2 and 2.5 

for displacement and bending moments, respectively. A different behavior is 

observed with regard to the axial stresses of the undamaged anchor stay.  
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In particular, the results reported in Fig.s 3.23-3.24, show that the H-

shaped pylon bridges are affected by higher DAFs but lower maximum stresses 

with respect to the bridge structures based on A-shaped pylons. 

Finally, the behavior of the cable-stayed bridges is analyzed in terms of 

the failure mode, which affects the bridge structure. In particular, for both H or 

A-shaped pylon typologies, different damage mechanisms on the cable system 

are supposed on the cable system and the effects on the bridge structures is 

examined. The failure conditions, reported in Fig.3.25, are supposed to produce 

the complete collapse of the lateral anchor stay (Mode A) or the last three stays 

on both sides of the central part of the main span (Mode B).  

Additional modes of failure, concerning the damage to a number of 

internal stays of the cable system, are also investigated. However, since they do 

not produce any relevant effect on the investigated variables, for the sake of 

brevity, they are not discussed. The analyses are developed involving a typical 

geometry of the bridge structure, which is consistent with a long-span bridge-

based typology. 

�

Fig.3.25   Synoptic representation of the failure modes: A) failure in the lateral anchor stay, B) 

failure in the central part of the cable system. 
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The results, reported in Fig.s 3.26-3.31, are proposed by means of 

comparisons of damaged and undamaged behavior, in terms of time histories 

and DAFs of the following cinematic and stress quantities: 

� midspan displacements along X3 axis of the girder, midspan torsional 

rotation of the girder; 

� bending moment in the X1X3 plane of the girder and undamaged anchor 

stay axial stress. 

The analyses are developed for a fixed transit speed of the moving 

system, whereas the failure mechanism is supposed to begin when the moving 

system front reach the midspan of the bridge, i.e. 0.102Θ =  and 0 0.87τ = , 

respectively.  

The results show that the larger amplification effects on the vertical 

midspan displacement are obtained for the case in which the mode of failure 

affects the lateral anchor stay of the cable system, i.e. mode A.  

In this context, the vertical displacements from the undamaged bridge 

configuration are significantly amplified with respect to a multiplicative factor 

equal to 1.48 or to 2.28 for the A- or H-shaped pylon topologies, respectively. 

Moreover, the DAFs for the investigated configurations are equal to 

1.45 or 1.94, whereas the DAFs defined as the ratio between D on the UD 

quantities, i.e. 
3
G

D UD

U

−Φ , are equal to 2.1 or to 3.2 for the respectively.  

The results concerning the bending moments indicate that the greater 

effects are produced by the damage mechanism affecting the central part of the 

cable system, i.e. mode B. In this context, the increments of the bending 

moments with respect to the undamaged values are equal to 3.2 or 4.1 for bridge 

configurations based on H- or A-shaped pylon topology, respectively.  

Moreover, the maximum DAFs are equal to 4.63 and 8.19 for A- and H-

shaped pylon typologies, respectively, and both of them refer to a damage 

condition involving the failure of the anchor stay. It is worth noting that the 

results concerning the cases of undamaged bridge structures based on A- or H-

shaped pylons denote, essentially, the same prediction on the investigated 

variables. Contrarily, when damage mechanisms affect the cable system, 

notable amplifications of the investigated parameters are observed. 
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Fig.s 3.26-3.27   Time history of the dimensionless midspan displacement and evaluation of the 

DAFs: comparisons between damage and undamaged bridge configuration. 
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Fig.s 3.28-3.29   Time history of the dimensionless midspan displacement and evaluation of the 

DAFs: comparisons between damage and undamaged bridge configuration. 
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 In particular, the comparisons developed in terms of pylon typologies, 

indicate that H pylon-based structures are much more affected by the damage 

mechanisms of the cable system than the A-shaped ones. This behavior can be 

explained by the fact that the failure of the anchor stay (Mode A) or the stays in 

the central part (Mode B) produce unbalanced forces in the cable system and 

thus on the girder leading to high rotations of the pylons and the girder along 

vertical X3 and X3 axes, respectively.  

This behavior is confirmed by the results reported in Fig.s 3.30-3.31, in 

which time histories of the torsional rotation and anchor stay axial force in 

terms of the damage mechanism and pylon typology are reported. The analyses 

show that bridge structures based on A-shaped pylon are practically unaffected 

by the failure modes, since the same prediction on the maximum torsional 

rotations is observed.  

�

Fig.3.30   Time history of the dimensionless midspan torsional rotation: comparisons in terms of 

the failure mode and pylon typology. 
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On the contrary, the H-shaped pylon bridges owing to the concurrent 

rotations of the girder and the pylons are affected by greater deformations and 

DAFs.  

Moreover, the results shown in terms of the anchor stay axial stresses, 

reported in Fig. 3.31, denote that "mode A" failure mechanism produces high 

increments in the axial stress, mainly, for the A-shaped pylon typology.  

This behavior can be explained by the geometric configuration of the A-

shaped pylon and by its ability to redistribute the internal stresses from the 

damaged to the undamaged anchor stay. 

�

Fig.3.31   Time history of the dimensionless of the undamaged anchor stay axial force: 

comparisons in terms of the failure mode and pylon typology. 

3.7.2 Comparisons between pure and hybrid cable system 

configurations 

The investigation is developed on a long span bridge typology, with 

main span length (L) equal to 1000 m. The deck is made of steel with 

aerodynamic cross section, 4 m depth and 20 m wide; the vertical moment of 

inertia ( )2IG , the transverse moment of inertia ( )3IG , the cross section area 
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( )AG  the torsional constant ( )JG  and  the modulus of elasticity of steel 
GE

for the bridge deck are 3.41 m
4
, 31 m

4
, 2.1 m

2
, 15 m

4
, 2.1x10

8
 kN/m

2
, 

respectively.  

Moreover, the limit elastic bending moment ( )20

GM for the upper and 

lower fibres and the normal stress resultant ( )10

GN  of the girder cross-section are 

equal to 3.5x10
8
 Nm, 2.45x10

9
 Nm and 7.56x10

8
 N, respectively.  

The pylons are formed by H-shaped steel elements, whose elements 

present vertical moment of inertial ( )2IP , transverse moment of inertia ( )3IP , 

cross-section area ( )A P , torsional constant ( )JP  and modulus of elasticity 

( )GC  equal to 20.57 m
4
, 9.78 m

4
, 1.97 m

2
, 21.13 m

4
, 2.10x10

8
 kN/m

2
, 

respectively.  

Moreover, the limit elastic bending moment ( )20

PM and the normal stress 

resultant ( )10

PN are equal to 1.85x10
9
 Nm and 6.84x10

8
 N.  

The stays and the hangers present a distance equal to 20 m and present 

allowable stress (Sa ) equal to 7.2x10
8
 Pa.  

Finally, dead loading of the girder including also permanent loads are 

equal to 3.0x10
5
 N/m, whereas the ratio between live and dead loads is equal to 

0.5.  

Cable-stayed and suspension bridges present the same mechanical 

characteristics of the hybrid cable-stayed suspension systems, except for the 

dimensioning of the cable-system elements, which are evaluated on the basis of 

the optimization procedure. From the mechanical and geometric characteristics 

defined above, dimensionless parameter concerning the ratio between stiffness 

of the girder and the cable system, i.e. 
2

2G G

tE I H Lα =  and 

( ) ( ) ( )
2 2

8 / C C

e tf L L L E A Hλ = × × , are equal to 
2

32.37 10α −= × and 
2

144λ =  for the hybrid cable-stayed suspension bridge scheme and  
2

31.99 10α −= × and 
2

153λ =  for the suspension system. Such values are 

consistent with data available from the literature, whose ranges, obtained on the 

basis of existing cable-supported bridge structures, are equal to  
2 4 34 10 11.4 10α − −� �= × − ×� �  and [ ]2 90 231λ = −  (Enrique Luco & Turmo, 

2010). The optimum design methodology described in chapter 2, utilized to 

calculate the initial configuration, is presented for the bridge scheme whose the 

mechanical and geometrical properties are defined in Tab. 3.4. 
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Fig.3.32   Cable supported bridge considered 

Stiffening Girder Pylon Cable and Loads

b 10 m AP 15 m2 SA 7.20 GPa 

d 4 m IP
2 20.57 m4 ∆SA 200 MPa 

AG 9.54 m2 IP
3 9.78 m4 γS,H,M 77 kN/m3

IG
2 3 m4 EP 210 GPa ES,H,M 210 GPa 

IG
3 30 m4 H/l 0.4 - gG 300 kN/m 

JG 15 m4 KP 50 gG - p/gG 0.5 - 

EG 210 GPa 

Tab. 3.4   Mechanical and geometric properties of bridges 
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The analyses are developed with the purpose of investigating the effect 

of the cable failure on the stress distribution in the bridge components and the 

corresponding dynamic influence produced by the cable release mechanisms.  

To this aim four different damage scenarios, represented in Fig. 3.33, 

are considered, in which the damage mechanisms are assumed to affect the 

cable stayed system, at the anchor stay (SC1) or at the stays in the central span 

(SC2), or the suspension system, at the main cable (SC3) or at the hanger 

elements (SC4). In particular,  the damage scenarios SC1 and SC2 consider the 

failure of the anchor stay and the longest three stays of the main span.  

In the damage scenario SC3, the main cable at the central span is 

affected by a reduction of the 50% of its cross-section, i.e. 0.5sξ = ; the damage 

mechanism is located at 1 4  of the cable profile and it is distributed on a length 

equal to 0.25 of the cable development, i.e. =0.25, =0.25β α .

The damage scenario SC4 affects a set of hanger elements, i.e. 

Xd/L=1/5, which are located on a length, measured on the girder development, 

equal to 1/4 of the girder main span. 

�

Fig. 3.33   Damage scenarios considered in the cable-system 
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Finally, in the damage scenarios SC1, SC2 and SC3, the damage 

element, affected by the cable release, is considered to be located at the 

connection between girder and cable element. 

3.7.2.1 Initial configuration of bridges 

A complete evaluation of the bridge behavior requires to correctly 

identify the cable dimensioning and the post-tensioning forces of the initial 

configuration, on the basis of displacements and stress conditions under dead 

and live loading schemes.  

To this aim, the constrained optimization problem introduced in the 

previous chapter is employed. In particular, in this case, the analysis under live 

loads is performed in such a way to verify only prescriptions concerning 

ultimate and fatigue limit states Fig 3.34. As a consequence, the lowest possible 

steel quantity involved in the cable system is evaluated. 

Results concerning cable dimensioning of the cable-stayed and 

suspension schemes of the hybrid cable-stayed suspension bridge in the final 

configuration are reported in Fig. 3.35.  

Moreover, maximum stresses in the cable system due to accidental loads 

during the iteration steps and the total steel quantity involved in the cable 

systems are reported in Fig.s 3.36-3.37.  

In particular, the assessment of the optimized values of the cable 

dimensioning requires five different iterations, in which a progressive reduction 

of the steel quantity involved in cable-stayed and suspension systems is 

achieved. The cable dimensioning and the post-tensioning forces, are modified 

form their initial values, obtained by preliminary design rules.  

In particular, cable areas are reduced during the iterations developed in 

the optimization phased to involve a lower steel quantity in the cable systems, 

whereas the post-tensioning forces are modified to verify the stress criterion on 

the maximum stresses produced in live load configuration.  

The distribution of the optimized steel areas in the cable-stayed and 

suspension systems presents large values in proximity to the midspan and left or 

right cross-section extremities, lower quantities at the girder/pylon connection.  
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Fig. 3.34   Flow-chart of the optimization procedure for cable system dimensioning 
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Fig. 3.35   Stress distribution and cable dimensioning in the initial configuration 

�

Fig. 3.36   Maximum stresses in the stays during the iteration steps and total steel quantity 
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Fig. 3.37   Maximum stresses in the hangers during the iteration steps and total steel quantity 

�

Fig. 3.38   Change of the stresses in the cable-system for the application of type 11 loading 

scheme (Eurocode 1, 2003) and comparison with maximum admissible value for fatigue 

requirement. 
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Moreover, the anchor cables, which basically control most of the 

loading transfer arising from the midspan, present the largest values of steel 

quantity in the cable system. 

Finally, the area of the hangers on the region in which there are no stays 

is of typically greater than the area in which the two systems coexist.  

In order to verify the validity of the proposed results and the consistency 

of the dimensioning procedure with fatigue criteria, additional results are 

expressed in terms of stress variations of the cable system elements.  

In particular, the analyses are developed in the framework of SLS under 

every load combination with characteristic values based on Eurocode 

prescriptions (The European Committee for Standardisation, 2003) 

Assuming a minimum fatigue strength stress variation equal to 200 MPa 

(Strand) for the cables, results in terms of stress variations produced by the 

fatigue loading schemes are developed. For the sake of brevity, only the worst 

loading scenario, corresponding to the application of type 11 locomotive-hauled 

freight train is reported, from which the stress variations of the cable system 

elements is lower than the permissible limit value (Fig. 3.38). 

3.7.2.2 Damage analysis 

At first, the effects of the cable failure are evaluated on the loading 

scheme, involving dead loads only. The main aim of such results is to 

investigate the effects of the cable release arising from an accidental cable 

failure and to quantify the corresponding dynamic amplification factors, also in 

the light of the actual recommendations provided by existing codes on cable 

supported bridges (Post-Tensioning Institute, 2007; Service d’Etudes 

Techniques des Routes et Autoroutes, 2001). For each bridge typology, static 

and dynamic damage definitions are considered, by using constitutive laws 

defined through Eq.(3.30) or Eq.(3.31). Moreover, results arising from the 

proposed formulation are analyzed in view of the recommendations provided by 

existing codes. In this framework, PTI codes (Post-Tensioning Institute, 2007) 

recommend to evaluate cable failure introducing static forces proportional to the 
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initial tension and multiplied by a two factor to reproduce the cable loss of 

stiffness. However, such prescription was not introduced in the latest guidance 

on stay cables (Federation International du beton, 2005) or in the new version of 

the P.T.I. codes (Post-Tensioning Institute, 2007), which suggest to verify the 

bridge behavior by means of a non-linear time history analysis 

At first, results in terms of  vertical displacements and torsional 

rotations of the girder, namely 3 /GU L and 1 /G B LΨ , and normalized stresses 

(S/Sa) of the cable system elements  are investigated. The main purpose of the 

results is to evaluate the behavior of hybrid cable-stayed suspension bridges in 

comparison to bridge structures based on pure cable-stayed and suspension 

systems, when subjected to combined effects of moving loads and damage 

mechanisms. To this aim, results in terms of vertical displacements of the girder 

for different damage scenarios are proposed. Such results are able to provide an 

easy evaluation of the bridge behavior to better redistribute the overall stresses 

produced by the cable release, reducing the bridge deformations and the internal 

stresses of the bridge components. With reference to Fig.s 3.39-3.40, 

comparisons, concerning SC1 and SC2 damage scenarios, denote that the failure 

in the anchor cable or the stay elements affects the girder deformation, mainly 

in the cable-stayed bridge scheme, producing notable vertical displacements and 

torsional rotations. Such values are larger than the corresponding ones 

commonly recommended for the serviceability limit state by codes on cable-

supported bridges. Moreover, the failure of the anchor stay seems to produce 

greater vulnerability than the damage mechanisms SC2, since larger 

deformations are observed. Contrarily, the combined system, owing to 

interaction of the cable systems, is able to reduce the effects produced by the 

cable release, leading to lower girder deformability.  

Comparisons between static and dynamic damage modes denote that the 

dynamic characteristics of the cable release effect influence mainly vertical 

displacements for both SC1 and SC2 damage scenarios, whose maximum DAFs 

are equal to 1.9 for both bridge schemes. Results concerning girder torsional 

rotations denote that the DAFs are much lower than those observed for vertical 

displacements. 
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Fig.s 3.39-3.40   Comparisons between Cable-Stayed bridge (CS) and Hybrid Cable-Stayed 

Suspension bridge (HCS) in terms of the girder deformability under the action of dead loads (DL)  

for the damage scenarios SC1(Fig. 3.39) and SC2(Fig. 3.40). 
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Fig. 3.41   Comparisons between Cable-Stayed bridge (CS) and Hybrid Cable-Stayed Suspension 

bridge (HCS) in terms of  time histories of  dimensionless midspan vertical displacement and 

torsional rotation

In particular, the SC1 damage scenario produces a DAF equal to 1.31, 

whereas for the SC2 damage scenario the dynamic amplification effects are 

practically negligible and thus the corresponding DAF is close to the unity. 

Such behavior can be explained in view of the characteristics of the 

damage scenario SC2, which produce vibrations with lower amplitudes than 

those observed for the damage scenario SC1. Moreover, the frequency contents, 

evaluated by the FFT approach (Meirovitch, 1986) are much larger than the 

fundamental frequencies of the bridges. As a consequence, in the SC2 damage 

scenarios, only localized effects with small amplifications with respect to the 

static damage condition are observed (Fig. 3.41).  

The bridge behavior, reported in terms of stress distribution in the cable 

systems in Fig. 3.42, denotes that most dangerous damage condition is the one 

affecting the failure of the anchor stay in the cable-stayed system.  

The initial stress distribution, obtained under “zero configuration”, is 

strongly modified with respect to the undamaged configuration.  
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Fig. 3.42   Comparisons between Cable-Stayed bridge (CS) and Hybrid Cable-Stayed Suspension 

bridge (HCS) in terms of envelope of stress distribution in the cable systems under the action of 

dead loads (DL) for the damage scenario SC1. 

In particular, the cable-stayed bridge is affected by stress amplifications 

mainly in the region close to the damaged anchor stay. The maximum value of 

the DAFs, namely / a

D

S SΦ , is equal to 1.21 whereas the maximum amplification 

from the UD configuration, namely / a

D UD

S S

−Φ , is equal to 1.78. Moreover, results 

concerning the combined system denote that the presence of the additional 

hanger elements with respect to the pure cable-stayed bridge is able to reduce 

both maximum and the average values of stress levels, whose distribution is 

everywhere lower than the allowable stress. The analyses are extended to the 

loading combinations involving the presence of live loads (LL), taking into 

account, in those cases in which the calculation is developed in dynamics, the 

inertial effects produced by moving loads. At first, vulnerability behavior of the 

bridge structures is analyzed for all the damage scenarios in terms of girder 

displacements. The main purpose of the results is to provide an easy evaluation 

on the bridge capacity to better redistribute the overall stresses produced by the 
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cable release, reducing the bridge deformations and the internal stresses of the 

bridge components In particular, the analyses collect results arising from static 

cases in the damaged (D) and undamaged (UD) configurations, or taking into 

account the dynamic effects produced by moving loads at high speed ranges, i. 

e. 

1/2

3.46Gc
gH

µ
υ

� �
= =	 


� �
.

The results, reported in Figs. 3.43-3.46 for the investigated scenarios, 

show how both bridge systems are affected by the presence of the damage 

mechanisms, since the prediction of vertical displacements is strongly modified 

from the UD cases. Moreover, girder deformability is much influenced by the 

inertial effects especially at high transit speeds, where notable amplifications of 

the vertical displacements are observed with respect to the static prediction. The 

comparisons between suspension and combined bridge typologies denote that 

the latter system is able to better redistribute stress release effects, leading to 

low displacement increments with respect to the UD configuration. In fact, the 

stayed and the suspension systems are affected by displacement increments 

measured from the UD analyses in ranges between 2.04÷2.86 and 2.29÷2.96, 

respectively. Moreover, the HCS configuration presents DAFs between 1.58

and 1.89, which are much lower than those observed in the cases of pure cable 

stayed or suspension bridge configurations.  

Finally, the comparisons with maximum values of the DAFs based on 

PTI prescriptions, i.e.
PTI

ΓΦ , denote that such definition typically overestimates 

the actual response in terms displacement effects. In order to quantify, 

numerically, the dynamic influence of cable release mechanisms on the bridge 

behavior, in Fig.s. 3.47-3.48 the effects of moving load characteristics as a 

function of the transit speeds, is investigated. For the sake of brevity the 

analyses are developed  only for the damage scenarios SC1 and SC4 and are 

expressed in terms of DAFs, defined on the basis of Eq.s (3.30)-(3.31) , and 

maximum values of the midspan girder displacements. Coupling effects 

between moving loads and cable release mechanisms are able to increase the 

DAFs distribution from the UD configuration. 
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Fig.s 3.43-3.44   Comparisons between bridges typologies in terms of the girder deformability 

under the action of live loads (LL) for the damage scenarios SC1, SC2. 
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Fig.s 3.45-3.46   Comparisons between bridges typologies in terms of the girder deformability 

under the action of live loads (LL) for the damage scenario  SC3, SC4. 
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Fig. 3.47   Normalized vertical displacements and dynamic amplification factors of the maximum 

vertical displacement for damage scenario SC1  as a function of the normalized speed parameter: 

comparisons between Cable-Stayed bridge (CS) and Hybrid Cable-Stayed Suspension bridge 

(HCS). 

�

Fig. 3.48   Normalized vertical displacements and Dynamic amplification factors of the maximum 

vertical displacement for damage scenarios SC3  as a function of the normalized speed parameter: 

comparisons between Suspension Bridge (SP) and Hybrid Cable-Stayed Suspension Bridge 

(HCS). 
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Moreover, the damage mechanisms, except at low speeds of the moving 

system, are able to modify the results obtained in the UD configuration, 

producing increments to the bridge deformability.  

In particular, the maximum vertical displacements observed in the time 

histories are amplified with respect to the UD configuration up to 2.51 and 2.84

for the pure suspension and cable-stayed bridge typologies, respectively.  

Contrarily, the HCS bridge scheme, owing to a better performance of 

the cable-system, is able to reduce the girder deformability and the 

corresponding DAFs.  

The cable-stayed bridge is affected by larger vulnerability than the 

combined system, since the presence of the damage mechanisms produce larger 

amplifications of the girder displacements with respect to the undamaged 

configuration.  

Additional results are presented to analyze the influence of the damage 

scenarios on the stress distribution in the cable system. For the assumed damage 

scenarios, the envelope of the stress distribution normalized on the allowable 

stress is analyzed.  

In particular, Fig. 3.49 and Fig.3.50 report results concerning SC1 

damage scenario, which show how both cable-stayed and combined cable 

systems are affected by stresses amplifications, mainly in the region close to the 

cable failure.  

However, cable-stayed bridge typologies are subjected to larger 

amplifications than those observed for the HCS bridge schemes, i.e. 2.4 against 

1.81. Actually, the HCS bridge is able to better redistribute the additional 

stresses produced by the release of the anchor stay, leading to lower 

vulnerability indexes in the cable system.  

Results in terms of bending moments of pylons and girder for the case 

of cable-stayed and HCS configurations are proposed, by means of comparisons 

between damaged, undamaged bridge schemes. In the present analyses, results 

are developed with the purpose to investigate the behavior of HCS bridges, 

emphasizing the enhanced behavior of such structural configurations in 

comparison to bridge schemes based on pure cable-stayed and suspension 

systems.  
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Fig. 3.49   Cable-Stayed Bridge: Envelope stress distribution in the cable systems under the action 

of live loads (LL) and vulnerability behavior for the damage scenario SC1 

�

�

Fig. 3.50   Hybrid  Cable-Stayed Suspension  bridge: Stress distribution in the cable systems 

under the action of live loads (LL) and vulnerability behavior for the damage scenario SC1 
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In particular for the SC1 and SC2 damage scenarios, the envelope of 

bending moments for the cases of dynamic damaged, static damaged and static 

undamaged configurations are analyzed (Fig.3.51).  

Moreover, the amplification effects produced by the damage 

mechanisms are quantified on the basis of different damage descriptions defined 

by Eq.(31)-(32) and the corresponding results are reported in Tables 3.5-3.7, in 

which bending moments at several cross sections of the girder and at base of the 

pylons are investigated.  

�

Fig. 3.51   Hybrid Cable-Stayed Suspension/Cable stayed bridges: envelope bending moments  

distribution of the stiffness girder under the action of live loads (LL) for the damage scenarios 

SC1 and SC2 
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The results denote that the cable stayed bridges are affected by 

important amplification effects, which are much larger than the allowable 

values defined by existing codes on ALS (Post-Tensioning Institute, 2007). On 

the contrary, HCS due to a better redistribution of the cable-system elements are 

able to strongly reduce the entity of such internal stresses. Contrarily, results 

concerning variables associated to the bending moments of the pylons, denote 

that both HCS and cable-stayed bridges are affected by the damage 

mechanisms, since large dynamic amplification factors are observed (Tab. 3.7).  

Tab. 3.5   Dynamic amplification effects for the damage scenario SC1 in terms of bending 

moments at fixed cross-sections of the girder for the cable-stayed and HCS configurations 

�

Tab. 3.6   Dynamic amplification effects for the damage scenario SC2 in terms of bending 

moments at fixed cross-sections of the girder for the cable-stayed and HCS configurations 

�

�

Tab. 3.7   Dynamic amplification effects for the damage scenario SC1 in terms of bending 

moments at the lowest cross-sections of the pylons for the cable-stayed and HCS configurations 
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In order to verify the vulnerability of the structures against the observed 

bending moments, comparisons between applied stresses and elastic interaction 

domain of girder and pylon cross-sections are proposed.  

To this end, in Fig. 3.52, the time histories of the internal forces, i.e. 

axial (N) and bending (M), for different damage scenarios are compared to the 

values of the limit elastic domain. Such results are important to verify if 

inelasticity phenomena in the beam elements occur during the damage 

mechanisms produced in the cable system.  

�

Fig. 3.52   Hybrid Cable-Stayed Suspension/Cable stayed bridges: diagrams representing the path 

traced over time by the stress resultant (M,N) in the girder and pylons for SC1 and SC2 damage 

scenarios. 
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In particular, for several sections of the girder, i.e. X/LT=[l/2, l+L/4, 

l+L/2] and for the lowest ones of the pylons, the path traced over time by the 

values of internal forces (N,M) for SC1 and SC2 damage scenarios are 

presented in Fig. 3.52 (a-b) and Fig. 3.52 (c,d), respectively.  

The analyses denote that the worst damage scenario for the cable-stayed 

is the one associated to the failure of the anchor-stay for which cable-stayed 

configuration is affected by internal stresses larger than those of the limit elastic 

domain. Results concerning HCS bridges denote the ability of such structures to 

reduce internal forces, which are always inside the elastic domain.  

The behavior of the cable system is analyzed for the SC4 damage 

scenario with the purpose of investigating the effect produced by the failure in 

the hanger elements (Fig.s 3.53-3.54).  

In particular, the influence of the damage description on the cable 

system stress distribution is analyzed as a function of the cable release dynamic 

characteristics, adopting for the damage description both static and dynamic 

damage definition. The analysis is developed for dead and live loads.  

Moreover, PTI recommendations are reported to validate the 

applicability of such prescriptions in the framework of suspension and 

combined bridge systems. The results show that such damage scenario is able to 

produce the most dangerous amplifications in the cable stresses with respect to 

the previous ones.  

The failure mode in both bridge configurations produces amplifications 

of the stresses, mainly, in proximity of the failure region, in which the hangers 

stresses reach values much larger than the allowable quantity, i.e. equal to 6 or 4

for the suspension and the combined bridge schemes, respectively.  

Moreover, the dynamic characteristics of the moving loads are able to 

produce amplifications of such internal stresses, with a maximum factor, in 

comparison to the corresponding static quantities, equal to 1.7.  

The comparisons between the proposed modeling and PTI 

recommendations denote that the code prescriptions produce overestimated 

predictions as opposed to those obtained by the proposed model, based on a 

fully coupled dynamic analysis.  
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Fig. 3.53   Suspension Bridge: Envelope stress distribution in the cable systems under the action 

of live loads (LL) and vulnerability behavior for the damage scenario SC4 

�

Fig. 3.54   Hybrid Cable-Stayed Suspension bridge: Envelope stress distribution in the cable 

systems under the action of live loads (LL) and vulnerability behavior for the damage scenario 

SC4 
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Results concerning the HCS bridge schemes reveal that the cable system 

based on both hanger and stay elements is able to reduce the effects of the 

failure mechanisms, since lower amplifications than those observed in the 

suspension bridge are noted (almost equal to a two factor).  

This behavior can be explained in view of the presence of the stay 

elements, which are able to better redistribute the additional stresses produced 

by the cable release mechanisms, leading lower stress levels in the cable system. 

 Finally, additional results are developed to verify the interaction 

between different damage mechanisms considered in the analyses and their 

effects on the bridge behavior. In particular, the main aim of such investigations 

is to evaluate the ability of the bridge scheme to redistribute the overstresses 

involved in the cable system by the presence of more than one damage 

mechanism. The analyses are proposed by mean of comparisons between cable-

stayed, suspension and HCS bridge typologies. In particular, in Fig. 3.55 (a-b), 

the envelope of vertical displacements of the girder produced by the presence of 

damage scenarios SC1 and SC2, considered individually or simultaneously, for 

both cable stayed and HCS bridge schemes is presented.  

(a)                                                                    (b) 

Fig. 3.55   Envelope of vertical displacements of CS(a) and HCS (b) produced by damage 

scenarios SC1 and SC2, considered individually and simultaneously 
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(a)                                                                        (b) 

Fig. 3.56   Envelope of vertical displacements of SP (c) and HCS (d) produced by damage 

scenarios SC3 and SC4, considered individually and simultaneously 

Similarly, in Fig 3.56 (a-b), results concerning suspension and HCS 

bridge schemes are proposed in terms of damage scenarios SC3 and SC4.  

The analyses denote that cable-stayed bridges are affected mostly by the 

failure mechanisms in the anchor stay, i.e. SC1. The concurrent presence of SC1 

and SC2 produces an increment of maximum vertical displacement, measured 

from the SC1, equal to 11.52%. Such amplification of deformability is not 

observed in the case of HCS bridge schemes, whose maximum displacement is 

practically unaffected by the presence of the presence of more than one damage 

scenario.  

Similar, results are obtained from the comparisons between the 

suspension and HCS systems. In particular, the worst damage scenario is the 

one involved by the failure of the hangers elements, i.e. SC4; results concerning 

HCS schemes denote that such bridges are practically unaffected by the 

combined effects of the damage scenarios, since the same displacements are 

observed. However, more refined analyses should be developed taking into 
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account different damage scenarios from the ones considered in the present 

analysis. 



4 

NONLINEAR BEHAVIOR OF  

SELF-ANCHORED CABLE-STAYED 

SUSPENSION BRIDGES (S.A.C.S.)

4.1 Introduction 

Cable supported bridges have emerged as the dominant structural 

system for long span bridge crossing during the past thirty years.  

That success is due to a combination of technical advancements and 

pleasing aesthetics attributes. The interaction of the various structural 

components results in an efficient structure which is continuously evolving and 

providing new methods to increase span lengths. As the span length increases 

more realistic analysis models are needed to improve the safety and reliability 

of these structures. In particular, more accurate and precise analysis techniques, 

which consider both material and geometric nonlinearities are required to 

predict the realistic behavior of structures. As a matter of fact, geometric and 

material nonlinearities affect cable supported bridges behavior significantly. 

Material nonlinearities come from the nonlinear stress–strain behavior of 

materials and they arise when one or more bridge elements exceed their 

individual elastic limits. Geometric nonlinearities may arise from different 

sources.  
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The cable system is affected by nonlinear behavior of single elements, 

since they exhibit a different response in loading and in unloading due to the 

cable “sag” effect induced by self-weight. For girder and pylons, the actual 

trend is to use more shallow or slender elements which are very flexible and 

undergo large displacements before attaining their equilibrium configuration (P-

∆ effect). Moreover, nonlinear effects may arise owing to the so-called beam-

column effect: beam-column effect can occur in cable supported bridges whose 

cable system configuration includes cable-stayed portions as pure cable-stayed, 

hybrid cable-stayed suspension and self-anchored cable-stayed suspension 

schemes. In these cases, since an high pretension force exists in stays, girder 

and pylons are subjected to a large axial compression and bending moment 

under the action of dead and live loads. Lateral deflection and axial force are 

interrelated such that the bending stiffness is dependent on the element axial 

force and the presence of bending moments will affect the axial stiffness. In 

particular the element bending stiffness decreases for compression axial force 

and increases for a tension force. 

Since axial compression increases in proportion to the length of the 

central span, geometrical instabilizing effect can occur for girder and pylons.  

It is worth nothing that, the buckling instability of girder and pylons may be a 

fundamental problem that should be checked in the preliminary design of such 

bridge types because it directly controls the geometric dimensions of structural 

members and the practical limitation of the center span length.  

However, the response of each element of cable system affects 

significantly the structural behavior regarding buckling. As a matter of fact, the 

axial stiffness of a cable will change with changing sag resulting in a stable or 

unstable effect regarding buckling. If the change in tension for a cable during a 

load increment is positive it will be a retaining effect and vice versa. This imply 

that the interaction between cable system and girder and pylons as well as the 

interaction between nonlinearity sources play a crucial role in the prediction of 

the nonlinear behavior of cable supported bridges. As a consequence, analysis 

models which not include all nonlinearity sources may lead to inappropriate 

predictions of structural behavior and, as a consequence, to notable 
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underestimation of the maximum load carrying capacity of the bridge structure 

for specific loading conditions. 

However, the definition of the maximum load carrying capacity for a 

cable supported bridge has to be defined taking into account the evolution of the 

structure until the critical condition including effects related to nonlinearity 

sources, residual stresses and structural imperfections. For this reason, a 

conventional buckling analysis is not applicable. The most appropriate approach 

for analyzing the structural behavior of cable supported bridges is to employ a 

nonlinear inelastic analysis which allows to trace the equilibrium path and 

identify the ultimate strength of the structure. This approach, known as limit 

point instability approach, can account for all geometric and material 

nonlinearities. In this framework, several methodologies were developed, which 

differ from each other depending on the assumption made for reproduce the 

nonlinearity sources. As far as cable element, the material nonlinearity was 

taken into account simply excluding the presence of the element which reaches 

the yield stress, while the geometric nonlinearity due to sag effect was 

reproduced by three different possibilities: the elastic catenary formulation, the 

multiple-straight link discretisation and the modified modulus method, known 

as Ernst method. The elastic catenary formulation is consistent with the cable 

theory of Irvine whose geometrical compatibility equations and the expression 

of the cable tension along the curvilinear coordinate s in the three-dimensional 

space, with reference to Fig. 4.1, can be written as: 

�

Fig. 4.1 Spatially suspended elastic catenary cable 
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where 2 2
1 2H F F= +

In the Eqs. (4.2), W , 0A  and E  are, respectively, the self-weight, the 

cross-section and the elasticity modulus of the cable, whereas 0L  is the cable 

length. The multiple-straight link approach is based on the use of multi truss 

elements. This approach divide each cable into several straight truss elements to 

adequately model both the sag effect due to the self-weight and the vibration 

modes of the cables. The Ernst method or modified elastic modulus method is 

often used in the analysis of cable-stayed bridges. In this approach each cable is 

replaced by one bar element and the sag effect is accounted for by an equivalent 

or fictions elasticity modulus, which can be written as: 

( )2

3
1

12

cable
bar
eq

x cable

E
E

gL
E

ρ

σ

=

+

(4.3)
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where cableE  is the cable modulus of elasticity, ρ  is the density of the 

cable material, g is the acceleration of gravity, xL  is the horizontal projected 

length of the cable, and σ the tensile stress in the cable. As far as girder and 

pylon geometrical nonlinearities, the beam-column effect was reproduced either 

through the use of stability functions or by considering a narrow mesh 

refinement with a finite element solver. 

The stability functions reflect the stiffness degradation caused by the 

interaction effect between the axial force and bending moments. The force–

displacement relationship of a beam–column can be written as: 

[ ] [ ] [ ]12 12
Local Local Local

F K U= × × (4.4)

where [ ]12 12
Local

K ×  is the nonlinear tangent stiffness matrix for the 

beam–column reported in Fig. 4.2 

�

Fig. 4.2    Nonlinear tangent stiffness matric for a three-dimensional beam-column element 
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where the modification factors is  with i = 1,..,9 are the stability function 

defined by the member length, cross-section properties, axial force and the end-

moments. The stability functions assume different expression depending on the 

axial force is compression or tension. On the other hand, the material 

nonlinearities can be included by two approaches: plastic zone method or plastic 

hinge method. In the plastic zone method, a frame member is discretized into 

several elements, and the cross-section of each element is further subdivided 

into many fibers. The inelastic behavior of each fiber is accounted for by tracing 

the uniaxial stress–strain relationship. In the plastic hinge method material 

nonlinearity is considered by introducing plastic hinges at the element ends and 

within the element length. Plastic hinges are formed when the cross-section 

forces satisfy the plasticity criterion, which is expressed by a force–space 

interaction function. It is worth nothing that the plastic zone method is able to 

obtain the “exact solution”, although is too intensive in computation. Plastic 

hinge method is less expensive from a computational point of view, but over 

predicts the  strength and stiffness of members. 

4.2 The proposed analysis model 

The nonlinear behavior of self-anchored cable-stayed suspension 

bridges is performed by a limit point instability approach based on a quasi-static 

transient analysis with increasing live loads. 

Since the bridge behavior is mostly influenced by the post-tensioning 

force distributions in the cable system, a static analysis to identify the initial 

geometrical configuration of the bridge under the action of dead loads, that is 

the “zero configuration”, is performed in advance.  

The initial configuration of the bridge has to satisfy both equilibrium 

and design requirements and it can be obtained by one of approaches described 

in chapter 2. Once the initial configuration is determined in terms of the post-

tensioning cable forces distribution and cross-section dimensioning, it is set as 

initial condition for a new analysis in which the structure is loaded with 

increasing live load. In particular, the live load intensity is expressed as a 
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function of a scalar parameter λ which corresponds to the ratio between current 

and service load value. The scalar parameter λ is known as the load multiplier. 

In the case of cable supported bridges, since the relationship between 

applied loads and displacements is highly nonlinear, a good approach to control 

the displacement amount is to use an algebraic equation that controls the value 

of λ, so that the generalized deflection of a selected control point reaches the 

prescribed values. Letting K and 
KU∆
�

, respectively, the control point and the 

rate displacement vector resulting from the loading process, the control point 

displacement amount is controlled by the following explicit constraint equation: 

, 0G

CP K LL U C tλ� �∆ − ∆ =� �
� �

(4.5)

where 
CPL
�

 is the constraint operators referred to the control point, 

whereas 
LC  and t∆  are, respectively, the load increase speed and the time step 

analysis. At each time step, the previous condition (4.5) determines the value of 

the load multiplier λ  such that the control point displacement G

KU∆
�

 is equal to 

the controlled displacement rate LC t∆ . Consequently, small values of the load 

increase speed imply small rate of control point displacement for a fixed time 

step. For each load increment, the nonlinear structural response of the bridge is 

calculated according to the material and geometric nonlinearities whose 

theoretical formulation is introduced in the next paragraph. 

4.3 The formulation of nonlinear material behavior 

4.3.1 Girder and pylon 

Girder and pylons are mainly subjected to axial force and bending 

moment. As a consequence, the nonlinear material behavior can be taken into 

account by a gradual yielding theory based on the combination of the Column 

Research Council (CRC) tangent modulus concept and a plastic hinge model 

(Chen, Kim and Choi, 2001). The first is suitable to account for gradual 

yielding along the length of an axially loaded element between plastic hinge, 
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while the latter, is used to represent the partial plasticization effect associate 

with the bending. The CRC tangent modulus can be expressed as: 

1.0                              for         0.5

4 1            for        0.5

t l y

l l
t l y

y y

E E N P

N N
E E N P

P P

= ≤

� �
= − >� �� �

	 


(4.6)

where yP is the full plastic axial load.  

The gradual inelastic bending stiffness reduction is expressed by a 

dimensionless reduction parameter η  which is assumed to vary according to the 

following parabolic functions Fig. 4.3: 

( )
1.0                    for    0.5

4 1         for    0.5

η α

η α α α

= ≤

= − >
(4.7)

where α  is a force-state parameter which measures the magnitude of 

axial force and bending moment at the element end.  

�

Fig. 4.3   Flexural stiffness reduction model for refined plastic hinge analysis 
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The term α  was expressed by AISC-LRFD interaction expression 

which express the cross-section plastic strength of the element as:

, ,,z ,z

, ,z , ,z

, ,,z ,z

, ,z , ,z

8 8 2 2
       for    

9 9 9 9

2 2
             for    

2 9 9

l y l yl ll l

l l yp l p l l yp l p

l y l yl ll l

l l yp l p l l yp l p

M MM MN N

P M M P M M

M MM MN N

P M M P M M

α

α

= + + ≥ +

= + + < +

(4.8)

where pyM and pzM are the full plastic moments of the y- and z-axes 

for the element, respectively. 

�

�

Fig. 4.4  Full plastification surface of AISC-LRFD 

4.3.2 Cable elements 

The nonlinear material behavior of cables is defined according to the 

finite plasticity theory of Green and Naghdi which forms the basis for 

modelling the behavior of a wide array of materials that exhibit elastic-plastic 

behavior at a macroscopic scale [Lu 1998 – Lu 2001].  



200                                                                CHAPTER 3 

200 

�

The finite plasticity theory of Green and Naghdi is based on the 

following hypotheses: 

1) The existence of a second-order tensor
PE
�

which serves as a measure of 

plastic strain as well as the existence of a symmetric Lagrangian tensor α
�

and a scalar κ which characterize, respectively, kinematic and isotropic 

hardening; 

2) The admittance of a stress response function S
�

�
, such that the constitutive 

law for the second Piola-Kirchhoff stress tensor S
�

 may be written as: 

( ), , ,PS S E E κ α=
�

� �� � �
(4.9) 

or, equivalently, 

( ), , ,P PS S E E E κ α= −
�

� � �� � �
(4.10)

Furthermore, the function S
�

�
is taken to be invertible for fixed values of 

PE
�

, 

κ , α
�

, therefore one may equivalently write: 

( , , , )PE E S E κ α=
�

� � �� �
(4.11) 

3) The existence of a convex, differentiable, yield function expresses in 

stress-space and strain-space, respectively, as ( , , , )Pf f S E κ α=
�� �

 and 

( , , , )Pf f E E κ α=
� � �

, so that the admissible state variable in stress-space 

belong to the set { }: ( , , , ) | ( , , , ) 0P PU S E f S Eκ α κ α= ≤
� �� � � �

.   

4) The admittance of a symmetric second-order tensor function 

( , , , )Ph h S E κ α=
�� � � �

, a scalar function ( , , , )PS Eσ σ κ α=
�� �

 and a second-order 

tensor function� ( , , , )PS Eρ ρ κ α=
�� �� �

 in stress-space and their respective 

counterpart ( , , , )Ph h E E κ α=
� �� � �

, ( , , , )PE Eσ σ κ α=
� � �

 and ( , , , )PE Eρ ρ κ α=
� � �� �

in strain-space, so that the evolutions of plastic strain and hardering 

variables during plastic loading take the form: 



NONLINEAR BEHAVIOR OF S.A.C.S. BRIDGES                                   201 
�

�

( ), , ,P PE h E Eγ κ α=�
� � �� �

(4.12) 

( ), , ,PE Eα γρ κ α=�
� �� ��

(4.13) 

( ), , ,PE Eκ γσ κ α=�
� � �

(4.14) 

where γ  is the plastic consistency parameter.  

An identification of the loading/unloading conditions can be obtained by 

the strain-space formulation. Indeed, letting 

ˆ f
f E

E

∂
= ⋅

∂
�

�
�

(4.15) 

�

the loading/unloading conditions are identified as follows: 

0   elastic statef < → (4.16) 

ˆ
0 :         unloading

ˆ
0   plastic state 0 : neutral loading

ˆ
0 : plastic loading

f

f f

f

 <
�
�

= → =�
�

>�
�

(4.17)

The consistency condition 0f =�  imposed during loading ensures that 

the time evolution of the state variables is compatible with the current yield 

surface. Considering Eqs. (4.12)-(4.15) one may be write: 

ˆ
0

P

f f f
f h

E
γ ρ σ

α κ

� �∂ ∂ ∂
+ ⋅ + ⋅ + =� �

∂ ∂ ∂	 
� �
� �

(4.18) 

The parameter γ  is directly determined from Eq. (4.18), since the 

quantity inside the parenthesis necessarily attains non-zero values. A physically 

motivated work-based constitutive restriction can be postulated in order to 

simplify the structure of Eq.s (4.9) and (4.12), that is, the work done by the 
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external load in any temporally smooth, spatially homogeneous and closed 

strain cycle is nonnegative: 

2

1

 0
t

t
S E dτ⋅ ≥� �

��
(4.19) 

The above work inequality implies that exists a potential 

( , , , )PE Eψ ψ κ α=
� � �

, such that 

S
E

ψ∂
=

∂�
�

(4.20) 

Moreover, it implies a generalized normality rule: 

*P

P

S S S f
E

E E
α σ λ

α κ

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂

� � �

� � �� � �
� �

� ��

(4.21) 

where, *λ  is a positive multiplier (also called plastic multiplier) which 

depends on the current state of stress and load history. A coherent assumption 

for purposes of the present work is that the stress response function S
�

�
 depends 

exclusively on 
PE E−

� �
, so that the Second Piola-Kirchhoff stress can be 

expressed as following: 

( )P

n n n niS E Sε ε= − + (4.22) 

where 
nε  is the total axial strain, P

nε is the axial plastic strain and 
niS  is 

the initial stress. Moreover, such assumption imply that Eq. (4.21) reduces to 

the classical normality rule for the rate of plastic strain. This leads that plastic 

rate can be obtained by the Drucker-Prager conditions: 

* * *0, 0 and 0f f fλ λ λ≥ ≤ = =� (4.23)
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4.4 Bridge and geometric nonlinear formulation 

In this section the governing equations for the bridge constituents, 

including assumptions made to account for geometric nonlinearities of 

structural members are discussed. Such governing equations represent the basis 

for the theoretical formulation of the model, whose numerical implementation is 

presented in the next paragraph. 

4.4.1 Girder and towers 

Girder and towers are described by tridimensional geometric nonlinear 

beam elements by means of a formulation based on Euler-Bernoulli kinematic 

assumptions and a Green-Lagrange strain measure. The constitutive 

relationships are defined on the basis of moderately large rotations in which 

only the square of the terms 
1

2

,

G

i X
U  representing the rotations of the transverse 

normal line in the beam are considered. Starting from the status concerning the 

initial configuration in which only dead loading are considered, the following 

relationships between generalized strain and stress variables are obtained: 

( ) ( ) ( )

1 1 1 1

1

1 1

0( )

1 1 1

2 2 20( )

1 1, 1, 2, 3,

0( )

2 2 2 2

0( )

2 2 2,

0( )

2 2 3,

0( )

3 3 3 3

0( )

3

1
      

2

       

       

       

G G G G G

t

G G GG G G G

t X X X X

G G G G G G

t

G G G G G

t X

G G G G G

t X X

G G G G G G

t

G

N N E A

N E A U U U U

M M E I

M E I

M E I U

M M E I

M

ε

η χ

η

η

η χ

η

= +

 �� �= + + + +� �� �� �

= +

= + Ψ

= −

= +

= +
1

1 1

1

3 3,

0( )

3 3 2,

1 1,

       

G G G G

t X

G G G G G

t X X

G G G G G G G

t t X

E I

M E I U

M G J G J

η

Ψ

= +

= Θ = Ψ

(4.24) 
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where  G G

tE A  and 1

Gε are the axial stiffness and strain defined on the 

basis of Eq.(4.6), 2

Gχ and 3

Gχ  or  2

G G

tE Iη  and 3

G G

tE Iη  are the curvatures or the 

bending stiffnesses with respect to the 
2X  and

3X  axes, respectively. It is 

worth nothing that, previous bending stiffnesses are expressed as a function of 

Eqs. (4.6) and (4.7). Moreover, GΘ and G G

tG J are the torsional curvature and 

stiffness, respectively, 1

GN is the axial stress resultant, 2

GM and 3

GM  are the 

bending moments with respect to the 
2X  and

3X  axes, respectively, 1

GM and 
G G

tG J are torsional moment and girder stiffness, respectively, and ( )0
⋅

represents the superscript concerning the variables associated with the "zero 

configuration". The external loads are expressed by a vector: 

1 2 3
[ , , ]X X Xp p p pλ=

�

(4.25) 

In particular, the load component along vertical axis is expressed as a 

function of the load multiplier λ. Furthermore,  an eccentricity e with respect to 

the geometric axis can be considered. 

�

Fig. 4.5   Girder cross-section notations 

On the basis of Eq.s (4.24) and (4.25), taking into account notation 

reported in Fig. 4.5, the governing equations are derived by means of the local 

form of static equilibrium equations as: 
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1

3

2

3

1
1

1 1

4

3 3
2 14

1 1 1

4

2 2
3 14

1 1 1

2

1

2

1

1 0,  

0,

0,

0

G
G

X

G G
G G G G

t X

G G
G G G G

t X

G
G G

t X

dUd
N p

dX dX

d U dUd
E I N p

dX dX dX

d U dUd
E I N p

dX dX dX

d
G J p e

dX

η λ

η

 �� �� �
+ + =� �� �

� �	 
� �

� �
− − − =� �

	 


� �
− + =� �

	 


Φ
− =

(4.26)

The pylon governing equations can be easily obtained from Eq.(4.26) by 

removing all the terms related to the external loads and changing the relative 

variables from with the superscript ( )
G

⋅ to ( )
P

⋅ and the parameters concerning 

the mechanical and material characteristics: 

1
1

1 1

4

3 3
2 14

1 1 1

4

2 2
3 14

1 1 1

2

1

2

1

1 0 

0

0

0

P
P

P P
P P P P

t

P P
P P P P

t

P
P P

t

dUd
N

dX dX

d U dUd
E I N

dX dX dX

d U dUd
E I N

dX dX dX

d
G J

dX

η

η

 �� �� �
+ =� �� �

� �	 
� �

� �
− − =� �

	 


� �
− =� �

	 


Φ
=

(4.27)

4.4.2 Cable element 

The constitutive laws of the cable are defined by the second Piola-

Kirchhoff stress ( )1

CS  and Green-Lagrange strain ( )1

CE  as: 

( ) ( ) ( )1 0 1 1,[ ]C C C C

pS X S C E X E X= + −
� � �

(4.28) 



206                                                                CHAPTER 3 

206 

�

where CC is the elastic modulus, 0

CS is the stress referred to the initial 

configuration. The governing equations of a single cable are expressed by 

means of the following partial differential equations: 

1
1 1 1

1 1

2
1

1 1

3
1 2

1 1

0

0

0

C
C C

C
C

C
C

dUd
N N b

dX dX

dUd
N

dX dX

dUd
N b

dX dX

� �
+ − =� �

� �

� �
=� �

� �

� �
− =� �

� �

(4.29)

where 1

CN  is the axial force defined as 1 1

C C CN S A=  with  the area of 

generic i-th cable element, 
1ϕ  and 

2ϕ  are the slope angles of the cable along the 

X1X2 and X1X3, respectively, 1b  and 
2b  are the body load projections in the X1X2

and X1X3, respectively. 

4.5 Finite element implementation 

The governing equations reported in the previous section introduce a 

nonlinear partial differential system, whose analytical solution is quite complex 

to be extracted. As a consequence, a numerical approach based on the finite 

element formulation is utilized. 

In particular, starting from Eq. (2.49) and Eq. (2.52), the corresponding 

weak forms for the i-th finite element related to the girder (G), pylon (P) and the 

cable system (C), respectively, are defined by the following expressions: 

Girder 
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( )

( ){ }

( ){ }
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1 1 1 1
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= =
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(4.30)

Pylon 

( )

( ){ }

( ){ }

1 1

1 1 1 1

1 1 1 1

1

2

1 1, 1, 1 1 1

1
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X X X X j j j j

j jl

P P P P P P P
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(4.31)

Cable System 

( )
1
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1 1, 1 1, 1 1 1 1 1 1

1

2

1 2, 1 2 2
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1 3, 1 3 3 1 3 3
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(4.32)
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where ( )1 2 3 2 3, , , ,
k

i i i i iN T T M M  with k=C,G,P and i=1,2 represents the 

internal forces applied at the end node i of the generic cable (C), girder (G) or 

pylon (P) element. Finite element expressions are written starting from the weak 

forms previously reported, introducing Hermit cubic interpolation functions 

( )iξ  for the girder and pylon flexures in the X1X2 and X2X3 deformation planes 

and Lagrange linear interpolation functions ( )iζ  for the cable system variables 

and the remaining variables of the girder and the pylons: 

( ) ( ) ( )

( ) ( )

( ) ( )

,   

,   

,

C C C

G G G

P P P

U r t N r q t

U r t N q t

U r t N q t

=

=

=

� �� � �

�� � �

�� � �

(4.33)

where , ,  C G Pq q q
� � �

 are the vectors collecting the nodal degrees of 

freedom of the cable, girder and pylon respectively, , , C G PN N N
� � �

 are the 

matrixes containing the displacement interpolation function for cable element 

(C), girder (G) and pylons (P), r
�

 is the local coordinate vector of the i-th finite 

element. The discrete equations in the local reference system of the i-th element 

are derived substituting Eq.(4.33) into Eqs. (4.30)-(4.32), leading to the 

following equations in matrix notation: 

G G G GK U P Q= +
� �� �

(4.34) 

P P P PK U P Q= +
� �� �

(4.35) 

C C C CK U P Q= +
� �� �

(4.36)

where
iK
�

is the stiffness matrix, 
iP
�

is the load vector produced by the 

dead and live loading, iQ
�

 is the unknown force vector collecting the point 

source. In order to reproduce the bridge kinematic correctly, additional 

relationships to define the connections between girder, pylon and cable system 

are necessary. In particular, the cable system displacements should be equal to 

those of the girder and the pylons at the corresponding intersection points; thus, 

the bridge kinematic is restricted by means of the following constrain equations: 
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( ) ( ) ( )
( ) ( ) ( )

3 1 3

1 3 1

, , ,

, , ,

i i i

i i i

G G C

C C C

G G C

C C C

U X t X t b U X t

U X t X t b U X t

+ Φ =

− Φ =
� � �

� � �

(4.37)

( ) ( )

( ) ( )

( ) ( )

1 1

2 2

3 3

, ,

, ,

, ,

P C

P P

P C

P P

P C

P P

U X t U X t

U X t U X t

U X t U X t

=

=

=

� �

� �

� �

(4.38)

where
iCX
�

and 
PX
�

 represent the vectors containing the intersection 

positions of the i-th cable element and the pylon top cross section, respectively, 

and 1 2 3( , , )G G GU U U  and 1 2 3( , , )G G GΨ Ψ Ψ  are the displacement and rotation fields 

of the centroid axis of the girder with respect to the global reference system, 

respectively. It is worth nothing that, eq.(4.37) are constraint equation imposed 

between the off-set nodes of the girder and those associated to the cable 

elements. 

Finally, starting from Eq.s (4.34)-(4.36) taking into account of Eq.s 

(4.37)-(4.38) as well as the balance of secondary variables at the interelement 

boundaries, the resulting equations of the finite element model are: 

KQ P=
� ��

(4.39)

where Q
�

 with C G PQ U U U= ∪ ∪
� � ��

 is the generalized coordinate vector 

containing the kinematic variables associated with the girder, the pylons and the 

cable system, K
�

 is the global stiffness matrix and P
�

 is the loading vector.  

Since the structural behavior of each element depends on the 

deformation state of the members, the governing equations defined by Eq.(4.39) 

will change continuously as the structure deforms.  

The governing equations are solved numerically, using a user 

customized finite element program, i.e. COMSOL Multiphysics TM version 4.4 

(Comsol, 2012). 
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Fig. 4.6   Finite element modelling of the structural scheme 

It is worth noting that the structural response at each time step is 

obtained by solving nonlinear and differential equations relates, respectively, to 

the structural response, which account for the geometric nonlinearities, and to 

the inelastic material behavior. 

For this reason, the finite element model of the structure is coupled with 

several equation-based models, each of them related to definition of the inelastic 

properties of cables, pylons and girder. 

For each load increment, plastic variable rate related to each structural 

element are carried out at each cross-section. In particular, for beam elements 

the rate of force-state parameter α� , which correspond by Eq. (4.7) the 

dimensionless reduction parameters rate η� , and the tangent modulus rate tE� ,  

whereas for each truss element the axial plastic rate ,

C

p iε� .  

To this end, the following further equations, with relative consistence 

restrictions, are added to the equations model: 

Girder and Pylon:  
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where 
*

,p bf  and 
*

,p af are the yield functions, respectively, for bending 

and axial plastic state variable which are expresses as: 

* * * * * *
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* * * * * *
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,
* * *
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* * * *
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(4.42)

* * *

, 1 1p a pf N N= − (4.43) 

It is worth noting that, in the previous Eqs.(4.40)-(4.43) the superscript 
*( )⋅  refers ( )G⋅  for the girder and ( )P⋅  for pylons. 

Cable: 
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where C

if  is the yield function for i-th element of the cable system 

expressed as follows: 

( ),:       with  1, , 1C C C h C S H

i n i i P yf S E k S i N Nε � �− − = + +� �� (4.45)

where, ,

C

n iS  and 
C

yS  are, respectively, the value of actual cable force and 

the yield stress, while hk  is the hardering parameter related to the hardering 

properties of the material.

�

4.6 Results 

In the present work several models of self-anchored cable-stayed 

suspension bridges were considered. Each of them was defined by dimensional 

parameters relatives to the bridge scheme, introduced in previous Par 1.1, as 

well as properties related to materials and cables, girder and pylons cross-

sections. In particular, analyzes were developed considering three bridge 

midspan lengths ( L), that is 500, 1000 and 1500 meters, combined with values 

of dimensionless cable-stayed part length ( c ), height-span ratio ( µ ) and rise 

span to main span length ratio (ς ), which vary in the following ranges: 

0.25 0.45c≤ ≤ , 0.05 0.20ς≤ ≤  and 0.40 0.50µ≤ ≤ . Both girder and pylons 

were idealized by rectangular single-box cross-sections. In particular, the girder 

cross-section has constant width (
Gb ) and thickness (

Gδ ) equal, respectively, to 

33 and 0.033 meters ( /1000Gb ), and  variable depth (
Gh ). The variability of 

the girder depth is express as a function of the relative bending stiffness ratios 

between the girder and the cable system, ( )
1/4

3

34 G

F GI H gε σ= , which usually, 
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in the field of cable supported bridge, takes values within the following range: 

0.25 0.35 Fε≤ ≤ . The pylons cross-section has constant depth to width ratio (
P Ph b ) and thickness (

Pδ ) equal, respectively, to 1.5 and /100Pb . The depth (
Ph ) and the width (

Pb ) are defined by an implicit way once fixed the tower to 

girder bending stiffness ratio 2 2/P G

rI I I= , which takes values from 1 to 100.  

Both girder and towers are made of steel whose elasticity modulus         

( ,G PE ), yield stress ( ,G P

yS ) and specific weight (
,G Pγ ), are assumed, 

respectively,  equal to 2.1 GPa, 450 MPa and 78.5 kN/m
3
. Stays and hangers are 

uniformly distributed along the girder by a 20 meters steps ( G∆ ). The same 

value is assumed for the distance between the anchor points and the nearest stay 

(L’). Moreover, four type of cable-stayed configurations are considered: a fan, 

an harp and two semi-fan schemes, which the stays present a distance ( P∆ ) 

equal to 200H  and / 500H . Cable cross-section areas are designed by classic 

expressions reported in the paragraph 1.2 

Loads and combinations 

The dead load (
Gg ) of the girder was calculated as 1.4 60 kN/mG GA γ +

, where ( GA ) is the girder cross-section and 1.4 is a section magnification factor 

of the dead loads for considering diaphragms and other utilities installed in the 

section, and 60 kN/m  represents the weight of other structural and 

nonstructural elements such as pavement, street lamps, and other attachments 

(Yoo, Na and Choi, 2012). Without loss of generality, in all analyses only live 

loads ( p ) concerning traffic loads are considered, which are combined with 

dead loads by using unfactored loading combination. However, the 

generalization of the proposed model to consider also the effects of seismic or 

wind forces, can be easily developed just introducing additional loading 

combinations to the ones concerning live loads. Live loads was assumed to be 

9 kN/m/lane  as specified by code (AASHTOO, 2013). The live loads was 

arranged on the deck in two different ways: (1) on the center span only (LC1) 

and (2) on the center span and one side span (LC2) (Fig. 4.7). Furthermore, the 

live load is considered located at the center of the structure, so as no torsional 

effect are produced.  
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Fig. 4.7   Load cases 

Investigation on material nonlinear effects influence  

The first part of the present study was devoted to analyze the influence 

of the nonlinear material behavior on the ultimate bearing capacity as well as 

the characterization of the ultimate configuration of a self-anchored cable-

stayed suspension bridge.  

The bridge structure considered was defined by properties reported in 

Tab. 4.1 and it has been analyzed by four different models, summarized in Tab. 

4.2, which differ from each other depending on the possibility that cables and/or 

pylons and girder can assumed an elastic or an elastic plastic behavior. 

L 1000 m l 420 m ∆G 20 m 

c 0.4 - H 160 m ∆P 2 m 

µ 0.4 - f 125 m L' 20 m 

δ 0.125 - hG 3.1 m σA 8 GPa 

εF 0.3 - bP 11.24 m EG,P 2.1 GPa 

Ir 50 - hP 16.86 m EC 2.05 GPa 

bG 33 m δP 0.1124 m Sy
G,P 450 MPa 

δP 0.033 m p/gG 0.312 - Sy
C 1.6 GPa 

Tab. 4.1   Geometric and mechanical properties utilized for the analysis of the influence of 

nonlinear material behavior   

MODEL 
BEAM TRUSS 

Girder Pylon Cable 

EMB Elastic Elastic 

CMI Elastic Inelastic 
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BMI Inelastic Elastic 

FMI Inelastic Inelastic 

Tab. 4.2   Models utilized for the analysis of the influence of nonlinear material behavior   

The first model (EMB) allows to investigates the structural response of 

the bridge due to the geometric nonlinearity effects only. The second and the 

third models are partial nonlinear problem which add to the geometric 

nonlinearity effects a single source of material nonlinearity, relative to cables (

CMI ) or girder and pylons ( BMI ). The last one is the fully nonlinear model (

FMI ) which take into account all nonlinearity sources. Models defined above 

have been analyzed for load cases described in the previous section and the 

maximum load was estimated by the load–displacement curve of the global 

bridge systems as illustrated in Fig.s 4.8 and 4.9.  
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Fig. 4.8   Load-displacement curve for LC1: Analysis on material nonlinear behavior 
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Fig. 4.9   Load-displacement curve for LC2: Analysis on material nonlinear behavior 

The vertical axis indicates the load multiplier (λ ), whereas in the 

horizontal axis is reported the dimensionless control point displacement.  

For both load cases, the lateral midspan deflection ( lδ )  has been chosen 

as control point and it was divided by midspan length.  

The corresponding evolution of bridge deformed shapes for the FMI 

model is illustrated in Fig. 4.10, with reference to the three load levels 

illustrated in Fig.s 4.8-4.9 by blue circles. The evolution of the bridge 

deformation is shown by using a color map of the displacements. All load–

displacement curves exhibit an initial linear behavior which changes with 

increasing live loads, depending on both geometrical and material nonlinearities 

effects.  



218                                                                CHAPTER 3 

218 

�

�

Fig. 4.10   Evolution of the bridge deformed shapes – FMI 
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In particular, it can be seen that EMB model leads to a maximum load 

highly overestimated with respect to the FMI model about 93% and 43%, 

respectively, for LC1 and LC2.  Partial inelasticity models, CMI and BMI, leads 

to different result. As a matter of fact, if the difference between the BMI and 

FMI models is about 12% and 9%, respectively, for LC1 and LC2, on the other 

hand, comparing CMI to FMI, the difference is about 95% and 41%, 

respectively, for LC1 and LC2.  

Fig. 4.11   Force-state parameter Gα  and dimensionless reduction parameters Gη ; Maximum 

cable stresses – LC1 
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Fig. 4.12   Force-state parameter Gα  and dimensionless reduction parameters Gη ; Maximum 

cable stresses – LC2 

The least value of the load parameter λ was obtained for LC2 resulting 

smaller than that related to LC1 about 11%. However, both LC1 and LC2 have 

similar features characterizing the collapse mechanisms.  

As a matter of fact, in both load cases the bridge behavior was 

characterized by plastic phenomena occurred firstly at the pylon bases, 

subsequently at side spans of the girder and finally at the anchor cable.  
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Once that the anchor cable became plastic, the structure suffered a 

sudden drop in stiffness, as can be seen from the abrupt change in the slope of 

the load-displacement curves, and as a consequence, it can’t withstand further 

load increments.  

This aspect can be better appreciated by examining plastic state 

variables with reference to the ultimate configuration of the bridge. Fig.s 4.11-

4.12 show the values of the force-state parameter 
Gα  and dimensionless 

reduction parameters 
Gη for girder as well as the maximum stress reach in each 

cable, with reference, respectively, to LC1 and LC2. Moreover, Fig. 4.13 shows 

plastic state variable of pylons, that is 
Pα  and 

Pη , with reference to both load 

cases. As before, comparisons between models defined in Tab.4.2 are proposed.  

It can be seen that, the girder and pylons material inelasticity mainly 

influences the structural response of the bridge since there are no significant 

differences between FMI and BMI models in term of parameter 
Gη  and 

Pη  as 

well as maximum cable stress.  

�

Fig. 4.13   Force-state parameter Pα  and dimensionless reduction parameters Pη for LC1 and 

LC2 
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In particular, all cable remain elastic with the exception of the anchor 

cable, which exceed the yield stress about 4.2% and 6.7%, respectively, for LC1 

and LC2. Furthermore, in both load case, same values of plastic rates for girder 

and pylons located at the beginning of the side spans are observed.  

With reference to the girder, this imply an increase in the girder 

curvature as can be also seen by the ultimate bridge deformation reported in Fig. 

4.10. This aspect seems to be the causes that involves the greater loss of 

stiffness of the structure since plastic phenomena occurred close to the anchor 

zone of the bridge. However, the anchor cable plays a crucial role. As a matter 

of fact, the different response between FMI and BMI models in term of anchor 

cable material behavior, which is elastic plastic for the first and simply elastic 

for the latter, leads to further reduction of bearing capacity. Such aspect also 

explains why a lower value of load multiplier λ  was obtained for LC2 with 

respect to LC1.  
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Fig. 4.14   Load-anchor cable stress curve for LC1 and LC2 

In Fig. 4.14 a comparison between the anchor cable stress as a function 

of the load multiplier for both load cases is reported. It can be seen that for LC2, 

the anchor cable reached the yield stress for a lower value of λ  with respect to 

LC1.  

Finally, in Tab.4.3 values of main cable maximum stress for models and 

load conditions considered above are reported. For all load cases, the main cable 

remains elastic, so do not influence the structural response. However, results 

obtained was influenced by the dimensioning parameters adopted as c parameter 

whose involves a system with a reduced suspended system. 

Analysis
Load Arrangement 

LC1 LC2 

EMB 0.685 0.623 

CMI 0.730 0.641 

BMI 0.544 0.556 

FMI 0.539 0.552 

Tab. 4.3   Influence of nonlinear material behavior: main cable dimensionless maximum stress 

(S/Su)   

Parametric Study 

In the previous section, the influence of the material nonlinearity on the 

bearing capacity of a self-anchored cable-stayed suspension bridge was 

analyzed. Comparison results obtained by different types of numerical models, 

which are illustrated in Tab. 4.1, have shown that a fully nonlinear numerical 

model can offer a good description of the maximum load capacity and ultimate 

behavior of a self-anchored cable-stayed suspension bridge.  

In this section, a parametric study is presented, which describes self-

anchored cable-stayed suspension bridge in terms of dimensionless variables, 

strictly related to bridge characteristics.  
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At first, cable system properties were studied. In particular, analysis 

focused on size and extension of the cable-stayed system portion.  

�

Fig. 4.15   Variability of  the length of cable-stayed portion, for several values of relative bending 

stiffness Fε
  

In Fig. 4.15 the variability of the load multiplier λ , obtained for LC1 

and LC2, as a function of the length of cable-stayed portion, express by c

parameter, for several values of the relative bending stiffness Fε  is presented. 

 Results were carried out considering a self-anchored cable-stayed 

suspension bridge with height-span ratio ( µ ) and tower to girder bending 

stiffness ratio ( rI ), respectively, equal to 0.4 and 25.  

It can be seen that the value of λ  increased with high values of c .  

As a matter of fact, short cable-stayed portion imply short side spans 

and a cable system more similar to a suspension system which increases the 

deformability of the central span. Such configurations make the structure 

suitable to local buckling instability of the girder due to a lower stiffness offered 

by the cables system and a lower stabilizing effect due to the counterweight of 

the side spans.  
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On the other hand, long cable-stayed portion leads to bigger side spans 

and a structure more similar to a cable-stayed system which improve the 

structural performance avoiding buckling instability problem.  

Values related to LC1 and LC2 are quite similar and differed by an 

average ranging from 10% to 15% for each value of c  and Fε .  

It is worth nothing that, improvement in the structural performance were 

obtained by increasing the relative girder bending stiffness. As a matter of fact, 

for each value of c, the difference between load multipliers corresponding to the 

values of Fε  considered vary with an average about 44-46 %.  

Further results were obtained analyzing the variability of the cable-

stayed portion length by numerical models introduced in the previous section 

Tab. 4.1. The values of λ  are reported in Tab. 4.4 while in Fig. 4.16 the 

percentage error (e %) of EMB, CMI and BMI models with respect to the FMI 

model is shown. 
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Fig. 4.16   Percentage error (e %) of EMB, CMI and BMI models with respect to the FMI model 

εF

c MODEL 
0.25 0.3 0.35 

LC1 LC2 LC1 LC2 LC1 LC2 

0.25 

EMB 0.14 0.08 0.08 0.07 0.80 0.05 

CMI 0.14 0.08 0.08 0.07 0.80 0.05 

BMI 0.14 0.08 0.08 0.07 0.80 0.05 

FMI 0.14 0.08 0.08 0.07 0.80 0.05 

0.30 

EMB 0.33 0.31 1.29 1.14 2.81 2.40 

CMI 0.33 0.31 1.29 1.14 2.81 2.40 

BMI 0.33 0.31 1.27 1.13 2.34 2.14 
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FMI 0.33 0.31 1.27 1.13 2.34 2.14 

0.35 

EMB 0.85 0.74 2.19 1.81 4.52 3.51 

CMI 0.85 0.73 2.19 1.81 4.19 3.18 

BMI 0.85 0.73 1.90 1.67 3.03 2.72 

FMI 0.85 0.73 1.90 1.67 2.92 2.63 

0.40 

EMB 2.00 1.63 4.28 3.24 8.44 5.84 

CMI 1.84 1.53 4.10 2.89 9.07 5.49 

BMI 1.72 1.49 2.82 2.51 4.06 3.70 

FMI 1.70 1.48 2.56 2.30 3.67 3.35 

0.45 

EMB 3.36 2.56 7.40 5.13 14.65 9.23 

CMI 3.61 2.46 8.79 5.25 16.10 9.89 

BMI 2.08 1.91 3.21 3.08 4.69 4.53 

FMI   1.89 1.66  2.85 2.74  4.11 4.06 

Tab. 4.4   Load multiplier as a function of c parameter and relative bending stiffness for Ir = 25 

and µ   = 0.4    

 Results show that the percentage error increase with the length of cable-

stayed portion. In particular, it is almost zero for c equal to 0.25, that is for short 

cable-stayed portion, which means that the whole bridge structural response is 

mainly dominate by local buckling instability without plastic structural 

members.  

On the other hand, for c equal to 0.45, that is for long cable-stayed 

portion, the structural response is affected by plastic strain since differences 

about 297 %, 260 % and 14.5 %, respectively, for CMI, EMB and BMI, were 

obtained. The smallest error percentages is relative to BMI model, which 

confirm what observed in the previous section.  

It is worth noting that, the difference between BMI and FMI model has 

grown exponentially for values of c between 0.3 and 0.45, which means that as 

the cable system becomes stiffener, the inelastic behavior of cables plays a 

relevant role in maximum load capacity of the bridge structure.  

The self-anchored cable-stayed suspension bridge considered in the 

previous analysis was employed to analyze the variability of the stay step size 
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along the pylon height. In particular, a constant relative bending stiffness Fε

equal to 0.3 was assumed. Four types of cable-stayed layout, namely, a fan 

system, two semi-fan system, respectively, with 500P L∆ = � and 

200P L∆ = , and a harp system was considered. Fig. 4.17 shows results 

relative to LC1, while in Tab. 4.5, further results relative to LC2 are reported.  

µ 
λ 

LC1 LC2 

����

0.4 2.52 2.46 

0.45 3.06 2.99 

0.5 3.65 3.59 

����	����������

δ
��������

0.4 2.58 2.29 

0.45 3.12 2.81 

0.5 3.67 3.40 

����	����������

δ
��������

0.4 2.65 1.71 

0.45 3.17 2.33 

0.5 3.76 2.96 

���
�

0.4 2.60 1.61 

0.45 3.31 2.56 

0.5 4.06 3.69 

Tab. 4.5   Variability of load multiplier with respect of cable-stayed system configuration  
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Fig. 4.17   Variability of the cable-stayed system configuration 

The cable-stayed system layout affected the bridge response and, in 

particular, the fan system offered the best performance.  

More in detail, reduced values of the load multiplier λ  were observed 

for the semi-fan system with 200P L∆ =  which differ with respect to the fan 

configuration about 62-65%. The differences between the fan and the harp 

systems depend on the values of the height-span ratio µ . As a matter of fact, 

such difference is about 68%, 39% and 2% for µ  equal, respectively, to 0.40, 

0.45, 0.50.  
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This can be explained considering that higher values of the height-span 

ratio µ implies higher pylons and, this aspect improves the performance of an 

harp cable-stayed system. On the other hand, with reference to the values of 

load multiplier reported in Tab. 4.5, obtained for LC2, it seems that the 

configuration of the cable-stayed system portion didn’t affect the structural 

behavior since the no relevant differences were obtained between the models.  

The girder and tower main properties were analyzed in term of stiffness 

properties. Results reported in Fig. 4.18 (a-b) show the variability of load 

multiplier λ  in terms of the tower to girder bending stiffness ratio rI , for 

several values of the relative girder bending stiffness Fε .  

In particular, Fig. 15-a and fig. 15-b refer, respectively, to 0.4 and 0.5 

values of height-span ratio µ .  

For sake of brevity, only results related to LC1 load case are presented, 

however conclusions obtained can be extended to LC2 load case.  

It can be seen that high values of λ  were obtained for high values of rI

and Fε  for a fixed value of µ . Such bridge configurations involves smaller 

pylon deflections and, as a consequence, reduced nonlinearity effects.  

As a matter of fact, higher values of pylons and girder stiffness avoid 

local buckling instability and plastic strain so that the entire structure still 

remain elastic for higher value of λ .  

It is worth nothing that, there were abrupt changes in patterns of load 

multiplier values at Ir = 5 since the difference of values of λ  between Ir =1 and 

Ir = 5 is about 63%, whereas it is about of 4% between Ir = 5 and Ir = 10.  

Values of rI  less than 5 imply that the bridge behavior is dominate by 

local buckling pylons, whereas values higher than 5 avoid these kind of problem 

and the structural behavior is similar to that described in the previous section. 

 The structural performance of the bridge was improved by increasing 

height-span ratio µ since the value of load multiplier increase with an average 

ranging from 46 % to 58%.  

Furthermore, higher values of the height-span ratio µ and higher values 

of the relative girder bending stiffness F
ε avoid local buckling phenomena of 

pylon for less values of r
I  since no abrupt changes in the distribution of the 

values of load multipliers were observed.  
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Fig. 4.18    Variability of tower to girder bending stiffness ratio 
rI , for several values of relative 

girder bending stiffness
Fε and height-span ratio µ . 
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Finally, the variability of the midspan length was analyzed.  

Three self-anchored cable-stayed suspension bridges with midspan 

lengths, respectively, equal to 500, 1000 and 1500 m, each of them 

characterized by cable-stayed portion c , relative bending girder stiffness Fε

and tower to girder bending stiffness ratio rI , respectively, equal to 0.4, 0.3 and 

25, were considered.  

As before, the variability of the height-span ratio µ   was taken into 

account considering height-span ratio respectively, equal to 0.4, 0.45 and 0.50. 

Fig. 4.19, shows the values of the load multiplier λ  as a function of the midspan 

lengths.  

The self-anchored cable-stayed suspension bridge scheme seems to offer 

good performance in the field of short, medium and long spans. As a matter of 

fact, it can be observed that the maximum load capacity increased with an 

average about 16% and 4%, respectively, for LC1 and LC2. In particular, high 

values of the height to span ratio imply better performance regardless of the 

midspan lengths as for each bridge and for each load case, the values of λ

increase about 22%.  

�

Fig. 4.19   Variability of the midspan lenght�
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CONCLUSIONS

Cable supported bridges are typically employed to overcome medium or 

long spans, because of their structural, economical and aesthetic properties. 

During the last year, the adoption of high performance materials for structural 

components combined with the use of advanced analysis methodologies has

resulted in great progress of cable supported bridges. In this framework, the 

main benefit was to increase bridge midspan lengths. However, other problems 

as bridges-wind interaction, moving loads effects and the analysis of structural 

behavior due to earthquake action have been accurately investigated and 

nowadays new issues are being studied. Costs reduction, development of more 

realistic analysis models, study of the structural vulnerability due to extreme 

loading conditions and safety assessment of existing bridges are topics which 

are receiving greatest interest. 

The present doctoral thesis has been developed in this context. In 

particular, it focused on the three following distinct issues:    
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• Propose a design methodology to define the optimum design of cable 

system of cable supported bridges; 

• Investigate the structural behavior of cable supported bridges due to the 

presence of damage mechanisms in the cable system under the action of 

moving loads; 

• Develop a numerical model to analyze the nonlinear behavior of self-

anchored cable-stayed suspension bridge. 

Each of these issues has been initially investigated from a theoretical 

point of view defining governing equations in a differential form. Subsequently, 

simply converting such governing equations in a variational form, results have 

been carried out by means of numerical techniques. In particular, the structural 

problem has been simulated by a displacement-based  finite element 

approximation implemented in a FE software, i.e. Comsol COMSOL 

Multiphysics. In particular, a 3D model of the bridge structure based on beam 

elements for girder and pylons and truss elements for the cable system has been 

defined in order to reduce the computational efforts in the numerical 

calculations. Specifically, the bridge girder is replaced by a longitudinal spline 

with equivalent cross-section and material properties, whereas the pylons are 

composed by two columns linked at their top by horizontal beam elements.  

The bridge girder is connected to the suspension system by means of 

explicit constraint equations, which are imposed between the off-set nodes of 

the girder and those associated to the cable elements. The cable system, which 

is connected to the pylons and girder, is essentially defined by the combination 

of stays, hangers and main cable. In particular, the cable system is modeled 

according to the Multi Element Cable System (MECS) approach, in which each 

cable is discretized using multiple truss elements. The stiffness reduction caused 

by sagging is accounted by allowing the cable to deform under applied loads. 

Large deformations are reproduced by using Green Lagrange 

formulation and the axial strain is calculated by expressing the global strains in 

tangential derivatives and projecting the global strains on the cable edge. 

The first part of the thesis focused on the definition of a new design 

methodology. In this context, the finite element model of the bridge structure 
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has been combined with an  optimization design method in order to quantify the 

optimum dimensioning of the cable system and the post-tensioning stress in the 

dead load configuration according to the so called “performance based design”

(P.B.D.), which means the best utilization of the weight utilized in the structure 

and thus the lowest possible costs in the bridge construction. 

The method is consistent with an two-step numerical algorithm able to 

evaluate the optimum solution with respect to both dead and live load 

configurations, taking into account design constrains concerning serviceability 

and ultimate limit states. In particular, under dead loads, the analysis is 

developed with the purpose to calculate the post-tensioning cable forces to 

achieve minimum deflections for both girder and pylons. Moreover, under live 

loads, for each cable elements, the lowest required cross-section area is 

determined, which verifies prescriptions, under ultimate or serviceability limit 

states, on maximum allowable stresses and bridge deflections. The final 

configuration is obtained by means of an iterative procedure, which leads to a 

progressive definition of the stay, hanger and main cable characteristics, 

concerning both post-tensioning cable stresses and cross-sections.  

It is worth noting that the iteration procedure as well as the optimization 

problem have been developed by using an external subroutine, which combines 

LivelinkTM for Excel package and Comsol Multiphysics. The algorithm was 

implemented by means of proper customized subroutines, which manage the 

parameters involved in the iterative procedure. However, the proposed 

formulation can be implemented in several computational frameworks, since it 

is based on data, which can be easily extracted and handled from quite standard 

commercial FE softwares.  

The proposed model has been validated and tested by means of several 

studies on different bridge schemes. In particular, in order to prove the 

efficiency of the proposed approach to predict the cable system dimensioning 

and post-tensioning stresses of the cable elements, comparisons with existing 

optimization techniques available from the literature have been performed. 

Subsequently, the robustness of the design methodology has been checked 

performing the optimum design of a self-anchored cable-stayed suspension 

bridge with a small central span and a reduced number of elements. Finally, 
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further results have been developed for more complex structures involving 

several configurations of the cable system and a large number of variables such 

as those involved in long span bridges. This to prove the wide applicability of 

the proposed methodology. 

From the results, the following conclusions can be drawn: 

1. The proposed methodology can be considered a useful tool in the 

prediction of the required cable dimensioning and post-tensioning 

forces, since it is able by mean of a limited number of convergent 

iterations to provide the optimum design solution in terms of stress and 

displacements variables; however, in the present analysis, the optimum 

configuration is carried out with respect to the cable system elements 

only, without entering in the optimization of the pylon and girder 

characteristics; 

2. despite existing methodologies based on pure optimization procedure, 

the proposed method seems to be not affected by numerical 

convergence problems, since it is based on a hybrid two-step algorithm, 

in which the solution is enforced by using physically based expressions;  

3. The proposed algorithms is based on a simple procedure, which can be 

easily handled on the basis of data available by using standard 

commercial FE software packages. 

4. the optimum solution is searched according to maximum utilization 

material criterion, for which under LL combinations, it is supposed that 

the worst stress should be equal to the corresponding maximum stress, 

leading, globally to a reduced steel quantity in the cable system;  

5. the increments of the cable system stiffness is achieved by using proper 

performance factors based on a secant description of the cable stiffness, 

which are able to reduce bridge deformability, thus verifying  

prescriptions on maximum deflections of girder and pylons; 

6. for the cable-stayed bridge scheme, the results show that cables which 

require larger values of steel quantity than the rest of the elements are 
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those associated to the anchor stays or the longest elements in the 

midspan; 

7. the analyses for the investigated case on a long span bridge have shown 

that pure suspension or cable-stayed bridge schemes present values of 

total steel quantity larger or lower than that associated to the HCS 

configuration, with percentage errors equal to 108 and 76, respectively. 

However, for CS bridges, the reduced value of the involved steel 

quantity is compensated by the construction of the pylons, which 

present larger height with respect to conventional SP or HCS bridge 

schemes. 

The second part of the thesis has treated the investigation on the 

behavior of cable supported bridge scheme subjected to damage mechanisms 

under the action of moving loads. The purpose of this investigation was to 

analyze the amplification effects of the bridge structure produced by the moving 

load application and damage mechanisms in the cable system. Moreover, the 

analysis focuses attention on the influence of the inertial characteristics of the 

moving loads. 

The damage definition concerning the cable failure mechanisms has 

been formulated by using damage law based on Continuum Damage Mechanics, 

which, correctly, reproduce the time dependent nature of the cable failure. In 

particular, the presence of damage mechanisms in the cable system involved by 

degradation phenomena are supposed to produce a reduction of the cross-

section area. 

The moving system description refers to railway vehicle loads, which 

are reproduced by means equivalent uniformly distributed loads, perfectly 

connected to the girder profile which proceed with constant speed along the 

bridge development. As a result, the kinematic parameters of the moving system 

coincide with the ones defined by the girder, neglecting frictional forces arising 

from the external loads, roughness effects of the girder profile, and local loading 

distribution produced by railway load components. It is worth nothing that, 
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these assumptions are quite recurrent in the framework of cable supported 

bridges with long spans, in which, typically, such interaction forces produced 

by localized dynamic effects are negligible with respect to the global bridge 

vibration. 

The study has been performed by mean of dynamic nonlinear analysis.  

The purpose of the investigation was to evaluate the dynamic 

amplification effects of the bridge structure produced by the moving load 

application and damage mechanisms in the cable system. In particular, in order 

to quantify the amplification effects produced by the moving loads over the 

static solution, numerical results are proposed in terms of dynamic amplification 

factors for undamaged (UD) and damaged (D)  bridge structures in terms of the 

moving loads and the bridge characteristics. It is worth noting that (UD) 

configurations refer to a bridge structures, in which cables are not affected by 

any damage mechanisms. Contrarily, damaged (D) cable system corresponds to 

bridge configurations, in which one or more cable elements are subjected to the 

explicit damage mechanism. 

Two sets of results has been produced: the first one concerns the 

analysis of cable-stayed bridges subjected to an accidental failure in the cable 

system. Sensitivity analyses of typical design bridge variables as well as effects 

produced by the moving system characteristics, pylon typologies and the failure 

mode characteristics involved in the cable system have been investigated by 

means of comparisons between damaged and undamaged bridge configurations. 

Such results aims to reproduce damage cases treated by P.T.I. and S.E.T.R.A. 

and, as a consequence, is useful to check the accuracy and effectiveness of the 

suggested simplified method. The analyses have shown that the presence of 

damage mechanism in the cable system is able to produce larger D.A.F.s then 

those obtained for undamaged bridge configurations. The D.A.F.s strongly 

depend on the moving system speeds and the mass schematization. 

Underestimations in prediction of D.A.F.s and maximum design bridge 

variables are noted for the cases in which the inertial description of the moving 

mass is not properly taken into account. The results developed in terms of the 

damage mechanism configuration, moving mass description, and bridge 

properties have shown that recommendations provided by existing codes, that 
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is, P.T.I. and S.E.T.R.A., become unsafe in many cases. As a matter of fact, 

results developed in terms of the damage mechanism characteristics have shown 

that the damage mode which produces the worse effects on the bridge behavior 

is that associated with the failure of the anchor stay. In particular, the analyses 

have pointed out that damage mechanisms involving the failure of the lateral 

anchor stay are able to produce large amplifications in the investigated 

parameters, whose ranges with respect to the static undamaged value are equal 

to 2.5–3.5 for vertical midspan displacement, to 5.5–8.5 for midspan bending 

moment, to 1.3–2.8 for midspan torsional rotation, and to 1.9–2.3 for the anchor 

stay axial stress. The results developed in terms of the damage mechanism 

characteristics have shown that the damage mode, which produces the worse 

effects on the bridge behavior is that associated with the failure of the anchor 

stay. Comparisons developed in terms of tower topology have shown that the H-

shaped tower bridge is much more affected than the A-shaped one, since the 

failure modes produce an unbalanced distribution of the internal stresses in the 

cable system, leading to larger torsional rotations and vertical displacements of 

the tower and the girder, respectively. It is worth noting that only the effects 

produced by moving loads are considered in the results. However, in the 

framework of cable-stayed bridges, another severe loading condition is the one 

related to wind effects. As a matter of fact, damage mechanisms in the cable 

system, among which a typical example is the one considered in the present 

paper, may amplify the resonance effects related to aeroelastic instability 

phenomena, leading to a premature bridge collapse. 

In the second part of the investigation, comparisons with bridge 

schemes based on hybrid cable-stayed suspension, pure cable-stayed and 

suspension cable system are proposed. The study is conducted with the purpose 

of investigating the vulnerability of the structure against damage and complete 

failure phenomena produced in the cable system by means of comparisons 

between damaged and undamaged bridge configurations. In particular, the 

enhanced properties of the hybrid cable-stayed suspension bridges are point out, 

also in the light of existing codes on cable supported bridges. From the 

analyses, the following main conclusions can be developed. 



242                                                                CHAPTER 5 

242 

�

1. For all damage scenarios, the HCS bridges present lower deformability 

and stress vulnerability indexes than those observed for pure cable-

stayed and suspension bridge schemes. The presence of a combined 

cable system, formed by both hangers and stays, is able to better 

redistribute the additional stresses produced by internal damage 

mechanisms in the bridge components.  

2. The analyses denote that inertial forces arising from moving loads and 

those involved by the damage mechanisms are able to produce relevant 

amplification effects with respect to the static behavior. Such results 

have been analyzed with respect to several descriptions of the DAFs, 

which quantity the increments in the design bridge variables, i.e. 

bending moments and displacements, with respect to the static solution. 

The results denote that underestimations on the prediction of maximum 

values of both stresses and displacements are observed, if a transient 

analysis with a refined description of the inertial contributions is not 

carried out.  

3. The worst damage scenario that affects the pure cable-stayed bridge is 

the one associated with the failure of the anchor stay, which produces, 

also in the case of dead loading, displacements of the girder, which are 

much larger than the corresponding ones commonly recommended by 

serviceability limit state prescriptions.  

4. For the suspension system, the damage to the main cable produces 

effects on the bridge behavior only for high values of the damage 

parameters. Contrarily, dangerous effects in the cable stress distribution 

with large values of the vulnerability are observed for the damage 

scenarios affecting the hangers elements.  

5. The analyses denote that PTI prescriptions cannot be applied in the case 

of pure suspension and cable-stayed bridge schemes, since 

discrepancies in the prediction of deformability and stresses parameters 

are observed with respect to the analyses presented by the proposed 

modeling.  
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From the results obtained by the present analysis and for the 

investigated cases, it appears that hybrid cable-stayed suspension bridges 

present an enhanced behavior to reduce additional stresses produced by 

accidental failure mechanisms with respect to conventional bridges based on 

pure cable-stayed and suspension systems, producing lower deformability and 

stress variables in both girder, pylon and cable-system elements. However, 

further results are necessary to verify such behavior also in the case of short or 

medium span bridges. It is worth nothing that, the study of the coupled 

aeroelastic and damage effects was not considered in the present formulation 

and it could be an object of future investigation. 

Finally, the last part the thesis has focused on the analysis of the 

nonlinear behavior of cable supported bridges considering both geometric and 

material nonlinearities. Geometric and material nonlinearities affect cable 

supported bridges behavior significantly. Material nonlinearities come from the 

nonlinear stress–strain behavior of materials arise when one or more bridge 

elements exceed their individual elastic limits. On the other hand, geometric 

nonlinearities may arise from different sources. The cable system is affected by 

nonlinear behavior of single elements, since they exhibit a different response in 

loading and in unloading due to the cable “sag” effect induced by self-weight.  

Girder and pylons are composed by shallow or slender element which are very 

flexible and are affected by large displacements. Moreover, nonlinear effects 

may arise owing to the so-called beam-column effect due to the axial force–

bending moment interaction. It is worth nothing that, beam-column effect can 

occur in cable supported bridges whose cable system configuration includes 

cable-stayed portions as pure cable-stayed, hybrid cable-stayed suspension and 

self-anchored cable-stayed suspension schemes. In these cases, since an high 

pretension force exists in stays, girder and pylons are subjected to a large axial 

compression and bending moment under the action of dead and live loads. 

Lateral deflection and axial force are interrelated such that the bending stiffness 

is dependent on the element axial force and the presence of bending moments 
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will affect the axial stiffness. In particular the element bending stiffness 

decreases for compression axial force and increases for a tension force.

 In the proposed study, the maximum load carrying capacity of self-

anchored cable-stayed suspension bridges taking into account all nonlinearity 

sources has been investigated. To this end, the finite element model of the 

bridge structure described above has been enhanced with further formulations 

relative to the material inelastic behavior. In particular, for the girder and 

pylons, a gradual yielding theory based on the (CRC) tangent modulus concept 

and a plastic hinge model has been employed, while for cable elements the 

finite plasticity theory of Green and Naghdi has been adopted.  

The bridge structure has been studied by a limit point instability 

approach based on the use of a quasi-static transient analysis with increasing 

live loads. By this way, the evolution of the bridge structure has been traced up 

to the maximum load.  However, since the bridge behavior is mostly influenced 

by the post-tensioning cable force distribution, the Zero Displacement Method 

has been employed to identify the initial geometrical configuration of the bridge 

under the action of dead loads. 

It is worth noting that the structural response is obtained by solving 

nonlinear and differential equations relates, respectively, to the structural 

response, which account for the geometric nonlinearities, and to the inelastic 

material behavior. For this reason, the finite element model of the structure is 

coupled with several equation-based models, each of them related to definition 

of the inelastic properties of cables, pylons and girder. 

 The main aim of the investigation has been to analyze the influence of 

the nonlinear material behavior as well as the geometrical and structural 

parameters of the bridge on the maximum bearing capacity of the structure. 

From the results, the following conclusions can be drawn: 

1. With reference to a self-anchored cable stayed bridge which has been 

defined by different models which differ from each other depending on 

the possibility that cables and/or pylons and girder can assumed an 

elastic or an elastic plastic behavior, results have shown that the 
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inelastic material behavior affects significantly the maximum load 

carrying capacity of the bridge structure.  

2. The bearing capacity of the bridge structure increase with the length of 

cable-stayed portion. Short cable-stayed portion imply short side spans 

and a cable system more similar to a suspension system which increases 

the deformability of the central span. Such configurations make the 

structure suitable to local buckling instability of the girder due to a 

lower stiffness offered by the cables system and a lower stabilizing 

effect due to the counterweight of the side spans. 

3. High values of girder and pylon bending stiffness lead to considerable 

benefits in terms of maximum load. Such parameters directly controls 

the geometric dimensions of structural members and, as a consequence, 

larger dimensions avoid local buckling instability and plastic strain so 

that the entire structure still remain elastic for higher value of load. 

4. The cable-stayed portion, which can assume a fan, semi-fan or harp 

configuration affect the structural behavior. A fan system has implied 

the best performances specially with reference to low values of the 

height-span ratio parameter which implies short height pylons. The harp 

configuration has offered a good structural behavior for high pylon 

height. 

5. The midspan length hasn’t altered significantly the value of the 

maximum load, so the structural system retains its properties for any 

scale.  

�
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