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Sommario

I RISULTATI scientifici presentati nella tesi di dottorato riguardano la modellazione
numerica, attraverso la tecnica lagrangiana SPH debolmente compressibile, di prob-
lemi di interazione fluido-struttura. Diversi aspetti, sia di natura puramente model-

listico fisica che di natura ingegneristica ed applicativa, vengono investigati nella tesi.
Nello specifico, parte dei risultati presentati ha come primo obiettivo la validazione

del modello numerico, ottenuta attraverso diversi test preliminari: in primis la conser-
vazione della soluzione idrostatica in un serbatoio d’acqua, dopodiché diversi test di-
namici in cui viene presentata la conservazione dell’energia, dimostrando come l’energia
meccanica dissipata dal sistema venga esattamente trasformata in energia termica. Al-
cuni aspetti legati all’ipotesi di debole compressibilità adottata alla base del modello
SPH considerato, riguardanti l’istantaneo accumulo di energia elastica durante impatti,
vengono già messi in luce in questa parte della tesi. I test dinamici svolti riguardano
dunque l’evoluzione nel tempo di una massa d’acqua di forma circolare sottoposta
ad un campo di forze centrale che periodicamente evolve in forme ellittiche, l’analisi
dell’evoluzione di diversi casi di dam-break e l’evoluzione nel tempo di un fenomeno
di tracimazione di un ostacolo orizzontale investito dal moto ondoso.

Uno degli argomenti centrali della tesi di dottorato riguarda l’analisi dell’interazione
di onde con strutture costiere come cassoni forati. I cassoni forati sono strutture marit-
time ampiamente utilizzate nelle zone portuali con l’obiettivo di minimizzare dell’ener-
gia riflessa del moto ondoso al fine di limitare oscillazioni di grande ampiezza dovute
alla sovrapposizione di onde incidenti e riflesse, garantendo quindi, durante le mareg-
giate, condizioni di sicurezza per la navigazione. Suddette strutture sono state studi-
ate, fino ad ora, essenzialmente attraverso modelli approssimati ed analisi sperimen-
tali, mentre l’utilizzo di un modello numerico di dettaglio è stato raramente impiegato
per il loro dimensionamento. In questo contesto, il modello SPH è stato implemen-
tato per studiarne nel dettaglio il comportamento idraulico e di stabilità strutturale. In
particolare, durante le analisi numeriche si è andati incontro a difficoltà sia di natura
computazionale che di natura modellistica nella loro simulazione. Una prima diffi-
coltà è consistita nella riproduzione numerica dei muri verticali forati che costituis-
cono la parete frontale di queste strutture in quanto, essendo spesso caratterizzati da
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spessori sottili, rendono la simulazione computazionalmente onerosa nel contesto nu-
merico SPH. In questo contesto vengono introdotte le multi-node fixed ghost particles,
che consentono di poter utilizzare un numero totale di particelle pari ad (1/2)D, in cui
D è il numero di dimensioni spaziali del problema, il numero totale di particelle altri-
menti necessario. Nelle analisi effettuate relative a cassoni pienamente e parzialmente
forati, in cui D = 2, il risparmio in termini di tempo di calcolo è stato rispettivamente
del 79,5% e del 77.7 %.

Un altro aspetto modellistico cui si è andati incontro nella simulazione dei prob-
lemi considerati è legato alla presenza di rumore nel campo di pressione ottenuto dalla
soluzione SPH, che porta in molti casi a risultati difficilmente utilizzabili ai fini in-
gegneristici. Questo aspetto, che viene investigato in dettaglio nell’ultima parte del
lavoro di tesi, è legato alla componente acustica della soluzione fornita dai modelli
in cui il fluido è supposto essere debolmente compressibile. Nel tentativo di limitare
tali oscillazioni in alta frequenza del campo di pressione, negli ultimi anni diversi au-
tori hanno introdotto diversi termini diffusivi che agiscono all’interno dell’equazione
di continuità. In generale questi modelli possono essere raggruppati in due formu-
lazioni: la prima è costituita da termini che fanno riferimento alla formula di Morris;
la seconda, nota come δ-SPH differisce dalla prima essenzialmente per l’aggiunta di
gradienti renormalizzati del campo di densità. La prima famiglia di modelli è carat-
terizzata dall’introduzione di errori numerici in prossimità della superficie libera ed,
inoltre, l’azione di “smoothing” deteriora la soluzione idrostatica nel tempo. In pre-
senza invece di impatti l’azione diffusiva svolta da questi modelli risulta essere efficace
nell’attenuazione di onde di shock non fisiche successive all’impatto. Il modello δ-
SPH, essendo invece un operatore più accurato, non introduce alcun errore vicino alla
superficie libera e conserva la soluzione idrostatica nel tempo. Nel caso invece di im-
patti, questo modello risulta essere meno efficace nell’azione di attenuazione delle onde
di shock.

Al fine di avere un modello che conservi le proprietà del fluido quando questo è
caratterizzato da fenomeni di dinamica lenta e che agisca al meglio nel processo di
attenuazione delle onde di shock conseguenti a dinamiche di impatto, o veloci, viene
introdotto un modello diffusivo ibrido che permette di passare da una formulazione
all’altra, a seconda delle condizioni presenti nella massa fluida, grazie all’introduzione
di un parametro, β, che attiva o disattiva i gradienti renormalizzati di densità.

La modellazione dei contorni solidi sottili ed i termini diffusivi ibridi presentati
vengono implementati per la simulazione numerica SPH dell’interazione onda-cassone
forato. I risultati analizzati riguardano sia l’aspetto di stabilità dell’opera, riguardante
in questo caso la valutazione delle pressioni dinamiche agenti sulle pareti della strut-
tura, sia l’aspetto idraulico, riguardante la valutazione dei coefficienti di riflessione. Per
quanto concerne le distribuzioni di pressione, i risultati numerici ottenuti dimostrano la
presenza di cadute di pressione in prossimità dei fori della struttura legati all’effetto
Bernoulli. Questo risultato numerico richiede, ad ogni modo, una più profonda inves-
tigazione dal punto di vista sperimentale, attraverso l’osservazione del comportamento
del campo di moto in prossimità dei fori della parete. Per quanto concerne invece le
analisi idrauliche, i coefficienti di riflessione sono stati valutati attraverso un metodo
classico, considerando diversi valori del rapporto tra la larghezza della camera di assor-
bimento e la lunghezza d’onda.
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Nell’ultima parte del lavoro di tesi viene investigato il problema del rumore acus-
tico nelle soluzioni ottenute dal presente modello SPH (e che riguarda, in generale,
tutti i modelli debolmente compressibili) e viene presentata una procedura per il fil-
traggio corretto di tale componente basata sulla trasformata wavelet. L’idea che sta alla
base della procedura di filtraggio presentata si basa sul fatto che la soluzione debol-
mente compressibile può essere scritta, per piccoli valori del numero di Mach, come la
sovrapposizione di una soluzione incompressibile più una perturbazione acustica. Le
equazioni di Navier-Stokes debolmente compressibili vengono dunque analizzate met-
tendo in evidenza la presenza di perturbazioni acustiche. Tale componente acustica è
risolta analiticamente per un caso circolare, per cui viene dimostrato come i modi di
vibrare ottenuti analiticamente corrispondano esattamente alle frequenze di vibrazione
ottenute dal segnale di pressione simulando lo stesso problema con SPH. L’analisi suc-
cessiva è effettuata considerando il problema della massa d’acqua sottoposta ad un
campo di forze centrale. In questo caso, si osserva come la procedura presentata at-
traverso le wavelet consenta di filtrare correttamente la componente acustica, ottenendo
esattamente la soluzione analitica. Questo risultato, essendo infatti caratterizzato da
dinamiche non di impatto, è caratterizzato da un definito disaccoppiamento delle com-
ponenti acustica ed incompressibile, facendo si che il processo di filtraggio consenta di
eliminare esattamente la componente acustica.

I casi analizzati successivamente riguardano invece dinamiche più complesse, in cui
avvengono impatti fluidi, caratterizzati quindi da singolarità nel campo di pressione. In
questi casi si osserva come, al crescere dell’impulsività del fenomeno, la componente
acustica ed incompressibile risultino sempre più accoppiate tra loro, per cui la proce-
dura di filtraggio inevitabilmente elimina insieme alla componente acustica anche parte
della soluzione incompressibile del problema, ovvero quella fisicamente basata. Tali
risultati vengono analizzati considerando un cuneo d’acqua che impatta su una parete
verticale e prendendo in esame un caso di sloshing in cui si osservano fenomeni di
frangimento delle onde.
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Abstract

THE present thesis deals with the numerical modeling of fluid-structure interac-
tion problems through the Lagrangian weakly-compressible Smoothed Particles
Hydrodynamics (SPH) method. Different aspects, embracing computational en-

hancements, investigation on physical issues of weakly-compressible solutions and ap-
plications to engineering problems, are investigated. In particular, the initial investiga-
tions aim to validate the numerical model through several preliminary tests: a first one
dealing with the conservation of the hydrostatic solution for a still water tank, then var-
ious test cases in dynamic conditions in which the conservation of energy is analyzed,
showing the dissipation process of mechanical energy into thermal energy during the
flow evolution. Some aspects related with the weakly-compressibility assumption in
SPH, regarding the instantaneous accumulation of elastic energy during impacts, are
highlighted in this part of the thesis. Preliminary tests in dynamic conditions refers to
the time evolution of a water drop subjected to a central force field, dam-break flows
and a wave overtopping a horizontal deck placed above the still water level.

A central argument of investigation is the wave interaction with coastal structures,
such as perforated breakwaters. In this context, the SPH method is used to analyze the
performances of these structures in terms of wave pressures at the walls and reflection
coefficients. Some difficulties have been encountered for their numerical modeling. In
particular, since the slotted front walls of the caissons are often characterized by a small
thickness, the result is that, for a correct numerical treatment of thin solid elements, a
high spatial resolution is required, resulting in an expensive computational cost for the
simulation. The fixed ghost particles technique to model the solid boundary is here
extended through the adoption of more interpolation nodes for the same solid particle,
resulting in a multi-node approach. In the proposed multi-nodes fixed ghost particles
approach allow for a reduction of the total number of particles to (1/2)D, in which D
is the number of dimensions of the problem, the total number of particles otherwise
needed with a classical approach.

Another aspects analyzed in the thesis is the presence of noise in the pressure so-
lution related to the acoustic component of the weakly-compressible SPH solvers. In
order to limit the occurrence of pressure disturbances, several authors have introduced
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different diffusive corrections acting within the continuity equation to stabilize the so-
lution. Synthetically, these models can be grouped into two families. The former refers
to the terms approximated through the Morris formula, while the latter refers to the
δ-SPH model, that differs for the addition of renormalized density gradients. For the
cases characterized by water impacts the Morris-like formulations result to be more ef-
fective in the smoothing of unphysical shock waves consequent the impacts, while the
δ-SPH is more suitable in slow dynamics problems in which it results to be more con-
servative for the flow properties. In this context, a hybrid diffusive formulation between
these two diffusive terms is introduced in order to deal with problems characterized by
phenomena in which both slow and fast dynamics occur.

The simulation of wave interaction with perforated breakwater are performed by
implementing the mentioned improvements. Regarding the wave pressure distribution,
the numerical results have shown the presence of pressure drops close to the holes of
the structures. This fact is related with the Bernoulli effect’s and is due to the pressure
gradients encountered between the holes of the breakwater. Regarding the hydraulic
analysis, the reflection coefficient is evaluated through the method of Goda and Suzuki
considering time series of surface elevations for different values of the ratio between
chamber width B and wave length L.

In the last part of the thesis, the drawback of the noise in the pressure field is deeply
investigated. Indeed, the use of the diffusive formulations allow for a smoothing only
of the high frequency noise related with the scale length of the support kernel where the
diffusive term operates. However pressure perturbations still persist in the numerical
solution. The result is that often the SPH pressure solutions have to be filtered in
order to obtain a practical result for engineering applications and this procedure is often
arbitrarily performed. In this context a precise filtering algorithm, based on the wavelet
transform, is introduced. The basic assumption for the methodology is that the weakly-
compressible solution can be expressed, under certain conditions, as a superposition
of an incompressible solution and an acoustic perturbation. The wavelet transform
allows therefore to identify the frequencies related with the acoustic perturbations and
recover the incompressible solution by filtering the acoustic component. This method
is applied considering different test cases. In particular, it is highly efficient for cases in
which violent fluid impacts do not occur and therefore the incompressible and acoustic
components can be decoupled. When the impulsiveness of the flow dynamic increases
the incompressible and acoustic perturbation result to be coupled resulting in difficulties
for the application of the filtering procedure. The analyzed cases regard a water wedge
impacting a vertical wall and a sloshing process with the formation of breaking waves
during the flow evolution.
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CHAPTER1
Introduction

1.1 Outline of the thesis

A topic of relevant interest in a broad range of applied sciences is the interaction be-
tween fluids and structures. Hydraulic engineers invest enormous efforts in the study
of various phenomena dealing with water dynamics in presence of solid bodies, espe-
cially when impulsive situations like water impacts or slamming on perforated/solid
walls take place. These studies prove to be fundamental for the support of the design
process in terms of knowledge of the efficiency, performances and also durability of
the analyzed structure. In coastal engineering field, these issues find applications in
different research subjects. Among them it is possible to mention the understanding
of the water dynamics through slotted structures such as perforated breakwaters, the
comprehension of complex flow dynamics such as wave overtopping, reflection and
transmission, sloshing processes and the knowledge of the actions exerted by waves on
rigid elements in breaking and non-breaking situations. The present thesis deals with
the numerical modeling of the interaction between fluid and structures.

One of the most affirmed and reliable approach in solving complex fluid dynamic
problems is furnished by the numerical analysis. Nowadays grid-based numerical met-
hods are widely applied to various areas of computational fluid mechanics and represent
the dominant approach to solve fluid dynamic problems. In grid-based models a pre-
requisite for the numerical simulation is the mesh generation for the problem domain.
Since different phenomena studied in this thesis are characterized by violent dynamics
with large fluid deformations, their analysis result to be a quite difficult matter when
a conventional method is employed. Situations characterized by strong deformations,
such as breaking waves, splashing and fragmentation, contain intrinsic difficulties for
standard methods. Indeed, in Eulerian grid methods, the construction of a regular grid
for irregular or complex geometries requires additional computations that can be, in
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1.1. Outline of the thesis

some cases, even more expensive than solving the problem itself. Despite the great
success, grid-based numerical methods still suffer from some difficulties in different
aspects, which limit their applicability in many problems.

In this context, the Smoothed Particle Hydrodynamics (SPH) model, because of its
meshless nature, represents a good alternative. In SPH the flow evolution is described
following the motion of a set of fluid particles, resulting in a Lagrangian representa-
tion of the fluid. The SPH particles, being both approximation points and material
components, allow for a simple tracking of the fluid evolution for problems in which
large deformations occur. It has to be also underlined that some theoretical aspects
of the SPH related with the accuracy of the method are elusive when dealing with a
set of disordered particles. This aspect induced a general mistrust from the scientific
community with respect to the reliability of the method. However, the insights and en-
hancements obtained in the last decades from different researchers allowed for a deeper
understanding of the SPH nature and resulted in improvements in terms of its stability
and applicability. These achievements lead to the implementation of SPH to a wider
number of hydraulic problems, resulting therefore in an increasing number of practi-
tioners. Moreover, the development of the computational capability of the calculators
allowed to perform simulations of detail for problems whose study is practically im-
possible to achieve employing another approach. Today, in fact, it is customary to see
SPH simulations performed with the order of a billion or even more number of particles
to reproduce full-scale dynamic problems.

The SPH has been already largely applied for analyzing offshore and coastal engi-
neering problems. In recent years the study of different coastal structures found a wide
interest for their construction in harbors and marine areas. Among them it is possible
to mention the perforated breakwaters. The aim of these structures regards the dissi-
pation of the incident wave energy, allowing for safe navigation conditions during sea
storms. The dissipation process that occurs in the non-reflective cells of the perforated
breakwater, depends on the geometrical configuration of the caisson chamber. Their
configurations, as it is possible to see in Fig. 1.1, can be even complicated in order to
maximize the dissipation process. In this context, the mechanics of the dissipation is
not yet well understood. The water dynamics inside the chamber of the caisson, in-
duced from the wave action, is a complex phenomenon in which the pressure gradients
between the outside and the inside of the structure regulates the flow evolution. The
hydraulic efficiency of the breakwater is measured in terms of reflection coefficient,
generally defined as the ratio between the reflected and incident wave amplitudes. This
parameter, at a first approximation, is dependent on the incident wave length, L, and
on chamber width, B. For this reason it is usual to study their performances by varying
the ratio B/L.

The dimensioning of perforated breakwaters is essentially based on approximated
formulas. Classical methods to predict wave forces on dikes and slotted walls are based
on empirical formulations, obtained from laboratory observations. The use of numer-
ical methods to simulate their performances has been rarely adopted to support their
design. In this context, the present thesis aims to furnish an insight to understand the
wave dynamics into the chamber, the actions exerted by the waves at the walls of the
structure and the hydraulic properties regarding the reflection coefficient.

When the fluid-structure interaction becomes more violent, the actions exerted on
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Figure 1.1: Perforated breakwater made by cellular concrete caissons, crown walls and anti-reflective
cells in Porto Torres, Italy (De Girolamo [41]).

the solid elements becomes more severe and their knowledge is essential for engineer-
ing purposes. Indeed, protective structures like sea walls and their slender components
such as crown walls, need to be sufficiently robust to withstand the most violent wave
impacts. Fig. 1.2 shows a wave breaking on a vertical wall and represents a situation
often encountered in case of sea storms. The complexity of these phenomena is far to
be completely understood resulting, also in this case, in the use of simplified models for
their characterization. The size and duration of water-wave impact pressure are rela-
tively well investigated in literature. Blackmore and Hewson [14] found that for a wave
with a height of about 1 m the maximum pressure can be of the order of 105 N/m2. The
remarkable evidence is that, during these events, the pressure rises and falls in a time
window of the order of 10−3 s. The study of phenomena characterized by violent fluid
interaction with solid structures is today investigated through both experimental and
numerical analyses. Regarding the former, the accuracy of the measurements is fun-
damental for a correct evaluation of the pressure peaks and experimental sensors with
high frequency sampling and spatial resolution are necessary to capture these rapid dy-
namic changes and the spatial occurrence. These instrumentation are often expansive
and require for their installation a troublesome procedure, particularly at the edges of
the structures and along curved boundaries.

On the other hand, the numerical analysis offers another approach to study the prob-
lem. Also in this case there are some shortcomings in modeling these events. In compu-
tational fluid mechanics, especially when the interaction between fluid and structure be-
comes more impulsive, it is fundamental to know the features of the numerical scheme
adopted and the hypothesis made for the fluid, or for the mixture of fluids, in order
to obtain results related with the real physics of the problem. For example, the fluid
in SPH is generally modeled as a weakly-compressible medium. Though convenient
form a computational point of view, this assumption sometimes leads to the appearance
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of high frequency noise in the pressure field. The presence of these pressure oscilla-
tions in the SPH solution makes the result unpractical for engineering applications if
the data are not post-processed. For this reason, the pressure results are usually fil-
tered and the choice of the type and magnitude of the filter is often made in a arbitrary
way. In this context, the thesis presents a deeper study of the acoustic component in
weakly-compressible solutions and a rigorous approach for their filtering based on the
individuation of the acoustic frequencies. The filtering of the acoustic component in

 

Figure 1.2: Snapshot of a wave impacting a vertical wall (photograph D.H.Peregrine).

weakly-compressible schemes allows therefore to recover the incompressible solution
of the problem. Generally, most of the problems characterized by impulsive fluid dy-
namic can be simulated with this approach. Fig. 1.3 presents a simplified scheme of a
wave breaking on a vertical wall, with a particular focusing on the contact area of the
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impact. As it is possible to see, the wave configuration at the wall can be schematized
as a water wedge characterized by a deadrise angle, α, defined as the angle between
the wall and the approaching water mass. In this case the dynamic of the impact is
highly dependent on the value of the deadrise angle. As pointed out by Zhao and
Faltinsen [159], only when α > 4◦ the compressibility effects of the fluid are negligible
and an incompressible description of the dynamic is physically correct. In this case,
moreover, if the fluid is modeled as weakly-compressible the filtering of the acous-
tic component allows to recover the incompressible solution, under the condition that
acoustic and incompressible components are decoupled.

    (a)                                                                                                                  (b) 

Figure 1.3: Wave breaking onto a vertical wall; in (a) is the wave configuration at the wall, while in (b)
is a schematized description of the impact (Lu et al. [90]).

A different situation is encountered in the limit condition of a flat impact, i.e. when
α → 0, in which the water hammer (acoustic) effect related with the real compress-
ibility of the medium defines the magnitude of the exerted actions. In this case, if the
fluid is modeled as incompressible the effects related with the water compressibility
are not contemplated in the numerical solution missing to capture the acoustic shocks.
In this case, the incompressible pressure field solution instantaneously “adapts” to the
new configuration after the impact. As it is possible to see in Fig. 1.4 (a), in presence of
a flat impact, modeled with a mono-phase incompressible model, the pressure field is
dependent on the time-step adopted. In this case, indeed, when the numerical solution
tends to the original differential problem, i.e. ∆t → 0, the pressure solution becomes
singular, P Inc

MAX → ∞. In singular conditions therefore the incompressible solution
could not be representative for the problem.

A different situation is encountered when the fluid is modeled as weakly-compressible.
In this case, as described before, the pressure peak is determined by the acoustic shock
and is therefore dependent on adopted speed of sound for the simulation, c. As it is pos-
sible to observe in Fig. 1.4 (b), for a flat impact modeled with a mono-phase weakly-
compressible model, the pressure peak assumes a value PComp

MAX = ρ0cU . This quantity
is indeed the pressure of the water-hammer (acoustic) effect, in which, however the
entity of the peak depends on the artificial compressibility given to the fluid through
the speed of sound adopted in the simulation. The pressure wave generated at the im-
pact propagates along the fluid domain, reflecting when arrives at the boundaries. In
this case, if the boundary is the free surface a negative wave pressure is reflected back,
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while if the boundary is a solid one, a positive wave pressure is reflected back. As
described in Marrone et al. [100], the wave reflection process continue until its energy
is dissipated.

U U 

 (a)                                                                                                           (b) 

 

 

 

Figure 1.4: Flat impact of a rectangular water patch to a horizontal wall; in (a) is the incompressible
solution, while in (b) is the compressible solution. (Colagrossi and Souto-Iglesias [31]).

As pointed out by Cooker and Peregrine [32], when describing the large brief pres-
sures of wave impact, the effects of compressibility of the fluid may play a role in this
case. Considering pure water at atmospheric pressure condition and temperature 20 ◦C,
the resulting speed of sound is c = 1484 m/s. This value however, is not represen-
tative of the fluid phase encountered at the impact interface, in which the trapped air
bubbles play a crucial role. As highlighted by Peregrine [124], for laboratory waves,
the compressibility of the air can give rise to two important features: an increase in
the duration of the pressure peak, with related reduction of peak pressure, and oscil-
lations of pressure following the peak. The effect of even a small volume fraction of
air in water greatly increases its compressibility. At atmospheric pressure, just 1% of
air gives a velocity of sound of 120 m/s, and velocities as low as 30 m/s for 20% of
air. High air percentages are characteristic of situation in which the wave breaking oc-
curs before the impact with the wall. In these cases the speed of sound of the mixture
air-water serendipitously assumes values in the range of those assumed for the artificial
speed of sound adopted in the weakly-compressible SPH simulations. The result how-
ever obtained from a weakly-compressible solution with the mentioned values of speed
of sound can not be considered for a comprehensive analysis of the phenomenon, if a
mono-phase approach is used. In these cases indeed, the problem needs to be modeled,
for an effective evaluation of the wave actions, by taking into account the presence of
air, using a double-phase model.

Since the analysis developed in the thesis are based on a mono-phase model, the
hydraulic applications analyzed all refers to problems in which the presence of air does
not play an effective role in the dynamic evolution.
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1.2 Brief overview on meshless methods

Numerical methods are based on the fundamental idea of discretize the computational
domain into a finite number of nodes in and solve the governing partial differential
equations with respects of these nodes. Classical methods need an a priori definition
of the connectivity between these points, resulting in the creation of a fixed mesh for
the considered problem. Following this strategy, the fluid results to be described with
a Eulerian approach: the observer keeps a fixed position in space resulting in a spatial
description of the flow quantities. The most well-known members of these widely de-
veloped mesh-based methods are the Finite Element Method (FEM), the Finite Volume
Method (FVM) and the Finite Difference Method (FDM).

A different approach is obtained when the partial differential equations are only writ-
ten on a set of nodes without the need for an additional mesh. This relatively new class
of numerical solvers are often referred as meshless, gridless, element-free or particle
methods. In this case, the fluid is described with a Lagrangian approach: the observer
follow the fluid trajectory by keeping a velocity identical to the fluid element, result-
ing in a material description of the flow quantities. A multitude of meshless methods
has been presented during the last decades and a comprehensive classification of these
approaches has been presented by Fries and Matthies [57].

One of the first particle methods was the Particle In Cell (PIC) model, introduced
in 1964 by Harlow [70]. Smoothed Particle Hydrodynamics was born in 1977 with
the works of Lucy [91] and Gingold and Monaghan [61], who presented a modified
version of PIC in which a pure particle treatment was also introduced for the pressure
term. Successively many other approaches have been developed. Among them it is
possible to mention the Diffuse Element Method (DEM) introduced by Nayroles et
al. [122], based on a Moving Least Square (MLS) approximation within a Galerkin
method. This approach resulted to be consistent and quite stable but more expensive
than the original SPH. Belytschko et al. [11] further developed this method and renamed
it Element Free Galerkin (EFG). Belytschko et al. [10] pointed out that all the methods
based on MLS approximation belong to a bigger class of meshless methods named
Partition of Unity. More recently the Meshfree Local Petrov-Galerkin (MLPG) and
Local Boundary Integral Equation (LBIE) have been developed and a description of
these methods is furnished by Atluri and Zhu [8].

Another family of meshless solvers is represented by the Vortex Methods. In this
case the fluid dynamic equations are written in terms of the vorticity field, being this
quantity the computational variable. Since the vorticity is defined as the curl of the ve-
locity field, this last variable is obtained through a spatial integral of the vorticity field.
Through this approach, moreover, the pressure field is not explicitly solved. A practical
introduction to this family of methods has been presented by Cottet and Koumout-
sakos [33]. By contrast with the SPH, in which it is more difficult to model vorticity
and in general turbulence, Vortex methods result to be very efficient for problems char-
acterized by high vorticity fields.

Among the mentioned meshless methods, SPH results to be one of the most used
and developed schemes for engineering applications. The versatility of the method is
one of the key point for the success of SPH and for these reasons it has been chosen for
the analysis in the present thesis.
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1.3 SPH: a state of art

SPH was firstly applied in astrophysical field to simulate the interaction of boundless
fluid masses in vacuum (see e.g. [91], [61]). For many years this technique has been
applied only to astrophysical problems. The method has been successively extended
to other contexts, with the aim to solve various engineering problems, from solid to
fluid mechanics and multiphase flows. Several researchers have recently devoted their
activity to improve this method. Therefore, the state of art about all the aspects of SPH
embrace many disciplines and for a more exhaustive description the reader should refer
to Monaghan [110]. In this section, the most remarkable contributes, related to the
outline of the thesis, are illustrated.

1.3.1 Stability issues and their enhancements

The properties of the continuous SPH interpolation are well known. When implement-
ing the method in computational mechanics, the integral interpolations becomes a sum-
mation over the total particles, Np, used to discretize the domain. Di Lisio et al. [43]
proved the convergence of the SPH discrete equation to the regularized Euler equation
for a generic polytropic fluid in the case of Np → ∞, when the number of interacting
particles Nint → ∞. Successively this result was also confirmed by Rasio [127] using
an analysis based on acoustic wave propagation. From these results it became clear that
the SPH method is always convergent when the fluid is discretized with an infinite num-
ber of particles each of them having an infinite number of interacting particles. This
result however gave no idea about what happens in practical situations, i.e. when Np

andNint are not infinite. In this case indeed it has been demonstrated that the solution is
strictly depended on the level of disorder assumed by the particles. In the case of parti-
cles collocated on a regular mesh with Nint constant and large enough, Colagrossi [26]
has shown that the integral interpolation inside the fluid domain presents a second order
accuracy, as in the case of the continuous formulation. A different situation is encoun-
tered when dealing with a set of disordered particles. In this case, only more recently
the behavior of the interpolation became clear. One of the first analysis on the disorder
in the SPH scheme has been presented by Quinlan et al. [126], where the analysis has
been conducted by a one-dimensional approach. In their work it is shown that, while
increasing the number of points, the second-order convergence is retained only up to
a certain threshold refinement. After that increasing the resolution does not reduce the
error interpolation. In the work by Antuono et al. [3] the analysis has been extended
disregarding the number of spatial dimensions, through the introduction of a parameter
defining the level of disorder. From these results it is possible to observe a degradation
of the accuracy, as the particle disorder increases.

Stability represents a crucial topic for the SPH method. One of the major issue when
dealing with a discrete SPH model is known as tension instability and represents the
major drawback of the method. When the particles are subjected to negative stresses
their resultant action becomes attractive, resulting in the introduction of unphysical
forces. As a consequence of the negative pressures an unphysical cavitation is observed
in the SPH solution. This situation is often encountered instantaneously after fluid
impacts, as a consequence of the negative shock waves generated in the collisions. A
first attempt to control this effect was presented by Monaghan and Gingold [112], with
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the introduction of an artificial viscosity into the momentum equation in order to damp
the oscillations appearing in shock waves. Successively Morris et al. [119] presented
another version for the artificial viscous term. The artificial viscosity presents the same
aspect of a real viscosity, but it differs from the latter because is a function of the
adopted resolution, i.e. it vanishes when Np → ∞. Even if the use of the artificial
viscosity do not allows to get rid of the SPH instabilities, it provides an improvement
on the numerical stability. Indeed, nowadays the use of an artificial viscosity is a tool of
common practice in SPH solvers. Another approach to the problem has been presented
by Moussa et al. [120] with the introduction of a Riemann solver to avoid the use of
artificial viscosity and regularize the pressure field.

Monaghan [107] presented an anticlumping term to introduce in the momentum
equation in order to avoid the clustering of the particles. This correction acts as a re-
pulsive force only when the pressure of the particles becomes negative and their mutual
distance is smaller than the spatial resolution. This term introduces a force that, even
if it acts slightly and only in certain situations, is not motivated by physical reasons.
The anticlumping term allows to avoid the occurrence of tensile instability but, when
violent dynamics occurs, some instabilities still persist in the solution.

Another evidence observed in the SPH model, is the reassessment of the fluid parti-
cles in the domain during the simulation. Concerning this aspect, Le Touzé et al. [81]
noticed that it is strictly dependent on the adopted resolution. Indeed, when refining,
the effect of the self-redistribution is quickly attenuated and it is almost hidden within
other “regular” errors. This result is consistent with the fact previously presented that
when the number of particles used for the simulation is big enough, the SPH discrete
solution behaves as in the continuous formulation. In order to find a solution to this
problem, Colagrossi et al. [29] introduced a packing algorithm that allows to encounter
the configuration of minimal energy for the fluid particles, avoiding self-redistribution
effects. It is noticed also that, in the case of the use of a corrected scheme, such as a
MLS operator, the self-redistribution mechanism is not present. In these case however
some other complications are introduced in the numerical solution.

A crucial aspect of the weakly-compressible SPH is the presence of noise in the pres-
sure solution. In order to obtain a more regular solution a first solution has been pre-
sented by Colagrossi and Landrini [30], through the use of a periodic re-initialization of
the density field. While this approach yields good pressure results, it does not conserve
the total volume of the fluid system for long time simulations, because the hydrostatic
component is improperly filtered (Antuono et al. [4]). In the last years another practice
to control these fluctuations and also enhance the stability of the model has been pre-
sented through the introduction of diffusive corrections. The diffusive term acts in the
continuity equation as a numerical mass diffusion and presents a similar mathematical
structure of the operator used for the artificial viscosity. The first diffusive schemes
have been presented by Molteni and Colagrossi [104], Ferrari et al. [56] and succes-
sively by Groenenboom and Cartwright [68]. A slightly different approach has been
introduced with the δ-SPH by Antuono et al. [6]. This formulation has been success-
fully applied to several hydrodynamics problems proving to be stable and accurate (see
e.g. [96], [5], [98], [7]). The δ-SPH recently has become a quite popular variant of the
standard SPH, being used in several engineering applications (see e.g. [16], [40], [90]).
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1.3.2 Treatments of solid boundaries

The boundary conditions enforcement is a crucial topic when simulating the interac-
tion of fluid with solid structures and represents a central topic of the thesis. When
SPH was first applied to astronomical problems, since the all studied phenomena oc-
curred in open space, there was no need to enforce solid boundary conditions. After
the first application of SPH to free surface flows, introduced by Monaghan [106], solid
boundary enforcement becomes an important issue for SPH simulations.

The free surface boundary condition results to be intrinsically verified in the SPH
model. A different situation is encountered when dealing with a solid boundary, in
which it is necessary to represent the solid components interacting with the fluid mass.
A classical approach to set solid boundary conditions in hydrodynamic simulations
was introduced by Monaghan [106], by considering an intermolecular repulsive force.
A drawback of this approach is that the pressure field resulted as being noisy near the
solid boundaries. This technique was subsequently improved by Monaghan and Ka-
jtar [113] to treat solid shapes more effectively. As pointed out by Colagrossi [26],
the main drawbacks of such technique are the pressure wave disturbances at the begin-
ning of the numerical simulation and the inadequacy in calculating accurately the local
hydrodynamic loads induced on the structures.

Another approach to model solid boundaries is the ghost particles technique, first
introduced by Libersky et al. [85] and developed by Colagrossi and Landrini [30] to
exactly enforce boundary conditions in inviscid free-surface incompressible flows. In
the ghost particles technique, the fluid particles approaching the solid boundary are
mirrored with the respect of the body profile, in a layer with size equal to the adopted
kernel radius. This method can be easily applied to straight profiles and right angles,
but it becomes more complicated when a generic solid shape is considered. Marrone
et al. [96] proposed an enhanced version of this method, introducing the fixed ghost
particles. In this case, the ghost particles are fixed in the frame of reference of the
body and the values attributed to these particles are calculated at their interpolation
nodes located inside the fluid domain. The values associated to them are obtained
from a MLS interpolation over the fluid particles, within the range of influence. The
main advantage of using fixed ghost particles instead of standard ghost ones is that
their distribution is always uniform because it does not depend on the fluid particle
positions. In the work by De Leffe et al. [42] the ghost type particles are characterized
by different treatment when dealing with hyperbolic and elliptic parts of the Navier-
Stokes equations to enforce boundary conditions. In particular, the free slip condition
is used to compute the pressure gradient and velocity divergence, whereas the no-slip
condition is enforced for calculating Laplacian velocity, resulting in different values
of velocity associated to the same solid particle. The fixed ghost particle technique
has been successfully applied to a wide range of fluid dynamic contexts such as the
study of free-surface open-channel flows (see e.g. [55]), wave patterns induced by ships
(see e.g. [99]), flows past square or circular cylinders (see e.g. [150], [98]) and flow
separation at bends (see e.g. [71]).
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1.3.3 Hydraulic applications

Applications of SPH to hydraulic problems started in 1994, after the work of Mo-
naghan [106] about a simple bam-break flow. As expressed by the same author, the
possibility of treating the fluid as incompressible seemed too difficult to be practiced
in the SPH framework. In this context, a weakly-compressible approach appeared to
be more promising, on the condition that the density fluctuations remained confined
in the order of 1% the incompressible density. This approach began to be extended
to a wide class of problems like wave breaking on beaches. Monaghan [114] studied
the dynamics of a solitary waves breaking on a beach, while Monaghan and Kos [115]
the waves produced by rigid bodies sliding down a ramp. A detailed study of wave
breaking processes has been presented by Dalrymple and Rogers [37] and Landrini
et al. [79]. Another phenomenon investigated by many authors in literature through
the SPH is the sloshing process (see e.g. [26], [144], [143], [101]). Other studies
related with water wave problems investigated in literature are the green water over-
topping (see e.g. [65], [60]), solitary waves (see e.g. [83]), bow waves generated by
ships (see e.g. [99], [80]), non-linear periodic waves (see e.g. [67] ) and tsunami waves
(see e.g. [77]). Rodriguez-Paz and Bonet [129] presented a corrected SPH formula-
tion of the shallow-water equations, while De Chowdhury and Sannasiraj [39] studied
the wave propagation in shallow water conditions. The dynamics of water impacts has
been also extensively studied by different authors from the slamming of a hull on a free
surface (see e.g. [151]), wave breaking on a vertical wall (see e.g. [90]), to the study
of more critical phenomena, such as flat impacts (see e.g. [100]). The interaction be-
tween regular waves and vertical breakwaters or rubble mound breakwaters have been
studied in coastal engineering field (see e.g. [130] [2]). Perforated breakwaters have
been recently studied by Jiang et al. [76], in which the relationship between the ratio
of total horizontal force acting on caisson under regular waves and its influence factors
is examined. In fluvial hydraulic context, Federico et al. [54] proposed an algorithm to
simulate open-channel flows and applied it to the analysis of uniform, non-uniform and
unsteady flows.

An alternative approach to simulate incompressible flows has been presented by
Cummins and Rudman [35] with the introduction of the Incompressible SPH (ISPH).
This approach is based on a two-step projection method, in which the divergence-free
velocity field is obtained by solving the Poisson pressure equation. Other methods to
model the fluid as exactly incompressible have been then developed by Shao and Ed-
mond [138] and Ellero et al. [49]. The ISPH has been also successively applied to solve
various hydraulic problems, such as wave overtopping (see e.g. [140]), wave breaking
and overtopping with turbulence modeling (see e.g. [139]). Lind et al. [86] presented a
generalized diffusion-based algorithm for stability and validations for impulsive flows
and propagating waves in Incompressible SPH. Even if the weakly-compressible ap-
proach has higher computational potential, the incompressible approach presents also
some advantages and are discussed by Lee et al. [82].
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1.4 Structure of the thesis

The thesis embraces different aspects, from the description of the fluid dynamic equa-
tions to the corresponding numerical method developed for the application to the prob-
lems of interest. Specifically, chapter 2 presents the equation governing the dynamics
of fluid and the SPH method. Here it is shown moreover how these equations are dis-
cretized in the SPH framework to be adopted for the simulations, together with the
numerical corrections to improve the calculation.

In chapter 3 the computational strategies adopted for the SPH solver are presented.
The different diffusive corrections are shown and two hybrid formulations are intro-
duced to deal with phenomena characterized by both slow and fast dynamics. The
fixed ghost particle treatment is extended to model solid boundaries in which the thick-
ness of the body is small and the fluid ambient surrounds the wall from more than one
side, as in the case of objects immersed in water. In this context multi-node fixed ghost
particles are introduced to overcome this drawback. Attention is also devoted to the
time integration schemes and to the procedure adopted to evaluate dynamic pressures
at the body profile in the simulations.

Preliminary analyses are shown in chapter 4. These results are presented for the
conservation of energy in different situations, regarding a simple hydrostatic tank, a
prototype problem of an oscillating drop under the action of a central force field and
dam-break problems. In the last part of the chapter the multi-node fixed ghost particles
treatment is validated in a hydrostatic case, regarding the conservation of the solution
and a hydrodynamic test, regarding a wave hitting a thin horizontal deck.

The analysis of wave interaction with perforated breakwaters is presented in chapter
5. The simulations are firstly performed for a vertical wall with a successive applica-
tion to different types of perforated wall caissons. The numerical results are in this
case compared with experimental data. A successive analysis regards the simulation
of perforated breakwaters with thin front wall. In this case the multi-nodes fixed ghost
particles are employed for the simulation. The analysis are performed for both pressure
distributions at the walls and for the evaluation of the reflection coefficient.

In chapter 6 the post-processing of the pressure signals obtained from a weakly-
compressible SPH solution is presented. The filtering approach is exploited through
the wavelet analysis, which allows for the analysis of non stationary signals, as in the
case of classical fluid dynamic problems. The case of the oscillating drop is firstly
analyzed. Successive analyses regards a water wedge impacting a vertical wall and a
sloshing dynamic.
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CHAPTER2
Fluid dynamic equations and SPH

2.1 Governing equations

The equations governing fluid dynamics problems are expressed by a scalar equation
representing the conservation of mass and a vectorial equation representing the con-
servation of momentum. In situations in which also the internal energy is a quantity of
interest for the problem, a third scalar equation representing the conservation of energy,
is introduced. These equation, known as Navier-Stokes equations, read as:

Dρ

Dt
= −ρ∇ · u

Du

Dt
= g +

1

ρ
∇ · T

De

Dt
=

1

ρ
T : D−∇ · q

(2.1)

In system 2.1, ρ, g and u represent the density, the external volume forces and the
velocity vectors, respectively. The terms e and q are the specific internal energy and
the heat flux. The quantity T represents the stress tensor, while D is the strain rate
tensor, D = (∇u +∇uT )/2. From the stress tensor is possible to define the pressure
at a point in a moving fluid, p, as the mean normal stress with reversed sign:

p = −tr(T)/3 (2.2)

It is convenient to rewrite the stress tensor as the sum of an isotropic part, −pI, where
the quantity I represents the Kronecker tensor, and a remaining non-isotropic (devia-
toric) part, V, representing the viscous contribution, entirely due to the motion of the
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fluid [9]:
T = −pI + V (2.3)

In the case of a Newtonian fluid, the viscous stress tensor can be rewritten in terms of
the strain rate tensor:

V = λtr(D)I + 2µD, (2.4)

where µ and λ are the dynamic and the bulk viscosity coefficients, respectively. From
Eq. 2.4 it can be observed that V, and therefore T, are symmetric tensors, property that
will be successively recalled. From Eqs. 2.3 and 2.4 the stress tensor can be expressed
as:

T = (−p+ λtr(D))I + 2µD, (2.5)

In this way the divergence of the stress tensor results to be equal to:

∇ · T = −∇p+∇ · V = −∇p+ (λ+ µ)∇(∇ · u) + µ∇2u (2.6)

When dealing with system 2.1, a common approach is to consider the fluid to be invis-
cid, so that the divergence of the viscous stress tensor 2.4 is considered equal to zero.
In this way from the original Navier-Stokes equations 2.1, the inviscid formulation,
known as Euler equations, is recovered.

2.1.1 Incompressible vs weakly-compressible

Another hypothesis on the nature of the fluid to make is to consider the fluid either
compressible or incompressible. For fluids like water, where the sound speed c ∝
103m/s, the Mach number, Ma = U/c, for classical fluid dynamic problems results
to be extremely small, so it is customary to approximate the fluid by an artificial fluid
which is exactly incompressible [106]. When a fluid is considered to be incompressible
the continuity equation in system 2.1 becomes:

∇ · u = 0 (2.7)

Taking the divergence of the momentum equation in System 2.1 and introducing Eq.
2.7, leads to write the Navier-Stokes equations in terms of a Poisson equation for the
pressure field:

∇2p = ρL(u,∇u) (2.8)

in which L is a defined function. Under this assumption the Navier-Stokes equations
become, as it is possible to see, elliptic equations. The solution in this case does not
presents acoustic perturbations and instantaneous energy loss is encountered during
impacts.

A different approach is obtained when the fluid is consider as “artificially compres-
sible”. In this case, the compressibility adopted for the fluid is not the real one, but
results to be increased from its real value. The real fluid is therefore approximated
with another artificial fluid that is, in this case, more compressible than the real one.
The artificial compressibility method was originally introduced by Chorin [23], with
the objective of solving the steady state incompressible Navier-Stokes equations. With
the introduction of an artificial compressibility, the elliptic incompressible equations
becomes an hyperbolic compressible system, which can be solved by standard, im-
plicit, time-marching methods. Peyret and Taylor [125] and successively Merkle and
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Athavale [103] extended this approach to solve unsteady Navier-Stokes equations, with
the introduction of a dual time stepping. In this approach a pseudo time-stepping is
introduced within each physical time step, with the objective to lead the unsteady solu-
tion towards a quasi-steady state solution. A similar approach has also been applied to
solve incompressible oceanographic flows (see e.g. Jensen [75]). A discussion on the
use of artificial compressibility in fluid dynamic problems is presented by Madsen and
Schäffer [92].

The use of an artificial compressibility, with a non-iterative approach and therefore
a slight different scheme of the mentioned cases, is also the basic hypothesis for most
of the SPH solvers and it is known as weakly-compressible assumption. In this frame-
work, the artificial sound speed is chosen to be much lower than that of the real fluid,
but much faster than the bulk velocity and therefore it presents negligible effects on the
fluid dynamics. In this case the pressure field is related to the density and the internal
energy, through a state equation, p = p(ρ, e). This approach avoids the resolution of
the Poisson equation for the pressure field and, although the evolution equations are
coupled, the continuity and momentum equations can be evaluated independently and
without solving an algebraic system. The hyperbolic nature of the weakly-compressible
Navier-Stokes equations has also specific issues on the numerical solution, characteri-
zed, in this case, by acoustic perturbations in the pressure field. The acoustic component
of the solution is therefore related with the artificial compressibility of the fluid, rather
then the real acoustic, resulting in a spurious contribution.

From a computational point of view the main difference between the weakly com-
pressible and incompressible approaches is that the former requires small time steps
constrained by the speed of sound, while the latter needs the solution of an algebraic
system with a sparse matrix, permitting larger time steps but quite complex for an effi-
cient code parallelization. Moreover, the incompressible approach requires the explicit
detection of the free surface in order to assign the dynamic boundary condition. Un-
fortunately, this is not easily performed, especially in the case of violent free-surface
flows. Furthermore, the solution of the Poisson equation is highly dependent on the
free surface configuration and, consequently, small errors in the free-surface detection
may lead to different flow evolutions. When modeling a fluid with the SPH method, the
most followed approach is the weakly- compressible one, rather than incompressible.
The incompressible approach is also practiced but it does not leads to the same compu-
tational potential and applicability. The approach adopted here is to consider the fluid
as weakly-compressible.

2.1.2 State equation

In general, fluids whose density varies weakly with pressure or temperature, can be
treated as barotropic fluids, meaning that both pressure and internal energy are single-
valued functions of density. This assumption is generally adoptable for liquids, while
it is not for gases, in which the entropy, S, plays an important role. When dealing with
fluids like water, it is therefore possible to adopt a state equation that is only a function
of density, p = p(ρ). A common choice for the state equation [106] is:

p = B

[(
ρ

ρ0

)γ
− 1

]
, (2.9)
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where ρ0 is the density when p = 0, γ is the polytropic index of fluid set equal to 7
for water, while B is related to the speed of sound of the media. The speed of sound is
defined as:

c2 =
∂p

∂ρ

∣∣
S=const

(2.10)

Introducing Eq. 2.9 into Eq. 2.10:

c2 =
Bγ

ρ0

(
ρ

ρ0

)γ−1

= c2
0

(
ρ

ρ0

)γ−1

(2.11)

where c0 = Bγ/ρ0 is the initial speed of sound. A different version of state equation
can be obtained linearising Eq. 2.9. This variation is motivated by the fact that in
the weakly-compressible regime only small fluctuation of density occurs, leading to
negligible differences from the original formulation [95]:

p = B

[(
ρ0 + ∆ρ

ρ0

)γ
− 1

]
(2.12)

= B

{
1 + γ

∆ρ

ρ0

+O

[(
∆ρ

ρ0

)2
]
− 1

}
(2.13)

∼=
Bγ

ρ0

∆ρ = c2
0(ρ− ρ0) (2.14)

Under the same conditions is possible to linearise the equation for the speed of sound,
Eq. 2.11:

c2 = c2
0

(
ρ0 + ∆ρ

ρ0

)γ−1

(2.15)

= c2
0

{
1 + (γ − 1)

∆ρ

ρ0

+O

[(
∆ρ

ρ0

)2
]}

, (2.16)

that leads to the following expression:

c ∼= c0 +
γ − 1

2

∆ρ

ρ0

(2.17)

The parameter γ induces small perturbation on the speed of sound through fluctuations
of the density field, while, from Eq. 2.14, it does not affect the pressure field. The
result is that, under weakly-compressible assumption, the linearized version of the state
equation can be adopted and the speed of sound can be practically considered constant,
c = c0, since the small variation given by Eq. 2.17 are in practice negligible (see
Marrone [95]).

The value of the celerity adopted to model the fluid defines its compressibility. From
Eq. 2.14, the higher the celerity the lower it results the compressibility of the fluid, for
a given pressure impulse. To guarantee a weakly-compressible regime the density fluc-
tuations have to be smaller than 1%ρ0 [106]. This condition can be expressed directly
after using the linear state Eq. 2.14 as pointed out by Antuono et al. [7]:

c0 ≥ 10

√
pmax
ρ0

(2.18)

16



2.1. Governing equations

where pmax is the maximum expected pressure in the fluid domain. As expressed by
Marrone et al. [100], to correctly enforce the sound speed value, different pressure
scales have to be taken into account, among: the static pressure scale due the gravity
force, p = ρgH , whereH is the water depth, the stagnation pressure scale related to the
kinetic energy, p = ρU2, the acoustic pressure scale, p = ρcU , due to compressibility,
produced during impacts. From these three conditions, Eq. 2.18 is rewritten as:

c0 ≥ 10 max
t

[
max

Ω

√
gH
]

c0 ≥ 10 max
t

[
max

Ω
(|u|)

]
c0 ≥ 100 max

t

[
max

Ω
(|u|)

]
(2.19)

The result obtained in Eq. 2.19 have to be used according with the simulated prob-
lem. For example, in the case of free surface flows in which violent fluid impacts do
not occur in the fluid domain, the acoustic pressure limit is rarely attained, therefore
the correspondent constraint can be disregarded from the evaluation. In the other hand,
when a phenomenon is characterized by violent fluid impacts, the condition related to
acoustic pressure constraint is dominant and therefore has to be considered as constraint
for the problem.

2.1.3 Boundary conditions

The set of equations presented in System 2.1, with Eq. 2.14, requires the knowledge of
some information at the boundaries of the domain to be solved. In particular, these
information are furnished through the knowledge of the derivative of the function,
known as Neumann boundary conditions, or through the knowledge of the function
itself, known as Dirichlet boundary conditions.

In classical fluid dynamic problems, the domain, Ω, is usually bounded by solid
surfaces, ∂ΩB, and by a free surface, ∂ΩF . Regarding the free surface, there are two
types of boundary conditions to consider, namely kinematic and dynamic boundary
conditions. The kinematic boundary condition defines that a volume of fluid belonging
to the free surface remains on the free surface during the time evolution. As shown
by Colagrossi et al. [27], in SPH it is not necessary to enforce kinematic boundary
condition explicitly, being intrinsically verified in the lagrangian flow description. The
dynamic boundary condition defines instead the continuity of stresses across the free-
surface. Assuming that the surface tension is negligible, the fluid will present both
normal and tangential shear stresses equal to zero. In the case of Newtonian fluids the
dynamic boundary condition reads as:

t = T · n = (−pI + V) · n = (−p+ λtr(D))n+ 2µD · n = 0, (2.20)

where t is the stress vector, whilen is the free-surface normal unit vector. If the viscous
coefficients are really small in Eq. 2.20, the pressure can be considered continuous
across ∂ΩF . Therefore the pressure on the free surface of the fluid is equal to the
external pressure, pex. As a consequence, because of the barotropic assumption, also
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the density has to be constant on the free surface, resulting in:

∇ · u = 0 ∀r ∈ ∂ΩF , (2.21)

in which r is the position vector. Regarding the boundary conditions at the solid walls,
the no-penetration condition and the adherence condition can be enforced, resulting
respectively in:

u · nB = uB · nB (2.22)
u · τB = uB · τB (2.23)

in which nB and τB are the normal and the tangential unit vectors at the walls, while
uB is the boundary velocity. When considering free-slip boundary conditions, only Eq.
2.22 is enforced, while no-slip boundary condition are obtained enforcing both Eqs.
2.22 and 2.23.

Regarding the assignment of the pressure field along the solid boundaries, the Neu-
mann boundary condition have to be enforced, that is:

∂p

∂n
= −ρ

[
duB
dt
· n+ (uB − u) · dn

dt
− g · n

]
(2.24)

Eq. 2.24 is obtained after introducing the free slip condition, Eq. 2.22, in the momen-
tum equation.

2.1.4 Considerations on energy conservation

In this section, the different forms of energy that characterize the fluid mass are taken
into account, and the relationship among them is presented. The fluid mass is cha-
racterized by a kinetic energy, EK , and, in presence of a conservative force field, by
a potential energy, EP , only related to the mass location in the domain. From the
potential and kinetic energy the mechanical energy of the system, EM , is defined as:

EM = EP + EK (2.25)

Assuming that no external non-conservative forces are present, the expression of me-
chanical energy reads as (see Marrone et al. [100]):

DEM
Dt

=

∫
Ω

(∇ · T) · udV (2.26)

Through the divergence theorem is possible to write:∫
∂Ω

(n · T) · udS =

∫
Ω

∇ · (T · u)dV (2.27)

=

∫
Ω

∇ · (T) · udV +

∫
Ω

(T : ∇u)dV

This surface integral is equal to zero on the free surface, because the stress vector,
t = n · T (=T · n, because of the symmetry of T) is zero from the dynamic boundary
condition, Eq. 2.20. In the case of a solid boundary it is also equal to zero because the
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velocity of the boundary is assumed, in this case, to be null. Considering the symmetry
of the stress tensor, is possible to rewrite Eq. 2.26, through Eq. 2.27:

DEM
Dt

= −
∫

Ω

(T : D)dV (2.28)

When the fluid is Newtonian, Eq. 2.28 can be rewritten as:

DEM
Dt

=

∫
Ω

p∇ · udV − λ
∫

Ω

(∇ · u)2 dV − 2µ

∫
Ω

(D : D)dV (2.29)

From Eq. 2.29 is possible to see that in the case of incompressible flows, because of
Eq. 2.7, only the last term in the right hand side equation is different from zero. This
quantity in fact is the energy dissipated by the fluid viscosity, that is transformed into
heat. From this term it is possible to define the power dissipated:

DED
Dt

= −2µ

∫
Ω

(D : D)dV (2.30)

When going to a weakly-compressible fluid, from Eq. 2.29, two supplemental terms
have to be taken into account. The second term on the right hand side of the equation
is negligible compared to the first one, fact that has been also verified numerically by
Marrone et al. [100]. The first term represents, instead, a pure reversible term associated
to the energy stored by the fluid when compressed:

DEC
Dt

= −
∫

Ω

p∇ · udV (2.31)

Through the use of continuity equation and the state equation, Eq. 2.31 can be ex-
pressed as the time variation of the elastic energy. In the case of a linear state Eq. 2.14,
Eq. 2.31 becomes:

EC = EC(ρ0) + c2

∫
Ω

[
log

ρ

ρ0

+
ρ0

ρ
− 1

]
ρdV (2.32)

where EC(ρ0) is the elastic energy at rest conditions. Eq. 2.28, with Eqs. 2.30 and 2.31
becomes:

DEM
Dt

=
DED
Dt

− DEC
Dt

(2.33)

In the case of an incompressible medium, the elastic energy EC is null. Under the
hypothesis of inviscid fluid, also the term related to the viscous dissipation is null,
resulting, in the case of fluid impacts, in an instantaneous energy loss, as shown by
Rogers and Szymczak [131] and by Marrone et al. [100]. In this case, in fact, the
energy balance has to be rewritten as:

DEM
Dt

=
DE∆

Dt
, (2.34)

in which E∆ = Kδ(t− t∗), with δ the delta Dirac function (being t = t∗ the instant of
time in which the collision occurs) and K an unknown constant, defining the intensity
of the energy loss.
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In the case of a weakly-compressible model, instead, no energy losses are encoun-
tered and, during impacts, as it will be shown in section 4.2, there is an instantaneous
accumulation of elastic energy. The energy is therefore continuously transferred be-
tween the mechanical and the elastic ones, at a velocity of conversion proportional to
the speed of sound of the fluid. As pointed out by Marrone et al. [100], increasing the
speed of sound, i.e. vanishing the Mach number, the mechanical energy transformed
into elastic energy, results to be equal to E∆. The energy introduced into the fluid
mass after the impact, in the case of viscous flows, is then dissipated by the viscos-
ity. After the mechanical energy is dissipated, the residual mechanical energy is close
to the incompressible solution. Indeed, Seo and Moon [137] demonstrated that in the
weakly-compressible regime the compressible solution is equal to a superposition of an
acoustic component over an incompressible solution. This aspect has been confirmed
numerically by Marrone et al. [100] and will be further investigated in chapter 6.

2.2 Fundamentals of SPH

In a Lagrangian meshless approach the fluid mass is modeled as a finite number of
particles, each one carrying information about its mass, density and other physical pro-
perties. In this framework, the partial differential equation governing the problem are
solved with respect to these points, by using their information to reconstruct the fluid
properties everywhere in the domain.

2.2.1 SPH interpolation

In the continuous formulation, the field of a generic function, f , is interpolated through
a convolution integral over the domain Ω, of the form:

〈f(r)〉 =

∫
Ω

f(r′)W (r − r′;h)dV ′, (2.35)

where 〈·〉 represent a quantity approximated through the SPH interpolation, r is the
position where the field value is interpolated from its known values in r′. The term
W (r − r′;h) is the interpolating function, also called smoothing or kernel function,
while h is the smoothing length, representative of the domain of influence Ωr′ of r′,
i.e. the sub-domain where the kernel differs from zero. From the integral interpolation
〈f(r)〉 of Eq. 2.35 it comes also the name “Smoothed” in SPH, since this object can
be seen as a smoothed version of the original function f(r). Hereafter the notation
W (r − r′) for the kernel function is adopted, implicitly assuming its dependence on
the smoothing length. A generic function, to be adopted as a kernel function, has to
satisfy the following requirements [87]:

• W (r − r′) ≥ 0 for r ∈ Ωr′ ⊂ Ω and zero otherwise, so that the kernel has a
compact support;

• W (r − r′) decrease monotonously as ‖r − r′‖ increases;

•
∫

Ω
W (r − r′) =1, partition of unity or normalization condition;

• lim
h→0

W (r − r′) = δ(r − r′), delta function limit condition;
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2.2. Fundamentals of SPH

• ∇W (r − r′) = −∇′W (r − r′), where ∇′ means that the derivative is computed
on the r′ variable. This symmetric property implies that the kernel is an even
function.

The same operator can be applied to the derivatives of f :

〈∇f(r)〉 =

∫
Ω

∇′f(r′)W (r − r′)dV ′ (2.36)

Integrating by parts, Eq. 2.36 becomes:

〈∇f(r)〉 =

∫
∂Ω

f(r′)W (r − r′)n′dS ′ −
∫

Ω

f(r′)∇′W (r − r′)dV ′ (2.37)

where the surface integral of Eq. 2.37 is obtained after applying the divergence theorem.
This last term is equal to zero inside the fluid domain. Using the symmetry property
of the kernel ∇′W (r − r′) = −∇W (r − r′) and neglecting the surface term, the
approximation of the gradient of a function, f , can be written only through the gradient
of the kernel:

〈∇f(r)〉 =

∫
Ω

f(r′)∇W (r − r′)dV ′ (2.38)

Even if near the free surface it provides just a poor approximation, due to the non-zero
surface integral, this formulation is usually used to solve gradient of functions in SPH
models.

When going to discrete level, the relationships presented so far can be expressed in
different forms. A direct discretized version for the smoothed function presented in Eq.
2.35 can be written as:

〈f(ri)〉 =
∑
j

fjWj(ri)dVj, (2.39)

while a discrete formulation for the gradient presented in Eq. 2.38 is:

〈∇f(ri)〉 =
∑
j

fj∇Wj(ri)dVj (2.40)

In the case of the gradient of functions, Eq. 2.40 is practically never implemented
in SPH solvers, because it does not correctly reproduce gradients of constant fields,
resulting in spurious contribution and numerical errors.

It is noticed indeed that, when approximating functions on data arbitrarily scattered,
the above approximations do not allow to correctly reproduce constant or bi-linear func-
tions. This fact, that will be further discussed in section 2.2.3, is related to the impossi-
bility to satisfy the following requirements (see Colagrossi [26]), for a function:∑

j

Wj(ri)dVj = 1, (2.41)∑
j

rjWj(ri)dVj = ri (2.42)
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and for gradients: ∑
j

∇Wj(ri)dVj = 0, (2.43)∑
j

rj ⊗∇Wj(ri)dVj = I (2.44)

Therefore the result is the introduction of spurious contribution that generate numerical
errors. In literature, different approaches have been presented in order to find a solution
to this inconvenient, by introducing corrections in the kernel evaluation. In particular,
a simple corrected formulation has been presented by Shepard [141]:

〈f(ri)〉 =
∑
j

fjW
S
j (ri)dVj, (2.45)

where:

W S
j (ri) =

Wj(ri)∑
kWk(ri)dVk

(2.46)

Another approach, known as Corrected SPH (CSPH), has been introduced by Bonet
and Kulasegaram [15], by considering:

W C
j (ri) = Wj(ri)α(ri) [1 + β(ri)(ri − rj)] (2.47)

where α and β are obtained by enforcing consistency conditions. The corrections pre-
sented in Eqs. 2.45 and 2.47 both allow to correctly reproduce uniform functions,
expressed by Eq. 2.41 and the gradient of uniform functions, expressed by Eq. 2.43.

The kernel can be corrected also with a higher operator, as presented with the Mov-
ing Least Square SPH (MLSPH), by Dilts [44]:

WMLS
j (ri) = (A−1 · e1) · b Wj(ri), (2.48)

where: 

bT = [1, (xj − xi), (yj − yi), (zj − zi)] ,

eT1 = [1, 0, 0, 0],

A =
∑
i

(b⊗ b) Wj(ri)dVi

(2.49)

This approach ensures that both uniform and linear functions are reproduced correctly,
represented by Eqs. 2.41 and 2.42, respectively. In this case, moreover, also the correct
evaluation of gradients of constant functions, Eq. 2.43, is recovered. To satisfy the last
equality in Eq. 2.44, a supplemental MLS correction for the evaluation of the kernel
derivatives have to be introduced (see Colagrossi [26]).

The introduction of kernel corrections allows to recover consistency in the discrete
SPH formulation. Moreover corrected kernel avoids particles self-redistribution mech-
anism (see section 4.1). The consequence is that, regions with high velocity gradient
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can experience anisotropic particle distributions. In those region, matrices A in Eq.
2.49 become ill-conditioned and their inversion causes strong numerical instabilities.
As pointed out by Le Touzé et al. [81], to overcome this drawback, a periodic “remesh-
ing”, which consists in redistributing particles uniformly in the domain, is necessary
for the higher order SPH scheme. Then, particle data are interpolated at these points,
which become the new set of particles for the next time-step. This simple remesh-
ing procedure does not, however, preserve the linear and angular momenta, resulting
for the corrected kernel do the rise of physical inadequacy, related to the conservation
properties. Corrected kernel, indeed, do not guarantee an equal and opposite reaction
between the interacting particles. Moreover, the use of a corrected SPH model results
in an increasing of the resulting CPU costs. On this considerations it is preferable to
find an expression that is conservative, even if it introduce small numerical errors. Even
if the formulation presented in Eq. 2.48 is not used to compute the SPH integrals, it
is implemented for the solid boundary conditions enforcement (see section 3.2) and to
evaluate field values (see section 3.4).

Another way to obtain a simple and effective correction, and achieve higher accu-
racy, can be acquired by rewriting the gradient of f in the following form [106]:

∇f =
1

Φ
(∇(Φf)− f∇Φ) (2.50)

where Φ represents any differentiable function. When Φ is set equal to 1, the SPH
discrete version of Eq. 2.50 becomes:

〈∇f(ri)〉 =
∑
j

(fj − fi)∇Wj(ri)dVj, (2.51)

This formulation, used for the continuity equation (see section 2.3.1), vanishes when
f is constant, so it allows to recover the equalities expressed in Eqs. 2.41 and 2.43.
The advantage of using this expressions, compared with kernel corrections, is that it
is computationally inexpensive and also easy to implement. This formula however, as
for kernel corrections, also results not to be conservative, therefore for the momentum
equation, as it will be shown in section 2.3.1, another expression have to be found.

2.2.2 Kernel choice

Different mathematical expressions for the kernel function can be adopted for SPH.
Among them, one of the most used is the Gaussian kernel, expressed as:

WG(s) =


1

πh2
e−( s

h
)2 if s < γh

0 otherwise

(2.52)

where s = ‖r − r′‖, while γ represents, in this context, the cut-off radius coefficient,
often set equal to 3. An important property of the Gaussian kernel is that its derivatives
can be evaluated directly from the value of the function:

∂W

∂r

∣∣
i

= −2
r − ri
h2

Wi (2.53)
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It is easy to see that the expression of the Gaussian kernel in Eq. 2.52 is truncated in
correspondence of the cut-off radius, resulting for the normalization condition not to
be satisfied. This inaccuracy is negligible in the case γ =3 (in which it results in an
error equal to 0.012%), while it becomes greater in the case γ =2 (in which it would
result in an error equal to 1.234%). For this reason, a renormalized kernel is introduced
to match the property of the unit integral. Moreover, the renormalized kernel goes to
zero when the interacting distance approaches the support radius γh. The renormalized
Gaussian kernel is defined as [104]:

WRG(s) =


e−(s/h)2 − C0

2πC1

if s < γh

0 otherwise

(2.54)

where C0 = e−γ
2 and C1 is evaluated as follows:

C1 =

∫ γh

0

s
[
e−(s/h)2 − e−γ2

]
ds (2.55)

For the case γ = 2 it results C0 = 0.018316 and C1 = 0.4542h2, while for γ = 3 it
results C0 = 1.23 ·10−4 and C1 = 0.49938h2. As it has been shown by Morris [118]
the kernel functions presents the best stability properties and the largest code efficiency
compared with other kernel functions.

Another expression for the kernel is obtained from the Wendland [155] functions. In
this case the mathematical expression is chosen from a class of univariate polynomial
functions characterized by exhibiting a minimal degree for a given smoothness. Among
them, one of the expression proposed by Wendland [155] reads as:

WW(s) =


1

2πC

(
1− s

γh

)3(
3s

γh
+ 1

)
if s < γh

0 otherwise

(2.56)

The value of the normalization constant C is obtained as:

C =

∫ γh

0

s

[(
1− s

γh

)3(
3s

γh
+ 1

)]
ds (2.57)

In the case γ = 2 it results C = 2/5h2, while for γ = 3 is C = 9/10h2. Fig. 2.1
illustrates the longitudinal sections of 2D kernel functions presented in Eqs. 2.54 and
2.56, for γ = 2 and γ = 3.
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Figure 2.1: Longitudinal sections of 2D-kernel functions presented in Eqs. 2.54 and 2.56 with support
radius equal to 2h and 3h.

2.2.3 Convergence of SPH

The error introduced by the SPH interpolation can be estimated using a Taylor expan-
sion of f(r′) around r, where f(r) is differentiable [87]:

〈f(r)〉 =

∫
Ω

f(r′)W (r − r′)dV ′

=

∫
Ω

[
f(r) + f ′(r)(r′ − r) +O(r′ − r)2

]
W (r − r′)dV ′ (2.58)

= f(r)

∫
Ω

W (r − r′)dV ′ + f ′(r)

∫
Ω

(r′ − r)W (r − r′)dV ′ +O(h2)

Since the kernel is a even function, the quantity (r′−r)W (r−r′) is a odd one, resulting
in: ∫

Ω

(r′ − r)W (r − r′)dV ′ = 0 (2.59)

Using Eq. 2.59 and the unity condition, Eq. 2.58 becomes

〈f(r)〉 = f(r) +O(h2) (2.60)

From this result, a quantity continuously interpolated with the SPH converge to the
solution with h2, when the support kernel is not truncated by the solid boundary. A
different situation is encountered in presence of a boundary, where consistency cannot
be reached since the partition of unity is not satisfied, as shown in Fig. 2.2. When deal-
ing with this drawback in a computational framework, as it will be presented in section
3.2, a numerical solution is obtained through the implementation of ghost particles to
represent the solid boundary. In the case of a free surface this inaccuracy persists.
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Figure 2.2: Kernel function sum representation in the domain. The partition of unity is not respected
near the boundaries (Fries and Matthies [57]).

In the discrete version of the SPH interpolation an additional error is introduced in
the solution, resulting in the following accuracy:

h2 + h−n
(

∆x

h

)2

(2.61)

in which n is the order of the derivative and ∆x is the spatial resolution. From this
result the discrete interpolation error does not converge to the zero-th order, while it
diverges for its derivatives. This inaccuracy however can be controlled by assuming a
small value of the ratio ∆x/h, that results in taking a large number of neighbor inter-
acting particles. Eq. 2.61, directly related to the impossibility to satisfy Eq. 2.41, is
shown in terms of kernel sum in Fig. 2.3, where is possible to see oscillations around
the partition of unity. As shown by Dilts [44], this effect is directly related to the ap-
pearance of the tension instability in SPH, previously presented. The tension instability
is a consequence of using Eulerian kernels in a Lagrangian scheme.
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Figure 2.3: Detail of kernel sum in a discrete framework, where oscillation around the partition of unity
are encountered (Fries and Matthies [57]).

2.3 Regularized Navier-Stokes equations

The equations implemented in the SPH model, for the simulation of fluid dynamic
problems, are the continuity, momentum and energy equations, presented in System
2.1 and the linear state equation, Eq. 2.14:

Dρ

Dt
= −ρ 〈∇ · u〉

Du

Dt
= g − 1

ρ
〈∇p〉+

1

ρ
〈∇ · V〉

De

Dt
= −p

ρ
〈∇ · u〉+ 2

µ

ρ
〈D : D〉

p = c2(ρ− ρ0)

(2.62)

The equation for the conservation of energy is written after taking into account Eqs.
2.28 and 2.29, and considering no heat flux involved in the problem. System 2.62 has
to be considered together with the equation that relates the velocity vector, u, to its
spatial position, r:

Dr

Dt
= u (2.63)

In this section it is shown how the smoothed terms in System 2.62 are discretized to
become employable for computational mechanics.
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2.3. Regularized Navier-Stokes equations

2.3.1 Gradients and divergences

In the case of the divergence of velocity field, the approach presented in Eq. 2.50 is
followed:

∇ · u =
∇ · (ρu)− u · ∇ρ

ρ
(2.64)

Discretizing Eq. 2.64 it leads to:

〈∇ · u〉 =
∑
j

ρjuj
ρi
· ∇iWj(ri)

mj

ρj
−
∑
j

ρjui
ρi
· ∇iWj(ri)

mj

ρj

=
∑
j

mj

ρi
(uj − ui) · ∇iWj(ri), (2.65)

where ui, ρi, mi represent the vector velocity, the density and the mass of the consid-
ered i-th particle, respectively. In the case of the gradient of pressure, as already men-
tioned in section 2.2.1, the same approach as Eq. 2.64 results to be non-conservative.
In this case the equation is rewritten in a symmetric form [106]:

∇p =
∇ (p/ρ)− p∇ (1/ρ)

1/ρ
= ρ∇

(
p

ρ

)
+ p
∇ρ
ρ

(2.66)

Using this form, the approximate formula for the gradient becomes:

〈∇p〉 = ρi
∑
j

pj
ρj
∇iWj(ri)

mj

ρj
+
∑
j

piρj
ρi
∇iWj(ri)

mj

ρj

=
∑
j

ρ2
i

(
pj
ρ2
j

+
pi
ρ2
i

)
∇iWj(ri)

mj

ρi
(2.67)

From the point of view of the accuracy, Eq. 2.67 is equivalent to Eq. 2.40, resulting in
the introduction of the inaccuracy described in the previous section. Eqs. 2.65 and 2.67
are used to solve continuity and momentum equations, respectively.

2.3.2 Viscous approximation

In the SPH formalism the divergence of the viscous stress tensor can be expressed in
different ways (see e.g. Monaghan and Gingold [112], Morris et al. [119]). Here,
among the different formulations, the expression furnished by Monaghan and Gingold
[112], that, because of its symmetry, preserves both linear and angular momenta, is
taken into account:

〈∇ · V〉 = µ
∑
j

πij∇iWj(ri)
mj

ρj
, (2.68)

where:

πij = 2(k + 2)
(uj − ui) · (rj − ri)

‖rj − ri‖2 , (2.69)

in which k is the number of the spatial dimensions of the considered problem.
Usually, in SPH application, the real viscosity of the fluid is replaced by an artificial
one, that is related with the real viscosity but is designed to allow shock phenomena
to be simulated, or simply to stabilize the numerical algorithm. The artificial viscosity
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2.3. Regularized Navier-Stokes equations

formulation is essentially identical to Eq. 2.68, in which the real viscosity, µ, is set
equal to:

µ =
αc0ρh

2(k + 2)
(2.70)

where α represents the artificial viscosity coefficient. In the case of a 2D problem
the artificial viscosity is α = 8µ/c0ρh. The parameter α is dependent on the type of
simulation and it usually assumes, in hydraulic application [106], values in the range
[0.01 - 0.05], in order to enhance the stability of the computational scheme.

2.3.3 SPH discrete formulation

On the basis of the mentioned approximations, the discrete version of the System 2.62
reads as [13]:

Dρi
Dt

= −
∑
j

mj(uj − ui) · ∇iWj(ri),

Dui
Dt

= gi −
∑
j

mj

(
pj
ρ2
j

+
pi
ρ2
i

)
∇iWj(ri) + µ

∑
j

mj

ρiρj
πij∇iWj(ri),

Dei
Dt

= −
∑
j

pi
ρ2
i

mj(uj − ui) · ∇iWj(ri) +
µ

2

∑
j

mj

ρiρj
πij(uj − ui) · ∇iWj(ri),

Dri
Dt

= ui, pi = c2
0 (ρi − ρ0)

(2.71)

A slightly different formulation is obtained through the use of mj/ρj instead of mj/ρi.
This approach has been successfully applied to a broad range of phenomena and fluid-
structure interaction processes (e.g. Colagrossi and Landrini [30], Antuono et al. [6],
Cherfils et al. [22], Marrone et al. [100], etc.). The corresponding discretized version
of governing equations reads as:

Dρi
Dt

= −ρi
∑
j

mj

ρj
(uj − ui) · ∇iWj(ri),

Dui
Dt

= gi −
∑
j

mj

ρiρj
(pj + pi)∇iWj(ri) + µ

∑
j

mj

ρiρj
πij∇iWj(ri),

Dei
Dt

= −pi
∑
j

mj

ρiρj
(uj − ui) · ∇iWj(ri) +

µ

2

∑
j

mj

ρiρj
πij(uj − ui) · ∇iWj(ri),

Dri
Dt

= ui, pi = c2
0 (ρi − ρ0)

(2.72)

As shown by Colagrossi et al. [28], for h→ 0 and ∆x/h→ 0, where ∆x = (mi/ρi)
1/k,

Systems 2.71 and 2.72 converge to the Navier-Stokes equations.
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In discretized form, the kinetic energy associated to the fluid mass, in a generic
instant of time, is given by:

EK =
∑
j

1

2
mj ‖uj‖2 , (2.73)

where the sum is extended to all the fluid particles. Regarding the potential energy, EP ,
its expression is dependent on the force field that characterizes the specific problem. For
hydraulic problems subjected to the gravitational force near the surface of the earth, the
potential energy is approximated with:

EP = EP0 +
∑
j

mjgzj, (2.74)

while in the case of fluid mass subjected to central conservative force field the potential
energy is given by:

EP = EP0 +
∑
j

1

2
mjB

2 ‖rj‖2 , (2.75)

where B is a dimensional parameter, representing the intensity of the force field. In
Eqs. 2.74 and 2.75 the term EP0 represents the reference potential energy.

The internal energy of the system, EI , is given by the sum of the irreversible, or
dissipated energy, ED, plus the reversible, or elastic energy, EC . Regarding the irre-
versible energy, it can be evaluated through the second term of the specific internal
energy expressed in the third equation of Systems 2.71 or 2.72 as follows [100]:

ED =
∑
i

mi
µ

2

∑
j

mj

ρiρj
πij(uj − ui) · ∇iWj(ri), (2.76)

The reversible energy, is instead furnished by the first term of the specific internal
energy. If a linear state equation is taken into account the elastic internal energy, EC , is
given by discretization of Eq. 2.32:

EC = EC(ρ0) + c2
∑
j

mj

[
log

(
ρj
ρ0

)
+
ρ0

ρj
− 1

]
, (2.77)

in which, as mentioned before, EC(ρ0) is the elastic energy at rest conditions.

2.3.4 Numerical corrections for code efficiency

In addition to the above discretized equations, some supplementary corrections are usu-
ally introduced to enhance the numerical stability. Among them the most used refer to:

• Anticlumping term.
Monaghan [107] presented an anticlumping term with the aim to avoid tensile
instability and consequent unphysical cavitation phenomena with generation of
voids. This correction is presented as a small repulsive force to introduce in the
momentum equation, that acts effectively only when the distance between the in-
teracting particles becomes smaller than the initial spatial resolution. Introducing
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the anticlumping correction, the terms for the momentum equation in System 2.71
become [107]:

pj
ρ2
j

+
pi
ρ2
i

+Rf νij, (2.78)

in which the interparticle force fij is expressed as the ratio between the kernel
evaluated in different distances :

fij =
Wj(ri)

W (∆x)
(2.79)

The exponent ν of fij is usually set equal to 4, while the factor R = Ri + Rj . If
pi < 0 or if pj < 0, the values of Ri and Rj are evaluated respectively by means
of the following equations [107]:

Ri = ε
|pi|
ρ2
i

, Rj = ε
|pj|
ρ2
j

(2.80)

where the coefficient ε is empirically set equal to 0.2. In the SPH solution there
is slight tendency for the particles to form local linear structures. These can be
removed if a small artificial pressure is included even if the pressure is positive.
In the case of pi > 0 and if pj > 0, therefore:

R = 0.01

(
pi
ρ2
i

+
pj
ρ2
j

)
(2.81)

It is noticed that an alternative manner to limit tensile instability refers to the
use of an empirical background pressure in the linearized state equation (see e.g.
Marrone et al. [98], Grenier et al. [66]).

• X-SPH Correction.
The XSPH correction has been introduced by Monaghan [105], with the idea to
move particles with “smoothed” velocity gradients. It consists in adding a numer-
ical filter to the motion equation as follows:

Dri
Dt

= ui + εX
∑
j

(uj − ui)Wj(ri)
mi

ρi
(2.82)

where εX is a coefficient that defines the magnitude of the smoothing, and it is
usually chosen in the range [0, 1]. The correction introduced by the XSPH does
not change the total linear or angular momentum. However, in the case in which
the particles are moving with the smoothed velocity, energy is not conserved.

• Density reinitialization.
The weakly-compressible SPH model is characterized by the occurrence of high
frequency noise in the pressure field. This problem was firstly prevented by a peri-
odic re-initialization of the density field in order to obtain a more regular solution.
This correction, introduced by Colagrossi and Landrini [30], is performed through
a first order approximation based on a MLS corrected kernel (see Eq. 2.48):

〈ρi〉 =
∑
j

ρjW
MLS
j (ri)Vj =

∑
j

mjW
MLS
j (ri), (2.83)
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being Vj the volume of the j-th particle, Vj = mj/ρj .
In any case, in recent years diffusive corrections have been introduced in the con-
tinuity equation in order to smooth the pressure field, and therefore this approach
is generally no longer practiced. The diffusive formulations will be exhaustively
discussed in section 3.1.

For the hydraulic problems simulated in this thesis, different formulations, with dif-
ferent corrections, are taken into account. The set-up of the adopted model to solve the
problem at hand will be therefore presented in the introduction of the considered test.
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CHAPTER3
Computational aspects

3.1 Diffusive formulations

Standard weakly-compressible SPH formulations have the drawback of generating spu-
rious high frequency numerical oscillations in the pressure field. In recent years, dif-
ferent authors have proposed several diffusive corrections to stabilize the solution and
attain more reliable results. From the governing equations presented in System 2.71
(and identically form System 2.72), these diffusive formulations are obtained through
the introduction of a diffusive term, Di, in the continuity equation, resulting in:

Dρi
Dt

= −
∑
j

mj(uj − ui) · ∇iWj(ri) +Di (3.1)

The diffusive term, Di, can be expressed in the following general form:

Di = 2δhc0

∑
j

ψij
(rj − ri) · ∇iWj(ri)

‖rj − ri‖2 Vj (3.2)

in which δ is a parameter that defines the magnitude of the diffusive term, while the term
ψij is evaluated in accordance with the specific formulation. Molteni and Colagrossi
[104] expressed the term ψij as the density difference between the considered fluid
particles:

ψMol
ij = ρj − ρi (3.3)

Another formulation was proposed by Ferrari et al. [56] on the basis of a monotone
upwind flux and it presents a similar mathematical structure of Eq. 3.3. In this case the
expression for ψ reads:

ψFe
ij =

ρj − ρi
2h

‖rj − ri‖ (3.4)
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3.1. Diffusive formulations

This formulation presents a slightly different form of the Molteni and Colagrossi [104]
formulation, but it assumes the same smoothing magnitude when δMo = 0.5.

Groenenboom and Cartwright [68] derived a diffusive formulation by inspecting
the time-discretized version of the momentum equations for an inviscid fluid without
external forces and analyzing the backward Euler finite difference formulation. Also
in this case, as noticed by the authors, this formulation is similar to that proposed by
Molteni and Colagrossi, if the linearized state equation is assumed. Specifically, a
direct connection between the two formulations can be found when the acoustic time
step restriction referred to the weakly-compressibility assumption is adopted:

∆t = CFL
h

c0 + λ
(3.5)

in which λ = max {‖ui‖ + πij}. For the considered fluid problems, the constraint
expressed in Eq. 3.5 is usually the most restrictive condition, ensuring the temporal
stability with respect to other conditions linked to the particle acceleration, the artificial
viscosity and the diffusive term. In this way, it is possible to write a relationship be-
tween the parameter δGr of Groenenboom and Cartwright [68] model and the parameter
δMo of Molteni and Colagrossi [104] model:

δGr =
1

CFL
c0 + λ

c0

δMo (3.6)

The parameter δGr is thus a function of the integration scheme since the Courant Friedrichs
Lewy (CFL) number is involved in its evaluation. Moreover, in this formulation it is
not necessary to impose any other constraints on the time step related to the diffusive
term, since it is intrinsically satisfied by the time step being explicitly present in this
diffusive scheme.

In the mentioned formulations, the diffusive term is approximated by the Morris
formula [119] that represents the Laplacian in SPH schemes:

Λi = 2
∑
j

(fj − fi)
(rj − ri) · ∇iWj(ri)

‖rj − ri‖2 Vj (3.7)

where f is a scalar quantity. To investigate the behavior of this operator, Antuono
et al. [6] studied the convergence of the Laplacian in SPH context and they noticed
that this last formula is singular near the free surface. In particular, they found that,
for kernels in the form W = W (−|rji|2/h2), such as Gaussian ones, the following
expression holds:

∇2〈f〉|i = Λi − 2∇f |i · ∇S|i +O((1− S|i)) +O(h2) (3.8)

in which S|i =
∑

jWj(ri)Vj . From Eq. 3.8 the Morris formula (Eq. 3.7) converges to
the Laplacian of f only if∇S = 0 and S = 1. This condition is verified inside the fluid
domain, but not near the free surface, where ∇S diverges as h−1 introducing errors in
the numerical solution [27].

To find an expression that always converges in the fluid domain, Antuono et al. [6]
proposed a modified diffusive term to better approximate Eq. 3.8. The improvement
of the model comes from the introduction of renormalized density gradients, inside the
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diffusive term, in order to assure the convergence over the fluid domain and preserve
the conservation of mass. In this formulation, called δ-SPH, the term ψij reads as:

ψAn
ij = (ρj − ρi)− 1/2[〈∇ρ〉Li + 〈∇ρ〉Lj ] · (rj − ri) (3.9)

The quantity 〈∇ρ〉Li represents the renormalized density gradient, defined as:

〈∇ρ〉Li =
∑
j

(ρj − ρi)Li∇iWj(ri)Vj (3.10)

Li =

[∑
j

(rj − ri)⊗∇iWj(ri)Vj

]−1

The range of variation of δAn parameter has been found by Antuono et al. [4] through
a linear stability analysis and, in case of a Gaussian kernel, it results in:

α3

27
< δAn <

9

2π2

(
α

2
+

3

2π

)
. (3.11)

The limit of δAn parameter is therefore related to the magnitude of the artificial viscosity
adopted. In the typical range of α used in hydraulic applications, δAn is smaller than
about 0.22.

Antuono et al. [4] presented a detailed analysis of the diffusive terms, putting partic-
ular attention to Morris-like models (see [104], [56], [68]), and δ-SPH [6] formulation.
In particular, because of the inaccuracy near the free surface, the Morris-like models
show an unphysical upwards displacement of the fluid particles near the free surface.
This inaccuracy is no longer encountered in the δ-SPH scheme, as a result of the pres-
ence of the renormalized density gradients. Another issue related to the former models
is the loss of potential energy, also noticed for purely hydrostatic simulations. Con-
versely, the latter model preserves the hydrostatic solution. A different situation is
encountered when high velocities and rapid changes in the fluid domain occur. In these
cases, the δ-SPH model presents a lower efficiency in smoothing the traveling sound
waves after violent fluid-fluid or fluid-solid impacts.

3.1.1 Hybrid diffusive term

In order to find an expression for the diffusive term that is effective when dealing with
situation of slow and fast dynamics, a small modification to the diffusive term proposed
by Antuono et al. [6] is introduced, by considering a tuning parameter, β(r), that ac-
tivates or deactivates the renormalized density gradients as a function of the position
of the particles inside the fluid domain. Considering Eq. 3.9, the expression for ψij
becomes:

ψHy
ij = (ρj − ρi)− 1/2[β(ri)〈∇ρ〉Li + β(rj)〈∇ρ〉Lj ] · (rj − ri) (3.12)

in which β(r) ∈ [0, 1]. In the case that β(r) = 0, the Molteni and Colagrossi [104]
formulation is recovered, while the Antuono et al. [6] formulation is recovered when
β(r) = 1. For values in the range 0 < β(r) < 1, a transition (or hybrid zone) between
the two formulations is obtained. This last condition is introduced in order to give a
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gradual transition between the two models, instead of a step function. A variation law
for the parameter β is defined for the transition zone, that is considered here as simple
linear variation, although smoother functions can be taken into account. Referring to
Eq. 3.8, the introduction of this parameter acts on the second term of the right hand
side of the equation, hence the transition from the involved two models can be regarded
as a gradual introduction of a higher approximation of the diffusive term.

The use of the hybrid diffusive term implies that in the fluid domain away from
rapid fluid dynamics (absence of fluid-fluid and fluid-solid impacts) the δ-SPH formu-
lation is applied, while in the area characterized by faster dynamics (violent impacts)
the Molteni and Colagrossi term is enforced. In this way, the 4th order diffusive formu-
lation conserves the fluid properties in the majority of the fluid domain and, in presence
of fluid impacts, the 2nd order diffusive term better smooths the spurious oscillations,
limiting the generation of spurious shock waves.

The use of the hybrid diffusive formulation is implemented for a test case dealing
with wave interaction with perforated breakwater. As it will be presented in section 5.2,
the β-parameter is modeled according with the distance from the walls of the breakwa-
ters, where fluid-structure interaction occurs.

3.1.2 Automatic hybrid term

In the hybrid formulation presented in Eq. 3.12, if a certain part of the domain is
expected to be characterized by violent impacts would be implemented with β(r) = 0,
recovering therefore the [104] formulation, while for the remaining parts of the fluid
domain it would be β(r) = 1, recovering the [6] formulation. The result is that the
portions of the fluid domain in which the specific diffusive formulation is acting have
to be defined a priori and does not take into account for the instantaneous variation of
the field values.

In this context, an improvement of the model is introduced by considering a tun-
ing parameter that detects the occurrence of fluid impacts and automatically switches
between the two formulations. In the weakly-compressible context, the occurrence of
fluid-fluid or fluid-solid impacts implies a spatial variation of pressure or, equivalently,
density between the involved interacting particles. Since ∆ρ < 1%ρ0, it results to be
more convenient to consider the β-parameter as a function of the differences in density
between the two interacting fluid particles, β(∆ρij). Therefore, the automatic hybrid
diffusive term for ψij becomes:

ψHyA
ij = (ρj − ρi)− 1/2 β(∆ρij)[〈∇ρ〉Li + 〈∇ρ〉Lj ] · (rj − ri) (3.13)

in which β(∆ρij) ∈ [0, 1]. Also in the case, when β(∆ρij) = 0, the [104] formulation
is recovered, while the [6] formulation is recovered when β(∆ρij) = 1. In the range
0 < β(∆ρij) < 1, an hybrid zone between the two formulations is obtained.

It is noticed that, in the case of free surface flows, and when fluid particles are lo-
cated at different heights, there is a difference in density only due to the hydrostatic
compression of the particles. This static quantity has to be subtracted because it does
not count in hydrodynamic contribute. For a particle located at a water depth di and
considering the linearized state equation, the value of the density in hydrostatic condi-
tions results to be:

ρis = ρ0 +
ρ0g

c2
0

di (3.14)
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The variation of density between the two interacting particle only due to the hydrody-
namic contribution results, therefore, to be:

∆ρi = ρi − ρis = ρi − ρ0 −
ρ0g

c2
0

di (3.15)

If the water depth is di = zmax − zi, with zmax the dynamic free surface level,
assumed to be the same for the two particles, the differences in density between two
particles only due to hydrodynamic contribute (water impacts) is:

∆ρij = |ρi − ρj +
ρ0g

c2
0

(zi − zj)| (3.16)

where the absolute value is used to incorporate the conditions ∆ρi > ∆ρj and ∆ρj > ∆ρi.
The most extreme condition under weakly compressible assumption is that the i-th par-
ticle shows a value ρi = ρ0 + 1%ρ0 while the j-th particle a value ρj = ρ0 − 1%ρ0.
The maximum difference in particles density is therefore equal to ∆ρij = 2%ρ0 and a
dependence for β(∆ρij) has to be defined in the range ∆ρij ∈ [0, 2%ρ0]. Referring to
Fig. 3.1, for small differences of density between the particles, the value of β is equal
to 1 and the δ-SPH formulation is enforced. In this case, these variations of density
are only associated to slow dynamics phenomena. The upper limit of this range is de-
fined by the value ∆ρA, in which the acoustic component starts to appear in the flow
field. In the second range, the hybrid formulation takes place, in which the β-parameter
assumes a linear variation between 1, in correspondence to ∆ρA, and 0, in correspon-
dence to ∆ρM . In this range, high frequency noise starts to rise in the pressure field
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Figure 3.1: Variation of β-parameter as a function of the dynamic density difference between the fluid
particles.

but it is still not yet relevant. For values higher than ∆ρM , the parameter β is set equal
to 0 and the Molteni and Colagrossi formulation is enforced. In this case, significant
variations in the density field due to the presence of fast dynamics and water impacts
are encountered in the pressure field.

It have to be noticed that, in the case of a suspended fluid mass (like for example
the splash after an impact or in the case of a breaking wave) even if there is no hy-
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drostatic compression contribution, the static term is also subtracted. This situation
represents, in any case, only a minor issue of the formulation. The values of ∆ρij in
which the transition between the different formulations occurs are here heuristically
fixed to ∆ρA = 0.3%ρ0 and ∆ρM = 0.6%ρ0. A test case in which the automatic hybrid
formulation is applied regards the analysis of waves-perforated breakwaters, presented
in section 5.3.1.

3.2 Enforcing solid boundary conditions

The enforcing of solid boundary condition is a crucial topic for several SPH applica-
tions and, for some aspects, it is still an open problem. Over the years many different
approaches have been presented, which have therefore resulted in a lack of a univer-
sal technique. One of the major issues related with the particle approaching a solid
boundary is the truncation of the kernel function by the body profile, resulting in a
rapid decrease of the interpolation accuracy (see section 2.2.3). For this reason, most
of these techniques have been addressed to overcome this drawback.

Among the different approaches, the most used in literature are the repulsive-type
particle [106] and the ghost-type particle [26] treatments. In the case of the repulsive
forces, the no-penetration boundary condition is enforced by introducing “repellent”
particles along the region where the solid body is located. In this case the interacting
force is given by a defined expression, derived from physical considerations on the na-
ture of the solid-fluid interaction. Conversely, in the ghost particles framework, all the
fluid particles, within a layer with thickness equal to the kernel radius from the consid-
ered wall, are mirrored inside the solid body. In this way, the field values associated to
the ghost particle are those obtained from the correspondent mirrored one in the fluid
mass, where the normal component of velocity is reversed. This approach, that allows
to exactly enforce free slip boundary conditions, is adopted in this thesis. Therefore a
detailed presentation of an enhancement of this method is here illustrated.

3.2.1 Fixed ghost particles

The fixed ghost particles treatment, introduced by Marrone et al. [96], is an enhance-
ment of the ghost particles technique. In this framework the ghost particles are fixed in
the frame of reference of the solid and are created once at the beginning of the simula-
tion with a regular distribution. The fixed ghost particles cover a body region with size
equal to the width of the kernel support radius. An interpolation point is associated to
every solid particle, obtained by mirroring the position of the fixed ghost particle in the
fluid domain, with the respect of the body profile. The interpolation procedure of the
field values around the interpolation node, to associate to the fixed particles is obtained
through a MLS corrected kernel, Eq. 2.48, at each time step of the simulation. For
the properties previously mentioned the MLS interpolation ensures an accurate mirror-
ing of the flow quantities. A scheme of the implementation of fixed ghost particles is
presented in Fig. 3.2. In the fixed ghost particles approach, the distribution of ghost
particles is always uniform and does not depend on the positions of the fluid particles,
allowing for modeling more complicated shapes of boundaries. When implementing
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3.2. Enforcing solid boundary conditions

 

Figure 3.2: Left: sketch of fixed ghost particles with interpolation nodes. Right: sketch of the interpola-
tion procedure (Marrone et al. [96]).

the free-slip boundary condition, Eq. 2.22 and Eq. 2.23 become:

unG = 2unB − unI (3.17)
uτG = uτI (3.18)

where unG and uτG are the normal and tangential component of velocity enforced to
the fixed ghost particle, unB is the velocity of the boundary (in the case of a moving
contour) and unI and uτI are the normal and tangential velocity interpolated in the fluid
domain:

unI =
∑
jεfluid

unjW
MLS
i (rj) dVj, uτI =

∑
jεfluid

uτjW
MLS
i (rj) dVj (3.19)

in which unj and uτj are the normal and tangential velocity components of the consid-
ered j-th fluid particle. Following this approach is also possible to implement no-slip
conditions, by reversing the interpolated tangential velocity:

unG = 2unB − unI (3.20)
uτG = −uτI (3.21)

Regarding the value of the pressure, pG, to associate to the solid particles, this quantity
is calculated as:

pG =
∑
jεfluid

pjW
MLS
i (rj) dVj + 2ds

∂p

∂n
(3.22)

The second term on the right hand side of the equation, as expressed in Eq. 2.24, is
introduced to take into account differences on the hydrostatic pressure due to the po-
sition of the solid particle compared to its interpolation node and, in case of a moving
boundary condition, to account for the linear and angular acceleration effects of the
solid boundary. The quantity ds is the distance between the ghost particle (or the in-
terpolation point inside the fluid) and the body profile and it proves to be dependent on
the value of ∆x.

Here some details about the enforcing of a moving-boundary condition in the case of
a wave generator are presented. For a piston-type wavemaker, that will be successively
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3.2. Enforcing solid boundary conditions

adopted in different hydraulic applications, all solid points are subjected to a translation
motion, resulting for the angular velocity, in Eq. 2.24, to be dn/dt = 0. The values of
uB are calculated deriving the time variation of the horizontal displacement, e(t), at
the wavemaker section. For regular waves, the horizontal displacement is:

e(t) =
S0

2
sin(ωt) (3.23)

where S0 is defined as the stroke of the paddle, ω (wave frequency) = 2π/T and T
is the wave period. Eq. 3.23 is expressed by a sinusoidal motion law which gives
in the channel a periodic wave train with a degree of non-linearity quantified by the
combination of wave height, H , wave period and water depth and expressed by the
number of wave harmonics occurring in the spectral density of the surface elevation.
The stroke is related to the wave characteristics along the channel by the help of Biésel
transfer function, B. For a piston-type wavemaker, the value of B is given by:

B =
H

S0

=
2 sinh(kd)2

sinh(kd) cosh(kd) + kd
(3.24)

where k (wave number) = 2π/L and L is the wave length. For a given water depth, the
values of H and T are calculated by the zero-up crossing statistical method from the
numerical results of the time records of the surface elevations, η.

To avoid impulsive phenomena in the numerical wave channel which could perturb
the flow field, the time series of horizontal displacements are modified with a ramp
function, R(t), associated to an initial time window:

R(t) =
1

2

[
1− cos

(
π

τr
t

)]
(3.25)

where τr represents the ramp duration which is here set equal to T .

3.2.2 Multi-node fixed ghost particles

In the fixed ghost particles approach, as described in the previous section, it is necessary
to cover a distance equal to the length of the kernel radius. In this way, as particles
of the fluid domain approach the solid boundary, they will always find neighboring
interacting particles and the accuracy related to kernel truncation is not compromised.
For a support kernel with a radius equal to 3h this would result in a layer formed
by four lines of fixed ghost particles, equispaced with the initial resolution ∆x, since
h = 4/3∆x.

For a problem in which the fluid mass is present at both sides of a solid boundary,
to correctly enforce boundary conditions, four lines of fixed ghost particles interacting
with fluid particles in the left side and four lines of fixed ghost particles interacting with
fluid particles in the right side are necessary. This approach results in a layer consisting
of eight lines of fixed ghost particles (case of kernel 3h). This situation does not repre-
sent any difficulty if the width of the solid body is big enough, but problems may arise
if the structure is thin. Since the adopted initial spatial resolution is driven, in this case,
by the presence of thin solid elements, a high resolution is necessary even if it leads
to disadvantages in terms of the computational time of the simulation. Specifically, the
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3.2. Enforcing solid boundary conditions

numerical simulation of a thin structure leads to choose a small initial spatial resolution
for the considered problem, resulting in an increase of the computational cost. This
situation often occurs in the numerical reproduction of small-scale laboratory experi-
ments. Indeed, physical models of structures are often made by slender elements such
as the decks of offshore platforms or ships [34], or in the case of perforated wall-caisson
breakwaters where timber [12], Perspex [78] or plastic plates [52] are used.

To overcome the problem, the CPU time can be reduced through the use of MPI-
OpenMP programming models (e.g. Marrone et al. [97]) or Graphics Processing Units
(e.g. Domínguez et al. [47], [48]) or, alternatively, by using a variable resolution (e.g.
Vacondio et al. [150]). The mentioned solutions could result in efforts in the imple-
mentation of the SPH code.

A different solution can be obtained if, at every fixed ghost particle representing a
thin structure, more interpolation nodes are associated resulting in a multi-node fixed
ghost particle approach. Thus the fluid domain is divided into sub-areas Ωk and an
interpolation node for the reference solid particle is associated to every sub-area. Con-
sequently, the fixed ghost particles present an array of values interpolated at different
sub-areas for the same physical quantity. When a fluid particle located in a region Ωk

interacts with a multi-node fixed ghost particle, the last assumes the field values inter-
polated in the reference area Ωk through the k-th node. In Fig. 3.3, a general case of the
use of the multi-node approach is sketched, where the limits between the sub-regions
are represented by dashed lines. For a correct modeling, the solid particles located
away from the ends of the slender structure are characterized by only two nodes since
the interaction with fluid particles occurs only from two sides, while the solid particles
located on the ends, being surrounded by the fluid mass, are characterized by three
interpolation nodes, with a resulting subdivision into three regions.

Figure 3.3: Sketch of multi-node fixed ghost particles with interpolation nodes for a solid body.
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3.2. Enforcing solid boundary conditions

In Fig. 3.4 the differences in modeling a solid object with fixed ghost particles and
multi-node fixed ghost particles are illustrated. With reference to the example in the
right sketch in Fig. 3.4, the coordinates of the k-th node (xkn, zkn) of the fixed ghost
particles with coordinates (xi, zi) are determined as follows:

anode : xan = xl − (xi − xl), zan = zi

bnode : xbn = xr + (xr − xi), zbn = zi

cnode : xcn = xi, zcn = zo + (zo − zi)

(3.26)

Moreover, it is possible to observe that the interpolation nodes of the solid particles
located on the bisectors of the edges of the body are mirrored along the projection of
the bisectors in the fluid domain using the classical fixed ghost particles framework (see
left sketch in Fig. 3.4). In the multi-node approach, the node is instead always mirrored
with the respect of the body profile. The transition between sub-areas occurs along the
projection of the bisectors characterized by different interpolation nodes.

 

Figure 3.4: Differences between classical fixed ghost particles approach (left sketch) and multi-node
approach (right sketch) in modelling a solid boundary (the value of ∆x represents the minimal reso-
lution necessary to model the body characterized by a width s).

The multi-node method is direct and easy to implement in the case of flat surfaces
and well defined corners, while some difficulties may arise when dealing with a more
complicated shape. In this case, the difficulties would be to find the right location for
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3.3. Time integration schemes

the fixed ghost particles with related nodes and then to determine the domain subdivi-
sion into sub-areas with their transitions. Regarding the former problem, it is recom-
mendable to use a method based on a spline interpolation which has been successfully
employed for the case of fixed ghost particles by Marrone et al. [96] and applied to
more complex shapes (e.g. Bouscasse et al. [17]). For the latter one, the individuation
of the sub-domains is dependent on the geometrical shape of the thin object. An object
with one dimension prevalent on the other one (long-limbed) would require a subdi-
vision in three sub-domains near the ends and two away from them, as in the case of
the slotted wall. In the case of small square objects, a different solution would be the
adoption of four sub-domains division with corresponding interpolation nodes.

For 2D problems, the number of total particles required by the proposed multi-node
technique is, in the case of a thin object driving the resolution, Np ∝ (1/2)2 = 1/4
the number of total particles requested by the use of the fixed ghost particles. It is
interesting to notice that, in the case of extension to 3D simulations, the multi-node
approach would result in a number of total particles that is Np ∝ (1/2)3 = 1/8 the
number of total particles needed with the classical approach. For 3D problems, the
computational time saving would be quite higher than that obtained in the 2D cases.

3.3 Time integration schemes

Since the SPH method reduces the original continuum partial differential equations into
a set of ordinary differential equations, any stable time-stepping algorithm to integrate
ordinary differential equations can be taken into account [108]. In this section the time
integration schemes implemented for the present SPH solver are shown, with conside-
rations on the time step length.

For the considered fluid problem, i.e. viscous flow modeled by a weakly-compressible
diffusive SPH scheme, the time-step ∆t is calculated through the following restrictive
conditions:

∆t ≤ min(∆tv,∆tδ,∆tc), (3.27)

where ∆tv is the time-step referred to the artificial viscosity:

∆tv = CFLv
h2

ν
(3.28)

and ν is the kinematic viscosity. The term ∆tδ is the time-step referred to the presence
of the diffusive term:

∆tδ = CFLδ
h

δc0

, (3.29)

meaning that the time-step should decrease when the diffusive coefficient, δ, increases.
Finally, the advective/acoustic component time-step restriction is expressed by:

∆tc = CFLc min
i

(
h

c0 + ‖ui‖+ hmaxj πij

)
(3.30)

In Eqs. 3.28, 3.29 and 3.30 the quantities CFLv, CFLδ and CFLc represents dimension-
less parameters heuristically fixed according with the accuracy of the involved integra-
tion scheme. In particular, the higher the accuracy of the scheme, the larger the values
of these coefficients, allowing for a wider time-step.
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3.3. Time integration schemes

3.3.1 Modified Verlet

The modified Verlet time-stepping scheme conserves linear and angular momenta and
also furnish suitable results for integrations which involve a large number of time-
steps [109]. As observed by Molteni and Colagrossi [104], the modified Verlet scheme,
being a 2nd-order scheme, makes possible to assume a larger time step with respect to
other time integration schemes adopted in SPH context, such as modified Euler scheme
(see e.g. [108]). The variables of interest are evaluated at the first step as follows:

r
(1)
i = r

(n)
i +

1

2
∆tu

(n)
i

ρ
(1)
i = ρ

(n)
i +

1

2
∆t

(
Dρ

Dt

)(n)

i

(3.31)

The field values are then evaluated in a second (final) time-step as follows:

u
(n+1)
i = u

(n)
i + ∆t

(
Du

Dt

)(1)

i

r
(n+1)
i = r

(1)
i +

1

2
∆tu

(n+1)
i

ρ
(n+1)
i = ρ

(1)
i +

1

2
∆t

(
Dρ

Dt

)(1)

i

(3.32)

where the indices (n), (1) and (n+ 1) denote the values at the initial step, halfway and
at the end of a step, respectively. In the case of a modified Verlet scheme, the time-step
coefficients are heuristically set equal to CFLv = 0.125, CFLδ = 0.44 and CFLc = 1.2.

3.3.2 Runge-Kutta

Since diffusive weakly-compressible SPH schemes are used for different analysis in
this thesis, the evaluation of the diffusive term in the continuity equation can be, in
some case, computationally demanding. Consequently, the choice of an appropriate in-
tegration scheme can reduce the run time of the simulations. Considering the governing
System 2.62 in the following general form:

Dw

Dt
= F (w) (3.33)

the generic quantity can be split asF = M+D, in whichD contains only the diffusive
term. Operating this manipulation, the Eq. 3.33 is solved with a 4th-order Runge-Kutta
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3.4. Dynamic pressures at body profiles

integration scheme through a frozen diffusive approach (see Jameson et al. [73]):

w(0) = w(n)

w(1) = w(0) +M (w(0))∆t/2 +D(w(0))∆t/2

w(2) = w(0) +M (w(1))∆t/2 +D(w(0))∆t/2

w(3) = w(0) +M (w(2))∆t+D(w(0))∆t

w(4) = w(0) + [M (w(0)) + 2M(w(1))+

2M (w(2)) +M (w(3))]∆t/6 +D(w(0))∆t

w(n+1) = w(4)

(3.34)

in which the indices (1), (2), (3) and (4) represents the intermediate time-steps, while
(n) and (n + 1) the initial and final time-steps. The scheme 3.34 differs from the
original Runge-Kutta scheme by taking the diffusive term to be evaluated once within
each time-step [4].

In the case of a mobile solid boundary, as successively adopted in different hydraulic
applications involving wave generation, the movement of the solid vertical wall repre-
senting a wavemaker is updated at each sub-time step of the Runge-Kutta integration
scheme. Consequently, its position, rB, is:

r
(0)
B = r

(n)
B

r
(1)
B = r

(0)
B + u

(1)
B ∆t/4

r
(2)
B = r

(1)
B + u

(2)
B ∆t/4

r
(3)
B = r

(2)
B + u

(3)
B ∆t/4

r
(4)
B = r

(3)
B + u

(4)
B ∆t/4

r
(n+1)
B = r

(4)
B

(3.35)

where uB is the velocity of the moving boundary. Also in the case of a Runge-Kutta
integration scheme, the time-steps referred to the artificial viscosity, Eq. 3.28, to the
diffusive term, Eq. 3.29 and to the advective/acoustic condition, Eq. 3.30, have to
be satisfied. It can be noticed that the considered integration scheme gives greater
values of CFL number in comparison with the modified Verlet scheme or a 3rd-order
TVD Runge-Kutta scheme [4]. The values for the time-step coefficients have been
heuristically fixed, in Antuono et al. [4], equal to CFLv = 0.125, CFLδ = 0.44 and
CFLc = 2.2.

3.4 Dynamic pressures at body profiles

In the analysis that will be presented in chapter 5 regarding the wave interaction with
perforated breakwater, the assessment of dynamic pressures, ∆p, acting on specific
points of a body profile proves to be fundamental in evaluating the hydrodynamic
forces.

Regarding the evaluation of the dynamic pressures, the general continuous formula-
tion for the relationship between the total pressure, p, its static component, ps, and ∆p,
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3.4. Dynamic pressures at body profiles

for a 2D problem, reads as:∫
Γ

p(r′)WMLS(r − r′)dΓ′ =∫
Γ

[ps(r
′) + ∆p(r′)]WMLS(r − r′)dΓ′

(3.36)

in which, in this context, r represents here the position of the numerical pressure gauge,
r′ the position of the considered fluid particle and Γ is the specific support area. In Eq.
3.36 the evaluation is performed considering a weighting function with MLS correction,
as expressed in Eq. 2.48.

Since ps = ρg(d − z), where z is the vertical coordinate starting from the flume
bottom, the expression for the dynamic pressure becomes:

∆p(d− z) =

∫
Γ

pWMLS(r − r′)dΓ′ −
∫

Γ

ρg(d− z)WMLS(r − r′)dΓ′ (3.37)

From Eq. 3.37 the second integral of the right side of the equation is equal to the
value of the hydrostatic pressure evaluated in the barycenter depth, hG, of the weight-
ing function over the support area Γ. It can be noticed that subtracting directly the
hydrostatic component of the numerical gauge depth from the integrated total pressure
may lead to an error in estimation of the dynamic component. In this case, only when
the barycenter of the supporting area coincides with the location of the measuring point,
is the evaluation of the dynamical pressure correct. In the continuous formulation, this
condition is always satisfied when the support area is symmetrical with respect to the
measuring point. In the presence of non straight contours such as the edges of a perfo-
rated breakwater, this condition is no longer satisfied, resulting in an overestimation or
underestimation of the dynamic pressures (see Fig. 3.5).

To prevent this, a correct procedure for the evaluation of dynamic pressure in a
discrete formulation is considering the dynamic pressures for each involved particle
and afterward operating with the interpolation technique. For the i-th measuring point,
it reads as:

∆pi =
∑
jεΓ

[pj − (d− zj)ρ0g]WMLS
j (ri)Vj. (3.38)

Eq. 3.38 is referred to all the particles below the Still Water Level (SWL), while
for the particles above the still water level the dynamic pressure is equal to the total
pressure. The evaluation of the pressure with Eq. 3.38 is determined for all the points
located along the body profile of the breakwaters and equispaced by the adopted value
of ∆x. Particular attention should be paid to the measuring points near the free surface
and, in particular, within the wave run-up and run-down. As sketched in Fig. 3.6,
water particles are located inside the support area of the interpolating function even if
there is no contact between the fluid mass and the measuring point. To avoid improper
measurements, the pressure gauges are activated only when the free-surface level is
higher than the position of the gauge point and are otherwise inactivated.

Regarding the evaluation of an optimal support area to weight the neighbor fluid
particles in order to assess the wave pressures well, different formulations and radius
of influence are tested. For instance, Gao et al. [60] have calibrated rectangular control
area with support radius 2h and 3h through a spatial average of the involved fluid
particles, while Ren et al. [128] have adopted a circular area using a spline kernel.
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3.4. Dynamic pressures at body profiles

Figure 3.5: Support area for a pressure gauge; in a) the area is not truncated by the solid boundary,
therefore the measuring point and the barycenter of the interpolating function correspond; in b) and
c) the truncation of the support area leads to a displacement between the measuring point and the
barycenter of the interpolating function.

Figure 3.6: Sketch of dynamic pressure interpolation for the gauges near the free surface (the pressure
gauge gi is inactivated even if the fluid mass reaches the area of the support radius).
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CHAPTER4
Preliminary analysis

4.1 Still water tank

The simplest test case to validate the stability of the present computational scheme is
the conservation of the hydrostatic solution. With this purpose, a still water tank ini-
tialized with a hydrostatic pressure distribution is presented. The governing equations
expressed by System 2.72 are used, while classical ghost particles are implemented for
the modeling of the solid boundary. In this case a Runge-Kutta integration scheme with
no diffusive correction is taken into account, while for the artificial viscosity a coeffi-
cient α = 0.01 is enforced. The initial configuration of the problem is shown in Fig.
4.1 (a), where the fluid particles are located in a regular grid, equispaced with an initial
resolution ∆x = 0.004 m. The height of the water tank is H = 0.4 m, while its width
is L = 0.6 m. The final configuration, at t = 30 s, is shown in Fig. 4.1 (b), where the
particles assumes a different spatial location from the initial configuration.

Even if the solution results to be stable in time, a small variation on the locations
of the fluid particles occurs during the simulation, until their equilibrium position is
not reached. To better understand this fact, and to also have a deeper insight on some
aspects of the SPH, the conservation of energy is presented. In particular, in Fig. 4.2 the
evolution of kinetic (Eq. 2.73), potential (Eq. 2.74), dissipated (Eq. 2.76) and elastic
(Eq. 2.77) energies are displayed. For convenience, the initial potential energy, EP0,
is set equal to zero, resulting in an initial mechanical energy to be also equal to zero,
being null the initial kinetic energy.

Fig. 4.3 is a detail of Fig. 4.2, in which the first 3 s of simulation are shown. As it is
possible to see, in the first part of the simulation, until the initial regular grid locations of
the particles is not broken, oscillation between different form of energy are observed.
In particular, the dissipated internal energy energy result to be null, meaning that no
dissipation processes are involved in this initial part of the simulation, and the only
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4.1. Still water tank

                  (a)                                                                                               (b) 

Figure 4.1: Frames of the simulation with pressure distribution for the hydrostatic problem; (a) initial
configuration of the particles; (b) final configuration at t = 30 s.

variations of internal energy are due to the reversible energy. On the other hand, since
the particles are not moving, their kinetic energy is equal to zero and the oscillations of
internal energy are exactly balanced by oscillations of potential energy.

 

Figure 4.2: Time evolution of the different forms of energy for the hydrostatic problem.

When the unstable initial location of the particles is broken (at t ∼= 1.3 s, see Fig.
4.3), the potential energy of the particles decrease with time, according with the fact
that the particles move to a lower energy level (more stable positions). Conversely
the total internal energy increase with time, allowing for the conservation of the total
energy, as shown in Fig. 4.4. The reassessment of the particles after the breaking of
the initial configuration, results therefore, as shown in Fig. 4.3, in a slight increment in
the kinetic energy, related with the motion of the particles. This quantity however goes
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4.1. Still water tank

                             Breaking of initial  

                    configuration 

Figure 4.3: Detail of Fig. 4.2 for the first 3 s of simulation, highlighting the time instant when the
breaking of the initial configuration occurs.

to zero for long time evolution, since the system tends to a stable solution of minimal
potential energy and an increased internal energy. The sum of mechanical and internal
energies, i.e. total energy, proves the conservativeness of the SPH scheme.

 

Figure 4.4: Time evolution of internal and mechanical energies. The total energy, sum of EI and EM

energies, is conserved in time.

It is interesting to notice that, since the irreversible internal energy (energy dissi-
pated into heat) is furnished by the viscous contribution, in the case of an inviscid SPH
solution, i.e. artificial viscosity α = 0, the potential energy due to the initial configura-
tion of the particles is never dissipated. The result is that, after the breaking of the initial
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4.2. Oscillating drop under a central force field

configuration, the equilibrium configuration of the fluid particles is never attained, re-
sulting in a continuous spurious motion of the fluid particles. This is the reason why in
SPH solvers the artificial viscosity is used to enhance the stability of the model.

Anyhow, the problem of the initial configuration of the fluid particles is a relevant
topic in SPH since, for particular geometries of the domain, it could result in the im-
possibility of attainment the equilibrium position, resulting in a destruction of the nu-
merical solution. Colagrossi et al. [29] have shown that these spurious contribution are
essentially due to the deviation of the pressure gradient operator from the exact diffe-
rential operators. To propose a solution to this problem, the same authors presented the
packing algorithm for the fluid particles that allows to recover, for every geometry of
the domain, the spatial configuration of minimal energy for the particles, avoiding the
introduction of spurious contribution related to particles location.

4.2 Oscillating drop under a central force field

In this section the dynamic of a two-dimensional fluid drop subjected to a central con-
servative force field is taken into account. This prototype test is often used in SPH
context to evaluate the capabilities of the numerical model for a simple problem in
which a characteristic physical phenomenon take place. In this case indeed the analyti-
cal solution is known, resulting for this case in a valuable benchmark for the model.

The force field is expressed by −B2r, where B is a dimensional parameter, while
the drop at rest presents a circular shape with radius R. The drop periodically evolves
as an oscillating fluid ellipse, according to the following law:{

u(t) = A(t)x

v(t) = −A(t)y
(4.1)

where the solution for A(t) is given in Monaghan and Rafiee [111]. The drop is initial-
ized with a velocity field given by A(t = 0) = A0. The global evolution of the drop
depends on the ratio A0/B.

In this case, the governing equations expressed by System 2.72 are taken into ac-
count. The problem is solved with a Runge-Kutta integration scheme, in which stan-
dard SPH and δ-SPH are compared. The artificial viscosity is tuned with a coefficient
α = 0.01.

4.2.1 Energy conservation during the drop evolution

This test case deals with the energy conservation during the evolution of the drop. In
this case only standard SPH is taken into account. The initial configuration of the
problem is shown in Fig. 4.5, where the initial pressure field and velocity vectors
are represented. The radius of the drop is R = 1 m, while the adopted resolution is
∆x = 0.01 m. A value for the ratio A0/B = 1/5 is here considered.

The drop periodically evolves into ellipses as shown in Fig. 4.6 at the time instants
of maximum elongations. In Fig. 4.7 the evolution of kinetic (Eq. 2.73), potential (Eq.
2.75), dissipated (Eq. 2.76) and elastic (Eq. 2.77) energies are displayed. The initial
potential energy, EP0, is set equal to the initial kinetic energy reversed in sign, so that
the initial mechanical energy of the system is equal to zero. In this case is possible to
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4.2. Oscillating drop under a central force field

observe a periodic oscillation between kinetic and potential energy. When the drop is at
its maximum elongation the potential energy is maximal and the kinetic energy is null,
while a reversed situation is encountered when the drop is in a circular form.

      (a)                                                       (b)                                                 

  

    y/R                                                                         y/R                                                                              
 

 

 

 

 

 

 

 

 

 

               

 
 
                                 x/R                                                                        x/R 

Figure 4.5: Initial condition for the drop; (a) pressure field; (b) detail of the center of the drop in which
the velocity vectors are represented.
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Figure 4.6: Drop configuration at its maximal elongations for the first period of the evolution, in (a)
along the y direction, while in (b) along the x direction.

As the drop evolves in time, the oscillation of potential and kinetic energies are
damped by the viscosity. This fact results in a decreasing of mechanical energy and
an increasing in internal energy in time. As shown in Fig. 4.8, the mechanical energy
dissipated is exactly balanced by the gained internal energy. For long time evolution
the solution tends to a static configuration in which the drop assumes a circular shape,
where the mechanical energy is completely dissipated into heat.
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Figure 4.7: Time evolution of the different forms of energy for the fluid drop.

 

Figure 4.8: Time evolution of internal and mechanical energies. The total energy, sum of EI and EM

energies, is conserved in time.
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4.2.2 Analysis of the pressure noise

In this test case, the analysis of the pressure evolution at the center of the drop is pre-
sented. A value of the ratio A0/B = 1 is taken into account, resulting in higher oscil-
lations of the drop with respect of the previous case. Fig. 4.9 shows the result obtained
for the drop at the maximum elongations after 8 oscillations, in which it is possible to
observe a noisy pressure field. The solution results indeed to be affected by acoustic
disturbances that increases with time as the drop evolves.

(a)                                                                          (b) 

Figure 4.9: Pressure field of the drop configuration at the maximum elongation, in (a) along the y
direction, while in (b) along the x direction, obtained with standard SPH with R/∆x = 200.

This fact is highlighted in Fig. 4.10, in which the evolutions of the pressure signal
evaluated at the center of the drop, P0, is displayed for different values of spatial reso-
lution. To investigate the effects of the diffusive correction, both SPH without diffusive
corrections and δ-SPH, are taken into account. The standard SPH model shows a level
of noise that progressively increases with time. In this case, the effect of the adopted
resolution result to be more relevant, since the numerical solution converge to the ana-
lytic solution only for high values of the ratio R/∆x. In the case of the δ-SPH, instead,
the solution result to be much more stable in time, with a smaller effect of the adopted
resolution to the numerical result. Only in correspondence of the first trough of the
evolution of the drop is possible to see considerable localized noise, due in this case, to
the spatial rearrangement of the fluid particles.

To analyze the effects of the adopted resolution to the pressure noise, the analysis
in the frequency domain is presented. In this case, because of the periodicity of the
signal, a simple Fourier analysis results to be suitable for this investigation. Fig. 4.11
presents the Fast Fourier Transform (FFT) of the signals presented in Fig. 4.10. In the
frequency domain the analytic peaks, multiples of the fundamental harmonic related
with the harmonics of the oscillations, are contained in the low frequency range of the
spectrum. For high frequencies, the energy content is entirely due to the acoustic noise.
As it is possible to observe, the range of frequencies analyzed varies according with the
spatial resolution adopted, because the time resolution is related to the spatial one by
the Courant-Friedrichs-Lewy time step condition: for higher spatial resolution it results
a higher maximal frequency, because the time step is smaller.
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4.2. Oscillating drop under a central force field

A slight difference for the same resolution is encountered between the Standard and
the δ-SPH: the latter, being more stable, shows a smaller maximal frequency compared
with the former.
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Figure 4.10: Time evolution of pressure signal for three different resolutions R/∆x=50, 100, 200,
compared with the analytic solution; (a) SPH without diffusive correction; (b) δ-SPH.

From the results obtained from the Standard SPH, shown in Fig. 4.11, is possible
to see that as the resolution increases the acoustic noise goes to higher frequencies,
presenting curves of the noise with a smaller maximum peak, while for low resolution
all the acoustic noise is concentrated in the low frequencies region. In the case of the
δ-SPH is possible to see that the energy content of the high frequencies area of the
spectrum result to be really diminished, being the diffusive term operating at the scale
of the smoothing length.
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Figure 4.11: FFT of the pressure signals presented in Fig. 4.10 for the three resolutions R/∆x=50,
100, 200; (a) SPH without diffusive correction; (b) δ-SPH.
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4.3 Dam-breaks

In this section different dam-break cases are taken into account. The set up of the
problem is given by placing a mass of water in an initial rectangular configuration and
instantaneously releasing one of the containing walls. To furnish the correct initial con-
dition for the pressure field is important to impose null pressure all over the boundary
in contact with the free surface. In particular, the initial condition for the pressure field
has to satisfy [104]: 

∇2p(t = 0) = 0

p = 0, on the free surface

∂p

∂n
= 0, on the solid walls

(4.2)

A first analysis is carried out considering the energy evolution of a simple dam-break
and considerations on the transformation of energy are presented. A second test case
deals with the impact of a dam-break on a rectangular obstacle, in which the pressure
evolution measured at three different locations of the domain are presented by consid-
ering different diffusive formulations.

4.3.1 Energy conservation during a dam-break

The first test case deals with the analysis of a simple dam-break. For this problem,
the governing equations expressed by System 2.72 are taken into account and classical
ghost particles are implemented for the modeling of the solid boundaries. The problem
is solved with a Runge-Kutta integration scheme, without diffusive correction. The
artificial viscosity is implemented with a coefficient α = 0.01. The initial configuration
of the problem is presented in Fig. 4.12, where water height is hw = 0.6 m, while the
water length is Lw = 2hw. The lenght of the channel is Lc = 5.3667hw. In this case the
adopted resolution is ∆x = 0.00316 m. In Fig. 4.13 the evolution of kinetic (Eq. 2.73),
potential (Eq. 2.74), dissipated (Eq. 2.76) and elastic (Eq. 2.77) energies are displayed
and some crucial instants of time on the fluid dynamics are marked. The correspondent
frame of the fluid simulation showing the pressure distribution are presented in Figs.
4.15 and 4.16.

Since the initial kinetic energy is zero (the particles are initialized with zero veloc-
ities) also the initial potential energy, EP0, is set equal to zero in order to have null
initial mechanical energy. As the mass of water starts to move it is possible to notice
a decrease in potential and an increase on kinetic energies, due to the unsteady flow
motion. This process continues until the fluid impacts the right wall, where the system
gain again potential energy and lose kinetic one, due to the jet created after the impact
along the vertical direction. The first relative minimum/maximum in potential/kinetic
energy is encountered at t ∼= 0.76 s, as shown in Fig. 4.13 and displayed in the relative
frame in Fig. 4.15. The vertical water jet created after the impact increase/decrease
again potential/kinetic energy until t ∼= 1.34 s where, as shown in Fig. 4.15, a plunging
wave occurs. The potential energy is again transformed into kinetic one, during the
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Figure 4.12: Initial configuration with pressure distribution of the dam-break.

 

Figure 4.13: Time evolution of the various form of energy for the dam-break. In the plot are marked
some significant instant of time, whose frames of simulation, with the pressure field, are displayed in
Figs. 4.15 and 4.16.
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process of falling of the fluid mass and consequent wave breaking. A second relative
minimum/maximum of potential/kinetic energy is therefore encountered at t ∼= 1.65 s,
as shown in Fig. 4.13, and displayed in the frame of Fig. 4.15.

The wave breaking generates a second jet that again leads to an increase/decrease
in potential/kinetic energy, as shown in Fig. 4.13, and reachs another relative max-
imum/minimum at t ∼= 1.92 s, as displayed in Fig. 4.16. A really interesting phe-
nomenon is encountered at t ∼= 2.08 s, as displayed in Fig. 4.16, where the cavity
generated after the wave breaking process collapses on the fluid mass, with a conse-
quent fluid-fluid impact. This rapid process creates an instantaneous compression of
the fluid particles, that results in the peak in the elastic energy, as shown in Fig. 4.13.
During these rapid dynamics of the fluid mass, the mechanical energy is dissipated by
the viscosity, resulting therefore in an increase of the internal energy.

A second impact, with instantaneous accumulation of elastic energy as shown in Fig.
4.13, is related to the falling of the second jet. In Fig. 4.16 is displayed the simulation
at t ∼= 2.30 s, an instant of time prior the impact. The last frame in Fig. 4.16 shows
the fluid mass at t ∼= 3.93 s, where, even if kinetic energy due to fluid motion is still
present, most of the mechanical energy is already transferred into internal one.

In Fig. 4.14 is shown the conservation of the total energy of the system, where the
mechanical energy evolution is exactly balanced by the internal energy (heat dissipated
by the viscosity). This result shows that the SPH model remains very accurately con-

 

Figure 4.14: Internal energy and mechanical energy evolutions. The total energy is conserved in time.

servative. This fact has been also shown by Le Touzé et al. [81], for cases characterized
by different dynamics and by varying the spatial resolutions.

It is important to notice that the energies variations, related in this case to the physics
of the problem, are of 105 order of magnitude higher than that encountered in the pre-
vious analysis for the still water tank, only related to the numerical issues of SPH.
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Figure 4.15: Frames of the evolution of the pressure field. The time instants shown are those represented
in Fig. 4.13 where the different forms of energy are shown.
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Figure 4.16: Frames of the evolution of the pressure field. The time instants shown are those represented
in Fig. 4.13 where the different forms of energy are shown.
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4.3.2 Dam-break impacting an obstacle

In this section the simulation of a dam break impacting on a rectangular rigid obstacle
placed at the bottom is presented. For this case, the problem is solved with the govern-
ing equations of System 2.71. Fixed ghost particles are implemented for the modeling
of the solid boundary. The problem is solved with a modified Verlet integration scheme,
while the artificial viscosity is tuned with a coefficient α = 0.01.
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Figure 4.17: Initial configuration with pressure distribution of the dam-break impacting on a obstacle.
Points P1, P2 and P3 represents the numerical gauges where the pressure is evaluated.

The initial setting of the particles with pressure distribution and the geometry of
the computational domain are presented in Fig. 4.17. In particular the water height is
H = 0.1 m, while the length of the water mass is L = 0.225 m. The obstacle is set
at a distance Lo = 0.395 m from the left wall of the domain. The obstacle height is
ho = 0.03 m, while its length is lo = 0.06 m.

In Fig. 4.18 SPH simulation of the dam-break evolution are presented for different
significant time instants, in comparison with the experimental results and with another
SPH solver. Different diffusive formulations are taken into account for the simulation
of the problem. In particular, a first analysis is carried out without diffusive correction
(standard-SPH), followed by simulations using the Groenenboom and Cartwright [68]
and the δ-SPH [6] diffusive models. Two resolutions, ∆x1 = 0.0035 m and ∆x2 =
0.0018 m, and two values of the diffusive coefficient, δ = 0.1 and δ = 0.2, are taken
into account. The results, obtained for the pressure gauges at points P1, P2 and P3
shown in Fig. 4.17, are displayed in Fig. 4.19.
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Figure 4.18: Frame of dam-break flow evolution: the first column is obtained with the present SPH
solver, the second column is an experimental study while the third is the result of another SPH solver
[133].
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Figure 4.19: Time variations pressure evolution at gauges P1, P2 and P3. The results are obtained
without diffusive corrections (SPH st) and with diffusive formulations of [68] (SPH Gr) and [6]
(SPH An).
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4.4 Multi-node fixed ghost particles validation

In this section, the proposed SPH modeling of solid boundaries using multi-node fixed
ghost particles is firstly tested for a still water tank with two different levels, concerning
the conservation in time of the hydrostatic solution. A second test case in hydrodynamic
conditions, dealing with the wave impact on a thin horizontal deck, modeled with multi-
node fixed ghost particles is then performed, comparing the time instants of the wave
interaction with the results obtained from the SPH model of Gómez-Gesteira et al. [65]
in terms of particle positions, velocity and pressure fields.

4.4.1 Hydrostatic test case

The hydrostatic test involves a double tank in still water conditions, containing liquid at
different levels and divided by a thin solid separation. In this case, System 2.72 for the
governing equations is taken into account, considering a Runge-Kutta 3.34 integration
scheme, with a coefficient for the artificial viscosity equal to α = 0.01 and without
diffusive correction. Regarding the geometries of the domain, the length of each tank
is Lt = 0.5 m, the water level in the left tank is d1 = 0.4 m, while in the right tank is
d2 = d1/4. The adopted resolution is ∆x = 0.0045 m.
The separation wall is firstly modeled with four lines of canonical fixed ghost particles
and only one node is associated to them (specifically located in the left tank). As
can be seen in Fig. 4.20, the fluid particles in the right tank interact with the central
solid boundary whose quantities are interpolated in the left side. As a result, a positive
pressure gradient due to the difference in water height between the two tanks generates
an unphysical shock wave in the right tank with a consequent appearance of a relevant
velocity field. A similar problem will be encountered if the interpolation nodes are
located only in the right side. In this case, a negative pressure disturbance will be
induced in the fluid particles contained in the left tank, resulting again in an incorrect
solution.

 

Figure 4.20: Frame of the SPH simulation using one-node fixed ghost particles at t = 0.1 s; a) pressure
field; b) fluid particles (blue) with associate velocity vectors and solid particles (red).

When the partition wall of the tanks is modeled with a multi-node approach, the
solution proves to be correct. In this case, as illustrated in Fig. 4.21, the computational
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domain is subdivided into two regions Ωa and Ωb with the corresponding a-node and
b-node associated with the central wall by the proposed technique. The external walls
and the bottom tanks are instead modeled by classical fixed ghost particles.

Figure 4.21: Sketch of solid boundary conditions modeled by a combination of single-node and multi-
nodes fixed ghost particles and corresponding interpolation nodes for the hydrostatic test case.

Fig. 4.22 shows the results of the simulation obtained with the multi-node enforce-
ment, in which the preservation of the hydrostatic solution remains stable in time for
the considered two tanks. In this case, the interpolation nodes furnish correct values of
pressure for the interacting fluid particles, avoiding the occurrence of spurious hydro-
dynamic phenomena.

4.4.2 Hydrodynamic test case

The hydrodynamic test refers to a horizontal deck placed above the SWL and subjected
to water waves. The analysis here is principally addressed to check the performances
of the proposed multi-node fixed ghost particles to model thin solid bodies in hydrody-
namic conditions. As for the previous case, the adopted governing equations are those
of System 2.72, while a Runge-Kutta integration scheme is taken into account. SPH
simulations are conducted using α = 0.05 and εX = 0.5, as calibrated by Gómez-
Gesteira et al. [65], for a successive comparison of numerical results.

As shown in Fig. 4.23, the adopted computation domain is characterized by a length
of the wave flume Lc = 9 m, a water depth d = 0.65 m and a distance between
wave paddle and leading edge of the deck xd = 2 m. Following the experimental
investigation by Cox and Ortega [34], the length of the horizontal deck is Ld = 0.61 m
and its height is Hd = 0.0115 m, while the distance of its upper part from the SWL is
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Figure 4.22: Frame of the SPH simulation using multi-node fixed ghost particles at t = 10 s; a) pressure
field; b) fluid particles (blue) with associate velocity vectors and solid particles (red).

hd = 0.0525 m. The deck is modeled by a combination of single and multi-node fixed
ghost particles with corresponding interpolation nodes. The left wall of the channel is
modeled by moving fixed ghost particles and implemented with the sinusoidal time law
in order to simulate a piston-type wavemaker for wave generation (see Eq. 3.23). As in
the case of the hydrostatic test (see Fig. 4.21), the other solid boundaries are enforced
using one-node fixed ghost particles.

 

Figure 4.23: Sketch of solid boundary conditions modeled by a combination of single-node and multi-
node fixed ghost particles and corresponding interpolation nodes for the case of the horizontal deck.

The adopted spatial resolution for the multi-node fixed particles is driven by the
small height of the plate, so that ∆x = Hd/4 = 0.002875 m. Second-order Stokes
waves are generated in the channel by imposing an amplitude of the stroke equal to
S0/2 = 0.25 m and a wave period T = 2 s to a piston-type wavemaker, as simulated by
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Gomez et al. [65]. To avoid an improper numerical damping during wave propagation
along the channel, the conditionA/∆x > 2 have to be satisfied [5], whereA is the wave
amplitude. In this case, this condition results as largely satisfied being the ratio equal
to about 87. For the test cases dealing with wave-perforated breakwater interaction,
analyzed in chapter 5, the above constraint will always be satisfied for the considered
wave conditions and spatial resolution.

In order to test the proposed boundary technique, the numerical results deduced
from the present SPH model are compared with the SPH model developed by Gómez-
Gesteira et al. [65]. These authors proposed an ad-hoc test case dealing with the wave-
deck interaction and the associated processes of overtopping and jet formation, on the
basis of the initial experimental layout proposed by Cox and Ortega [34]. In order to
model solid boundaries, Gómez-Gesteira et al. [65] applied quasi fluid particles which
follow only the continuity equation and the state equation in a fixed position (e.g. [36]).
A less refined spatial resolution ∆x = 0.025 m with respect to the present SPH simu-
lation was adopted in [65].

With reference to five significant time instants of the wave impact at the deck (t =
3.15 s, 3.27 s, 3.39 s, 3.45 s and 3.53 s), Fig. 4.24 shows the particle positions (left
panel) and the associated horizontal velocity field and streamlines (right panel) simu-
lated through the proposed SPH solver, while Fig. 4.25 illustrates the particle positions
(left panel) and the associated velocity vectors (right panel) simulated through the SPH
model by [65]. In the first selected time instant (t = 3.15 s), the incoming wave reaches
about the front face of the deck and a portion of the flow arrives at about the half of
the lower zone of the deck, as observed by [65]. The largest velocities appear at the
wave crest and, due to the presence of the deck, in its lower zone. In the second frame
(t = 3.27 s), the wave crest overcomes the upper part of the deck with an increase in its
steepness while the flow under the deck reaches its rear part where relevant velocities
appear. For t = 3.39 s, the wave over the deck arrives at the rear of the deck while
beyond it a breaking wave process induced by the flow past under the deck is noticed.
A forward shift of the above mentioned physical processes are highlighted in the suc-
cessive time window (t = 3.45 s) in which the water completely surrounds the involved
horizontal structure. The formation of a vertical jet as a result of the interaction between
the flows propagating upper and lower the deck is evident at the successive considered
time t = 3.53 s.

The comparisons between the present SPH and that developed by [65] are also per-
formed in terms of time variation of pressure acting on the rear of the deck, as described
in Fig. 4.26 for a significant time window ranging from 3.15 s to 3.53 s. In [65] the
above quantity was calculated by a spatial average of the pressure at the two last solid
particles of the deck, while it is determined here by averaging the pressures interpolated
in the Ωc sub-area of the rear of the deck by the three-nodes fixed ghost particles (red
particles in Fig. 4.23). In this case, the diffusive term by Molteni and Colagrossi [104],
with δ = 0.1, is adopted to model the pressure field due to its better smoothing effect
when a violent fluid-solid interaction occurs. Regarding the pressure field, only the dy-
namic contribution is present since the deck has been placed above the SWL. Although
the spatial resolution and the evaluation of the pressure at the rear of the deck using
the SPH based-models is quite different, a general agreement on the behavior of the
pressure can be observed. This is particularly evident for the peak value which appears
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Figure 4.24: Particle positions (left panel) and associate horizontal velocity field and streamlines (right
panel) simulated through the present SPH model at t = 3.15 s, 3.27 s, 3.39 s, 3.45 s and 3.53 s.
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Figure 4.25: Particle positions (left panel) and associate velocity vectors (right panel) simulated through
the SPH model by Gómez-Gesteira et al. [65] at t = 3.15 s, 3.27 s, 3.39 s, 3.45 s and 3.53 s.
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close to the significant time instant t = 3.27 s where the flow starts to interact with the
rear of the deck. After the maximum value of the pressure, a secondary peak simulated
by the present SPH model proves to be forward shifted compared to that simulated
by [65] as well as the values of relative minimum of the pressure. It can be noticed
that non-linear effects deduced from the adopted SPH solver could be associated to the
more refined resolution adopted in the space-time domain compared to that performed
by [65]. Additional information on the physical processes induced by the wave-deck
interaction can be found in [34] and [65].

Figure 4.26: Time variation of pressure at the rear of the deck: comparison between present SPH model
and that referred to Gómez-Gesteira et al. [65].
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CHAPTER5
Wave interaction with perforated breakwaters

5.1 Overview on perforated breakwaters

Perforated breakwaters are maritime structures widely used in harbors with the aim to
guarantee safe navigation during sea storms. The main purpose of these structures is
thus to minimize the reflection of the incoming waves, limiting in this way wide free-
surface oscillations related with interferences between incoming and reflected wave. As
pointed out by Huang et al. [72], the advantages of these coastal structures with respect
to the traditional vertical or rubble mound breakwaters are the saving in construction
cost in finite water conditions and less disturbance to coastal water environments.

The most simple configuration of breakwaters consists in a perforated front wall
and a solid vertical back wall, so that the wave damping occurs in the chambers located
between the two walls. The first scientific studies of these structures refer to the works
of Wiegel [156] and Jarlan [74]. Afterward, several modification and more complex
configurations were proposed in order to increase the performance of the caisson, like
introducing multiple walls, a top cover between the walls or considering perforated
caisson with a rock core. A review of these perforated breakwater is presented in Huang
et al. [72].

The performance of a perforated breakwater can be seen under a structural stability
point of view, concerning the analysis of wave forces, and under an hydraulic point of
view, concerning the analysis of water dynamics at the caisson and the wave reflection
properties. In literature the analysis of wave reflection has been more investigated than
the analysis of the pressures acting on the caissons (see e.g. [72]). Regarding the pres-
sure spatial distribution at perforated breakwaters, empirical formulation are commonly
adopted. In this case, wave design forces are converted into quasi-static load diagrams
which are taken into account for the analysis of global stability of these structures. An
empirical (and widespread) model of the spatial wave pressures distribution has been
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Figure 5.1: Sketch of different schemes of perforated wall breakwaters (Huang et al. [72]).

73



5.1. Overview on perforated breakwaters

proposed by Goda [62] for a vertical wall and, successively, extended by Takahashi
and Shimosako [148] to the case of slotted structures. In this model, the dynamic pres-
sure is assumed to be linear from the bottom to the SWL and from the SWL to the
maximum wave run-up. The parameters influencing the pressure values are the wave
characteristics, the water depth and the geometrical shape of the breakwater. Takahashi
and Shimosako [148] noted that peak pressures occur at different walls for different
time instants as a function of the width of the chamber, as shown in Fig. 5.2. Moreover,

Figure 5.2: Wave evolution at a caisson breakwater (Takahashi and Shimosako [148]).

these authors pointed out that the determination of the maximum forces acting on the
walls requires a good knowledge of the water dynamics inside the caisson. If this in-
formation is not accurate it may be difficult to calculate the total force for the three
configurations. To overcome this limitation, Tabet-Aoul and Lambert [146] proposed a
new formulation for the wave forces, taking into account for the phase shift among the
pressure peaks between the solid and the slotted walls. In fact, referring to Fig. 5.2,
classical models lead to an underestimation of loads for the Crest I case and an overes-
timation for the Crest IIa and IIb cases. The [146] method is based on [148] formula, in
which some modification factors are introduced. In particular, a dimensionless param-
eter accounts for the phase delay, avoid the choice between the three cases of maximal
force instants shown in Fig. 5.2. In general, as noticed by [146], the maximum total
force occurs between these cases, and its appearance time is strongly linked to B/L,
being B the chamber width and L the wave length. From the model of [148] some
coefficients are introduced to evaluate wave loads:

α1 = 0.6 + 0.5

[
2kh

sinh(2kh)

]2

(5.1)

α2 = min

{[
1− d

3hb

(
HD

d

)2
]
,

2h

HD

}
(5.2)

α3 = 1− h′

h

[
1− 1

cosh(kh)

]
(5.3)

α4 = 1− 1

η∗
min {he, η∗} (5.4)

in which k is the wave number, d is the water depth in front of the caisson, hb is the
offshore water depth at a distance five times the significant wave height,HD is the wave
height applied to calculate design wave forces as expressed in Goda [63], h′ is the water
depth including the armor layer on the berm, he is the emerged height of the caisson.
In [146] the pressure parameters are the same as those given by [148] formula, but are
based on a different definition of the wave run-up parameter, η∗. For the perforated wall
it is:

η∗ = −0.32(1 + cos β)HD, (5.5)

74



5.1. Overview on perforated breakwaters

while for the rear wall:

η∗ = −0.75(1 + cos β)(0.7−B/L)2HD, (5.6)

in which β is, in this context, the incidence wave direction. The pressures for the
perforated wall are then calculated as follows:

Pp1 = (1 + cos β)
[
0.21α1 + (B/4L)(1 + α∗) cos2 β

]
ρgHD, (5.7)

Pp3 = α3Pp1, (5.8)
Pp4 = α4Pp1, (5.9)

where, as shown in Fig. 5.3, Pp1, Pp3 and Pp4 are the resulting pressures on the SWL,
on the bottom, and on the top of the perforated wall, respectively. In Eq. 5.7 α∗ =
max {α1, α2}. In the case of the rear wall, the pressures are calculated as follows:

Pr1 = 0.5(1 + cos β)
[
F1α1 + +F2(1 + α∗) cos2 β

]
ρgHD, (5.10)

Pr3 = α3Pr1, (5.11)
Pr4 = α4Pr1, (5.12)

in which the values Pr1, Pr3 and Pr4 are the resulting pressures on the SWL, on the
bottom, and on the top of the rear wall, respectively, as shown in Fig. 5.3. In Eq. 5.10,
F1 = (0.7−B/L)2 and F2 = (0.43−B/L).

 

Figure 5.3: Peak pressure diagrams and resultant forces on the caisson (Tabet-Aoul and Lambert [146]).

Kirca and Kabdasli [78] provided an experimental investigation on a new type of
perforated caisson, characterized with a heavier structure and greater inner stability
compared with a fully perforated caisson. In addition, this proposed caisson shows a
different mechanism of dissipation resulting in a reduction of the wave loads compared
to a purely vertical caisson. The geometry of the caisson consists in two parallel cham-
bers divided by an impermeable plate settled just on the SWL. In this case, when there
is no wave motion the lower chamber of the caisson is completely filled with water,
while no water in present in the upper chamber.

Another important contribution to study wave loads acting on perforated breakwa-
ters comes from the numerical modeling. Chen et al. [20] determined the wave pressure
acting on a perforated breakwaters and the arm of the wave force on them, through an
Eulerian numerical model developed by Wang [154]. The results obtained from the nu-
merical simulations are validated through laboratory experimental data. Chen et al. [21]
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analyzed the same model extended to a perforated caissons with a top cover. In this case
the authors studied the wave forces acting on the front wall and on the back walls, in
case of non-overtopping and non-breaking waves. The resulting pressures acting on
the caissons depend, apart of the wave characteristics, on the geometry of the caisson,
that can be summarized in the width of the chamber, on the height from the water level
to the top of the inside chamber as well as from the porosity, µ, defined as the ratio
between the section of the holes and the total area of the front wall.

Other aspects to take into account when designing perforated breakwater are their
hydraulic properties. In particular, an important aspects is related with the energy dis-
sipation mechanisms, occurring when the waves pass through the slotted wall. The
analysis of this kind of problem is approached assuming that the motion is irrotational
and therefore introducing a velocity potential, so that u = ∇Φ. The fluid motion in
correspondence of the holes results to be highly turbulent, so that a relevant loss of en-
ergy appears in this part of the caisson. In literature, different models aimed to predict
the energy drop. These approaches can be divided in models in which the porous wall
is considered to be a thin wall with orifices, and models in which the wall is considered
as a porous medium. Mei et al. [102], under the hypothesis of thin wall compared with
the wave length, derived a model that in its simplest form reads:

p(x−, z, t)− p(x+, z, t) =
Cf
2
u(x+, z, t)|u(x+, z, t)|+ Lg

∂u(x+, z, t)

∂t
(5.13)

in which the coordinates x− and x+ are located immediately up-wave and down-wave
of the slotted wall, so that the loss of energy is evaluated by applying the conservation
principle in correspondence of the crossing of the wall, Lg is an empirical length scale
of the problem and Cf is a quadratic loss coefficient. (see Fig. 5.4).

 

Figure 5.4: Scheme of the flow passing through a slotted wall (Huang et al. [72]).

Regarding the evaluation of the reflection coefficient, KR, different approaches have
been presented over the years. In general, these methods are based on the idea of
dividing the resultant free-surface surface elevation in incident and reflected waves. The
resulting elevation can be indeed written as a superposition of these two components:{

ηI = aI cos(kx− ωt+ φI)

ηR = aR cos(kx− ωt+ φR)
(5.14)
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The indexes I and R stand for incident and reflected, respectively. In order to find a
method capable of resolving the incident and reflected wave spectra, Goda and Suzuki
[64] developed a method based on the Fast Fourier Transform (FFT) technique. In this
method, the incident and reflected wave amplitudes aI and aR are estimated through a
harmonic analysis. The wave elevation have to be recorded at two locations x = x1

and x = x2 = x1 + ∆l, with ∆l the separation distance. From the surface elevation
measured at these gauges, the method allows to determine the energy associated to the
incident and reflected waves. As sketched in Fig. 5.5 the upper, fmax, and lower, fmin,
limits of the effective frequency range used in the calculation have to be chosen in order
to be in the range away from the values k∆l = nπ, with n ∈ N k = 2π/L the wave
number in which the method diverges. The energy of the incident, EI , and reflected,

 

Figure 5.5: Illustration of spectral resolution of incident and reflect waves (Goda and Suzuki [64]).

ER, waves within the range fmin to fmax are therefore obtained as:
EI =

∫ fmax

fmin

SI(f)df =
∆t

2t0

fmax∑
fmin

II

ER =

∫ fmax

fmin

SR(f)df =
∆t

2t0

fmax∑
fmin

IR

(5.15)

From these expressions comes the definition of KR. Since the wave energy is a
function of the square of the wave height, the reflection coefficient, defined as the ratio
between heights, is obtained as:

KR =

√
ER
EI

(5.16)

In the case of a fully perforated Jarlan-type structure, Sahoo et al. [134] presented an
explicit expression for KR, based on the potential theory and assuming normal incident
plane waves:

KR =

∣∣∣∣1−G(1− i cot(kB))

1 +G(1 + i cot(kB))

∣∣∣∣ , G =
µ

ks(f − ip)
(5.17)

in which i is the imaginary unit number, G is the porous-effect parameter of the perfo-
rated wall, expressed in Chwang [25]. Since p is a parameter related to the wall inertial
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effect, G assumes real values only when p = 0 (case of rigid structure), while becomes
complex for p 6= 0 (case of flexible structure). The term s is the front wall thickness,
while the dimensionless parameter f is a linear porous resistance coefficient. An inter-
esting result of this formula is that, when G is considered real, the reflection coefficient
takes its minimum values at B/L = 0.25 + 0.5n, with n ∈ N. Due to the limitation in
chamber width, only the fundamental resonant mode, n = 0, is of engineering interest
when designing Jarlan-type structures (Huang et al. [72]).

As pointed out by Fugazza and Natale [58], when the reflection coefficient assumes
a minimum the incident waves pass through the front perforated wall without changing
its wave phase, while the waves reflected by the solid back-wall and the incident waves
at the front wall have opposite phases. In this situation also it is also encountered the
largest horizontal wave force at the wall, being the surface elevations on both sides of
the front plate at the largest difference. As observed by Yip and Chwang [158], the
reflection coefficient response with B/L is opposite to that of wave force acting on the
front wall.

Often, in practical applications, the perforated wall breakwaters are constructed with
a partially perforated caissons, in order to increase their structural stability. In these
cases the water depth inside the chamber is smaller than outside. This particular con-
figuration affect the variation of reflection coefficient, according with the difference in
water depth inside and outside the chamber. In any case, the accurate definition of the
flow field (kinematics, flow discharge through the holes of the caisson and estimation
of the energy loss coefficients, reflection coefficients, dynamic pressures, etc.) requires
detailed investigations. The main aim is to reduce the wave reflection induced by the
fluid-structure interaction and, simultaneously, the hydrodynamic loads in order to give
a better level of global stability of these kind of structures. The use of an advanced
numerical tool has been rarely adopted to support the design of perforated breakwa-
ters, in which it would furnishes useful and practical guidelines for their design. In the
following sections breakwaters performances are investigated through the SPH model.

5.2 Analysis of wave pressures at breakwaters

In this section SPH simulations of wave pressures for the cases of a vertical breakwater
and two types of perforated breakwaters subjected to regular waves propagating along
a plane channel in intermediate water conditions are presented. The capabilities of the
hybrid formulation, expressed by Eq. 3.12, are compared with the diffusive models
proposed by Molteni and Colagrossi [104] and Antuono et al. [6], against laboratory
experimental data by Kirca and Kabdasli [78] and Chen et al. [21]. In order to opti-
mize the numerical results, the SPH parameters α and εX have been set equal to 0.01
and 0.25, respectively. For the vertical breakwater and the perforated ones, the spatial
resolutions are d/∆x = 75 and 115, respectively. The problems are solved with the
governing equations expressed by System 2.72, while fixed ghost particles are imple-
mented for the modeling of the solid boundary. The integration scheme adopted in this
case is the Runge-Kutta with frozen diffusive approach.
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5.2.1 Vertical breakwater

The first test case deals with the interaction between a regular wave train and a simple
vertical breakwater. The incident waves are 3rd order Stokes waves, characterized by
a wave height H = 0.1 m and a wave period T = 0.8 s. The value of water dept, d,
is constant and fixed to 0.54 m. The length of the wave flume is Lc = 4 m. In Fig.
5.6 the time instant when the first wave reach the right wall is presented, where the
vertical and horizontal velocities fields are shown. Different diffusive formulations are
considered for the simulations. In the specific, the Molteni and Colagrossi model [104],
the δ-SPH [6] and the hybrid (coupled) formulation, presented in 3.12, are taken into
account. The hybrid formulation is a function of the position of the fluid particles in
the domain. Only in a region adjacent the right wall with width equal to the support
kernel, 3h, the [104] model is enforced (fluid-solid interaction), while in the remaining
part of the domain, since no violent dynamics occurs, the [6] model is enforced. The
transition (hybrid) zone between the two formulations also occurs in a width equal to
3h. In the following simulations, the same coefficient for the diffusive term (δ = 0.1) is
imposed.

 

     (a) 

 

 

 

 

 

   (b) 

Figure 5.6: Time instant of wave impact at the right wall. In (a) is the horizontal velocity field, while in
(b) the vertical velocity field.

The results are compared with the experimental data obtained by Kirca and Kab-
dasli [78] in terms of dynamic pressures acting on the vertical body profile, evaluated
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through the use of Eq. 3.38, for some specific points located below and above the SWL.
Fig. 5.7 shows the time variations of dynamic pressures, respectively, at z/d = 0.79,
0.93 and 1.07, where z/d = 1 corresponds to the SWL. Since non-breaking waves are
taken into account, the resulting shape is characterized by the occurrence of standing
wave pressures (see e.g. [147]) with temporal scale equal to the wave period. For the
considered points of the body profile, a good agreement between all diffusive models
and the experimental data can be observed in terms of amplitude and wave shifts of ∆p.

It is worth nothing that the reference experimental data of dynamic pressures exhibit
spiky values of positive peaks and non-physical negative values acting above the SWL
related to the inaccuracy of the experimental instruments, as shown in Fig. 5.7 (c).

Figure 5.7: Comparisons of time variation of wave pressures acting on the vertical breakwater at z/d
= 0.79, 0.93 and 1.07 using the adopted diffusive SPH schemes, with experimental data of Kirca and
Kabdasli [78].

The difference in the results of the diffusive SPH models refers to their different
magnitude of high-frequency oscillations. This feature is here exploited through a
spectral analysis, allowing the dynamic pressure signals to be analyzed in frequency
domain. For the same three locations mentioned above, the dynamic pressure power
spectra, S∆p, are highlighted in Fig. 5.8, where the vertical black lines are inserted to
separate the energy contents linked to the Stokes waves and the acoustic oscillations
occurring at a frequency greater than the wave harmonics. It can be observed that the
occurrence of significant high-frequency noise appear in a range greater than the wave
harmonics (in the considered waves, f/fp > 3÷4, where f is here the frequency and fp
is the fundamental peak frequency). The greater spurious energetic contents are asso-
ciated to the model of Molteni and Colagrossi [104]. For the spectrum of S∆p referred
to the point above the SWL, shown in Fig. 5.8 (c), high-frequency energetic levels are
distributed almost uniformly for values greater that the physical wave harmonics.

The level of high-frequency noise appearing in the oscillatory feature of S∆p is ana-
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lyzed by evaluating the ratio between the zero-order moment of high-frequency noise
in the power spectrum, m0hf , and the total zero-order moment of the power spectrum,
m0, as follows:

m0hf

m0

=

∫ fmax

(n+0.5)fp
S∆p(f)df∫ fmax

fmin
S∆p(f)df

(5.18)

where n is here the number of wave harmonics occurring in the dynamic pressure wave
spectrum, and fmin and fmax are the minimum and the maximum computed wave fre-
quencies.

Figure 5.8: Dynamic pressure power spectra at z/d = 0.79, 0.93 and 1.07 using the adopted diffusive
SPH schemes.

Fig. 5.9 describes the variation of the ratio m0hf/m0 along the vertical wall (from
the bottom to the maximum wave run-up, ηmax). The magnitude of high-frequency
wave pressures furnishes the capabilities of the considered diffusive terms to smooth
the numerical noise. For points located far from the SWL (0< z/d < 0.85) the diffusive
model by Molteni and Colagrossi [104] induces lowest values of m0hf/m0 resulting
in the smoothest effect of the dynamic pressure, while the model by Antuono et al.
[6] shows highest values of spurious numerical noise. The vertical range corresponds
to measuring points located in the underwater part of the breakwater, i.e. below the
maximum run-down, ηmin.

The hybrid approach furnishes, as expected, intermediate values of m0hf/m0 be-
tween the other formulations. Across the SWL (z/d > 0.85) limited by the maximum
run-up and run-down, the hybrid formulation and the model by Antuono et al. [6] fur-
nish lower values of high-frequency wave pressures than the model by Molteni and
Colagrossi [104]. This last model shows highest energy associated with the numerical

81



5.2. Analysis of wave pressures at breakwaters

noise due to the lack of the renormalized density gradients which conversely act to reg-
ularize the free surface and, consequently, the spatial distribution of fluid particles near
the gauge point. It is important to notice, however, that the area of the spectrum asso-
ciated to the Stokes harmonics may also be characterized by the presence of pressure
noise, leading to an incorrect identification of the effective acoustic noise. The role of
the acoustic noise in the analytical frequency range is however further investigated in
chapter 6.

Figure 5.9: Level of high-frequency noise occurring in the zero-order moment of the power spectrum of
dynamic pressure using the adopted diffusive SPH schemes.

5.2.2 Perforated breakwaters

In this first application of SPH to perforated breakwaters, two different geometries of
caisson are considered, as presented by Chen et al. [21]. Both caissons present a top
cover plate over the free surface and one internal chamber. The front wall of the first
breakwater is perforated by two rectangular holes, while the back wall is solid. It is
characterized by a porosity µ = 20 %, a width of the chamber B = 0.2 m, a vertical
base d′ = 0.2 m, and a height of top cover above SWL s = 0.08 m. The second one is
perforated by three holes, adopting µ = 20 %, B = 0.15 m, d′ = 0.2 m and s = 0.16 m.
In a plane channel 0.4 m deep, second-order incident waves are characterized by H =
0.08 m and T = 1.2 s for the breakwater no. 1 and by H = 0.1 m and T = 1 s for the
breakwater no. 2.

The diffusive terms of Molteni and Colagrossi [104], Antuono et al. [6] and the
hybrid formulation expressed in Eq. 3.12 are taken into account. In this last case the
δ-SPH is enforced in the area near the walls of the caisson, on a area fixed heuristically
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to the length of the adopted kernel support, 3h. Away from the walls, where fluid-
structure interaction does not occur, the [104] formulation is enforced. In this case the
transition between the two models is introduced also inside the chamber of the caisson
where the three vertical walls (external front, internal front and rear) are considered in
the analysis of the wave pressures for calculating the horizontal loads, as displayed in
Fig. 5.10 for the geometry no. 2.

Figure 5.10: Domain subdivision of the hybrid model in the case of a perforated breakwater no. 2,
with the corresponding spatial variation of the parameter β (colored areas of the fluid domain are
associated to the involved diffusive formulations).

Figs. 5.11 and 5.12 the frame of the simulations with pressure field and velocity
vectors are shown for the case of the breakwater no. 1 and no. 2, respectively. The first
time instant, presented Figs. 5.11 (a) and 5.12 (a), refers to the wave crest impacts at the
front walls, in which a considerable flow discharge inwards the chamber is encountered.
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The second time instant, presented Figs. 5.11 (b) and 5.12 (b), refers to the wave trough
at the front wall, with considerable flow flux outwards the chamber.

(a)                                                                (b) 

Figure 5.11: Frames of the simulation with pressure distribution and velocity vectors for the breakwater
geometry no. 1. In (a) wave crest at the front wall, while in (b) wave trough at the front wall.

 (a)                                                            (b) 

Figure 5.12: Frames of the simulation with pressure distribution and velocity vectors for the breakwater
geometry no. 2. In (a) wave crest at the front wall, while in (b) wave trough at the front wall.

The spatial distributions of dynamic pressures at the front wall and at the internal
walls of the chamber, are analyzed when the maximum pressure induced by the wave
crest within the regular wave train appears in correspondence to the SWL. Positive
dynamic pressures are displayed on the external side of the walls and negative ones on
their internal side. Is noticed that the pressure peaks at the three reference walls appear
at different time instants. Their phase shift is dependent on the wave celerity and the
width of the chamber. In Figs. 5.13 and 5.14 SPH results obtained with the hybrid
formulation and the models by Molteni and Colagrossi [104] and Antuono et al. [6]
with a coefficient δ = 0.2 are compared with the experimental data by Chen et al. [21],
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Figure 5.13: Spatial distribution of wave pressures at perforated breakwater no. 1 using the adopted
diffusive SPH schemes.
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Figure 5.14: Spatial distribution of wave pressures at perforated breakwater no. 2 using the adopted
diffusive SPH schemes.
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showing an overall agreement on the front wall and the right internal wall.
The magnitude of ∆p along the depth is greater for the front wall and lower for the

internal walls due the wave dissipation generated by the presence of perforations, as
also observed by Takahashi [147]. A general underestimation of the dynamic pressures
is observed when the formulation of Molteni and Colagrossi [104] is applied. Since
the hydrostatic solution is not preserved in the mentioned model, unphysical negative
values of ∆p appear near the lower horizontal parts of the caisson and the maximum
dynamic pressure at the SWL is underestimated with respect to the laboratory data.
Conversely, the use of the present hybrid formulation and the one developed by An-
tuono et al. [6] lead to a better assessment of load diagrams along the depth, where a
general compressive strain state occurs at the walls due to the preservation of the hy-
drostatic pressure, as expected. A substantial difference between SPH and experiments
in evaluating ∆p can be observed near the holes where the results obtained by the three
diffusive models highlight lower dynamic pressures than the experimental ones.

Near these geometrical singularities, the reference experimental measurements are
missing because of constructional constraints induced by the difficulty to place the
pressure sensors near the edges of a structure. This result suggests the need to assess
load diagrams on distinct elements of the perforated breakwaters and, however this
aspect it will be further investigated in the next section.

An application example of a diffusive SPH model is given in Fig. 5.15, where the
dynamic pressure distribution at the perforated breakwater no. 1 is illustrated when the
maximum wave crest arrives on the front wall. Strong variations in the values of ∆p

Figure 5.15: Dynamic pressure for a diffusive SPH formulation at a perforated breakwater no. 1 when
the crest within the regular wave train impacts on the front wall.

are evident across the holes of the structure due to the loss of wave energy. In this case,
negative dynamic pressure can occur during the passage of the water flux. The pressure
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drops are related to the strong horizontal velocity gradients occurring at the geometrical
singularities, as expressed by the canonical Bernoulli’s theorem (see e.g. [72]).

In order to assess the capabilities of the involved diffusive SPH forms in simulating
the experimental values of wave pressures on the three faces of the caissons [21], Fig.
5.16 shows the root mean square errors, eRMS , as a function of the magnitude of the
diffusive parameter δ. In all cases the value of eRMS is lower than 30 N/m2 and, parti-
cularly for the second breakwater, the use of the hybrid formulation gives lowest errors.

Figure 5.16: Root mean square errors on ∆p vs. parameter δ.

5.3 Analysis of thin front wall breakwaters

In this section SPH is applied to study the performances of perforated wall-caisson
breakwaters, characterized by a thin solid front wall, under the action of regular waves.
The governing equations adopted are expressed by System 2.72, while fixed ghost par-
ticles are implemented for the modeling of the solid boundary. For the modeling of the
thin front wall the multi-node treatment is employed. The integration scheme adopted
in this case is the Runge-Kutta with frozen diffusive approach, while the SPH parame-
ters α and εX have been calibrated and fixed to 0.01 and 0.25, respectively.

The first analysis concerns the dynamic pressures acting at the walls of a fully per-
forated breakwater. The numerical results, in terms of spatial distribution of wave pres-
sures, are compared with the empirical model by Tabet-Aoul and Lambert [146], pre-
sented in section 5.1. Two diffusive formulations and different weighting functions are
taken into account to assess the dynamic pressures acting on the body profiles of the
breakwater. The second SPH analysis deals with the hydraulic properties of a partially
perforated breakwater, regarding the reflection of the incoming waves and its level of
efficiency in terms of wave energy dissipation. The numerical results referred to the
reflection coefficient are calculated through the frequency domain method of Goda and
Suzuki [64], also presented in section 5.1, on the basis of the time series of surface
elevations at different spatial locations and compared with experimental data by Chen
et al. [19].
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5.3.1 Wave pressures at a fully perforated breakwater

The results in terms of dynamic pressures acting on a perforated breakwater are shown
in this section. Specifically, SPH simulations are performed for the case of a fully
perforated breakwater subjected to regular waves propagating along a plane channel.
Concerning the geometry of the computational domain, a schematic representation is
shown in Fig. 5.17, where Lc = 4 m, d = 0.4 m and the chamber width is B = 0.54
m. For 2D problems, the adopted porosity of the slotted wall of the breakwater is µ =
d2/(d1+d2) = 0.25, where d2 is the height of the hole and d1 is the height of the solid
part (see Fig. 5.18). The height and the period of the incident waves are respectively H
= 0.08 m and T = 1.03 s, resulting in 2nd order Stokes wave trains at intermediate water
depth conditions. As a result, the considered non-breaking regular waves lead to the
occurrence of standing dynamic pressures at the perforated breakwater (see Takahashi
[147]).

Figure 5.17: Representation of the computational domain with characteristic dimensions adopted for
the simulations.

The adopted combination of wave characteristics and chamber width ensures to re-
main within the limits of applicability of the empirical model developed by Tabet-Aoul
and Lambert [146] for successive comparisons with SPH simulations. To model the
thin perforated wall of the caisson, multi-node fixed ghost particles are employed with
the related interpolation nodes, as described in Fig. 5.18. Ghost particles with two or
three nodes are adopted as a function of their position along the perforated wall.

The spatial resolution used for the multi-node fixed ghost particles simulations has
been driven by the width of the slotted wall, s, resulting in ∆x = s/4 = 0.0045 m.
The simulation of 10 s takes a CPU time of about 9 h using a single 3.4 GHz Intel(R)
i7-3770 core with 8GB RAM. Conversely, the use of classical fixed ghost particles
requires a spatial resolution equal to ∆x = s/8 = 0.00225 m, as described in Fig. 3.4,
resulting in a total CPU time equal to 44 h with the same computational strategies and
machine. The number of total particles required by the fixed ghost particle method, in
our specific 2D problem, is about four times the proposed approach. The simulation
with multi-node fixed ghost particles gives a reduction of the CPU time of about 79.5%
with respect to the application of one-node fixed ghost particles. It is worth noting that
in the standard implementation the spatial resolution is only driven by the modeling
of the thin wall and it does not lead to an effective improvement in the accuracy of the
numerical results. In order to provide a more detailed examination of the computational
demand, two simulations performed with classical and multi-node fixed ghost particles
at the identical spatial resolution were performed. In this case, the CPU time for the
multi-node simulation resulted to be about 2% longer than that with classical fixed
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Figure 5.18: Sketch of solid boundary conditions modeled by a combination of single-node and multi-
node fixed ghost particles and corresponding interpolation nodes for the case of the fully perforated
breakwater (the width of the front wall is s = 0.018 m, the height of the solid parts is d1 = 0.12 m
and the height of the holes is d2 = 0.04 m).
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ghost particles. This slight difference is due to the fact that the multi-node treatment
requires a half number of solid particles to model the thin wall and supplementary
switches to compute the field values, resulting in a really small influence on the CPU
time. In any case, this result is referred to this specific application, the difference in
the computational demand being dependent on the number of total particles and on the
number of multi-node fixed ghost particles.

SPH simulations considering the diffusive formulations by Molteni and Colagrossi
[104] and the δ-SPH model [6] are performed in order to evaluate the dynamic pres-
sures at the perforated breakwater. The diffusive terms are tested also considering the
influence of the magnitude of the diffusive coefficient (δ = 0.1 and 0.2). Moreover, to
understand the influence of the interpolating function for the measurements of dynamic
pressures at the body profiles, different shapes are taken into account. In particular,
the renormalized Gaussian and Wendland kernels, with supporting radius area of 2h
and 3h, presented in section 2.2.2, are compared. Hereinafter, the adopted kernels are
named as follows: RG2 = Renormalized Gaussian 2h, W2 = Wendland 2h, RG3 =
Renormalized Gaussian 3h and W3 = Wendland 3h. In Figs. 5.19, 5.20 and 5.21 three
significant time instants of SPH simulations in which a wave interacts with the fully

Figure 5.19: Frame of the SPH simulation in which the maximum dynamic pressure is encountered at
the front face in correspondence to the SWL; (a) pressure field; (b) horizontal velocity field.

Figure 5.20: Frame of the SPH simulation in which the maximum dynamic pressure is encountered at
the rear face in correspondence to the SWL; (a) pressure field; (b) horizontal velocity field.
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Figure 5.21: Frame of the SPH simulation in which the wave trough is passing on the front face; (a)
pressure field; (b) horizontal velocity field.

perforated breakwater are displayed. In these characteristic frames (obtained by the dif-
fusive model of [104] with δ = 0.1), pressure and horizontal velocity fields are shown.
The first two instants correspond to the maximum dynamic pressure occurring at the
SWL for the front and rear faces, respectively. These conditions assume a relevant
role in evaluating the load diagrams to be adopted in the stability analysis of perforated
breakwaters (see Takahashi [147]). The last instant refers to the occurrence of the wave
trough at the perforated front wall. Indeed, the wave initial impact on the front wall and
successively to the back wall occurs within a half wave cycle or, in other words, before
the passage of the wave trough in correspondence with the perforated front wall. These
simulation frames highlight that spurious flow processes do not appear near the slotted
front wall, allowing verification of the stability of the proposed multi-node approach to
model thin solid bodies in dynamic conditions. The physical insights deduced from the
SPH simulations will be discussed later in order to support the features of the numerical
load diagrams represented by the spatial distributions of dynamic pressures.

The maximum dynamic pressures at the walls appear during the first wave cycle,
obtained after the transition phase induced by the initial ramp. As shown in Fig. 5.22,
the dynamic pressure peaks at the front and rear faces in correspondence of the SWL
clearly occur at different time instants. It is interesting to notice that the maximum
dynamic pressure at the front face is slightly back-shifted compared to the passage of
the wave crest. This time shift is not encountered for the rear face in which the instant of
the maximum pressure at SWL corresponds to the occurrence of the wave crest. In any
case, the time interval between the occurrences of maximum dynamic pressures and
wave crests at the two reference walls is influenced by the presence of the slotted wall.
The above time window is greater than that referring to undisturbed wave conditions
(without the perforated front wall), which is conversely given by the ratio between the
sum of the width of the front wall and the chamber (s+B) and the wave celerity, cw.
Moreover, the maximum wave pressure at the rear wall occurs before the appearance of
the wave trough at the front wall (see Fig. 5.22). Indeed, the time interval between the
occurrences of maximum wave pressure at the two reference walls is lower than a half
wave period. It can be noticed that the above mentioned hydrodynamic processes on the
occurrence of maximum wave pressures at the walls of the caisson in comparison to the
free-surface oscillations were highlighted in the reference experiments by Tabet-Aoul
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and Lambert also for different values of B/L.

Figure 5.22: (a) Time variation of surface elevation within the considered wave cycle for the front and
the rear walls of the breakwater. (b) Time variation of corresponding dynamic pressure at the SWL
for the front and the rear walls of the breakwater.

Figs. 5.23 and 5.24 highlight the results in terms of spatial distribution of dynamic
pressures along the reference walls obtained by the diffusive models of [104] and of [6],
respectively, and by adopting two diffusive coefficients and different weighting func-
tions (RG2, RG3, W2 and W3). The numerical results obtained from the SPH model
are compared with the empirical formulation of [146]. Positive dynamic pressures are
displayed on the external side of the walls and negative ones on their internal side. A
good agreement between numerical and experimental results is obtained at the rear wall
and at the front wall away from the holes. As expected, the wave loads acting on the
rear wall result to be smaller than on the front wall, due to wave energy dissipation
induced by the slotted part of the breakwater (see Tabet-Aoul and Lambert [146]).

The numerical simulations have shown detailed properties of the flow dynamics
through the perforated breakwaters and some limitations of the current formulas adopted
for their structural stability design. In particular, since the commonly adopted empirical
formulations (see e.g. [147], [146]) do not take into account the local effects induced
by the presence of the holes on the perforated wall, result in an approximate assess-
ment of the total loads acting on the slotted part of the breakwater. In these cases,
the maximum dynamic pressure is determined at the SWL, at the channel bottom and
in correspondence with the maximum water level reached at the structure above the
SWL. Then, a linear variation is considered between these points, without considering
the actual position of the holes on the perforated structure. Indeed, as shown in Figs.
5.19 and 5.21, during a wave cycle, positive values of horizontal velocity appear at the
passage of the wave crest close to the perforations, while relevant negative values occur
in correspondence of the wave trough. Due to the loss of wave energy, these velocity
gradients affect the pressure field leading to pressure drops near the holes of the slot-
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Figure 5.23: Spatial distribution of wave pressures at perforated breakwaters obtained using the diffu-
sive formulation of [104]. a) RG2, b) RG3, c) W2, d) W3.

94



5.3. Analysis of thin front wall breakwaters

Figure 5.24: Spatial distribution of wave pressures at perforated breakwaters obtained using the diffu-
sive formulation of [6]. a) RG2, b) RG3, c) W2, d) W3.
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ted structure, as also expressed by Bernoulli’s theorem for slotted walls (see Huang et
al. [72]). It can be noticed that in the experimental set-up used by [146], the pressure
gauges were placed only at the center of the solid parts of the perforated face due to
the logistical difficulties in positioning these instruments near the edges. The dynamic
pressure measured at these points results as being only minimally affected by the pres-
sure drops induced by the velocity field around the holes. Conversely, the problem in
measuring dynamic pressures close to the edges of solid bodies does not represent any
difficulty when advanced numerical simulations are adopted.

On the basis of the above considerations, in the numerical simulations a certain part
of the error can be linked to SPH inaccuracy, while another part can be attributed to
the effects of pressure drops. In order to define the level of accuracy of the simulated
dynamic pressures, the Mean Square Error Percent (MSEP) between SPH and the ex-
perimental solution of Tabet-Aoul and Lambert is performed.

The error analysis is carried out for all measurements with the prescribed spatial
distance ∆x for the slotted and solid wall. As illustrated in Figs. 5.25 and 5.26, the
values of MSEP are evaluated separately for the front and rear walls in order to quantify
the error due to the occurrence of pressure drops close to the perforations. In this way,
the error obtained for the rear wall is only due to the potential inaccuracy of the SPH
model, since no perforations are present on it, while the error is a combination of model
inaccuracy and actual physical effects for the perforated wall. As it is possible to notice
in Figs. 5.25 and 5.26, the errors on the front face are always greater than the errors on
the rear one.

Concerning the Molteni and Colagrossi diffusive term, being characterized by the
loss of the hydrostatic solution, it results in an underestimation of the pressure acting
on the walls close to the channel bottom and, particularly, at the rear wall (see Fig.
5.23). This behavior is more evident when the higher value of the diffusive coefficient,
δ = 0.2, is assumed. These results are highlighted by the analysis of the errors, in
which, for the rear face, lower MSEP values are obtained with the δ-SPH model which
remain in the order of 2% for δ = 0.1 and increase to around 4% for δ = 0.2 for all
adopted interpolating functions. For the Molteni and Colagrossi model, the errors at
the rear face result to be around 4% for δ = 0.1, while increase to around 12% when
δ = 0.2. Considering the errors obtained on the front face, the formulation by Molteni
and Colagrossi gives lower errors. In any case, the errors are around 20% using δ =
0.1 and around 25% using δ = 0.2 using the adopted diffusive terms. According to the
Molteni and Colagrossi formulation, the difference between the errors evaluated for the
front and the rear walls is equal to around 15%, while for Antuono et al. the errors are
approximately 20%. Even if the Molteni and Colagrossi formulation has a drawback in
the progressive decay of the potential energy, the lower approximation of the diffusive
term provides a better agreement with the reference empirical relationships compared
to the Antuono et al. model, as it was also observed in the case of a dam-break flow
impacting on a vertical wall (see Antuono et al. [4]).

With reference to the results obtained by the different shape functions used for the
interpolation of dynamic pressures, small differences in the spatial pressure distribution
are encountered, as noticeable in Figs. 5.23 and 5.24 and for the analysis of errors in
Figs. 5.25 and 5.26. In particular, referring to the values of MSEP evaluated with a
specific kernel, the lowest overall error is encountered for the Wendland with support
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3h (12.56%). For the cases of kernels W2, G2 and G3, the overall MSEP error result
to be equal to 14.65%, 13.86% and 13.89%, respectively. As noticeable in Fig. 2.1, the
kernel W3 gives a more regular weight over the support area than the other interpolation
functions.

Figure 5.25: Mean Square Error Percent (MSEP) on ∆p for the front and the rear faces, obtained by
the formulation of Molteni and Colagrossi [104]; a) δ = 0.1; b) δ = 0.2.

Figure 5.26: Mean Square Error Percent (MSEP) on ∆p for the front and the rear faces, obtained by
the formulation of Antuono et al. [6]; a) δ = 0.1; b) δ = 0.2.

97



5.3. Analysis of thin front wall breakwaters

In this context the capabilities of the automatic hybrid formulation presented in sec-
tion 3.1.2 are examined. In the specific Fig. 5.27 shows the differences between the
already presented diffusive formulations, with the hybrid (coupled) diffusive term in
which the threshold values ∆ρA = 0.3%ρ0 and ∆ρM = 0.6%ρ0 have been taken into
account.

 

Figure 5.27: Comparison of spatial pressure distribution between the diffusive models of [104] and [6]
with the automatic hybrid (coupled) formulation.

5.3.2 Wave reflection at a partially perforated breakwater

The adopted SPH model was applied here to investigate the wave reflection induced by
the interaction between regular wave trains and a partially perforated breakwater, where
the water depth within the chamber, hc, is lower than outside. This kind of perforated
breakwater provides an additional weight to the lower part of the caisson, resulting in
an improvement in its structural stability in comparison with a fully perforated one (see
Suh et al. [145]).

The dimensions of the computational domain are reported in Fig. 5.28, in which
d = 0.4 m, hc = 0.2 m and Lc = 6 m. The chamber width, B, is changed in a range
of values for the SPH simulations in order to optimize the perforated caisson in terms
of reduction of the wave reflection in front of it. The porosity of the slotted wall is
µ = 0.2. The solid structure of the partially perforated breakwater is modeled with a
combination of one-node and multi-node fixed ghost particles, as similarly illustrated
in the representative sketch in Fig. 5.18 for the case of the fully perforated breakwater.
The height of the solid elements of the slotted wall is d1 = 0.112 m, while the height of
the holes is d2 = 0.028 m.

Also in this case, the initial spatial resolution has been driven by the presence of the
thin perforated wall, characterized by width s = 0.016 m, so that ∆x = s/4 = 0.004 m.
The computational time for 12 s is equal to 26.3 h, adopting a single 3.4 GHz Intel(R)
i7-3770 core with 8GB RAM. The same simulation performed by one-node fixed ghost
particles implies a value of ∆x = s/8 = 0.002 m and a computational time equal to 118.2
h. In this context, the use of multi-node fixed ghost particles gives a reduction in the
computational time equal to about 77.7%.
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Figure 5.28: Computational domain with characteristic dimensions adopted for the simulations (the
numbers 1 and 2 refer to the position of the wave gauges adopted to perform the analysis of wave
reflection)

The physical process dealing with the energy dissipation effect induced by the inter-
action between incoming waves and perforated-type breakwaters is usually quantified
by the evaluation of the reflection coefficient, Kr. This parameter, as expressed in sec-
tion 5.1, is defined as the square root of the ratio between reflected and incident wave
energy (see Goda [63]). The time series of η are calculated with SPH at different spatial
locations along the wave flume through wave gauges and are considered for the calcula-
tion of the values of Kr. Specifically, the diffusive term by [6] is implemented for these
SPH simulations due to its ability to accurately model the free-surface oscillations be-
cause of the presence of the renormalized density gradients which act to regularize the
wave profile, as also verified by the same authors (Antuono et al. [5]) in simulating the
propagation of linear and non-linear waves. Therefore, the simulated time series of η
are used to perform a separation between incident and reflected waves.

The channel length is here chosen to be greater than the previous test case in order
to determine a sufficient number of waves and assess the wave reflection processes
of the considered breakwater. Here, the SPH simulations are carried out using small
waves with T = 1 s and varying the value of the chamber width. Attention is paid to
remove the unphysical re-reflected waves at the section of the considered numerical
gauges in the analysis. Through a sensitivity analysis, a minimum number of about 10
waves has been considered sufficient for applying a wave reflection method in order to
calculate the values of Kr. However, for a more accurate analysis of wave reflection
at a perforated breakwater with SPH, an active absorption system (in SPH context, see
e.g. Liu et al. [88]) proves to be necessary to simulate the involved physical process
in a larger range of wave conditions and for a longer time than that adopted in the
present SPH model. Even if an active absorption wavemaker in several SPH models is
lacking, it is, however, possible to note the ability of the involved Lagrangian approach
in simulating wave-structure interaction processes (see Altomare et al. [1]).

The frequency domain method by Goda and Suzuki [64] is taken into account to
evaluate the reflection coefficient since the reference laboratory experiments by Chen
et al. [19] considered the same wave reflection method. In order to obtain reliable
results on the assessment ofKr using the adopted wave reflection approach, the general
recommendations provided in Goda [63] suggest that the numerical wave gauges should
be placed at a distance of more than one wavelength from both the model structure and
the wave paddle (see section 5.1). In particular, the suitable application of the method
by Goda and Suzuki implies that the ratio between the distance between gauges 1 and
2, λ12, and the wavelength should be chosen so that the upper and lower bounds of
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wave frequencies range from 0.05 Hz to 0.45 Hz, and λ12 6= nL/2, where n = 0, 1,
2,..., to avoid divergences in the wave spectra. On the basis of the above restrictions,
we consider λ12 = 0.15 m (see Fig. 5.28). As a consequence, the distance between
the wavemaker and the first wave gauge is equal to 3 m and the distance between the
second wave gauge and the caisson is equal to 2.85 m.

The evaluation of the reflection coefficient is carried out as a function of the relative
wave chamber width B/L. This ratio represents the main dimensionless parameter
which influences the degree of efficiency of all perforated-type breakwater in terms of
energy dissipation of incident waves (e.g. Fugazza and Natale [58]). The values of Kr

obtained by the present SPH model are compared with experimental data deduced from
laboratory tests by Chen et al. [19] adopting 3rd-order Stokes waves, defined by the
following pairs of values of height and period: H = 0.08 m and T = 1 s, H = 0.1 m and
T = 1 s, and H = 0.12 m and T = 1 s, with corresponding values of B/L = 0.1, 0.133
and 0.2. Moreover, the SPH model is used to perform additional numerical simulations
to find a more accurate feature of Kr as a function of B/L. Indeed, with regards to
the reference experimental data [19], the optimal feature of the reflection coefficient
was not illustrated for the considered partially perforated breakwater in the above wave
conditions. In the SPH simulations, changing the chamber width of the caisson with a
spatial step equal to 0.01 m, a more refined dependence of Kr on B/L was found with
reference to the experimental range 0.1 < B/L < 0.2 [19]. This range is of practical
interest in the engineering applications due to the constructional limits in the chamber
width of a perforated caisson [72].

Fig. 5.29 shows the comparisons on the reflection coefficient, Kr, as a function of
B/L, between laboratory experiments of Chen te al. [19] and SPH simulations deduced
from the application of the method by Goda and Suzuki [64]. An overestimation of Kr

obtained by SPH can be observed for B/L = 0.133. The variation of wave characteris-

Figure 5.29: Reflection coefficient, Kr, vs. B/L: comparison between laboratory experiments (Chen et
al. [19]) and SPH through the method by [64]. (a) H = 0.08 m, T = 1 s, (b) H = 0.1 m, T = 1 s, (c)
H = 0.12 m, T = 1 s.
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tics through the change of the incident wave height, represented by an increase in wave
steepness, H/L, does not seem to provide a significant variation in the values of Kr,
as also noticeable in the reference laboratory data [19]. Through the additional SPH
simulations, it is possible to observe a general decrease of Kr within the experimental
range of B/L. The minimum values of reflection coefficient occur between B/L =
0.16 and 0.17. On the basis of the simulated values of Kr in the range 0.1 < B/L < 0.2,
a quadratic relationship between Kr as a function of the main parameter influencing its
variation, B/L, can be obtained:

Kr = 56.71

(
B

L

)2

− 16.97

(
B

L

)
+ 1.57 (5.19)

where the correlation coefficient R2 = 0.857.
SPH results referred to the evaluation of the minimum reflection coefficient occur-

ring atB/L = 0.16÷0.17 for hc/d = 0.5 prove to be in agreement with the experimental
and numerical results obtained by Suh et al. [145]. In the latter case, the authors adopted
a partially perforated breakwater characterized by a composite mound and vertical slots
in its front face and they determined that the value ofKr was minimized atB/L = 0.177
for hc/d = 0.65. For a partially perforated breakwater with a chamber filled with a sub-
merged rock core, the numerical results by Liu et al. [89] found that the minimum value
of Kr corresponds to B/L = 0.15 for hc/d = 0.5. For the adopted wave conditions (H
= 0.08 m and T = 1 s, H = 0.1 m and T = 1 s, H = 0.12 m and T = 1 s), the values
of Mean Square Error Percent between SPH and the experiments by [19] are equal to
about 2% for B/L = 0.1, 12% for B/L = 0.2 and 23 % for B/L = 0.133.

The incident and reflected wave spectra deduced from the application of the method
by Goda and Suzuki on the basis of the time series of surface elevations simulated by
SPH are described in Fig. 5.30 for a representative test case characterized by H = 0.1
m, T = 1 s and B/L = 0.133. As noticeable, the spectral density of the incident wave

Figure 5.30: Incident and reflected wave spectrum simulated by SPH using the method by [64] (H =
0.1 m, T = 1 s and B/L = 0.133)
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spectrum shows two additional wave harmonics which are, respectively, two and three
times the fundamental peak frequency, fp. The number of wave harmonics are linked
to the degree of non-linearity of the surface waves generated by the wavemaker, con-
firming that third-order Stokes waves are generated in the numerical wave flume. The
reflected wave spectrum is characterized by the presence of a reduction in the spectral
energy for the fundamental and the secondary wave harmonics. It can be observed that
wave reflection methods, based on the use of three wave gauges (e.g. Mansard and
Funke [94]), could improve the results obtained from experimental and numerical data
since they are less sensitive to non-linear wave interaction processes.
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CHAPTER6
Filtering acoustic component in

weakly-compressible SPH

6.1 Frequency analysis tools

To disclose the features of a pressure signal obtained from a weakly-compressible SPH
simulation, an extremely efficient instrument is furnished by the wavelet analysis. The
nature of the problems usually investigated in fluid mechanics context, such as wave
impacts, dam breaks, or fluid-structures interaction problems, contains unsteady, im-
pulsive and irregular characteristics that makes the classical Fourier analysis unfruitful
for these purposes. In this context, the wavelet analysis represents a capable instru-
ment for the filtering of the acoustic noise of the weakly-compressible solution. In this
section, an overview on the most important steps that brought from the Fourier to the
wavelet analysis and a description of the main features of wavelets is presented.

6.1.1 From Fourier to wavelets

The Fourier analysis is a well known mathematical tool that allows for the decompo-
sition of a signal into sinusoidal components of different frequencies. This technique
proves to be fundamental for the characterization of the energy content in the frequen-
cies domain, by transforming the analyzed function from a time-based point of view to
a frequency-based one. The Fourier Transform (FT) of a function f(t) is defined as:

TF (ω) =

∫
<
f(t)e−iωtdt. (6.1)

In recent years, investigations from researchers in different field of study and with dif-
ferent backgrounds have been addressed to determine a different way for decomposing
a generic function in the frequency domain. The necessity of exploring this frontier

103



6.1. Frequency analysis tools

has been essentially motivated because of the difficulty in the Fourier space to analyze
signals with certain characteristics. Indeed, since the constitutive elements of the FT
are trigonometric functions, the result is that the Fourier analysis is non local, due to
their space-filling nature. In other words the FT is suitable only for analyzing stationary
signals, i.e. signals whose properties do not change with time. The FT is therefore a
powerful tool for processing signal that can be expressed as a sum of sines and cosines,
but becomes less useful when the signal is non-stationary. Moreover when transform-
ing to the frequency domain with the FT, time information is lost and it is impossible
to know the instant when a particular event appears.

A first attempt to overcome these limitations has been presented in 1946 by Gabor
[59], by adapting the Fourier Transform only to a small section of the signal time by
time, introducing a technique known as Short-Time Fourier Transform (STFT). With
this “windowing” approach the signal is represented into a two-dimensional function of
time and frequency. The STFT hence yields information about both frequency and time,
allowing for the identification of when and at which frequency a specific event occurs.
In the STFT, however, the size of the considered window for the Fourier Transform is
the same for all the frequencies, constraining therefore the analysis of both high and
low frequencies to the same time interval. The successive step has been the adoption
of a flexible time windowing, by adapting the window size to the analyzed frequency:
for low frequencies larger time windows, while for high frequencies smaller ones. This
mathematical framework is today known as wavelet analysis.

The concept of wavelet has been first introduced in the early 1980s by Jean Morlet,
a geophysicist working on seismic data analysis, by directly translating from french
the word ondelette, small wave (see e.g. [116], [117]). The successive collaboration
between Grossmann and Morlet [69] led to the mathematical foundation of the wavelet
transforms with their possible applications. Only a year later it became clear that the
Morlet and Grossmann’s work rediscovered the same concepts obtained some decades
before by Calderon [18] in the harmonic analysis, a pure theoretical field apparently
disjointed from the Fourier analysis. Since then the interest of the scientific community
towards this new subject have had an increasing interest with remarkable contributions.
A detailed presentation of the mathematics of wavelets can be found in the works of
Daubechies [38], Chui [24] and Mallat [93].

6.1.2 Wavelet Transform

In the wavelet framework the basic functions present a limited spatial support, allowing
for a local analysis of the signal. The localized functions used for the transform are
obtained by scaling and shifting a basic function, called mother wavelet, ψ:

ψab(t) =
1√
a
ψ

(
t− b
a

)
, (6.2)

where a ∈ <+ is the parameter to scale in frequency the wavelet, while b ∈ < is the
parameter to shift in time the wavelet. The Wavelet Transform (WT) of a function f(t)
is thus defined as:

TW (a, b) =
1√
a

∫
<
f(t)ψ

(
t− b
a

)
dt. (6.3)
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A mother wavelet can be adopted for the integral wavelet transform only if it presents
an inversion formula. This property is expressed by the admissibility condition:

Cψ =

∫
<
|TF (ψ)|2 dω

|ω|
<∞, (6.4)

where TF (ψ) represents the FT of the mother wavelet. The finiteness of the constant
Cψ limits in the class of L2(<) the functions that can be adopted as basic wavelets in
the definition of the WT. From Eq. 6.4 follows that the condition necessary for Cψ not
to diverge is TF (ψ(0)) = 0, that is the mean value of the wavelet has to be equal to
zero: ∫

<
ψ(t)dt = 0. (6.5)

The time localization property is mathematically expressed by the fact that the mother
wavelet function has to belong to L1(<), meaning that:∫

<
|ψ(t)| dt <∞. (6.6)

Differently from Fourier, in the wavelet analysis there exist many different families
of mother wavelets that can be adopted for the signal decomposition, i.e. wavelets
functions that satisfies the conditions expressed by Eqs. 6.5 and 6.6. In this framework,
the choice of the mother wavelet is therefore case-dependent and also varies on the
specificity of the analyzed problem. The criterion of the choice of a wavelet function is
generally obtained as the wavelet shape that better approximates the original signal.

In fluid dynamic context the wavelets analysis has been widely applied to study co-
herent structures in turbulence fields. After the reference work presented in 1992 by
Farge [53], many improvements and analyses on this subject have been developed re-
garding the extraction of coherent vortexes (see e.g. [132], [136]). Wavelet analysis
of turbulent flows is particularly useful because is able to identify localized regions of
energy concentration and the distribution of energy at the scales of observations. As
pointed out by Farge [53], the choice of the mother wavelet has to be performed on the
basis of the mathematical structure that better resembles the coherent structures of the
vortexes, but the problem that still persists in turbulence theory is that the typical ob-
jects that compose a turbulent field have not yet clearly identified. Upon this premise,
among the broad possibility of options of wavelet functions, Farge [53] adopted the
Morlet wavelet for the analysis of turbulence. As the same author expressed, a “naive”
reason for this choice is due to the fact that the Morlet wavelet recalls the shape of
Tennekes and Lumley’s eddy [149] proposed to model turbulence, and of some coher-
ent structures whose existence had been conjectured by other scientists. The Morlet
wavelet is represented by a plane wave modulated with a Gaussian function:

ψ(t) = e(−t
2/2)e(ikM t) (6.7)

The shape of Morlet wavelet is represented in Fig. 6.2 (a), where kM = 4. Another
wavelet function often used in fluid dynamic context is the Marr wavelet, also known
for its shape as Mexican hat, mathematically expressed by the negative Laplacian of a
Gaussian function:

ψ(t) = (1− t2)e(−t
2/2) (6.8)
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(a)                                                     (b)                                            

Figure 6.1: Presentation of wavelet shapes: (a) Morlet with kM=4; (b) Mexican hat. This last mother
wavelet is adopted for the successive analysis.

The shape of Mexican hat wavelet is represented in Fig. 6.2 (b).
Wavelets have been used for analysis in different fluid dynamic contexts, such as

atmospheric sciences (see e.g. [46]), computational fluid mechanics (see e.g. [135]),
analysis of the tsunami properties (see e.g. [123]) and random free surface wave trains
(see e.g. [84]). Regarding the investigation about pressures and forces, Wang et al. [153]
used the Wavelet Transform to analyze time-variant features of flow-induced forces
in the time frequency domain occurring at the flow interference between two side-
by-side stationary cylinders. In the present analysis the attention is focused on the
pressure signals obtained from weakly-compressible SPH simulations. Both Morlet
and Mexican hat wavelet have been tested in this context, resulting for the latter to be
more appropriate in representing the time variation of pressure usually encountered in
fluid mechanics context, especially when rapid changes in the fluid dynamic occur. For
this reason the Mexican hat wavelet has been chosen for the successive analysis.

6.2 The acoustic problem

For a deeper understanding of the pressure noise issue in the weakly-compressible SPH
solution the hydrodynamic/acoustic splitting method offers a diverse perspective. As it
has been shown by different authors (see e.g. [142], [121], [137]) in the limit of Ma→ 0
the flow variables for the weakly-compressible solution can be written as sum of an in-
compressible solution and an acoustic perturbation:

Incompressible 

 

                                       

Weakly- 

Compressible 
Acoustic 

perturbation 

The physical superposition of these two components is at the core of the following
analysis. The pressure signal is analyzed in the wavelet domain in which the frequen-
cies of the acoustic pressure perturbation are identified. The WT therefore allows to
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filter these quantities in order to obtain the incompressible solution from the original
weakly-compressible one.

In this section it is firstly shown how the instantaneous total flow variables are
decomposed into incompressible and perturbed compressible variables and then how
these acoustic perturbations affect the weakly-compressible solution. For this purpose,
the quantities of interest for the considered problem are split as:

ρ(r, t) = ρ0 + ρ′(r, t) (6.9)
u(r, t) = U(r, t) + u′(r, t) (6.10)
p(r, t) = P (r, t) + p′(r, t) (6.11)

in which the terms ρ0, U and P denote the incompressible components, while ρ′, u′

and p′ the acoustic perturbations. Introducing the decompositions expressed by Eqs.
6.9, 6.10 and 6.11 into the continuity and momentum Eqs. 2.1, results in:

∂ρ′

∂t
+ (U · ∇) ρ′ + ρ0∇ · u′ = 0

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U +

1

ρ0

∇p′ = 0

(6.12)

in which no viscous effects and external forces, g, are taken into account. Eqs. 6.12 are
obtained after rewriting the total derivative as D/Dt = ∂/∂t + u · ∇, and neglecting
non-linear terms, such as u′ · ∇u′.
As shown by Seo and Moon [137], it is possible to rewrite:

(U · ∇)u′ + (u′ · ∇)U = ∇ (u′ ·U) + Ω× u′ + ω ×U (6.13)

where Ω = ∇ × U and ω = ∇ × u′. The last two terms in the right side of Eq.
6.13 are not responsible for sound generation at low Mach numbers and thereby can
be neglected to avoid the generation of perturbed vorticity. Eqs. 6.12, considering Eq.
6.13 and neglecting the vorticity terms, becomes:

∂ρ′

∂t
+ (U · ∇) ρ′ + ρ0∇ · u′ = 0

∂u′

∂t
+∇ (u′ ·U) +

1

ρ0

∇p′ = 0

(6.14)

Eqs. 6.14 represent the linearized perturbed compressible Navier-Stokes equations and
have to be considered along with the state equation, p′ = c2ρ′. In order to calculate
the acoustics, the incompressible components are subtracted from Eqs. 6.14, obtaining
thus: 

∂ρ′

∂t
+ ρ0∇ · u′ = 0

∂u′

∂t
+

1

ρ0

∇p′ = 0

p′ = c2ρ′

(6.15)
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Taking the divergence from the second equation in System 6.15, and introducing the
first equation into that, is possible to obtain:

∂

∂t

[
− 1

ρ0

∂ρ′

∂t

]
+

1

ρ0

∇2p′ = 0 (6.16)

simplifying ρ0 and using the state equation, Eq. 6.16 becomes:

∆p′ − 1

c2

∂2p′

∂t2
= 0 (6.17)

Eq. 6.17 is the canonical D’Alembert equation for the propagation of waves. Therefore
in the compressible Navier-Stokes formulation, acoustic (pressure) waves are contained
and the following analysis aims to further study this particular aspect.

In this context the oscillating drop subjected to a central force field, presented in
section 4.2 is analyzed as a benchmark case for the acoustic and incompressible de-
composition. In this case indeed the analytic (incompressible) solution is well known
and the acoustic perturbations are studied through analytical and numerical approaches.
In particular, the acoustic of two geometrical configurations assumed during the drop
evolution are analyzed, respectively the circular and elliptical shapes. These results
are compared with the acoustic noise encountered in the SPH simulation of the drop
measured at the center of the domain.

6.2.1 Circular and elliptical patches

The simplest case in which the results from analytical and numerical approaches can
be tested is to consider a circular domain, whit radius R = 1. In this case, the problem
is firstly studied analytically by solving Eq. 6.17, in which null pressure is imposed at
the boundary of the domain. Considering a polar coordinates system, x = r cos θ and
y = r sin θ, the D’Alembert equation becomes:

∂2p′

∂r2
+

1

r

∂p′

∂r
+

1

r2

∂2p′

∂θ2
=

1

c2

∂2p′

∂t2

p′ = 0, ∀ r = R

(6.18)

Since the problem is radially symmetric, the solution does not depend on the angle, θ,
therefore the third term on the left side of the Eq. 6.18 can be neglected. The solution
of Eq. 6.18 can be found considering separated variables, p′(r, t) = q(t)P (r), in which
q(t) is a function only of time, while P (r) is a function only of the spatial position.
Substituting this quantity and dividing for q(t)P (r), Eq. 6.18 becomes:

1

P (r)

[
∂2P (r)

∂r2
+

1

r

∂P (r)

∂r

]
=

1

c2q(t)

∂2q(t)

∂t2
(6.19)

Since the left side of Eq. 6.19 depends only on r, while the right side depends only on
t, both sides have to be equal to the same constant k, obtaining thus:

d2q(t)

dt2
= kc2q(t) (6.20)

d2P (r)

dr2
+

1

r

dP (r)

dr
= kP (r) (6.21)
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The solution for Eq. 6.20 is:
q(t) = q0e

λct (6.22)
where q0 is a constant, while λ =

√
−k.

The solution for Eq. 6.21 is instead obtained, as a linear combination of Bessel
functions of zeroth-order, resulting in:

P (r) = p1J0(kr) + p2Y0(kr) (6.23)

in which the Bessel function Y0 is singular for r = 0, resulting in this case in an
unphysical solution. The constant p2, therefore has to be equal to zero, while the first
constant is assumed to be unitary, p1 = 1. This quantity is therefore incorporated in the
constant q0 and only defines the magnitude of the vibrations. Imposing the boundary
condition to Eq. 6.23, it is possible to obtain:

P (r = 1) = J0(k) = 0 (6.24)

The solution to this equation is furnished by the roots of the Bessel function J0. In
particular, there exist infinite solutions for the Bessel function, given by the eigenvalues
of the differential problem, that correspond to the vibration modes of an elastic circular
domain. For the case of interest J0, the first roots are given in Table 6.1.

k01 2.405
k02 5.520
k03 8.654
k04 11.792
k05 14.931
k06 18.071
k07 21.212
k08 24.352
k09 27.496
k010 30.636

Table 6.1: First vibration modes of the circular domain, i.e. first roots k0n of the Bessel function, J0.

The solution to the problem is therefore obtained as the product of Eq. 6.22 with
Eq. 6.23:

p′(r, t) =
∑
n∈N

q0 e
λnctJ0(k0n, r) (6.25)

in which λn =
√
−k0n. The vibration modes presented in Table 6.1 are related to the

vibration frequencies of the circular domain through the speed of sound adopted, as
fn = k0nc/2π.

It is noticed that in a problem in which no radial symmetry is encountered, the third
term in Eq. 6.18 has to be taken into account. The solution to this problem is given
by a combination of m-th orders Bessel functions, Jm,n, in which m,n ∈ N. Bessel
functions with m > 0 corresponds, in fact, to non-symmetrical radial vibration of the
circular domain.

The considered problem is now studied by means of the numerical method. In this
case a circular domain is initialized with a uniform null pressure field and only the
center of the domain is excited with a Dirac pressure impulse:

p0 = a δ(0, 0) for t = 0, (6.26)
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in which a defines the magnitude of the perturbation. The pressure perturbation propa-
gates in the circular domain, as it can be seen in Fig. 6.2, in which the pressure field is
presented for a generic time instant. The pressure evolution is evaluated at the center of

 

Figure 6.2: Simulation of pressure field at a generic time instant, for the considered circular patch, after
the pressure impulse is given at the center of the domain.

the circle and is studied in the frequency domain. Specifically, Fig. 6.3 shows the FT of
the signal, in which are also highlighted, in dashed vertical lines, the frequencies of vi-
bration of the circular domain found analytically, related to the roots, k0n, of the Bessel
function, J0. As it is possible to see the frequencies of the peaks found numerically
correspond to the frequencies found analytically, confirming that the pressure oscilla-
tions are indeed acoustic perturbations. The different height of the peaks, occurring for
different frequencies, is dependent instead on the specific initial perturbation used to
excite the problem.

 

Figure 6.3: FT of the pressure signal measured at the center of the circle. The vertical dashed lines
represent the frequencies related to the roots of the Bessel function, k0n, shown in Table 6.1.
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The analysis of the vibration modes is carried out also for an elliptic domain. Dif-
ferently from the circular patch problem, in this case it is not straightforward to write
the explicit analytical solution for the Eq. 6.17. For this reason the problem is only
studied numerically. The geometry of the ellipse is chosen as the configuration related
to the maximum elongation of the oscillating drop, as presented in Fig. 4.9. As for the
previous case, the domain is initialized with a uniform null pressure field and a Dirac
impulse, Eq. 6.26, is given at the center of the elliptic patch. Fig. 6.4 shows the pres-
sure perturbation propagating in the elliptic domain in a generic time instant.

 

Figure 6.4: Simulation of pressure field at a generic time instant for the considered elliptic patch, after
an initial pressure impulse is given at the center of the domain.

The energy contents in frequency domain related to the pressure evolution at the center
of the ellipse, are displayed in Fig. 6.5. The frequencies where the energy peaks appear
correspond to the vibration modes, kn, of the elliptic domain and are represented in
Table 6.2. Due to the non symmetrical configuration of the elliptical patch, the energy
peaks occur at frequencies which are not equispaced with respect to the circular case.

 

Figure 6.5: FT of the pressure signal evaluated at the center of the ellipse.
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k01 3.299
k02 4.476
k03 5.765
k04 7.147
k05 8.592
k06 9.315
k07 10.053
k08 10.398
k09 12.723
k10 13.084

Table 6.2: First vibration modes, kn, for the elliptic domain found numerically.

6.2.2 Oscillating drop

In this section the wavelet filtering of the acoustic component for the problem of the
oscillating drop subjected to a central force field, shown in section 4.2.2, is presented.
Fig. 6.6 shows the wavelet transform of the analytic solution of the time variation of
pressure at the center of the drop, presented in Fig. 4.10. The result is shown only

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Wavelet transform of the analytic solution for pressure evolution at the center of the oscil-
lating drop, presented in Fig. 4.10, for one period of the evolution.
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for one period of the oscillations. High positive values for the wavelet coefficients
means high correlation between the analytic signal and the wavelet that oscillates at
the considered frequency. Conversely, high negative wavelet coefficients means that
the analytic signal is highly uncorrelated with the wavelet function, i.e. the signal and
the wavelet are in antiphase. Null coefficients are instead encountered when there is
no correlation between the wavelet and the signal, meaning that the signal does not
contain energy at the corresponding frequency. On the basis of these considerations, it
is possible to see in Fig. 6.6 that the analytic solution is contained at a low frequency
range, while the energy content for high frequencies is almost zero being the residual
essentially due to numerical issues of the discrete wavelet transform.

The wavelet transform is applied to the SPH numerical result. The standard SPH,
with R/∆x = 200, shown in Fig. 4.10 (a), is taken into account. Fig. 6.7 shows
the wavelet transform of the pressure oscillation obtained from SPH, for the same time
window presented for the analytical solution. As it is possible to see, the acoustic
noise of the SPH solution is encountered in the range of high frequencies. In this case
in fact, to proceed with the wavelet filtering, a threshold frequency, f ∗, is identified

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Wavelet transform the pressure evolution at the center of the oscillating drop obtained by
standard SPH solution with R/∆x=200, presented in Fig. 4.10 (a). The horizontal dashed line
corresponds to the cut-off frequency, f∗.
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in the wavelet plane. This threshold frequency corresponds to a value higher than the
frequencies related with the analytic solution but lower than those in which the acoustic
perturbations arise in the numerical solution.

In the wavelet analysis the energy content related with frequencies higher than f ∗

are therefore cut and the inverse wavelet transform is used to reconstruct the signal
without these acoustic contributions. In particular, Fig. 6.8 shows the superposition
of the original SPH signal with the one filtered of the high frequencies through the
wavelet transform. As it is possible to see, the filtered numerical signal perfectly fits
the analytical solution.

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Comparison of the standard SPH signal, analytic solution and inverse wavelet transform in
which energy contents related to the acoustic components, f > f∗, are cut.

To better understand the role of the acoustic perturbations in the case of the oscillat-
ing drop, a comparison with the results previously obtained for the circular and elliptical
domains is presented. Differently from the latter cases, in which the fluid domain does
not undergo deformations, the problem of the oscillating drop is characterized by a pe-
riodic evolution of the fluid domain from a circular shape, into ellipses with different
eccentricities. The result is that, for each of the, theoretically, infinite configurations of
the drop, the vibration modes associated to it are excited and combined in the resultant
acoustic solution. This insight is shown in Fig. 6.9, in which the FT of the acoustic
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part of the weakly-compressible solution, obtained as the difference between the ori-
ginal SPH signal and the same one filtered with the WT in correspondence of f ∗, is
presented. As it is possible to see, the acoustic perturbations present a continuous spec-
trum instead of localized peaks as in the case of a fixed domain. Considerable energy is
encountered in correspondence of the frequency associated to the first vibration mode
of the circular domain, f1 cr, that progressively decreases to the frequency associated
to the first vibration mode of the ellipse domain at his maximum elongation, f1 el. It
can be also observed that the value of the cut-off frequency, f ∗, chosen for the wavelet
transform, results to be effectively lower than the acoustic frequencies. Moreover, the

 

Figure 6.9: FT of the acoustic component for the pressure at the center of the drop. The dashed vertical
lines f1cr and f1el are the frequencies corresponding, respectively, to the first vibration modes of the
circular domain and the elliptic domain at its maximum elongation, while f∗ is the cut-off frequency
adopted.

fact that the filtering process allowed for a optimal elimination of the acoustic noise is
possible because the incompressible (analytical) solution entirely lays in the range of
frequencies lower than the cut-off frequency. The incompressible and acoustic com-
ponents are therefore decoupled and the presented filtering procedure furnishes very
good results. In the cases instead of fluid impacts or more impulsive dynamics, the
frequencies of the incompressible and acoustic components might belong to the same
range, resulting in this case in the impossibility of an effective filtering. These cases
are analyzed in the following part of the thesis.

6.3 Water impacts

In this section the wavelet filtering of the acoustic component is applied to pressure
signals obtained from water impact problems. The first considered test is a prototype
problem introduced in order to reproduce the impact of a water wedge on a vertical wall.
In this context, cases characterized by different degrees of impulsiveness are taken into
account. The same problem is successively studied with the SPH. In this case the effects
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of the spatial resolution on the SPH pressure signal are investigated and the results are
compared with the similarity solution by Dobrovol’skaya [45]. The successive analysis
regards the pressure signal measured at a wall of a water tank subjected to a sloshing
process, in which breaking waves dynamic occur. Also in this case the effect of the
spatial resolution is investigated.

6.3.1 Prototype problem

A prototype problem for a wedge impacting a vertical wall is here introduced. As in
the case of the oscillating drop prototype (see section 4.2), also the following test is
used to highlight specific aspect of the problem. In particular, the aim of this analysis
is to examine the capabilities of the wavelet transform in filtering the acoustic part of a
pressure signal characterized by different degrees of impulsiveness.

The water wedge considered for the analysis is supposed to be of trapezoidal shape,
as shown in Fig. 6.10. The features of the interaction of the wedge with a vertical wall
are defined by the horizontal velocity of the fluid mass, U , and by the deadrise angle,
α. Specifically, for high values of α the interaction is smooth, while for small values of
α the dynamics becomes more impulsive. In the limit α → 0 the impact becomes flat,
resulting in a singular condition.

 

             U 

 

 

              

Figure 6.10: Sketch of the prototype problem: a water wedge impacts a vertical wall with horizontal
velocity U and deadrise angle α.

In this framework, the analysis is carried out for the pressure evolution at a point,
P1, of the vertical wall hit by the trapezoidal water mass. In the specific, the pressure
signal is obtained as a superposition of an artificial analytic pressure evolution and an
acoustic perturbation. Regarding the analytical component, it is here considered zero
for t < t0, and an exponential decay, PI(t)/PMax = e−(t−t0)/ε + 0.1, for t ≥ t0. This
expression is represented in Fig. 6.11 in which different values for the parameter ε are
taken into account. The parameter ε can be seen in this context as a direct measure
of the deadrise angle for a considered wedge configuration. Indeed, decreasing the
value of ε increases the impulsiveness of the phenomenon, resulting in a a progressive
sharpness of the pressure peak, followed by a fast time decay.

The pressure noise is furnished, in this framework, by analyzing the acoustics of a
trapezoidal domain, representative of the water wedge configuration after the impact
with the vertical wall. As in the previous cases, the vibration modes of the consid-
ered geometry are numerically solved by exciting the acoustic waves through a Dirac
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Figure 6.11: Theoretical pressure peaks and decays for the prototype test case for different values of ε.

impulse. In Fig. 6.12 is presented the configuration of the analyzed wedge patch, in
which the pressure impulse is given at the point P1. The vibration modes analysis is also
performed for the same point of the domain, P1, and the results are shown in Fig. 6.13,
in which the frequencies are referred to a speed of sound adopted for the simulation
c = 25U .

 

 

 

     y/H 

 

 

 

 

 

 

  P1 
 

 

 

         x/H 

Figure 6.12: Domain of analysis for the acoustic components for the prototype problem. The pressure
impulse and the frequency analysis are performed at the point P1, in which y(P1)=0.192H.

The acoustic component is therefore generated as a sum of sinusoidal functions in
which the i-th amplitude bi, frequency fi and phase φi are given from the vibration
modes analyzed for the point P1. It is noticed that the amplitudes of the sinusoidal
functions are multiplied for the same constant in order to scale the acoustic on the same
order of magnitude of the analytical solution. The resulting prototype signal is therefore
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Figure 6.13: Fourier coefficients of the frequency analysis related to the point P1. The value of f∗ refers
to the cut-off frequency adopted for the wavelet filtering.

obtained as a sum of the analytic expression and the acoustic perturbation:

P (t)/PMax = PI(t)/PMax +
∑
i

bi sin(2πfit+ φi) (6.27)

This result is presented, for the considered values of ε, in Fig. 6.14.

 

Figure 6.14: Prototype signal, obtained as a sum of the analytical solution and the acoustic perturbation.

These results are analyzed in the wavelet domain. In Fig. 6.15 the wavelet transform
of the analytic signals shown in Fig. 6.11 are plotted for the cases ε = 2.0 and 0.1. As
the dynamics become more impulsive, the energy content goes to higher frequencies.
This behavior is highlighted by the dashed line that delineate the area on the wavelet
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plan in which the highest energy content is encountered. In Fig. 6.16 is presented
the wavelet transform of the prototype problem, presented in Fig. 6.14. In this case
it is possible to observe the presence of energy content related with the acoustics in
the high frequency regions. As it is shown in Fig. 6.13, the cut-off frequency of the

        

Figure 6.15: Wavelet coefficients obtained for the analytical solution presented in Fig. 6.15 for the cases
ε = 2.0 and 0.1.

                                                                                    
 

Figure 6.16: Wavelet coefficients obtained for the prototype problem for the cases ε = 0.1 and 2.0. The
dashed line corresponds to f∗, representing the cut-off frequency adopted for the filtering.

acoustic component for all the analyzed cases is set equal to the frequency associated
to the first vibration mode of the trapezoidal domain f ∗ = f1 tr. From Fig. 6.16 it is
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possible to observe, however, that some energy content of the acoustic component is
also present in a range of frequencies lower than the value f ∗. This effect is due to the
wavelet transform. The use of an operator based on a mother wavelet approximation
(with a Mexican hat shape in this case) results in a “diffusion” effect for a signal that
is oscillating at a given frequency. This feature presents however practically negligible
effects when filtering at the frequency f ∗, allowing for a entire removal of frequencies
higher than the considered cut-off.

The results presented in Figs. 6.15 and 6.16 clearly show the differences between
smooth (ε = 2.0) and impulsive (ε = 0.1) dynamics. In the case of ε = 2.0 the
highest energy contents of the analytical solution occur in a frequency range lower than
the cut-off frequency. When filtering the perturbed signal at f ∗ the result allows to
accurately recover the analytical solution, as shown in Fig. 6.17. A different situation
is encountered when ε = 0.1. In this case considerable energy content associated
with the analytic solution of the water impact goes in the acoustic frequency range.
The incompressible and acoustic solution live therefore in the same frequency range,
resulting in the impossibility to efficiently decouple the problem. As it is possible to
see in Fig. 6.17, the result is that the filtered signal for ε = 0.1 results to be also
considerably filtered of the analytical component.

 

Figure 6.17: Signals presented in Fig. 6.14 filtered of the frequencies higher than f∗, in comparison
with the analytical solution.

Table 6.3 shows the relative errors estimated for the pressure impulse, EImp, and for
the pressure peak, EPmx, for the considered values of ε. As it is possible to see, the
errors made in the wavelet filtering for small values of ε essentially affect the pressure
peaks. Conversely, the wavelet filtering proves to be conservative with respects of the
pressure impulse, in which even small ε lead to small errors.

A possible solution for a better decoupling of the acoustic components in impulsive
pressure peaks could be to rise the value of the adopted speed of sound c. In this case
in fact the acoustic part goes to a higher frequency range and the problem results to be
decoupled again getting closer to the real speed of sound in water. As pointed out by
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ε 2.0 0.5 0.1
EImp (%) 0.048 0.093 0.126
EPmx (%) 2.896 11.182 36.382

Table 6.3: Relative errors for pressure impulse and pressure peak for the considered values of ε.

Le Touzé et al. [81], giving the flow a weaker and weaker compressibility through the
speed of sound, does not only shift the spectrum of these spurious oscillations towards
higher frequencies but also increases their magnitude. The effect of the speed of sound
on the pressure peaks encountered in impacts requires therefore further studies.

6.3.2 Wedge slamming

The results of SPH simulations of a water wedge impacting a vertical solid wall are
here analyzed. The physics of slamming processes has been investigated by different
authors, starting with the studies of Wagner [152]. Zhao and Faltinsen [159] developed
a numerical model based on a nonlinear boundary element method with a jet flow ap-
proximation. In their formulation the water is assumed to be incompressible and the
flow irrotational. This means that the impact velocity and the deadrise angle have to
be in a range in which compressibility effects are negligible during the fluid-structure
interaction process. Moreover it is assumed that no air pocket are captured at the inter-
face fluid-solid during the impact. This hypothesis allows to model problems in which
α > 4◦. More recently Wu [157] has established a relationship between the free surface
shape and the pressure distribution for the impact of a triangular liquid column onto a
vertical wall. An interesting modeling of the dynamics of wedge impacts is given by
the self-similarity solution presented by Dobrovol’skaya [45]. In this formulation the
solution is furnished in terms of non-dimensional space and time coordinates, meaning
that the pressure evolution for every point located along the vertical wall follows the
same evolution in appropriate normalized coordinates. This last analytic solution is
taken into account for comparisons with the SPH results.

The involved test case refer to a water wedge, with height H and characterized
by α = 30◦, impacting a vertical wall are analyzed. The problem is solved by SPH,
using the governing equations expressed by System 2.72, while fixed ghost particles are
implemented to model the bottom and the vertical wall. The Runge-Kutta integration
scheme with δ-SPH diffusive correction is taken into account, while for the artificial
viscosity a value of α = 0.01 is enforced. Fig. 6.18 shows three significant time
instants of the flow evolution, with pressure field, obtained from SPH. In this context,
the evolution of the flow dynamics is characterized by a vertical jet rising progressively
the wall. The jet is created at the intersection between the free surface wedge and the
vertical wall. The velocity of the induced vertical jet is dependent on the value of the
deadrise angle.

In Fig. 6.19 shown the time variation of the pressure at the point P1 for the results
obtained from simulations with five different spatial resolutions (H/∆x = 100, 200,
400, 800, 1600). As it is possible to notice, the increasing of the resolution gives a
decreasing in the acoustic pressure oscillations and a defined tendency to reach asymp-
totic values for the pressure solution. This situation highlights the effects of refinement
to the acoustic solution of the SPH. As already noticed by Le Touzé et al. [81], physical
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Figure 6.18: Dynamic of the water wedge impacting a vertical wall. The time instant in which the wedge
arrives ate the wall is t = 0. In (a) is the time instant in which the maximum pressure is on P1. In (b)
and (c) are shown two successive time instant in which the maximum spatial pressure progressively
moves upwards and the pressure measured in P1 decreases.
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Figure 6.19: SPH results for the pressure evolution at P1 for different resolutions.

processes not characterized by singular impacts, such as flat impacts cases mentioned
in the section 1.1 of the thesis, present a decreasing of the energy content related with
a low range acoustic frequency, when increasing resolution. In Fig. 6.20 is shown a
comparison between the highest adopted SPH resolution and the Dobrovol’skaya [45]
solution. As it is possible to see, when a high resolution is chosen for the SPH simula-
tion the result converges to the analytical solution.

                       

 

 

 

 

 

 

 

 

 

Figure 6.20: Comparison of the higher adopted SPH resolutionH/∆x = 1600 and the analytic solution
of Dobrovol’skaya [45] at point P1.

The results are now studied through the wavelet transform. Fig. 6.21 shows the
wavelet coefficients obtained for the analytical solution of Dobrovol’skaya [45], while
Fig. 6.22 the results for the SPH solution with two different resolutions. In this context,
for the mentioned reasons, the adopted cut-off frequency changes according with the
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Figure 6.21: Wavelet coefficients obtained for the analytical solution of Dobrovol’skaya [45] for the
point P1.

                            (a)                                                                         (b) 

Figure 6.22: Wavelet coefficients obtained for the pressure signals of the SPH solution at the point P1.
The horizontal dashed lines indicate the considered cut-off frequencies. In (a) is H/∆x = 1600,
while in (b) is H/∆x = 200.
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analyzed resolution. The individuation of an accurate cut-off frequency is furnished in
this context by the wavelet coefficients. As it is possible to see in Fig. 6.22, the values
f ∗1 and f ∗2 , respectively adopted for the high and low resolutions, are fixed where the
energy content related to the acoustic perturbations rises in the wavelet domain.

Fig. 6.23 shows the results of the wavelet filtering in which a comparison between a
low resolution (H/x = 200) considering original and filtered SPH signals and the high-
est filtered resolution (H/x = 1600). In Fig. 6.24 is shown the comparison between
the highest adopted resolution with the analytical one. In this last case, the acoustic
component represents indeed only a minor issue of the SPH solution since no relevant
differences appear in the time history of original and filtered SPH pressures

                       

 

 

 

 

 

 

 

 

 

Figure 6.23: Comparison between the original and filtered SPH solution at H/∆x = 200, and the
filtered SPH solution at H/∆x = 1600, for the point P1.

                       

 

 

 

 

 

 

 

 

 

Figure 6.24: Comparison between the original and filtered SPH solution at H/∆x = 1600, and the
analytical solution, for the point P1.
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6.3.3 Sloshing

The results of SPH simulations of a sloshing dynamic are here analyzed. Sloshing is
a dynamic phenomenon occurring in partially filled tanks when subjected to external
forces. In the case of shallow water conditions, the forcing frequencies in proximity of
the lowest natural frequency for the fluid motion inside the tank lead to violent surface
wave response. In this case, even if a tank oscillates with small amplitude, it is easy
to observe the occurrence of breaking waves. Different theoretical approaches have
been presented to model sloshing dynamics. In particular, the multi-modal method,
developed by Faltinsen et al. [50] and successively by Faltinsen and Timokha [51], has
been widely validated. This approach is based on an asymptotic theory to truncate the
equation system in which the tank forcing is assumed to be small. Sloshing dynamic
is also studied through experimental analyses. In Fig. 6.25 is presented the result of
an experiment of a water tank subjected to sloshing dynamics during one period of the
oscillations. This result highlights also the symmetric spatial configuration appearing
during one cycle evolution.

(a)                                         (b) 

Figure 6.25: Experimental results of a water tank subjected to sloshing dynamics, in which a breaking
wave traveling, from right to left sides (a) and from left to right sides (b) is presented.
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In this context, the SPH simulations of a sloshing dynamics, characterized by water
depth H and tank length L, are analyzed. The SPH computational strategies are the
same of those adopted for the case dealing with the wedge slamming.

Fig. 6.26 presents the SPH results in terms of pressure field for the evolution of the
breaking waves encountered during the analyzed sloshing process. A good agreement
with the experimental observation in Fig. 6.25 is observed. In the result, the acous-
tic wave traveling in the fluid domain after the impact on the left wall of the tank is
highlighted. In this case moreover, the pressure field result to be perturbed by the im-
pacts consequent the closure of the cavities formed during the breaking of the waves.
To properly model these phenomena indeed, a two phase model offers a more accurate
physical description, being the breaking process characterized by water-air phases mix-
ture. For the present one-phase SPH model, these acoustic perturbation effects due to
these processes are more significant and, for this reason, the analysis of this problem is
crucial to evaluate the capabilities of the wavelet filtering.

(a)                                         (b) 

Figure 6.26: SPH results of one period of the evolution of a sloshing dynamic, obtained with H/∆x =
50. The frames in (a) and (b) refers to the same time instants presented experimentally in Fig. 6.25.

Fig. 6.27 presents the SPH result for the pressure evolution, at the point P1 of the
right wall located above the still water level, shown in Fig. 6.26. As it is possible to see,
increasing the spatial resolution leads to a decreasing of the pressure peak encountered
at the impact. Moreover, the adoption of a higher resolution offers, as also seen in the
previous section, a reduction of the acoustic pressure noise. This fact is highlighted
in the wavelet transform of these signals, presented in Figs. 6.28, 6.29 and 6.30, for
H/∆x = 25, 50, 100, respectively. As it is possible to see the acoustic noise appear in
the wavelet domain at a lower frequency for lower resolutions. The appearance of these
high energy content indicates also where the cut-off frequency for the wavelet filtering
has to be fixed. Indeed, the value of the cut-off frequency adopted for H/∆x = 50
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Figure 6.27: Comparison of the pressure evaluated at the point P1 for two periods of the evolution
considering three different SPH resolutions.

 

Figure 6.28: Wavelet coefficients obtained for the pressure signal of the SPH solution at the point P1 for
H/∆x = 25, with the considered cut-off frequency.
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Figure 6.29: Wavelet coefficients obtained for the pressure signal of the SPH solution at the point P1 for
H/∆x = 50, with the considered cut-off frequency.

 

Figure 6.30: Wavelet coefficients obtained for the pressure signal of the SPH solution at the point P1 for
H/∆x = 100, with the considered cut-off frequency.
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(f ∗2T = 90) is twice the value adopted for H/∆x = 25 (f ∗3T = 45). When passing to
the resolution H/∆x = 100 the cut-off frequency results to be only slightly increased
(f ∗1T = 105), meaning that in this case a saturation for the accuracy linked to the spatial
refinement as been reached. However, these cut-off values refer to a intermediate case
between the frequency related to the horizontal width of the tank, f = c/2L ∼= 5 Hz,
and that related to the water depth, f = c/2H ∼= 170 Hz, being c the speed of sound
of the numerical simulation. Fig. 6.31 shows the results of filtered pressure signals for
the three analyzed resolutions. As it is possible to observe, the filtered signals result

 

 

 

 

 

 

 

 

Figure 6.31: Comparison between the original and filtered SPH solution, for the point P1, for the three
adopted resolution. Yellow areas are zoomed in Fig. 6.32.

indeed appropriately removed by the acoustic component.
When a zoom is applied to the time window in which the analyzed impact occurs, as
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shown in Fig. 6.32, is possible to observe more in details the behavior of the numerical
solution. In this case, the numerical pressure peak is indeed associated with the artificial
acoustic wave generated after the impact and highlighted in Fig. 6.33 (b). In these
results it is shown how the pressure peak decreases when increasing the resolution as a
function of the Mach number. For the coarser resolution, a value Pmax = 60% ρcU is
encountered, that decreases to Pmax = 13% ρcU , for the higher resolution.

 

 

 

 

 

 

 

 

 

Figure 6.32: Comparison between the original and filtered SPH solution for the time interval in which
the impact occurs, as highlighted in yellow in Fig. 6.31.

In Fig. 6.34 a comparison between the filtered pressure evolution for the three res-
olution is presented, showing the convergence of the filtering methodology towards a
asymptotic solution.
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Figure 6.33: Frames of the water impact at the point P1, referred to Fig. 6.32 for H/∆x = 100. In
(a) the water is approaching the gauge P1, in (b) the fluid mass invested the numerical gauge and
the simultaneous passage of the acoustic wave is highlighted, while in (c) the gauge is completely
submerged and a vertical water jet is created.

 

Figure 6.34: Comparison between the filtered SPH solutions at the three different spatial resolutions.
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THE thesis presented the numerical modeling of fluid-structure interaction prob-
lems through the Lagrangian weakly-compressible Smoothed Particles Hydro-
dynamics (SPH) method. Several investigations on computational aspects of the

weakly-compressible SPH solver have been carried out in order to improve the applica-
bility of the involved numerical method in problems dealing with water interaction with
solid structures. The capabilities of the proposed modeling have been initially tested
through some preliminary test cases. In particular, these tests referred to the conserva-
tion of the flow field and the energy properties of SPH in static and dynamic conditions,
with particular attention to the features of the weakly-compressible assumption.

An improvement in modeling solid boundaries in the fixed ghost particles frame-
work has been developed. The enhancement consists of the adoption of more inter-
polation nodes for each considered solid particle in order to model thin structures sur-
rounded by a fluid mass. Since the spatial resolution to model the involved structures is
driven by the presence of thin solid boundaries, the use of multi-node fixed ghost par-
ticles allows to avoid long, often redundant, simulations related to the standard imple-
mentation. Indeed, the one-node fixed ghost particle approach yields numerical models
characterized by a number of particles which is, in 2D problems, about four times that
resulting from the proposed multi-node technique. In the present study, the time saving
was respectively about 79.5% and 77.7%, for two investigated cases. It is noticed that
in the case of an extension to 3D applications, the present modeling of thin solid bodies
could lead to a higher computational time saving than the 2D cases investigated.

The proposed solid boundary treatment has been applied to the investigation of dif-
ferent aspects of the interaction of waves with perforated breakwaters. In this context,
the research has been addressed to overcome the limitations in the breakwaters design,
particularly when different fluid dynamics occur. Phenomena characterized by the oc-
currence of slow dynamics, as in the case of the wave propagation, and fast dynamics,
as in the case of the fluid interaction with breakwaters, have required an accurate treat-
ment of the pressure field. In these conditions, a hybrid formulation based on the use
of the diffusive terms proposed by Molteni and Colagrossi [104] and Antuono et al. [6]
has been introduced, representing a different formulation from the classical diffusive
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approaches.
The improved SPH model has been then adopted to investigate the spatial distribu-

tion of wave pressures and wave reflection at perforated breakwaters. For the analysis of
wave pressures, SPH simulations have described the occurrence of pressure drops near
the holes of the slotted wall, showing that literature formulas furnish a poor assessment
of the load diagrams. Analysis of the reflection coefficient, based on a free-surface ele-
vation method, for different values of the ratio between the chamber width and the wave
length has been carried out. SPH simulations have also allowed for the determination
of the minimum values of the reflection coefficient in a range of practical interest for
engineering applications.

A post-processing algorithm based on the wavelet transform to filter the acoustic
pressure perturbations in the weakly-compressible SPH solution has been presented.
The capabilities of the method proved to be outstanding for cases characterized by
slow dynamics. In these cases the incompressible and the acoustic components result
to be decoupled, allowing for an effective filtering of the acoustic part of the solution.
A different situation is encountered when the dynamic become more impulsive, as in
the case of impacts. In this case, the result is that the incompressible and the acoustic
components are coupled, resulting in the difficulty for a proper filtering of the acoustic
part without wiping out the analytical component. This situation have been tested for
different flow evolutions, characterized by different degrees of impulsiveness.

As regards the engineering aspects, further developments will be addressed to better
quantify the wave loads due to the pressure drops effects near the holes of the structure
through experiences from ad-hoc laboratory tests using pressure gauges with refined
spatial resolution. Moreover, an active absorption wavemaker will be implemented for
detailed studies of the hydraulic performances of perforated-type breakwaters.

Concerning the analysis of the acoustic component in a weakly-compressible SPH
model, successive analyses will regard phenomena characterized by higher level of
impulsiveness in which, however, the presence of air does not play an important role
in evaluating the pressure peaks. In these situations, an one-phase approach results to
be suitable to model these cases, in which a solution to decouple the incompressible
and the acoustic components could be, at a first glance, the adoption of a higher speed
of sound for the simulations. Increasing the speed of sound, indeed, allows to shift the
acoustic perturbations to higher frequencies, allowing for a decoupling of the problem.
However, giving the fluid a weaker and weaker compressibility through an increasing
of the speed of sound, does not only shift the spectrum of these spurious oscillations
towards higher frequencies but also increases their magnitude. These cases have to be
further investigated in successive analysis, studying the effects of the speed of sound
in relation to the adopted spatial resolution, to the cut-off frequency for the wavelet
filtering. In the limit case of a flat impact, to correctly model the pressure field, it
will be necessary to take into account for the presence of the air at the interface of
the impact, overcoming the difficulties to model accurately these events through a one-
phase approach.

For a comprehensive analysis of water-structure interaction problems, a comparison
between the involved spurious frequencies with the natural frequencies of vibration of
the structure will be performed to ensure that spurious oscillations will not affect the
structural response of the considered structure.
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