

i

Abstract

Advancements in exploitation techniques call for the need of advanced defenses. Modern
operating systems have to face new sophisticate attacks that do not rely on any programming
mistake, rather they exploit leaking information from computational side effects (side-channel
attacks) or hardware glitches (rowhammer attacks). Mitigating these new attacks poses new
challanges and involves delicate trade-offs, balancing security on one side and performance,
simplicity, and compatibility on the other. In this disseration we explore the attack surface
exposed by page fusion, a memory saving optimization in modern operating systems and,
after that, a secure page fusion implementation called VUsion is shown. We then propose a
complete and compatible software solution to rowhammer attacks called ZebRAM. Lastly, we
show OpenCAL, a free and general libray for the implementation of Cellular Automata, that
can be used in several security scenarios.

iii

Acknowledgements

I would like to thank my Supervisor prof. Andrea Pugliese for the encouragement and the
extremely valuable advice that put me in a fruitful and exciting research direction. A hearty
acknowledgment goes to Kaveh Razavi, Cristiano Giuffrida, Herbert Bos and all the VUSec
group of the Vrije Universiteit of Amsterdam. I felt at home from day one and I found myself
surrounded by brilliant researchers and good friends.

v

Contents

Abstract i

Acknowledgements iii

Introduction 1

1 VUsion 3
1.1 Introduction . 3
1.2 Page Fusion . 5

1.2.1 Linux Kernel Same-page Merging 5
1.2.2 Windows Page Fusion . 7

1.3 Threat Model . 8
1.4 Known Attack Vectors . 8

1.4.1 Information Disclosure . 8
1.4.2 Flip Feng Shui . 9

1.5 New Attack Vectors . 10
1.5.1 Information Disclosure . 10
1.5.2 Flip Feng Shui . 11
1.5.3 Summary . 13

1.6 Design Principles . 13
1.6.1 Stopping Information Disclosure . 14
1.6.2 Flip Feng Shui attacks . 15
1.6.3 Discussion . 15

1.7 Implementation . 15
1.7.1 Enforcing the Design Principles . 15
1.7.2 Working Set Estimation . 16

1.8 Transparent Huge Pages . 17
1.8.1 Handling Idle and Active Pages . 17
1.8.2 Securing khugepaged . 17

1.9 Evaluation . 18
1.9.1 Security . 18
1.9.2 Performance . 19
1.9.3 Fusion Rates . 22

1.10 Related Work . 23
1.10.1 Attacks . 23
1.10.2 Defenses . 24

1.11 Conclusion . 25

2 ZebRAM 27
2.1 Introduction . 27
2.2 Background . 29

2.2.1 DRAM Organization . 29
2.2.2 The Rowhammer Bug . 30

vi

2.2.3 Rowhammer Defenses . 31
2.3 Threat Model . 31
2.4 Design . 32
2.5 Implementation . 34

2.5.1 ZebRAM Prototype Components 35
2.5.2 Implementation Details . 36

2.6 Security Evaluation . 36
2.6.1 Traditional Rowhammer Exploits 37
2.6.2 ZebRAM-aware Exploits . 37

Attacking the Unsafe Region . 37
Attacking the Safe Region . 38

2.7 Performance Evaluation . 38
2.8 Related work . 44
2.9 Discussion . 46

2.9.1 Prototype . 46
2.9.2 Alternative Implementations . 46

2.10 Conclusion . 47

3 OpenCAL 49
3.1 Introduction . 49
3.2 An OpenCAL Overview: Software Architecture, Main Specifications and a

First Example of Application . 51
3.2.1 Software Architecture . 51
3.2.2 OpenCAL Domain Specific API Abstractions 52
3.2.3 The quantization optimization . 56
3.2.4 Conway’s Game of Life . 59

3.3 The SciddicaT XCA Example of Application 63
3.3.1 The SciddicaTnaive Example of Application 63

The SciddicaTnaive Simulation of the Tessina Landslide 64
3.3.2 The SciddicaTac Example of Application 65

The SciddicaTac Simulation of the Tessina Landslide 66
3.3.3 The SciddicaTac+esl Example of Application 66

3.4 Computational Results and Discussion . 67
3.4.1 Standard Tests . 67
3.4.2 Transition Function Stress Tests . 69
3.4.3 Computational Domain Stress Tests 70

3.5 Conclusions and Outlooks . 76

4 Conclusion 79

Bibliography 81

vii

To Mom and Dad. . .

1

Introduction

The Morris worm in 1988 [146], Zatko private note on buffer overflow [173] and, above all,
Elias Levy’s (AlephOne) phrack article on stack-based exploitation [108] published in 1996,
made extremely clear that bugs were more threatening than previously thought. They showed
how to abuse common memory bugs to get complete control of computer systems.

As writing complex software without making any mistake is impossible (a mistake can
even hide in the specifics or in the verifier of a formally verified system), the research commu-
nity focuses its efforts on preventing the exploitation of bugs, more than bugs themselves.

Non-executable memory [9, 124], bound checking [6, 102], address space layout random-
ization [136, 22], and control flow integrity [1] are just a few of the effective and already
deployed techniques that, even if not bullet-proof, make bug exploitation way harder than it
was a decade ago.

Unfortunately, since the second half of 2010s, new types of attack techniques were
discovered. They use a completely different approach: they do not rely on any software bug.
This means that even a (hypothetical) bug-free software is at danger and previous mitigation
techniques are useless.

The first of these techniques mines confidentiality of a computer system or, in other words,
allows unauthorized users to learn sensitive data. Even if breaking confidentiality looks less
severe than complete system compromise, total compromise can easily follow either by login
credentials disclosure or, as we will shortly see, by combining it with other techniques.

When developing complex software (or hardware) components, we can be tempted to
abstract away “irrelevant” properties and to focus only on their functional behavior. Bug-free
implementations guarantee that unauthorized users cannot access a component’s secret state
using the information exposed by its functional behavior. We should not make the mistake,
though, of assuming that determined attackers will constrain themselves to look just at the
functional behavior. A careful observer can, indeed, focus on overlooked aspects, such as the
time, the memory, or the energy spent doing a specific computation. If a correlation exists
between these aspects and the secret, then attackers can measure them and then use them to
infer the secret state, breaking the confidentiality of our “bug-free” implementation. These
kinds of attack are called side-channel attacks and can affect components at every level of the
hardware and software stack.

While initially the research community focused on side-channel attacks targeting crypto-
graphic algorithms [99], in the last decade the community discovered numerous side-channel
attacks to applications [172, 111], operating systems [74, 78, 63, 64] and at the micro-
architecture level [64, 74, 63], such as the now famous meltdown/spectre bug [98, 110].

Researchers discovered another threat around 2016 that was dubbed rowhammer effect [96].
The effect is a hardware glitch that affects common DRAM chips. The root cause is a physical
electrical charge leak between DRAM memory cells that can be abused to flip memory bits.
While initially considered just a mere reliability issue, today the literature gives us numerous
examples of security breaches using the rowhammer effect [171, 26, 143, 67].

Hardware glitches like rowhammer share one thing with side-channel attacks: they also
do not rely on any software bug. Moreover, they offer an important missing piece in bug-free
software exploitation: while side-channels can be used to break confidentiality (read primitive),

2 Contents

hardware glitches can be used to corrupt data (write primitive). Net effect: a system can be
totally compromised without a single bug.

The combination of side-channel and hardware glitches poses a severe threat to modern
computer systems [143, 26]. Mitigating the resulting attacks is challenging. First of all, we
need to consider the software and hardware components in all their complexity, examining
every effect that can be measured by an attacker to infer secret information. Moreover, we
need to put under scrutiny the interactions between different components and the sharing of
resources, as they can be a source of side-channel information themselves.

We also need to preserve performance as much as possible. Software and machines
employ very advanced optimizations, with the natural goal of doing computations as fast
as possible. Easily optimizable instances of a computational problem can be solved faster.
Unfortunately, this also means that an attacker can time the computation to infer information
on the internal state of a problem instance. Another very effective optimization approach is
resource sharing. While the advantages of sharing resources obviously regard optimal resource
usage, it easily leads to side-channel problems. Indeed when a resource is shared between two
or more distrusting parties, then they can “spy” on each other by observing side-effects on the
shared resource. It is really hard to completely solve this kind of issues without sacrificing
performance. Even if nowadays communities are more inclined to accept performance loss for
higher security guarantees (as in linux meltdown [126] or tlbleed openbsd [131] mitigation),
we should always be careful of performance issues if we want to develop practical defenses.

Mitigations also need to preserve software and hardware legacy compatibility. Indeed,
while many hardware solutions were proposed to defend against side-channel and hardware
glitches [96, 95, 91], many will leave an important amount of critical legacy systems unde-
fended. Protecting them is not trivial, as often the source of the problem is in hardware, but
mitigation needs to be developed in software.

Another challenge when developing effective side-channel and hardware glitches defenses
is the lack of precise information on how hardware components work, as manufactures are
reluctant to make this information publicly available. That means that, in order to develop
effective defenses, we often need to reverse engineer that information.

Lastly, mitigation should be transparent, as software and operating systems should work
unmodified, with minimal or no additional manual software modification.

In Chapter 1 of this thesis we propose VUsion [130], a defense against side-channels in
the page fusion engines of commodity operating systems. These side-channels allow attackers
to break the confidentiality of a machine and, combined with the rowhammer effect, to
completely compromise a system. After a complete analysis of the attack surface, a principled
approach to mitigate the issue, while preserving performance, is shown.

In Chapter 2, we propose ZebRAM [101]: the first complete and transparent software
defense against rowhammer attacks. We build upon past research [138, 154] to reverse
engineer complicated hardware mappings between physical and DRAM address spaces. With
this knowledge at hand, we partition the DRAM memory in a way that makes bitflips harmless.
In the process, the operating system loses the ability to directly use half of the memory, but in
ZebRAM we repurpose it as a compressed RAM device used as swap. The solution has an
overhead that is a function of the working set size.

As different security techniques, especially in cryptography, can profit from cellular
automata[116, 58, 167], in Chapter 3 we show OpenCAL [57], a parallel framework to develop
cellular automata in a efficient and portable way.

3

Chapter 1

VUsion

To reduce memory pressure, modern operating systems and hypervisors such as Linux/KVM
deploy page-level memory fusion to merge physical memory pages with the same content (i.e.,
page fusion). A write to a fused memory page triggers a copy-on-write event that unmerges
the page to preserve correct semantics. While page fusion is crucial in saving memory in
production, recent work shows significant security weaknesses in its current implementations.
Attackers can abuse timing side channels on the unmerge operation to leak sensitive data
such as randomized pointers. Additionally, they can exploit the predictability of the merge
operation to massage physical memory for reliable Rowhammer attacks. In this chapter, we
present VUsion, a secure page fusion system. VUsion can stop all the existing and even new
classes of attack, where attackers leak information by side-channeling the merge operation or
massage physical memory via predictable memory reuse patterns. To mitigate information
disclosure attacks, we ensure attackers can no longer distinguish between fused and non-
fused pages. To mitigate memory massaging attacks, we ensure fused pages are always
allocated from a high-entropy pool. Despite its secure design, our comprehensive evaluation
shows that VUsion retains most of the memory saving benefits of traditional memory fusion
with negligible performance overhead while maintaining compatibility with other advanced
memory management features.

1.1 Introduction

On modern systems, different processes [26] or co-hosted virtualized environments [11, 35, 17]
tend to have many memory pages that store similar data. To remedy this situation, operating
systems and hypervisors perform page fusion by periodically scanning memory to find pages
with the same content and merging them by keeping a single read-only copy. Writing to a
shared page from either party triggers an unmerge by performing copy-on-write into a private
copy. Given its memory saving benefits, page fusion has been applied to several classes of
real-world systems, ranging from co-hosted virtual machines (VM) [11] and containers [86]
in the cloud to desktop [26] and mobile [72] systems.

Unfortunately, existing page fusion systems are insecure. As we shall see, attackers
can abuse the unmerge operation to build side-channel attacks to leak sensitive data, or the
merge operation to construct reliable and deterministic Rowhammer attacks that flip bits in
vulnerable memory modules. As a result, vendors either disable page fusion by default (e.g.,
Microsoft [48] or VMWare [161]) or sacrifice security in favor of capacity (e.g., Intel Clear
Containers [86]). In contrast, we show that it is not only possible to fuse pages securely, but
even retain its memory saving benefits and compatibility without sacrificing performance.
This is possible due to a key observation: benefits of page fusion mostly come from idle pages
in the system. Hence, we can apply heavy-weight mechanisms to secure page fusion on idle
pages, while preserving performance by not fusing pages in the working set.

4 Chapter 1. VUsion

Attacking page fusion There are two classes of attacks that abuse page fusion: information
disclosure and physical memory massaging [143] (i.e., preparing the state of physical memory
for corrupting target data using a DRAM bit flip [96]). Known information disclosure
attacks [18, 26, 88, 135, 153, 170] abuse the slow unmerge to detect whether another copy
of a certain memory page exists in the system. Some attacks even use advanced versions
of the side channel to break address space layout randomization (ASLR) in the browser
from JavaScript [26] or across VMs [18]. The recent Flip Feng Shui attack [143], on the
other hand, abuses the predictability of the merge operation to control where sensitive data is
stored in physical memory. In cloud environments, Flip Feng Shui allows an attacker VM to
compromise a victim VM by performing a Rowhammer attack on (fused) RSA public keys in
memory.

With a careful security analysis of current implementations of page fusion, we realize
that the attack surface is much larger than previously assumed, raising even more challenges
to build secure page fusion systems. On the information disclosure side, it is possible to
detect merge events by observing changes in the physical memory or in the virtual memory
translation data structures, using a variety of side channels on shared system resources (e.g.,
last-level cache). This allows an attacker to disclose sensitive data by just reading from
memory. On the Flip Feng Shui side, it is possible to abuse the predictability of memory
reuse to perform reliable Rowhammer attacks. This allows an attacker to mount Flip Feng
Shui even when merged pages are backed by new page allocations. We show that while the
implementation of page fusion in Windows is protected against plain Flip Feng Shui since
new pages are allocated during merge, the attackers can overcome this hurdle by exploiting
memory reuse patterns for fused pages.

Secure page fusion Our security analysis helps us derive a number of design principles that,
once respected, can protect against all existing and future attacks on page fusion. To stop an
attacker from disclosing sensitive information, a secure page fusion system should enforce
the same behavior for all pages in the system, whether they are merged or not. We call this
principle Same Behavior (SB). Every time we are making a decision on whether to merge a
page or not, we remove all accesses to that page. The next access to this page, regardless of
its merging status, results in a page fault. To stop Flip Feng Shui, we should always allocate
a random physical page for backing the page that is a candidate for merging. We call this
principle Randomized Allocation (RA).

While RA can be implemented with negligible overhead, SB can be expensive in terms of
performance due to the increased number of page faults and can reduce fusion benefits since
memory pages need to be unmerged even when read. Fortunately, neither is a problem in
practice: a simple working set estimation can restrict page fusion to idle pages and dramatically
reduce the additional number of page faults. This strategy has a small impact on memory
savings, since, as we show, most benefits of page fusion come from idle pages. As a result,
VUsion, our secure page fusion system built on top of the Linux kernel, provides similar
benefits in terms of saving memory with minimal performance overhead (e.g., 2.7% on SPEC
CPU2006 and 0.4% on memcached) compared to the default insecure implementation in the
Linux kernel. We further address the non-trivial challenge of keeping VUsion compatible with
popular memory management features of the Linux kernel such as transparent huge pages
(THPs) [109, 21, 73, 162, 104].

Contributions We make the following contributions:

• The first study of page fusion in recent Windows operating systems, which reveals a
different design than the widely studied Kernel Same-page Merging (KSM) in Linux
(§1.2).

1.2. Page Fusion 5

• The first study of previously known attack vectors on page fusion complemented by
new attack vectors, which we use to draw up principles for secure page fusion (§1.4
and §1.5).

• The design and implementation of VUsion, a Linux-based secure page fusion system
which follows these principles (§1.6 and §1.7).

• A comprehensive evaluation of security, performance and memory savings of VUsion
when compared to KSM. Our results demonstrate that VUsion’s design improves
the security of KSM and only marginally reduces memory savings while preserving
performance (§1.9).

1.2 Page Fusion

Page fusion is often used in situations where it is not possible to directly share memory that
originates from the same content. For example, while it is possible to share pages for libraries
across different processes inside a VM, the same is not possible across VMs. Hence, to
find memory pages with the same content, a page fusion system should periodically scan the
memory.

Once pages with duplicate content are found, only one copy is kept, and all the page-table
entries (PTEs) of the sharing parties are updated to point to this copy without the write
permission bit (i.e., they are fused). The duplicates can now be returned to the system. At any
point in time, one party may decide to write to this (now) fused page, resulting in a page fault.
To preserve the correct behavior, the system handles this situation with copy-on-write: a new
page is allocated and filled with the content from the shared copy before updating the PTE of
the writing party to this new page with the write permission bit so that the write can continue.

We now study how these steps are implemented in practice using two popular implemen-
tations in the Linux and Windows operating systems.

1.2.1 Linux Kernel Same-page Merging

The Linux kernel fuses memory pages in its KSM subsystem. KSM is opt-in and user
processes that want page fusion should inform KSM via an madvise system call. The Kernel
Virtual Machine (KVM) is a prime user of KSM and co-hosted virtualized environments in
the cloud are an important target.

Scanning Whenever a process registers a chunk of its virtual memory to KSM, KSM first
locates all virtual memory areas (VMAs) associated to this chunk. In Linux, VMAs are
contiguous areas of virtual memory and the (virtual) memory pages that belong to the same
VMA share certain properties such as permissions. After finding the VMAs, KSM adds them
to a list containing all candidate VMAs for fusion. KSM scans this list in a round-robin
fashion. Every T milliseconds, the KSM thread wakes up and scans N virtual memory pages
(belonging to one or more VMAs). T and N are configurable, for example on the Linux kernel
version 4.10.10, the default values are N = 100 and T = 20, i.e., 5000 pages are scanned per
second. The pages are merged in-line with the scan.

Merging To detect sharing opportunities, KSM uses two red-black trees, called stable and
unstable, that use the contents of the pages to balance themselves. The stable tree contains
fused pages that are made read-only and are (often) shared between multiple parties. The
pages in the unstable tree, however, are not protected against writes and their contents may

6 Chapter 1. VUsion

A D

C E

B

E G

H

F

Stable
Tree

Unstable
Tree

C

Stable
Tree

Unstable
Tree

(A)

A D

C E

B

E H

G

F

Stable
Tree

Unstable
Tree

A D

C E

B

E H

G

F

Stable
Tree

Unstable
Tree

(B)

G

I

(C)

CC
I

GG

A D

C E

B

E G

H

F

FIGURE 1.1: Modifications to the KSM red-black trees during merging. Blue
circles are the pages that are being considered for fusion.

change. Hence, the tree is not always perfectly balanced, but given that every page insertion
and deletion triggers rebalancing, the tree mostly maintains its balance [11].

Figure 1.1 shows how KSM finds duplicate pages in the registered VMAs. For each page
that is scanned, it is first checked whether another page with the same content already exists
in the stable tree. If that is the case, then the page is merged by updating the PTE of the page
that is being scanned to point to the page in the stable tree without the write permission bit
and releasing the page back to the system (Figure 1.1-A). If that is not the case, KSM matches
the page against the unstable tree. If a match is found, it makes the page read-only and puts it
in the stable tree. It also removes the match from the unstable tree and makes it point to the
stable tree page, similar to the previous case (Figure 1.1-B). Finally, if KSM finds no match in
either tree, it puts the page in the unstable tree (Figure 1.1-C). Note that merging implies that
the physical memory of one of the pages is used for backing the shared copy between various
(distrusting) parties.

Unmerging The pages in the stable tree are reference-counted (very much like any page in
Linux). As soon as one party writes to a write-protected page, a copy-on-write event triggers,
as mentioned earlier. This copy-on-write event drops the reference count by one. Only if the
count reaches zero, the system removes the original page from the stable tree, which means
that as long as there is even a single user, that page remains in the stable tree.

1.2. Page Fusion 7

AVL
Tree 1

Hash 1

Page 1

Hash 1

Page 2

Hash 2

Page 3

Hash 3

Page 4

Hash 3

Page 5

Hash 4

Page 6

...

...

Process 1

Process 3Process 2

Virt Page 1 ...Virt Page 2 Virt Page 3

AVL
Tree 2

...

Hash 1 Hash 3

Hash 2 Hash 4

Hash 5

FIGURE 1.2: WPF’s sorted list of hashes and processes.

1.2.2 Windows Page Fusion

Microsoft turned page fusion on by default for Windows 8.1 and later releases. Duplicate
pages generated by related processes in the absence of fork semantics are a primary target of
page fusion on Windows systems. We have reverse engineered parts of the Windows kernel
to gain insight into the mechanisms that Windows Page Fusion (WPF) uses for this purpose.
Note that Microsoft recently disabled WPF after the Dedup Est Machina attack [26], at the
expense of memory wastage. However, it is still important to study a different (insecure)
design other than KSM to derive the necessary key principles for secure memory fusion.

Scanning Compared to its Linux counterpart, WPF has no opt-in mechanism that allows
user-space applications to register which memory pages can be merged. Instead, it scans all
anonymous physical memory pages every 15 minutes and tries to merge as many pages as
possible. WPF stores the metadata about the already merged pages in multiple AVL trees that
have the same functionality as the KSM’s stable tree. During each scan, WPF computes the
hash of every physical page that is a candidate for merging in a list that is sorted by the hash
value.

Merging With the sorted list of hashes, it is now time for WPF to start merging physical
pages. For each physical page, through a reverse mapping, WPF determines the process
that owns the page. Each process will have a list of these physical pages, sorted by their
corresponding virtual addresses. These processes are inserted into a tree that is sorted by
their memory management struct pointer (i.e., _EPROCESS->Vm). Figure 1.2 visualizes the
relation between these structures.

8 Chapter 1. VUsion

WPF then performs the actual merging on a per-process basis. For each process, it first
examines the content of each physical page in the process’s list. If a page with the same
content has been previously fused, then WPF will find it in one of the AVL trees. WPF then
updates the corresponding PTE to point to the page in the AVL tree and returns the physical
page back to the system. For pages that have not been previously fused, WPF checks whether
there are pages with the same content. In case there are some, WPF adds a copy to one of the
AVL trees, updates the relevant PTEs and returns the duplicate pages back to the system.

An important difference between KSM and WPF is that WPF allocates new physical pages
for insertion into the AVL trees (i.e, the physical pages of the sharing parties are not used to
back the fused page). Specifically, it allocates new pages using a specialized linear allocator
to improve performance by not contending for the system-wide page allocator. This allocator
scans the physical address space from the end and tries to reserve as many pages as necessary.
If the allocator finds a page that is currently in use, it tries to steal this page from the owner.
As a result, the allocated memory will be mostly contiguous, starting from the end of the
physical address space. While this mechanism leads to some uncertainty in the selected page
during a merge operation, we later show this design is still vulnerable to Flip Feng Shui.

Unmerging Unmerging is performed similar to KSM using copy-on-write.

1.3 Threat Model

We assume a strong threat model in line with prior work in the area [26, 143, 18], where
an attacker can 1. directly interact with the page fusion system by crafting memory pages
with her chosen contents, and 2. trigger bit flips using the Rowhammer vulnerability or other
potentially exploitable reliability issues [94, 31]. In case page fusion is applied inside the
OS, the attacker can remotely create memory pages with arbitrary contents in a malicious
JavaScript application and in the case that page fusion is applied in a cloud setting, the attacker
executing in a malicious VM can directly create arbitrary memory pages. The attacker pursues
one of the following two goals:

• Information disclosure: abuse timing side channels induced by page fusion to detect
fused pages in the system and disclose secrets.

• Flip Feng Shui: abuse physical memory massaging primitives induced by page fusion
to land a target of interest into a chosen vulnerable physical page and mount Flip Feng
Shui attacks.

Next, we describe how these attacks can be mounted in practice.

1.4 Known Attack Vectors

We now describe how an attacker can exploit known page fusion issues in order to achieve the
goals mentioned in our threat model.

1.4.1 Information Disclosure

Existing information disclosure attacks based on page fusion are unmerge-based. They exploit
timing side channels introduced by unmerge (or copy-on-write) events in traditional page
fusion systems.

Writing to a merged page will trigger a copy-on-write event which is measurably slower
than a normal write. The attacker can use this timing difference as a side channel to tell

1.4. Known Attack Vectors 9

whether a page exists in the victim. In the past, researchers used this side channel to fingerprint
applications, libraries, operating systems and to build covert channels [153, 135, 88, 170].

The CAIN [18] attack brute-forces pointers of other VMs randomized by Address Space
Layout Randomization (ASLR) [136] by creating many guesses for possible pointers and
checking which guess gets shared with the victim VM. Brute-forcing high-entropy data in
this way requires a large amount of memory and becomes noisy in a Web browser. Dedup
Est Machina [26] shows that it is possible to leak high-entropy secrets in the browser by
controlling the alignment of the secret, partially overwriting the secret with known data, or
engaging in a birthday attack. The first two techniques allow for leaking only a part of the
secret in the first fusion pass. Once a part of the secret is known, it is possible to leak another
part in a subsequent fusion pass. The birthday attack relies on generating many secrets in the
target process (in this case a JavaScript runtime) to increase the chance of guessing one of
them.

These techniques show that page fusion can act as a weird machine [29] in the hands of
an attacker able to time unmerge events for reading secret information from a victim process
or VM.

1.4.2 Flip Feng Shui

Existing Flip Feng Shui attacks based on page fusion are merge-based. They exploit physical
memory massaging capabilities introduced by merge events to land sensitive information
in a vulnerable memory page and trigger hardware bit flips to corrupt it. Existing attacks
of this kind are based on the DRAM Rowhammer hardware vulnerability. We now briefly
provide some background information on how Flip Feng Shui triggers memory corruption
using Rowhammer. We refer interested readers to the original Flip Feng Shui article for more
information [143] .

DRAM architecture Memory is internally organized in rows. Depending on the DRAM
architecture, each row can span a number of pages. The rows themselves consist of memory
cells. Each cell is made out of a capacitor and a transistor. The transistor controls whether the
cell is being read or written into and the capacitor stores the actual one bit of data. Capacitors
lose charge over time and if enough charge is lost, the stored data will be lost. To avoid this,
the memory chip periodically refreshes the cells in each row.

Every time the CPU needs to read data from memory, the memory chip selects the
corresponding row and loads it into the row buffer. The row buffer acts as a cache for rows, so
the CPU can keep reading from it as long as the requested addresses belong to the same row.
Similar to refreshing, writing the row from the row buffer back (before opening another row)
recharges the capacitors.

Rowhammer Kim et al. [96] noticed that if two rows (i.e., aggressor rows) are activated in
succession many times within a refresh interval (e.g., 64 ms), some bits that are in adjacent
rows (i.e., victim rows) to these aggressor rows will start to flip. This is because a small charge
leaks from cells in the victim rows every time aggressor rows are loaded into the row buffer
and if this happens fast enough between refresh intervals, enough charge will leak from some
cells in the victim rows. This causes the value of the high bit to switch to a low bit which is
observed as a bit flip from the perspective of the CPU. Reading from memory in this fashion
with the aim of triggering bit flips has been dubbed as Rowhammer. A variant of Rowhammer
where the aggressor rows are one row apart, called double-sided Rowhammer, is known to
trigger more bit flips reliably in the victim row that is in the middle.

10 Chapter 1. VUsion

Attack Issue Abused mechanism Attacker operation(s) Mitigation

Copy-on-write [18, 26] Slow write Unmerge Write SB
Page color (new) Physical address changes Merge Read or fetch SB
Page sharing (new) Sharing changes Merge Read or fetch SB
Translation (new) Translation changes Merge MMU ops SB
Flip Feng Shui [143] Predictable merge Merge Memory massaging RA
Reuse-based Flip Feng Shui (new) Predictable reuse Reuse Memory massaging RA

TABLE 1.1: Summary of attacks against page fusion and how design princi-
ples used in VUsion mitigate them.

Exploitation Being able to change memory without having control over it has strong security
implications. Recent studies show that it is possible to abuse these bit flips to escalate privilege
by flipping bits in the PTEs [148, 159] or escape the JavaScript sandbox by flipping bits in data
pointers [26]. The Flip Feng Shui attack [143] shows that it is possible to reliably circumvent
the strong hardware-enforced virtual machine abstraction using Rowhammer and the merge
operation of page fusion.

To mount a Flip Feng Shui attack, the attacker VM first finds memory cells that are
susceptible to exploitable Rowhammer bit flips in the physical memory that backs her VM. At
this point, the attacker needs to force the system to store the sensitive data of a victim VM
(e.g., cryptographic keys) on the physical page with the exploitable bit flip. Page fusion makes
this step extremely easy: in the case of KSM, for example, the physical memory of one the
sharing parties is chosen to back the merged page. Hence, if attackers want to corrupt a page
in the victim, all they need to do is write that page content on one of their own pages that is
vulnerable to Rowhammer bit flips. If KSM chooses the attacker’s physical page, then the
victim page gets corrupted when the attacker triggers Rowhammer. The last step essentially
breaks the copy-on-write semantics necessary for safe and correct behavior of page fusion.

Flip Feng Shui shows that page fusion can act as a physical memory massaging primitive
in the hands of attackers, making it possible for them to control which physical memory
pages should be used to back sensitive data through merge events. In turn, this allows them to
reliably corrupt sensitive information from a victim process or VM.

1.5 New Attack Vectors

In this section, we describe two new classes of advanced attack vectors against page fusion.
The first class targets merge events in page fusion to mount information disclosure attacks.
The second class targets reuse properties of page fusion to mount Flip Feng Shui attacks.
Along with the attack vectors detailed earlier, they help us derive design principles for secure
page fusion that we adhered to in the implementation of VUsion.

1.5.1 Information Disclosure

Traditional page fusion is characterized by well-defined merge and unmerge events. Existing
attacks exploit copy-on-write side channels associated with unmerge events, but we now show
an attacker can also exploit several timing side channels associated with merge events to detect
fused pages without writing to these pages.

Page color changes Page colors refer to how physical pages map on cache sets such as
those of the last-level cache (LLC). For example, the Intel Xeon E3-1240 v5 processor used
in our evaluation partitions its 8 MB LLC into 8192 cache sets of 16 cache lines of 64 bytes
each, and each 4 KB page covers 64 cache lines in 64 cache sets. If the first cache lines of two

1.5. New Attack Vectors 11

distinct physical pages share the same cache set, the other 63 cache lines are also guaranteed
to land on the same cache sets as well. This allows us to color different physical memory
pages in the system only based on their first cache line. For example, our Intel Xeon E3-1240
v5 processor has 8192/64 = 128 different page colors.

To color a page, we first build eviction sets for all possible colors in the system. An
eviction set is a sequence of memory addresses that all map to the same cache set and “covers”
the cache set completely [132]. Thus, by accessing all the addresses in the eviction set, we
clear out all other data from the corresponding cache set. Using a PRIME+PROBE attack [111,
133], it is now possible to determine the current color of a page. The attacker first primes a
certain color C by accessing its eviction set. After that, the attacker reads from the target page.
During the probe phase, if accessing the eviction set for C is slow, it means that the target
page is of color C. By waiting for a page fusion pass to occur, the attacker can detect whether
a target page has been fused if its color is no longer C. This attack assumes that a new page is
allocated to back the shared copy (e.g., WPF) and is successful if the new page has a different
color. That is Psuccess = Ct−1

Ct
where Ct is the total number of colors. For example, in our

testbed, Psuccess =
128−1

128 = 0.99. Our implementation of this attack can find eviction sets for
all colors in a few minutes and detect changes in the color after a fusion pass.

Page sharing changes It is tempting to think that if we always randomize the physical
location of a page considered for fusion (regardless of a merge), then allowing reads stops
information disclosure while conserving performance and benefits of page fusion. Unfor-
tunately, this design is still insecure since attackers can detect whether pages are fused
over shared resources. An attack over the LLC is similar in spirit to a 1-bit version of
FLUSH+RELOAD [172]. We first flush the target page from the cache by either executing a
cache flush instruction or accessing a cache eviction set (i.e., FLUSH). Next, we make the
victim access the secret page for which we want to check whether it is merged. Finally, we
access the target page again and measure how long it takes (i.e., RELOAD). If the access is
slow, it means that the data was not in the cache which implies that the victim did not access
the page. If, on the other hand, the access is fast, it means that the victim has accessed the
exact same physical location as the attack, suggesting that a merge event has occurred as a
result of page fusion.

Translation changes Finally, it is also possible for an attacker to detect a merge event
indirectly, by observing changes in the behavior of pages that are physically adjacent to the
target page. For example, KSM breaks a huge page when merging a 4 KB page inside of it.
This means that the other adjacent pages that make up the huge page now require an additional
page table look up for the last translation level. As our recent AnC attack shows [74], attackers
can easily observe the additional page table lookup in the LLC and detect a merge event of the
target page.

1.5.2 Flip Feng Shui

At the physical memory management level, page fusion systems either merge two duplicate
physical pages into one (and discard the other), as done on Linux, or allocate a third physical
page by reusing memory from a dedicated pool of pages to improve performance. Existing
attacks exploit physical memory massaging capabilities associated with the merge behavior,
but we now show that an attacker can also perform memory massaging by exploiting reuse
behavior.

Our first attempt at reproducing Flip Feng Shui on top of WPF failed. This was due to the
fact that Windows allocates a new page when updating its stable AVL trees as discussed in
§1.2.2. This means that memory massaging is no longer reliable. At this point, we started

12 Chapter 1. VUsion

 510500

 511000

 511500

 512000

 512500

 513000

 0 10000 20000 30000 40000 50000 60000 70000

P
h
y
si

ca
l
fr

a
m

e
 n

u
m

b
e
r

Virtual page frame offset

First deduplication pass
Second deduplication pass

 512300

 512400

 512500

 512600

 512700

 512800

 512900

 513000

 61000 62000 63000 64000 65000 66000 67000 68000

FIGURE 1.3: Ideal physical memory massaging in WPF by exploiting the
deterministic behavior of page allocation during page fusion passes.

looking into memory reuse patterns during page fusion. Interestingly, we found that the reuse
behavior of WPF provides much better predictability than that of the standard system physical
page allocator, encouraging fusion-based memory massaging rather than a system-wide attack
(e.g., [159]).

Given that WPF merges all possible candidates in one go, it knows how many (new) physi-
cal pages are necessary for backing fused pages. We found that, as a performance optimization,
WPF calls the MiAllocatePagesForMdl routine with the number of physical pages it
needs. Reverse engineering this routine showed that it tries to allocate contiguous physical
pages from the end of memory, but allows for holes if physical pages cannot be reclaimed.

This has an interesting implication for physical memory massaging: we can get close to
perfect memory reuse if we can directly use memory that is backing fused pages for mounting
the attack. Furthermore, Flip Feng Shui relies on huge pages for double-sided Rowhammer
but we do not always have access to huge pages on Windows (e.g., in the browser). As fused
pages are, due to how MiAllocatePagesForMdl works, mostly contiguous we can use
them as an alternative to perform a reliable double-sided Rowhammer. Hence, we can follow
these steps for templating with WPF:

1. Allocate a large number of memory pages. 2. Write pair-wise duplicates into these
pages. 3. Wait for WPF to merge each pair. 4. Execute Rowhammer on the fused pages for
finding flips.

Note that we control the order of these pages in physical memory based on the hash of
their contents as discussed in §1.2.2, necessary for performing double-sided Rowhammer.
Once we find some exploitable bit flips, we trigger copy-on-write to release all the pages back
to the system. In this stage, we write security-sensitive data on a large number of pages, such
that every page is duplicated extacly once. After another fusion pass, we complete the attack
by triggering Rowhammer again to corrupt the security-sensitive data, very much like the
original Flip Feng Shui.

Figure 1.3 shows a near-perfect physical memory reuse between the two page fusion
passes with WPF. Note the physical memory pages at the end of available memory to the guest
(2 GB or 524,288 physical pages). This shows that we can perform Flip Feng Shui even when

1.6. Design Principles 13

No Dedup

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

Uptime (s)

Zero-only KSM
copy-on-write KSM

copy-on-access KSM

FIGURE 1.4: Comparing the effect of copy-on-access with copy-on-write on
fusion rates.

new pages are allocated to back merged pages. One potential source of unreliability is the fact
that the order in which processes are selected for page fusion is not known to the attacker as
described earlier in §1.2.2. Further, the content hash of the target pages influence the order
of physical memory allocation. We resolve both problems by allocating a large number of
pair-wise duplicated targets (similar to [26]) to minimize the impact of other processes in the
system.

1.5.3 Summary

Table 1.1 summarizes the attacks that we described with the underlying issues that permit
information leakage or physical memory massaging. Our new merge-based information
disclosure attacks show that just reading from fused pages is enough to leak information,
obviating even the need to rely on copy-on-write events. Further, it is possible to observe
changes in the virtual memory translation to detect page fusion indirectly without accessing
the target page at all. Finally, our reuse-based attack shows that it is possible to perform Flip
Feng Shui even when new allocations are used to back fused pages.

We implemented all these attacks on page fusion to verify their practicality. We further
performed a deeper analysis of the attack surface of page fusion involving other side channels
(e.g., the TLB and the DRAM row buffer) which we omit due to space limitation. Our
conclusion is that the design principles that we describe next protect against all these attacks.

1.6 Design Principles

To stop all the potential attacks on page fusion, including the ones we described in §1.4 and
§1.5, we follow two main design principles. The first principle stops information disclosure
and the second principle stops Flip Feng Shui.

14 Chapter 1. VUsion

1.6.1 Stopping Information Disclosure

To protect against information disclosure attacks, we should stop the ability of an attacker to
detect whether memory pages are fused via either merge or unmerge events. We can achieve
this by ensuring that every page that an attacker tests always behaves the same, whether it is
merged or not. We call this principle Same Behavior (SB) and discuss how we can enforce it.

Merge-based attacks It should be clear to the reader by now that sharing memory between
mutually distrusting parties is not safe even if shared pages are write-protected. Hence, to
preserve security, no memory pages should be shared between distrusting parties. However,
not sharing memory pages across security boundaries means that we need to disable page
fusion. To resolve this dichotomy, we propose sharing pages with the same contents that are
not accessed by either party. We do this by removing all access permissions to pages that are
shared. Any access to a shared page will cause a trap and lead to an explicit copy of the page
contents to a new page in a copy-on-access fashion. We call this mechanism share xor fetch or,
in short, S⊕F. S⊕F ensures sharing only pages that are not accessed or prefetched (countering
implicit accesses via the prefetch x86 instruction [78]). This design converges to two sets
of pages: pages in the working set that are not fused and idle pages that are candidates for
fusion.

S⊕F potentially reduces fusion rates as pages which are (continuously) read or executed
can no longer be shared. To investigate this, we modify KSM to unmerge on any page fault
and compare it with the baseline which only unmerges on writes. Figure 1.4 shows the
result of the experiment when starting four VMs with five minutes between launch times,
each running an Apache server. After the page fusion process stabilizes, we can see that
copy-on-access only marginally reduces fusion rates (1%). The reason for this is the fact that
most of the fusion benefits come from idle pages in the system (e.g., the page cache) as we
will later show in our evaluation. We also experimented with merging only zero pages to
mitigate information disclosure as proposed before [26]. Compared with when page fusion is
off, zero-pages account for only 16% of all duplicate pages, as shown in Figure 1.4. This is
insufficient in cloud settings and further justifies our efforts in securing full (vs. zero-page
only) page fusion. We also note that zero-page fusion is not by itself secure against Flip Feng
Shui. We will further experiment with the effects of S⊕F on fusion rates and performance
later in our evaluation.

Take-away: S⊕F prevents attacks that disclose information based on detecting a merge
event because while the attacker can check whether a page is a candidate for fusion, she cannot
infer whether it is actually fused. We now discuss how we prevent information disclosure
through unmerged-based attacks.

Unmerge-based attacks While S⊕F protects page fusion against merge-based attacks,
attackers can still use the difference in the behavior of merged and unmerged pages to detect
unmerge events by, for example, measuring if accessing a page generates a lengthy page fault.
To resolve this problem, all memory pages should behave the same, whether they are merged
or not—enforcing SB.

A simple way to enforce this is by a mechanism which we call Fake Merging (FM). FM
ensures that pages that are not merged behave the same as pages that are. For this purpose,
fake merging removes all access permissions and performs copy-on-access for non-shared
pages as well. Again, FM sounds prohibitively expensive, but we will show that in realistic
settings the performance penalty is negligible. The main reason is that page fusion systems
take a long time to scan memory in order not to interfere with the main computation and, as
a result, the performance penalty is amortized over long periods of time. Furthermore, we
can apply working set estimation to reduce the number of additional page faults caused by

1.7. Implementation 15

FM without compromising security. Our working set-based optimization, discussed in §1.7.2,
exploits the intuition that SB naturally converges to performing fusion on cold (and highly
fusable) pages in the system.

Take-away: FM prevents the popular copy-on-write side channel since all first accesses to
attacker-controlled pages result in copy-on-access until the next fusion pass.

1.6.2 Flip Feng Shui attacks

To defend against Flip Feng Shui-like attacks, we need to eliminate the attacker’s capability to
control how the page fusion system chooses the physical page that backs the merged pages.
We enforce this by making sure that the page fusion system does not use physical memory in
a predictable manner. We achieve this by properly randomizing page allocations on merge
events. We call this principle Randomized Allocation (RA).

To protect against merge-based attacks [143], we need to always allocate a new page
on a merge event. Unfortunately, as we showed in our new Flip Feng Shui attack against
Windows, simply allocating a new page to back a shared page is not enough to prevent
an attacker’s ability to massage the physical memory. The reason is that efficient physical
memory allocators often promote predictable reuse to reduce overhead. Hence, RA should be
enforced either by randomizing the system-wide page allocator or at the page fusion system
itself. Since randomizing the system-wide page allocator has non-trivial performance and
usability implications due to the inherent fragmentation, we opt for enforcing RA at the page
fusion system directly.

Take-away: RA prevents Flip Feng Shui-like attacks since attackers cannot predict the
physical page that may back a fused page.

1.6.3 Discussion

Enforcing SB has interesting implications for page fusion. Pages in the working set will no
longer fuse with other (idle) pages. This design basically partitions the candidate memory
into two sets: the working set which is not considered for page fusion and the idle set which
may or may not get merged. It becomes impossible for the attacker to tell whether pages in
the idle set are merged since we remove all access/fetch permissions to these pages. Without
access/fetch permissions, these pages cannot be stored on shared resources in the system such
as the LLC or the DRAM row buffer, mitigating the new attacks we discussed in §1.5.1.

Enforcing RA will stop Flip Feng Shui and its new reuse-based variant which we discussed
in §1.5.2) by randomizing allocations that back fused pages. In Table 1.1, we also detail which
principle stops which classes of attack.

1.7 Implementation

We now discuss how VUsion adheres to SB and RA. We implemented VUsion on top of the
Linux kernel version 4.10.0-rc6 and reused most of KSM’s original implementation and kernel
tracing functionality. Our patch changes only 846 lines of code in the Linux kernel. This
suggests that the proposed modifications are realistic and that VUsion contributes a practical
page fusion system for production use. We assume 4 KB pages in this section and expand our
implementation to huge pages in the next section.

1.7.1 Enforcing the Design Principles

Share XOR Fetch To implement S⊕F, we need to intercept all accesses to a given page.
Modifying the present bit in the PTEs to trigger a page fault on access is one possibility, but it

16 Chapter 1. VUsion

requires intrusive changes to the Linux kernel as this bit is used for tracking memory pages
in many places in Linux. Instead, we opted to use the reserved bits. According to the Intel
and AMD manuals [87, 2], if the reserved bits are set, the processor generates a page fault on
access regardless of the permission bits in the corresponding PTE. In the page fault handler,
we check these bits and perform copy-on-access if they are set. To prevent prefetch-based
attacks, in turn, we also set the Caching Disabled bit in the PTEs.

Fake Merging To enforce SB, we also set the reserved bits in PTEs of non-shared pages
and perform copy-on-access similarly to pages that are shared. We ensure that both shared and
non-shared pages follow the same code paths to avoid opening other timing channels that an
attacker could use to detect merge events. More specifically, we make three different design
decisions compared to KSM.

(i) KSM uses the unstable tree to avoid write-protecting the pages that are being considered
for fusion. This opens up a side channel since pages that become merged are immediately
write-protected compared to pages that remain in the unstable tree. Fortunately, to enforce
SB, we need to remove access permission from any page that is being considered for fusion.
Hence, VUsion simply does not require an unstable tree and is hence protected from this side
channel. (ii) Without additional care, pages that are merged take shorter during copy-on-access
than pages that are fake merged. This is due to the fact that pages which are fake merged
can be freed in the page fault handler, as references to the page drop to zero. This entails an
expensive interaction with the buddy allocator. To counter this, we perform deferred free by
queueing these pages and freeing them in the background. Note that deferred frees are already
common practice in the kernel with the advent of RCU lock. The real merge also queues a
dummy request to ensure the execution of the same instructions for both merge and fake merge.
(iii) An advanced attacker could perform a page coloring attack on the page fault handler
during copy-on-access to infer the color of the source page. If this is done across multiple
scans, the attacker can infer a merge with high probability if the color of the source page does
not change. We hence select new (random) physical pages to back pages that are merged or
faked merged during each scan. Thanks to our working set-based optimization detailed below,
these extra costs are only incurred for cold pages with little impact on performance.

Randomized Allocation We reserve 128 MB of physical memory in a cache to add 15
bits of entropy to physical memory allocations performed by VUsion during both merging
and unmerging. Under these conditions, an attacker seeking to abuse page fusion in a Flip
Feng Shui attack can only mount a probabilistic (and thus unreliable) attack, where a specific
vulnerable template is controllably reused by the allocator with a probability of only 2−15,
providing much more entropy than the fairly predictable standard page allocator [159].

1.7.2 Working Set Estimation

A naive version of VUsion would assume that all the pages in the system are idle in each fusion
round and the pages that are actually in the working set will trigger a page fault regardless
of whether they were merged. This implementation, while secure, results in a considerable
number of page faults when removing access to pages in the working set.

To address this problem, VUsion estimates the working set of registered memory and
does not consider it for fusion. Doing so allows it to significantly reduce the number of page
faults, improving performance. To this end, we use the idle page tracking facility in the Linux
kernel [85]. During a scan, we check if the page has not been accessed for a period that can be
controlled in VUsion. If that is the case, then VUsion considers the page for fusion.

Note that working set estimation does not reveal any information to the attacker except
that the page is being considered for fusion (but may or may not be actually fused) since it is

1.8. Transparent Huge Pages 17

idle. In other words, any side channel attack can only leak already known information: which
of the attacker’s own pages are in the working set.

1.8 Transparent Huge Pages

Huge pages are becoming increasingly important for modern systems as the working sets
of applications increase in size. With many workloads, virtualization also greatly benefits
from huge pages, owing to the higher cost of a TLB miss in the guest VM [109, 21, 73, 162,
104]. khugepaged is a Linux kernel daemon that runs in the background and transparently
collapses consecutive physical pages into huge pages (THPs). Conversely, KSM breaks up
THPs again whenever there is a sharing opportunity in them. Unfortunately, as discussed
in §1.5, this opens up new side channels to detect merge events. Here, we discuss a secure
implementation of THPs for our design, making VUsion deployable in practice. Our design
for THPs follows that of Ingens [104] while addressing security issues such as translation
attacks.

1.8.1 Handling Idle and Active Pages

Since the difference between huge and normal pages can be used to detect a merge event, we
have to ensure that pages that are being considered for fusion are either all huge or normal to
enforce SB. Since VUsion considers only idle pages for fusion, the size of the pages does not
affect performance. Hence, we should opt for maximizing fusion rate. Since even a single
byte difference makes it impossible to merge pages, sharing opportunities will be greater for
normal pages. As a result, every time we consider a THP for fusion, we first break it up into
normal pages. As mentioned earlier, the only information this provides to the attacker is that
this THP is idle and a candidate for fusion. Since all pages considered for fusion are now
small, we stop the attacks based on the difference in translation of huge and normal pages.

The pages in the working set are not candidates for fusion, but they are important for
performance. It is possible that a huge page becomes partially idle and partially active. This
creates a performance versus capacity trade-off. On x86-64, for example, there are 512 pages
in a huge page. At any point in time, any number K of these pages could be active. If we
consider the huge page active if K ≥ n (at least n active 4 KB pages), then n = 1 provides
the best possible performance (conserving huge pages) while bigger values of n will provide
more fusion opportunity, increasing available capacity. VUsion provides support for both high
performance (a la Ingens [104]) or maximum fusion rate (a la KSM) while preserving security.
Recent work shows how one can optimize n dynamically depending on the workload [79].

1.8.2 Securing khugepaged

As mentioned, we need to collapse normal pages that become active into huge pages to
improve performance. Fortunately the background khugepaged thread performs this for
free. However, we must be careful to prevent it from collapsing (fake) merged pages back
into huge pages. Otherwise, an attacker can perform the translation attack using pages that are
next to the target page.

To this end, we again use the idle page tracking mechanism available in the Linux kernel.
If one (or more) of 512 pages that can potentially form a huge page is active, we will (fake)
unmerge the other 511 pages if any of them is (fake) merged. As part of transforming 512
contiguous virtual pages into a huge virtual page, khugepaged will copy the contents of these
pages into 512 contiguous physical pages. This is safe because all of these pages are first
(fake) unmerged. This way, khugepaged preserves the SB semantics by securely collapsing
pages in the working set into huge pages.

18 Chapter 1. VUsion

100
 0

 100
 200
 300
 400
 500
 600
 700

 0 10000 20000 30000 40000 50000 60000 70000 80000

Fr
e
q
u
e
n
cy

Cycles

Unshared pages
Shared pages

FIGURE 1.5: Freq. dist. of timing 1,000 writes in KSM.

To summarize, VUsion enforces SB on huge pages by breaking them before (fake) merging
them, and khugepaged only collapses pages if their surrounding pages are first (fake) unmerged
before forming a huge page with them.

1.9 Evaluation

We evaluate three aspects of VUsion compared to original Linux/KSM: 1. Does VUsion stop
all the attacks reviewed in §1.4 and §1.5? 2. How does the performance compare? 3. How do
the fusion rates compare?

Benchmarks We run synthetic microbenchmarks to evaluate the security of VUsion. To
evaluate performance and memory saving, we use various benchmarks that stress differ-
ent parts of the system. To fully stress the memory subsystem, we use Stream [151], a
synthetic memory bandwith benchmark. We further use SPEC CPU2006 and PARSEC as
general-purpose memory-intensive benchmarks, Postmark as a file system benchmark, and
Apache (httpd), memcached and Redis as server benchmarks. Unless otherwise specified, the
benchmarks run with four VMs configured with a virtual core and 2 GB of RAM. One of the
VMs runs the benchmark while others provide load for page fusion. We also test a diverse set
of VMs to observe the effects on fusion rates.

Testbed We use a 4-core Intel Xeon E3-1240 v5 processor running at 3.5 GHz with 24 GB
of DDR4 memory as our evaluation testbed. We further experimented with a dual processor
Xeon E5-2650 v2 system with 32 GB of memory and obtained similar results which we do
not include for brevity. we configure both VUsion and KSM with KSM default values (i.e.,
T = 20 ms and N = 100 pages). We run server benchmarks using a client machine over a
1 Gbps network. We configure the VMs’ virtual NICs using virtio with vhost enhancements
for high-performance I/O.

1.9.1 Security

We show that VUsion enforces SB and RA by timing reads and writes to pages that are shared
or unshared, and checking whether the page allocations are truly random.

Enforcing SB Figure 1.5 shows the frequency distribution of timing 1,000 writes in KSM
after a fusion pass. The two distinct peaks for shared and unshared pages show the copy-on-
write side channel present in KSM. Figure 1.6 shows the results of 1,000 reads in VUsion. In

1.9. Evaluation 19

80
60
40
20
 0

 20
 40
 60
 80

 0 10000 20000 30000 40000 50000 60000 70000 80000

Fr
e
q
u
e
n
cy

Cycles

Unshared pages
Shared pages

FIGURE 1.6: Freq. dist. of timing 1,000 reads in VUsion.

copy MB/s scale MB/s add MB/s triad MB/s
No Dedup 11109 10690 12463 12342
KSM 11035 10644 12431 12291
VUsion 11019 10695 12423 12280
VUsion THP 11022 10646 12441 12271

TABLE 1.2: Performance of the Stream benchmark.

the case of VUsion, there is no visible difference between shared and unshared pages since
both cases trigger copy-on-access events. The results for writes are similar to reads. To gain
more confidence, we perform a Kolmogorov-Smirnov test to see whether the timing events for
merged and unmerged pages follow the same distribution in VUsion. The calculated p-value
is high (0.36) which means that we do not reject the hypothesis that these events are from the
same distribution.

These tests show that VUsion conforms to the SB principle that we described in §1.6.
We note that our analysis can guarantee correctness, but not the complete absence of other
(arbitrary) side channels. While recent work shows promising results for formal constant-time
verification [7], doing so is difficult in the context of the Linux kernel but an interesting
direction for future work. Further, our experiments with the prefetch instruction confirm
that setting the “Caching Disabled” bit in the PTEs of (fake) merged pages stops the recently
reported side channel [78] where pages can be prefetched into the cache without access
permissions.

Enforcing RA We record the offsets of pages chosen for merge and fake merge in VUsion
when executing two VMs. We then perform a Kolmogorov-Smirnov goodness of fit test
against the uniform distribution. The calculated p-value is high (0.44) which means that the
test does not reject our hypothesis that physical page allocations in VUsion follow the uniform
distribution.

1.9.2 Performance

To gain a complete understanding of possible performance issues when enforcing S⊕F, we
first quantify the nature of common merge events. Table 1.3 shows the type of merged pages
in one of the four VMs. Interestingly, most possibilities for fusion come from idle pages
in the system (i.e., buddy) allocator and the page cache. To experiment with the former,
we evaluate VUsion with the Stream microbenchmark as well as the memory-intensive
SPEC and PARSEC benchmarks. To experiment with the latter, we evaluate VUsion with the
file system-intensive Postmark benchmark. We also complement our analysis with a server

20 Chapter 1. VUsion

-5

 0

 5

 10

 15

 20

 25

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar

xalancbm
k

bw
aves

gm
ilc

zeusm
p

grom
acs

cactusADM

leslie3d

nam
d

dealII

soplex

povray

calculix

Gem
sFDTD

tonto

lbm
w
rf

sphinx3

geom
ean

%
 o

v
e
rh

e
a
d

KSM
VUsion

VUsion THP

FIGURE 1.7: Performance overhead on SPEC CPU2006.

-20

-10

 0

 10

 20

 30

raytrace

canneal

lu_ncb

stream
cluster

x264
ferret

water_spatial

dedup

freqm
ine

bodytrack

volrend

vips
ocean_cp

facesim

raytrace

lu_cb
swaptions

blackscholes

radiosity

water_nsquared

radix
fluidanim

ate

geom
ean

%
 o

v
e
rh

e
a
d

KSM
VUsion

VUsion THP

FIGURE 1.8: Performance overhead on PARSEC.

application benchmark, important to evaluate the impact on common cloud workloads. Our
results are as follows.

Stream Table 1.2 shows the available memory bandwidth when running Stream in a VM
with/without KSM and in VUsion with/without THP enhancements. In all cases, the additional
overhead introduced by KSM or VUsion is below 1%. This is due to the fact that the default
scanning rate is slow (5000 pages/second) and the few additional page faults only marginally
affect the memory bandwidth.

SPEC CPU2006 Figure 1.7 shows the performance overhead of KSM and VUsion with-
/without THP enhancements compared to when page fusion is turned off over the general-
purpose SPEC CPU2006 benchmark suite. Considering the geometric mean, KSM adds 2.2%
overhead to the baseline. VUsion adds another 2.7% (overall 4.9%) and enabling huge pages
adds 2.4% (overall 4.6%). Most of the benchmarks are insensitive to the additional page faults
caused by enforcing S⊕F. Similar to Stream, the additional page faults are bounded by the
number of pages that become active over a page fusion period (i.e., a few hundred seconds).
Hence, we conclude that VUsion enforces SB and RA with minimal performance overhead in
a general-purpose workload.

PARSEC To study the behavior of the system under concurrent workloads, we experiment
with PARSEC. We increase the number of virtual cores to four to increase possible parallelism

1.9. Evaluation 21

page cache (%) buddy (%) kernel (%) rest (%)

KSM 51.8 38.4 6.9 2.9
VUsion 51.2 38.6 6.6 3.6
VUsion THP 50.4 32.8 6.3 10.5

TABLE 1.3: Contribution of different page types to page fusion.

mean (tx/s) min (tx/s) max (tx/s)

No dedup 3237.3 3191 3289
KSM 3221.7 3215 3232
VUsion 3178.7 3154 3191
VUsion THP 3246.3 3222 3285

TABLE 1.4: Performance of the Postmark benchmark.

in our test VM. Figure 1.8 shows the outcome. fmm and barnes require more than 8 GB
of RAM to execute and the netapps category hangs in our unmodified setting and hence
we excluded. KSM adds 1.7% of performance overhead on top of the baseline. Consideraig
the geometric mean, VUsion slightly degrades KSM performance by 0.5% (overall 2.2%)
while VUsion’s THP enhancements improve KSM’s performance by 1.4% (overall 0.8%).
These results further prove that VUsion introduces low overhead and can even improve KSM’s
performance.

Postmark Table 1.4 shows the number of transactions per second in Postmark, a benchmark
emulating a mailserver that heavily interacts with the file system. KSM degrades performance
by 1.5% while VUsion degrades performance by 2.9%. VUsion with THP enhancements
slightly improves the performance relative to KSM (0.2% improvement over baseline). These
results suggest that VUsion can secure page fusion without performance penalty in workloads
that benefit from it the most.

Apache We use Apache 2.4.18 with the default prefork module and wrk [168] to generate
load on the server at remote CPU saturation using 20 concurrent connections and 10 threads
for a duration of 500 seconds. Table 1.5 shows the throughput and various latency percentiles
that we achieve under different configurations. In the case of throughput, for Apache, KSM
incurs 20.0% of overhead on the baseline while VUsion adds a marginal 0.4% overhead. THP
enhancements in VUsion improve the performance relative to KSM by 12.7%. Latency follows
a similar trend: VUsion provides similar performance to KSM while the THP enhancements
in VUsion improve the latency relative to KSM.

Figure 1.9 shows the number of huge pages during runtime of the Apache benchmark.
As expected, the number of huge pages is higher in VUsion with THP compared to KSM.
More importantly, these huge pages are part of the working set, improving performance as
reported in Table 1.5. During the runtime of the benchmark, the VM allocates more memory
with demand paging. Initially the allocations are backed by huge pages, but VUsion without
THP enhancements breaks them down when considering them for fusion.

Key-value stores To experiment with server applications that have a large memory footprint,
we experiment with Redis (version 3.0.6) and Memcached (version 1.4.25), two popular key-
value stores. We use memtier_benchmark [121] with the default configuration for generating
load: using 4 threads, 50 clients, a set/get ratio of 1:10, and 32-byte objects from a 10 million
key space.

Table 1.6 shows the throughput of Redis and Memcached. Redis follows a similar trend
as Apache discussed earlier: KSM and VUsion provide similar throughput and the THP
enhancements in VUsion improve overall performance. The throughput of Memcached with

22 Chapter 1. VUsion

kreq/s (rel.) lat. 75% lat. 90% lat. 99%

No Dedup 22.03 (100%) 1.34 ms 1.95 ms 4.49 ms
KSM 18.42 (83.6%) 1.59 ms 2.34 ms 5.87 ms
VUsion 18.28 (82.3%) 1.64 ms 2.47 ms 6.51 ms
VUsion THP 21.18 (96.1%) 1.37 ms 2.03 ms 5.55 ms

TABLE 1.5: Performance of the Apache server.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f

T
H

P
s

Time (s)

No Dedup
KSM

VUsion
VUsion THP

FIGURE 1.9: Conserving THPs with the Apache benchmark.

VUsion is more severely impacted (5.3% worse than KSM), but the THP enhancements
bring the throughput of VUsion close to KSM. Table 1.7 shows the latency of GET and SET
requests in both key-value stores. We observe similar trends again: the latency with VUsion is
marginally impacted compared with KSM and the THP enhancements in VUsion improve the
results, even at the tail but with the exception of SET requests (4.5% overhead compared to
KSM).

1.9.3 Fusion Rates

To study fusion rates with VUsion, we showcase three scenarios. The first scenario shows
fusion rates of idle VMs and how quickly VUsion fuses memory compared to KSM. The
second scenario shows the scalability of VUsion, namely when starting many different VMs
of different types. The third scenario shows the memory consumption during our Apache
server benchmark.

Idle VMs Figure 1.10 shows the total memory consumption of four VMs started 5 minutes
after each other under different systems. This shows that, in an idle setting (expected on
many cloud hosts), VUsion’s fusions rates converges to that of KSM despite the conservative
S⊕F policy. VUsion, however, takes longer to merge pages when compared to KSM. As we
discussed in §1.7.1, KSM merges pages as soon as it finds a match in its stable tree. VUsion,
however, waits one scan round before (fake) merging to enforce SB. Further, waiting one
round allows VUsion to reduce page faults by focusing on pages that are not in the working
set.

Diverse VMs To understand the effects of VUsion on fusion rate in a more realistic setting,
we experiment with 44 VM images from our DAS4 cloud deployment registered by various
teams. These images include various Linux distributions and software stacks. We start 16
VMs at the same time using randomly selected VM images and report the consumed memory
over time in Figure 1.11. The results are similar to our synthetic test; VUsion achieves a

1.10. Related Work 23

Redis (kreq/s) Memcached (kreq/s)

No dedup 175.30 (100%) 167.5 (100%)
KSM 155.66 (88.8%) 163.97 (97.9%)
VUsion 155.09 (88.4%) 155.11 (92.6%)
VUsion THP 163.8 (93.4%) 163.87 (97.8%)

TABLE 1.6: Throughput of Redis and Memcached.

Redis SET (ms) Memcached SET (ms)
Percentile 90.0 99.0 99.9 90.0 99.0 99.9

No Dedup 1.6 2.4 4.9 1.7 2.5 3.5
KSM 1.7 2.8 6.7 1.8 3.2 6.3
VUsion 1.8 3.0 7.3 2.0 3.6 6.3
VUsion THP 1.6 2.8 7.0 1.8 2.9 4.7

Redis GET (ms) Memcached GET (ms)
Percentile 90.0 99.0 99.9 90.0 99.0 99.9

No Dedup 1.6 2.4 5.0 1.7 2.5 3.5
KSM 1.7 2.8 7.7 1.8 3.2 6.2
VUsion 1.8 3.0 7.0 2.0 3.6 6.2
VUsion THP 1.6 2.7 6.7 1.8 2.9 4.7

TABLE 1.7: Latency of Redis and Memcached.

similar fusion rate compared to KSM. VUsion with THP enhancements conserves huge pages
that are in the working set while reducing fusion rate by 61%. These results show that VUsion
provides its users with security with a trade-off between page fusion and performance.

Apache Figure 1.12 shows the memory consumption during the Apache benchmark which
we reported on earlier. We start four VMs together and start the benchmark on one of them
after 360 seconds. Again VUsion achieves a similar fusion rate compared to KSM while
similarly degrading fusion rate when conserving huge pages to improve performance. We also
notice memory consumption increasing during the benchmark period for all cases. This is due
to Apache’s self-balancing strategy, which gradually expands the number of worker processes
to serve many parallel requests to improve its throughput.

1.10 Related Work

1.10.1 Attacks

Page fusion has been previously used in various attacks: as a prelude to a FLUSH+RELOAD
attack [172], as a side channel to fingerprint software or build covert channels [153, 135, 88,
170], and as a way to brute-force ASLR [18, 26] or passwords [26]. Finally, the Flip Feng Shui
attack [143] uses page fusion for physical memory massaging to compromise cryptographic
keys of a victim VM.

In all cases, the traditional mitigation is to disable page fusion, wasting memory. An
alternative is to disable active page fusion and only fuse swapped pages within a compressed
in-memory cache. This is the approach taken by the current Windows Memory Combining
implementation (previously the name of the active page fusion system on Windows, now
disabled). This design, however, misses substantial fusion opportunities compared to active
page fusion. In contrast, VUsion preserves page fusion benefits, mitigates all existing attacks,
and even protects against a number of new attack vectors that we presented in this chapter.

24 Chapter 1. VUsion

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 200 400 600 800 1000 1200 1400

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

Time (s)

No Dedup
KSM

VUsion
VUsion THP

FIGURE 1.10: Memory consumption of idle VMs.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

Time (s)

No dedup
KSM

VUsion
VUsion THP

FIGURE 1.11: Memory consumption of different VMs.

1.10.2 Defenses

The only existing defense against information leakage via page fusion is HexPADS [137].
HexPADS is an anomaly detection system that uses performance counters to detect suspicious
behavior. Given the anomaly detection nature of HexPADS, it is prone to false positives and
false negatives, providing attackers with the opportunity to tune their attacks and easily bypass
HexPADS. Furthermore, HexPADS does not protect against physical memory massaging. In
comparison, VUsion secures page fusion by design, improving performance as a by-product,
and does not have any of the aforementioned weaknesses.

The S⊕F design principle relies on the copy-on-access technique, which has also been
previously used in different applications such as post-copy live migration [83] and defending
against cache attacks [174]. In contrast, VUsion uses copy-on-access as a building block for
securing page fusion and combines it with protection against prefetch-based and other
attacks.

Timing attacks against page fusion and side-channel attacks in general can be (partially)
mitigated by reducing the timer accuracy. At the software level, major browsers such as
Chrome, Firefox, and Microsoft Edge have reduced the accuracy of their timers to prevent
side-channel attacks from JavaScript. Kohlbrenner and Shacham [100] propose introducing
noise in the timer and the event loop of JavaScript to hinder timing measurement of system
events. At the hardware level, TimeWarp [118] reduces the fidelity of timers and performance
counters to make it difficult for attackers to distinguish between different microarchitectural
events. Unfortunately, degrading the timer has performance implications and as shown by

1.11. Conclusion 25

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

Time (s)

No dedup
KSM

VUsion
VUsion THP

FIGURE 1.12: Memory consumption of the Apache benchmark.

Gras et al. [74] can easily be bypassed.

1.11 Conclusion

Page fusion reduces memory pressure in modern cloud and consumer platforms, but existing
approaches have been plagued by security weaknesses that lead to information disclosure and
control over physical memory. This chapter shows that these weaknesses are not fundamental
and proposes a secure page fusion system with marginal degradation of fusion rates. The new
design stops known and new attacks against page fusion, while also addressing inefficiencies.
Our solution provides evidence that it is possible to support both secure and efficient page
fusion in real-world settings.

27

Chapter 2

ZebRAM

The Rowhammer vulnerability common to many modern DRAM chips allows attackers to
trigger bit flips in a row of memory cells by accessing the adjacent rows at high frequencies.
As a result, they are able to corrupt sensitive data structures (such as page tables, cryptographic
keys, object pointers, or even instructions in a program), and circumvent all existing defenses.

This chapter introduces ZebRAM, a novel and comprehensive software-level protection
against Rowhammer. ZebRAM isolates every DRAM row that contains data with guard rows
that absorb any Rowhammer-induced bit flips; the only known method to protect against
all forms of Rowhammer. Rather than leaving guard rows unused, ZebRAM improves
performance by using the guard rows as efficient, integrity-checked and optionally compressed
swap space. ZebRAM requires no hardware modifications and builds on virtualization
extensions in commodity processors to transparently control data placement in DRAM. Our
evaluation shows that ZebRAM provides strong security guarantees while utilizing all available
memory.

2.1 Introduction

The Rowhammer vulnerability, a defect in DRAM chips that allows attackers to flip bits
in memory at locations to which they should not have access, has evolved from a mere
curiosity to a serious and very practical attack vector for compromising PCs [26], VMs in
clouds [143, 171], and mobile devices [67, 159]. Rowhammer allows attackers to flip bits in
DRAM rows simply by repeatedly reading neighboring rows in rapid succession. Existing
software-based defenses have proven ineffective against advanced Rowhammer attacks [16,
28], while hardware defenses are impractical to deploy in the billions of devices already in
operation [107]. This chapter introduces ZebRAM, a comprehensive software-based defense
preventing all Rowhammer attacks by isolating every data row in memory with guard rows
that absorb any bit flips that may occur.

Practical Rowhammer attacks Rowhammer attacks can target a variety of data structures,
from page table entries [148, 159, 160, 171] to cryptographic keys [143], and from object
pointers [26, 67, 155] to opcodes [77]. These target data structures may reside in the ker-
nel [148, 159], other virtual machines [143], the same process address space [26, 67], and
even on remote systems [155]. The attacks may originate in native code [148], JavaScript [26,
76], or from co-processors such as GPUs [67] and even DMA devices [155]. The objective
of the attacker may be to escalate privileges [26, 159], weaken cryptographic keys [143],
compromise remote systems [155], or simply lock down the processor in a denial-of-service
attack [90].

28 Chapter 2. ZebRAM

Today’s defenses are ineffective Existing hardware-based Rowhammer defenses fall into
three categories: refresh rate boosting, target row refresh, and error correcting codes. Increas-
ing the refresh rate of DRAM [96] makes it harder for attackers to leak sufficient charge from
a row before the refresh occurs, but cannot prevent Rowhammer completely without unaccept-
able performance loss and power consumption increase. The target row refresh (TRR) defense,
proposed in the LPDDR4 standard, uses hardware counters to monitor DRAM row accesses
and refreshes specific DRAM rows suspected to be Rowhammer victims. However, TRR is
not widely deployed; it is optional even in DDR4 [92]. Moreover, researchers still regularly
observe bit flips in memory that is equipped with TRR [147]. As for error correcting codes
(ECC), the first Rowhammer publication already argued that even ECC-protected DRAM is
susceptible to Rowhammer attacks that flip multiple bits per memory word [96]. While this
is complicating attacks, they do not stop fully stop them as shown by the recent ECCploit
attack [40]. Furthermore, ECC memory is unavailable on most consumer devices.

Software defenses do not suffer from the same deployment issues as hardware defenses.
These solutions can be categorized into primitive weakening, detection, and isolation.

Primitive weakening makes some of the steps in Rowhammer attacks more difficult, for
instance by making it harder to obtain physically contiguous uncached memory [148], or to cre-
ate the cache eviction sets required to access DRAM in case the memory is cached. Research
has already shown that these solutions do not fundamentally prevent Rowhammer [67].

Rowhammer detection uses heuristics to detect suspected attacks and refresh victim rows
before they succumb to bit flips. For instance, ANVIL uses hardware performance counters
to identify likely Rowhammer attacks [16]. Unfortunately, hardware performance counters
are not available on all CPUs, and some Rowhammer attacks may not trigger unusual cache
behavior or may originate from unmonitored devices [67].

A final, and potentially very powerful defense against Rowhammer is to isolate the
memory of different security domains in memory with unused guard rows that absorb bit
flips. For instance, CATT places a guard row between kernel and user memory to prevent
Rowhammer attacks against the kernel from user space [28]. Unfortunately, CATT does not
prevent Rowhammer attacks between user processes, let alone attacks within a process that
aim to subvert cryptographic keys [143]. Moreover, the lines between security domains are
often blurry, even in seemingly clear-cut cases such as the kernel and user-space, where the
shared page cache provides ample opportunity to flip bits in sensitive memory areas and
launch devastating attacks [77].

ZebRAM: isolate everything from everything Given the difficulty of correctly delineating
security domains, the only guaranteed approach to prevent all forms of Rowhammer is to
isolate all data rows with guard rows that absorb bit flips, rendering them harmless. The
guard rows, however, break compatibility: buddy allocation schemes (and certain devices)
require physically-contiguous memory regions. Furthermore, the drawback of this approach
is obvious—sacrificing 50% of memory to guard rows is extremely costly. This chapter
introduces ZebRAM, a novel, comprehensive and compatible software protection against
Rowhammer attacks that isolates everything from everything else without sacrificing memory
consumed by guard rows. To preserve compatibility, ZebRAM remaps physical memory
using existing CPU virtualization extensions. To utilize guard rows, ZebRAM implements an
efficient, integrity-checked and optionally compressed swap space in memory.

As we show in Section 2.7, ZebRAM incurs an overhead of 5% on the SPEC CPU
2006 benchmarks. While ZebRAM remains expensive in the memory-intensive redis
instance, our evaluation shows that ZebRAM’s in-memory swap space significantly improves
performance compared to our basic solution that leaves the guard rows unused, in some
cases eliminating over half of the observed performance degradation. In practice, the recent
Meltdown/Spectre vulnerabilities show that for a sufficiently serious threat, even expensive

2.2. Background 29

0x0 0xffffffffPhysical Address Space

Memory Controller

I C I C I C I C I C I C I C I C

Memory Controller

Row Buffer

Bank 1
Bank 2

Bank 3
Bank n

Row Buffer

Bank 1
Bank 2

Bank 3
Bank n

Row 1

Row 2

Row 3

Row n

Row 1

Row 2

Row 3

Row n

X Y

X Y

Rank 0

FIGURE 2.1: DRAM organization and example mapping of two consecutive
addresses.

fixes are accepted [126]. First and foremost, however, this work investigates an extreme point
in the design space of Rowhammer defenses: the first complete protection against all forms of
Rowhammer, without sacrificing memory, at a cost that is a function of the workload.

Contributions Our contributions are the followings:

• We describe ZebRAM, the first comprehensive software protection against all forms of
Rowhammer.

• We introduce a novel technique to utilize guard rows as fast, memory-based swap
space, significantly improving performance compared to solutions that leave guard rows
unused.

• We implement ZebRAM and show that it achieves both practical performance and
effective security in a variety of benchmark suites and workloads.

• ZebRAM is open source to support future work.

2.2 Background

This section discusses background on DRAM organization, the Rowhammer bug, and existing
defenses.

2.2.1 DRAM Organization

We now discuss how DRAM chips are organized internally, which is important knowledge for
launching an effective Rowhammer attack. Figure 2.1 illustrates the DRAM organization.

30 Chapter 2. ZebRAM

Aggressor row (k-1)

Victim row (k)
Aggressor row (k-1)

Victim row (k)

Aggressor row (k+1)

(a) Single-sided Rowhamamer attack (b) Double-sided Rowhammer attack

FIGURE 2.2: Flipping a bit in a neighboring DRAM row through single-sided
(a) and double-sided (b) Rowhammer attacks.

The most basic unit of DRAM storage is a cell that can hold a single bit of information.
Each DRAM cell consists of two components: a capacitor and a transistor. The capacitor stores
a bit by retaining electrical charge. Because this charge leaks away over time, the memory
controller periodically (typically every 64 ms) reads each cell and rewrites it, restoring the
charge on the capacitor. This process is known as refreshing.

DRAM cells are grouped into rows that are typically 1024 cells (or columns) wide.
Memory accesses happen at row granularity. When a row is accessed, the contents of that row
are put in a special buffer, called the row buffer, and the row is said to be activated. After the
access, the activated row is written back (i.e., recharged) with the contents of the row buffer.

Multiple rows are stacked together to form banks, with multiple banks on a DRAM
integrated circuit (IC) and a separate row buffer per bank. In turn, DRAM ICs are grouped
into ranks. DRAM ICs are accessed in parallel; for example, in a DIMM that has eight ICs of
8 bits wide each, all eight ICs are accessed in parallel to form a 64 bit memory word.

To address a memory word within a DRAM rank, the system memory controller uses
three addresses for the bank, row and column, respectively. Note that the mapping between a
physical memory address and the corresponding rank-index, bank-index and row-index on the
hardware module is nonlinear. Consequently, two consecutive physical memory addresses can
be mapped to memory cells that are located on different ranks, banks, or rows (see Figure 2.1).
As explained next, knowledge of the address mapping is vital to effective Rowhammer.

2.2.2 The Rowhammer Bug

As DRAM chips become denser, the capacitor charge reduces, allowing for increased DRAM
capacity and lower energy consumption. Unfortunately, this increases the possibility of
memory errors owing to the smaller difference in charge between a “0” bit and a “1” bit.

Research shows that it is possible to force memory errors in DDR3 memory by activating
a row many times in quick succession, causing capacitors in neighboring victim rows to leak
their charge before the memory controller has a chance to refresh them [96]. This rapid
activation of memory rows to flip bits in neighboring rows is known as the Rowhammer attack.
Subsequent research has shown that bit flips induced by Rowhammer are highly reproducible
and can be exploited in a multitude of ways, including privilege escalation attacks and attacks
against co-hosted VMs in cloud environments [26, 76, 140, 143, 148, 159, 171].

The original Rowhammer attack [148] is now known as single-sided Rowhammer. As
Figure 2.2 shows, it uses many rapid-fire memory accesses in one aggressor row k − 1
to induce bit flips in a neighboring victim row k. A newer variant called double-sided
Rowhammer hammers rows k− 1 and k + 1 on both sides of the victim row k, increasing the
likelihood of a bit flip (see Figure 2.2). Recent research shows that bit flips can also be induced

2.3. Threat Model 31

by hammering only one memory address [77] (one-location hammering). Regardless of the
type of hammering, Rowhammer can only induce bit flips on directly neighboring DRAM
rows.

In contrast to single-sided Rowhammer, the double-sided variant requires knowledge of
the mapping of virtual and physical addresses to memory rows. Since DRAM manufacturers
do not publish this information, this necessitates reverse engineering the DRAM organization.

2.2.3 Rowhammer Defenses

Research has produced both hardware- and software-based Rowhammer defenses.
The original hardware defense proposed by Kim et al. [96] doubles the refresh rate.

Unfortunately, this has been proven insufficient to defend against Rowhammer [16]. Other
hardware defenses include error-correcting DRAM chips (ECC memory), which can detect
and correct a 1-bit error per ECC word (64-bit data). Unfortunately, ECC memory cannot
correct multi-bit errors [4, 107] and is not readily available in consumer hardware. The new
LPDDR4 standard [93] specifies two features which together defend against Rowhammer:
Target Row Refresh (TRR) enables the memory controller to refresh rows adjacent to a certain
row, and Maximum Activation Count (MAC) specifies a maximum row activation count before
adjacent rows are refreshed. Despite these defenses, Gruss et al. [147] still report bit flips in
TRR memory.

ANVIL [16], a software defense, uses Intel’s performance monitoring unit (PMU) to detect
physical addresses that cause many cache misses indicative of Rowhammer.1 It then recharges
suspected victim rows by accessing them. Unfortunately, the PMU does not accurately capture
memory accesses through DMA, and not all CPUs feature PMUs. Moreover, the current
implementation of ANVIL does not accurately take into account DRAM address mapping and
has been reported to be ineffective because of it [154].

Another software-based defense, B-CATT [28], implements a bootloader extension to
blacklist all the locations vulnerable to Rowhammer, thus wasting the memory. However,
Gruss et al. [77] show that this approach is not practical as it may blacklist over 95% of
memory locations; similar results were reported by Tatar et al. [154] showing DIMMs with
99+% vulnerable memory locations. In addition, in our experiments, we have observed
different bit flip patterns over time for the same module, making B-CATT incomplete.

Yet another software-based defense called CATT [28] proposes an alternative memory
allocator for the Linux kernel that isolates user and kernel space in physical memory, thus
ensuring that user-space attackers cannot flip bits in kernel memory. However, CATT does
not defend against attacks between user-space processes, and previous work [77] shows that
CATT can be bypassed by flipping bits in the code of the sudo program.

2.3 Threat Model

The Rowhammer attacks found in prior research aim for privilege escalation [26, 140, 143,
148, 159, 171, 76], compromising co-hosted virtual machines [143, 171] or even attacks over
the network [155]. Our approach, ZebRAM, addresses all these attacks through its principle of
isolating memory rows from each other. Our prototype implementation of ZebRAM focuses
only on virtual machines, stopping all of the aforementioned attacks launched from or at a
victim virtual machine, assuming the hypervisor is trusted. We discuss possible alternative
implementations (e.g., native) in Section 2.9.2.

1Rowhammer attacks repeatedly clear hammered rows from the CPU cache to ensure that they hammer DRAM
memory, not the cache.

32 Chapter 2. ZebRAM

Aggressor row (k-1)

Aggressor row (k+1)

Victim row (k)Odd row

Even row

FIGURE 2.3: Hammering even-numbered rows can only induce bit flips in
odd-numbered rows and vice versa.

Safe region

Unsafe region

 DRAM Address
 Space

FIGURE 2.4: Splitting the memory into safe and unsafe regions using even
and odd rows in a zebra pattern.

2.4 Design

To build a comprehensive solution against Rowhammer attacks, we should consider Rowham-
mer’s fault model: bit flips only happen in adjacent rows when a target row is hammered as
shown in Figure 2.3. Given that any row can potentially be hammered by an attacker, all rows
in the system can be abused. To protect against Rowhammer in software, we can follow two
approaches: we either need to protect the entire memory against Rowhammer or we need to
limit the rows that the attacker can access. Protecting the entire memory is not secure even in
hardware [107, 159] and software attempts have so far been shown to be insecure [77]. Instead,
we aim to design a system where an attacker can only hammer a subset of rows directly.

Basic ZebRAM In order to make sure that Rowhammer bit flips cannot target any data, we
should enforce the invariant that all adjacent rows are unused. This can be done by making
sure that either all odd or all even rows are unused by the system. Assuming odd rows are
unused, all even rows will create a safe region in memory; it is not possible for an attacker to
flip bits in this safe regions simply because all the odd rows are inaccessible to the attacker.
The attacker can, however, flip bits in the odd rows by hammering the even rows in the safe

2.4. Design 33

Safe region

Unsafe region

DRAM Address Space

OS &
Applications

OS &
Applications

Swap cacheZebRAM

Swap space

FIGURE 2.5: ZebRAM logically divides system memory into a safe region
for normal use, a swap space made from the unsafe region, and a swap cache

to protect the safe region from accesses made to the unsafe region.

region. Hence, we call the odd rows the unsafe region in memory. Given that the unsafe region
is unused, the attacker cannot flip bits in the data used by the system. This simple design with
its zebra pattern shown in Figure 2.4 already stops all Rowhammer attacks. It however has an
obvious downside: it wastes half of the memory that makes up the unsafe region. We address
this problem later when we explain our complete ZebRAM design.

A more subtle downside in this design is incompatibility with the Buddy page allocation
scheme used in commodity operating systems such as Linux. Buddy allocation requires
contiguous regions of physical memory in order to operate efficiently and forcing the system
not to use odd rows does not satisfy this requirement. Ideally, our design should utilize the
unsafe region while providing (the illusion of) a contiguous physical address space for efficient
buddy allocation as shown on the right side of Figure 2.4. To address this downside, our
design should provide a translation mechanism that creates a linear physical address space out
of the safe region.

ZebRAM If we can find a way to securely use the unsafe region, then we can gain back
the memory wasted in the basic ZebRAM design. We need to enforce two invariants if we
want to make use of the unsafe region for storing data. First, we need to make sure that
we properly handle potential bit flips in the unsafe region. Second, we need to ensure that
accessing the unsafe region does not trigger bit flips in the safe region. Our proposed design,
ZebRAM, shown in Figure 2.5 satisfies all these requirements. To handle bit flips in the unsafe
region, ZebRAM performs software integrity checks and error correction whenever data in
the unsafe region is accessed. To protect the safe region from accesses to the unsafe region,
ZebRAM uses a cache in front of the unsafe region. This cache is allocated from the safe
region and ZebRAM is free to choose its size and replacement policy in a way that protects
the safe region. Finally, to provide backward-compatibility with memory management in
commodity systems, ZebRAM can employ translation mechanisms provided by hardware (e.g.,
virtualization extensions in commodity processors) to translate even rows into a contiguous
physical address space for the guest.

To maintain good performance, ZebRAM ensures that accesses to the safe region proceed
without interposition. As mentioned earlier, this can potentially cause bit flips in the unsafe
region. Hence, all accesses to the unsafe region should be interposed for bit flip detection and
correction. To this end, ZebRAM exposes the unsafe region as a swap device to the protected
operating system. With this design, ZebRAM reuses existing page replacement policies of the
operating system to decide which memory pages should be evicted to the swap (i.e., unsafe

34 Chapter 2. ZebRAM

ZebRAM Cache Layer

ZebRAM Swap Space (Unsafe region)

Manages
Cache Layer
(Read/Write)

Allocate/Free
(guard page)

Read/Write

Hypervisor Memory Remapper

Guest RAM

Sets up

User Space

Kernel Space
ZebRAM Block Device (LKM)

Kswapd

S
a
fe

 re
g
io

n

Swap Manager
(LKM)

Compression / Decompression

ECC Encode / Decode

Hash Generation / Verification

Memory
Allocator

Cache
Manager Read/

Write

 Integrity Manager

FIGURE 2.6: ZebRAM Components.

region). Given that most operating systems use some form of Least Recently Used (LRU),
the working set of the system remains in the safe region, preserving performance. Once the
system needs to access a page from the unsafe region, the operating system selects a page
from the safe region (e.g., based on LRU) and creates necessary meta data for bit flip detection
(and/or correction) using the contents of the page and writes it to the unsafe region. At this
point, the system can bring the page to the safe region from the unsafe region. But before that,
it uses the previously calculated meta data to perform bit flip detection and correction. Note
that the swap cache (for protecting the safe region) is essentially part of the safe region and is
treated as such by ZebRAM.

Next, we discuss our implementation of ZebRAM’s design before analyzing its security
guarantees and evaluating its performance.

2.5 Implementation

In this section, we describe a prototype implementation of ZebRAM on top of the Linux
kernel. Our prototype protects virtual machines against Rowhammer attacks and consists
of the following four components: the Memory Remapper, the Integrity Manager, the Swap
Manager, and the Cache Manager, as shown in Figure 2.6. Our prototype implements Memory
Remapper in the hypervisor and the other three components in the guest OS. It is possible to
implement all the components in the host to make ZebRAM guest-transparent. We discuss
alternative implementations and their associated trade-offs in Section 2.9.2. We now discuss
these components as implemented in our prototype.

2.5. Implementation 35

2.5.1 ZebRAM Prototype Components

Memory Remapper implements the split of physical memory into a safe and unsafe region.
One region contains all the even-numbered rows, while the other contains all the odd-numbered
rows. Note that because hardware vendors do not publish the mapping of physical addresses
to DRAM addresses, we need to reverse engineer this mapping following the methodology
established in prior work [138, 171, 154].

Because Rowhammer attacks only affect directly neighboring rows, a Rowhammer attack
in one region can only incur bit flips in the other region, as shown in Figure 2.3. In addition,
ZebRAM supports the conservative option of increasing the number of guard rows to defend
against Rowhammer attacks that target a victim row not directly adjacent to the aggressor row.
However, our experience with a large number of vulnerable DRAM modules shows that with
the correct translation of memory pages to DRAM locations, bit flips trigger exclusively in
rows adjacent to a row that is hammered.

Integrity Manager protects the integrity of the unsafe region. Our software design allows for
a flexible choice for error detection and correction. For error correction, we use a commonly-
used Single-Error Correction and Double-Error Detection (SECDED) code. As shown in
recent work [40], SECDED and other similar BCH codes can still be exploited on DIMMs
with large number of bit flips. Our database of Rowhammer bit flips from 14 vulnerable
DIMMs [154] shows that only 0.00015% of all memory words with bit flips can bypass our
SECDED code (found in 2 of the 14 vulnerable DIMMs) and 0.13% of them can cause a
detectable corruption (found in 7 of the 14 vulnerable DIMMs). To provide strong detection
guarantees, while providing correction possibilities, ZebRAM provides the possibility to
mix SECDED with collision resistant hash functions such as SHA-256 at the cost of extra
performance overhead.

Swap Manager uses the unsafe region to implement an efficient swap disk in memory,
protected by the Integrity Manager and accessible only by the OS. Using the unsafe region
as a swap space has the advantage that the OS will only access the slow, integrity-checked
unsafe region when it runs out of fast safe memory. As with any swap disk, the OS uses
efficient page replacement techniques to minimize access to it. To maximize utilization of the
available memory, the Swap Manager also implements a compression engine that optionally
compresses pages stored in the swap space.

Note that ZebRAM also supports configurations with a dedicated swap disk (such as a
hard disk or SSD) in addition to the memory-based swap space. In this case, ZebRAM swap
is prioritized above any other swap disks to maximize efficiency.

Cache Manager implements a fully associative cache that speeds up access to the swap space
while simultaneously preventing Rowhammer attacks against safe rows by reducing the access
frequency on memory rows in the unsafe region. The swap cache is faster than the swap disk
because it is located in the safe region and does not require integrity checks or compression.
Because attackers must clear the swap cache to be able to directly access rows in the unsafe
region, the cache prevents attackers from efficiently hammering guard rows to induce bit flips
in safe rows.

Because the cache layer sits in front of the swap space, pages swapped out by the OS are
first stored in the cache, in uncompressed format. Only if the cache is full does the Cache
Manager flush the least-recently-added (LRA) entry to the swap disk. The LRA strategy is
important, because it ensures that attackers must clear the entire cache after every row access
in the unsafe region.

36 Chapter 2. ZebRAM

2.5.2 Implementation Details

We implemented ZebRAM in C on an Intel Haswell machine running Ubuntu 16.04 with
kernel v4.4 on top a Qemu-KVM v2.11 hypervisor. Next we provide further details on the
implementation various components in the ZebRAM prototype.

Memory Remapper To efficiently partition memory into guard rows and safe rows, we
use Second Level Address Translation (SLAT), a hardware virtualization extension commonly
available in commodity processors. To implement the Memory Remapper component, we
patched Qemu-KVM’s mmap function to expose the unsafe memory rows to the guest machine
as a contiguous memory block starting at physical address 0x3ffe0000. We use a translation
library similar to that of Throwhammer [155] for assigning memory pages to odd and even
rows in the Memory Remapper component.

Integrity Manager The Integrity Manager and Cache Manager are implemented as part
of the ZebRAM block device, and comprise 369 and 192 LoC, respectively. The Integrity
Manager uses SHA-256 algorithm for error detection, implemented in mainline Linux, to
hash swap pages, and keeps the hashes in a linear array stored in safe memory. Additionally,
the Integrity Manager by default uses an ECC derived from the extended Hamming(63,57)
code [80], expurgated to have a message size an integer multiple of bytes. The obtained
ECC is a [64, 56, 4]2 block code, providing single error correction and double error detection
(SECDED) for each individual (64-bit) memory word—functionally on par with hardware
SEC-DED implementations.

Swap Manager The Swap Manager is implemented as a Loadable Kernel Module (LKM)
for the guest OS that maintains a stack containing the Page Frame Numbers (PFNs) of free
pages in the swap space. It exposes the RAM-based swap disk as a readable and writable
block device that we implemented by extending the zram compressed RAM block device
commonly available in Linux distributions. We changed zram’s zsmalloc slab memory
allocator to only use pages from the Swap Manager’s stack of unsafe memory pages. To
compress swap pages, we use the LZO algorithm also used by zram [114]. The Swap
Manager LKM contains 456 LoC while our modifications to zram and zsmalloc comprise
437 LoC.

Cache Manager The Cache Manager implements the swap cache using a linear array to
store cache entries and a radix tree that maps ZebRAM block device page indices to cache
entries. By default, ZebRAM uses 2% of the safe region for the swap cache.

Guest Modifications The guest OS is unchanged except for a minor modification that uses
Linux’s boot memory allocator API (alloc_bootmem_low_pages) to reserve the unsafe
memory block as swap space at boot time. Our changes to Qemu-KVM comprise 2.6K lines
of code (LoC), while the changes to the guest OS comprise only 4 LoC. Furthermore, the
Linux kernel may eagerly write dirty pages into the swap device based on its swappiness
tunable. In ZebRAM, we use a swappiness of 10 instead of the default value of 60 to reduce
the number of unnecessary writes to the unsafe region.

2.6 Security Evaluation

This section evaluates ZebRAM’s effectiveness in defending against traditional Rowhammer
exploits. Additionally, we show that ZebRAM successfully defends even against more

2.6. Security Evaluation 37

1 bit flip 2 bit flips Total ZebRAM detection performance
Run no. in 64 bits in 64 bits bit flips Detected bit flips Corrected bit flips

1 4,698 2 4,702 4,702 4,698
2 5,132 0 5,132 5,132 5,132
3 2,790 0 2,790 2,790 2,790
4 4,216 1 4,218 4,218 4,216
5 3,554 0 3,554 3,554 3,554

TABLE 2.1: ZebRAM’s effectiveness defending against a ZebRAM-aware
Rowhammer exploit.

advanced ZebRAM-aware Rowhammer exploits. We evaluated all attacks on a Haswell
i7-4790 host machine with 16GB RAM running our ZebRAM-based Qemu-KVM hypervisor
on Ubuntu 16.04 64-bit. The hypervisor runs a guest machine with 4GB RAM and Ubuntu
16.04 64-bit with kernel v4.4, containing all necessary ZebRAM patches and LKMs.

2.6.1 Traditional Rowhammer Exploits

Under ZebRAM’s memory model, traditional Rowhammer exploits on system memory only
hammer the safe region, and can therefore trigger bit flips only in the integrity-checked unsafe
region by construction. We tested the most popular real-world Rowhammer exploit variants to
confirm that ZebRAM correctly detects these integrity violations.

In particular, we ran the single-sided Rowhammer exploit published by Google’s Project
Zero,2 as well as the one-location3 and double-sided4 exploits published by Gruss et al. on
our testbed for a period of 24 hours. During this period the single-sided Rowhammer exploit
induced two bit flips in the unsafe region, while the one-location and double-sided exploits
failed to produce any bit flips. ZebRAM successfully detected and corrected all of the induced
bit flips.

The double-sided Rowhammer exploit failed due to ZebRAM’s changes in the DRAM
geometry, alternating safe rows with unsafe rows. Conventional double-sided exploits attempt
to exploit a victim row k by hammering the rows k − 1 and k + 1 below and above it,
respectively. Under ZebRAM, this fails because the hammered rows are not really adjacent to
the victim row, but remapped to be separated from it by unsafe rows. Unaware of ZebRAM, the
exploit thinks otherwise based on the information gathered from the Linux’ pagemap—due to
the virtualization-based remapping layer—and essentially behaves like an unoptimized single-
sided exploit. Fixing this requires a ZebRAM-aware exploit that hammers two consecutive
rows in the safe region to induce a bit flip in the unsafe region. As described next, we
developed such an exploit and tested ZebRAM’s ability to thwart it.

2.6.2 ZebRAM-aware Exploits

To further demonstrate the effectiveness of ZebRAM, we developed a ZebRAM-aware double-
sided Rowhammer exploit. This section explains how the exploit attempts to hammer both the
safe and unsafe regions, showing that ZebRAM detects and corrects all the induced bit flips.

Attacking the Unsafe Region

To induce bit flips in the unsafe region (where the swap space is kept), we modified the
double-sided Rowhammer exploit published by Gruss et al. [76] to hammer every pair of two
consecutive DRAM rows in the safe region (assuming the attacker is armed with an ideal

2https://github.com/google/rowhammer-test
3https://github.com/IAIK/flipfloyd
4https://github.com/IAIK/rowhammerjs/tree/master/native

38 Chapter 2. ZebRAM

ZebRAM-aware memory layout oracle) and ran the exploit five times, each time for 6 hours.
As Table 2.1 shows, the first exploit run induced a total of 4,702 bit flips in the swap space,
with 4,698 occurrences of a single bit flip in a 64-bit data word and 2 occurrences of a double
bit flip in a 64-bit word. ZebRAM successfully corrected all 4,698 single bit flips and detected
the double bit flips. As shown in Table 2.1, the other exploit runs produced similar results,
with no bit flips going undetected. Note that ZebRAM can also detect more than two errors per
64-bit word due to its combined use of ECC and hashing, although our experiments produced
no such cases.

Attacking the Safe Region

In addition to hammering safe rows, attackers may also attempt to hammer unsafe rows to
induce bit flips in the safe region. To achieve this, an attacker must trigger rapid writes or reads
of pages in the swap space. We modified the double-sided Rowhammer exploit to attempt
this by opening the swap space with the open system call with the O_DIRECT flag, followed
by repeated preadv system calls to directly read from the ZebRAM swap disk (bypassing the
Linux page cache).

Because the swap disk only supports page-granular reads, the exploit must read an entire
page on each access. Reading a ZebRAM swap page results in at least two memory copies;
first to the kernel block I/O buffer, and next to user space. The exploit evicts the ZebRAM
swap cache before each swap disk read to ensure that it accesses rows in the swap disk rather
than in the cache (which is in the safe region). After each page read, we use a clflush
instruction to evict the cacheline we use for hammering purposes. Note that this makes the
exploit’s job easier than it would be in a real attack scenario, where the exploit cannot use
clflush because the attacker does not own the swap memory. A real attack would require
walking an entire cache eviction buffer after each read from the swap disk.

We ran the exploit for 24 hours, during which time the exploit failed to trigger any bit
flips. This demonstrates that the slow access frequency of the swap space—due to its page
granularity, integrity checking, and the swap cache layer—successfully prevents Rowhammer
attacks against the safe region.

To further verify the reliability of our approach, we re-tested our exploit with the swap
disk’s cache layer, compression engine, and integrity checking modules disabled, thus pro-
viding overly optimistic access speeds (and security guarantees) to the swap space for the
Rowhammer exploit. Even in this scenario, the page-granular read enforcement of the swap
device alone proved sufficient to prevent any bit flips. Our time measurements using rdtsc
show that even in this optimistic scenario, memory dereferences in the swap space take 2,435
CPU cycles, as opposed to 200 CPU cycles in the safe region, removing any possibility of a
successful Rowhammer attack against the safe region.

2.7 Performance Evaluation

This section measures ZebRAM’s performance in different configurations compared to an
unprotected system under varying workloads. We test several different kinds of applications,
commonly considered for evaluation by existing systems security defenses. First, we test
ZebRAM on the SPEC CPU2006 benchmark suite [81] to measure its performance for
CPU-intensive applications. We also benchmark ZebRAM the popular nginx and Apache
web servers, as well as the redis in-memory key-value store. Additionally, we present
microbenchmark results to better understand the contributing factors to ZebRAM’s overhead.

Testbed Similar to our security evaluation, we conduct our performance evaluation on a
Haswell i7-4790 machine with 16GB RAM running Ubuntu 16.04 64-bit with our modified

2.7. Performance Evaluation 39

 0

 10

 20

 30

 40

 50

 60

 70

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar

xalancbm
k

bw
aves

gam
ess

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3d

nam
d

dealII

soplex

povray

calculix

G
em

sFDTD

tonto
lbm

w
rf

sphinx3

geom
ean

S
P

E
C

 S
c
o
re

Unmodified
ZebRAM (ECC)

ZebRAM (ECC+SHA-256)

FIGURE 2.7: SPEC CPU 2006 performance results.

Qemu-KVM hypervisor. We run the ZebRAM modules and the benchmarked applications in
an Ubuntu 16.04 guest VM with kernel v4.4 and 4GB of memory using a split of 2GB for the
safe region and 2GB for the unsafe region. To establish a baseline, we use the same guest VM
with an unmodified kernel and 4GB of memory. In the baseline measurements, the guest VM
has direct access to all its memory, while in the ZebRAM performance measurements half of
the memory is dedicated to the ZebRAM swap space. In all reported memory usage figures we
include memory used by the Integrity Manager and Cache Manager components of ZebRAM.
For our tests of server applications, we use a separate Skylake i7-6700K machine as the client.
This machine has 16GB RAM and is linked to the ZebRAM machine via a 100Gbit/s link.
We repeat all our experiments multiple times and observe marginal deviations across runs.

SPEC 2006 We compare performance scores of the SPEC 2006 benchmark suite in three
different setups: (i) unmodified, (ii) ZebRAM configured to use only ECC, and (iii) ZebRAM
configured to use ECC and SHA-256. The ZebRAM (ECC) and ZebRAM (ECC and SHA-
256) show a performance overhead over the unmodified baseline of 4% and 5%, respectively
(see Figure 2.7). The reason behind this performance overhead is that as the ZebRAM splits
the memory in a zebra pattern, the OS can no longer benefit from huge pages. Also, note
that certain benchmarks, such as mcf, exhibits more than 5% overhead because they use
ZebRAM’s swap memory as their working set do not fit in the safe region.

Web servers We evaluate two popular web servers: nginx (1.10.3) and Apache (2.4.18).
We configure the virtual machine to use 4 VCPUs. To generate load to the web servers we use
the wrk2 [169] benchmarking tool, retrieving a default static HTML page of 240 characters.
We set up nginx to use 4 workers, while we set up Apache with the prefork module, spawning
a new worker process for every new connection. We also increase the maximum number of
clients allowed by Apache from 150 to 500. We configured the wrk2 tool to use 32 parallel
keep-alive connections across 8 threads. When measuring the throughput we check that
CPU is saturated in the server VM. We discard the results of 3 warmup rounds, repeat a
one-minute run 11 times, and report the median across runs. Figure 2.8 shows the throughput
of ZebRAM under two different configurations: (i) ZebRAM configured to use only ECC, and

40 Chapter 2. ZebRAM

Unmodifie
d
ZebRAM

(ECC)
ZebRAM

(ECC+SHA-256)
0K

25K

50K

75K

100K

125K

150K

175K
Nu

m
be

r o
f t

ra
ns

ac
tio

ns
/s

ec
nginx

Unmodifie
d
ZebRAM

(ECC)
ZebRAM

(ECC+SHA-256)
0K

25K

50K

75K

100K

125K

150K

175K

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

/s
ec

Apache

FIGURE 2.8: Nginx and Apache throughput at saturation.

(ii) ZebRAM configured to use ECC and SHA-256. Besides throughput, we want to measure
ZebRAM’s latency impact. We use wrk2 to throttle the load on the server (using the rate
parameter) and report the 99th percentile latency as a function of the client request rate in
Figure 2.9.

The baseline achieves 182k and 50k requests per second on Nginx and Apache respectively.
The ZebRAM’s first configuration (only ECC) reaches 172k and 49k while the second
configuration reaches 166k and 49k.

Before saturation, the results show that ZebRAM imposes no overhead on the 99th
percentile latency. After then, both configurations of ZebRAM show a similar trend with
linearly higher 99th percentile response time.

Overall, ZebRAM’s performance impact on both web servers and SPEC benchmarks is
low and mostly due to the inability to efficiently use Linux’ THP support. This is expected,
since as long as the working set can comfortably fit in the safe region (e.g., around 400MB for
our web server experiments) the unsafe memory management overhead is completely masked.
We isolate and study such overhead in more detail in the following.

Microbenchmarks To drill down the overhead of each single feature of ZebRAM, we mea-
sure the latency of swapping in a page from the ZebRAM device under different configurations.
To measure the latency, we use a small binary that sequentially writes on every page of a large
eviction buffer in a loop. This ensures that, between two accesses to the same page, we touch
the entire buffer, evicting that page from memory. To be sure that Linux swaps in just one
page for every access, we set the page-cluster configuration parameter to 0. In this experiment,
two components interact with ZebRAM: our binary triggers swap-in events from the ZebRAM
device while the kswapd kernel thread swaps pages to the ZebRAM device to free memory.
The interaction between them is completely different if the binary uses exclusively loads to

2.7. Performance Evaluation 41

80K 90K 100K 110K 120K 130K 140K 150K
Client request rate (req/s)

0

200

400

600

99
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s) nginx
Unmodified
ZebRAM (ECC)
ZebRAM (ECC+SHA-256)

25K 30K 35K 40K 45K 50K 55K
Client request rate (req/s)

0

100

200

300

99
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s) Apache
Unmodified
ZebRAM (ECC)
ZebRAM (ECC+SHA-256)

FIGURE 2.9: Nginx and Apache latency (99th percentile).

stress the memory. This is because the kernel would optimize out unnecessary flushes to
swap and batch together TLB invalidations. Hence, we choose to focus on stores to study the
performance in the worst-case scenario and because read-only workloads are less common
than mixed workloads.

We reserve a core exclusively for the binary so that kswapd does not (directly) steal CPU
cycles from it. We measure 1,000,000 accesses for each different configuration. Table 2.2
presents our results.We also run the binary in a loop and profile its execution with the perf
Linux tool to measure the time spent in different functions. Due to function inlining, it is
not always trivial to map a symbol to a particular feature. Nevertheless, perf can provide
insights into the overhead at a fine granularity. In the first configuration, we disable the all
features of ZebRAM and perform only memory copies into the ZebRAM device. As the copy
operation is fast, the perf tool reports that just 4% percent of CPU cycles are spent copying.
Interestingly, 47% of CPU cycles are spent serving Inter Process Interrupts from other cores.
This is because, while we are swapping in, kswapd on another core is busy freeing memory.
For this purpose, kswapd needs to unmap pages that are on their way to be swapped out
from the process’s page tables. This introduces TLB shootdowns (and IPIs) to invalidate other
cores’ TLB stale entries. It is important to notice that the faster we swap in pages, the faster
kswapd needs to free memory. This unfortunately results in a negative feedback loop that
represent one of the major sources of overhead when the large number of swap-in events
continuously force kswapd to wake up.

42 Chapter 2. ZebRAM

Configuration median (ns) 90th (ns) 99th (ns)

copy 2,362.0 4,107.0 8,167.0
SHA-256 13,552.0 14,209.0 17,092.0
cache + comp + SHA-256 8,633.0 13,191.0 18,678.0
cache + comp + SHA-256 + ECC 9,862.0 15,118.0 20,794.0

TABLE 2.2: Page swap-in latency from the ZebRAM device.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Working Set Size

 (As a fraction of total available memory)

0
5

10
15
20
25
30
35
40
45
50
55
60

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

ZebRAM (Basic)
ZebRAM (ECC)
ZebRAM (ECC+SHA-256)

FIGURE 2.10: Redis throughput at saturation.

Adding hashing (SHA-256) on top of the previous configuration shows an increase in
latency, which is also reflected in the CPU cycles breakdown. The perf tool reports that 55%
of CPU cycles are spent swapping in pages (copy + hashing), while serving IPIs accounts
for 29%. Adding cache and compression on top of SHA-256 decreases the latency median
and increases the 99th percentile. This is because, on a cache hit, the ZebRAM only needs to
copy the page to userspace; however, on a cache miss, it has to verify the hash of the page
and decompress the page too. The perf tool reports 42% of CPU cycles are spent in the
decompression routine and 26% in serving IPI requests for other cores and less than 5% in
hashing and copying. This confirms the presence of the swap-in/swap-out feedback loop under
high memory pressure. Adding ECC marginally increases the latency, the perf tool reports
similar CPU usage breakdown for the version without ECC.

Larger working sets As expected, ZebRAM’s overheads are mostly associated to swap-
in/swap-out operations, which are masked when the working set can fit in the safe region
but naturally become more prominent as we grow the working set. In this section, we want
to evaluate the impact of supporting increasingly larger working sets compared to a more
traditional swap implementation. For this purpose, we evaluate the performance of a key-value
store in four different setups: (i) unmodifed system, (ii) the basic version of ZebRAM (iii)

2.7. Performance Evaluation 43

40K 60K 80K 100K 120K
Client request rate (req/s)

200

400

600

99
th

 la
te

nc
y

pe
rc

en
til

e
(u

s)

40K 60K 80K 100K 120K
Client request rate (req/s)

0

2000

4000

6000

99
th

 la
te

nc
y

pe
rc

en
til

e
(u

s)
Unmodified
ZebRAM (Basic)

ZebRAM (ECC)
ZebRAM (ECC+SHA-256)

FIGURE 2.11: Redis latency (99th percentile). The working set size is 50%
of RAM (top) and 70% of RAM (bottom).

ZebRAM configured with ECC, and (iv) ZebRAM configured with ECC and SHA-256. The
basic version of ZebRAM uses just one of the two domains in which ZebRAM splits the
RAM and swaps to a fast SSD disk when the memory used by the OS does not fit into it. We
use YCSB[42] to generate load and induce a target working set size against a redis (4.0.8)
key-value store. We setup YCSB to use 1KB objects and perform a 90/10 read/write operations
ratio. Each test runs for 20 seconds and, for each configuration, we discard the results of
3 warmup rounds and report the median across 11 runs. We configure YCSB to access the
dataset key space uniformly and we measure the throughput at saturation for different data set
sizes.

Figure 2.10 depicts the reported normalized execution time as a function of the working
set size (in percentage compared to the total RAM size). As shown in the figure, when the
working set size is small enough (e.g., 44%) the OS hardly reclaims any memory, hence
the unsafe region remains unutilized and the normalized execution time is only 1.08x for
the basic version of ZebRAM while the normalized execution time is between 1.04x and
1.10x for all other configurations of ZebRAM. As we increase the working set size, the OS
starts reclaiming pages and the normalized execution time increases accordingly. However,
the increase is much more gentle for ZebRAM compared to the basic version of ZebRAM

44 Chapter 2. ZebRAM

and the gap becomes more significant for larger working set sizes. For instance, for a fairly
large working set size (e.g., 70%), ZebRAM (ECC) has 3.00x normalized execution time,
and ZebRAM (ECC and SHA-256) has 3.90x, compared to the basic version of ZebRAM at
30.47x.

To study the impact of ZebRAM on latency, we fix the working set size to 50% and
70% of the total RAM and repeat the same experiment while varying the load on the server.
Figure 2.11 presents our results for the 99th latency percentile. At 50%, results of (i) the
ZebRAM configured with ECC, (ii) the ZebRAM configured with ECC and SHA-256, and (iii)
baseline (unmodified) follow the same trend. The ZebRAM’s first configuration (only ECC)
reports a 99th latency percentile of 138us for client request rates below 80,000, compared
to 584us for ZebRAM (basic). At 70%, the gap is again more prominent, with ZebRAM
reporting a 99th latency percentile of 466us and ZebRAM (basic) reporting 6,887us.

Overall, ZebRAM can more gracefully reduce performance for larger working sets com-
pared to a traditional (basic ZebRAM) swap implementation, thanks to its ability to use an
in-memory cache and despite the integrity checks required to mitigate Rowhammer. As our
experiments demonstrate, given a target performance budget, ZebRAM can support much
larger working sets compared to the ZebRAM’s basic implementation, while providing a
strong defense against arbitrary Rowhammer attacks. This is unlike the basic ZebRAM
implementation, which optimistically provides no protection against similar bit flip-based
attacks. Unfortunately, such attacks, which have been long-known for DRAM [96], have
recently started to target flash memory as well [31, 103].

2.8 Related work

This section summarizes related work on Rowhammer attacks and defenses.

Attacks In 2014, Kim et al. [96] were the first to show that it is possible to flip bits in DDR3
memory on x86 CPUs simply by accessing other parts of memory. Since then, many studies
have demonstrated the effectiveness of Rowhammer as a real-world exploit in many systems.

The first practical Rowhammer-based privilege escalation attack, by Seaborn and Dul-
lien [148], targeted the x86 architecture and DDR3 memory, hammering the memory rows
by means of the native x86 clflush instruction that would flush the cache and allow high-
frequency access to DRAM. By flipping bits in page table entries, the attack obtained access
to privileged pages.

Not long after these earliest attacks, researchers greatly increased the threat of Rowhammer
attacks by showing that is possible to launch them from JavaScript also, allowing attackers to
gain arbitrary read/write access to the browser address space from a malicious web page [26,
76].

Moreover, newer attacks started flipping bits in memory areas other than page table
entries, such as object pointers (to craft counterfeit objects [26]), opcodes [77], and even
application-level sensitive data [143].

For instance, Flip Feng Shui demonstrated a new attack on VMs in cloud environments
that flipped bits in RSA keys in victim VMs to make them easy to factorize, by massaging
the physical memory of the co-located VMs to land the keys on a page that was hammerable
by the attacker. Around the same time, other researchers independently also targeted RSA
keys with Rowhammer but now for fault analysis [23]. Concurrently, also, Xiao et al. [171]
presented another cross-VM attack that manipulates page table entries in Xen.

Where the attacks initially focused on PCs with DDR3 configurations, later research
showed that ARM processors and DDR4 memory chips are also vulnerable [159]. While this
opened the way for Rowhammer attacks on smartphones, the threat was narrower than on

2.8. Related work 45

PCs, as the authors were not yet able to launch such attacks from JavaScript. This changed
recently, when research described a new way to launch Rowhammer attacks from JavaScript
on mobile phones and PC, by making use of the GPU. Hammering directly from the GPU by
way of WebGL, the authors managed to compromise a modern smart phone browser in under
two minutes. Moreover, this time the targeted data structures are doubles and pointers: by
flipping a bit in the most significant bytes, the attack can turn pointers into doubles (making
them readable) and doubles into pointers (yielding arbitrary read/write access).

All Rowhammer attacks until that point required local code execution. Recently, however,
researchers demonstrated that even remote attacks on servers are possible [155], by sending
network traffic over high-speed network to a victim process, using RDMA NICs. As the server
that is receiving the network packets is using DMA to write to its memory, the remote attacker
is able to flip bits in the server. By carefully manipulating the data in a key-value store, they
show that it is possible to completely compromise the server process.

It should be clear that Rowhammer exploits have spread from a narrow and arcane threat to
target two of the most popular architectures, in all common computing environments, different
types of memory (and arguably flash [31]), while covering most common threat models (local
privilege escalation, hosted JavaScript, and even remote attacks). ZebRAM protects against
all of the above attacks.

Defenses Kim et al. [96] propose hardware changes to mitigate Rowhammer by increasing
row refresh rates or using ECC. These defenses have proven insufficient [16] and infeasible to
deploy on the required massive scale. The new LPDDR4 standard [93] specifies two features
which together defend against Rowhammer: TRR and MAC. Despite these defenses, van
der Veen et al. still report bit flips on a Google pixel phone with LPDDR4 memory [158]
and Gruss et al. [147] report bit flips in TRR memory. While nobody has demonstrated
Rowhammer attacks against ECC memory yet, the real problem with such hardware solutions
is that most systems in use today do not have ECC, and replacing all DRAM in current devices
is simply infeasible.

In order to protect from Rowhammer attacks, many vendors simply disabled features in
their products to make life harder for attackers. For instance, Linux disabled unprivileged
access to the pagemap [148], Microsoft disabled memory deduplication [48] to defend from
the Dedup Est Machina attack [26], and Google disabled [156] the ION contiguous heap in
response to the Drammer attack [159] on mobile ARM devices. Worryingly, not a single
defence is currently deployed to protect from the recent GPU-based Rowhammer attack on
mobile ARM devices (and PCs), even though it offers attackers a huge number of vulnerable
devices.

Finally, researchers have proposed targeted software-based solutions against Rowhammer.
ANVIL [16] relies on Intel’s performance monitoring unit (PMU) to detect and refresh likely
Rowhammer victim rows. An improved version of ANVIL requires specialized Intel PMUs
with a fine-grained physical to DRAM address translation. Unfortunately, Intel’s (and AMD’s)
PMUs do not capture precise address information when memory accesses bypass the CPU
cache through DMA. Hence, this version of ANVIL is vulnerable to off-CPU Rowhammer
attacks. Unlike ANVIL, ZebRAM is secure against off-CPU attacks, since device drivers
transparently allocate memory from the safe region.

CATT [28] isolates (only) user and kernel space in physical memory so that user-space
attackers cannot trigger bit flips in kernel memory. However, research [77] shows CATT to
be bypassable by flipping opcode bits in the sudo program code. Moreover, CATT does not
defend against attacks that target co-hosted VMs at all [28]. In contrast, ZebRAM protects
against co-hosted VM attacks, attacks against the kernel, attacks between (and even within)
user-space processes and attacks from co-processors such as GPUs.

46 Chapter 2. ZebRAM

Other recent software-based solutions have targeted specific Rowhammer attack variants.
GuardION isolates DMA buffers to protect mobile devices against DMA-based Rowhammer
attacks [160]. ALIS isolates RDMA buffers to protect RDMA-enabled systems against
Throwhammer [155]. Finally, VUSion, described in Chapter 1, randomizes page frame
allocation to protect memory deduplication-enabled systems against Flip Feng Shui.

2.9 Discussion

This section discusses feature and performance tradeoffs between our ZebRAM prototype and
alternative ZebRAM implementations.

2.9.1 Prototype

Because the ZebRAM prototype relies on the hypervisor to implement safe/unsafe memory
separation, and on a cooperating guest kernel for swap management, both host and guest need
modifications. In addition, the guest physical address space will map highly non-contiguously
to the host address space, preventing the use of huge pages. The guest modifications, however,
are small and self-contained, do not touch the core memory management implementation and
are therefore highly compatible with mainline and third party LKMs.

2.9.2 Alternative Implementations

In addition to our implementation presented in Section 2.5, several alternative ZebRAM
implementations are possible. Here, we compare our ZebRAM implementation to alternative
hardware-based, OS-based, and guest-transparent virtualization-based implementations.

Hardware-based Implementing ZebRAM at the hardware level would require a physical-to-
DRAM address mapping where sets of odd and even rows are mapped to convenient physical
address ranges, for instance an even lower-half and an odd upper-half. This can be achieved
with by a fully programmable memory controller, or implemented as a configurable feature in
existing designs. With such a mapping in place, the OS can trivially separate memory into safe
and unsafe regions. In this model, the Swap Manager, Cache Manager and Integrity Manager
are implemented as LKMs just as in the implementation from Section 2.5. In contrast to
other implementations, a hardware implementation requires no hypervisor, allows the OS
to make use of (transparent) huge pages and requires minimal modifications to the memory
management subsystem. While a hardware-supported ZebRAM implementation has obvious
performance benefits, it is currently infeasible to implement because memory controllers lack
the required features.

OS-based Our current ZebRAM prototype implements the Memory Remapper as part of a
hypervisor. Alternatively, the Memory Remapper can be implemented as part of the bootloader,
using Linux’ boot memory allocator to reserve the unsafe region for use as swap space. While
this solution obviates the use of a hypervisor, it also results in a non-contiguous physical
address space that precludes the use of huge pages and breaks DMA in older devices. In
addition, it is likely that this approach requires invasive changes to the memory management
subsystem due to the very fragmented physical address space.

Transparent Virtualization-based While our current ZebRAM implementation requires
minor changes to the guest OS, it is also possible to implement a virtualization-based variant of
ZebRAM that is completely transparent to the guest. This entails implementing the ZebRAM

2.10. Conclusion 47

swap disk device in the host and then exposing the disk to the guest OS as a normal block
device to which it can swap out. The drawback of this approach is that it degrades performance
by having the hypervisor interposed between the guest OS and unsafe memory for each access
to the swap device, a problem which does not occur in our current implementation. The clear
advantage to this approach is that it is completely guest-agnostic: guest kernels other than
Linux, including legacy and proprietary ones are equally well protected, enabling existing
VM deployments to be near-seamlessly transitioned over to a Rowhammer-safe environment.

2.10 Conclusion

We have introduced ZebRAM, the first comprehensive software defense against all forms of
Rowhammer. ZebRAM uses guard rows to isolate all memory rows containing user or kernel
data, protecting these from Rowhammer-induced bit flips. Moreover, ZebRAM implements
an efficient integrity-checked memory-based swap disk to utilize the memory sacrificed to the
guard rows. Our evaluation shows ZebRAM to be a strong defense able to use all available
memory at a cost that is a function of the workload. To aid future work, we release ZebRAM
as open source.

49

Chapter 3

OpenCAL

3.1 Introduction

Scientific Computing [71] is a broad and constantly growing multidisciplinary research field
that uses formal paradigms to study complex problems and solve them through simulation by
using advanced computing capabilities.

Different formal paradigms have been proposed to provide the abstraction context in
which problems are formalized. Partial Differential Equations (PDEs) were probably the first
to be largely employed for describing a wide variety of phenomena. Unfortunately, PDEs
can be analytically solved only for a small set of simplified problems [119] and Numerical
Methods have to be employed to obtain approximate solutions for real situations. Among
them, the Finite Differences Method (FDM) was one of the first considered, still currently
employed, to address a wide variety of phenomena such as acoustics [34, 27], heat [141, 45],
computational fluid dynamics (CFD) [36, 60], and quantum mechanics [84, 65].

Besides other solutions proposed for numerically approximating PDEs like, for instance,
Finite Elements and Finite Volume Methods, further formal paradigms were more recently
proposed for modeling complex systems as result of studies in Computer Science. Among
them, Cellular Automata (CA) [125] are Turing-equivalent [39, 41] parallel computational
models. CA are widely studied from a theoretical point of view [166, 105, 165, 127], and their
application domains vary from Artificial Life [106, 20] to Computational Fluid Dynamics [68,
120, 82, 5], besides many others. In the 80s, an extension of the original CA formalism was
proposed to better model and simulate a specific set of complex phenomena [75]. Such an
extension is known as Complex or Multi-Component Cellular Automata and was applied to
the simulation of debris flows [49, 14], lava flows [54, 55, 129, 53], pyroclastic flows [13, 44],
forest fires spreading [10, 12], hydrologic and eco-hydrologic modeling [122, 142, 123, 33],
soil erosion [50], crowd dynamics [112, 164, 163], urban dynamics [25], besides others. In
this chapter we will refer such an extension of the original CA paradigm as Extended Cellular
Automata (XCA).

Independently from the adopted formal paradigm, the simulation of complex systems
often requires Parallel Computing. OpenMP is the most widely adopted solution for parallel
programming on shared memory computers [37]. It fully supports parallel execution on
multi-core CPUs and, starting from the 4.0 specification, also includes support for accelerators
like graphic processing units (GPUs) or Xeon Phi co-processors. Unfortunately, compilers
like gcc currently do not fully support the OpenMP most recent specifications and, in practice,
OpenMP-based applications still mainly run on CPUs [129, 8, 139]. However, in recent years,
general purpose computing on graphic processing units (GPGPU), which exploits GPUs and
many-core co-processors for general purpose computation, has gained wide acceptance as an
alternative solution for high-performance computing, resulting in a rapid spread of applications
in many scientific and engineering fields [134]. Most implementations are currently based
on Nvidia CUDA (see e.g., [24, 52, 61, 51]), one of the first platforms proposed to exploit
GPUs computational power on Nvidia hardware. An open alternative to CUDA is OpenCL

50 Chapter 3. OpenCAL

[150], an Application Program Interface (API) originally proposed by Apple and currently
managed by Khronos Group for parallel programming on heterogeneous devices like CPUs,
GPUs, Digital Signal Processors (DSPs), and Field-Programmable Gate Arrays (FPGAs).
Interest in OpenCL is continuously growing and many applications can already be found in
literature [115, 19, 62, 30]. However, an OpenCL parallelization of a scientific application is
often a non-trivial task and, in many cases, requires a thorough re-factorization of the source
code. For this reason, many computational layers were proposed, which make many-core
co-processors computational power easier to be exploited. For instance, ArrayFire [117] is
a mathematical library for matrix-based computation such as linear algebra, reductions, and
Fast Fourier transform; clSpMV [152] is a sparse matrix vector multiplication library; clBlas
[38] is an OpenCL parallelization of the Blas linear algebra library. Examples of higher level
computational layers, which provide the abstraction of formal computational paradigms, are:
OPS [145, 89] and OP2 [70, 144], which are open-source frameworks for the execution of
structured and unstructured grid applications, respectively, on clusters of GPUs or multi-core
CPUs; AQUAgpusph [32], which is a smoothed-particle hydrodynamics solver; ASL [3],
an accelerated multi-physics simulation software based, among others, on the Lattice Boltz-
mann Method; CAMELot [59, 56] and libAuToti [149], which are a proprietary simulation
environment and an efficient parallel library for XCA model development, respectively.

In this article we introduce OpenCAL (Open Computing Abstraction Layer), a new
open source parallel computing abstraction layer for scientific computing. It provides the
Extended Cellular Automata general formalism as a Domain Specific Language, allowing for
the straightforward parallel implementation of a wide range of complex systems. Cellular
Automata, Finite Differences and, in general, other structured grid-based methods are therefore
supported. Different versions of the library allow to exploit both multi- and many-core shared
memory devices, as well as distributed memory systems. Specifically, OpenMP- and OpenCL-
based implementations have been developed, both of them providing optimized data structures
and algorithms to speed-up the execution and allowing for a transparent parallelism to the
user. A MPI-based implementation is also currently under development and allows to exploit
many-core accelerators on interconnected systems.

Among the above cited software, OPS, ASL and CAMELot probably are the most similar
to OpenCAL in terms of modeling and development approach, and could be considered as
possible alternatives to the library proposed in this chapter. In particular, OPS provides a
straightforward Domain Specific Language for structured grid-based modeling, even if it does
not refer to any specific abstract computational formalism. Its main characteristic consists in
allowing to obtain different parallel versions of a computational model starting from its serial
implementation, thanks to a seamless code-generator approach. Both MPI-based distributed
memory and CUDA/OpenCL many-core versions can be obtained in this way, with a minimal
effort by the developer. Conversely, ASL provides different higher level modeling abstractions
among which the Lattice Boltzmann Method, that is eventually a Cellular Automata-based
paradigm. Nevertheless, it currently does not allow for parallel execution on distributed
memory systems, which can be a great limitation in some cases. Eventually, CAMELot offers
an integrated simulation environment for XCA development and allows for parallel execution
on both shared and distributed memory systems thanks to the message passing paradigm,
not permitting however the exploitation of modern many-core devices. With respect to the
above cited software, OpenCAL provides both the higher CAMELot modeling approach and,
similarly to OP2, allows for the execution on a wide range of shared and distributed parallel
platforms (even if by adopting a classic library approach). In addition, OpenCAL provides
different embedded strategies and optimization algorithms which allow to progressively
improve the computational performance of different kinds of models and simulations.

In the following, the OpenCAL architecture is presented and the OpenMP- and OpenCL-
based parallel implementations described. We also present and discuss the implementation of

3.2. An OpenCAL Overview: Software Architecture, Main Specifications and a First
Example of Application

51

FIGURE 3.1: OpenCAL architecture. At the higher level of abstraction, the
model, together with the simulation process and possible optimizations, is
designed. The OpenCAL libraries can be found at the implementation ab-
straction layer, allowing for a straightforward implementation of the designed
computational model. OpenCAL-based applications can be therefore exe-
cuted at the hardware level on both multi-core CPUs and many-core devices.
The execution on distributed memory systems is currently under development.

a first simple example of application for multi- and many-core devices to show how straight-
forward the OpenCAL-based model development is. We therefore consider the SciddicaT
XCA landslide simulation model [15] as a more complex reference example for correctness
and computational performance evaluation on multi-core CPUs, many-core GPUs, and also
on a test multi-node GPU-based system. Specifically, we refer to three different versions of
SciddicaT, which progressively exploit OpenCAL built-in features and, for each of them,
we propose different implementations based on the serial and parallel versions of the library.
Eventually, results of a further study performed to devise the best platform for execution,
depending on the model’s computational intensity and the domain extent, is presented. A
general discussion concerning OpenCAL and future outcomes concludes the chapter.

3.2 An OpenCAL Overview: Software Architecture, Main Spec-
ifications and a First Example of Application

In this section we describe the software architecture, main structures and underlying algorithms
of the OpenCAL library, besides a first example of application to highlight how easy model
development is. The serial version of the library will be simply referred as OpenCAL in the
following, while OpenCAL-OMP and OpenCAL-CL will refer to the OpenMP- and OpenCL-
based parallelizations, respectively. Eventually, the preliminary distributed memory version
of OpenCAL will be referred as OpenCAL-MPI. The main API data types and functions
specifications are here presented. A full API description can be found in the OpenCAL user
guide on GitHub.

3.2.1 Software Architecture

The OpenCAL architecture is depicted in Figure 3.1. At the higher level of abstraction, the
Scientist conceptually designs the computational model, by referring to the Extended Cellular
Automata general formalism. Structured grid-based models whose evolution is determined by

52 Chapter 3. OpenCAL

local rules, as well as by global laws or even by a combination of local and global operations,
are therefore fully supported. At this level, domain topology and extent, boundary conditions,
substates (each of them representing the set of admissible values of a given characteristic
assumed to be relevant for the modeled system and its evolution), neighborhood (defining
the pattern over which local rules are applied) and elementary processes (defining the local
rules of evolution) are formalized. The simulation process is also designed at this level, by
specifying the initial conditions of the system, optional global operations (e.g., steering or
global reductions), and a termination criterion to stop the system evolution. Note that, being
supported by OpenCAL, at this stage some specific optimizations can be applied. Specifically,
the explicit updating feature allows to both redefine the elementary processes application order
and to selectively update substates after the application of each elementary process, while the
active cells optimization, also known as quantization, allows to restrict the computation to a
subset of the whole computational domain, by excluding stationary cells.

The different versions of OpenCAL can be found in the implementation level. Since
they provide high-level data structures and algorithms that match the higher abstraction level
components, all of them allow for a straightforward implementation of the previously designed
computational model, by also allowing to ignore low-level issues like memory management
and I/O operations. All OpenCAL versions are written in C for the maximum efficiency and, as
pointed out by the language/library level, the OpenMP and OpenCL APIs were considered for
implementing the corresponding parallel versions of OpenCAL. Finally, at the hardware level,
depending on the adopted version of the library, execution can be performed on single- and
multi-core CPUs, as well as on many-core accelerators like GPUs, transparently to the user.
Figure 3.1 also shows hybrid MPI/OpenMP and MPI/OpenCL parallel implementations of
OpenCAL. The latter, a preliminary implementation of which is in an advanced development
state, is that we will refer as OpenCAL-MPI.

3.2.2 OpenCAL Domain Specific API Abstractions

The OpenCAL API was designed to be clear and easy to use. For this purpose, it follows some
naming conventions, the most important of which are listed below:

• CALbyte, CALint, and CALreal redefine the char, int and double C native
scalar types, respectively;

• Derived data types start with the CAL prefix (or CALCL for some specific OpenCAL-CL
data types), followed by a type identifier formed by one or more capitalized keywords,
an optional suffix identifying the model dimension (e.g., 2D or 3D), and an eventual
optional suffix specifying the basic scalar type, which can be b, i, or r, for CALbyte,
CALint and CALreal derived types, respectively (e.g., CALSubstate3Dr repre-
sents an example of three-dimensional double precision-based data type - cf. below);

• Constants and enumerals start with the CAL_ prefix, followed by one or more uppercase
keywords separated by the _ character (e.g., the CAL_TRUE and CAL_FALSE Boolean
enumerals);

• Functions are characterized by the cal prefix (or calcl for some specific OpenCAL-
CL functions), followed by at least one capitalized keyword, and end with a suffix
specifying the model dimension and the basic datatype (e.g., calSet2Di represents
an example of an API function acting on a bi-dimensional integer based data type).

In the following, the {arg1|arg2|...|argn} and [arg1|arg2|...|argn] con-
ventions will be adopted: the first one identifies a list of n mutually exclusive arguments,
where one of the arguments is needed; the second is used to identify a set of n non-mutually

3.2. An OpenCAL Overview: Software Architecture, Main Specifications and a First
Example of Application

53

exclusive optional arguments. As an example, calGet[X]{2D|3D}{b|i|r}() function
actually identifies a set of API functions with one optional and two mandatory suffixes: the
first one, if present, indicates that the function is able to access neighborhood data (X is the
symbol commonly used in the XCA formalism to refer to the neighborhood), while the other
two indicate the domain dimension and the basic type of the data to be accessed, respectively.

One of the most important API objects is the model, which is the implementation level
object corresponding to the XCA model formalized at the design level. It is simply declared
as a pointer to the CALModel{2D|3D} built-in data type, and can straightforwardly be
defined by means of the calCADef{2D|3D}() function. The model object essentially
allows to define the domain dimensions (2D and 3D models are natively supported, even if
1D models can be defined as degenerate case of the 2D one), the size of each of them, the
cell geometry (square, rectangular and hexagonal cells are supported), the domain topology
(e.g., if a 2D domain has to be considered as bounded or as a torus) and the neighborhood
pattern, besides embedding a built-in data structure needed by the quantization optimization
algorithm (cf. below in this Section). As regards neighborhoods, a set of predefined pat-
terns is provided (e.g., the CAL_MOORE_NEIGHBORHOOD_{2D|3D} enumeral refers to
the Moore pattern), even if generic neighborhoods can be explicitly defined for maximum
flexibility (by using the CAL_CUSTOM_NEIGHBORHOOD_{2D|3D} enumeral at defini-
tion time and then the calAddNeighbor{2D|3D}() function to add neighbors to the
initially empty set). Besides the predefined Moore neighborhood, the von Neumann one
and 2D-specific hexagonal neighborhoods are also provided by the API. The model object
seamlessly manages both the data, mainly represented by substates (which are declared as
CALSubstate{2D|3D}{b|i|r} objects), and the local rules of evolution for the system
(i.e., the automaton transition function), expressed in terms of elementary processes (that
are defined as callback functions or OpenCL kernels, depending on the specific OpenCAL
implementation). For this purpose, both substates and elementary processes must be regis-
tered to the model object (by means of the calAddSubstate{2D|3D}{b|i|r}() and
calAddElementaryProcess{2D|3D}() functions, respectively), which in this way
can store pointers to each of them for subsequent seamless indirect access. Note that, a further
device-side model object (of type CALCLModel{2D|3D}) is provided by the OpenCAL-CL
API, which makes data transfer and parallel execution on OpenCL compliant devices trans-
parent to the user. This latter object is declared as a pointer to CALCLModel{2D|3D}, and
defined by means of the calclCADef{2D|3D}() function. Specifically, data transfer from
the host to the device global memory is performed at definition time, while data is seamlessly
copied back to the host at the end of the simulation process, by minimizing in this way time
consuming host to/from device data movements during the computation. To further speed-up
the device-side execution, the library also provides the calclGlobaltoLocal[X]() API
function that can be used within the kernels to transfer data (i.e., central cell and neighborhoods
states) from the global to the faster local memory.

According to the XCA computational paradigm, substates define specific characteristics
considered to be relevant for the system initial state definition and its evolution. For instance,
in a fluid-dynamic computational model, different substates can be used for modeling mass,
viscosity and velocity field components. Each substate object has the same extent of the whole
computational domain, so that each cell is characterized by specific substates values. Implic-
itly, this leads to a SoA (Structure of Arrays) approach, which proved to be the most effective
in the case of parallel programming on GPUs (see e.g., [46]). For efficient access due to
memory coalescence issues, substates objects are implemented by means of linearized arrays.
Nevertheless, internal format is transparent to the user, which can access data by means of
multidimensional indices and neighborhoods identifiers (e.g., the calGet[X]{2D|3D}()
function allows to retrieve the current state of the central cell and - if the X optional suffix

54 Chapter 3. OpenCAL

row 0 row 1 row 2 row 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15linear index

0

columns (j index)

r
o
w
s

(

i
i
n
d
e
x
)

1 2 3

0

1

2

3

0

r
o
w
s

(

i
i
n
d
e
x
)

1 2 3

0

1

2

3

Q (linearized) current layer

step t

step t+1

Master thread

thread0 thread1 thread2

Substate Q

Q (linearized) next layer

row 0 row 1 row 2 row 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15linear index

thread0

thread1

thread2 Fork phase:

elementary process

parallel application

thread0 thread1 thread2

row 0 row 1 row 2 row 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15linear index

Q (linearized) current layer

Fork phase:

substate

parallel updating

Master thread

Master thread
Join phase

(implicit barrier)

Join phase

(implicit barrier)

Substate Q

FIGURE 3.2: An example of OpenCAL-OMP parallel application of an
elementary process to a substate Q and its subsequent parallel updating. The
computational domain is initially partitioned by means of a pool of three
threads (fork phase). These latter concurrently apply the elementary process
by reading state values from the current layer and by updating new values
to the next one. At the end of the elementary process application, threads
implicitly synchronize by joining into the master one (join phase), and the
parallel update phase starts. As before, a pool of threads concurrently copies
the next layer into the current one and the new configuration of Q is obtained.
A join phase eventually occurs, which ensures data consistency before the

application of another elementary process.

is present - its neighbors, while the calSet{2D|3D}() one permits to update the cen-
tral cell’s state). Behind the scene, substates are defined by means of two computational
layers: the current layer represents a read-only memory and is used for retrieving central
and neighboring cells current states, while the next one is used only for updating the new
value of the central cell. Once all new states have been written to the next layer, the sub-
state is seamlessly updated (even if the update phase can be made explicit by means of the
calUpdateSubstate{2D|3D}{b|i|r} function - cf. below in this Section), i.e. the
next layer is copied into the current one, and the substate object is ready for further processing.
Note that, as already stated, in the case of OpenCAL-CL, substates are updated device-side, by
allowing to perform the whole computation process on the device. Eventually, each OpenCAL
implementation also provides single layer substates, which only consist of the current computa-
tional layer. They are declared as standard double-layered objects, even if the next layer is lost
at registration time, where the calAddSingleLayerSubstate{2D|3D}{b|i|r}()
function must be used (instead of the calAddSubstate{2D|3D}{b|i|r}() one). Sin-
gle layer substates can be considered for internal transformations processing, i.e. for those
modeling specific rules which determine the substate change within the cell as a function of
the central cell state only. Not needing to be updated, they represent a lighter memory and
more efficient alternative to double-layer substates.

The system evolution is obtained by applying the elementary processes composing the

3.2. An OpenCAL Overview: Software Architecture, Main Specifications and a First
Example of Application

55

transition function in the same order in which they have been registered to the model object
(even if the predefined order can be overridden - cf. below in this Section) and, after the
application of each of them, by updating the involved double-layer substates. As anticipated,
elementary processes are implemented by means of callback functions or OpenCL kernels and
their execution is transparently performed by the library (even if, in case of host-side execution,
elementary processes application, and also substates updating, can be made explicit - cf. below
in this Section). According to the XCA paradigm, each cell must appear to be updated
simultaneously to each other (implicit parallelism). For this purpose, a pool of concurrent
threads/work-items should apply the elementary process simultaneously to each cell of the
computational domain. However, depending on the domain dimensions, this is not always
possible, even in the case of parallel execution on many-core devices. Nevertheless, implicit
parallelism is guaranteed in each OpenCAL implementation thanks to double-layer substates.
In fact, by using the current layer as read only memory and the next one for updating purposes
only, cells appear to be simultaneously updated with respect to each other, even in the case of
serial computation. In this respect, an elementary process is equivalent to a parallel for
loop, which transparently applies its local rule of evolution simultaneously to each cell of the
computational domain. In the case of parallel execution, a data parallel approach is adopted. In
particular, the domain is decomposed in uniform chunks in the case of OpenCAL-OMP, while
a one cell/one work-item decomposition is adopted in OpenCAL-CL. OpenCAL-MPI currently
adopts a classical chunk-based domain decomposition with seamless halos exchange, and also
a one cell/one work-item model at GPU level. Note that double layer substates allow for a
lock-free parallelization in all cases. In fact, no race conditions can occur since, in particular,
the update phase is limited by definition of the XCA computational paradigm to the memory
location associated with the central cell. An example is shown in Figure 3.2 for the case of
OpenCAL-OMP, where a pool of three threads concurrently process an uniformly partitioned
domain for both elementary processes application and substates updating. In this case, the
third thread is completely wasted, since it only processes a subset of stationary cells, and
therefore a load unbalance occurs. In such a case, a dynamic scheduling is seamlessly adopted
in OpenCAL-OMP to mitigate the unbalance among chunks. Regarding the OpenCAL-CL
specific case, a grid of OpenCL work-items is adopted for a SIMD-based parallelization.
Depending on the dimension of the computational model, two- or three-dimensional OpenCL
index spaces (i.e. OpenCL NDRanges) are transparently considered, while a one-dimensional
one is adopted in the case the quantization optimization is exploited (cf. below in this Section).
The number of work-items to be adopted is evaluated for each model dimension by preliminary
querying OpenCL for the (device-dependent) preferred work-group size multiple ws (i.e. the
warp/wavefront size in NVIDIA/AMD GPUs), and therefore by considering the smallest
multiple of ws which is greater than or equal to the model dimension. For instance, if ws = 32
and the first dimension of the domain is 2000, the number of work-items in that dimension
will be 2016, i.e. the first multiple of 32 which is greater than or equal to 2000, thus resulting
in 16 redundant work-items. However, since redundant work-items do not map any cell of the
computational domain, they immediately terminate their execution. Moreover, according to
OpenCL, work-items are grouped in work-groups. The choice of the number of work-groups
to be considered (and therefore the work-group size) depends on the device architecture and
can be both transparently determined (default setting), or explicitly set for finer tuning.

In case of host-side execution, i.e. when OpenCAL and OpenCAL-OMP are consid-
ered, simulation execution is managed by a specific simulation object, that must be de-
clared as a pointer to the CALRun{2D|3D} data type and then defined by means of the
calRunDef{2D|3D}() function. Nevertheless, in the case of device-side execution, i.e.
when OpenCAL-CL is considered, the role of the simulation object is played by the device-
side model. Among others, the simulation object defines the substates updating policy: in case
of implicit scheme, the built-in transition function is applied (i.e. elementary processes are

56 Chapter 3. OpenCAL

applied in the same order in which they have been registered to the model and all registered
substates are updated after the application of each of them); when the explicit policy is adopted,
the transition function must be overridden and elementary processes explicitly applied, as
well as substates explicitly updated. Allowing to avoid the update of unmodified substates
(therefore unneeded memory copy operations) the OpenCAL implicit naive approach, which
is provided as first instance to allow the developer to completely ignore underlying data
structures issues, can be overcome. For this and other purposes, the simulation object can
optionally register one or more global callback functions, listed below:

• init(): It is executed once before the simulation loop and can be used used to set the
initial conditions of the system.

• globalTransition(): It overrides the built-in transition function and can be used
to redefine the execution order of the registered elementary processes and to perform
selective substates updating. The function also allows to perform global operations over
the computational domain, e.g., reductions. Built-in reductions allow to compute global
minimum, maximum, sum, product, as well as logical and bit-wise AND, OR and NOT
operations on the registered substates.

• steering(): It is executed at the end of each computational step and can be used to
perform generic global operations, as well as global reductions.

• stopCondition(): It is checked after the steering function (if defined) at the end of
each computational step and can be used to define a stopping criterion for the simulation.
Differently to the other callbacks, which do not return any value, the function returns a
Boolean value: true if the termination criterion is satisfied, false in the other case.

Algorithm 1 outlines the OpenCAL implicit simulation process, that applies the default
model transition function if not differently specified. In the other case, the globalTransition()
function is applied. The init() function, if defined, is called first and subsequently active
cells (if quantization is enabled - cf. below in this Section) and substates are updated. More-
over, the step counter and the halt variable, that is used to check the simulation termination
condition, are set to the initial step and to false, respectively. The main simulation loop follows,
which is triggered by the calRun{2D|3D}() or calclRun{2D|3D}() function call, de-
pending on the adopted OpenCAL implementation. At each step, after the application of each
elementary process to each cell of the computational domain, active cells (if the quantization
optimization is used) and substates are updated. If defined, the steering() global function
is therefore called and active cells and substates again updated. The stopCondition()
function is eventually called and the step counter increased. The simulation loop continues
while the halt variable, whose value is set by the stopCondition() function, is false or
the final step of computation is met.

3.2.3 The quantization optimization

In many grid-based simulations, system’s dynamics only affects a small region of the whole
computational domain. For instance, this is the case of topologically connected phenomena,
like debris or lava flows. In these cases, a naive approach where the overall domain is processed
can lead to a considerable waste of computational resources, even in the case stationary cells
(i.e. those cells that do not change their state in the next computational step) are only checked
and the application of the evolution rules skipped.

Different approaches have been proposed to improve the efficiency of the naive approach.
Among them, the hyper-rectangular bounding box (HRBB) optimization, consisting in sur-
rounding the simulated phenomenon by means of a fitting rectangle (or a parallelepiped, in the

3.2. An OpenCAL Overview: Software Architecture, Main Specifications and a First
Example of Application

57

Algorithm 1: OpenCAL main implicit simulation process.
init() // Call the init() global function

if quantization then
update (A) // Update the array of active cells

forall q ∈ Q do
update (q) // Update the substate q

step← initial_step
halt← f alse
while ¬halt ∧ (step ≤ final_step ∨ final_step = CAL_RUN_LOOP) do

forall e of σ do
forall (A 6= ∅ ∧ i ∈ A)∨ i ∈ R do

e(i) // Apply the elementary process e to the cell i

if quantization then
update (A) // Update the array of active cells

forall q ∈ Q do
update (q) // Update the substate q

steering() // Call the steering() global function

if quantization then
update (A) // Update the array of active cells

forall q ∈ Q do
update (q) // Update the substate q

halt← stopCondition() // Check the stop condition

step← step + 1

return

58 Chapter 3. OpenCAL

FIGURE 3.3: An example of application of the OpenCAL-CL parallel stream
compaction algorithm. Active cells are represented in gray within a two-
dimensional 4x4 matrix of flags, implemented as a linearized array, F. The
parallel stream compaction algorithm processes F and produces the com-
pacted array A as output, containing the coordinates of the active cells in its
first part. A grid of work-items therefore processes data by adopting the one
thread/one active cell policy. The process is therefore repeated at the next

computational step.

case of a 3D model), by contextually restricting the computation to this specific sub-region,
proved to be a simple but effective approach in different cases (see e.g., [52]). However, HRBB
demonstrated its limit in the simulation of scattered phenomena, where the hyper-rectangle can
easily grow up and include the whole domain, embedding a considerable number of inactive
cells.

A more effective approach, which is also able to optimally distribute the computational
load in case of parallel execution, consists in maintaining a dynamic set of coordinates only of
the active cells during the simulation, by restricting the computation only to this set (see e.g.,
[61]). The activation state for a cell generally depends on the specific system to be simulated.
In many cases, for instance in computational fluid-dynamics, a threshold-based criterion can
be adopted. For this reason, this latter approach is commonly known as quantization. Even if
more complex to be implemented, in many cases it outperforms the HRBB approach and, for
this reason, was considered in OpenCAL.

Its implementation is based on a compacted array, A, containing the computational
domain’s active cells coordinates. A, which is initially empty, is generally defined at the
system initialization stage. For this purpose, and also to maintain A updated, the activation
value must be explicitly set (to true, which means that the cell is active, or to false, on the other
hand) only for the cells that change state during the current computational step (a Boolean

3.2. An OpenCAL Overview: Software Architecture, Main Specifications and a First
Example of Application

59

working array F is updated in this preliminary step). An efficient stream compaction algorithm
(as implemented in [66]) is therefore transparently applied at the end of each computational
step to update the set A, based on the activation states stored in F. For illustrative purposes,
an example of application of the OpenCAL-CL stream compaction algorithm is described
in Figure 3.3. Note that, in this way, domain-sized data is processed only once during the
stream compaction phase, while only the subset of cells belonging to A is involved in the
remaining actual computation. The quantization optimization clearly introduces an overhead.
However, depending on the domain dimension and the affected area (or volume), as well as
on the computational intensity of the model, it can produce a considerably speed-up of the
overall computational process.

Using the quantization optimization is quite straightforward. Firstly, it must be enabled at
model object definition time by means of the calCADef{2D|3D}() function. Subsequently,
the calAddActiveCell[X]{2D|3D}() function can be used to mark the central cell
and its neighbors (if the X version of the function is considered) to be added to A, while
the calRemoveActiveCell{2D|3D}() to mark the central cell to be removed. All
these functions essentially write a 8-bit long Boolean value to F and, for this reason, there
is no risk to obtain a corrupted value, even in the case of parallel execution (i.e. in the case
two threads/work-items attempt to store their own value to the same memory word at the
same time). Even in the case of OpenCAL-CL, if the same instruction is executed by more
than one work-item (even belonging to different work-groups) to the same location in global
memory (where F is stored), the access is serialized and at least one access is guaranteed
(even if the actual thread performing the operation is undefined - cf. e.g., [47]). Eventually, in
case of explicit update scheme, the calUpdateActiveCells{2D|3D} function must be
explicitly invoked to update A after each add/remove phase is complete.

Note that, since the API allows to modify the neighboring cells activation state, the
quantization optimization can lead to race conditions. Nevertheless, to avoid them it is
sufficient to keep the add and remove phases disjoint, i.e. performed by different elementary
processes. In fact, if the same elementary process could both add and remove cells to/from A,
two different (central) cells could update the same (neighboring) cell to different activation
states, and the resulting value in F before the stream compaction execution would depend on
the application order of the elementary process to the cells.

3.2.4 Conway’s Game of Life

As a first illustrative example of the library, we here present the OpenCAL implementation of
the Turing complete Conway’s Game of Life (simply Life in the following), one of the most
simple, yet powerful example of CA [69]. It can be thought as an infinite two-dimensional
grid of square cells, each of them being in one of two possible states, dead or alive. Every cell
interacts with the eight adjacent neighbors belonging to the Moore neighborhood. At each
time step, one of the following transitions occur: 1. Any alive cell with fewer than two alive
neighbors dies, as if by loneliness; 2. Any alive cell with more than three alive neighbors dies,
as if by overcrowding; 3. Any alive cell with two or three alive neighbors lives, unchanged,
to the next generation; 4. Any dead cell with exactly three alive neighbors comes to life.
Formally, Life can be defined as:

Li f e =< R, X, Q, σ >

where

1. R is the set of points, with integer coordinates, which defines a two-dimensional toroidal
cellular space;

60 Chapter 3. OpenCAL

2. X = {(0, 0), (−1, 0), (0,−1), (0, 1), (1, 0), (−1,−1), (1,−1), (1, 1), (−1, 1)} is
the Moore neighborhood, i.e. the set of relative coordinates that, when added to the
coordinate vector of the central cell, give the absolute coordinates of the neighboring
cells;

3. Q = {0, 1} is the set of cell states, 0 representing the dead state, 1 the alive;

4. σ : Q9 → Q is the deterministic cell transition function. It is composed by one
elementary process, which implements the aforementioned transition rules.

1 # i n c l u d e <OpenCAL / cal2D . h> / / # i n c l u d e <OpenCAL−OMP/ cal2D . h>
2 # i n c l u d e <OpenCAL / cal2DIO . h> / / # i n c l u d e <OpenCAL−OMP/ cal2D . h>
3 # i n c l u d e <OpenCAL / cal2DRun . h> / / # i n c l u d e <OpenCAL−OMP/ cal2D . h>
4 # i n c l u d e < s t d l i b . h>
5
6 s t r u c t CALModel2D∗ l i f e ;
7 s t r u c t CALSubstate2Di∗ Q;
8 s t r u c t CALRun2D∗ l i f e _ s i m u l a t i o n ;
9

10 vo id l i f e T r a n s i t i o n F u n c t i o n (s t r u c t CALModel2D∗ l i f e , i n t i , i n t j) ;
11
12 i n t main () {
13 l i f e = calCADef2D (8 , 16 , CAL_MOORE_NEIGHBORHOOD_2D, CAL_SPACE_TOROIDAL , CAL_NO_OPT

) ;
14 l i f e _ s i m u l a t i o n = calRunDef2D (l i f e , 1 , 1 , CAL_UPDATE_IMPLICIT) ;
15
16 Q = c a l A d d S u b s t a t e 2 D i (l i f e) ;
17 ca lAddElemen ta ryProces s2D (l i f e , l i f e T r a n s i t i o n F u n c t i o n) ;
18
19 c a l I n i t S u b s t a t e 2 D i (l i f e , Q, 0) ;
20 c a l I n i t 2 D i (l i f e , Q, 0 , 2 , 1) ;
21 c a l I n i t 2 D i (l i f e , Q, 1 , 0 , 1) ;
22 c a l I n i t 2 D i (l i f e , Q, 1 , 2 , 1) ;
23 c a l I n i t 2 D i (l i f e , Q, 2 , 1 , 1) ;
24 c a l I n i t 2 D i (l i f e , Q, 2 , 2 , 1) ;
25
26 c a l S a v e S u b s t a t e 2 D i (l i f e , Q, " . / l i f e _ 0 0 0 0 . t x t ") ;
27 calRun2D (l i f e _ s i m u l a t i o n) ;
28 c a l S a v e S u b s t a t e 2 D i (l i f e , Q, " . / l i fe_LAST . t x t ") ;
29
30 c a l R u n F i n a l i z e 2 D (l i f e _ s i m u l a t i o n) ;
31 c a l F i n a l i z e 2 D (l i f e) ;
32 re turn 0 ;
33 }

LISTING 3.1: An OpenCAL implementation of the Conway’s Game of Life.
To obtain the equivalent OpenCAL-OMP implementation it is sufficient to
consider the (currently commented) OpenCAL-OMP header files instead of

the OpenCAL ones (cf. lines 1-3).
In the following, two OpenCAL/OpenCAL-OMP and OpenCAL-CL implementations of

Life are presented and commented. The program in Listings 3.1, containing the main applica-
tion, and 3.2, containing the transition function, shows a possible OpenCAL/OpenCAL-OMP
implementation of Life. Concerning the main application, header files are included at lines 1-3
that allow to define the required 2D model and substate, besides providing some basic I/O fa-
cilities. The model object, life, is declared at line 6, while lines 7 and 8 declare the required
substate, Q, and simulation object, life_simulation, respectively. These objects are
defined later in the main function at lines 13-14. In particular, the model definition function,
calCADef2D(), takes the domain dimensions (an 8 rows × 16 columns domain is consid-
ered here), the neighborhood pattern (Moore in this case), the boundary topology (a toroidal
domain is considered in the example to account for an unlimited domain) and the optimization
to be used (the quantization optimization is not adopted in the example). Furthermore, the sim-
ulation object definition function, calRunDef2D(), requires the address of a model object
to be evolved (which is life in this example), the initial and final simulation steps (set both to

3.2. An OpenCAL Overview: Software Architecture, Main Specifications and a First
Example of Application

61

0

columns (j index)

r
o
w
s

(
i

i
n
d
e
x
)

1 2 3

0

1

2

3

step 0

Initial configuration of the system

4

5

6

7

4 5 6 7 8 9 10 11 12 13 14 15

(a)

0

columns (j index)

r
o
w
s

(
i

i
n
d
e
x
)

1 2 3

0

1

2

3

step 1

Final configuration of the system

4

5

6

7

4 5 6 7 8 9 10 11 12 13 14 15

(b)

FIGURE 3.4: Graphical representation of one computational step of the Game
of Life, showing the (a) initial and (b) final configurations of the system.

Alive cells are represented in gray, dead cells in white.

one to perform a single computational step), and eventually the substates update policy (here set
to implicit) as parameters. Line 16 allocates memory and registers the integer-based Q substate
to the model object by means of the calAddSubstate2Di() function, while line 17 regis-
ters an elementary process to life by means of the calAddElementaryProcess2D()
function. Here, lifeTransitionFunction is a developer-defined callback function im-
plementing the model local rules. At this aim, the calGet[X]2Di() and calSet2Di()
API functions are used for reading and updating purposes at cell level (cf. Listing 3.2).

1 vo id l i f e T r a n s i t i o n F u n c t i o n (s t r u c t CALModel2D∗ l i f e , i n t i , i n t j) {
2 i n t sum = 0 , n ;
3 f o r (n =1; n< l i f e −>s i z e o f _ X ; n ++)
4 sum += calGetX2Di (l i f e , Q, i , j , n) ;
5
6 i f ((sum == 3) | | (sum == 2 && c a l G e t 2 D i (l i f e , Q, i , j) == 1))
7 c a l S e t 2 D i (l i f e , Q, i , j , 1) ;
8 e l s e
9 c a l S e t 2 D i (l i f e , Q, i , j , 0) ;

10 }

LISTING 3.2: The OpenCAL/OpenCAL-OMP
callback function implementing the elementary process of Game of Life

application shown in Listing 3.1.

The calInitSubstate2Di() function at line 19 initializes the Q substate to 0 (for both
the current and next layers), while lines 20-24 define a so called glider pattern (cf. Figure 3.4a)
by means of the calInit2Di() function. The calSaveSubstate2Di() function at
line 26 saves the Q substate to file, while the subsequent call to calRun2D() enters the
simulation process (actually, only one computational step in this example), and returns to
the main function when the simulation is terminated. The calSaveSubstate2Di() is
called again at line 28 to save the new (last) system configuration, while the last two API calls
release memory previously allocated by OpenCAL. The return statement at line 32 ends
the program.

Figure 3.4 shows a graphical representation of the initial and final configurations of
Life. As expected, the initially defined glider (Figure 3.4a) has evolved into the new correct
configuration (Figure 3.4b).

62 Chapter 3. OpenCAL

1 # i n c l u d e <OpenCAL−CL / c a l c l 2 D . h>
2 # i n c l u d e <OpenCAL / cal2DIO . h>
3
4 # d e f i n e KERNEL_SRC " . / k e r n e l "
5 # d e f i n e KERNEL_LIFE_TRANSITION_FUNCTION " l i f e T r a n s i t i o n F u n c t i o n "
6 # d e f i n e PLATFORM_NUM 0
7 # d e f i n e DEVICE_NUM 0
8 # d e f i n e DEVICE_Q 0
9 s t r u c t CALModel2D∗ l i f e ;

10 s t r u c t CALSubstate2Di∗ Q;
11
12 i n t main () {
13 s t r u c t CALCLDeviceManager∗ c a l c l _ d e v i c e _ m a n a g e r = c a l c l C r e a t e M a n a g e r () ;
14 c a l c l P r i n t P l a t f o r m s A n d D e v i c e s (c a l c l _ d e v i c e _ m a n a g e r) ;
15 CALCLdevice d e v i c e = c a l c l G e t D e v i c e (c a l c l _ d e v i c e _ m a n a g e r , PLATFORM_NUM, DEVICE_NUM

) ;
16 CALCLcontext c o n t e x t = c a l c l C r e a t e C o n t e x t (& d e v i c e) ;
17 CALCLprogram program = ca lc lLoadProgram2D (c o n t e x t , dev i ce , KERNEL_SRC, NULL) ;
18 / / <Miss ing > : Here s o u r c e code as in l i n e s 12−24 from L i s t i n g 1
19
20 s t r u c t CALCLModel2D∗ l i f e _ d e v i c e = calclCADef2D (l i f e , c o n t e x t , program , d e v i c e) ;
21
22 CALCLkernel l i f e _ t r a n s i t i o n _ f u n c t i o n = c a l c l G e t K e r n e l F r o m P r o g r a m (&program ,

LIFE_TRANSITION_FUNCTION) ;
23 c a l c l A d d E l e m e n t a r y P r o c e s s 2 D (l i f e _ d e v i c e , &l i f e _ t r a n s i t i o n _ f u n c t i o n) ;
24
25 c a l S a v e S u b s t a t e 2 D i (l i f e , Q, " . / l i f e _ 0 0 0 0 . t x t ") ;
26 ca lc lRun2D (l i f e _ d e v i c e , 1 , 1) ;
27 c a l S a v e S u b s t a t e 2 D i (l i f e , Q, " . / l i fe_LAST . t x t ") ;
28
29 c a l c l F i n a l i z e M a n a g e r (c a l c l _ d e v i c e _ m a n a g e r) ;
30 c a l c l F i n a l i z e 2 D (l i f e _ d e v i c e) ;
31 c a l F i n a l i z e 2 D (l i f e) ;
32 re turn 0 ;
33 }

LISTING 3.3: An OpenCAL-CL implementation of Conway’s Game of Life.
According to OpenCL, a possible OpenCAL-CL implementation of Life is subdivided

in two different parts: a device- and a host-side application. The host-side application,
running on the CPU and controlling the computation on the compliant device (e.g., a GPU),
is shown in Listing 3.3. The calcl2D.h header file is included at lines 1-2, together with
the OpenCAL cal2DIO.h header for I/O purposes. The path of the directory containing
the transition function elementary processes (implemented as OpenCL kernels) is defined at
line 4, while the name of the only kernel required at line 5. Lines 6-7 define the OpenCL
identifiers for the platform and device to be used. Note that OpenCAL-CL can query the
system for platforms and compliant devices, by allowing the user to select them at run time.
However, for the sake of simplicity, in this example the first device belonging to the first
platform is set. The substate numerical handle Q is also defined at line 8, as it is required
to refer to the object from both the host and device application. Lines 13-16 are needed
to select the compliant device and to create an OpenCL context. These statements widely
simplify the device management and can be considered as a kind of template to be used in
each OpenCAL-CL application. Line 17 reads kernels (just one in this example) from file
(contained in the directory specified at line 4), compile and groups them into an OpenCL
program, to be used later to extract kernels for execution. The host-side object definition
follows, together with the substate and its initialization (cf. line 18). Line 20 defines the
life_device device-side object by means of the calclCADef2D() function, also by
performing host to device data transfer transparently to the user. The elementary process
(which actually is an OpenCL kernel) is therefore extracted from the previously compiled
program by means of the calclGetKernelFromProgram() function at line 22. It
returns an OpenCL kernel, which is subsequently registered to the device-side model by
means of the calclAddElementaryProcess2D() function at line 23. Lines 25 and

3.3. The SciddicaT XCA Example of Application 63

27 are used to save the CA state before and after simulation execution, respectively. The
CA simulation is executed by means of the calclRun2D() function at line 26. In this
example, the only elementary process defined is executed in parallel on the compliant device
in a transparently way to the user. Eventually, lines 29-31 perform memory deallocation for
the previously defined objects. The return statement at line 32 terminates the program.

1 # i n c l u d e <OpenCAL−CL / c a l c l 2 D . h>
2 # d e f i n e DEVICE_Q 0
3
4 _ _ k e r n e l v o i d l i f e T r a n s i t i o n F u n c t i o n (__CALCL_MODEL_2D) {
5 ca lc lThreadCheck2D () ;
6 i n t i = c a l c l G l o b a l R o w () ;
7 i n t j = c a l c l G l o b a l C o l u m n () ;
8 CALint s i z e o f _ X = c a l c l G e t N e i g h b o r h o o d S i z e () ;
9

10 i n t sum = 0 , n ;
11 f o r (n =1; n< s i z e o f _ X ; n ++)
12 sum += c a l c l G e t X 2 D i (MODEL_2D, DEVICE_Q , i , j , n) ;
13
14 i f ((sum==3) | | (sum==2 && c a l c l G e t 2 D i (MODEL_2D, DEVICE_Q , i , j) ==1))
15 c a l c l S e t 2 D i (MODEL_2D, DEVICE_Q , i , j , 1) ;
16 e l s e
17 c a l c l S e t 2 D i (MODEL_2D, DEVICE_Q , i , j , 0) ;
18 }

LISTING 3.4: The OpenCAL-CL kernel implementing the elementary process
of the Game of Life application shown in Listing 3.3.

The device-side kernel implementing the Life transition function is shown in Listing 3.4.
The calcl2D.h header is included at line 1, and a numeric handle defined at line 2 to refer
the Q substate device-side (this is needed to access the correct buffer in the device global
memory - cf. The OpenCAL User Guide on GitHub). The transition rules are implemented
as an OpenCL kernel at lines 4-18. In particular, line 5 checks for redundant work-items,
while lines 6-7 get the indices corresponding to the integer coordinates of the cell that the
kernel is going to process. Similarly, line 8 retrieves the neighborhood size by means of
the calclGetNeighborhoodSize() function. Eventually, lines 10-17 implement the
transition rules by using the calclGet[X]2Di() and calclSet2Di() functions for
reading and updating purposes, respectively.

3.3 The SciddicaT XCA Example of Application

The SciddicaT computational fluid dynamic XCA model was selected as reference application
to test OpenCAL in terms of numerical correctness and efficiency. Despite its simplicity,
SciddicaT is able to simulate the dynamics of real non-inertial fluid-flows on complex topo-
graphic surfaces [15]. Specifically, three different versions of SciddicaT were considered,
namely SciddicaTnaive, SciddicaTac, and SciddicaTac+esl , whose formal definitions allow for
the adoption of progressively more efficient OpenCAL features. For each of them, OpenCAL-
, OpenCAL-OMP- and OpenCAL-CL-based double precision implementations have been
developed. OpenCAL-MPI implementations of the SciddicaTnaive and SciddicaTac models
have also been considered for preliminary testings. In the following, the different versions
of SciddicaT are formally defined. However, source code details are omitted, since they
would burden the discussion. Please refer to the OpenCAL user guide on GitHub for a full
description of each of them.

3.3.1 The SciddicaTnaive Example of Application

SciddicaTnaive is the first, naive, version of the SciddicaT fluid-flow model considered in this
work. It is formally defined as:

64 Chapter 3. OpenCAL

SciddicaTnaive =< R, X, Q, P, σ >

where R is the two-dimensional computational domain, subdivided in square cells of uniform
size, while X is the von Neumann neighborhood (a geometrical pattern identifying the set of
four cells located to the north, east, west and south directions, adjacent to the central one). Q
is the set of cell states. It is subdivided in the following substates:

• Qz is the set of values representing the topographic altitude (i.e. elevation a.s.l.);

• Qh is the set of values representing the fluid thickness;

• Q4
o are the sets of values representing the outflows from the central cell to the four

neighbors.

P = {pε, pr} is the set of parameters ruling the model dynamics. In particular, pε specifies
the minimum thickness below which the fluid cannot outflow the cell due to the effect of
adherence, while pr is the relaxation rate parameter, which essentially is an outflow damping
factor.
σ : Q5 → Q is the deterministic cell transition function. It is composed by two elementary
processes, listed below in the same order they are applied:

• σ1 : (Qz × Qh)
5 × pε × pr → Q4

o computes outflows from the central cell to the
four neighboring ones by applying the minimization algorithm of the differences [75].
As a simplification of the adherence effect, a preliminary control avoids outflows
computation where the fluid thickness is smaller than or equal to pε. If this is not
the case, the resulting outflows are given by qo(0, m) = f (0, m) · pr (m = 0, . . . , 3),
being f (0, m) the outgoing flows towards the 4 adjacent cells, as computed by the
minimization algorithm, and pr ∈]0, 1] a relaxation factor considered to damp outflows
in order to obtain a smoother convergence to the global equilibrium of the system. The
Q4

o substates are updated accordingly with the values of the computed outflows.

• σ2 : Qh × (Q4
o)

5 → Qh determines the value of debris thickness inside the cell by con-
sidering mass exchange in the cell neighborhood: ht+1(0) = ht(0)+∑3

m=0(qo(0, m)−
qo(m, 0)). Here, ht(0) and ht+1(0) are the mass thickness inside the cell at the t and
t + 1 computational steps, respectively, while qo(m, 0) represents the inflow from the
n = (m + 1)th neighboring cell. The Qh substate is updated accordingly to account for
the mass balance within the cell.

The initial condition of the system is defined by the Digital Elevation Model (DEM) of
the surface over which the mass will flow down and by a map of the mass thickness in each
cell of the landslide source, also provided as a raster map. This information is used to set up
the Qz and Qh substates, while the Q4

o substates are set to zero everywhere. The evolution of
the system is therefore obtained by applying the elementary processes in the order in which
they are defined to each cell of the cellular space, and by performing substates updating after
the application of each elementary process .

The SciddicaTnaive Simulation of the Tessina Landslide

SciddicaTnaive was applied to the simulation of the Tessina landslide [15], occurred in North-
ern Italy in 1992. The event happened in the Tessina valley between altitudes of 1220 m and
625 m a.s.l., with a total longitudinal extension of nearly 3 km and a maximum width of about
500 m.

The topographic surface over which the landslide developed was discretized as a DEM
of 410 rows per 294 columns, with square cells of 10 m side, for a total of 102,540 cells.

3.3. The SciddicaT XCA Example of Application 65

FIGURE 3.5: SciddicaT simulation of the 1992 Tessina (Italy) landslide:
landslide source on the left; final landslide path on the right.

The landslide source, specifying the location and thickness of the detachment area, was also
described by means of a raster map of the same dimensions.

According to [15], the model parameters pε and pr were set to the values 0.001 and 0.5,
respectively, and 4000 simulation steps were considered. Outcomes (cf. Figure 3.5) achieved
by considering the serial and the different parallel implementations of SciddicaTnaive perfectly
matched, by confirming the numerical correctness of the library. Simulation outcome also
matched that obtained by Avolio et al. [15].

3.3.2 The SciddicaTac Example of Application

The SciddicaTac computationally improved version of SciddicaT exploits the OpenCAL
active cells quantization optimization. This is possible since, in the case of a fluid-flow model
- like the one here considered - only cells involved in mass variation are interested in a state
change to the next computational step. As a consequence, it is possible to initialize the set of
active cells to those cells containing mass. Moreover, if during the computation an outflow is
computed from an active cell towards a non-active neighbor, the latter can be added to the
set of active cells and then considered for subsequent state change. Similarly, if the mass
of an active cell drops below a given threshold, the cell can be eliminated. In the case of
SciddicaTac, this happens when debris thickness becomes lower than or equal to pε. In order
to account for these processes, the formal definition of the XCA fluid-flow model is modified,
by adding the set of active cells, A. The optimized SciddicaTac model is now defined as:

SciddicaTac =< R, A, X, Q, P, σ >

where A ⊆ R is the set of active cells, while the other components are defined as in the formal
definition of SciddicaTnaive. The transition function is now defined as σ : A×Q5 → Q× A,
denoting that it is applied only to the cells in A and that it can add/remove active cells. More
in detail, the σ1 elementary process has to be modified, as it can activate new cells. Moreover,
a new elementary process, σ3, has to be added in order to remove cells that cannot produce

66 Chapter 3. OpenCAL

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000

A
ct

iv
e

ce
lls

Step

Active cells

FIGURE 3.6: Number of active cells during the SciddicaTac simulation of
the Tessina landslide shown in Figure 3.5.

outflows during the next computational step due to the fact that their debris thickness is
negligible. The new sequence of elementary processes is listed below, in the same order in
which they are applied.

• σ1 : A× (Qz ×Qh)
5 × pε × pr → Q4

o × A determines the outflows from the central
cell to the neighbors. Each time an outflow is computed, the neighbor receiving the flow
is added to the set of active cells.

• σ2 : A×Qh × (Q4
o)

5 → Qh determines the value of debris thickness inside the cell by
considering mass exchange in the cell neighborhood. This elementary process does not
differ with respect to that of the SciddicaTnaive model.

• σ3 : A×Qh × pε → A removes a cell from A if its debris thickness is lower than or
equal to the pε threshold.

The SciddicaTac Simulation of the Tessina Landslide

The simulation of the Tessina landslide performed by the different implementations of
SciddicaTac resulted numerically correct, perfectly matching those of SciddicaTnaive (cf.
Figure 3.5). Nevertheless, it is worth to note that the number of (active) cells involved in the
computation during the simulation vary between 637, corresponding to the number of cells
defining the landslide source, and 5,509. The resulting mean value of cells processed per
step is 3,277, corresponding to about the 3.2% of the whole computational domain. Figure
3.6 shows how the number of active cells varies when the SciddicaTac computational step is
increased.

3.3.3 The SciddicaTac+esl Example of Application

The further computationally improved SciddicaTac+esl model exploits both the active cell
optimization and the explicit simulation loop feature. The model formal definition does
not differ from that of SciddicaTac, as well as the simulation outcome of the 1992 Tessina
landslide, and therefore are omitted. The only difference with respect to SciddicaTac consists
in the fact that the transition function is overridden in SciddicaTac+esl , allowing to avoid
unnecessary time consuming substate updating after the elementary processes execution.

3.4. Computational Results and Discussion 67

Indeed, the σ1 elementary process only processes the active cells structure and the outflows
substates, so that both the Qz and Qh substates do not need to be updated. Moreover, since
the σ2 only changes the debris thickness by evaluating the incoming and outgoing flow mass
balance, only the Qh substate is updated. Eventually, only the active cells structure is updated
after the application of the σ3 elementary process, since this latter simply removes from A
cells that have become inactive, by leaving all model substates unchanged.

3.4 Computational Results and Discussion

In order to evaluate OpenCAL from a computational point of view, the different versions
of SciddicaT presented in the previous Section were considered and the Tessina landslide
taken into account as simulation reference case study for a first set of tests (standard tests).
In particular, a total of ten benchmark simulations were executed for each SciddicaT imple-
mented versions, and the speed-up evaluated with respect to the serial implementation of
SciddicaTnaive, by considering the minimum recorded execution times. Furthermore, in order
to better assess the impact of local memory usage in OpenCAL-CL, a further implementation
based on SciddicaTnaive was considered, namely SciddicaTlocal . In this version, a 8 × 8
work-group size was considered and data, i.e., the substates values of the cells belonging to
the neighborhood, transparently transferred from the global to the fast local device memory by
using the calclGlobaltoLocal[X]() API function (cf. Section 3.2.2). In addition, due
to the low transition function computational intensity of SciddicaT (i.e., the model is more a
memory-bound rather than compute-bound application) and the data-set dimension, which are
not adequate to take significant advantage of the adopted GPUs, two additional stress tests
were carried out: the transition functions were fictitiously made computationally heavier by
reapplying them, at each step, for a total of 200 times (transition function stress tests), and
the landslide source replicated for a total of 100 times over a wider computational domain by
considering a DEM of 13,401,890 cells (computational domain stress tests). These latter tests
were also considered to evaluate the preliminary OpenCAL-MPI versions of SciddicaT, both
in terms of correctness and performance.

In all cases, OpenCAL and OpenCAL-OMP benchmarks were executed on a 8-core/16
threads Intel Xeon 2.0GHz E5-2650 CPU based workstation. One thread was considered
for testing the different OpenCAL versions of SciddicaT, while 2, 4, 8 and 16 threads
were employed for benchmark experiments concerning OpenCAL-OMP implementations.
Moreover, two devices were adopted for testing the different versions of the OpenCAL-CL
implementations of SciddicaT, namely a GTX 980 (Maxwell architecture) and a Tesla K40
(Kepler architecture) graphic processor. In particular, the former has 2048 CUDA cores, 4 GB
global memory and 112 GB/s theoretical bandwidth communication for double precision data
between CPU and GPU, while the latter device has 2880 cores, 12 GB global memory and
144 GB/s double precision high-bandwidth. Eventually, a Gigabit Ethernet interconnected
dual-node test system with a GTX 980 GPU per node, which is the configuration used for
development purposes, was considered for preliminary evaluation of the OpenCAL-MPI
versions of SciddicaT .

3.4.1 Standard Tests

The speed-up and execution times of the Tessina landslide simulation related to the OpenCAL
and OpenCAL-OMP different versions of SciddicaT are shown in Figure 3.7. Here, it is
worth to note how the optimizations progressively introduced are effective and, as expected,
execution times decrease steadily in all cases. In fact, even in the case of the serial OpenCAL-
based implementations, the execution time decreases significantly from about 78 seconds,
registered by SciddicaTnaive, to about 5 seconds, for the fully optimized SciddicaTac+esl

68 Chapter 3. OpenCAL

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16

S
p
ee

d
-u

p

Threads

SciddicaTnaive

78.22
46.19

29.32
20.58

16.75

SciddicaTac

7.83

4.10

3.29

2.74 2.70

SciddicaTac+esl

5.10

3.86

2.50

1.70

1.54

FIGURE 3.7: Speed-up achieved by the different OpenCAL-OMP versions
of the SciddicaT fluid-flow model. Elapsed times in seconds are also shown
in correspondence of each speed-up vertex. The considered case study is
the Tessina Landslide (cf. Figure 3.5). The adopted CPU was an Intel Xeon

2.0GHz E5-2650 CPU.

version. As expected, SciddicaTac+esl is the version exhibiting the best performance, running
about 51 times faster on 16 threads with respect to the reference simulation.

The benchmark results of the OpenCAL-CL versions of SciddicaT are shown in Figure 3.8.
Here, as expected, SciddicaTac resulted the more performing on both devices. Unexpectedly,
however, all the experiments executed on the GTX 980 have outclassed the simulations
performed on the Tesla K40, notwithstanding the first one being a gaming oriented GPU,
while the latter is a HPC dedicated device. This result can be explained taking into account
GPU hardware issues: for instance, the K40, though having more cores than the GTX 980, has
a lower CUDA core clock-rate (745MHz vs 1126MHz) and lower memory clock-rate (6008
MHz vs 7012 MHz). Also cache issues could justify the results, since the K40 has less L1
and L2 level cache memories than the GTX 980, the latter benefiting from Nvidia’s hardware
improvements carried out in the more recent Maxwell architectures with respect to the Kepler
ones. Moreover, independently from the adopted device, the SciddicaT version exploiting the
GPU local memory did not resulted faster than the corresponding global memory version. This
can be justified by the low transition function computational intensity, whereby work-items do
not access data in local memory a sufficient number of times to result in better trade-off and
thus better performances.

In addition, in the case of SciddicaTac, it is worth to note that the CPU performs better
than the considered GPUs: 2.70 seconds on 16 threads, against 2.98 and 3.96 seconds on
the GTX 980 and the Tesla K40, respectively. This can be explained by considering that
the mesh generated by the quantization algorithm is too small to exploit the GPU latency
thread hiding mechanism at best [97]. In fact, the mean number of cells processed per step
is 3,277 (cf. Section 3.3.2), which is of the same order of magnitude of the number of cores
of the adopted GPUs (cf. above in this Section). This also leads to a waste of bandwidth.

3.4. Computational Results and Discussion 69

 5

 10

 15

 20

 25

 30

Tesla K40 GTX 980

S
p
ee

d
-u

p

Device

SciddicaTnaive

11.11

5.06

SciddicaTlocal

10.61

5.45

SciddicaTac

3.96

2.98

FIGURE 3.8: Speed-up achieved by the different OpenCAL-CL versions of
the SciddicaT fluid-flow model. Elapsed times in seconds are also shown on
top of each speed-up bar. The considered case study is the Tessina Landslide
(cf. Figure 3.5). The adopted OpenCL compliant devices were a Nvidia Tesla

K40 and an Nvidia GTX 980.

In fact, while the other versions were able to adequately exploit the available bandwidth
(e.g., the SciddicaTnaive version reached about 88 GB/s on the Tesla K40 GPU), the one
exploiting the quantization optimization was not able to take advantage of it (achieving 10
GB/s only). Eventually, a further study performed on the most time consuming kernels has
shown that the achieved bandwidth is significantly higher for the CPU. Particularly indicative
is the value measured for the more time consuming kernel, i.e. the one implementing the
stream compaction algorithm. This latter, which takes alone about the 55% of the overall
execution time on both the adopted CPU and GPUs versions, exploits the bandwidth the 35%
better when the simulation is executed on the CPU, while the other kernels exploit better the
bandwidth when the execution is performed on the GPUs, even though in this case they are all
characterized by negligible percentage of the overall execution time (about the 3%). In other
words, the standard test case here considered is simply too small to make decent use of the
considered GPUs and, consequently it is not surprising that the CPU performs better in this
specific case.

3.4.2 Transition Function Stress Tests

As anticipated, in order to evaluate performances when considering computationally intensive
state transitions, further tests were carried out by fictitiously increasing the complexity of the
SciddicaT transition function. This was done by reapplying the transition function σ for a
total of 200 times during each simulation step, excluding data transfer (e.g., from global to
local memory, in the case of SciddicaTlocal).

Results of the benchmarks executed on the CPU are shown in Figure 3.9, both in terms of
execution time and speed-up. A more pronounced timing decrease is here observed for each
SciddicaT version as the number of threads is increased, with a maximum speed-up of about

70 Chapter 3. OpenCAL

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16

S
p
ee

d
-u

p

Threads

SciddicaTnaive

8665.03 6240.05 3366.41 1945.69 1385.55

SciddicaTac

303.90

221.76

111.76

58.66

31.28
SciddicaTac+esl

308.74

217.16

113.12

57.95

30.08

FIGURE 3.9: Speed-up achieved during the transition function stress test by
the different OpenCAL-OMP versions of the SciddicaT fluid-flow model.
Elapsed times in seconds are also shown in correspondence of each speed-up
vertex. The considered case study is the Tessina Landslide (cf. Figure 3.5).

The adopted CPU was an Intel Xeon 2.0GHz E5-2650 CPU.

289 for the SciddicaTac+esl execution on 16 threads. Here, the implementations exploiting
the active cells optimization outperform the naive one of two orders of magnitude.

Figure 3.10 shows the benchmark results of the different OpenCAL-CL versions of
SciddicaT on the considered graphic hardware for the transition function stress test. Here,
conversely from the standard tests, the SciddicaT version exploiting the GPU local memory
resulted significantly faster than the corresponding global memory version on both the consid-
ered devices. Specifically, the Tesla K40 reported the best result, highlighting a better local
memory system (i.e., better trade-off between local memory access/transfer) with respect
to the GTX 980 GPU. Nevertheless, the SciddicaTac performances were always better than
any CPU/GPU version (the GTX 980 performing better), demonstrating even in this case
the validity of the active cells optimization. It is worth to note that this time the best GPU
performance registered by the SciddicaT OpenCAL-CL versions significantly overcame the
one registered on the CPU. Specifically, the SciddicaTac ran about 441 times faster than
the serial version of SciddicaTnaive, against the best 289 speed-up registered on the CPU,
pointing out, as expected, the full suitability of GPGPU solutions in the case of sufficiently
computationally intense simulation models.

3.4.3 Computational Domain Stress Tests

In order to evaluate performances when larger computational domains are taken into account,
further tests were carried out by considering a DEM of 3,593 rows per 3,730 columns, with
square cells of 10 m side. Moreover, the landslide source was uniformly replicated 100 times
over the extended DEM and a simulation executed for each combination of SciddicaT versions
and available devices. Figure 3.11 shows the simulation outcomes obtained by considering
the larger DEM and the 100 landslide sources.

3.4. Computational Results and Discussion 71

 0

 100

 200

 300

 400

 500

Tesla K40 GTX 980

S
p
ee

d
-u

p

Device

SciddicaTnaive

516.78

235.97

SciddicaTlocal

36.46

49.32

SciddicaTac

32.25

19.66

FIGURE 3.10: Speed-up achieved during the transition function stress test
by the different OpenCAL-CL versions of the SciddicaT fluid-flow model.
Elapsed times in seconds are also shown on top of each speed-up bar. The
considered case study is the Tessina Landslide (cf. Figure 3.5). The adopted
OpenCL compliant devices were a Nvidia Tesla K40 and an Nvidia GTX 980.

Computational results of the OpenCAL-OMP versions of SciddicaT are shown in Figure
3.12. Similarly to the standard tests, a slight timing decrease is observed for all cases as
the number of threads is increased. Speed-up values increase accordingly to the adopted
optimizations, resulting Sciddicaac+esl the fastest version with a value of about 21.

Moreover, benchmark results of the OpenCAL-CL different versions of SciddicaT on the
computational domain stress tests are shown in Figure 3.13. Here, as for the standard tests, the
SciddicaT version exploiting the GPU local memory did not result significantly faster than
the corresponding global memory version on both the considered devices, by confirming that
local memory has to be accessed an elevated number of times to take an effective advantage
compared to the global one (thus resulting more useful for higher computationally complex
models). However, the SciddicaTac versions performances resulted always better than all
CPU/GPU versions (the GTX 980 performing better), demonstrating even in this case the
validity of the active cells optimization. Even in this case, the best GPU performance was
better than the one obtained for the CPU. In particular, the SciddicaTac ran about 121 times
faster on the GTX 980 than the serial version of SciddicaTnaive, against the best 21 absolute
speed-up registered on the CPU pointing out, as expected, the usefulness of GPGPU solutions
also in the case of extended computational domains. The result is justified by the same reasons
highlighted for the standard test case. In particular, the higher dimension of the computational
domain stress test mesh permits the GPUs to always perform better than the CPU in terms
of achieved bandwidth for all the considered SciddicaT versions (the SciddicaTac version
included, which achieves about 77 GB/s of bandwidth on the Tesla K40, against the 10 GB/s
achieved on the smaller mesh), consequently allowing to hide the thread latency in all cases,
and thus to exploit better the GPU computational power. Eventually, it is worth to note
that, as in the standard tests, the GTX 980 outperformed the Tesla K40, confirming that a

72 Chapter 3. OpenCAL

FIGURE 3.11: SciddicaT simulation stress test of 100 landslide sources
distributed over a DEM of 3593 rows per 3730 columns, with square cells of

10 m side. Landslides paths are represented in black.

3.4. Computational Results and Discussion 73

 0

 10

 20

 30

 1 2 4 8 16

S
p
ee

d
-u

p

Threads

SciddicaTnaive

5015.62 4132.71 3271.50 2943.58 2794.78

SciddicaTac

1322.82

833.23

610.37

478.98

412.58

SciddicaTac+esl

724.04
656.59

349.66

272.62

237.51

FIGURE 3.12: Speed-up achieved during the computational domain stress
test by the different OpenCAL-OMP versions of the SciddicaT fluid-flow
model. Elapsed times in seconds are also shown in correspondence of each
speed-up vertex. The considered case study is the simulation shown in Figure

3.11). The adopted CPU was an Intel Xeon 2.0GHz E5-2650 CPU.

gaming-oriented device is a preferable solution in case of models with low computational
intensity.

Figure 3.13 also shows preliminary benchmark results on two dual-GPU computing
systems. The first one consists of a single workstation equipped with two GTX 980 GPUs,
while the second of a dual-node cluster with a single GTX 980 per node, interconnected
through a Gigabit network. The computational domain was subdivided equally between the
available GPUs (specifically, the first 1796 rows were assigned to the first GPU, the remaining
1797 to the second one), and two MPI processes ran for each performed test.

The performances of the dual-GPU workstation were more than satisfying. SciddicaTnaive
and SciddicaTlocal scaled super-linearly, being respectively 2.9 and 2.4 times faster than the
single GPU execution. The reasons beneath this super-linearity are not currently clear and
will be investigated in a future work. Even SciddicaTac showed a good result, being about
1.53 times faster than the single GPU execution and the fastest in absolute terms.

In contrast, SciddicaTnaive and SciddicaTlocal scaled sub-linearly on the dual-node system,
being respectively 1.92 and 1.51 times faster than the single GPU corresponding executions,
while SciddicaTac showed a slowdown, with a speed-up of 0.31. In order to understand the
reasons of this behavior, and also to assess the correctness of the OpenCAL-MPI implemen-
tation, we profiled the performances of the interconnection network by adapting a simple
MPI ping-pong benchmark application in order to emulate the SciddicaTac MPI communi-
cations. In particular, a total of 48,000 179,040 bytes-long buffers were sent, corresponding
to twelve 179,040 bytes-long halos (top and bottom halos were sent for each elementary
process/global function) sent for each of the 4000 SciddicaTac simulation steps. The resulting
communication time of 95,97 s (and mean latency of 3.9 · 10−3 s per message) is in good
agreement with the one measured during the SciddicaTac simulation, which is 96,44 s. We can

74 Chapter 3. OpenCAL

0

20

40

60

80

100

120

140

160

180

200

1 x Tesla K40
single node

1 x GTX 980
single node

2 x GTX 980
single node

2 x GTX 980
dual node

(1 device per node)

S
p
ee

d
-u

p

System

SciddicaTnaive

909.66
497.25

165.97

258.49

SciddicaTlocal

704.52

374.88

156.57

248.21

SciddicaTac

95.94

41.49

27.15

133.84

FIGURE 3.13: Speed-up achieved during the computational domain stress test
by the different OpenCAL-CL versions of the SciddicaT fluid-flow model.
Elapsed times in seconds are also shown on top of each speed-up bar. The
considered case study is the simulation shown in Figure 3.11. A single node
workstation (alternatively equipped with a Nvidia Tesla K40, a Nvidia GTX
980, and two Nvidia GTX 980), and a dual-node cluster with a Gigabit
interconnection network (equipped with an Nvidia GTX 980 per node) were

adopted.

3.4. Computational Results and Discussion 75

0

20

40

60

80

100

120

140

160

1 x GTX 980
single node

2 x GTX 980
single node

2 x GTX 980
dual node

(1 device per node)

S
p
ee

d
-u

p

System

SciddicaTnaive

497.25 498.61 592.12

SciddicaTlocal

374.88 376.47
465.02

SciddicaTac

41.49

43.31

148.54

FIGURE 3.14: Speed-up achieved during the weak scaling analysis performed
by doubling the data considered on the computational domain stress test
(cf. Figure 3.11) by the different OpenCAL-MPI versions of the SciddicaT
fluid-flow model. Single GPU/single domain results are also reported for
comparison (cf. Figure 3.13). Elapsed times in seconds are shown on top
of each speed-up bar. A single node workstation (alternatively equipped
with one or two Nvidia GTX 980), and a dual-node cluster with a Gigabit
interconnection network (equipped with an Nvidia GTX 980 per node) were

adopted.

therefore assert that, even if preliminary, no communication issues are present in the current
implementation of OpenCAL-MPI. In addition, by considering that 32.4 s and 2.55 s were
spent in actual computation and in OpenCL read/write buffer enqueuing operations on the PCI
Express bus, respectively, the MPI communication resulted to be the 72% of the SciddicaTac
total simulation time. The slowdown observed on the dual-node system is therefore explained
by the poor performance of the interconnection network (that does not permit to reduce the
communication time below a significant value), and by the high computational speed-up due to
the active cells optimization (that considerably reduces the actual computing time), resulting
in an high communication/computation time ratio. Network bandwidth was also profiled for
completeness, resulting in about 34MB/s. This value does not saturate the Gigabit channel and
therefore did not represent a bottleneck in the SciddicaTac execution. Nevertheless, adopting
an interconnection network specifically designed for high performance computing, as well as
reducing the amount of data exchanged during the simulation, would result in better scalability.

Finally, we also performed a further weak-scaling analysis in which we doubled the
computational domain represented in Figure 3.11 in order to evaluate the scalability on the
dual-GPU systems. In particular, the domain was duplicated along the rows (resulting in 7,186
rows by 3,730 columns). This allowed to keep the amount of data exchanged over the network
unchanged with respect to the one of the previous tests, since OpenCAL-MPI decomposes
the domain along rows. The doubled domain was equally subdivided on the two GPUs in
order to obtain an equal computational workload per device. The results of this analysis are
shown in Figure 3.14, together with those of the single GPU/single domain simulations, which

76 Chapter 3. OpenCAL

are reported for comparison. The different versions of SciddicaT evidenced an almost ideal
efficiency on the workstation equipped with two GTX 980 GPUs. Conversely, SciddicaTnaive
and SciddicaTlocal showed a slight slowdown when the dual-node/dual domain configura-
tion was considered, with an efficiency of 0.84 and 0.8, respectively. As for the previous
experiments on the same dual-node test cluster, SciddicaTac evidenced a more marked slow-
down, with efficiency of 0.28. Nevertheless, such results are in agreement with those of the
previous strong-scaling analysis and are justified by the same considerations concerning the
performances of the interconnection network and the computational efficiency of the different
versions of SciddicaT.

3.5 Conclusions and Outlooks

In this article we presented the first release of OpenCAL, a new open source computing
abstraction layer for Scientific Computing, representing a domain specific language for
Extended Cellular Automata and, in general, for structured grid-based computational methods.

Besides the serial implementation, two different parallel versions were developed, namely
OpenCAL-OMP and OpenCAL-CL, based on OpenMP and OpenCL, respectively. The first
one allows to exploit multi-core CPUs on shared memory computers, while the second a
wide range of heterogeneous devices like GPUs, FPGAs and other many-core co-processors.
In general, an OpenMP-based parallelization is more straightforward than one based on
OpenCL and, when compilers will fully support the 4.0/4.5 OpenMP specifications, it will
be possible to execute OpenMP-based applications on both multi-core CPUs and many-core
high-performance devices. On the other hand, an OpenCL-based parallelization allows to
exploit a wide range of high-performance many-core devices straight away and, allowing for
better tuning, permits in principle to exploit computational devices more efficiently. For these
reasons, both the OpenMP and OpenCL parallelization of OpenCAL are currently maintained.
In addition, preliminary results regarding OpenCAL-MPI, the currently under development
MPI/OpenCL parallel version of OpenCAL, were presented.

Each version was designed to be as reliable and fast as possible and, for this purpose, the C
language was adopted and optimized data structures and efficient algorithms were considered.
Specifically, linearized arrays were adopted to represent both one-dimensional and higher
order structures like substates and neighborhoods for exploiting memory coalescence and
also to permit a more straightforward OpenCL parallelization. Moreover, the quantization
optimization, which allows to restrict the application of the transition function only to non-
stationary cells, was implemented in each version, while the explicitation of the global
transition function, allowing for selective substates updating, was implemented only in the
OpenCAL and OpenCAL-OMP versions (future work will regard the implementation also in
OpenCAL-CL).

The SciddicaT XCA landslide simulation model was considered to assess numerical
correctness and computational efficiency of each OpenCAL version. Note that, such kind
of light-weight computational models have a great relevance in practice, for instance when
massive simulation approaches are considered [113, 43] or in real-time applications [157, 128].
The OpenCAL and OpenCAL-OMP implementations of three different versions of SciddicaT
were considered, from a naive one, SciddicaTnaive, to a version supporting the quantization
optimization, SciddicaTac, up to a fully optimized version, SciddicaTac+esl , supporting both
the quantization and the explicitation of the global transition function. The first two versions of
SciddicaT were also implemented in OpenCAL-CL. In addition, a naive version of SciddicaT
exploiting the local memory, namely SciddicaTlocal , was implemented in OpenCAL-CL to
evaluate the role of different GPU memory levels.

3.5. Conclusions and Outlooks 77

The Tessina landslide was considered to evaluate correctness and timings on a 16-thread
Intel Xeon CPU based workstation and two Nvidia GPUs. Numerical correctness was con-
firmed by all the simulation outcomes, which perfectly matched the reference simulation
obtained by adopting the OpenCAL implementation of SciddicaTnaive. Regarding computa-
tional performance, the different SciddicaT versions demonstrated to be able to efficiently
exploit the computational power of the heterogeneous devices considered in this work, by
reducing the execution time of all the performed benchmarks accordingly to the progressively
adopted optimizations. However, the best result obtained by SciddicaTac using 16 threads
on the CPU surprisingly was better than the best one obtained by SciddicaTac on the GPU.
This result is justified by the poor ability of the model to exploit both the GPU thread latency
hiding mechanism and the bandwidth on the smaller mesh resulting by the application of the
quantization algorithm. Nevertheless, subsequent stress tests performed by fictitiously com-
plicating the transition function execution, and a further set of tests where the computational
domain was considerably increased with respect to that originally considered, overturned the
results and GPUs significantly resulted faster than the CPU, pointing out their usefulness
in case of simulations of compute-bound models. GPU local memory provided an actual
advantage only in the case of the first set of stress tests, pointing out that data must be accessed
an adequate number of times to be effective. Here, in particular, the Tesla K40 resulted
more efficient with respect to the GTX 980, even if based on the previous Nvidia hardware
architecture, due to its more compute-bound devoted architecture and better management of
the local memory. Eventually, the increased computational domain was also considered for a
preliminary evaluation of the OpenCAL-MPI implementation of the library on two dual-GPU
systems, the first consisting on a single workstation, the second on a dual-node cluster with a
Gigabit interconnection network. In the first case, all the versions of SciddicaT achieved very
high scalability values, with even super-linear effects for SciddicaTnaive and SciddicaTlocal .
Such super-linearity will be better investigated in a future work. As regards the dual-node
system, SciddicaTnaive and SciddicaTlocal showed a good speed-up, while SciddicaTac was
characterized by a slow-down. The reason of this behavior was investigated, resulting in a
high communication/computation time ratio due to both the poor performances of the intercon-
nection network and the high computational efficiency of SciddicaTac at the single GPU level.
A further weak-scaling analysis was also performed, which confirmed the same conclusions
of the previous strong-scaling tests.

Though preliminary, results achieved confirm correctness and efficiency of the different
OpenCAL versions, by highlighting their reliability for numerical model development of
complex systems in the field of Scientific Computing and their execution on parallel het-
erogeneous devices. Moreover, since the implementations do not significantly differ from
an OpenCAL version to another, it is possible to seamlessly obtain two different CPU/GPU
parallel versions of the same model with a minimum effort and, therefore, to test them on the
available hardware to select the best platform for execution. In fact, as shown for the case of
SciddicaT, the best choice can deeply depend on both the computational complexity of the
transition function and on the extent of the computational domain, and the best solution can
not be determined a priori.

Nevertheless, a fine tuning of underlying data structures and algorithms will be performed
in order to make OpenCAL still more performing and the MPI-based implementation, here
only preliminary presented, will be completed to allow OpenCAL to exploit the computational
power of distributed memory systems. As regards OpenCAL-CL, a multi-GPU support is
currently under development to intelligently scale the overall system performances. Further
tests on CPUs/GPUs heterogeneous systems will also be performed. Subsequent releases
will also progressively support further computational paradigms, like the Lattice Boltzmann
method, the Smoothed Particle Hydrodynamics (SPH), as well as other mesh-free numerical
methods, with the aim to achieve a general software abstraction layer for computation.

78 Chapter 3. OpenCAL

OpenCAL is released under the Lesser GNU Public License (LGPL) version 3 and, to-
gether with a comprehensive installation and user manual accompanied by numerous examples,
is currently freely available on GitHub at https://github.com/OpenCALTeam/opencal.

79

Chapter 4

Conclusion

This dissertation focused on modern operating system mitigations against sophisticated attacks
such as side-channel and rowhammer.

In Chapter 1 we first analyzed the attack surface of page fusion, a feature used in mod-
ern operating systems to save memory. The analysis showed that this optimization, when
developed in a relatively naive way, opens different side-channels that attackers can easily
abuse. Moreover, when combined with an hardware glitch like rowhammer, this attack can
lead to a complete compromise of a system. After this analysis we showed a principled
approach, named VUsion, that mitigates these side-channels, and protects even from attackers
that can use the rowhammer attack to flip arbitrary bits. While VUsion design looks bad
performance-wise at a first glance, we showed this is not the case in real-life scenarios, and the
prototype shows a performance overhead of less than 5% on the CPU SPEC benchmark suite.

In Chapter 2 we showed ZebRAM, a complete, software based and legacy compatible
defense against rowhammer attacks. The main idea behind the defense is isolation. In
ZebRAM, the operating system can directly access only half of the DRAM. Which DRAM is
directly accessible is not arbitrary, but based on how DRAM-addresses are physically mapped
in the DRAM chip and on how the rowhammer attack works. This is done in such a way
that direct accesses to RAM can induce bitflips only in the not directly-accessible part, that
“absorbs” the bitflips.

Wasting half of the RAM is, performance-wise, prohibitive. In ZebRAM we implemented
an integrity checking system that allows the operating system to use the not-directly accessible
part of the RAM as a compressed in-memory swap device. Another advantage of this approach
is that we can re-utilize state of the art page reclaiming algorithms to maintain frequently
accessed data in the directly accessible part of the RAM, reducing the performance toll. In
Chapter 3 we proposed a general purpose cellular automata framework that can be adopted
to develop several security critical applications. The library is released under an opensource
license.

Overall, this work highlighted the danger of side-channel and rowhammer attacks. What
makes this attacks really dangerous is that they do not exploit any programmer mistake
but rather the leaking of information by other means or they maliciously induce hardware
glitches. These new attacks pose completely new challenges if compared to typical threats as
memory corruption exploitation. This work showed numerous examples of this kind of attacks
and at the same time proposed mitigations to stop this threats in software, with negligible
performance overhead in most scenarios. We showed a prototype implementation (on top of
the Linux kernel) for both the designs proposed in Chapter 1 and Chapter 2. The source code
of these prototypes is available online.

81

Bibliography

[1] Martín Abadi et al. “Control-flow Integrity”. In: CCS. 2005.

[2] Advanced Micro Device. AMD64 Architecture Programmer’s Manual Volume 2:
System Programming. 2013.

[3] Advanced Simulation Library. http://asl.org.il/. Accessed: 2017-10-16.

[4] Barbara Aichinger. “DDR Memory Errors caused by Row Hammer”. In: HPEC. 2015.

[5] C.K. Aidun and J.R. Clausen. “Lattice-boltzmann method for complex flows”. In:
Annual Review of Fluid Mechanics (2010).

[6] Periklis Akritidis et al. “Baggy Bounds Checking: An Efficient and Backwards-
Compatible Defense against Out-of-Bounds Errors”. In: SEC. 2009.

[7] José Bacelar Almeida et al. “Verifying Constant-Time Implementations”. In: SEC.
2016.

[8] Amit Amritkar, Surya Deb, and Danesh Tafti. “Efficient parallel CFD-DEM simula-
tions using OpenMP”. In: Journal of Computational Physics (2014).

[9] Starr Andersen and Vincent Abella. Data Execution Prevention. Changes to Function-
ality in Microsoft Windows XP Service Pack 2, Part 3: Memory Protection Technolo-
gies. 2004.

[10] B. Arca, T. Ghisu, and G.A. Trunfio. “GPU-accelerated multi-objective optimization of
fuel treatments for mitigating wildfire hazard”. In: Journal of Computational Science
(2015).

[11] Andrea Arcangeli, Izik Eidus, and Chris Wright. “Increasing Memory Density by
Using KSM”. In: OLS. 2009.

[12] M.V. Avolio, S. Di Gregorio, and G.A. Trunfio. “A randomized approach to improve
the accuracy of wildfire simulations using cellular automata”. In: Journal of Cellular
Automata (2014).

[13] M.V. Avolio et al. “Pyroclastic flows modelling using cellular automata”. In: Comput-
ers and Geosciences (2006).

[14] M.V Avolio et al. “SCIDDICA-SS3: a new version of cellular automata model for
simulating fast moving landslides”. In: The Journal of Supercomputing (2013).

[15] MV Avolio et al. “Simulation of the 1992 Tessina landslide by a cellular automata
model and future hazard scenarios”. In: International Journal of Applied Earth Obser-
vation and Geoinformation (2000).

[16] Zelalem Birhanu Aweke et al. “ANVIL: Software-Based Protection Against Next-
Generation Rowhammer Attacks”. In: ASPLOS. 2016.

[17] Sean Barker et al. “An Empirical Study of Memory Sharing in Virtual Machines”. In:
USENIX ATC. 2012.

[18] Antonio Barresi et al. “CAIN: Silently Breaking ASLR in the Cloud”. In: WOOT.
2015.

82 Bibliography

[19] J. Bedorf, E. Gaburov, and S. Portegies Zwart. “A sparse octree gravitational N-body
code that runs entirely on the GPU processor”. In: Journal of Computational Physics
(2012).

[20] R.D. Beer. “Autopoiesis and cognition in the game of life”. In: Artificial Life (2004).

[21] Ravi Bhargava et al. “Accelerating Two-dimensional Page Walks for Virtualized
Systems”. In: ASPLOS. 2008.

[22] Sandeep Bhatkar and Daniel C. DuVarney. “Efficient Techniques for Comprehensive
Protection from Memory Error Exploits”. In: SEC. 2005.

[23] Sarani Bhattacharya and Debdeep Mukhopadhyay. “Curious Case of Rowhammer:
Flipping Secret Exponent Bits Using Timing Analysis”. In: CHESS. 2016.

[24] I. Blecic, A. Cecchini, and G.A. Trunfio. “Cellular automata simulation of urban
dynamics through GPGPU”. In: Journal of Supercomputing (2013).

[25] I. Blecic, A. Cecchini, and G.A. Trunfio. “How much past to see the future: a com-
putational study in calibrating urban cellular automata”. In: International Journal of
Geographical Information Science (2015).

[26] Erik Bosman et al. “Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector”. In: S&P. 2016.

[27] A. Brański and E. Prȩdka. “Description of the room acoustic field with meshless
methods”. In: Proceedings - 7th Forum Acusticum 2014, Krakow, Poland. 2014.

[28] Ferdinand Brasser et al. “CAn’t Touch This: Software-only Mitigation against Rowham-
mer Attacks targeting Kernel Memory”. In: SEC. 2017.

[29] Sergey Bratus et al. “Exploit Programming: From Buffer Overflows to “Weird Ma-
chines” and Theory of Computation”. In: ;login: 2011.

[30] W.M. Brown et al. “Implementing molecular dynamics on hybrid high performance
computers - Short range forces”. In: Computer Physics Communications (2011).

[31] Yu Cai et al. “Vulnerabilities in MLC NAND Flash Memory Programming: Ex-
perimental Analysis, Exploits, and Mitigation Techniques”. In: Proceedings of the
Symposium on High-Performance Computer Architecture. 2017.

[32] J.L. Cercos-Pita. “AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL”.
In: Computer Physics Communications (2015).

[33] G. Cervarolo, G. Mendicino, and A. Senatore. “A coupled ecohydrological-three-
dimensional unsaturated flow model describing energy, H2O and CO2 fluxes”. In:
Ecohydrology (2010).

[34] A. Chaigne and A. Askenfelt. “Numerical simulations of piano strings. I. A physical
model for a struck string using finite difference methods”. In: Journal of the Acoustical
Society of America (1994).

[35] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. “An Empirical Study on Memory
Sharing of Virtual Machines for Server Consolidation”. In: ISPA. 2011.

[36] Keun-Shik Chang and Chang-Joon Song. “Interactive vortex shedding from a pair of
circular cylinders in a transverse arrangement”. In: International Journal for Numeri-
cal Methods in Fluids (1990).

[37] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering Computation).
Cambridge, MA, USA: The MIT Press, 2007.

Bibliography 83

[38] clBlas. https://github.com/clMathLibraries/clBLAS. Accessed:
2016-05-13.

[39] E. F. Codd. Cellular Automata. Orlando, FL, USA: Academic Press, Inc., 1968.

[40] Lucian Cojocar et al. “Exploiting Correcting Codes: On the Effectiveness of ECC
Memory Against Rowhammer Attacks”. In: S&P. 2019.

[41] Matthew Cook. “Universality in Elementary Cellular Automata”. In: Complex Systems
(2004).

[42] Brian F. Cooper et al. “Benchmarking cloud serving systems with YCSB.” In: SoCC.
2010.

[43] Gino M Crisci et al. “Predicting the impact of lava flows at Mount Etna, Italy”. In:
Journal of Geophysical Research: Solid Earth (2010).

[44] G.M. Crisci et al. “PYR: A Cellular Automata model for pyroclastic flows and
application to the 1991 Mt. Pinatubo eruption”. In: Future Generation Computer
Systems (2005).

[45] H.M. Şahin et al. “Determination of unidirectional heat transfer coefficient during
unsteady-state solidification at metal casting-chill interface”. In: Energy Conversion
and Management (2006).

[46] CUDA C Best Practices Guide. NVIDIA Corporation, 2017.

[47] CUDA C Programming Guide. NVIDIA Corporation, 2017.

[48] CVE-2016-3272. Mar. 2016. URL: http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-3272.

[49] D. D’Ambrosio, S. Di Gregorio, and G. Iovine. “Simulating debris flows through a
hexagonal cellular automata model: SCIDDICA S3-hex”. In: Natural Hazards and
Earth System Science (2003).

[50] D. D’Ambrosio et al. “A cellular automata model for soil erosion by water”. In:
Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere
(2001).

[51] D. D’Ambrosio et al. “Cellular automata and GPGPU: An application to lava flow
modeling”. In: International Journal of Grid and High Performance Computing
(2012).

[52] D. D’Ambrosio et al. “Efficient application of GPGPU for lava flow hazard mapping”.
In: Journal of Supercomputing (2013).

[53] D. D’Ambrosio et al. “Lava invasion susceptibility hazard mapping through cellular
automata”. In: Lecture Notes in Computer Science (2006).

[54] D. D’Ambrosio et al. “Meta-model assisted evolutionary optimization of cellular
automata: An application to the SCIARA model”. In: Lecture Notes in Computer
Science (2012).

[55] D. D’Ambrosio et al. “Optimizing cellular automata through a meta-model assisted
memetic algorithm”. In: Lecture Notes in Computer Science (2012).

[56] Donato D’Ambrosio and William Spataro. “Parallel evolutionary modelling of geo-
logical processes”. In: Parallel Computing (2007).

[57] Donato D’Ambrosio et al. “The Open Computing Abstraction Layer for Parallel
Complex Systems Modeling on Many-Core Systems”. In: J. Parallel Distrib. Comput.
(2018).

84 Bibliography

[58] Sourav Das and Dipanwita RoyChowdhury. “CAR30: A new scalable stream cipher
with rule 30”. In: Cryptography and Communications (2013).

[59] Giuseppe Dattilo and Giandomenico Spezzano. “Simulation of a cellular landslide
model with CAMELOT on high performance computers”. In: Parallel Computing
(2003).

[60] X. Deng et al. “Further studies on Geometric Conservation Law and applications to
high-order finite difference schemes with stationary grids”. In: Journal of Computa-
tional Physics (2013).

[61] S. Di Gregorio et al. “Accelerating wildfire susceptibility mapping through GPGPU”.
In: Journal of Parallel and Distributed Computing (2013).

[62] P. Du et al. “From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming”. In: Parallel Computing (2012).

[63] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. “Jump over ASLR:
Attacking Branch Predictors to Bypass ASLR”. In: MICRO-49. 2016.

[64] Dmitry Evtyushkin et al. “BranchScope: A New Side-Channel Attack on Directional
Branch Predictor”. In: ASPLOS. 2018.

[65] A. Farrokhabadi et al. “Theoretical modeling of the Casimir force-induced insta-
bility in freestanding nanowires with circular cross-section”. In: Physica E: Low-
Dimensional Systems and Nanostructures (2014).

[66] G. Filippone et al. “CUDA dynamic active thread list strategy to accelerate debris
flow simulations”. In: PDP. 2015.

[67] Pietro Frigo et al. “Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU”. In: S&P. 2018.

[68] U. Frish, B. Hasslacher, and Y. Pomeau. “Lattice gas automata for the Navier-Stokes
Equation”. In: Physical Review Letters (1986).

[69] Martin Gardner. “Mathematical Games: The fantastic combinations of John Conway’s
new solitaire game "life"”. In: Scientific American (1970).

[70] M.B. Giles et al. “Designing OP2 for GPU architectures”. In: Journal of Parallel and
Distributed Computing (2013).

[71] Gene H Golub and James M Ortega. Scientific computing: an introduction with
parallel computing. London, UK: Academic Press, 2014.

[72] Google. Android Low RAM Configuration. 2017. URL: https://goo.gl/
Rz4B6I.

[73] Abel Gordon et al. “ELI: Bare-metal Performance for I/O Virtualization”. In: ASPLOS.
2012.

[74] Ben Gras et al. “ASLR on the Line: Practical Cache Attacks on the MMU”. In: NDSS.
2017.

[75] S. Di Gregorio and R. Serra. “An empirical method for modelling and simulating
some complex macroscopic phenomena by cellular automata”. In: Future Generation
Computer Systems (1999).

[76] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript”. In: DIMVA. 2016.

[77] Daniel Gruss et al. “Another Flip in the Wall of Rowhammer Defenses”. In: arXiv
preprint arXiv:1710.00551 (2017).

Bibliography 85

[78] Daniel Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR”. In: CCS. 2016.

[79] Fan Guo et al. “SmartMD: A High Performance Deduplication Engine with Mixed
Pages”. In: ATC. 2017.

[80] Richard W Hamming. “Error detecting and error correcting codes”. In: Bell Labs
Technical Journal (1950).

[81] John L. Henning. “SPEC CPU2006 memory footprint”. In: ACM SIGARCH Computer
Architecture’07.

[82] F. Higuera and J. Jimenez. “Boltzmann approach to lattice gas simulations”. In:
Europhysics Letters (1989).

[83] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. “Post-copy Live Migration
of Virtual Machines”. In: OSR. 2009.

[84] J. Hu et al. “Electron behavior in hydrogen atom under electric fields”. In: ICPADM.
2015.

[85] Idle Page Tracking. 2015. URL: https://www.kernel.org/doc/Documentation/
vm/idle_page_tracking.txt.

[86] Intel. Intel Clear Containers: Building a Virtualization Continuum. White paper. 2017.

[87] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual.
2016.

[88] Gorka Irazoqui et al. “Know Thy Neighbor: Crypto Library Detection in Cloud”. In:
PETS. 2015.

[89] S.P. Jammy et al. “Block-structured compressible Navier-Stokes solution using the
OPS high-level abstraction”. In: International Journal of Computational Fluid Dy-
namics (2016).

[90] Yeongjin Jang et al. “SGX-Bomb: Locking Down the Processor via Rowhammer
Attack”. In: SysTEX. 2017.

[91] JEDEC Solid State Technology Association. DDR4 SDRAM Specification. JESD79-
4A. 2013.

[92] JEDEC Solid State Technology Association. “DDR4 SDRAM Specification”. In:
JESD79-4B (2017).

[93] JEDEC Solid State Technology Association. “Low Power Double Data 4 (LPDDR4)”.
In: JESD209-4A (2015).

[94] Samira Khan, Donghyuk Lee, and Onur Mutlu. “PARBOR: An Efficient System-Level
Technique to Detect Data-Dependent Failures in DRAM”. In: DSN. 2016.

[95] D. Kim, P. J. Nair, and M. K. Qureshi. “Architectural Support for Mitigating Row
Hammering in DRAM Memories”. In: IEEE Computer Architecture Letters (2015).

[96] Yoongu Kim et al. “Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors”. In: ISCA. 2014.

[97] DB Kirk and WmW Hwu. Programming Massively Parallel Processors: A Hands-on
Approach. Burlington, Ma, USA: Morgan Kaufmann Publishers Inc, 2010.

[98] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P.
2019.

[99] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”. In: CRYPTO. 1996.

86 Bibliography

[100] David Kohlbrenner and Hovav Shacham. “Trusted Browsers for Uncertain Times”. In:
SEC. 2016.

[101] Radhesh Krishnan Konoth et al. “ZebRAM: Comprehensive and Compatible Software
Protection Against Rowhammer Attacks”. In: OSDI. 2018.

[102] Taddeus Kroes et al. “Delta pointers: buffer overflow checks without the checks”. In:
EuroSys. 2018.

[103] Anil Kurmus et al. “From random block corruption to privilege escalation: A filesystem
attack vector for rowhammer-like attacks”. In: WOOT. 2017.

[104] Youngjin Kwon et al. “Coordinated and Efficient Huge Page Management with In-
gens”. In: OSDI. 2016.

[105] C.G. Langton. “Computation at the edge of caos: phase transition and emergent
computation”. In: Physica D (1990).

[106] C.G. Langton. “Studying Artificial Life with Cellular Automata”. In: Physica D
(1986).

[107] Mark Lanteigne. In: How Rowhammer Could Be Used to Exploit Weaknesses in
Computer Hardware (2016).

[108] Elias Levy. “Smashing The Stack For Fun And Profit”. In: phrack (1996).

[109] Linux kernel: Transparent Hugepage Support. https://www.kernel.org/
doc/Documentation/vm/transhuge.txt Retrieved 27.11.207.

[110] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: S&P.
2018.

[111] Fangfei Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P.
2015.

[112] Robert Lubaś, Jarosław Wąs, and Jakub Porzycki. “Cellular Automata as the basis
of effective and realistic agent-based models of crowd behavior”. In: The Journal of
Supercomputing (2016).

[113] F. Luca’ et al. “Integrating geomorphology, statistic and numerical simulations for
landslide invasion hazard scenarios mapping: An example in the Sorrento Peninsula
(Italy)”. In: Computers and Geosciences (2014).

[114] LZO. http://www.oberhumer.com/opensource/lzo/, Retrieved 09.09.2018.

[115] M. Macri et al. “Efficient Lava Flows Simulations with OpenCL: A Preliminary
Application for Civil Defence Purposes”. In: 3PGCIC. 2015.

[116] Swapan Maiti, Shamit Ghosh, and Dipanwita Roy Chowdhury. “On the Security of
Designing a Cellular Automata Based Stream Cipher”. In: Information Security and
Privacy. Cham: Springer International Publishing.

[117] J. Malcolm et al. “ArrayFire: A GPU acceleration platform”. In: SPIE. 2012.

[118] Robert Martin, John Demme, and Simha Sethumadhavan. “TimeWarp: Rethinking
Timekeeping and Performance Monitoring Mechanisms to Mitigate Side-channel
Attacks”. In: ISCA. 2012.

[119] Sandip Mazumder. “Chapter 1 - Introduction to Numerical Methods for Solving
Differential Equations”. In: Numerical Methods for Partial Differential Equations.
Cambridge, MA, USA: Academic Press, 2016.

[120] G.R. McNamara and G. Zanetti. “Use of the Boltzmann equation to simulate lattice-
gas automata”. In: Physical Review Letters (1988).

Bibliography 87

[121] memtier benchmark: A High-Throughput Benchmarking Tool for Redis and Mem-
cached. 2017. URL: https://github.com/RedisLabs/memtier_benchmark.

[122] G. Mendicino, J. Pedace, and A. Senatore. “Stability of an overland flow scheme in the
framework of a fully coupled eco-hydrological model based on the Macroscopic Cel-
lular Automata approach”. In: Communications in Nonlinear Science and Numerical
Simulation (2015).

[123] Giuseppe Mendicino et al. “Three-dimensional unsaturated flow modeling using
cellular automata”. In: Water Resources Research (2006).

[124] Ingo Molnar. LKML: [announce] NX (No eXecute) support for x86 in Linux Kernel.
2004. URL: https://lkml.org/lkml/2004/6/2/228.

[125] John von Neumann. Theory of Self-Reproducing Automata. Ed. by Arthur W. Burks.
Champaign, IL, USA: University of Illinois Press, 1966.

[126] Lily Hay Newman. “The Hidden Toll of Fixing Meltdown and Spectre”. In: WIRED
(2018).

[127] S. Ninagawa. “Dynamics of universal computation and 1/f noise in elementary cellular
automata”. In: Chaos, Solitons and Fractals (2015).

[128] V.G. Ntinas et al. “Parallel Fuzzy Cellular Automata for Data-Driven Simulation of
Wildfire Spreading”. In: Journal of Computational Science (2016).

[129] M. Oliverio et al. “OpenMP parallelization of the SCIARA Cellular Automata lava
flow model: Performance analysis on shared-memory computers”. In: ICCS. 2011.

[130] Marco Oliverio et al. “Secure Page Fusion with VUsion”. In: SOSP. 2017.

[131] OpenBSD cvs archive: disabling SMT. 2018. URL: https://www.mail-archive.
com/source-changes@openbsd.org/msg99141.html.

[132] Yossef Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications”. In: CCS. 2015.

[133] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and Countermeasures:
The Case of AES”. In: CT-RSA. 2006.

[134] J.D. Owens et al. “A survey of general-purpose computation on graphics hardware”.
In: Computer Graphics Forum (2007).

[135] R. Owens and Weichao Wang. “Non-Interactive OS Fingerprinting Through Memory
De-Duplication Technique in Virtual Machines”. In: IPCCC. 2011.

[136] PaX Team. “Address Space Layout Randomization”. In: Phrack. 2003.

[137] Mathias Payer. “HexPADS: A Platform to Detect “Stealth” Attacks”. In: ESSoS. 2016.

[138] Peter Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”.
In: SEC. 2016.

[139] Antoniu Pop and Albert Cohen. “OpenStream: Expressiveness and Data-Flow Compi-
lation of OpenMP Streaming Programs”. In: ACM Transactions on Architecture and
Code Optimization (2013).

[140] Rui Qiao and Mark Seaborn. “A New Approach for Rowhammer Attacks”. In: HOST.
2016.

[141] P. Rana and R. Bhargava. “Flow and heat transfer of a nanofluid over a nonlinearly
stretching sheet: A numerical study”. In: Communications in Nonlinear Science and
Numerical Simulation (2012).

88 Bibliography

[142] G. Ravazzani, D. Rametta, and M. Mancini. “Macroscopic cellular automata for
groundwater modelling: A first approach”. In: Environmental Modelling and Software
(2011).

[143] Kaveh Razavi et al. “Flip Feng Shui: Hammering a Needle in the Software Stack”. In:
SEC. 2016.

[144] I.Z. Reguly et al. “Acceleration of a Full-Scale Industrial CFD Application with OP2”.
In: IEEE Transactions on Parallel and Distributed Systems 27.5 (2016).

[145] I.Z. Reguly et al. “The OPS domain specific abstraction for multi-block structured
grid computations”. In: WOLFHPC Held in Conjunction with SC. 2014.

[146] Charles Schmidt and Tom Darby. The What, Why, and How of the 1988 Internet
Worm. 1988. URL: https://ethics.csc.ncsu.edu/abuse/wvt/worm/
darby/worm.html.

[147] Michael Schwarz, Daniel Gruss, and Moritz Lipp. “Another Flip in the Row”. In:
BHUS. https://gruss.cc/files/us-18-Gruss-Another-Flip-In-
The-Row.pdf Retrieved 09.09.2018. 2018.

[148] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges”. In: BHUS. 2015.

[149] Giuseppe Spingola et al. “Modeling Complex Natural Phenomena with the libAuToti
Cellular Automata Library: An example of Application to Lava Flows Simulation.”
In: PDPTA. 2008.

[150] J.E. Stone, D. Gohara, and G. Shi. “OpenCL: A parallel programming standard
for heterogeneous computing systems”. In: Computing in Science and Engineering
(2010).

[151] STREAM: Sustainable Memory Bandwidth in High Performance Computers. 2016.
URL: https://www.cs.virginia.edu/stream/.

[152] B.-Y. Su and K. Keutzer. “clSpMV: A cross-platform OpenCL SpMV framework on
GPUs”. In: ICS. 2012.

[153] Kuniyasu Suzaki et al. “Memory Deduplication As a Threat to the Guest OS”. In:
EUROSEC. 2011.

[154] Andrei Tatar et al. “Defeating Software Mitigations Against Rowhammer: A Surgical
Precision Hammer”. In: RAID. 2018.

[155] Andrei Tatar et al. “Throwhammer: Rowhammer Attacks over the Network and
Defenses”. In: ATC. 2018.

[156] Patrick Tjin. “android-7.1.0_r7 (Disable ION_HEAP_TYPE_SYSTEM _CONTIG)”.
In: https://android.googlesource.com/device/google/marlin-
kernel/+/android-7.1.0_r7 (2016).

[157] A. Tsiftsis, I.G. Georgoudas, and G.Ch Sirakoulis. “Real data evaluation of a crowd
supervising system for stadium evacuation and its hardware implementation”. In:
IEEE Systems Journal (2016).

[158] V. van der Veen et al. Drammer: Deterministic Rowhammer Attacks on Mobile Plat-
forms. http://vvdveen.com/publications/drammer.slides.pdf,
Retrieved 09.09.2018.

[159] V. van der Veen et al. “Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms”. In: CCS. 2016.

[160] Victor van der Veen et al. “GuardION: Practical Mitigation of DMA-based Rowham-
mer Attacks on ARM”. In: DIMVA. 2018.

Bibliography 89

[161] VMWare. Disallowing inter-Virtual Machine Transparent Page Sharing. 2015. URL:
https://goo.gl/uH0zNP.

[162] Mark Wagner. “KVM Performance Improvements and Optimizations”. In: KVM
Forum (2011).

[163] Jarosław Wąs and Robert Lubaś. “Towards realistic and effective Agent-based models
of crowd dynamics”. In: Neurocomputing (2014).

[164] Jarosław Wąs, Hubert Mróz, and Paweł Topa. “GPGPU computing for microscopic
simulations of crowd dynamics”. In: Computing and Informatics (2015).

[165] S. Wolfram. A new kind of Science. Champaign: Wolfram Media Inc., 2002.

[166] S. Wolfram. “Universality and complexity in cellular automata”. In: Physica D (1984).

[167] Stephen Wolfram. “Cryptography with Cellular Automata”. In: CRYPTO. 1985.

[168] WRK - a HTTP Benchmarking Tool. 2017. URL: https://github.com/wg/
wrk.

[169] WRK2 - a HTTP Benchmarking Tool. https://github.com/giltene/wrk2,
Retrieved 09.09.2018.

[170] Jidong Xiao et al. “A Covert Channel Construction in a Virtualized Environment”. In:
CCS. 2012.

[171] Yuan Xiao et al. “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation”. In: SEC. 2016.

[172] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack”. In: SEC. 2014.

[173] Peter Zatko. How to write Buffer Overflows.

[174] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. “A Software Approach to
Defeating Side Channels in Last-Level Caches”. In: CCS. 2016.

