
Università della Calabria
Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Matematica e Informatica

XXXI ciclo

Tesi di Dottorato

Enhancing and Applying Answer Set
Programming:

Lazy Constraints, Partial Compilation and

Question Answering

Settore Scientifico Disciplinare INF/01 – INFORMATICA

Coordinatore: Ch.mo Prof. Nicola Leone

Supervisore: Prof. Francesco Ricca

Dottorando: Dott. Bernardo Cuteri

Contents

Introduction 2

I Enhancing ASP Systems on Grounding-intensive
Programs 6

1 Preliminaries and Notation 8

2 Custom Propagators for Constraints 11
2.1 Solving Strategies . 12

2.1.1 Classical Evaluation 12
2.1.2 Lazy Constraints . 13
2.1.3 Constraints via Propagators 16

2.2 Implementation and Experimental Analysis 17
2.2.1 Implementation . 17
2.2.2 Description of Benchmarks 17
2.2.3 Hardware and Software Settings 19
2.2.4 Discussion of Results 19
2.2.5 On the applicability of techniques for automatic algo-

rithm selection . 25
2.3 Related Work . 27
2.4 Discussion . 28

3 Partial Compilation 30
3.1 Conditions for Splitting and Compiling 31

3.1.1 Largest Compilable Sub-program 33
3.2 Architecture for Partial Compilation 35
3.3 Compiled Program Evaluation 38

1

3.3.1 Bottom-up Evaluation 38
3.3.2 Nogoods for Failed Constraints Checks 41

3.4 Compilation Algorithm . 48
3.5 Experiments . 51

3.5.1 Discussion of Experiments 55
3.6 Related Work . 56
3.7 Discussion . 56

II An Application of ASP to Closed-Domain Ques-
tion Answering 58

4 Preliminaries on Question Answering 62
4.1 IR-based Question Answering 63
4.2 Knowledge-Based Question Answering 64

5 ASP-based Question Answering for Cultural Heritage 65
5.1 Question NL Processing . 66

5.1.1 Named Entities Recognition 67
5.1.2 Tokenization . 69
5.1.3 Parts-Of-Speech Tagging 69
5.1.4 Dependency Parsing 70

5.2 Template Matching . 71
5.3 Intent Determination . 75
5.4 Query Execution . 76
5.5 Answer Generation . 77
5.6 System Performance on Real-world Data 77
5.7 Related Work . 79
5.8 Discussion . 80

6 Conclusion 81

2

Sommario

Questo lavoro è incentrato sull’Answer Set Programming (ASP), il quale è
un formalismo espressivo per la rappresentazione della conoscenza e il ragio-
namento automatico. Nel corso del tempo, ASP è stato sempre più dedicato
alla risoluzione di problemi reali grazie alla disponibilità di sistemi efficienti.
Questa tesi presenta due contributi in questo ambito: (i) nuove strategie per
migliorare la valutazione dei programmi ASP, e (ii) un’applicazione di ASP
per il Question Answering in Linguaggio Naturale.

Nel primo contributo studiamo alcuni casi in cui la strategia di valutazione
classica di ASP fallisce a causa del cosiddetto grounding bottleneck. Dappri-
ma ci concentriamo su casi in cui ci sono dei vincoli la cui istanziazione è
problematica. Affrontiamo il problema usando propagatori ad-hoc e istanzia-
tori lazy, e dimostriamo empiricamente sotto quali condizioni queste soluzioni
sono efficaci. Due svantaggi delle tecniche basate sui propagatori/istanziatori
sono la necessità di avere una conoscenza approfondita dei sistemi ASP e il
fatto che l’implementazione sia a carico dell’utente e scritta in un lionguaggio
non dichiarativo. Per superare questi svantaggi, abbiamo ideato una tecnica
di compilazione parziale dei programmi ASP. Questa nuova tecnica consente
di generare automaticamente i propagatori per alcune delle regole logiche di
un programma. Un’analisi empirica mostra i benefici, in termini di presta-
zioni, che possono essere ottenuti introducendo la compilazione parziale nella
valutazione dei programmi ASP. Per quanto ne sappiamo, questo è il primo
lavoro su tecniche di compilazione per programmi ASP.

Per quanto riguarda la seconda parte della tesi, presentiamo un sistema di
risposta alle domande in linguaggio naturale la cui implementazione è basata
su ASP. Il sistema da noi realizzato trasforma le domande di input in query
SPARQL che vengono eseguite su una base di conoscenza ontologica. Nel
sistema sono integrati diversi modelli e strumenti allo stato dell’arte per il
processamento del linguaggio naturale con particolare riferimento alla lingua
italiana e al dominio dei beni culturali.

Il sistema che è stato da noi realizzato rappresenta il modulo software
principale nell’ambito del progetto PIUCULTURA che è un progetto finan-
ziato dal Ministero dello Sviluppo Economico italiano e il cui obiettivo è
quello di promuovere e migliorare la fruizione dei beni culturali.

Abstract

This work is focused on Answer Set Programming (ASP), that is an expres-
sive formalism for Knowledge Representation and Reasoning. Over time,
ASP has been more and more devoted to solving real-world problems thanks
to the availability of efficient systems. This thesis brings two main contri-
butions in this context: (i) novel strategies for improving ASP programs
evaluation, and (ii) a real-world application of ASP to Question Answering
in Natural Language.

Concerning the first contribution, we study some cases in which classical
evaluation fails because of the so-called grounding bottleneck. In particular,
we first focus on cases in which the standard evaluation strategy is ineffective
due to the grounding of problematic constraints. We approach the problem
using custom propagators and lazy instantiators, proving empirically when
this solution is effective, which is an aspect that was never made clear in
the existing literature. Despite the development of propagators can be ef-
fective, it has two main disadvantages: it requires deep knowledge of the
ASP systems, and the resulting solution is not declarative. We propose a
technique for overcoming these issues which we call program compilation.
In our approach, the propagators for some of the logic rules (not only for
the constraints) of a program are generated automatically by a compiler.
We provide some sufficient conditions for identifying the rules that can be
compiled in an approach that fits a propagator-based system architecture.
An empirical analysis shows the performance benefits obtained by introduc-
ing (partial) compilation into ASP programs evaluation. To the best of our
knowledge, this is the first work on compilation-based techniques for ASP.

Concerning the second part of the thesis, we present the development of a
Natural Language Question Answering System whose core is based on ASP.
The proposed system gradually transforms input questions into SPARQL
queries that are executed on an ontological knowledge base. The system
integrates several state-of-the NLP models and tools with a special focus
on the Italian language and the Cultural Heritage domain. ASP is used to
classify questions from a syntactical point of view. The resulting system is the
core module of the PIUCULTURA project, funded by the Italian Ministry of
Economic Development, that has the aim to devise a system for promoting
and improving the fruition of Cultural Heritage.

Introduction

Context and motivation. Answer Set Programming (ASP) is a powerful
formalism that has roots in Knowledge Representation and Reasoning and
is based on the stable model semantics [43, 16]. ASP is a viable solution for
representing and solving many classes of problems thanks to its high expres-
sive power and the availability of efficient systems [41]. Indeed, ASP has been
successfully applied to several academic and industrial applications such as
product configuration [50], decision support systems for space shuttle flight
controllers [67], explanation of biomedical queries [31], construction of phy-
logenetic supertrees [51], data-integration [62], reconfiguration systems [6],
and more. A key features of ASP consists in the capability to model hard
combinatorial problems in a declarative and compact way.

But, how far can the spectrum of applicability of ASP be extended in
real-world scenarios? Even though ASP is supported by efficient systems, is
there still room for improvements?

On one hand, there is a general need for assessing ASP on a wider and
wider spectrum of real-world applications. This is particularly useful to pro-
vide a more general understanding of the usability of ASP in practice. On
the other hand, the evaluation of ASP programs is a complex issue, and there
are still cases where ASP systems can be improved, especially in presence of
the so-called grounding-bottleneck [18]. Thus there is the need to overtake
their weak spots and possibly gain performance improvements to keep up
with the challenges of emerging applications.

This thesis has two main goals in this context: (i) devise novel strate-
gies for improving ASP programs evaluation, and (ii) applying ASP to the
challenging problem of Question Answering in Natural Language. These
two goals and the related contributions are introduced in the following and
treated in detail in the two parts of this thesis. The two parts are related
in the sense that they tackle two aspects that are both important to the de-

1

velopment of the ASP ecosystem. Indeed, theoretical/methodological results
make real-worlds ASP applications possible, and on the other hand, real-
world applications push the innovation of existing systems, methods and
theories.

Part 1: Enhancing ASP Systems on Grounding-intensive Programs
State-of-the-art ASP systems evaluate ASP programs in a two-step compu-
tation by first removing variables in the so-called grounding phase and then
performing a stable models search on the resulting variable-free program in
the so-called solving phase. This approach is typically referred to as the
“ground+solve” approach. One of the main criticism to the “ground+solve”
approach is that the two phases are completely separated and the ground-
ing of an ASP program might require, both in theory and in practice, a
memory space and an amount of time that exceed usability limits. Not
only the grounding phase can be too costly to perform by itself, but also it
can generate a propositional program that is too big for solvers to tackle.
This problem is often referred to as the grounding bottleneck of ASP [18].
The grounding bottleneck has been the subject of several studies in recent
years, and various alternative approaches to overcome it have been proposed
such as ASPeRiX [55], GASP [20], and OMiGA [22]. Albeit alternative ap-
proaches obtained promising preliminary results, they cannot yet reach the
performance of state of the art systems in many benchmarks [18, 55].

The first part of this thesis presents some alternative strategies for solving
classes of ASP programs where the classical “ground+solve” evaluation fails
or is inefficient. First, we focus on problematic ASP constraints and present
three different evaluation strategies that are implemented as programmatic
extensions of WASP [4], that is a state-of-the-art ASP solver. We provide
an empirical evaluation conducted on real and synthetic benchmarks that
confirms that the usage of custom propagators or lazy instantiators can be
effective in presence of problematic ASP constraints. Moreover, we inves-
tigate the applicability of a portfolio approach to automatically select the
best strategy when more than one solution is available. The result is positive
in the sense that, empirically, a naive portfolio approach is faster than the
best approach. Then, we present partial compilation of ASP programs. By
using partial compilation we can generate lazy instantiators of constraints
automatically. The applicability of partial compilation is not limited to con-
straints, but allows is extended to rules under some provided conditions. An

2

empirical analysis shows the performance benefits that can be obtained by
introducing partial compilation into ASP programs evaluation.

Part 2: An Application of ASP to Closed-Domain Question An-
swering. Question Answering (QA) attempts to find direct answers to
questions posed in natural language. There are two families of QA: in open
domain QA there is no restriction to the domain of the questions, while in
closed domain QA questions are bound to a specific domain.

In open domain QA, most systems are based on a combination of Infor-
mation Retrieval and NLP techniques [47]. Such techniques are applied to a
large corpus of documents: first attempting to retrieve the best documents to
look into for the answer, then selecting the paragraphs which are more likely
to bear the desired answer and finally processing the extracted paragraphs by
means of NLP. Many closed domain question answering systems also adopt
IR approaches, but in this context, we might benefit from existing structured
knowledge. Some of the very early question answering systems were designed
for closed domains and they were essentially conceived as natural language
interfaces to databases [45][80].

Closed Domain QA differs from Open Domain QA mainly because the
set of possible questions is more limited and there is a higher chance of being
able to rely on a suitable model for representing the data that is specific to
the domain at hand.

In the second part of the thesis, we present a system developed in the
context of Closed Domain Question Answering. The idea comes from the
PICULTURA project, which is a project funded by the Italian Ministry
for Economic Development and for which the University of Calabria is a
research partner. The PIUCULTURA project has the intent to promote and
improve the fruition of Cultural Heritage and a core module of the project is
a Question Answering System that had to be able to answer natural language
questions posed by the users on Cultural Heritage. The project was centered
on the Italian language and the Cultural Heritage domain, but the approach
that we developed is general and can work similarly for other languages and,
to some extents, to other domains.

Cultural Heritage can benefit from structured data sources: in this con-
text, data has already started to be saved and shared with common stan-
dards. One of the most successful standards is the CIDOC Conceptual Refer-
ence Model, that has been identified as the ontological model of reference on

3

cultural heritage for our Question Answering system. It provides a common
semantic framework for the mapping of cultural heritage information and
can be adopted by museums, libraries, and archives. We developed a sys-
tem that gradually transforms input natural language questions into formal
queries that are executed on an ontological Knowledge Base.

The presented system integrates state-of-the-art models and tools for Nat-
ural Language Processing (NLP).

ASP plays a crucial role in the syntactic categorization of questions in the
form of what we call question templates that are expressed in terms of ASP
rules. This is indeed a new application scenario for ASP and the proposed
solution fits the requirements and the expectations of the companies involved
in the PIUCULTURA project that will transform our prototypical system in
a full-fledged implementation.

Additional Notes An update version of the thesis can be downloaded
here 1.

Contributions. Summarizing the main contributions of the thesis are:

• We identify empirically the cases in which a propagator-based solution
can be used effectively to circumvent the grounding-bottleneck in pres-
ence of problematic constraints, reporting on an exhaustive experiment
that systematically compares the standard “ground+solve” approach
with several alternatives that are based on propagators.

• A technique for partial compilation of ASP programs which is embed-
dable in state-of-the-art ASP systems. To the best of our knowledge,
this is the first work on compilation-based techniques for ASP programs
evaluation.

• A system for Closed-Domain Question Answering that is based on ASP.

Publications. Some of the contributions of the thesis have been subject
of the following scientific publications.

• Bernardo Cuteri, Carmine Dodaro, Francesco Ricca, and Peter Schüller.
Constraints, lazy constraints, or propagators in ASP solving: An em-
pirical analysis. TPLP, 17(5-6):780–799, 2017.

1http://bit.ly/2VQjJEE

4

http://bit.ly/2VQjJEE

• Bernardo Cuteri and Francesco Ricca. A compiler for stratified dat-
alog programs: preliminary results. In SEBD, volume 2037 of CEUR
Workshop Proceedings, page 158. CEUR-WS.org, 2017.

• Bernardo Cuteri, Alessandro Francesco De Rosis, and Francesco Ricca.
lp2cpp: A tool for compiling stratified logic programs. In AI*IA,
volume 10640 of Lecture Notes in Computer Science, pages 200–212.
Springer, 2017.

• Bernardo Cuteri. Closed domain question answering for cultural her-
itage. In DC@AI*IA, volume 1769 of CEUR Workshop Proceedings,
pages 17–22. CEUR-WS.org, 2016.

5

Part I

Enhancing ASP Systems on
Grounding-intensive Programs

6

Answer set programming (ASP) is a declarative formalism for knowledge
representation and reasoning based on stable model semantics [43, 16], for
which robust and efficient implementations are available [35]. State-of-the-
art ASP systems are usually based on the “ground+solve” approach [49],
in which a grounder module transforms the input program (containing vari-
ables) in an equivalent variable-free one, whose stable models are subse-
quently computed by the solver module. ASP implementations adopting
this traditional approach are known to be effective for solving complex prob-
lems arising from academic and industrial applications, including: product
configuration [50], decision support systems for space shuttle flight con-
trollers [67], explanation of biomedical queries [31], construction of phyloge-
netic supertrees [51], data-integration [62], reconfiguration systems [6], and
more. Nonetheless, there are some classes of programs whose evaluation is
not feasible with the “ground+solve” approach. One notable case is due to a
combinatorial blow-up of the grounding phase (cf. [18]). An issue that is usu-
ally referred to as the grounding bottleneck of ASP. In this first part of this
thesis, we present some alternative approaches for solving ASP programs,
that attempt to succeed where the standard “ground+solve” approach fails
or can be improved, especially in presence of the grounding bottleneck.

This part is organized as follows:

• in chapter 1 we provide some preliminaries on ASP;

• in chapter 2 we empirically compare the “ground+solve” approach with
lazy instantiation and custom propagators for solving ASP programs
with problematic constraints;

• in chapter 3 we present partial compilation of ASP programs, that
is the application of compilation-based technique to the evaluation of
ASP programs (or parts of them).

7

Chapter 1

Preliminaries and Notation

An ASP program Π is a finite set of rules of the form:

a1 ∨ . . . ∨ an ← b1, . . . , bj, ∼bj+1, . . . , ∼bm (1.1)

where a1, . . . , an, b1, . . . , bm are atoms and n ≥ 0, m ≥ j ≥ 0. In particular,
an atom is an expression of the form p(t1, . . . , tk), where p is a predicate
symbol and t1, . . . , tk are terms. Terms are alphanumeric strings, and are
distinguished in variables and constants. According to the Prolog’s conven-
tion, only variables start with an uppercase letter. A literal is an atom ai
(positive) or its negation ∼ai (negative), where ∼ denotes the negation as
failure. Given a rule r of the form (1.1), the disjunction a1 ∨ . . . ∨ an is the
head of r, while b1, . . . , bj, ∼bj+1, . . . , ∼bm is the body of r, of which b1, . . . , bj
is the positive body, and ∼bj+1, . . . , ∼bm is the negative body of r. A rule r of
the form (1.1) is called a fact if m = 0 and a constraint if n = 0. An object
(atom, rule, etc.) is called ground or propositional, if it contains no variables.
Rules and programs are positive if they contain no negative literals, and gen-
eral otherwise. Given a program Π, let the Herbrand Universe UΠ be the set
of all constants appearing in Π and the Herbrand Base BΠ be the set of all
possible ground atoms which can be constructed from the predicate symbols
appearing in Π with the constants of UΠ. Given a rule r, Ground(r) denotes
the set of rules obtained by applying all possible substitutions σ from the
variables in r to elements of UΠ. Similarly, given a program Π, the ground
instantiation Ground(Π) of Π is the set

⋃
r∈ΠGround(r).

For every program Π, its stable models are defined using its ground in-
stantiation Ground(Π) in two steps: First stable models of positive programs

8

are defined, then a reduction of general programs to positive ones is given,
which is used to define stable models of general programs.

A set L of ground literals is said to be consistent if, for every literal ` ∈ L,
its negated literal ∼` is not contained in L. Given a set of ground literals
L, L|+ ⊆ L denotes the set of positive literals in L. An interpretation I for
Π is a consistent set of ground literals over atoms in BΠ. A ground literal
` is true w.r.t. I if ` ∈ I; ` is false w.r.t. I if its negated literal is in I; ` is
undefined w.r.t. I if it is neither true nor false w.r.t. I. A constraint c is said
to be violated by an interpretation I if all literals in the body of c are true.
An interpretation I is total if, for each atom a in BΠ, either a or ∼a is in I
(i.e., no atom in BΠ is undefined w.r.t. I). Otherwise, it is partial. A total
interpretation M is a model for Π if, for every r ∈ Ground(Π), at least one
literal in the head of r is true w.r.t. M whenever all literals in the body of r
are true w.r.t. M . A model X is a stable model for a positive program Π if
any other model Y of Π is such that X|+ ⊆ Y|+ .

The reduct or Gelfond-Lifschitz transform of a general ground program
Π w.r.t. an interpretation X is the positive ground program ΠX , obtained
from Π by (i) deleting all rules r ∈ Π whose negative body is false w.r.t. X
and (ii) deleting the negative body from the remaining rules. A stable model
of Π is a model X of Π such that X is a stable model of Ground(Π)X . We
denote by SM(Π) the set of all stable models of Π, and call Π coherent if
SM(Π) 6= ∅, incoherent otherwise.

Example 1. Consider the following program Π1:

r1 : a(1)← ∼b(1) r2 : b(1)← ∼a(1) r3 :← a(X), b(X)
r4 : c(1)← ∼d(1) r5 : d(1)← ∼c(1) r6 :← a(X), ∼b(X)

The ground instantiation Ground(Π1) of the program Π1 is the following
program:

g1 : a(1)← ∼b(1) g2 : b(1)← ∼a(1) g3 :← a(1), b(1)
g4 : c(1)← ∼d(1) g5 : d(1)← ∼c(1) g6 :← a(1), ∼b(1)

Note that M = {∼a(1), b(1), c(1), ∼d(1)} is a model of Ground(Π1). Since
Ground(Π1)M comprises only the facts b(1) and c(1), and constraint g3, M
is a stable model of Π.

Support. Given a model M for a ground program Π, we say that a ground
atom a ∈M is supported with respect to M if there exists a supporting rule

9

r ∈ Π such that a is the only true atom w.r.t. M in the head of r, and
all literals in the body of r are true w.r.t. M . If M is a stable model of a
program Π, then all atoms in M are supported.

10

Chapter 2

Custom Propagators for
Constraints

The grounding bottleneck has been subject of several studies in recent years,
and various alternative approaches to overcome it have been proposed. Some
of these are based on syntactic extensions that enable the combination of ASP
solvers with solvers for external theories [68, 11, 10, 7, 23, 75, 30]; whereas, the
most prominent approach working on plain ASP is lazy grounding, which was
implemented by asperix [55], gasp [21], and omiga [22]. Roughly, the idea
of lazy grounding is to instantiate rules only when it is required during the
search for a stable model [60]. In this way, it is possible to prevent the ground-
ing of rules that are unnecessary for the computation. Albeit lazy grounding
techniques obtained promising preliminary results, they cannot yet reach the
performance of state of the art systems in many benchmarks [18, 55]. One of
the reasons is probably that fully-fledged lazy grounding techniques could not
be easily integrated within solvers based on the very efficient Conflict-Driven
Clause Learning (CDCL) algorithm [73, 49, 79]. Nonetheless, in many appli-
cations, the grounding bottleneck is merely caused by rules of a specific kind,
namely constraints. For example, the following constraint has been identi-
fied as the bottleneck in programs solving a problem of natural language
understanding:

← eq(X, Y), eq(Y, Z), ∼eq(X,Z)

Its grounding, which features a cubic number of instances with respect to
the extension of predicate eq in the worst case, is often not feasible for real
world instances [72].

11

In this work, we first focus on the above practically-relevant case of prob-
lematic constraints. In particular, we systematically compare alternative
strategies that avoid the instantiation of some constraints by extending a
CDCL-based ASP solver. In a nutshell, the input program is simplified
by omitting problematic constraints and it is grounded; then, the resulting
ground program is provided as input to a solver that is extended to emu-
late the presence of missing constraints. Among the strategies for extending
the solver, we considered lazy instantiation of constraints and custom prop-
agators. In the first strategy, the solver searches for a stable model S of
the simplified program. Then, S is returned as a solution if it satisfies also
the omitted constraints, otherwise the violated instances of these constraints
are lazily instantiated, and the search continues (Sec. 2.1.2). In the sec-
ond strategy, the solver is extended (in possibly alternative ways) by custom
propagators, which emulate the presence of missing constraints during the
search (Sec. 2.1.3). The above-mentioned strategies can be implemented by
using the API of existing CDCL-based ASP solvers [35, 25].

An empirical evaluation conducted on real and synthetic benchmarks
(Sec. 2.2) confirms that the usage of lazy instantiation and custom prop-
agators is effective when the grounding bottleneck is due to some constraint.
The analysis of the results highlights strengths and weaknesses of the dif-
ferent strategies. Moreover, it shows there is not always a clear winner for
a given problem, and the choice depends also on the characteristics of the
instances to solve. This observation suggested to investigate the applicabil-
ity of algorithm selection techniques. The results are positive, in the sense
that already a basic portfolio is faster than any of the considered approaches
taken individually.

2.1 Solving Strategies

2.1.1 Classical Evaluation

The standard solving approach for ASP is instantiation followed by a pro-
cedure similar to CDCL for SAT with extensions specific to ASP [49]. The
basic algorithm ComputeStableModel(Π) for finding a stable model of pro-
gram Π is shown in Algorithm 1. The Function 2 combines unit propagation
(as in SAT) with some additional ASP-specific propagations, which ensure
the model is stable (cf. [49]).

12

Given a partial interpretation I consisting of literals, and a set of rules
Π, unit propagation infers a literal ` to be true if there is a rule r ∈ Π
such that r can be satisfied only by I∪{`}. Given the nogood representation
C(r) = {∼a1, . . . , ∼an, b1, . . . , bj, ∼bj+1, . . . , ∼bm} of a rule r, then the negation
of a literal ` ∈ C(r) is unit propagated w.r.t. I and rule r iff C(r) \ {`} ⊆ I.
To ensure that models are supported, unit propagation is performed on the
Clark completion of Π or alternatively a support propagator is used [3].

Example 2. Consider the ground program Π1 from Example 1.
ComputeStableModel(Π1) starts with I = ∅ and does not propagate anything
at line 2. I is partial and consistent, so the algorithm continues at line 15.
Assume no restart and no deletion is performed, and assume ChooseLiteral
returns {a(1)}, i.e., I = {a(1)}. Next, Propagate(I) is called, which yields
I = {a(1), b(1), ∼b(1)}: ∼b(1) comes from unit propagation on g3 and b(1)
from unit propagation on g6. Thus, I is inconsistent and I is analyzed to com-
pute a reason explaining the conflict, i.e., CreateConstraint(I) = {g7} with
g7 :← a(1). Intuitively, the truth of a(1) leads to an inconsistent interpreta-
tion, thus a(1) must be false. Then, the consistency of I is restored (line 5),
i.e., I = ∅, and g7 is added to Π1. The algorithm again restarts at line 2 with
I = ∅ and propagates I = {∼a(1), b(1)}, where ∼a(1) comes from unit prop-
agation on g7, and b from unit propagation on g2. I is partial and consistent,
therefore lines 15 and 16 are executed. Assume again that no restart and no
constraint deletion happens, and that ChooseLiteral(I) = {c(1)}. Therefore,
the algorithm continues at line 2 with I = {∼a(1), b(1), c(1)}. Propagation
yields I = {∼a(1), b(1), c(1), ∼d(1)} because ∼d(1) is support-propagated
w.r.t. g4 and I (or unit-propagated w.r.t. the completion of g4 and I). I
is total and consistent, therefore the algorithm returns I as the first stable
model.

For the performance of this search procedure, several details are crucial:
learning effective constraints from inconsistencies as well as heuristics for
restarting, constraint deletion, and for choosing literals.

2.1.2 Lazy Constraints

The algorithm presented in this section is reported as Algorithm 3. The
algorithm takes as input a program Π and a set of constraints C ⊆ Π. Then,
the constraints in C are removed from Π, obtaining the program P . A stable
model of Ground(P) is searched (line 2). Two cases are possible: (i) P is

13

Algorithm 1 ComputeStableModel

Input: A ground program P
Output: A stable model for P or ⊥

1: I := ∅
2: I := Propagate(I)
3: if I is inconsistent then
4: r := CreateConstraint(I)
5: I := RestoreConsistency(I)
6: if I is consistent then
7: P := P ∪ {r}
8: else
9: return ⊥

10: end if
11: else if I total then
12: return I
13: else
14: I := RestartIfNeeded(I)
15: P := DeleteConstraintsIfNeeded(P)
16: I := I ∪ ChooseLiteral(I)
17: end if
18: goto 2

Algorithm 2 Propagate(I)

1: I = I
2: for all ` ∈ I do
3: I := I ∪ Propagation(I, `)
4: end for
5: return I

14

Algorithm 3 LazyConstraintInstantiation

Input: A nonground program Π, a set of nonground constraints C ⊆ Π
Output: A stable model for Π or ⊥

1: P := Ground(Π \ C)
2: I := ComputeStableModel(P)
3: if I == ⊥ then
4: return ⊥
5: end if
6: C = {c | c ∈ Ground(C), c is violated}
7: if C == ∅ then
8: return I
9: end if

10: P := P ∪ C
11: goto 2

incoherent (line 4). Thus, the original program Π is also incoherent and the
algorithm terminates returning ⊥. (ii) P is coherent. Thus, a stable model,
say I, is computed. In this case, a set of constraints C ∈ Ground(C) that
are violated under the stable model I are extracted (line 6) and added to P
(line 10). The process is repeated until either a stable model of P violat-
ing no constraints in Ground(C) is found or P is incoherent. Importantly,
Ground(C) is never represented explicitly in the implementation of line 5.

Example 3. Again consider program Π1 from Example 1 and the set of
constraints C = {r3, r6}. The algorithm computes a stable model, say I1 =
{a(1), ∼b(1), c(1), ∼d(1)}, of P1 = Ground(Π1 \ C). Thus, the ground
instantiation g6 of r6 is violated under I1 and therefore g6 is added to P.
Then, a stable model of P is computed, say I2 = {∼a(1), b(1), c(1), ∼d(1)}.
At this point, I2 violates no constraint in Ground(C). Thus, the algorithm
terminates returning I2. Note that all instantiations of constraint r3 will be
never violated since rules r1 and r2 enforce that exactly one of a(1) and b(1)
can be true in a stable model. Thus, r3 will never be instantiated by the
algorithm.

An important feature of Algorithm 3 is that it requires no modifications
to the search procedure implemented by the underlying ASP solver.

15

2.1.3 Constraints via Propagators

In this section, constraints are replaced using the concept of propagator,
which can set truth values of atoms during the solving process, based on
truth values of other atoms. An example of a propagator is the unit prop-
agation, detailed in Section 2.1.1. In contrast to the lazy instantiation of
constraints that aims at adding violated constraints when a stable model
candidate is found, propagators usually are used to evaluate the constraints
during the computation of the stable model. Given a program Π, traditional
solvers usually apply propagators on the whole set of rules and constraints in
Ground(Π). An alternative strategy is to consider a variant of the program,
say P = Π \ C, where C is a set of constraints. The solver is then executed
on Ground(P) and a propagator is used to guarantee the coherence of partial
interpretations with the constraints in Ground(C). Constraints in C are not
instantiated in practice but their inferences are simulated by an ad-hoc pro-
cedure implemented for that purpose. This approach requires a modification
of the Propagation function in algorithm 2, such that Propagation considers
the additional set C of constraints, verifies which constraints would result in
a propagation on the partial interpretation, and propagate truth values due
to inferences on C in addition to unit propagation.

Example 4. Again consider program Π1 from Example 1 and the set of con-
straints C = {r3, r6}. The idea is to execute Algorithm 1 on Ground(P1),
where P1 = Π1 \ C. ComputeStableModel(P1) starts with I = ∅ and does
not propagate anything at line 2. I is partial and consistent, so the algorithm
continues at line 15. Assume no restart and no deletion is performed, and as-
sume ChooseLiteral returns {a(1)}, i.e., I = {a(1)}. Next, Propagate(I, C)
is called. In this case, the propagation yields I = {a(1), b(1), ∼b(1)}, where
∼b(1) comes from unit propagation on g1, while b(1) comes from unit prop-
agation on the ground instantiation g6 of the rule r6. Thus, I is inconsis-
tent and I is analyzed to compute a reason that explains the conflict, i.e.,
CreateConstraint(I) = {g7} with g7 :← a(1). Then, the algorithm continues
as shown in Example 2. Note that, from this point of the computation, the
ground instantiations of constraints r3 and r6 will never be violated again,
since g7 assure that a(1) will be false in all partial interpretations under con-
sideration.

We classify constraint propagators according to the priority given to them.
In particular, they are considered eager if propagation on non-ground con-

16

straints is executed as soon as possible, i.e., during unit propagation of al-
ready grounded constraints; moreover, they are called postponed (or post) if
propagation on constraints is executed after all other (unit, support, etc.)
propagations.

2.2 Implementation and Experimental Anal-

ysis

2.2.1 Implementation

The lazy instantiation of constraints and the propagators have been imple-
mented on top of the ASP solvers wasp [5] and clingo [35]. The Python
interface of wasp [25] follows a synchronous message passing protocol imple-
mented by means of method calls. Basically, a Python program implements
a predetermined set of methods that are later on called by wasp whenever
specific points of the computation are reached. The methods may return
some values that are then interpreted by wasp. For instance, when a literal
is true the method onLiteralTrue of the propagator is called, whose output is
a list of literals to infer as true as a consequence (see [25] for further details).
clingo 5 [35] provides a Python interface where a propagator class with an
interface similar to wasp can be registered.

Two important differences exist between wasp and clingo. Firstly
clingo provides only a post-propagator interface and no possibility for re-
alizing an eager propagator (that runs before unit propagation is finished).
Secondly, wasp first collects nogoods added in Python and then internally
applies them and handles conflicts, while clingo requires an explicit prop-
agation call after each added nogood. If propagation returns a conflict then
no further nogoods can be added in clingo, even if further nogoods were
detected. After consulting the clingo authors, we implemented a queue for
nogoods and add them in subsequent propagations if there is a conflict. This
yields higher performance than abandoning these nogoods.

2.2.2 Description of Benchmarks

In order to empirically compare the various strategies for avoiding the instan-
tiation of constraints, we investigated several benchmarks of different nature,
namely Stable Marriage, Packing, and Natural Language Understanding. All

17

benchmarks contain one or few constraints whose grounding can be problem-
atic.

Stable Marriage. The Stable Marriage problem can be described as fol-
lows: given n men and m women, where each person has a preference order
over the opposite sex, marry them so that the marriage is stable. In this case,
the marriage is said to be stable if there is no couple (M,W) for which both
partners would rather be married with each other than their current partner.
We considered the encoding used for the fourth ASP Competition. For the
lazy instantiation and for the ad-hoc propagators the following constraint
has been removed from the encoding:

:- match(M,W1), manAssignsScore(M,W,Smw), W1 6= W,

manAssignsScore(M,W1,Smw1), Smw > Smw1,

match(M1,W), womanAssignsScore(W,M,Swm),

womanAssignsScore(W,M1,Swm1), Swm ≥ Swm1.

Intuitively, this constraint guarantees that the stability condition is not vio-
lated.

Packing. The Packing Problem is related to a class of problems in which
one has to pack objects together in a given container. We consider the variant
of the problem submitted to the ASP Competition 2011. In that case, the
problem was the packing of squares of possibly different sizes in a rectangu-
lar space and without the possibility of performing rotations. The encoding
follows the typical guess-and-check structure, where positions of squares are
guessed and some constraints check whether the guessed solution is a stable
model. We identified 2 expensive sets of constraints. The first set comprises
the following two constraints:

:- pos(I,X,Y), pos(I,X1,Y1), X1 6= X

:- pos(I,X,Y), pos(I,X1,Y1), Y1 6= Y

which enforce that a square is not assigned to different positions. The
second set comprises constraints forbidding the overlap of squares. One of
these constraints is reported in the following:

:- pos(I1,X1,Y1), square(I1,D1), pos(I2,X2,Y2),

square(I2,D2), I1 6= I2, W1 = X1+D1,

H1 = Y1+D1, X2 ≥ X1, X2 < W1, Y2 ≥ Y1, Y2 < H1.

18

Other constraints are similar thus they are not reported.

Natural Language Understanding (NLU). The NLU benchmark is an
application of ASP in the area of Natural Language Understanding, in par-
ticular the computation of optimal solutions for First Order Horn Abduction
problems under the following cost functions: cardinality minimality, cohe-
sion, and weighted abduction. This problem and these objective functions
have been described by Schüller [72]. In this problem, we aim to find a set of
explanatory atoms that makes a set of goal atoms true with respect to a First
Order Horn background theory. We here consider the acyclic version of the
problem where backward reasoning over axioms is guaranteed to introduce
a finite set of new terms. A specific challenge in this problem is that input
terms and terms invented via backward chaining can be equivalent to other
terms, i.e., the unique names assumption is partially not true. Equivalence
of terms must be handled explicitly in ASP, which is done by guessing an
equivalence relation. This makes the instantiation of most instances infea-
sible, as the number of invented terms becomes large, due to the grounding
blow-up caused by the following constraint:

:- eq(A,B), eq(B,C), not eq(A,C).

2.2.3 Hardware and Software Settings

The experiments were run on a Intel Xeon CPU X3430 2.4 GHz. Time and
memory were limited to 600 seconds and 4 GB, respectively. In the following,
wasp-lazy refers to wasp implementing lazy instantiation of constraints,
while wasp-eager and wasp-post refer to wasp implementing eager and
postponed propagators, respectively. All versions of wasp use gringo ver-
sion 5.1.0 as grounder, whose grounding time is included in the execution
time of wasp. Moreover, clingo lazy and clingo post refer to clingo
implementing lazy and postponed propagators, respectively. For the NLU
benchmark, we always use unsat-core optimization.

2.2.4 Discussion of Results

Stable Marriage. Concerning Stable Marriage, we executed the 30 in-
stances selected for the Fourth ASP Competition. clingo and wasp ex-
ecuted on the full encoding are able to solve 29 out of the 30 instances

19

with an average running time of 50 and 29 seconds, respectively. On the
same instances, ad-hoc propagators cannot reach the same performance. In-
deed, wasp-lazy and wasp-post perform the worst solving 0 and 5 in-
stances, respectively, whereas wasp-eager is much better with 17 solved
instances. The same performance is obtained by clingo-lazy and clingo-
post which can solve 0 and 17 instances in the allotted time, respectively.
The poor performance of the lazy instantiation can be explained by look-
ing at the specific nature of the instances. Indeed, each instance contains
a randomly generated set of preferences of men for women (resp. women
for men). By looking at the instances we observed that each man (resp.
woman) has a clear, often total, preference order over each woman (resp.
man). This specific case represents a limitation for employing the lazy in-
stantiation. Indeed, wasp and clingo executed on the encoding without
the stability constraint perform naive choices until a stable model candidate
is found. Then, each candidate contains several violations of the stability
condition and many constraints are added. However, those constraints are
not helpful since they only invalidate the current stable model candidate.
In general, for instances where the program without the stability condition

Table 2.1: Stable Marriage: Number of solved instances and average running
time (in seconds).

Pref. (%) wasp wasp-lazy wasp-eager wasp-post clingo clingo-lazy clingo-post
sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t

0 10 4.1 10 4.7 10 4.6 10 4.7 10 10.6 10 4.2 10 4.2
5 9 16.2 10 4.7 10 4.3 10 4.9 10 23.0 10 4.6 10 4.4

10 10 19.2 10 4.7 10 4.3 10 4.6 10 34.6 10 6.4 10 8.2
15 9 24.3 10 4.7 10 4.4 10 4.8 10 42.9 10 9.6 10 17.5
20 8 35.2 10 4.8 10 4.6 10 5.2 10 48.9 10 16.5 10 24.7
25 10 34.8 10 4.8 10 5.4 10 6.0 10 53.9 10 22.2 10 42.8
30 6 97.0 10 5.0 10 7.7 10 7.6 10 59.5 10 32.2 10 92.1
35 10 42.1 10 5.0 10 8.2 10 10.0 10 65.8 10 62.4 10 115.9
40 9 51.3 10 5.2 10 7.6 10 9.2 10 68.4 10 81.8 10 117.5
45 10 113.4 10 5.4 10 10.8 10 12.0 10 71.0 10 97.7 10 140.8
50 6 74.6 10 5.1 10 22.4 10 20.3 10 72.0 10 153.6 10 143.4
55 9 44.5 8 5.9 10 39.4 10 23.6 10 72.9 10 193.8 10 166.5
60 9 70.9 10 7.7 10 23.8 10 25.0 10 74.6 10 241.1 10 181.6
65 7 99.3 10 11.4 10 64.7 10 54.2 10 74.7 10 295.6 10 209.8
70 9 89.3 5 25.5 10 121.8 10 101.8 10 75.0 10 361.1 10 235.3
75 8 77.0 0 - 10 184.0 10 146.7 10 75.1 6 472.1 10 311.0
80 7 85.5 0 - 10 248.6 8 274.7 10 76.3 0 - 10 434.3
85 4 259.5 0 - 10 232.3 1 337.2 10 82.3 0 - 7 569.7
90 9 79.2 0 - 5 449.4 0 - 10 251.1 0 - 1 577.7
95 10 46.3 0 - 0 - 0 - 6 273.6 0 - 3 580.8

100 8 67.6 1 81.2 10 133.3 10 153.6 10 74.1 6 493.3 10 323.9

20

is under-constrained many stable model candidates need to be invalidated
before an actual solution is found (intuitively, given a program Π and a set
of constraints C ⊆ Π, |SM(Π \ C)| � |SM(Π)|).

In order to further analyze this behavior empirically, we have conducted
an additional experiment on the same problem. In particular, we randomly
generated instances where each man (resp. woman) gives the same preference
to each woman (resp. man), so basically the stability condition is never
violated. Then, we consider a percentage k of preferences, i.e., each man
(resp. woman) gives the same preference to all the women (resp. men) but
to k% of them a lower preference is given. In this way, instances with small
values of k should be easily solved by lazy instantiation, whereas instances
with high values of k should be hard. For each considered percentage k, we
executed 10 randomly generated instances. Results are reported in Table 2.1,
where the number of solved instances and the average running time are shown
for each tested approach. Concerning wasp, as observed before, for instances
where the value of k is small (up to 50%) the lazy approach can solve all the
instances with an average running time of about 5 seconds. On the other
hand, for high values of k the advantages of the lazy approach disappear, as
observed for the competition instances. Interestingly, the eager propagator
obtained the best performance overall. For the tested instances, it seems to
benefit of a smaller program and generation of the inferences does not slow
down the performance as observed for competition instances. Concerning
clingo, the lazy approach is the best performing one for instances where
the value of k is up to 35%. As shown for wasp, the performance of the lazy
approach are worse for high values of k.

Packing. Concerning Packing problem, we considered all 50 instances sub-
mitted to the Third ASP Competition. Interestingly, when all constraints
are considered none of the instances can be instantiated within the time
limit. Thus, clingo and wasp do not even start the computation of a sta-
ble model. The grounding time substantially decreases when the two sets
of expensive constraints described in Section 2.2.2 are removed from the en-
coding. Indeed, in this case, the grounding time on the tested instances is
5 seconds on average, with a peak of 16 seconds. Results of the lazy con-
straint instantiation and of constraint propagators on the resulting program
are reported in the cactus plot of Figure 2.1. The graph highlights that
wasp-eager, wasp-post, and clingo-post basically obtained the same

21

0 10 20 30 40 50
0

200

400

600

Number of instances

E
x
ec

u
ti

o
n

ti
m

e
(s

)

wasp-lazy
wasp-eager
wasp-post
clingo-lazy
clingo-post

Figure 2.1: Packing: Comparison of lazy and propagators approaches on
50 instances.

performance. Indeed, the first two solve all the tested instances with an av-
erage running time of 22 and 23 seconds, respectively, while clingo-post
solves 49 out of 50 instances with an average running time of 25 seconds.
Both wasp-post and clingo-post outperform their lazy counterparts. In-
deed, wasp-lazy solves 10 instances, with an average running time of 226
seconds, while clingo-lazy solves 5 instances, with an average running time
of 301 seconds. As already observed on the Stable Marriage instances, lazy in-
stantiation cannot compete with constraint propagators. In this experiment,
we observed that wasp and clingo perform naive choices on the encoding
without the expensive constraints, thus each candidate stable model con-
tains several violations of constraints, leading to inefficient search in harder
instances.

Natural Language Understanding (NLU). Concerning NLU, we con-
sidered all 50 instances and all three objective functions used in [72]. Results

Table 2.2: NLU Benchmark: Number of solved instances and average running
time (in seconds).

Obj. Func. wasp wasp-lazy wasp-eager wasp-post clingo clingo-lazy clingo-post
sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t

Card. 43 39.7 50 2.3 50 4.3 50 3.3 41 30.7 50 4.5 50 1.5
Coh. 43 40.1 50 18.5 50 8.8 50 6.3 41 30.7 49 24.6 49 15.8
W. Abd. 43 49.3 50 26.6 49 66.1 50 62.6 41 33.9 48 31.9 50 24.0

22

are reported in Table 2.2. As a general observation, all the tested instances
are solved by wasp-lazy and wasp-post, no matter the objective function.
Moreover, wasp-lazy is on average faster than all other alternatives for both
the objective functions cardinality and weighted abduction. The good per-
formance of lazy instantiation is related to the small number of failing stable
model checks performed. Indeed, only 2, 16, and 64 invalidations are on aver-
age required for cardinality, coherence, and weighted abduction, respectively.
The number of propagation calls is much higher for wasp-eager than for
wasp-post (approximately wasp-eager performs 3 times more propagation
calls than wasp-post). However, the number of propagated literals that are
not immediately rolled back because of a conflict is very similar, hence it is
clear that wasp-eager performs a lot of unnecessary propagations in this
benchmark and wasp-post should be preferred. Note that this is not gen-
erally the case for other benchmarks. Concerning clingo, 45, 248, and 321,
stable model candidates are invalidated with clingo-lazy, respectively, and
a similar amount (26, 589, and 700, respectively) with clingo-post. This
shows that clingo tends to produces more stable models that violate lazy
constraints. These violations are detected earlier with clingo-post, there-
fore it outperforms clingo-lazy in all objectives. None of the clingo
propagators is able to solve all instances with all objectives, whereas wasp-
post solves all of them within 600 s. In particular for objective functions
cardinality and coherence, wasp is always slightly faster and uses slightly
more memory than clingo. For weighted abduction, clingo-post is most
efficient with wasp-lazy in second place. Nevertheless, using clingo or
wasp with a lazy or post propagator will always be an advantage over
using the pure ASP encoding where the constraints are instantiated prior to
solving. Hence the choice of the method for instantiating constraints is more
important than the choice of the solver.

Discussion. We empirically investigated whether lazy instantiation or prop-
agators can be a valid option for enhancing the traditional “ground+solve”
approach. When the full grounding is infeasible, then both lazy instantia-
tion and propagators can overcome this limitation, even though they exhibit
different behaviors depending on the features of the problem and of the in-
stances. This is particularly evident in Packing, where no instance can be
grounded within the time limit. Since propagators are activated during the
search, while lazy instantiation intervenes only when a total interpretation

23

is computed, propagators are preferable when the problematic constraint is
important to lead the search toward a solution (as overlap constraints in
Packing). On the other hand, a high number of unnecessary propagations
can make propagators inefficient and even slower than the lazy approach. In
these cases, we observed that post propagators are better than eager propaga-
tors as remarked by the results on the objective function ‘weighted abduction’
in the NLU benchmark. The experiment on Stable Marriage highlights that
lazy instantiation is effective when few constraints are instantiated during the
search. This is the case when: (i) it is very likely that a stable model of the
simplified (i.e., without problematic constraints) input program also satisfies
the lazy constraints; or (ii) the solver heuristics is such that one of the first
candidate total interpretations also satisfies the lazy constraints. This is also
confirmed in the NLU benchmark where the instances often have the above
characteristics, and the propagator is better only when the constraints gen-
erated by the lazy approach do not fit the working memory. Moreover, from
case (ii), we conjecture that the lazy approach can be effective in combination
with domain-specific heuristics [40, 24].

Finally, we conducted an additional experiment, where we do not oppose
our approaches with the ground+solve one as in the previous cases, but it
only aims at comparing the lazy propagation versus propagators in a con-
trolled setting. In particular, we considered a synthetic benchmark based
on the well-known 3-SAT problem that is interesting for our study since it
allows us to control both the hardness of the instances and the probability
that an interpretation satisfies the constraint. Indeed, we generated the in-
stances uniformly at random in a range centered on the phase transition [1].
We used a straightforward ASP encoding where we guess an interpretation
and we check by a single (non-ground) constraint whether this satisfies all
clauses. The results are summarized in Figure 2.4 where we present two
representative runs on formulas with 220 and 280 Boolean variables, respec-
tively. Since eager and post propagators behave very similarly we only show
comparisons between eager propagator and a lazy instantiation.

Expectedly, execution times follow the easy-hard-easy pattern [1], cen-
tered on the phase transition, while varying the ratio R of clauses over vari-
ables. Initially, the problem is very easy and both approaches are equally
fast. Then there is an interval in which the lazy approach is preferable, and
finally the eager approach becomes definitely better than the lazy. Note that,
on formulas with 220 variables (see Figure 2.2) the lazy approach is preferable
also on the hardest instances, instead with 280 variables (see Figure 2.3) the

24

eager approach becomes more convenient before the phase transition. To ex-
plain this phenomenon we observe that the lazy approach can be exemplified
by assuming that the solver freely guesses a model and then the lazy instan-
tiator checks it, until every clause is satisfied by an assignment or no model
can be found. The probability that a random model satisfies all clauses is
(7

8
)k where k is the number of clauses, thus fewer tries are needed on average

to converge to a solution if the formula has fewer clauses. This intuitively ex-
plains why, as the number of variables increases, the eager approach becomes
more convenient at smaller and smaller values of R. It is worth pointing out
that this simplified model does not fully capture the behavior of lazy instan-
tiation that is more efficient in practice, since the implementation learns from
previous failures (by instantiating violated constraints).

2.2.5 On the applicability of techniques for automatic
algorithm selection

The analysis conducted up to now shows that there is not always a clear
winner among the strategies for realizing constraints, since the best solving
method depends on characteristics of the encoding and the instance at hand.
In similar scenarios, portfolio approaches which automatically choose one out
of a set of possible methods have proven to be very effective in increasing
system performance, since they combine the strengths of the available meth-
ods. Therefore, we investigated whether algorithm selection techniques can
improve performance in our context.

We apply basic algorithm selection based on classification with machine
learning: we extract some natural features from each instance, and train
a C4.5 [69] classifier to predict the best solving method (i.e., the one that
required least amount of time) among all the available ones (including the
plain solver). We limit our analysis to Stable Marriage and NLU, because in
these domains none of the available methods is clearly superior. As features
for stable marriage we used the number of persons and the percentage or

Table 2.3: Applicability of a portfolio approach: experimental results.

wasp-based clingo-based

Problem #instances Prec Recall F-Meas Perf. gain Prec Recall F-Meas Perf. gain
Stable Marriage 500 0.66 0.67 0.63 26.7% 0.74 0.75 0.74 13.6%
NLU 150 0.88 0.92 0.90 38.3% 0.84 0.84 0.84 10.0%

25

3 3.5 4 4.5 5

10−1

100

101

Number of clauses / number of variables

E
x
ec

u
ti

on
ti

m
e

(s
)

wasp-lazy
wasp-eager

2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

F
re

q
u

en
cy

of
U

N
S

A
Tunsat freq.

Figure 2.2: Results with 220 variables

3 3.5 4 4.5 5

10−1

100

101

102

103

Number of clauses / number of variables

E
x
ec

u
ti

on
ti

m
e

(s
)

wasp-lazy
wasp-eager

2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

F
re

q
u

en
cy

of
U

N
S

A
Tunsat freq.

Figure 2.3: Results with 280 variables

Figure 2.4: 3-SAT experiments. Red and blue lines correspond to eager prop-
agators and lazy instantiation respectively. The dashed black line represents
the percentage of UNSAT instances, while the vertical dotted line evidences
the phase transition point (frequency is about 0.5 at R = 4.26).

26

preferences, for NLU we used the number of facts and the number of distinct
constants and (instance-specific) predicates. We create portfolios for both
wasp-based and clingo-based implementations.

Table 2.3 shows the results of our evaluation using 10-fold cross-validation
(i.e., we split the set of instances into 10 partitions and use each partition
as test set while training on the remaining partitions). For each problem we
report (weighted average) precision, recall, and f-measure of the prediction,
as well as the average performance gain of the portfolio (i.e., by gain we mean
the difference in percentage between the sum of the execution times measured
for the portfolio and for its best method). We observe that the classifier is
able to choose the best algorithm in many cases, and the choice is almost
ideal in NLU (f-measure of 0.9 for wasp and 0.84 for clasp). The portfolios
are always faster (in terms of execution times) than the corresponding best
method for the respective problem. The performance gain peaks to 38%
for the wasp-based, and is less pronounced for the clingo-based (peak at
13.6%). This is expected since clingo features a basic solver that is more
competitive with propagator-based solutions in these domains.

Summarizing, these results confirm that already the application of basic
portfolio techniques is a viable option for improving the performance when
propagators are available.

2.3 Related Work

The grounding bottleneck in ASP has been subject of various studies. The
most prominent grounding-less approach that works on plain ASP is lazy
grounding, which was implemented by asperix [55], gasp [21], and omiga [22].
Differently from our approach that is focused on constraints, these solvers
perform lazy instantiation for all the rules of a program, and do not per-
form (conflict) clause learning. Weinzierl [79] recently investigated learning
of non-ground clauses.

Lazy instantiation of constraints was topic of several works on integrating
ASP with other formalisms. These include CASP [13, 68, 11], ASPMT [75],
BFASP [7], and HEX [29]. Differently from our approach, these approaches
are based on syntactic extensions that enable the combination of ASP solvers
with solvers for external theories. HEX facilitates the integration of generic
computation oracles as literals in ASP rule bodies, and allows these compu-
tations not only to return true or false, but also to inject constraints into

27

the search. This gave rise to the ‘on-demand constraint’ usage pattern of
external atoms [30] which roughly corresponds with the lazy propagators
in this work. HEX also permits a declarative specification of properties of
external computations [70], e.g., antimonotonicity with respect to some part
of the model. Such specifications automatically generate additional lazy con-
straints. Integration of ASP with continuous motion planning in robotics,
based on HEX, was investigated in [32]: adding motion constraints in a post
propagator was found to be significantly faster than checking only complete
stable model candidates (lazy). For integrating CModels with BProlog [10]
it was shown that using BProlog similar as a post propagator (clearbox)
performs better than using it as a lazy propagator (black-box).

De Cat et al. [23] provide a theory and implementation for lazy model
expansion within the FO(ID) formalism which is based on justifications that
prevent instantiation of certain constraints under assumptions. These as-
sumptions are relative to a model candidate and can be revised from encoun-
tered conflicts, leading to a partially lazy instantiation of these constraints.

We finally observe that lazy constraints can be seen as a simplified form
of lazy clause generation that was originally introduced in Constraint Pro-
gramming [34].

2.4 Discussion

In this chapter, we compared several solutions for addressing the problem of
the grounding bottleneck focusing on the practically-relevant case of problem-
atic constraints without resorting to any language extension. The considered
approach can be seen as a natural extension of the “ground+solve” paradigm,
adopted by state of the art ASP systems, where some constraints are replaced
either by lazy instantiators or propagators. The solutions fit CDCL-based
solving strategies, and can be implemented using APIs provided by state of
the art solvers.

Experiments conducted on both real-world and synthetic benchmarks
clearly outline that all the approaches can solve instances that are out of
reach of state of the art solvers because of the grounding blowup. Lazy in-
stantiation is the easiest to implement, and it is the best choice when the
problematic constraints have a high probability to be satisfied. Otherwise,
eager and post propagators perform better, with the latter being slightly
more efficient when the constraint is activated more often during propaga-

28

tion. Our empirical analysis shows that there is not always a clear winner for
a given problem, thus we investigated the applicability of algorithm selection
techniques. We observed that a basic portfolio can improve on the best strat-
egy also on these cases. In the next section we are presenting a continuation
of this work, that lead to the automatic generation of lazy propagators and
moves some first steps towards compilation-based evaluation of ASP.

29

Chapter 3

Partial Compilation

As seen in the previous chapter, the standard “ground+solve” approach can
fail at solving hard ASP instances, especially when the grounding phase is
costly. We empirically showed how lazy or eager propagators of constraints
can be better suited than the “ground+solve” approach in several use-cases.
One of the main drawbacks of using custom propagators is that the user has
to write a custom procedure that simulates the constraint (either eagerly
or lazily). We moved forward with the intent to produce such procedures
automatically and did it for lazy propagators. Moreover, we extended the
previous work to more general cases of application, covering not only con-
straints, but more general classes of sub-programs.

In an attempt to make the whole process as efficient as possible, we
decided to adopt a compilation-based approach, where an ASP sub-program
can be compiled into a specialized procedure that is in principle (and in
practice, as we will show) faster than a general-purpose procedure thanks to
its specificity. This attempt led to what is (to the best of our knowledge) the
first work of partial compilation of ASP programs. Indeed, automatic lazy
grounding of constraints became a by-product of partial compilation, and
the partial compilation approach can be adopted also in more general cases.

Our partial compilation is embeddable in existing ASP solvers thanks to
programmatic APIs and we implemented it within the WASP solver.

In the next sections, we first provide the conditions under which our
compilation-based approach can be adopted and then we discuss the approach
itself and evaluate and analyze it in different settings. The system is available

30

for download. 1

3.1 Conditions for Splitting and Compiling

In this section, we describe the conditions for our partial compilation of ASP
programs. See chapter 1 for a reference to ASP syntax and semantics. We
call our compilation approach partial because it cannot be used to compile
any ASP program in general, but it is suitable to compile certain classes of
subsets of rules of an input program and, as we will see later, it is suitable
to be nested into other evaluation strategies for ASP.

A sub-program of π is a set of rules λ ⊆ π. Note that any sub-program
is also an ASP program. In what follows, we denote with Hr the set of
predicate names appearing in the head of a rule r and with B+

r (resp. B−r)
the set of predicate names appearing in the positive (resp. negative) body
of r. We denote with Qπ the set of predicate names appearing in an ASP
program π, and we denote with Hπ the set of predicate names appearing in
the head of any rule of an ASP program π.

We provide the conditions for a sub-program to be compilable under
our compilation-based approach by using the concept of labeled dependency
graph of an ASP program.

Definition 1. Given an ASP program π, the dependency graph of π denoted
with DGπ is a labeled graph (V,E) where V is the set of predicate names
appearing in some head of π, and E is the smallest subset of V ×V ×{+,−}
containing

• (V1, V2,+) ∈ E if ∃r | V1 ∈ B+
r ∧ V2 ∈ Hr;

• (V1, V2,−) ∈ E if ∃r | V1 ∈ B−r ∧ V2 ∈ Hr; and

• (V1, V2,−) ∈ E if ∃r | V1, V2 ⊆ Hr.

Intuitively, the dependency graph contains positive (resp., negative) arcs
from positive (resp., negative) body literals to head atoms, and negative arcs
between atoms in a disjunctive head.

Definition 2. Given an ASP program π, π is said to be stratified iff its
labeled dependency graph has no loop containing a negative edge.

1https://goo.gl/Varv4y

31

https://goo.gl/Varv4y

Note that we here consider constraints to be stratified, as we consider
them to have an empty head.

Definitions provided above are classical definitions for ASP programs.
Now we can define when an ASP sub-program is compilable:

Definition 3. Given an ASP program π, an ASP sub-program λ ⊆ π is
compilable with respect to π iff:

1. λ is a stratified ASP program and

2. p ∈ Hλ =⇒ p /∈ Qπ\λ (i.e. no predicate appearing in an head of λ can
appear in π \ λ)

Intuitively, stratified sub-programs are compilable if they do not produce
atoms that appear elsewhere in the input program.

By defining compilation on stratified sub-programs we allow for the com-
pilation of constraints, which satisfies the original goal of replacing hand-
written constraints instantiators with automatically generated ones. More-
over, rules allow the compilation of more generic fragments.

Secondly, we want to comply with the propagators’ input/output interface
provided by the programmatic APIs of ASP solvers in which no new variables
are introduced in the solver. This is the reason why we enforce that atoms
defined in the compiled program do not appear elsewhere in the original input
program.

By considering Definition 3, we can observe that an ASP constraint is
always compilable because:

• constraints are stratified because they produce an empty dependency
graph which is stratified by definition

• constraints have empty heads, thus condition 2 is trivially satisfied

Consider the following example:

(1) in(X) | out(X) :- v(X).

(2) r(X,Y) :- e(X,Y).

(3) r(X,Y) :- e(X,Z), r(Z,Y).

(4) :- a(X), a(Y), X 6= Y, not r(X,Y).

The example contains two compilable sub-programs, one given by con-
straint (4) and one given by constraint (4) together with rules (2) and (3).

32

Compilable subprograms are related to Rule Splitting Sets of HEX pro-
grams [28], however, we here define them on the basis of predicates, not par-
tially ground atoms. ASP Modules [48] are more permissive than compilable
subprograms because they permit mutually cyclic (negative) dependencies
among modules, which is not possible in compilable subprograms.

3.1.1 Largest Compilable Sub-program

Selecting compilable sub-programs might not be an easy task. In this section,
we provide a procedure that, given an ASP program, determines the largest
compilable sub-program. This can be useful in selecting compilable sub-
programs because we can start from a maximal subprogram and we can then
discard unwanted rules and constraints. Moreover, we provide a sketched
proof that the union of two compilable sub-programs is still a compilable
sub-program and thus every ASP program has exactly one (possibly empty)
largest compilable sub-program.

Theorem 1. Given two compilable sub-programs λ1 and λ2, λ1 ∪ λ2 is also
a compilable sub-program.

Proof sketch. Condition 2 of definition 3 holds because both sub-programs
cannot define atoms that appear elsewhere, so the predicates in the union
of their defined predicates do not appear elsewhere. Condition 1 holds too,
because of the following properties:

• an SCC is either completely included in a compilable sub-program or
completely excluded because of condition 1

• there is no loop between two SCCs

Corollary 1.1. Given an ASP program π, π has exactly one largest com-
pilable sub-program λ (possibly empty), that is the union of all compilable
sub-programs of π.

In the following, we provide a procedure that computes the largest com-
pilable sub-program by working on the strongly connected components of the
labeled dependency graph.

33

Definition 4. A strongly connected component SCC of DGπ is a subgraph
of DGπ that is strongly connected (i.e. every vertex in SCC is reachable
from every other vertex in SCC) and is maximal (i.e. no other vertex can
be added to SCC without breaking the strongly connected property).

By considering a SCC as a single node we can build a contraction of
DGπ as a graph DAGπ where there is an edge between two SCC iff any two
nodes of them form an edge in DGπ. DAGπ is a directed acyclic graph and
we can compute the largest compilable sub-program of π by first building
a topological sort and then iterating over the SCCs once in reverse order
w.r.t. the topological sort, collecting those SCCs that are stratified and
whose children are also compilable as illustrated in algorithm 4. Note that
we also add to the largest compilable sub-program all constraints.

34

Algorithm 4 Find largest compilable sub-program

Input: ASP program π
Output: largest compilable sub-program of π

1: λ = ∅
2: //add all constraints in π
3: for all r ∈ π | Hr = ∅ do
4: λ = λ ∪ {r}
5: end for
6: DG = dependecy graph(π)
7: DAG = components acyclic graph(DG)
8: (SCC1, . . . , SCCn) = topological order(DAG)
9: //compilable components

10: CC = ∅
11: for all i ∈ (n, . . . , 1) do
12: if is stratified(SCCi) then
13: to insert = >
14: for all j ∈ (n, . . . , i+ 1) do
15: if (SCCi, SCCj) ∈ edges(DAG) ∧ SCCj /∈ CC then
16: to insert = ⊥
17: end if
18: end for
19: if to insert = > then
20: for all p ∈ vertices(SCCi) do
21: for all r ∈ π | Hr = p do
22: λ = λ ∪ {r}
23: end for
24: end for
25: CC = CC ∪ SCCi
26: end if
27: end if
28: end for
29: return λ

3.2 Architecture for Partial Compilation

Partial compilation is designed to be embeddable in existing ASP systems.
This is possible due to recent works on ASP solvers to enable solvers exten-

35

sion by means of carefully designed APIs [36][26]. This makes ASP compila-
tion more appealing due to the consolidated performances of state-of-the-art
solvers. Figure 3.1 shows a high-level architecture of our partial compilation
embedded in an ASP solver. ASP programs can be split into two (or more)
parts, one being evaluated with the standard “ground+solve” approach and
the other being evaluated by compilation. The director of the solving pro-
cess is the ASP solver which interacts with the compiled program with a
well-defined input/output interface. In the presented architecture the role
of compiler is to take as input an ASP program that meets the conditions
presented in the previous section and build a compiled component that ma-
terializes (i.e. generates source code) an evaluation procedure for the input
program.

Algorithm 5 presents a procedure that integrates an ASP solving compo-
nent with a compiled sub-program. Given an ASP program π which is split
into two sub-programs π′ and λ (which is a compilable program compiled
into λevalc), the solver searches for an answer set M of π′; if the solver fails
to find an answer set it returns ⊥ which means that π′ and π are unsatisfi-
able, otherwise it provides M to the compiled program which returns a set
of nogoods N and a model MλR . In this thesis, nogoods identify ground con-
straints over the universe of ground atoms of the solving component. This
notion has basically the same behaviour as the one given in [39].

N = ∅ means that λ ∪ M is satisfiable, then MλR is an answer set of
π′ ∪ λ. Otherwise (i.e. when N 6= ∅) the solver learns the set of nogoods
N and searches for another answer set until λevalc returns an empty set of
no-goods or no more answer sets of π′ are found.

An important fact is that, by using our compilation-based approach, the
compiled rules are not involved in the grounding process and we have to
account for the fact that the solver does not know about predicates appearing
in the head of the compiled program (see Definition 3). This fact leads to
the need of introducing some algorithms for explaining why certain literals
are true in the compiled program, and such explanations (or reasons) are
intended to be expressed in terms of literals that are known to the ASP
solver. We will talk more about literal reasons in the next sections.

36

Figure 3.1: Partial compilation architecture

Algorithm 5 Solving with a compiled program

Input: ASP program π′, ASP compilable program λ
1: λevalc =compile(λ)
2: M = next answer set(π′)
3: while M 6= ⊥ do
4: (N,MλR) = λevalc (M)
5: if N 6= ∅ then
6: learn(N)
7: else
8: return MλR

9: end if
10: M = next answer set(π′)
11: end while
12: return ⊥

37

3.3 Compiled Program Evaluation

In the following sections π is the input ASP program, π′ is the solver program
and λ is the compiled program, with the conditions that π = π′ ∪ λ and λ
is a compilable ASP program. λ can be seen as the union of a set of ASP
constraints λC and a set of ASP rules (with a non-empty head) λR.

λ = λR ∪ λC

We have to clarify that by compilation we mean the instantiation of a general-
purpose evaluation strategy with respect to a fixed ASP (sub-)program. For
the sake of simplifying presentation, we first present a general-purpose eval-
uation strategy that is a generic version (i.e., valid for any compilable input
program) of what is compiled, and then we describe how this strategy can be
instantiated during compilation depending on the input program. Basically,
the procedure is compiled in a version that is specific for the rules at hand
simplifying it during the compilation process. This will be made more clear
in the following.

Our general-purpose evaluation strategy is presented in the next two sec-
tions. It is essentially composed of two steps:

1. a bottom-up evaluation of λ w.r.t. an ASP solver model of π′ M ,
followed by

2. a top-down nogoods building for failed constraints checks in λC .

3.3.1 Bottom-up Evaluation

The first step of our partial evaluation consists of a bottom-up evaluation
performed on λ where the set of input facts is given by an answer set M of π.
Historically, bottom-up strategies are the standard way to approach strat-
ified programs evaluation [76]. Algorithm 6 presents a pseudo-code of the
bottom-up evaluation that we use in our implementation. It closely follows
the computation of ASP grounders, but the presented version is organized
in a way that is easy to compile. For example, loops are written in such a
way that compile-time information is pushed to outer loops so that they can
be unrolled, while instance specific information is only present in the inner-
most loops which cannot be handled at compilation-time. In the presented
algorithm R is the model of λ, SCCs is the ordered set (w.r.t. a topological

38

sort) of the strongly connected components of the dependency graph DG of
λ. The evaluation starts with the computation of the dependency graph.
Then it performs the evaluation of one strongly connected component at a
time by following a topological sort of the dependency graph. The for loops
at line 5 and 14 iterates over all predicate names in the current SCC.

For each component, firstly so-called exit rules are evaluated, then recur-
sive rules in a nested loop. A rule r in a component C is an exit rule iff
all predicates in Br belong to a component that precedes C in the topolog-
ical sort. This means that the body predicates extensions are already fixed
and they will not change anymore during the computation. Otherwise, r is
said to be recursive (i.e. there is some body predicate in the body of r that
belongs to C).

RP denotes the extension of a predicate P in the current program model
R. W sets are instead used as working sets in recursive rules and are used
to accumulate recursive predicates in the evaluation of a recursive SCC. W
is split into individual working sets WP for each predicate in SCC.

The function evaluate stands for a nested-join loop of a rule r starting
from a ground atom s (i.e. it finds all rule instantiation with given s). In
exit rules, a body positive predicate is selected to start the nested loop,
while for recursive components, the evaluation continues as long as there
are new ground atoms for the predicates in the recursive component using
accumulation sets in W .

The computation of constraints violation is done at the end of the bottom-
up evaluation. Here again, any positive predicate can be used to start a
nested join evaluation. For constraints we use the term ground instead of
evaluate to denote the fact that the set C will contain all ground constraints
violations of λ w.r.t. the input candidate model M .

39

Algorithm 6 bottom up evaluation

Input: ASP stratified program λ = λR ∪ λC , answer set of π′ M
Output: answer set of λ ∪M
1: DG = dependecy graph(λ)
2: R = load facts(M)
3: SCCs = topological sort(DG)
4: for all SCC ∈ SCCs do
5: for all predicates P ∈ SCC do
6: for all exit rules r ∈ λR with P = Hr do
7: S = starter predicate(r)
8: for all s ∈ RS do
9: RP = RP ∪ evaluate(r, s, R)

10: end for
11: end for
12: end for
13: W = ∅
14: for all P ∈ SCC do
15: WP = RP
16: W = W ∪WP

17: end for
18: while ∃WP ∈W |WP 6= ∅ do
19: for all WP ∈W do
20: while WP 6= ∅ do
21: for all r ∈ λR | Hr ∈ SCC ∧ P ∈ B+

r do
22: for all s ∈WP do
23: E = evaluate(r, s, R)
24: WHr = WHr ∪ (E \RHr)
25: RHr = RHr ∪ E
26: WP = WP \ {s}
27: end for
28: end for
29: end while
30: end for
31: end while
32: end for
33: C = ∅
34: for all r ∈ λC do
35: S = starter predicate(r)
36: for all s ∈ RS do
37: C = C ∪ ground(r, s,R)
38: end for
39: end for
40: return R

40

3.3.2 Nogoods for Failed Constraints Checks

In this section, we describe how we build the reasons (in terms of nogoods) of
failure of constraints checks. Before directly discussing the algorithms we first
provide a theoretical framework that arises from the use-case of partial com-
pilation. The theoretical framework defines the scope of the implementation
and motivates the solution adopted. After the theoretical part, we propose a
mathematical operator that follows the theory of the theoretical framework
and of which the algorithms proposed are a smarter implementation.

Theoretical framework

Definition 5. Given an ASP program π, a nogood w.r.t. π is a set of ground
literals N s.t. @A ∈ ANS(π) | N ⊆ A. In other words N ∪ π is incoherent.

As introduced in section 3.2, in our setting, π is an ASP program that is
split into two sub-programs, i.e. π = π′ ∪ λ where π′ is the external program
and λ is the propagator program. Moreover we have λ = λR ∪ λC where λR
is a set of stratified rules and λC is a set of constraints.

Definition 6. Given two sets of ground literals L1, L2 we say that L1 leads to
L2 w.r.t. π′, λ and we denote it with L1 ⇒ L2 iff ∀M ∈ ANS(π) | L1 ⊆MλR

we have that L2 ⊆MλR, where MλR denotes the unique model of M ∪ λR.

Definition 7. Given a set of (possibly non-ground) literals L and a model
M of π′, we denote with L the set {l ∈MλR | ∃L ∈ L s.t. l

.
= L}

Theorem 2. If we have that L1 ⇒ L2 and L2 ⇒ L3, then L1 ⇒ L3.

Proof. By def 6, L1 ⇒ L2 iff {M | L1 ⊆ MλR} ⊆ {M | L2 ⊆ MλR} and
L2 ⇒ L3 iff {M | L2 ⊆ MλR} ⊆ {M | L3 ⊆ MλR}. Then we have {M | L1 ⊆
MλR} ⊆ {M | L3 ⊆MλR}, which by def 6 implies L1 ⇒ L3.

Definition 8. A reason of a set of literals L is a set of literals R(L) | R(L)⇒
L.

We denote with R(L) the set of all possible reasons of L.

Theorem 3. Given a set of literals L it holds that any R(R(L)) ∈ R(L),
i.e. any R(R(L)) is a reason for L.

41

Proof. By def 7, R(R(L))⇒ R(L) andR(L)⇒ L. By theorem 1, R(R(L))⇒
L.

Definition 9. Given M a model of π′ and R(L) a reason for a set of literals
L, we say that R(L) is a complete reason for L iff R(L) ⊆M . In such case,
we denote it with RC(L)

Theorem 4. Given M ∈ ANS(π′) and λGC the set of ground constraints of
M ∪ λ, then {RC(C) | C ∈ λGC} is a nogoods set for π and is expressed in
terms of Uπ′.

Proof. A complete reason is a subset of M , thus being {RC(C) | C ∈ λGC}
composed of complete reasons this fact implies that it is expressed in terms
of Uπ′ . Now, given c ∈ λGC , by def 8 we have that RC(C) ⇒ C and since
RC(C) ⊆ M ⊆ MλR and C ⊆ MλR , we can conclude that RC(C) = RC(C)
and C = C. So, RC(C) ⇒ C. By def 6, we have that ∀M ∈ ANS(π) |
RC(C) ⊆ MλR , C ⊆ MλR , thus RC(C) ∪ π is incoherent, thus RC(C) is a
nogood for π (def 5) and {RC(C) | C ∈ λGC} is a nogoods set for π.

Theorem 5. Given a set of literals L, (
⋃
l∈L

R(l)) ∈ R(L) (i.e. the union of

the reasons of each l ∈ L is a reason for L).

Proof. R(l) a reason for l means that, by def 6 and 8, for all l we have that
{M |R(l) ∈ MλR} ⊆ {M |l ∈ MλR}. Thus, by the fact that A ⊆ B ∧ C ⊆
D =⇒ A ∪ C ⊆ B ∪D, we have {M |

⋃
l∈L

R(l) ∈ MλR} ⊆ {M |
⋃
l∈L

l ∈ MλR}.

By def 6 this holds iff
⋃
l∈L

R(l) ⇒ L, which by 8 implies that (
⋃
l∈L

R(l)) ∈

R(L).

Seminaive reasons operator

Here we introduce a fixpoint operator R that, applied recursively, is able to
compute a nogood starting from a failed constraint check. In particular, R is
a function R that maps a couple of the type 〈L, S〉 into a couple in the same
domain; L and S are sets of (possibly non-ground) literals. The operator is
defined as follows:

R(〈S, L〉) = 〈S ′, (
⋃
l∈L

r(l)) \ S ′)〉

42

Where S ′ = (L ∪ S) \M and the expression r(l) is then defined as follows:

r(l) =

{l′ ∈M | l′ .= l} if p(l) ∈ p(π′)
{σ(Br)|Hr

σ
= l′ ∧ l′ ∈MλR ∧ l′

.
= l} if p(l) ∈ p(λR) ∧ l positive

{σ(Bnegated
r)|∼Hr

σ
= l} if p(l) ∈ p(λR) ∧ l negative

(3.1)
In the above definition, Bnegated

r is the set obtained by negating all body lit-
erals (e.g. if r is a(X) : −b(X, Y), ∼c(Y), then Bnegated

r = {∼b(X, Y), C(Y)}),
while σ denotes a substitution with the convention that σ(expression) ap-
plies σ to the expression, while expr1

σ
= expr2 denotes a substitution from

variables in expr1 to terms in expr2 s.t. σ(expr1) = expr2. The operator
R defines a recursive sequence where 〈Si, Li〉 = R(〈Si−1, Li−1〉). Finally, by
fixing L0 = C where C is the set of literals of a ground violated constraint
and S0 = ∅, we have that:

1. the operator reaches a fixed point at step k with k finite

2. at the step k the operator computes a nogood for C expressed as a
subset of M , i.e. it computes a complete reason for C (see def. 9)

We omit a complete formal proof of termination and correctness of the op-
erator, but we informally argument its termination and correctness in the
remaining of the paragraph. We leave the formalization of the proof as a
future work. The fact that the operator reaches a fixed point is ensured by
the following property: at each step i, it either leave literals in L as they
are, (in case they are already in M) or it replaces them by literals that are
new (i.e. that are not in S), thus, since there is a finite number of possible
literals (in the universe), it will eventually leave L as it is and reach the fixed
point. Termination also ensures that all literals at the fixed point are in M
because otherwise they would be removed and replaced by new literals. For
what concerns condition 2, at each step the following property holds: Ln is
a reason for Ln−1, thus at each step Ln is a reason for C which is L0. First,
we note that r(l) computes a reason for l: indeed, for positive literals it adds
all body literals of all rules whose head unifies with l, hence, every literal
of every possible body that would produce l is in the reason; for negative
literals it adds the negation of the literals of all rules whose head unifies with
l, hence, every literal that would falsify a rule that could produce l is in the

43

reason. Finally, we note that by theorem 5 the union of the reasons of the
literals in L is a reason for L.

Algorithm 7 build reason for violated constraint

Input: Violated ground constraint C, Candidate Model M , Extendend
Model MλR , Open Set O

1: R = ∅
2: for all l ∈ C do
3: R = R ∪ explain literal(l,M,MλR , O)
4: end for
5: return R

Implementation

Algorithms 7, 8 and 9 present in pseudo-code a procedure for building no-
goods from ground constraints failure of the compiled program. Such algo-
rithms are essentially a smarter version of the operator presented above.

In the same spirit of the bottom-up evaluation, the presented procedures
are general-purpose and are like a template of what code runs in the com-
piled program because the compiler generates a custom instantiation of such
procedures by exploiting the fact that rules are known at compilation time.

In all algorithms, MλR is an answer set of M ∪ λR where M is an answer
set of π′. Since λR is stratified there is only one such answer set for each M .

Algorithm 7 builds nogoods from a ground violated constraint C. A
ground violated constraint is a ground instantiation of a constraint c in λ
that is obtained by applying all possible substitution of ground atoms to c.
See grounding of ASP programs [59].

Our compiler performs body reordering as preprocessing to ensure that
negative literals are pushed to the end of the rule body (or at so far that all
variables appearing in that negative literal were already substituted with a
constant value in a preceding positive literal).

Algorithm 8 builds nogoods for a given input literal l. Literal l is either
a positive or a negative literal. If it is a negative literal it can also be non-
ground, while if it is positive it is ground, since in no point we are interested
in the reason of a positive non-ground literal. First the literal is transformed
in a canonical form. The canonical form of a literal l(t1, . . . , tn), is a literal
l(t′1, . . . , t

′
n) where t′1, . . . , t

′
n are constants or variables in a fixed variables set

44

Algorithm 8 explain literal

Input: Literal l, Candidate Model M , Extended Model MλR
, Open Set O

Output: reason for literal l being true
1: //l can only be non-ground if it is negative, thus it is a positive ground literal or a

negative literal
2: //variables are meaningless in this context, e.g. we do not distinguish between p(X)

and p(Z)
3: l← canonical form(l)
4: //if literal is known to the ASP solver return it
5: if is ground(l) ∧ l ∈M then
6: return {l}
7: end if
8: //stop, if we are in a loop
9: if l ∈ O then

10: return ∅
11: end if
12: O = O ∪ {l}
13: R = ∅
14: if is positive(l) then
15: // we have partial reasons for l, so we build the reason recursively using its partial

reasons
16: for all r ∈ evaluation reasons(l) do
17: R = R ∪ explain literal(r,M,MλR

, O)
18: end for
19: O = O \ {l}
20: return R
21: end if
22: //negative case, here the literal can be either ground or non-ground
23: //we put the literals in the model generator that unifies the atom of l
24: //for example, if M = {∼a(1),∼a(2)} the reason of ∼a(X) is {∼a(1),∼a(2)}
25: for all l′ ∈M | l′ is negative ∧ l′ .= l do
26: R = R ∪ l′
27: end for
28: //we build the reason for a negative literal going from head to body in the rules whose

head unifies with l
29: //it is false because all rules that could have fired did not fire
30: for all r ∈ λ R | l .= ∼Hr do
31: explain negative literal from rule(R, r, 0, compute substitution(l,Hr),M,MλR

, O)
32: end for
33: O = O \ {l}
34: return R

45

Algorithm 9 explain negative literal from rule

Input: OutputParameter R, Rule r, index i, Candidate Model M , Extended
Model MλR , Substitutions σ, Open Set O

1: //We select the i-th literal of r and apply the substitution to it
2: l = apply substitution(body literal(r, i), σ)
3:

4: if is positive(l) then
5: //add all reasons of possibly positive literals unifying lit (join stops)
6: //i.e. reasons for substitutions where the join stops at i-th body literal

7: R = R ∪ explain literal(∼l,M, I, O)
8: for all b ∈MλR | b

.
= l do

9: //recursive call to the next body literal for succeeding joins
10: //i.e. we continue the join and it will stop after l
11: explain negative literal from rule(R, r, i+ 1, M , MλR ,

σ ∪ compute substitution(l, b), O)
12: end for
13:

14: else
15: //in the else we have a negative ground literal because rules are safe

and we push negation to the end
16: if l /∈ I then
17: //join stops here
18: R = R ∪ explain literal(∼l,M,MλR , O)
19: else
20: //recursive call to the next literal for succeeding joins
21: explain negative literal from rule(R, r, i+ 1, σ, M , MλR , O)
22: end if
23: end if

46

{X1, X2, Xn}. Canonical transformation proceeds left to right. A constant ti
is mapped to itself, while a variable ti is mapped to the next unused variable
in {X1, X2, Xn} if there is no tj = ti with j < i, otherwise it applies the
mapping t′i = t′j. If the literal is known to the ASP solver we return the
literal itself. The open set O is used to prevent loops (e.g. while building
the nogoods for a literal l we ask for the nogoods of l). At line 14, if literal
is positive (thus ground because of preconditions of algorithm 8, it means
that l ∈MλR \M . Thus, it was produced in the compiled program by a rule
evaluation and we have partial reasons for it (that is a set of literals B such
that ∃r ∈ λ | B = Br ∧ l = Hr). In such case we iterate over such B that we
call evaluation reasons of l and we call explain literal recursively.

In case l is negative, we explain why the atom of l is false. In case the
predicate of l is known to the model generator we return all negative ground
literals in M that unifies l. Symbol

.
= represent unification check between

two literals.
Otherwise (i.e. the predicate of l only appears in the compiled program),

we look for rules whose head could have produced the atom of l in the
evaluation and did not. Thus, we iterate over all rules whose head unifies
the atom of l and we call the procedure presented in algorithm 9 for getting
an explanation of why a rule did not produce the atom of l. Here we work
top-down, attempting to build rules by starting from a head literal that could
have been produced by such rules. We add to the reasons all literals that
stop the top-down search. It always stops at some point before reaching the
end of a rule because otherwise the literal would have been true (and we
would not have looked for a reason of its falsity).

Thus, in algorithm 9 we want to explain why a given rule did not fire.
Such procedure receives an index parameter which iterates over rules bodies
through recursive calls and it is initialized to 0 in the first call that starts
from algorithm 8, where 0 means the first body literal of the rule.

The first time we call algorithm 9 we prepare a substitution function that
maps variables in rules head to constants in the literal we are explaining
(function compute substitution). For example, if we are explaining ∼a(1, X)
and we start algorithm 9 on a rule whose head is a(Y, Z) we map Y to 1
in the substitution function. The first step of 9 is to apply the substitution
to the i-th body literal. Then, if l is positive we add the reasons for ∼l (i.e.
where the join stops because of l is false). For the cases where the join stops
later we extend the substitution sigma and recursively call 9 incrementing
the index i.

47

If l is negative, we know that l is also ground because rules are safe and we
push negation to the end of rules. Thus, if l is false it means that a ∈ MλR ,
thus the join stops here and we add the reasons for a. Finally, if l is true, the
join stops later and we call algorithm 9 recursively for the next body literal.

The presented algorithms follow the theory presented at the beginning of
this section. The reasons are built by producing complete reasons of violated
ground constraints. Indeed, the algorithm is a smarter version of the opera-
tor R where the function r(l) is replaced by a smarter implementation that
uses evaluation reasons as the reason of positive literals and uses a smaller
reason for negative literals thanks to the fact that we partially ground such
rules instead of using the whole negated body. So, the algorithms compute
reasons recursively, by exploiting the fact that, as stated above, the reason
for a reason for a literal l is still a reason for l. For positive literals, we use
evaluation reasons that is a set of positive true literals: the condition of def-
inition 8 holds trivially since, given a positive literal l the evaluation reasons
consists of a positive body of a rule where l is the head, thus whenever all
such literals are true the literal in the head is also true due to the samantics
of ASP programs. For a negative literal l, we essentially produce a set of
literals s.t. if they are all true, no rule that could produce ∼l (i.e. all rules
whose head unifies with ∼l) can have a true body. To guarantee termination
we the open set O, in the same spirit of the S set of the seminaive operator.

3.4 Compilation Algorithm

We do not go into the details of the compiler algorithm. The implementation
is very technical and a complete description would be hard to follow and
very long. In this section, we provide an intuition of how the compilation
algorithm works and some compilation techniques adopted in our compiler.

Our compilation algorithm generates the compiled component by instan-
tiating algorithms 6, 7, 8, 9 w.r.t. a given ASP compilable program λ.

We use compilation techniques to eliminate or simplify code of the corre-
sponding general purpose strategy by exploiting information known at com-
pilation time. For example, the program dependency graph DG and the
strongly connected components SCCs are computed at compilation time,
while facts loading cannot be resolved at compilation time since facts (i.e.
the input interpretation) are not known.

All loops presented in algorithm 6 with the exception of loops at lines 8,

48

Algorithm 10 compiled bottom-up evaluation example

Input: Interpretation M
Output: answer set of λex ∪M

1: Ra, Rb, Re, Rr = load facts(M)
2: for all a ∈ Ra do
3: X = a[0]
4: Y = a[1]
5: if (Y) /∈ Rb then
6: Re = Re ∪ (X, Y)
7: end if
8: end for
9: for all e ∈ Re do

10: X = e[0]
11: Y = e[1]
12: Rr = Rr ∪ (X, Y)
13: end for
14: Wr = Rr

15: while Wr 6= ∅ do
16: for all r ∈ Wr do
17: Z = r[0]
18: Y = r[1]
19: for all X | e(X,Z) ∈ Re do
20: Wr = Wr ∪ ({(X, Y)} \Rr)
21: Rr = Rr ∪ {(X, Y)}
22: Wr = Wr \ {(Z, Y)}
23: end for
24: end for
25: end while
26: return Ra ∪Rb ∪Re ∪Rr

49

22 and 36 are unrolled. Loops unrolling is a technique for rewriting loops
into repeating instructions, eliminating or reducing loop control instructions.
Loops unrolling potentially improves programs efficiency at the cost of in-
creasing program size. Such unrollings can be done because loops conditions
are known at compilation time and depend on the structure of the input pro-
gram. Loops at lines 8, 22 and 36 cannot be unrolled since the extensions of
predicates are not known at compilation time. Unrolling proceeds from outer
loops to inner loops and works by duplicating as many times as the number
of loop iterations the code inside a loop. Moreover, variables that would be
assigned in the loop execution are replaced by constants at compilation time.
Functions evaluate and ground are also partially unrolled because they both
have an outer loop that iterates over body literals of r and such loop can be
unrolled since rule bodies are known at compilation time.

Consider the input program λex below:

e(X,Y) :- a(X,Y), not b(Y).

r(X,Y) :- e(X,Y).

r(X,Y) :- e(X,Z), r(Z,Y).

Algorithm 10 presents a pseudo-code of compilation applied to λex. The
only evaluation difference in structure w.r.t. the general-purpose version is
that here we expand and unroll evaluate function of algorithm 6 lines 9 and
23, and we perform the operations of inserting evaluate results to result sets
or working sets in the inner-most loop. In the algorithm, expressions like p[i]
stand for the term at index i of a ground atom p, with the first term having
index 0.

We also want to clarify, that ad-hoc data-structures are declared in the
compiled program in order to allow efficient set operations (see for example
lines 12, 20, 21, 22) and sets data access by key (line 19).

For what concerns algorithms 7, 8, 9, we also apply unrolling as much
as possible. In particular, while applying unrolling we avoid producing dead
code inside conditional statements that are known to be false at compilation
time like the one at line 14 of algorithm 8 or unreachable code below a return
like the one at line 20 of algorithm 8.

Algorithm 9 is unrolled into separate procedures, one for each negative
literal on which it can be invoked, while its inner recursive calls (line 11 and
22) are unrolled with a series of nested for loops.

Positive literals explanations cannot be unrolled instead, because there
can be several rules that can potentially produce the same positive literal

50

(with different bodies), thus the specific procedure calls are determined at
evaluation time.

We will not provide an example of compiled procedures for no-goods
because they are long and hard to understand, so we prefer to leave the
reader with the intuitions provided above which are the very core of the
compilation strategy.

3.5 Experiments

We experimented with partial compilation in four different settings:

1. Compilation of stratified programs

2. Partial compilation of constraints

3. Partial compilation of rules and constraints

4. Partial compilation of rules

Time and memory for each run are limited to 10 minutes CPU-time and
6GB, respectively.

Compilation of stratified programs Here we used some benchmarks
from OpenRuleBench, which is an open community benchmark designed to
test rule engines. The benchmark includes queries evaluations, which is not
the target of this work, thus we removed queries and run perfect model
computation as done for example in [17]. Figure 3.2 shows a cactus plot
of execution times. The baseline consists of three well-known ASP systems,
namely Clingo, DLV and I-DLV.

Partial compilation of constraints For what concerns constraints, we
used the same benchmarks that are used in our work on lazy grounding of
constraints presented in chapter 2 i.e. stable marriage, packing and NLU.

Partial compilation of rules and constraints In setting number 3, i.e.
compilation of rules and constraints, we devised two experiments:

• non-partition removal coloring : a benchmark taken from [15], where
the authors uses a benchmark inspired by a real-world application in
[42].

51

0 10 20 30 40 50
0

200

400

600

Number of instances

E
x
ec

u
ti

on
ti

m
e

(s
)

compiled
clingo
dlv
i-dlv

Figure 3.2: OpenRuleBench benchmark

• connected k-cut : a graph problem where we want to find a cut of size
at least k where the two formed partitions are connected

In non-partition removal coloring the problem is the following: given a di-
rected graph, remove one vertex in such a way that the transitive closure of
the original and the resulting graph are equal on the remaining nodes and
that the resulting graph is 3-colorable.

For what concerns connected k-cut, we generated instances at random
experimenting on graphs with different numbers of nodes (from 200 to 800),
different densities (from 0.001 to 0.25) and different cut sizes (from 50 to
800). The compiled sub-program computes the transitivity closure of the
two partitions and contains a constraint that enforces connectivity.

The baseline here is composed of Clingo and WASP without compilation,
and for the first benchmark, we also include the Alpha system [79], which is
an ASP solver that exploits lazy solving techniques. Alpha authors are also
the authors of this benchmark.

Partial compilation of rules Finally, for setting number 4 we present an
experiment where we first solve a minimum cost cut problem and then we
compute the transitive closure of the two partitions. The transitive closure
in this benchmark introduces a hard (yet polynomial) post-processing to a
hard (NP-hard) problem. Results are reported in figure 3.5.

52

0 10 20 30 40 50 60 70 80 90 100 110 120
0

200

400

600

Number of instances

E
x
ec

u
ti

on
ti

m
e

(s
)

compiled
clingo
alpha
wasp

Figure 3.3: Non-partition removal coloring benchmark

60 70 80 100 120
0

200

400

600

Number of instances

E
x
ec

u
ti

on
ti

m
e

(s
)

compiled
clingo
wasp

Figure 3.4: Connected k-cut benchmark

53

Table 3.1: Stable Marriage: Number of solved instances and average running
time (in seconds).

Pref. (%) wasp wasp-lazy compiled
sol. avg t sol. avg t sol. avg t

0 10 6.2 10 5.8 10 5.6
5 10 25.3 10 5.7 10 5.8

10 8 48.2 10 5.4 10 5.6
15 9 38.3 10 6.8 10 5.6
20 9 50 10 5.9 10 5.4
25 7 52.6 10 5.9 10 5.9
30 10 60.1 10 6 10 5.7
35 5 111.4 10 6.3 10 8.3
40 7 63.3 10 9.4 10 20
45 8 83.8 10 6.3 10 11.3
50 9 67.9 10 6.4 10 8.3
55 7 124.4 9 7.2 9 9.4
60 8 63.3 10 11.5 9 10.7
65 6 66.7 6 18.2 9 17.1
70 6 71 3 21.8 5 132.3
75 8 89.9 0 - 1 13.8
80 7 148.9 0 - 0 -
85 6 107.2 0 - 0 -
90 9 152.2 0 - 0 -
95 10 70.3 0 - 0 -

100 8 61.9 1 7.3 0 -

Table 3.2: NLU Benchmark: Number of solved instances and average running
time (in seconds).

Obj.Func. wasp wasp-lazy compiled
sol. avg t sol. avg t sol. avg t

card 48 83.0 50 2.8 50 2.3
coh 48 83.0 50 26.8 49 18.3
wa 48 103.2 49 23.6 49 38.5

54

0 10 20 30 40 50 60
0

200

400

600

Number of instances

E
x
ec

u
ti

on
ti

m
e

(s
)

compiled
clingo
wasp

Figure 3.5: Mincut with transitive closure

3.5.1 Discussion of Experiments

Experimental results are promising. Stratified programs evaluation on the
OpenRuleBench benchmark clearly shows the performance benefits that can
be obtained by a compilation-based approach. In this benchmark, we solve
more instances than classical approaches and we have lower execution times
in general.

For what concerns experimental setting number 2, we are expecting the
same behaviour of lazy propagators developed in our previous work (see chap-
ter 2). The reason is that our evaluation follows the same execution pattern
of lazy constraints evaluation, i.e. check the constraint on answer set can-
didates of the original input program without the lazy constraint. In our
previous work we had to hand-write custom Python scripts for emulating
the constraint, but here there is no such need because the compiler gener-
ates the propagator automatically. Indeed, here we are experiencing similar
performances.

Setting number 3 includes a benchmark taken from [15] where the authors
of the Alpha system present a benchmark in which lazy grounding pays-off
w.r.t. “ground+solve” approaches. In this benchmark, we perform better
than both standard solvers and Alpha (see 3.3). Another benchmark of the
same setting is the connected k-cut benchmark and also, in this case, partial
compilation pays-off, mainly because the connectivity sub-program is hard

55

to ground.
Finally, in setting number 4, we boost the performance of WASP, but we

do not surpass Clingo because WASP seems to be much slower than Clingo
at solving this problem.

3.6 Related Work

Traditional evaluation strategy of ASP systems is based on two steps, namely
grounding and solving ; for both phases, several efficient systems have been
proposed during the years.

Concerning the grounding, state-of-the-art grounders are dlv [33],
gringo [38] and idlv [17]; all systems are based on seminäıve database
evaluation techniques [76] for avoiding duplicate work during grounding.

Concerning ASP solvers, the first generation, i.e. smodels [74] and dlv
[56], was based on a DPLL-like algorithm extended with inference rules spe-
cific to ASP. Modern ASP solvers, including clasp [37] and wasp [5], include
mechanisms for conflict-driven clause learning and for non-chronological back-
tracking. Both solvers also offer an external interface to simplify the integra-
tion of custom solving strategies in the main search algorithm. In particular,
we used the interface of wasp to implement the techniques described in the
thesis.

Alternative approaches are based on lazy grounding of the whole program,
e.g., GASP [20], ASPeRiX [54], or Alpha [79], where all rules are instantiated
lazily; this makes the search less informed but might have a better memory
footprint. These ‘fully lazy’ approaches have in common, that they instan-
tiate even the non-stratified part of the program only when rule bodies of
the respective rules are satisfied in the current assignment of the search pro-
cess, as opposed to our approach where all guesses are instantiated upfront
and only stratified parts depending on guesses (including constraints) are
computed lazily.

3.7 Discussion

Compilations-based approaches are meant to speed-up computation by ex-
ploiting information known at compilation time to create custom procedures
that are specific to the problem at hand. In this chapter, we presented what

56

is, to the best of our knowledge, the first work on partial compilation of
ASP programs. In our approach, we allow compilation of ASP sub-programs
and we define what a compilable sub-program is, i.e. we specify what are
the conditions under which our approach can be adopted. The presented
approach has been developed as a solver extension of WASP which is a
state-of-the-art ASP solver. The evaluation strategy presented includes a
bottom-up evaluation for computing the unique stable model of the compil-
able sub-program and a top-down evaluation for computing failed constraints
reasons in terms of literals that are known to the ASP solver. An experimen-
tal analysis shows the benefits that can be obtained in different use-cases
by a compilation-based approach. The approach is particularly suited for
solving Datalog programs, and for compiling ground-intensive sub-programs,
as for example the ones presented in chapter 2. In the future, we are plan-
ning to extend the presented approach to the eager/post propagators case,
i.e. where the evaluation is performed also on partial interpretations every
time a new literal is chosen (eager) or when unit propagation ends (post).
Another possible extension would be the development of an ASP grounder
that uses compilation-based techniques. Indeed the problem of instantiating
ASP programs can be seen as an extension of Datalog programs evaluation.

57

Part II

An Application of ASP to
Closed-Domain Question

Answering

58

Introduction

The information need of a user often resolves in a simple question where it
would be useful to have brief answers instead of whole documents to look
into. IR techniques have proven to be successful at locating relevant docu-
ments to the user query into large collections [8], but the effort of looking
for a specific desired information into such documents is then left to the
user. Question answering attempts to find direct answers to user questions.
Intuitively, answering to any kind of question, with no linguistic and no do-
main restriction is a very hard task. When no restriction is made on the
domain of the questions we are talking about open domain question answer-
ing while, when questions are bound to a specific domain, we are in closed
(or restricted) domain question answering (CDQA) [2]. In open domain QA,
most systems are based on a combination of Information Retrieval and NLP
techniques [47]. Such techniques are applied to a large corpus of documents:
first attempting to retrieve the best documents to look into for the answer,
then selecting the paragraphs which are more likely to bear the desired an-
swer and finally processing the extracted paragraphs by means of NLP. This
type of approach is also adopted in several closed domain question answer-
ing systems, but in this context, we might benefit from existing structured
knowledge. Some of the very early question answering systems were designed
for closed domains and they were essentially conceived as natural language
interfaces to databases [45][80].

In this work, we present a closed domain question answering system for
the cultural heritage domain that comes from the PIUCULTURA project,
which is a project of which the University of Calabria is a research partner.

The project was centered on the Italian language, but the presented ap-
proach is general and can work similarly for other languages.

Cultural Heritage can benefit from structured data sources: in this con-
text, data has already started to be saved and shared with common stan-

59

dards. One of the most successful standards is the CIDOC Conceptual Ref-
erence Model [27], that has been identified as the ontological model of refer-
ence on cultural heritage for our Question Answering prototype. It provides
a common semantic framework for the mapping of cultural heritage informa-
tion and can be adopted by museums, libraries, and archives.

We designed and implemented a system capable of interpreting natural
language questions regarding cultural heritage objects and facts, map the
input questions into formal queries compliant to the CIDOC-crm model and
execute such queries to retrieve the desired information.

We believe that the choice of using CIDOC-crm is valid because of the
following key factors:

• Museums and institutions typically have structured sources in which
they store information about their artifacts

• The availability of documentary sources is limited. If we take into
consideration freely available documentary sources such as Wikipedia,
we realize that the percentage coverage of works and authors can only
be very low. For example, a museum like the British Museum has
about 8 million artifacts while on Wikipedia there are in total around
500 thousand articles about works of art (from all over the world)

• The CIDOC-crm model has been specifically designed as a common
language for the exchange and sharing of data on cultural heritage
without loss of meaning, supporting the implementation of local data
transformation algorithms towards this model

• The CIDOC-crm is a standardized maintained model and is periodically
released in RDFs format

In summary, the Question Answering system has, therefore, the task of
finding the information required by the user questions on an RDF knowledge-
base that follows the CIDOC-crm model. The query language of RDF is
SPARQL. So, in first approximation, we can say that the Question Answering
system has to transform natural language questions into SPARQL queries.
Our approach follows a waterfall model in which the user question is first
processed from a syntactic point of view and then from a semantic point of
view. Our syntactic processing model focuses on a concept of template, where
a template represents a category of syntactically homogeneous questions. In

60

our system, templates are encoded in terms of Answer Set Programming
rules. By using ASP we can work in a declarative fashion and avoid im-
plementing the template matching procedure from scratch. The semantic
processing is instead focused on a concept of intent. By intent we mean the
purpose (i.e. the intent) of the question: two questions can belong to two
disjoint syntactical categories but have the same intent and vice versa. To
give an example: who created Guernica? and who is the author of Guernica?
have a quite different syntactic structure, but have the same intent, i.e. know
who made the work Guernica. On the other hand, if we consider who created
Guernica? and who restored Guernica? we can say that they are syntac-
tically similar (or homogeneous), but semantically different: the purpose of
the two questions is different. Intents are mapped into SPARQL queries and
the query result set is then converted in a natural language form by using
a template metalanguage. The system favors components reuse and threats
intents as functions that can be composed together to create larger intents
(and queries).

61

Chapter 4

Preliminaries on Question
Answering

Question Answering is a long-standing computer science discipline that is
usually referred to in the field of Information Retrieval and Natural Language
Processing. The first prototypes of Question Answering systems date back
to the 60s: Lunar [80] and Baseball [45]. These two systems implemented
the two main paradigms of question answering: answer to questions based
on IR and answer to questions on structured knowledge bases. Countless
Question Answering systems have been developed over the years. One of
the most famous is IBM Watson that in 2011 beat human competitors at
the American television game Jeopardy and although the goal of the game
was the entertainment, the technology used to answer the questions of the
television quiz led to an effective advancement of the techniques of QA. Most
QA systems focus on factual questions, which are questions whose answer can
be expressed in terms of a short text that represents a fact. The following
questions fall into this category and can be answered in simple facts that
denote respectively a person, an artwork and a place:

• Who painted Guernica?

• Which Van Gogh artwork represents sunflowers?

• Which museum houses the Rosetta Stone?

Below we will briefly talk about the two main paradigms of QA focusing on
their application in answering factual questions and we will focus on the type

62

that is better suited to out context. The first paradigm is called Information
Retrieval Question Answering or also with the simple name of text-based
Question Answering. Systems of his type typically rely on a vast amount of
information found in the form of text on the Web or in specific document
collections. Given a user question, the QA system uses techniques similar
to those of IR to extract passages directly from the documents, guided by
the text of the input question. The second type of paradigm is known as
Knowledge-Based Question Answering and is based on a semantic represen-
tation of the question in the form of a formal query on a knowledge base.

4.1 IR-based Question Answering

The models of QA that are based on Information Retrieval answer to user
questions by searching for answers in text segments taken from the Web or
other document collections. Typically, the flow of execution of an IR-based
QA system consists of the following steps:

1. Question processing

2. Question classification

3. Query formulation

4. Passage extraction

5. Answer extraction

In the question processing phase, the goal is to extract useful informa-
tion from the input question. The answers types specify the types of entities
involved in the answer (e.g., people, places, etc.). The query specifies key-
words that can be used by techniques similar to those of IR for the retrieval
of relevant documents. Some systems perform an initial classification of the
type of question at this stage (for example, if it is a question that asks for a
definition, a mathematical question or a question from which there is a list of
terms as an answer). In the question classification, the type of expected re-
sponse is determined. For example, the question who has painted Guernica?
has a PERSON-like answer, while the question where was Picasso born? is
expected to have a PLACE-like answer. In this way, once the entity type of
the expected answer is known, we can concentrate only on the segments of

63

text that concern such entity type. In this phase, classification systems can
be used, also in terms of entity categorization, which is often organized hier-
archically following a taxonomy that can be constructed semi-automatically
or manually. In this phase, the use of lexical resources such as WordNet [63]
is often introduced to facilitate the identification of the entities and identify
the related words. In the query formulation phase, the task is to create a list
of keywords to be used in a search process using IR techniques. This phase
is influenced by the type of sources available. In the case of Web search, web
search engines can sometimes be used directly. The passage extraction phase
starts from the documents retrieved by the execution of the query built in the
previous phase and further narrows down the search space by analyzing the
most promising documents and extracting the text passages that potentially
contain the answer. Typically this phase follows a supervised approach where
the features are relevant features of the individual steps through a multi-level
match with the input question. Finally, the answer extraction phase typically
involves an extractive process which consists in extracting a specific portion
of the text that has been selected in the previous steps. Two common answer
extraction techniques are answer-type pattern extraction and N-gram tiling.

4.2 Knowledge-Based Question Answering

Although a vast amount of data is coded in terms of text on the web, in-
formation also exists in more structured forms. The term Knowledge-Based
Question Answering refers to the problem of answering questions in natural
language by querying a structured knowledge base. As is the case with the
text-based QA paradigm, the origins of this approach date back to the 1960s
with the Baseball system, which provided answers by using a structured
database of baseball games and statistics. Knowledge-base QA systems typi-
cally map questions in the form of predicates computation or query languages
such as SQL or SPARQL. Often the knowledge base consists of a relational
database or a less structured database such as triple-store databases for RDF.
Among the most frequently used methods for question classification, we find
the approaches based on rules that typically lead to good accuracy, but re-
quire a consistent contribution of grammatical rules provided by experts.
Another family of widespread approaches is based on supervised methods,
where the question classification process is more automated, but large train-
ing sets are often required to function properly.

64

Chapter 5

ASP-based Question Answering
for Cultural Heritage

In this chapter, we will illustrate and motivate the design choices of a Ques-
tion Answering system, which is consistent with the project objectives and
can be implemented in a software system in the project times and constraints.
The idea is to realize a Knowledge-Based Question Answering System fol-
lowing a rules-based approach to obtain high precision in the management of
the questions, with the support of valid tools to help the construction of the
rules in order to speed up the management process of new questions within
the system. The entire QA process is exemplified in Figure 5.1, which shows
the interaction among the various modules of the system. In particular, the
question answering process is split into the following phases:

1. the input question is transformed into a three-level syntactic represen-
tation: Question NLP Processing

2. the representation is categorized by a template system that can be
implemented by means of logical rules with Answer Set Programming:
Template Matching

3. the next phase, managed through imperative code (Java), allows pass-
ing from a template to an intent, where the intent identifies precisely
the intent (or purpose) of the application: Intent Classification

4. the intent generates a formal query which is performed to find the
answer to the question based on knowledge: Query Generation

65

Figure 5.1: Scenario of interaction with the Question Answering System

5. the Query is physically executed on the knowledge-base: Query Exe-
cution

6. the result produced by the interrogation is transformed into a natural
language answer: Answer Generation

Splitting the QA process into distinct phases allowed us to implement a
system by connecting loosely-coupled modules dedicated to each phase. In
this way we also achieved better maintainability, and extensibility. In the
following sections, we analyze in detail the 6 phases just listed.

5.1 Question NL Processing

The NL processing phase deals with building a formal and therefore tractable
representation of the input question. The question is decomposed and ana-
lyzed highlighting the atomic components that compose it, the morphological
properties of the components and the relationships that bind them. Fortu-

66

nately, at this stage, it is possible to use pre-existing computational tools
and models in the field of natural language processing, also for the Italian
language. This phase is in turn divided into sub-processes:

• Recognition of named entities

• Tokenization

• Part-of-speech tagging

• Dependency parsing

5.1.1 Named Entities Recognition

The named entities of a text are portions of text that identify the names
of people, organizations, places or other elements that are referenced by a
proper name. For example, in the phrase Michelangelo has painted the Last
Judgment we can recognize two entities, that are Michelangelo that could
belong to a Person category and the Last Judgment that could belong to an
Artwork category. The recognition of named entities is an NLP task that
deals with the identification and categorization of the entities that appear in
a text. In a QA system, a NER phase makes it possible to identify the topics
of the input question, classify them and eventually simplify the subsequent
phases of NLP. To date, there are several existing implementations of NER.
Mostly, the NER algorithms are based on grammars of natural languages
or on statistical approaches such as Machine Learning. Grammar-based ap-
proaches typically require a consistent supply of grammar rules provided by
grammar experts, offering high accuracy, but low recall and consistent rule-
making work that can take months. Instead, statistical approaches require
large amounts of training data that are manually annotated. More recently,
semi-supervised approaches have been developed to allow faster creation of
the training set. When the entities of the text have been recognized, they
can be replaced with placeholders that are easier to manage in the subse-
quent stages of processing of natural language. For example, it is possible to
replace long and decomposed names with atomic names (that is, composed
of a single word) that are more easily handled during tokenization, Parts-
of-speech tagging, and Dependency Parsing. In our implementation we use
CRF++ [52] that implements a supervised model based on conditional ran-
dom fields that are probabilistic models for segmenting and labeling sequence
data [53].

67

Figure 5.2: Example of Named-Entities Recognition

To train the CRF model, we generated a training set built from some
question patterns specified by using a metalanguage and expansible into a
set of training questions. An example of question patterns is the following:

who {painted,created} [the work,the artwork] <W>.

The pattern is expanded by using, for each expansion, exactly one word
from curly brackets set, at most one word from square brackets set, and
one available values from a predefined entities set identified with the id in
angle brackets. So, if W = {Guenica, theRosettaStone, theMonalisa}, the
resulting patterns expansion are all the followings:

who painted Guenica.

who created Guenica.

who painted the work Guenica.

who created the work Guenica.

who painted the artwork Guenica.

who created the artwork Guenica.

who painted the Rosetta Stone.

...

The resulting questions can then be down-sampled. We randomly sample
expanded patterns by using a fixed maximum size for each question pattern.

68

Figure 5.3: Example of tokenization

5.1.2 Tokenization

Tokenization consists of splitting text into words (called tokens). A token is
an indivisible unit of text. Tokens are separated by spaces or punctuation
marks. In Italian, as in other western languages, the tokenization phase
turns out to be rather simple, as these languages place quite clear word
demarcations. In fact, the approaches used for natural language tokenization
are based on simple regular expressions. Tokenization is the first phase of
lexical analysis and creates the input for the next Part-of-Speech Tagging
phase. Figure 5.3 shows an example of tokenization.

5.1.3 Parts-Of-Speech Tagging

The part-of-speech tagging phase consists in assigning to each word the cor-
responding part of the speech. Common examples of parts-of-speech are ad-
jectives, nouns, pronouns, verbs, or articles. The part-of-speech assignment
is typically implemented with supervised statistical methods. There are, for
several languages, large manually annotated corpora that can be used as
training sets to train a statistical system. Among the best performing ap-
proaches are those based on Maximum Entropy [6]. The set of possible parts
of the speech (called tag-set) is not fixed, and above all, it can present sub-
stantial differences depending on the language taken into consideration. For
Italian, a reference tag-set is the Tanl tag-set: 1. This tag-set distinguishes
between coarse-grained tags and fine-grained tags and allows specifying tags
that include morphological information such as gender and number. Figure
5.4 shows an example of POS tagging. In the example, the symbols above
the words indicate the tags corresponding to the words below: NP indicates
a proper name, VB indicates a verb, and F indicates a punctuation mark.

For tokenization and POS-tagging we used the Apache OpenNLP library2

1http://medialab.di.unipi.it/wiki/Tanl_POS_Tagset
2https://opennlp.apache.org

69

http://medialab.di.unipi.it/wiki/Tanl_POS_Tagset
https://opennlp.apache.org

Figure 5.4: Example of POS-tagging

with pretrained models3.

5.1.4 Dependency Parsing

Dependency Parsing is the identification of lexical dependencies of the words
of a text according to a grammar of dependencies. The dependency grammar
(DG) is a class of syntactic theories that are all based on the dependency
relationship (as opposed to the circumscription relation). Dependency is the
notion that linguistic units, e.g. words, are connected to one another by
directed connections (or dependencies). A dependency is determined by the
relationship between a word (a head) and its dependencies. The methods for
extracting grammar dependencies are typically supervised and use a reference
tag-set and a standard input representation format known as the CoNLL
standard, developed and updated within the CoNLL scientific conference
(Conference on Computational Natural Language Learning). An updated
version of the CoNLL format is the CoNLL-U4 version. In CoNLL-U, lexical
information is encoded as plain text UTF-8. The information is organized
by line and there are 3 types of line:

• Word lines: contain annotations related to a word (token) in 10 fields
separated by single tabs.

• Blank lines: used to separate sentences.

• Comment lines: start with a hash symbol (#) and are not interpreted
by the interpreters of the CoNLL format, but are used to add com-
ments.

A sentence consists of one or more word lines. A word line contains the
following attributes:

3https://github.com/aciapetti/opennlp-italian-models
4http://universaldependencies.org/format.html

70

https://github.com/aciapetti/opennlp-italian-models
http://universaldependencies.org/format.html

• ID: Index of the word, is an integer starting from 1 for each new sen-
tence; it can cover a multi-word token

• FORM: Shape of the word (that is the word itself), possibly a punctu-
ation symbol

• LEMMA: Lemma or stem or canonical form of the word. E.g. run is
the lemma of running, apple is the lemma of apples

• UPOSTAG: universal part-of-speech tag

• XPOSTAG: language-specific part-of-speech tag

• FEATS: (Features) List of morphological characteristics associated with
the word (eg gender, number, time)

• HEAD: Head of the current word. It allows representing a direct gram-
matical dependency; it is the ID of the related word (head)

• DEPREL: tag that identifies the type of grammatical dependency

• DEPS: used for the analysis of the dependencies whose structure is not
a tree, but rather a graph and there may be more arcs coming out of a
node

• MISC: any other annotation

In our implementation we used MaltParser5 that is a system for data-driven
dependency parsing [66].

5.2 Template Matching

Once the NLP phases are completed we perform one of the core phases of
the system, that is the template matching phase. Template matching is in
charge of classifying question from the syntactical point of view and extract
the question terms that are needed to instantiate the query for retrieving the
answer. Basically, a template represents a category of syntactically homoge-
neous questions. In our system, templates are encoded in terms of ASP rules.

5http://www.maltparser.org/

71

http://www.maltparser.org/

Figure 5.5: Example of Dependency Parsing

By using ASP we can work in a declarative fashion and avoid implementing
the template matching procedure from scratch.

To this end, the output of the NLP phase is modeled by using ASP facts
that constitute the input of the template matching module. In particular,
words are indexed by their position in the sentence and they are associated
with their morphological feature by using facts of the following forms:

word(pst,wrd). pos(pst,pos tag).

gr(pst1,pst2,rel tag).

the first kind of fact associates position of words (pst) in a sentence to
the word itself (wrd); the second associates words (pst) with their POS
tags (pos tag), and the latter models grammatical relations (a.k.a. typed
dependencies) specifying the type of grammatical relation (rel tag) holding
among pair of words (pst1,pst2). The possible tags and relations terms are
constants representing the labels produced by the NLP tools mentioned in
the previous subsection.

Consider, for example, the question who painted Guernica?, the output
of the NLP phase would result in the following facts (cfr., Figure 5.1 for a
graphical representation of this NLP output).

word(1, "who"), word(2, "painted").

word(3, "Guernica"). word(4, "?").

72

pos(1, pr), pos(2, vb). pos(3, np). pos(4, f).

gr(2, 1, nsubj), gr(2, 3, dobj). gr(2, 4, punct).

We denote with FQ the set of facts produced by the application of men-
tioned NLP phases and transformations to an input question Q.

In the template matching phase, questions are matched against question
templates. Templates identify categories of questions that are uniform from
the syntactic point of view and we express them in the form of ASP rules.

Definition 10. A template rule R is a rule having in the head an ASP atom
of the form

template(ID , terms K(V1, . . . , VK),W)

where template is a constant predicate name (that is the same for all tem-
plates), ID is an ASP constant that identifies the template, K is an integer
that we call template arity, V1, . . . , VK are ASP variables and W is an integer
that defines the template rule weight.

Basically, each template rule models a condition under which we identified
a possible syntactic question pattern for a template. The function terms K
conveniently groups the terms that are extracted from the match. Finally
the weight is numerical value that expresses the importance of a pattern. By
using weights one can freely express preferences among patterns; for instance
in our implementation we set this number to the size of the body to favor
more specific templates rules over more generic ones. An example of template
rule that matches questions of the form who action object? is the following:

template(who action object, terms 2(V, O), 8) :-

word (1, "who"),

word(2, V), word(3, O), word(4, "?"),

pos(1, pr), pos(2, vb), pos(3, np), pos(4, f),

gr(2, 1, nsubj), gr(2, 3, dobj), gr(2, 4, punct).

In the example, who action object is a constant that identifies the tem-
plate, while terms(V,W) is a function symbol that allows extracting the
terms of the input question, respectively the verb V and the object O. The
weight of the template rule is 8, which corresponds to the body size as de-
scribed above.

Definition 11. A template T is a set of template rules having the same ID
and arity.

73

Basically, a template collects a number of possible syntactic patterns (one
per template rule), roughly corresponding to different ways of formulating a
kind of question.

Definition 12. A template matching program P is an ASP program that con-
tains at least one template, and the following rule, defining the best matches
(i.e., the ones with highest weight):

bestMatch(T,R) :- template(T,R,M), #max{W: template(, ,W)} =

M.

Definition 13. Given a template matching program P and the set of facts
FQ coming from the NLP phase w.r.t. a question Q, we say that (T,R) is
a best match for Q iff bestMatch(T,R) ∈ A where A is the answer set of
FQ ∪ P . In such case, T identifies a best matching template and R defines
the terms extracted from the match.

Note that, it was by design that one can retrieve more than one best
match, to give more freedom to the design of the interaction with the user.
Pragmatically, in the first prototypical implementation, we simply select
the first best-match assuming that all best-matches represent the question
equally good.

Question templates are intended to be defined by the application designer,
which is a reasonable choice in applications like the one we considered, where
the number of templates to produce is limited. Nonetheless, to assist the
definition of templates we developed a graphical user interface. Such inter-
face helps the user at building template rules by working and generalizing
examples, and does not require any previous knowledge of ASP or specific
knowledge of NLP tools. The template editing interface is not described in
this paper for space reasons.

In our prototype, we used DLV [57] as the ASP solver that computes the
answer sets (thus the best matches) of the template matching phase, and
the DLV Wrapper library [71] to programmatically manage DLV invocations
from Java code.

The intent determination process is based on the lexical expansion of
question terms extracted in the template matching phase.

74

5.3 Intent Determination

The identification of a question by templates is typically not sufficient to
identify its intent or purpose. For example, who painted Guernica? and
who killed Caesar? have a very similar syntactic structure and may fall
into the same template, but they have two different purposes. The intent
determination process is based on the lexical expansion of question terms
extracted in the template matching phase and has the role of identifying what
the question asks (i.e., its intent), starting from the result of the template
matching phase. In other words, it disambiguates the intent of questions that
fall into the same syntactic category (and that therefore have a match on the
same template). In the previous example, painting is hyponym (i.e., a specific
instance) of creating and this fact allows us to understand that the intent is to
determine the creator of a work, while killing does not have such relationships
and we should, therefore, instantiate a different intent. In the same way,
who painted Guernica?, who made Guernica? or who created Guernica?
are all questions that can be correctly mapped with a single template and
can be correctly recognized by the same intent thanks to the fact that all
three verbs are hyponyms or synonyms of the verb create. Words semantic
relations can be obtained by using dedicated dictionaries, like wordnet [63]
or BabelNet [65]. In our system we used BabelNet and we implemented the
intent determination module in Java and used the BabelNet API library for
accessing word relations. In particular, intent determination is implemented
as a series of Java conditional checks (possibly nested) on word relations.
Such conditional checks are expressed as a question term Q, a word relation
R and a target word T . The BabelNet service receives such triple and returns
true/false depending on whether Q is in relation R w.r.t. T , R is either
synonymy, hyponymy or hyperonymy. Algorithm 11 presents a pseudo-code
of the intent determination process for the who action object template with
one verb and one object as terms.

The implementation of intent determination is done by the designer as
template definition. Our system implements a set of intents that were iden-
tified during the analysis by a partner of the project.

Note that intent determination could also be easily encoded by means
of ASP rules, which would have allowed having a single ASP program for
handling both template matching and intent determination. However, the
access to external dictionaries was not efficient in practice, and we decided
to go for a straight implementation with imperative code.

75

Algorithm 11 Determine intent for who action object template

Input: matched terms: verb, object
Output: intent of question

1: if inDictionary(verb, “synonym”, “created”) then
2: return AUTHOR OF WORK
3: end if
4: if inDictionary(verb, “synonym”, “found”) then
5: return FOUNDER OF WORK
6: end if
7: if inDictionary(verb, “synonym”, “married”) then
8: return SPOUSE OF PERSON
9: end if

10: if inDictionary(verb, “hyponym”, “created”) then
11: return AUTHOR OF WORK
12: end if
13: ...
14: return FAIL

5.4 Query Execution

The intents identified in the previous phase are mapped one to one with
template queries, called prepared statements in programming jargon. In the
Query Execution phase, the query template corresponding to the identified
event is filled with the slots with terms extracted from the template matching
phase and executed over the knowledge base. The CIDOC-crm specification
is, by definition, an RDF knowledge base [19], thus we implemented the
queries corresponding to intents in the SPARQL language [46]. The problem
of programmatically running a query on an RDF knowledge base is a problem
for which there are already several solutions. Among the many, we mention
Apache Jena for Java and Rasqal for C / C++. In our prototype, we store
our data and run our queries using Apache Jena, as programmatic query
API, and Virtuoso Open-Source Edition as knowledge base service.

76

5.5 Answer Generation

Finally, the latest phase of a typical user interaction with the QA system
is the so-called Answer Generation. In this phase, the results produced by
the execution of the query on the knowledge base are transformed into a
natural language answer that is finally returned to the user. To implement
this phase we have designed answer templates that are in some ways simi-
lar to the one seen for generating the test set for the NER phase. In this
case, the idea is to have natural language patterns with parameterized slots
that are filled according to the question intent and the terms extracted from
the database. These answer templates can be expressed in a compact way
through a metalanguage that allows expressing sentences with variations ac-
cording to the subjects of question or answer. The example below presents
a possible answer template for questions concerning the materials of a work.

The material{s:s}[R] of <Q> {s:is,p:are}[R] <R>.

The curly brackets denote a sequence of variants and the square brackets
denote the term (or terms) with respect to which the block preceding it
refers: R stands for answer (or response) and Q stands for question. A
variant consists of a property and a value separated by a colon symbol.
The block delimited by the braces is replaced by the value of the variant
appropriate to the term enclosed between square brackets that follows the
block. The determination of the appropriate variant can be implemented
within the system using, for example, a dictionary of terms. In the example,
the s variant is for singular forms and the p variant is for plural forms.
The variants may possibly be extended into more complex types (possibly
organized in hierarchies) and take into consideration other characteristics of
the terms of answer and question extracted from appropriate dictionaries of
terms or explicitly represented in the knowledge base. Finally, the 〈Q〉 tag is
replaced by the question terms and the 〈R〉 tag from the answer terms. So,
suppose we want to apply the answer template from the previous example
to the fact that the Rosetta Stone is made of granodiorite we would get the
answer: The material of the Rosetta Stone is granodiorite.

5.6 System Performance on Real-world Data

In this section, we report on the results of an experimental analysis conducted
to assess the performance of the system, and in particular, we have checked

77

whether it scales well w.r.t the number of template rules present in a use
case developed in the PIUCULTURA project.

Table 5.1: Template matching time (average times on a sample of 167 ques-
tions)

Number of templates 20 30 40 50 60
Average matching time (milliseconds) 30 30 31 33 34

We devised 60 template rules, which are able to handle basic question
forms and types for the cultural heritage domain distributed in 20 differ-
ent intents (e.g., authors, materials, dimensions, techniques of artworks,
dates/locations of birth and death of artists, and so on). The queries have
been executed on a dump of the British Museum6 Knowledge-Base that con-
sists of more than 200 million RDF triples. The hardware used is an Intel
i7-7700HQ CPU with 16GB of ram running a Linux operating system. The
knowledge base was handled by Virtuoso ver. 7.2.4, connected to our system
with JENA ver. 3.6.0. The ASP system we have used is DLV build BEN/Dec
17 2012.

The average execution times of the template matching phase measured on
a sample of 167 questions and on an increasing number of template rules are
reported in table 5.1. Execution times are in the order of some milliseconds
and seems to scale well w.r.t the number of templates. The DLV system per-
forms well on the template programs we have implemented, which by design
fall in the stratified [12] syntactic subclass of ASP, which is comptationally
cheap and efficiently handled by the ASP system we employ [57, 58]. For
what concerns the other phases of the QA system, we report that, on the
same sample of 167 questions, the NL phase average execution time is of 30
milliseconds and is at most 50 milliseconds, the intent determination phase
average execution time is of 50 milliseconds and is at most 580 milliseconds
and the average query execution time is of 8 milliseconds and is at most 32
milliseconds. Overall the system presents good execution times, which are
acceptable for a real-time QA system.

6http://www.britishmuseum.org/

78

http://www.britishmuseum.org/

5.7 Related Work

This work is mostly related to other approaches and forms of QA. Most QA
systems in the literature are concerned to retrieving answers from collec-
tions of documents, or on the Web, also thanks to the work developed in
the context of the Text Retrieval Conference (TREC) that popularized and
promoted this form of QA [78]. Systems that fall in this category are mainly
based on information retrieval techniques. The most prominent differences
to our approach are that we are collecting data from a structured knowledge
base, instead of text collections.

For what concerns closed-domain QA, early examples are Baseball [45]
and Lunar [80], they were essentially natural language interfaces to rela-
tional data-bases. Lunar allowed asking geologist questions about rocks,
while Baseball answered questions about data collected from a baseball sea-
son. AquaLog [61] is an ontology-portable Question Answering system that
tries to map input questions into linguistic triples and then into ontology
triples by mainly using similarity services. In our approach, there is no triple
representation of questions and we implemented an intent layer that sepa-
rates the NL and the ontology world. The intent layer allows implementing
intents in actions/queries that are not SPARQL queries. Our approach is
less general to be ported to other ontologies, but we provide more control to
the developer to create precise NL-to-ontology mappings.

WEBCOOP [14] is a QA system for the tourism domain and implements
a cooperative QA on unstructured data. WEBCOOP works on text collec-
tions instead of a structured knowledge base. In [77] input questions are
transformed into SPARQL templates that mirror the internal structure of
the question and are then filled with question terms. As for AcquaLog, the
system is domain-independent and in contrast to AcquaLog, they capture
questions that are not fully represented by triple clauses, but also those that
need filtering and aggregations functions to be handled. Again, our approach
is less general and less automatic, but also more controllable and less depen-
dent on the data representation formalism that can vary independently from
the question templates.

There are some systems that approach questions by transforming them
into logic forms so as to be able to perform reasoning tasks [64, 44, 9], both
in open and closed domains. This is particularly useful for difficult questions
that need advanced reasoning capabilities to be answered. Our approach also
uses logic, but for the different task of expressing question patterns matching

79

input questions.

5.8 Discussion

In this last part of the thesis, we tackled the problem of Question Answering
in Closed Domains, with a specific focus on the Cultural Heritage domain
and the Italian language. We proposed a solution that is based on Answer
Set Programming and is materialized as a software prototype. The presented
solution gradually transforms input questions into SPARQL queries that are
executed on an ontological Knowledge-Base. It integrates state-of-the-art
NLP tools and models in a modular architecture. The core of the question
answering process is organized in a two-steps classification process:

1. a rule-based syntactic matching implemented in terms of Answer Set
Programming rules and called template matching

2. a semantic classification based on lexical expansions of question terms
that we called intent classification

The system is designed for allowing the fast integration of new question
forms (by adding templates) and new question intents (by adding intents and
templates) and behaves well in closed domains that are characterized by a
limited number of intents and question forms.

As for future works, it would be interesting to compare the presented
approach against other forms of question answering, as the ones based on
machine learning.

80

Chapter 6

Conclusion

In this thesis we presented our work in two parts, reporting on two research
efforts belonging to the field of Answer Set Programming. In the first part
of the thesis, we approached the problem of improving ASP systems where
state-of-the-art systems suffer from the grounding bottleneck, providing sev-
eral contributions in this context. In the second part of the thesis we de-
scribed a new real-world application of ASP to a problem of question an-
swering in natural language. In the following we draw the conclusion of our
studies; two separate paragraphs summarize the contributions and discuss
future works for the two parts of the thesis.

Lazy Constraints and Partial Compilation. We investigated some is-
sues that are related to the evaluation of ASP programs in cases where state-
of-the-art systems are not effective. At first, the focus is on problematic
ASP constraints for which the grounding phase represents a bottleneck of
the computation. Such conditions have been observed in synthetic and real-
world problems and prevent the standard ASP solving approaches from being
effective. We study how and when the replacement of constraints with ad-
hoc solvers extensions is beneficial with a distinction between three flavors
of replacements: lazy instantiators, eager propagators and post propagators.
Indeed, an experimental analysis shows that such approaches are effective
when constraints are hard to ground, with lazy instantiators being better on
easier constraints (in terms of satisfiability) and eager/post on harder con-
straints, while the standard “ground+solve” approach is generally better for
constraints that are anyway easy to ground. We concluded the first work
with a demonstrative portfolio approach that allows a smart combination

81

of all the approaches when they are all available. A disadvantage of custom
propagators was that they had to be written manually. In an attempt to gen-
erate them automatically we decided to adopt a compilation-based approach,
where an ASP sub-program can be compiled into a specialized procedure that
is in principle (and in practice, as we have empirically shown) faster than a
general-purpose procedure thanks to its specificity. Our partial compilation
is embeddable in existing ASP solvers thanks to programmatic APIs and we
implemented it within the WASP solver. Experiments on benchmarks from
the literature witness the efficacy of our technique.

The partial compilation technique proposed in this thesis is (to the best
of our knowledge) the first approach of this kind to the evaluation of ASP
programs.

For what concerns future works, automatic generation of eager and post
propagators would be an interesting advancement. Another possible exten-
sion of ASP compilation would be the development of an ASP grounder that
uses compilation-based techniques. Indeed the problem of instantiating ASP
programs can be seen as an extension of Datalog programs evaluation.

ASP for Question Answering on Cultural-Heritage. We presented
an application of ASP to Closed Domain Question Answering with a focus on
the Italian language and the Cultural Heritage domain. We first collect and
define some necessary building blocks and a preliminary architecture that
is able to tackle the problem. We selected a standard ontological reference
model for representing the cultural heritage data and collected some models
and tools that are able to perform some standard Natural Language Process-
ing tasks. We defined a two-steps question classification process, the first one
classifying questions by means ASP rules and the second one being a more
semantical classification based on words semantic relations. The syntactic
classification has been named template matching where a template is a set
of ASP rules.

The result of the classification process is given by a question intent and
a set of matched terms that are the subjects of the questions and are ex-
tracted in the template matching process. Finally, by using the intent and
the matched terms the systems generates a SPARQL query that is executed
on an ontological knowledge base to retrieve the answer to the user question.

The core part of the system is the template matching process that is
implemented in ASP. By using ASP we could rely on efficient existing imple-

82

mentations without the need to implement a matching system from scratch.
Moreover, new question forms are easily integrated in the system by means
of new templates, while new question types can be handled by introducing
new question intents (and related templates and queries).

The presented QA system has been integrated in the system that is under
development for the PIUCULTURA project, which is a project funded by the
Italian Ministry of Economic Development and whose aim is to promote and
improve the fruition of Cultural Heritage. The commercial partners of the
project are the IT companies Neatec1 and Softlab2, which are planning to
use the software for commercial purposes in the next years, when the project
is completed.

As for future works, it would be interesting to compare the presented
approach against other forms of question answering, like the ones based on
machine learning.

1http://www.neatec.it
2http://www.soft.it

83

http://www.neatec.it
http://www.soft.it

Bibliography

[1] Dimitris Achlioptas. Random satisfiability. In Handbook of Satisfiability,
volume 185 of FAIA, pages 245–270. IOS Press, 2009.

[2] Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. The question
answering systems: A survey. International Journal of Research and
Reviews in Information Sciences (IJRRIS), 2(3), 2012.

[3] Mario Alviano and Carmine Dodaro. Completion of disjunctive logic
programs. In IJCAI, pages 886–892. IJCAI/AAAI Press, 2016.

[4] Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone, and
Francesco Ricca. WASP: A native ASP solver based on constraint learn-
ing. In LPNMR, volume 8148 of LNCS, pages 54–66. Springer, 2013.

[5] Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca.
Advances in WASP. In LPNMR, volume 9345 of LNCS, pages 40–54.
Springer, 2015.

[6] Markus Aschinger, Conrad Drescher, Gerhard Friedrich, Georg Gottlob,
Peter Jeavons, Anna Ryabokon, and Evgenij Thorstensen. Optimization
methods for the partner units problem. In CPAIOR, pages 4–19, 2011.

[7] Rehan Abdul Aziz, Geoffrey Chu, and Peter J. Stuckey. Stable model
semantics for founded bounds. TPLP, 13(4-5):517–532, 2013.

[8] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information
retrieval, volume 463. ACM press New York, 1999.

[9] Marcello Balduccini, Chitta Baral, and Yuliya Lierler. Knowledge repre-
sentation and question answering. Foundations of Artificial Intelligence,
3:779–819, 2008.

84

[10] Marcello Balduccini and Yuliya Lierler. Integration schemas for con-
straint answer set programming: a case study. TPLP, 13(4-5-Online-
Supplement), 2013.

[11] Marcello Balduccini and Yuliya Lierler. Constraint answer set solver
EZCSP and why integration schemas matter. CoRR, abs/1702.04047,
2017.

[12] Chitta Baral. Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press, 2010.

[13] Sabrina Baselice, Piero A. Bonatti, and Michael Gelfond. A preliminary
report on integrating of answer set and constraint solving. In Answer
Set Programming, volume 142 of CEUR Workshop Proceedings, 2005.

[14] Farah Benamara. Cooperative question answering in restricted domains:
the webcoop experiment. In Proceedings of the Conference on Question
Answering in Restricted Domains, 2004.

[15] Bart Bogaerts and Antonius Weinzierl. Exploiting justifications for lazy
grounding of answer set programs. In IJCAI, pages 1737–1745. ijcai.org,
2018.

[16] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer
set programming at a glance. Commun. ACM, 54(12):92–103, 2011.

[17] Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari.
I-DLV: the new intelligent grounder of DLV. Intelligenza Artificiale,
11(1):5–20, 2017.

[18] Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco
Ricca. Design and results of the fifth answer set programming com-
petition. Artif. Intell., 231:151–181, 2016.

[19] World Wide Web Consortium et al. Rdf 1.1 concepts and abstract
syntax. 2014.

[20] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco
Rossi. Gasp: Answer set programming with lazy grounding. Funda-
menta Informaticae, 96(3):297–322, 2009.

85

[21] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco
Rossi. GASP: answer set programming with lazy grounding. Fundam.
Inform., 96(3):297–322, 2009.

[22] Minh Dao-Tran, Thomas Eiter, Michael Fink, Gerald Weidinger, and
Antonius Weinzierl. Omiga : An open minded grounding on-the-fly
answer set solver. In JELIA, volume 7519 of LNCS, pages 480–483.
Springer, 2012.

[23] Broes de Cat, Marc Denecker, Maurice Bruynooghe, and Peter J.
Stuckey. Lazy model expansion: Interleaving grounding with search.
J. Artif. Intell. Res. (JAIR), 52:235–286, 2015.

[24] Carmine Dodaro, Philip Gasteiger, Nicola Leone, Benjamin Musitsch,
Francesco Ricca, and Konstantin Schekotihin. Combining answer set
programming and domain heuristics for solving hard industrial problems
(application paper). TPLP, 16(5-6):653–669, 2016.

[25] Carmine Dodaro, Francesco Ricca, and Peter Schüller. External propa-
gators in WASP: preliminary report. In RCRA, volume 1745 of CEUR
Workshop Proceedings, pages 1–9. CEUR-WS.org, 2016.

[26] Carmine Dodaro, Francesco Ricca, and Peter Schüller. External prop-
agators in wasp: Preliminary report. In RCRA@ AI* IA, pages 1–9,
2016.

[27] Martin Doerr. The cidoc conceptual reference module: an ontologi-
cal approach to semantic interoperability of metadata. AI magazine,
24(3):75, 2003.

[28] T. Eiter, M. Fink, G. Ianni, T. Krennwallner, C. Redl, and P. Schüller.
A model building framework for answer set programming with external
computations. Theory and Practice of Logic Programming, 16(4), 2016.

[29] Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwall-
ner, Christoph Redl, and Peter Schüller. A model building framework for
answer set programming with external computations. TPLP, 16(4):418–
464, 2016.

[30] Thomas Eiter, Christoph Redl, and Peter Schüller. Problem solving
using the HEX family. In Computational Models of Rationality, Essays

86

dedicated to Gabriele Kern-Isberner on the occasion of her 60th birthday,
pages 150–174. College Publications, 2016.

[31] Esra Erdem and Umut Öztok. Generating explanations for biomedical
queries. TPLP, 15(1):35–78, 2015.

[32] Esra Erdem, Volkan Patoglu, and Peter Schüller. A systematic analysis
of levels of integration between high-level task planning and low-level
feasibility checks. AI Commun., 29(2):319–349, 2016.

[33] Wolfgang Faber, Nicola Leone, and Simona Perri. The intelligent
grounder of DLV. In Correct Reasoning, volume 7265 of Lecture Notes
in Computer Science, pages 247–264. Springer, 2012.

[34] Thibaut Feydy and Peter J. Stuckey. Lazy clause generation reengi-
neered. In CP, volume 5732 of LNCS, pages 352–366. Springer, 2009.

[35] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Philipp Wanko. Theory solving made easy with
clingo 5. In ICLP TCs, volume 52 of OASICS, pages 2:1–2:15, 2016.

[36] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Philipp Wanko. Theory solving made easy with
clingo 5. In OASIcs-OpenAccess Series in Informatics, volume 52.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[37] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero,
and Torsten Schaub. Progress in clasp series 3. In LPNMR, volume 9345
of Lecture Notes in Computer Science, pages 368–383. Springer, 2015.

[38] Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub.
Advances in gringo series 3. In LPNMR, volume 6645 of LNCS, pages
345–351. Springer, 2011.

[39] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten
Schaub. Conflict-driven answer set solving. In IJCAI, volume 7, pages
386–392, 2007.

[40] Martin Gebser, Benjamin Kaufmann, Javier Romero, Ramón Otero,
Torsten Schaub, and Philipp Wanko. Domain-specific heuristics in an-
swer set programming. In AAAI. AAAI Press, 2013.

87

[41] Martin Gebser, Nicola Leone, Marco Maratea, Simona Perri, Francesco
Ricca, and Torsten Schaub. Evaluation techniques and systems for an-
swer set programming: a survey. In IJCAI, pages 5450–5456. ijcai.org,
2018.

[42] Martin Gebser, Anna Ryabokon, and Gottfried Schenner. Combining
heuristics for configuration problems using answer set programming.
In International Conference on Logic Programming and Nonmonotonic
Reasoning, pages 384–397. Springer, 2015.

[43] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Comput., 9(3/4):365–
386, 1991.

[44] Cordell Green. Theorem proving by resolution as a basis for question-
answering systems. Machine intelligence, 4:183–205, 1969.

[45] Bert F Green Jr, Alice K Wolf, Carol Chomsky, and Kenneth Laughery.
Baseball: an automatic question-answerer. In Papers presented at the
May 9-11, 1961, western joint IRE-AIEE-ACM computer conference,
pages 219–224. ACM, 1961.

[46] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. Sparql 1.1
query language. W3C recommendation, 21(10), 2013.

[47] Lynette Hirschman and Robert Gaizauskas. Natural language question
answering: the view from here. natural language engineering, 7(4):275–
300, 2001.

[48] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran.
Modularity Aspects of Disjunctive Stable Models. Journal Of Artificial
Intelligence Research, 35:813–857, 2009.

[49] Benjamin Kaufmann, Nicola Leone, Simona Perri, and Torsten Schaub.
Grounding and solving in answer set programming. AI Magazine,
37(3):25–32, 2016.

[50] Tero Kojo, Tomi Männistö, and Timo Soininen. Towards intelligent sup-
port for managing evolution of configurable software product families.
In SCM, volume 2649 of LNCS, pages 86–101. Springer, 2003.

88

[51] Laura Koponen, Emilia Oikarinen, Tomi Janhunen, and Laura Säilä.
Optimizing phylogenetic supertrees using answer set programming.
TPLP, 15(4-5):604–619, 2015.

[52] Taku Kudo. Crf++. http://crfpp. sourceforge. net/, 2013.

[53] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Condi-
tional random fields: Probabilistic models for segmenting and labeling
sequence data. 2001.

[54] Claire Lefevre, Christopher Béatrix, Igor Stéphan, and Laurent Garcia.
Asperix, a first-order forward chaining approach for answer set comput-
ing. Theory and Practice of Logic Programming, 17(3):266–310, 2017.

[55] Claire Lefèvre and Pascal Nicolas. The first version of a new ASP solver:
Asperix. In LPNMR, volume 5753 of LNCS, pages 522–527. Springer,
2009.

[56] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. The DLV system for
knowledge representation and reasoning. ACM TOCL, 7(3):499–562,
2006.

[57] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. The dlv system for
knowledge representation and reasoning. ACM Transactions on Com-
putational Logic (TOCL), 7(3):499–562, 2006.

[58] Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. Openrulebench:
an analysis of the performance of rule engines. In WWW, pages 601–610.
ACM, 2009.

[59] Vladimir Lifschitz. What is answer set programming?. In AAAI, vol-
ume 8, pages 1594–1597, 2008.

[60] Lengning Liu, Enrico Pontelli, Tran Cao Son, and Miroslaw Truszczyn-
ski. Logic programs with abstract constraint atoms: The role of com-
putations. Artif. Intell., 174(3-4):295–315, 2010.

[61] Vanessa Lopez, Michele Pasin, and Enrico Motta. Aqualog: An
ontology-portable question answering system for the semantic web. In
European Semantic Web Conference, pages 546–562. Springer, 2005.

89

[62] Marco Manna, Francesco Ricca, and Giorgio Terracina. Taming primary
key violations to query large inconsistent data via ASP. TPLP, 15(4-
5):696–710, 2015.

[63] George Miller. WordNet: An electronic lexical database. MIT press,
1998.

[64] Dan Moldovan, Christine Clark, Sanda Harabagiu, and Steve Maiorano.
Cogex: A logic prover for question answering. In Proceedings of the
2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology-Volume 1,
pages 87–93. Association for Computational Linguistics, 2003.

[65] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic
construction, evaluation and application of a wide-coverage multilingual
semantic network. Artificial Intelligence, 193:217–250, 2012.

[66] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülşen Eryigit,
Sandra Kübler, Svetoslav Marinov, and Erwin Marsi. Maltparser: A
language-independent system for data-driven dependency parsing. Nat-
ural Language Engineering, 13(2):95–135, 2007.

[67] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Wat-
son, and Matthew Barry. An A prolog decision support system for the
space shuttle. In Answer Set Programming, 2001.

[68] Max Ostrowski and Torsten Schaub. ASP modulo CSP: the clingcon
system. TPLP, 12(4-5):485–503, 2012.

[69] J.R. Quinlan. C4.5: Programs for Empirical Learning. Morgan Kauf-
mann, 1993.

[70] Christoph Redl. The dlvhex system for knowledge representation: recent
advances (system description). TPLP, 16(5-6):866–883, 2016.

[71] Francesco Ricca. The dlv java wrapper. In APPIA-GULP-PRODE,
pages 263–274. Citeseer, 2003.

[72] Peter Schüller. Modeling variations of first-order horn abduction in
answer set programming. Fundam. Inform., 149(1-2):159–207, 2016.

90

[73] João P. Marques Silva and Karem A. Sakallah. GRASP: A search
algorithm for propositional satisfiability. IEEE Trans. Computers,
48(5):506–521, 1999.

[74] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and im-
plementing the stable model semantics. Artif. Intell., 138(1-2):181–234,
2002.

[75] Benjamin Susman and Yuliya Lierler. SMT-based constraint answer
set solver EZSMT (system description). In ICLP TCs, volume 52 of
OASICS, pages 1:1–1:15. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2016.

[76] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
Volume I, volume 14 of Principles of computer science series. Computer
Science Press, 1988.

[77] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille
Ngonga Ngomo, Daniel Gerber, and Philipp Cimiano. Template-based
question answering over rdf data. In Proceedings of the 21st international
conference on World Wide Web, pages 639–648. ACM, 2012.

[78] Ellen M Voorhees and Hoa Trang Dang. Overview of the trec 2003
question answering track. In TREC, volume 2003, pages 54–68, 2003.

[79] Antonius Weinzierl. Blending Lazy-Grounding and CDNL Search for
Answer-Set Solving. In LPNMR, volume 10377 of LNCS, pages 191–
204, 2017.

[80] William A Woods. Semantics and quantification in natural language
question answering. In Advances in computers, volume 17, pages 1–87.
Elsevier, 1978.

91

