
Università della Calabria

Dipartimento di Ingegneria Informatica, Modellistica,

Elettronica e Sistemistica

Dottorato di Ricerca in

Information and Communication Technologies

XXX Ciclo

Tesi di Dottorato

Malevolent Activities Detection

and

Cyber Range Scenarios Orchestration

Antonio Piccolo

Acknowledgments

Ci tengo innanzitutto a ringraziare il Prof. Domenico Saccà, mio tutor di
dottorato, ma anche la persona pi intellettualmente stimolante che abbia mai
conosciuto. Mi ha sempre supportato in questi tre anni dispensando centinaia
di idee interessanti, saggi consigli, attività appassionanti. Questo lavoro di tesi
non sarebbe mai stato possibile senza il suo aiuto, supporto e pazienza. Ha
fatto s che valesse veramente la pena di arrivare fino in fondo a questo viaggio.
Grazie. Grazie al mio co-tutor, il Prof. Andrea Pugliese, per la grande fiducia
riposta in me e la completa libertà che mi ha concesso nel seguire i miei temi
di ricerca preferiti. Grazie a mia madre, che per tutto il tempo mi ha tenuto
lontano dai problemi di salute di mio padre e dalle difficoltà di ogni giorno.
Grazie per avermi incoraggiato e per aver creduto in me, senza riserve, fino
ad oggi. Grazie al mio amore, Federica, che ha supportato la mia scelta di
intraprendere il dottorato anche a costo di vivere lontani per qualche anno.
Grazie ai miei amici, soprattutto a Luigi e Leonardo, per aver costantemente
ispirato il mio lavoro e per avermi aiutato a crescere. Infine, ma non per
importanza, grazie ad Angelo Furfaro, la sua preziosa collaborazione ha avuto
un impatto significativo sul mio percorso di ricerca e sui risultati raggiunti.

i

Abstract

In the last few years, cyber-security has become a hot topic because of the ever-
increasing availability of Internet accessible services driven by the diffusion of
connected devices. The consequent exposition to cyber-threats demands for
suitable methodologies, techniques and tools allowing to adequately handle
issues arising in such a complex domain.
Most Intrusion Detection Systems are capable of detecting many attacks, but
cannot provide a clear idea to the analyst because of the huge number of false
alerts generated by these systems. This weakness in the IDS has led to the
emergence of many methods in which to deal with these alerts, minimize them
and highlight the real attacks. Furthermore, experience shows that the inter-
pretation of the alerts usually requires more than the single messages provided
by the sensors, so there is a need for techniques that can analyse the alerts
within the context in which they have been generated. This might require the
ability to correlate them with some other contextual information provided
by other devices. Using synthetic data to design, implement and test these
techniques its not fair and reliable because the variety and unpredictability of
the real world data. On the other hand retrieve these information from real
world networks is not easy (and sometimes impossible) due to privacy and
confidential restrictions.
Virtual Environments, Software Defined Systems and Software Defined Net-
work will play a critical role in many cyber-security related aspects like the
assessment of newly devised intrusion detection techniques, the generation of
real world like logs, the evaluation of skills of cyber-defence team members
and the evaluation of the disruptive effects caused by the diffusion of new
malware.
This thesis proposes, among other things, a novel domain-specific platform,
named SmallWorld, aimed to easily design, build and deploy realistic com-
puter network scenarios achieved by the immersion of real systems into a
software defined virtual environment, enriched by Software Defined Agents
put in charge of reproducing users or bot behaviours. Additionally, to provide
validation and performance evaluation of the proposed platform, a number of

iii

Scenarios (including penetration testing laboratories, IoT and domotics net-
works and a reproduction of the most common services on Internet like a
DNS server, a MAIL server, a booking service and a payment gateway) have
been developed inside SmallWorld. Over time the platform has been rewrit-
ten and radically improved leading to the birth of Hacking Square. This new
version is currently available on-line and freely accessible from anyone. The
impact of this research prototype has been demonstrated, above all, during
the course of ”Metodi e Strumenti per la Sicurezza Informatica” for the mas-
ter degree in Cyber Security at DIMES, University of Calabria. In fact, the
platform has been employed to build the laboratory of the course as an in
cloud service for students (including all the material to conduct exercises and
assignments) and to organize a, practical, Capture the Flag (CTF) like final
test. Finally, the platform is under the attention of Consorzio Interuniver-
sitario per l’Informatica (CINI), as it could be used to manage and deploy
training content for the CyberChallenge 2018.

iv

Abstract

Negli ultimi anni si sentito parlare sempre pi di cyber-security a causa degli
attacchi informatici condotti da criminali informatici contro infrastrutture
critiche, personal computer, dispositivi mobili e contro l’Internet-of-Things.
L’abbassamento dei costi di tali dispositivi e la diffusione della banda larga
hanno contribuito significativamente ad accrescere i target vulnerabili e di
conseguenza il numero di attaccanti e il loro profitto. Pertanto si richiedono
metodologie, tecniche e strumenti per gestire adeguatamente le complesse
problematiche del mondo della cyber-security.
Molti Intrusion Detection Systems sono capaci di rilevare diversi attacchi, ma
non sono in grado di fornire agli analisti una chiara visione di cosa sta acca-
dendo nei sistemi sotto attacco a causa di un’enorme quantit di falsi positivi
generati dal sistema. Ci ha reso necessario lo studio di tecniche per minimiz-
zare i falsi allarmi ed evidenziare i veri attacchi. Purtroppo per interpretare
al meglio un alert necessario integrare il messaggio proveniente dalla sonda
con tutta una serie di informazioni estraibili dal sistema di riferimento che lo
ha generato. Si palesa, quindi, che utilizzare dati sintetici per progettare, im-
plementare e testare nuove tecniche non un approccio corretto e affidabile a
causa della variet e impredicibilit dei dati appartenenti a sistemi reali. D’altra
parte, richiede o prelevare dati da sistemi reali un’oprazione molto delicata e
talvolta impossibile a causa di leggi sulla privacy e restrizioni su dati poten-
zialmente confidenziali.
Tecnologie come Virtual Environments, Software Defined Systems e Software
Defined Network giocheranno un ruolo chiave nella realizzazione di nuove tec-
niche di intrusion detection, generazione di log verosimili, la valutazione delle
competenze di team di esperti di sicurezza e lo studio degli effetti potenzial-
mente distruttivi dovuti alla diffusione di nuovo malware.
Questa tesi propone una piattaforma innovativa, denominata Hacking Square
(nome in codice SmallWorld), atta a semplificare e automatizzare la proget-
tazione, realizzazione e dispiegamento di Cyber-Range, laboratori di penetra-
tion testing o in generale reti di computer virtualizzate quanto pi realistiche
possibili. A tale scopo sono stati sviluppati dei moduli, che creano all’interno

v

di ogni nuovo scenari, in modo completamente trasparente un Domain Name
System, un MAIL server, un servizio di pagamento e un sistema di booking
on-line. Per validare e valutare le performace della piattaforma proposta, sono
stati creati un certo numero di Scenari di penetration testing, IoT e domotica.
L’impatto di questo prototipo di ricerca stato dimostrato durante il corso di
”Metodi e Strumenti per la Sicurezza Informatica” della laurea Magistrale in
Ingegneria Informatica, indirizzo Cyber Security del DIMES, University of
Calabria. Infatti, la piattaforma stata utilizzata per la realizzazione dei lab-
oratori usati durante le esercitazioni del corso, fornendo agli studenti un ac-
cesso attraverso VPN, rendendolo accessibile ovunque e in qualsiasi momento,
senza dover appesantire i loro personal computer. La prova pratica finale del
corso, una Capture the Flag (CTF) stata organizzata anche grazie all’ausilio
di Hacking Square. Infine, il Consorzio Interuniversitario per l’Informatica
(CINI) sta valutando la piattaforma per gestire ed erogare le esercitazioni del
corso formativo su cyber-security denominato CyberChallenge 2018.

vi

Contents

List of Figures . x

List of Tables . xiii

1 Introduction . 1
1.1 Contributions . 2
1.2 Publications Related with this Thesis . 3
1.3 Structure of the Thesis . 5

2 Related Works . 7
2.1 Introduction . 7
2.2 Intrusion Detection and Prevention System 7
2.3 Next Generation Firewall . 9
2.4 Malevolent Activity Detection . 10
2.5 Graph-based Alert Correlation Frameworks 12
2.6 Virtual Environments for the Cyber-Security 13

3 MALICIOUS URL DETECTION . 15
3.1 Introduction . 15
3.2 The classification model . 16
3.3 Spherical separation . 18
3.4 Computational experience . 20

4 The AC-Index: Fast Online Detection of Correlated Alerts 27
4.1 Introduction . 27
4.2 Preliminaries and Problem Formalization 29
4.3 The AC-Index . 32
4.4 Experimental Results . 35
4.5 Summary . 39

vii

Contents

5 Malevolent Activity Detection with Hypergraph-Based
Models . 41
5.1 Introduction . 41

5.1.1 Running Example . 42
5.2 Modeling Malevolent Activities . 44
5.3 Discussion: Features of the Hypergraph-Based Model 47

5.3.1 Synchronization Independency . 47
5.3.2 Compactness . 48
5.3.3 Modeling XORs and Contiguous Sequences 49
5.3.4 “Weak” Dependency . 50

5.4 Consistency of Activity Models . 50
5.5 Equivalence and Minimality of Activity Models 53
5.6 The Malevolent Activity Detection Problem 55
5.7 Indexing and Detecting Activity Instances 56

5.7.1 Insertion of Tuples and Retrieval of Instances 57
5.7.2 Performance of the AM-Index . 62
5.7.3 Additional Information About the Experimental Setting 64

5.8 Summary . 66

6 A Virtual Environment for realistic Cyber-Security
Scenarios . 67
6.1 Introduction . 67
6.2 SmallWorld . 69

6.2.1 Physical layer . 69
6.2.2 Abstraction Layer . 70
6.2.3 Core Service Layer . 71
6.2.4 API Layer . 71
6.2.5 Management and Control Layer . 72
6.2.6 Scenario Development Tool . 72
6.2.7 Virtual-System Development Tool 73
6.2.8 Agent Development Tool . 73
6.2.9 Repositories . 74
6.2.10 Management Dashboard . 74

6.3 Case Studies and experimental results . 75
6.3.1 Case study I : security assessment 75
6.3.2 Case study II: e-learning . 77

6.4 Summary . 81

7 Conclusions and Future Work . 83
7.1 Ongoing and Future Work . 83
7.2 Conclusions . 85

viii

Contents

A Appendix . 87
A.1 Proof Sketch for Theorem 5.14 . 87
A.2 Proof Sketch for Theorem 5.16 . 87
A.3 Proof Sketch for Theorem 5.18 . 87

References . 89

ix

List of Figures

4.1 Example patterns. Each stage is annotated with its associated
severity value. 29

4.2 Example log (top left), network (top right), and sub-sequences
(bottom). 31

4.3 Example initial index status (left) and Insert algorithm (right). 34
4.4 Example index status after indexing log tuples from 102 to

110 of the log of Figure 4.2 (top left). 34
4.5 Real-world patterns P3 and P4. 36
4.6 Synthetic patterns P5 and P6. 36
4.7 Parameter values used for each experimental run. 37
4.8 Tuple rates in the first round of experiments. 38
4.9 Tuple rates (top and center left), number of occurrences

(center right), normalized indexing time per tuple (bottom
left), and maximum size of the AC-Index (bottom right) in
the second round of experiments. 39

4.10 Tuple rates (top left), number of occurrences (top right),
normalized indexing time per tuple (bottom left), and
maximum size of the AC-Index (bottom right) in the third
round of experiments. 40

5.1 Example activity model (top) and log (bottom). 42
5.2 Log used in the example of Fig. 5.1. 46
5.3 Example scenario (top) and activity model (bottom). Every

vertex of the hypergraph has cardinality constraint (1 : 1). 48
5.4 Graph-based model for the scenario of Fig. 5.3 (bottom). 49
5.5 Hypergraph- (top) and graph- (bottom) based models for the

sequence of actions {a, b, c} → {d, e, f} → {g, h, i}. Every
vertex of the hypergraph has cardinality constraint (1 : 1). 49

5.6 Graph-based model with XORs (left) and the corresponding
hypergraph-based model (right). 50

5.7 Support graph associated with the path h1, h2, h3, h4, h5, h6. . . . 51

xi

List of Figures

5.8 The graph reduction constructed from φ. 52
5.9 Example activity model M2. 54
5.10 Status of the AM-Index after indexing the log of the running

example up to tuple `10. 57
5.11 AM Insert (top) and AM Retrieve (bottom) algorithms. 58
5.12 Evolution of the AM-Index when indexing tuples `11 (top)

and `12 (bottom) of the log of the running example. 59
5.13 Alternative structure for the model of Fig. 5.5 (top). 61
5.14 Tuple rates (top) and maximum size of the AM-Index

(bottom) in Rounds 1 and 2. 64
5.15 Tuple rates and maximum size of the AM-Index in Round 3. . . . 65
5.16 Activity models used in Rounds 1 and 2. 65
5.17 Activity model for Function1 (some vertices, depicted in

black, are represented twice for ease of presentation). 66

6.1 SmallWorld Architecture . 69
6.2 Management Dashboard . 74
6.3 An example of scenario in SmallWorld . 76
6.4 Red Agent Activity Diagram . 77
6.5 Plugin Configuration types . 78
6.6 An example of a scenario composed by more sub-scenarios 79

xii

List of Tables

2.1 Features provided by previous approaches: support for
order-independency (OR); support for temporal and/or
cardinality constraints (TCC); rigorous characterization of
consistency, equivalence, and minimality (CEM); availability
of an efficient index structure (IS). 12

3.1 First set of features . 21
3.2 Most significant results with the first set of features 21
3.3 True Positive and True Negative Rate . 22
3.4 Features combination using a bigger dataset 22
3.5 True Positive and True Negative Rate using a bigger dataset . . . 23
3.6 Additional Features . 23
3.7 Most significant results with two more features 23
3.8 True Positive and True Negative Rate for the best performing

combination of features . 24
3.9 Most significant results for dataset 2 . 24
3.10 True Positive and True Negative Rate for the best performing

combination of features with dataset 2 . 25

5.1 Size of the log in Rounds 1 and 2 (default case in bold). 63

6.1 Software and vulnerabilities . 76

xiii

List of Abbreviations

API Application Programming Interface
BS Base-Station
CERT Computer Emergency Response Team
CSRF Cross Site Request Forgery
DDoS Distributed Denial of Service
DNS Domain Name Server
HW Hardware
IDE Integrated Development Environment
LFI Local File Inclusion
MAC Medium Access Control
P2P Peer-to-Peer
RAM Random Access Memory
RCE remote Command Execution
RFI Remote File Inclusion
ROM Read Only Memory
RX Reception
SDN Software defined Networks
SDS Software defined Systems
SNR Signal-to-Noise Ratio
SOC Security Operation Center
SQLi SQL Injection
SSL Secure Socket Layer
SW SmallWorld
SW Software
TX Transmission
UML Unified Modeling Language
VAPT Vulnerability Assessment and Penetration Testing
VM Virtual Machine
WPAN Wireless Personal Area Network
XSS Cross Site Scripting

xv

1

Introduction

Internet and its underlying infrastructure are vulnerable to a wide range of
risk resulting from both physical and software threats.
Sophisticated cyber actors and nation-states exploit vulnerabilities or organize
phishing campaigns to steal information and money and are developing capa-
bilities to denial, destroy, or threaten the delivery of essential services. Many
of traditional crimesare now being perpetrated through cyberspace. These in-
clude banking and financial fraud, intellectual property violations, and other
crimes, all of which have substantial human and economic consequences. In
this scenario, a big issue is represented from IoT devices are becoming increas-
ingly popular and due to their inherent vulnerabilities are taking part to the
biggest DDoS network attacks. They are, also, becoming an attack vectors
to our homes, garages and cars, while since some years ago it was required a
physical tampering.
Cyberspace is particularly difficult to secure due to a number of factors: first
of all, because security, by its very nature, is inconvenient, and the more ro-
bust the security mechanisms, the more inconvenient the process becomes. For
example, one of the current trends in security is to add whole disk encryption
to laptop computers. Although this is a highly recommended security process,
it adds a second login step before a computer user can actually start working.
Even if the step adds only one minute to the login process, over the course of a
year this results in four hours of lost productivity. Some would argue that this
lost productivity is balanced by the added level of security. But across a large
organization, this lost productivity could prove significant. Other factors are
the ability of malicious actors to operate from anywhere in the world, the link-
ages between cyberspace and physical systems, and the difficulty of reducing
vulnerabilities and consequences in complex computer networks. Of increasing
concern, is the cyber threat to critical infrastructure, which is increasingly
subject to sophisticated intrusions that open to new risks. As information
technology becomes more and more integrated with physical infrastructure
operations, there is a growing risk for wide scale or high-consequence events
that could cause harm or disrupt services upon which our economy and the

1

Chapter 1. Introduction

daily lives of millions of people depend. In light of the risk and potential
consequences of cybercrime and cyberevents, strengthening the security and
resilience of cyberspace in an effective way has become an important research
topic.

1.1 Contributions

The first contribution of this thesis is the proposal of a binary classification
method aimed at detecting malicious URL on the basis of some information
both on the URL syntax and its domain properties. Our method belongs to
the class of supervised Machine Learning models, where, in particular, classifi-
cation is performed by using information coming from a set of URL’s (samples
in Machine Learning parlance) whose class membership is known in advance.
The main novelty of our approach is in the use of a Spherical Separation-based
algorithm, instead of SVM-type methods, which are based on hyperplanes as
separation surfaces in the sample space. In particular we adopt a simplified
Spherical Separation model which runs in O(tlogt) time (t is the number of
samples in the training set), and thus is suitable for large scale applications.
We test our approach using different sets of features and report the results in
terms of training correctness according to the well-established ten-fold cross
validation paradigm.

The second contribution is an indexing technique for alert correlation that
supports DFA-like patterns with user-defined correlation functions. Our AC-
Index supports (i) the retrieval of the top-k (possibly non-contiguous) sub-
sequences, ranked on the basis of an arbitrary user-provided severity function,
(ii) the concurrent retrieval of sub-sequences that match any pattern in a given
set, (iii) the retrieval of partial occurrences of the patterns, and (iv) the online
processing of streaming logs. The experimental results confirm that, although
the supported model is very expressive, the AC-Index is able to guarantee
a very high efficiency of the retrieval process. This indexing technique has
been employed in the third contribution, a hypergraph-based framework for
modelling and detecting malevolent activities. The proposed model supports
the specification of order-independent sets of action symbols along with tem-
poral and cardinality constraints on the execution of actions. We study and
characterize the problems of consistency checking, equivalence, and minimal-
ity of hypergraph-based models. In addition, we define and characterize the
general activity detection problem, that amounts to finding all subsequences
that represent a malevolent activity in a sequence of logged actions. Since the
problem is intractable, we also develop an index data structure that allows
the security expert to efficiently extract occurrences of activities of interest.
The fourth, and last, contribution is the definition and implementation of a
Hypervisor Independent Platform for Orchestrating Cyber Range Scenarios,
named Hacking Square (code name SmallWorld), aimed both to easily man-

2

1.2. Publications Related with this Thesis

age courses, teaching materials, students and design, build, orchestrate and
deploy realistic computer network scenarios achieved by exploiting state-of-
the-art technologies like: Software Defined Networks (SDN), Software Defined
Systems (SDS), virtualization and containers.

1.2 Publications Related with this Thesis

The research work related to this thesis has resulted in 6 publications, includ-
ing 4 journal and 2 conference papers. In the following, a brief description of
each publication is provided.

Malicious URL detection via spherical classification

This paper [1], published on Neural Computing and Applications journal, in-
troduces a binary classification method aimed at detecting malicious URL
on the basis of some information both on the URL syntax and its domain
properties. The proposed method belongs to the class of supervised Machine
Learning models, where, in particular, classification is performed by using
information coming from a set of URL’s whose class membership is known
in advance. We adopt a simplified Spherical Separation model which runs in
O(tlogt) time (t is the number of samples in the training set), and thus is
suitable for large scale applications.

The AC-Index: Fast Online Detection of Correlated Alerts

This paper [2], published in the International Workshop on Security and Trust
Management conference, proposes an indexing technique for alert correlation
that supports DFA-like patterns with user-defined correlation functions. Our
AC-Index supports (i) the retrieval of the top-k (possibly non-contiguous)
sub-sequences, ranked on the basis of an arbitrary user-provided severity func-
tion, (ii) the concurrent retrieval of sub-sequences that match any pattern in
a given set, (iii) the retrieval of partial occurrences of the patterns, and (iv)
the online processing of streaming logs. The experimental results confirm that
the AC-Index is able to guarantee a very high efficiency of the retrieval process.

Malevolent Activity Detection with Hypergraph-Based Models

This paper [3], published in the IEEE Transactions on Knowledge and Data
Engineering journal, is a significant extension of [2]. The index is used inside
a hypergraph-based framework for modeling and detecting malevolent activi-
ties. The proposed model supports the specification of order-independent sets

3

Chapter 1. Introduction

of action symbols along with temporal and cardinality constraints on the ex-
ecution of actions. We study and characterize the problems of consistency
checking, equivalence, and minimality of hypergraph-based models. In addi-
tion, we define and characterize the general activity detection problem, that
amounts to finding all subsequences that represent a malevolent activity in a
sequence of logged actions.

SmallWorld: A Test and Training System for the Cyber-Security

This paper [4], published in the European Scientific Journal, introduces Small-
World, a scalable software platform designed to reproduce realistic scenarios
achieved by the immersion of real systems into a virtual environment with
a fully integrated support for teaching with the aim to provide a venue for
practical education in the learning and usage of all tools, techniques, and best
practices employed to protect the confidentiality, integrity, authenticity, and
availability of a designated information service.

A Virtual Environment for the Enactment of Realistic
Cyber-Security Scenarios

This paper [5], published in the Cloud Computing Technologies and Applica-
tions (CloudTech) International Conference, is an extension of [4]. The paper
presents an in depth description of the architecture and the technological
aspects of SmallWorld, a scalable software platform designed to reproduce
realistic scenarios achieved by the immersion of real systems into a software
defined virtual environment.

Using virtual environments for the assessment of Cyber-Security
issues in IoT scenarios

This paper [6], published in the Simulation Modelling Practice and Theory
journal, is an extension of [4] and [5]. This paper describes an approach based
on the exploitation of virtual environments and agent-based simulation for
the evaluation of Cyber-Security solutions for the next generation of IoT ap-
plications in realistic scenarios. The effectiveness of the approach is shown by
considering a concrete case study involving the cooperation of real and virtual
smart devices inside a virtualized scenario, deployed inside SmallWorld, where
security issues are first evaluated and then handled.

4

1.3. Structure of the Thesis

1.3 Structure of the Thesis

This thesis is organized as follows.
Chapter 2, contains an introduction to the most important Cyber-Security

aspects, technologies and solutions related to the arguments discussed in this
Thesis. It, also, provides the necessary background information and prerequi-
site material that are needed to understand the subsequent chapters.

In Chapter 3, a novel domain-specific technique for efficiently detect mali-
cious URLs is presented. The most important contributions of this technique
are described and analyzed. Furthermore, an in-depth performance evaluation
has been carried out, and the main results reported.

Chapter 4, describes a technique whose objective is the fast retrieval of
occurrences of given patterns in streams of events, where each event corre-
sponds to a security alert. The AC-Index, allows the security expert to effi-
ciently extract occurrences of activities of interest. Our AC-Index supports
(i) the retrieval of the top-k (possibly non-contiguous) sub-sequences, ranked
on the basis of an arbitrary user-provided severity function, (ii) the concur-
rent retrieval of sub-sequences that match any pattern in a given set, (iii) the
retrieval of partial occurrences of the patterns, and (iv) the online processing
of streaming logs. The experimental results confirm that, although the sup-
ported model is very expressive, the AC-Index is able to guarantee a very high
efficiency of the retrieval process.

Chapter 5, describes a hypergraph-based framework for modeling and de-
tecting malevolent activities. The proposed model supports the specification
of order-independent sets of action symbols along with temporal and cardi-
nality constraints on the execution of actions. We study and characterize the
problems of consistency checking, equivalence, and minimality of hypergraph-
based models. In addition, we define and characterize the general activity
detection problem, that amounts to finding all subsequences that represent a
malevolent activity in a sequence of logged actions. Since the problem is in-
tractable, we also develop an index data structure, called AM-Index, and its
associated maintenance and retrieval algorithms, that exploit temporal (and
cardinality) constraints to prune partial instances of hypergraph-based models
as soon as possible.

Chapter 6 includes the description of SmallWorld, a platform based on
virtual environment for the enactment of realistic Cyber-Security scenarios,
along with its architecture and technological aspect. It is reported some in-
teresting research case studies of SmallWorld which include (i) the evaluation
of Cyber-Security solutions for the next generation of IoT applications in re-
alistic scenarios, (ii) the development and deploying of a penetration testing
laboratory and (iii) improving education through the use of virtual environ-
ments.

Finally, Chapter 7 includes a summary of the main results of this the-
sis, along with some concluding remarks, and comments on possible future
research directions that can derive from the work here presented.

5

2

Related Works

This chapter presents the state-of-the-art of hardware/software technologies
and methodologies used everyday to contrast cyber-security threats, focusing,
in particular, on the frameworks related to the contributions of this thesis.

2.1 Introduction

Retracing history of computers we can see that cyber-crime, as we know it to-
day, was non-existent. Protection for users and security mechanisms would be
built into the foundation of computer design, but this not happened because,
at that time, designers had certainly no idea that computers might be con-
nected together into an enormous worldwide web and exposed to intrusions
or damages. The fundamental decisions in the early stages of computer design
do not correspond to the needs of the present. To contrast these built-in vul-
nerabilities and consequent unattended behaviours, many mitigation solutions
have been proposed, like Intrusion Detection or Prevention Systems, Firewall
or Next Generation Firewall, Security Information and Event Management
(SIEM), isolation through Virtualization, Network Analyser and Antivirus.
This chapter presents a brief survey on hardware/software technologies and
methodologies used everyday to contrast cyber-security threats, focusing, in
particular, on the frameworks related to the contributions of this thesis.

2.2 Intrusion Detection and Prevention System

A firewall is the first line of defence, but it has limited visibility into the con-
tent while it makes traffic filtering decisions. Because a firewall is commonly
deployed at the ingress and egress points of a network, all traffic paths will
converge and traverse through the firewall. Therefore, the performance and
scalability of a firewall affects the network as a whole. For this reason, al-
though some firewalls may incorporate a DPI engine, a firewall is designed

7

Chapter 2. Related Works

to execute a limited set of actions against each packet, even when hardware
acceleration is activated in the firewall. When an attack circumvents the fire-
wall, an IDS extends the security coverage by inspecting the network and the
end systems for evidence that corroborates whether some network events and
security alerts were instigated by attacks or malicious in filtrations. An IDS
generates alarms and reports to network management systems upon detect-
ing abnormal or suspicious traf c. An IDS examines packets for signatures
that are associated with known viruses, malware, and other malicious traffic.
In addition to pattern scanning within the packets, an IDS analyses overall
traffic patterns to detect anomalies and known attacks. Some examples of
known attacks are denialofservice (DoS), port scanners that search for vul-
nerable network services, buffer over ow exploits, and selfpropagating worms.
Examples of anomalies include malformed protocol packets and traffic pat-
terns that deviate from the norm. An IDS is divided into two main categories:
a networkbased intrusion detection system (NIDS) and a hostbased intrusion
detection system (HIDS). NIDS and HIDS differ in where the IDS is deployed,
which consequently dictates the types of data collected and analysed by that
specific type of IDS. A NIDS monitors the activities of the entire network
and examines both intranet traffic and Internetbound traffic. On the other
hand, the firewall concentrates on traffic that flows into and out of the in-
ternal network to the Internet. The traditional NIDS scans packets against
a database of signatures of known attacks. Similar to the open source IDS
tool Snort, each signature in the data is often implemented as a matching
rule. This signaturebased IDS runs the packets through these matching rules
or signatures to detect attacks. Another approach is the statisticalbased or
anomalybased NIDS, which is also known as the behaviorbased NIDS. With
a statisticalbased NIDS, a profile of the network under protection is built
over time, based on evolving historical data, which represents the norm of
the network. Some examples of data collected and compiled into a profile
that represents the network operating under normal conditions include the
following: the number of new applications that are discovered per day on the
network and the average traffic volume generated by each type of application;
the average number of DNS queries transmitted from a specific IP address
at a given time interval; the average overall aggregate throughput of the net-
work; and the average number of HTTP transactions issued per minute from
a specific IP address. Any deviation observed by the NIDS may be interpreted
as anomalies or misuse that instigates responses as defined by corresponding
security directives.

The key to the success of a signaturebased NIDS is the richness in the
collection of the attack signatures. Identifying a unique and effective signa-
ture for a new attack, especially a complex attack, takes time to develop and
evolve. As new attacks propagate across the networks and infrastructures, the
signaturebased NIDS is incapable of detecting these attacks while the new
signatures are being implemented. The success of the statisticalbased NIDS
depends on the knowledge or heuristics of the network characteristics that are

8

2.3. Next Generation Firewall

considered as normal and serve as the baseline. Establishing the boundaries of
normal network behaviour is challenging as the network fosters a wide range
of protocols and applications and hosts a user base with a diverse spectrum
of on-line behaviours that can trigger sporadic traffic patterns. A statistical-
based NIDS can be effective against new attacks because new attacks can
incite network behaviours that alarm the NIDS. A hostbased IDS (HIDS) is
purposefully built, either for an operating system or for a specific application,
and operates in individual end systems. The HIDS analyses the operating
system process identifier (PID), system calls, service listeners, I/O and file
system operations, specific application runtime behaviour, and system and
application logs to identify evidence of an attack. Firewalls are called active
protection systems because a firewall is in the path of all traffic, known as
in-line deployment. This enables the firewall to examine live traffic, and when
the firewall identifies an attack, it is capable of blocking that attack while it is
in progress. In other words, upon detection, a firewall can prevent malicious
traffic from reaching a targeted system. Intrusion detection systems can be
categorized as passive protection systems because an IDS is typically con-
nected to a SPAN (Switched Port Analyser) port on a network switch or to a
network tap that duplicates packets for an entire link. While an IDS can also
examine every packet, however, the packets under analysis have successfully
passed through a firewall and cannot be filtered by the IDS; those packets
may also have already reached the intended targets and enacted malicious
activities. In other words, an IDS identifies an attack that may have already
taken place, at which point the IDS begins to repair the damage by executing
countermeasures, for example, sending alerts and notifications to monitoring
and management systems. Unlike the passive network monitoring of an IDS,
an IPS takes the active role of performing mitigation actions in realtime once
attacks are detected. An IPS possesses all of the capabilities of an IDS, but
an IPS is deployed physically in-line in the network, which enables the IPS
to drop attack packets, reset TCP connections, or activate filters to block the
source of the attack. An IPS can perform other functions such as configur-
ing dynamic policies in security devices, such as a firewall, to interrupt the
malevolent activity and prevent further damage to the network.

2.3 Next Generation Firewall

The most significant limitations of the traditional firewall are its inability to
perform payload inspection and to distinguish applications. The concept of
Unified Threat Management (UTM) gained visibility and momentum in 2004
to address the security gaps in firewalls, and to offer a solution for the lack
of unified policy management across the various security control technology
products commonly deployed together in an enterprise network. The UTM
strategy is to combine multiple security features such as a firewall, NIDS,
IPS, gatewaybased antivirus, and content filtering into a single platform or

9

Chapter 2. Related Works

appliance to offer multiple layers of security protection with simplified man-
agement and ease of policy implementation. The security posture continued
to increase its focus on users and their applications, as the transformation in
UTM took place in parallel. Gartner [7],nn information technology research
and advisory company, claimed to be the first to define the NextGeneration
Firewall (NGFW). In its definition, the three key attributes of an NGFW are
its ability to detect applicationspecific attacks, to enforce security policies, to
intercept and decrypt SSL traffic. The NGFW includes all the capabilities of
traditional firewall and incorporates the full functionality of a signaturebased
IPS. Another key characteristic is its in-line deployment as a bumpinthewire.
In addition, the NGFW can collaborate with external services to incorporate
additional securityrelevant data and feeds to enhance its enforcement capa-
bilities. NGFW definition has a large overlap with that of the UTM. The
articulated differences have limited technical merits, and the deviations are
largely a result of verbiage manipulation. The concept seems to be a desired by
product of combining the UTM with the unique features of the secure proxy.
The conceptualization of NGFW, with such a rich set of security features, pro-
cessing network traffic at multigigabit wire speed, without any performance
degradation, would be the ultimate goal of security system design architects
and developers. However,firewall and proxy are fundamentally incompatible
with respect to the policies each is designed to interpret and enforce. The
process and method of application classification collides with the operation of
proxy interception.

2.4 Malevolent Activity Detection

A large number of approaches to the problem of modeling and detecting malev-
olent behavior have been proposed so far. A comparative study is beyond the
scope of this thesis – in this section, we review the relevant literature that is
the closest in spirit to our approach described in Chapter 5.

In [8], an automatically-learned finite automaton is used for identifying
malicious execution traces. An approach for detecting anomalous program
behaviors is proposed in [9], where each node in a deterministic finite au-
tomaton represents a state in the program under inspection. In [10], AND-OR
tree structures and automata theory are combined to model complex attacks
with time dependencies. The resulting “enhanced attack tree” model is used
for supporting an intrusion detection engine. In [11, 12] the “Bayesian at-
tack graph”, which combines bayesian inference procedures with cycle-free
graph structures, is used to analyze network vulnerability scenarios. An au-
tomated technique is proposed in [13] for generating and analyzing attack
graphs based on symbolic model checking algorithms. Attack graphs are gen-
erally constructed by analyzing the dependencies among vulnerabilities and
security conditions that have been identified in the target network [14, 15, 16],
or for correlating intrusion alerts [17, 18]. The authors of [19] propose a cor-

10

2.4. Malevolent Activity Detection

relation algorithm that is capable of detecting multiple attack scenarios for
forensic analysis. In [20], attack graphs are used for correlating, hypothesiz-
ing, and predicting intrusion alerts. A representation of groups of alerts with
graph structures in proposed in [21] along with a method that automatically
identifies frequent groups of alerts and summarizes them into a “suspicious”
sequence of actions. A framework for managing network attack graph com-
plexity through interactive visualization, which includes hierarchical aggrega-
tion of graph elements, is proposed in [22]. Attack graphs are used in [23] in
combination with Hidden Markov Models to explore the probabilistic connec-
tions among system observations and actual states. A formal foundation of
SAND attack trees, which are a popular extension of the well-known attack
trees, is provided in [24]. They also introduce the SP-graphs that support
order-independecy among events. An indexing technique for alert correlation
is proposed in [25] that supports DFA-like patterns with user-defined corre-
lation functions. The current state of the art on attack modeling approaches
based on directed acyclic graphs is discussed in [26], whereas a comprehensive
survey of the use of attack graphs in security is presented in [27]. All these
works adopt graph-based models, and only few of them incorporate tempo-
ral aspects, such as dynamic time variations and dependencies among actions
(e.g. order or priority).

When basic forms of graphs are used to represent activities, edges define
the sequential execution of adjacent vertices/actions – hyperedges correspond
instead to arbitrary sets of actions which can be accomplished in any order.
Thus, using hypergraphs is advantageous especially in those cases where a
graph-based representation of activities becomes too large as the complexity
of the attacker’s behavior increases. There is limited work in the literature
exploiting hypergraphs for security analysis. Most of them use hypergraphs
to model network topologies and security properties [28, 29, 30] or correlate
alerts [31] in intrusion detection systems. In [32], hypergraphs are used to
model the infrastructural components and their dependencies in the context
of risk analysis, while [33] addresses the problem of detecting anomalous mul-
tivariate co-occurrences in generic event data. In [34], a logic-based framework
for reasoning on violations of the logging infrastructure is proposed that rep-
resents attacks as directed hypergraphs.

The work presented in Chapter 5 is the first attempt at building a unified
framework that (i) supports modeling order-independent sets of action sym-
bols, (ii) provides primitives to specify temporal and cardinality constraints
on the execution of actions, (iii) is rigorously characterized through an in-
depth formal analysis of the problems of consistency, equivalence, minimality,
and detection, and (iv) is equipped with an efficient index structure with its
associated maintenance and retrieval algorithms. Table 2.1 summarizes the
features provided by previous approaches.

11

Chapter 2. Related Works

Table 2.1. Features provided by previous approaches: support for order-
independency (OR); support for temporal and/or cardinality constraints (TCC);
rigorous characterization of consistency, equivalence, and minimality (CEM); avail-
ability of an efficient index structure (IS).

OR TCC CEM IS
Michael and Ghosh [8] - - - -

Sekar et al. [9] - - - -
Camtepe and Yener [10] - 3 - -

Frigault et al. [12] - - - -
Sheyner et al. [13] - - 3 -
Amman et al. [14] - - 3 -
Albanese et al. [35] - - - 3
Albanese et al. [16] - 3 - 3

Noel et al. [17] - - - -
Roschke et al. [19] - - - -
Wang et al. [20] - - 3 -
Mao et al. [21] - - - 3

Noel and Jajodia [22] - - 3 -
Zhang et al. [23] - - - -
Jhawar et al. [24] 3 3 - -
Pugliese et al. [25] - 3 - 3

Silva and Willet [33] 3 - - -
Johnson et al. [34] 3 - - -

This work 3 3 3 3

2.5 Graph-based Alert Correlation Frameworks

A number of interesting graph-based alert correlation frameworks has been
proposed in the past. Attack graphs and finite automata have often been used
for this purpose. [8] proposed a technique for identifying malicious execution
traces with automatically-learned finite automata. [9] created an automaton-
based approach for detecting anomalous program behaviors. Each node in the
DFA represents a state in the program under inspection which the algorithm
utilizes to learn “normal” data and perform detection. [36] proposes to increase
the accuracy of the N-gram learning algorithm by using a DFA representation
for intrusion detection via system call traces. In [37] a technique is presented
to automatically produce candidate interpretations of detected failures from
anomalies identified by detection techniques that use inferred DFAs to rep-
resent the expected behavior of software systems. [38] proposes an approach
for the real-time detection of denial of service attacks using time-dependent
DFAs.

[19] proposes a correlation algorithm based on attack graphs that is capa-
ble of detecting multiple attack scenarios for forensic analysis. In [20] attack
graphs are used for correlating, hypothesizing, and predicting intrusion alerts.
[21] proposes to represent groups of alerts with graph structures, along with
a method that automatically identifies frequent groups of alerts and summa-
rizes them into a suspicious sequence of activity. [15, 39] construct attack
scenarios that correlate critical events on the basis of prerequisites and con-
sequences of attacks. [40] focuses on the online approach to alert correlation
by employing a Bayesian network to automatically extract information about

12

2.6. Virtual Environments for the Cyber-Security

the constraints and causal relationships among alerts. Finally, [41] introduces
a host-based anomaly intrusion detection methodology using discontinuous
system call patterns.

Fusion-based correlation techniques make use of correlation functions in
order to store, map, cluster, merge, and correlate alerts. [42] proposes a mul-
tisensor data fusion approach for intrusion detection. [43] suggests to design
functions which recognize alerts corresponding to the same occurrence of an
attack and create a new alert that merges data contained in those alerts.
[44] presents a probabilistic approach to alert correlation by extending ideas
from multisensor data fusion. Their fusion algorithm only considers common
features in the alerts to be correlated, and for each feature they define an
appropriate similarity function.

[45, 46] propose an event processing query language that includes iterations
and aggregates as possible parts of patterns. Non-deterministic automata are
used for pattern detection. [47] proposes a similar language with a (limited)
support to negation. Its implementation focuses on multi-query optimization.
[48] supports patterns with Kleene closure and event selection strategies in-
cluding partition contiguity and “skip till next match”, but not the output of
complete matches.

2.6 Virtual Environments for the Cyber-Security

Virtual Environments are employed everyday to test software updates, patch
or server configurations, to reduce maintenance and hardware costs. In the
last few years, virtualization technologies have gained an important role also
in the information security fiel and many solutions based on this technology
have been proposed. For example, the DeterLab testbed [49], a security and
education-enhanced version of Emulab [50]. It offers scientific computing facil-
ities for cybersecurity researchers engaged in research, development, discovery,
experimentation, and testing of cybersecurity technology. DeterLab [51] allows
to configure user and group accounts with assorted permissions. Each group
can have its own pre-configured experimental environments made of physical
machines running Linux, BSD, Windows, or other operating systems. Users
running DeterLab experiments have full control of real hardware and networks
running pre-built software packages.

The DeterLab platform also offer a solution based on virtualization tech-
nologies, however it is not cloud based and this limits its ability to reproduce
large and complex scenarios. It supports the QEMU hypervisor [52], View
OS containers [53] and OpenVZ process containers [54] that cannot share
physical hardware and, in addition, there is also a limit on the number of
containers that can be deployed on a physical node, as specified on the official
documentation.

Most of the existing Cyber-Security assessment tools act on real systems,
incurring in high costs and risk, and virtual laboratories support only static,

13

Chapter 2. Related Works

i.e. not editable, scenarios pre-built by developers and/or domain experts and
do not allow for inclusion of real entities and traffic generation. In the following
some of the main active projects on this subject are reported.

The eLearningSecurity platform [55] offers certifications, virtual labs and
courses on Cyber-Security. It allows to use pre-built scenarios on the cloud
or to load vulnerable Web applications to be tested within a sandbox. The
scenarios are accessible by means of a VPN and new ones can be requested
only by contacting the development team. PENTESTIT [56] was devised to
emulate IT infrastructures of real companies, created for legal penetration-
testing and for empowering penetration skills and abilities. Laboratories are
always unique, contain the most recent known vulnerabilities and are created
exclusively by the development team, limiting the customization of the ex-
periments. The “grey box” methodology was adopted to conduct penetration
testing, i.e. the participants receive information on the network infrastructure,
in the form of schema or text description, to be used for testing. The Hacker
Accademy [57] has a web-based platform for experiencing, and teaching infor-
mation security from the hackers perspective. Users can practice in a virtual
lab environment by downloading a virtual machine image or by accessing a
on-demand cloud-based lab environment. The platform provides skills assess-
ment quizzes and a certificate is awarded upon completion of a lesson. Pentest
laboratory [58] offers a testing lab environment that includes all of the hosts,
network infrastructure, tools, and targets necessary to practice penetration
testing. However this solution is limited to a single scenario with four hosts,
two networks and a firewall. In addition it is tied to GNU/Linux platforms. At
last, Offensive Security [59] offers the following features: 1) Security Training
and Certification using their GNU/Linux distribution named Kali. The labo-
ratories can contain a number of simulated clients that can be exploited for
experimenting with client side attacks; 2) Virtual Penetration Testing Labs
that provide a safe virtual network environment designed to be attacked and
penetrated as a means of learning and sharpening penetration testing skills; 3)
Dedicated Hosted Virtual Labs for Corporations, which provides a dedicated
environment with a management account; 4) Advanced Attack Simulation:
based on information about a target company and its systems, the Offensive-
Security team builds a simulation model of the target environment and of the
potential attacks.

14

3

MALICIOUS URL DETECTION

This chapter describes a novel domain-specific technique for efficiently detect
malicious URLs.

3.1 Introduction

A useful resource to prevent risks in computer security is provided by the so
called black lists, which are data bases containing a typically large number of
IP addresses, domain names and related URL’s for suspicious sites in terms
of generation of threats. A rich literature is available on the creation and
usage of such lists (see e.g. [60]). If a URL is comprised into a black list,
it is convenient to deviate the network traffic from it and, in fact, many
Internet Service Providers (ISP) simply block all messages coming from it. The
users who detect anomalies in messages or activities they consider suspicious
often transfer the related information to appropriate web sites devoted to risk
analysis.

Other possible way to compile black lists is the use of certain spam trap
addresses which are diffused in the aim of being contacted by crawler spiders,
typically used by phishers. As soon as one of such site address is contacted,
the calling site is included into the black list.

Although black lists are rather useful, we cannot expect that they are
exhaustive of all possible threats, either because the number of potentially
dangerous site is extremely high or because the system is highly dynamic and
it is almost impossible to keep any black list sufficiently updated.

Every time there exists any suspect about the malicious nature of a site
the Whois service is able to provide some useful information in terms of IP,
domain name and other characteristics related to it. Whois registers are pub-
licly available and there exist online services providing upon request such
information, in an appropriate form.

The very basic idea of [61] is to use the information available about a given
set of URL’s, in connection to the related Whois, to design a classifier based

15

Chapter 3. MALICIOUS URL DETECTION

on some machine learning technique. In particular one of the tools adopted is
the well known SVM paradigm which, being suitable for supervised classifica-
tion, requires that a sufficiently rich training set is available in advance. Such
training set is constituted by a list of URL’s labeled in the form malicious-non
malicious. A set of both qualitative and quantitative features is defined and
each URL is associated to a string of possible values of the features.

Of course different sets of features can be adopted for classification pur-
poses and in next section we will describe in details the ones we have consid-
ered.

The differences of our approach w.r.t. the one previously cited [61] are
twofold. As we are aimed at providing a methodology suitable for very large
datasets too, we have confined ourselves to a limited number of features (e.g.
we have used no ”bag of words”, which in general requires an explosion in
the size of the sample space) and, on the other hand, we have adopted a low
complexity algorithm, accepting in advance the possibility of obtaining less
accurate classification performance w.r.t. the SVM approach which requires
solution of a structured quadratic programming problem [62].

Following [61] we take into account in our classification model both lexical
features of the URL and host information, as those provided by the Whois. As
a classification tool, we adopt the spherical separation paradigm ([63], [64]),
which differs from SVM basically because separation in the feature space is
not pursued by means of a hyperplane, instead by a spherical surface (ap-
plication of ellipsoidal surfaces has been introduced too in [65]). Of course
goodness of the classification tool depends on the geometry of the sets to be
separated and cannot be easily predicted. Our choice for spherical separation
has been dictated by the availability of a simplified approach to it [66], where
the centre of the separating sphere is calculated in advance and only the radius
is optimised. Such approach allows us to calculate the classifier in O(t log t),
where t is the size of the training set and, consequently, appears suitable for
dealing with large scale applications.

3.2 The classification model

We present now the list of seven features that we used in our work to detect
malicious URLs. For our purposes, we decided to not analyze the URL’s page
structure or its content: all the features have been generated using information
derived from the general URL syntax (every URL consists of the following
three parts: <protocol>://<hostname>/<path>). Some of the features
used are strictly related to the lexical properties of the URL (intended as a
character string), other to the properties of the URL’s hostname (available
thanks to a Whois query).

The features taken into consideration are:

1. Number of subdomains. This is the count of the subdomains which
are detectable in the text of the URL. We don’t consider only the URL’s

16

3.2. The classification model

hostname but also the URL’s path which is often used to redirect users
to other dangerous web sites.

2. URL age. We consider the age in days of the URL’s hostname (how long
its content has been on the web). This is one of the most important fea-
tures in malicious URL detection problem because dangerous sites usually
have a very short life and are recently registered compared to safe sites.
The registration date of URL’s hostname is needed to calculate the value
of this feature.

3. URL expiration. We count the number of days remaining before the
expiration date of URL’s hostname. Also this feature is potentially useful
since dangerous sites usually are registered for shorter time than safe ones.

4. Hostname Length. This is the simply count of the textual characters
forming the URL’s hostname.

5. Path Length. This is the simply count of the textual characters forming
the URL’s path. Excessive length is often correlated to suspicious re-
addressing.

6. IP Address geographical location. IP Addresses related to dangerous
sites are usually located in specific geographical areas so we use this feature
to express the information about the country location of the IP Address
related to the URL’s hostname. The list of countries used to evaluate this
parameter has been reduced to just ten nations: Canada, China, Finland,
France, India, Italy, Spain, Turkey, United Kingdom and United States
of America. All other countries have been bundled together into a unique
term, for the IP Address located in countries not included in our list. This
is a categorical feature.

7. Presence or not of the word ”Login”. Dangerous sites usually con-
tain in the text of their web address specific terms in order to cheat the
web users. Thus we have included such binary feature to report possible
presence of the word ”Login” in the text of the URL.

According to their definition, all the features taken into consideration (but
”IP Address geographical location”) can assume integer values greater than
or equal to zero. As the number of features we have adopted is small, we
have performed several experiments using different sets of features. According
to the number of features used, the URL is represented in a different vector
format. Using different sets of features it is important to detect the relevant
ones, and to discard those unable to provide any significant contribution to
the classification process.

The malicious URLs detection problem has been modelled as a binary
classification problem and the predefined classes of URLs have been two: the
set of malicious URLs (including URLs dangerous for the web users) and the
set of benign URLs (including URLs safe for the web users).

17

Chapter 3. MALICIOUS URL DETECTION

3.3 Spherical separation

In many supervised machine learning problems the objective is to assign ele-
ments to a finite set of classes or categories. For a given set of sample points
coming from two classes, we want to construct a function for discriminating
between the classes. The goal is to select a function that will efficiently and
correctly classify future points. Classification techniques can be used for data
mining or pattern recognition, where many applications require a categoriza-
tion.

The classical binary classification problem is to discriminate between two
finite sets of points in the n-dimensional space, by a separating surface. The
problem consists in finding a separating surface minimizing an appropriate
measure of the classification error.

Several mathematical programming-based approaches for binary classifi-
cation have been historically proposed [67, 68, 69]. Among the more recent
ones we recall the support vector machine (SVM) technique [70], where a clas-
sifier is constructed by generating a hyperplane far away from the points of
the two sets. By adopting kernel transformations within the SVM approach,
we can obtain general nonlinear separation surfaces. In this case the basic
idea is to map the data into a higher dimensional space (the feature space)
and to separate the two transformed sets by means of one hyperplane, that
corresponds to a nonlinear surface in the original input space.

Parallel to the development of SVM methods, the use of nonlinear sepa-
rating surfaces in the dataset space, instead of hyperplanes, has received in
recent years some attention. In particular, in our work, we have considered the
spherical separation approach, characterized by the fact that the separation
process takes place in the original input space and does not require mapping
to higher dimension spaces.

More formally, let
X = {x1, . . . , xp}

be a set of samples (or points) xi ∈ IRn. In the supervised learning, we assume
that, in correspondence to any point xi of X , a label yi is given. The case
yi ∈ IR is known as “regression”, while, when the label yi takes values in a
discrete finite set, the task is a “classification” process. A particular case of
the latter is the binary classification, where, for each i, the label yi can assume
only two possible values. The objective of the supervised learning is to predict
the label of any new sample only on the basis of the information of the labeled
points (the training set).

In particular, in the binary classification problems, we consider the follow-
ing partition of X into two nonempty sets:

X+ := {(xi, yi) | xi ∈ IRn, yi = +1, i = 1, . . . ,m}

and
X− := {(xi, yi) | xi ∈ IRn, yi = −1, i = m+ 1, . . . , p}.

18

3.3. Spherical separation

In the spherical separation approach we define the set X+ spherically sep-
arable from X− if and only if there exists a sphere

S(x0, R)
4
= {x ∈ Rn|(x− x0)T (x− x0) ≤ R2}

centered in x0 ∈ IRn of radius R ∈ IR, such that

yi(‖xi − x0‖2 −R2) ≤ 0 i = 1, . . . , p. (3.1)

In addition, when inequalities (3.1) are strictly satisfied, then the sets X+

and X− are strictly spherically separated, i.e.

‖xi − x0‖2 ≤ (R−M)2 i = 1, . . . ,m
‖xi − x0‖2 ≥ (R+M)2 i = m+ 1, . . . , p,

(3.2)

for some M , the margin, such that 0 < M ≤ R. Setting q
4
= 2RM and

r
4
= R2 +M2, inequalities (3.2) become:

q + yi(‖xi − x0‖2 − r) ≤ 0 i = 1, . . . , p.

In general it is not easy to know in advance whether the two sets are
strictly spherically separable; then in [66, 63, 64, 71] a classification error
function has been defined in order to find a minimal error separating sphere.

In particular, in [66, 63] a separating sphere has been obtained by mini-
mizing the following objective function:

zS1
(x0, r) = r + C

p∑
i=1

max{0, yi(‖xi − x0‖2 − r)}, (3.3)

with M = 0 and r ≥ 0. C is a positive parameter giving the tradeoff between
the minimization of the radius and the minimization of the classification error.

More precisely in [66] an ad hoc algorithm that finds the optimal solution
in O(t log t), with t = max{m, p−m}, has been presented for the case where
the center x0 is fixed. It basically consists of two phases: the sorting phase
and the cutting phase. In the first one the sample points are sorted according
to their distance from the center, while in the second one an optimal cut is
found. The adopted simplification is rather drastic, nevertheless a judicious
choice of the center (e.g. the barycenter of the set X+) has allowed to obtain
reasonably good separation results at a very low computational cost.

In [63] the spherical separation problem has been tackled without any
constraint in the location of the center by means of DCA (DC Algorithm)
[72, 73], based on a DC (Difference of Convex) decomposition of the objective
function. A similar DCA approach has been proposed in [71] for minimizing
the following error function:

zS2
(x0, r) = r2 + C

p∑
i=1

max{0, yi(‖xi − x0‖2 − r)}2, (3.4)

19

Chapter 3. MALICIOUS URL DETECTION

with M = 0. The choice of zS2 instead of zS1 is motivated by the fact that
using zS2

allows a DC decomposition where all the computations in DCA are
explicit.

Finally the DCA scheme has been used also in [64], for minimizing the
following error function:

zS3
(x0, q, r) = C

p∑
i=1

max{0, yi(‖xi − x0‖2 − r) + q} − q, (3.5)

with 0 ≤ q ≤ r and M ≥ 0, where the term −q is aimed at maximizing the
margin. Moreover, similarly to [66], also in [64] an ad hoc algorithm that finds
the optimal solution in O(t log t) has been designed when, in function zS3

, the
center x0 is fixed.

3.4 Computational experience

We present now the results of our numerical experiments in malicious URLs
detection. We ave adopted the spherical classification approach described in
section 3.3. In particular we have coded in Matlab (on a Pentium V 2.60 GHz
Notebook) the algorithm introduced in [66], which is able to find the optimal
solution in case the centre of the separating sphere is fixed in advance.

For evaluating the effectiveness of our approach we have used a dataset
obtained as follows. The samples have been randomly selected using some
sources available on the web; in particular, for malicious URLs we used the
on-line black list called PhishTank ([74]), a free community site where anyone
can submit, verify, track and share phishing data. As for benign URLs we
have collected our samples by developing a fast web crawler (a program that
visits web pages and collects information) capable of gather unique URLs
(not duplicated) specifying the minimum and maximum length of the URL.
The crawling phase started from the DMOZ Open Directory Project ([75]),
a human-edited directory of safe web pages. The size of our dataset is 245
malicious and 384 benign URLs (dataset 1).

We have applied the standard ten-fold cross-validation protocol. The
dataset has been divided into ten subsets of equal size and each subset has
been validated using the classifier obtained by training executed on the re-
maining nine subsets. The classification accuracy is defined as the average
percentage of well classified URLs (of both classes).

We have run the program for different values of the positive weighting
parameter C. We have implemented two possible choices of the center x0, by

selecting, respectively, the barycenter of the set of malicious URLs (x
(1)
0) and

the barycenter of the set of benign URLs (x
(2)
0). However, after our evaluation,

we have noticed that setting the center x0 equal to the barycenter of the set
of malicious URLs was the most performing choice.

20

3.4. Computational experience

We have executed first an exhaustive feature selection process on five out
of the seven features analyzed in section 3.2: number of subdomains, URL
age, URL expiration, hostname length and path length. In Tables 3.1 and 3.2
we report the most significant results obtained and the corresponding set
of features. In Table 3.3 the True Positive and the True Negative Rate for
the best performing combination of features are reported, where the True
Positive Rate is defined as the percentage of benign URLs correctly classified
as benign URLs and the True Negative Rate as the percentage of malicious
URLs correctly classified as malicious URLs.

Table 3.1. First set of features

Feature Number Description
1 Number of subdomains
2 URL age
3 URL expiration
4 Hostname length
5 Path length

Table 3.2. Most significant results with the first set of features

Average Average
Feature Parameters Training Set Testing Set

Combination Correctness Correctness

2, 3 C = 0.1, x
(1)
0 86.3% 86.3%

2 C = 10, x
(1)
0 85.6% 85.0%

1, 2, 3 C = 0.1, x
(1)
0 83.7% 83.5%

2, 3, 4 C = 0.1, x
(1)
0 82.8% 82.2%

21

Chapter 3. MALICIOUS URL DETECTION

Table 3.3. True Positive and True Negative Rate

Average Average Average Average
Training Set Training Set Testing Set Testing Set
True Positive True Negative True Positive True Negative

Features: 2,3

C = 0.1, x
(1)
0 90.3% 80.1% 90.3% 80.0%

Features: 2

C = 10, x
(1)
0 88.2% 81.5% 88.0% 80.4%

Features: 1,2,3

C = 0.1, x
(1)
0 88.1% 76.6% 87.7% 76.7%

Features: 2,3,4

C = 0.1, x
(1)
0 87.4% 75.5% 87.0% 74.7%

The results of the feature selection process indicate that the best classifica-
tion accuracy is obtained by considering a quite small subset of the available
features, in particular the combination of the URL age and URL expiration
features. The remaining one are were redundant and, sometimes, even mis-
leading.

We have extended the numerical experiments applying our methodology to
a bigger dataset constituted by 11975 URLs, 5090 malicious and 6885 benign
(dataset 2). It has been constructed by adopting the same methodology as for
dataset 1. The results are shown in the following Tables 3.4 and 3.5. Also in
this case we report the subsets of features which have provided better results.

Table 3.4. Features combination using a bigger dataset

Average Average
Feature Parameters Training Set Testing Set

Combination Correctness Correctness

2, 3 C = 0.1, x
(1)
0 83.9% 83.9%

2, 5 C = 10, x
(1)
0 83.4% 83.3%

2 C = 10, x
(1)
0 83.6% 83.4%

2, 3, 5 C = 10, x
(1)
0 83.3% 83.2%

22

3.4. Computational experience

Table 3.5. True Positive and True Negative Rate using a bigger dataset

Average Average Average Average
Training Set Training Set Testing Set Testing Set
True Positive True Negative True Positive True Negative

Features: 2,3

C = 0.1, x
(1)
0 86.1% 80.9% 86.0% 81.0%

Features: 2,5

C = 10, x
(1)
0 85.6% 80.5% 85.6% 80.2%

Features: 2

C = 10, x
(1)
0 85.7% 80.7% 85.8% 80.3%

Features: 2,3,5

C = 10, x
(1)
0 85.5% 80.3% 85.5% 80.2%

We have performed some additional experiments on both datasets by con-
sidering two more features, Table 3.7: the IP Address geographical-location
and the presence of the “suspicious” word Login in the text of the URL. Since
such information was not available for all samples, the size of the datasets has
been reduced to 370 benign URLs and 210 malicious ones for dataset 1 and
to 6432 benign URLs and 4520 malicious ones for dataset 2. As far as dataset
1, in Table 3.6 we report the most significant results obtained for this series
of experiments and in Table 3.8 the True Positive and True Negative Rate for
the best performing combination of features.

Table 3.6. Additional Features

Feature Number Description
6 IP Address geographical-location
7 Presence or not of the word ”Login”

Table 3.7. Most significant results with two more features

Average Average
Feature Parameters Training Set Testing Set

Combination Correctness Correctness

2, 7 C = 0.1, x
(1)
0 79.3% 78.6%

2, 5, 7 C = 10, x
(1)
0 76.8% 77.1%

2, 5, 6 C = 10, x
(1)
0 75.7% 75.7%

2, 3, 6 C = 0.1, x
(1)
0 75.6% 74.5%

23

Chapter 3. MALICIOUS URL DETECTION

Table 3.8. True Positive and True Negative Rate for the best performing combi-
nation of features

Average Average Average Average
Training Set Training Set Testing Set Testing Set
True Positive True Negative True Positive True Negative

Features: 2,7

C = 0.1, x
(1)
0 85.5% 68.6% 84.3% 68.6%

Features: 2,5,7

C = 10, x
(1)
0 81.9% 67.7% 82.4% 67.6%

Features: 2,5,6

C = 10, x
(1)
0 81.1% 66.3% 83.0% 62.9%

Features: 2,3,6

C = 0.1, x
(1)
0 82.5% 63.6% 84.0% 57.6%

The above results show that the two additional features didn’t provide any
positive contribution in terms of classification accuracy. We remark the role
played by the URL age in this setting too.

As far as dataset 2 is concerned, the results are reported in Tables 3.9
and 3.10. The introduction of the additional features has provided, in this
case, a slight improvement.

We observe, finally, that our methodology has provided a rather satisfac-
tory quality in the classification process. It appears worth noting that, even
for the larger dataset 2, the computation time has always been of the order
of few seconds, which suggests possible utilization of our method at least as a
preliminary classification tool in view of future very large scale applications.

Table 3.9. Most significant results for dataset 2

Average Average
Feature Parameters Training Set Testing Set

Combination Correctness Correctness

2, 6 C = 0.1, x
(1)
0 84.4% 84.4%

2, 7 C = 0.1, x
(1)
0 84.0% 84.0%

2, 3, 6 C = 0.1, x
(1)
0 84.1% 84.0%

2, 5, 6 C = 10, x
(1)
0 83.6% 83.6%

24

3.4. Computational experience

Table 3.10. True Positive and True Negative Rate for the best performing combi-
nation of features with dataset 2

Average Average Average Average
Training Set Training Set Testing Set Testing Set
True Positive True Negative True Positive True Negative

Features: 2,6

C = 0.1, x
(1)
0 86.8% 81.0% 86.8% 81.0%

Features: 2,7

C = 0.1, x
(1)
0 86.5% 80.5% 86.5% 80.6%

Features: 2,3,6

C = 0.1, x
(1)
0 86.6% 80.6% 86.5% 80.5%

Features: 2,5,6

C = 10, x
(1)
0 86.1% 80.2% 86.1% 80.2%

25

4

The AC-Index: Fast Online Detection of
Correlated Alerts

This chapter describes a technique whose objective is the fast retrieval of oc-
currences of given patterns in streams of events, where each event corresponds
to a security alert. Our specifically-designed AC-Index supports a very expres-
sive DFA-based model for the patterns and arbitrary correlation functions.

4.1 Introduction

Intrusion Detection Systems (IDSs) usually generate logs whose tuples encode
timestamped security-related alerts that are recorded from a monitored sys-
tem. In general, the alert correlation process transforms groups of such alerts
into intrusion reports of interest for the security expert. Alerts typically con-
tain attributes like the type of event, the address of the source and destina-
tion hosts, etc. These attributes are matched against known vulnerabilities,
in order to avoid reporting alerts wih no actual associated risk (e.g., a Linux-
oriented attack blindly launched on a Windows machine). However, applying
this approach alone can lead to missing relevant alerts that do not match any
vulnerability (e.g., ICMP PINGs) but that can be part of a more complex
multi-step attack. Alerts must therefore also be correlated using the knowledge
encoded in specific structures (e.g. attack graphs [15]) that describe logical
connections of interest among correlated alerts. In anomaly detection systems
[76, 77, 78, 79, 80, 81], historical data is used to build profiles of the “normal”
user behaviors, so that sequences of actions that deviate from the profiles are
classified as “anomalous”. Misuse detection systems [82, 83, 84, 85, 86] make
instead use of sets of descriptions of suspicious activities that are matched
against the log in order to identify ongoing activities.

In order to describe logical connections among alerts, multi-step and
fusion-based correlation techniques have been used in the past [87]. Multi-step
correlation [88, 89, 90] seeks to identify suspicious activities that consist of
multiple “steps” by modeling activities through attack graphs [82, 21, 19, 20]
or deterministic finite automata (DFAs). Any activity that complies with a

27

Chapter 4. The AC-Index: Fast Online Detection of Correlated Alerts

graph or a DFA description is considered suspicious. Fusion-based correlation
[88, 91, 90] uses instead similarity functions that, when applied to the at-
tributes of incoming alerts, establish whether they should be considered part
of a same activity.

The framework presented in this chapter provides the following main fea-
tures:

• The general objective is that of retrieving the top-k sub-sequences of a log
that match some given DFA-based pattern.

• The log is streamed into the system, so the retrieval of correlated alerts is
performed in an online fashion.

• The ranking of the sub-sequences is done on the basis of user-provided
severity functions.

• The retrieved sub-sequences can be constrained through user-provided cor-
relation functions and maximum durations.

• The correlation and severity functions and the maximum durations are
pattern-specific – moreover, the functions can be arbitrary, as we only
mandate their polynomial-time computability.

• We do not mandate any specific schema for the alerts: we simply regard
each alert as a relational tuple with a user-provided schema.

• We aim at managing multiple patterns concurrently.
• The retrieved sub-sequences can possibly be non-contiguous.
• The reports built can be based on partial occurrences of patterns, i.e., sub-

sequences that have not yet reached their terminal stages in the DFAs.

Figure 4.1 shows the two patterns we will use as our running example
throughout the chapter. Edges are labeled with alert symbols and each stage
is annotated with its associated severity value. The sequence {access, service
exploit, DoS} represents a possible Denial of Service attack. A security expert
may want to take security measures at a certain “depth” of this attack. To this
end, the expert wants to receive a report every time a stage of the sequence
is traversed. In other words, we must look at all sub-sequences of the log that
match some prefix of any path in the pattern. Furthermore, in order to counter
the intrusions more quickly, the expert may want to only look at the first k
sub-sequences, based on their associated severity value – in the example, we
assume that the severity of a sub-sequence only depends on the stage reached
in the pattern. Moreover, the correlation function looks at the attributes of
the alerts in order to decide which alerts are to be considered part of a same
attack. Finally, for each pattern, only the sequences that fit in a time window
of maximum length τ are considered.

The rest of the chapter is organized as follows. In Section 4.2 we formalize
the alert correlation problem targeted by our proposed AC-Index. Finally, in
Section 4.3, we describe the AC-Index, which is then experimentally validated
in Section 5.7.2.

28

4.2. Preliminaries and Problem Formalization

S
0

S
1

scan

S
4

access

S
2

web

exploit

S
5

service

exploit

S
3

information

loss

S
6

DoS

S
8

shell

upload DoS

S
7

DB dump

access

P1: ?=25

25

35

40

50

120

110

90100

S
9

S
10

scan

S
11

reverse key

S
14

key tracking

ICMP

redirect
S

12

DNS

spoofing
S

15

ARP

spoofing
S

13

phishing
S

16

P2: ?=16

95

10580

75

55

45

20

Fig. 4.1. Example patterns. Each stage is annotated with its associated severity
value.

4.2 Preliminaries and Problem Formalization

In this section we introduce some preliminary notions and formalize the alert
correlation problem targeted by our proposed index, which basically consists
in finding the top-k sub-sequences of a log that represent an attack w.r.t. a
given set of patterns.

We assume the existence of (i) a finite set A of alert symbols and (ii) w
attribute domains ATT1, . . . , ATTw. A log is a set L = {`1, . . . , `n} of tuples
(each corresponding to an alert) of the form 〈id, symbol, ts, att1, . . . , attw〉
where id is an identifier, symbol ∈ A, ts ∈ N is a timestamp, and ∀i ∈ [1, w],
atti ∈ ATTi. We assume that ∀i ∈ [1, n − 1], `i.ts < `i+1.ts. Moreover, we
denote component c of log tuple ` as `.c.

The notion of a pattern is formalized by the following definition.

Definition 4.1 (Pattern). A pattern is a tuple P = 〈S, ss, St, δ, τ〉 where:

• S is a set of stages;
• ss ∈ S is the start stage;
• St ⊆ S is the set of terminal stages;
• δ : S ×A → S is the stage transition (partial) function;1

• τ ∈ N is the maximum duration of an occurrence of P .

We assume that ∀s ∈ St,∀sym ∈ A, δ(s, sym) is not defined, and that ∀s ∈
S,∀sym ∈ A, δ(s, sym) 6= ss.

In the following, when δ(s, sym) = s′, we say that there is an edge from s to
s′ labeled with sym.

1 Some past works assume aciclicity of the patterns because, in many practical
cases, (i) the attacker’s control over the network increases monotonically, i.e., the
attacker need not relinquish resources already gained during the attack, and (ii)
the “criticality” associated with a sequence of alerts does not change when the
sequence contains a portion that is repeated multiple times as it matches a cycle
in the pattern. In such cases, the overall sequence is equivalent to the one obtained
after removing the portion matching the cycle. We do not make this assumption
as it would reduce the expressiveness of the model and it is not required by the
AC-Index.

29

Chapter 4. The AC-Index: Fast Online Detection of Correlated Alerts

Example 4.2. Pattern P1 of our running example is formalized as follows: S =
{s0, . . . , s8}; ss = s0; St = {s3, s6, s7}; δ(s0, scan) = s1, δ(s0, access) =s4,
δ(s1, access) =s8, δ(s1,web exploit) = s2, δ(s2, information loss) = s3, δ(s4,
service exploit) = s5, δ(s5, DoS) = δ(s8, DoS) = s6, δ(s5,DB dump) = s7,
δ(s5, shell upload) = s8; τ = 25.

An occurrence of a given pattern is a possibly non-contiguous subsequence
of the log whose associated alert symbols correspond to a path that begins
in a start stage. In addition, the overall duration of the subsequence must
comply with the maximum duration allowed by the pattern. The following
definition formalizes this.

Definition 4.3 (Occurrence). Given a pattern P = 〈S, ss, St, δ, τ〉 and a
log L, an occurrence of P in L is a set O = {`1, . . . , `m} ⊆ L such that (i)
∀i ∈ [1,m−1], `i.ts < `i+1.ts; (ii) there exists a set {s0, s1, . . . , sm} ⊆ S such
that ss = s0 and ∀i ∈ [1,m], δ(si−1, `i.symbol) = si; (iii) `m.ts− `1.ts ≤ τ .

It should be observed that Definition 4.3 does not require an occurrence to
reach a terminal stage. This feature gives security experts complete freedom
in deciding whether or not a certain subsequence must be considered “critical”
(i.e., with a high severity). Thus, any prefix of a complete path in the pattern
can correspond to a critical subsequence the framework must take into ac-
count. Terminal stages are used to semantically represent the “final goal” of
the attacker. Moreover, they help the retrieval algorithm as they signal that
a subsequence can no longer be extended.

The following definition formalizes the way we characterize the severity of
a subsequence and the attribute-based correlation among log tuples.

Definition 4.4 (Severity and Correlation Functions). Given a pattern
P and a log L, the severity w.r.t. P is a function sevP : 2L → N. Moreover,
the correlation w.r.t. P is a function γP : 2L → {true, false} such that
γP (X) = true for all subsets X ⊆ L that, based on their attribute values, can
be part of a same occurrence.

We assume transitivity of function γP , that is, if γP (X1 ∪X2) = true and
γP (X2 ∪ X3) = true, then γP (X1 ∪ X3) = true. It should also be observed
that it is natural to assume sevP (X) = 0 when X is not an occurrence of P
in L.

We are now ready to define the alert correlation problem we address.

Definition 4.5 (Alert Correlation Problem). Given a set P of patterns, a
log L, and a number k ∈ N, the alert correlation problem consists in finding a
set O = {O1, . . . , Ok} such that: (i) each Oi is an occurrence in L of a pattern
Pi ∈ P; (ii) ∀i ∈ [1, k], γPi

(Oi) = true; (iii) ∀i ∈ [1, k − 1], sevPi
(Oi) ≥

sevPi+1(Oi+1); (iv) there do not exist a pattern P ∈ P and an occurrence
O /∈ O of P in L such that sevP (O) > sevPk

(Ok).

30

4.2. Preliminaries and Problem Formalization

In Definition 4.5, the second condition states that all tuples in each occur-
rence Oi ∈ O must be correlated to one another; the third condition states
that O contains occurrences in decreasing order of severity value; the fourth
condition ensures that the occurrences in O are the ones with the top-k sever-
ity values. We do not assume that ∀i, j with i 6= j, Pi 6= Pj – in other words,
set O can contain two different occurrences of the same pattern. It should be
noted that if the security expert is only interested in contiguous occurrences
(as the majority of existing approaches do), our proposed framework can be
straighforwardly extended to post-process the retrieved occurreces and filter
out non-contiguous ones.

Example 4.6. Returning to our running example, suppose we want to find the
occurrences of the patterns in the log of Figure 4.2 (top left). In this case, log
tuples are of the form 〈id, symbol, ts, sourceIP, targetIP 〉. We assume that
γP1

and γP2
consider log tuples as correlated if their sourceIPs are equal

and their targetIPs are in the same subnetwork w.r.t. the example network
in Figure 4.2 (top right). Moreover, sevP1 and sevP2 return the values in
Figure 4.1 if the targetIPs of the tuples are outside the firewall – values are
doubled if the targetIPs are inside the firewall. The resulting sub-sequences
are listed in Figure 4.2 (bottom), ordered by severity value.

id symbol ts sourceIP targetIP
100 scan 12 160.57.91.110 110.80.70.120
101 reverse key 13 160.57.91.110 110.80.70.120
102 scan 14 130.10.71.151 120.15.62.140
103 buffer overflow 15 190.23.41.170 170.21.88.124
104 web exploit 16 130.10.71.151 120.15.62.141
105 SQL injection 24 190.23.41.170 170.21.88.124
106 information loss 26 190.23.41.170 170.21.88.124
107 ICMP redirect 28 160.57.91.110 110.80.70.122
108 ARP spoofing 29 160.57.91.110 110.80.70.129
109 DoS 32 190.23.41.170 170.21.88.124
110 information loss 35 130.10.71.151 120.15.62.146

Sub-sequence Pattern Severity Duration
O1 = {102, 104, 110} P1 240 21
O2 = {102, 104} P1 80 2

O3 = {100, 101, 107} P2 75 16
O4 = {100, 101} P2 45 1
O5 = {102} P1 50 0
O6 = {100} P2 25 0
O7 = {100} P1 20 0

O8 = {100, 101, 107, 108} P2 0 17

Fig. 4.2. Example log (top left), network (top right), and sub-sequences (bottom).

Note that O8 is not an occurrence of P2 according to Definition 4.3, since
its duration is 17 time units which is longer than the maximum duration of
any occurrence of P2 (that is, 16 time units). The set O = {O1, . . . , O4} is

31

Chapter 4. The AC-Index: Fast Online Detection of Correlated Alerts

a solution for the alert correlation problem with k = 42. In fact, it satisfies
all of the conditions of Definition 4.5: (i) each Oi has an associated pattern
Pi for which it is an occurrence in L; (ii) γP1

(O1) = γP2
(O2) = γP3

(O3) =
γP4

(O4) = true; (iii) sevP1
(O1) ≥ sevP1

(O2) ≥ sevP2
(O3) ≥ sevP2

(O4); (iv)
sevP1(O5) ≤ sevP2(O4) and sevP2(O6) ≤ sevP2(O4).

In the characterization of the complexity of the alert correlation problem
we target, we make the realistic assumption that the computation of func-
tions γ and sev can be performed in polynomial time. We therefore denote
the complexity of computing such functions as O(polyγ,sev(x)), that is a poly-
nomial in the cardinality x of the set to which the functions are applied. The
following result establishes the overall complexity of the problem.

Proposition 4.7. The worst-case asymptotical time complexity of solving the

alert correlation problem is Ω
(
log k ·

∑
P=〈S,ss,St,δ,τ〉∈P(τ |S| · polyγ,sev(τ))

)
.

To see why the above result is true, it suffices to observe the following. τ
is the maximum cardinality of an occurrence of P , so τ |S| is the maximum
possible number of occurrences of P in L. It should be observed that the
existence of a “local time window” where alerts can be “connected” is common
to all the models that allow to constrain the length of the sub-sequences (see,
e.g., [83]) – obviously, without such constraints, this term would become |L||S|.
Moreover, polyγ,sev(τ) represents the time needed to check the correlation
among the tuples of an occurrence of P and to compute their severity. Finally,
to extract the top-k occurrences, it suffices to maintain a priority queue of
maximum size k while scanning the whole set of occurrences – this takes time
log k for each occurrence.

4.3 The AC-Index

In this section we describe our proposed AC-Index, whose objective is that of
efficiently “tracking” the occurrences of a given set of patterns in a log. The
index is updated as soon as a new log tuple enters the system, and it contains
a priority queue whose content represents the top-k occurrences found so far
in the log.

We denote the set of patterns as P. Without loss of generality, we assume⋂
〈S,ss,St,δ,τ〉∈P S = ∅. Moreover, we use S to denote the set

⋃
〈S,ss,St,δ,τ〉∈P S.

Finally, given an alert symbol sym ∈ A, we define stages(sym) ⊆ S as the set
of non-terminal stages having an incoming edge labeled with sym — formally,
∀s ∈ stages(sym), ∃〈S, ss, St, δ, τ〉 ∈ P such that s ∈ S, s 6= ss, s /∈ St, and
∃s′ ∈ S such that δ(s′, sym) = s.

2 Note that a security expert may want to discard O2 and O4 because they are
prefixes of O1 and O3 respectively.

32

4.3. The AC-Index

Definition 4.8 (AC-Index). Given a set P of patterns an a log L, an AC-
Index IP is a tuple 〈Tables,MainTable, PQ〉 where:

• Tables is a set containing a table table(s) for each s ∈ stages(sym) with
sym ∈ A. table(s) contains rows of the form (PL, sev) where PL is a list
of pointers to tuples in L, and sev ∈ N is the severity value corresponding
to the set of tuples pointed by PL;

• MainTable is a table where each row is of the form (sym,Z), where sym ∈
A and Z is a set of pointers to tables table(s);

• PQ is a priority queue containing pairs of the form (PL, sev) that are
copies of table rows in tables(s). The size of PQ is bounded by k and the
priority is the value of sev.

In the AC-Index, a row (PL = {`↑0, . . . , `↑m}, sev) ∈ table(s) corresponds
to an occurrence O = {`0, . . . , `m} in L of a pattern P = 〈S, ss, St, δ, τ〉 ∈ P
with sev = sevP (O) and δ(s′, `m.symbol) = s for some s′ ∈ S. Following the
definition of set stages, no table is built for neither initial stages (because
such stages cannot correspond to occurrences) nor terminal stages (because
we do not need to store non-extendable occurrences). In MainTable, a row
(sym,Z) encodes the fact that, for each table tables(s) pointed by Z there
exists a stage s ∈ S with at least one ingoing edge labeled with sym. Finally,
PQ always contains the k occurrences found so far with higher severity values.
Moreover, if requested by the security expert, PQ can be configured in such a
way that it will discard the occurrences that are prefixes of some occurrence
of the same pattern. In our running example, O2 and O4 would be discarded
since they are prefixes of O1 and O3, respectively.

Example 4.9. Figure 4.3 (left) shows the initial status of the AC-Index built
over pattern P1 = 〈S, ss, St, δ, τ〉. At this stage, PQ and all table(s) are empty.
MainTable contains a number of rows equal to the number of distinct alert
symbols labeling edges that end in non-terminal stages.

Figure 4.3 (right) shows the pseudo-code of the Insert algorithm that in-
dexes a new log tuple `new with associated alert symbol `new.symbol.

In the algorithm, Lines 6-9 deal with the case where s is a start stage, by
creating a new occurrence. Specifically, it creates a new row table r and adds
it to PQ and to table(s′), where s′ is the stage reached from s by following
the edge labeled with sym. Lines 11-20 check whether the new log tuple `new
can be correlated with those in the existing occurrences. If it does (Lines
13-20), it is appended to such occurrences and the latter are added to PQ.
Otherwise, i.e., if it does not fit in the time window τ , then the last log tuple
of each occurrence that can not be extended is removed from its related table
(Line 22). Observe that this implicitly corresponds to a pruning process that
is applied during the construction of the index.

Example 4.10. Figure 4.4 shows the status of the AC-Index after indexing
log tuples from 102 to 110 of our running example when considering pattern

33

Chapter 4. The AC-Index: Fast Online Detection of Correlated Alerts

MainTable

sym Z

scan

web exploit

access

service exploit

upload shell

table(s1)

PL sev

table(s2)

PL sev

PQ

PL sev

table(s4)

PL sev

table(s5)

PL sev

table(s8)

PL sev

Tables

Algorithm: Insert(`new , IP)
Input: New log tuple `new ,

AC-Index IP = 〈Tables,MainTable, PQ〉
Output: Updated AC-Index IP

1 sym← `new.symbol
2 Z ←MainTable(sym)
3 for each table(s) ∈ Z
4 let P = 〈S, ss, St, δ, τ〉 be a pattern s.t. s ∈ S
5 s′ ← δ(s, sym)
6 if s = ss
7 r ← (`↑new, 0)
8 if s′ /∈ St then add r to table(s′)
9 add r to PQ

10 else
11 for each row r ∈ table(s)
12 let O = {`1, . . . , `n} be the set

of log tuples pointed by r.PL
13 if `new.ts− `1.ts ≤ τ
14 if γP ({`n, `new})
15 O′ ← append `new to O
16 PL′ ← append `↑new to r.PL
17 r′ ← (PL′, sevP (O′))
18 if s′ /∈ St then add r′ to table(s′)
19 add r′ to PQ
20 end if
21 else
22 remove r from table(s)
23 end if
24 end for
25 end if
26 end for

Fig. 4.3. Example initial index status (left) and Insert algorithm (right).

MainTable

sym Z

scan

web exploit

… …

table(s1)

PL sev

[102] 50

table(s2)

PL sev

[102 ,104] 80

PQ

PL sev

[102 ,104 ,110] 240

[102 ,104] 80

[102] 50

.

.

.

r1

r2

Tables

r3

copy of r2

copy of r1

Fig. 4.4. Example index status after indexing log tuples from 102 to 110 of the log
of Figure 4.2 (top left).

P1 = 〈S, ss, St, δ, τ〉 only. The indexing process can be divided into 3 distinct
macro-steps:

1. The first processed log tuple is 〈102, scan, . . .〉. Since there exists a row
(scan, {table(s1)↑}) in MainTable, row r1 = (PL = [102↑], sev = 50) is
added to table(s1) (50 is the severity value returned by sevP1

). Then, a
copy of r1 is added to PQ. Log tuple 〈103, buffer overflow,...〉 is skipped
because there are no rows in MainTable with sym = buffer overflow.

34

4.4. Experimental Results

2. Log tuple 〈104, web exploit , . . .〉 can be correlated with 〈102, scan, ...〉,
because δP1

(s1, scan) = s2 and γP1
(102, 104) = true. Thus, row r2 =

([102↑, 104↑], 80) is added to table(s2) and PQ. Log tuples from 105 to 109
are skipped because none of them can be correlated with log tuples 102
or 104. As an example, tuple 〈106,information loss, . . .〉 cannot be linked
to the occurrence O={102, 104} although δP1(s2, information loss) = s3,
because γP1

({102, 104, 106}) = false due the IPAttacker attribute value,
which is distinct from that of tuples 102 and 104.

3. Log tuple 〈110, information loss, . . .〉 can be correlated with {102, 104},
because δP1

(s2, information loss) = s3 and γP1
({104, 110}) = true. How-

ever, in this case, a new row r3 = ([102↑, 104↑, 110↑], 240) is directly added
to PQ because there does not exist table(s3) since s3 is a terminal stage.

As the example shows, we only need to store occurrences in Tables if
they can be extended. In fact, when an occurrence ends in a terminal stage
it is no longer extendable, so it can be directly stored in PQ – this is why
the AC-Index does not contain any table(s) with s being a terminal stage.
The following result ensures that Algorithm Insert solves the alert correlation
problem both correctly and optimally.

Proposition 4.11. Given a log L, the execution of Algorithm Insert on all tu-
ples in L terminates, and after the execution, the content of PQ represents the
correct solution to the alert correlation problem. The worst-case asymptotical

time complexity of Insert is O
(
log k ·

∑
P=〈S,ss,St,δ,τ〉∈P(τ |S| · polyγ,sev(τ))

)
.

4.4 Experimental Results

In this section we report on the experimental assessment we performed on our
proposed AC-Index when applied to both real-world and synthetic patterns
and logs. We implemented the whole framework in Java and run the experi-
ments on an Intel Core i7-3770K CPU clocked at 3.50GHz, with 12GB RAM,
running Windows 8.

We ran three different rounds of experiments. In the first round, we used
real-world patterns P1 and P2 of Figure 4.1 and P3 and P4 of Figure 4.5.
In the second round, we used synthetic patterns P5 and P6 of Figure 4.6, in
order to outline the behavior of our framework when varying the “density” of
the patterns (number of edges w.r.t. the number of vertices). In fact, much
denser patterns usually yield a much bigger AC-Index as each log tuple can
be attached to many more occurrences.

For the first and second round, we built synthetic logs consisting of 300K
tuples. Each log was built by combining a set of sub-logs, each of which is a
sequence of alert symbols that can represent an occurrence of a given pattern.
Specifically, a log combines several sub-logs {L1, . . . , Ln} where each Li is
built by considering a path from an initial to a terminal stage in a pattern.

35

Chapter 4. The AC-Index: Fast Online Detection of Correlated Alerts

P4: t=13

S
23

S
24

scan
S

25
S

26

S
28

63

242210 service

exploit

privilege

escalation

S
27

52

remote

shell

remote

shell

DNS

spoofing

S
31

service

replication

115

S
29

90

S
30

91
service

replication
backDoor

rootkit
service

replication

S
17

S
18

Google

dork
S

19
S

20
S

22

P3: t=9

85654238 service

exploit
upload

shell

S
21

43

DB dump upload

shell

DDoS

Fig. 4.5. Real-world patterns P3 and P4.

S
12

S
13

S
14

S
15

S
16

S
17

a b c d e

c

d

e

d

e

e

S
18

f
S

19

g
S

20

h

f

g
h

f

g
h

f
g

h

f
g

h

g
h

h

P
5
: t=14

10

15

20

25 30 35 40 50

S
21

S
22

S
23

S
24

S
25

S
26

a b c d e
S

27

f
S

28

g
S

29

h

10 15 20 25 30 35 40 50

P
6
: t=14

Fig. 4.6. Synthetic patterns P5 and P6.

These sub-logs were built and combined under six different log generation
modes, each corresponding to a possible real-world scenario:

1. each sub-log only contains alert symbols in its corresponding pattern, and
the sub-logs are concatenated;

2. same as mode 1, except that some alert symbols are replaced with “noise”,
i.e. with symbols not present in the corrisponding pattern, with a certain
frequency;

3. same as mode 1, except that noise is inserted in the sequence, i.e., it is
added between alert symbols which are present in the pattern;

36

4.4. Experimental Results

4. same as mode 1, except that a certain percentage of each Li partially
overlaps with Li+1;

5. same as mode 2, but with partial overlap as in mode 4;
6. same as mode 3, but with partial overlap as in mode 4.

We performed 14 runs for each of the first and second round. The log
generation mode, noise frequency, and overlap percentage used are reported
in Figure 4.7. For each run indicated in the figure, the values of the other
parameters were set to the defaults (in bold) – for instance, run 3 was per-
formed with noise frequency 3/10 and overlap percentage 40%.3 We assumed
worst-case behavior of function γ, i.e., it always returns true. We also per-
formed experiments with much larger logs (1M tuples) – interestingly, the
performance we obtained in terms of tuples processed per second was 5.1%
worse at most.

Log generation mode Noise frequency Overlap percentage
1 (run 1) 1/10 (run 7) 20% (run 12)
2 (run 2) 2/10 (run 8) 30% (run 13)
3 (run 3) 3/10 (run 9) 40% (run 14)
4 (run 4) 4/10 (run 10) 50% (run 15)
5 (run 5) 5/10 (run 11) 60% (run 16)
6 (run 6)

Fig. 4.7. Parameter values used for each experimental run.

Finally, in the third round, we used a 112K-tuple log produced by running
SNORT [92] on the second, fourth, and fifth week of inside traffic from the 1999
DARPA intrusion detection evaluation dataset [93] and manually extracted
14 patterns from it. In this round, function γ was set to return true when the
alerts shared the same destination IP address, and we fixed τ = 10.

Figure 4.8 reports the results of the first round. In particular, Figure 4.8
(top left) shows the number of log tuples processed per second when varying
the log generation mode (runs 1–6), Figure 4.8 (top right) shows the variation
with respect to noise frequency (runs 7–11), and Figure 4.8 (bottom) the
variation with respect to overlap percentage (runs 12–16).

The results confirm our expectations and show extremely good overall per-
formances. As expected, the presence of noise in the log or overlap between
consecutive instances reduces the overall number of occurrences, thus improv-
ing performances. Moreover, when noise appears instead of alert symbols of
actual interest (which we believe is an even more realistic case), we obtain
better results than when noise appears between such symbols. Generally, the
number of tuples processed per second is extremely high – it is consistently
higher than 765K, and around 1.4M on average. In both Figure 4.8 (top right)
and Figure 4.8 (bottom) the trend is basically linear in the frequency of noise

3 For simplicity of presentation, the run with all parameters set to default values
is reported as three separate runs (6, 9, and 14) in Figure 4.7.

37

Chapter 4. The AC-Index: Fast Online Detection of Correlated Alerts

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

2,5E+06

1 2 3 4 5 6

tu
p

le
s/

se
c

Log generation mode

9,0E+05

1,1E+06

1,3E+06

1,5E+06

1,7E+06

1,9E+06

2,1E+06

2,3E+06

1/10 2/10 3/10 4/10 5/10

tu
p

le
s/

se
c

Noise frequency

1,40E+06

1,45E+06

1,50E+06

1,55E+06

1,60E+06

1,65E+06

1,70E+06

1,75E+06

1,80E+06

20% 30% 40% 50% 60%

tu
p

le
s/

se
c

Overlap

Fig. 4.8. Tuple rates in the first round of experiments.

and percentage of overlap – in these experiments, the average tuple rate is
around 1.6M tuples/sec.

Figure 4.9 shows the results obtained in the second round, which again
appear very satisfactory. We can notice in Figure 4.9 (top left) that the per-
formance loss is always around 40% when moving from a sparse pattern (P6)
to a much denser one (P5). The tuple rate never dropped below 260K tu-
ples/sec, and it was around 700K tuples/sec on average. In the experiments
where we fixed the log generation mode to 6 and varied noise frequency and
overlap percentage (top right and center left of the figure) the performance
loss was always around 60%. It should be observed that the number of paths
in P5 is 64 times that of P6. Thus, the relationship between the number of
paths and the tuple rates is much less than linear.

For the second round, we also measured the number of occurrences and the
indexing time per tuple normalized by the number of occurrences. As expected
(Figure 4.9 (center right)), the number of occurrences is lower when using P6.
Interestingly, the normalized indexing time (bottom left) shows very small
variations with respect to the specific configuration used (8% on average).
Finally, the maximum size of the AC-Index (bottom right) using P5 is much
larger – the difference was around 60% on average (again, showing a sub-
linear relationship with the number of paths in the patterns). Moreover, in
this case the size of the AC-Index shows very small variations with respect to
the configuration used.

Finally, Figure 4.10 shows the results of the third round of experiments,
when varying the number of patterns considered. Here, the tuple rate (top
left) is consistently higher than 140K tuples/sec, and around 410K tuples/sec

38

4.5. Summary

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

1 2 3 4 5 6

tu
p

le
s/

se
c

Log generation mode

P5 P6

5,0E+05

1,0E+06

1,5E+06

2,0E+06

1/10 2/10 3/10 4/10 5/10

tu
p

le
s/

se
c

Noise frequency

P5 P6

6,0E+05

8,0E+05

1,0E+06

1,2E+06

1,4E+06

1,6E+06

20% 30% 40% 50% 60%

tu
p

le
s/

se
c

Overlap

P5 P6

0E+00

2E+06

4E+06

6E+06

8E+06

1E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
 o

f
o

c
c
u

r
re

n
c
e

s

Run

P5 P6

0

1E-13

2E-13

3E-13

4E-13

5E-13

6E-13

7E-13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

in
d

e
xi

n
g

 t
im

e
 p

e
r

tu
p

le
/

#
 o

f
o

cc
u

rr
e

n
ce

s

Run

P5 P6

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
 o

f
ro

w
s

Run

P5 P6

Fig. 4.9. Tuple rates (top and center left), number of occurrences (center right),
normalized indexing time per tuple (bottom left), and maximum size of the AC-
Index (bottom right) in the second round of experiments.

on average – again, it appears closely dependent on the actual number of
occurrences in the log (top right). Interestingly, the normalized indexing time
(bottom left) shows relatively small variations even with respect to the number
of patterns used. As expected, the maximum size of the AC-Index (bottom
right) is larger when indexing for more patterns – however, its size is always
kept under 140 rows.

4.5 Summary

In this chapter we proposed an indexing technique for alert correlation that
supports DFA-like patterns and user-provided correlation functions and pro-
vides very fast retrieval of occurrences of the patterns. The experimental re-
sults have proven that, although the supported model is very expressive, the
framework is able to guarantee a very high efficiency of the retrieval pro-
cess. It is capable of processing logs that enter the system at extremely large

39

Chapter 4. The AC-Index: Fast Online Detection of Correlated Alerts

0,0E+00

1,0E+05

2,0E+05

3,0E+05

4,0E+05

5,0E+05

6,0E+05

7,0E+05

8,0E+05

9,0E+05

3 patterns 7 patterns 14 patterns

tu
p

le
s/

se
c

0,0E+00

1,0E+05

2,0E+05

3,0E+05

4,0E+05

5,0E+05

6,0E+05

3 patterns 7 patterns 14 patterns

#
 o

f
o

cc
u

rr
e

n
ce

s

0,00E+00

2,00E-12

4,00E-12

6,00E-12

8,00E-12

1,00E-11

1,20E-11

1,40E-11

3 patterns 7 patterns 14 patterns

in
d

e
xi

n
g

 t
im

e
 p

e
r

tu
p

le
/

#
 o

f
o

cc
u

rr
e

n
ce

s

0

20

40

60

80

100

120

140

3 patterns 7 patterns 14 patterns

#
 o

f
ro

w
s

Fig. 4.10. Tuple rates (top left), number of occurrences (top right), normalized
indexing time per tuple (bottom left), and maximum size of the AC-Index (bottom
right) in the third round of experiments.

rates – orders of magnitude of 100K–1M tuples/sec are definitely sufficient for
fully covering a wide range of real-world applications. Moreover, the frame-
work scales well w.r.t. the amount of noise in the log, the overlap between
consecutive occurrences, and the number of occurrences retrieved.

40

5

Malevolent Activity Detection with
Hypergraph-Based Models

5.1 Introduction

In numerous security scenarios, given a sequence of logged actions, it is neces-
sary to look for all subsequences that represent a malevolent activity. Typical
scenarios where the malevolent activity detection problem is of prominent im-
portance are those where actions correspond to interdependent security vul-
nerabilities, exploits, or alerts in a computer network. However, the problem
is also crucial in other scenarios – for instance, when looking at data recorded
by a surveillance system or when analyzing binary code to identify malware.

Many interesting graph-based approaches have been proposed in the past
for modeling malevolent activities. Graphs are a very natural formalism for
representing multi-step activities. However, the most common form of graph
(simple directed graph, that is a set of vertices and a set of edges that are or-
dered pairs of vertices) is usually employed – this form does not capture well
those scenarios where an activity can appear in multiple “forms”, depending
on the order in which the actions it is composed of are performed. For in-
stance, attacks to enterprise networks can correspond to non-predetermined
sequences of actions; alert correlation processes are typically applied to alerts
that are stored in different, possibly non-synchronized logs; polymorphic mal-
wares change the order of binary instructions to overcome signature-based
detection.

After a set of malevolent activity models are defined, the main problem
is that of analyzing a log of actions in order to check whether it contains
sequences that fit the models – in their simplest form, logs are sequences
of tuples, each having (at least) an associated action and a timestamp. The
ability to detect such instances of the activities in a log, and the efficiency in
doing so, is clearly crucial in many security scenarios.

We propose a hypergraph-based framework for modeling and detecting
malevolent activities. We summarize the main contributions below.

41

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

• First, we propose a hypergraph-based model for malevolent activities. The
model is capable of representing many different kinds of activities in a com-
pact way, by allowing the security expert to include (i) order-independent
sets of action symbols along with (ii) temporal constraints on the execution
of sets of actions and (iii) cardinality constraints on the number of occur-
rences of the actions (these capabilities, in turn, enable a host of useful
features, some of which are discussed in Section 5.3).

• Second, we provide a formal in-depth treatment of the problems regarding
(i) consistency, equivalence, and minimality of hypergraph-based models,
and (ii) detection of activity instances.

• Third, we develop an index structure specifically designed for hypergraph-
based activity models, along with its associated maintenance and retrieval
algorithms, that allow the efficient identification of instances of multiple
models in a given log (besides other interesting “minor” features, that are
quickly discussed in Section 5.7).

5.1.1 Running Example

Consider the example log shown in Fig. 5.1 (bottom) and assume that the
security expert identifies the log as an instance of an attack. In particular,

Local

Access

Remote

Access

Directory

Traversal

SQL

Injection

Buffer

Overflow DB

Server

Control

Information

Loss

h2(1,6)

h1

h4(3,8)

h5(5,10)

h6

v1(1:1)

v2(0:1)

Scan

h3

v3(0:1)

v4(1:?)

v6(1:3)

v5(1:1)

v7(1:1) v11(1:1)

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Host

Control

Web

Server

Control

DoS

Privilege

Escalation

h7

h8

v8(1:1)

v9(1:1) v10(1:1)

v12(1:1)

S
ca

n

P
ri

v
il

e
g

e
 E

sc
.

B
u

ff
e

r
O

v
e

rf
l.

R
e

m
o

te
 A

cc
.

D
ir

e
ct

o
ry

 T
ra

v.

B
u

ff
e

r
O

v
e

rf
l.

S
ca

n

S
Q

L
In

je
ct

io
n

P
ri

v
il

e
g

e
 E

sc
.

W
e

b
 S

e
rv

.
C

n
tr

.

D
B

 S
e

rv
.

C
n

tr
.

In
fo

rm
.

Lo
ss

h1

h6

h3

h4

h5

h2

Time

Fig. 5.1. Example activity model (top) and log (bottom).

the security expert tells us the log contains an attack because (i) it starts
with exactly one Scan action followed by a Remote Access action, and these
actions appear in a “window” which lasts between 1 and 6 time units; (ii)
after the above, the log contains one Directory Traversal action; (iii) then, the
log contains exactly one Buffer Overflow action and between 1 and 3 SQL

42

5.1. Introduction

Injection actions (in any order), and the last three actions appear in a window
which lasts between 3 and 8 time units; (iv) the last two actions are followed
by a Web Server Control action, a Privilege Escalation action, and a DB
Server Control action (in any order), the last five actions appear in a window
which lasts between 5 and 10 time units, and the DB Server Control action
appears at most 12 time units after the Remote Access action; (v) then, the
log contains an Information Loss action.

In addition, the security expert could provide us with further information
about other attacks having a similar structure. For instance, he could tell us
that (i) a Local Access action could be present instead of (or together with)
the Remote Access action; (ii) any number of Directory Traversal actions
can be present; (iii) DoS and Host Control actions can conclude the attack
instead of the DB Server Control action.

This kind of information about the structure of attacks is usually derived
from historical statistical data and enriched with the specific technical knowl-
edge provided by the domain expert. It should be observed that too restrictive
choices about the possible number of occurrences of the actions and about the
duration of temporal windows could expose the security expert to the pos-
sibility of missing attack instances in the presence of “random” actions in
the log. An effective model must therefore support forms of constraints that,
while giving full freedom to the security expert, provide the possibility of re-
laxing them when needed (for instance, by enlarging the duration of temporal
windows at will).

An activity model that captures the above scenario is reported in Fig. 5.1
(top). Vertices (depicted with plain circles) correspond to the actions of in-
terest while hyperedges (represented with dotted rounded boxes) represent
correlated groups of vertices.

Hyperedge h1 is a start hyperedge, which is indicated by the white arrow.
This means that an activity instance must start with a Scan action (associated
with vertex v1). Vertices can have a cardinality constraint that specifies lower
and upper bounds on the number of occurrences of their asscociated action in
the instance. In this case, the constraint “(1:1)” states that the instance will
contain precisely one Scan action.

Hyperedge h2 specifies that vertices v1, v2, and v3 are correlated: the model
requires the instance to contain optional actions Local Access and Remote
Access besides the Scan action from hyperedge h1 – optionality is expressed
through the cardinality constraints “(0:1)”. In general, the sub-sequence of an
activity instance that contains the actions included in a hyperedge is called a
segment of the instance. The model prescribes no specific order of appearence
among the actions in the segment. In addition, hyperedges can have a temporal
constraint that specifies lower and upper bounds on the number of time units
the corresponding segment lasts. In this case, the constraint “(1,6)” states that
all the actions in h2 must be performed, no matter of the ordering, between
1 and 6 time units.

43

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

The other hyperedges impose similar constraints – however, hyperedges
h6, h7, and h8 are terminal (indicated with the black arrows), meaning that
an instance must end with segments corresponding to these hyperedges.

The model supports further temporal constraints between hyperedges (rep-
resented by dashed edges in the figure). Such constraints specify upper bounds
on the time that can pass between the start of the segment corresponding to
the first hyperedge and the start of the segment corresponding to the sec-
ond hyperedge. In this case, the constraint between h3 and h6 requires that
the segment corresponding to h6 starts at most 12 time units after the one
corresponding to h3.

Fig. 5.1 (bottom) shows how the segments of the instance correspond to
the hyperedges in the example model. It is easy to verify that the segments
indicated in the figure satisfy all the constraints dictated by the model. For
instance, the segment corresponding to h2 contains one Scan action and one
Remote Access action, so it satisfies the cardinality constraints over the ver-
tices in h2, and it lasts 5 − 0 = 5 time units, so it satisfies the temporal
constraint over h2. The same applies to the segments corresponding to all of
the other hyperedges. In addition, the time between the start of the segment
corresponding to h3 and that of h6 is 17− 5 = 12, so the instance satisfies the
temporal constraint between h3 and h6. Moreover, the segments in the figure
allow to trace a path from the start hyperedge h1 to the terminal hyperedge
h6.

5.2 Modeling Malevolent Activities

We start by defining activity models. Besides the topological structure (ver-
tices and hyperedges), the definition identifies sets (S and T) of start and
terminal hyperedges, a function (λ) that assigns an action symbol to each
vertex along with lower and upper bounds on the number of occurrences of
the symbol, a function (τ) that specifies lower and upper bounds on the tem-
poral extension of each hyperedge, and a function (ε) that specifies upper
bounds on the difference between the start times of different hyperedges. We
assume that an alphabet A of symbols is given, univocally identifying the
actions of interest.

Definition 5.1 (Activity Model). An activity model defined over the set
A of actions is a tuple M = 〈H, λ, τ, ε, S, T 〉 where:

• H = (V,H) is a hypergraph, where V is a finite set of vertices and H is a
set of hyperedges (i.e., for each h ∈ H, h ⊆ V).

• λ : V → A×N0× (N+ ∪{∞}) is a vertex labeling function that associates
with each vertex v ∈ V a triple of the form (a, l, u), with l ≤ u, which
specifies the action of v along with its cardinality constraints.1

1 The intended meaning of the symbol ‘∞’ is that there is no upper bound.

44

5.2. Modeling Malevolent Activities

• τ : H → N0 × (N+ ∪ {∞}) is a (partial) function that expresses temporal
constraints on hyperedges – domain(τ) will denote the set of hyperedges
h ∈ H such that τ(h) is defined;

• ε : H×H → N+ is a (partial) function that expresses temporal constraints
on ordered pairs of distinct hyperedges – domain(ε) will denote the set of
pairs of hyperedges hi, hj ∈ H such that ε(hi, hj) is defined;

• S, T ⊆ H are nonempty sets of start and terminal hyperedges, respectively.

The following example shows how the model of our running example is
formalized according to Definition 5.1.

Example 5.2. In the activity model M = 〈H, λ, τ, ε, S, T 〉 of Fig. 5.1 (top) we
have:

• V={v1, . . . , v12};
• H={h1 = {v1}, h2 = {v1, v2, v3}, h3 = {v2, v3, v4}, h4 = {v4, v5, v6}, . . .};
• λ(v1) = (Scan, 1, 1), λ(v2) = (Local Access, 0, 1), λ(v3) = (Remote Access, 0, 1),

λ(v4) = (Directory Traversal, 1,∞), λ(v5) = (Buffer Overflow, 1, 1), etc.;
• domain(τ) = {h2, h4, h5}, τ(h2) = (1, 6), τ(h4) = (3, 8), τ(h5) = (5, 10);
• domain(ε) = {(h3, h6)}, ε(h3, h6) = 12;
• S = {h1}, T = {h6, h7, h8}.

A path in an activity model is a sequence of overlapping hyperedges beginning
with a start hyperedge – a complete path is one that ends with a terminal
hyperedge.

Definition 5.3. A path π in an activity model M = 〈H, λ, τ, ε, S, T 〉 is a
sequence h1, . . . , hm of distinct hyperedges from H such that h1 ∈ S and
∀i ∈ {2, ...,m}, hi−1 ∩ hi 6= ∅. Moreover, π is said to be complete if hm ∈ T .

A log is a sequence `1, ..., `n, with n > 0 and where each `i is a tuple
〈att1, . . . , attk〉 of attributes (e.g., user-id, IP, etc.). A sub-log of a log L is a
subsequence of L (and therefore a log itself). In the following, we assume that
a ‘timestamp’ attribute, here just formalized as a natural number, encodes
the time point (w.r.t. an arbitrary but fixed time granularity) at which the
action represented by a log tuple occurs. Moreover, for each i, j ∈ {1, ..., n}
with i < j, it holds that `i.timestamp < `j .timestamp, i.e., the sequence
reflects the temporal ordering of the tuples.2 Moreover, we assume that an
‘action’ attribute encodes the action represented by a tuple.

Before defining the instance of an activity model, we introduce the notion
of m-segmentation. As previously discussed, in order to be considered an in-
stance, a log must necessarily contain a set of segments, each corresponding to
a hyperedge in the model. An m-segmentation identifies such segments and,
since the hyperedges in a path are overlapping, it requires that the first tuple
of a segment must be part of the previous segment.

2 Note that we are assuming here, w.l.o.g., that there are no tuples with the same
timestamp. Indeed, this can always be guaranteed by assuming a sufficiently fine
time granularity.

45

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

Definition 5.4 (m-segmentation). Let L = `1, ..., `n be a log and let
m > 0 be a natural number. A segment of L is a pair (s, t) of natural
numbers such that 1 ≤ s ≤ t ≤ n. An m-segmentation of L is a se-
quence (1 = s1, t1), ..., (sm, tm = n) of pairs of natural numbers such that
(i) ∀i ∈ {1, ...,m}, (si, ti) is a segment of L, and (ii) ∀i ∈ {1, ...,m − 1},
si+1 ≤ ti.

Example 5.5. Consider the log L of our running example, reported in Fig. 5.2
– for the moment, ignore the timestamps.

Log tuple action timestamp

`1 Scan 0
`2 Privilege Escalation 1
`3 Buffer Overflow 2
`4 Remote Access 5
`5 Directory Traversal 7
`6 Buffer Overflow 10
`7 Scan 11
`8 SQL Injection 12
`9 Privilege Escalation 14
`10 Web Server Control 15
`11 DB Server Control 17
`12 Information Loss 20

Fig. 5.2. Log used in the example of Fig. 5.1.

The sequence (1, 1), (1, 4), (4, 5), (5, 8), (6, 11), (11, 12) is a 6-segmentation
of L that segments it into the sub-logs L1 = `1, L2 = `1, . . . , `4, L3 = `4, `5,
L4 = `5, . . . , `8, L5 = `6, . . . , `11, and L6 = `11, . . . , `12.

Finally, given a log L = `1, . . . , `n, we define the temporal distance between
two tuples `i and `j in L as d(`i, `j) = |`j .timestamp− `i.timestamp|.

We are now ready to give a formal definition of the instance of an activity
model. An instance of an activity model M over a complete path in M is a log
that can be segmented in such a way that, for each segment: (1) the actions
represented by the tuples in the segment and the cardinalities of their occur-
rences comply with the constraints in M over the corresponding hyperedge;
(2) the segment does not include unnecessary tuples as its start or end; (3)
the temporal extension of the segment complies with the constraints specified
by function τ (if present); (4) the start tuple of the segment and those of all
subsequent segments comply with the constraints specified by function ε (if
present).

Definition 5.6 (Instance of an Activity Model). Assume that M =
〈H, λ, τ, ε, S, T 〉 is an activity model over A. Let π = h1, . . . , hm be a com-
plete path in M , and let L = `1, . . . , `n be a log. Then, we say that L is an

46

5.3. Discussion: Features of the Hypergraph-Based Model

instance of M over π, denoted by L |=π M , if there exists an m-segmentation
(s1, t1), ..., (sm, tm) of L such that ∀i ∈ {1, . . . , m},

1. ∀ v ∈ hi, if λ(v) = (a, l, u), then l ≤ |{` ∈ `si , ..., `ti |`.action = a}| ≤ u;
2. ∃ vs, vt ∈ hi such that λ(vs) = (`si .action, ls, us) and λ(vt) = (`ti .action, lt, ut);
3. if hi ∈ domain(τ), then li ≤ d(`si , `ti) ≤ ui, with τ(hi) = (li, ui);
4. ∀j ∈ [1,m] s.t. i < j and (hi, hj) ∈ domain(ε), it holds that d(`si , `sj) ≤
ε(hi, hj).

Example 5.7. Consider the activity model M of our running example and the
path π = h1, h2, h3, h4, h5, h6 in M . The log L in Fig. 5.2 is an instance of
M over π because the 6-segmentation (1, 1), (1, 4), (4, 5), (5, 8), (6, 11), (11, 12)
of L is such that (see Fig. 5.1) the sets of actions associated with sub-logs
L1 = `1, L2 = `1, . . . , `4, L3 = `4, `5, L4 = `5, . . . , `8, L5 = `6, . . . , `11,
and L6 = `11, `12, are “minimal” supersets of the sets of actions associated
with hyperedges h1, h2, h3, h4, h5 and h6, respectively (Conditions 1 and
2 in Definition 5.6) and temporal constraints hold (Conditions 3 and 4 in
Definition 5.6): τ(h2) = (1, 6) and 1 ≤ d(`1, `4) = 5 ≤ 6; τ(h4) = (3, 8)
and 3 ≤ d(`5, `8) = 5 ≤ 8; τ(h5) = (5, 10) and 5 ≤ d(`6, `11) = 7 ≤ 8;
ε(h3, h6) = 12 and d(`1, `4) = 9 ≤ 12.

5.3 Discussion: Features of the Hypergraph-Based Model

The features of the proposed hypergraph-based activity model are manifold
– in this section, we discuss some of those we find the most interesting and
potentially useful and convenient for the security expert.

5.3.1 Synchronization Independency

Several kinds of activities may not be evident after analysing a single log
but may be exposed after correlating information provided by multiple logs.
For instance, intrusion detection systems may collect data from system logs,
services, and node messages; operating systems keep track of various kinds
of events; servers keep extensive records of their operations; applications log
errors, warnings, and failures; firewalls track packets at different points in
a network; cloud services often generate different logs for network, applica-
tions, database, and programming interfaces [94, 95, 96]. Bringing together all
this information enables more effective activity detection. The most common
problem in such scenarios is the lack of synchronization among different logs,
that occurs when the acquisition points are only synchronized within small
groups, or not synchronized at all. Our proposed hypergraph-based model al-
lows the security expert to manage the lack of synchronization by grouping
action symbols from different logs that may appear in different orders. Con-
sider for instance the scenario depicted in Fig. 5.3 (top), which describes a

47

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

d1 d2 d3 d4

d5

p1 p2 p3 p4

T1

p5

T2

room1 room2 room3 room4

room5

d6 d7

h
1

d1 d2p1

d3

h
2

h
3

h
7

p2

d6

d4
p3

h
5

d5

p4

h
6

d7

p5

h
4

Fig. 5.3. Example scenario (top) and activity model (bottom). Every vertex of the
hypergraph has cardinality constraint (1 : 1).

floor controlled with both door sensors and Closed-Circuit TV (CCTV). The
floor consists of five rooms, in two of which there is a target asset (T1 and
T2) a thief may want to steal. When somebody opens a door, an alert di is
produced by the door sensor, while when somebody crosses a room, an alert
pi is produced by the CCTV system. Now assume the latter is slightly slower
in producing alerts due to the delay introduced by video processing. Thus,
it may happen that when the thief crosses a room, the CCTV system sends
the corresponding alert after the thief opens the next door. This means that
a pair of alerts pi, dj may not necessarily appear in the “expected” order.
This situation can be described in a very simple way with the activity model
depicted in Fig. 5.3 (bottom). Each hyperedge hi, i = 2, . . . , 7, expresses the
fact that there is a pair of alerts pi, dj that may occur in any order (but
always after a dk with j 6= k). For instance, in h2, p1 and d2 may occur in
any order (after d1) and so on. It should also be noted that, if the security
expert prefers to make the detection process less tied to the output of the
CCTV system (which can sometimes be not fully reliable), then it suffices to
just replace the cardinality constraints (1 : 1) with (0 : 1) for each vertex pi.

5.3.2 Compactness

One of the most immediate advantages of our proposal is the compactness of
the models. Fig. 5.4 shows a graph-based model for the scenario of Fig. 5.3
– the hypergraph-based model is clearly much more compact (and readable)
than its graph-based counterpart. Moreover, additional edges (dotted in the
figure) must be added to impose independency from the CCTV system.

Compactness is even more evident in more “extreme” scenarios – consider
for instance a case where three sets of symbols must occur in a specific order,
{a, b, c} → {d, e, f} → {g, h, i}, independently of the order in which symbols
in the same set occur (but all of the symbols must occur). Fig. 5.5 (top) shows
the hypergraph model for this scenario, while Fig. 5.5 (bottom) depicts the
corresponding graph – the graph has 36 vertices and 54 edges, whereas the

48

5.3. Discussion: Features of the Hypergraph-Based Model

d2

d1

d2

p1

p1
d6

d7

p3

d4 p3

d4 d5

p4

p4

d5

p5

p5 d7

d3

p2
d6

p2

d3

p2

Fig. 5.4. Graph-based model for the scenario of Fig. 5.3 (bottom).

hypergraph has just 9 vertices and 3 hyperedges. All the graph-based models
that do not include specific extensions for order-independency (such as, e.g.,
those present in SP-graphs [24]), suffer heavily from this issue.

a
c

b

c

b f

e

d e

fd

e

f

e

f

d

d

g

h

i

h i

g

g

h

gb
c

a
a

c
b

a

i

i

h

Fig. 5.5. Hypergraph- (top) and graph- (bottom) based models for the sequence of
actions {a, b, c} → {d, e, f} → {g, h, i}. Every vertex of the hypergraph has cardi-
nality constraint (1 : 1).

5.3.3 Modeling XORs and Contiguous Sequences

Our proposed model can easily express the usual AND and OR relationships
between different sub-paths. Modeling ANDs just requires the involved action
symbols to be constrained with a minimum cardinality equal to 1, whereas
ORs require minimum cardinality equal to 0 plus appropriate temporal con-
straints on hyperedges. XORs can be easily expressed as well. Consider the
example graph-based model of Fig. 5.6 (left), where symbols a and x are mu-
tually exclusive, and assume that so are symbols c and y. Moreover, assume
that all symbols must appear contiguously in the log. In the corresponding
hypergraph-based model, shown in Fig. 5.6 (right), all of the symbols can be
inserted in a single path h1, h2, h3. In order to impose mutual exclusiveness,
we combine the cardinality constraints over v1 and v2, which require both a
and x to appear at most once, with the temporal constraint over h1, which
requires either a or x to appear exactly once (to express an OR on a and x,
it would instead suffice to use the temporal constraint “(0,1)” over h1, that
allows both symbols to appear). In addition, the fact that symbols must be
contiguous is expressed through the temporal constraints over h2 and h3, af-
ter assuming that timestamps are strictly consecutive (this can obviously be
obtained after a trivial preprocessing of the log).

49

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

a b c

x y

a

h1 (0,0)

v3(1:1)

h2 (1,1)

h3 (1,1)

x

v1(0:1)

v2(0:1) b

c

y

v4(0:1)

v5(0:1)

Fig. 5.6. Graph-based model with XORs (left) and the corresponding hypergraph-
based model (right).

5.3.4 “Weak” Dependency

The proposed model allows the security expert to easily capture situations
where there are groups of actions the detection task is not strongly depen-
dent on. This might be the case of a malware detection task: polymorphic
malwares may contain pieces of code they generate in order to circumvent
signature-based malware detection. For instance, [97] presents a malware de-
tection system that looks at typical actions occurring during the infection
lifecycle: target scanning, infection exploit, binary download and execution,
etc. They assume that not all these actions are required nor that every action
will be detected. Using weak dependency, we can design a hypergraph-based
model with just one hyperedge for each potentially generated piece of code,
in order to take into account every possible form. An example of this kind of
usage is provided in Section 5.7.

5.4 Consistency of Activity Models

In this section we study the consistency of our proposed activity models and
the complexity of checking whether a given activity model is consistent. We
start by defining the consistency of a path.

Definition 5.8 (Consistency of a path). Let π be a complete path in an
activity model M = 〈H, λ, τ, ε, S, T 〉. We say that π is consistent w.r.t. M if
there is an instance L of M over π, i.e., if there is a log L such that L |=π M .

To detect the consistency of a complete path π = h1, . . . , hm in M , we
associate a support graph with π, denoted by SG(M,π) = 〈N,E, ω〉, that is
a node- and edge-weighted directed graph where:

• the set N of nodes are the hyperedges of π;
• there is precisely an edge from hα to hβ in E for each (hα, hβ) ∈ domain(ε)

with α < β;

• ω(hi) =

{
li if hi ∈ domain(τ) and τ(hi) = (li, ui);

0 if hi 6∈ domain(τ);

• ω(hα, hβ) = ε(hα, hβ).

50

5.4. Consistency of Activity Models

Example 5.9. Consider the activity model M ′ obtained from the model M
of our running example (Fig. 5.1 (top)) by adding the temporal constraint
ε(h2, h5) = 3. The graph SG(M,π = h1, h2, h3, h4, h5, h6) is shown in Fig. 5.7.
By definition, the graph has 6 nodes/hyperedges, and two edges corresponding
to the two elements in the domain of ε.

h
3

h
4

30

h
5

h
6

5 0

12

h
2

1

3

h
1

0

Fig. 5.7. Support graph associated with the path h1, h2, h3, h4, h5, h6.

The following result gives us necessary and sufficient conditions for a path
to be consistent.

Proposition 5.10. Let M be an activity model and let π = h1, . . . , hm be a
complete path in M . Then, π is consistent w.r.t. M if and only if for each
edge (hα, hβ) in SG(M,π), it holds that

∑β−1
i=α ω(hi) ≤ ω(hα, hβ).

For instance, in Fig. 5.7, we have that ω(h2) + ω(h3) + ω(h4) = 4 > 3 =
ε(h2, h5). Thus, by Proposition 5.10, π is not consistent w.r.t. M ′.

We now define our notion of consistency for activity models.

Definition 5.11 (Consistency of an Activity Model). Assume that M =
〈H, λ, τ, ε, S, T 〉 is an activity model. We say that M is consistent if ∀hs ∈ S,
∀hm ∈ T there is a path π starting with hs and ending with hm, respectively,
that is consistent.

We refer the reader to [98] for less restrictive variants of the above notion.
To complete our discussion, we characterize the complexity of consistency
checking.

Theorem 5.12. Deciding whether a given activity model is consistent is NP-
complete, even if |S| = |T | = 1.

Membership in NP is trivial. For the hardness, we give a reduction from
the Monotone one-in-three 3SAT problem, which is known to be NP-
complete [99]. The problem is a variant of the classical satisfiability problem,
where the input instance is a conjunction of clauses, with each clause con-
sisting of exactly three variables (i.e., negation is not allowed). The goal is to
determine whether there is a truth assignment to the variables so that each
clause has exactly one true variable (and thus exactly two false variables).

Let φ = C1 ∧ ... ∧ Cm be a Boolean formula taken as input and such
that each clause Ci = xi,1 ∨ xi,2 ∨ xi,3, ∀i ∈ {1, ...,m}, consists of exactly 3
variables. Based on φ, we define an activity model M(φ) = 〈H, λ, τ, ε, S, T 〉
over a set A of actions, where H = (V,H) and such that:

51

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

• V = {s, φ, t, φ̄} ∪ {Ci, xi,j , C̄i, x̄i,j | i ∈ {1, ...,m} ∧ j ∈ {1, 2, 3}};
• the set H exactly contains the following hyperedges:

– hs = {s, C1};
– hi,j = {Ci, xi,j} and h∧i,j = {xi,j , Ci+1}, ∀i ∈ {1, ...,m − 1} ∧ j ∈
{1, 2, 3};

– hm,j = {Cm, xm,j} and h∧m,j = {xm,j , φ}, ∀j ∈ {1, 2, 3};
– h̄s = {φ, C̄1};
– h̄i,j = {C̄i, x̄i,j} and h̄∧i,j = {x̄i,j , C̄i+1}, ∀i ∈ {1, ...,m − 1} ∧ j ∈
{1, 2, 3};

– h̄m,j = {C̄m, x̄m,j} and h̄∧m,j = {x̄m,j , φ̄}, ∀j ∈ {1, 2, 3}; and,

– ht = {φ̄, t};
• λ(v) = (v, 1, 1), for each v ∈ V ; in fact, A = V ;
• domain(τ) = {h̄s}, and τ(h̄s) = (2, 3);
• S = {hs}, T = {ht};
• for each variable of the form xi,j with i ∈ {1, ...,m} and j ∈ {1, 2, 3},

for each clause Cz with z ∈ {1,,m} where xi,j occurs (possibly with
i = z), and for each variable xz,k 6= xi,j with k ∈ {1, 2, 3} occurring
in Cz and different from xi,j , we have that: (hi,j , h̄z,k) ∈ domain(ε) and
ε(hi,j , h̄z,k) = 1.

As an example, the formula φ = (x∨ y∨ z)∧ (x∨ y∨w) is a YES instance
to the Monotone one-in-tree 3SAT problem, as it witnessed by the truth
assignment where x is the only variable evaluating true. The hypergraph as-
sociated with the activity model M(φ) is shown in Fig. 5.8, where for the sake
of readability only arrows associated with constraints involving the variable
x in φ are depicted.

Fig. 5.8. The graph reduction constructed from φ.

Now, we complete the proof by claiming that: φ is a YES instance to the
Monotone one-in-three 3SAT problem ⇔ M(φ) is consistent.

(⇒) Let θ be an assignment witnessing that φ is a YES instance. Based on
θ, we build the sequence of vertices v(θ) = s, C1, x1,j1 , C2, x2,j2 ,, Cm, xm,jm , φ,
C̄1, x̄1,j1 , C̄2, x̄2,j2 ,, C̄m, x̄m,jm , φ̄, t where xi,ji is the only variable evaluat-
ing true w.r.t. θ in the clause Ci, ∀i ∈ {1, ...,m}. Moreover, we build the
sequence π(θ) = {v1, v2}, ..., {vi, vi+1},, {v4m+3, v4m+4}, where vi is the i-
th vertex in the sequence v(θ). Note that π(θ) is a path in M(φ) starting
with hs and terminating with ht. In addition, it is consistent. Indeed, let
Lθ = l1, l2, ..., l4m+4 be a log such that li.action = vi and li.timestamp = i,
for each i ∈ {1, ..., 4m+ 4}. Then, just notice that L |=π(θ) M(φ).

52

5.5. Equivalence and Minimality of Activity Models

(⇐) Let π be a consistent path in M(φ) starting with hs and termi-
nating with ht. Note that by definition of a path, π must be of the fol-
lowing form: π = hs, h1,a1 , h

∧
1,a1 ,, hm,am , h

∧
m,am , h̄s, h̄1ā1 , h̄

∧
1,ā1 ,, h̄m,ām ,

h̄∧m,ām , ht, where a1, ..., am, ā1, ..., ām ∈ {1, 2, 3}. Now, recall that τ(h̄s) =

(2, 3), i.e., in particular, the temporat extension of h̄s is at least 2 time
units. Given the construction of ε, it follows that π cannot contain any pair
of hyperedges in the domain of ε. Therefore, for each hyperedge hi,ai , with
i ∈ {1, ...,m}, if the variable xi,ai occurs in the clause Cz, with z ∈ {1, ...,m},
then the hyperedge h̄z,āz is actually such that xz,āz = xi,ai . Let now θ be
the truth assignment such that the variable xi,ai evaluates true, for each
i ∈ {1, ...,m} (and the remaining variables evaluate false). Note that θ is
satisfying. Then, assume by contradiction that there is a clause Cz and two
distinct variables xz,α and xz,β evaluating true in θ. By construction of θ, it
must be the case that xz,α = xi′,ai′ and xz,β = xi′′,ai′′ , where i′ and i′′ are
two indices in {1, ...,m}. However, by the above observations, h̄z,āz is actually
such that xz,āz = xi′,ai′ = xi′′,ai′′ . That is, i′ = i′′, which is impossible if the
variables xz,α and xz,β are distinct.

5.5 Equivalence and Minimality of Activity Models

In this section, we define precedence relations over activity models with
the aim of identifying redundancies in their definitions and semantically-
equivalent minimal models.

We start by defining a purely syntactic ordering relation “�” over activity
models, with the objective of ensuring that if M1 � M2, then M2 is “more
general” than M1, in the sense that the set of instances of M1 is a subset of
those of M2.

More formally, letM1 = 〈(V1, H1), λ1, τ1, ε1, S1, T1〉 andM2 = 〈(V2, H2), λ2, τ2, ε2, S2, T2〉
be two activity models. We write M1 �M2 if the following conditions are sat-
isfied:

• V1 ⊆ V2;
• there exists a mapping f : H1 → H2 such that ∀h1 ∈ H1, h1 ⊆ f(h1),

and ∀v ∈ f(h1) \ h1, λ(v) = (a, l, u) implies l = 0; we call f the witness
mapping of M1 �M2;

• the restriction of λ2 over the vertices in V1 coincides with λ1 (i.e. ∀v ∈ V1,
λ2(v) = λ1(v));

• if τ1(h1) is not defined, then τ2(f(h1)) is not defined; if τ1(h1) = (l1, u1)
then either τ2(f(h1)) is not defined or τ2(f(h1)) = (l2, u2) with l2 ≤ l1
and u2 ≥ u1;

• if ε(h1, h
′
1) is not defined, then ε(f(h1), f(h′1)) is not defined; otherwise,

either ε(f(h1), f(h′1)) is not defined or ε(f(h1), f(h′1)) ≥ ε(h1, h
′
1);

• ∀h1 ∈ S1, f(h1) ∈ S2 (resp. ∀h1 ∈ T1, f(h1) ∈ T2).

53

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

Example 5.13. Consider the activity model M1 = 〈(V1, H1), λ1, τ1, ε1, S1, T1〉
of our running example and the activity modelM2 = 〈(V2, H2), λ2, τ2, ε2, S2, T2〉
of Fig. 5.9. We can easily check that M1 �M2 since:

• V2 = {v∗, v1, . . . , v12} ⊇ V1;
• H2 = {h∗1, ..., h∗8}, where h∗1 = h1, h

∗
2 = h2, h

∗
3 = h3, h

∗
4 = {v2, v3, v4, v5, v6}, h∗5 =

h5, h
∗
6 = {v∗, v7, v11}, h∗7 = h7, and h∗8 = h8; intuitively, the witness map-

ping f : H1 → H2 in condition (2) is such that f(hi) = h∗i , for each
i ∈ {1, . . . , 8};

• λ2(v∗) = (Scan, 0, u), while the restriction of λ2 over the vertices in V1

coincides with λ1;
• domain(τ∗) = {h∗2, h∗4, h∗5}; τ(h∗2) = (1, 6), τ(h∗4) = (3, 8), τ(h∗5) = (2, 18);

for instance, note that condition (4) holds on τ(h∗5) = (2, 18) given that
τ(h5) = (5, 10);

• domain(ε∗) = {(h∗3, h∗6)} and ε(h∗3, h
∗
6) = 13; in particular, note that con-

dition (5) holds because ε(h3, h6) = 12;
• S2 = {h∗1} and T2 = {h∗6, h∗7, h∗8}.

Local

Access

Remote

Access

Directory

Traversal

SQL

Injection

Buffer

Overflow

Host

Control

DB

Server

Control

Web

Server

Control

Information

Loss

DoS

Privilege

Escalation

h*2(1,6)

h*1

h*4(3,8)

h*5(2,18)

h*6

h*7

h*8

v1(1:1)

v2(0:1)

Scan

h*3

v3(0:1)

v4(1:?)

v6(1:3)

v5(1:1)

v7(1:1) v11(1:1)

v8(1:1)

v9(1:1) v10(1:1)

v12(1:1)

13
Scan

v* (0:3)

Fig. 5.9. Example activity model M2.

For an activity model M , we define L(M) = {L| there is a path π s.t. L |=π

M} as the set of all the logs that are instances of M . The above precedence
relation over activity models leads to the following semantic characterization.

Theorem 5.14. Given two activity models M1 and M2 such that M1 � M2,
it holds that L(M1) ⊆ L(M2).

A proof sketch for Theorem 5.14 is reported in the Appendix.
As an example, the log reported in Fig. 5.2, which belongs to L(M1) with

M1 being the model of our running example, is also in L(M2) with M2 being
the model discussed in Example 5.13.

It is easy to verify that the above notion of minimality can be checked in
polynomial time.

54

5.6. The Malevolent Activity Detection Problem

Proposition 5.15. Given two activity models M1 and M2, deciding whether
M1 �M2 is feasible in polynomial time.

We are now ready to define a concept of semantic minimality, which we
call “E-minimality”. The idea is to define a partial order E over a set of
activity models in such a way that a minimum element is a model whose
definition does not contain redundant specifications. We say that two models
M1 and M2 are log-equivalent if L(M1) = L(M2). It should be observed that,
by Theorem 5.14, if two models are such that M1 � M2 and M2 � M1, then
they are actually log-equivalent. We write M1 EM2 if M1 �M2 and the two
models are log-equivalent. This notion of semantic minimality is intractable,
as dictated by the following result.

Theorem 5.16. Given two activity models M1 and M2, deciding whether
M1 EM2 is co-NP-hard.

5.6 The Malevolent Activity Detection Problem

In this section we formally characterize the malevolent activity detection prob-
lem we are interested in and its complexity. The problem is basically that of
checking whether a log is an instance of an activity model. The following
definition formalizes this.

Definition 5.17 (Malevolent Activity Detection Problem). Given an
activity model M and a log L, determine whether there exists a complete path
π in M such that L |=π M .

We now characterize the complexity of the above problem.

Theorem 5.18. The malevolent activity detection problem is NP-complete.

Theorem 5.18 establishes that there are cases where detecting a malevo-
lent activity is not feasible in polynomial time (unless P=NP). Intuitively,
the exponential blowup is mainly due to the fact that, while analyzing the
log: (i) it is necessary to maintain all possible “partial” instances (prefixes of
the log that are “instances” over incomplete paths) of the activity model M ;
(ii) many different incomplete paths in M can be associated with each partial
instance; (iii) many different segmentations can be associated with each (par-
tial instance, incomplete path) pair. Recent works on the detection instances
of temporal graph-based models in sequences of logged actions [82, 16] have
shown that acceptable detection times in real-world cases can be obtained by
using index structures that limit the number of partial instances to be main-
tained. These structures exploit temporal constraints to only look at the set
of (partial) instances that lie within a fixed temporal window.

55

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

5.7 Indexing and Detecting Activity Instances

In this section we present our proposed index structure, called AM-Index, and
its associated maintenance and retrieval algorithms, that exploit temporal
(and cardinality) constraints to prune partial instances of hypergraph-based
models as soon as possible. Moreover, they are designed to be capable of
concurrently tracking instances of multiple models. Finally, besides retrieving
the instances of any of the given models in the log, they return, for each
instance, the path followed in the corresponding model.

Given an activity model M = 〈(V,H), λ, τ, ε, S, T 〉 and a hyperedge h ∈
H, we define inM (h) = {h′ ∈ H s.t. there exists a complete path π in M
containing the subsequence h′, h}. Moreover, for the sake of conciseness, if
λ(v) = (a, l, u), then we also write label(v) = a.

Definition 5.19 (AM-Index). Given a setM of activity models and a log L,
an AM-Index IM is a pair 〈T , I〉 where T is a set containing a table table(h)
for each hyperedge in M – each row r ∈ table(h) represents a segment of the
log and has several components: a list PL[a] of pointers to log tuples for each
v ∈ h with label(v) = a; a (possibly null) pointer previous to a table row; a
boolean flag completed; the identifier model of a model in M; a timestamp
minTS. I is a set containing, for each model M ∈ M, a list instances(M)
of pointers to table rows.

The components of every row r of a table table(h) represent the following
information: (i) each pointer list PL[a] contains pointers to log tuples l with
l.action = a that are a part of the log segment associated with h and rep-
resented by r; (ii) previous points to a row of table(h′) with h′ ∈ inM (h) –
this row represents a segment to which the segment represented by r can be
linked in order to extend a partial instance; (iii) completed is true iff r repre-
sents a segment that completely satisfies h; (iv) model is the identifier of the
model containing h; (v) minTS is the minimum l.timestamp where l is a log
tuple pointed by a list PL[x] for each x such that ∃v ∈ h with label(v) = x.
The pointers in instances(M) point to table rows that represent log segments
corresponding to terminal hyperedges in M which have been completed.

Example 5.20. Fig. 5.10 shows the status of the AM-Index after indexing the
log of our running example up to tuple `10.

At this stage, the index contains the following information (note that `2,
`3, and `7 do not appear in the index since they cannot be part of the instance
of any vertex):

• The row in table(h1) represents the fact that hyperedge h1 of model M is
completed by a segment that includes the log tuple `1 (that is instance of
vertex v1 of h1). In addition, minTS = 0 means that the segment starts
at time 0.

56

5.7. Indexing and Detecting Activity Instances

PL[v1] previous completed model minTS

l1 ^ true M 0
table(h1)

PL[v1] PL[v2] PL[v3] previous completed model minTS

l1 ^ l4 true M 0
table(h2)

PL[v2] PL[v3] PL[v4] previous completed model minTS

^ l4 l5 true M 5
table(h3)

PL[v4] PL[v5] PL[v6] previous completed model minTS

l5 l6 l8 true M 7
table(h4)

PL[v5] PL[v6] PL[v7] PL[v8] PL[v9] previous completed model minTS

l6 l8 ^ l10 l9 false M 10
table(h5)

Fig. 5.10. Status of the AM-Index after indexing the log of the running example
up to tuple `10.

• The row in table(h2) represents the fact that hyperedge h2 of model M is
completed by a segment that includes log tuples `1 and `4 (note that, since
a tuple for v2 is not needed, PL[v2] can remain null in this row). Moreover,
the previous pointer points to the row in table(h1) as the segment repre-
sented by the row in table(h2) follows the former in the (partial) activity
instance being represented.

• The row in table(h3) represents the fact that hyperedge h3 of model M is
completed by a segment that includes log tuples `4 and `5. The previous
pointer points to the row in table(h2) as the segment represented by the
row in table(h3) follows the former in the (partial) activity instance being
represented.

• The row in table(h4) represents the fact that hyperedge h4 is completed
by a segment that includes log tuples `5, `6 and `8. The previous pointer
points to the row in table(h3) as the segment represented by the row in
table(h4) follows the former in the (partial) activity instance being repre-
sented.

• The row in table(h5) represents the fact that hyperedge h5 is partially
completed by a segment that includes log tuples `6, `8, `9 and `10, but we
still have to encounter a log tuple corresponding to vertex v7.

5.7.1 Insertion of Tuples and Retrieval of Instances

Fig. 5.11 (top) shows the pseudo-code of the AM Insert algorithm that indexes
a new log tuple lnew with associated action lnew.action. In the algorithm,
Lines 4-10 check whether lnew, with associated action a = lnew.action, can be
added to existing segments (i.e., to any row r ∈ table(h) with r.completed =
false, where h is an hyperedge containing a), by verifying cardinality and
temporal constraints. If so, a new pointer to lnew is added to the pointer list
r.PL[a], and the new segment is passed to the CheckCompleted procedure to
check whether r represents a segment that completely satisfies h. Otherwise,
r is immediately pruned as it represents a non-extendable segment. Lines

57

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

Algorithm AM Insert(lnew, IM)
Input: New log tuple lnew, AM-Index IM
Output: Updated AM-Index IM

1 a← lnew.action
2 for each M = 〈H, λ, τ, ε, S, T 〉 ∈ M, H = (H,V) do
3 for each (h, v) s.t. h ∈ H, v ∈ h, and label(v) = a do

// Can lnew be added to an existing segment?
4 for each table row r ∈ table(h) s.t. r.completed = false do
5 if lnew.timest.− r.minTS + 1 ≤ u′ with τ(h) = (·, u′)

and size(r.PL[a]) + 1 ≤ u with λ(v) = (·, ·, u) then
6 add l↑new to r.PL[a] ; checkCompleted(h, r)
7 else // The segment violates the constraints
8 remove r from table(h)
9 end if
10 end for

// If h is a start hyperedge, create a row for a new segment
11 if h ∈ S then
12 PL← ∅
13 for each z ∈ h do PL[label(z)]← ⊥
14 r ← 〈PL,⊥, false,M, lnew.timestamp〉 ; r.PL[a]← {l↑new}
15 add r to table(h) ; checkCompleted(h, r)
16 end if
17 end for
18 end for

Procedure checkCompleted(h, r)
Input: Hyperedge h, index table row r

19 if l′ ≤ lnew.timest.− r.minTS + 1 with τ(h) = (l′, ·)
and ∀w ∈ h, lw ≤ size(r.PL[label(w)]) with λ(w) = (·, lw, ·) then

20 r.completed← true

21 if h ∈ T then add r↑ to instances(M) // M is the model where h is
22 for each h′ s.t. h ∈ inM (h′) do
23 r′ ← 〈PL = ∅, r↑, false,M, 0〉
24 for each z ∈ h ∩ h′ do r′.PL[label(z)]← r.PL[label(z)]
25 r′.minTS ← minimum timestamp of the log tuples pointed by r′

26 if (h, h′) /∈ domain(ε) or r′.minTS − r.minTS ≤ ε(h, h′) then
27 add r′ to table(h′)
28 end if
29 end for
30 end if

Algorithm AM Retrieve(IM =< T , I >,M′)
Input: AM-Index IM, setM′ ⊆M of activity models
Output: Set I of tuples of the form (M, ls, lt, π) such that M ∈M′

and ls, . . . , lt |=π M

1 I ← ∅
2 for each M ∈M′ do
3 for each r↑ ∈ instances(M) do
4 lt ← most recent log tuple pointed by r
5 π ← {hyperedge represented by r}
6 rcurr ← r
7 while rcurr.previous 6= ⊥ do
8 rcurr ← rcurr.previous
9 add the hyperedge represented by rcurr to π

10 end while
11 ls ← less recent log tuple pointed by rcurr
12 add (M, ls, lt, π) to I
13 end for
14 end for
15 return I

Fig. 5.11. AM Insert (top) and AM Retrieve (bottom) algorithms.

11-16 deal with the case where a is in a start hyperedge – the algorithm
simply creates a new row r pointing to lnew and adds r to table(h). Procedure

58

5.7. Indexing and Detecting Activity Instances

CheckCompleted takes as input a table row r and an hyperedge h, and checks
whether the segment of log tuples pointed by r is an instance and/or if it can be
further extended. More specifically, Line 20 sets r.completed = true because,
according to the constraints expressed by h, the segment of log tuples pointed
by r completely satisfies h. Line 21 stores a new instance by adding a pointer
to r in instances(M) if h is a terminal hyperedge. In lines 22-29, for each
outgoing hyperedge h′ of h, a new row r′ is created with r′.previous = r and
r′.PL[label(z)] = r.PL[label(z)] for each z ∈ h∩h′. In other words, if h has at
least one outgoing hyperedge h′, then h and h′ have at least one vertex z in
common, thus the index must contain rows r in table(h) and r′ in table(h′),
both pointing the same log tuples l with l.action = label(z).

Example 5.21. Fig. 5.12 shows the evolution of the AM-Index when indexing
tuples `11 and `12 of the log of our running example. When indexing tuple

PL[v1] previous completed model minTS

l1 ^ true M 0
table(h1)

PL[v1] PL[v2] PL[v3] previous completed model minTS

l1 ^ l4 true M 0
table(h2)

PL[v2] PL[v3] PL[v4] previous completed model minTS

^ l4 l5 true M 5
table(h3)

PL[v4] PL[v5] PL[v6] previous completed model minTS

l5 l6 l8 true M 7
table(h4)

PL[v5] PL[v6] PL[v7] PL[v8] PL[v9] previous completed model minTS

l6 l8 ^ l10 l9 false M 10

l6 l8 l11 l10 l9 true M 10

table(h5)

PL[v7] PL[v11] previous completed model minTS

l11 ^ false M 17
table(h6)

———————————————————————–
PL[v1] previous completed model minTS

l
1

^ true M 0
table(h

1
)

PL[v1] PL[v2] PL[v3] previous completed model minTS

l
1

^ l
4

true M 0
table(h

2
)

PL[v2] PL[v3] PL[v4] previous completed model minTS

^ l
4

l
5

true M 5

table(h
3
)

PL[v4] PL[v5] PL[v6] previous completed model minTS

l
5

l
6

l
8

true M 7

table(h
4
)

PL[v5] PL[v6] PL[v7] PL[v8] PL[v9] previous completed model minTS

l
6

l
8

l
11

l
10

l
9

true M 10

table(h
5
)

PL[v7] PL[v11] previous completed model minTS

l
11

l
12

true M 17

table(h
6
)

instances(M) = { }

Fig. 5.12. Evolution of the AM-Index when indexing tuples `11 (top) and `12 (bot-
tom) of the log of the running example.

`11 (Fig. 5.12 (top)) the AM Insert algorithm identifies the row in table(h5)

59

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

as one that represents a segment that can be extended by `11 (`11 is an
instance of vertex v7). Thus, the algorithm replaces the ⊥ pointer in PL[v7]
with a pointer to `11 (note that, for clarity of presentation, the figure shows
a deletion of the row). Then, procedure CheckCompleted verifies that the
segment is completed, so it marks the row as completed and creates a new
row in table(h6) that contains, for each vertex in common between h5 and
h6, a copy of the pointer list of the vertex. This new row gets completed
after indexing `12, that is an instance of vertex v11 (Fig. 5.12 (bottom)).
Moreover, since h6 is a terminal hyperedge, a pointer to the row is added to
instances(M).

In order to precisely characterize the time complexity of the AM Insert
algorithm, we need to introduce some concepts. First, we define the maximum
size of the models in M as Smax = maxM∈M

(∑
h in M |h|

)
. In addition, we

compute the temporal window within which all instances must lie as W =
min

(
maxM∈M,D∈∆(π) ωm(D), |L|

)
, where:

• π is a complete path in M = 〈H, λ, τ, ε, S, T 〉;
• ∆(π) is the set of all maximal subsets of domain(ε) that do not contain

overlapping pairs of hyperedges w.r.t. π (we say that two pairs (hi, hj) and
(h′i, h

′
j) overlap w.r.t. π if hi appears before h′i and h′i appears before hj

in π);
• we define ωm(hi) = ui if hi ∈ domain(τ) and τ(hi) = (li, ui), and ωm(hi) =
∞ otherwise;

• given a setD ∈ ∆(π), we define ωm(D) =
∑

(hi,hj)∈D ε(hi, hj)+
∑
hk not covered by D ωm(hk),

where we say that an edge hk is covered by D if the latter contains a pair
(hi, hj) and hk appears between hi and hj in π.

The presence of temporal constraints, as already pointed out in Section 5.6,
has a direct impact on the actual portion of the index that is affected by the
insertion of a new log tuple. This is confirmed by the following proposition.

Proposition 5.22. The AM Insert algorithm terminates and correctly up-
dates IM in time O(|M| ·WSmax).3

Corollary 5.23. Given a set of models M and a log L, the corresponding
AM-Index can be built in time O(|L| · |M| ·WSmax).

Fig. 5.11 (bottom) shows the pseudo-code of the AM Retrieve algorithm
that, whenever executed, returns the instances of a (sub)set of the activity
models w.r.t. the set of log tuples that have been indexed. The instances are
represented as tuples of the form (M, ls, lt, π), where ls and lt are the first
and last tuple of an instance of M over a complete path π. The algorithm
takes as input an AM-Index IM = 〈T , I〉 and a set of modelsM′ ⊆M (note
that it does not make any difference if the user is willing to extract instances

3 We assume that size(PL[·]) is computable in time O(1) – this can obviously be
achieved by continuously keeping track of list sizes.

60

5.7. Indexing and Detecting Activity Instances

of just a subset of the models indexed by the AM-Index). For each pointer
r↑ ∈ instances(M), the algorithm assigns to lt the most recent log tuple
pointed by r, i.e., the last tuple of a log segment that completely satisfies a
terminal hyperedge (Line 4). The algorithm follows the chain of r.previous
pointers backwards, from r to the row representing a start hyperedge (Lines 7-
10). The last row of the chain will be recognized due to its previous attribute
set to ⊥. This way, hyperedges represented by all rows of the chain are added
to π. Finally, Line 11 assigns to ls the less recent log tuple pointed by the last
row, i.e., the first log tuple from which the current instance begins.

Proposition 5.24. Given a log L and the AM-Index IM built over L by the
AM Insert algorithm, the AM Retrieve algorithm terminates and correctly re-
turns the set of all instances of the models in M contained in L in time
O(W ·NI), where NI = | ∪M∈M instances(M)|.

Additional Pruning. A simple yet effective concurrent pruning process is
also performed during the maintenance of the AM-Index. When the AM Insert
algorithm eliminates a non-completed row from table(h) because it violates
the constraints, we follow the chain of previous pointers starting from that
row and eliminate any row r ∈ table(h′) if the following conditions hold: (i) r is
not pointed by any other row (this can be checked efficiently by maintaining
the number of pointers to each row); (ii) r cannot be extended by a row
corresponding to a segment for a hyperedge h′′ 6= h such that h′ ∈ inM (h′′)
for some M . It should also be noted that the AM Retrieve algorithm can
easily be modified to accommodate the cases where the security expert wants
to retrieve “current” completed instances multiple times while new log tuples
get indexed, so it is useless to return the same instance twice. To this end, it
suffices to remove r↑ from instances(M) after Line 12.
Design of Efficient Activity Models. Proposition 5.22 suggests that in
some basic cases the security expert can make activity models more efficient
in a very simple way. Since the efficiency of the detection process increases
when the sum of the cardinalities of the hyperedges (which affects the value
of Smax in the proposition) decreases, it is better to minimize (whenever
possible) the number of shared vertices among different hyperedges. Consider
for instance the model of Fig. 5.5 (top). It can easily be observed that, since
the model does not contain temporal constraints, it does not actually matter
which vertex is shared between h1 and h2 (or h2 and h3) – the extracted
instances will stay the same since the only semantic modification lies in the
log tuples where segments start or end. Thus, if we re-design the model as
shown in Fig. 5.13, the detection process will be faster.

h
1 h

2
h

3

abc fd e g h i

Fig. 5.13. Alternative structure for the model of Fig. 5.5 (top).

61

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

Inclusion of Unlikely Action Symbols. It should also be observed that
action symbols for which very few tuples (or none) appear in the log do not
impact the performance of the detection process at all. In fact, the AM Insert
algorithm only considers the symbols that actually appear in the log, and the
only consequence of additional symbols is the creation of further index tables
(with very few or no rows). This is convenient for the security expert, who
can completely disregard the likelihood of seeing a symbol a in the log before
deciding to include an a-labeled vertex in the model.

5.7.2 Performance of the AM-Index

The AM-Index and its associated insertion and retrieval algorithms have been
implemented and integrated in a system prototype. In the following, we discuss
the results of the experimental assessment we conducted in order to assess
the performance they obtain in terms of log tuples processed per second and
maximum size of the index.

We ran three rounds of experiments. In Round 1, we used a set of real-world
activity models comprising the one used as our running example (Fig. 5.1
(top)) together with three additional ones. For Round 2, we added cardinality
constraints to the models in order to analyze how the AM Insert algorithm
behaves when working with more constrained models. Details about the ad-
ditional activity models and cardinality constraints are reported in the Ap-
pendix. For these two rounds, synthetic logs were generated according to the
following procedure:
(1) For each model M ∈ M, we built the full set P (M) of complete paths in
the model.
(2) For each model M , we randomly generated a set L(M) (with |L(M)| =
2K) of sequences of action symbols that can represent an instance of M , hence
covering the full spectrum of potential behaviors encoded by M . To generate
each sequence in L(M), we picked (uniformly at random) a complete path
π ∈ P (M). Then, for each hyperedge h in π, we first added l instances of
each vertex v ∈ h with λ(v) = (a, l, u), then we added a random number of
instances of vertices in h by taking into account their upper bounds and the
range specified by τ(h).
(3) For each model M , a fixed percentage (TP in the following) of the se-
quences in L(M) was truncated to half of its size, in order to include partial
instances. This way, we were able (i) to better control the number of complete
instances in the generated logs, and (ii) to more deeply assess the efficiency
of the framework in pruning partial instances. In each experiment, we fixed
TP ∈ {20%, 50%, 80%}, with a default of 20%.
(4) We built a list of sequences L1, . . . , L|M|∗2K by extracting each Li from
one of the sets L(M) (chosen uniformly at random), until all such sets are
empty.
(5) We built the final sequence by combining those in the above list according
to four different combination modes:

62

5.7. Indexing and Detecting Activity Instances

• CM 1: The final sequence is obtained by just concatenating the sequences
in the list.

• CM 2: Same as CM 1, but, for each Li a fixed percentage (NF in the
following) of symbols not present in the corresponding model is inserted
(uniformly at random) – hence simulating a certain degree of “noise”. In
each experiment, we fixed NF ∈ {10%, 30%, 50%}, with a default of 30%.

• CM 3: The final sequence is obtained by making each Li partially overlap,
by a fixed percentage (OP in the following) with Li+1. In each experiment,
we fixed OP ∈ {20%, 40%, 60%}, with a default of 40%.

• CM 4: Same as CM 2, but with partial overlap as in CM 3.

(6) We assigned consecutive timestamps to the final sequence.
Table 5.1 shows the size of the resulting logs.

Table 5.1. Size of the log in Rounds 1 and 2 (default case in bold).

Varying Log Varying Log
parameter size parameter size

CM 1 78,622 TP 20% 102,376
CM 2 102,190 TP 50% 91,014
CM 3 78,622 TP 80% 74,610
CM 4 102,376

NF 10% 86,651 OP 20% 102,141
NF 30% 102,376 OP 40% 102,376
NF 50% 117,939 OP 60% 102,253

In Round 3, we manually built 4 models that describe possible structures
of a basic malware consisting in a shellcode that creates a user and writes a
file. The models capture sequences of alphanumeric instruction codes – the
sequences are of the form (Function1 OR Function2) followed by (Command1
OR Command2), or the other way around, where functions are fully expanded
and commands are represented as single actions (thus assuming a simple pre-
processing of the binary). The activity model for Function1 can be found in
the Appendix – in order to take into account every possible form the malevo-
lent code can take, the model uses single hyperedges for different potentially
generated sequences of instructions, thus applying the weak dependency fea-
ture discussed in Section 5.3. We also built 3 logs by injecting instances of the
models (with additional action symbols not present in the models) in the bi-
nary of the PuTTY application [100]. The final sizes of the logs where around
524K tuples (with 1 instance of the malware), 531K tuples (100 instances),
and 601K tuples (1000 instances).

In all the activity models used in the experiments, we avoided the use
of function ε, in order to put a limit on the chances for pruning. All the
experiments were run on an Intel Core i7-3770K CPU clocked at 3.5GHz,
running Windows 8.1, with 12GB RAM.

63

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

Fig. 5.14 (top) shows the number of log tuples processed per second in
Rounds 1 and 2.

Fig. 5.14. Tuple rates (top) and maximum size of the AM-Index (bottom) in Rounds
1 and 2.

The results confirm our expectations and show very satisfying overall per-
formances. Generally, the number of tuples processed per second is very high
– in 8 out of 10 cases it is higher than 50K tuples/sec, and it is over 67K on
average. We can notice that, in the majority of cases, the presence of “noise”
in the log or overlap between consecutive instances have an immediate benefit
on performance, basically because they reduce the overall number of instances
to be detected. On the other hand, the effect of truncating more sequences
worsens performances – this can be explained by observing that more partial
instances have to be managed (before pruning occurs) in these cases. If we
examine the differences between Rounds 1 and 2, i.e. when moving to more
constrained activity models that allow for fewer instances, the results again
confirm our expectations – we obtain a performance gain in all but one case,
with an average gain around 17% (and upto 55.8%).

Fig. 5.14 (bottom) reports the maximum size of the AM-Index for Rounds
1 and 2 in terms of number of table rows. Interestingly, the size of the AM-
Index appears extremely stable with respect to the configurations used: if we
exclude the CM 1 and CM 2 cases (which correspond to a much larger number
of instances in the log) the differences among the other cases are always under
6.8% (and 1.78% on average). On the other hand, the index appears to use
slightly more resources per instance when using more constrained models: on
average, the index is just 4.2% smaller in Round 2.

Finally, Fig. 5.15 reports the results for Round 3. Again, the framework
appears to provide extremely good overall performance (160K tuples/sec. on
average). In addition, we can notice that both the tuple rates and the max-
imum size of the index scale in a largely sub-linear way with respect to the
number of instances in the log.

5.7.3 Additional Information About the Experimental Setting

The three real-world activity models used in Rounds 1 and 2 in addition to
the model in Fig. 5.1 (top) are shown in Fig. 5.16. The temporal constraints
added in Round 2 are:

• τ(h3) = (1, 2) in the model of Fig. 5.1 (top);

64

5.7. Indexing and Detecting Activity Instances

Fig. 5.15. Tuple rates and maximum size of the AM-Index in Round 3.

scan

h1

service

exploit

web

exploit

h2(1,1)

information

loss

DoS

h3(1,1)

remote

shell

privilege

escalationh4

DNS

spoofing

rootkit

backdoor

h5(2:)

service

replication

h6

v1(1:1) v2(0:1)

v5(0:1)

v3(0:1)

v4(0:1)

v6(0:)

v7(1:1) v8(1:1)

v9(1:1)

v10(1:1)

v11(1:1)

scan

h1

key

tracking

Reverse

key

h2(1:1)

ICMP

redirect

DNS

spoofing

h4(1:3)

phishingh5
traffic

log

h6

ARP

spoofing

h3 (1:3)

h7

h8

web

exploit

service

exploit

DB

dump

upload

shell

v1(1:1)

v2(0:1)

v3(0:1)
v4(1:1)

v5(0:1) v11(0:)

v12(0:1)

v10(1:1)

v6(0:1)

v7(1:)
v8(1:1) v9(0:1)

google

dork
service

exploit

upload

shell

DDoS

DB

dump

h1

h2(1,2)

h3

h4(1,3) h5

h6

Key

tracking

ICMP

redirect

web

exploit

traffic

log

v1(1:1)

v6(0:1)

v2(1:1) v7(0:1)

ICMP

redirect

v7(0:1)

v3(1:)

v4(1:1)

v8(0:1) v9(0:1)

v5(1:1)

Fig. 5.16. Activity models used in Rounds 1 and 2.

• τ(h4) = (1, 4) and τ(h6) = (1, 1) in the model of Fig. 5.16 (top);
• τ(h5) = (1, 3) and τ(h7) = (1, 3) in the model of Fig. 5.16 (center);
• τ(h3) = (1, 4) in the model of Fig. 5.16 (bottom).

The activity model for Function1 is reported in Fig. 5.17.

65

Chapter 5. Malevolent Activity Detection with Hypergraph-Based Models

v1(1:1)

59

31

v2(1:1)
h1

h3(1,1)

c0

db

v3(0:1)

v4(0:1)

h2(1,1)

h4

53

v5(1:1)

h5(1,1)

80

v16(0:1)

09

v14(0:1)

08

v12(0:1)

03

v13(0:1)

e8

v11(0:1)

00

v15(0:1)

18

v9(0:1)

c1

v10(0:1)

2c

v8(0:1)

50

v7(1:1)

51

v6(1:1)

h7(1,1)

h6(1,1)

51

v6(1:1)

ad

v18(1:1)

b8

v17(0:1)

7c

v21(1:1)

86

v20(1:1)

23

v19(1:1)

h10(1,1)

h11(1,1)

h13(1,1)h9(1,1)

h8

80

v31(0:1)

09

v29(0:1)

08

v27(0:1)

03

v28(0:1)

e8

v26(0:1)

00

v30(0:1)

18

v24(0:1)

c1

v25(0:1)

2c

v23(0:1)

bb

v22(1:1)

h12(1,1)

h14(1,1)

7c

v21(1:1)

ff

v32(1:1)

d0

v33(0:1)

d3

v34(0:1)

h16(1,1)

h15

80

v40(0:1)

09

v47(0:1)

08

v45(0:1)

03

v46(0:1)

e8

v44(0:1)

00

v48(0:1)

18

v42(0:1)

c1

v43(0:1)

2c

v41(0:1)

31

v35(1:1)

h19(1,1)

80

v49(0:1)

09

v56(0:1)

08

v54(0:1)

03

v55(0:1)

e8

v53(0:1)

00

v57(0:1)

18

v51(0:1)

c1

v52(0:1)

2c

v50(0:1)

h18

c0

v38(0:1)db

v36(0:1)

53

v37(1:1)

50

v39(1:1)

h17(1,1)

h20(1,1)

h21(1,1)

53

v37(1:1)

50

v39(1:1)

80

v58(0:1)

09

v65(0:1)

08

v63(0:1)

03

v64(0:1)

e8

v62(0:1)

00

v66(0:1)

18

v60(0:1)

c1

v61(0:1)

2c

v59(0:1)

80

v67(0:1)

09

v74(0:1)

08

v72(0:1)

03

v73(0:1)

e8

v71(0:1)

00

v75(0:1)

18

v69(0:1)

c1

v70(0:1)

2c

v68(0:1)

bb

v77(1:1)

b8

v76(1:1)

fa

v78(1:1)

ca

v80(1:1)

81

v79(1:1)

7c

v81(1:1)

d0

v83(0:1)

d3

v84(0:1)

ff

v82(1:1)
h22

h23

h24(1,1)

h25(1,1)

h26(1,1)

h27(1,1)
h28(1,1)

h29(1,1)

h30(1,1)

Fig. 5.17. Activity model for Function1 (some vertices, depicted in black, are rep-
resented twice for ease of presentation).

5.8 Summary

This chapter has presented a hypergraph-based framework for modeling and
detecting malevolent activities. We have studied and rigorously charaterized
consistency checking, equivalence, and minimality of models, along with the
general problem of hypergraph-based activity detection. In addition, we have
developed an index data structure that proved very efficient in extracting
occurrences of multiple activity models.

66

6

A Virtual Environment for realistic
Cyber-Security Scenarios

This Chapter describes SmallWorld, a scalable software platform designed to
reproduce realistic scenarios achieved by the immersion of real systems into
a software defined virtual environment. SmallWorld enables the assessment,
teaching and learning of Cyber-Security related aspects in different areas and
for various purposes. One of the main features of SmallWorld is the support for
designing and building complex scenarios which are dynamic and reactive and
where a number of autonomous software agents can be deployed. Agents are
able to reproduce the behaviors of human users and/or malicious applications
into a SmallWorld scenario making it a more realistic testing environment.

6.1 Introduction

Cyber security issues have an ever increasing social-economical impact both
for citizens and enterprises, then the availability of tools allowing to improve
the awareness of cyber-space threats, to learn how handle them and to assess
the effectiveness of prevention and defence solutions is critical for the safeness
of IT services. Traditionally, security assessment and penetration testing ac-
tivities are performed on real networks while the training of security specialists
is made on insulated and static virtualized systems. The typical cyberspace
user learns security issues only by direct experience exposing himself to high
risks.

This Chapter proposes SmallWorld, a software platform enabling the
assessment, teaching and learning of security-related aspects in different areas
and for various purposes. SmallWorld exploits innovative and state-of-the
art virtualization and cloud technologies for reproducing in a realistic setting a
hybrid environment where large distributed computer systems can be deployed
and from where they can interact with real life entities (users, software and
hardware). One of the main features of SmallWorld is the support for
designing and building complex scenarios which are dynamic and reactive
and where a number of autonomous software agents can be deployed.

67

Chapter 6. A Virtual Environment for realistic Cyber-Security Scenarios

Agents are able to reproduce the behaviors of human users and/or mali-
cious applications into a SmallWorld scenario making it a more realistic
testing environment. By using agents, according to their intelligence, the sce-
nario may evolve over the time and can produce, for example, unexpected
and unpredictable events that are interesting to study and analyze through
simulation logs.

Keeping skills up to date is an extremely important requirement for secu-
rity professionals. As example, penetration testing skills take time to develop
while the information security landscape changes on a daily basis. A platform
like SmallWorld allows penetration testers to build out complex virtual
networks that can be used as practice labs.

Business companies and enterprises can resort to SmallWorld to provide
training courses to their employees and make them aware of security risks,
reducing incidents and hence saving money. SmallWorld can also be useful
for cyber security certification entities and incidents response teams (SOC,
CERT and CSIRT), which may build real-like challenges for assessing skills of
candidates/employees. SmallWorld can be used by researchers to generate
real system logs in order to analyze the propagation of malwares and test the
effectiveness of new intrusion detection/prevention algorithms.

Another application of SmallWorld is the support for cyber-space users
in advancing their learning path from familiarity to assessment by making
available realistic training scenarios. In this way, users acquire practical skills
performing exercises and get experience in the adverse nature of the field.
Furthermore, they can apply their newly acquired skills to novel and muta-
ble situations (thanks to agents) where success depends on their ability to
make the right decisions quickly and eventually work in a team [101]. For
these reasons, SmallWorld is particularly useful in building and manage
Cyber Ranges. To better understand this assertion we have to briefly explain
what a Cyber Range is. A Cyber Range [102] is a virtual environment that is
used for cyber-warfare training and cyber-technology development. It provides
tools that help strengthen the stability, security and performance of cyber-
infrastructures and IT systems used by government and military agencies.
Cyber Ranges function like Shooting or Kinetic Ranges, facilitating training
in weapons, operations or tactics. Thus, cyber-warriors and IT professionals
employed by various agencies train, develop and test Cyber Range technolo-
gies to ensure consistent operations and readiness for real world deployment.
Goals of a Cyber Range include:

• Replicate large scale, complex and diverse networks and users activities
• Enable the development and deployment of state-of-the-art cyber-testing

capabilities
• Facilitate the scientific use of cyber-testing methods
• Provide a virtual environment for the quantitative, qualitative and realistic

assessment of potentially ground-breaking cyber-technologies for research
and development

68

6.2. SmallWorld

Computational node Network

Data Store
Engine

Query
Engine

Network
Linker

Logging
Engine

Agents
Engine

Publisher

Core Service Interfaces

Dashboard
Development

tools
Reports and

Business Intelligence

Physical
Layer

Abst ar ction
Layer

Core
Service
Layer

API
Layer

Management
and

control layer

HypervisorVirtual Machines Virtual Networks

Physical

Fig. 6.1. SmallWorld Architecture

6.2 SmallWorld

SmallWorld has been developed with the main objective to be extensible and
hypervisor-independent. To achieve these goals, it has been designed as multi-
ple layers system, where the components of each layer cooperate among them
to implement higher abstraction level services by exploiting the underlying
tiers. A schema of the resulting architecture is reported in Fig. 6.1.

The five layers of the SmallWorld architecture are described in details by
the following subsections.

6.2.1 Physical layer

This layer hosts computational, storage and networking hardware configured
in a suitable way in order to offer fault tolerance, business continuity and

69

Chapter 6. A Virtual Environment for realistic Cyber-Security Scenarios

data replication mechanisms services for proper and scalable operation of the
hypervisors. The above hypervisor layer abstracts and hides bare metal details
which can then be easily changed/improved for scalability purposes without
impacting on the overall system operations. In particular, at this level we find:

• Routers, switches, firewalls and other networking devices, providing links
among computational and storage nodes. This layer is also in charge of
opening SmallWorld entities to the world outside. It is important to
properly choose these components in order to ensure suitable performances
for proper handling of complex scenarios.

• Storage area networks (SAN) and network attached storages (NAS), which
offer, at low level, data storage, backup and replication. These are critical
components because they are in charge of storing and handling all the
platform data and meta-data. So an high level of reliability is required
and delivered, e.g from ad-hoc RAID configurations.

• Servers and elaboration nodes which offer the computational resources
needed to execute the SmallWorld scenarios.

• Other hardware, e.g. uninterruptible power supplies (UPS), employed to
protect the whole systems from an unexpected power disruption that could
cause data loss and service downtime.

6.2.2 Abstraction Layer

This layer hosts the virtual machine monitor and the network hypervisor,
which respectively enable to define via software the virtual computational
nodes, along with the above operating systems and software layers (software
defined systems) and the virtual network infrastructure (software-defined net-
working). There exists many hypervisors solutions that offers these features
and that be employed in this layer. The current prototype of SmallWorld relies
on Openstack [103, 104], however other implementations, i.e. VirtualBox [105],
OpenNebula [106], are planned.

The required features for a hypervisor to be used as SmallWorld compo-
nents are the following:

• Multi-User, i.e. it must be possible to create users and groups with different
privileges;

• Multi-Tenancy, i.e. a single instance of the environment has to be able to
serve multiple clients. Each client is called a tenant and each of them has
the ability to customize some parts of the application. While SmallWorld
gives access to multiple users, each tenant’s data must be kept isolated
and invisible to other tenants;

• Snapshot support, i.e. it should be possible to save, reset and reload the
state of a virtual-machine.

The network hypervisor allows to create virtual networks that are completely
decoupled and independent from the underlying physical network. This hy-
pervisor enables segments of a virtual network and network devices, such as

70

6.2. SmallWorld

switches, routers and firewalls, to be managed independently and to be pro-
visioned dynamically to accommodate the traffic demands.

6.2.3 Core Service Layer

This layer hosts the main software components that implements the core
SmallWorld features which are in turn exposed by the above API layer. These
components exploits the hardware abstractions offered by the hypervisors and
can be implemented on top of different virtualization products.

Each block shown in Fig. 6.1 for this layer acts like a bridge between
the above layers and the abstraction layer or physical layer. The Network
Linker communicates with the underlying network hypervisor and introduces
facilities to manage the networking services (routing, switching, bandwidth
shaping, firewalling, policies). The Publisher is responsible to install appli-
cations (e.g. vulnerable software, malware, etc.) and agents in a scenario.
The Datastore Engine handles information that must be stored into suitable
databases on the basis of the data type. This component does not use the
abstraction layer.

Data kept by the datastore engine are retrieved by the Query Engine, and
used by the Management and Control Layer to gather and compute statistics
about the platform usage, e.g. users’ and agents’ activities, network bandwidth
usage, traffic logs and other informations.

The Agent Engine is basically an agent based [107] [108] real-time simu-
lation engine. It performs four main functions: (i) translates Agent Behavior
from agent description language (ADL) format (see next section) to executable
code; (ii) provides an API for deploying and planning all simulation steps; (iii)
executes agents’ behaviors in cooperation with each other providing an effi-
cient messages delivery system; (iv) exposes an interface to extract efficiently
simulation logs. The Engine is able to perform a scalable simulation by de-
ploying a distributed simulation environment [109] over a pool of available
machines. A Controller entity permits to add worker nodes to the simulation
each of which handles the execution of a little cluster of agents. The Controller
orchestrates the behaviors of workers nodes.

6.2.4 API Layer

This layer introduces a platform independent API which defines the Small-
World interface. This API is used for the implementation of the applications
of the Management and Control Layer and is the key to implement the Small-
World scenarios design and development independently from the software
technologies used in the underlying layers.

The SmallWorld API is made available both as a Java framework and as
a set of REST services.

71

Chapter 6. A Virtual Environment for realistic Cyber-Security Scenarios

6.2.5 Management and Control Layer

Thanks to the efforts made in the underlying levels, it has been possible
to realize a set of GUIs completely independent from the technologies and
software used in the rest of the environment and capable to provide simple
yet effective management and development tools.

In particular, the following facilities are provided:

• A Dashboard, from where is possible to manage the scenarios, agents and
virtual-machines. It also allows to display system usage and statics, set
scenario parameters, handle user access and account management.

• A Report tool, which provides statistical data about the running scenarios.
• A set of Development Tools which include: an agent development tool, a

scenario development tool and a virtual-system development tool.

SmallWorld provides different kinds of access and two type of installa-
tion, i.e. in site or in cloud, given that is suitable for many different usages.
An enterprise user that needs to transfer a great amount of data (virtual ma-
chines images, logs from a system or a data warehouse) into SmallWorld
or does not want to export personal data and can afford a variable hardware
investment may opt for a in site deployment solution. The features to deliver
to the client, and the respective cost, are fully customizable thanks to the
modular design of the environment. On the other hand, SmallWorld can
also be deployed on a cloud environment and made available as a service.
This last solution allows the user to have immediate access to SmallWorld
avoiding hardware investment and configuration efforts. The next subsections
summarize the main SmallWorld tools which support the user in the design
and development of cybersecurity scenarios.

6.2.6 Scenario Development Tool

A scenario is a composition of virtual machines, agents, policies and network
devices. SmallWorld provides a Scenario Development Tool (SDT) realized
to help the user in deploying a preloaded environment or to build a new
one, starting from a repository of virtual machines, agents, configurations and
devices. It is a graphical tool that allows the user to create scenarios, such
as network topologies and system configuration, using graphic simplifications,
such as Drag-and-Drop elements, similar to those offered by orchestration
frameworks like Juju. Projects can be available at any time and anywhere,
as they can be saved in the cloud. All scenario information are stored in
description files, written in a Scenario Definition Language (SDL) which is
then used by the SmallWorld engine in order to deploy the scenario on
chosen computational nodes, through the use of the publisher and the network
service. The SDL is a meta-language used to express:

• Network properties, such as bandwidth limits, IP classes, NAT addresses,
Firewalling policies, etc.;

72

6.2. SmallWorld

• Nodes details, such as Operative System, installed Software and loaded
Agents;

• Access points, such as remote access policies are defined here, like VPN or
VNC tunnel.

6.2.7 Virtual-System Development Tool

SmallWorld comes with a set of pre-built VMs hosting software compo-
nents, vulnerable applications and malwares. SmallWorld allows to include
in its repository both new VMs, built from scratch, or VMs obtained as cus-
tomizations of those already available. A new VM is built starting from a
clean image of the target Operating System. The IDE assists the user in writ-
ing an initial configuration script that the system will execute at the first
boot in such a manner to configure the network settings of the system and
install the required software and plug-ins. The tool allows users to add new
programs to existing VMs exploiting the container technology [110]. A con-
tainer hosting a bugged version of a software, can be prepared outside the
SmallWorld environment and then uploaded when ready. The developed
container can become part of the software and vulnerabilities repository and
may be easily deployed on any container-aware VM. All this elements (VM
images, software and malware) are stored inside the SmallWorld repository
and made accessible from other tools.

6.2.8 Agent Development Tool

The Agent Development Tool (ADT) is a graphical tool realized to design the
behavior of agents with a visual paradigm. Behaviors are visually specified
as finite state machines. The tool helps the user to make a consistent agent
behavior by automatically carrying a series of checks on the automaton in
order to validate its execution flow. It provides some pre-configured complex-
actions in addition to the basic functions defined in the standard package.
Through a graphical approach users can add new types of messages, states
and transitions and create custom functions. In order to define agent behav-
ior [111] [112], preserving an appropriate abstraction level, a meta-language,
called Agent Definition Language (ADL), has been defined. The ADL is based
on XML and allows to describe a finite state automaton in terms of its states,
transitions and actions. States can be hierarchical [113] and each transition
allows to inject default or custom actions such as issuing HTTP Requests or
making a system log. A type of transition, named Temporal Transition, has
been introduced for simulating the waiting for completion of an activity. The
waiting time may be established by sampling a random number from a suit-
able distribution. Through the definition of particular messages the language
makes possible the cooperation of two different agent behavior and the ex-
change of local parameters and configuration. The ADL source code is then
translated into an agent executable code which can be instantiated and run
by the Agent Engine.

73

Chapter 6. A Virtual Environment for realistic Cyber-Security Scenarios

Fig. 6.2. Management Dashboard

6.2.9 Repositories

One of the SmallWorld main strengths is its rich catalog of vulnerable
software, operating systems, network templates and agent behaviors delivered
with the platform. SmallWorld is equipped with repositories which contain:

• Operating Systems: a set of particular version or distribution of an OS
affected by security issues;

• Software: a set of particular versions of vulnerable software;
• Agents: a set of pre-modeled agents that can reproduce the behavior of an

attacker, of an employee or of a general user.

Each item is enriched with meta-data that describe the item itself. This is
particular useful because it allows the user to search the needed component
for its scenario by querying, through the query engine, the repository on meta-
data information. In order to allow the search engine to suggest the user a
list of components related to the search query they are arranged in categories:
vulnerability typology, difficult level, skills required, etc.

6.2.10 Management Dashboard

The management Dashboard (see Fig. 6.2 for a screenshot) is the web-based
interface designed to communicate with SmallWorld’s API for handling
scenario instances. It also allows to monitor the available resources of the
server machine which hosts the scenarios. Administrators can customize the
configuration parameters of both scenarios and agents. The Dashboard is able
to start, pause and kill agents’ instances at any time after they are injected
into a scenario. Once a new scenario is instantiated, an administrator can
obtain information about the status of the active machines and can monitor

74

6.3. Case Studies and experimental results

the agents’ logs gathered by the Dashboard. Logs can be filtered with several
log levels to facilitate the monitoring phase. In addition, the management
dashboard allows to define a VPN entry point for accessing the scenario from
the external of SmallWorld. Once this entry point has been defined, the
administrator can request the creation of a certain number of VPN certificates.
A possible extension provides the integration within the dashboard of the
Scenario Development Tool discussed in the above section.

6.3 Case Studies and experimental results

In this section we present two applications of SmallWorld. The first focuses
on the assessment of security properties. It is a laboratory used during a
master course to introduce students to the main information security concepts
through a series of practical examples that includes: assessment, network and
port scanning, auditing, remote and local exploitation. The second instead
concerns the cybersecurity learning process and has been realised throughout
the integration of SmallWorld with the Moodle e-learning platform. A new
specific scenario, more complex than that of the first case study, has been
designed and implemented. The scenario was devised to be used as test and
training laboratory during the second Cybersecurity Master course organized
by Poste Italiane, in collaboration with the PosteCERT and the University
of Calabria. The course has been held in September 2016, and many details
cannot be disclosed because of intellectual property constraints.

To conclude, we quantitatively evaluated the performances of Small-
World in particular we investigated about its scalability. We took advantage
of the scenario proposed in the second case study to set up a number of ex-
periments in order to assess CPU consumption, memory consumption and
start-up time vs. a variable number of instances of the proposed scenario.

6.3.1 Case study I : security assessment

The aim of the first scenario, see Fig. 6.3, is to demonstrate the basic func-
tionalities and usage of the proposed platform and has been developed during
a master thesis at the University of Calabria.

It is composed by three servers, one load-balancer, one firewall, one router,
one red agent and a series of white agents, the details of each component are
listed below:

• Kali Linux host, connected to the VPN access point external network
192.168.73.X;

• Windows Server that hosts a vulnerable web-log (blog) platform;
• Linux Server hosting a vulnerable hotel booking system;
• Network router, which forwards packets to the target host and acts as

VPN access point;

75

Chapter 6. A Virtual Environment for realistic Cyber-Security Scenarios

Router

Load Balancer

Firewall

White Agent
ip: 192.168.72.1

White Agent
192.168.72.2

White Agent
192.168.72.3

Windows Server
ip: 192.168.70.1

Windows Server
ip: 192.168.70.2

Ubuntu Server
ip: 192.168.71.1

Red Agent
ip: 192.168.73.1

Fig. 6.3. An example of scenario in SmallWorld

• PFSense VM, connected to internal network 192.168.70.X and to the
external network 192.168.73.X, which acts as load balancer;

• Many White Agents and one Red Agent, connected to the external net-
work 192.168.73.X, that are respectively in charge of generating normal
network traffic and executing attacks against the machines of the network.

Table 6.1 summarizes the software installed and a portion of the systems
vulnerabilities. At the current development stage, it is possible to execute a
pre-configured scenario using the dashboard, described in the previous section.
Once a scenario is up and running we can start the agents execution and
observe their actions.

Table 6.1. Software and vulnerabilities

OS Software VulnerabilitiesIP address
Windows Server Apache 2 Httpd, PHP,

MySQL, WordPress
Scf Exploit 192.168.70.1

Windows Server Apache 2 Httpd, PHP,
MySQL, WordPress

Scf Exploit 192.168.70.2

Ubuntu Server Apache 2 Httpd, PHP,
MySQL, Joomla!

Shellshock,
SQL Injection

192.168.71.1

An instance of a White Agent reproduces the behavior of a typical user
which browses a website. Using a Java browser engine, it is able to generate
the same kind of traffic which would result from a human user interaction.
In particular it can navigate between the pages of a portal, add comments or
book reservations.

An instance of a Red Agent emulates the behavior of an attacker with the
intent to violate the systems deployed in the running scenario. The activity

76

6.3. Case Studies and experimental results

Network
scan Network scanNetwork scanTarget

selection Network scanNetwork scanAttack
selection

Network scanNetwork scanJoomla!
exploit

Network scanNetwork scanWordpress
exploit

Network scanNetwork scanShellshock
exploit

Network scanNetwork scanCheck
exploitcexp

cexp:= success OR no more exploits

more targets?

new hosts?

Wait

Yes

No

No

No

Yes

Yes

Fig. 6.4. Red Agent Activity Diagram

diagram depicted in Fig. 6.4 describes the execution flow of a Red Agent. For
the proposed example, three different kind of attacks have been implemented:

1. Shellshock. It exploits a family of security bugs that affected the Unix
bash shell. Many Internet services use bash to process certain requests.
If a vulnerable version of bash is installed, an attacker can gain unautho-
rized access to a computer system.

2. Scf Exploit. Creative Contact Form (v. 0.9.7), a Wordpress extension,
is liable to a vulnerability that lets attackers upload arbitrary files to the
affected computer; this can result in arbitrary code execution within the
context of the vulnerable application. An attacker can exploit this issue
using a web browser.

3. SQL Injection. The K2 component (v. 1.0.1) for Joomla! (v. 1.X, 2.x and
3.X) is liable to an SQL-injection vulnerability because it fails to properly
sanitize user-supplied data before using it in an SQL query. Exploiting
this issue could allow an attacker to compromise the application, to gain
access, to modify data or to exploit latent vulnerabilities in the underlying
database.

Each time an exploit succeeds the agent loads a backdoor into the server
and sends a notification to the dashboard, then a message is shown to the
user.

6.3.2 Case study II: e-learning

Since one of the main SmallWorld intents is to support the learning process
of new knowledge in the cybersecurity domain, it was considered appropriate
to integrate it with an e-learning platform, such as Moodle.

Moodle (Modular Object-Oriented Dynamic Learning Environment) is an
open-source e-learning platform based on the idea that learning would be
facilitated by the production of tangible objects. It is realized in PHP and
JavaScript languages with a modular approach in order to facilitate and en-
courage the development of plugins that implement additional features. The
goal of this integration is to further enhance the learning process, adding a

77

Chapter 6. A Virtual Environment for realistic Cyber-Security Scenarios

One Instance for each Team One Instance for all Students

One Instance for each Students

Bank Scenario 1

Bank Scenario 2

Team Red

Team Blue

Students Bank Scenario

Student 3

Bank Scenario 1

Bank Scenario 3

Bank Scenario 2
Student 2

Student 1

Fig. 6.5. Plugin Configuration types

practical element to one or more quizzes, defined by Moodle. In this way, the
user is no more limited to answer questions using only his theoretical knowl-
edge, but she/he also faces practical challenges, which allow her/him to better
consolidate the concepts she/he studied.

In the Computer Science Curricula 2013 document [101], the ACM defined
three types of desirable learning outcomes:

• Familiarity: indicates the student theoretical comprehension of the pro-
posed concepts. This is usually achieved via books and lectures.

• Usage: indicates the student conceptual comprehension, he can apply it
correctly when it’s required. This is usually achieved by a mix of lectures
and practical exercises.

• Assessment: indicates that the student can correctly recognize a given
concept in practice and apply it as solution to some related problem. This
is usually achieved via lectures and practical experimentations.

The integration of SmallWorld within Moodle eases the achievements
of the above goals. Such integration has been obtained by developing two
plugins.

One of the plugins allows the administrators to authenticate on Small-
World through Moodle and retain the access on both platforms without
having to type several times their credentials.

The other plugin allows to create an association between quizzes and sce-
nario(s), as well as making available VPN credentials to the students.

After defining one or more quizzes within the e-learning platform through
the normal process, the teacher/administrator can assign one or more scenar-

78

6.3. Case Studies and experimental results

Servers Employees

192.168.80.1/24

192.168.70.80

Servers

192.168.80.1/24

192.168.70.13 192.168.70.10

Employees

E-Commerce Company ICT Company Booking Company

VPN Access Point

192.168.70.100

192.168.80.1/24

Internal services Servers

Core Bank and DB Servers

Bank

Home-Banking and
Payements Servers

Servers Employees

192.168.80.1/24

Employees

Fig. 6.6. An example of a scenario composed by more sub-scenarios

ios to each of them, in which the students will have access for solving the
proposed questions.

Through the plugin it is possible to decide whether the scenario should be
shared among all students, or a new instance should be built for each of them.
For matches among teams it is also possible to create instances of scenario in
which only players of the same team can collaborate.

After the configuration and deployment scenario phase, the screen shows
the current status of the VPN, which require a bit of time to be generated.
When SmallWorld makes available the certificates, each student partici-
pating in the quizzes will have his personal VPN through which he can access
to the scenario.

Through the integration of LDAP provided by both Moodle and Small-
World, it was possible to create a common database of users.

Using the proposed integration, the scenario depicted in Fig. 6.6 was re-
alized. The scenario has been designed to be complex enough to be proposed
as test and training laboratory for the second edition of the Cybersecurity
Master course (9 servers, 5 routers, 2 firewall and 4 white agents) organized
by Poste Italiane in collaboration with the PosteCERT and the University of
Calabria. It reproduces the behavior of four cooperating companies: a Bank
(SmallBank), an e-commerce (SmallSell), a booking company (SmallBook)
and a ICT development firm (SmallDev).

79

Chapter 6. A Virtual Environment for realistic Cyber-Security Scenarios

Considering today’s Cybesecurity scene, the ability to reproduce scenarios
involving e-commerce and booking companies is mandatory for a platform like
SmallWorld. In the past few years, several attacks has been perpetrated
against on-line shops, like Target [114] and Ebay [115], just to recall two cases
where data of thousands of users have been exposed to criminals.

The entities involved in the scenario are:

• The main router 192.168.70.X;
• The VPN access point, which allows the connection of external users (stu-

dents, developers, administrators) inside the network of the running sce-
nario;

• Four border routers, 192.168.70.10, 192.168.70.13, 192.168.70.89
and 192.168.70.100, that isolate the intranet of each company from
the main network;

• A certain number of Firewalls, used to filter malicious traffic and protect
the private networks;

• A certain number of Servers (LAMP Servers, SQL Servers, Tomcat Servers
etc.), used to properly run the companies’ software (websites, web appli-
cations, web services etc.)

• A group of White Agents inside the companies that simulates the be-
havior of normal employees (accepts payments, transfers money, updates
accounts, etc.);

In this case, the installed software is very heterogeneous, so both for brevity
and confidentiality reasons a complete disclosure is avoided, but we can argue
the reasons that are behind the choice of the four companies. Having said
that, below a bit more details on such companies are provided, explaining
what are their goals and the network topology adopted.

SmallSell employs the e-commerce whose front-end is implemented with
the popular Content Management System (CMS) Prestashop. Its subnet is
composed of some servers which host the service and the database, in addition
to a number of computers used by the company employees. Periodically, the
employees connect to the CMS administration portal through which they
perform their functions such as verifying payments, by interacting with the
bank, shipping orders or emitting refunds.

The ICT Company offers a wide variety of services that include web ser-
vices for file hosting, email accounts and web hosting to the users of the
scenario. The network topology consists of a web server and a software test-
ing server. Given the presence of sensitive data, including personal files and
private software, SmallDev employs a firewall between the Gateway and the
server. In this context, the employees perform uploads and downloads of files,
to emulate software updating or development.

SmallBook is a company entirely similar to the e-commerce one, with the
only difference consisting in the vulnerability of the CMS exposed to the users.

SmallBank offers financial services and payment gateways, like credit card
payments, wire transfer and home banking to the other companies. The bank’s

80

6.4. Summary

network is structured in three levels. The first level contains two servers,
which set out the payments and home banking services to the users. A firewall
protects the entire network from unauthorized traffic, coming from the outside.
The two servers, in order to carry out the services, must access the db servers.
The latter are located in the second level of the network. This level is separated
from the first through a second firewall. The objective of this firewall is to
prevent unauthorized access, if at least one of the two first-level server gets
compromised. At the second level of the network there are also the servers
used by the employees to manage the entire set of services offered by the
bank. Their typical daily activities are e.g. transaction approvals, account
management, money transfer and so on. The same employees reside in the
third level, which is isolated from the rest of the network by means of a third
firewall, to avoid malicious insiders.

The different network topologies, jointly to the used services, determine
different levels of difficulty, that SmallWorld users can face. Such difficulties
are made explicit in Fig. 6.6, with the colors associated with the networks.

Inside this “small world” it is possible to reproduce large scale and highly
risk attacks in a controlled environment populated with synthetic, yet realistic,
data with the aim of showing how even small bugs can open a door to hackers.

Leaving the scenario running for several days, the agents generate a series
of events that lead to the evolution of the scenario. The result of this execution
is a set of log files that can be accessed in different levels of the system (e.g.
pcap or Apache logs files), taking advantage of the Logging Service. These
data may be useful to study the behavior of the employees to understand how
to detect anomalous activities.

To speedup the development time, Wordpress and a series of its exten-
sions have been used to reproduce a multi structure booking system. Every
component has been analyzed and tested.

The main aim of this scenario is to spur students, or general SmallWorld
users, to find their own way to complete the challenge which consists in con-
quering at least one machine per sub-network, or, in other words, to hack at
least one machine for each company, and respond to the proposed quizzes,
using the information gained from the scenario.

6.4 Summary

Cyber security is currently a rapidly growing field due to the increasing num-
ber of cyber incidents to which companies are subject. In most cases the best
security strategy is to prevent and investigate possible scenarios that an at-
tack could cause. Companies and incident response teams need a system to
provide training courses built on top of real-like challenges and to perform se-
curity assessment and penetration tests without compromising the production
systems. IT users need to smoothly learn how to safely live in a cyber space
by increasing their awareness of threats without exposing themselves to real

81

Chapter 6. A Virtual Environment for realistic Cyber-Security Scenarios

risks. Researchers working in cybersecurity field, and not only, need a great
amount of real-like system logs, security environments to test new algorithms
or to study malware propagation.

We argue that the flexibility of virtual environments will play a critical
role in many cybersecurity related aspects. Problems like the assessment of
newly devised intrusion detection techniques, the evaluation of skills of cyber
defense team members, the evaluation of the disruptive effects caused by the
diffusion of new malware, are just few examples of issues that cannot be
directly addressed in production systems even though they require realistic
operating environments in order to be suitably performed.

SmallWorld has been designed as a modular, scalable and evolvable
platform able to address the above mentioned needs. It has a great improve-
ment potential over time because its features may increase and evolve as the
result of real case-study applications. For example, because of their pervasive-
ness in the everyday life of people, very important issues are those related to
the security of mobile devices and applications. In the near future, Small-
World could be extended to accommodate suitable features, e.g. like those
reported in [116], for coping with mobile devices.

SmallWorld is able to exploit all the advantages induced by the avail-
able hypervisor technology, OpenStack, in terms of: scalability, availability,
elasticity, performance and so on.

82

7

Conclusions and Future Work

This Chapter presents our final thoughts about Cyber-Security and the con-
tributions provided by this thesis, a brief overview about ongoing and feature
work is also reported.

7.1 Ongoing and Future Work

All the proposed solutions in this thesis have been implemented as prototype
or proof-of-concept, so the main purpose was always to get a working solution
in the shortest possible time. Due to its intrinsic complexity, a lot of effort
has been made during the development of SmallWorld and for prototyping
purposes we decided to build the platform on top of OpenStack. This decision
streamlined the above process, for example, OpenStack provides a complete
support to manage the entire network level (subnets, routing, VPN, load bal-
ancer, IDS and so on), called Network Function Virtualization (NFV), and
infrastructure provision (but not virtual-machine provision), it also exposes
a complete set of API useful to manage the life cycle of a virtual-machine
and to configure the environment. However, these were only few examples,
in fact we know that OpenStack is a complete solution for cloud computing
and for this reason its support in building a prototype was huge. Beyond the
prototyping face, OpenStack is not the better choice. In fact, as we need to
customize our platform and features or if we need to move to another Hy-
pervisor that offers less support than OpenStack a lot of effort is required
in order to implement all the missing pieces (Compute, Networking, Storage,
Orchestration, Database, etc.). For these reasons, after have established the
scientific value and the industrial interest in SmallWorld, I decided to take
a step back and develop all the main layers of SmallWorld without relying
on any particular Hypervisor or ready-for-use-solution.
The idea consists in using OpenVSwitch, a Software Defined Network tool, to
realize a network abstraction layer shared between all computation nodes. A
virtual-machine acting as scenario router (also known as VPNRouter), with

83

Chapter 7. Conclusions and Future Work

DHCP server enabled, and VPN access point was also needed. In this way
is possible to create as many scenario networks as we want without relying
on any particular Hypervisor feature. We just need to attach a VPNRouter
to each set of VMs that make up a particular scenario and we are ready
to go. Another key technology used to add a second level of abstraction is
Vagrant. Vagrant fits in here by automating some of those boring repetitive
tasks involved in building and configuring, groups of, virtual-machines and
containers. These tasks become a much quicker and less involved process. You
do not have to actually interact with a Hypervisor or the booting OS at all,
just with Vagrant. It introduces the concept of boxes, these are the packages
for Vagrant environments and in their most basic form they are an Operating
Systems tailored to run with Vagrant and available from a public or private
repository. So rather than downloading an Ubuntu image then booting a Vir-
tualBox VM using that image, we can download the relevant Vagrant box and
just use the ’vagrant up’ command from our command-line to bring up a new
Ubuntu VM, without touching the Hypervisor nor going through all the boot
prompt. The development of these two layers was not a simple task but the
results are very important. With Hacking Square, we can switch, for example,
from OpenStack to KVM no additional efforts and without changing anything
but only the Hypervisor name.

The project, resulting from the improvements described above, is known as
Hacking Square [117] and is currently available on-line and freely accessible.
It is used during different grad school class work or to host the exercises and
exams of the course named ”Metodi e Strumenti per la Sicurezza Informatica”
for the master degree in Cyber Security at DIMES, University of Calabria.

The platform can be managed, in a very simple way, from the web appli-
cation. The administrator, or the teacher, can add, edit or delete new content,
configurations, users and meta-data, while students can see the available sce-
narios, send a request access for a scenario to an administrator, download the
VPN certificates to access to the corresponding scenarios, read teaching ma-
terial and write to the forum. In order to make the building of new scenarios
easier, to reduce the total amount of space in the repository and to improve
the platform efficiency we are promoting the idea to use as few base boxes
(vanilla Operating Systems) as possible and complete the customization of
a virtual-machine through the use of a provisioning file. We need hard-code
software or configurations in a box only when the vulnerability or the service
we want to exploit can’t be provisioned, for example a bug in a particular
kernel version or services available in a particular Operative System version.
Many other features characterize Hacking Square, but a full description of
the platform is beyond the scope of this section. We are constantly working to
improve the platform and features offered, like tools, content and virtualized
network functions to advance in the build of always more complex scenar-
ios, functionalities to assisting students or also extend the virtual-machines
deployment not only on local servers, but also on cloud services. Finally, we

84

7.2. Conclusions

hope these efforts will serve to establish Hacking Square as a reference
platform to design, build and deploy Cyber Ranges.

7.2 Conclusions

The history show us that criminals will dependably be anxious to break into
our computers to steal and do damage. This because there will always some
vulnerability in our systems, which give criminals the chance to do their mali-
cious deeds. Computer engineers can design systems that are less prone to be
violated. Security has been enhancing steadily for over 10 years. In 2000, pass-
word hashing algorithms were weaker, recommendations for solid passwords
were uncommon, hacking strategies that are currently normally stopped were
waiting to be put to use. Home computer firewalls started to show up and
have enhanced relentlessly. Antivirus tools have enhanced and are almost uni-
versally installed. Security updates are automatically scheduled and happen,
generally, noiselessly in background. Engineers are now mindful of coding
habits that are probably going to leave flaws that hackers can use to break
in or cause damage. Quality testing now effectively and strongly follows secu-
rity gaps. These are all real advances that have made computers substantially
more impervious to hacking and are probably going to keep on improving
security. However more criminals are striking and plotting to strike every day.
A portion of these criminals are very skilled and dedicated as the engineers
are dedicated to build computer systems. In fact, for each new technique for
defeating assaults that is produced, roused hackers are looking for approaches
to break or circumvent it. What’s more, in the end they do succeed, despite
the fact that achievement is getting increasingly hard for them. In any case,
the ideal toolset that will prevent every breach is not upcoming and is not
probably ever to be there. The computing environment itself, offering more
services every year and increasing the number of users day by day, continually
adds new challenges. The growth in the power and minimization of the com-
puters sizes is constantly anticipated to be near the end, however every year,
they get littler, less expensive, and more powerful. The global attack surface
grows as these IoT devices are utilized for more and more purposes, inviting
hackers to exploit them and reuse them for more complex attacks. Neverthe-
less, the security of our computers has increased, the challenge is to grow our
safety faster than the criminals assault us. This thesis proposed many tools
and frameworks that we can learn to use in order to build a more effective
security and more conscious users.

85

A

Appendix

A.1 Proof Sketch for Theorem 5.14

Statement: Given two activity models M1 and M2 such that M1 � M2, it
holds that L(M1) ⊆ L(M2).

Assume that f is the witness mapping of M1 � M2. Let L = `1, ..., `n
be a log and let π = h1, . . . , hm be a path such that L |=π M1. Consider
the path π′ = f(h1), . . . , f(hm). We claim that L |=π′ M2, so L ∈ L(M2).
Indeed, assume that (1 = s1, t1), ..., (sm, tm = n) is the m-segmentation of L
required to exists according to Definition 5.6 L |=π M1. Precisely the same
segmentation can be used to show that L |=π′ M2. In fact, this follows by
inspecting Definition 5.6 and by noticing that the conditions that have to be
satisfied by the segmentation are satisfied by M2: The functions τ2 and ε2 are
just less restrictive than τ1 and ε1, and each fresh vertex v ∈ V2 \ V1, is such
that its associated lower bound is 0.

A.2 Proof Sketch for Theorem 5.16

Statement: Given two activity models M1 and M2, deciding whether M1 EM2

is co-NP-hard.
By inspecting the proof of Theorem 5.12 it emerges that the problem

of deciding whether L(M2) 6= ∅ is NP-hard. Consider then a trivial model
M1 defined over the emptyset of vertices. The problem of checking whether
L(M2) 6= ∅ reduces to checking whether M1 EM2 does not hold.

A.3 Proof Sketch for Theorem 5.18

Statement: The malevolent activity detection problem is NP-complete.

87

Appendix A. Appendix

Membership in NP is trivial: it suffices to use π and the correspond-
ing |π|-segmentation as a polynomially-verifiable witness. We prove NP-
hardness by polynomial-time reduction from Hamiltonian path [99]. Let
Gin = (Vin, Ein) be an undirected graph. In order to decide whether Gin con-
tains a Hamiltonian path, we build an activity model M = 〈H, λ, τ, ε, S, T 〉
with H = (V,H), V = Vin, H = {{v1, v2} | (v1, v2) ∈ Ein}, ∀v ∈ V ,
λ(v) = (x, 1, 1), domain(τ) = domain(ε) = ∅, S = T = H. Then, we
build a log L = `1, . . . , `n where n = |V | and ∀`i ∈ L, `i.action = x and
`i.timestamp = i. Now, in order to include all log tuples in an activity in-
stance, all of the vertices in V must be traversed exactly once. Thus, there
exists a complete path π in M such that L |=π M if and only if Gin contains
a Hamiltonian path.

88

References

[1] A Astorino, A Chiarello, M Gaudioso, and A Piccolo. Malicious url detection
via spherical classification. Neural Computing and Applications, pages 1–7,
2016.

[2] Andrea Pugliese, Antonino Rullo, and Antonio Piccolo. The ac-index: Fast
online detection of correlated alerts. In International Workshop on Security
and Trust Management, pages 107–122. Springer, 2015.

[3] Antonella Guzzo, Andrea Pugliese, Antonino Rullo, Domenico Sacca, and An-
tonio Piccolo. Malevolent activity detection with hypergraph-based models.
IEEE Transactions on Knowledge and Data Engineering, 29(5):1115–1128,
2017.

[4] Angelo Furfaro, Antonio Piccolo, and Domenico Saccà. Smallworld: A test
and training system for the cyber-security. European Scientific Journal, ESJ,
12(10), 2016.

[5] Angelo Furfaro, Antonio Piccolo, Domenico Saccà, and Andrea Parise. A
virtual environment for the enactment of realistic cyber security scenarios.
In Cloud Computing Technologies and Applications (CloudTech), 2016 2nd
International Conference on, pages 351–358. IEEE, 2016.

[6] Angelo Furfaro, Luciano Argento, Andrea Parise, and Antonio Piccolo. Using
virtual environments for the assessment of cybersecurity issues in iot scenarios.
Simulation Modelling Practice and Theory, 73:43–54, 2017.

[7] John Pescatore and Greg Young. Defining the next-generation firewall. Gart-
ner RAS Core Research Note, 2009.

[8] Christoph Michael and Anup Ghosh. Using finite automata to mine execution
data for intrusion detection: A preliminary report. In Recent Advances in
Intrusion Detection, pages 66–79. Springer, 2000.

[9] R. Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast
automaton-based method for detecting anomalous program behaviors. In Se-
curity and Privacy, pages 144–155, 2001.

[10] Seyit Ahmet Çamtepe and Bülent Yener. Modeling and detection of complex
attacks. In SecureComm, pages 234–243, 2007.

[11] Yu Liu and Hong Man. Network vulnerability assessment using bayesian net-
works. In SPIE, pages 61–71, 2005.

[12] Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring
network security using dynamic bayesian network. In QoP, pages 23–30, 2008.

89

References

[13] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jean-
nette M Wing. Automated generation and analysis of attack graphs. In
Security and Privacy, pages 273–284, 2002.

[14] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-
based network vulnerability analysis. In CCS, pages 217–224, 2002.

[15] Massimiliano Albanese, Sushil Jajodia, Andrea Pugliese, and V. S. Subrah-
manian. Scalable analysis of attack scenarios. In ESORICS, 2011.

[16] Massimiliano Albanese, Andrea Pugliese, and V. S. Subrahmanian. Fast ac-
tivity detection: Indexing for temporal stochastic automaton-based activity
models. IEEE Trans. Knowl. Data Eng., 25(2):360–373, 2013.

[17] Steven Noel, Eric Robertson, and Sushil Jajodia. Correlating intrusion events
and building attack scenarios through attack graph distances. In ACSAC,
pages 350–359, 2004.

[18] Lingyu Wang, Steven Noel, and Sushil Jajodia. Minimum-cost network hard-
ening using attack graphs. Computer Communications, 29(18):3812–3824,
2006.

[19] Sebastian Roschke, Feng Cheng, and Christoph Meinel. A new alert correlation
algorithm based on attack graph. In CISIS, pages 58–67, 2011.

[20] Lingyu Wang, Anyi Liu, and Sushil Jajodia. Using attack graphs for corre-
lating, hypothesizing, and predicting intrusion alerts. Computer Communica-
tions, 29(15), 2006.

[21] Ching-Hao Mao, Hsing-Kuo Pao, Christos Faloutsos, and Hahn-Ming Lee.
Sbad: Sequence based attack detection via sequence comparison. In PSDML,
pages 78–91, 2010.

[22] Steven Noel and Sushil Jajodia. Managing attack graph complexity through
visual hierarchical aggregation. In Workshop on Visualization and Data Min-
ing for Computer Security, pages 109–118, 2004.

[23] Shuzhen Wang, Zonghua Zhang, and Youki Kadobayashi. Exploring attack
graph for cost-benefit security hardening: A probabilistic approach. Computers
& Security, 32:158–169, 2013.

[24] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Rolando
Trujillo-Rasua. Attack trees with sequential conjunction. In SEC, pages 339–
353, 2015.

[25] Andrea Pugliese, Antonino Rullo, and Antonio Piccolo. The AC-index: Fast
online detection of correlated alerts. In Security and Trust Management, pages
107–122, 2015.

[26] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. DAG-
based attack and defense modeling: Don’t miss the forest for the attack trees.
Computer Science Review, 13-14:1–38, 2014.

[27] Vivek Shandilya, Chris B. Simmons, and Sajjan G. Shiva. Use of attack graphs
in security systems. Journal Comp. Netw. and Communic., 2014:818957:1–
818957:13, 2014.

[28] Giovanni Vigna. A topological characterization of tcp/ip security. In FME,
pages 914–939, 2003.

[29] Virginia N. L. Franqueira, Raul H. C. Lopes, and Pascal van Eck. Multi-
step attack modelling and simulation (msams) framework based on mobile
ambients. In ACM SAC, pages 66–73, 2009.

[30] Wolter Pieters. Ankh: Information threat analysis with actor-network hyper-
graphs. CTIT technical report series, 2010.

90

References

[31] Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé. M2d2: A
formal data model for ids alert correlation. In RAID, pages 115–127, 2002.

[32] Fabrizio Baiardi, Claudio Telmon, and Daniele Sgandurra. Hierarchical,
model-based risk management of critical infrastructures. Rel. Eng. & Sys.
Safety, 94(9):1403–1415, 2009.

[33] Jorge G. Silva and Rebecca Willett. Hypergraph-based anomaly detection of
high-dimensional co-occurrences. IEEE Trans. Pattern Anal. Mach. Intell.,
31(3):563–569, 2009.

[34] Christopher R. Johnson, Mirko Montanari, and Roy H. Campbell. Automatic
management of logging infrastructure. In NCAE Workshop on Insider Threat,
St Louis, MO, USA, 2010.

[35] Massimiliano Albanese, Sushil Jajodia, Andrea Pugliese, and V. S. Subrah-
manian. Scalable analysis of attack scenarios. In ESORICS, pages 416–433,
2011.

[36] Andrew P. Kosoresow and Steven A. Hofmeyr. Intrusion detection via system
call traces. IEEE Software, 14(5):35–42, 1997.

[37] Anton Babenko, Leonardo Mariani, and Fabrizio Pastore. Ava: automated
interpretation of dynamically detected anomalies. In ISSTA, 2009.

[38] Joel Branch, Alan Bivens, and Taek Kyeun Lee. Denial of service intrusion
detection using time dependent deterministic finite automata. In Graduate
Research Conference, 2002.

[39] Peng Ning, Yun Cui, Douglas S. Reeves, and Dingbang Xu. Techniques and
tools for analyzing intrusion alerts. ACM Trans. Inf. Syst. Secur., 7(2):274–
318, 2004.

[40] Hanli Ren, Natalia Stakhanova, and Ali A. Ghorbani. An online adaptive
approach to alert correlation. In DIMVA, 2010.

[41] Gideon Creech and Jiankun Hu. A semantic approach to host-based intru-
sion detection systems using contiguousand discontiguous system call patterns.
IEEE Trans. Computers, 63(4):807–819, 2014.

[42] Tim Bass. Intrusion detection systems and multisensor data fusion. Commu-
nications of the ACM, 43(4):99–105, 2000.

[43] Frédéric Cuppens and Alexandre Miege. Alert correlation in a cooperative
intrusion detection framework. In S&P, 2002.

[44] Alfonso Valdes and Keith Skinner. Probabilistic alert correlation. In RAID,
2001.

[45] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient
pattern matching over event streams. In SIGMOD, 2008.

[46] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman. On
supporting kleene closure over event streams. In ICDE, 2008.

[47] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and
Walker White. Towards expressive publish/subscribe systems. In EDBT.
2006.

[48] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun
Sharma, and Walker M. White. Cayuga: A general purpose event monitoring
system. In CIDR, 2007.

[49] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Os-
trenga, and S. Schwab. Experience with deter: a testbed for security research.
In Testbeds and Research Infrastructures for the Development of Networks and
Communities, 2006. TRIDENTCOM 2006. 2nd International Conference on,
2006.

91

References

[50] C. Siaterlis, A.P. Garcia, and B. Genge. On the use of emulab testbeds for sci-
entifically rigorous experiments. IEEE Communications Surveys & Tutorials,
15(2):929–942, 2013.

[51] Stephen Schwab, Brett Wilson, Calvin Ko, and Alefiya Hussain. Seer: A
security experimentation environment for deter. In Proceedings of the DE-
TER Community Workshop on Cyber Security Experimentation and Test on
DETER Community Workshop on Cyber Security Experimentation and Test
2007, pages 2–2. USENIX Association, 2007.

[52] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference,
ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.

[53] Michael Goldweber Renzo Davoli. View-OS: Change your View on Virtual-
ization. In Proc. of Linux Kongress, 2009.

[54] OpenVZ. http://openvz.org.
[55] elearningsecurity. https://www.elearnsecurity.com.
[56] Pentestit. https://lab.pentestit.ru.
[57] The hacker accademy. http://hackeracademy.com.
[58] Pentest laboratory. http://pentestlab.org.
[59] Offensive security. http://www.offensive-security.com.
[60] Jian Zhang, Phillip A Porras, and Johannes Ullrich. Highly predictive black-

listing. In USENIX Security Symposium, pages 107–122, 2008.
[61] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Beyond

blacklists: learning to detect malicious web sites from suspicious urls. In Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1245–1254. ACM, 2009.

[62] Laura Palagi and Marco Sciandrone. On the convergence of a modified version
of svm light algorithm. Optimization methods and Software, 20(2-3):317–334,
2005.

[63] Annabella Astorino, Antonio Fuduli, and Manlio Gaudioso. Dc models for
spherical separation. Journal of Global Optimization, 48(4):657–669, 2010.

[64] Annabella Astorino, Antonio Fuduli, and Manlio Gaudioso. Margin maximiza-
tion in spherical separation. Computational Optimization and Applications,
53(2):301–322, 2012.

[65] Annabella Astorino and Manlio Gaudioso. Ellipsoidal separation for classifi-
cation problems. Optimization Methods and Software, 20(2-3):267–276, 2005.

[66] Annabella Astorino and Manlio Gaudioso. A fixed-center spherical separation
algorithm with kernel transformations for classification problems. Computa-
tional Management Science, 6(3):357–372, 2009.

[67] Judah Ben Rosen. Pattern separation by convex programming. Journal of
Mathematical Analysis and Applications, 10(1):123–134, 1965.

[68] Olvi L Mangasarian. Linear and nonlinear separation of patterns by linear
programming. Operations research, 13(3):444–452, 1965.

[69] Kristin P Bennett and Olvi L Mangasarian. Robust linear programming dis-
crimination of two linearly inseparable sets. Optimization methods and soft-
ware, 1(1):23–34, 1992.

[70] Vladimir Vapnik. The nature of statistical learning theory. Springer science
& business media, 2013.

[71] Hoai An Le Thi, Hoai Minh Le, Tao Pham Dinh, and Ngai Van Huynh. Binary
classification via spherical separator by dc programming and dca. Journal of
Global Optimization, 56(4):1393–1407, 2013.

92

http://openvz.org
https://www.elearnsecurity.com
https://lab.pentestit.ru
http://hackeracademy.com
http://pentestlab.org
http://www.offensive-security.com

References

[72] Pham Dinh Tao and Le Thi Hoai An. A dc optimization algorithm for solving
the trust-region subproblem. SIAM Journal on Optimization, 8(2):476–505,
1998.

[73] Pham Dinh Tao et al. The dc (difference of convex functions) programming
and dca revisited with dc models of real world nonconvex optimization prob-
lems. Annals of operations research, 133(1-4):23–46, 2005.

[74] http://www.phishtank.com/. Phishtank: .
[75] http://opendirectory.org/. Open directory:.
[76] Pedro Garcia-Teodoro, Jesús E. Dı́az-Verdejo, Gabriel Maciá-Fernández, and

Enrique Vázquez. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Computers & Security, 28(1-2):18–28, 2009.

[77] Sandeep Kumar and Eugene H. Spafford. A pattern matching model for misuse
intrusion detection. In National Computer Security Conference, 1994.

[78] Cristian Molinaro, Vincenzo Moscato, Antonio Picariello, Andrea Pugliese,
Antonino Rullo, and V. S. Subrahmanian. Padua: Parallel architecture to
detect unexplained activities. ACM Trans. Internet Techn., 14(1):3, 2014.

[79] Animesh Patcha and Jung-Min Park. An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends. Comp. Networks,
51(12):3448–3470, 2007.

[80] Claudio Piciarelli, Christian Micheloni, and Gian Luca Foresti. Trajectory-
based anomalous event detection. IEEE Trans. Circuits Syst. Video Techn.,
18(11):1544–1554, 2008.

[81] Taeshik Shon and Jongsub Moon. A hybrid machine learning approach to
network anomaly detection. Inf. Sci., 177(18):3799–3821, 2007.

[82] Massimiliano Albanese, Sushil Jajodia, Andrea Pugliese, and V. S. Subrah-
manian. Scalable analysis of attack scenarios. In ESORICS, 2011.

[83] Massimiliano Albanese, Andrea Pugliese, and V. S. Subrahmanian. Fast ac-
tivity detection: Indexing for temporal stochastic automaton-based activity
models. IEEE Trans. Knowl. Data Eng., 25(2):360–373, 2013.

[84] Vern Paxson. Bro: a system for detecting network intruders in real-time.
Comp. Networks, 31(23-24):2435–2463, 1999.

[85] Mansour Sheikhan and Zahra Jadidi. Misuse detection using hybrid of as-
sociation rule mining and connectionist modeling. World Applied Sciences
Journal, 7:31–37, 2009.

[86] Giovanni Vigna and Richard A. Kemmerer. Netstat: A network-based intru-
sion detection system. Journal of Computer Security, 7(1):37–71, 1999.

[87] Reza Sadoddin and Ali Ghorbani. Alert correlation survey: framework and
techniques. In PST, 2006.

[88] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion detec-
tion and correlation: challenges and solutions, volume 14. Springer Science &
Business Media, 2004.

[89] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. Mulval: A
logic-based network security analyzer. In USENIX, 2005.

[90] Fredrik Valeur, Giovanni Vigna, Christopher Krügel, and Richard A. Kem-
merer. A comprehensive approach to intrusion detection alert correlation.
IEEE Trans. Dependable Sec. Comput., 1(3):146–169, 2004.

[91] Jian-shu Liu, Ren-hou Li, Yun-long Liu, and Zhen-yao Zhang. Multi-sensor
data fusion based on correlation function and fuzzy integration function. Sys-
tems Engineering and Electronics, 28(7):1006–1009, 2006.

93

References

[92] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In
LISA, volume 99, pages 229–238, 1999.

[93] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and
Kumar Das. The 1999 DARPA off-line intrusion detection evaluation. Comp.
Networks, 34(4):579–595, 2000.

[94] Kleber Vieira, Alexandre Schulter, Carlos Westphall, and Carla Westphall.
Intrusion detection for grid and cloud computing. It Professional, (4):38–43,
2009.

[95] Cristina Abad, Jed Taylor, Cigdem Sengul, William Yurcik, Yuanyuan Zhou,
and Ken Rowe. Log correlation for intrusion detection: A proof of concept. In
CSAC, pages 255–264, 2003.

[96] Ashutosh Singh and Horacio Gonzalez Velez. Hierarchical multi-log cloud-
based search engine. In CISIS, pages 211–219, 2014.

[97] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. Bothunter: Detecting malware infection through ids-driven dialog corre-
lation. In Usenix Security, volume 7, pages 1–16, 2007.

[98] Antonella Guzzo, Andrea Pugliese, Antonino Rullo, and Domenico Saccà. In-
trusion detection with hypergraph-based attack models. In Graph Structures
for Knowledge Representation and Reasoning, 2013.

[99] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[100] Simon Tatham. PuTTY SSH and telnet client, 2016. http://www.putty.org.
Version 0.65 for Windows.

[101] ACM/IEEE-CS Joint Task Force on Computing Curricula. Computer science
curricula 2013. Technical report, ACM Press and IEEE Computer Society
Press, December 2013.

[102] Lori Pridmore, Patrick Lardieri, and Robert Hollister. National cyber range
(ncr) automated test tools: Implications and application to network-centric
support tools. In AUTOTESTCON, 2010 IEEE, pages 1–4. IEEE, 2010.

[103] Guillaume Aubuchon, Kathy Cacciatore, Morgan Fainberg,
and Chris Hoge. Expediting digital workflow with open-
stack. https://www.openstack.org/assets/pdf-downloads/
OpenStack-Workflow-White-Paper-Letter-Final.pdf, 2015.

[104] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: To-
ward an open-source solution for cloud computing. International Journal of
Computer Applications, 55(3):38–42, October 2012.

[105] Gregory King. Oracle VM 3: Building a demo environment using Oracle VM
VirtualBox. http://www.oracle.com/technetwork/server-storage/vm/ovm3-
demo-vbox-1680215.pdf, 2012.

[106] Dejan Milojicic, Ignacio M. Llorente, and Ruben S. Montero. OpenNebula: A
cloud management tool. IEEE Internet Computing, 15(2):11–14, 2011.

[107] Robert M Axelrod. The complexity of cooperation: Agent-based models of
competition and collaboration. Princeton University Press, 1997.

[108] Jacques Ferber. Multi-agent systems: an introduction to distributed artificial
intelligence, volume 1. Addison-Wesley Reading, 1999.

[109] Richard M Fujimoto. Parallel and distributed simulation systems, volume 300.
Wiley New York, 2000.

[110] Dirk Merkel. Docker: lightweight linux containers for consistent development
and deployment. Linux Journal, 2014(239):2, 2014.

94

https://www.openstack.org/assets/pdf-downloads/OpenStack-Workflow-White-Paper-Letter-Final.pdf
https://www.openstack.org/assets/pdf-downloads/OpenStack-Workflow-White-Paper-Letter-Final.pdf

References

[111] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy
for autonomous agents. In Intelligent agents III agent theories, architectures,
and languages, pages 21–35. Springer, 1997.

[112] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and
practice. The knowledge engineering review, 10(02):115–152, 1995.

[113] Franco Cicirelli, Angelo Furfaro, and Libero Nigro. Modelling and simulation
of complex manufacturing systems using statechart-based actors. Simulation
Modelling Practice and Theory, 19(2):685 – 703, 2011.

[114] Chris Poulin. What retailers need to learn from the target breach to
protect against similar attacks. https://securityintelligence.com/
target-breach-protect-against-similar-attacks-retailers,
January 2014.

[115] Shane Schick. Security researcher: ebay vulnerabilities could have led
to drive-by attacks. https://securityintelligence.com/news/
security-researcher-ebay-vulnerabilities-led-drive-attacks/,
April 2015.

[116] Saman Zonouz, Amir Houmansadr, Robin Berthier, Nikita Borisov, and
William Sanders. Secloud: A cloud-based comprehensive and lightweight se-
curity solution for smartphones. Computers & Security, 37:215–227, 2013.

[117] Hacking square. http://hackingsquare.net.

95

https://securityintelligence.com/target-breach-protect-against-similar-attacks-retailers
https://securityintelligence.com/target-breach-protect-against-similar-attacks-retailers
https://securityintelligence.com/news/security-researcher-ebay-vulnerabilities-led-drive-attacks/
https://securityintelligence.com/news/security-researcher-ebay-vulnerabilities-led-drive-attacks/
http://hackingsquare.net

