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Sommario

L’Answer Set Programming (ASP) è un paradigma dichiarativo per la risoluzione
di problemi complessi caratterizzato dalla sua alta espressività e dalla possi-
bilità di rappresentare conoscenza incompleta. Per tali motivi l’ASP è ampia-
mente utilizzato in IA nonché adoperato come strumento per la rappresentazione
della conoscenza (KRR). Grazie al suo potere espressivo e alla disponibilità
di numerosi sistemi ASP, l’Answer Set Programming ha recentemente guadag-
nato popolarità e viene utilizzato in diversi domini applicativi. Questo ha reso
chiaro la necessità di apposite procedure e sistemi per facilitare lo sviluppo
di applicazioni basate su ASP. Inoltre, la sua diffusione da un ambito stret-
tamente teorico ad un ambito più pratico, richiede delle funzionalità aggiun-
tive per facilitare l’interoperabilità e l’integrazione con sistemi esterni. Miglio-
rare le prestazioni degli attuali sistemi ASP è un aspetto cruciale per consen-
tirne l’utilizzo in nuovi contesti applicativi. I contributi di questa tesi hanno
l’obbiettivo di affrontare proprio tali sfide, introducendo nuovi sistemi e tec-
niche per facilitare l’utilizzo di ASP. In particolare è stato presentato EMBASP:
un’architettura per l’integrazione dell’Answer Set Programming in sistemi es-
terni per generiche applicazioni con differenti piattaforme e risolutori ASP. EM-
BASP permette un meccanismo esplicito per la traduzione bilaterale di stringhe
riconosciute dai sistemi ASP e oggetti nel linguaggio di programmazione. Nel
presente lavoro sono anche stati definiti alcuni strumenti per gestire la com-
putazione esterna in programmi ASP, implementando un’infrastruttura per garan-
tire l’esecuzione di script Python tramite atomi esterni nel nuovo grounder ASP
I-DLV . È stato inoltre individuato e implementato, all’interno dello stesso sis-
tema, un’architettura addizionale per la creazione di direttive al fine di garantire
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l’interoperabilità, importante per fornire direttive predisposte per connessioni a
database relazionali e a grafi. Infine, per migliorare le prestazioni computazionali
dei sistemi attuali ASP, sono stati presentati i sistemi DLV2 e I-DLV+MS. DLV2
aggiorna il sistema DLV tramite nuove tecniche di valutazione, combinando I-
DLV con il moderno solver wasp, mentre I-DLV+MS è un nuovo sistema ASP
che integra I-DLV con un selettore automatico il quale sceglie induttivamente
il migliore solver ASP, in base alle caratteristiche intrinseche dell’istanziazione
prodotta da I-DLV .



Abstract

Answer Set Programming (ASP) is a well-established declarative problem solv-
ing paradigm; it features high expressiveness and the ability to deal with incom-
plete knowledge, so it became widely used in AI and it is now recognized as a
powerful tool for knowledge representation and reasoning (KRR).

Thanks to the expressive language and the availability of diverse robust sys-
tems, Answer Set Programming has recently gained popularity and has been ap-
plied fruitfully to a wide range of domains. This made clear the need for proper
tools and interoperability mechanisms that ease the development of ASP-based
applications. Also, the spreading of ASP from a strictly theoretical ambit to
more practical aspects requires additional features for easing the interoperability
and integration with other software; furthermore, improving the performance of
actual ASP system is crucial for allowing the use of the potential of ASP in new
practical contexts.

The contribution of this thesis aims at addressing such challenges; we intro-
duce new tools and techniques for easing the application of ASP. In particular, we
present EMBASP: a framework for the integration of ASP in external systems for
general applications to different platforms and ASP reasoners. The framework
features explicit mechanisms for two-way translations between strings recognis-
able by ASP solvers and objects in the programming language.

Furthermore, we define proper means for handling external computations in
ASP programs, and implement a proper framework for explicit calls to Python
scripts via external atoms into the ASP grounder I-DLV . We also define and
implement, into the same system, an additional framework for creating ad-hoc
directives for interoperability and make use of it for providing some ready-made
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ones for the connection with relational and graph databases.
Eventually, we work at improving the ASP computation, and present two new

ASP systems: DLV2 and I-DLV+MS. DLV2 updates DLV with modern evalua-
tion techniques, combining I-DLV with the solver wasp, while I-DLV+MS is
a new ASP system that integrates I-DLV , with an automatic solver selector for
inductively choose the best solver, depending on some inherent features of the
instantiation produced by I-DLV .
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Chapter 1
Introduction

Answer Set Programming (ASP) is a purely declarative formalism for knowledge
representation and reasoning developed in the field of logic programming and
nonmonotonic reasoning. Unlike the traditional programming languages, ASP
allows representation of a given computational problem by the means of a logic
program specifying a description of the desired solution. The problem is encoded
using logic rules, allowing for both disjunctions in rule heads and nonmonotonic
negation in the body, such that its solution can be computed as models, called
answer sets; hence, an answer set solver can be used in order to actually find
such solutions [75].

Unlike formalisms like Prolog that have strong procedural elements, the an-
swer set semantics is fully declarative, therefore neither the order of rules nor
the order of the literals affects the result and program termination. The answer
set semantics is an extension of the stable model semantics [61] that has been
enriched and generalized. Such work on the language definition has been carried
out by the scientific community, and several extensions have been studied and
proposed over the years until the ASP-Core-2 [17] standard language became
the official language of the ASP Competition series.

After more than twenty years of scientific research, the theoretical properties
of ASP are well understood as witnessed by the availability of a number of ro-
bust and efficient systems, including DLV [72], wasp [3], Cmodels [74], Smod-
els [81], IDP [100], lp2sat [67], and Potassco suite, clingo, clasp and gringo
[53, 52, 54]. The availability of such systems has enabled ASP to be employed
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in many different domains for practical applications for the development of in-
dustrial and enterprise applications [31, 45, 11]. Notably, this spreading of ASP
from a strictly theoretical ambit to more practical aspects make clear the need for
proper tools and interoperability mechanisms that ease the development of ASP-
based applications. Also, the increasing employment of ASP in many different
domains requires additional features for easing the interoperability and integra-
tion with other software by accommodating external source of computation and
value invention within ASP programs.

The “traditional” approach to the evaluation of ASP programs relies on a
grounding module (grounder), that generates a propositional theory semantically
equivalent to the input program, coupled with a subsequent module (solver) that
applies propositional techniques for generating its answer sets. Many ASP tools
are focused on one of the two processes, due to the complexity of implementing
a monolithic full ASP system. However, monolithic systems offer more control
over the entire process enabling new features for improving the performance due
to the coupling of the grounding and solving system. Moreover, the current ASP
solvers feature several different optimization techniques, thus causing them to
outperform each other, depending on the domain at hand. This is due to many
reasons, such as different data structures, input simplifications and heuristics
that might work better or worse, depending on the specific domain. Therefore,
one might think of obtaining consistently good performance over different prob-
lems by means of proper machine learning techniques that inductively choose
the “best” solver according to input features that increase the performance of the
actual ASP systems.

Contributions

The present work has the goal of proposing solutions for properly addressing
several challenges arising from the practical application of ASP in real-world
domains.

In particular, the main contributions of the work of this thesis summarised in
the following:

• We present EMBASP: a framework for the integration of ASP in external
systems for general applications along with ready-made specializations
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to different platforms and ASP reasoners. The framework features ex-
plicit mechanisms for two-way translations between strings recognisable
by ASP solvers and objects in the programming language, giving the de-
veloper the possibility to work separately on ASP-based modules and on
the applications that make use of them. In order to illustrate the use of the
framework, we present an actual Java implementation and several special-
ized libraries for the state-of-the-art ASP systems, on mobile and desktop
platforms, respectively, showing some applications developed that prove
the effectiveness of the framework.

• In order to facilitate the integration of ASP with external systems, as a
second contribution, we extend the ASP language with the capability of
handling external computations with explicit calls to Python scripts via
external atoms, and with interoperability mechanisms for the connection
with relational and graph databases via explicit directives for importing/-
exporting data. Similar features have been already proposed in the liter-
ature; however, we propose them here mainly for two reasons. First, we
wanted to enrich I-DLV , the new grounding module of the ASP system
DLV1, with such capabilites; furthermore, we wanted to guarantee optimal
performance in all scenarios, even at the cost of lowering the expressiv-
ity of the extensions. It is worth noting that I-DLV has been conceived
as a flexible tool for experimenting with ASP and its applications and as
a system explicitly adapt for encompassin extensions and new features.
We report the results of experiments assessing the performance of I-DLV
while making use of its novel features.

• A third contribution lays in the field of performance optimization. To this
end, we present two new ASP systems: DLV2 and I-DLV+MS. DLV2 up-
dates DLV with modern evaluation techniques, combining I-DLV with the
solver wasp. Also, DLV2 extends the core modules by application-oriented
features, using constructs, like directives, which customise the heuristics
of the system and improve its solving capabilities.

I-DLV+MS is a new ASP system that integrates I-DLV with an auto-

1It is worth noting that we were actively involved in the I-DLV project since the very begin-
ning, being part of the core team during our PhD program
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matic solver selector: machine-learning techniques are applied to induc-
tively choose the best solver among a set of available ones, depending
on the inherent features of the instantiation produced by I-DLV . We de-
fine a specific set of features, and then carry out an experimental analysis
for computing them over the instantiations obtained from the instances
of benchmarks submitted to the 6th ASP competition. Furthermore, we
test I-DLV+MS performance both against the state-of-the-art ASP systems
and the best-established multi-engine ASP system ME-ASP, proving that
I-DLV+MS, even though still at a prototypical stage, already shows good
performance.

Organization

The remainder of this work is structured as follows.
The first part introduces the syntax and the semantics of Answer Set Pro-

gramming and provides examples of knowledge representation and reasoning
and practical ASP applications. The second Part introduces the EMBASP frame-
work: in particular, the main reasons for improving ASP-based software and the
generalized framework EMBASP with the actual implementation are introduced.
After that, the external atoms and the explicit directives implemented in I-DLV
are introduced in Part three, to improve the interoperability of ASP systems. Af-
terwards, DLV2 and I-DLV+MS are presented in Part four.



Part I

Context
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Chapter 2
Answer Set Programming

Answer Set Programming (ASP) [13, 37, 40, 62, 79, 80] is a declarative for-
malism that has become widely used in Artificial Intelligence and recognized
as a powerful tool for Knowledge Representation and Reasoning (KRR). In this
chapter, we recall the syntax and semantics of ASP, according to the ASP-Core-2
standard [17], the official language of ASP Competition series [26, 57].

2.1 Syntax

A term is either a variable, a constant, an arithmetic terms or functional term.
By convention, strings starting with upper case letter refers to variables oth-

erwise are constants. Constants can be either symbolic constants (strings starting
with some lowercase letter), string constants (quoted strings) or integers.

An arithmetic terms has the form

• −(t)

• (t �u)

where t and u are terms and � ∈ {+,−,∗,/}; parentheses can optionally be omit-
ted in which case standard operator precedences apply.

Given a functor f (the function name) and terms t1, . . . , tk the expression
f (t1, . . . , tk) is a functional term if k > 0, whereas f () is a synonym for the sym-
bolic constant f .

6
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Example 2.1. Example of constants, variables ,arithmetic terms, and functional
terms are:

• Constants: 10, 1990, word, ”WORD”

• Variables: X , Y, W, Word

• Function Terms: f(10), f(word), f(X), f(W,10)

• Arithmetic Terms: X+1, Y*(R+T), −Y

A classical atom is p(t1, . . . , tn) where:

• p is a predicate of arity n;

• t1, . . . , tn are terms;

• n≥ 0.

If the arity of p is n = 0, parenthesis are omitted and the simpler notation p is
used. An a classical atom p(t1, . . . , tn) is ground if all its terms are constants.
A literal is either a positive literal or negative literal. A positive literal is an
atom p(t1, . . . , tn), while a negative literal is an atom preceded by the negation as
failure symbol not .

A built-in atom has form
t � u

where:

• �∈ {<,≤,>,≥,=, 6=};

• t and u are terms.

An aggregate element has the form

t1, . . . , tm : l1, . . . , ln

where:
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• t1, . . . , tm are terms;

• l1, . . . , ln are literals;

• m≥ 0 and n≥ 0.

An aggregate atom has the form

#agg{e1; . . . ;en} � u

where:

• e1; . . . ;en are aggregate elements;

• #agg ∈ {#count,#sum,#min,#max};

• �∈ {<,≤,>,≥,=, 6=};

• u is a term.

Given an aggregate atom a, the expressions a and not a are aggregate liter-
als. In the following, we write atom without further qualification to refer to some
classical, built-in or aggregate atom.

A disjunctive rule or rule r is a formula of the form

a1 | . . . | an :– b1, . . . ,bk, not bk+1, . . . , not bm.

where:

• a1 . . . an are classical atoms;

• b1 . . . bm are atoms;

• n≥ 0,m≥ k ≥ 0.

The disjunction
a1 | . . . | an

is the head of r, while

b1, . . . ,bk, not bk+1, . . . , not bm
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is the body of r. A rule without head atoms (i.e. n = 0) is usually referred
to as an integrity constraint. A rule has precisely one head atom (i.e. n = 1) is
called normal rule and if it have empty body (i.e. k = m = 0), it is called a fact.

We denote by H(r) the set of the head atoms, and by B(r) the set of the body
literals. B+(r) (resp., B−(r)) denotes the set of atoms occurring positively (resp.,
negatively) in B(r). Hence, the following sets are associated with a rule r of the
form:

• H(r) = {a1, . . . an};

• B(r) = {b1, . . . ,bk, not bk+1, . . . , not bm};

• B+(r) = {b1, . . . ,bk};

• B−(r) = {not bk+1, . . . , not bm}.

For a literal L, var(L) denotes the set of variables occurring in L. For a conjunc-
tion (or a set) of literals C, var(C) denotes the set of variables occurring in the
literals in C, and, for a rule r, var(r) = var(H(r))∪ var(B(r)). A rule r is safe if
each variable appearing in r appears also in some positive body literals of r, i.e.
var(r) = var(B+(r)).

Example 2.2. Consider the following rules:

• r1 : a(X) :– b(X ,Y +X).

• r2 : a(Y +1) :– not b(Y ).

• r3 : a(X , f (Y )) :– b(X ,Z).

Rule r1 is safe because all the variables appearing in r1 also appear in the pos-
itive body literals b(X ,Y ), however r2 and r3 are not safe because of variables
Y .

A weak constraint has the form

:∼ b1, . . . ,bn.[w@l, t1, . . . , tm]

where:
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• b1, . . . ,bn are literals;

• t1, . . . , tm are terms;

• n > 0 and m≥ 0;

• w standing for weight;

• l standing for level.

Writing the part “@l” can optionally be omitted if l = 0; that is, a weak constraint
has level 0 unless specified otherwise.

A program P is a finite set of rules and weak constraints. A program is ground
if no variables appear in it.

A predicate p is an Extensional Database (EDB) predicate if for each rule
r with p ∈ H(r), r is a fact; all other predicates are referred to as Intensional
Database (IDB) predicates.

2.2 Semantics

Given a disjunctive logic program P:

• The Herbrand Universe of P, denoted as UP, is the set of all constants
appearing in P;

• the Herbrand Base of P, denoted as BP, is the set of all ground atoms
constructible from the predicate symbols appearing in P and the constants
of UP.

A substitution σ is a mapping from a set V of variables to the Herbrand uni-
verse UP of a given program P. For some object O (rule, weak constraint, literal,
aggregate element, etc.), we denote by σ(O) the object obtained by replacing
each occurrence of a variable v ∈V by σ(v) in O.

Given a collection e1; . . . ;en of aggregate elements, the instantiation of {e1; . . . ;en}
is the following set of aggregate elements

inst({e1; . . . ;en}) =
⋃

1≤i≤n

{σ(ei)|σ is well-formed substitution for ei}
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A substitution σ is well-formed if the arithmetic evaluation, performed in a
standard way, of any arithmetic subterm is well-defined.

A ground instance of a rule or weak constraint r denoted as ground(r) is a
well-formed substitution σ for r and for every aggregate atom appearing in σ(r),
{e1; . . . ;en} is replaced by inst({e1; . . . ;en}).

Therefore we denote by ground(P) the set of all the ground instances of the
rules occurring in P

ground(P) =
⋃

r∈rules(P)

ground(r)

An interpretation I of P is a set of ground atoms that is a subset of BP. A
ground positive literal A is true with respect to an interpretation I if and only if
A ∈ I, otherwise A is false. A ground negative literal not A is true respect to an
interpretation I if and only if A is false, otherwise is not A is false.

An interpretation I satisfies a ground rule r if at least one atom in H(r) is
true, i.e. H(r)∩ I 6= /0, whenever all body literals of r are true, i.e. B+(r)⊂ I and
B−(r)∩ I = /0. Finally, an interpretation M is a model of P if M satisfies all rules
in ground(P). A model M for P is minimal if no model N for P exists such that
N is a proper subset of M, i.e. M ⊂ N. The set of all minimal models for P is
denoted by MM(P)

Given a ground program P and an interpretation I, the reduct of P respect I,
denoted by PI , is obtained from ground(P):

• deleting rules with false negative literals, i.e. ∀r ∈ ground(P) such that
B−(r)∩ I 6= /0;

• removing all true negative literals such that ∀r′ ∈ ground(P)I , H(r′) =
H(r) and B(r′) = B(r)+.

Definition 1. [83, 62] Let I be an interpretation for a program P. I is an answer
set for P if I ∈MM(PI) (i.e., I is a minimal model for the program PI).The set of
all answer sets for P is denoted by AS(P).
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Example 2.3. Given the general logic program P1 :

p2 | p3 :– p1.

p3 :– not p2, not p1.

p2 |p1 :– not p3.

and the interpretation I = {p3}, the reduct PI
1 consists of

{p3 :– not p2, not p1.}.
It is easy to see that I is a minimal model of PI

1 , and for this reason it is also an
answer set of P1. Now, consider J = {p2}. The reduct PJ

1 is {p2 | p1 :– not p3.}
and it can be easily verified that J is an answer set of P1. If, on the other hand,
we take K = {p1}, the reduct PK

1 is {p2 | p3 :– p1., p2 | p1 :– not p3.} and
K is not an answer set of PK

1 : the rule {p2 | p3 :– p1.}, is not true w.r.t K and
hence K is not a model for PK

1 . Indeed, it can be verified that I and J are the only
answer sets of P1.

Optimal Answer Set To select the optimal answer sets of AS(P), we map an
interpretation I to P as follow:

weak(P,I) = {(w@l, t1, . . . , tm)|
:∼ b1, . . . ,bn.[w@l, t1, . . . , tm] occurs in ground(P) and
b1, . . . ,bn are true respect to I }

For any integer l, let

PI
l = Σ(w@l,t1,...,tm)∈weak(P,I)w

denote the sum of integers w over tuples with w@l in weak(P, I). Then, an
answer set I ∈ AS(P) is dominated by I′ ∈ AS(P) if there is some integer l such
that PI′

l < PI
l and PI′

l′ = PI
l′ for all l′ > l.

Definition 2. An answer set I ∈ AS(P) is optimal if there is no I′ ∈ AS(P) such
that I is dominated by I′
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Example 2.4. Consider the following program P:

a | b.

b | c.

d | e :– a, c.

:∼ b.[1@1]

:∼ a, e.[4@1]

:∼ c, d.[3@1]

The AS(P) are: A1 = {a,c,d}, A2 = {a,c,e}, A3 = {b}. Then, we have:
PA1

1 = 3, PA2
1 = 4 , PA3

1 = 1. Thus, the unique (optimal) answer set is A1 = {b}
with weight 1 at level 1.



Chapter 3
ASP Computation

The traditional approach for a computation of an answer set is characterized by
two phases, namely instantiation (grounding) and answer set search, as depicted
in Figure 3.1. The first step transforms the input program into a semantically
equivalent one, i.e. a program without variables; the second phase applies a
propositional algorithm for finding answer sets.

3.1 Computation Flow

The instantiation phase is much more than a simple replacement of a variable by
using all possible ground terms. Indeed, grounding solves a complex problem
which is in general EXPTIME-hard [33]. Hence, instantiation has a significant
impact on the performance of the whole ASP system, because its output is the
input for an ASP solver which then, in the worst case, takes exponential time in
the size of the input [9, 10]. Therefore, an ASP grounder efficiently produces a
ground program which has precisely the same answer sets as the full one but is
much smaller in general.

The solving phase is divided into two modules: Model Generator and An-
swer Set Checker. The Model Generator takes as input a propositional ASP
program produced by the grounder and returns as output answer set candidates.
Meanwhile, the goal of the Answer Set Checker is to verify if a model is an an-
swer set for an input program. This task is computationally expensive in general,
because checking the stability of a model is well-known to be co-NP-complete

14
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Problem

Grounder

Solver

Logic Program

Stable 
Models

Ground 
Program

Solution

Figure 3.1: The ASP traditional computation
.

in the worst case [39]. In the case of hard problems, this check can be carried
out by translating the program into a SAT formula and checking whether it is
unsatisfiable.

3.2 Systems

The two first stable grounders were lparse [93] and the DLV instantiator. They
accept different classes of programs, and follow different strategies for the com-
putation. The first binds non-global variables by domain predicates, to enforce
ω-restrictedness [93], and instantiates a rule r scanning the extensions of the
domain predicates occurring in the body of r, generating ground instances ac-
cordingly. On the other hand, the only restriction on DLV input is safety. Fur-
thermore, the DLV instantiation strategy is based on semi-naive database tech-
niques [97] for avoiding duplication, and domains are built dynamically. Over
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the years, a new efficient grounder has been released, namely gringo [54]. The
first versions accepted only domain restricted programs with an extended notion
of domain literal in order to support λ -restrictedness [59]; starting form version
3.0, gringo removed domain restrictions and instead requires programs to be safe
as in DLV and evaluates them by relying on semi-naive techniques as well. An-
other grounder system is I-DLV: the new intelligent instantiator of DLV . The
new grounder has been redesigned and re-engineered with the aim of building
a renovated ASP grounder for improving the performance and native support
the ASP-Core-2 standard language [17]. I-DLV is more than an ASP grounder,
also resulting in a complete and efficient deductive database system. Moreover,
it has been extended with a number of optimization techniques that have been
explicitly designed by contextualizing it in the setting of an ASP grounder [23].

ASP solvers can be classified into based on translation and native according
to the evaluation strategies employed. Solvers based on translation, rewrite an
ASP program to other formula and then use specific solvers as black box, while
native solvers use explicit algorithms and data structures for dealing with ASP
programs.

ASSAT [76] was one of the first translation based solvers that rewrite an ASP
program into propositional formulas and then call an external SAT solver. Com-
parable techniques were also adopted by CMODELS[6] and more recently by the
lp2sat [67] family of solvers.

Among the first native solver, we mention DLV [71] and SMODELS [81].
DLV implement a backtracking technique with look-head heuristic supporting
cautious and brave reasoning. SMODELS implements a DPLL-like algorithm
based on source pointers as introduced in [92]. The system supports normal
logic programs, while disjunctive programs are supported by its extension called
GNT [68]. However, more recent ASP native solvers are clasp [52] and wasp
[3] systems. Both systems use source pointers, backjumping, learning, restarts,
and look-back heuristics. Nevertheless, the two systems differ on data structures
and input simplification. Moreover, wasp system have an enhancement version
of the algorithm of DLV concerning the computation of unfounded set. Instead,
clasp is based on nogoods [55] for the unfounded set check.

Among the monolithic ASP systems that incorporate both grounder and solver
systems we mention clingo [53] and DLV [72]. clingo is the union of gringo and
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clasp systems for the grounding and solving modules. Furthermore, after version
4.0, the system is able to exercise a form of control over the computational tasks,
with the main purpose of supporting dynamic and incremental reasoning, thanks
to the integration of gringo and clasp in a single system.

DLV has been one of the first robust and reliable ASP systems, and its project
dates back a few years after the first definition of answer set semantics [61, 62].
Moreover, DLV2 combines I-DLV grounder, with the well-assessed solver wasp,
allowing annotations and directives that customize heuristics of the system and
extend its solving capabilities, as will be seen see in Chapter 13.



Chapter 4
ASP at Work: Achievements and
Challenges

Thanks to the expressive language and the availability of diverse efficient sys-
tems, Answer Set Programming has recently gained popularity and has been
applied fruitfully to a wide range of domains, both in academia and in industry.

In this chapter, we introduce the use of ASP as a tool for knowledge rep-
resentation and reasoning and show how its fully declarative nature allows us
to encode a large number of problems using straightforward and elegant logic
programs. After that, we present with a brief overview and a proper reference
some of these ASP applications, in particular, in Artificial Intelligence, Robotics,
Bioinformatics, and industrial applications, also discussing current challenges
raised by these applications that ASP has to overcome.

4.1 Knowledge Representation and Reasoning

In this section we introduce the use of ASP as a tool for knowledge represen-
tation and reasoning. We first illustrate how to encode a classical problem of
the deductive database application; next we present a general ASP programming
methodology, and then test it on different computationally hard problems.

18
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4.1.1 Deductive Database Applications

In the following, we show how to encode a classical Deductive Database prob-
lems Reachability and Same Generation via a straightforward and elegant logic
program.

Reachability The problem amounts to computing all pairs of reachable nodes
in a graph G determining the transitive closure of the relation storing the edges.
Then given a directed graph G = (V,E), we shall compute all pairs of nodes
(v1,v2)∈V×V such that v2 is reachable from v1 through a non-empty sequence
of arcs in E.

In the following ASP encoding, the relation edge(X ,Y ) represents E, where
a fact edge(v1,v2) means that G contains an arc from v1 to v2, i.e., (v1,v2) ∈ E;
the set of nodes V is not explicitly represented, since the facts implicitly describe
the nodes. Hence, the following program computes a relation reachable(X ,Y )
containing all facts reachable(v1,v2) such that v1 is reachable from v2 through
the arcs of the input graph G:

reachable(X ,Y ) :– edge(X ,Y ).
reachable(X ,Y ) :– edge(X ,Z), reachable(Z,Y ).

Same Generation Given a parent-child relationship, represented by acyclic
directed graph, we shall find all pairs of persons belonging to the same gen-
eration. Two persons are of the same generation if they are either siblings, or
children of two persons of the same generation. If input is encoded by a rela-
tion parent(X ,Y ), where a fact parent(a,b) states that a is a parent of b, the
solution can be encoded by the following program, which computes a relation
same generation(X ,Y ) containing all facts such that X is of the same generation
as Y :

same generation(X ,Y )
:– parent(P,X), parent(P,Y ).

same generation(X ,Y ) :– parent(P1,X),

parent(P2,Y ), same generation(P1,P2).
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4.1.2 The GCO Declarative Programming Methodology

The “Guess&Check” (GC) paradigm [37] is one of the most common ASP pro-
gramming methodologies. A GC program features 2 modules:

• Guessing Part, that defines the search space (usually by means of disjunc-
tive rules);

• Checking Part, that checks solution admissibility (usually by means of
integrity constraints).

When dealing with optimization problems, the methodology can be further ex-
tended to match a “Guess/Check/Optimize”[14] (GCO) paradigm with a third
module:

• Optimizing Part (optional), that specifies preference criteria usually by
means of weak constraints.

We introduce here the application of GCO paradigm on a classical computa-
tionally hard problems.

3-COL The problem 3-colorability (3-COL) is a classical NP-complete prob-
lem, and consists of the assignment of three colors to the nodes of a graph in such
a way that adjacent nodes always have different colors.

The following program computes the admissible ways of coloring the pro-
vided graph G given a set of facts F : node and arc, that represent, respectively,
the nodes and the arcs of G.

r1 : color(X ,r) | color(X ,y) | color(X ,g) :–node(X).

r2 : :–arc(X ,Y ), color(X ,C), color(Y,C).

Rule r1 (guess) states that every node of the graph must be colored as red or
yellow or green indeed r2 (check) forbids the assignment of the same color to any
couple of adjacent nodes. The minimality of answer sets guarantees that every
node is assigned only one color. Thus, there is a unique correspondence between
the solutions of the 3-coloring problem and the answer sets of F ∪{r1,r2} and
therefore the graph represented by F is 3-colorable if and only if F ∪{r1,r2} has
some answer set.
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EXAM SCHEDULING Consider the problem of scheduling the exams for
several universities and each course should be assigned exactly in one of these
three time slots: t1, t2, t3. Specific instance of the problem are provided with a
set of facts F specifying the exams to be scheduled. The predicate exam has four
arguments representing, respectively, the identifier of the exam, the professor
who is responsible for the exam, the curriculum to which the exam belongs, and
the year in which the exam has to be allocated in the curriculum.

Several exams can be assigned to the same time slot but the same professor
in the same time slot cannot run two different exams. Furthermore, exams of
the same curriculum should be assigned to different time slots and if it is not
possible all exams of a curriculum C should minimize first of all the overlap
between exams of the same year of C and afterward between exams of different
years of C.

The problem can be encoded by the following program P:

r1 : assign(Id, t1) | assign(Id, t2) | assign(Id, t3) :–exam(Id,P,C,Y ).

r2 : :–assign(Id,T ), assign(Id′,T ),
Id 6= Id′, exam(Id,P,C,Y ), exam(Id′,P,C′,Y ′).

r3 : :∼assign(Id,T ), assign(Id′,T ),
exam(Id,P,C,Y ), exam(Id′,P′,C,Y ), Id 6= Id′.[1@2]

r4 : :∼assign(Id,T ), assign(Id′,T ),
exam(Id,P,C,Y ), exam(Id′,P′,C,Y ′), Y 6= Y ′.[1@1]

The guessing part has a single disjunctive rule (r1) defining the search space.
It is evident that the AS(r1 ∪F) are the possible assignments of exams to time
slots.

The checking part consists of one constraint (r2), discarding the assignments
of the same time slot to two exams of the same professor and the AS(r1∪ r2∪F)

correspond precisely to the admissible solutions.
Finally, the optimization part consists of two weak constraints (r3, r4). Both

weak constraints state that exams of the same curriculum should, if possible, not
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be assigned to the same time slot. However r3 which has higher priority (level
2), states this desire for the exams of the curriculum of the same year, while r4,
which has lower priority (level 1), states it for the exams of the curriculum of dif-
ferent years. Thus, the AS(P)∪F correspond precisely to the desired schedules.

SUDOKU Sudoku is a logic-based combinatorial puzzle. The objective of
the game is to fill a 9× 9 grid with numbers so that each column, each row,
and each of the nine 3×3 sub-grids that compose the grid (also called ”blocks”)
contains all of the digits from 1 to 9 and initially the puzzle provides a partially
completed grid.

The set of facts F given, representing the schema to be completed, are:

• a binary predicate pos encodes possible position coordinates;

• symbol is a unary predicate encoding possible symbols (numbers);

• facts of the form sameblock(x1,y1,x2,y2) state that two positions (x1,y1)
and (x2,y2) are within the same block;

• facts of the form cell(x,y,n) represent that a position (x,y) is filled with
symbol n.

The following ASP program computes the solutions of the Sudoku schema
at hand.

r1 : cell(X ,Y,N) | nocell(X ,Y,N) :– pos(X),

pos(Y ), symbol(N).

r2 : :– cell(X ,Y,N), cell(X ,Y,N1), N1 6= N.

r3 : assigned(X ,Y ) :– cell(X ,Y,N).

r4 : :– pos(X), pos(Y ), not assigned(X ,Y ).

r5 : :– cell(X ,Y 1,Z), cell(X ,Y 2,Z), Y 1 6= Y 2.
r6 : :– cell(X1,Y,Z), cell(X2,Y,Z), X1 6= X2.
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r7 : :– cell(X1,Y 1,Z), cell(X2,Y 2,Z), Y 1 6= Y 2,
sameblock(X1,Y 1,X2,Y 2).

r8 : :– cell(X1,Y 1,Z), cell(X2,Y 2,Z), X1 6= X2,
sameblock(X1,Y 1,X2,Y 2).

Rules r1−r4 ensure that each cell is filled with exactly one number (symbol),
guessing the value for each cell. Meanwhile, rules r5 and r6 check that a number
does not occur more than once in the same row or column and rules r7 and r8

ensure that in the same block two different cells do not have the same number.

4.2 Applications and Challenges

The main advantage of ASP is the high expressive power of its language allowing
the user to represent problems that belong to the complexity class ΣP

2 ,i.e. NPNP.
Moreover, ASP is fully declarative and the ASP program is straightforward, con-
cise and elegant as shown in Section 4.1. Due to the continuous improvements
of ASP solvers and the language extensions, as shown in Chapter 3.2, ASP has
been used in many different domains [45, 11]. It has been used in the areas of
Artificial Intelligence, Robotics, Bioinformatics, and also for industrial applica-
tions.

In the Robotics field, ASP has been used in various applications, such as
assembly planning, mobile manipulation, geometric rearrangement, multi-robot
path finding, coordination, and planning. For instance [44] present an application
of ASP to housekeeping robotics for planning actions of multiple PR2 robots. In
another work [46], the authors use ASP to study the problem of finding optimal
plans for multiple teams of robots through a mediator, to manufacture a given
number of orders within a given time. In [102] the authors use ASP to describe
objects and relations between them and to improve the localization of objects in
an indoor environment. The authors have also implemented it in a wheeled robot
navigating in an office building.

In order to meet requirements of different application domains, ASP has been
extended, to support higher-order atoms as well as external atoms. These exten-
sions of ASP, called HEX-Programs [41], allow one to embed external sources
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of computation in a logic program, as will be shown in Chapter 9. Thus, HEX-
programs are useful for various tasks, including meta-reasoning, data type ma-
nipulations, and reasoning on top of Description Logics. As an example, in [19]
they propose an AI agent for the computer game Angry Birds 1. The agent is
based on HEX-programs and guesses possible targets and estimates the damage
for each object. However, this estimation requires physics and external atoms
are used to interface with a physics simulator.

ASP has been applied in several biology and bioinformatics applications,
providing a declarative problem solving framework for combinatorial search
problems and knowledge-intensive reasoning tasks. For instance, in [96] the
authors propose an action language based framework for hypothesis formation
for signaling networks. They model a biological signaling network as an ac-
tion description in ASP and show that the hypothesis formation problem can be
translated into an abduction problem. This translation facilitates the complexity
analysis and illustrates the applicability with an example of hypothesis formation
in the signaling network of the p53 protein. In [60] they introduce an approach
to detecting inconsistencies in large biological networks by using ASP. In partic-
ular, the authors propose a methodology to provide explanations for inconsisten-
cies by determining minimal representations of conflicts and they compare the
yeast regulatory network with the genetic profile data of SNF2 knock-outs and
find the data to be inconsistent with the network. Moreover, ASP has been used
to study a variation of the protein structure prediction problem [34]. They present
experimental comparisons between the declarative encodings of various compu-
tationally hard problems in both ASP and Constraint Logic Programming over
finite domains (CLP(FD)) and investigate how the solvers in the two domains
respond to different problems. A related line of research is the 2D HP-protein
structure prediction problem, in which, given a protein sequence, the goal is to
find a folding of the sequence in the 2D square lattice space such that most HH
pairs are neighboring.

The availability of efficient ASP solvers has facilitated the implementation
of many advanced ASP applications, not only in academia but also in the in-
dustry. As an example, in [89] a system based on ASP has been developed to
automatically produce an optimal allocation of the available personnel of the

1https://www.angrybirds.com
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international port of Gioia Tauro. The system can build new teams satisfying
several constraints or complete the allocation automatically when the roles of
some key employees are fixed manually in a pure declarative manner, allowing
for the fine tuning of both problem specifications and ASP programs while in-
teracting with the stakeholders. Furthermore, ASP has been successfully applied
in applications in the tourism industry. For instance, ASP-based application has
been integrated into an E-tourism portal that implements a smart advisor for the
selection of the most promising offers for customers of a travel agency [66]. In
this application ASP has been used for developing different search modules with
the aim of selecting the holiday packages that best fit the customer’s needs. The
system enhances the business of the travel agency by reducing the time needed to
choose and sell the holiday offers, and suggests the offers which match the user
profile, thereby increasing the level of customer satisfaction. ASP has also been
successfully employed in in the health field. In particular, a multi-source data
cleaning system, whose goal is to detect and automatically correct both syntactic
and semantic anomalies in medical knowledge bases [73].The system has been
applied to clean up the data stored in the tumor registries of the Calabria Region,
integrating information from several neighborhood healthcare centers. Notably,
thanks to ASP a simplified specification of the logic of the data cleaning task can
be obtained.

We discussed above several successful applications of ASP, in different do-
mains. However, such widened application of the formalism to practical do-
mains addressed some important challenges concerning integration, interoper-
ability and scalability. Therefore, in the below paragraphs we describe these
three challenges raised by real ASP applications.

Integration. For instance, from a technical point of view, a large number
of software applications is developed by using object-oriented languages and
the need for integrating such type of applications with logic-based systems has
arisen. Moreover, the worldwide commercial, consumer and industrial scenario
has significantly changed recent years; smartphones or “smart”/wearable are
constantly gaining popularity as their computational power and features increase.
Furthermore, as shown in Section 3.2, the availability of a number of robust and
efficient systems is growing. In this context, there is still a lack of tools for the
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integration of ASP in external systems for generic applications, which ease the
development for different platforms and ASP reasoners. For example, in the con-
text of computer games, the use of ASP with the purpose of building an AI agent
can be intuitive and simple due to the fully declarative nature of ASP [48]. These
applications rely on a AI module based on ASP, which provides the correct action
to be performed during the game. However, the core module, i.e. the layer that
manages the application, is implemented using object-oriented languages and,
without external tools for easing the integration of ASP in an external system, a
user has to deal with the communications and the translation of input/output with
the specific ASP reasoner. Furthermore, the growing popularity of smartphone
devices increases the development of smartphone applications, including games
app. In this scenario, embedding the capabilities of ASP reasoner that can na-
tively run on mobile devices gives rise to the potential use of ASP also for these
platforms.

Interoperability. Extending the ASP language with the aim of easing the in-
teroperability and integration with external systems are other important chal-
lenges addressed by ASP. For instance, zLog system is a platform for customer
profiling for phone call routing based on ASP 2. The key idea is to classify cus-
tomer profiles and try to anticipate their actual needs for creating a personalised
experience of customer care service. Then, the operator of the call-center defines
the customer categories. Once a new category has been defined, zLog automat-
ically generates an ASP program which provides its logical encoding and can
be executed by DLV . The definition of customer categories is carried out via a
user-friendly visual interface that allows one to specify and modify categories.
When a customer calls the call-center, he/she is automatically assigned to a cate-
gory (based on his/her profile) and then routed to an appropriate human operator
or automatic responder. The zLog platform has been deployed in a production
system handling Telecom Italia call-centers, and it is in actual use. Every day,
over one million telephone calls for diagnostic services reach the call-centers of
Telecom Italia. To manage all the calls, the system has been parallelised using a
multiprocessor architecture to cope with the high workload. In this type of ap-
plications, the performance of ASP system is crucial and, without using parallel

2http://www.exeura.eu/en/solution/customer-profiling
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architecture simplifies the development of the entire system. Moreover, the zLog
platform executes DLV over a database system implementing an ad-hoc module
for the connection between DLV and the relational database. In this context, eas-
ing the interoperability and integration of ASP with external system simplifies
the use of the language, especially in the application in which data are stored
in a relational database. Extension of the ASP language that allows the user to
import from or export data to a different source of knowledge, not only obviates
the need for the development of specific middleware to handle connections with
those sources but also grants additional performance due to the integration into
the ASP solver.

Scalability. Another challenge is the grounding blow-up of the program that
makes the usage of plain ASP unviable. For instance a recent application of
ASP to abduction in Natural Language Understanding [91] shows that plain ASP
solvers are not effective. In particular, this work studied the abduction in First
Order Horn logic theories where all atoms can be abduced, i.e. aims to find a set
of explanatory atoms that make a set of goal atoms true with respect to a back-
ground theory. Also, preferred solutions among possible abductive explanations
have been chosen concerning three objective functions: cardinality minimality,
coherence, and weighted abduction. Then, they represent this reasoning problem
in ASP, in order to obtain a flexible framework for experimenting with global
constraints and objective functions, and to test the boundaries of what is possible
with ASP. However, realizing this problem in ASP is challenging as it requires
value invention and equivalence between certain constants and, in particular, it
has been shown in [91] that the grounding of all constraints makes the solving
step too hard for state-of-the-art solvers. Hence, the evaluation of these prob-
lems through identifying the set of rules that cause the blow-up and instantiates
lazily during the solving is another important challenge that requires a coupling
of grounding and solving systems in a monolitic ASP system.



Part II

Integrating ASP Systems into
external applications
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Chapter 5
Improving ASP-based Software
Development: State of the Art and
Motivations

The theoretical properties of ASP, after more than twenty years of research, are
well understood and the solving technology, as evidenced by the availability of
many robust and efficient systems [26], is mature for practical applications, as
we show in Chapter 4. Notably, ASP teaching is growing in universities world-
wide, and, significantly, is switching its focus from narrowly theoretical to more
practical aspects.

However, a significant number of software applications is being developed
by using object-oriented languages, hence the need for integrating this type of
application with logic-based systems. In recent years embedding ASP reason-
ing modules into external systems has been investigated in the literature. For in-
stance, the DLVJava Wrapper [88] is a library implemented in Java, that “wraps”
the DLV system inside an external application acting as an interface between Java
programs and the DLV system and handle input and output of DLV by using Java
objects. Another framework for integrating DLV in an external system is JDLV,
that acts as a “wrapper” as the Java Wrapper, but also provides an advanced plat-
form for integrating Java with DLV using JPA annotations for defining how Java
classes map to ASP program, similarly to ORM frameworks.

Work in [87] introduces a formal language for defining mappings of in-
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put/output of an ASP program in the form of objects intended to be handled
by various programming languages. A Python library, namely PY-ASPIO, is
in charge of interfacing the statements embedded in the ASP program with the
selected object-oriented language guided by custom annotations on the program-
ming language code.

Concerning generic logic-embedding tools Tweety [94] is an open source
framework for experimenting with logical aspects of artificial intelligence. It
consists of a set of Java libraries that allow a user to use different knowledge rep-
resentation systems supporting different logic formalisms, ranging from classical
logics, over logic programming and computational models for argumentation, to
probabilistic modeling approaches, including ASP.

Despite the various frameworks described above, none of them is able to
overcome the challenge introduced in Section 4.2 and there is still a lack of
tools for taking advantage of the knowledge representation capabilities of ASP
in the widest range of contexts of the mobile setting. Moreover, most of them
are specifically bound to a single or specific solver, like Java Wrapper or JDLV,
and the connection between the logic-based aspects and the object-oriented are
very tight. The benefits of a flexible translation between Java Object and ASP
language gives developers the possibility to work separately on ASP-based mod-
ules and on applications that make use of them, and keep things simple when
developing complex applications. Let us think, for instance, of a scenario in
which different figures are involved, such as Android/Java developers and KRR
experts. Both figures can take advantage of the fact that the knowledge base and
the reasoning modules can be designed and developed independently from the
rest of the Java-based application.

In the following, we present EMBASP a framework for the integration of ASP
in external systems for generic applications. The work starts with the goal to ease
the development of mobile applications natively using logic-based reasoners and
to our knowledge, it represented the first attempt reported in the literature for
ASP [20, 21]. Nevertheless, the framework has been extended [47] for fostering
the use of ASP within real-world and industrial contexts, where it gained pop-
ularity; the framework has been made more abstract, and independent from the
running platform.



Chapter 6
A Novel General Approach for
Embedding Declarative Reasoning
Modules: EMBASP

In this chapter we present EMBASP: a framework for the integration of ASP in
external systems for generic applications. It consists of an abstract architecture,
implementable in a programming language of choice. The work starts with the
goal to allow the usage of the ASP reasoners on mobile platforms and it rep-
resented the first attempt reported in the literature [20, 21]. Nevertheless, the
framework has been extended [47] to easily allows proper specializations to dif-
ferent platforms and ASP reasoners. In the following section, we present the
EMBASP architecture and then, propose a Java implementation.

The general architecture of EMBASP is depicted in Figure 6.1. It defines
an abstract framework to be implemented in some object-oriented programming
language. Due to its abstract nature, Figure 6.1 just reports the general depen-
dencies of the main modules. Moreover, each concrete implementation might
require specific dependencies from the inner components of each module, as can
be observed in Figure 6.2, which is related to a concrete Java implementation
and will be discussed hereafter.

The aim of the framework design is intended to ease and guide the genera-
tion of suitable libraries for the use of specific solvers on particular platforms;
resulting applications manage ASP solvers as “black boxes”. Therefore, the re-
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sulting libraries can be used in order to effectively embed ASP reasoning mod-
ules within any kind of application developed for the targeted platforms, han-
dled by the ASP system(s) at hand. In addition, as already discussed above,
the framework is meant to give developers the possibility to work separately on
ASP-based modules and on the applications that makes use of them, thus keep-
ing things simple when developing complex applications. Additional specific
advantages/disadvantages might arise depending on the programming language
chosen for deploying libraries and on the target platform; special features, in fact,
can make implementation, and in turn extensions and usage, easier or harder, to
varying degrees.

6.1 Abstract Architecture

The framework architecture has been designed by means of four modules: Core,
Platforms, Languages, and Systems, whose indented behavior is described next.

Core Module

The Core module defines the basic components of the Framework.
The Handler component mediates the communication between the Frame-

work and the user who can provide it with the input program(s) via the compo-
nent Input Program, along with any desired solver’s option(s) via the component
Option Descriptor. A Service component manages the chosen solver executions.

Two different execution modes can be made available: synchronous or asyn-
chronous. While in the synchronous mode any call to the execution of the solver
is blocking (i.e., the caller waits until the reasoning task is completed), in asyn-
chronous mode the call is non-blocking: a Callback component notifies the caller
once the reasoning task is completed. The result of the execution (i.e., the output
of the logic system) is handled by the Output component, in both modes.

Platforms Module

The Platforms module contains what is platform-dependent; in particular, the
Handler and Service components from the Core module that should be adapted
according to the platform at hand, due to their role in launching solvers.
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Figure 6.1: A visual overview of EMBASP: the abstract Framework with the general
dependencies of the main modules represented by empty arrows, and the proposed Spe-
cialized Libraries. Darker blocks are related to the proposed specializations.

Languages Module

The Languages module defines specific facilities for each supported logic lan-
guage.

The generic Mapper component is conceived as a utility for managing input
and output via objects, if the programming language at hand permits it.

The sub-module ASP comprises components such as ASPInputProgram that
adapts Input Program to the ASP case, while AnswerSet and AnswerSets repre-
sent the Output for ASP. In details, AnswerSets represents the output of an ASP
system, i.e. a set of Answer Set, and AnswerSet describe a single Answer Set.
Moreover the ASPMapper allow management of ASP input facts and answer sets
via objects.
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Figure 6.2: Simplified class diagram of the provided Java implementation of EMBASP.

Systems Module

The Systems module defines what is system-dependent. In particular, the In-
put Program, Output and Option Descriptor components from the Core module
should be adapted in order to effectively interact with the solver at hand.

6.2 Implementing EMBASP

In the following, we propose a Java1 implementation of the architecture de-
scribed above. Besides the implementation of the framework itself, proper spe-
cialized libraries have been implemented.

In particular we implemented the main modules by means of classes or inter-
faces, and four specialized libraries that permit the use of DLV (ver. 12-17-2011)

1https://www.oracle.com/java
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on Android2 and the use of clingo on desktop. In addition, the recently released
DLV2, a completely renewed version of DLV , has been embedded which com-
bines the ASP grounder I-DLV [23] and the wasp solver [1].

Figure 6.2 provides details about classes and interfaces of the implementa-
tion. In order to better outline correspondences with the abstract architecture
of Figure 6.1, classes belonging to a module have been grouped together. The
complete UML class diagram is available online at [43].

Core module implementation

Each component in the Core module has been implemented by means of an
homonymous class or interface.

In particular, the Handler class collects InputProgram and
OptionDescriptor objects communicated by the user.

As far as the asynchronous mode is concerned, the class Service depends
on the interface Callback, since once the reasoning service has been terminated,
the result of the computation is returned back via a class Callback.

Platforms module implementation

In order to support a new platform, the Handler and Service components must
be adapted.

As for the Android platform, we developed an AndroidHandler: this han-
dles the execution of an AndroidService, which provides facilities for running
the execution of an ASP reasoner on the Android platform.

Similarly, for the desktop platform we developed a DesktopHandler and a
DesktopService, which generalizes the usage of an ASP reasoner on the desk-
top platform, allowing both synchronous and asynchronous execution modes.

While both synchronous and asynchronous modes are provided in the desk-
top setting, we stick to the asynchronous one on Android: indeed, mobile users
are familiar with apps featuring constantly reactive graphic interfaces, and ac-
cording to this native asynchronous execution policy, we want to discourage a
blocking execution.

2http://developer.android.com
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Languages module implementation

This module includes specific classes for the management of input and output to
ASP solvers.

The Mapper component of the Languages module is implemented via a
Mapper class, that translate input and output into Java objects. Such transla-
tions are guided by Java Annotations3, a form of metadata that mark Java code
and provide information that is not part of the program itself: they have no direct
effect on the operation of the code they annotate.

In this contex, we make use of such a feature so that it is possible to translate
input and output into strings and vice-versa via two custom annotations, defined
according to the following syntax:

• @Id (string name): the target must be a class;

• @Param (integer position): the target must be a field of a class annotated
via @Id.

In particular, for ASP @Id represents the predicate name of a ground atom
that can appear as input (fact) or output (within the returned answer set(s)), while
fields annotated with @Param define the terms and their positions in such atoms.

By means of the Java Reflection mechanisms, annotations are examined at
runtime, and taken into account to define the translation properly.

The user has to register all annotated classes to the Mapper, although the
classes involved in input translation are automatically detected. If the classes
intended to translate are not annotated or not correctly annotated, an exception
is raised. Other problems might occur if, once that the solver output is returned,
the user asks for a translation into objects of non annotated classes: in this case
a warning is raised and the request is ignored.

Notably, this feature designed to allow developers the possibility to work
separately on the logic-based modules and on the Java side. The mapper acts as
a middle-ware that enables the communication among the modules, and eases
the burden of developers by means of an explicit, ready-made mapping between
Java objects and the logic modules.

Further insights on this feature are illustrated in the next chapter by means of
some EMBASP use cases.

3https://docs.oracle.com/javase/tutorial/java/annotations/
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Moreover, the ASPMapper class, which acts like a translator, provides the
means for a two-way translation between strings recognizable by the ASP solver
at hand and Java objects directly employable within the application. Its aim is to
translate ASP input and output from and to objects: thus we find a dependency
between ASPInputProgram and AnswerSets classes. ASPInputProgram ex-
tends InputProgram to the ASP case. In addition, since the “result” of an ASP
solver execution consists of answer sets, the Output class has been extended by
the AnswerSets class composed of a set of AnswerSet objects.

Systems Module Implementation

The classes DLVAnswerSets, ClingoAnswerSets and DLV2AnswerSets imple-
ment specific extensions of the AnswerSets class, in charge of manipulating the
output of the respective solvers.

Moreover, this module contain classes extending OptionDescriptor to im-
plement specific options of the solver at hand. For instance, the class DLVFilter
is a utility class representing the filter option of DLV.

6.3 Specializing the Framework

The implemented library derived from EMBASP allows the embedding of ASP
reasoning module in external systems for generic applications. These computa-
tions are handled by DLV from within Android and Desktop applications, and by
DLV2 and clingo inside standalone Desktop applications.

The classes DLVDesktopService, ClingoDesktopService and
DLV2DesktopService are in charge of offering ASP reasoning on Desk-
top platform while DLVAndroidService offer the same support on Android.

DLVAndroidService is a specific version of AndroidService for the exe-
cution of DLV on Android. DLV was not available for Android because it is na-
tively implemented in C++, while the standard development process on Android
is based on Java. To this end, DLV has been purpose rebuilt using the NDK (Na-
tive Development Kit)4, and linked to the Java code using the JNI (Java Native

4https://developer.android.com/tools/sdk/ndk
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Interface)5. This grants access to the APIs provided by the Android NDK, and
in turn accedes to the DLV exposed functionalities directly from the Java code
of an Android application. The previously described procedure for the execution
of DLV on Android grants the porting of any C++ code on Android platform and
therefore using NDK and JNI is possible also the porting of clingo and DLV2
systems.

DLVDesktopService, ClingoDesktopService and
DLV2DesktopService are specific versions tailored for the DLV , clingo
and DLV2 reasoners, respectively, on the desktop platform; they extend the
DesktopService with functions needed to invoke the embedded solver(s).

5http://docs.oracle.com/javase/8/docs/technotes/guides/jni



Chapter 7
Embedding ASP Programs

In this chapter we show how to employ the Java libraries generated via EMBASP
for making use of ASP within an actual Java application. Then, in the following,
we shall describe the development of an Android application based on ASP, for
solving Sudoku puzzles. Notably, although the following example application
makes use of one formalism via one solver, EMBASP also allows the user to
deploy applications that rely on multiple logic formalisms and multiple solvers
at once.

Suppose that a user designed (or has been given) a proper logic ASP program
P to solve a Sudoku puzzle, and also that she has been provided with an initial
schema to be solved. For instance, P can correspond to the logic program pre-
sented in Section 4.1, so that, coupled with a set of facts F representing the given
initial schema, this allows the user to obtain the only possible solution (i.e., a sin-
gle answer set). By means of the annotation-guided mapping, the initial schema
can be expressed in forms of Java objects. To this extent, we define the class
Cell, aimed at representing a single cell of the Sudoku schema, as follows:

1 @Id("cell")
2 p u b l i c c l a s s Cell {

3
4 @Param (0)

5 p r i v a t e i n t row;

6
7 @Param (1)

8 p r i v a t e i n t column;

9
10
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11 @Param (2)

12 p r i v a t e i n t value;

13
14 p u b l i c Cell() {

15 row = column = value = 0;

16 }

17
18 [...]

19
20
21 }

It is worth noting how the class has been annotated by two custom annota-
tions, as introduced above. Thanks to these annotations the ASPMapper will be
able to map Cell objects into strings recognizable from the ASP solver as logic
facts of the form cell(Row,Column,Value). Also, the mapped class must be a
JavaBean class and in particular follow this convention:

• The class must have a public default constructor. This allows instantiation
of the objects.

• The class properties must be accessible using getter, setter methods . This
allows easy automated inspection and updating the field of the objects.

At this point, we can create an Android Activity Component 1, and start
deploying our Sudoku application:

1 p u b l i c c l a s s MainActivity e x t e n d s AppCompatActivity {

2
3 [...]

4 p r i v a t e Handler handler;

5
6 @Override

7 p r o t e c t e d v o i d onCreate(Bundle bundle) {

8 handler = new AndroidHandler(getApplicationContext (),

9 DLVAndroidService. c l a s s );
10 [...]

11 }

12
13 p u b l i c v o i d onClick( f i n a l View view){

14 [...]

15 startReasoning ();

16 }

17
18 p u b l i c v o i d startReasoning () {

1https://developer.android.com/reference/android/app/Activity.html
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19 InputProgram inputProgram =

20 new ASPInputProgram ();

21 f o r ( i n t i = 0; i < 9; i++){

22 f o r ( i n t j = 0; j < 9; j++)

23 t r y {

24 i f (sudokuMatrix[ i ] [ j ]!=0) {

25 inputProgram.addObjectInput(

26 new Cell(i, j, sudokuMatrix[i][j]));

27 }

28 } c a t c h (Exception e) {

29 // Handle Exception

30 }

31 }

32 handler.addProgram(inputProgram);

33
34 String sudokuEncoding =

35 getEncodingFromResources ();

36 handler.addProgram(new
37 ASPInputProgram(sudokuEncoding));

38
39 Callback callback = new MyCallback ();

40 handler.startAsync(callback);

41 }

42 }

The previous class contains a Handler instance, that is initialized when the
Activity is created as an AndroidHandler. Also, required parameters in-
clude the Android Context (an Android utility, needed to start an Android
Service Component) and the type of AndroidService to use in our case, a
DLVAndroidService. Besides, the initial Sudoku schema is represented by a
matrix of integer 9×9 where position (i, j) contains the value of cell (i, j) in the
initial schema; cells initially empty are represented by positions containing zero.
The method startReasoning is in charge of actually managing the reasoning:
in our case, it is invoked in response to a “click” event that is generated when the
user asks for the solution. Lines 19–32 create an InputProgram object that first
is filled with Cell objects, representing the initial values of the schema, and then
served to the handler. Using the utility function getEncodingFromResources()
the ASP program is loaded from the Android Resources folder and lines 34–37
provide it to the handler. At this point, the reasoning process can start, and a
callback object is in charge of fetching the output when the ASP system has
done (Lines 39–40) (since for Android we provide only the asynchronous exe-
cution mode). Once the computation is over, the output can be retrieved directly
in the form of Java objects and eventually a possible solution can be displayed.
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For instance, in our case an inner class MyCallback implements the interface
Callback:

1 p r i v a t e c l a s s MyCallback i m p l e m e n t s Callback {

2
3 @Override

4 p u b l i c v o i d callback(Output o) {

5 i f (!(o i n s t a n c e o f AnswerSets))

6 r e t u r n ;

7 AnswerSets answerSets =( AnswerSets)o;

8 i f (answerSets.getAnswersets ().isEmpty ())
9 r e t u r n ;

10 AnswerSet as = answerSets.getAnswersets ().get (0);

11 t r y {

12 f o r (Object obj:as.getAtoms ()) {

13 Cell cell = (Cell) obj;

14 sudokuMatrix[cell.getRow ()]

15 [cell.getColumn ()] = cell.getValue ();

16 }

17 } c a t c h (Exception e) {

18 // Handle Exception

19 }

20 displaySolution ();

21 }

22 }

The complete code of the previous example is in Appendix B

Notably, the architecture and the design of EMBASP do not affect the per-
formance of the ASP systems. Indeed, we test the performance of the presented
program against the simple running of DLV via command line, i.e. without us-
ing EMBASP, with different initial Sudoku schema. The results show compa-
rable time proving that the two-way translation of Java objects and the call of
the ASP system implemented in EMBASP not influence the performance of the
ASP-based applications.

7.1 Generalizing the Framework

The implementation illustrated above relies on Java: a very popular, solid and re-
liable programming language. Besides, the choice of Java was also justified mo-
tivated by the intention to foster the use of ASP in new scenarios, in particular in
the mobile one and Android is by far the most widespread mobile platform, and
its development and deployment models heavily rely on Java. However, the ab-
stract architecture of EMBASP can be made concrete using other object-oriented
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programming languages. Most of components in the Java implementation pre-
sented herein have been accomplished thanks to features that are typical of any
object-oriented language, such as inheritance and polymorphism. The only ex-
ception is represented by the ASPMapper component, implemented by means of
Java peculiar features, such as annotations and reflection. In case of other lan-
guages that feature similar constructs, such as C# 2, the approach can resemble
the herein presented Java implementation.

With different languages that lack such features, the mapping mechanism
can still be implemented with a simulation via inheritance and polymorphism
and applying typical Software Engineering patterns [49]. As an example, one
possible implementation can be accomplished with the Prototype design pattern,
that is well-suited to our purposes, as it allows the user to “specify the kinds of
objects to create using a prototypical instance, and create new objects by copying
this prototype” [49]. Indeed, a Python version of the framework is available in
[43].

2Microsoft Developer Network, MSDN: C# Attributes (https://msdn.microsoft.com/en-
us/library/mt653979), C# Reflection (https://msdn.microsoft.com/en-us/library/mt656691)



Chapter 8
EMBASP on the Field: some actual
ASP-Based Applications

In this chapter, we describe some ASP-based applications developed in the con-
text of a university course that covers ASP topics, in particular, developed by
some of the course attendants, i.e., undergraduate students. The most important
aspect is the engagement of university (under)graduate students in ASP capabil-
ities, in order to make them able to take advantage of it when solving problem
and designing solutions, in the broadest sense.

In the following, we briefly introduce four Android applications that make
use EMBASP framework along with the project links that contains the full code
of the apps, where available.

GuessAndCheckers

GuessAndCheckers1 is a mobile application that works as a helper for users that
play “live” games of the (Italian) checkers (i.e., using physical board and pieces).
The application runs on Android and helps a player at any time by means of
the camera that takes a picture of the board, and infers the information about
the current status of the game thanks to OpenCV2, an open source computer
vision and machine learning software. Then, an ASP-based artificial intelligence

1https://github.com/vincenzoarieta93/GuessAndCheckers
2http://opencv.org
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module suggests the next move.
Thanks to EMBASP and the use of ASP, GuessAndCheckers features a fully-

declarative approach that made it easy to develop and improve several different
strategies, also experimenting with many combinations thereof.

DLVEdu

DLVEdu is an educational Android App for children, that integrates well-established
mobile technologies, such as voice or drawn text recognition, with the modeling
capabilities of ASP. In particular, it can guide the child throughout the learning
tasks, by proposing a series of educational games, and developing a personalized
educational path. The games are divided into four macro-areas: Logic, Numeric-
Mathematical, Memory, and Verbal Language. The usage of ASP allows the ap-
plication to adapt to the games already played by the user, her learning gap, and
the obtained improvements.

The application continuously profiles the user by recording mistakes and suc-
cesses, and dynamically builds and updates a customized educational path along
the different games.

The application features a “Parent Area”, that allows parents to monitor
child’s achievements and to express preferences, such as directions regarding
access to certain games or educational areas.

Connect4

The popular turn-based Connect Four game is played on a vertical 7× 6 rect-
angular board, where two opponents drop their disks with the aim of creating a
line of four, either horizontally, vertically, or diagonally. The Connect4 appli-
cation allows a user to play the game (also known as Four-in-a-Row) against an
ASP-based artificial player. Notably, the declarative nature of ASP, its expres-
sive power, and the possibility to compose programs by selecting rules to design
and implement different AIs, ranging from the most powerful one, that imple-
ments advanced techniques for the perfect play, to the simplest one, that relies
on traditional heuristic strategies. Furthermore, by using EMBASP, two different
versions of the same app have been built: one for Android, making use of DLV ,
and one for desktop platforms, making use of clingo.
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DLVfit

The DLVFit3 Android App was the first application making use of the frame-
work; it was conceived as a proof of concept, in order to show the framework
features and capabilities. To our knowledge, it is also the first mobile app na-
tively running an ASP solver.

DLVfit is a health app that offers suggestions to the owner of a mobile de-
vice the “best” way to achieve fitness goals. The app lets the user express her
own goals and preferences in a customizable way along with many composable
dimensions, such as calories to burn, time to spend, differentiation over several
physical activities and time constraints. Then, it monitors her actual activities
throughout the day by means of the Google Activity Recognition APIs 4, a de-
facto standard on Android, thus relying on these for the accuracy of detection.
At any time, the user might ask for a suggestion about a workout plan for the rest
of the day, and the reasoning module hence prepares a (set of) workout plans in
line with the personal goals and preferences previously expressed.

3https://github.com/brainatwork/DLVfit
4https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognition



Part III

Easing Interoperability of ASP
Systems
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Chapter 9
Improving Interoperability: State of
the Art and Motivations

While the Answer Set Programming has been increasingly employed in many
different domains, and also used for the development of industrial-level and en-
terprise applications, current trends expressed the need for access to external
sources.

The availability of external sources of computation has been already recog-
nized as a desirable feature of ASP systems in the literature; indeed, all major
ASP systems are endowed with such capabilities to different extents: we men-
tion here the HEX-programs supported by dlvhex [38] and the support for Python
computation by clingo [51]. Notably, some forms of external computation and
value invention were also supported by the ASP system DLV [15, 16].

The embedding of external sources of computation in a logic program is use-
ful for many tasks, as it allows to provide a general interface between high-level
reasoning modules and different sources of both computation and data/knowl-
edge. One of the first attempt to embed external computations in ASP was in [27]
that introduce a framework aimed at enabling ASP to deal with external sources
of computation (DLV-EX). The framework includes the explicit possibility of in-
vention of new values from external sources in order to deal in a satisfactory
way with infinite domains such as strings or natural numbers, or with such data
types need of ad hoc manipulation constructs, which are typically difficult to be
encoded and cannot be efficiently evaluated in logic programming.
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HEX-atoms [42] have been introduced with the capabilities for higher-order
reasoning and interfacing with external sources of computation for interoper-
ability with the Ontology Layer of the Semantic Web. The HEX-semantics was
implemented in the dlvhex [38] system, and more precisely an external atoms
have the form:

&p[Y1, . . . ,Yn](X1, . . . ,Xm)

where Y1, . . . ,Yn are input parameters (which can be either a constant or variable
term, or a predicate), X1, . . . ,Xm are output terms and p is an external predicate
name. External atoms are realized as plugins of the reasoner using a program-
ming interface. To this end, a user of an external source basically implements its
oracle function.

In an early version of dlvhex external atoms were seen as black boxes and
it was assumed that the system did not have any information. However, in
many applications, a provider has additional knowledge about the behavior of
the source, for instance, that the source is monotonic, functional, has a limited
domain. Knowing such properties, in dlvhex a user can specify a set of properties
that external sources might have, and allow the system to use more specialised
algorithms which are tailored to the particular external sources.

Utilizing scripting languages also the ASP clingo [51] enriches the input lan-
guage with external computations. It allows functions that are evaluated during
grounding and the external function syntax look like function terms but are pre-
ceded by “@”.

However, unlike HEX-atoms, the communication between the ASP system
and external scripts is only possible in grounding phases and is not tightly cou-
pled to the model generation. Consequently, external atoms in dlvhex offer com-
plete supports for external source of knowledge but are inherently more difficult
to evaluate. The difficulty comes especially in nonmonotonic behavior because
HEX-atoms can take as input predicate extensions and then a coupling with a
model generator is needed for the evaluation of the external function.

The above described systems support external sources of computation us-
ing external atoms or functions seen as oracle function by the ASP systems and
implemented using an imperative programming language, like Python. Exter-
nal atoms improve interoperability of ASP with external systems, however, even
though this approach relying on external atoms perfectly reaches the original
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goal, there are some reasons in favour of a “native” support for such features.
For instance, as we show in Section 4.2, in scenarios in which a management of
high volume of data is needed the use of external atoms is not crucial while ac-
cessing standard knowledge sources is vital. Therefore, in the next chapters, we
present the advancements in I-DLV aiming at easing the integration with exter-
nal systems: the handling of external computations with explicit calls to Python
scripts via external atoms, and interoperability mechanisms for the connection
with relational and graph databases via explicit directives.



Chapter 10
External Sources of Computations

I-DLV supports the call to external sources of computations within ASP pro-
grams by means of external atoms [22, 24],whose extension is not defined by
the semantics within the logic program, but rather is specified by means of ex-
ternal Python programs. They are inspired by the ones supported in dlvhex [38],
although there are some differences; for instance, in dlvhex external atoms can
have as input parameters also predicates, while relational inputs are not permitted
in I-DLV; this implies that I-DLV external atoms can be completely evaluated at
the grounding stage, while in dlvhex an external atom, in general, might need to
wait for the solving phase in order to be evaluated, depending on the interpreta-
tion in question.

In the next sections we describe syntax and semantics of the constructs, then
illustrating their use by a few examples.

10.1 External Atoms

An external atom have the form:

&p(t0, . . . , tn;u0, . . . ,um)

where:

• p is an external predicate;
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• t0, . . . , tn are input terms;

• u0, . . . ,um are output terms;

• n+m > 0.

The name of an external predicate starts with “&” symbol and input terms are
separated from the output terms by “;”. Note that an input or output term can be
either a constant or a variable.

Example 10.1. Examples of external atoms:

&e1(X ;Y ), &e2(c1,X ;Z), &e3(;Z), &e4(”word”;Z)

An external literal is either not e or e, where e is an external atom, and “not ”
represents default negation. An external literal is safe if all input terms are safe,
according to the safety definition in section 2.1. External atoms can appear only
in rules bodies, so external atoms in rules head are not allowed, nor two external
atoms with the same external predicate but a different number of input or output
terms. Intuitively, the computation of output terms is carried out according to
the semantics which is externally defined via Python scripts. In particular, the
user must define a Python function for each external predicate &p with n/m
input/output terms. Moreover, the Python function receives n parameters and
returns m output values and has to be compliant with Python1 version 3. Note
that each instance of an external predicate must appear with the same number of
input and output terms throughout the program.

Example 10.2. The following rule makes use of an external predicate with one
input and output terms:

compute(X ,Z) :–number(X),&square root(X ;Z).

A program containing this rule must come with a Python script that contains
the definition of the external atom &square root within a Python function, as,
for instance, the one reported next.

1https://docs.python.org/3
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1 import math

2
3 d e f square_root(X):

4 r e t u r n math.sqrt(X)

The previous program calculates just the square root of a number
given as input. Therefore, given to I-DLV a program containing the
previous rule with the facts {number(9). number(16). number(25).} and
a Python script containing the previous function, the systems calculate:
{compute(9,3),compute(16,4),compute(25,5)}. Notably, I-DLV can manage
multiple Python scripts and is also possible to import extern system or user-
defined modules.

External atoms can be both functional or relational, i.e., they can return a
single tuple or a sequence of tuples, as output. In the Example 10.2 the external
atom square root is functional because the Python function for each input value
returns a single value. In general, a functional external atom with m > 0 output
terms return a sequence2 containing m values; if m = 0, the associated Python
function return a Boolean value. A relational external atom with m > 0 is defined
by a Python function that returns a sequence of m-sequences, where each inner
sequence is composed of m values (the output values).

Example 10.3. Consider the following rule:

prime f actor(X ,Z) :– number(X), &compute prime f actor(X ;Z).

Intuitively, the rule, given a number, is intended to compute prime fac-
tors of it. This task is demanded to a relational external atom, that receives
as input the number X, and returns as output its factors. The semantics of
&compute prime f actor is provided by a Python function:

1 d e f compute_prime_factors(n):

2 i = 2

3 factors = []

4 w h i l e i * i <= n:

2https://docs.Python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
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5 i f n % i:

6 i += 1

7 e l s e :
8 n //= i

9 factors.append(i)

10 i f n > 1:

11 factors.append(n)

12 r e t u r n factors

Therefore, the previous Python function returns a sequence of 1-sequence
due to m = 1 that can be simplified in a simple sequence. For this reason, the
returned variable f actors is a simple list.

Given an external atom &p(In;Out), where In and Out represent input and
output terms respectively, and a substitution σ , a ground instance of such external
atom is obtained by applying σ to variables appearing in In and Out, obtaining:

σ(&p(In;Out)) = &p(Ing;Outg)

The truth value of a ground external atom is given by the value f&p(Ing;Outg)
of a decidable n+m− ary two-valued Boolean oracle function, where n and m
are the lengths of Ing and Outg, respectively. A negative ground external literal
not e is true/ f alse if e is f alse/true. Intuitively, output terms are computed on
the basis of the input ones, according to a semantics which is provided externally
(i.e., from the outside of the logic program) by means of the definition of oracle
functions and according to the given definition, external atoms are completely
evaluated by I-DLV as true or false, i.e. external predicates do not appear in the
produced instantiation.

10.2 External Atoms Mapping Policy

After the evaluation of a Python function for each returned value, a proper con-
version is necessary from its Python type to an ASP-Core-2 term type. On the
Python side, the following types are permitted:

• numeric;
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• boolean;

• string3.

These types are mapped to terms accordingly to the following default policy:

1. an integer returned value is mapped to a corresponding numeric constant;

2. while all other values:

(a) if the form is compatible to the constant of ASP-Core-2 syntax then
is associated to a symbolic constant;

(b) otherwise, values are associated to a string constant.

Nevertheless, I-DLV allows the user to customize the mapping policy of a
particular external predicate by means of a directive of the form:

#external predicate conversion(&p,type:T1,. . .,TN).

where:

• &p is an external predicate;

• T1, . . . ,TN are output terms.

Intuitively, the directive specifies the sequence of conversion types for an exter-
nal predicate &p featuring n output terms. A conversion type can be:

1. @U INT (the value is converted to an unsigned integer);

2. @UT INT (the value is truncated to an unsigned integer);

3. @T INT (the value is truncated to an integer);

4. @UR INT (the value is rounded to an unsigned integer);

5. @R INT (the value is rounded to an integer);

6. @CONST (the value is converted to a string without quotes);

3https://docs.python.org/3/library/stdtypes.html
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7. @Q CONST (the value is converted to a string with quotes).

In cases (1− 5), the value is mapped to a numeric term, in case (6) to a
symbolic constant, while in case (7) to a string constant.

Directives can be specified at any point within an ASP program, and have
a global effect: once a conversion directive for an external predicate has been
included, say &p, it is applied each time the predicate is found.

Example 10.4. Consider the following directive with the program in Example
10.2:

#external predicate conversion( &square root,type:Q CONST).

Then, for each external call, the output variable Z is bounded to the value re-
turned by the Python function interpreted as a quoted string and the output of
I-DLV would be: {compute(9,”3”),compute(16,”4”),compute(25,”5”)}.

10.3 Taking Advantage from External Computations
for KRR

Interfacing ASP with external tools represents an important additional power for
modeling KRR tasks. Let us consider, as a running example, the problem of
automatically assigning a score to students after an assessment test: given a list
of students, a list of topics, and a set of questions regarding the given topics
along with corresponding student answers, our aim is to determine the score of
each student. In particular, let us suppose that each student is represented by a
fact of the form student(id), where id is a unique identifier code, and topics are
expressed by facts of type topic(to), where to is a string representing the topic
name, such as “Computer Science”. Each question can be expressed by a fact of
the form question(id, to, tx,ca) where id is a unique identifier number, to is the
topic covered, tx is the text containing also the possible answers, and ca is the
only option which is the correct answer. Each student’s answer is modeled by a
fact of the form answer(sid,qid,ans) where ans represents the answer given by
student sid to the question qid.

In addition, let us suppose that the score is computed as the sum of the single
scores obtained by answering the questions on each topic, and that some topics
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can have more weight than others; for instance, the score obtained in Mathe-
matics might be more important than the one in English. Interestingly, the score
could be computed differently each time the assessment test takes place; for in-
stance, English might be the most important topic, in a different session. More-
over, the number of wrong answers may also be considered while computing the
score, for instance in case of negative marking.

Given these requirements, the following program encodes our problem:

s1 : correctAnswers(St,To,N) :– topic(To),student(St),
N = #count{QID : question(QID,To,T x,Ca),
answer(St,QID,Ca)}.

s2 : wrongAnswers(St,To,N) :−topic(To),student(St),
N = #count{QID : question(QID,To,T x,Ca),
answer(St,QID,Ans),Ans! =Ca}.

s3 : topicScore(St,To,Sc) :– correctAnswers(St,To,Cn),
wrongAnswers(St,To,Wn),&assignScore(To,Cn,Wn;Sc).

s4 : #external predicate conversion(predicate = &assignScore,
type = R INT ).

s5 : testScore(St,Sc) :– student(St),Sc = #sum{Sc : topicScore(St,To,Sc)}.

Intuitively, rule s1 and rule s2 count the number of correct and wrong answers
for each student on each topic, respectively. Rule s3 determines the score on each
topic for each student; to this end, an external atom is in charge of assigning the
score. Interestingly, each time the relative weight of the topics needs to change,
it is enough to change the Python function defining its semantics. For instance,
supposing that among the concerned topics Mathematics and Computer Science
have the highest importance, and that for each wrong answer the value 0.5 is
subtracted from the score, a possible implementation for the Python function
defining the score computation could be:
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#solved time #solved time #solved time

Attachment 10 0 TO 10 149,55 10 45,50

Growth 10 0 TO/MO 9 164,21 10 67,20

Move 10 0 TO/MO 9 163,89 10 68,08

Contact 10 6 93,05 10 11,21 10 4,94

Disconnect 10 8 127,72 10 10,85 10 4,86

Discrete 10 8 127,44 10 10,85 10 4,96

Equal 10 8 101,07 10 10,95 10 4,93

Externally Connect 10 8 100,43 10 10,79 10 4,68

Nontangential Proper Part 10 7 107,14 10 10,89 10 4,88

Overlap 10 6 92,80 10 11,11 10 4,94

Part Of 10 8 126,56 10 11,00 10 4,93

Partially Overlap 10 8 126,37 10 11,00 10 4,83

Proper Part 10 6 93,34 10 11,21 10 4,99

Tangential Proper Part 10 7 106,54 10 10,90 10 4,72

String Concatenation 5 0 TO/MO 5 64,73 5 52,09

Prime Numbers 10 1 93,34 10 21,94 10 13,26

Reachability 10 0 TO/MO 10 36,71 10 37,18

DLVHEX GRINGO I-DLV
# inst.Problem

Solved Instances 81/165 163/165 165/165

Total Running Time 59341 8362 3109

Table 10.1: External atoms: experiment results (TO/MO stands for Time/Memory Out).

1 d e f assignScore(topic , numCorrectAns , numWrongAns):

2 i f (topic==‘‘ ComputerScience ’’
3 or topic==‘‘Mathematics ’’):

4 r e t u r n numCorrectAns *2- numWrongAns *0.5

5 r e t u r n numCorrectAns -numWrongAns *0.5

Statement s4 is a directive stating that values returned by the Python function
have be rounded to ASP-Core-2 integers, while rule s5 computes the final score
by summing up the scores on each topic.

10.4 Assessing External Computation Machinery

We compared I-DLV with other currently available systems supporting external
computation via Python with the aim of assessing their efficiency at integrating
external computations.

Experiments have been performed on a NUMA machine equipped with two
2.8GHz AMD Opteron 6320 processors and 128 GiB of main memory, running
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Linux Ubuntu 14.04.5; binaries were generated with the GNU C++ compiler v.
4.9. As for memory and time limits, we allotted 15 GiB and 600 seconds for
each system, per each run.

Then, we compare I-DLV against both the ASP grounder gringo [54] and the
dlvhex [38] system. In particular, we considered the latest available releases at
the time of writing: clingo 5.2.0 executed with the --mode=gringo and dlvhex
2.5.0 executed with the default provided ASP solver that combines gringo 4.5.4
and clasp 3.1.4, respectively.

Hence, we first adapted a set of already-proposed problems, and then en-
riched them with further domains testing different aspects.

The first set of benchmarks is focused on the spatial representation and rea-
soning domain; these problems originally appeared in [98]. In this setting, two
scenarios have been taken into account:

• The first scenario requires the determination of relations among randomly-
generated circular objects in a 2-D space. For each pair of circles the aim
is to find out which of the following relations hold: having some con-
tacts, being disconnected, being externally connected, overlapping or par-
tially overlapping, one being a part of the other, one being proper part of
the other, one being a tangential proper part of the other, one being non-
tangential proper part of the other. For each possible relation, an ASP en-
coding that makes use of an external Python script checks if it holds. The
encodings have been paired with instances of increasing sizes containing
random generated circles, from 10 to 190.

• In a second scenario we adapted the encodings of Growth, Move and At-
tachment problems introduced in [98], that solves some geometrical prob-
lems over triples of circular objects in a 2D space. Again, instances of
increasing size have been given to the tested systems: in this case, we
generated triples of circles, from 7 to 70.

Notably, ASP-Core-2 only supports integer numbers; hence, the encodings have
been adapted in order to become independent from the way data are expressed.
Each object is associated with an identifier, and information about coordinates
and dimensions are stored in a csv file; thus, from the ASP side, objects are
managed via their ids, and computations involving real numbers are handled



10.4. ASSESSING EXTERNAL COMPUTATION MACHINERY 60

externally via the same Python scripts that, in turn, are invoked by the external
mechanisms typical of each tested system. Hence, the encodings reported in [98]
have been carefully translated into ASP-Core-2 encodings. In this respect, it is
worth noting that in [98] two versions for Attachment problem are reported: in
our setting, due to the described translation, they coincide.

Since the benchmarks introduced above involve non-disjunctive stratified en-
codings, relational external atoms and only numeric (integer) constants as ground
terms, we considered three further domains: the reachability problem, where
edges are retrieved via Python scripts; concatenation of two randomly-generated
strings with arbitrary lengths varying from 1000 to 3000 chars; generation of first
k prime numbers, with k ranging from 0 to 100000.

Table 10.1 reports the result of the benchmark evaluation: after the domain
name and the corresponding number of instances, the next three pairs of columns
show the number of solved instances and the average running time. The last line
reports the total running times for each system. Figures 10.2 and 10.2 summa-
rizes the results for the two different sets of benchmark.

Results show satisfactory performance for I-DLV , both in comparison with
gringo, which solves approximately the same number of instances but spending
larger times and with dlvhex, which shows uncompetitive performance in part
due to its architecture, that makes use of an ASP solver as a black box, and
especially because it offers a complete support for external source of knowledge
and a more expressive language, which in turns requires more computational
cost.
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Figure 10.1: Set of Benchmarks 1 on the spatial representation and reasoning domain
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Figure 10.2: Set of Benchmarks 2 on ad-hoc domains



Chapter 11
Exchanging Data with External
Sources of Knowledge

To further ease the use of I-DLV in real-world applications, it has been extended
with the aim of easing the interoperability and integration with external sys-
tems. We define and implement a framework for creating ad-hoc directives for
interoperability and make use of it for providing some ready-made ones for the
connection with relational and graph databases.

11.1 Connecting with Relational and Graph Databases

I-DLV inherits from DLV directives for importing/exporting data from/to rela-
tional DBs.

An import directive is of the form:

#import sql(db name, "user", "pwd", "query",

pred name [, type conv]).

where:

• the first three parameters are the database name, the username and pass-
word used for the connection to the database;

62



11.1. CONNECTING WITH RELATIONAL AND GRAPH DATABASES 63

• query is an SQL statement that defines the imported table (must be double
quoted);

• pred name indicates the predicate whose extension will be enriched with
the result of the query;

• type conv specifying how DBMS data types have to be mapped to ASP-
Core-2 terms and it is optional.

The type conv parameter is a string with the same syntax described in Sec-
tion 10.2.

An export directive is of the form:

#export sql(db name, "user", "pwd", p name,

p arity, table name).

where:

• first three params are the same of connection parameters of #import sql
directive;

• p name/p arity indicate name/arity of the predicate whose extension will
be exported into the external table name table.

The previous directives mimic the old DLV with slight differences due to the
fact that I-DLV complies with the ASP-Core-2 syntax. In particular, ASP-Core-
2 features negative numbers, thus requiring more conversion types and allows
a predicate name to be associated with predicates with different arities, thus re-
quiring that in an export directive the predicate has to be uniquely specified by
indicating both the predicate name and arity.

Interoperability with graph databases is a novel feature of I-DLV in which
data can be imported via SPARQL queries, both from local RDF/XML files and
remote SPARQL EndPoints.

The import directives is of the form:

#import local sparql("rdf file","query",

predname,predarity,[,typeConv]).
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and

#import remote sparql("endpnt url","query",

predname,predarity,[,typeConv]).

where:

• query is a SPARQL statement defining data to be imported;

• typeConv is optional and specifies the conversion for mapping RDF data
types to ASP-Core-2 terms (similar to #import sql directive).

For the local import the rdf file in the directive #import local sparql can
be either a local or remote URL pointing to an RDF/XML file. In the second
case, the file is downloaded and treated as a local RDF/XML file and in any
case, the graph is built in memory. On the other hand, for the remote import, the
endpnt url in the directive #import remote sparql , it refers to a remote endpoint
and building the graph is up to the remote server. This second option might be
more convenient in the case of large datasets.

Graph and relational databases connection directives can be simulated using
external atoms; in addition, it shows how external atoms give the user a powerful
means for extending the grounder capabilities significantly. Nevertheless, a “na-
tive” support for interoperability with graph and relational databases has some
benefits. First of all, it is easy to imagine that native support should enjoy much
better performance, as we discuss in later on in Section 10.1. Furthermore, in
many scenarios (as it is often the case in the deductive database settings) the use
of external atoms is not crucial, while accessing standard knowledge sources is
vital: in such cases, taking care of writing efficient Python code and the burden
of the external Python runtime machinery does not seem worthwhile. Hence, the
idea is to incorporate into the system the directives that are most likely to be used
“per se”, and let external atoms address cases that need extended functionalities.

Example 11.1. Suppose that general data of the example in Section 10.3, such
as questions and topics, are permanently stored in a relational database, while
test-related data, such as the student answers, are gathered into an RDF/XML
file which is specifically referred to the test itself.

The following directive allows retrieval of questions from the relational DB:
#import sql(relDB, "user", "pwd", "SELECT * FROM question",
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question, type:U INT,Q CONST,Q CONST,Q CONST ).

where:

• relDB is the name of the database;

• "user" and "pwd" are the data for the user authentication;

• "SELECT * FROM question" is an SQL query that constructs the table
to import;

• question is the predicate name used for constructing the new facts;

• type : U INT,Q CONST,Q CONST,Q CONST are the mapping policy
where the first field (the question identifier) is imported as an integer, while
the remained values are converted to quoted strings.

Topics can be retrieved similarly:

#import sql(relDB, "user", "pwd",,

"SELECT * FROM topic", topic, type:Q CONST ).

Moreover, student answers can be retrieved with the following directive:

#import local sparql("answers.rdf",

"PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX my: <http://sample/rdf#>

SELECT ?St, ?Qe, ?Ans

WHERE {?X rdf:type my:test. ?X my:student ?St.

?X my:question ?Qe. ?X my:answer ?Ans.}",
answer, 3, type:U INT,U INT,Q CONST).

where:

• "answers.rdf" is the XML file containing the answers;

• the long quoted string is the SPARQL query;

• answer/3 is the predicate used for constructing the new facts;

• type : U INT,U INT,Q CONST are the mapping policy where the first
two fields (the question’s and student’s identifiers) are imported as integers
and the latter is converted to a quoted string.
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11.2 Experimentally Assessing the Interoperability
Mechanisms

In this section we analyze the effective gain on performance obtainable with a na-
tive support of SQL/SPARQL local import directives against the same directives
implemented via Python scripts. In detail, we compare two different importing
approaches:

• a version exploiting explicit directives natively implemented in C++;

• a version where the import mechanism is performed externally.

Experiments have been performed on a machine equipped with an Intel Core
i7-4770 processor and 16 GiB of main memory, running Linux Ubuntu 14.04.5;
binaries were generated with the GNU C++ compiler v. 4.9. As for memory and
time limits, we allotted 15 GiB and 600 seconds for each system, per each single
run.

The benchmarks are divided into two categories:

• Importing data from a Relational Database, by means of SQL statements.
To this end, a DB containing a randomly generated table has been created:
this table contains 1000000 tuples and features three columns, one of inte-
ger type and two of alphanumeric type. Several encodings have then been
tested, each one importing a different number of tuples from the aforemen-
tioned table, ranging from 100000 to 1000000. In both cases, each SQL
column is mapped, respectively, to a numeric term, a symbolic constant
and a string constant (we refer the reader to ASP-Core-2 term types [17]).

• SPARQL imports from a local RDF/XML file. In particular, we gener-
ated some OWL ontologies via the Data Generator(UBA) by means of the
Lehigh benchmark LUBM [65]. Such ontologies are referred to a Univer-
sity context: each university has a number of departments ranging from
15 to 22. The considered encodings import graduate and undergraduate
students from a different number of universities, ranging from 1 to 5.

Notably, in both SQL and SPARQL benchmarks the complexity of the query is
fixed. We choose this benchmarks because in this experiments the goal is to ana-
lyze the effective gain on performance with a native support implemented in C++
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against the same directives implemented via Python scripts that have the burden
of the external Python runtime machinery. Therefore, the study of the query used
regarding expressivity is not relevant because rely on the SQL/SPARQL engine
used.

Results, reported in Figure 11.1 and FIgure 11.2, show that the native ap-
proach clearly outperforms the other by 66% when dealing with SQL directives,
and by 43% when dealing with SPARQL local import directives.

Intuitively, an internal management of import/export mechanism can be per-
formed directly interfacing C++ and SQL/SPARQL, while with external atoms
Python acts as a mediator causing an overhead which is not always negligible as
our tests evidenced. Hence, a “native” support for interoperability enjoy much
better performance in all the cases, as the previous test shows, and in many sce-
narios scalability is indispensable especially for accessing standard knowledge
sources. However, external atoms easy the integration of custom functionali-
ties with external functions while defining new directives requires changes in the
source code of the systems followed by the rebuilt of it.

Therefore, the idea is to incorporate into the system the directives that are
most likely to be used “per se”, and let external atoms address cases that need
extended functionalities.
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Figure 11.1: Experimental results importing data from a Relational Database.
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Figure 11.2: Experimental results importing data from a local RDF.



Part IV

Boosting Performance
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Chapter 12
Improving Performance: the Need for
Speed

As already discussed above, the high expressivity of the language made ASP a
powerful tool for developing advanced applications in different areas. These ap-
plications prove the viability of the use of ASP; nevertheless, they also point out
the need for efficient implementations, as we reported in Section 4.2. Nonethe-
less, the interest in developing more efficient and faster systems is still a crucial
and challenging research topic, as witnessed by the results of the ASP Competi-
tion series [56, 29].

The competition evaluates ASP systems in order to compare them on the ba-
sis of fixed input language and fixed conditions. For each benchmark problem,
a fixed ASP-Core-2 program encodes it, and each system is run on the same
platform with limited time and memory available. The selected benchmark do-
mains are classified according to the computational complexity of the related
problem, in Polynomial, NP, and Beyond-NP. The benchmark suite included
different domains, like temporal and spatial scheduling problems, combinatory
puzzles, graph problems. Moreover, several benchmarks domains are based on
particular applications. For instance, Incremental Scheduling [7] deals with as-
signing jobs to devices such that the makespan of a schedule stays within a given
budget, Partner Units [5] has applications in the configuration of surveillance,
electrical engineering, computer network, and railway safety systems, Video
Streaming [95] aims at an adaptive regulation of resolutions and bit rates in a
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content delivery network. Comparing the results with the last available com-
petition and the previous one highlights significant advances in the state of the
art. Indeed, during the different competition, several domains have been clas-
sified in very easy, i.e. the systems taking the first three places of the previous
competition can solve all the instances in less than 20 seconds. These achieve-
ments have been obtained thanks to the new solving technique introduced such
as the Conflict-Driven Clause Learning proposed in clasp [35] that combines the
high-level modeling capacities of ASP with state-of-the-art techniques from the
area of Boolean constraint solving, the unsatisfiable core shrinking implemented
in wasp [2] that can boost the computation of optimum stable models for logic
programs with weak constraints employing unsatisfiable core analysis. How-
ever, there are still several benchmark instances classified as untractable, such
as the non-groundable, i.e. systems cannot finish the grounding within the allot-
ted time, and too hard, i.e. systems cannot finish the solving during the allotted
time. To overcome these challenges the portfolio approach is an active research
area because it can take advantage of existing technology conversely to develop
a competitive ASP system from scratch by no means an easy task.

The non-groundable problems highlighted the weaknesses of the traditional
grounding and solving approaches used by the state-of-the-art systems. In sev-
eral real-world applications, as we show in Section 4.2, the exponentially grow
off the ground program size is also called grounding bottleneck. Lazy-grounding
tries to overcome this problem by interleaving grounding and solving [32, 70,
99]. However, this technique cannot benefit from the solver optimization tech-
niques due to the fact that the ground program is computed during the solving
phase. Therefore, an active research aim is to couple the grounding and the solv-
ing system in order to improve the performance of ASP systems with a tight
integration to avoid grounding bottleneck.

In the next chapters, we present two systems with that aim at reaching a more
efficient ASP evaluation: DLV2 and I-DLV+MS. The first is a recently released
system that combines the I-DLV grounder with the solver wasp, extending the
core modules by application-oriented features that customise heuristics of the
system and extend its solving capabilities. The second is an ASP system relying
on I-DLV as a grounder, and makes use of an automatic solver selector that
inductively choose the best solver, depending on some inherent features of the
instantiation.



Chapter 13
A New Efficient ASP System

The ASP computation, as briefly discussed in Section 3.2, is typically split into
grounding and solving, and many ASP tools actually focus on one of the two
processes, due to the complexity of implementing a monolithic ASP system.
Therefore, a user has to pipe the output of the grounder to the solver system
that automatically outputs the answer sets. However, a monolithic system offers
more control over the grounding and solving process. Also, a tight integration of
grounder and solver can improve the performance of the entire system, because,
unfortunately, simply improving the grounding times does not necessarily imply
improvements on the solving side, since the ASP solvers heavily depend on the
form of the produced instantiation, therefore a specific tailoring of the grounding
output can definitely benefit the solving side.

The first monolithic ASP system was called DLV [72], and more recently,
also the grounder gringo and the solver clasp have been released together in the
clingo system [51].

In this light, we worked on the design and development of a new ASP sys-
tem, namely DLV2, a brand new and improved version of DLV , that updates its
predecessor with modern evaluation techniques and development tools. For the
solving part it relies on the well-assessed solver wasp [3], while the instantia-
tion task is in charge of I-DLV [23], a new intelligent grounder that, as already
mentioned, we actively contribute to design and implement.

In the next sections, we first present an overview of the I-DLV system and
then we describe major features of DLV2; among them, annotations and direc-
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tives for customizing heuristics of the solver, and also an empirical analysis con-
ducted on benchmark from ASP competitions that show good performance of
DLV2 when compared against the old system and clingo.

13.1 The I-DLV Grounder

The new intelligent instantiator I-DLV , starting from the solid theoretical foun-
dations of DLV , has been redesigned and re-engineered to build a renovated ASP
grounder with the purpose of improving the performance and native support the
ASP-Core-2 standard language [17]. The core strategies of the system rely on
a bottom up evaluation based on a semi-naı̈ve approach [50], that has been ex-
tended in I-DLV with a number of optimization techniques that have been ex-
plicitly designed by contextualizing it in the setting of an ASP grounder.

Optimized Grounding Process

Optimization implemented into I-DLV include: rule body back-jumping, magic-
sets, and, in a significantly enhanced version, body-reordering and indexing
strategies. The first two techniques have been adopted from the DLV grounder,
and adapted to the new data structures and architecture; the latter two have been
significantly enhanced and/or extended.

In particular, the body reordering technique in I-DLV compute new statistics
for variables involved in comparison predicates, covering cases that previously
were not properly addressed [23]; indexing strategies with an on-demand policy
manage single- and multiple-argument indices, along with heuristics for select-
ing the best strategy [23].

Furthermore, a number of additional techniques and features have been de-
signed and introduced in I-DLV , not included in DLV , such as the anticipated
evaluation of strong constraints, the aligning substitutions mechanism, the two-
fold management of isolated variables. More in detail, the anticipated evaluation
of strong constraints process the strong constraints as soon as the extensions of
its body predicates are available and due to the simplification mechanism, liter-
als appearing in the body which are already known to be true can be removed,
possibly leading to an empty-body constraint. By definition, such constraints



13.1. THE I-DLV GROUNDER 74

are always violated; thus, the input program is inconsistent, and the grounding
process can be safely aborted [23].

The aligning substitutions search for an “agreement” between body literals
on variable replacements. Basically, before processing a rule r, for each variable
X , we compute the intersection of all sets of possible substitutions for all the
occurrences of X in r. Intuitively, this reduces, in general, the number of possible
values for X , by skipping those that would not match among distinct variable
occurrences. Such technique performs best when the sets of substitutions differ
significantly [23].

Isolated variables are variables that not affect any failed match for other
atoms, nor the instances obtained for the head atoms. Thus, we can safely elim-
inate the isolated variables by projecting them in auxiliary predicates or if the
predicate depends only on EDB and solved predicates, a special filter mecha-
nism when looking for next matches can be applied, suggesting only the relevant
instances [23].

Flexibility and Customizability

I-DLV allows the user to enable, disable, and customize every single strategy,
thus resulting in a flexible tool for experimenting with ASP and its applications.
To this end, it has been designed in order to allow a fine-grained control over
the whole computational process, both via command-line options and a new spe-
cial feature for facilitating system customization and tuning: annotations of ASP
code. I-DLV annotations allow to give explicit directions on the internal ground-
ing process, at a more fine-grained level with respect to the command-line op-
tions: they “annotate” the ASP code in a Java-like fashion, while embedded in
comments: hence, the resulting programs can still be given as input to other ASP
systems that do not support them, without any modification. In particular, our
annotations can have two different scopes: at the global level, meaning that they
are applied to the whole program, or at the rule level, and hence annotations acts
just on the rule they precede.

Syntactically, all annotations start with the prefix “%@” and end with a dot
(“.”). The current I-DLV release supports annotations for customizing two of the
major aspects of the grounding process: body ordering and indexing.

A specific body ordering strategy can be explicitly requested for any rule,
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simply preceding it with the line:

%@rule ordering(@value=Ordering Type ).

where Ordering Type is a number representing an ordering strategy. In addi-
tion, it is possible to specify a particular partial order among atoms, no matter
the employed ordering strategy, by means of before and after directives. For
instance, in the next example, I-DLV is forced to always put literals a(X ,Y ) and
X = #count{Z : c(Z)}} before literal f (X ,Y ), whatever the order chosen:

%@rule partial order(

@before={a(X,Y), X=#count{Z:c(Z)}},
@after={f(X,Y)}).

As for indexing, directives on a per-atom basis can be given; the next annota-
tion, for instance, requests that, in the subsequent rule, atom a(X ,Y,Z) is indexed,
if possible, with a double-index on the first and third arguments:

%@rule atom indexed(@atom=a(X,Y,Z),

@arguments={0,2}).

Multiple preferences can be expressed via different annotations; in case of
conflicts, priority is given to the first appearing in the program. In addition, pref-
erences can also be specified at a global scope, by replacing the rule directive
with the global one. Such kind of annotations are applied on the rules, if possi-
ble. While a rule annotation must precede the intended rule, global annotations
can appear at any line in the input program. Both global and rule annotations
can be expressed in the same program; in case of overlap on a particular rule/set-
ting, priority is given to the more specific rule ones.

Intuitively, the way annotations change the grounding mechanisms can no-
ticeably affect performance on the program at hand. It is worth noting that the
heuristic-based nature of the default strategies does not guarantee optimality, and
thus it is possible that the introduction of further policies, directly indicated by
the user or inferred from other criteria, lead to improve the performance of I-
DLV .
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13.2 The ASP System DLV2

13.2.1 DLV2 Overview

DLV2 consist of the combination of the grounder I-DLV [23] and the solver
wasp [3] that compose the core module of the system. Currently, DLV2 im-
plements a one-directional communication between the grounder to the solver.
Nevertheless, this first integration allow DLV2 to improve the usability of the
main application-oriented features of I-DLV and wasp systems.

wasp

The solver module implements a modern CDCL backtracking search algorithm,
extended with custom propagation functions to handle the specific properties of
ASP programs. The computation of optimum answer sets can be carried out
by using either model-guided or core-guided algorithms [2]. Core-guided algo-
rithms can also be combined with strategies for shrinking the size of the cores
that can boost the computation of optimum stable models for logic programs
with weak constraints.

RDBMS Data Access

DLV2 can import/export data from/to an RDBMS by means of directives, carried
out by the I-DLV core. Therefore, the syntax of the directives are the same
as those used in I-DLV , Chapter 11. Hence, with #import sql is possible to
import table from an RDBMS, otherwise with #export sql are used to populate
specific tables with the extension of a predicate.

Query Answering

DLV2 supports cautious reasoning over non-ground queries. Then, if the ASP
program contains a query the system applies the magic-sets technique [4] to op-
timize the evaluation of queries, performed by I-DLV core. Afterwards, the com-
putation of cautious consequences is done according to anytime algorithms [4],
performed by wasp core, so that answers are produced during the computation
even in computationally complex problems.
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Python Interface

Similarly to I-DLV (Section 10.1), using DLV2 input program can be enriched
by external atoms of the form &p(i1, . . . ,in;o1, . . . ,om), where p is the name of
a Python function, i1, . . . ,in and o1, . . . ,om (n,m≥ 0) are input and output terms,
respectively.

On the solving side, the input program can be enriched by external prop-
agators. The computation of answer sets in wasp solver, as mentioned above,
is carried out by employing an extended version of the Conflict-Driven Clause
Learning (CDCL) algorithm, introduced for SAT solving [36]. An important
feature of this algorithm is propagation, which extends the interpretation with
the literals that can be deterministically inferred. wasp system supports exter-
nal propagators, which allows a user to embed new external propagators (using
Python language) in the solver. A user can write an external Python module that
complies with a particular interface, whose methods are associated with events
occurring during the search for an answer set. Whenever a specific point of the
computation is reached, the corresponding event is triggered, and a method of
the module is called. However, wasp takes as input a ground program, in partic-
ular, a numeric format produced by a grounder system, and external propagator
works with predicates belonging to the non-ground program. In some case, the
numeric format does not contain all the information to reconstruct the original
non-ground program and then is hard for a user to write an external propagator.
DLV2 simplifies this process using specific directive for external propagator. An
example is reported below, and also used in experiments.

Example 13.1. Consider the following program, for a given positive n:

edb(1..n).
{value(X) : edb(X)}.
{in(X) : edb(X)}.
:–value(X),X! = #count{Y : in(Y )}.

The instantiation of the last constraint above results into n ground rules, each
one comprising n instances of in(Y ). It turns out that the above program cannot
be instantiated for large values of n due to memory consumption. Notably, in this
example, we use choice rules, a syntactic shortcut defined in the new ASP Core
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2 standard [17].
Within DLV2, the expensive constraint can be replaced by the following prop-

agator:

#propagator(@file="propagator.py",

@elements={X,value:value(X); X,in:in(X)}).

where propagator.py is a Python script reacting on events involving in-
stances of value(X) and in(X).

The directive #propagator takes as input the name of the Python script that
implements the external propagator and also a set of atoms used during the prop-
agation. In particular, after the grounding, a dictionary of all the instances of the
atoms appearing in the directives is built. Each element of the dictionary has a
key that represents uniquely the literal, and a tuple that stores its values. Then,
the script checks whether candidate answer sets satisfy the propagator using the
dictionary to recover the values of the literals and also, to access the status of the
current interpretation.

Java-like Annotations

In order to ease the system customization and tuning, DLV2 enrich the ASP
programs by global and local annotations, where each local annotation only af-
fects the immediate subsequent rule. The system takes advantage of annota-
tions to customize some of its heuristics and annotations are processed by the
I-DLV core [23]. Customizations include body ordering and indexing, two of
the crucial aspects of the grounding. For example, the order of evaluation of
body literals in a rule, say ≺, is constrained to satisfy p(X) ≺ q(Y) by adding
the following local annotation: %@rule partial order(@before={p(X)},
@after={q(Y)}).

Note that annotations do not change the semantics of input programs. For this
reason, their notation starts with %, which is used for comments in ASP-Core-2,
so that other systems can simply ignore them.
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Figure 13.1: DLV2 vs DLV: cactus plot on benchmarks from ASP Competition 2011.

13.3 Experiments

In this section we compare DLV2 with clingo 5.1.0 [51] and DLV [72]. All sys-
tems were tested with their default configuration. clingo and DLV2 were tested
on benchmarks taken from the latest ASP competition [56]. However, since
DLV does not fully support the ASP-Core-2 standard language, the compari-
son between DLV and DLV2 is performed on benchmarks taken from the third
competition [28]. An additional benchmark is obtained from the programs in Ex-
ample 13.1. Experiments were performed on a NUMA machine equipped with
two 2.8GHz AMD Opteron 6320 processors. The time and memory were limited
to 900 seconds and 15 GB, respectively.

Results reported in the cactus plot in Figure 13.1 shows the comparison be-
tween DLV and DLV2. A sensible improvement is obtained by the new version
of the system. Indeed, the percentage gain of the solved instances is 128%, and
it is even higher, namely 273% if the running time is bounded to 60 seconds.

Results reported in Table 13.1 shows the comparison with clingo. Overall,
DLV2 solved 306 instances, 35 more than clingo. Such an advantage can be
explained by the fact that DLV2 handles query answering, while clingo does not.
If benchmarks with queries are ignored, the difference between the two systems
is five instances in favour of clingo.

As already observed in Example 13.1, the instantiation of the constraint is
expensive in terms of memory consumption and results are reported in the plots
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Figure 13.2: Evaluation of DLV2 on programs from Example 13.1.

in Fig. 13.2. The average memory consumption is around 5 GB on the 17 solved
instances. Such inefficiency also impacts on the execution time (left plot), which

Table 13.1: DLV2 vs clingo: solved instances and average running time (in seconds) on
benchmarks from ASP Competition 2015 (20 instances per benchmark).

Benchmark clingo DLV2
time solved time solved

Abstract Dialectical Frameworks WF Model (optimization) 8.89 20 137.31 15
Combined Configuration 286.73 10 150.62 1
Complex Optimization of Answer Sets 174.61 18 120.08 6
Connected Maximim-density Still Life (optimization) 193.63 6 73.40 9
Crossing Minimization (optimization) 65.63 6 2.90 19
Graceful Graphs 191.42 11 59.17 5
Graph Colouring 215.98 17 204.83 9
Incremental Scheduling 131.21 13 166.21 8
Knight Tour With Holes 15.00 10 41.83 10
Labyrinth 105.12 13 181.75 12
Maximal Clique Problem (optimization) — 0 168.84 15
MaxSAT (optimization) 44.33 7 90.83 20
Minimal Diagnosis 7.74 20 38.39 20
Nomistery 163.46 8 118.42 9
Partner Units 35.40 14 375.99 9
Permutation Pattern Matching 180.30 12 153.64 20
Qualitative Spatial Reasoning 174.81 20 326.47 18
Ricochet Robots 130.42 8 267.87 9
Sokoban 86.52 10 174.69 10
Stable Marriage 430.49 5 459.31 9
System Synthesis (optimization) — 0 — 0
Steiner Tree (optimization) 242.45 3 — 0
Valves Location (optimization) 42.51 16 68.40 16
Video Streaming (optimization) 56.96 13 0.10 9
Visit-all 248.40 11 68.94 8

Consistent Query Answering (query) — — 252.77 13
Reachability (query) — — 131.48 20
Strategic Companies (query) — — 30.07 7

TOTAL 271 306
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is on average 61 seconds on the solved instances. On the other hand, DLV2 takes
a sensible advantage from the ad-hoc propagator, solving each tested instance in
less than 1 second and 80 MB of memory.



Chapter 14
Automating Solver Selection

The performance of current ASP systems can be defined as good enough for
different real-world applications. However, they feature several different opti-
mization techniques, which cause systems to outperform each other depending
on the domain at hand. The capability to enjoy good performance over various
problems domains has already been studied by other communities, by means of
proper strategies of algorithm selection [90]; for instance, what has been done for
solving propositional satisfiability (SAT) [101] and Quantified SAT (QSAT) [84].
This approach consists of building machine learning techniques to inductively
choose the “best” solver on the basis of some input program characteristics, or
features. As far as ASP is concerned, some interesting works in this respect have
already been carried out in [78].

In this chapter, we present I-DLV+MS [25], a new ASP system that integrates
an efficient grounder, namely I-DLV [23], with an automatic solver selector:
machine-learning techniques are applied to inductively choose the best solver,
depending on inherent features of the instantiation produced by I-DLV .

We define a particular set of features, and then carry out an experimental
analysis for computing them over the ground versions of benchmarks submitted
to the 6th ASP Competition [56]. Also, we build our classification method for
selecting the solver that is supposed to be the “best” for each input among the
two state-of-the-art solvers clasp [52] and wasp [3]. Furthermore, we test I-
DLV+MS performance both against the state-of-the-art ASP systems and the
best established multi-engine ASP system ME-ASP [78], that is the winner of the

82
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6th ASP Competition.
Notably, I-DLV+MS participated in the latest (7th) ASP competition [58],

winning in the regular track, category SP (i.e., one processor allowed).

In this section first, we introduce I-DLV+MS with an overview of the system,
and we then describe the proposed classification method along with the selected
features. Afterwards, we discuss a thorough experimental activity against the
state-of-the-art ASP multi-engine system.

14.1 I-DLV+MS Overview

PREPROCESSOR

I-DLV

WASP

OutputInput

SOLVER 
SELECTOR

CLASP

GROUNDING 
ANALYSER  

Figure 14.1: I-DLV+MS Architecture.

The architecture of I-DLV+MS is reported in Figure 14.1. Given an ASP pro-
gram P, the PREPROCESSOR module analyzes it, and interacts with the I-DLV system
to determine if the input program is non-disjunctive and stratified, because these kinds
of programs are completely evaluated by I-DLV without the need for a solver. If this is
not the case, the GROUNDING ANALYSER module extracts the signified features from
the ground program produced by I-DLV and passes them to the classification module.
Then, the SOLVER SELECTOR, based on proper classification algorithms, tries to pre-
dict, among the available solvers, which one would perform better and selects it. This
module is based on Decision Trees, a non-parametric supervised learning method used
for classification [85]; this classifier aims at creating a model that predicts the value
of a target variable by learning simple decision rules inferred from the data features.
We use an optimized version of tree algorithm implemented in scikit-learn library [82],
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namely CART (Classification and Regression Trees) [12]. The algorithm is a variant of
C4.5 [86], but differs from it in that it supports numerical target variables and does not
compute rule sets. I-DLV+MS currently supports the two state-of-the-art ASP solvers
clasp and wasp. Nonetheless, the modular architecture of I-DLV+MS easily allows one
to update the solvers or even add additional ones. Clearly, such changes would require
the prediction model to be retrained with appropriate statistics on the new solvers.

Features

As already introduced, the machine-learning technique selects the best solver according
to specific features of the input program. In this work, we selected several features with
the aim of catching two fundamental aspects of ASP programs:

• Atoms ratios. We considered five different ratios that represent the type of atoms
and a raw measure of their distribution in the input ground program:

(a) :
F
R

(b) :
PA
R

(c) :
NA
R

(d) :
PA
BA

(e) :
NA
BA

where F is the total number of facts and always true atoms, R the total number of
ground rules, PA/NA the total number of positive/negative atoms and BA the total
number of atoms appearing in rule bodies.

• Rules ratios. We considered five different ratios that represent the type of rules
and a raw measure of their distribution in the input ground program, also taking
into account advanced constructs of the ASP-Core-2 standard language [18], such
as choices, aggregates, and weak constraints:

( f ) :
C
R

(g) :
W
R

(h) :
SR
R

(i) :
CR
R

( j) :
WR

R

where C is the total number of strong constraints, W the total number of weak
constraints, SR the total number of standard rules, CR the total number of choice
rules and WR the total number of weight rules. Please note that with standard
rules we denote rules without aggregate or choice atoms; weight and choice rules,
instead, handle aggregate literals and choice atoms generated by the grounder.
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Table 14.1: I-DLV+MS, I-DLV +clasp and I-DLV +wasp: number of solved instances
and average running times (in seconds) on benchmarks from the 6th ASP Competition
(20 instances per problem). In bold is outlined the top-performing system among I-DLV
+clasp and I-DLV +wasp.
Benchmark I-DLV+MS I-DLV +clasp I-DLV +wasp

solved time solved time solved time
AbstractDialecticalFrameworks 20 10,91 20 7,17 14 80,38
CombinedConfiguration 13 103,83 12 108,78 6 52,93
ComplexOptimizationOfAnswerSets 19 127,68 19 105,12 5 127,58
ConnectedMaximim-densityStillLife 10 86,02 5 283,53 8 120,60
CrossingMinimization 19 2,46 6 91,88 19 0,65
GracefulGraphs 9 122,36 10 59,77 5 22,12
GraphColouring 16 104,05 16 117,28 6 137,67
IncrementalScheduling 11 42,09 11 35,74 8 113,75
KnightTourWithHoles 14 29,95 14 25,87 10 34,76
Labyrinth 10 134,82 11 78,49 11 134,06
MaximalCliqueProblem 14 49,06 0 - 15 143,18
MaxSAT 19 17,55 8 47,70 20 50,91
MinimalDiagnosis 20 27,55 20 14,50 20 24,86
Nomistery 8 26,21 8 25,26 8 37,09
PartnerUnits 14 23,29 14 45,03 8 210,47
PermutationPatternMatching 20 117,40 20 16,86 20 129,84
QualitativeSpatialReasoning 20 106,06 20 113,75 12 124,32
RicochetRobots 10 95,43 12 130,96 7 166,09
Sokoban 8 343,63 9 23,71 10 153,95
StableMarriage 6 111,30 9 268,98 7 397,86
SteinerTree 8 14,60 8 84,82 4 0,15
ValvesLocationProblem 16 6,99 16 12,10 16 37,04
VideoStreaming 15 18,89 15 5,63 9 1,94
Visit-all 8 162,88 9 57,18 8 69,74
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14.2 Experimental Evaluation
To evaluate the I-DLV+MS system we report the results of an experimental activity, and
in particular, we performed two distinct sets of experiments, which are discussed in the
following.

Experiments have been performed on a NUMA machine equipped with two 2.8GHz

AMD Opteron 6320 and 128 GiB of main memory, running Linux Ubuntu 14.04.4.
Binaries were generated with the GNU C++ compiler 4.9.0. As for memory and time
limits, we allotted 15 GiB and 600 seconds for each system per each single run.

14.2.1 Impact of Solver Selection
With the first set of experiments, we check the quality of the choice performed by the
machine-learning-based model for solver selection. To this end, we took the bench-
marks from the latest available ASP Competition [56] and ran I-DLV+MS along with
two distinct combinations of the I-DLV grounder with clasp and wasp solvers.

This benchmark allows us to compare the performance of the solver chosen by I-
DLV+MS against the best one. Ideally, a system equipped with a perfect selector would
match the performance of the best solver for each benchmark, net of possible overheads.

Results are reported in Table 14.1: first column shows the name of the benchmark,
while the next pairs report the solved instances and average times per each tested system
(each benchmark featured 20 instances). The best performing combination among I-
DLV +clasp and I-DLV +wasp is highlighted, on a benchmark basis, by means of bold
values.

Results show that I-DLV+MS performance is very close to the best solver, in almost
all domains, thus implying that the defined measures along with the chosen model lead
to the right choices. Furthermore, the total number of instances solved by I-DLV+MS is
327, while for I-DLV +clasp and I-DLV +wasp is 292 and 256, respectively.

It is worth noting that, even when the choice was right, I-DLV+MS pays some over-
head. This is due to the fact that the ground program produced by I-DLV is not directly
processed to the solver; rather, it must be analyzed in order to extract the features needed
for making the choice: hence, huge ground programs might cause a loss of performance
during the features extraction.
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Figure 14.2: I-DLV+MS and ME-ASP comparison on benchmarks from the 6th ASP
Competition.

14.2.2 Comparison to the State of the Art
In the second set of experiments we compared I-DLV+MS against the latest available
version of ME-ASP1), the state-of-the-art among multi-engine ASP solvers, the winner
of the 6th ASP Competition.

Figure 14.2 reports the cactus plot comparing I-DLV+MS and ME-ASP. Interest-
ingly, even though I-DLV+MS is a prototypical system, it performed well overall: in-
deed, it solved 327 instances, 49 more than ME-ASP.

The two systems are similar, yet there are some key differences; in particular, the
main differences are due to the nature and the number of systems used. First of all, ME-
ASP computes features of the input program at hand over a ground program produced
by gringo system, while I-DLV+MS makes use of I-DLV . Furthermore, the main inter-
esting difference is due to the fact that ME-ASP manages five solvers, far more than the
mere two taken into account by I-DLV+MS. The strategy of using a large pool of solver
engines, as in the case of ME-ASP, allows the system to solve a significant number of
instances uniquely, i.e., instances solved by only one solver, as the different engines use
evaluation strategies that can be substantially different. Nevertheless, such differences
imply that a high price is paid in case of a wrong choice. On the other hand, when the
space for choices is narrowed, the probability of picking the wrong solver decreases, and
this might lead to a more consistent behavior, as in the case of I-DLV+MS.

1http://aspcomp2015.dibris.unige.it/participants



Chapter 15
Conclusion

The main advantage of Answer Set Programming is the high expressive power of its lan-
guage, allowing to represent complex problems in a straightforward, concise and elegant
way. Due to the steady work of the scientific community, that led to significant improve-
ments of systems supporting the formalism and multiple language extensions, ASP has
been used in many different domains, thus shifting ASP from a strict theoretical scope to
more practical scenarios. However, such use of ASP made several challenges arise; for
instance, it became evident the need for proper tools and interoperability mechanisms
that ease the development of ASP-based applications, helping the integration with exter-
nal systems and different source of knowledge; also, the effective use of the potential of
ASP in new real contexts requires significant improvements of performance.

The work presented in this thesis aims at addressing the aforementioned challenges,
and introduces new tools and techniques for easing the application of ASP. In particular,
the contributions of this thesis can be summarized as follows:

• We present EMBASP: a framework for the integration of ASP in external systems
for general applications to different platforms and ASP reasoners. The framework
features explicit mechanisms for two-way translations between strings recognis-
able by ASP solvers and objects in the programming language of choice. In order
to illustrate the use of EMBASP, we present an actual Java implementation and
several specialized libraries for the state-of-the-art ASP systems clingo, DLV and
DLV2, on desktop platforms and another specialization for DLV for the Android
mobile platform, showing four applications developed using EMBASP that prove
the effectiveness of the framework.
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• We extend the language of ASP in order to make it capable of handling external
computations with explicit calls to Python scripts via external atoms; further-
more, we define interoperability mechanisms for the connection with relational
and graph databases via explicit directives for importing/exporting data. We im-
plement this features into the I-DLV system, the new instantiator of DLV , with
the main purpose of obtaining a flexible tool for experimenting with ASP and its
applications.

• We work on techniques and tools for improving the performance of ASP com-
putation; in particular, we implement our proposals into two new ASP systems:
DLV2 and I-DLV+MS. DLV2 updates DLV with modern evaluation techniques,
combining I-DLV with the solver wasp. Also, DLV2 extends the core modules
by application-oriented features. I-DLV+MS is a new ASP system that integrates
I-DLV with an automatic solver selector for inductively choose the best solver,
depending on some inherent features of the instantiation produced by I-DLV . To
this end, we define a specific set of features, and then carry out an experimental
analysis for computing them over the ground versions of benchmarks submitted
to the 6th ASP competition.

As a future work we would like to test the EMBASP framework over different plat-
forms and solvers and properly evaluate performances. Although the framework has
been mainly conceived for fostering the usage of ASP, its abstract core makes it also
adaptable to other declarative knowledge representation formalisms; indeed, we intro-
duce a proper extension supporting the PDDL [64, 63] planning language in [43], far
beyond logic formalisms similar to ASP.

Moreover, we plan to increase the functionalities of I-DLV system related to the
language extensions for easing the interoperability with the external system. More in
detail, more native directives for interoperating with external data will be added with a
tighter integration with the ASP solver wasp in the new ASP system DLV2.

Notwithstanding the good performance of I-DLV+MS, the system is still in a proto-
type phase. As future work, we aim to test additional supervised learning method and
also several frameworks for automatic algorithm configuration, like Autofolio [77] or
Auto-WEKA [69]. We also plan to significantly extend experiments over additional do-
mains and analyze the possible overfitting of the model and try different splits of the
dataset for the train and test set among the available problems. Moreover, we aim to
both include additional ASP solvers with different parameterizations, and explore more
features for improving the classification capabilities and achieve better overall perfor-
mance.
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In addition, we are studying the possibility of taking advantage from machine-
learning techniques for improving performance of ASP grounding engines; in partic-
ular, we plan to develop a built-in automatic algorithm selector within the I-DLV system
(which I-DLV+MS is based on), thus opening up the possibility to dynamically adapt all
the optimization strategies to the problem at hand.



Appendix A
Embed ASP in Android Application

This appendix reports the full code of the example proposed in Chapter 7.
The Android app is divided into two classes:

• Cell class represent a single cell of the Sudoku schema;

• MainActivity class is the activity called when the application is launched.

In the following sections, we show the full code of the two classes that implement
an Android application for solving Sudoku puzzles.

A.1 The Cell Class
By means of the annotation-guided mapping of EMBASP, the initial schema can be
expressed in forms of Java objects. Then, a Cell object represents a cell in a Sudoku
schema. Therefore a Cell class has three fields representing the row, the column and the
value, i.e. a number between 1 and 9. Also, the mapped object follows the JavaBean
convention, hence the below class implements the getter and setter methods.

1 @Id("cell")
2 p u b l i c c l a s s Cell {

3
4 @Param (0)

5 p r i v a t e i n t row;

6
7 @Param (1)

8 p r i v a t e i n t column;

9
10 @Param (2)
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11 p r i v a t e i n t value;

12
13 p u b l i c Cell() {

14 row = column = value = 0;

15 }

16
17 p u b l i c Cell( f i n a l i n t row , f i n a l i n t column , f i n a l i n t value) {

18 t h i s .row = row;

19 t h i s .column = column;

20 t h i s .value = value;

21 }

22
23 p u b l i c i n t getColumn () {

24 r e t u r n column;

25 }

26
27 p u b l i c i n t getRow () {

28 r e t u r n row;

29 }

30
31 p u b l i c i n t getValue () {

32 r e t u r n value;

33 }

34
35 p u b l i c v o i d setColumn( f i n a l i n t column) {

36 t h i s .column = column;

37 }

38
39 p u b l i c v o i d setRow( f i n a l i n t row) {

40 t h i s .row = row;

41 }

42
43 p u b l i c v o i d setValue( f i n a l i n t value) {

44 t h i s .value = value;

45 }

46
47
48 }

A.2 The Main Activity
The MainActivity Class contains the main functions of the app. The first function called
when the application is run is onCreate and performs the basic application startup logic.
The function displaySolution display on the screen the value of the Sudoku schema
stored in the sudokuMatrix, that is initialized with an initial schema with cells ini-
tially empty are represented by positions containing zero. Furthermore,the utility func-
tion getEncodingFromResources loads the ASP program from the Android Resources
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folder,while the method startReasoning is in charge of managing the reasoning and
is invoked in response to a “click” event called by the onClick function. After the rea-
soning process a callback object MyCallback is in charge of fetching the output that is
retrieved directly in the form of Java objects.

1 package embasp.mat.unical.it.embasp_android_sudoku;

2
3 i m p or t android.os.Bundle;

4 i m p or t android.support.v7.app.AppCompatActivity;

5 i m p or t android.view.View;

6 i m p or t android.widget.Button;

7 i m p or t android.widget.TextView;

8
9 i m p or t java.io.BufferedReader;

10 i m p or t java.io.IOException;

11 i m p or t java.io.InputStream;

12 i m p or t java.io.InputStreamReader;

13
14 i m p or t it.unical.mat.embasp.base.Callback;

15 i m p or t it.unical.mat.embasp.base.Handler;

16 i m p or t it.unical.mat.embasp.base.InputProgram;

17 i m p or t it.unical.mat.embasp.base.Output;

18 i m p or t it.unical.mat.embasp.languages.asp.ASPInputProgram;

19 i m p or t it.unical.mat.embasp.languages.asp.AnswerSet;

20 i m p or t it.unical.mat.embasp.languages.asp.AnswerSets;

21 i m p or t it.unical.mat.embasp.platforms.android.AndroidHandler;

22 i m p or t it.unical.mat.embasp.specializations.dlv.android.

DLVAndroidService;

23
24 p u b l i c c l a s s MainActivity e x t e n d s AppCompatActivity {

25
26 p u b l i c f i n a l i n t N=9;

27 p r i v a t e String encodingResource="sudoku";

28 p r i v a t e i n t [][] sudokuMatrix = {{1,0,0,0,0,7,0,9,0},

29 {0,3,0,0,2,0,0,0,8},

30 {0,0,9,6,0,0,5,0,0},

31 {0,0,5,3,0,0,9,0,0},

32 {0,1,0,0,8,0,0,0,2},

33 {6,0,0,0,0,4,0,0,0},

34 {3,0,0,0,0,0,0,1,0},

35 {0,4,1,0,0,0,0,0,7},

36 {0,0,7,0,0,0,3,0,0}};

37 p r i v a t e Handler handler;

38
39 p r i v a t e c l a s s MyCallback i m p l e m e n t s Callback {

40 @Override

41 p u b l i c v o i d callback(Output o) {

42 i f (!(o i n s t a n c e o f AnswerSets)) r e t u r n ;

43 AnswerSets answerSets =( AnswerSets)o;

44 i f (answerSets.getAnswersets ().size()==0) r e t u r n ;

45 AnswerSet as = answerSets.getAnswersets ().get (0);
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46
47 t r y {

48 f o r (Object obj:as.getAtoms ()) {

49 Cell cell = (Cell) obj;

50 sudokuMatrix[cell.getRow ()][cell.getColumn ()]

51 =cell.getValue ();

52 }

53 } c a t c h (Exception e) {

54 e.printStackTrace ();

55 }

56
57 displaySolution ();

58 }

59 }

60
61 @Override

62 p r o t e c t e d v o i d onCreate(Bundle savedInstanceState) {

63 s u p e r .onCreate(savedInstanceState);
64 setContentView(R.layout.activity_main);

65 handler = new AndroidHandler(getApplicationContext (),

66 DLVAndroidService. c l a s s );
67 displaySolution ();

68 }

69
70 p r i v a t e String getEncodingFromResources (){

71 InputStream ins = getResources ().openRawResource(

72 getResources ().getIdentifier(encodingResource ,

73 "raw", getPackageName ()));

74 BufferedReader reader=

75 new BufferedReader(new InputStreamReader(ins));

76 String line="";

77 StringBuilder builder=new StringBuilder ();

78 t r y {

79 w h i l e ((line = reader.readLine ()) != n u l l ) {

80 builder.append(line);

81 builder.append("\n");

82 }

83 } c a t c h (IOException e) {

84 e.printStackTrace ();

85 }

86 r e t u r n builder.toString ();

87 }

88
89 p u b l i c v o i d startReasoning (){

90 InputProgram inputProgram=new ASPInputProgram ();

91 f o r ( i n t i = 0; i < N; i++)

92 f o r ( i n t j = 0; j < N; j++)

93 t r y {

94 i f (sudokuMatrix[ i ] [ j ]!=0) {

95 inputProgram.addObjectInput(

96 new Cell(i, j, sudokuMatrix[i][j]));

97 }

98 } c a t c h (Exception e) {
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99 e.printStackTrace ();

100 }

101 handler.addProgram(inputProgram);

102
103 String sudokuEncoding = getEncodingFromResources ();

104 handler.addProgram(new InputProgram(sudokuEncoding));

105
106 Callback callback = new MyCallback ();

107 handler.startAsync(callback);

108 }

109
110 p u b l i c v o i d onClick( f i n a l View view){

111 Button button =( Button) findViewById(R.id.button);

112 button.setEnabled( f a l s e );
113 startReasoning ();

114 }

115
116 p r i v a t e v o i d displaySolution () {

117 String out="";

118 f o r ( i n t i = 0; i < N; i++) {

119 f o r ( i n t j = 0; j < N; j++) {

120 out += sudokuMatrix[i][j]+" ";

121 }

122 out+="\n";

123 }

124
125 f i n a l String finalOut=out;

126 runOnUiThread(new Runnable () {

127 @Override

128 p u b l i c v o i d run() {

129 TextView text = (TextView) findViewById(R.id.result);

130 text.setText(finalOut);

131 }

132 });

133 }

134
135 }



Appendix B
External Computation and Sources of
Knowledge Encodings

In this appendix, we give details to some of those benchmark encodings which are not
described in Sections 10.4 and 11.2.

B.1 External Computations Benchmarks
In Section 10.4 we compare I-DLV with other currently available systems supporting
external computation via Python to assess their efficiency at integrating external compu-
tations.

Then, we compare I-DLV against: the ASP grounder gringo [54] and the dlvhex [38].
In order to compare the different systems, we use a distinct ASP encoding for each of
them due to the different syntax of the external atoms implemented in each system.

We compare the systems on two set of benchmarks:

• the first set of benchmarks is focused on the spatial representation and reasoning
domain originally appeared in [98];

• three further ad-hoc domains:

– concatenation of two randomly-generated strings with arbitrary lengths vary-
ing from 1000 to 3000 chars;

– generation of first k prime numbers with k ranging from 0 to 100000;

– the recursive reachability problem, with edges retrieved via Python scripts.
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In the next sections we propose the ASP encodings used for the three ad-hoc prob-
lems which are not described in the existing literature.

String Concatenation

In the paragraphs below, we present for each system the related ASP encoding that solve
the concatenation of two randomly-generated strings using the concat external atom. It
receives as input two strings and compute the concatenation. Notably, the input strings
are given by the EDB predicate b.

• I-DLV
a(X ,Y,Z) :– b(X), b(Y ), &concat(X ,Y ;Z).

• dlvhex
a(X ,Y,Z) :–b(X), b(Y ), &concat[X ,Y ](Z).

• gringo
a(X ,Y,@concat(X ,Y )) :–b(X), b(Y ).

First k-prime

The below ASP encodings solve the problem of generating the first k-prime number. The
fact num(K) is the only input of the program and in particular: the external atom range
returns a range of number between 2 to K and the external atom prime takes as input a
number and checks if it is prime. Moreover, the second rule, calculates how many prime
numbers are in the range 2 to k.

• I-DLV
prime(Y ) :–num(K), &range(K;Y ), &prime(Y ;).
primeN(Z) :–#count{X : prime(X)}= Z.

• dlvhex

prime(Y ) :–num(K), &range[K](Y ), &prime[Y ](Z), Z = 1.
primeN(Z) :–#count{X : prime(X)}= Z.
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• gringo

prime(Y ) :–num(K), @range(K) = Y, @prime(Y ) = 1.
primeN(Z) :–#count{X : prime(X)}= Z.

Reachability

The Deductive Database problem Reachability, already presented in Section 4.1, com-
putes all pairs of reachable nodes in a given graph G. However, in next paragraph, we
encode the reachability problem with edges retrieved via external atoms.

• I-DLV
edge(X ,Y ) :–&getEdges(;X ,Y ).
reachable(X ,Y ) :–edge(X ,Y ).
reachable(X ,Y ) :–reachable(Z,Y ), edge(X ,Z).

• dlvhex
edge(X ,Y ) :–&getEdges[](X ,Y ).
reachable(X ,Y ) :–edge(X ,Y ).
reachable(X ,Y ) :–reachable(Z,Y ), edge(X ,Z).

• gringo
edge(X ,Y ) :–(X ,Y ) = @getEdges().
reachable(X ,Y ) :–edge(X ,Y ).
reachable(X ,Y ) :–reachable(Z,Y ), edge(X ,Z).

For the sake of completeness in the following we report the Python code of the
relative external atoms for I-DLV , dlvhex and gringo systems. Notably, edges variables
are list of tuples where a tuple represents an edge that changes according to the input
instance.

• I-DLV
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1 d e f concat(X,Y):

2 Z= s t r (X)+ s t r (Y)
3 r e t u r n Z

1 d e f range (X):
2 r e t u r n range (2,X)
3
4 d e f prime(X):

5 i f X==2:

6 r e t u r n True

7 f o r i i n range (2,X):
8 i f X % i == 0:

9 r e t u r n False

10 r e t u r n True

1 d e f getEdges ():

2 r e t u r n edges

3 edges =[...]

• dlvhex

1 import dlvhex

2
3 d e f concat(tup):

4 ret = ""

5 f o r x i n tup:

6 ret = ret + x.value()

7 dlvhex.output ((ret , ))

8
9 d e f register ():

10 dlvhex.addAtom("concat",(dlvhex.TUPLE , ),1

)

1 import dlvhex

2
3 d e f r(X):
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4 y = i n t (X.value ())
5 f o r i i n range (2,y):
6 dlvhex.output ((i,))

7
8 d e f prime(X):

9 y = i n t (X.value ())
10 i f y==2:

11 dlvhex.output (( i n t (1) ,))
12 r e t u r n
13 f o r i i n range (2,y):
14 i f y % i == 0:

15 dlvhex.output (( i n t (0) ,))
16 r e t u r n
17 dlvhex.output (( i n t (1) ,))
18
19 d e f register ():

20 dlvhex.addAtom("r",(dlvhex.CONSTANT ,) ,1)

21 dlvhex.addAtom("prime",(dlvhex.CONSTANT ,)

,1)

1 import dlvhex

2 d e f getEdges ():

3 f o r e i n edges:

4 dlvhex.output ((e[0],e[1]))

5
6 d e f register ():

7 dlvhex.addAtom("getEdges" ,() ,2)

8 edges =[...]

• gringo

1 #script (python)

2 d e f concat(X,Y):

3 Z= s t r (X)+ s t r (Y)
4 r e t u r n Z

5 #end.
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1 #script (python)

2 d e f range (X):
3 r e t u r n range (2,X)
4
5 d e f prime(X):

6 i f X==2:

7 r e t u r n True

8 f o r i i n range (2,X):
9 i f X % i == 0:

10 r e t u r n False

11 r e t u r n True

12 #end.

1 #script (python)

2 d e f getEdges ():

3 r e t u r n edges

4 edges =[...]

5 #end.

B.2 Interoperability Benchmarks
In Section 11.2 we analyze the effective gain in performance obtainable with a native
support of SQL/SPARQL local import directives against the same directives imple-
mented via Python scripts.

The first benchmark we import data from a Relational Database using SQL state-
ments. The ASP encoding that natively import data from a database is a single line
directive

#import sql(DLVDB0,"root","root",

"SELECT * FROM T0 LIMIT K;",

p1,type: U INT, CONST, Q CONST).

where K ranging from 100000 to 1000000 according to the instance, p1 indicates
the predicate whose extension will be enriched with the result of the query and type :
U INT,CONST,Q CONST are the mapping policy where the first field of the table T 0
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is imported as an integer, the second field as symbolic constant and the remaining values
are converted to quoted strings.

Meanwhile, the ASP program that imports data from relational database using an
external atom is defined below.

p1(X ,Y,Z) :–&importDB(”DLV DB0”,”SELECT ∗FROMT 0LIMIT K; ”;X ,Y,Z).

Moreover, the relative Python code that defines the external atom importDB is:

1 import pymysql

2 from pymysql import connect , err , sys , cursors

3
4 d e f importDB(db,q):

5
6 conn = connect( host = ’localhost ’,

7 port = 3306,

8 user = ’root’,

9 passwd = ’root’,

10 db = db );

11
12 cursor = conn.cursor( cursors.DictCursor );

13
14 cursor.execute( q )

15 data = cursor.fetchall ()

16 l = []

17 f o r row i n data:

18 p1 = row["F0"]

19 p2 = row["F1"]

20 p3 = row["F2"]

21 l.append ((p1,p2,p3))

22 r e t u r n l

In the second benchmark, we import data from a local RDF/XML file and in partic-
ular, OWL University ontologies.

The ASP encoding that natively import data using SPARQL query is composed of n
directives, where n is the number of universities to import:
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#import local sparql("file:University1.owl",

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

SELECT ?X WHERE {{?X rdf:type ub:GraduateStudent.}}
UNION {?X rdf:type ub:UndergraduateStudent.} }",
student,1, type:Q CONST).

...

#import local sparql("file:UniversityN.owl",

"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>

SELECT ?X WHERE {{?X rdf:type ub:GraduateStudent.}}
UNION {?X rdf:type ub:UndergraduateStudent.} }",
student,1, type:Q CONST).

where the SPARQL queries import graduate and undergraduate students from a dif-
ferent number of universities in predicate student with the first field as constant

Meanwhile, the ASP program that imports using an external atom is defined below.

student(X0) :– university(X), &sparql(X ,

”PREFIX rd f :< htt p : //www.w3.org/1999/02/22− rd f − syntax−ns# >

PREFIX ub :< htt p : //swat.cse.lehigh.edu/onto/univ−bench.owl# >

SELECT ?X WHERE {{?X rd f : type ub : GraduateStudent.}
UNION {?X rd f : type ub : UndergraduateStudent.}}”;X0).

The relative Python code:

1 import rdflib

2
3 d e f sparql(dataset , query):

4 g = rdflib.Graph ()

5 g.parse(dataset)

6 qres = g.query(query)

7 r e t u r n qres



Appendix C
External Propagators in DLV2

DLV2 offers the possibility to customize heuristics of the system and extend its solving
capabilities by means of directives. For instance, the input program can be enriched by
external propagators that allow a user to embed new external propagators (using Python
language) in the solver, as we show in Section 13.2.

For a better understanding of the external propagators, in the following, we report
the full ASP and Python code of the example 13.1 proposed in Chapter 13.

#propagator(@ f ile = ”prop.py”,@elements = X ,value : value(X);X , in : in(X)).

edb(1..2).
{value(X) : edb(X)}= 1.
{in(X) : edb(X)}.

The directive #propagator calls the python file prop.py reported below.

1 import wasp

2
3 # dictionary ’elements ’ is created by DLV2

4
5 valueAtoms = [key f o r key i n elements.keys()

6 i f elements[key ][1] == "value"]

7 inAtoms = [key f o r key i n elements.keys()

8 i f elements[key ][1] == "in"]
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9
10 answer = []

11 valueAtom = None

12
13 d e f checkAnswerSet (* answer_set):

14 g l o b a l answer

15 g l o b a l valueAtom

16
17 count = sum([1 f o r i i n inAtoms

18 i f answer_set[i] > 0])

19 value = None

20 f o r i i n valueAtoms:

21 i f answer_set[i] > 0:

22 value = elements[i][0]

23 valueAtom = i

24 break
25
26 # it’s an answer set!

27 i f count != value: r e t u r n 1

28
29 # not an answer set!

30 answer = answer_set

31 r e t u r n 0

32
33 d e f getReasonsForCheckFailure ():

34 g l o b a l answer

35 g l o b a l valueAtom

36
37 reason = [-valueAtom]

38 reason.extend ([(-i i f answer[i] > 0

39 e l s e i) f o r i i n inAtoms ])

40 r e t u r n wasp.

41 createReasonsForCheckFailure ([ reason ])

The above propagator simulates the following constraint:

:–value(X), #countY : in(Y ) = X .
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where lines 5−8 find in the dictionary elements all the ground atoms with predicate
value and in storing them in two separate lists. Then the function checkAnswerSet im-
plements the external propagator and receives an interpretation answer set and returns
true if it is an answer set, false otherwise. The interpretation answer set is a dictionary
of literal id and assignment, that can be 1 if the literal is true, false if it 0. Indeed, in
lines 17−18 count the true in atoms respect the interpretation answer set (simulating
the #count aggregate) and lines 20− 24 find the value of the value atom with respect
to the interpretation answer set. Notably, we can break the iteration to the first value
found because according to the ASP encoding only one value can be true. Therefore, if
the count of in atoms is equal to value atom answe set is a possible answer set and the
function returns true, otherwise, it is not, and returns false. The global variables defined
in lines 10− 11 are used in function getReasonsForCheckFailure invoked after a
failure of checkAnswerSet function and returns a list of clauses modeling the reasons
for the failure and consequently in lines 37−41 return the value of the true literal value
and the in literals, previously stored in the global variables, lines 23 and 30.
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[21] Francesco Calimeri, Davide Fuscà, Stefano Germano, Simona Perri, and Jessica
Zangari. Boosting the development of asp-based applications in mobile and gen-
eral scenarios. In AI*IA 2016: Advances in Artificial Intelligence - XVth Inter-
national Conference of the Italian Association for Artificial Intelligence, Genova,
Italy, November 29 - December 1, 2016, Proceedings, pages 223–236, 2016.
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[23] Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari. I-DLV: the
new intelligent grounder of DLV. Intelligenza Artificiale, 11(1):5–20, 2017.
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