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Sommario

L’obbiettivo di questo lavoro è quello di sviluppare un modello numerico adeguato
per l’analisi e l’ottimizzazione di strutture in parete sottile, in particolare nel caso
di materiali compositi fibro-rinforzati, tenendo conto delle nonlinearità geomet-
riche del modello meccanico. Diversi aspetti del problema, per cui ancora oggi
non esistono soluzioni affidabili ad efficienti, vengono affrontati: tecniche di dis-
cretizzazione, metodi di analisi e di ottimizzazione. Nel primo capitolo, dopo un
breve richiamo a metodi di Riks e di Koiter, vengono discussi i vantaggi di un
modello solido misto in tensione e spostamento in questo contesto di analisi e
le ripercussioni sulle performance dei metodi di soluzione. Il secondo capitolo,
dopo l’introduzione di un elemento finito solid-shell misto, riformula il metodo
di Koiter, rendendolo uno strumento accurato ed efficiente per l’analisi di sensi-
bilità alle imperfezioni. Quest’ultimo viene sfruttato nel terzo capitolo che pro-
pone una strategia di ottimizzazione di strutture in composito basata sull’analisi
Monte Carlo che prende in considerazione la forma peggiore di imperfezione ge-
ometrica. Il quarto capitolo illustra un’implementazione efficiente del metodo
Koiter-Newton, che sfrutta la predizione alla Koiter e l’efficienza della formu-
lazione mista per ricostruire il percorso di equilibrio con un numero esiguo di
iterazioni alla Newton. Nel quinto capitolo, i vantaggi della formulazione mista
nel metodo di Newton vengono estesi ad elementi finiti basati su formulazione in
spostamento attraverso la tecnica dei punti di integrazione misti. Nel sesto capi-
tolo, il modello ad elementi finiti viene trasformato in un’analisi isogeometrica
per ridurre il numero di variabili discrete sfruttando funzioni di forma ad alta
continuità e la rappresentazione esatta della geometria. Questo modello è reso
accurato ed efficiente attraverso integrazioni ridotte definite sulla patch e punti
di integrazione misti. I vantaggi rispetto agli elementi finiti di ordine basso sono
molto evidenti nei casi di instabilità di gusci curvi, come mostrato nel settimo
capitolo che illustra un’analisi isogeometrica alla Koiter.
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Abstract

This thesis aims at developing a reliable and efficient numerical framework for
the analysis and the design of slender elastic shells, in particular when composite
materials are adopted, taking account of the geometrically nonlinear behaviour.
Different aspects of this challenging topic are tackled: discretisation techniques,
numerical solution strategies and optimal design. The first chapter, after a short
summary of the Riks and Koiter methods, discusses the important advantages
of using a mixed (stress-displacement) solid model for analysing shell structures
over traditional shell models and the implications of this on the performances of
the solution strategies. The second chapter introduces a mixed solid-shell model
and reformulates the Koiter method to obtain an effective tool for analysing im-
perfection sensitive structures. This approach is the starting point of the third
chapter, which proposes a stochastic optimisation strategy for the layup of com-
posite shells, able to take account of the worst geometrical imperfection. The
fourth chapter extends the benefits of the mixed formulation in the Newton iter-
ative scheme to any displacement-based finite element model by means of a novel
strategy, called Mixed Integration Point. The fifth chapter illustrates an efficient
implementation of the novel Koiter-Newton method, able to recover the equilib-
rium path of a structure accurately with a few Newton iterations, combining an
accurate Koiter predictor with the reduced iterative effort due to a mixed formula-
tion. The solid-shell discrete model is reformulated in the sixth chapter, following
the isogeometric concept, by using NURBS functions to interpolate geometry and
displacement field on the middle surface of the shell in order to take advantage
of their high continuity and of the exact geometry description. The approach
is made accurate and efficient in large deformation problems by combining the
Mixed Integration Point strategy with a suitable patch-wise reduced integration.
The resulting discrete model proves to be much more convenient than low order
finite elements, especially in the analysis of curved shells undergoing buckling.
This is shown in the seventh chapter, which proposes an efficient isogeometric
Koiter analysis.
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Introduction

Shell structures are employed as primary structural elements in a very wide
range of applications, ranging from aerospace to civil engineering. Their suc-
cess is mainly due to the high strength/weight ratio that is crucial for lightweight
structures. In addition to isotropic metal materials, multi-layered composites are
widely used. In this case, the structural performances can be tailored by a proper
choice of the fibre orientation within each layer [1]. The use of such materials
together with the structural optimisation, results in slender structures, whose
failure is often dominated by buckling and/or excessive deformations which com-
promise the structural functionality. A reliable modelling of the problem is an
essential tool for designers. This issue is commonly known as a geometrically
nonlinear structural problem, that is a mathematical problem in which the non-
linearity is due to the relationship between strains and displacements/rotations.
As a result, the structural behaviour of slender structures is described by means
of a nonlinear system of partial differential equations, whose solution requires
adequate numerical methods which take into account two different aspects: the
discretisation technique, mandatory for general geometries, boundary conditions
and material properties distribution, and the strategy for solving the nonlinear
discrete equations. The standard approach to simulate the behaviour of this kind
of structure consists in the use of the finite element method [2] to transform the
continuum problem into a discrete one. The nonlinear discrete equations are then
solved by using the static Riks approach based on the Newton iterative method,
which provides the equilibrium path of the structure [3]. This strategy is well
established and effective for assigned data, but it can be time consuming with
current computers because of the number of discrete degrees of freedom required
to approximate the differential equations over the domain and the iterative effort
for solving the nonlinear discrete equations. This limitation makes the approach
unsuitable in the design stage of shell structures, when a large number of anal-
yses is generally required to identify optimal solutions, such as in the optimal
stacking sequence in laminates. Moreover, as is well known, nonlinear problems
can exhibit a strong sensitivity to even small deviations of the initial data. This
is very common in buckling problems, where small imperfections, especially geo-
metrical ones, can strongly affect the structural response [4, 5]. In this context, a
different solution approach, named Koiter method, has also been developed over
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the years[6]. It is based on a reduced order model, which approximates the finite
element solution exploiting the Koiter’s theory of elastic stability [7]. This kind
of analysis is much more efficient than the Riks method for analysing an assigned
structure, and provides a quick and accurate prediction of the initial post-buckling
behaviour for a wide range of structural problems. Its most attractive feature is
the theoretical possibility of including the effects of the imperfections directly in
the reduced model of the perfect structure, built once and for all. The current
formula to account for the imperfections, available in literature, can however lead
to significant errors compared to the Riks reference solution [5] and to the Koi-
ter solution with re-construction of the reduced order model. Recently, a novel
strategy, named Koiter-Newton approach, has been proposed [8]. It is based on
a predictor-corrector scheme, like the Riks one, where the Koiter method is used
as an accurate predictor in order to reduce the number of corrector steps involv-
ing Newton iterations. Although this approach is more accurate than the Koiter
method and more efficient than the Riks one, it can still be too time consuming
for optimisation processes and imperfection sensitivity analyses, because some
Newton iterations in all the variables of the finite element model are necessary.

Although there has been a great amount of research into this topic over the
years, the state-of-the-art numerical tools do not give an effective answer for the
needs of the engineers. This thesis aims at developing a reliable and efficient
numerical framework for the analysis and the design of slender elastic shells, in
particular when composite materials are adopted, taking account of the geometri-
cally nonlinear behaviour. Different aspects of the topic are tackled: discretisation
techniques, numerical solution strategies and optimal design.

The first chapter, after a brief summary of the Riks and Koiter methods,
discusses the advantages of using a mixed (stress-displacement) solid model for
analysing shell structures over traditional shell models. In the second chapter, a
new strategy to account for geometrical imperfections in Koiter analysis is derived,
which overcomes the inaccuracies of previous proposals. The main idea is to
correct the reduced order model of the perfect structure taking the imperfections
into account to make the Koiter method a reliable and efficient tool for analysing
imperfection sensitive structures.

In the third chapter, the great efficiency and the improved accuracy of the Koi-
ter method is used within a stochastic optimisation strategy for composite shells.
The goal is to search for the best stacking sequence that maximises the struc-
tural performance, optimising the post-buckling behaviour. Its feasibility is due
to the reduced order model built for each material setup, which allows a random
scan of the optimisation parameters domain considering the worst geometrical
imperfection in the evaluation of the structural response.

The study carried out in the first chapter explains how the advantages of the
mixed formulation over the displacement-based one is due to the direct use of the
stresses as independent variables in the solution algorithms. Starting from this
consideration, the fourth chapter extends the benefits of the mixed formulation
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to any displacement-based finite element model. The idea is to introduce stress
variables in the solution process, even if the discrete approximation is governed by
displacement variables only. To this purpose, a strategy, called Mixed Integration
Points is proposed and implemented within the Newton iterative scheme.

The fifth chapter investigates the novel Koiter-Newton method and, in partic-
ular, an implementation of the algorithm based on the mixed solid-shell model.
The goal is to recover the equilibrium path of a structure accurately with a few
Newton iterations, combining an accurate Koiter predictor with the reduced iter-
ative effort due to a mixed formulation.

Although the linear solid-shell finite element discretisation is robust and effi-
cient, it may require a significant number of degrees of freedom for the analysis
of curved shells and for approximating the buckling modes of compressed struc-
tures, usually characterised by highly continuous shapes. For this reason, the
solid-shell discrete model is reformulated in the sixth chapter, following the iso-
geometric concept [9], exploiting NURBS functions to interpolate geometry and
displacement field on the middle surface in order to take advantage of their high
continuity and of the exact geometry description. The model is made efficient
and accurate by combining the Mixed Integration Point strategy with a suitable
patch-wise reduced integration. The isogeometric solid-shell model is used in the
seventh chapter for constructing the reduced order model of the Koiter method
in a very efficient way, because a very low number of discrete variables and inte-
gration points are needed.

Finally, the main results obtained in this thesis are summarised in the con-
cluding chapter.
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Chapter 1

Advantages of mixed solid
models in geometrically
nonlinear analysis

Abstract
This chapter deals with two main advantages in the analysis of slender elastic
structures both achieved through the mixed (stress and displacement) format
with respect to the more commonly used displacement one: i) the smaller error in
the extrapolations usually employed in the solution strategies of nonlinear prob-
lems; ii) the lower polynomial dependence of the problem equations on the finite
element degrees of freedom when solid finite elements are used. The smaller ex-
trapolation error produces a lower number of iterations and larger step length in
path-following analysis and a greater accuracy in Koiter asymptotic method. To
focus on the origin of the phenomenon the two formats are derived for the same
finite element interpolation. The reduced polynomial dependence improves the
Koiter asymptotic strategy in terms of both computational efficiency, accuracy
and simplicity.

1.1 Introduction
In recent years an increasing amount of research has aimed at developing new
efficient solid finite elements [10] for the linear and nonlinear analysis of thin
structures. This is due to some advantages of solid elements in comparison to
classical shell elements. In particular in the elastic nonlinear analysis of slender
structures they allow the use of the 3D continuum strain and stress measures
employing translational degrees of freedom (DOFs) only [10, 11, 12, 13]. In this
way it is possible to avoid the use of complicated and expensive rules for updat-
ing the rotations and, by using the Green-Lagrange strain measure, to coherently
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describe the structural behaviour through a low order dependence on the displace-
ment field without the need to employ complex, geometrically exact formulations,
which are not always available or accurate [14, 15]. In this way solid elements
allow a simpler expression of the strain energy and its variations with a gain in
computational efficiency.

However, formulating robust solid-shell elements is more demanding than shell
elements. To maintain an acceptable number of DOFs, the elements proposed are
usually based on a low order displacement interpolation. Consequently they have
the disadvantages of interpolation lockings: the shear and membrane locking also
present in classical shell elements and trapezoidal and thickness locking, typical
of low order solid-shell elements [16]. Interpolation lockings are usually rectified
by means of Assumed Natural Strain, Enhanced Assumed Strain [17, 18, 19, 20]
and mixed (stress-displacement) formulations [10, 13, 21, 22]. In this way solid-
shell elements have now reached a high level of efficiency and accuracy and have
also been used to model composites or laminated beams [19, 23, 21, 24] and shell
structures in both the linear [17, 12] and nonlinear [20, 11, 10] range. Among the
most effective and interesting proposals, there are the mixed solid-shell elements
of Sze and coauthors [10, 21, 25, 26, 27, 28, 29, 24, 30, 31] which extend the initial
PT18β hybrid element of Pian and Tong to thin shell.

When comparing mixed and displacement finite elements many authors (see
for example [10] and [11]) observe that the mixed ones are more robust and al-
low larger steps in path-following geometrically nonlinear analyses. However the
reasons for these better performances are, in our opinion, not clear, as they are of-
ten wrongly attributed to the properties of the finite element interpolation. One
of the goals of this chapter is therefore to clarify the true reason and origin of
this phenomenon, extending the results presented some years ago [32, 33] in the
context of path-following and Koiter analyses of 2D framed structures.

Mixed and displacement descriptions, while completely equivalent at the con-
tinuum level, behave very differently when implemented in path-following and
Koiter solution strategies even when they are based on the same finite element
interpolations, that is when they are equivalent also at the discrete level. This
is an important, even if frequently misunderstood, point in developing numerical
algorithms and it has been discussed in [32, 33, 6] to which readers are referred
for more details.

Since the solution strategies of a nonlinear problem usually involve linearisa-
tions, a smooth enough description of the problem that makes the extrapolation
error as small as possible is crucial. Mixed and displacement descriptions are char-
acterized by a different extrapolation errors and so they behave very differently
when used within a numerical solution process. For shells or beams, in the pres-
ence of large displacements (rigid rotations) and high membrane/flexural stiffness
ratios, the extrapolation with the displacement description is affected by a large
error that causes: i) a very slow convergence rate in path-following analysis; ii)
an unreliable estimate of the bifurcation point along an extrapolated fundamen-
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tal path and then a low accuracy of the Koiter method based on an asymptotic
expansion in this point. As will be shown, the mixed description is unaffected by
this phenomenon named extrapolation locking. Note that it is a locking of the non-
linear problem when described in a displacement format and it not related to the
FE interpolation. The term locking is used in analogy to the interpolation locking
of the finite element, because it produces an overestimated extrapolated stiffness
which gets worse with the slenderness of the structure. On the contrary the mixed
format of the nonlinear problem is unaffected by the extrapolation locking and
this ensures: in path-following analysis, a fast convergence of the Newton (Riks)
iterative process; in asymptotic analysis, which uses extrapolations which are not
corrected by an iterative process [34, 35], an accurate recovery of the equilibrium
path.

In this chapter a mixed and a displacement description are derived for the
same finite element, so obtaining two completely equivalent discrete problems, in
order to show that their different behaviour is not due to the interpolation fields
and that the extrapolation locking occurs for any displacement finite element.
This allows us to thoroughly investigate this important phenomenon which has
not been taken into account by the scientific community.

Another important advantage is related to the minimum strain energy de-
pendence on the finite element (FE) discrete variables when solid elements based
on the quadratic Green-Lagrange strain measure are employed: the fourth order
dependence on displacement variables in the displacement formulation and the
third order in stress and displacement variables in the mixed case. This has a
significant effect on the efficiency, robustness and coherence of the asymptotic
analysis when the mixed description is used. It allows, in fact, the zeroing of all
the strain energy variations of an order greater than the third and, consequently,
permits light numerical formulations and an improvement in accuracy. In this
way it is possible to develop a new Koiter algorithm, which is more accurate and
computationally efficient than that based on classical shell elements, well suited
to the imperfection sensitivity analysis of slender structures.

Finally it is worth mentioning that the use of both displacement and stress
variables increases the dimension of the problem, but generally the computational
extra–cost, with respect to a displacement analysis, is very low. This is because
the global operations involve displacement DOFs only by performing a static con-
densation of the stress variables defined at element level. This small computational
extra-cost is largely compensated: in path-following analysis, by larger steps and
fewer iterations with respect to the displacement case; in asymptotic analysis,
by the zeroing of the computationally expensive fourth order strain energy vari-
ations. It will be also shown how the slow change of the Jacobian matrix when
expressed in mixed variables allows, in path following analyses, an efficient use of
the modified Newton method with a further significant reduction in the computa-
tional cost. To summarize the chapter deals with two important advantages, both
achieved with the mixed format with respect to the commonly used displacement
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one: i) the smaller error in the extrapolations usually employed in the solution of
nonlinear problems; ii) the lower polynomial dependence of the problem equations
on the FE DOFs when a solid finite element is used. The chapter is organized
as follows: Section 2 briefly reviews asymptotic and path-following methods; Sec-
tion 3 presents the mixed and displacement descriptions based on the solid finite
element and the advantages of mixed solid elements in Koiter analysis; Section
4 describes why extrapolation locking phenomenon occurs for slender structures
and its effect on the two solution algorithms adopted; Section 5 presents some
numerical tests; finally, the conclusions are reported.

1.2 Numerical strategies in nonlinear FE analysis
This section briefly summarises the path following and asymptotic methods. A
complete review of both the approaches can be found in [3, 36, 6, 35].

1.2.1 The discrete nonlinear equations

We consider a slender hyperelastic structure subject to conservative loads p[λ]
proportionally increasing with the amplifier factor λ. The equilibrium is expressed
by the virtual work equation

Φ[u]′ δu − λp̂ δu = 0 , u ∈ U , δu ∈ T (1.1)

where u ∈ U is the field of configuration variables, Φ[u] denotes the strain energy,
T is the tangent space of U at u and a prime is used to express the Frechèt
derivative with respect to u. U is assumed to be a linear manifold so that its
tangent space T will be independent of u. When a mixed format is adopted the
configuration variables u collect both displacement and stress fields. Eq.(1.1) can
be rewritten, using a FE discretisation u = Nuu as

r[u, λ] ≡ s[u]− λ p̂ = 0, with
{

sT δu ≡ Φ′[u]δu
p̂T δu ≡ p̂ δu

(1.2)

where r : RN+1 → RN is a nonlinear vectorial function of the vector z ≡ {u, λ} ∈
RN+1, collecting the configuration u ∈ RN and the load multiplier λ ∈ R, s[u] is
the response vector and p̂ the reference load vector. Eq.(1.2) represents a system
of N -equations and N+1 unknowns and defines the equilibrium path as a curve in
RN+1 from a known initial configuration u0, corresponding to λ = 0. The tangent
stiffness matrix is also defined as

δuT2 K[u]δu1 = Φ′′[u]δu1δu2 , ∀ δu1, δu2 (1.3)

where δui are generic variations of the configuration field u and δui the corre-
sponding FE vectors.
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1.2.2 Path–following analysis

The Riks approach [3] completes the equilibrium equations (1.2) with the ad-
ditional constraint g[u, λ] − ξ = 0 which defines a surface in RN+1. Assigning
successive values to the control parameter ξ = ξ(k) the solution of the nonlinear
system

R[ξ] ≡
[

r[u, λ]
g[u, λ]− ξ

]
= 0 (1.4)

defines a sequence of points (steps) z(k) ≡ {u(k), λ(k)} belonging to the equilibrium
path. Starting from a known equilibrium point z0 ≡ z(k) the new one z(k+1) is
evaluated correcting a first extrapolation z1 = {u1, λ1} by a sequences of estimates
zj (loops) by a Newton–Raphson iteration{

J̃ż = −Rj

zj+1 = zj + ż
(1.5a)

where Rj ≡ R[zj ] and J̃ is the Jacobian of the nonlinear system (1.4) at zj
or its suitable estimate. The simplest choice for g[u, λ] is the linear constraint
corresponding to the orthogonal hyperplane

nTu (u− u1) + nλ (λ− λ1) = ∆ξ where
{

nu ≡M (u1 − u(k))
nλ ≡ µ (λ1 − λ(k))

(1.5b)

M and µ being some suitable metric factors [32], ∆ξ an assigned increment of ξ
and

J̃ ≈
[
∂R[z]
∂z

]
zj

=
[

K̃ −p̂
nTu nλ

]
(1.5c)

The standard load controlled scheme is obtained assuming g[u, λ] = λ (see [32] for
further details) while keeping K̃ = K[u1] we have the modified Newton-Raphson
scheme.

Convergence of the path–following scheme.

The convergence of the iterative process (1.5) has been widely discussed in [32]
and can be expressed in the condition

Rj+1 =
(
I− JsJ̃

−1)Rj (1.5d)

where I is the identity matrix and Js ≡
∫ 1
0 J[zj + t(zj+1 − zj)] dt the secant

Jacobian matrix. The iteration converges if in some norm we have
∥∥∥I− JsJ̃

−1∥∥∥ <
1 and it will be as fast as J̃ is close to Js. Also note that the convergence condition
for a load controlled scheme is obtained by replacing J̃ and Js with K̃ and Ks
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respectively. For the displacement format in the case of positive definite K̃ the
convergence condition can be simplified as

0 < uTKsu < 2uT K̃u, ∀u (1.5e)

A convergence condition similar to Eq.(1.5e) but limited to the subspace of non-
singular values of K̃ holds also for the arc-lenght scheme [32] that, like for the
load controlled case, is as faster as

uTKsu ≈ uT K̃u, ∀u (1.5f)

and it converges in a single iteration when Ks = K̃ because of the linearity of
Eq.(1.5b).

The arc-length scheme provides a simple way to overcome limit points be-
cause J̃ is not singular even when K̃ is singular. The convergence is, however,
strongly affected by the variables chosen to describe the problem since a smoother
representation of the equilibrium path makes it easy to fulfil the condition (1.5f)
allowing large steps and few loops. In the following it will be shown that this de-
sirable behaviour occurs in the case of a mixed description while the displacement
one, for any FE model, is affected by an extrapolation locking that could produce
a pathological reduction in the step size (increase in iterations) and in some cases
a loss of convergence.

1.2.3 Koiter method

The Koiter asymptotic approach, derived as a finite element implementation [6,
35, 37, 38, 39, 40, 41, 42, 43, 44, 45] of the Koiter theory of elastic stability [46]
provides an effective and reliable strategy for predicting the initial post-critical
behaviour in both cases of limit or bifurcation points and makes the imperfection
sensitivity analysis easy and affordable [5, 34]. The solution process is based on
a third order Taylor expansion of Eq.(1.1), in terms of load factor λ and modal
amplitudes ξi. The steps of the algorithm are

1. The fundamental path is obtained as a linear extrapolation

uf [λ] := u0 + λû (1.6a)

where the initial path tangent û is a solution of the linear system. Letting
û := Nuû

(Φ′′[u0]û− p)δu = 0, ∀δu ⇒ K0 û = p̂ , K0 := K[u0] (1.6b)

2. A cluster of buckling loads λi, i = 1 · · ·m and associated buckling modes
v̇i := Nuv̇i, are obtained along the extrapolated uf [λ] from the critical
condition

Φ′′[uf [λ]]v̇iδu ≡ δuTK[λ]v̇i = 0 i = 1 · · ·m ∀δu (1.6c)
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Eq.(1.6c) defines the following nonlinear eigenvalue problem

K[λi] v̇i = 0 , K[λ] ≡ K[u0 + λ û] (1.6d)

that, in the multi-modal buckling case, is usually simplified by means of a
linearisation near (ub, λb) [37],

Φ′′[uf [λ]]v̇iδu ≈ (Φ′′b + (λ− λb)Φ′′′b û)v̇iδu (1.6e)

where λb is a reference value for the cluster, the subscript "b" denotes quan-
tities evaluated at ub ≡ uf [λb] and, letting δij the Kronecker symbol, the
following normalization is used

Φ′′′b ûv̇iv̇j = −δij . (1.6f)

In the following, V := {v̇ = ∑m
i=1 ξiv̇i} will denote the subspace spanned by

the buckling modes and W := {w := Nuw : Φ′′′b ûv̇iw = 0 , i = 1 · · ·m} is its
orthogonal complement.

3. The asymptotic approximation for the required path is defined by the ex-
pansion

u[λ, ξk] := λû +
m∑
i=1

ξiv̇i + 1

2

m∑
i,j=1

ξiξjwij + 1
2λ

2 ˆ̂w (1.6g)

where wij , ˆ̂w ∈ W are quadratic corrections introduced to satisfy the pro-
jection of the equilibrium equation (1.1) into W and obtained by the linear
systems

δwT (Kbwij + pij) = 0
δwT (Kb

ˆ̂w + ˆ̂p) = 0
, ∀w ∈ W (1.6h)

where Kb ≡ K[λb] and vectors pij and ˆ̂p are defined by the energy equiva-
lence

δwTpij = Φ′′′b v̇j v̇j δw, δwT ˆ̂p = Φ′′′b û2 δw

4. The following energy terms are computed for i, j, k = 1 · · ·m:

Aijk =Φ′′′b v̇iv̇j v̇k
B00ik =Φ′′′′b û2v̇iv̇k − Φ′′b ˆ̂wwik
B0ijk =Φ′′′′b ûv̇iv̇j v̇k
Bijhk =Φ′′′′b v̇iv̇j v̇hv̇k − Φ′′b (wijwhk + wihwjk + wikwjh)
Cik =Φ′′b ˆ̂wwik

µk[λ] =1

2
λ2Φ′′′b û2v̇k + 1

6λ
2(λb − 3λ)Φ′′′′b û3v̇k

(1.6i)
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5. The equilibrium path is obtained by projecting the equilibrium equation
(1.1) into V and assuming a coherent Taylor expansion in λ and ξi

µk[λ]+(λk−λ)ξk−λb(λ−
λb
2 )

m∑
i=1

ξiCik+
1
2

m∑
i,j=1

ξiξjAijk+
1

2
(λ−λb)2

m∑
i=1

ξiB00ik

+ 1
2(λ− λb)

m∑
i,j=1

ξiξjB0ijk + 1
6

m∑
i,j,h=1

ξiξjξhBijhk = 0, k = 1 · · ·m (1.6j)

The equations (1.6j) are an algebraic nonlinear system of m equations in
the m+ 1 variables λ, ξ1 · · · ξm, with known coefficients and solved using a
path–following algorithm.

Remarks on Koiter analysis.

Asymptotic analysis uses fourth order variations of the strain energy in an extrap-
olated bifurcation point and requires fourth order accuracy to be guaranteed. In
the past, much effort has been devoted to developing geometrically exact struc-
tural models [14, 34, 15]. These models however use 3D finite rotations and con-
sequently they have complex and expensive strain energy variations. Also, being
based on the fundamental path extrapolation, the accuracy of the method is very
sensitive to the format used in the problem description. Both these problems are
solved naturally when using a mixed solid element which, furthermore, improves
the computational efficiency and accuracy as shown in the next sections.

1.3 The solid finite element

In this section, two equivalent descriptions, one in stresses and displacements
called mixed description based on the Hellinger-Reissner functional and another,
in displacement variables only, called displacement description, are derived for
the mixed Pian and Tong finite element [2]. The use of the same interpolations
makes it possible to directly compare the different formats maintaining the same
discrete approximation. Obviously the displacement description is natural when
displacement based finite elements are employed. The dramatic improvement in
efficiency due to the joint use of a solid element and mixed description in Koiter
analysis is also discussed.

1.3.1 Solid element equations in convective coordinates

We consider a solid finite element and denote with ζ = {ζ1, ζ2, ζ3} the convec-
tive coordinates used to express the FE interpolation. The initial configuration,
assumed as reference, is described by the position vector X[ζ] while x[ζ] repre-
sents the same position in the current configuration. They are related by the
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transformation
x[ζ] = X[ζ] + d[ζ] (1.7)

where d[ζ] is the displacement field. The covariant (or convected) base vectors
are obtained by partial derivatives of the position vectors with respect to the
convective coordinates as Gi = X,i where the comma followed by i denotes dif-
ferentiation with respect to ζi. The contravariant base vectors are defined by the
orthonormality conditions Gi ·Gj = δji where δji is the Kronecker symbol and a
dot denotes the scalar product. Adopting the convention of summing on repeated
indexes the Green-Lagrange strain measure in covariant components becomes

ε = ε̄ij
(
Gi ⊗Gj

)
with ε̄ij = 1

2 (X,i ·d,j +d,i ·X,j +d,i ·d,j ) (1.8)

The second Piola-Kirchoff stress tensor in contravariant components is

σ = σ̄ij (Gi ⊗Gj) (1.9)

Finally the constitutive law is assumed to be linear as σ = Cε with the elastic
tensor C that, assuming an isotropic and homogeneous material, is expressed in
the fixed global orthonormal reference frame {e1, e2, e3}. Both σ and ε can be
expressed in the fixed system in terms of the so-called physical components. For
the stress we have

σ = σijei ⊗ ej = σ̄ij (Gi ⊗Gj) (1.10)

that exploiting the relation Gi ·Gj = δji furnish

σrs = σ̄ijtri t
s
j with tri = (er ·Gi) = ∂Xr

∂ζi
(1.11)

or in matrix format by collecting the components of tri in the Jacobiam matrix
Je we obtain σ = Jeσ̄JTe . By adopting as usual a Voigt notation, we can express
stress and strain tensors in a vector form

ε =
[
ε11, ε22, ε33, 2ε23, 2ε13, 2ε12

]T
, σ =

[
σ11, σ22, σ33, σ23, σ13, σ12

]T
(1.12)

where the same symbol is used to denote both quantities in Voight or tensor
notation and we have

σ = Tσσ̄, ε = T−Tσ ε̄ (1.13)

where Tσ is defined by Eq.(1.11).

1.3.2 The finite element interpolation

The position vector of a point inside the element and its displacement are inter-
polated, using a trilinear 8 nodes hexahedron, as

X[ζ] = Nd[ζ]Xe , d[ζ] = Nd[ζ]de (1.14a)
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where vectors de and Xe collect the element nodal displacements and coordinates
and matrix Nd[ζ] the trilinear interpolation functions. The Green-Lagrange strain
components are obtained from Eq.(1.8) as

ε̄ =
(
L[ζ] + 1

2Q[ζ,de]
)

de, (1.14b)

where matrices L and Q are so defined

L[ζ] ≡



GT
1 Nd,1

GT
2 Nd,2

GT
3 Nd,3

GT
3 Nd,2 +GT

2 Nd,3
GT

1 Nd,3 +GT
3 Nd,1

GT
1 Nd,2 +GT

2 Nd,1


, Q[ζ,de] ≡



dTe Nd,
T
1 Nd,1

dTe Nd,
T
2 Nd,2

dTe Nd,
T
3 Nd,3

dTe (Nd,
T
3 Nd,2 +Nd,

T
2 Nd,3 )

dTe (Nd,
T
1 Nd,3 +Nd,

T
3 Nd,1 )

dTe (Nd,
T
1 Nd,2 +Nd,

T
2 Nd,1 )


(1.14c)

and, from now on, the dependence on ζ is omitted to simplify the notation. Note
that the Assumed Natural Strain techniques can be applied to Eq.(1.14) in order
to improve the element performance for curved shells (see [10, 16]) simply changing
the definition of matrices L[ζ] and Q[ζ,de] without affecting the format of the
equations.

For the contravariant stress components we use the "optimal" interpolation
proposed by Pian and Tong [2, 21] defined as

σ̄[ζ] = Nσ[ζ]βe (1.14d)

where βe collects the 18 stress parameters and the interpolation functions Nσ[ζ]
are given in [2, 21]. The FE defined by Eqs (1.14) is called PT18β. Finally we use
Eq.(1.13) to obtain the Cartesian components with Tσ and its inverse evaluated
for ζ = 0.

1.3.3 The Mixed finite element strain energy

The strain energy is expressed as a sum of element contributions Φ[u] ≡∑e Φe[u].
Making Ve the finite element volume and using the interpolations defined above,
we obtain

Φe[u] ≡
∫

Ωe

(
σTε− 1

2σ
TC−1σ

)
dVe

= βTe (Le + 1
2Qe[de])de −

1
2β

T
e Heβe

with



He ≡
∫

Ωe
NT
σTT

σC−1TσNσdVe

Le ≡
∫

Ωe
NT
σL[ζ]dVe

Qe ≡
∫

Ωe
NT
σQ[ζ,d[ζ]]dVe

(1.15)
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where dVe = det[Je[0]]dζ1dζ2dζ3 and the integrals are evaluated with 2 × 2 × 2
Gauss points. Note that exploiting the linear dependence of Qe[de] from de and
its symmetry we have

Qe[de1]de2 = Qe[de2]de1, ∀de1,de2

βTe Qe[de]de = dTe Γe[βe]de with Γe[βe] ≡
3∑

i,j=1

∫
Ωe
σ̄ijNd,

T
i Nd,j dVe

(1.16)

Strain energy variations of the PT18β element in mixed description.

Eq.(1.15) allows the expression of the strain energy as an algebraic nonlinear
function of the element vector related to the vector u, collecting all the parameters
of the FE assemblage, through the relation

ue ≡
[
βe
de

]
= Aeu (1.17)

where matrix Ae contains the link between the elements. Furthermore we denote
with δuei = {δβei, δdei} the element vector corresponding to the variation δui.

The first variation of the strain energy (1.15) is then

Φ′eδu1 =
[
δβe1
δde1

]T [
seβ
sed

]
with

seβ ≡ (Le + 1
2Qe[de])de −Heβe

sed ≡ Be[de]Tβe
(1.18a)

and Be[de] ≡ Le + Qe[de].
In the same way and exploiting the first of (1.16) the second strain energy

variation is

Φ′′eδu1δu2 =
[
δβe1
δde1

]T [ −He Be[de]
Be[de]T Γe[βe]

] [
δβe2
δde2

]
= δuTe1(K0e + K1e[ue])δue2

(1.18b)

that provides the element tangent stiffness matrix Kme[ue] = K0e + K1e[ue] as
a sum of the linear elastic contribution K0e and the geometric matrix K1e[ue]
implicitly defined in Eq.(1.18b). Using a similar approach the third variation
becomes

Φ′′′e δu1δu2δu3 =
{
δβTe1Q[δde3]δde2 + δβTe2Q[δde3]δde1 + δβTe3Q[δde2]δde1

}
=
[
δβe1
δde1

]T [s′′eβ[δde2, δde3]
s′′eβ[δde2, δde3]

]
(1.18c)
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where {
s′′eβ[δde2, δde3] ≡ Q[δde3]δde2
s′′ed[δde2, δde3] ≡ Q[δde3]T δβe2 + Q[δde2]T δβe3

(1.18d)

Finally Eq.(1.17) allow the evaluation, for each element vector ye and matrix
Ye the quantities of the whole assemblage

y =
∑
e

ATe ye, Y =
∑
e

ATe YeAe. (1.19)

In particular, from the assemblages of vector s′′e we obtain vectors pij defined
in Eq.(1.6h). Obviously, scalar quantities are directly evaluated as sums of local
element contributions.

1.3.4 The displacement description of the PT18β element

The element can also be described in a displacement format by requiring that the
discrete form of the constitutive laws is "a priori" satisfied. As in the present FE
model the stress variables are locally defined at the element level, we have

βe[de] = H−1
e (Le + 1

2Qe[de])de (1.20)

where, to highlight that in the displacement format the stresses are not inde-
pendent variables, the dependence from de is explicitly reported. Substituting
Eq.(1.20) in Eq.(1.15) we obtain the displacement description of the element
strain energy

Φe = 1
2

{
dTe (Le + 1

2Qe[de])TH−1
e (Le + 1

2Qe[de])de
}

(1.21)

that has a 4th order dependence on the displacement variables only.
Note how an expression similar to Eq.(1.21), is obtained by using any other

displacement based element when the Green-Lagrange strain tensor is employed.
In this chapter, the use the displacement description of the PT18β element is
preferred in order to have exactly the same discrete approximation for both the
descriptions. Note that the finite element is the same but the format of the system
of equations changes. This allows us to focus on how the problem description
affects its numerical solution in large deformation problems (see also [32, 33]) and
then to show and explain the better performance of the use of a mixed description
(and so mixed element).

Strain energy variations of the PT18β element in displacement descrip-
tion.

For the displacement description the configuration variables are the displacements
only and δuei = δdei. The first variation of Eq.(1.21) becomes

Φ′eδu1 = δdTe1se[de] whit se[de] ≡ BT
e [de]βe[de] (1.22a)
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where βe[de] is defined in Eq.(1.20). In the same way the second strain energy
variation is

Φ′′eδu1δu2 = δdTe1
{
BT
e [de]H−1

e Be[de] + Γ[βe[de]]
}
δde2 (1.22b)

where the tangent stiffness matrix has a second order dependence on de

Kde = K0e + K1e[de] + K2e[de,de]. (1.22c)

The third variation of the strain energy becomes

Φ′′′δu1δu2δu3 =
{
δβTe1[de]Q[δde3]δde2 + δβTe2[de]Q[δde3]δde1 + δβTe3[de]Q[δde2]δde1

}
= δdTe1s′′[δde2, δde3]

(1.22d)

where

s′′[δde2, δde3] ≡ Q[δde3]T δβTe2[de]+Q[δde2]T δβTe3[de]+(Le+Qe[de])TH−1
e Q[δde3]δde2

and the quantities δβTei[de] ≡ H−1
e Be[de]δdei, i = 1..3, that are the variation in

the stresses obtained from the constitutive equation (1.20) with respect to the
displacements, are introduced.

Finally it is worth noting that in this case the 4th variation of the strain energy
is not zero and we have

Φ′′′′δu1δu2δu3δu4 = { δdTe1QT [δde4]H−1
e Q[δde3]δde2

+ δdTe2QT [δde4]H−1
e Q[δde3]δde1

+ δdTe3QT [δde4]H−1
e Q[δde2]δde1}

(1.22e)

1.3.5 Advantages of mixed solid finite elements in path-following
and asymptotic analysis of slender structures

FE models directly derived from the 3D continuum using the Green strain measure
have a low order dependence on the strain energy from the discrete FE parame-
ters: 3rd and 4th order for mixed and displacement respectively. On the contrary
geometrically exact shell and beam models [14, 15] or those based on co-rotational
approaches [34, 5, 47], explicitly make use of the rotation tensor and its highly
nonlinear representation. This implies that the strain energy is infinitely differ-
entiable with respect to its parameters and leads to very complex expressions for
the energy variations with a high computational burden of path following and
much more of asymptotic analyses. In this last case the high order strain energy
variations become so complex that often "ad hoc" assumptions are required to
make the solution process effective (see section 4.3 of [34]). The consequence is
that the fewer global degrees of freedom that could be employed using a shell FE
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model do not necessarily imply a lesser computational cost as it depends, from the
others, on the cost of evaluation of the strain energy variations. On the contrary
for solid finite elements the strain energy, in both displacement and mixed form,
has the lowest polynomial dependence on the corresponding discrete parameters
and in particular in the mixed format of Eq.(1.15) has just one order more than in
the linear elastic case. It implies the zeroing of all the fourth order strain energy
variations required by the Koiter analysis with important advantages in terms of
both computations and coherence of the method.

Simplifications and improvements in Koiter analysis using mixed solid
elements.

The low order polynomial dependence of the strain energy on the parameters
produces a first important simplification and improvement in the evaluation of
the bifurcation points. With the usual adopted linear extrapolation in λ of the
fundamental path uf [λ] = λû it is convenient to expand the bifurcation condition
in Eq.(1.6d) from the origin as

Φ′′[uf [λ]]v̇iδu = (Φ′′0 + λΦ′′′0 û+ 1
2λ

2Φ′′′′0 û2)v̇iδu (1.23)

Note how the Taylor expansion in Eq.(1.23) is exact, due to the zeroing of all
the high order energy terms. In particular the mixed expression of the buckling
condition is automatically linear due to the zeroing of the 4th variation

Km[λ] = K0 + λK1[û] (1.24)

where K0 and K1 are obtained from assemblages of the element matrices in
Eq.(1.18b). For the displacement description the equivalent bifurcation problem
assumes the following form (û = d̂)

Kd[λ] = K0 + λK1[d̂] + 1
2λ

2K2[d̂, d̂] (1.25)

where again K0, K1 and K2 are obtained as assemblages of the element matrices
reported in (1.22b).

To have an "exact" buckling condition independently of the closeness of the
buckling loads is particularly important in the asymptotic method. It makes great
use of buckling modes and loads and so their accurate evaluation strongly affects
the quality of the complete equilibrium path reconstruction. This is possible in
the case of solid finite elements while, in the general, due to the linearization in
Eq.(1.6e) the accuracy depends on the magnitude of (λi − λb). Furthermore in
employing a mixed description the bifurcation condition is exactly a simple linear
eigenvalue problem which provides the m bifurcation loads and modes naturally
orthogonalized according to Eq.(1.6f) without any other assumption apart from
the linear extrapolation of the fundamental path.
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Another great advantage is in the evaluation of all the fourth order coefficients
in Eq.(1.6i) that, for mixed solid elements, requires only second variations for their
evaluation since the usually very complex fourth order strain energy variations are
zero. In particular the energy terms reduce to

Aijk =Φ′′′b v̇iv̇j v̇k
B00ik =− Φ′′b ˆ̂wwik = −Cik
B0ijk =0
Bijhk =− Φ′′b (wijwhk + wihwjk + wikwjh)

µk[λ] =1

2
λ2Φ′′′b û2v̇k

(1.26)

Furthermore the matrices in the bifurcation condition (1.24) and the non-zero
strain variations in (1.26) assume simpler and lower cost expressions compared
to standard shell elements. This makes the implementation of the asymptotic
method very easy and reduces the total cost of the solution process.

However the main advantage in using a mixed formulation is its capability to
rectify an important but underhand locking effect, called in [32, 33] extrapolation
locking. This is deeply discussed in the next section.

1.4 Extrapolation locking and its cure by a mixed for-
mat

In this section the better performances of the mixed description in geometrically
nonlinear analysis, in terms of robustness, efficiency and, relative to Koiter for-
mulation, also in terms of accuracy, are shown and explained. In this context
the displacement description of the problem, whatever the FE and the structural
model used, is affected by a pathological extrapolation locking phenomenon inves-
tigated for the first time for 2D frames in [32, 33].

The displacement format, equivalent to the mixed one in terms of the finite
element interpolation, makes it possible to focus the phenomenon in a general
context and to highlight its origin.

1.4.1 A simple test

To show the extrapolation locking phenomenon the simple test in Fig.1.1 is con-
sidered. It consists of a bar of unitary length constrained with a linear spring on
an end. With strain and stress constant along the bar the mixed and displacement
functionals are, respectively,

ΠHR[N, u,w] ≡ Nε[u,w]− 1
2
N2

EA
+ 1

2kw w
2 − λ(c w − u)

Π[u,w] ≡ 1
2(EAε[u,w]2 + kw w

2)− λ(c w − u)
(1.27)
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Figure 1.1: A simple test

where N is the axial force of the bar and the corresponding Green-Lagrange axial
strain is

ε[u,w] = u+ 1
2(u2 + w2)

The displacement stiffness matrix, evaluated as the Hessian of the displacement
functional with respect to the displacement variables d = [u,w], becomes

Kd[u,w] =
[
Nd + EA(1 + u)2 EA(1 + u) w
EA(1 + u) w Nd + kw + EAw2

]
with Nd = EAε[u,w]

where Nd represent the axial force function of the displacement components. The
mixed stiffness matrix, Hessian of the Hellinger-Reissner functional with respect
to the mixed variables u = [N,d], is

Km[N, u,w] =

−
1
EA

1 + u w

1 + u N 0
w 0 kw +N


where now N is directly a variable of the problem. Note that from the static
condensation of N we obtain from Km the same form of matrix Kd by replacing
Nd by N . Starting from the equilibrium point with zero load and displacements
we perform a linear extrapolation in λ of the linear elastic solution, d1 = {u1, w1}
for the displacement format and u1 = {N1,d1} for the mixed one, with

u1 = − λ1
EA

w1 = cλ1
kw

the same for both the descriptions and N1 = −λ1 directly extrapolated unlike
Nd[u1, w1] that is function of the extrapolated displacements

Nd[u1, w1] = −λ1 + λ2
1

2

(
1
EA

+ c2EA

k2
w

)
.
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For high values of EA/k2
w and also small c, the displacement approach predicts

an axial tension instead of the correct axial compression and, as a consequences, a
mistakenly overestimated stiffness, in direction w which consequently locks. The
same phenomenon typically affects shell problems where the in-plane stiffness
plays the role of EA and the flexural stiffness, usually much lower then the first
one, the role of kw. On the contrary extrapolation locking does not affect the
mixed format as N1 is expected to be a good estimate of the true axial force in
the deformed configuration (small strain/large deformation hypothesis).

1.4.2 Generalization of the extrapolation problem in displace-
ment format

The effects highlighted for the simple test are now generalized to the solid formu-
lation. The use of a displacement description of a mixed finite element makes the
origin of the extrapolation locking phenomenon evident. In order to compare the
two formats, note that the stresses β[d] in the displacement format are obtained,
as a function of the displacements, from Eq.(1.20), while in the mixed format they
are independent variables. Letting z0 be an equilibrium point we have for both
the formats the same displacements and stresses. Performing an extrapolation,
for example evaluating z1 along the linearisation in λ of the equilibrium path
starting from z0, we obtain for the mixed format[

β1
d1

]
=
[
β0 + ∆λβ̂
d0 + ∆λd̂

]
with

[
−H B[d0]

B[d0]T Γ[β0]

] [
β̂

d̂

]
=
[
0
p̂

]

so obtaining
d̂ = Kc0p and β̂ = H−1B[d0]d̂

Since Kc0 ≡ Γ[β0]+B[d0]TH−1B[d0] coincides with the stiffness matrix evaluated
by the displacement format in the equilibrium point z0, d̂ is the same for both
the formats.

In z1 we obtain the following stiffness matrices for the two descriptions

Km[d1,β1] =
[
−H B[d1]

B[d1] Γ[β1]

]
Kd[d1] = B[d1]TH−1B[d1] + Γ[β[d1]] (1.28)

where now Γ[β1] 6= Γ[β[d1]] with β1 6= β[d1]. In the mixed case the stresses are
directly extrapolated as β1 = β0 +∆λH−1B[d0]d̂ while for the displacement case
they are evaluated, according to Eq.(1.20), as

β1[d1] = β0 + H−1(∆λB0d̂ + ∆λ2

2 Q[d̂]d̂)

A wrong spurious term
∆β = ∆λ2 1

2H−1Q[d̂]d̂
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that is the stress produced by the quadratic part of the strain evaluated with a
linear extrapolation of the displacement is present in the displacement extrapo-
lation. This strain term has components even in the highest stiffness directions
and so the estimated stresses are affected by a great error ∆β. The consequence
is an overestimated tangent stiffness matrix for the displacement format. This is
the same extrapolation locking as previously observed for the simple test. When,
as is usual for slender structures, the condition number of H is high due to very
different stiffness ratios (i.e. membrane/flexural) the phenomenon becomes very
important and affects the displacement format in the solution strategies of the
nonlinear problem. It produces difficulties in convergence in the path following
scheme because the overestimated stiffness matrix in the current iteration is far
from the secant one and could not fulfil the second part of the convergence con-
dition (1.5e). Koiter analysis furnishes a wrong bifurcation point used by the
method to approximate the equilibrium path. On the contrary the mixed extrap-
olation, directly linearises the stress and it is naturally free from the extrapolation
locking.

Mixed vs displacement description in Koiter analysis using 3D solid
elements

Recalling that the buckling condition is tested along an extrapolated path, in dis-
placement variables it could be affected by extrapolation locking which produces
an overestimated buckling load or loss of bifurcation. The proposed Koiter method
uses an asymptotic expansion in an extrapolated point along the linearised fun-
damental path. For this reason the locking phenomenon previously described can
strongly affect its accuracy [33, 15].

To avoid this error a linearized buckling analysis can be performed by zeroing
the quadratic part of the strain depending on the extrapolated displacements
Qe[d̂e] = 0 (frozen configuration hypothesis). This eliminates the extrapolation
locking as can be seen in Tab.1.1 where the buckling loads obtained with the
displacement (D) and mixed (M) formats are compared with those of the frozen
configuration (F) for the Euler beam of Fig.1.6. The comparisons are performed
by changing both the aspect ratio k = (t/`)2 and the imperfection load amplitude
ε.

Table 1.1: Buckling analyses for the Euler beam/(exact value for the elastica)

k ε = 0.01 ε = 0.005 ε = 0.001 for all ε
D D D F M

104 failed 1.112 1.004 1.001 1.001
105 failed failed 1.040 1.001 1.001
106 failed failed failed 1.001 1.001
107 failed failed failed 0.999 0.999
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Figure 1.2: Equilibrium path for the Euler beam for ε = 0.001 and k = 104

For this case, which has small pre-critical nonlinearities, it is worth noting
that: i) the frozen configuration hypothesis rectifies the locking effect and fur-
nishes accurate results; ii) the displacement description misses the bifurcation
point, getting worse with the pre-critical nonlinearity due to the transversal force.
Inaccuracy in the bifurcation points obviously leads to a completely wrong equilib-
rium path estimated by the asymptotic algorithm where, unlike the Riks method,
the extrapolation error is not corrected by any iterative scheme. Finally it is im-
portant to note that also the energy terms in Eq.(1.6i) and then the estimated
asymptotic equilibrium path in Eq.(1.6j) are very sensitive to the extrapolation
locking and so, even when the bifurcation point is almost correctly evaluated, the
post critical behaviour could be completely wrong when the displacement descrip-
tion is used. On the contrary the mixed description is unaffected by k (see Fig.1.2
and [33]) and the initial post critical path is recovered accurately .

The frozen configuration hypothesis could, however, lead to inaccuracy when
the precritical displacements are not negligible, as in the shallow arc reported in
Fig.1.3. In this case it is not capable of producing the correct bifurcation load and
mode as reported in Tab.1.2 and consequently the energy terms also reported in
Tab.1.2, used to estimate the equilibrium path. In Fig.1.4 the equilibrium path
recovered by the Koiter mixed formulation is presented and compared with the
frozen and the true path following solutions.

Mixed vs displacement description in path-following analysis

In the path-following scheme extrapolation locking occurs at each step and affects
both the first extrapolation, used to evaluate the first estimate z1, and the cor-
rector scheme in Eq.(1.5), which is based on a sequence of linearisations in the
current estimates zj of the solution. In this case extrapolation locking produces a
strong deterioration in the convergence properties of the Newton (Riks) method.
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Figure 1.3: Geometry and material properties of the shallow arc

Figure 1.4: Equilibrium path for the shallow
arc

Table 1.2: Shallow arc: comparison
of relevant energy asymptotic quan-
tities of Eq.(1.6j)

M F
λ1 22.0202 30.6526
λ2 30.6671 47.0652
A001 0.0196 0.0190
A111 47.9305 182.3644
B0011 -6.32 10−4 0
B1111 8.2117 207.3178



1.4. EXTRAPOLATION LOCKING AND ITS CURE BY AMIXED FORMAT35

It is useful to show how the two formats update the solution in an iterative
Newton scheme. A load controlled case is considered to simplify the notation.
The iteration in mixed format is[

−H Bj

BT
j Γj

] [
β̇

ḋ

]
= −

[
ε[dj ]−Hβj
BT
j βj − λp

]
and

[
βj+1
dj+1

]
=
[
βj
dj

]
+
[
β̇

ḋ

]
(1.29)

where Γj = Γ[βj ] and Bj ≡ B[dj ]. Solving the mixed linear system in Eq.(1.29)
we obtaindj+1 = dj − K̃−1

dj rdj
βj+1 = H−1(ε[dj ] + Bjḋ)

where K̃dj = BT
j H−1Bj + Γj (1.30)

The same iteration in the displacement case is{
dj+1 = dj −K−1

j rdj
β[dj+1] = H−1ε[dj + ḋ]

where
Kj = BT

j H−1Bj + Γ[β[dj ]]

ε[dj+1] = ε[dj ] + Bjḋ + 1
2Q[ḋ]ḋ

(1.31)

where rdj = BT
j H−1ε[dj ]−λp is the same for both the approaches and the stresses

in the displacement iteration, functions of the displacements, are introduced for
an easy comparison with the mixed format.

Eqs.(1.30) and (1.31) show that the only, but important, difference in the two
formats consists in the way the stresses are obtained from the current linearisation.
The spurious stress term

∆β = 1
2H−1Q[ḋ]ḋ.

due to the extrapolation locking is present in the displacement iteration.
It is important to note that the displacement iterative scheme can be obtained

from the mixed one by solving exactly, at each iteration, the constitutive equa-
tions. In this way the evolution of the displacement iterative process is forced to
satisfy the constitutive constraint at each iteration and this, in general, leads to
a deterioration in the convergence properties. On the contrary the mixed format
performs a consistent linearisation of all the problem equations and allows the
iterations to naturally evolve towards the solution.

The convergence of the Riks scheme is as fast as the iteration and secant
stiffness matrix are near and then as K[u] slowly changes with u. The similarity
of the stiffness matrices in two different points Kj ≡ K[uj ] and Kj+1 ≡ K[uj+1],
according to Eq.(1.5f), is evaluated by the difference

∆k[u] ≡ uT (Kj+1 −Kj)u ∀u : uTu = 1 (1.32)

In the displacement format, when the matrices are positive definite, it is easy to
show ∆k by means of a graphical interpretation

∆kD = dT (Kdj+1 −Kdj)d = r2
j+1[d]− r2

j [d] (1.33)
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where rj [d] and rj+1[d] are the radii of the following ellipsoids

Ek ≡ {d : dTKd[dk]−1d = 1}, k = j, j + 1

When, as is usual for slender structures, the condition number of H and then of Kd

is high due to very different stiffness ratios (i.e. membranal/flexural) the ellipsoids
associated to K−1

d are very stretched. In the small strain/large displacement
hypothesis the ellipsoids are similar but slightly rotated. In this case even a
small rotation produces a large ∆kd which increases with the condition number
of H (see Fig.1.5). This is the reason for the pathological reduction in the step
length, an increase in the total number of the iterations and, sometimes, the loss
of convergence observed for the displacement description. In the mixed case we

Figure 1.5: Graphical interpretation of ∆k for the displacement description

have
∆kM [u] = dTΓ[βj+1 − βj ]d + 2βTQ[dj+1 − dj ]d (1.34)

linearly dependent on the stress and displacement difference and unaffected by
H and so by the extrapolation locking. Note that these deductions are general
since for any structural model the strain energy can be expressed as a quadratic
function of the stress variables through the Hellinger-Reissner functional and so
the Hessian change is not influenced by H unlike the displacement case.

The occurrence of the locking is shown in the simple case of the Euler beam,
for which the geometry and load conditions are reported in Fig.1.6.

In Tab.1.3 the number of steps and iterations (loops) to obtain the equilibrium
path, directly related to the CPU time, are presented. The results of the mixed
formulation, denoted by M , are unaffected by the coefficient k = (t/`)2 while the
displacement ones (D) pathologically depend on it.

Finally, in Fig.1.7, the minimum ρmin and maximum ρmax absolute value of
the eigenvalues of the matrix Kn+1K−1

n is reported for both descriptions, where
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Figure 1.6: Eulero beam: analysis evolution for increasing k, mesh 1× 1× 40

Displacement Mixed
k 104 105 106 107 (all k)

steps 38 43 67 failed 27
loops 133 166 328 failed 75

Table 1.3: Eulero beam: analysis evolution for increasing k, mesh 1× 1× 40

n+ 1 and n denote two equilibrium points. The set of points in which the ρs are
evaluated belongs on the equilibrium path obtained by the mixed description. It
is important to observe how the mixed description ρmax is independent of k and
has almost the optimal value 1.0 while for the displacement description increases
with the step length. Also note that if the second condition in Eq.(1.5e) is not
fulfilled and this also heavily affects the convergence of the arc-length solution
while the singular direction is filtered by the Riks constraint. We refer readers to
[32, 33] for further details.

1.5 Numerical Results

In this section the effectiveness and reliability of both methods of analysis are
tested in a series of benchmark problems. In particular for the path-following
analysis the efficiency of the mixed description, which allows very large steps in
comparison with the displacement one, is highlighted. For the Koiter formulation,
the accuracy given by the mixed solid element is shown.

For all the tests only one element in the thickness is used while the same
convergence conditions and arc-length parameters are adopted for mixed and dis-
placement path-following analyses. The junctions are modelled with regular ele-
ments. The label Riks denotes the equilibrium paths obtained by the arc-length
scheme (the same for both the descriptions), while labels Mixed and Frozen de-
note the asymptotic paths using the mixed description and the displacement one
with the frozen configuration hypothesis.

1.5.1 Simply supported U-shape beam

The first test, with geometry and material reported in figure 1.8, consists in a
simply supported compressed beam with a U-shape section. It presents a nonlinear
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pre-buckling behaviour due to two forces (torsional imperfections) at the mid-span
and coupled instability. For this reason it is a good benchmark to test the accuracy
of the asymptotic analysis. It was already studied in [48] using shell elements.

Figure 1.8: Channel section: geometry and loads.

The buckling values, obtained by using a mesh of (8 + 8 + 18)× 50 elements are
reported in Table 1.4 and compared with those computed using the displacement
description with the frozen configuration hypothesis. The Koiter analysis uses the
first four buckling modes plotted in Fig.1.9. It is possible to see how the first two
modes are global, essentially flexural and torsional respectively, while the others
are local modes.

The accuracy of the mixed asymptotic strategy in the evaluation of the limit
load and of the initial post-critical behaviour is shown in Fig.1.10. It is also
possible to observe the poor accuracy of the frozen configuration analysis in es-
timating both the limit load and equilibrium path. In Fig.1.11 the equilibrium
path of Koiter method, in terms of the modal contributions ξk, is plotted. The
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Figure 1.9: Channel section: Buckling modes

Table 1.4: Channel section: first 4 buckling loads.

Mixed Frozen
λ1 1266.8 1291.5
λ2 1828.1 1719.0
λ3 3092.3 2949.7
λ4 3114.7 2970.6
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Figure 1.10: Channel section: Equilibrium paths λ− wA, λ− wB
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Figure 1.11: Channel section: Equilibrium paths in ξk space.

Table 1.5: Channel section: steps and iterations for path–following analysis.

Mixed Displacement Mixed MN
steps 24 74 45
loops 73 175 233

strong effect of modal interaction between the third (local) mode and the first two
flexural–torsional (global) modes is shown.

The results of the mixed asymptotic analysis are in good agreement with the
path-following ones. In Tab.1.5 the steps and iterations of the mixed and dis-
placement descriptions are compared. Obviously the equilibrium path is exactly
the same but the better performances of the mixed description are evident even
when a modified Newton-Raphson method (MN) is adopted.

1.5.2 A T beam

The second test regards the beam with data reported in Fig.1.12. It consists in
a simply supported beam with a T shaped section loaded by a shear force acting
at the mid-span and by a small imperfection (ε = 1/1000) load as reported in the
same figure. The pre-critical behaviour exhibits a strong nonlinearity and coupled
buckling are also present in this case. A mesh of (9 + 9 + 18)× 100 elements has
been used.

Table 1.6: T section beam: first 4 buckling loads.

Mixed Frozen
λ1 1092.1 936.8
λ2 1869.1 1860.4
λ3 1993.5 1989.6
λ4 2258.9 2252.1
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Figure 1.12: T section beam: geometry and loads

In Fig.1.13 the first 4 buckling modes, considered in the multimodal Koiter
analysis, are plotted.

Figure 1.13: Channel section: First 4 Buckling modes

In Fig.1.14 the equilibrium paths recovered by using both asymptotic and
path-following analysis are reported and compared. The solution is accurately
recovered by the asymptotic strategy up to quite large displacements and the
occurrence of a secondary bifurcation.

Also in this case (see Fig.1.15) the equilibrium path is plotted in terms of the
modes amplitudes ξk showing a strong interaction among modes 1, 2 and 4.

In Tab.1.7 the steps and iterations of the mixed, using both full o modified
Newton (MN) methods, and displacement descriptions are compared. This ex-
ample highlights the excellent performances of the mixed description even more
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Figure 1.14: T section beam: Equilibrium paths λ− wA, λ− vA

Figure 1.15: T section beam: Equilibrium paths in ξk space.
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Table 1.7: T section beam: steps and iterations for path–following analysis.

Mixed Displacement Mixed MN
steps 20 42 55
loops 60 169 252

than the previous test.

1.6 Summary
In this chapter, the better performances of the mixed format in the nonlinear
analysis of slender structures have been shown and explained. To focus on the
origin of this behaviour, which is independent of the finite element interpolation, a
displacement description of a mixed solid finite element has been derived. In this
way it has been possible to show how the displacement description, and so any
displacement finite element, is affected by an underhand and neglected extrapola-
tion locking phenomenon that produces slow or lack of convergence for the path–
following analyses and inaccurate solutions for the Koiter method. The occurrence
of the locking has been theoretically investigated and it has been indicated that it
is due to the presence of directions with different stiffness as typically occurs for
slender structures which are usually characterized by a high membrane/flexural
stiffness ratio. These conclusions are general and hold for any nonlinear structural
model and finite element. Many advantages of solid elements in geometrically non-
linear analysis are already known in literature. In this chapter, further important
properties of mixed solid FE within the Koiter asymptotic formulation are shown.
In fact, due to the simple 3rd order dependence of the strain energy on its FE
parameters, all the higher order energy variations are null and so it is possible to
have: i) an exact linear bifurcation analysis with improvements in its computa-
tional efficiency and accuracy for non near buckling loads; ii) simplification and
greater accuracy in the evaluation of the energy variations required to recover
the equilibrium path with a gain in terms of the computational cost; iii) a more
simple and effective numerical method which is easy to include in FE packages.
For these reasons, mixed solid models seems even more convenient and attractive
with respect to standard shell ones in geometrically nonlinear analyses. Further
details can be found in [49].



Chapter 2

Accurate and efficient
a-posteriori account of
geometrical imperfections in
Koiter analysis using mixed
solid-shell finite elements

Abstract

The Koiter method recovers the equilibrium path of an elastic structure using a
reduced model, obtained by means of a quadratic asymptotic expansion of the
finite element model. Its main feature is the possibility of efficiently performing
sensitivity analysis by including a-posteriori the effects of the imperfections in the
reduced nonlinear equations. The state-of-art treatment of geometrical imper-
fections is accurate only for small imperfection amplitudes and linear pre-critical
behaviour. This chapter enlarges the validity of the method to a wider range
of practical problems through a new approach, which accurately takes into ac-
count the imperfection without losing the benefits of the a-posteriori treatment.
A mixed solid-shell finite element is used to build the discrete model. A large
number of numerical tests, regarding nonlinear buckling problems, modal inter-
action, unstable post-critical and imperfection sensitive structures, validates the
proposal.

2.1 Introduction

Thin-walled beams and shells are commonly used as primary components in struc-
ture engineering, due to their high specific strength and stiffness, which allow

45
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weight and material economy. Their load-carrying capabilities are often deter-
mined by buckling, which often occurs for loads much lower than the failure loads
of materials. The path-following strategy is the standard approach employed to
analyze the nonlinear elastic behaviour of this kind of structure. Once the con-
tinuum problem has been discretised using the finite element (FE) method, the
equilibrium path of the structure is traced step-by-step, solving a nonlinear sys-
tem of equations, where the unknowns are the FE degrees of freedom (DOFs) and
the load factor.

As a consequence of modal buckling interaction, shell-like structures may ex-
hibit a very unstable post-buckling behaviour and may be highly sensitive to initial
imperfections [50, 51, 52, 53, 54], especially to geometrical imperfections. In light
of this an imperfection sensitivity analysis [6, 37, 5, 55] becomes mandatory. It
consists in seeking the so called worst (detrimental) imperfection cases, which are
the shapes of the geometrical imperfections associated with the minimum limit
load (safety factor). The Monte Carlo simulation generally adopted to this end
may require thousands of equilibrium path evaluations [56]. The use of compos-
ite structures, which require a layup optimization [4, 1], further complicates the
design process.
Standard path-following approaches, aimed at recovering the equilibrium path for
a single loading case and assigned imperfections, are not suitable for this purpose
because of the high computational burden of the single run [57], and are unusable
if no information about the worst imperfection shapes is available. For these rea-
sons, the FE implementation of asymptotic methods [38, 58, 39, 40, 41, 42, 43,
44, 45, 35] based on Koiter’s theory of elastic stability [7] has recently become
[59, 49, 60, 61, 62, 8, 47, 63, 64, 65, 66] more and more attractive. The Koiter
method consists of the construction of a reduced model, in which the FE model is
replaced by its second order asymptotic expansion using the initial path tangent,
m buckling modes and the corresponding second order modes, named quadratic
correctives. In this way, once the reduced model is built, the equilibrium path
of the structure can be obtained by solving the nonlinear reduced system of m
equations in m+1 unknowns, which represent the modal amplitudes and the load
factor. The coefficients of the reduced system are evaluated using strain energy
variations up to the 4rd order. Shell structures can require a very large number
of FE DOFs to avoid significant discretisation errors, while m is usually at most
a few tens. Clearly the convenience of the method with respect to the standard
path-following strategy is evident.

Since the first proposals [67, 6], the method has been continuously enhanced
in terms of both accuracy and computational efficiency. In particular, a mixed
(stress-displacement) formulation is required to avoid an interpolation locking phe-
nomenon in the evaluation of the coefficients of the reduced system [6, 35, 68] and
to make the asymptotic expansion accurate for a wider range, avoiding the extrap-
olation locking [33, 49] common in the displacement based approach and providing
accurate results also for non-linear pre-critical behaviours. Geometrically exact
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shells and beams [14, 15] or co-rotational approaches [34, 47] have been pro-
posed to achieve structural model objectivity. Both the strategies make explicit
use of the rotation tensor and its highly nonlinear representation. Alternatively
in [59, 49], the method has been implemented exploiting the nonlinear Cauchy
continuum based on a Green strain measure. In this way, adopting the mixed
Hellinger-Reissner variational formulation, the strain energy has a 3rd order only
polynomial dependence on the FE DOFs with the zeroing of all the fourth order
strain energy variations. The resulting asymptotic formulation appears accurate,
efficient and simple.
The effects of geometrical imperfections can be included in the Koiter analysis
a-priori in the FE model, like it is mandatory for the standard path-following
approach. In this way the modes used in the asymptotic expansion and the co-
efficient of the reduced system are recomputed for each imperfection. Although
this procedure is cheaper than a path-following analysis, the re-construction of
the reduced model involves a linearised buckling analysis and its computational
cost can still prevent a Monte Carlo simulation. On the contrary the solution of
the reduced system has a very low cost (usually fractions of seconds), negligible
compared to the construction of the reduced model, because of the small value
of m. Then the most attractive feature of the Koiter approach becomes appar-
ent: the possibility of including a-posteriori the effects of the imperfections in
the reduced model of the structure without imperfections, built once and for all,
by simply adding some energy terms in the reduced system. In this way, a very
fast imperfection sensitivity analysis, which can consider a very large number of
imperfections in a reasonable computational time, is obtained, making possible
a Monte Carlo simulation. Nevertheless, the state-of-the-art a-posteriori account
of geometrical imperfections is based on the hypothesis of linear pre-critical be-
haviours and small imperfection amplitudes, that leads to additional terms in the
reduced system which are just linear in the load factor. As a consequence, inaccu-
racies occur even for small pre-critical nonlinearities and significant imperfection
amplitudes [5], considerably limiting the application of the method.
The goal of this chapter is to overcome these inaccuracies. A new accurate treat-
ment of the geometrical imperfections is proposed. The asymptotic expansion
of the perfect structure is corrected by adding a series of new modes, generated
by the imperfection. In this way a more accurate formula for the additional im-
perfection terms in the reduced system is derived, which coherently takes into
account the effects of the geometrical imperfection up to the 2nd order, without
losing the advantages of the a-posteriori account. The chapter is organised as
follows: Section 2 introduces a mixed solid-shell finite element model for compos-
ites; Section 3 recalls the current Koiter method for solid-shells elements; Section
4 derives the new Koiter algorithm for accurately taking into account geometrical
imperfections; Section 5 presents some numerical tests and discusses the accuracy
of the proposal; finally, the conclusions are reported.
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2.2 The mixed solid-shell finite element
In this section, an implementation of the mixed solid-shell finite element proposed
by Sze et al. in [21] is illustrated. It is an effective extension of the initial PT18β
hybrid element of Pian and Tong [2] to composite shell structures. The element
is presented in a Total Lagrangian formulation suitable for the Koiter strategy.

2.2.1 Kinematics in convective frame

We consider a solid finite element and denote with ζ = {ξ, η, ζ} the convective
coordinates used to express the FE interpolation in natural coordinates. The
initial configuration, assumed as reference, is described by the position vector
X[ζ] ≡ {X[ζ], Y [ζ], Z[ζ]} while x[ζ] represents the same position in the current
configuration. They are related by the transformation

x[ζ] = X[ζ] + d[ζ] (2.1)

where d[ζ] is the displacement field. Adopting the convention of summing on
repeated indexes, the covariant Green-Lagrange strain measure components are

ε̄ij = 1
2 (X,i ·d,j +d,i ·X,j +d,i ·d,j ) with i, j = ξ, η, ζ (2.2)

where a comma followed by k denotes the derivative with respect to k and (·)
denotes the scalar product. The position vector of a point inside the element and
its displacement are interpolated, using a trilinear 8 node hexahedron, as

X[ζ] = Nd[ζ]Xe , d[ζ] = Nd[ζ]de (2.3)

where vectors de and Xe collect the element nodal displacements and coordinates
and matrix Nd[ζ] the trilinear interpolation functions

Nd[ζ] ≡
[

1
2(1− ζ)N, 1

2(1 + ζ)N
]

(2.4)

where N ≡
[
N1, N2, N3, N4

]
and

N1 =1
4(1− ξ)(1− η) N2 =1

4(1 + ξ)(1− η)

N3 =1
4(1 + ξ)(1 + η) N4 =1

4(1− ξ)(1 + η)
(2.5)

Adopting a Voigt notation the Green-Lagrange covariant strain components in
Eq.(2.2) are collected in vector ε̄ ≡ [ε̄ξξ, ε̄ηη, 2ε̄ξη, ε̄ζζ , 2ε̄ηζ , 2ε̄ξζ ]T that, exploiting
Eq.(2.3), becomes

ε̄ =
(
L[ζ] + 1

2Q[ζ,de]
)

de, (2.6)
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where L[ζ] ≡Q[ζ,Xe] and Q is so defined

Q[ζ,de] ≡



dTe Nd,
T
ξ Nd,ξ

dTe Nd,
T
η Nd,η

dTe (Nd,
T
ξ Nd,η +Nd,

T
η Nd,ξ )

dTe Nd,
T
ζ Nd,ζ

dTe (Nd,
T
ζ Nd,η +Nd,

T
η Nd,ζ )

dTe (Nd,
T
ξ Nd,ζ +Nd,

T
ζ Nd,ξ )


(2.7)

In order to circumvent shear and trapezoidal lockings, the natural transverse
normal and shear strains are redefined by an assumed natural strain (ANS) for-
mulation as 

ε̄ζζ = ε̄ζζ [−1,−1, 0]N1 + ε̄ζζ [−1, 1, 0]N2

+ ε̄ζζ [1, 1, 0]N3 + ε̄ζζ [1,−1, 0]N4

ε̄ξζ = 1− η
2 ε̄ξζ [0,−1, 0] + 1 + η

2 ε̄ξζ [0, 1, 0]

ε̄ηζ = 1− ξ
2 ε̄ηζ [−1, 0, 0] + 1 + ξ

2 ε̄ηζ [1, 0, 0]

(2.8)

assuming from now on that the Z-axis and theX-Y -plane are parallel to the ζ-axis
and mid-surface of the shell respectively. The covariant strains can be linearised
with respect to ζ in the following form

ε̄ ≈

ē[ξ, η] + ζ χ̄[ξ, η]
ε̄ζζ [ξ, η]
γ̄[ξ, η]

 (2.9)

where

ē[ξ, η] ≡

 ε̄ξξε̄ηη
2ε̄ξη

 χ̄[ξ, η] ≡

 ε̄ξξ,ζε̄ηη,ζ
2ε̄ξη,ζ

 γ̄[ξ, η] ≡
[
2ε̄ηζ
2ε̄ξζ

]

The generalized covariant strains can be collected in vector ρ̄[ζ] as

ρ̄[ξ, η] ≡


ē
ε̄ζζ
χ̄
γ̄

 =
(
Lρ[ξ, η] + 1

2Qρ[ξ, η,de]
)

de, (2.10)

where matrix Lρ andQρ are automatically defined from (2.6) and (2.7) exploiting
(2.8) and (2.9). The ith components of ρ̄ can be expressed in terms of matrix
Qρi[ξ, η] as

ρ̄i = XT
eQρi[ξ, η]de + 1

2dTeQρi[ξ, η]de (2.11)

Making the Jacobian matrix J

J[ξ, η] =
[
X,ξ X,η X,ζ

]
(2.12)
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constant with ζ (parallel to Z) and denoting with σ̄ ≡ [σ̄ξξ, σ̄ηη, 2σ̄ξη, σ̄ζζ , 2σ̄ηζ , 2σ̄ξζ ]T
the vector collecting the contravariant stress components, it is possible to define,
exploiting the stress-strain work, the quantities conjugate with ρ̄

W =
∫
V
ε̄T σ̄dV

=
∫

Ω

(
N̄ T ē + M̄T

χ̄+ s̄ζζ ε̄ζζ + T̄ T γ̄
)

where from now on
∫

Ω(· · · ) = 2
∫ 1
−1
∫ 1
−1(· · · ) det(J)dξdη and the stress resultants

are defined
N̄ ≡ 1

2

∫ 1

−1
σpdζ M̄ ≡ 1

2

∫ 1

−1
ζσpdζ

s̄ζζ ≡
1
2

∫ 1

−1
σζζdζ T̄ ≡ 1

2

∫ 1

−1
τdζ

(2.13)

with

σ̄p =

σ̄ξξσ̄ηη
σ̄ξη

 τ̄ =
[
σ̄ξζ
σ̄ηζ

]

The generalized contravariant stresses are collected in vector

t̄ ≡
[
N̄ , s̄ζζ ,M̄, T̄

]T
(2.14)

so that the stress-strain work becomes

W =
∫

Ω
t̄[ξ, η]T ρ̄[ξ, η]

2.2.2 Generalized stress interpolation

The generalized contravariant stresses are interpolated, as in [21]

t̄[ξ, η] = Nσ[ξ, η]βe Nσ[ξ, η] =
[
I9 P[ξ, η]

]
(2.15)

where βe collects the 18 stress parameters, I9 is a 9× 9 identity matrix and P is

P[ξ, η] =



η 0 0 0 0 0 0 0 0
0 ξ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 ξ η ξη 0 0
0 0 η 0 0 0 0 0 0
0 0 0 ξ 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 η 0
0 0 0 0 0 0 0 0 ξ


(2.16)

i.e. using an "optimal" interpolation similar to that proposed by Pian and Tong
[2].
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2.2.3 Transformation in physical coordinates

Finally the generalized Cartesian strain and stresses are obtained from the natural
ones as

t =Tσ t̄ = T[0, 0]t̄
ρ =Tερ̄ = T−T [ξ, η]ρ̄

with T[ξ, η] =


Tp 0 0 0
0 Tz 0 0
0 0 Tp 0
0 0 0 Tt

 (2.17)

where Tz = J2
33 and

Tp =

 J2
11 J2

12 2J11J12
J2

21 J2
22 2J21J22

J21J11 J22J12 J22J11 + J21J12


Tt =

[
J12J33 + J13J32 J13J31 + J11J33
J22J33 + J23J32 J23J31 + J21J33

] (2.18)

Note that stresses are transformed with the matrix T evaluated in ξ = 0, η = 0
to preserve the constant stress state. More sophisticated transformations are
possible [22].

2.2.4 Generalised laminate stiffness matrix

The procedure for the evaluation of the generalised laminate stiffness matrix is
that proposed in [10] based on the analytic thickness integration. It consists in a
homogenization technique aimed at employing just one element in the thickness
direction even when the shell is composed of multiple layers.

In each layer an orthotropic elastic material is assumed with its properties
given in a local reference system {i1, i2, i3}, with i1 the fibre direction defined by
a rotation angle θ around i3 parallel to the Z axis. The material stiffness matrix in
the Cartesian element reference system can be evaluated through a tensor rotation

σ = Cε with C = R[θ]TC′R[θ] =

Cp, Cpz, 0
CT
pz, Cz, 0
0, 0, Ct

 (2.19)

where

C′ =

 C′p C′pz 0
(C′pz)T Cz 0

0 0 C′t

 (2.20)
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with Cz = C ′3333 and

C′p ≡

C ′1111 C ′1122 0
C ′1122 C ′2222 0

0 0 C ′1212

 C′pz ≡

C ′1113
C ′1122

0


C′t ≡

[
C ′2323 0

0 C ′1313

]

The constitutive law of the multi-layered composite is obtained in terms of the
kinematic assumptions for plane strain components εp and the shear ones γ. In
order to eliminate the thickness locking, following the approach proposed in [21],
instead of a constant with Z thickness strain εzz, a constant stress σzz is assumed.

Starting from the inverse constitutive law of the generic lamina ε = C−1σ
that is, exploiting the decoupling of Ct, as[

εp
εzz

]
=
[
Fpp Fpz

FT
pz Fzz

] [
σp
σzz

]
it is possible to evaluate σzz and εp as

σp = Sεp + Dσzz
εzz = −DTεp +Rσzz

with


R = Fzz + FT

pzD
D = −(Fpp)−1Fpz

S = (Fpp)−1

In terms of the quantities N andM defined in Eq.(2.13), we haveNεzz
M

 = 1
2

∫ 1

−1

 S D
−DT R
ζS ζD

[e + ζχ
σzz

]
dζ

= 1
2

∫ 1

−1

 S ζS D
−D −ζD R
ζS ζ2S ζD

 dζ
 e
szz
χ


Letting  S0 S1 D0

−D0 D1 R0
S1 S2 D1

 = 1
2

∫ 1

−1

 S ζS D
−D −ζD R
ζS ζ2S ζD


and recalling that the material properties change along ζ we haveNεzz

M

 =

 S0 S1 D0
−D0 D1 R0
S1 S2 D1


 e
szz
χ





2.3. KOITER METHOD FOR MIXED SOLID-SHELL FE MODELS 53

Now by expressing szz in terms of εzz and substituting it in the previous equation
and performing the integration for the Ct part, we have the desired constitutive
matrix equivalent to the laminate package

t[ξ, η] = Cρρ[ξ, η] (2.21)

with

Cρ ≡


S0 + D0DT

0 /R0 D0/R0 S1 + D0DT
0 /R0 0

DT
0 /R0 1/R0 DT

1 /R0 0
S1 + D1DT

0 /R0 D1/R0 S2 + D1DT
1 /R0 0

0 0 0 Ct0


2.2.5 On the computational cost of the solid-shell element

The mixed solid-shell element previously described is a solid element designed in
order to employ just one element along the thickness direction. It is worth noting
that it presents the same (minimal) displacement and stress parameters of others
4 node shell elements. In terms of DOFs, for example, it is equivalent to the shell
element recently proposed in [64, 5] which has only 3 translations and 3 rotations
for node and 18 stress parameters for element to assure an isostatic behaviour,
i.e. the same number of kinematic and stress variables of the mixed solid-shell
one. Since the stress parameters are locally defined, they can be eliminated by a
static condensation at the element level with a very low computational extra-cost
with respect to displacement based elements. In this way the stress DOFs are not
involved in the global operations. Notwithstanding the minimal number of DOFs
the convergence properties of the element are good, as reported in [28], where it
is shown how it has a similar accuracy of other well-established shell elements.

2.3 Koiter method for mixed solid-shell FE models

In this section, the asymptotic approach described in [59] is recalled briefly. It is
particularized for a strain energy which has a cubic polynomial dependence only
from the configuration variables as occurs, for instance, for the nonlinear Cauchy
continuum based on a Green strain measure, when a hybrid solid-shell FE model is
employed. This allows the simplification of the asymptotic equations and focuses
on the proposed treatment of the geometrical imperfections, which is, however,
easily applicable to other finite elements and structural models. Further details
on the Koiter method in general contexts can be found in [35, 34, 15].

2.3.1 The current implementation of the asymptotic algorithm

Consider a slender hyperelastic structure subject to conservative nominal loads p̂
proportionally increasing with the amplifier factor λ. The equilibrium is expressed
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by the virtual work equation

Φ′[u] δu − λp̂ δu = 0, u ∈ U , δu ∈ T (2.22)

where u ∈ U is the field of configuration variables which collects both displacement
and stress fields, Φ[u] denotes the strain energy, T is the tangent space of U at
u and a prime is used to express the Frechèt derivative with respect to u. It is
assumed that T is independent of u.

Due to the assumed 3rd order polynomial dependence of Φ[u] on u, it can be
exactly replaced with its 3rd order Taylor expansion from a given configuration
u = u0, that is

Φ′[u]δu :=
(

Φ′0 + Φ′′0(u− u0) + 1
2Φ′′′(u− u0)2

)
δu, ∀δu ∈ T , (2.23)

where a subscript denotes, from now on, the point in which the quantities are
evaluated, i.e. Φ′0 ≡ Φ′[u0] and so on, while the quantity Φ′′′ is constant with u.

Fundamental path.

The method starts with the evaluation of the fundamental path uf [λ] assumed
as analytical in λ and approximated with its tangent in the (known) equilibrium
configuration (u0, λ0 = 0) as uf = u0 + λû. It is evaluated through a first order
Taylor expansion in λ of Eq.(2.22), that is

Φ′′0ûδu− p̂δu = 0, ∀δu ∈ T . (2.24)

Buckling loads and modes.

With the adopted linear extrapolation in λ of the fundamental path, it is possible
to evaluate the bifurcation condition, that is the singularity of the second strain
energy variation, as

Φ′′[uf [λ]]v̇iδu ≡ (Φ′′0 + λΦ′′′û)v̇iδu = 0 ∀δu ∈ T (2.25)

where v̇i and λi are the bifurcation modes and loads. Note that the expression in
Eq.(2.25) is exact, due to the zeroing of all the higher order energy terms, and so
the buckling condition is exactly a linear eigenvalue problem [49], which provides
the m bifurcation loads and modes, orthogonalized according to

Φ′′′ûv̇iv̇k = −δik (2.26)

with δik the Kronecker symbol.
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The reduced model of the perfect structure.

According to a Lyapunov-Schmidt decomposition [69], U is decomposed as a direct
sum of the critical subspace V and its orthogonal complement W, defined as

U = V ⊕W,


V = {v : v =

m∑
i=1

ξiv̇i}

W = {w : Φ′′′ûv̇iw = 0}
(2.27)

where ξi, with i = 1 · · ·m are the buckling mode amplitudes.
The space of admissible configurations, following a Galerkin approach, is lim-

ited to
ud = uf [λ] + v[ξi] + w[λ, ξi] (2.28)

where the corrective term w ∈ W is assumed to be at least quadratic in λ and ξi
and the compact notation f [ξi] is used to denote the dependence of function f on
all the ξi.

Using a Ritz-Galerkin approach the equilibrium equation is imposed assuming
v̇i and δw as test functions, and the configuration defined by ud, that is

rw[λ, ξi] ≡{Φ′[ud]− λp̂}δw = 0
rk[λ, ξi] ≡{Φ′[ud]− λp̂}v̇k = 0.

(2.29)

From the condition rw[λ, ξi] = 0 and using a Taylor expansion up to the 2th
order in λ, ξ1, · · · ξm we obtain the quadratic correctives (see [59])

w = 1
2λ

2 ˆ̂w + 1
2
∑
ij

ξiξjwij

{
Φ′′b ˆ̂wδw = −Φ′′′û2δw

Φ′′bwijδw = −Φ′′′v̇iv̇jδw
∀δw ∈ W (2.30)

where the subscript b denotes quantities evaluated in λbû and λb is a suitable
reference value of the bifurcation load (the first bifurcation load or a mean value
of the bifurcation cluster).

From the condition rk[λ, ξi] = 0 we obtain the reduced nonlinear system which
defines the equilibrium path

rk[λ, ξi] ≡ µk[λ] + (λk − λ)ξk −
1
2λ

2
m∑
i=1

ξiCik + 1
2

m∑
i,j=1

ξiξjAijk

+ 1
6

m∑
i,j,h=1

ξiξjξhBijhk = 0, k = 1 · · ·m
(2.31)

where
Aijk =Φ′′′v̇iv̇j v̇k
Cik =Φ′′b ˆ̂wwik
Bijhk =− Φ′′b (wijwhk + wihwjk + wikwjh)

µk[λ] =1

2
λ2Φ′′′û2v̇k.

(2.32)
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Eqs.(2.31) are an algebraic nonlinear system of m equations in the m + 1
variables λ, ξ1 · · · ξm that, due to the small size of the system, can be efficiently
solved using specialized variants of the arc–length scheme. Second and third
order variations of the strain energy are required for the evaluation of coefficients
in Eq.(2.32).

Standard a-posteriori account of geometrical imperfections.

Small imperfections, expressed by an initial displacement ũ, can easily be con-
sidered in the asymptotic analysis. In the current proposal [6, 35] the following
coefficients

µ̃k := λΦ′′′ûũv̇k (2.33)

are added to Eq.(2.31), that is

rk + µ̃k = 0 (2.34)

and the reduced model is corrected adding ũ to the expression (2.28)

ud = ũ+ uf [λ] + v[ξi] + w[λ, ξi]. (2.35)

So, once the steps in Eqs.(2.24), (2.25), (2.30), (2.32) of the analysis have
been performed, once and for all, small imperfections in the geometry can be
taken into account by adding a few additional terms in the expression of rk. The
computational extra-cost is negligible since just the reduced nonlinear equations
Eq.(2.31) have to be solved again for each new imperfection. In this way the
method allows a low cost imperfection sensitivity analysis. In particular the reader
is referred to [56] where the imperfection sensitivity analysis is performed by means
of a Monte Carlo simulation showing how thousands of geometrical imperfections
can be analysed in a few minutes in order to detect the worst imperfection shape.

However, comparisons with standard path-following analyses show that the
accuracy of this approach is limited to small imperfection amplitudes and struc-
tures with an almost linear pre-critical behaviourr. The aim of this chapter is,
then, to improve its accuracy, making the approach suitable for a wider range of
practical problems.

2.3.2 FEM implementation of the asymptotic approach

Denoting with a bold symbol the discrete FEM counterpart of the continuum
quantities, and referring to the solid-shell finite element model presented in [59],
the construction of the reduced model of the perfect structure consists of the
following steps.

1. The fundamental path defined by Eq.(2.24) becomes in FE format

uf [λ] = u0 + λû , K0 û = p̂ , K0 ≡ K[u0] (2.36a)
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and requires the solution of a linear system to evaluate the initial path
tangent û.

2. The buckling modes and loads are obtained by the following eigenvalue
problem

K[λ]v̇ ≡ (K0 + λK1[û])v̇ = 0 (2.36b)

where K0 and K1 are obtained from the following energy equivalence

δuTK0δu := Φ′′0δu2 δuTK1δu = Φ′′′0 ûδu2.

3. Them×(m+1)/2 quadratic correctives FE vectors wij , ˆ̂w ∈ W are obtained
by the solution of the linear systems (i = 1 . . .m, j = i . . .m)

Kbwij + pij = 0
Kb

ˆ̂w + p00 = 0
, ∀w ∈ W (2.36c)

in which Kb ≡ K[λb], pij ,p00 are defined as a function of modes v̇i and û
by the energy equivalences

δwTpij = Φ′′′b v̇j v̇jδw
δwTp00 = Φ′′′b û2δw.

Vectors wij are obtained by solving the following linear systems adopting a
Lagrangian multiplier approach (see [37]){

Kbwij + pij = 0
wT
ijK1v̇k = 0, k = 1 · · ·m.

(2.36d)

The solution of Eq.(2.36d) can be obtained adopting the iterative scheme
proposed in [37] which uses the already decomposed matrix K0. The same
approach is used to evaluate ˆ̂w.

4. Evaluation of the coefficients in Eq.(2.32) of reduced equilibrium system in
Eq.(2.31) as a sum of finite element contributions.

The evaluation of the equilibrium path, to be repeated for each imperfection,
requires the following steps

1. evaluation of µ̃k = λΦ′′′ûũv̇k;

2. solution of the reduced system in Eq.(2.34) and drawing of the equilibrium
path according to Eq.(2.35).
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2.4 Accurate account of geometrical imperfections
In this section the Koiter algorithm is reformulated in order to coherently consider
the presence of geometrical imperfections, removing the hypothesis of linear pre-
critical behaviour which leads to Eq.(2.33). In this way it is possible to overcome
the inaccuracy in the limit load evaluation observed, for example, in Fig.19 of [5].
The imperfection sensitivity analysis can still be performed in the post-processing
of the Koiter method, when the geometrical imperfections are expressed as a
linear combination of known shapes like, as usual, the displacement shape of the
buckling modes.

2.4.1 The strain energy and the equilibrium path of the structure
with geometrical imperfection

Using a Hellinger-Reissner variational principle the mixed strain energy Φ[u] is
expressed, as usual in a FE context, as a sum of element contributions

Φ[u] =
∑
e

∫
Ωe

(
tTρ[d]− 1

2tTC−1
ρ t

)
dΩe (2.37)

ρ[d] and t are the vectors collecting the generalized strains and stresses compo-
nents for the given structural model, Ωe is the finite element domain and d is the
displacement field and C−1

ρ the compliance matrix of the structural model.
The strain energy of the structure for an initial imperfection characterized by

an assigned displacement d̃ and zero stress is assumed as

ΦI [u] ≡
∑
e

∫
Ωe

(
tT (ρ[d]− ρ[d̃])− 1

2tTC−1
ρ t

)
dΩe. (2.38)

Denoting with a symbol δ the variation of d and t, the first variation of ΦI [u]
becomes

ΦI [u]′δu =
∑
e

∫
Ωe

{
δtT (ρ[d]− ρ[d̃]−C−1

ρ t)− tTρ′[d]δd
}
dΩe

= (Φ[u]′ − Φ′[ũ])δu
(2.39)

that is the difference between the perfect and imperfect structure first order strain
energy variation, being

Φ′[ũ]δu :=
∑
e

∫
Ωe
δtTρ[d̃]dΩe (2.40)

the first variation of the perfect structure evaluated in ũ (which has t̃ = 0).
The equilibrium path is obtained from the following condition

(Φ[u]′ − Φ′[ũ]− λp)δu = 0 ∀δu (2.41)
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which in FE format becomes

s[u]− p̃− λ p̂ = 0. (2.42)

In particular the internal force vector s[u], the load vector p̂ and the imperfection
vector p̃ are defined by the energy equivalences

sT δu ≡ Φ′[u]δu , p̂T δu ≡ p̂ δu , p̃T δu ≡ Φ′[ũ]δu , ∀ δu. (2.43)

Eq.(2.42) can be solved using standard path-following techniques [32, 70, 49] for
an assigned imperfection ũ. Note that in the hybrid solid-shell FE model, the
internal force vector of the imperfect structure is obtained by simply subtracting
a constant vector p̃, evaluated once and for all at the beginning of the analysis,
to the internal forces vector s[u] of the perfect structure.

2.4.2 The new reduced model with geometrical imperfection

The space of admissible configurations that will be used in the Lyapunov-Schmidt
decomposition is obtained by adding an additional term which represents the
initial imperfection, to the configuration field of the perfect structure in Eq.(2.28)
that is

ud[λ, ξi, ξ̃i] = ũ+ λû+ v[ξi] + w[ξi, ξ̃i, λ] (2.44)
where the geometrical imperfection is assumed to be a linear combination of a
known shape ūi

ũ =
n∑
i=1

ξ̃iūi. (2.45)

The imperfection shapes ūi are generic and can be, for example, the displace-
ment part of the buckling modes as well as measured geometrical imperfections.
Note that, unlike the reduced model in Eq.(2.35), now the quadratic correctives
w[ξi, ξ̃i, λ] depend on the geometrical imperfection amplitudes ξ̃i.

From now on the 3th order dependence of the strain energy on the configura-
tion variables u (see Eq.(2.23)) will be exploited in order to simplify the exposition.

The residual equation (2.41) is firstly expanded in Taylor series starting from
ũ, so obtaining (

Φ′′[ũ](ud − ũ) + 1
2Φ[ũ]′′′(ud − ũ)2 − λp̂

)
δu = 0.

The first term in previous equation is expanded again from the initial configuration
of the perfect structure (u0 = 0, λ = 0)

Φ′′[ũ](ud − ũ)δu = (Φ′′0 + Φ′′′ũ)(ud − ũ)δu

and, remembering that Φ′′0ûδu = pδu(
Φ′′0(v + w) + 1

2Φ′′′(λû+ v + w)2 + Φ′′′ũ(λû+ v + w)
)
δu = 0. (2.46)
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With a further Taylor expansion of Φ′′0(·) starting from the uk = λkû and
letting Φ′′k = Φ′′[uk]

Φ′′0(v + w)δu = (Φ′′k(v + w)− λkΦ′′′û(v + w))δu

the Eq.(2.46) becomes(
Φ′′k(v + w) + (λ− λk)Φ′′′û(v + w) + 1

2λ
2Φ′′′û2 + 1

2Φ′′′(v + w)2 + Φ′′′ũ(λû+ v + w)
)
δu = 0.

(2.47)
It is worth mentioning again that Eq.(2.47) does not contain any truncation

error. Furthermore note that the equilibrium condition for the structure with no
imperfection is regained for ũ = 0.

Projection of the equilibrium equation in the space W.

The corrective field w ∈ W is obtained by projecting Eq.(2.47) in direction δw, i.e.
assuming δu = δw, and expanding it in Taylor series up to the second order in the
asymptotic parameters (λ, ξi, ξ̃i). The term Φ′′kv̇δw, by exploiting the bifurcation
Φ′′i v̇iδu = 0 and the orthogonality Φ′′′ûv̇iδw = 0 conditions, becomes

Φ′′kv̇δw =
n∑
i=1

ξi
{
Φ′′i v̇i + (λk − λi)Φ′′′ûv̇i

}
δw = 0

that allows the simplification of the residual equation as

r̃w[ξi, λ, ξ̃] ≡
{

Φ′′[λû]w + 1
2λ

2Φ′′′û2

+1
2Φ′′′(v2 + 2wv + w2) + Φ′′′ũ(λû+ v + w)

}
δw = 0

(2.48)

with Φ′′[λû]w = Φ′′kw + (λ− λk)Φ′′′ûw.
Assuming

Φ′′[λû]w ≈ Φ′′bw with Φ′′b ≡ Φ′′[λbû]
with λb a suitable reference value of the bifurcation cluster and maintaining only
the terms of the quadratic polynomial order in λ, ξi, ξ̃i the residual equation sim-
plifies as

r̃w[λ, ξi, ξ̃i] ≡
{

Φ′′bw + 1
2λ

2Φ′′′û2 + 1
2Φ′′′v2 + Φ′′′ũ(λû+ v)

}
δw = 0. (2.49)

Remembering the expression of v[ξi], the quadratic correctives of the imperfect
structure are sums of the correctives for zero imperfections of Eq.(2.30) and of
the additional contribution due to the geometrical imperfection

w[ξi, ξ̃i, λ] = 1
2λ

2 ˆ̂w + 1
2
∑
i,j

ξiξjẅij + w̃ (2.50)
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where
w̃ = λ ˜̂w +

∑
i

ξi ˙̃wi (2.51)

with
˜̂w :=

∑
j

ξ̃j ˆ̃wj , ˙̃wi :=
∑
j

ξ̃j ˙̃wij . (2.52)

The terms in Eq.(2.52) can be evaluated, once and for all in the perfect structure
step of the Koiter analysis, being known the imperfection basis, as{

Φ′′b ˆ̃wiδw = −Φ′′′ûūiδw
Φ′′b ˙̃wijδw = −Φ′′′v̇iūjδw

∀δw ∈ W. (2.53)

The new reduced equations with geometrical imperfection.

Exploiting the orthogonality condition Φ′′′ûwv̇k = 0 the kth equilibrium equation,
obtained assuming δu = v̇k in Eq.(2.47), becomes

r̃k ≡
(

(λ− λk)Φ′′′ûv + 1
2λ

2Φ′′′û2 + 1
2Φ′′′(v + w)2 + Φ′′′ũ(λû+ v + w)

)
v̇k = 0.

(2.54)
Substituting the expression of w and v previously obtained, using the mode

normalization condition in Eq.(2.26) and maintaining terms in λ, ξi, ξ̃i until the
3rd polynomial order, the equilibrium equation becomes

r̃k[λ, ξi] ≡ rk[λ, ξi] + µ̃k[λ, ξi] = 0, k = 1 · · ·m (2.55)

with rk[λ, ξi] = 0 the kth reduced equilibrium equation in Eq.(2.31) and the new
imperfection factor µ̃k defined as

µ̃k ≡
∑
i

ξiλΦ′′′vi ˆ̃wv̇k + 1
2
∑
ij

ξiξj
(
Φ′′′vi ˙̃wj v̇k + Φ′′′vj ˙̃wiv̇k + Φ′′′ũẅij v̇k

)
+ λΦ′′′ũ(û+ ˆ̃w)v̇k +

∑
i

ξiΦ′′′ũ(v̇i + ˙̃wi)v̇k + 1
2λ

2Φ′′′ũ ˆ̂wv̇k.
(2.56)

It is possible to observe that the only change, with respect to the standard reduced
system in subsection 2.3.1 regards the imperfection coefficient µ̃k which is now
more complex than the one used in Eq.(2.32), which only maintains the linear
contribution in λ

µ̃k = λΦ′′′ûũv̇k
while the quadratic terms in λ and the terms in ξ are neglected, leading to inac-
curacy as the pre-critical nonlinearity increases.

Furthermore, note that the proposed reduced model assumes the following
final expression

ud[λ, ξi, ξ̃i] = ũ+ λ(û+ ˜̂w) +
∑
i

ξi(v̇i + ˙̃wi) + 1
2
∑
ij

ξiξjẅij + 1
2λ

2 ˆ̂w. (2.57)
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The new correctives can be seen as a correction to the fundamental path tangent
and the buckling modes of the perfect structures in order to take into account the
geometrical imperfection.

2.4.3 FEM implementation of the proposed algorithm

The construction of the reduced model of the perfect structure presented in sub-
section 2.3.2 is completed by adding the evaluation of the new corrective after
Eq.(2.36c) {

Kb ˙̃wij + p̃ij = 0
Kb ˆ̃wi + p̃0i = 0

, ∀w ∈ W (2.58)

where
δwT p̃ij = Φ′′′b v̄j u̇jδw δwT p̃0i = Φ′′′b ûūiδw.

The imperfection coefficients µ̃k are evaluated using the expression (2.56) instead
of (2.33). Once the reduced nonlinear system (2.55) is solved, the equilibrium
path is traced according to (2.57).

The computational cost of the Koiter method with the proposed a-posteriori
account of the geometrical imperfections remains of the order of that required by
a standard linearised buckling analysis, that is dominated by the factorization of
the matrix K0. With respect to the standard approach, recalled in the previous
section, it is necessary to evaluate the newm×m correctives ˙̃wij , andm correctives
ˆ̃wi by means of the linear problem in Eq.(2.58) and the corresponding third order
strain energy variations in Eq.(2.56).

2.5 Numerical results
In this section some benchmarks are considered in order to test the accuracy of
the proposed a-posteriori account of geometrical imperfection. A comparison with
the different approaches is made. In particular, the numerical results report:

- the solution of the full FE model nonlinear equations (2.42), obtained using
a standard path-following technique, denoted as Riks and considered the
reference solution;

- the solution obtained through the Koiter method including the imperfection
a-priori in the model by assuming u0 = ũ in subsection 2.3.1, which means
that the reduced model is re-constructed for each imperfection while µ̃k = 0,
denoted as K0;

- the solution obtained through the Koiter method using the reduced model
of the perfect structure, built once and for all, and taking into account the
imperfection a-posteriori in the standard way recalled in 2.3.1, denoted as
Klin;
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Figure 2.1: Simply supported plate: geometry, load and boundary conditions.

- the solution obtained through the Koiter method using the reduced model
of the perfect structure, built once and for all, and taking into account the
imperfection a-posteriori according to the new proposal described in 2.4.2,
denoted as Kquad.

The geometrical imperfection is given as a linear combination of the displace-
ment shapes of the buckling modes and its maximum displacement components,
denoted as ũmax.

2.5.1 Simply supported plate

The first example regards a simply supported and uniformly compressed plate
whose geometry, load and boundary conditions are reported in Fig.2.1. The im-
perfection shape is proportional to the first buckling mode reported in the same
figure.

Fig.2.2 shows the equilibrium paths obtained with the different methods. In
this case the proposed Kquad approach provides results very similar to reference
Riks ones, even for a large imperfection magnitude, while the standard Klin ap-
proach gives a result which is completely wrong. In this case the energy terms
associated with ˙̃w and ˆ̃w are large also for small values of the imperfection am-
plitude due to the membrane hyperstaticity of the plate.

2.5.2 Cylindrical isotropic and laminated roofs

The structure, whose geometry and loads are pictured in Fig.2.3, is a semi-
cylindrical roof loaded by a central force whose curved edges are free while the
straight ones are hinged. Three material configuration are studied: the first one
in an isotropic material characterized by E = 3.10275 and Poisson ratio ν = 0.3,
the second and the third ones are laminated materials characterized by two differ-
ent layups, [0◦/90◦/0◦] and [90◦/0◦/90◦] respectively with respect to the e1-axis,
whose properties are reported in Fig.2.3. The FE mesh consists of 18×8 elements.
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Figure 2.2: Simply supported plate: geometry and equilibrium paths for ũmax = t

The imperfection shape is the displacement shape of the first buckling mode.
In Figs.2.4, 2.5 and 2.6 the equilibrium paths and the limit loads for different

values of the imperfection amplitude ũmax are reported. It is possible to observe
how the proposed Koiter method with a-posteriori account Kquad furnishes accu-
rate results for significant values of the imperfection amplitudes, very close to the
a-priori account K0 whose limit load always coincides with the Riks one. Since
the pre-critical behaviour is nonlinear even for the structure without imperfec-
tions, the standard a-posteriori account Klin fails also for very small imperfection
amplitudes.

Finally, it is worth noting from Fig.2.7 how the buckling mode corrected with
˙̃w1, according to Eq.(2.57), has a shape similar to those obtained considering the
imperfection a-priori in the FE model.
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Figure 2.3: Cylindrical roof subjected to a central pinching force with material
properties of the ply.
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Figure 2.4: Cylindrical isotropic roof: limit load versus imperfection magnitude
(left) and equilibrium paths for ũmax = 0.1t (right).
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Figure 2.5: Cylindrical laminated roof: equilibrium paths for umax = 0.1t for
layup [0/90/0] (left) and [90/0/90] (right).
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Figure 2.6: Cylindrical laminated roof: limit load vs imperfection magnitude for
layup [0/90/0] (left) and [90/0/90] (right).
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Figure 2.7: Cylindrical roof: bucking mode of the structure without imperfection,
with ũmax = 0.2t and ˙̃w1 for either isotropic, [0/90/0] and [90/0/90] cases.
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2.5.3 Compressed simply supported channel section

A simply supported channel section, whose geometry and material properties are
reported in Fig.2.8 is now analysed with 2 different shapes of the imperfection
depicted in Fig.2.13: the first one is the displacement shape of the first buckling
mode (flexural), the second one corresponds to the displacement shape of the 3rd
buckling mode (local with 13 half-waves). The structure exhibits buckling mode
interaction phenomena.

Figure 2.8: Compressed simply supported channel section with material proper-
ties.
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Figure 2.9: C-section: limit load versus
imperfection magnitude for flexural im-
perfection.
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Figure 2.10: C-section: equilibrium
paths for first buckling shape imperfec-
tion and umax = 5t (upwards).

In Fig.2.9 it is reported how the limit loads change with the amplitude of
the first imperfection, while Fig.2.10 shows the equilibrium paths for ũmax = 5t.
In Fig.2.11 the buckling modes and correctives for K0 and Kquad are reported.
It can be observed how the buckling mode of the imperfect structure presents a
shortening, while for the perfect structure presents a similar shape by summing
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Figure 2.11: C-section: buckling mode of the structure without imperfection (left),
with an imperfection in the direction of the first buckling mode of amplitude
ũmax = 5t (centre) and the relative ˙̃w1 (right, displacement factor 10).

its first buckling mode v̇1 and the corrective ˙̃w1, according to Eq.(2.57). The
good behaviour in the evaluation of the limit point of Kquad is evident while Klin

presents significant errors in the equilibrium path evaluation notwithstanding the
fairly accurate value of the limit load.

In Fig.2.12 the equilibrium paths and the deformed shapes in two equilibrium
points for the second imperfection, are presented. The corresponding mode shapes
and how they change with the imperfection are reported in Fig.2.13. Also in this
case the good behaviour of the proposal Kquad, compared to Klin, is evident.
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Figure 2.12: C-section: equilibrium paths and deformed configurations for third
buckling shape imperfection and ũmax = −0.5t. 12 modes have been considered
in asymptotic analysis.
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Figure 2.13: C-section: first, second and third buckling modes of the structure
without imperfection, with ũmax = 0.5t in the direction of the third buckling
mode and ˙̃w (displacement factor 10).
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Figure 2.14: Frame: geometry and mesh grid detail.
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Figure 2.15: Frame: First 5 buckling modes of the structure without geometrical
imperfections.

2.5.4 Frame

The last test regards the frame reported in Fig.2.14. The first 5 buckling modes
of the perfect structure are reported in Fig.2.15, while the limit load versus im-
perfection amplitude curve for a geometrical imperfection with the shape of the
second buckling mode and the equilibrium path for ũmax = 0.4t are reported in
Fig.2.16. In the same figure, the equilibrium path of the structure without im-
perfections is presented, in order to point out the strong imperfection sensitivity
of the frame and the modal interaction phenomenon. Even in this last case the
proposal Kquad provides very accurate results with a limit point which coincides
with the a-priori account K0 and Riks solution, while inaccuracies occur for Klin.
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Figure 2.16: Frame: equilibrium paths for geometrical imperfection along the sec-
ond buckling mode and ũmax = 0.4t (left) and magnitude imperfection sensitivity
(right).

2.6 Summary
A new strategy to include, a-posteriori, geometrical imperfections in Koiter anal-
ysis was proposed in this chapter. The main idea is to correct the linear modes of
the perfect structure reduced model using additional corrective modes, which take
into account the imperfections. The reduced system of the imperfect structure is
obtained starting from the system of the perfect structure by adding some terms,
which coherently consider the geometrical imperfection up to the second order.
In this way, the Koiter method with a-posteriori account of the imperfections
becomes accurate even for pre-critical nonlinearities and significant imperfection
amplitudes, making the approach suitable for a wide range of practical problems.
A large number of numerical tests, regarding shell structures in both isotropic
or laminated materials and also presenting multimodal buckling and pre-critical
nonlinearities, validated the proposal. The limit load provided by the new a-
posteriori account is very close to the path-following reference solution and to
that provided by the Koiter method with the imperfection included a-priori in
the model. Finally, this work confirmed that the Koiter method is definitely a
suitable tool for analysing imperfection sensitive structures and showed that the
a-posteriori account of the geometrical imperfections is not only a possibility, but
also an accurate and efficient choice. Interested readers can find further details in
[59, 71].



74 CHAPTER 2. A-POSTERIORI ACCOUNT OF IMPERFECTIONS



Chapter 3

Post-buckling optimisation
strategy of imperfection
sensitive composite shells using
Koiter method and Monte
Carlo simulation

Abstract

A numerical stochastic strategy for the optimisation of composite elastic shells
undergoing buckling is presented. Its scope is to search for the best stacking se-
quence that maximises the collapse load optimising the post-buckling behaviour.
Its feasibility is due to a reduced order model built for each material setup start-
ing from a hybrid solid-shell finite element model exploiting a multimodal Koiter
method. The approach has no limitations concerning geometry, boundary con-
ditions and distribution of the elastic properties. The collapse load is evaluated
using a Monte Carlo simulation able to detect the worst imperfection shape, in-
cluding a-posteriori the imperfections in the reduced order model. For a limited
number of parameters the proposal allows to analyse all the possible layups. In
the general case, it makes use of a random scanning of the design parameters with
different levels of adaptability.

3.1 Introduction

Thin-walled composite panels are common in a wide range of engineering appli-
cations nowadays, particularly in the aeronautic and aerospace context, where
they are often employed as primary structural components. Due to the high

75
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strength/weight ratio, the structural response is dominated by buckling and it
turns out to be mainly influenced by two factors: the geometry and the elastic
properties. While the former is often imposed by the structural functionality and
only little changes are possible, the spatial distribution of the material properties,
e.g fibre orientations, can be easily tailored in composite shells. As a consequence,
an efficient optimisation process of the material is required to obtain the desired
structural response, usually defined in terms of deflections and load-carrying ca-
pacity. Many manufacturing options are currently available for this purpose:
multi-layered and variable thickness composites [72], variable angle tows (VATs)
[73] and grid stiffeners [74].

Many optimisation strategies proposed in the literature use the linearised buck-
ling load as the objective function of the design. In [75], a parametric study on
rectangular composite plates points out how the buckling load changes with ge-
ometry, boundary conditions and stacking sequence, with the aim of providing
guidelines for designers. An optimisation of the stacking sequence with respect
to the buckling load is carried out in [76] for panels with T stiffeners, in [77, 78]
for VAT plates and in [79] the optimisation focuses on stiffened laminated wing
panels.

However, when optimised with respect to the linearised buckling load, struc-
tures often suffer from a phenomenon known as buckling mode interaction, which
leads to an unstable post-critical behaviour [80]. These structures often exhibit a
high sensitivity to imperfections, that is a deterioration of their bearing capacity
due to geometrical, load and material deviations [5]. For this reason, a more re-
liable design, which takes account of the full geometrically nonlinear behaviour,
has also been investigated over the years. In this framework, a collapse state
is declared when the applied load exceeds the limit load, for the unstable cases,
or because it produces deformations which compromise the usability, accounting
for the stiffness reduction that typically characterises the post-buckling regime.
Optimising the post-buckling behaviour in terms of collapse load is, however, a
challenging task. In fact, a suitable mechanical model and its discrete approxi-
mation are required to describe the complexity of practical problems in terms of
geometry, boundary conditions and structural behaviour accurately. This means
that the structural response is generally described by a high number of discrete
nonlinear equations, whose solution furnishes the equilibrium path. Furthermore,
as the collapse load can be strongly influenced by small deviations of geometry,
material properties and boundary conditions, the equilibrium path should be eval-
uated for a statistically significant number of imperfections in order to obtain a
reliable estimate of the load safety factor.

The Riks arc-length strategy, based on the Newton method, is the standard
tool for solving the discrete nonlinear equations and reconstructing the equilib-
rium path. Although this approach is effective for assigned data, it is not suitable
for an optimisation process, which requires the evaluation of the equilibrium path
for each change in the design variables, and for an imperfection sensitivity analysis
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because the single run is too time consuming with current CPUs. For these rea-
sons, when addressing this topic, researchers focused their attention on simplified
approaches following, often simultaneously, two main strategies: i) reducing the
number of discrete variables by using simplifying assumptions on the mechanical
model and its discrete approximation; ii) using optimisation strategies based on
a quick prediction of the post-critical behaviour by means of simplifying assump-
tions on nonlinear response. Different proposals are available in literature. In
[81] the post-buckling behaviour of compressed rectangular plates is studied by a
semi-analytical solution and the layer thicknesses are chosen as optimisation vari-
ables. The nonlinear response is described by a path-tracing finite element (FE)
analysis in the optimisation algorithm proposed in [82]. It consists in optimising,
with respect to the design variables, the collapse load evaluated by a nonlinear
buckling problem. The algorithm is extended in [83, 84] in order to take account
of geometrical imperfections and the worst imperfection case is included in the
optimisation process. A study of the effect of the material degradation in the
design of curved stiffened panels is presented in [85]. A Rayleigh–Ritz method
which allows the effective treatment of simple geometries is employed in [86]. This
model is used to minimize the maximum transverse displacement of stable VAT
plates in the post-buckling regime. In [72] the same authors look for a "Buckle
Free" solution, that is limiting the axial stiffness reduction after bifurcation. The
optimisation of grid-stiffened structures with curved stiffeners in the critical and
post-critical regime is addressed in [87, 74] by using a hybrid model and surrogate
models. The hybrid framework presented allows dimple imperfections to be taken
into account.

An interesting way of coherently performing an optimisation of slender struc-
tures is offered by strategies based on Koiter’s theory of elastic stability [46]. They
make use of an asymptotic expansion of the equilibrium equations which allows
the description of the initial post-critical behaviour in terms of some variables
related to the slope and curvature of the bifurcated branches [88]. These quanti-
ties can be optimised in order to obtain the desired structural response. A first
attempt in using the Koiter method to perform a minimum weight optimisation
of stiffened curved panels, discretised by means of the finite strip method, is pro-
posed in [89]. The post-buckling regime is expressed in a semi-analytical form
and depends on 4 variables only. More recently, in [88, 90], formulations based on
simplified structural models and a single buckling mode are used to optimise the
post-buckling behaviour of composite and VAT structures.

Despite the difficulties found in modelling the structural problem and predict-
ing the nonlinear behaviour, another tricky issue is the solution of the optimisa-
tion problem. This is always expressed, indeed, as a nonlinear and non convex
mathematical programming problem, whose solution is generally computationally
expensive and extremely difficult because of the possible presence of multiple lo-
cal minima. It represents, ultimately, the most penalising aspect of the analysis.
Among the others, frequently employed solution strategies are the random search
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methods [79], genetic algorithms [91] and gradient based techniques such as the
method of moving asymptotes [92] and sequential linear programming [93].

In this work, we propose an optimisation strategy for composite shells which
uses a reduced order model (ROM), obtained by the FE implementation of the
multimodal Koiter method seen in the previous chapter, for the evaluations of
the equilibrium path. In particular, the nonlinear equilibrium equations are writ-
ten for a solid-shell FE discretisation and are projected in a suitable subspace,
defined by an asymptotic expansion of the FE unknowns based on the initial
path tangent, the first linearised buckling modes and second order modes, named
quadratic correctives. In this way, it is possible to build a ROM in which the com-
plexity of the structural problem, including complex geometries and behaviours,
is preserved while the number of variables is drastically reduced to a few modal
amplitudes, since a few buckling modes are usually necessary to estimate the ini-
tial post-buckling response. Complex material configurations can also be easily
analysed as shown in recent applications to VAT panels [63]. Furthermore, the
use of an efficient total Lagrangian solid-shell FE model based on a mixed (stress-
displacement) description reduces the effort for the construction of the ROM and
makes it possible to easily evaluate the interactions among buckling modes. In
addition, the solid-shell FE allows an accurate modelling of complex geometrical
local features like stiffeners. The accuracy of the ROM based on this asymptotic
formulation has been extensively tested in the evaluation of the equilibrium path
of shell structures [59, 49] obtaining results as accurate as those of path-following
analyses. The solution of the optimisation problems is obtained by a stochas-
tic simulation which can be collocated in the framework of the random search
methods [94]. The goal is to maximise the collapse load by selecting an optimal
stacking sequence of the multi-layered structure. The construction of the ROM,
to be performed for each layup, is the most expensive part of the analysis but its
cost is of the order of a linearised buckling analysis [49, 59, 5, 63]. The most inter-
esting feature of this strategy is that the sensitivity to geometrical imperfections
is easily included in the optimisation process. To this purpose, the collapse load is
evaluated statistically by means of a Monte Carlo simulation aimed at detecting
the worst imperfection shape. This requires the evaluation of the equilibrium path
for thousands of randomly generated imperfection shapes in order to estimate the
lowest collapse load for each layup. This kind of sensitivity analysis, that is gen-
erally very expensive, has conversely a negligible computational cost thanks to
the possibility offered by the Koiter method of including a-posteriori, in the ROM
of the perfect structure, the effects of the imperfections [71]. In this way, once
the ROM of the perfect structure is available, the evaluation of equilibrium path
for each imperfection only requires the solution of a small sized nonlinear system,
usually of less than ten equations, carried out in fractions of second.

A stochastic strategy is employed to select random layups. It is a simple multi-
stage process which evaluates the optimal solution as follows: i) an initial searching
in the domain of all the possible layups is performed and the best solutions are
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selected; ii) the optimal solution is obtained by searching in the neighbourhood of
the best layups selected in i). For a limited number of the optimisation variables,
it will also be shown how the efficiency of the Koiter method makes it possible to
analyse all the possible layups by means of a uniform scanning. The effectiveness
of the proposed strategy is tested on two structural optimisations regarding a
curved panel and a stiffened curved panel in compression taking into account the
worst imperfection shape.

3.2 Imperfection sensitivity analysis by Koiter method

Slender composite structures are sensitive to imperfections in many cases. This
means that for an assigned set of data, the limit load value and the post-critical
behaviour cannot be described properly without considering the effects of imper-
fections. Among all the possible deviations from the initial data those regarding
the geometry are the most significant ones, as shown for instance in [95] for unstiff-
ened cylinders. For this reason, this work focuses on these kind of imperfections
considered as linear combinations of buckling modes. In this section, an imperfec-
tion sensitivity analysis based on the Koiter method [34] is presented for detecting
the worst imperfections by means of a Monte Carlo approach. A solid-shell FE
[10, 59] is used to make the method efficient and model the geometry, e.g. stiff-
eners, accurately.

A posteriori account of geometrical imperfections

Geometrical imperfections can easily be included in the analysis as shown in the
previous chapter. They can be expressed as an initial displacement ũ, assumed
to be a linear combination of known shapes ūi,

ũ =
n∑
i=1

ξ̃iūi. (3.1)

In this work, the imperfection shapes ūi are chosen as the displacement part of
the buckling modes.

The method allows to take account of imperfections in the final stage by simply
adding some additional imperfection terms µ̃k to Eq.(2.31) that becomes

rk + µ̃k = 0. (3.2)

Over the years, two different approaches have been developed. The first one, as
used in [34, 15, 37], modifies the ROM by simply adding the imperfection vector
ũ to the ROM of perfect structure in Eq.(2.28)

ud[λ, ξi] = ũ + λû + v[ξi] + w[ξi, λ]. (3.3)
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This approach, labelled Klin, proves to be extremely efficient but accurate only
for small imperfection amplitudes and almost linear pre-critical behaviour. It is,
in any case, a powerful tool to obtain information about the worst imperfection
shapes because thousands of imperfections can be analysed in a few seconds.

The second strategy, named Kquad, has been recently proposed in [71] and
updates the ROM as

ud[λ, ξi, ξ̃i] = ũ + λ(û + ˜̂w) +
∑
i

ξi(v̇i + ˙̃wi) + 1
2
∑
ij

ξiξjẅij + 1
2λ

2 ˆ̂w. (3.4)

considering new corrective modes generated by the imperfection, which can be
seen as a correction to the initial path tangent and the buckling modes of the
perfect structures. They can be evaluated as{

Kb ˙̃wij + p̃ij = 0
Kb ˆ̃wi + p̃0i = 0

, ∀w ∈ W (3.5)

where
p̃ij = K1[v̄i]u̇j , p̃0i = K1[û]ūi.

This approach is a little more expensive than the first one, but is more accurate
in the case of nonlinear pre-critical path and increasing imperfection amplitudes.
The projection of the FE equations (2.22) in directions v̇i, i = 1..m using the
updated ROMs furnishes the imperfection effects on the ROM of the perfect
structure in terms of the additional coefficients µ̃k in Eq.(2.34).

The computational cost of the Koiter method with both a-posteriori accounts
of the geometrical imperfections is of the order of that required by a standard
linearised buckling analysis, that is dominated by the factorization of the matrix
K0.

3.2.1 A Monte Carlo imperfection sensitivity analysis

The geometrical imperfections are expressed as in Eq.(2.45) where ξ̃i are uniformly
random generated numbers that set the maximum imperfection shape to a fixed
value

max |ũ| = ũmax. (3.6)
In this way it is possible to obtain a statistical sample of imperfections and to
draw, for each of them, the equilibrium path. As is well known, we can have a
stable post-critical behaviour, usually characterised by a reduction in the stiffness,
or an unstable post-critical path with limit point. The collapse is reached because
the applied load exceeds the limit load or because the stiffness reduction leads to
deformations which compromise the usability. This means that the collapse load
associated to ũ can be defined as the minimum between the limit load λlim, if it
exists, and the load λ̄ related to a fixed displacement of a control point

λc = min
ũ

{
λlim(ũ), λ̄(ũ)

}
.



3.3. OPTIMAL LAYUP DESIGN 81

Because of its extreme nature, as shown in [56], the frequencies distribution
of the limit load is best fitted by a type 1 extreme value distribution, also known
as Gumbel max distribution. It defines the probability density function as

f(λc) = σ−1 exp
(
µ− λc
σ

)
exp

(
− exp

(
µ− λc
σ

))
(3.7)

where µ and σ are the location parameter and scale parameter, respectively. It is
also useful to define the cumulative distribution function as

F (λc) =
∫ λc

−∞
f(x)dx (3.8)

which represents the probability that a generic imperfection leads to a collapse
load lower than λc. By inverting Eq.(3.8) it is possible to obtain the collapse load
λc,x which has the probability of x not being exceeded.

The number of imperfections to include in the sensitivity analysis is based
on the convergence of the parameters µ and σ. In particular the number of
imperfections starts from an initial value and is increased step by step until the
parameters converge. The convergence criterion can be chosen as follows: the
variation of µ and σ is limited to a tolerance value επ between two consecutive
steps three times in a row, as expressed, for example for µ, as follows

µj − µi
µj

≤ επ ∀i = j − 1, · · · , j − 3

where j denotes the current step.

3.3 Optimal layup design
In this section two simple optimisation approaches based on the proposed Koiter
method are presented. Even if the proposed approaches are very simple they high-
light how thousands of equilibrium path evaluations can be effectively performed.
More refined stochastic algorithms [94] can also be adopted.

3.3.1 The optimisation algorithms

This section deals with the optimal design of imperfection sensitive shells. Al-
though it focuses on seeking optimal layups for a fixed structural geometry, the
procedure is general and can be easily adapted to geometry optimisation. In
particular, the optimisation problem consists in searching for the solution which
maximizes the collapse load λc, as defined in 3.2.1, that is

maximize
ϑ

λc(ϑ)

subject to ϑi ∈ {0◦, 18◦, . . . , 162◦, 180◦}
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where ϑi is the fiber orientation of the ith layer and ϑ is the vector collecting
all ϑi. Depending on the way it is searched for in the optimization parameters
domain, the procedure can be applied in two ways. The first one, named Uniform
scanning, is the simplest and can be used when the optimisation involves a few
parameters. The second one, called Random scanning, is more suitable when the
number of parameters increases and it is based on a Monte Carlo like approach.

3.3.2 Uniform scanning

The approach is based on the simple idea of uniformly scanning the space of the
possible layups. In this way, at the end of the process, the collapse load trend
with the parameters is completely known and the actual optimal solution can
be easily identified. Even if the number of analyses can be significantly high, the
efficiency of the Koiter method makes them possible in a reasonable computational
time when the space is defined by a few parameters. It is evident, indeed, that
the number of analyses increases exponentially with the dimension of the sought
parameter space.

The approach consists of two stages. During the first one the space is uni-
formly scanned and, for each lamination, an imperfection sensitivity analysis is
performed to detect the collapse load. The Klin approach to account a-posteriori
for geometrical imperfection, as exposed in 3.2, is employed to identify the op-
timal solutions. The second stage is aimed at checking the best solutions found
in stage 1 by repeating the imperfection sensitivity analysis with more restrictive
tolerances on the µ and σ parameters, as defined in 3.2.1, and including their
effect using the Kquad approach which proves to be more accurate. Finally, the
structure with the best layup subjected to the worst imperfection shape is anal-
ysed by means of a path-following Riks analysis using the full FE model. The
diagram in Fig.3.1 summarises the steps of the whole process.

3.3.3 Random scanning

The main problem of uniformly scanning the domain of the optimisation param-
eters is that the number of analyses can increase enormously and, although the
Monte Carlo imperfection sensitivity analysis with the Koiter method is efficient,
it can prevent the solution of the problem. The second approach proposed over-
comes this problem by also using the Monte Carlo method to detect the best
stacking sequence. There are three stages in this process. In the first one, the
space of the optimisation parameters is sampled with a fixed number N1 of uni-
formly generated random values and for each of them the imperfection sensitivity
analysis furnishes the limit load and its fractile. Starting from the solutions of
stage 1, the second stage better investigates some areas of the domain of interest,
that is the areas near to the higher collapse loads. To this purpose, the Monte
Carlo simulation at stage 2 (zooming stage) no longer uses uniform random num-
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Preprocessing
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for i from 1 to N
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h++

optimal layups check

Figure 3.1: Diagram of the uniform scanning.
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bers but a fixed number N2 of random layups near to the laminations selected at
the first stage. The population of layups of interest drastically reduces allowing
an efficient estimate of the collapse load even for a large number of parameters.
This strategy is particularly suitable for optimising the stacking sequence of im-
perfection sensitive slender structures because all the layer orientations can be
chosen as independent optimisation parameters and their number is usually of
the order of tens. In addition, the strategy can be adapted to the specific problem
because subsequent zooming stages can be performed to investigate the areas of
the domain that seem to be of particular interest from one stage to another until
satisfactory results are obtained. After the zooming stage sequences a final stage
is performed to validate the optimal results found; it is carried out using the Kquad

formula to include imperfections effects and with a larger number of imperfection
shapes. Lastly, the results are further tested with path following analyses on the
selected laminations with the worst imperfection cases.

In Fig.3.2 the approach is summarised. It is written for the particular case of
one zooming stage only. The continuum domain of the angles is discretised; its
borders are denoted with ϑi and ϑf , while ϑp is the discretisation step. In the
subsequent zooming stages the symbol δ is added to the domain borders to define
the neighbourhood of the angles it is scanned in.

3.4 Numerical results

Two examples of stacking sequence optimisation based on the proposed strategy
are presented in this section. The first one consists in searching for the optimal
values of two lamination parameters of a curved panel in compression and, due
to the relatively small complexity of the problem, the uniform scanning approach
is employed. The second test regards the optimisation of a stacking sequence
defined by eight parameters, that is the fibre orientation of each layer, and the
random scanning approach is used because of the extremely large number of pos-
sible layups. The capability of the proposed approach for describing the overall
structural behaviour as well as to find optimal solutions can be seen, highlight-
ing the strong influence of the lamination on the collapse load. Concerning the
sensitivity analysis for the detection of the worst imperfection shape, the results
provided by the Koiter method with the two a-posteriori account of the imperfec-
tions (Klin and Kquad) are compared with the full FE solution (labelled as Riks)
obtained using the standard arc-length method.

3.4.1 Curved panel in compression

The test regards a curved cylindrical panel in compression. The geometry, the
loads and the boundary conditions pictured in Fig.3.3 are related to the middle
surface of the panel. The thickness of the shell is equal to 10mm.
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Figure 3.2: Diagram of the random scanning.
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Figure 3.3: Curved panel: geometry and boundary conditions.

The properties of the material are E1 = 30.6GPa, E2 = 8.7GPa, ν12 = 0.29,
G12 = 3.24GPa, G23 = 2.9GPa. The panel is composed of six layers and the
stacking sequence is [±ϑ1,±ϑ2,±ϑ3], from inside-out and measured with respect
to the 1-axis of the local reference system which is aligned with z. The structure is
discretised by a mesh grid made of 60 solid-shell elements along the curved edges
and 30 along the straight ones.

The optimisation problem consists in seeking the values of ϑ1 and ϑ3 which
maximise the collapse load, while ϑ2 is assumed constant and equal to 0◦.

The imperfection sensitivity analysis is carried out assuming random geomet-
rical imperfections following the Monte Carlo method; the imperfections are gen-
erated as a linear combination of the displacement part of the buckling modes
and uniformly distributed random numbers represent the coefficients of the com-
bination. The resulting imperfection shape is scaled in order to have a maximum
component equal to 0.1 of the thickness.

The space of the sought angles is uniformly scanned from 0◦ to 180◦ every
18◦. The details of the two stages of the analysis are summarised in Tab.3.1. The
best 10 laminations detected in stage 1 are checked in stage 2. The same is done
for the worst 10 laminations in order to show the great influence of the stacking
sequence on the structural performances.

The number of significant buckling modes for the construction of the ROM
generally changes with the lamination and cannot be imposed a-priori. In this
respect, an adaptive criterion of selection is used. It consists in including the
modes corresponding to critical loads that do not exceed 1.5 times the lowest one.

For the potential cases of stable post-critical behaviour, the deformation limit
is reached when the displacement component wA becomes greater than 2mm.

Figure 3.4 shows, for stage 1, the trend of the first buckling load and of the
collapse load in the angles domain. It can be observed that, as expected, the
buckling load values are not directly linked to the collapse loads. It is worth noting
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Figure 3.4: Curved panel: results of stage 1 in terms of first buckling load (left)
and collapse load (right) trend with respect to the lamination angles.
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stage 1 stage 2

laminations 100 20
επ tolerance 3/100 3/1000

method Klin Kquad

starting 200 200
imperfections increment 100 100

maximum 2000 10000

Table 3.1: Curved panel: parameters of the Monte Carlo simulation.

that the unstable cases are the most frequent (darkest areas) and produce a low
collapse load coincident with the limit load, while the maximum values (lighter
areas) of the collapse load correspond to stable cases where the deformation limit
dominates. In Fig.3.5 the collapse load is normalised with respect to the first
eigenvalue, showing that the former is much lower then the second one for the
unstable cases and confirming that the linearised buckling load is not a reliable
objective function for the optimization.

The best and the worst 10 cases, in terms of collapse load, are summarised
in Tab.3.2 for both stages. It highlights that stage 2 gives smaller collapse loads
than stage 1 and that the number of imperfections significantly increases between
the two stages due to the more restrictive values for the distribution parameters σ
and µ adopted. The analysis shows also that the best stacking sequences detected
at stage 1 are also the optimal ones of the stage 2. Note also that, as expected,
the worst and best cases are symmetric with respect to the fibre direction and
this confirms the robustness of the proposal in terms of number of numerical
experiments.

The extreme cases are analysed more deeply in the following. The stacking
sequence [04/ ± 90] furnishes the worst results in terms of collapse load. For
this lamination, the equilibrium paths corresponding to the worst imperfection
shape are reported in Fig.3.6 using the Koiter method, with both Klin and Kquad

approaches, and a path-following strategy. The solution found by Kquad is in ac-
cordance with the one of the path following analysis on the full FE model and,
in particular, the collapse load is accurately predicted. Conversely, the cheaper
approach Klin gives a slightly higher value of the collapse load but is however
able to capture the structural behaviour. The buckling modes and the quadratic
correctives used in the Koiter analysis for building the ROM of the correspond-
ing perfect structure are pictured in Fig.3.7 while Fig.3.8 and Fig.3.9 show the
deformed configuration at collapse load and the worst imperfection shape, respec-
tively.

To point out the influence of the number of buckling modes included in the
ROM on the collapse load, an imperfection sensitivity analysis with 3 modes, that
is the number used during the scan process, and 8 modes has been carried out
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buckling loads Stage 1 Stage 2

lamination λ1 λ2 λ3 λc
λc
λ1

Ni λc
λc
λ1

Ni

[±126/04] 1.595 1.986 - 2.344 1.470 500 2.354 1.476 2797
[±126/02/± 18] 1.587 1.971 - 2.265 1.427 500 2.304 1.452 1599
[±126/02/± 162] 1.587 1.975 - 2.260 1.424 499 2.294 1.445 1698

[±54/04] 1.595 1.986 - 2.245 1.408 500 2.277 1.428 1699
[±54/02/± 18] 1.587 1.975 - 2.187 1.377 500 2.228 1.404 1699
[±54/02/± 162] 1.587 1.971 - 2.148 1.354 500 2.215 1.396 1298

[±108/04] 1.548 1.993 - 2.107 1.361 500 2.172 1.403 2100
[±108/02/± 18] 1.535 1.966 - 2.061 1.343 500 2.122 1.383 1597
[±108/02/± 162] 1.533 1.969 - 2.060 1.343 600 2.127 1.387 1600

[±72/02/± 18] 1.533 1.969 - 2.014 1.314 600 2.074 1.353 1500
[0]6 1.350 1.978 - 0.996 0.738 352 0.970 0.719 1499

[04/± 18] 1.340 1.938 - 0.987 0.736 466 0.966 0.720 2974
[04/± 162] 1.340 1.938 - 0.987 0.736 585 0.966 0.720 2064
[04/± 36] 1.305 1.799 - 0.965 0.740 493 0.945 0.724 2385
[04/± 144] 1.305 1.799 - 0.965 0.740 493 0.945 0.724 1791
[04/± 54] 1.317 1.661 - 0.944 0.717 500 0.910 0.691 3391
[04/± 126] 1.317 1.661 - 0.944 0.717 800 0.910 0.691 4679
[04/± 108] 1.371 1.632 2.022 0.933 0.680 500 0.894 0.652 2498
[04/± 72] 1.371 1.632 2.022 0.933 0.680 700 0.893 0.652 2100
[04/± 90] 1.382 1.628 1.962 0.925 0.669 500 0.885 0.641 2499

Table 3.2: Curved panel: results of the best 10 and the worst 10 laminations. The
loads are expressed in kN/cm.

for the case [04/ ± 90]. The minimum collapse load and its 5% fractile provided
when increasing the imperfections has been monitored. The results are pictured
in Fig.3.10. The collapse load from the two cases stabilises at the same value
although when 3 modes are employed it converges for a smaller number of imper-
fections. On the contrary, as expected, the fractiles are quite different because, by
enlarging the number of the modes, the space of the possible imperfections also
increases without providing any further information about the worst imperfection,
which is well represented by the first 3 modes.

Moreover, for a fixed number of modes, the frequency distribution converges
quickly. This can be seen in Fig.3.10 where the fractile does not change signifi-
cantly, or in Fig.3.11 and Tab.3.3 which show, for 8 modes, how the probability
density function and the parameters of the distribution vary with the number of
imperfections.

The other extreme lamination is [±126/04], characterised by a stable post
critical behaviour and the highest collapse load. In Fig.3.13, the corresponding
equilibrium paths traced by Koiter (ROM) and Riks (full FE model) analyses
are reported showing a good agreement. The deformed configuration at the last
evaluated equilibrium point is shown as well. The buckling modes and the corre-
sponding corrective modes used to construct the ROM are pictured in Fig.3.14.
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Figure 3.5: Curved panel: results of stage 1 in terms of collapse load normalised
with respect to the first buckling load.

3.4.2 Stiffened panel

The second test regards a curved panel with "T" stiffeners in compression, like
those commonly employed for aeronautical structures [79]. In Fig.3.15 an axono-
metric projection shows the geometry and the boundary conditions, while geo-
metrical details of a section have been pictured in Fig.3.16. The v displacement
of the lateral faces of the four panels is bounded and the deformation of only one
curved edge is constrained, also along z. In the illustrations, it is possible to see
the mesh grid details for the 3D solid-shell description of the structure. It is worth
noting how the solid-shell finite element allows us to model, easily and accurately,
the connection between the panel and the stiffeners, with no need for rigid links
or offsets, in contrast to classical shell models. The curved faces and the stiffener
ends are loaded by a uniform line load λ = 1.

The same material is employed for the skin and the stiffeners and it is char-
acterised by E1 = 30.6GPa, E2 = 8.7GPa, ν12 = 0.3, G12 = 3.4GPa, G23 =
2.9GPa, with respect to the local reference system which has the direction 1
aligned with the global direction z while the direction 3 is along the normal at
the middle plane of the skin. The stiffener lamination is supposed to be constant
and equal to 0◦, while eight layers define the lamination of the skin labelled as
[ϑ1/ . . . /ϑ8] where every ϑi is a multiple of 18◦ and can vary from 0◦ to 180◦. The
purpose of the test is studying the variability of the post-critical behaviour when
the lamination changes and seeking the laminations with the maximum collapse
load. The solutions with minimum collapse load are searched as well, just to iden-
tify the range of variability of the structural performances. The collapse load for
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Figure 3.6: Curved panel: equilibrium path for the worst imperfection shape in
stage 2, path following vs Koiter a-posteriori, lamination [04/± 90].



92 CHAPTER 3. OPTIMISATION OF COMPOSITE SHELLS

v̇1 v̇2 v̇3
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Figure 3.7: Curved panel: buckling modes and quadratic correctives, case [04/±
90] .

Figure 3.8: Curved panel: deformed
shape at collapse point, case [04/ ±
90].

Figure 3.9: Curved panel: worst im-
perfection shape, lamination [04/ ±
90].
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Figure 3.10: Curved panel: 5% fractile and minimum value of the collapse load
versus number of imperfections for 3 and 8 modes, case [04/± 90].
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Figure 3.11: Curved panel: Gumbel max
probability density function for different
number of imperfections, lamination [0]6,
8 modes.

Ni µ σ

100 -0.8049 0.0755
500 -0.8105 0.0788
1000 -0.8116 0.0786
2000 -0.8094 0.0809
3500 -0.8113 0.0806
5000 -0.8113 0.0801

Table 3.3: Curved panel: distribution
parameters variation with the number of
imperfections, lamination [0]6.
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Figure 3.12: Curved panel: frequencies
of the collapse load, lamination [04/±90],
8 buckling modes, 10000 imperfections.
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Figure 3.13: Curved panel: equilibrium path (left) and deformed shape at the last
evaluated equilibrium point (right), lamination [±126/04].
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Figure 3.14: Curved panel: buckling modes and quadratic correctives for the case
[±126/04].
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Figure 3.15: Stiffened panel: geometry and boundary conditions.

the stable configurations is the load producing the deformation limit wA = 4mm.
As in the first test, the buckling modes employed for the ROM of the Koiter
analyses correspond to buckling loads which do not exceed 1.5 times the first one.

The parameters used to set up the three stages of the random scanning ap-
proach are reported in Tab.3.4. In the first stage, 2500 random uniformly gener-
ated laminations are analysed and the 10 best and the 10 worst laminations (in
terms of collapse load), reported in Tab.3.5, are selected. In the second stage, for
each of these configurations, a further 100 randomly generated laminations are
considered with each layer angle that can vary between −36◦ and 36◦ with an
increment of 18◦ with respect to the likely optimal values identified by the first
stage. Lastly, in stage 3 the best 10 and the worst 10 results obtained in stage 2,
and labelled as indicated in Tab.3.6, are analysed using the accurate account of
geometrical imperfections and a more restrictive tolerance for parameters µ and
σ; a summary of the results is reported in Tab.3.7.

Even though the number of finite element parameters is quite significant, the
code is not really time consuming. For instance, the average time taken by a
prototype code for analysis each layup at stage 1 is 32.02 seconds (i7-6700HQ
CPU 2.6Ghz, Matlab R2016a, single core) considering that the average number
of imperfections per layup is 805.

stage 1 stage 2 stage 3

laminations 2500 2000 20
tolerance 3/100 5/1000 3/1000

method Klin Klin Kquad

starting 50 200 200
imperfections increment 50 50 100

maximum 2000 2000 10000

Table 3.4: Stiffened panel: parameters of the Monte Carlo simulation.
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Figure 3.16: Stiffened panel: section geometry and mesh.

The curves in Fig.3.17 plot the collapse load, the two lowest buckling loads
λ1 and λ2 and the ratio between the collapse load and the first eigenvalue as
a function of a lamination index. This is an integer number which is assigned
to each lamination after they are ordered in terms of decreasing collapse load.
The laminations with the smallest index have a stable behaviour and collapse
for reaching the deformation limit. The buckling loads in these cases are well
separated from each other. The first buckling load is actually quite constant
with the lamination though, when the second one gets closer to it, the collapse
load, due to modal interaction phenomenon, drastically reduces. This behaviour
is significantly more evident in Fig.3.18 where the results of stage 2 are reported.
The best laminations in terms of collapse load are characterised by an evident
distance between the first and the second linearised buckling load and exhibit a
stable behaviour. Conversely, for the worst laminations, the second eigenvalue is
very close to the first one and the modal interaction leads to a relevant unstable
behaviour with an imperfection sensitive limit load. Some equilibrium paths are
presented in Fig.3.19. The collapse loads predicted by the Koiter method are
practically coincident with those provided by the Riks analysis with the full FE
model. The buckling modes used in the ROM and some quadratic correctives are
pictured in Fig.3.20 and in Fig.3.23 for the laminations L1 and L20 respectively.
In addition, Fig.3.21 shows the worst imperfection shape detected in stage 2 for
the lamination L20 and the corresponding deformed shape at the limit point is
reported in Fig.3.22. The convergence of the Monte Carlo optimisation is shown
in Fig.3.24, that is the trend of the maximum and the minimum collapse load
for an increasing number of analysed laminations. In particular, a little over
a thousand of layups has to be considered to obtain a converged value of the
maximum collapse load. Lastly, Fig.3.25 indicates how the structural behaviour
in terms of equilibrium path drastically changes with the stacking sequence and,
in particular, how the post-critical behaviour varies from strongly unstable to
stable, confirming again the great influence of a stacking sequence optimisation.
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Figure 3.17: Stiffened panel: collapse load and buckling loads for the lamination
in order of decreasing collapse load, stage 1.
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Figure 3.18: Stiffened panel: collapse load, fractile and buckling loads for the
lamination in order of decreasing collapse load, stage 2.
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Figure 3.19: Stiffened panel: equilibrium paths for the worst imperfection shape
and laminations L1 and L20, path following vs Koiter.
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Figure 3.20: Stiffened panel: buckling modes and quadratic correctives, case L1.

Figure 3.21: Stiffened panel: worst im-
perfection shape, L20.

Figure 3.22: Stiffened panel: deformed
shape at collapse point, L20.
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Figure 3.23: Stiffened panel: buckling modes and quadratic correctives, case L20.
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Figure 3.24: Stiffened panel: maximum and minimum collapse loads when the
laminations increase.
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Figure 3.25: Stiffened panel: equilibrium paths for some laminations at stage 2.
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lamination λ1 λ2 λc λc,5 λc/λ1 Ni

[18/36/162/72/0/0/0/0] 3.8805 4.3430 5.4337 - 1.4003 350
[108/36/72/162/0/72/0/162] 4.2127 5.0184 5.2665 - 1.2501 350
[108/36/162/144/18/0/162/0] 3.9662 4.8839 5.2580 - 1.3257 200
[126/126/0/144/162/0/18/0] 3.8521 4.7065 5.1439 - 1.3354 350
[90/108/0/18/18/0/162/0] 3.8604 4.7119 5.0942 - 1.3196 550
[54/54/18/0/54/0/162/0] 3.8930 4.7015 5.0641 - 1.3008 300
[72/126/72/72/0/108/0/0] 4.3619 4.9789 5.0532 - 1.1585 350
[36/54/108/18/36/0/0/162] 4.0863 4.7736 4.9990 - 1.2234 400
[72/126/36/18/144/18/0/0] 4.0992 4.9873 4.9985 - 1.2194 300

[54/72/0/72/36/0/0/0] 3.9844 4.6742 4.9831 - 1.2506 250
[162/144/162/144/144/72/108/90] 3.6837 3.7316 2.4582 2.4614 0.6673 300

[162/0/18/90/90/126/126/108] 3.6686 3.7659 2.4519 2.4539 0.6683 250
[0/0/126/72/72/126/72/108] 3.7314 3.7613 2.4511 2.4534 0.6569 300

[18/18/108/108/36/126/54/54] 3.6627 3.8805 2.4505 2.4525 0.6690 300
[18/18/144/108/126/108/90/126] 3.6901 3.7830 2.4503 2.4525 0.6640 400
[162/162/54/108/126/72/90/108] 3.6955 3.8094 2.4295 2.4316 0.6574 400
[0/126/108/108/126/90/126/90] 3.6464 3.9985 2.4255 2.4286 0.6652 250
[18/162/54/54/108/108/108/126] 3.6160 3.8386 2.4211 2.4234 0.6696 300

[0/18/144/108/54/54/90/72] 3.6131 3.7729 2.4016 2.4048 0.6647 450
[18/18/0/36/54/72/54/72] 3.4698 3.6626 2.3334 2.3359 0.6725 250

Table 3.5: Stiffened panel: results of the best 10 and the worst 10 laminations,
stage 1. The loads are expressed in kN/cm.

3.5 Summary

A strategy completely based on stochastic simulations for optimising the stacking
sequence of slender composite shells undergoing buckling was presented in this
chapter. The objective function is the collapse load, evaluated by taking into
account the initial post-buckling behaviour. The main idea consists in the use of
random numerical experiments for detecting both the best layup and the worst
shape of the geometrical imperfection. A solid-shell finite element model was
adopted to describe the structural problem accurately with no limitation on ge-
ometry, material configuration and boundary conditions. Generally, the discrete
problem is governed by a significant number of degrees of freedom, which makes
the Monte Carlo optimisation prohibitive. For this reason, the FE unknowns
were replaced, for each random layup by a reduced order model built, according
to the multimodal Koiter method, starting from the initial path tangent and a
few buckling modes associated to the first eigenvalues of a linearised buckling
analysis. The ROM, governed by a few modal amplitudes, made it possible, for
each material configuration, to quickly predict the initial post-buckling path of
the perfect structure with a high accuracy in both stable and limit point situa-
tions, including the modal interaction phenomenon. Moreover, the safest collapse
load of each stacking sequence, corresponding to the worst imperfection shape,
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label lamination

L1 [108/18/162/162/0/18/180/0]
L2 [72/0/162/144/0/0/198/0]
L3 [108/18/72/198/18/72/0/180]
L4 [126/0/162/108/18/0/180/18]
L5 [108/54/144/180/18/0/180/18]
L6 [108/162/36/0/108/0/0/18]
L7 [0/72/162/36/18/0/18/0]
L8 [90/18/180/162/18/18/162/0]
L9 [72/18/126/18/0/0/36/180]
L10 [108/54/180/144/0/18/180/18]
L11 [0/126/126/126/126/90/108/126]
L12 [0/0/108/90/108/126/108/90]
L13 [198/180/72/72/90/54/72/72]
L14 [162/162/72/72/108/90/126/126]
L15 [162/162/72/90/90/90/108/126]
L16 [18/108/126/108/108/108/90/108]
L17 [180/18/54/54/72/90/108/72]
L18 [0/162/126/126/90/108/90/72]
L19 [198/198/36/108/126/90/72/72]
L20 [180/0/54/72/72/90/90/72]

Table 3.6: Stiffened panel: labels of the best 10 and the worst 10 laminations,
stage 2.

was estimated by means of a Monte Carlo imperfection sensitivity analysis, that is
the evaluation of the equilibrium path for thousands of imperfections. This part,
that is usually quite time consuming, was made really inexpensive by including
the effects of the imperfections directly in the ROM of the perfect structure. The
number of imperfections to consider was controlled by checking the convergence of
the parameters of the Gumbel-max distribution, which represents the probability
density function of the collapse load well.

Two examples of layup optimisation regarding curved multi-layered panels,
with and without stiffeners, were reported. In the first one, the stacking sequence
was expressed in terms of two parameters. In this case, the great efficiency of
the Koiter method made it possible to uniformly scan the entire population of
stacking sequences. In the second one, the fibre orientation of each of the eight
layers was chosen as an independent parameter. The complexity of the problem
was handled by means of the more general random search and it was shown
that a converged value of the maximum collapse load is obtained with a thousand
random layups. The numerical results confirm the importance of correct design of
the stacking sequence, which should take account of the post-critical behaviour to
maximise the collapse load. The optimisation led to a drastic change in structural
behaviour, which ranges from unstable and sensitive to imperfections to stable
without imperfection sensitivity. The examples showed that, on the contrary,
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buckling loads Stage 2 Stage 3

λ1 λ2 λ3 λ4 λc
λc
λ1

i λc
λc
λ1

Ni

L1 3.771 4.663 5.610 - 5.450 1.442 850 5.463 1.449 1200
L2 3.801 4.605 5.645 - 5.302 1.395 1100 5.314 1.398 2200
L3 4.140 4.823 5.975 - 5.289 1.276 600 5.300 1.280 2500
L4 3.876 4.534 5.713 - 5.277 1.361 900 5.286 1.364 2100
L5 4.016 4.982 5.786 - 5.260 1.310 600 5.250 1.307 2200
L6 4.025 4.762 5.826 - 5.254 1.306 950 5.260 1.307 1700
L7 3.785 4.344 5.644 - 5.238 1.384 700 5.244 1.386 3600
L8 3.752 4.615 5.573 - 5.236 1.396 800 5.242 1.397 1600
L9 3.956 4.781 5.713 - 5.229 1.322 950 5.238 1.324 800
L10 3.971 4.891 5.720 - 5.227 1.316 950 5.240 1.320 1400
L11 3.587 3.864 5.110 5.305 2.389 0.666 750 2.381 0.664 2300
L12 3.550 3.809 5.000 5.111 2.387 0.672 800 2.380 0.670 2598
L13 3.562 3.835 5.111 5.131 2.387 0.670 1000 2.380 0.668 2200
L14 3.618 3.752 5.238 5.341 2.382 0.658 750 2.374 0.656 1800
L15 3.618 3.765 5.195 5.343 2.381 0.658 1100 2.373 0.656 1400
L16 3.563 3.992 5.184 5.220 2.378 0.667 500 2.373 0.666 2300
L17 3.621 3.757 5.116 5.255 2.380 0.657 700 2.369 0.654 1400
L18 3.585 3.744 5.058 5.269 2.373 0.662 650 2.364 0.659 1900
L19 3.579 3.774 5.153 5.289 2.371 0.662 750 2.362 0.660 1600
L20 3.579 3.663 4.967 5.140 2.353 0.658 900 2.345 0.655 1500

Table 3.7: Stiffened panel: stage 2 and stage 3 results. The loads are expressed
in kN/cm.

the smallest linearised buckling load cannot be used as objective function for the
optimisation as it can generally be quite different from the collapse load, especially
in the case of modal interaction. This is evident in the second test proposed where
the first buckling load is practically constant with the lamination while the collapse
load changes significantly. Further details can be found in [96].



Chapter 4

How to improve efficiency and
robustness of the Newton
method in displacement-based
finite element analysis

Abstract

This chapter shows how to significantly improve the robustness and the efficiency
of the Newton method in geometrically nonlinear structural problems discretised
via displacement-based finite elements. The strategy is based on the relaxation of
the constitutive equations at each integration point. This leads to an improved
iterative scheme which requires a very low number of iterations to converge and
can withstand very large steps in step-by-step analyses. The computational cost
of each iteration is the same as the original Newton method. The impressive per-
formances of the proposal are shown by many numerical tests. In geometrically
nonlinear analysis, the proposed strategy, called MIP Newton, seems worthy to
replace the standard Newton method in any finite element code based on displace-
ment formulations. Its implementation in existing codes is very easy.

4.1 Introduction

Slender structures are usually characterized by large displacements and rotations
but small strains. This situation is commonly known as geometrically nonlinear
problem, because leads to a mathematical problem in which the nonlinearities are
due to geometric effects, that is the nonlinear relationship between the strains
and the displacements/rotations. Many practical problems can be framed in this
context. Some examples are metal and composite structures, often character-
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ized by buckling phenomena and strong imperfection sensitivity, drape simulation
problems and deployable structures characterized by very large displacements.

The standard approach to simulate the behaviour of this kind of structures
consists of the use of the finite element (FE) method, in order to transform the
continuum problem into a discrete one. The nonlinear discrete equations, com-
pleted with an arc-length constraint defining the step size, are solved step-by-step
by using the Newton iterative method, in order to evaluate the equilibrium path
of the structure.

Although this strategy is well established, it can be plagued by its high com-
putational cost, due to two different limitations: i) the number of FE degrees of
freedom (DOFs) used to approximate the differential equations; ii) the number of
iterations required to obtain an equilibrium point and then to trace the desired
equilibrium path, once the continuum problem has been discretized. In this work
attention is focused only on the second aspect and, to avoid any misunderstand-
ings, the word "convergence", used throughout this chapter, refers only to the
iterative method, which provides the solution of the nonlinear discrete problem.

Most of the existing FE codes are based on displacement formulations, i.e.
the kinematic field is interpolated and the discrete kinematic DOFs represent the
unknowns of the nonlinear equations. Other kinds of formulations are possible,
like for instance the mixed (stress-displacement) one, also known as hybrid-stress,
in which both the stress and the displacement fields are interpolated. When
comparing mixed and displacement finite elements many authors observe that the
mixed ones are more robust and allow larger steps in path-following geometrically
nonlinear analyses [10, 11]. This fact was investigated for the first time some years
ago in [32], when it was shown that the robustness and the efficiency (in terms of
number of iterations) of the Newton iterative scheme are penalized in displacement
formulations because of a phenomenon that was called "extrapolation locking".
This is not a locking of the FE discretisation, but of the iterative scheme usually
found in beam/shell problems, when the axial/membrane stiffness is much higher
than the flexural one. In these cases the iteration matrix evaluated in the current
estimates of the equilibrium point can be far from the optimal one, in terms
of the convergence condition of the Newton method. The number of iterations
required to evaluate the equilibrium path, quickly grows as the stiffness ratios
of the structure increase while, at the same time, the step size required to avoid
loss of convergence drastically decreases. This phenomenon, that is typical of FE
displacement formulation, does not affect mixed FE formulations, which are free
from "extrapolation locking" [33, 48]. In recent years many other researchers have
experienced the better behaviour of the mixed FE models in geometrically non–
linear analyses. In [10] a displacement and a mixed (hybrid-stress) solid-shell FE
are developed which, if converged, yield close predictions. However, the authors
conclude that the mixed element converges more readily and can withstand larger
load increments than the displacement one in all the examined problems. In the
ABAQUS manual (29.3.3-9), it is reported that hybrid beam elements are provided



4.1. INTRODUCTION 107

in order to make the convergence of the iterative method faster, when the beam’s
rotations are large. The first chapter investigated the fast convergence and the
high robustness of mixed FE models, providing a clear explanation of the origin
of the phenomenon in a general context. It was shown that the evolution of the
displacement iterative process is forced to satisfy the constitutive equations at each
iteration and this constraint leads to a deterioration in the convergence properties.
On the contrary in mixed FE models the stress DOFs are independent variables,
directly extrapolated and corrected, which only at convergence satisfy the discrete
constitutive equations. The mixed iterative scheme is then free to naturally evolve
to the solution while the displacement iterative scheme is constrained to follow an
assigned evolution in which the constitutive equations must be satisfied. Thus, the
ready convergence of the Newton method for mixed FEs is not linked to the FE
interpolation, but due to the different "format" of the iterations. Mixed elements
have a higher computational cost in constructing their element stiffness matrix
and internal force vector with respect to displacement FEs, because of the stress
extra-variables usually condensed at element level, but their use in geometrically
nonlinear problems is justified by their readier convergence.

The question posed in this work is "is it possible to use a mixed iterative scheme
without introducing a mixed FE interpolation?". A positive answer to this ques-
tion would have important implications since a great part of the existing code
is based on well-established displacement FE interpolations. In this chapter it
will be shown that this is possible and a mixed format of the Newton method for
geometrically nonlinear structural problems discretised via displacement-based fi-
nite elements is presented. The strategy is inspired by the more efficient iterative
scheme for mixed FE models. The idea consists of the relaxation of the consti-
tutive equations at each integration point. In this way, the stiffness matrix of a
displacement-based FE maintains its original form. The only difference is that
the stresses at each integration point, used for the matrix evaluation, are directly
extrapolated and corrected, i.e. used as independent variables. This leads to a
"better" iteration matrix, which allows a very low number of iterations and very
large steps (increments) in step-by-step analyses. With respect to mixed FEs no
stress interpolations are present, so avoiding any additional cost in the evaluation
of the stiffness matrix. Furthermore the final equilibrium path is the same as the
original displacement formulation since the constitutive law is recovered exactly
at convergence.

The method, that named MIP (Mixed Integration Point) Newton, converges
much faster than the standard Newton method, as shown by many numerical
tests with different structural models and FEs. The gain in terms of number
of iterations required is impressive as well as the very large steps that the MIP
Newton can withstand without loss of convergence. The computational cost of a
MIP iteration is the same as a standard one. Furthermore, the iteration matrix
evaluated with the MIP strategy is so "good" that the modified version of the
method (MIP modified Newton), which computes and decomposes the iteration
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matrix at the first estimate of each equilibrium point, can be conveniently adopted.
From the implementation point of view, a few changes to the standard approaches
are required, without upsetting the existing FE codes and then its inclusion is
straightforward. In geometrically nonlinear analysis, the proposed strategy is so
robust, efficient and simple that it seems destined to replace the standard Newton
method in any finite element code based on displacement formulations.

The chapter is organized as follows: Section 2 presents a short overview of the
the equations of a general displacement-based finite element, in order to introduce
the notation; Section 3 derives the new MIP Newton in both the full and modified
version; Section 4 presents the two structural models and their FE interpolations
used in the numerical tests together with some implementation details required
to make the numerical tests reproducible; Section 5 presents a series of numerical
tests and discusses the improvements in terms of robustness and efficiency of the
proposal; finally, the conclusions are reported.

4.2 Path-following analysis via displacement FEs

4.2.1 The discrete nonlinear equations

We consider a slender hyperelastic structure subject to conservative loads p[λ]
proportionally increasing with the amplifier factor λ. The equilibrium is expressed
by the virtual work equation

Φ[u]′ δu − λp δu = 0 , u ∈ U , δu ∈ T (4.1)

where u ∈ U is the field of configuration variables, Φ[u] denotes the strain energy,
T is the tangent space of U at u and a prime is used to express the Fréchet
derivative with respect to u. We assume that U will be a linear manifold so that
its tangent space T will be independent of u. In displacement formulation u is
the displacement field, while when a mixed formulation is adopted u collects both
displacement and stress fields. Eq.(4.1) can be rewritten, using a FE discretisation
u = Nuu as

r[u, λ] ≡ s[u]− λp = 0, with
{

sT δu ≡ Φ′[u]δu
pT δu ≡ p δu

(4.2)

where r : RN+1 → RN is a nonlinear vectorial function of the vector z ≡ {u, λ} ∈
RN+1, collecting the configuration u ∈ RN and the load multiplier λ ∈ R, s[u]
is the internal force vector and p the reference load vector. Eq.(4.2) represents a
system of N -equations and N+1 unknowns and its solutions define the equilibrium
paths as curves in RN+1 from a known initial configuration u0, corresponding to
λ = 0. The tangent stiffness matrix is also defined as

δuT2 K[u]δu1 = Φ′′[u]δu1δu2 , ∀ δu1, δu2 (4.3)
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where δui are generic variations of the configuration field u and δui the corre-
sponding FE vectors.

4.2.2 Displacement-based FE

In displacement-based FE formulations only the displacement field is interpolated
in the domain and, thus,

u[ζ] = Nd[ζ]de (4.4)

where de are the element discrete DOFs, linked to the global ones d by the
relation de = Aed and ζ are the coordinates used to express the FE interpolation.
The dependence on the coordinates will be omitted in the following in order to
simplify the notation. The strain energy can be expressed as a sum of element
contributions Φ[u] ≡∑e Φe[u], where, letting Ve the finite element domain and C
the constitutive matrix,

Φe[u] ≡
∫
Ve

(1
2ε

TCε
)
dVe (4.5)

and the strains or generalized strains ε = D[u]u, introducing the interpolation in
(4.4), assume the general form

ε = B[de]de, (4.6)

with the differential operator D and its discrete counterpart B, in general, non-
linear in u and de respectively. The first variation of the strain measure can be
written as

δε = Q[de]δde

and, then, the first variation of the strain energy is

Φe[u]′δu ≡
∫
Ve

(
δεTCε

)
dVe =

∫
Ve

(
δdTe Q[de]TCB[de]de

)
dVe = δdTe se[de]

(4.7)
where se[de] is the element internal force vector. The second variation of the
strain measure is

δε̇ =Q[de, ḋe]δde =Q[de, δde]ḋe

and its kth component is written as

δε̇k = ḋTe Ψk[de]δde

As σ = Cε, the following expression holds

σT δε̇ ≡
∑
k

σkδε̇k = ḋTe G[σ,de]δde
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with
G[σ[de],de] =

∑
k

σk[de]Ψk[de]de (4.8)

The second variation of the strain energy is

Φ′′e [u]δuu̇ ≡
∫
Ve

(
δεTCε̇+ δε̇TCε

)
dVe = δdTe Ke[de]ḋe (4.9)

with the element tangent stiffness matrix defined as

Ke[de] ≡
∫
Ve

(
Q[de]TCQ[de] + G[σ[de],de]

)
dVe (4.10)

Numerical integration

The evaluation of the internal force vector and the tangent stiffness matrix, start-
ing from the strain energy expression, requires integrations over the FE domain.
The standard technique, usually employed to perform the integrations, is the
Gauss quadrature, which allows the evaluation of the strain energy as

Φe[de] ≡
n∑
g

(1
2εg[de]

TCgεg[de]
)
wg (4.11)

where subscript g denotes quantities evaluated in the integration point ζg and wg
is the corresponding weight. If the coordinates ζ in Eq.(4.4) are not the physi-
cal ones, wg includes the determinant of the Jacobian matrix of the coordinate
transformation, evaluated in the Gauss point. The internal force vector becomes

se[de] =
n∑
g

(
Qg[de]TCgεg[de]

)
wg (4.12)

while the tangent stiffness matrix is

Ke[σg[de],de] =
n∑
g

(
Qg[de]TCgQg[de] + Gg[σg[de],de]

)
wg (4.13)

where Ke[de] is written as Ke[σg[de],de] as a reminder of the way it is computed.

Remarks

It is important to note that Ke in Eq.(4.10) contains the term G[σ[de],de], that
depends on the stress evaluated using the current displacements de. The true
stresses, in large displacement and small strain problems, slowly change along
the equilibrium path. Unfortunately, during an iterative process, de is just a
current estimate and then, σ[de] = Cε[de], that is a nonlinear function of de,
can be very different from the stresses of the near equilibrium points. This "bad"
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stress estimate gets worse when the structure presents directions with very dif-
ferent stiffness ratios and undergoes finite rotations, because ε[de], during the
iterations, can have non realistic components especially in the stiffest direction.
This phenomenon leads to a slow convergence and an easy loss in convergence of
the Newton method. Conversely, mixed FE formulations are not affected by this
phenomenon because the stresses are directly extrapolated and corrected. This
difference in the iterative scheme is the reason why mixed FEs allow a faster
convergence of the Newton method in path-following analyses and can withstand
large step sizes (increments).

4.3 Newton method with mixed integration points

The comments made in the preceding remarks lead to the following question: "is it
possible to exploit the advantages of the mixed iterative scheme for displacement-
based FE models without changing the FE interpolation?" This section gives an
effective answer, proposing a Newton method based on the relaxation of consti-
tutive equations at the level of the integration points during the iterative process.
The approach, called MIP (Mixed Integration Point) Newton, allows a significant
improvement in the performances of the method, without affecting the discrete
approximation of the FE and without upsetting the existing FE codes. In fact
the proposed strategy consists of a few changes to the standard iterative method,
which are simple implementation details, but the benefits in geometrically non-
linear analysis are impressive, as will be shown in the numerical tests.

4.3.1 The MIP full Newton

The fundamental idea of the MIP Newton iterative scheme is to relax the consti-
tutive equations at the level of each integration point. This is made by writing
the total energy in a pseudo mixed form on the element

Πe[ue] ≡ Φe[ue]− dTe pe with ue =


σ1
...
σn
de

 (4.14)

where pe is the element counterpart of the load vector p and the "mixed" strain
energy Φe[ue] is obtained by rewriting Eq.(4.11) in a pseudo Helling-Reissner form
as

Φe[ue] ≡
n∑
g=1

(
σTg εg[de]−

1
2σ

T
g C−1

g σg

)
wg (4.15)
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in which the stresses at each integration point σg are now independent variables.
The first variation of (4.15) is

Φ′eδu =
n∑
g=1

[
δσg
δde

]T [
sgσ
sgd

]
wg (4.16)

with {
sgσ ≡ εg[de]−C−1σg

sgd ≡ Qg[de]Tσg
(4.17)

We can note that

• the stationarity of (4.14) with respect to σg leads to the constitutive equa-
tions σg = Cgεg[de] and, thus, the FE remains based on a displacement
formulation because the stresses satisfy the constitutive law along the equi-
librium path exactly.

• the stresses at the integration points are independent variables and, thus,
they are not forced to satisfy the constitutive law during the iterations but,
the constitutive equations are solved together with the equilibrium equations
and are satisfied only when convergence is obtained.

The second variation of (4.14) is

Φ′′eδuu̇ =
n∑
g=1

[
δσg
δde

]T [−C−1
g Qg

QT
g Gg

] [
σ̇g
ḋe

]
wg (4.18)

where Gg ≡ Ge[σg,de] is the matrix Ge evaluated in the integration point g, that
is now a function of the displacement DOFs and of the independent stresses σg.
The Newton iteration, at the element level, becomes


−C−1

1 w1 Q1w1
. . . ...

−C−1
n wn Qnwn

QT
1 w1 . . . QT

nwn
∑n
g Ggwg


j 
σ̇1
...
σ̇n
ḋe

 = (λj + λ̇)


0
...
0
pe

−


s1σw1
...

snσwn∑n
g

(
QT
g σgwg

)

j

(4.19)

where the superscript on matrices denotes that they are evaluated during the
iterative process in the current estimate uje.

By performing a static condensation of the stresses σ̇g, locally defined at the
level of the integration point, we obtain

σ̇g = CgQj
gḋe + Cgsjgσ = CgQj

gḋe + Cgε
j
g − σjg (4.20)
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and letting rce[dje] = sce[dje]− λjpe

Ke[uje]ḋe = −rce[dje] + λ̇pe (4.21)

with
Ke[σjg,dje] =

n∑
g=1

(
Qg[dje]

TCgQg[dje] + Gg[σjg,dje]
)
wg (4.22)

the condensed tangent stiffness matrix, that has the same form as the classical
displacement based one (4.13). However, this time it also depends on the inde-
pendent stresses at the integration points, which are now directly extrapolated
and corrected during the iterations.

Conversely, we can note that the condensed internal forces sce[dje]

sce[dje] =
n∑
g

(
Qj
g
TCgε

j
g

)
wg

coincides exactly with the internal forces of the displacement-based formulation in
Eq.(4.12). This iterative scheme is then very close to the standard Newton one for
displacement-based FE models as it is highlighted in Tab. 4.1. The main difference
consists of the different value of the stresses at the integration points used for the
evaluation of the tangent stiffness matrix. In the Newton method the stresses σg
are functions of the displacements and are forced to satisfy the constitutive law
at each iteration. Conversely, in the MIP Newton σg are independent variables
and so, are directly extrapolated and corrected and only at convergence satisfy
the constitutive law. Clearly, the equilibrium path recovered is the same as the
standard displacement approach, but the proposed method requires a much lower
number of iterations, under equal convergence criteria, and can withstand larger
step sizes (increments). The improved performances are mainly due to the "better"
iteration matrix that is possible when the stresses, which slowly change along the
equilibrium path, are chosen as independent variables of the iterative scheme.
Furthermore, it is possible to note, looking at Tab.4.1, that the computational
cost of a MIP iteration is practically the same as a standard one.

4.3.2 The MIP modified Newton

The modified Newton method evaluates and decomposes the iteration matrix in
the first extrapolation (predictor) of each step. If the matrix is a good approx-
imation of the secant one the method can converge in a reasonable number of
iterations. Unfortunately, in geometrically nonlinear analysis, displacement-based
FEs usually prevent the use of the modified scheme. In fact, already failure easily
occurs for the full Newton and is assured for the modified method unless a very
small step size and a very large number of iterations are used.
This is not the case with the previously proposed MIP Newton scheme. In fact, the
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Newton MIP Newton

Predictor d1 = d(k) + ∆d d1 = d(k) + ∆d
λ1 = λ(k) + ∆λ λ1 = λ(k) + ∆λ
σg[d1] = Cgεg[d1] σ1

g = σg(k) + ∆σg

Iteration matrix K[σg[dj ],dj ] K[σjg,dj ]

Residual vector s[dj ]− λjp s[dj ]− λjp

New estimate dj+1 = dj + ḋ dj+1 = dj + ḋ
λj+1 = λj + λ̇ λj+1 = λj + λ̇

σj+1
g = Cgεg[dj+1] σj+1

g = σj+1
g + σ̇

Table 4.1: Schematic description of the principal point of the algorithms: the
differences between the standard Newton and the MIP Newton are marked in
red.

stiffness matrix, evaluated using the direct extrapolation of the stresses from the
previous step, is already a good estimation of the secant matrix and, furthermore,
the MIP tangent matrix slightly changes during the iterative process. The matrix
so evaluated in the first prediction is then suitable for use in all the iterations
over the step, as required in the modified version of the method (MIP modified
Newton). Clearly, the number of iterations required by MIP modified Newton is
usually larger than that required by the MIP full Newton, but the direct extrapo-
lation of the stress assures robustness and efficiency. The few extra-iterations are
compensated by the need to calculate and decompose the iteration matrix just
once in each step.

The Newton iteration can be written as


−C−1

1 w1 Q1w1
. . . ...

−C−1
n wn Qnwn

QT
1 w1 . . . QT

nwn
∑n
g Ggwg


1 
σ̇1
...
σ̇n
ḋe

 = (λj + λ̇)


0
...
0
pe

−


s1σw1
...

snσwn∑n
g

(
QT
g σgwg

)

j

(4.23)

where the superscript 1 denotes quantities evaluated in the first prediction of the
new equilibrium point. By performing a static condensation of the stresses σg,
locally defined at the level of each integration point, we obtain

σ̇g = CgQg[d1
e]ḋe + Cgsjgσ = CgQg[d1

e]ḋe + Cgε
j
g − σjg (4.24)
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and letting rce[dje] = sce[dje]− λjpe
Ke[u1

e]ḋe = −rce[dje] + λ̇pe (4.25)

where
K[uje] =

n∑
g=1

(
Qg[d1

e]
TCgQg[d1

e] + Gg[σ1
g,d1

e]
)
wg (4.26)

is the iteration matrix, constant during the iterations of the single step. In the
MIP modified Newton scheme we have to note that, with respect to the MIP full
method, the condensed internal force vector

sce[dje] =
n∑
g

(
Qg[dje]

T
σjg + Qg[d1

e]
T (Cgε

j
g − σjg)

)
wg 6= se[dje]

does not coincide with that of the displacement-based scheme, because of the use
of a constant iteration matrix. However, this is just a further implementation
detail with a very low extra-cost, largely compensated by the constant iteration
matrix.
Note that, even in this case, the stresses, at convergence but not during the iter-
ative process, satisfy the constitutive law exactly and so the method provides the
same equilibrium path as the standard displacement-based approach. However,
note that the estimated iteration matrix in the modified MIP Newton is so "good"
that usually the number of iterations required is even less than that required by
the standard full Newton for displacement-based FE models.

4.3.3 MIP full Newton vs MIP modified Newton

Recall that, for the modified scheme, when the number of DOFs is large, the
computational cost over the single step is dominated by the stiffness matrix de-
composition, performed only once at the beginning of the step. The MIP modified
Newton represents then an attractive alternative, if it is able to converge in a sim-
ilar number of iterations to that of the MIP full Newton, which assembles and
decomposes the matrix at each iteration. In fact, in this situation, an entire step
of the modified version has a cost comparable with a single iteration of the full
one. As shown in the numerical tests, the iterations required by the MIP modi-
fied Newton tends towards that required by the MIP full Newton, when the step
size gets smaller. In many cases, the equilibrium path of the structure requires
a step size small enough for an accurate description of the curve, even if the it-
erative method is able to converge using larger steps. In this case, the modified
version is clearly the most effective choice. Conversely, when the curve can be de-
scribed with a small number of points or when a single equilibrium configuration
is sought, the MIP full Newton is recommended because of its ability to withstand
very large steps without any loss in convergence. The Numerical Results section
adds further comments on these aspects.
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4.3.4 MIP strategy vs mixed formulation

The MIP approach previously presented is derived by rewriting Eq.(4.11) in a
pseudo mixed form. The word "pseudo" is used because the standard procedure
of prescribing interpolation functions for the stress components is replaced here
by assigning a value to those variables directly at the integration points. From the
stationarity of (4.14) we simply obtain a different writing of the standard residual
equation for displacement formulations, where the constitutive equations of each
integration point now appear explicitly. Note that, by "a priori" satisfying these
constitutive equations, we regain the usual displacement approach. Conversely,
the MIP strategy solves the constitutive equations and the equilibrium equa-
tions simultaneously during the iterations, so obtaining a mixed iteration scheme.
The MIP strategy is then, simply, an algebraic manipulation of the nonlinear
equations, which leads to an improved iterative method for displacement-based
finite element models. Furthermore, since no shape function for the stress field
is adopted, the extra-cost in constructing the tangent stiffness matrix, typical of
mixed formulations [2, 10], is avoided. The stiffness matrix retains its original
form, apart from the different values of σg during the iterations.

4.4 Implementation details
The impressively better performances of the proposed iterative strategy with re-
spect to the standard Newton method hold for any structural model, displacement–
based finite element and implementation choice of the Newton method and of the
arc-length constraint. However, in this section, some details about all these as-
pects are provided, in order to make the numerical tests presented in the next
section reproducible. In particular the structural models considered are chosen to
be as simple and general as possible: i) 2D frames, based on the Reissner geomet-
rically exact strain measure; ii) 3D shells, based on a solid-shell FE model and
the Green-Lagrange strain measure. A Total Lagrangian formulation is chosen
for both the models, even if other formulations can be easily employed.

4.4.1 Implementation details of the Newton scheme

• Predictor
Starting from a known equilibrium point zk the first predictor z1

k of the new
equilibrium point zk+1 is evaluated as

z1 = zk + α(zk − zk−1)

where α defines the step size. For the first equilibrium point it is particu-
larized as

z1 = ∆λ0

[
1
û

]



4.4. IMPLEMENTATION DETAILS 117

being û the linear elastic solution for the reference load p.

• Arc-length parameters
The arc-length constraint is defined by the metric factors M and µ. The
metric matrix M is assumed to be a diagonal matrix with Mii = 1 if the ith
variable is a displacement, Mii = `2 if the ith variable is a rotation, ` being
a characteristic length of the structures. The factor µ is selected as

µ = µ2
0d̂

TMd̂

where the factor µ0, chosen to be equal to 10−2, takes into account that for
stability problems the initial tangent can be much larger than the average
one.

• The adaptive step size
The factor α which defines the step size is evaluated in an adaptive way in
terms of the iterations required in the last step Nk and the desired number
of iterations per step Nd, chosen as equal to 4, as

α = 1− 0.5(Nk −Nd)
Nk +Nd

The values of α are constrained by the condition α ∈ [0.5, 2].

• Convergence criteria
Convergence is accepted if

(ḋj)TMḋj < Toll2(∆λ2
0d̂

TMd̂)

that is if the norm of the correction to the displacement solution is smaller
than a desired tolerance Toll = 10−4 compared to the initial solution incre-
ment. If the convergence condition is not satisfied after 20 iterations or if
the error fails to decrease after two consecutive iterations, the iterations are
abandoned and α is halved.

• The load-controlled analysis
A load-controlled analysis can be performed by redefining the arc-length
constraint as

λ = λk+1

and setting α = 1. The process is declared failed if the preceding convergence
condition is not satisfied after 20 iterations.
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4.4.2 The 2D beam element

The 2D beam model is based on the objective Reissner–Antman strain measure

ε =

εγ
χ

 with


ε = (1 + u,s ) cosϕ+ w,s sinϕ− 1
γ = −(1 + u,s ) sinϕ+ w,s cosϕ
χ = ϕ,s

(4.27)

where u, w, ϕ are, respectively, the axial displacement, the transversal displace-
ment and the rotation, functions of the abscissa along the beam axis s. The
constitutive matrix is

C =

EA 0 0
0 GAr 0
0 0 EJ

 (4.28)

where E is the Young modulus, G is the shear modulus, A is the cross-section
area, r is the shear correction factor and J is the cross-section moment of inertia.
The finite element is assumed to be straight and the FE interpolation is very
simple and consists of a 3 node quadratic Lagrangian interpolation for u, w, ϕ.
The nodes are located at the ends and at the midspan of the element.

The interpolation of u, w, ϕ is introduced in Eq.(4.27) so obtaining the oper-
ator B in Eq.(4.6).

Two Gauss integration points are used to evaluate the internal force vector
and the stiffness matrix.

4.4.3 The solid-shell element

For the shell structures a solid-shell element is used. However, the MIP method
can also easily be used for standard shell elements.
The solid-shell element is based on the interpolation described in [10]. It is pre-
sented here in the case of a Green-Lagrange strain measure and in a Total La-
grangian description. Denoting with ζ = {ξ, η, ζ} the convective coordinates used
to express the FE interpolation, the current configuration is described by the ref-
erence position vector X[ζ] ≡ {X[ζ], Y [ζ], Z[ζ]} and by the displacement field
d[ζ]. Adopting the convention of summing on repeated indexes, the covariant
Green-Lagrange strain measure components are

Ēij = 1
2 (X,i ·d,j +d,i ·X,j +d,i ·d,j ) with i, j = ξ, η, ζ (4.29)

where a comma followed by k denotes the derivative with respect to k and (·)
denotes the scalar product. The position vector of a point inside the element and
its displacement are interpolated, using a trilinear 8 node hexahedron, as

X[ζ] = Nd[ζ]Xe , d[ζ] = Nd[ζ]de (4.30)
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where vectors de and Xe collect the element nodal displacements and coordinates
and matrix Nd[ζ] the trilinear interpolation functions. Adopting a Voigt notation
the Green-Lagrange covariant strain components in Eq.(4.29) are collected in
vector Ē ≡ [Ēξξ, Ēηη, 2Ēξη, Ēζζ , 2Ēηζ , 2Ēξζ ]T that, exploiting Eq.(4.30), becomes

Ē =
(
L[ζ] + 1

2Q[ζ,de]
)

de, (4.31)

In order to circumvent shear and trapezoidal lockings, the natural transverse
normal strain Ēζζ and the shear strains Ēξζ , Ēηζ are redefined by the assumed
natural strain (ANS) technique [20, 13], assuming from now on that the Z-axis and
the X-Y -plane are parallel to the ζ-axis and mid-surface of the shell respectively.
To enhance the in-plane bending response of the element, the in-plane shear strain
Ēξη is substituted by its counterpart evaluated in ξ = η = 0, as a selective reduced
integration (SRI). The covariant strains can be linearized with respect to ζ in the
following form

Ē ≈

ē[ξ, η] + ζ χ̄[ξ, η]
Ēζζ [ξ, η]
γ̄[ξ, η]

 (4.32)

where

ē[ξ, η] ≡

 ĒξξĒηη
2Ēξη

 χ̄[ξ, η] ≡

 Ēξξ,ζĒηη,ζ
2Ēξη,ζ

 γ̄[ξ, η] ≡
[
2Ēηζ
2Ēξζ

]

The generalized covariant strains can be collected in vector ε̄ as

ε̄[ξ, η] ≡


ē
Ēζζ
χ̄
γ̄

 =
(
Lρ[ξ, η] + 1

2Qρ[ξ, η,de]
)

de, (4.33)

where matrix Lρ and Qρ are automatically defined from Eq.(4.31) exploiting
ASN, SRI and Eq.(4.32), so obtaining the operator B in Eq.(4.6).

Finally the generalized Cartesian strains are obtained from the natural ones
as

ε = Tε̄ with T[ξ, η] =


Tp 0 0 0
0 Tz 0 0
0 0 Tp 0
0 0 0 Tt

 (4.34)

where, letting J the element Jacobian matrix, Tz = 1/J2
33 and

Tp =

 J2
11 J2

12 2J11J12
J2

21 J2
22 2J21J22

J21J11 J22J12 J22J11 + J21J12


−T

Tt =
[
J12J33 + J13J32 J13J31 + J11J33
J22J33 + J23J32 J23J31 + J21J33

]−T (4.35)
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The generalized constitutive matrix C is evaluated starting from the constitutive
law S = CE, S being the second Piola-Kirchhoff stress tensor, performing an
analytic pre-integration of C along the thickness direction and assuming a constant
with Z stress Szz instead of a constant thickness strain Ezz, in order to eliminate
the thickness locking, following the approach proposed in [21].

A 2 × 2 grid of integration points on the middle plane of the shell is used to
evaluate the internal force vector and the stiffness matrix.

The same format of the equations holds for other displacement based solid-
shell elements [12].

4.5 Numerical tests

In this section some benchmarks concerning 2D framed structures and 3D shells
are presented and discussed. The goal is to test and show the better performances
of the proposed MIP approach with respect to the standard Newton method in
terms of i) total number of iterations required to trace the equilibrium path or to
obtain the deformed configuration for an assigned load, ii) the step size (or load
increment) that the method can withstand without loss in convergence. For all
the methods the convergence criteria and the analysis parameters are the same
and are those reported in the previous section. Furthermore, remember that all
the methods, when converged, provide the same equilibrium path and deformed
configurations.

In the comparisons of the different methods reported in the following, the
term "Newton" denotes the standard full Newton method, "MIP Newton" denotes
the full Newton based on the MIP approach and "MIP M. Newton" denotes the
modified Newton based on the MIP approach.

4.5.1 2D frame tests

The first tests are performed with a 2D beam model, based on the Antman strain
measure and a quadratic Lagrangian FE interpolation for the displacements and
the rotation. Two Gauss integration points are used. These simple numerical
examples are presented because they are very easy to reproduce.

Clamped-Hinged arc

The first test is the clamped-hinged arc, already studied in many papers, for which
the geometry, the loads and the material properties are reported in figure 4.1. A
mesh of 36 finite elements has been used. The characteristic length used in the
metric matrix to homogenize rotations and displacements is assumed as ` = R.

The arc-length method with adaptive step size is adopted and the initial value
of the load increment used is ∆λ0 = 0.04. The structure has been analyzed
for different values of k = AR2/J to highlight the pathological dependence on
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Figure 4.1: Clamped-hinged arc: geometry

Newton MIP Newton MIP M. Newton
k steps iters steps iters steps iters

105 126 512 45 149 66 256
106 208 889 45 149 66 256
107 425 1744 45 149 66 256

Table 4.2: Clamped-hinged arc: total number of steps and iterations for the
evaluation of the equilibrium path.

this value of the robustness and performance of the path-following analysis. In
Tab.4.2 the total number of steps and iterations required for the evaluation of the
equilibrium path until a vertical displacement wA = −180 is reported. We can
observe that, even if the equilibrium path does not change for the considered values
of k, the number of steps and total iterations required by the standard Newton
drastically increases with k. Conversely, the performances of the MIP Newton,
in both the full and the modified version are independent of k. In particular the
MIP modified Newton, which requires only a matrix assemblage and factorization
for each step, looks very convenient.

Finally in Fig.4.2 the equilibrium path and the evolution of the deformed
configurations are presented.

Rigidly jointed truss

The second simple test consists of the rigidly jointed truss already studied in [32],
for which the geometry, the loads and the material properties are reported in
figure 4.3.

Six FEs for each beam have been used, while the initial load increment used in
the arc-length strategy with adaptive step size is ∆λ0 = 0.03. The characteristic
length used in the metric matrix to homogenize rotations and displacements is
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Figure 4.2: Clamped-hinged arc: equilibrium path and deformed configuration
evolution

Figure 4.3: Rigidly jointed truss: geometry
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Newton MIP Newton MIP M. Newton
k steps iters steps iters steps iters

105 121 426 74 221 74 221
106 176 651 74 221 74 221
107 253 965 74 221 74 221

Table 4.3: Rigidly jointed truss: total number of steps and iterations for the
evaluation of the equilibrium path.
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Figure 4.4: Rigidly jointed truss: equilibrium path and deformed configuration
evolution

assumed as ` = H, with H the truss height. Also in this case the structure has
been analyzed for different values of k = AH2/J to highlight the effect of this value
on the overall performance. In Tab.4.3 the total number of steps and iterations
required for the evaluation of the equilibrium path until a rotation ϕA = −0.06
is reported. Even in this case, the equilibrium path does not change for the
considered values of k and we can observe the increasing number of steps and
iterations required by the standard Newton. On the contrary, the MIP Newton,
in both the full and the modified approach, is independent of k with the MIP
modified Newton which, in this case, requires the same steps and loops as the
MIP full one with a gain in computation.

Finally in Fig.4.4 the equilibrium path and the evolution of the deformed
configurations are presented.



124 CHAPTER 4. MIXED INTEGRATION POINTS

Figure 4.5: Slit annular plate: geometry

Newton MIP Newton MIP M. Newton
Nsteps iters iters iters

1 fails 9 fails
5 fails 20 fails
10 fails 32 44
20 175 54 58

Table 4.4: Slit annular plate: total number of iterations for the evaluation of the
equilibrium path vs the number of load subdivisions.

4.5.2 Shell structures

A series of popular benchmarks regarding shell structures in finite deformations
are tested using the solid-shell element recalled in the previous section.

4.5.3 Slit annular plate under line force

The first test is the slit annular plate described in Fig.4.5 and already analysed
by many authors [10]. A mesh of 30× 6 solid-shell FEs has been used.

In Fig.4.6 the equilibrium path and the last deformed configuration are pre-
sented.

To highlight the robustness of the proposed MIP Newton, the equilibrium path
has been reconstructed using a load-controlled scheme. The maximum load value
of 1 has been subdivided in Nsteps equal load increments. The total number of
iterations required to evaluate the equilibrium path are reported in Tab.4.4.

The standard Newton fails to converge with the first 3 load subdivisions,
while for the finest one it converges but the number of iterations required is
very high. Conversely, the MIP Newton is able to evaluate the equilibrium point
corresponding to λ = 1 with just a single load increment and only 9 iterations.
When the number of load steps Nsteps increases, the number of iterations per
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Figure 4.6: Slit annular plate: equilibrium path and deformed configuration at
the last evaluated equilibrium point

step gets smaller, but the total number of iterations increases. However, even for
the smallest step size the MIP Newton is more than three times more efficient than
the standard Newton. Finally, the modified MIP Newton converges for reasonable
values of the step size and with a number of iterations comparable with the full
MIP Newton and much lower than that required by the standard full Newton.

4.5.4 Thin-walled cantilever beam

Finally a test regarding a thin-walled cantilever beam with U cross section is
considered. Geometry, loads and material properties are reported in Fig.4.7. The
FE mesh consists of 2880 solid-shell FEs, obtained via 32 equal subdivisions on
the cross section and 90 subdivisions along the beam axis. As shown in [47] the
structure is characterized by complex buckling mode interaction phenomena.

An arc-length technique with adaptive step size is used and the initial load
increment is ∆λ0 = 3. Fig.4.8 depicts the equilibrium path and the deformed con-
figuration at the limit and the final equilibrium point corresponding to a vertical
displacement wA = −1. The mode interaction is evident looking at the deformed
shapes and produces the unstable post-critical behavior.

As for all the other tests, the MIP Newton, in both the full or the modified
version, performs better with respect to the standard method as shown in Tab.4.5.
In particular the full standard Newton requires a total number of iterations 3 times
larger than the MIP full Newton and almost twice the MIP modified Newton.
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Figure 4.7: Thin walled cantilever beam: geometry
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Figure 4.8: Cantilever beam: equilibrium path and deformed configuration at the
last evaluated equilibrium point

steps iterations
Newton 82 301
MIP Newton 36 106
MIP M. Newton 55 175

Table 4.5: Thin-walled cantilever beam: total number of steps and iterations for
the evaluation of the equilibrium path.
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4.6 Summary
In geometrically nonlinear structural problems discretised via displacement-based
finite elements, the standard Newton method easily diverges unless a small step
size is used. Even if it converges, often a large number of iterations are required.
A new strategy, called MIP Newton, is proposed to improve the robustness and
the efficiency of the iterative method in step-by-step geometrically nonlinear anal-
yses performed with displacement FE formulations. The approach proposed in
this work is inspired by some previous studies regarding the advantages in the
mixed (stress-displacement) formulation in geometrically nonlinear problems. In
particular, in the first chapter it was shown how the convergence of the Newton
method in displacement formulations is penalized by the constitutive constraint,
i.e. at each iteration the method is forced to satisfy the constitutive law.

The main idea of the MIP strategy, proposed here, consists in the relaxation of
the constitutive law at the level of each integration point. In this way, the stresses
at the integration points become independent variables in the iterative process
and, thus, they are directly extrapolated and corrected. The stresses are, then,
no longer forced to satisfy the constitutive equations at each iteration, but the
constitutive law is recovered exactly at convergence. The discrete approximation
of the finite element remains, thus, exactly the same, but the performances of
the MIP Newton are impressive. As shown in many numerical tests, it allows us
to solve geometrically nonlinear problems with a very low number of steps and
total iterations, in step-by-step analysis, with respect to the standard Newton
method. The advantages in terms of computational time are clear, considering
that the cost of a MIP iteration is the same as a standard one. Moreover, the
MIP Newton can withstand very large step sizes (increments) without loss of
convergence, which are impossible using the standard Newton. The iteration
matrix evaluated with the MIP strategy is so "good" that the modified version
of the method, which computes and decomposes the iteration matrix at the first
estimate of each equilibrium point, can also be conveniently adopted.

The inclusion of the MIP Newton in existing finite element codes is simple and
only requires the modification of a few implementation details in the standard
method. The proposed iterative strategy is so robust, efficient and simple that, in
geometrically nonlinear analysis, it seems worthy to replace the standard Newton
method in any finite element code based on displacement formulations. Further
details are reported in [70].

Future works will focus on the application of the MIP Newton in isogeometric
analysis [9], where it is expected to have the same impact experienced in FE
analysis. The proposal can be extended to other solution strategies such as the
Koiter-Newton method [62, 8]. Efficient drape simulations are also expected.
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Chapter 5

Mixed solid-shell concept
within the novel
Koiter-Newton approach

Abstract

The Koiter-Newton method had recently demonstrated a superior performance for
nonlinear analyses of structures, compared to traditional path-following strategies.
The method follows a predictor-corrector scheme to trace the entire equilibrium
path. During a predictor step a reduced order model is constructed based on
Koiter’s asymptotic post-buckling theory which is followed by Newton iterations
in the corrector phase to regain the equilibrium of forces. During a predictor step,
the approach constructs a reduced order model based on Koiter’s asymptotic post-
buckling theory and combines its solution with a number of Newton iterations in a
corrector phase to regain the equilibrium of forces. In this chapter, a robust mixed
solid-shell implementation is presented to further enhance the efficiency of stability
analyses in various aspects. It is shown that a Hellinger-Reissner variational
formulation facilitates the reduced order model construction omitting an expensive
evaluation of the inherent fourth order derivatives of the strain energy. Extremely
large step sizes with a reasonable out-of-balance residual can be obtained with
substantial impact on the total number of steps needed to trace the complete
equilibrium path. More importantly, the numerical effort of the corrector phase
involving Newton iterations of the full order model is drastically reduced to a few
iterations per step thus revealing the true strength of the proposed formulation.
Some problems from engineering are analysed and the results are compared to
the conventional approach in order to highlight the gain in numerical efficiency
for stability problems.

129
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5.1 Introduction

Classical path-following strategies as used in the numerical analysis of buckling
phenomena of thin-walled structures operate on a linearised form of the nonlinear
governing equations of the deforming structure. A predictor step followed by an
iterative corrector phase is commonly used to trace the entire load-displacement
equilibrium path in a step-by-step manner [3]. The linearised equations allow for
linear predictor steps only, tangential to the equilibrium path, which results in
a substantial number of steps required to capture the full nonlinear structural
response. Furthermore, the detection of bifurcations along the equilibrium path
may easily fail using linear predictors unless a very small step size is adopted.
Over the years, a number of asymptotic methods based on Koiter’s post-buckling
theory [7] have been developed to provide a failsafe analysis method at significantly
reduced costs [38, 39, 41, 44, 68]. The Koiter method involves the construction
of a reduced order model which is based on a second order asymptotic expansion
using the path tangent and a few buckling modes. The method reduces the large
number of equations needed to model accurately the elastic buckling behaviour
of shells to a few nonlinear equations representing the modal amplitudes and the
load factor of the deformed structure [59].

Recently, a novel Koiter-Newton approach has demonstrated successfully a
reliable and accurate prediction of the buckling phenomena of thin-walled struc-
tures [8, 62]. The main idea of this approach is the use of Koiter’s method as
a non-linear predictor within the framework of a path-following strategy. The
asymptotic characteristics of the proposed predictor step allows for significantly
larger step sizes at reduced out-of-balance residual forces, the latter having a
positive effect on the overall effort of the corrector phase. The method allows
to trace the entire equilibrium path and to handle reliably snap-back and snap-
through phenomena. In an extended version, the method provides a bifurcation
indicator based on the constructed reduced order model which enables to trace
the corresponding bifurcation branches. The method has proven to be a robust
and computationally efficient solution approach though the corrector phase can-
not fully profit from the reduced order model and requires a number of Newton
iterations for each step, each iteration involving the solution of a linear system
on the full model. In the past, it has been observed in several studies that mixed
(stress and displacement) finite elements show superior properties compared to
pure displacement-based elements in the context of a standard Newton approach
for nonlinear analyses [10, 11]. In general, the mixed formulation allows for larger
step sizes and requires less iterations to regain equilibrium. The first chapter
observed the beneficial convergence properties of mixed model formulations in a
general context. The study shows that the evolution of the iterative displacement
process is forced to satisfy the constitutive equations in each iteration and this
constraint leads to a drop of the convergence rate. In contrast, the stress com-
ponents in the mixed model are introduced as independent variables which only
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satisfy the discrete constitutive equations at convergence.
This chapter combines the superiority of mixed elements in terms of conver-

gence properties with the efficiency of the reduced order principles of the Koiter-
Newton approach. The direct prediction and correction of the stresses is exploited
to minimize the number of Newton iterations in the corrector phase of each step.
The Koiter predictor involves the construction of a reduced order model which re-
quires derivatives of the strain energy up to the fourth order. Geometrically exact
shell models [15] or co-rotational approaches [34, 47] are suited formulations to
achieve structural model objectivity. Both strategies make use of finite rotations
which make the evaluation of the strain energy and its derivatives highly compli-
cated and expensive. In [62] simplified kinematics were proposed to streamline
the construction of the reduced order model at the price of reducing its range of
applicability.
The Koiter-Newton method is implemented for a nonlinear Cauchy continuum
based on a Green-Lagrange strain measure and a solid-shell element interpola-
tion. In this way, the construction of the reduced order model remains simple
and favourable, maintaining a geometric exact strain measure. Furthermore, the
adopted Hellinger-Reissner variational principle, in which the strain energy has
only a third order polynomial dependence on the degrees of freedom leads to
the zeroing all fourth order strain energy variations. Thus, the construction of
the reduced order model is simpler and faster [59]. A mixed solid-shell element
is introduced in the framework of the Koiter-Newton method and the algebraic
quantities needed for the context of the reduced order modelling are derived. The
proposed model is tested with a number of numerical tests, critically assessing
its performance, its strengths and potential limitations. All numerical studies
compare the proposed mixed model with the conventional displacement-based
model, both showing a significant improvement compared with the classical path-
following method.
The chapter is organized as follows: Section 2 briefly recalls the Koiter-Newton
method and provides the governing equations for the construction of the reduced
order model. In Section 3, the first, second and third algebraic quantities of the
reduced model are derived for the mixed solid-shell element. Some numerical
tests for verification and validation of the proposed and implemented model is
presented in Section 4. Finally, the main findings are summarised.

5.2 Review of the Koiter–Newton approach

In the following, the principles and properties of the Koiter-Newton approach are
briefly recalled. The method is capable to trace automatically the entire equi-
librium path of a structure in a step by step manner. Each step involves the
construction of a reduced order model at a known equilibrium state. The con-
struction is based on Koiter’s asymptotic theory on initial post-buckling stability
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[7] and used as a predictor within a path-following analysis. In a corrector phase
following each Koiter prediction, a Newton iteration is used to reduce the residual
error to a pre-defined equilibrium level.

5.2.1 Construction of the reduced order model

The nonlinear behaviour of an elastic body is analysed, considering its state of
equilibrium. Following a Principle of Virtual Work-formulation, the N govern-
ing nonlinear equations of the discretised structure result in a set of algebraic
equations:

R[u, λ] = λ f ext − f int[u] = 0 (5.1)

where R is the residual force vector, f ext represents the external load vector and
λ is the load factor. The internal elastic forces f int are dependent on the vector
of primal unknowns u:

f int = ∂U [u]
∂u (5.2)

where U [u] is the strain energy of the structure.
In the Koiter-Newton approach, a reduced order model is established to ap-

proximate the equilibrium equations in the neighbourhood of a known equilibrium
state [u0, λ0] which is referred to in the following as nominal configuration. Fur-
thermore, an unknown configuration near the nominal configuration is denoted
with [u, λ] where:

u = u0 + ∆u . (5.3)

Here, the concatenation of unknowns u0 and ∆u, Eq.(5.3), is assumed to be an
addition. Considering beams and shells which take into account finite rotations,
the concatenation will depend on the parametrization of the rotations.

The nonlinear equilibrium (5.1) is approximated with a truncated Taylor series
expansion up to the third order with respect to u of the nominal configuration.
The expansion terms follow from differentiation of the strain energy U up to the
fourth order with respect to the unknown primal vector u according to (5.1) and
(5.2). The equilibrium modifies to:

L[∆u] +Q[∆u,∆u] + C[∆u,∆u,∆u] +O[‖∆u‖4] = ∆λf ex (5.4)

where L is a linear form, Q is quadratic form and C is cubic. Regarding a conser-
vative system, there exists a direct correspondence between the forms of order p
in Eq.(5.4) and a symmetric p-dimensional tensor, applicable to every component
of the vector equation. Correspondingly, the linear, quadratic and cubic form
of (5.4) can be expressed in terms of a two-dimensional, three-dimensional and
four-dimensional tensor, respectively. Furthermore, the relations ∆λ = λ − λ0
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and f [u0] = λ0f ext holds.

The Koiter-Newton method is used in the context of elastic shell buckling anal-
yses considering structures with branching equilibrium paths and turning points.
It is convenient to consider perturbation loads which excite neighbouring states of
equilibrium to allow the system to change from the primary to a secondary equi-
librium path. An appropriate selection of perturbation loads is discussed in detail
in [8]. Taking into account these loads, the third order form of the equilibrium
equations (5.4) may be extended to consider multiple loading of the form:

L[∆u] +Q[∆u,∆u] + C[∆u,∆u,∆u] +O[‖∆u‖4] = Fφ (5.5)

where the α-th column of F is formed by the a perturbation load vector fα and
where the vector φ represents the load amplitudes. The first column of F is
chosen to be the external load vector f ext with a corresponding first amplitude
entry φ1 = ∆λ. Further columns of F are formed by sub-loads:

fα = Kσvα α = 2, . . . ,m+ 1 (5.6)

where m is a number of closely spaced buckling modes vα and Kσ is the geometric
stiffness matrix of a linearised buckling problem [8].

The equilibrium (5.5) forms a m+ 1 dimensional hyper-surface for which the
solution u is approximated by a series expansion. To this end, the equilibrium
surface is parametrised in terms of generalised displacements ξ = {ξ1, · · · , ξm+1},
and the displacement u is expanded to the third order with respect to ξi:

∆u = uα ξα + uαβ ξαξβ + uαβγ ξαξβξγ +O[‖ξ‖4] (5.7)

where {α, β, γ} = 1, 2, . . . , 1 + m, and the Einstein summation convention is ap-
plied. The first order displacements uα define the tangent plane to the equilibrium
surface at the approximation point. Additional first order displacements are gen-
erated by considering the additional imperfection loads of Eq.(5.6). The second
order displacements uαβ and third order displacements uαβγ describe the inter-
actions among first and second order displacement fields, respectively.

The equilibrium surface may be parametrised with an infinite number of
choices for ξ. Here, the parametrisation is chosen work-conjugate to the load
amplitudes which results in the following orthogonality constraints:

fTαuβ = δαβ (5.8)
fTαuβγ = 0 (5.9)
fTαuβγδ = 0 (5.10)

where δαβ is the Kronecker delta. Similarly, the load amplitudes φ are approxi-
mated by a series expansion to ensure consistency in the governing equations:

φ = L[ξ] +Q[ξ, ξ] + C[ξ, ξ, ξ] +O[‖ξ‖4] (5.11)
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with L, Q and C being still to be determined, linear, quadratic and cubic forms.
Using (5.7) and (5.11) in the equilibrium (5.5) and equating the coefficients of the
various powers of ξ to zero results in the following three linear relations:

L[uα] = F l̄α (5.12)
L[uαβ] +Q[uα,uβ] = F ūαβ (5.13)

L[uαβγ ] + 2
3
[Q[uαβ,uγ ] +Q[uβγ ,uα] +Q[uγα,uβ]

]
+

+C[uα,uβ,uγ ] = F c̄αβγ (5.14)

where lα, uαβ and cαβγ represent each column vectors of the multi-dimensional
tensors according to the linear, quadratic and cubic forms L, Q and C, respec-
tively. Consideration of the orthogonality constraints (5.8)-(5.10) allows to express
equations (5.12)-(5.14) in terms of two augmented systems of linear equations:[

K −F
−FT 0

] [
uα
lα

]
=

[
0
−eα

]
(5.15)

[
K −F
−FT 0

] [
uαβ
uαβ

]
=

[
−Q[uα,uβ]

0

]
(5.16)

and the relation:
cαβγδ = C[uα,uβ,uγ ,uδ]− 2

3 [uTαβL[uδγ ] + uTβγL[uδα] + uTγαL[uδβ]] (5.17)

in which K is the [N × N ]-dimensional tangent stiffness matrix at the nomi-
nal configuration, i.e. the tensor representation of the linear form L, where the
[N × [m+ 1]]-dimensional matrix F follows from the perturbation loads, Eq.(5.5),
and eα denotes the the α-th unit vector with coefficient eα = 1. The load vector
Q[uα,uβ] is assembled from the solution of (5.15) with coefficients [Qiαβ uα uβ].

The solution of the augmented systems of equations for m + 1 load vectors
provides the first and second order solutions needed to construct the reduced order
model. In the following, a concise summary of the construction of the reduced
order model and the global equilibrium solution is given. A detailed summary
revealing the relations between the higher order forms of (5.5) and (5.11) and the
derived systems of equations can be found in [8]:

• the tensor coefficients of the linear form L are obtained from pre-multiplication
of (5.12) with the first order solution uβ and using the orthogonality con-
dition (5.8):

l̄αβ = eTβ lα = uTβ L[uα] (5.18)

• the tensor coefficients of the quadratic formQ are obtained from pre-multiplication
of (5.13) with the first order solution uγ and using the orthogonality condi-
tion (5.9):

q̄γαβ = eTγ uαβ = uTγ Q[uα,uβ] (5.19)
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• the tensor coefficients of the cubic form C are obtained from pre-multiplication
of (5.14) with the first order solution uδ and using the orthogonality condi-
tion (5.10). Assuming a conservative system, the tensor of the corresponding
cubic form is symmetric with coefficients:

cαβγδ = C[uα,uβ,uγ ,uδ]+
− 2

3
[
uTαβL[uδγ ] + uTβγL[uδα] + uTγαL[uδβ]

]
. (5.20)

where C[uα,uβ,uγ ,uδ] = uTδ C[uα,uβ,uγ ] depends on the first order dis-
placement solution only.

• with the equations (5.18)-(5.20), the following reduced order model of di-
mension [m + 1] can be established for the solution of the unknown gener-
alized displacements ξ:

L[ξ] +Q[ξ, ξ] + C[ξ, ξ, ξ] = φ = ∆λ e1 (5.21)

where ∆λ is chosen to be the load parameter of the external load f ext to
determine the response to the actual loading and e1 is the first unit vector.
Equation (5.21) is conveniently solved using an arc-length method [3] and
its solution sets the generalized displacements ξ into a nonlinear relation to
the actual load increment ∆λ, which is mapped to the solution space of the
total problem invoking the displacement expansion:

u = u0 + uα ξα + uαβ ξαξβ (5.22)

and the actual load factor λ = λ0 + ∆λ.

5.2.2 Koiter-Newton path-following analysis

The reduced order model of the previous sub-section is based on Koiter’s asymp-
totic expansion theory and constructed at a known configuration along the non-
linear equilibrium path. The model solution, Eq.(5.22), is used as a computa-
tionally efficient predictor in a step-by-step path-tracing analysis. Compared to
a linearised predictor scheme based on a Newton-type method the pre-eminence
of the Koiter predictor becomes evident due to its asymptotic solution properties
towards the equilibrium path which allows for significantly larger step sizes at
reduced out-of-balance forces. The latter is driven to zero using a few Newton
correction steps of the full system. The step size of the reduced order model is
controlled by the following criteria:

‖R‖
λ‖f ex‖

≥ ε (5.23)

where the value of ε is a user defined measure for an appropriate step size. The
applied convergence criterion for the Newton correction in this work was chosen
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to be:

‖R‖
λ‖f ex‖

≤ 10−4 . (5.24)

Following the work of Riks [3], a constraint hyperplane is adopted in order to avoid
a possible loss of convergence near limit loads. Details of the Newton iteration
with the Riks constraint can be found in [70].

The construction of the reduced order model is dominated by the factorization
of the governing system of equations of the augmented problem (5.15) and (5.16),
respectively. It is important to note that both systems of equations of dimension
[N + m + 1] have an identical system matrix, hence factorization is needed only
once. The number m of perturbation loads is typically small [< 10] since only
modes which are closely spaced to the nominal configuration are considered. If
buckling is fully absent only the external load vector becomes significant and the
reduced order model degenerates to a model size of one. The computational effort
of the correction phase requires p Newton iterations at each step using the full
order model of equations to ensure sufficient stability of the scheme. The Koiter-
Newton method, a part from the greater computational efficiency, compared to
traditional path-following analyses allows, in case of multiple paths, to easily
consider branch switching techniques. For example, as shown in [97], the method
can be equipped with a bifurcation indicator based on the constructed reduced
order model which enables to trace the corresponding bifurcation branches.

5.3 Solid-shell concept and mixed formulation

In the following, the contributions of a solid-shell element formulation to the global
quantities of the algorithm are derived. The element type is an eight-node hybrid
stress element proposed by Sze [10] and presented here using a Green-Lagrange
strain measure. The main equation are reported in the second chapter. A pure
displacement-based formulation and a mixed formulation are considered.

5.3.1 Displacement-based solid-shell element

Displacement-element contributions to the third order form governing
equations

The third order form equilibrium of the Koiter-Newton method as previously
presented is expressed in terms of a linear, quadratic and cubic form which are
obtained in the following by differentiating the strain energy with respect to the
global degrees of freedom, cf Eq.(5.2).
Notation: The quantities derived in the following refer to an element formulation
if not stated differently. A corresponding element indicating index notation is
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skipped for the sake of a better readability.

The strain energy contribution of the shell element and corresponding derivatives
are:

U =
∫

Ω0

1
2 ε

TC ε (5.25)

∂U

∂q =
∫

Ω0
B̃[q]Tσ[q] = f int[q] (5.26)

∂2U

∂q2 =
∫

Ω0
B̃[q]TC B̃[q] +

∫
Ω0

∑
i

σi[q] Γi = K[q] (5.27)

where B̃[q] = BL+BQ[q], K is the element tangent stiffness matrix, cf Eq.(5.15),
f int represent the internal elastic element forces and

σ[q] = C B[q] q (5.28)

are the generalized second Piola-Kirchhoff stresses. The matrices Γi account for
the geometric element stiffness and are defined as:

Γi = ∂2εi
∂q2 . (5.29)

Furthermore, the following discrete operators are introduced to express the quadratic
and cubic form of the equilibrium in a compact notation:

σ[qα,qβ] = C B̃[qα] qβ (5.30)
σL[q] = C BLq (5.31)
εQ[qα,qβ] = BQ[qα] qβ (5.32)
σQ[qα,qβ] = C εQ[qα,qβ]. (5.33)

Using (5.28)-(5.33), the following forms are derived:

Linear form The linear form is expressed in terms of the tangent properties at
the known reference point with displacements q0:

L[qα] = K[q0] qα . (5.34)

Quadratic form The quadratic form depends linearly on the known displacement
state of the reference point and mixed quadratically on the first order displace-
ments qα and qβ, respectively,

Q[qα,qβ] =
∫

Ω0
BQ[qα]Tσ[q0,qβ] + BQ[qβ]Tσ[q0,qα]

+B̃[q0]TσQ[qα,qβ] (5.35)
= Q[qα]qβ
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with

Q[qα] =
∫

Ω0
BQ[qα]TC B̃[q0] + B̃[q0]TC BQ[qα] +

∑
i

σi[q0,qα]Γi .(5.36)

Cubic form Finally, the cubic form follows as:

C[qα,qβ,qγ ,qδ] =
∫

Ω0
{σQ[qα,qβ]TεQ[qγ ,qδ] + σQ[qα,qγ ]TεQ[qβ,qδ]

+σQ[qα,qδ]TεQ[qγ ,qβ]} .(5.37)

Denoting the path tangent in [λ0,q0] with qλ, the geometrical stiffness matrix of
the element is:

Kσ =
∫

Ω

∑
i

σLi[qλ]Γi (5.38)

where terms related to BQ[qλ] in Q[qλ] are neglected as usual in displacement-
based linearised buckling analysis, so obtaining a robust eigenvalue analysis as
discussed in [33].

It is worth to note the following unique features of the derived model with impact
to the solution properties:

• the model is purely displacement-based using displacement degrees of free-
dom only

• the strain energy has a 4th order dependence on the displacement degrees of
freedom and its derivatives are very simple because of the absence of finite
rotations

• the Green-Lagrange strain measure is geometrically exact for a solid model

• the expanded nonlinear equilibrium, Eq.(5.4), is exact with any truncation
error .

5.3.2 Mixed solid-shell element

Following the principle of Hellinger-Reissner [2] the strain energy expression can
be rewritten in mixed form as:

UM [u] =
∫

Ω0
σTε− 1

2σ
TC−1σ (5.39)

where the subscript M indicates the mixed formulation.
Here, it is important to note that the independent interpolation of the stresses

allows to reduce the order of the polynomial dependence of the strain energy
on the discrete degrees of freedom, resulting in σ being linear in β and ε being
quadratic in q.
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Mixed element contributions to the third order form governing equa-
tions

The mixed internal force vector of the element is

sM [u] =
[
sβ
sq

]
(5.40)

with

sβ =
∫

Ω0
NT
σ

[
ε[q]−C−1σ[β]

]
(5.41)

sq =
∫

Ω0
B̃[q]Tσ[β] (5.42)

and the mixed element stiffness matrix is:

KM [u] =
[

Kββ Kβq[q]
Kβd[q]T Kqq[β]

]
(5.43)

with

Kββ = −
∫

Ω0
NT
σ C−1 Nσ (5.44)

Kβq[q] =
∫

Ω0
NT
σ B̃[q] (5.45)

Kqq[β] =
∫

Ω0

∑
i

σi[β] Γi (5.46)

which are evaluated as the gradient and the Hessian of the strain energy, respec-
tively.

The linear, quadratic and cubic form of the Koiter-Newton equilibrium equa-
tions follow in analogy to the displacement formulation of 5.3.1:

LM [uα] = KM [u0] uα (5.47)

QM [uα,uβ] =
[
Qβ[qα,qβ]
Qq[uα,uβ]

]
(5.48)

with

Qβ[uα,uβ] =
∫

Ω0
NT
σ εQ[qα qβ] (5.49)

Qq[uα,uβ] =
∫

Ω0
BQ[qα]T σ[ββ] + BQ[qβ]Tσ[βα] (5.50)

The geometric stiffness matrix of the element is evaluated as

Kσ[βλ] =
[
0 0
0 Kσqq[βλ]

]
(5.51)
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with

Kσqq[βλ] =
∫

Ω0

∑
i

σi[βλ]Γi . (5.52)

Finally, we note that the cubic form simplifies with:

CM [uα,uβ,uγ ,uδ] = 0 (5.53)

which is a consequence of the introduced stress variables. The vanishing of the
cubic form has a great impact on computational efficiency especially when the
dimension of the reduced order model increases. This is a unique feature of
the mixed solid-shell model combined with the Green- Lagrange strain measure.
The variables are independent and condensed out on element level before assem-
bly.

5.4 Numerical tests
In this section, various numerical tests with regard to buckling of thin-walled
structures are considered to study the performances of the mixed solid-shell el-
ement within the framework of the Koiter-Newton method. In particular, the
numerical performances in terms of convergence measures compared to the pure
displacement-based formulation as introduced in [8] are assessed. The focus of
these tests is primarily on the reduction of the number of Newton iterations at
each step in comparison to the original approach, which require the consideration
of the full order model thus dominating the numerical complexity of the analy-
sis. A comparison of the Koiter-Newton method with traditional path-following
methods revealing the method’s ability to carry out a full nonlinear analysis with
considerably fewer load steps has been carefully documented in [62, 97] and there-
fore is not considered here though this strength of the method is also an immanent
property of the modified version proposed in this contribution.

The chosen examples include a benchmark test of a U-shape thin-walled beam
under compression to verify the overall concept and a modified thin-walled beam
structure from engineering. The equilibrium paths of both structures show a
distinct nonlinear behaviour but a minor affinity to global buckling. With a thin
cylinder structure we demonstrate the method’s ability to trace reliably snap-
back behaviour. Finally, we have selected a thin-walled frame structure to reveal
the reliability of the method in presence of bifurcation after a strong nonlinear
pre-critical behaviour.

In the Koiter-Newton method the equilibrium path is reconstructed evaluating
just a few true equilibrium points. The solution between two consecutive points
can be recovered exploiting the asymptotic reduced-order model predictor. Weak
discontinuities in path in terms of kinks or a sudden change of the path tangent
are identified as bifurcation points and reported accordingly.
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5.4.1 U-shape cantilever beam

Figure 5.1: U-shape cantilever beam: model properties.

The U-shaped cantilever beam considered here is a standard benchmark prob-
lem to verify the nonlinear properties of the method, including local buckling
phenomena [70]. Nevertheless, the problem is a severe test case for the Koiter-
Newton approach due to a distinct nonlinear pre-critical behaviour which must be
represented in the reduced order model by the degree of freedom associated with
the external load. The geometry, the material properties and boundary conditions
are depicted in Fig.5.1. The cantilever beam is subjected to an end shear force.

The analysis result in terms of solution steps along the equilibrium path is
shown in Fig.5.2. The path was fully traced within 5 Koiter-Newton steps. The
first 4 buckling modes, together with the external load, ended in a reduced order
model of dimension 5. Both, the mixed and the displacement-based version show
virtually identical results. In addition to the result of the non-linear analysis, we
report in the figures depicting the load-displacement equilibrium path the buckling
load of the linearised problem which is used to construct the first reduced order
model at the reference configuration.

The asymptotic character of the Koiter-Newton predictor followed closely the
nonlinear equilibrium path. Still, an average number of 5 Newton iterations in the
corrector phase of each step were necessary for the displacement-based solution to
recover equilibrium at a sufficient accuracy level. In Tab.5.1 we can compare the
corrector effort of the two approaches, the solution-based and the mixed model.
The results clearly reveal a superiority of mixed model which needed on average
less than 3 Newton iterations in the corrector phase of each step to provide equi-
librium of equivalent accuracy. Recalling the dominance of the corrector phase in
the complexity analysis of the Koiter-Newton method and keeping in mind that
the construction of the reduced order model is computationally cheaper for the
mixed model avoiding the evaluation of the third order form, this improvement is
quite encouraging with regard to larger problems.

In Fig.5.3 and Fig.5.4, the first and the second mode used to construct the
reduced order model at the reference configuration and at the equilibrium point
3, respectively, are depicted. The distinct non-linear pre-critical path entails
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Figure 5.2: U-shape cantilever beam: equilibrium path with Koiter-Newton steps.

displacement mixed

step 1 3 2
step 2 5 3
step 3 4 3
step 4 5 2
step 5 8 4
total 25 14

Table 5.1: U-shape beam: number of Newton iterations in the corrector phase of
each step.

essential changes of the relevant modes along the equilibrium path which requires
a repeated construction of the reduced order model to capture reliably the limit
point and any post-critial behaviour. This is confirmed, regarding the deformed
configuration at the equilibrium point 4, which is well represented by the modes
of the reduced order model, evaluated at 3.

5.4.2 Lipped channel column

Next, we consider a lipped channel column modelled as thin-walled structure
under pressure load. The geometry, material properties and loads are shown
in Fig.5.6. The cross-sectional in-plane displacements were constrained at both
ends. The model is a perfect representative of structures with global-local buckling
interaction leading to a high imperfection sensitivity.

The structure was analysed with 4 different amplitudes of the imperfection load
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YX

Z

X

Z

Y

Figure 5.3: U-shape cantilever beam: first mode (left) and second mode (right)
of the reduced order model constructed at the reference configuration.
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Figure 5.4: U-shape cantilever beam: first mode (left) and second mode (right)
of the reduced order model constructed at 3.

Z

XY

Figure 5.5: U-shape cantilever beam: deformed configuration (scale factor 10) at
4.

to study the column’s sensitivity properties. The analysis results for the different
imperfection loads are depicted in Fig.5.7 in which P denotes the cross-section
perimeter, showing highly varying limit loads. The corresponding reduced order
model of each analysis was constructed from 4 buckling modes adopting 3 Koiter-
Newton steps to trace the complete equilibrium path. In Tab.5.2, the number
of Newton iterations in the corrector phase of each step for the mixed and the
displacement-based approach is reported. Again a reduction of the computational
effort of more than 30% was observed. Compared to the results of 5.4.1 the gain
in computational efficiency using the mixed model has slightly dropped but still
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Figure 5.6: Lipped channel column: model properties.

is very clearly visible and indicates a superior performance.

displacement mixed
step 1 3 2
step 2 3 2
step 3 3 2
total 9 6

Table 5.2: Lipped channel column: number of Newton iterations in the corrector
phase of each step.

The evolution of the deformed configuration along the equilibrium path is
depicted in Fig. 5.8. A combination of torsional and local buckling is clearly
visible.

5.4.3 Laminate composite cylinder subjected to axial compres-
sion

Cylinder buckling is a severe numerical test case for nonlinear solution methods
since a pronounced snap-back behavior must be reliably captured with strongly
degrading algebraic properties of the governing system of equations. Neverthe-
less, a steadily growing tendency to use laminate composite cylindrical structures
as primary structures in aerospace engineering and other lightweight engineering
disciplines emphasizes the importance of a highly reliable, accurate and compu-
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Figure 5.7: Lipped channel column: equilibrium paths for different perturbation
loads.
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Figure 5.8: Lipped channel column: deformed configurations (scale factor 10) at
1, 2 and 3.

tationally efficient prognosis of stability properties.
The cylinder considered in the following and labelled Z33 and was manufac-

tured and tested by DLR (German Aerospace Center) and is commonly used as
validation model for numerical developments in the context of laminate compos-
ite shell design [56, 98]. The laminate stacking sequence is in[0/0/19/− 19/37/−
37/45/ − 45/51/ − 51]out with the angles measured from the cylinder axis with
respect to the outward normal. The cylinder has a height of 510, a radius of
R = 250 and a wall-thickness of t = 1.25, cf Fig. 5.9. The ply properties are
E1 = 123.6, E2 = E3 = 8.7, ν12 = 0.32, ν13 = ν23 = 0, G12 = G13 = G23 = 5.7.

The cylinder model is clamped at the bottom face and has a pinned support
in radial direction at the top. A uniformly distributed load along the top rim was
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Figure 5.9: Laminate composite cylinder: model properties.

applied in axial direction. A geometric imperfection was introduced by a single
perturbation load halfway up the cylinder axis. The end-shortening result was
measured at a single node of the cylinder’s top rim, labelled as displacement uA.

displacement uA

lo
a
d

fa
c
to

r
λ
·1
0−

2

0.0

1

2

3

4

5

6

7

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
bc

bc

bc

bc
bc bc bc bc

bc Koiter-Newton load step

reduced order model solution

NROM = 2 – reduced order model

NAGM = 26880 – augmented model

linear buckling load: 12.68 · 10−2

1 2
3

Figure 5.10: Laminate composite cylinder: equilibrium path.

The complete equilibrium path was traced with 7 Koiter-Newton steps, cf
Fig.5.10. As common for compressed cylinders, the elastic response is character-
ized by an almost linear pre-critical path, followed by a bifurcation and snap-back
behaviour. The cylinder problem demonstrates the ability of the nonlinear Koiter
predictor to capture accurately the bifurcation point, which is a potential failure
mode for standard arc-length techniques with linear predictor, unless a very small
step size is used.

The constructed reduced order model used only a single buckling mode in
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addition to the path tangent. The first and the second mode used to construct
the reduced order model at the undeformed configuration and at the equilibrium
point 1, respectively, are depicted in Fig.5.11 and Fig.5.12. From Fig.5.13 it can
be seen that the modes change along the equilibrium path due to the applied
imperfection load. As a consequence, a repeated reconstruction of the reduced
order model was required to capture accurately the bifurcation and the post-
critical deformation.

X
Y

Z

Y
X

Z

Figure 5.11: Laminate composite cylinder: first and second modes of the reduced
order model at the reference configuration.

X
Y

Z Z

Y
X

Figure 5.12: Laminate composite cylinder: first and second mode of the reduced
order model at 1.

Finally, the number of Newton iterations in the corrector phase of each step are
reported in Tab.5.3. Interestingly, the gain of computational efficiency using the
mixed approach is very moderate compared to the pure displacement formulation
which can be mainly attributed to an already extremely good performance of the
the displacement-based Koiter-Newton model which is more than four times less
compared to standard Newton-based method.
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Z

Figure 5.13: Laminate composite cylinder: deformed configuration (scale factor
25) at 2

displacement mixed
step 1 3 2
step 2 2 2
step 3 2 2
step 4 2 2
step 5 2 2
step 6 2 2
step 7 3 2
total 16 14

Table 5.3: Laminate composite cylinder: number of Newton iterations in the
corrector phase of each step.

5.4.4 Thin-walled frame

Finally, a thin-walled frame structure, which undergoes a distinct nonlinear de-
formation with a bifurcation in the equilibrium path, is analysed. The geometry
and boundary conditions are illustrated in Fig.5.14. The material properties are
E = 3.10275 and ν = 0.3.

The equilibrium path is depicted in Fig.5.15 which is characterised by the
bifurcation along a nonlinear pre-critical path due to a local buckling near the
clamped section. This can be seen from the evolution of the deformed configura-
tion shown in Fig. 5.16.

The Koiter-Newton analysis was carried out with 4 steps using a reduced
order model which was constructed on the basis of the first 6 buckling modes.
Again, the proposed mixed formulation shows a significant improvement in terms
of total number Newton iterations which reduced by more than 40% compared to
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Figure 5.14: Thin-walled frame: model properties.
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Figure 5.15: Thin-walled frame: equilibrium path.

Figure 5.16: Thin-walled frame: evolution of the deformed configuration (scale
factor 15).
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the conventional model, cf Tab.5.4.

displacement mixed
step 1 4 2
step 2 3 2
step 3 4 2
step 4 3 2
total 14 8

Table 5.4: Thin-walled frame: number of iterations required.

5.5 Summary
This chapter explored the performance properties of a mixed model formulation
in the framework of the recently introduced Koiter-Newton method, which is a
reduced order model approach for geometric nonlinear analyses with an emphasis
on buckling failure of thin-walled structures. In this context, a solid shell model
was formulated following the Hellinger-Reissner variational principle which proved
to be highly beneficial towards the computational efficiency of the analysis. The
Koiter-Newton method is a step-by-step equilibrium path tracing approach which
exploits the asymptotic expansion properties of Koiter’s post-buckling theory in
the predictor phase while mapping the solution space to a reduced order model.
The construction of the reduced order model is based on the expansion of the
elastic inner forces at a known state of equilibrium using the path tangent and a
few closely spaced linear buckling modes, thus exciting bifurcating branches of the
equilibrium path. In the mixed element formulation additional unknown stress
degrees of freedom were introduced. The variables are independent of adjacent
elements and thus can be eliminated on system level by an element-wise static
condensation. The third order form vanishes in the mixed formulation thus sim-
plifying and economizing the expensive contribution to the construction of the
reduced order model. In general, the expansion applies derivatives of the strain
energy up to the fourth order which requires the evaluation of linear, quadratic
and cubic forms during the construction of the reduced order model. Using a
mixed model, as favoured in this work, the cubic form vanishes due to indepen-
dently behaving degrees of freedom representing the unknown stress resultants on
element level with beneficial consequences in terms of a simplified formulation for
the reduced order model and computational efficiency.

The proposed formulation was tested with several numerical tests and com-
pared to the conventional Koiter-Newton method which, in a number of studies
[8], has already proven a superior performance compared to classical path-tracing
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technologies. The asymptotic Koiter predictor towards the equilibrium path al-
lows for significantly increased step sizes such that the full path often can be traced
within a few steps, revealing all neuralgic points along the path, including limit
and branching points. Furthermore, a snap-back and snap-through behaviour
as common in the analysis of thin shells and slender structures is reliably cap-
tured and makes the approach a robust technology for stability analyses. The
real strength of the proposed formulation was revealed with the corrector phase
in each step which uses Newton iterations on the full system to drive the force
residual below the chosen accuracy level and therefore represents numerically the
most expensive part of the analysis. We have observed that the novel approach
can significantly reduce the number of iterations, partly by more than 50% and
even in presence of bifurcation and for very large step sizes of problems which
showed highly nonlinear deformation properties in the pre-critical range. In all
tested cases an average number of two Newton iterations was observed to regain
equilibrium .

The proposed Koiter-Newton approach is an essential extension of the con-
ventional approach towards a reliable and robust nonlinear analysis tool for thin-
walled structures, in particular when buckling is the dominant physical phe-
nomenon. The mixed model formulation should be extended in future work to
more sophisticated discretisation techniques, which exploit higher order approxi-
mation properties and will be able to further enhance the analysis quality in terms
of accuracy and continuity of the elastic buckling response. Interested readers can
find further details in [99].
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Chapter 6

An isogeometric solid-shell
model for large deformation
analysis of elastic shells

Abstract
In this chapter, an isogeometric solid-shell model for geometrically nonlinear anal-
yses is proposed. It is based on a linear interpolation through the thickness and a
NURBS interpolation on the middle surface of the shell for both the geometry and
the displacement field. The Green-Lagrange strains are linearised along the thick-
ness direction and a modified generalized constitutive matrix is adopted to easily
eliminate thickness locking without introducing any additional unknowns and to
model multi-layered composite shells. Reduced integration schemes, which take
into account the high continuity of the shape functions, are investigated to avoid
interpolation locking and to increase the computational efficiency. The relaxation
of the constitutive equations at each integration point is adopted in the iterative
scheme in order to reconstruct the equilibrium path using large steps and a low
number of iterations, even for very slender structures. This strategy makes it pos-
sible to minimize the number of stiffness matrix evaluations and decompositions
and it turns out to be particularly convenient in isogeometric analyses.

6.1 Introduction
In recent years an increasing amount of research has aimed at developing new
efficient solid-shell finite elements (FEs)[10, 11, 19, 12, 13] for nonlinear analysis
of thin structures. This is due to the advantages of these kinds of elements in
comparison to classical shell ones. In particular, they allow the use of 3D contin-
uum strain measures employing translational degrees of freedom only, so avoiding
complex and expensive rules for updating the rotations. Solid-shell elements are

153
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often based on a linear displacement interpolation in order to achieve computa-
tional efficiency and then exhibit shear locking, also present in traditional shell
elements, and trapezoidal and thickness locking, typical of solid elements [16].
These kinds of locking are usually sanitized by means of Assumed Natural Strain
(ANS), Enhanced Assumed Strain (EAS) [17, 20] and mixed (hybrid) formula-
tions [10, 21, 22]. Solid-shells have been used to model composites or laminated
beams [19, 21, 24] and shell structures in both the linear [17, 12, 28] and non-
linear [20, 11, 10] range. Among the most effective and interesting proposals are
the mixed solid-shell elements of Sze and co-authors [10] which extend the initial
PT18β hybrid element of Pian and Tong [2] to thin shells and eliminate thickness
locking by means of a modified generalized constitutive matrix. This approach
makes it possible, as opposed to EAS, to avoid the introduction of additional
degrees of freedom (DOFs) and to obtain good predictions for multi-layered com-
posites. Although there is the effective elimination of the interpolation locking,
low order solid-shell elements exhibit a poor behaviour when analysing curved
geometries. High order Lagrangian interpolations, on the other hand, have been
little used due to the high number of DOFs and computational cost for the inte-
gration and assembly of the quantities [30].

The isogeometric analysis (IGA) [9, 100] represents a good alternative to high
order Lagrangian FEs. The main reason for its success is, in our opinion, the
way it makes it possible to elevate the order of the shape functions while practi-
cally maintaining the same number of DOFs of linear Lagrangian interpolations.
Another notable feature is that the high order continuity of the shape functions
allows the total number of integration points to be reduced significantly as shown
in [101, 102] compensating for the computational cost of the assembly of the
discrete operators. Finally, the geometry is reproduced exactly, regardless of the
mesh adopted and a simple link between CAD and structural analysis is available.

These considerations make IGA very attractive, particularly in geometrically
nonlinear analysis where a highly continuous solution is often expected. However,
there are some difficulties associated with IGA with respect to traditional finite
elements. The use of very high order shape functions eliminates interpolation
locking but, at the same time, increases the computational effort for the integra-
tion and the assembly of the discrete quantities and for the solution of the discrete
problem because of the decrease in the stiffness matrix sparsity. For these reasons
C1 and C2 NURBS interpolations are often preferred, even if they are not immune
to locking phenomena. Due to the inter-element continuity of the interpolation,
element-wise reduced integrations and strategies, like ANS [103], only alleviate,
but do not eliminate locking, and so are not effective for very thin shells. For the
same reason, mixed formulations with stress shape functions defined at element
level are not able to prevent locking. Conversely, mixed formulations with contin-
uous stress shape functions have been successfully proposed [104, 105]. However,
in this way the total number of DOFs increases with respect to the initial dis-
placement formulation and the static condensation of the stress variables, usually
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employed in FE analysis and performed at the element level, can be carried out
only at patch level and as a result is not convenient because it produces a full
condensed stiffness matrix. An interesting alternative is the use of displacement
formulations with patch-wise reduced integration rules [101]. These have been
shown to alleviate and, in some cases, eliminate interpolation locking in linear
elastic problems [102] employing a low number of integration points and so signif-
icantly improve the computational efficiency. This strategy seems more attractive
than the mixed formulation, since it preserves the stiffness matrix sparsity without
introducing additional unknowns and allows a more efficient integration.

However, when comparing mixed and displacement formulations in path-following
geometrically nonlinear analyses, many authors observed that the mixed ones can
withstand much larger step sizes (increments) with a reduced number of iterations
to obtain an equilibrium point and then the equilibrium path. The reason for this
is explained in [49, 32] where it is shown that the performances of the Newton
method drastically deteriorate in displacement formulations when the slenderness
of the structure increases. Conversely, the Newton method in mixed formulations
is unaffected by this phenomenon, which depends only on the format of the iter-
ative scheme adopted (mixed or purely displacement based) and also holds when
a mixed and a displacement formulation provide the same discrete accuracy. To
eliminate this inconvenience in displacement-based finite elements the Mixed In-
tegration Point (MIP) strategy has been recently proposed in [70]. It consists of
the relaxation of the constitutive equations at each integration point during the
Newton iterative process.

This chapter proposes an isogeometric solid-shell formulation for geometrically
nonlinear analyses of homogeneous and composite multi-layered shells, which uses
a linear through-the-thickness interpolation of geometry and displacements. The
nonlinear model is based on a Total-Lagrangian formulation adopting the Green-
Lagrange strain measure. A linearisation of the strains and a pre-integration along
the thickness direction allow the definition of a modified generalized constitutive
matrix, which effectively eliminates thickness locking without introducing any ad-
ditional through-the-thickness DOF [106] and leads to accurate predictions for
composites. The displacement field and the geometry are rewritten in terms of
semi-sum and semi-difference of the top and bottom surface quantities. The model
so obtained allows a bidimensional description and interpolation of the geometry
and displacements using 2D NURBS of generic order and continuity. Each control
point is equipped with six DOFs but, in contrast to traditional shell models, no
rotational DOF is employed. Shear and membrane locking, which already occur
in linear elastic problems for low order NURBS [107], are even heavier in the
nonlinear range when large displacements occur. Different patch-wise reduced in-
tegration rules [101, 102], previously proposed for linear analyses, are investigated
in large deformation problems with the aim of eliminating interpolation locking
and increasing the computational efficiency in the proposed solid-shell model when
C1 and C2 NURBS are adopted.
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The displacement-based solid-shell formulation so obtained seems able to pro-
vide accurate solutions, practically unaffected by locking, without the need of a
mixed formulation and the corresponding, previously discussed, drawbacks. How-
ever, it is still plagued, like any displacement formulation, by the slow convergence
rate and the lack of robustness of the Newton method when analyzing slender
structures. The MIP strategy, which has been shown to avoid this inconvenience
in the FE context [70], is extended to the proposed IGA framework with the
aim of reducing the iterative effort and making it independent of the slenderness
of the structure. Since the computational cost of evaluating and decomposing
the stiffness matrix represents, in IGA, a significant part of the total cost of the
analysis, the main goal is to exploit the high robustness of the MIP approach
in order to minimize these operations by means of a modified Newton scheme,
which is usually prevented by the displacement formulations in large deformation
problems.

The chapter is organized as follows: section 2 presents the isogeometric solid-
shell model for composite shells; in section 3 patch-wise reduced integrations are
investigated for the elimination of the interpolation locking in the nonlinear range
and the MIP iterative strategy is illustrated; numerical tests are carried out in
section 4 to both validate the accuracy of the proposed isogeometric model and
highlight the benefits in using MIP in the IGA context; finally the conclusions are
reported.

6.2 The isogeometric solid-shell model
In this section the isogeometric solid-shell model for the geometrically nonlinear
analysis of composite shells is presented. Starting from the FE model proposed
in [10], a solid-shell model with a NURBS interpolation of generic order on the
middle surface of the shell is derived. A Total Lagrangian formulation, based on
a Green-Lagrange strain measure, is adopted.

6.2.1 NURBS basics

A B-Spline curve is represented as

u[ξ] =
n∑
i=1

Np
i [ξ]Pi = N[ξ]P (6.1)

where Pi, i = 1 · · ·n are control points and Np
i (ξ) are the set of B-Spline basis

functions, which are piecewise polynomial functions of order p. The latter are
defined by a set of non-decreasing real numbers Ξ = [ξ1, ξ2, ..., ξn+p+1] known as
knot vector. More details on the B-Spline parametrization can be found in [108].
B-spline basis functions are calculated recursively by using the formula

Np
i [ξ] = ξ − ξi

ξi+p − ξi
Np−1
i [ξ] + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Np−1
i+1 [ξ]
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for p ≥ 1 and starting from piecewise constant functions (p = 0 ) defined as

N0
i [ξ] =

{
1, if ξi ≤ ξ ≤ ξi+1

0, otherwise.

B-Spline basis functions have attractive properties: they satisfy the partition
of unity that makes them suitable for discretisation methods, have a compact
support and are non-zero and non-negative within the knot interval [ξi, ξi+p+1].
The regularity r between two parametric or physical elements is described by the
multiplicity of the associated knot in Ξ. The regularity is given by r = p−s where
p and s are the order used for the basis functions and the multiplicity of the knot
ξi respectively.

Since B-splines are polynomial functions they are not able to represent circular
arcs and conic sections exactly. For this reason NURBS extend the B-spline
concept in order to represent these objects exactly. NURBS are obtained by a
projective transformation of B-splines extending Eq.(6.1) by using

Rpi [ξ] = Np
i [ξ]wi∑n

i N
p
i [ξ]wi

(6.2)

as shape functions. It is worth noting that all properties of B-Splines are main-
tained and, in particular, B-Splines are retrieved when all the weights are equal.

By applying the tensor product, the NURBS surface is constructed in a similar
way to Eq.(6.1) as

u[ξ, η] =
n∑
i=1

m∑
j=1

Rpi [ξ]M
q
j [η]Pij = N[ξ, η]P (6.3)

where Ξ = [ξ1, ξ2...ξn+p+1] and H = [η1, η2...ηm+q+1] are two knot vectors, Rpi
and M q

j are the one-dimensional basis functions over these knot vectors and Pij

defines a set of n ×m control points. The tensor product of the knot vectors Ξ
and H defines a mesh of quadrilateral "isogeometric elements".

Weights, as well as control points of the initial geometry, are provided by
the CAD model while suitable algorithms exist for the refinement required to
approximate the unknown solution [108, 9]. The geometry is always represented
exactly regardless of the mesh adopted.

6.2.2 Shell kinematics

A Total Lagrangian formulation is used to identify material points of the current
configuration in terms of their position vector X(ξ, η, ζ) in the reference configu-
ration and the displacement state d(ξ, η, ζ), cf Fig.6.1

x(ξ, η, ζ) = X(ξ, η, ζ) + d(ξ, η, ζ) (6.4)
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Figure 6.1: Undeformed and deformed shell geometry.

where ζ = [ξ, η, ζ] denote convective curvilinear shell coordinates with (ξ, η) rep-
resenting in-plane coordinates and ζ being the shell thickness coordinate. The
covariant basis vectors in the undeformed and deformed configuration are ob-
tained from the corresponding partial derivatives of the position vectors X and
x, respectively

Gi = X,i , gi = x,i = Gi + d,i with i = 1, 2, 3 , (6.5)

where (),i denotes the partial derivative with respect to ith components of ζ.
The contravariant basis vectors follow from the dual basis condition: gi · gj =
Gi · Gj = δji and the metric coefficients are gij = gi · gj and Gij = Gi · Gj

with (i, j = 1, 2, 3). The motion of material points from the initial reference
configuration to the current configuration is described by the deformation map
F : x→ X

F = ∂x
∂X = gi ⊗Gi. (6.6)

and Einstein convention of summing on repeated indexes is adopted from now on.
Using the deformation gradient in Eq.(6.6) and the metric tensor coefficients gij
and Gij , the Green-Lagrange strain tensor can be expressed as

E = 1
2
(
FT F− I

)
= Ēij Gi ⊗Gj (6.7)

with
Ēij = 1

2 (X,i ·d,j +d,i ·X,j +d,i ·d,j ) with i, j = 1, 2, 3 (6.8)

where (·) means scalar product.
Assuming a linear through-the-thickness interpolation the position vector is

expressed as
X = X0[ξ, η] + ζXn[ξ, η] (6.9)
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where

X0 = 1
2 (X[ξ, η, 1] + X[ξ, η,−1]) , Xn = 1

2 (X[ξ, η, 1]−X[ξ, η,−1])

with ζ = 1 and ζ = −1 identifying the top and the bottom surface of the shell
respectively.

Similarly, the displacement field d = d0[ξ, η] + ζdn[ξ, η] is described as a
combination of the displacements

d0 = 1
2 (d[ξ, η, 1] + d[ξ, η,−1]) , dn = 1

2 (d[ξ, η, 1]− d[ξ, η,−1]) .

The same convective coordinates ζ are used for expressing the interpolation
of the discrete model.

6.2.3 The isogeometric solid-shell element

The kinematics of the solid-shell model derived in 6.2.2 allows a 2D description
of the shell. Following the isogeometric concept, geometry and displacement field
are interpolated, over the element, as follows

X[ζ] = Nd[ζ]Xe, d[ζ] = Nd[ζ]de (6.10)

where de = [d0e,dne] and Xe = [X0e,Xne] collect the element control points for
displacement and geometry. The matrix Nd[ζ] collects the interpolation functions

Nd[ζ] ≡
[
N[ξ, η], ζN[ξ, η]

]
(6.11)

where ζ ∈ [−1,+1] and N[ξ, η] are bivariate NURBS (6.3), functions of the middle
surface coordinates only.

Adopting a Voigt notation, the Green-Lagrange covariant strain components
in Eq.(6.8) are collected in vector Ē = [Ēξξ, Ēηη, 2Ēξη, Ēζζ , 2Ēηζ , 2Ēξζ ]T , that,
exploiting Eq.(6.10), becomes

Ē =
(
L[ζ] + 1

2Q[ζ,de]
)

de, (6.12)

where L[ζ] ≡Q[ζ,Xe] and Q is so defined

Q[ζ,de] ≡



dTe Nd,
T
ξ Nd,ξ

dTe Nd,
T
η Nd,η

dTe (Nd,
T
ξ Nd,η +Nd,

T
η Nd,ξ )

dTe Nd,
T
ζ Nd,ζ

dTe (Nd,
T
ζ Nd,η +Nd,

T
η Nd,ζ )

dTe (Nd,
T
ξ Nd,ζ +Nd,

T
ζ Nd,ξ )


. (6.13)
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The covariant strains are conveniently linearised with respect to ζ

Ē ≈

ē[ξ, η] + ζ χ̄[ξ, η]
Ēζζ [ξ, η]
γ̄[ξ, η]

 (6.14)

where

ē[ξ, η] ≡

 Ēξξ[ξ, η, 0]
Ēηη[ξ, η, 0]
2Ēξη[ξ, η, 0]

 χ̄[ξ, η] ≡

 Ēξξ,ζ [ξ, η, 0]
Ēηη,ζ [ξ, η, 0]
2Ēξη,ζ [ξ, η, 0]

 γ̄[ξ, η] ≡
[
2Ēηζ [ξ, η, 0]
2Ēξζ [ξ, η, 0]

]

are collected in the vector of generalized covariant strains ε̄[ξ, η] ≡
[
ē, Ēζζ , χ̄, γ̄

]T
.

In order to simplify the notation, the dependence of the quantities on ξ, η will be
omitted from now on, when clear.

The generalized stress components, once the kinematic model is assumed, are
automatically given by assuring the invariance of the internal work. By collecting
the contravariant stress components S̄ ≡ [S̄ξξ, S̄ηη, S̄ξη, S̄ζζ , S̄ηζ , S̄ξζ ]T , the work
conjugate variables with ε̄ are obtained by

W =
∫
V

S̄T ĒdV =
∫

Ω

(
N̄ T ē + M̄T

χ̄+ s̄ζζĒζζ + T̄ T γ̄
)

=
∫

Ω
σ̄T ε̄dΩ

(6.15)

where, from now on,
∫

Ω (...) dΩ = 2
∫ ξi+1
ξi

∫ ηi+1
ηi

(...) det(J[ξ, η, 0])dξdη and J de-
notes the Jacobian matrix J[ξ, η, ζ] = [G1, G2, G3]T .

The generalized contravariant stresses σ̄ ≡
[
N̄ , s̄ζζ ,M̄, T̄

]T
in Eq.(6.15) are

then
N̄ ≡ 1

2

∫ 1

−1
σ̄pdζ M̄ ≡ 1

2

∫ 1

−1
ζσ̄pdζ

s̄ζζ ≡
1
2

∫ 1

−1
S̄ζζdζ T̄ ≡ 1

2

∫ 1

−1
τ̄dζ

(6.16)

with

σ̄p =

S̄ξξS̄ηη
S̄ξη

 τ̄ =
[
S̄ξζ
S̄ηζ

]
.

6.2.4 The mapping between the parametric and the physical do-
mains

The relation between the contravariant stresses and covariant strains in tensor
notation and the corresponding Cartesian ones is

E = J−1ĒJ−T and S = JT S̄J, (6.17)
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that in Voigt notation can be written as

E = TEĒ and S = TSS̄ (6.18)

with TS = T−TE .
From (6.9) J = J0[ξ, η]+ζJn[ξ, η] and its inverse can be linearized with respect

to ζ as
J−1[ξ, η] = J−1

0 [ξ, η] + ζJ−1
n [ξ, η] (6.19)

where it is possible to obtain J−1
n by satisfying up to the first order in ζ the

equation JJ−1 = I, that implies

J−1
n = J−1

0 JnJ−1
0 .

Substituting Eq.(6.19) in Eq.(6.18) and maintaining only the linear terms in ζ we
obtain the linearized expression of TE = TE0 + ζTEn. In particular letting

TE0 =

T0
ee T0

eζ T0
eγ

T0
ζe T 0

ζζ T0
ζγ

T0
γe T0

γζ T0
γγ

 , TEn =

Tn
ee Tn

eζ Tn
eγ

Tn
ζe Tnζζ Tn

ζγ

Tn
γe Tn

γζ Tn
γγ


we have, maintaining the linear terms in ζ only,

E = TEĒ ≈

e + ζχ
Eζζ
γ

 . (6.20)

Equation (6.20) can be expressed in terms of the generalized strains as

ε = Tεε̄ (6.21)

where ε = [e, Eζζ ,χ,γ]T and

Tε =


T0
ee T0

eζ 03×3 T0
eγ

T0
ζe T 0

ζζ 01×3 T0
ζγ

Tn
ee Tn

eζ T0
ee Tn

eγ

T0
γe T0

γζ 02×3 T0
γγ

 .

Combining Eqs.(6.12), (6.14) and (6.21) it is possible to obtain the Cartesian
generalized strain-displacement relationship

ε =
(

L + 1
2Q[de]

)
de. (6.22)
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6.2.5 Modified generalized constitutive matrix

Multi-layered composites can be modeled using layer-wise interpolations [109, 110]
which provide accurate interlaminar stress reconstructions or homogenization
techniques usually more efficient and suitable for predicting global behaviors ac-
curately.

When a linear through-the-thickness interpolation is adopted, a generalized
constitutive law of the multi-layered composite can be obtained following [10, 59].
It consists of a homogenization technique which imposes a constant with ζ stress
Sζζ in order to eliminate thickness locking and obtain an accurate prediction of
stresses and displacements. The material law of the generic lamina, assumed to be
orthotropic elastic, can be conveniently expressed in a suitable reference system
{e1, e2, e3} according to the fibre direction as

Ŝ = ĈÊ with Ĉ =

Ĉpp Ĉpζ 0
ĈT
pζ Ĉζζ 0
0 0 Ĉt

 (6.23)

which furnishes, exploiting the decoupling of the transverse shear components,
the inverse law as [

Êp

Êζζ

]
=
[
F̂pp F̂pζ

F̂T
pζ F̂ζζ

] [
Ŝp
Ŝζζ

]
(6.24)

where symbol (ˆ) denotes Cartesian components expressed with respect to {e1, e2, e3}
with e3 aligned to ζ and Êp = ê + ζ χ̂. Eq.(6.24) can be rewritten as

Ŝp = SÊp + DŜζζ
Êζζ = −DT Êp +RŜζζ

with


R = F̂ζζ + F̂T

pζD
D = −(F̂pp)−1F̂pζ

S = (F̂pp)−1.

The constitutive law in terms of the quantities N̂ and M̂ is then obtained,
integrating along ζ and imposing a constant with ζ stress Ŝζζ = ŝζζ , as N̂Êζζ

M̂

 = 1
2

∫ 1

−1

 S D ζS
−D R −ζD
ζS ζD ζ2S

 dζ
 ê
ŝζζ
χ̂


=

 S0 D0 S1
−D0 R0 D1
S1 D1 S2


 ê
ŝζζ
χ̂


which furnishes the thickness locking free generalized constitutive law

σ̂[ξ, η] = Ĉεε̂[ξ, η] (6.25)
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where

Ĉε ≡


S0 + D0DT

0 /R0 D0/R0 S1 + D0DT
1 /R0 0

DT
0 /R0 1/R0 DT

1 /R0 0
(S1 + D0DT

1 /R0)T D1/R0 S2 + D1DT
1 /R0 0

0 0 0 Ĉt0


and

Ĉt0 =
∫ 1

−1
Ĉtdζ.

The modified generalized constitutive matrix in the global system {X,Y, Z} is
obtained as Cε = RT

ε ĈεRε with Rε a suitable rotation matrix.

6.3 Integration and Mixed Integration Points
In this section, after a brief description of the nonlinear analysis framework, a
numerical investigation on the use of patch-wise integration rules in large defor-
mation problems is carried out. The Mixed Integration Point strategy is then
introduced to improve the performance of the Newton method with the aim of
reducing the iterative effort.

6.3.1 Nonlinear analysis framework

The equilibrium of slender hyperelastic structures subject to conservative loads
f [λ] proportionally increasing with the amplifier factor λ is expressed by the
virtual work equation

Φ[u]′ δu − λf δu = 0 , u ∈ U , δu ∈ T (6.26)

where u ∈ U is the field of configuration variables, Φ[u] denotes the strain energy,
T is the tangent space of U at u and a prime is used to express the Fréchet
derivative with respect to u. U is a linear manifold so that its tangent space T is
independent of u. The discrete counterpart of Eq.(6.26) is

r[u, λ] ≡ s[u]− λf = 0, with
{

sT δu ≡ Φ′[u]δu
fT δu ≡ f δu

(6.27)

where r : RN+1 → RN is a nonlinear vectorial function of the vector z ≡ {u, λ} ∈
RN+1, collecting the configuration u ∈ RN and the load multiplier λ ∈ R, s[u] is
the internal force vector and f the reference load vector. Eq.(6.27) represents a
system of N -equations and N+1 unknowns and its solutions define the equilibrium
paths as curves in RN+1 from a known initial configuration u0, corresponding to
λ = 0. The tangent stiffness matrix is also defined as

δuTK[u]ũ = Φ′′[u]ũδu , ∀ δu, ũ (6.28)
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where δu and ũ are generic variations of the configuration field u and δu and ũ
the corresponding discrete vectors.

The Riks approach [3] is the preferred strategy for solving Eq.(6.27) by adding
a constraint of the shape g[u, λ]−ξ = 0, which defines a surface in RN+1. Assigning
successive values to the control parameter ξ = ξ(k) the solution of the nonlinear
system

R[ξ] ≡
[

r[u, λ]
g[u, λ]− ξ

]
= 0 (6.29)

defines a sequence of points (steps) z(k) ≡ {u(k), λ(k)} belonging to the equilibrium
path. Starting from a known equilibrium point z0 ≡ z(k), the new one z(k+1) is
evaluated correcting a first extrapolation z1 = {u1, λ1} by a sequence of estimates
zj (loops) by a Newton iteration{

J̄ż = −Rj

zj+1 = zj + ż
(6.30a)

where Rj ≡ R[zj ] and J̄ is the Jacobian of the nonlinear system (6.29) at zj
or a suitable estimate. The simplest choice for g[u, λ] is the linear constraint
corresponding to the orthogonal hyperplane

nTu (u− uj) + nλ (λ− λj) = ∆ξ where
{

nu ≡M (uj − u(k))
nλ ≡ µ (λj − λ(k))

(6.30b)

M and µ being some suitable metric factors, ∆ξ an assigned increment of ξ and

J̄ ≈
[
∂R[z]
∂z

]
zj

=
[

K̄ −f
nTu nλ

]
. (6.30c)

The load-controlled scheme is obtained assuming g[u, λ] = λ (see [32] for further
details) while keeping K̄ = K[u1] we have the modified Newton scheme. The
solution of Eq.(6.30) is conveniently performed as followsλ̇ = nTu K̄rj

nλ + nTu K̄f
K̄u̇ = λ̇f − rj .

(6.31)

6.3.2 Displacement-based isogeometric formulations

The strain energy can be expressed as a sum of element contributions Φ[u] ≡∑
e Φe[u]

Φe[u] ≡
∫

Ωe

(1
2ε

TCε
)
dΩe (6.32)



6.3. INTEGRATION AND MIXED INTEGRATION POINTS 165

where Ωe is the element domain. The first variation of the generalized strains in
Eq.(6.22) can be written as

δε = B[de]δde with B[de] = L + Q[de]

and, then, the first variation of the strain energy is

Φe[u]′δu ≡
∫

Ωe

(
δεTCεε

)
dΩe

=
∫

Ωe

(
δdTe B[de]TCεε[de]

)
dΩe = δdTe se[de]

(6.33)

where se[de] is the element internal force vector. The second variation of the
strain measure is

δε̃ = Q[d̃e]δde = Q[δde]d̃e
and its kth component can be evaluated as

δε̃k = d̃Te Ψkδde.

Letting σ[de] = Cεε[de], the following expression holds

σT δε̃ ≡
∑
k

σkδε̃k = d̃Te G[σ[de]]δde

with
G[σ[de]] =

∑
k

σk[de]Ψk. (6.34)

The second variation of the strain energy is

Φ′′e [u]δuũ ≡
∫

Ωe

(
δεTCεε̃+ δε̃Tσ[de]

)
dΩe = δdTe Ke[de]d̃e (6.35)

with the element tangent stiffness matrix defined as

Ke[de] ≡
∫

Ωe

(
B[de]TCεB[de] + G[σ[de]]

)
dΩe. (6.36)

6.3.3 Locking and patch-wise reduced integration in geometri-
cally nonlinear analysis

The high continuity of the interpolation functions used for the approximation of
the displacement field does not make the formulation immune to interpolation
locking phenomena (shear and membrane locking) when low order NURBS, the
most used in practical applications, are employed.

Many strategies for resolving locking phenomena in Lagrangian FEM have
been proposed over the years. Among them, element-wise reduced integrations



166 CHAPTER 6. A NURBS-BASED SOLID-SHELL MODEL

[111, 112], ANS [113, 114] and mixed formulations [10] are widely employed. Un-
fortunately, all these element-wise approaches are not able to eliminate lockings
in the context of IGA, because of the inter-element high continuity of the NURBS
basis.

On the other hand, mixed formulations [115, 104] with continuous shape func-
tions for the stresses have been successfully proposed, providing locking-free mod-
els. However, in this way, the total number of unknowns significantly increases
due to the stress variables, which cannot be condensed at element level as is usual
in the FEM context. A patch-wise condensation is still possible, but this does
not seem a convenient choice, because it leads to a full condensed stiffness matrix
with negative effects in terms of memory and computational efficiency.

Recently, patch-wise integration rules, which take into account the inter-
element high continuity of the displacement interpolation have been proposed
[102, 101] and applied to linear elastic problems. In our opinion, these works
represent an important development in IGA. The d-dimensional target space of
order p and regularity r, labelled as Spr , is exactly integrated by a number of
≈ ((p − r)/2)d integration points per element, distributed over the patch, sig-
nificantly lower than in standard Gauss quadrature rules. Their positions and
weights are not equal for each element, but are evaluated, once and for all, in a
pre-processing phase and depend on r, p and patch mesh. The algorithms which
provide these kinds of integration rules can be found in [102, 101] and are very
efficient. Their computational burden is just a small fraction of the total cost of
a linear analysis and negligible compared to a nonlinear analysis.

The patch-wise exact integration of a given space Spr also opens up new possi-
bilities for patch-wise reduced integration schemes. In fact p and r can be selected
by the user and are not required to be those for the exact integration of the prob-
lem space. If the integration space presents spurious modes a certain number
of quadrature points are added near the boundary elements in order to remove
them and the approximation space is said to be over-integrated and labeled as S̄pr
[102, 101]. With respect to the element-wise reduced integrations, an appropriate
selection of the patch-wise reduced integration rules makes it possible to avoid
spurious modes, alleviate or eliminate interpolation locking in the linear elastic
range and further reduce the number of integration points.

This strategy, in our opinion, seems preferable to mixed formulations with
continuous stress interpolation since it does not increase the number of unknowns,
preserves the sparsity of the stiffness matrix and makes the integration efficient.
The last one represents a significant part of the total cost of the analysis, in IGA
much more than in FEM formulations, and the reduction of integration points
drastically increases the computational efficiency.

In the following, a numerical investigation on different patch-wise integration
rules for the proposed solid-shell formulation in large deformation problems is
carried out to look for an optimal solution in terms of accuracy, efficiency and ro-
bustness. Remembering that in patch-wise rules the number of integration points
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n can be different element-by-element, the strain energy can then be evaluated as

Φe[de] ≡
1
2

n∑
g=1

εg[de]TCgεg[de] wg (6.37)

the internal force vector as

se[de] =
n∑
g

(
Bg[de]TCgεg[de]

)
wg (6.38)

while the tangent stiffness matrix is

Ke[σg[de],de] =
n∑
g

(
Bg[de]TCgBg[de] + Gg[σg[de]]

)
wg (6.39)

where subscript g denotes quantities evaluated at the integration point ζg, wg
is the product of the corresponding weight and the determinant of the Jacobian
matrix J evaluated at the integration point, Cg is Cε at the integration point.

Note that Ke[de] is written as Ke[σg[de],de] as a reminder of the way it is
computed.

Interpolation locking tests

In the linear elastic range, low order NURBS interpolations usually exhibit shear
and membrane locking. In the nonlinear range, when a Total Lagrangian for-
mulation is adopted, other similar locking phenomena occur due to the different
approximation of the linear and quadratic part of the Green-Lagrange strain com-
ponents. This means that locking occurs in nonlinear analyses, even if the initial
geometry is flat. In both linear and nonlinear cases, locking is related to the
slenderness of the shell.

A series of patch-wise exact and reduced integration schemes for C1 and C2

NURBS basis are employed and compared. For the C1 interpolation the com-
parison also includes element-wise reduced integration and the Assumed Natural
Strain technique (ANS) [114], proposed for IGA in [107, 103].

Linear analysis The first test is a classical benchmark to address membrane
locking in the linear elastic range. It regards the clamped curved beam in Fig.6.2,
which is considered a severe test to assess discrete formulations [103]. The normal-
ized displacement at point A is reported in Fig.6.3 for an increasing slenderness
and for the different interpolations and integration schemes. The reference value
uA,ref , from Bernoulli beam theory, is 0.942. A mesh of 10 × 1 elements is em-
ployed.

Concerning the C1 interpolation, the full S4
0 integration presents a very strong

locking and provides bad results also for R/t = 100 and completely wrong results
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Figure 6.2: Curved bar: geometry
and loads.
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Figure 6.3: Curved bar: linear displacement for
different slenderness ratio.

for R/t = 1000. The ANS technique gives good results for R/t = 100 slightly
alleviating locking but it is not satisfactory for R/t = 1000. Furthermore the 2×2
Gauss element-wise reduced integration shows the identical results as ANS, which
employs a grid of 3 × 3 Gauss points per element. The S̄2

0 reduced integration
has the best performance and is almost insensitive to locking, a part from the
extremely slender case R/t = 10000. From the computational point of view, it is
worth noting that S̄2

0 uses about one integration point per element and is then
more efficient than ANS and 2× 2 reduced integration.

For the C2 interpolation, the full integration S6
1 is clearly affected by locking.

On the contrary, both the integration schemes S̄3
1 and S4

1 provide excellent results
and are practically insensitive to locking. It is worth noting that S̄3

1 requires
about one integration point per element, while S4

1 about 2.25 integration points
per element, so that both strategies are very efficient compared with Gauss rules.

Nonlinear analysis In order to show the performances of the different strate-
gies in dealing with locking, the simple cantilever beam depicted in Fig.6.4 is
analyses with the proposed solid-shell model, for different values of the slender-
ness parameters k = L/t and under two different load conditions.

For the shear load case, Fig.6.5 shows the equilibrium paths, up to the max-
imum value of the load λmax = 4 · 107/k3, obtained with the C1 interpolation
for two different values of k = 100 and k = 1000 and different meshes. The full
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Figure 6.4: Cantilever beam under two load cases: geometry and loads.
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Figure 6.5: Cantilever beam under shear force: equilibrium path for C1 and
L/h = 100 (left) and L/h = 1000 (right).

S4
0 integration scheme provides bad results also for the smallest value of k, unless

a large number of elements is used, and completely wrong results for k = 1000.
The ANS technique gives good results for k = 100 slightly alleviating locking but
it is not satisfactory for k = 1000. Furthermore, the 2 × 2 Gauss element-wise
reduced integration shows the identical results as ANS (3 × 3 Gauss points per
element) also in nonlinear context. The S̄2

0 reduced integration seems the best
choice being almost insensitive to locking effects, except for the coarsest mesh,
which is penalized by the over-integration required to avoid singularities. The
general recommendation is to use it with at least 5 elements. S̄2

0 is also far more
efficient than ANS and 2× 2 reduced integration.

For the C2 interpolation, the equilibrium paths of the cantilever beam under
shear load discretised with 4 and 8 elements are reported in Fig.6.6. Also in this
case, the full integration S6

1 exhibits locking. On the contrary, both the integration
schemes S̄3

1 and S4
1 provide very good results. S4

1 is practically insensitive to
locking effects for every mesh, while S̄3

1 is slightly penalized for the coarsest mesh
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4 elm. 8 elm. 16 elm.

L/h S̄2
0 S4

0 ANS S̄2
0 S4

0 ANS S̄2
0 S4

0 ANS

C1 102 0,767 0,610 0,873 0,981 0,896 0,982 0,992 0,983 0,993
103 0,343 0,164 0,661 0,952 0,385 0,835 0,972 0,722 0,961

L/h S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

C2 102 0,977 0,992 0,961 0,999 1,000 0,998 1,000 1,000 1,000
103 0,941 0,988 0,797 0,998 0,990 0,946 1,000 1,000 0,997

Table 6.1: Cantilever-beam: normalized end displacement at λ/λmax = 1 for
different interpolations and slenderness.
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Figure 6.6: Cantilever beam under shear force: equilibrium path for C2 and 4 e
8 elements.

due to the over integration required to avoid singularities.
In Tab.6.1 the results previously described are summarized reporting the value

of the end beam displacement wA corresponding to a unitary load normalized with
respect to the reference values wrefA obtained with C2 interpolation, 32 elements
and a S4

1 integration. The table makes the comparison of the different strategies
easy and highlights the great accuracy and insensitivity to locking of the C2 inter-
polation when integrated with S̄3

1 and S4
1 schemes and the enormous qualitative

leap when passing from C1 to C2. Since the number of DOFs of the C1 and the
C2 interpolation as well as the number of integration points, using the same mesh,
is almost the same, the cost of the C2 interpolation is just slightly higher than
the C1 one.

The second test regards the same cantilever beam under compression, i.e. a
standard Euler cantilever beam. A very small shear imperfection load is added
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Figure 6.7: Euler beam under compression force: equilibrium path for C1 and
L/h = 100 (left) and L/h = 1000 (right).

to avoid the jump of the bifurcation. The equilibrium path for different discreti-
sations, integration schemes and slenderness ratios are reported in Fig.6.7 for the
C1 interpolation and in Fig.6.8 for the C2 one. The load factor is normalized with
respect to analytical buckling load λb. Similar comments to the previous test hold.
In particular, the reduced integration schemes S̄2

0 for C1 and S̄3
1 and S4

1 for C2

provide good predictions. However, as in the previous load case only the C2 inter-
polation with S4

1 integration is practically insensitive to k even for a very coarse
mesh, where, conversely, the over-integrated schemes are penalized. Finally, the
C2 interpolation outperforms the C1 one again in terms of accuracy, using the
same mesh, and then employing a similar number of DOFs and integration points.

Generally, the C2 interpolation seems preferable to the C1 due to the possi-
bility of also using coarse meshes, especially when integrated with the S4

1 scheme,
which is insensitive to locking also for very slender structures and seems a more
robust choice with respect to the S̄3

1 scheme. For these reasons, it is recommended
among the strategies investigated. Other numerical tests will be presented in the
next section to further validate this proposal.

6.3.4 The iterative scheme with mixed integration points

The isogeometric solid-shell model proposed in section 6.2 with the patch-wise re-
duced integration described in subsection 6.3.3 is very accurate and efficient and
represents a reliable choice from the point of view of the discrete approximation
and the efficiency of the integration. However, the efficiency and the robustness of
a nonlinear analysis do not only depend on the number of unknowns and integra-
tion points, but also on the iterative effort, that is on the capability of the Newton
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Figure 6.8: Euler beam under shear force: equilibrium path for C2 and 4 e 8
elements.

method to converge using a low number of iterations and to withstand large step
sizes (increments). In [32, 49], it is shown that the Newton method exhibits a slow
convergence and requires a small step size for slender elastic structures undergoing
large displacements when any purely displacement-based formulation is adopted.
This could be considered as a sort of "locking" of the Newton method, since its
performance gets worse when the slenderness of the structures increases. This fact
is unrelated to the accuracy of the interpolation and always occurs in displace-
ment formulations where the stresses σg[de], used to evaluate the tangent matrix
Ke[σg[de],de], are forced to satisfy the constitutive equations at each iteration.

Conversely, mixed (stress-displacement) formulations are not affected by this
phenomenon, because the stresses are directly extrapolated and corrected in the
iterative process, allowing a faster convergence of the Newton method and very
large steps, independently of the slenderness of the structure. Further details on
this phenomenon can be found in [32, 49].

In [70], a strategy called Mixed Integration Point (MIP) has been proposed in
order to overcome these limitations in standard displacement-based FE problems.
The approach, however, seems general and it is now extended and tested in the
proposed displacement-based isogeometric formulation.

The fundamental idea of the MIP Newton scheme is to relax the constitutive
equations at the level of each integration point during the iterations. This is made
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by rewriting the total energy in a pseudo Hellinger-Reissner form on the element

Πe[ue] ≡ Φe[ue]− dTe f e with ue =


σ1
...
σn
de

 (6.40)

where f e is the element counterpart of the load vector f and the pseudo "mixed"
strain energy Φe[ue] is obtained by rewriting Eq.(6.37) as

Φe[ue] ≡
n∑
g=1

(
σTg εg[de]−

1
2σ

T
g C−1

g σg

)
wg (6.41)

in which the stresses at each integration point σg are now independent variables.
The first variation of (6.41) is

Φ′eδu =
n∑
g=1

[
δσg
δde

]T [
sgσ
sgd

]
wg (6.42)

with {
sgσ ≡ εg[de]−C−1

g σg

sgd ≡ Bg[de]Tσg.
(6.43)

The second variation of (6.40) and (6.41) is

Φ′′eδuũ =
n∑
g=1

[
δσg
δde

]T [−C−1
g Bg

BT
g Gg

] [
σ̃g
d̃e

]
wg (6.44)

where Gg ≡ Ge[σg] is the matrix Ge evaluated at the integration point g, that is
now a function of the independent stresses σg only.

The linear system in Eq.(6.31), to be solved at each Newton iteration, can
then be rewritten at the element level as
−C−1

1 w1 B1w1
. . . ...

−C−1
n wn Bnwn

BT
1 w1 . . . BT

nwn
∑n
g Ggwg


j 
σ̇1
...
σ̇n
ḋe

 = (λj + λ̇)


0
...
0
f e

−


s1σw1
...

snσwn∑n
g

(
BT
g σgwg

)

j

(6.45)

where the superscript on matrices denotes that they are evaluated during the
iterative process at the current estimate uje.

By performing a static condensation of the stress correction σ̇g, locally defined
at the level of the integration point, we obtain

σ̇g = CgBj
gḋe + Cgsjgσ = CgBj

gḋe + Cgε
j
g − σjg (6.46)
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and, letting rce[dje] = sce[dje] − λjpe, the linear system in the condensed form
becomes

Ke[uje]ḋe = −rce[dje] + λ̇f e (6.47)

with
Ke[σjg,dje] =

n∑
g=1

(
Bg[dje]

TCgBg[dje] + Gg[σjg]
)
wg (6.48)

the condensed tangent stiffness matrix, that has the same expression as the clas-
sical displacement based one (6.39). However, this time it also depends on the
independent stresses at the integration points, which are now directly extrapolated
and corrected during the iterations.

Conversely, note that the condensed internal forces sce[dje]

sce[dje] =
n∑
g

(
Bj
g
TCgε

j
g

)
wg

coincide exactly with the internal forces of the displacement-based formulation in
Eq.(6.38) and then the equilibrium path reconstructed is exactly the same as the
initial displacement formulation.

This iterative scheme is then very close to the standard Newton one for purely
displacement models. The main difference consists of the different value of the
stresses at the integration points used for the evaluation of the tangent stiffness
matrix. This means that the computational cost of a MIP iteration is practically
the same as a standard one and only a few changes are required to transform a
standard displacement-based Newton iteration into a MIP one.

It is worth noting that the MIP strategy, compared to the mixed formulation,
does not require the definition of shape functions for the stresses and does not
modify the expression of the condensed internal force vector and tangent matrix,
preserving the sparsity of the initial displacement formulation and making the
static condensation inexpensive.

The MIP modified Newton

The modified Newton method evaluates and decomposes the iteration matrix at
the first extrapolation (predictor) of each step and represents an attractive choice
in IGA much more than in low order FE formulations for two reasons. The first
one is that the number of stiffness matrix evaluations, which involve integration
and assembly, is much lower and, in IGA, this represents a significant part of the
cost of the analysis. The second reason is that the ratio between the cost of an
iteration performed with a new matrix and its cost using an already decomposed
one is directly proportional to the band. This means that the modified Newton
gets more and more convenient as the order of the NURBS, and then the band of
the matrix, increases.
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Newton MIP Newton MIP M. Newton

k k k
Nsteps 102 103 104 102 103 104 102 103 104

1 14 fails fails 5 5 5 15 15 15
5 43 fails fails 16 16 16 21 21 21
10 62 77 fails 30 30 30 32 32 32
20 103 121 fails 51 51 51 51 51 51

Table 6.2: Cantilever beam under shear force (C2−S4
1 , L/t = 102, 103, 104 ): total

number of iterations for the evaluation of the equilibrium path vs the number of
load subdivisions.

MIP Newton convergence tests

To highlight the robustness and the efficiency of the proposed MIP strategy, the
equilibrium path of the example in Fig.6.6 has been reconstructed using a load-
controlled scheme. The maximum load value has been subdivided in Nsteps
equal load increments. The total number of iterations required to evaluate the
equilibrium path with different strategies, but under the same convergence criteria,
are reported in Tab.6.2.

The performances of the standard Newton method clearly depend on the slen-
derness of the beam. In particular, its robustness, in terms of increment size
worsens when the ratio k = L/t increases and the method is not able to converge
for k = 104 and requires 10 increments to converge for k = 103. Conversely, the
MIP Newton is able to evaluate the equilibrium point corresponding to λ = λmax
with just a single load increment and only 5 iterations. When the number of load
steps Nsteps increases, the number of iterations per step gets smaller, but the
total number of iterations increases. However, even for the smallest step size the
MIP Newton is more than twice as efficient as the standard Newton. Finally,
even the modified MIP Newton withstands the largest step size and requires a
number of iterations tending towards that of the full MIP Newton when the step
size decreases. In this way the modified method represents a very good choice,
considering that its computational cost is dominated by the number of matrix
decompositions and so of increments, not of iterations. Finally, it is interesting
to note that the performances of both the full and the modified MIP Newton
are unrelated to the slenderness k and, in our opinion, this represents the main
advantage of the MIP strategy.
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Figure 6.9: Circular ring: geometry

6.4 Numerical results

In this section, the accuracy of the proposed isogeomentric solid-shell model with
C2 interpolation and S4

1 patch-wise integration, labelled as C2-S4
1 , is tested as

well as the performances of the MIP strategy. Geometrically nonlinear problems
are considered for shell structures in both isotropic and composite multi-layered
materials. Some comparisons with FE results are reported. In particular we
adopt the well-established hybrid stress linear FE of Sze [10] in the implementation
proposed in [59], based on the Green-Lagrange strains, in order to avoid differences
due to the strain measure. It is labelled as C0-HS.

6.4.1 Slit annular plate subjected to line force

The first test is a circular ring undergoing large displacements, a very popular
benchmark in geometrically nonlinear analysis [10, 103]. Geometry, load and
boundary conditions are reported in Fig.6.9. Figure 6.11 shows the equilibrium
path of the ring obtained using C0-HS and C2-S4

1 . Three meshes are considered
for C0-HS: 10 × 6 (420 DOFs), 20 × 6 (840 DOFs) and 30 × 6 (1260 DOFs)
elements. The FE needs the finest mesh to obtain a converged curve, while C2-S4

1
provides the same curve with a mesh of 8 × 3 (576 DOFs). This is mainly due
to an exact description of the circular geometry provided by the isogeometric
formulation regardless of the mesh adopted. Conversely, the C0-HS, in the case
of curved shell, suffers when coarse meshes are employed, because of the linearised
geometry. Observing the equilibrium path in Fig.6.11, obtained using a load-
controlled scheme, as well as the evolution of the deformed configuration depicted
in Fig.6.10, this nonlinear problem seems easy to solve. However, if we look at
Tab.6.3, reporting the total number of iterations vs the number of equal load
increments Nsteps used to reach the maximum load value, it is clear that the
standard full Newton method is unable to converge unless a large number of load
subdivisions is employed. On the other hand, the MIP Newton easily converges
even if the maximum load is reached using just one step. The MIP modified
Newton fails for the largest step size, but is much more robust than the standard
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Figure 6.10: Circular ring: evolution of the deformed shape.
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Newton MIP Newton MIP M. Newton

Nsteps iters iters iters

1 fails 8 fails
5 fails 19 47
10 fails 33 41
20 fails 55 60
30 202 73 74

Table 6.3: Slit annular plate: total number of iterations for the evaluation of the
equilibrium path vs the number of load subdivisions.

full Newton. Furthermore, when Nsteps increases, the total number of iterations
of the MIP modified Newton is practically the same as the standard Newton and,
so, the modified version actually becomes the most convenient. Finally, even for
the largest value of Nsteps the MIP Newton is about three times more efficient
than the standard Newton.

6.4.2 The pinched cylinder

Another interesting test regarding large deformations is the pinched cylinder de-
picted in Fig.6.12, that has been studied by several authors [10, 106]. Exploiting
the problem symmetries only an eighth of the cylinder is analysed using C2-S4

1
and C0-HS. The equilibrium path of the cylinder is reported in Fig.6.13. Three
uniform meshes are considered for C2-S4

1 . The coarsest one 30× 30 (6208 DOFs)
already furnishes a good curve, which, however, is not smooth but exhibits fluc-
tuations. This phenomenon is already known in literature in both the FE [116]
and IGA [106] context when coarse meshes are employed. It is due to wrinkles
developing and moving during the loading process, as can be noted looking at the
evolution of the deformed configuration in Fig.6.14. The second mesh adopted
for C2-S4

1 is 40 × 40 (10668 DOFs), which provides a smoother curve that is
practically coincident with that provided by the 50× 50 mesh (16328 DOFs). Fi-
nally the C0-HS results obtained with two meshes is also reported. The 40× 40
mesh (9680 DOFs) gives a good prediction but presents a clear discretisation error,
which slowly decreases by refining the mesh. In fact, the curve given by the 75×75
mesh (33900 DOFs) tends towards the isogeometric curve. Again, as in the previ-
ous test, C2-S4

1 converges quickly to the most likely solution because of the exact
geometry, while C0-HS is probably penalized by the linearised representation of
the curved geometry.

The equilibrium path is obtained using an arc-length path-following analysis
with the Riks constraint and an adaptive step size. The total number of steps and
iterations required by the different iterative strategies are illustrated in Tab.6.4.
The elapsed time, normalized with respect to that required by the standard New-
ton strategy, is also reported. Even in this test, the MIP Newton outperforms
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Figure 6.12: The pinched cylinder: geometry

Newton MIP Newton MIP M. Newton

mesh steps iters steps iters elapsed time∗ steps iters elapsed time∗

50×50 127 507 61 235 0.47 89 352 0.24
∗ normalized with respect to Newton elapsed time.

Table 6.4: The pinched cylinder: total number of steps, iterations and normalized
elapsed time for the evaluation of the equilibrium path with C2-S4

1 .

the standard Newton, particularly in the modified version that is clearly the most
efficient choice.

6.4.3 Clamped semi-cylinder

While the results presented so far regard isotropic materials, this benchmark tests
the proposed solid-shell model and the MIP Newton in the case of a composite
multi-layered shell. The structure is a semi-cylinder loaded by a concentrated force
at the middle of one of the curved edges, while the other one is clamped. The ver-
tical displacement of the straight edges is constrained. In Fig.6.16, the geometry
and the boundary conditions are depicted. Due to its symmetry, only a half of the
structure is analyzed. Two cases are considered: isotropic material, characterized
by E = 2068.50 and ν = 0.3, and a composite multi-layered material. The local
reference system, used for defining the material proprieties, has the direction 1
aligned with the y of the global system and the direction 3 is the normal to the
surface from inside out. The stacking sequences of the laminated material are
[90/0/90] and [0/90/0], measured with respect to the direction 1 of the local ref-
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Figure 6.14: Pinched cylinder: evolution of the deformed configuration.
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erence system and the material properties are E1 = 2068.50, E2 = E3 = 517.125,
ν12 = ν23 = ν13 = 0.3 and G12 = G23 = G13 = 759.58. Figure 6.15 shows the
equilibrium paths obtained using the element C2-S4

1 and for the different material
cases analysed. Two uniform meshes of 20×20 elements (2948 DOFs) and 30×30
elements (6208 DOFs) are used. The results of the coarse mesh are practically
identical to those obtained with the finer one, except for the case [90/0/90] which
exhibits small fluctuations, similar to the previously analysed pinched cylinder,
which disappear when the finer mesh is employed. This behaviour is again related
to the development of wrinkles as can be observed in the deformed shape at the
last evaluated equilibrium point, pictured in Fig.6.16. The results, in both the
isotropic and composite cases, can be compared with the solutions obtained by
Abaqus, reported in [117], which are the same as the present ones. Also in this
benchmark the robustness of the MIP strategy is evident. Table 6.5 shows how
the MIP strategy drastically reduces the number of iterations required to trace
the equilibrium path and how the MIP modified Newton is the most convenient
choice in terms of computational time.

Lastly, Fig.6.17 shows two significant generalized stress components evaluated
with a mesh of 30 × 30 C2-S4

1 elements (6208 DOFs) compared with a reference
solution obtained with C0-HS and a mesh of 60 × 60 elements (21720 DOFs).
The concentrated force causes a singularity in the 3D continuum model. The
maximum value of the colour map of N1 is then limited to make the comparison
clearer over the structure by leaving the singular values just under the force out,
which are also mesh-dependent.
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Figure 6.16: Clamped semi-cylinder: geometry and deformed configuration at the
last evaluated equilibrium point for [90/0/90] .

Newton MIP Newton MIP M. Newton

layup steps iters steps iters elapsed time∗ steps iters elapsed time∗

isotropic 95 382 37 138 0.36 55 216 0.20
[0/90/0] 64 253 32 113 0.44 51 195 0.27
[90/0/90] 92 380 36 142 0.37 62 255 0.23
∗ normalized with respect to Newton elapsed time.

Table 6.5: Clamped semi-cylinder: total number of steps and iterations for the
evaluation of the equilibrium path using 30× 30 C2-S4

1 elements.
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Figure 6.17: Clamped semi-cylinder: generalized stresses at λ = 2000, layup
[0/90/0].
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6.5 Summary
In this chapter, an isogeometric solid-shell formulation for geometrically nonlin-
ear analyses has been proposed. A linear through-the-thickness interpolation has
been adopted for the geometry and the displacement field. This allows the solid
model to be rewritten in a bidimensional way in terms of middle surface quantities,
semi-sum and semi-difference of the top and bottom surface ones. These are inter-
polated using 2D NURBS shape functions with each control point equipped with
six DOFs, as in standard shell models but without employing rotational DOFs.
Multi-patch structures can be easily modeled because only C0 continuity is re-
quired by the continuum model. A Total Lagrangian description is used exploiting
the Green-Lagrange strain measure, which is linearized through the thickness of
the shell in order to define the generalized quantities. This allows the use of
a modified generalized constitutive matrix which prevents thickness locking and
produces accurate results for multi-layered composites without introducing any
additional DOF. A series of patch-wise integrations for C1 and C2 NURBS have
been investigated in large deformation problems, in order to obtain an optimal
solution in terms of accuracy, efficiency and robustness. The C2-S4

1 formulation
has proved to be the best choice among those analyzed, being practically immune
to locking and also accurate for very coarse meshes and thin shells. With respect
to a mixed formulation with continuous stress shape functions, the proposal seems
more attractive because it preserves the stiffness matrix sparsity, does not require
any additional DOF, and just 2.25 integration points per element are needed.
However the proposed displacement-based model, like any displacement formula-
tion, is plagued, in geometrically nonlinear analyses, by a slow convergence of the
Newton method used in reconstructing the equilibrium path. To avoid this draw-
back a Mixed Integration Point strategy has been adopted, which gives superior
performances with respect to the standard Newton. In particular, MIP allows
very large steps without any loss in convergence and makes it possible to reduce
the iterative effort. It has been shown that the main feature of the MIP strat-
egy is its insensitivity to the slenderness of the structure which, on the contrary,
heavily affects the performance of the displacement formulation. This strategy is
so robust that a modified version of the iterative method, which evaluates and
decomposes the stiffness matrix only at the first iteration of each step, can be con-
veniently adopted. The proposed formulation is characterized by a high efficiency
from the point of view of the discrete approximation, the numerical integration
and the iterative effort, which are all crucial in geometrically nonlinear analyses.
Interested readers can find further details in [118]. As future work, it would be
interesting to extend the proposal to nonlinear dynamics, where the MIP strategy
is expected to have the same impact on the efficiency as that demonstrated in
the quasi-static case. In this context, an appropriate selection of the integration
scheme for the mass matrix should be investigated.



Chapter 7

An isogeometric formulation of
the Koiter’s theory for buckling
and initial post-buckling
analysis of composite shells

Abstract

Numerical formulations of the Koiter theory allow the efficient prediction, through
a reduced model, of the behaviour of shell structures when failure is dominated by
buckling. In this work, an isogeometric version of the Koiter method is proposed,
exploiting the NURBS-based solid-shell model derived in the previous chapter
to accurately describe the geometry and the high continuity typical of the dis-
placement field in buckling problems and to directly link the CAD model to the
structural one. A linear interpolation is then adopted through the thickness to-
gether with a modified generalized constitutive matrix, which allows us to easily
eliminate thickness locking and model multi-layered composites. Reduced inte-
gration schemes, which take into account the continuity of the shape functions,
are used to avoid interpolation locking and make the integration faster. A Mixed
Integration Point strategy makes it possible to transform the displacement model
into a mixed (stress-displacement) one, required by the Koiter method to obtain
accurate predictions, without introducing stress interpolation functions. The re-
sult is an efficient numerical tool for buckling and initial post-buckling analysis of
composite shells, characterized by a low number of DOFs and integration points
and by a simple and quick construction of the reduced model.
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7.1 Introduction

Composite shells are nowadays employed as primary structural elements in a very
wide range of applications. Their success is mainly due to the high strength/weight
ratio that is crucial for lightweight structures. The failure of such elements often
occurs because of buckling phenomena which make them sensitive to material, ge-
ometrical and load imperfections [5]. Thousands of equilibrium path evaluations
can be required in order to detect the worst imperfection case in terms of failure
load. Once discretisation techniques are applied to the continuum problem, the
arc-length nonlinear analysis is the standard approach for solving the discrete non-
linear equations, where the unknowns are the discrete degrees of freedom (DOFs)
and the load factor, and reconstructing the equilibrium path of such structures.
Although this method easily provides the desired information for assigned data, it
is too time consuming [57] and inappropriate for an imperfection sensitivity anal-
ysis with current CPUs when fine meshes are needed. Furthermore, the stacking
sequence has proven to strongly affect the buckling and post-buckling response
of the shells [4, 60, 1] and the design of an optimal layup can significantly in-
crease the load-carrying capability. Consequently, the need for an optimization
process leads to a further computational burden and requires more efficient tools
of analysis and design.

For these reasons, a great amount of research has focused on developing re-
duced order models (ROMs) based on the finite element (FE) implementation
[38, 58, 41, 42, 43, 44, 45, 59, 49, 62, 63, 64, 66] of the Koiter theory of elastic sta-
bility [7]. This numerical strategy, known as Koiter method and initially proposed
in [67, 48], is capable of furnishing, with an acceptable computational cost, an ac-
curate prediction of the limit load value and the initial post-critical behaviour for
a very large number of imperfections. From this perspective it seems to be more
effective in the design stage of slender structures.

The ROM consists in approximating the unknown fields using the initial path
tangent and restricted number m of buckling modes associated to the first buck-
ling loads and the corresponding quadratic correctives. In this way, the response
of the structure is defined by a reduced system of nonlinear equations where the
unknowns are the load factor and m modal amplitudes and the coefficients corre-
spond to 2nd, 3rd and 4th order energy variations. The most convenient aspect
of the method is that the effects of geometrical imperfections can be included a
posteriori in the reduced system of the perfect structure. A very large number
of imperfections can be considered in this way, since each of them only requires
the solution of the reduced system, with a very low computational cost (usually
fractions of seconds).

The global operations, which involve the total number of DOFs, are limited
to the construction of the ROM of the perfect structure and are comparable to
those required by a linearised buckling analysis. However, optimization processes
of geometry and layup strongly modify the structural behaviour and require rep-
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etition many times. In this case, the total computational cost is highly dependent
on the discretisation. A solid-shell FE model [16, 11, 19, 12, 13] proves to be
particularly convenient for the construction of the ROM, since it allows us to
avoid the use of finite rotations, typical of other exact [14] or co-rotational [34]
shell models, which make the evaluation of the high order strain energy variations
complex and expensive. Although a large number of locking free linear solid-shell
elements are available, their behaviour is not sufficiently accurate when modelling
curved geometry and, as a consequence, a fine discretisation is required. On the
other hand, increasing the interpolation order drastically reduces the computa-
tional convenience of the element because of the high number of DOFs and the
time consuming integration and assembly of the quantities [30].

An interesting alternative is given by the isogeometric analysis (IGA) [9, 100]
based on NURBS shape functions. In contrast to Lagrangian functions, their
most attractive feature is the possibility of elevating the order of the interpolation
with no practical change in the number of DOFs. The cost for the integration
of the quantities is also kept quite low because the high continuity of the shape
functions allows us to reduce the total number of integration points [101, 102].
Other important features are the exact reproduction of the geometry regardless
of the mesh adopted and the possibility of a simple link between the CAD model
and structural analysis. These aspects make IGA very attractive in particular in
buckling problems, where a highly continuous solution is often expected.

Despite the many advantages, some difficulties have to be overcome. Although
the use of very high order shape functions eliminates interpolation lockings, it
increases the computational efforts for the integration and the assembly of the
discrete quantities. Also the solution of the discrete problem becomes slower be-
cause the stiffness matrix sparsity decreases. For these reasons C1 and C2 NURBS
interpolations are often preferred, even though they exhibit locking phenomena.
The inter-element high continuity of the interpolation makes it no longer possible
to employ element-wise reduced integrations and strategies like Assumed Natural
Strain (ANS) [103] effectively; indeed, they only alleviate but do not completely
eliminate locking and prove to be an unsuitable choice for very thin shells. This
also happens when using mixed formulations with stress shape functions defined
at element level.

Conversely, a satisfactory cure for locking is represented by mixed formulations
where continuous stress shape functions [104, 105] are assumed. In this case, the
total number of DOFs increases with respect to the initial displacement formula-
tion and the static condensation of the stress variables, usually employed in finite
element approaches and performed at element level, can only be carried out at
patch level leading to a full condensed stiffness matrix. An effective alternative
is the use of displacement formulations with patch-wise reduced integration rules
[101] which have been shown to alleviate and, in same cases, eliminate lockings in
linear elastic problems [102] and at the same time have the additional advantage
of reducing the number of integration points. This strategy seems more attractive
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than the mixed formulation since it preserves the stiffness matrix sparsity without
introducing additional unknowns and allows a more efficient integration.

However, it has been shown in [48, 49] that the Koiter method requires a
mixed formulation in order to avoid a locking phenomenon in the evaluation of
the fourth-order coefficients of the reduced system of equations and to increase
the range of validity of the ROM, which gets worse in displacement formulations
when the slenderness of the structure increases [33, 49] and the pre-buckling path
exhibits even small nonlinearities. This aspect can also be observed in path-
following analyses [49, 10, 70] where displacement formulations lead to a slow
convergence rate of the Newton scheme when slender structures are analysed.
This is due to the bad estimate of the stresses when evaluated using extrapolated
displacements. In Koiter analysis this phenomenon is much more evident because
the equilibrium path is directly extrapolated using the ROM, and an equilibrium
error is not corrected by an iterative scheme, so affecting the accuracy of the
method. On the contrary mixed formulations avoid this drawback because the
stresses are directly extrapolated. Furthermore, the joint use of a Green-Lagrange
strain measure and of a mixed Hellinger-Reissner variational formulation [59, 49],
leads to a 3rd order polynomial dependence of the strain energy on the discrete
DOFs with the consequence of the zeroing of all the fourth order strain energy
variations.

This chapter proposes an isogeometric numerical formulation of the Koiter
theory for the analysis of composite shells which based on the solid-shell model
described in the previus chapter. To obtain the mixed description of the problem,
required by the Koiter formulation, the Mixed Integration Point (MIP) strategy is
here extended to the proposed isogeometric Koiter analysis. It consists in relaxing
the constitutive equations at each integration point, making it possible to rewrite
the strain energy of the model in a pseudo Hellinger-Reissner form. It will be
demonstrated that this approach pushes the efficiency of the Koiter analysis to
the limit and, at the same time, preserves the accuracy of the ROM without the
need for stress shape functions and the previously discussed drawback.

The chapter is organized as follows: Section 2 presents the isogeometric solid-
shell model for composite shell structures; Section 3 discusses the buckling and
initial post-buckling analysis based on the Koiter method focusing on the patch-
wise reduced integration and reformulation of the analysis based on MIP strategy;
numerical tests to validate the proposed isogeometric formulation of the Koiter
theory for the analysis of common composite structural elements are presented in
Section 4; finally the conclusions are reported.

7.2 Koiter IGA based on mixed integration points

When comparing FE formulations of the Koiter theory based on a purely displacement-
based formulation and a mixed one, it has been shown in many works (see for
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example [49, 59]) that the latter provides a superior performance. In particu-
lar, the use of stress and displacement DOFs as independent variables leads to a
more efficient construction of the ROM and makes it accurate for a wider range.
The improved accuracy is much more evident when the slenderness of the struc-
ture gets higher and the pre-critical path presents some nonlinearities. In the
IGA context as opposed to FE analysis, however, the use of a mixed formulation
is significant. In [115] it has been shown how the stress interpolation produces
locking-free solutions only when the shape functions are continuous over the patch
of elements. In this way, the total number of unknowns significantly increases due
to the extra stress variables, which cannot be condensed at element level as is
usual in the FEM context and it is not convenient. In this work, an isogeo-
metric version of the Koiter method is proposed. Some conflicting aspects are
evident. A mixed formulation would lead to an accurate Koiter analysis free from
locking, but would compromise the overall efficiency because of the extra stress
variables. On the other hand, the displacement formulation is plagued by locking
and decreases the range of validity of the ROM. Recently, in [102, 101] patch-wise
reduced integrations were successfully proposed for eliminating locking in linear
analyses with displacement NURBS interpolations. The main idea of this work
is to investigate the use of patch-wise reduced integrations to handle interpola-
tion locking in constructing the ROM using the displacement solid-shell model
derived in the previous section. The stresses at the integration points are then
chosen as independent variables inspired by the mixed integration point (MIP)
strategy proposed in [70] for path-following analyses. In this way the accuracy
and efficiency of the ROM is preserved avoiding the use of a stress interpolation.

The steps of the Koiter algorithm, described in previous chapters, are now
particularized to IGA using the MIP strategy and the patch-wise integration.

7.2.1 The nonlinear model and the numerical integration

We consider a slender hyperelastic structure subject to conservative loads p[λ]
proportionally increasing with the amplifier factor λ. The equilibrium is expressed
by the virtual work equation

Φ[u]′ δu − λp̂ δu = 0 , u ∈ U , δu ∈ T (7.1)
where u ∈ U is the field of configuration variables, Φ[u] denotes the strain energy,
T is the tangent space of U at u and a prime is used to express the Frechèt
derivative with respect to u. We assume that U will be a linear manifold so that
its tangent space T will be independent of u. When a mixed format is adopted
the configuration variables u collect both displacement and stress fields.

The displacement based IGA formulation previously presented allows us to
express the strain energy of the element as a sum of element contributions Φ[u] ≡∑
e Φe[de]

Φe[de] ≡
∫

Ωe

(1
2ε

TCεε

)
dΩe (7.2)
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where Ωe is the element domain and a numerical integration is usually adopted.

Locking and patch-wise reduced integrations

Note that the same NURBS interpolation is employed over the middle surface of
the shell for all the displacement components. As is well known, this produces
interpolation locking when low order interpolations are considered. The linear
term in Eq.(6.22) can be plagued by standard shear and membrane locking, which
then occurs even in small deformation problems. Furthermore, when a Total
Lagrangian formulation is used to describe the nonlinear behaviour a more evident
additional locking occurs as consequence of the different approximation of the
linear and the quadratic Green-Lagrange strain contributions in Eq.(6.22).

Recently, patch-wise integration rules, which take into account the inter-
element high continuity of the displacement interpolation have been proposed
[102, 101] and applied to linear elastic problems. In our opinion, these works
represent an important development in IGA. The d-dimensional target space of
order p and regularity r, labelled as Spr , is exactly integrated by a number of
≈ ((p − r)/2)d integration points per element, distributed over the patch, sig-
nificantly lower than in standard Gauss quadrature rules. Their positions and
weights are not equal for each element, but are evaluated, once and for all, in a
pre-processing phase and depend on r, p and patch mesh. The algorithms which
provide these kinds of integration rules can be found in [102, 101] and are very
efficient. Their computational burden is just a small fraction of the total cost of
a linear analysis and negligible compared to a nonlinear analysis.

The patch-wise exact integration of a given space Spr also opens up new possi-
bilities for patch-wise reduced integration schemes. In fact p and r can be selected
by the user and are not required to be those for the exact integration of the prob-
lem space. If the integration space presents spurious modes, a certain number
of quadrature points are added near the boundary elements in order to remove
them and the approximation space is said to be over-integrated and labelled as S̄pr
[102, 101]. With respect to the element-wise reduced integrations, an appropriate
selection of the patch-wise reduced integration rules makes it possible to avoid
spurious modes, alleviate or eliminate interpolation locking in the linear elastic
range and further reduce the number of integration points.

Being that in patch-wise rules the number of integration points n can be
different element-by-element, the strain energy can then be evaluated as

Φe[de] ≡
1
2

n∑
g=1

εg[de]TCgεg[de] wg (7.3)

where subscript g denotes quantities evaluated at the integration point [ξg, ηg], wg
is the product of the corresponding weight and the determinant of the Jacobian
matrix J evaluated at the integration point and Cg is Cε at the integration point.
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The use of a displacement-based IGA model is then theoretically very accurate
and efficient and represents, potentially, a reliable choice from the point of view
of the discrete approximation and the efficiency of the integration with respect to
standard FE interpolation of the same order if interpolation locking is avoided.

7.2.2 MIP strategy

In Koiter analysis, regardless of the quality of the discrete approximation, a mixed
format in stress and displacement is required to achieve accuracy and efficiency.

The fundamental idea of the MIP strategy is to relax the constitutive equations
at the level of each integration point. This is made by rewriting the strain energy
in a pseudo Hellinger-Reissner form on the element

Φe[ue] ≡
n∑
g=1

(
σTg εg[de]−

1
2σ

T
g C−1

g σg

)
wg (7.4)

where the stresses at each integration point σg are now independent variables
being

ue =


σ1
...
σn
de

 (7.5)

From the stationary condition with respect to σg we obtain the constitutive law
at the integration point g

sgσ ≡ εg[de]−C−1
g σg (7.6)

that, if substituted in Eq.(7.4), again furnishes the displacement formulation in
Eq.(7.3). This means that we only change the format, from displacement to mixed,
not the discrete approximation of the problem and the true equilibrium path
obtained with the two formulations, when a path-following scheme is adopted, is
exactly the same as the initial displacement formulation [70].

Another important consequence of the MIP rewriting of the problem equations
is that, when a Green-Lagrange strain measure is used as in the present Total
Lagrangian solid-shell model, the polynomial dependence of the strain energy on
the discrete parameters ue in the MIP format is of the 3rd order only, instead of
the 4th order of the initial displacement formulation.

7.2.3 The implementation of the Koiter method using mixed in-
tegration points

The asymptotic approach is based on a third order Taylor expansion of Eq.(6.26),
in terms of load factor λ and modal amplitudes ξi.
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7.2.4 Strain energy variations using Mixed Integration Points

In the following uig = {σig,die} will denote the vector representation on the
integration point g of ui.

The first variation of (7.4) is

Φ′eu1 =
n∑
g=1

[
σ1g
d1e

]T [
sgσ
sgd

]
wg (7.7a)

with {
sgσ ≡ εg[de]−C−1

g σg

sgd ≡ Bg[de]Tσg.
(7.7b)

and Bg[de] = Lg + Qg[de].
The second variation of (7.4) is

Φ′′eu1u2 =
n∑
g=1

{
σT1gBg[de]d2e + σT2gBg[de]d1e + σTg Qg[d1e]d2e

}
wg. (7.7c)

Letting
εQgk = dT1eΨgkd2e.

the kth component of vector Qg[d1e]d2e the following expression holds

σTg Qg[d1e]d2e ≡
∑
k

σgk ε
Q
gk = dT1eG[σg]d2e

with
G[σg] =

∑
k

σgkΨgk. (7.7d)

In matrix form the second variation of (7.4) then becomes

Φ′′eu1u2 =
n∑
g=1

[
σ1g
d1e

]T [−C−1
g Bg

BT
g Gg

] [
σ2g
d2e

]
wg

=
∑
g

uT1gKgu2g

(7.7e)

where Gg ≡ Ge[σg].
The second variation can also be written in vector form introducing the incre-

mental force vector so defined

Φ′′eu1u2 =
∑
g

uT1gs′g[u2g] with s′g[u2g] ≡
[
−C−1

g σ2g + Bgd2e
BT
g σ2g + Ggd2e

]
(7.7f)
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The third variation of the strain energy is

Φ′′eu1u2u3 =
n∑
g=1

{
σT1gQg[d3e]d2e + σT2gQg[d3e]d1e + σT3gQg[d1e]d2e

}
wg (7.7g)

that can also be written in vector form introducing the secondary force vector as

Φ′′′e δu1δu2δu3 =
∑
g

uT1gs′′g [u2g,u3g] with s′′g [u2g,u3g] ≡
[

Qg[d3e]d2e
Qg[d3e]Tσ2g + Gg[σ3g]d2e

]
(7.7h)

Note that all fourth order strain energy variations of the initial displacement
based formulation are identically zero due to the 3rd order polynomial dependence
of the strain energy on the discrete parameters.

Finally, as usual, for each element vector ye and matrix Ye the global quan-
tities are obtained using standard assemblage operations as

y =
∑
e

ATe ye, Y =
∑
e

ATe YeAe. (7.8)

while scalar quantities are simply sums of element contributions.

7.2.5 Solution of the Koiter linear systems and eigenvalue prob-
lem in condensed form

Koiter analysis requires the evaluation of a series of linear systems and an eigen-
value problem. Their solution can be obtained by static condensation of the
stress variables. This is an important aspect of the proposed IGA MIP formula-
tion which allows us to eliminate them at integration point level, maintaining the
computational cost of the displacement one.

Fundamental path

Equation (2.36a) becomes at the element level
−C−1

1 w1 L1w1
. . . ...

−C−1
n wn Lnwn

LT1 w1 . . . LTnwn 0



σ̂1
...
σ̂n
d̂e

 =


0
...
0
f e

 (7.9)

By performing a static condensation of the stress correction σ̇g, locally defined
at the integration point, we obtain

σ̂g = CgLgd̂e (7.10)

and then
Kc

0ed̂e = f e with Kc
0e =

n∑
g=1

(
LTg CgLg

)
wg (7.11)
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where the condensed element tangent stiffness matrix Kc
0e coincides with the

classical displacement-based one

Buckling problem

The buckling problem can be written as
−C−1

1 w1 (L1 + λQ1[d̂e])w1
. . . ...

−C−1
n wn (Ln + λQn[d̂e])wn

(L1 + λQ1[d̂e])Tw1 . . . (Ln + λQn[d̂e])Twn λ
∑
g Gg[σ̂g]wg



σ̇1
...
σ̇n
ḋe

 =


0
...
0
0


(7.12)

and also in this case, eliminating the stresses of the integration points

σ̇g = Cg(Lg + λQg[d̂e])ḋe

and substituting in Eq.(7.12){∑
g

(
(Lg + λQg)TCg(Lg + λQg) + λGg[σ̂g]

)
wg

}
ḋe = 0,

we obtain the element contribution to the quadratic eigenvalue problem∑
g

(Kc
0g + λKc

1g + λ2Kc
2g)ḋe = 0.

A linearized problem can also be obtained when the quadratic part of the strain
along the fundamental path Qg[d̂e] is negligible and then{∑

g

(
LTg CgLg + λGg[σ̂g]

)
wg

}
ḋe = 0.

Quadratic correctives

Finally, the linear system in Eq.(2.36d) becomes
−C−1

1 w1 B1w1
. . . ...

−C−1
n wn Bnwn

BT
1 w1 . . . BT

nwn
∑
g Ggwg


b


ˆ̂σ1
...

ˆ̂σn
ˆ̂de

 = −


Q1[d̂e]d̂e

...
Qn[d̂e]d̂e∑

g

(
Qg[d̂e]T σ̂g + Gg[σ̂g]d̂e

)


(7.13)

where subscript b on matrices denotes that they are evaluated in ubg = λb{σ̂g, d̂e}.



7.3. NUMERICAL RESULTS 195

E11 E22 = E33 ν12 = ν13 ν23 G12 = G13 G23

181e9 10.27e9 0.28 0 7.17e9 5.135e9

Table 7.1: Composite square plate: material properties.

By condensing out the stress correction at the integration points

ˆ̂σg = CgBg
ˆ̂de + CgQg[d̂e]d̂e (7.14)

we obtain the linear system in the condensed form

Kbe
ˆ̂de = −ˆ̂sc (7.15)

with

Ke[ûe] =
∑
g

(
BT
g CgBg + Gg[σg]

)
b
wg

sce[ûe] =
∑
g

(
Qg[d̂e]T σ̂g + Gg[σ̂g]d̂e + BT

g CgQg[d̂e]d̂e
)
wg

(7.16)

as the condensed tangent stiffness matrix, that has the same expression as the
classical displacement based one but directly depends on the stresses, and the
condensed secondary forces respectively.

7.3 Numerical results
The proposed numerical tool is now tested in common composite structures, such
as plates, panels and cylinders. The first goal is to test the accuracy of the isoge-
ometric solid-shell model in representing the buckling and post-buckling config-
uration. To this end, different meshes, interpolations and numerical integrations
are considered. The second goal is to assess the accuracy of the ROM built with
the proposed MIP isogeometric formulation of the Koiter method by comparing
the results with reference solutions obtained by path-following analyses based on
the full model.

7.3.1 Composite square plate under compression

The first test, depicted in Fig.7.1, is a simply supported laminated plate under
compression. The material properties are reported in Tab.7.1. The layup adopted
is [0◦/90◦]4S . The test has been studied in [64] using shell elements and in [1] by a
Ritz method. Firstly, the accuracy of the proposed isogeometric solid-shell model
is tested in the evaluation of the four lowest buckling loads, which are reported
in Tab.7.2 and Tab.7.3 for the C1 and the C2 interpolation respectively. The cor-
responding buckling modes are pictured in Fig.7.2. Different integration schemes
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Figure 7.1: Composite square plate: geometry, load and boundary conditions.

4 elm. 8 elm. 16 elm.

S̄2
0 S3

0 S4
0 ANS S̄2

0 S3
0 S4

0 ANS S̄2
0 S3

0 S4
0 ANS

1.010 1.004 1.185 1.184 1.000 1.002 1.179 1.121 1.000 1.000 1.113 1.006
1.367 ∗ ∗ 1.483 1.007 1.073 ∗ 1.439 1.000 1.006 1.561 1.064
1.348 ∗ ∗ 1.457 1.006 1.071 ∗ 1.422 1.000 1.006 1.648 1.076
1.328 ∗ ∗ 1.636 1.022 1.015 ∗ 1.591 1.000 1.007 ∗ 1.188
∗ > 2

Table 7.2: Composite square plate: first 4 normalised buckling loads for C1 inter-
polation.

are considered as well as the local ANS proposed in [103]. In particular, Tab.7.2
shows the good performance of S̄2

0 , which turns out to be the best integration
among those considered in terms of both accuracy and efficiency, providing good
results for the 8 × 8 mesh and requiring just ≈ 1 integration point per element.
Conversely, ANS and the full integration S4

0 , which require 9 and ≈ 4 integration
points per element respectively, prove to be inaccurate because of the interpola-
tion locking. It increases with the slenderness of the plate and slowly vanishes
when the mesh is refined. Moreover, Tab.7.3 shows the advantages of a higher
continuity in buckling problems, showing that the C2 interpolation with S̄3

1 and,
in particular, S4

1 integration provides good results even using a 4 × 4 mesh. S̄3
1

requires ≈ 1 integration point per element but is slightly penalized for coarse
meshes by the over-integration, while S4

1 furnishes exact results for a 8× 8 mesh
and makes use of ≈ 2.25 integration points per element. The full integration S6

1 ,
making use of ≈ 6.25 integration points per element, is unusable due to locking
phenomena that also hold for the finest mesh.

The equilibrium path in the pre-critical and initial post-critical range is re-
constructed using the Koiter method and reported in Fig.7.3 for C1 and Fig.7.4
for C2. A small geometrical imperfection ẽ with the shape of the first buckling
mode and ‖ẽ‖∞ = 0.01t is considered. In addition, a reference solution obtained
using a very fine mesh and the standard Riks method which solves step-by-step
the nonlinear equations of the full discrete model is reported. For this test, just
one buckling mode is used in the ROM of the Koiter method which, then, requires
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4 elm. 8 elm. 16 elm.

S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

1.003 1.000 1.185 1.000 1.000 1.170 1.000 1.000 1.028
1.031 1.030 1.479 1.003 1.000 1.473 1.000 1.000 1.240
1.034 1.028 1.451 1.004 1.000 1.446 1.000 1.000 1.255
1.139 1.012 1.618 1.016 1.002 1.614 1.001 1.000 1.412

Table 7.3: Composite square plate: first 4 normalised buckling loads for C2 inter-
polation.

mode 1

mode 3

mode 2

mode 4

Figure 7.2: Composite square plate: first 4 buckling modes.



198 CHAPTER 7. KOITER IGA

−3 −2 −1 0

·10−4

0

1

2

3

4 × 4 elements

u

λ

C1-S̄2
0

C1-S3
0

C1-S4
0

C1-ANS

Riks C2 64 × 64

−3 −2 −1 0

·10−4

0

1

2

3

8 × 8 elements

u

λ

C1-S̄2
0

C1-S3
0

C1-S4
0

C1-ANS

Riks C2 64 × 64

Figure 7.3: Composite square plate: equilibrium path using the C1 interpolation

that only one nonlinear equation be solved. Looking at Fig.7.3 we can note that,
although the bifurcation point is almost exact using C1-S̄2

0 , a 4× 4 mesh exhibits
a stiffer post-buckling response compared to the reference solution as consequence
of interpolation locking of the linear and quadratic strains. However, the error
becomes much lower by considering a 8× 8 mesh. Figure 7.4, on the other hand,
highlights the benefits of a higher continuity: C2-S̄3

1 and C2-S4
1 agree very well

with the reference path also for the coarsest mesh.
As a general comment, a drastic reduction in the number of DOFs is achieved

with respect to the locking free linear shell elements used in [64] for the same test.

7.3.2 Composite curved panel under compression

The second test regards a curved panel under compression whose geometry, loads,
and boundary conditions are represented in Fig.7.5. The material properties can
be found in Tab.7.4. Two different layups are considered: [0]6 and [45,−45, 0]s.
The lamination significantly influences the shape of the buckling modes as illus-
trated in Fig.7.6. The slenderness of the panel is much lower than that of the
previous test. This means that the effects of the interpolation locking are less
evident. This is confirmed by Tables 7.5, 7.6, 7.7 and 7.8 which show the con-
vergence of the first 4 linearised buckling loads. The high continuity together
with the exact representation of the geometry leads to very good results with all
the integration strategies. Again, however, the S̄2

0 for C1 and S4
1 and S̄3

1 for C2

represent the best choices in terms of accuracy and efficiency.
The study of the initial post-buckling behaviour of the panel is carried out

considering the presence of a geometrical imperfection ẽ that is a combination of
the first and the second buckling modes. In particular, it is the difference between
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Figure 7.4: Composite square plate: equilibrium path using the C2 interpolation
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Figure 7.5: Composite curved panel: geometry and boundary conditions.

E11 E22 = E33 ν12 = ν13 ν23 G12 = G13 G23

30.6 8.7 0.29 0.5 3.24 2.9

Table 7.4: Composite curved panel: material properties.
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4 elm. 8 elm. 16 elm.

S̄2
0 S3

0 S4
0 ANS S̄2

0 S3
0 S4

0 ANS S̄2
0 S3

0 S4
0 ANS

1.053 1.055 1.078 1.042 1.002 0.998 1.020 1.008 0.995 0.995 0.998 0.996
1.158 1.424 1.694 1.177 1.005 1.008 1.069 1.018 0.996 0.998 1.003 0.997
1.259 1.609 ∗ 1.299 1.009 1.035 1.124 1.039 1.003 1.004 1.012 1.003
1.408 1.746 ∗ 1.396 1.007 1.061 1.213 1.067 1.003 1.005 1.020 1.004
∗ > 2

Table 7.5: Composite curved panel: first 4 normalised buckling loads for [0]6 with
C1 interpolation.

4 elm. 8 elm. 16 elm.

S̄2
0 S3

0 S4
0 ANS S̄2

0 S3
0 S4

0 ANS S̄2
0 S3

0 S4
0 ANS

1.096 1.144 1.263 1.165 1.016 1.018 1.095 1.054 1.001 1.002 1.015 1.004
1.082 1.201 1.656 1.106 1.013 1.010 1.078 1.036 0.998 0.999 1.011 1.001
1.080 1.346 ∗ 1.333 1.007 1.010 1.157 1.061 0.998 0.999 1.010 0.999
1.235 1.456 ∗ 1.848 1.035 1.073 1.228 1.119 1.003 1.012 1.049 1.011
∗ > 2

Table 7.6: Composite curved panel: first 4 normalised buckling loads for
[45,−45, 0]s with C1 interpolation.

4 elm. 8 elm. 16 elm.

S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

0.995 1.034 1.031 1.001 1.005 1.004 1.001 1.002 1.001
1.000 1.013 1.073 1.001 1.004 1.003 1.001 1.001 1.001
1.008 1.063 1.132 1.003 1.008 1.007 1.002 1.003 1.003
1.014 1.104 1.210 1.004 1.009 1.010 1.002 1.003 1.003

Table 7.7: Composite curved panel: first 4 normalised buckling loads for [0]s with
C2 interpolation.

4 elm. 8 elm. 16 elm.

S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

0.995 1.097 1.110 1.006 1.014 1.018 1.002 1.005 1.004
1.014 1.044 1.068 1.006 1.012 1.015 1.001 1.003 1.003
1.002 1.121 1.167 1.003 1.007 1.014 1.001 1.003 1.002
1.062 1.205 1.280 1.041 1.022 1.061 1.001 1.003 1.003

Table 7.8: Composite curved panel: first 4 normalised buckling loads [45,−45, 0]s
with C2 interpolation.
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mode 1 [0]6

mode 1 [45/− 45/0]s

mode 2 [0]6

mode 2 [45/− 45/0]s

Figure 7.6: Composite curved panel: first and second buckling mode correspond-
ing to two different layups
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Figure 7.7: Composite curved panel: equilibrium path for [0]6 and C1 interpola-
tion

E11 E22 = E33 ν12 ν23 = ν13 G12 = G13 = G23

123.6 8.7 0.32 0 5.7

Table 7.9: Laminate composite cylinder: material properties.

them scaled in order to obtain ‖ẽ‖∞ = 0.1t. The Koiter solution is evaluated using
a ROM based on the first two buckling modes only, since the higher ones are far
from the first two, and it is compared with reference paths. For both the layups,
the initial post-buckling exhibits a limit load as shown in Fig.7.7 and Fig.7.8 for
[0]6 and in Fig.7.9 and 7.10 for [45,−45, 0]s. C1-S̄2

0 , C2-S̄3
1 and C2-S4

1 are the best
performing strategies, providing a good estimate of the limit loads with a 8 × 8
mesh, which become practically exact using a 16× 16 mesh.

7.3.3 Laminate composite cylinder subjected to axial compres-
sion

The cylinder considered in the following and labelled Z33 was manufactured and
tested by DLR (German Aerospace Center) and commonly used as a validation
model for numerical developments in the context of laminate composite shell de-
sign [98]. The stacking sequence is in[0/0/19/−19/37/−37/45/−45/51/−51]out
with the angles measured from the cylinder axis with respect to the outward nor-
mal. The cylinder has a height of 510, a radius of R = 250 and a wall-thickness
of t = 1.25, cf Fig.7.11. The material properties are reported in Table 7.9

The cylinder is clamped at the bottom face and only the axial translation is
allowed at the top surface. A uniformly distributed load along the top rim is
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Figure 7.8: Composite curved panel: equilibrium path for [0]6 and C2 interpola-
tion
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Figure 7.9: Composite curved panel: equilibrium path for [45/ − 45/0] and C1

interpolation
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Figure 7.10: Composite curved panel: equilibrium path for [45/ − 45/0] and C2

interpolation
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Figure 7.11: Laminate composite cylinder: model properties.

applied in axial direction. The lowest buckling loads of the perfect structure are
reported in Tab.7.10 and Tab.7.11 for the C1 and the C2 interpolation respectively.
The corresponding buckling modes are depicted in Fig.7.12. Due to problem
symmetries they occur in couples. Also for this test, C1-S̄2

0 , C2-S̄3
1 and C2-S4

1
turn out to be particularly accurate and provide good results with a relatively
coarse mesh in comparison with those usually employed in the FE analysis, as in
the previous chapters.

In evaluating the initial post-buckling behaviour a load imperfection is intro-
duced by a concentrated force halfway up the cylinder axis. By including just one
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12 elm. 24 elm. 48 elm.

S̄2
0 S3

0 S4
0 ANS S̄2

0 S3
0 S4

0 ANS S̄2
0 S3

0 S4
0 ANS

0.957 1.594 ∗ 1.658 1.003 1.041 1.200 1.056 1.000 1.002 1.015 1.001
0.960 1.596 ∗ 1.664 1.006 1.046 1.200 1.059 1.000 1.002 1.015 1.001
0.959 1.618 ∗ 1.661 1.005 1.044 1.200 1.060 1.000 1.002 1.014 1.001
0.962 1.618 ∗ 1.719 1.007 1.048 1.208 1.060 1.000 1.002 1.014 1.001
∗ > 2

Table 7.10: Laminate composite cylinder: first 4 normalised buckling loads with
C1 interpolation.

12 elm. 24 elm. 48 elm.

S̄3
1 S4

1 S6
1 S̄3

1 S4
1 S6

1 S̄3
1 S4

1 S6
1

1.156 1.120 1.245 1.003 1.011 1.007 1.000 1.001 1.000
1.176 1.127 1.245 1.003 1.011 1.007 1.000 1.001 1.000
1.175 1.150 1.266 1.002 1.012 1.006 1.000 1.001 1.000
1.183 1.150 1.278 1.002 1.012 1.006 1.000 1.001 1.000

Table 7.11: Laminate composite cylinder: first 4 normalised buckling loads with
C2 interpolation.

mode in the ROM, a good prediction of the limit load is obtained as shown in
Fig.7.13 and Fig.7.11.
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mode 1

mode 3

mode 2

mode 4

Figure 7.12: Laminate composite cylinder: first 4 buckling modes.
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Figure 7.13: Laminate composite cylinder: equilibrium path using 24× 96 mesh
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7.4 Summary
The failure of slender composite shell structure is often dominated by buckling,
while the material behavior is purely elastic. In this context, the Koiter method,
which is a numerical formulation of Koiter’s theory of elastic stability, represents
a reliable and efficient tool of analysis. While standard path-following analyses
solve the nonlinear equations of the discretized structure using all the discrete
DOFs, the Koiter method uses a discretization technique just for the construction
of a reduced model based on the first buckling modes, the corresponding corrective
modes and the associated strain energy variations. Only the reduced nonlinear
equations in a few unknowns, that is the modal amplitudes and the load factor,
are then solved in order to obtain the equilibrium path.

This work explored the use of IGA for the evaluation of the reduced model
ingredients. The continuum shell problem was formulated in a Total Lagrangian
way following the solid-shell concept, which makes it possible to avoid the use
of finite rotations employing a simple Green Lagrange strain measure. The same
interpolation was used for the geometry and displacement field. In particular,
NURBS functions were employed for the middle surface quantities, obtained by
refining those provided directly by a CAD model. Apart from the exact geom-
etry, these highly continuous functions seem very suitable in approximating the
deformed configuration of buckling problems. To maintain a low number of DOFs,
a linear interpolation was adopted through the thickness of the shells. A modified
generalized constitutive matrix was defined to prevent thickness locking and to
make it easy to consider multi-layered composites. Path-wise reduced integrations
were investigated to handle interpolation locking and to reduce the number of in-
tegration points. The mixed integration point strategy was used to re-write the
displacement-based model into a mixed (stress-displacement) one, which has been
shown to be more accurate and efficient in Koiter analyses. In particular, this ap-
proach makes it possible to avoid the evaluation of the fourth order strain energy
variations, usually required to build the reduced order model. The proposed nu-
merical framework was tested in the analysis of common thin-walled composite
structures under compression: plates, curved panels and cylinders. The results
showed that the isogeometric model is able to furnish an excellent approxima-
tion of the buckling loads, the limit loads and the initial post-buckling behavior
employing a very low number of DOFs coupled with the reduced number of inte-
gration points, which further increases the efficiency of the analysis. In particular
the C1-S̄2

0 and C2-S̄3
1 approaches proves to be convenient because it requires just

one integration point per element without spurious modes.
The resulting numerical tool is an efficient approach for the design of slender

composite shells. Further details can be found in [119]. Future developments will
investigate its use in structural optimization processes.



Conclusions

This work has considered different aspects in the numerical analysis and design of
slender shell structures. The first chapter discussed the important advantages of
using a mixed (stress-displacement) solid model for analysing slender shell struc-
tures over traditional shell models. Among them, it is worth mentioning the
possibility of using a Total Lagrangian formulation with a simple strain measure,
without dealing with finite rotations, and of modelling the connections of differ-
ent components accurately, as for instance in the case of thin-walled beams and
stiffened panels. The use of a mixed format of the equations improves the perfor-
mances of the solution strategies significantly, compared to the displacement-based
format usually adopted in commercial finite element codes. This is due to the dif-
ferent error of the linearisations used within the solution methods. In the Riks
approach, the mixed format allows us to reduce the iterative effort, while in the
Koiter method it leads to a more accurate and reliable reduced order model. The
joint use of a mixed formulation and a solid model has an interesting feature: the
strain energy becomes a third order function of the discrete degrees of freedom.
This fact was exploited in the second chapter, where a new strategy to include,
a-posteriori, geometrical imperfections in Koiter analysis was derived, overcoming
the inaccuracies of previous proposals. The main idea is to correct the reduced
model of the perfect structure in order to take account of the imperfections. As a
consequence, the imperfection effects can then be considered accurately by simply
adding some terms to the perfect structure reduced equations, which have been de-
rived coherently with the reduced model correction. A robust and efficient mixed
linear solid-shell finite element for multi-layered shells was introduced, allowing
an efficient and accurate discrete approximation and maintaining the features of
a mixed solid model. A large number of numerical tests were reported to validate
the equilibrium path provided by the new imperfection account. The proposal
made the Koiter method a reliable and efficient tool for analysing imperfection
sensitive structures. In the third chapter, the great efficiency and improved ac-
curacy of the Koiter method was used within a stochastic optimisation strategy
for composite shells. The goal is to search for the best stacking sequence that
maximises the structural performances, optimising the post-buckling behaviour.
Its feasibility is due to the reduced order model built for each material setup,
which allows us to: i) obtain optimal layups by a random scan of the fibre an-

209
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gles domain; ii) take account of the geometrical imperfections in the evaluation
of the structural response. This last point, crucial for a reliable design, was made
possible by a Monte Carlo simulation aimed at detecting the worst shape of the
imperfection, which proves to be extremely efficient because the imperfection ef-
fects are considered in the reduced order model of the perfect structure. The
optimisation of composite panels was reported as an example of the great capa-
bilities of this design tool. The study carried out in the first chapter explained
that the advantages of the mixed formulation over the displacement-based one
is not linked to the discrete approximation, but is due to the direct use of the
stresses as independent variables in the solution algorithms. Starting from this
consideration, the forth chapter extended the benefits of the mixed formulation
to any displacement-based finite element model. The idea is to introduce stress
variables in the solution process, even if the discrete approximation is governed
by displacement variables only. The proposed strategy, called Mixed Integration
Points, consists in relaxing the constitutive equations at each integration point,
where the stresses become independent variables. The size of the global quantities
is, however, preserved, because the stresses are defined locally at each integration
point. The strategy was implemented within the Newton iterative scheme with
just a few simple changes in the standard approach, but with a significant reduc-
tion in the iterative effort. The fifth chapter addressed the novel Koiter-Newton
method and, in particular, an implementation of the algorithm based on the mixed
solid-shell model. The resulting strategy is able to recover the equilibrium path
of thin-walled structures undergoing buckling using just a few true equilibrium
points. The mixed formulation plays the important role of reducing the iterative
effort to a few iterations per step. This means that a very low number of total iter-
ations are required by this Koiter-Newton approach for evaluating the equilibrium
path, preserving the accuracy of the Riks method. Although the linear solid-shell
finite element discretisation proved to be very robust and efficient, it requires
a significant number of degrees of freedom for the analysis of curved shells and
for approximating the buckling modes of compressed structures, usually charac-
terised by highly continuous shapes. This leads to significant computational times
for all the solution strategies. For this reason, the solid-shell discrete model was
reformulated in the sixth chapter, following the isogeometric concept. NURBS
functions were employed to interpolate geometry and displacement fields on the
middle surface of the shell, in order to take advantage of their high continuity and
of the exact geometry description. The extension was, however, significant, be-
cause the high continuity and displacement-based formulation lead to some issues
concerning interpolation locking and iterative effort. An effective way of over-
coming these drawbacks was presented by combining the Mixed Integration Point
strategy with a suitable patch-wise reduced integration. The isogeometric solid-
shell model proved to be much more convenient than low order finite elements,
especially in the analysis of curved shells undergoing buckling. For this reason, it
was used in the seventh chapter for constructing the reduced order model of the
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Koiter method. The proposal pushes the efficiency of the method to the limit,
because a very low number of discrete variables and integration points are needed.
To summarise, this work derived a reliable and efficient numerical framework for
the analysis and design of slender elastic shells, in particular when composite ma-
terials are adopted. Advances in the different aspects of this challenging topic
were presented, which offer the engineering community effective tools for tackling
the problem.
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