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Abstract (English)

Cyber security involves protecting information and systems from major cyber threats;
frequently, some high-level techniques, such as for instance data mining techniques,
are be used to efficiently fight, alleviate the effect or to prevent the action of the
cybercriminals.

In particular, classification can be efficiently used for many cyber security appli-
cation, i.e. in intrusion detection systems, in the analysis of the user behavior, risk
and attack analysis, etc.

However, the complexity and the diversity of modern systems opened a wide
range of new issues difficult to address.

In fact, security softwares have to deal with missing data, privacy limitation and
heterogeneous sources. Therefore, it would be really unlikely a single classifica-
tion algorithm will perform well for all the types of data, especially in presence
of changes and with constraints of real time and scalability.

To this aim, this thesis proposes a framework based on the ensemble paradigm
to cope with these problems. Ensemble is a learning paradigm where multiple learn-
ers are trained for the same task by a learning algorithm, and the predictions of the
learners are combined for dealing with new unseen instances. The ensemble method
helps to reduce the variance of the error, the bias, and the dependence from a single
dataset; furthermore, it can be build in an incremental way and it is apt to distributed
implementations. It is also particularly suitable for distributed intrusion detection,
because it permits to build a network profile by combining different classifiers that
together provide complementary information. However, the phase of building of the
ensemble could be computationally expensive as when new data arrives, it is nec-
essary to restart the training phase. For this reason, the framework is based on Ge-
netic Programming to evolve a function for combining the classifiers composing the
ensemble, having some attractive characteristics. First, the models composing the
ensemble can be trained only on a portion of the training set, and then they can be
combined and used without any extra phase of training. Moreover the models can be
specialized for a single class and they can be designed to handle the difficult prob-
lems of unbalanced classes and missing data.
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In case of changes in the data, the function can be recomputed in an incremen-
tally way, with a moderate computational effort and, in a streaming environment,
drift strategies can be used to update the models. In addition, all the phases of
the algorithm are distributed and can exploits the advantages of running on paral-
lel/distributed architectures to cope with real time constraints.

The framework is oriented and specialized towards cyber security applications.
For this reason, the algorithm is designed to work with missing data, unbalanced
classes, models specialized on some tasks and model working with streaming data.

Two typical scenarios in the cyber security domain are provided and some ex-
periment are conducted on artificial and real datasets to test the effectiveness of the
approach. The first scenario deals with user behavior. The actions taken by users
could lead to data breaches and the damages could have a very high cost. The second
scenario deals with intrusion detection system. In this research area, the ensemble
paradigm is a very new technique and the researcher must completely understand the
advantages of this solution.
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La sicurezza informatica riguarda la protezione delle informazioni e dei sistemi dalle
principali minacce informatiche; spesso, alcune tecniche di alto livello, come ad es-
empio le tecniche di data mining, vengono utilizzate per combattere e/o impedire
l’azione dei criminali informatici.

In particolare, la classificazione può essere utilizzata in modo efficiente per molte
applicazioni di sicurezza informatica, ad esempio, nei sistemi di rilevamento delle
intrusioni, nell’analisi del comportamento degli utenti, nell’analisi del rischio e degli
attacchi, ecc.

Tuttavia, la complessità e la diversità dei moderni sistemi ha creato nuove ques-
tioni difficili da affrontare.

Infatti, i software di sicurezza devono affrontare problemi di dati mancanti, di
limiti imposti dalla privacy e di dati provenienti da fonti eterogenee. Pertanto, è molto
improbabile che un singolo algoritmo di classificazione possa essere utilizzato per
tutti i tipi di dati, soprattutto in presenza di cambiamenti e con vincoli di tempo reale
e scalabilità.

Per tale scopo, questa tesi propone un framework basato sul paradigma degli
ensemble per affrontare questi problemi. L’ensemble è un paradigma di apprendi-
mento in cui più learner sono addestrati per lo stesso compito da un algoritmo di ap-
prendimento, e le previsioni dei classificatori sono combinate per affrontare le nuove
istanze. Il metodo degli ensemble aiuta a ridurre la varianza dell’errore, la polariz-
zazione, e la dipendenza da un singolo insieme di dati; inoltre può essere costruito
in maniera incrementale ed è adatto per implementazioni distribuite. Inoltre, è par-
ticolarmente indicato per il rilevamento delle intrusioni perché permette di costruire
un profilo di rete mediante la combinazione di diversi classificatori che, insieme, for-
niscono informazioni complementari. Tuttavia, la fase di costruzione dell’ensemble
potrebbe essere computazionalmente costosa ed è necessario riavviare la fase di ad-
destramento. Per questo motivo, il framework utilizza la programmazione genet-
ica per evolvere una funzione di combinazione dei classificatori che compongono
l’ensemble con alcune caratteristiche interessanti. Innanzitutto, i modelli possono
essere addestrati solo su una parte del training set, e quindi possono essere combi-
nati e utilizzati senza alcuna fase extra di training. Inoltre i modelli possono essere
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specializzati per una singola classe e possono essere progettati per gestire i problemi
di classi sbilanciate e dati mancanti.

L’analisi dei cambiamenti nel flusso dei dati necessita l’aggiornamento dei mod-
elli. Per questo scopo la funzione di combinazione può essere ricalcolata in modo
incrementale, con uno sforzo computazionale moderato e, considerando un ambiente
streaming, l’attivazione della procedura di aggiornamento può essere determinata da
algoritmi di drift detection. In aggiunta, tutte le fasi dell’algoritmo sono distribuite
e possono sfruttare i vantaggi dell’esecuzione su architetture parallele e/o distribuite
per far fronte a vincoli di tempo reale.

Il framework è orientato e specializzato per le applicazioni di cyber security. Per
questo motivo, l’algoritmo è stato progettato per funzionare con dati mancanti, classi
sbilanciate, modelli specializzati e modelli che lavorano su stream di dati.

Infine, sono stati presentati due scenari tipici del settore della cyber security e
sono stati condotti degli esperimenti su dataset artificiali e reali testando l’efficacia
del metodo. Il primo scenario si occupa della rilevazione del comportamento degli
utenti. Le azioni intraprese dagli utenti potrebbero portare a violazioni di dati e i
danni arrecati potrebbero avere un costo molto elevato. Il secondo scenario si occupa
del rilevamento delle intrusioni. In questo settore, il paradigma degli ensemble è una
tecnica nuova ed i ricercatori devono ancora comprendere appieno tutti i vantaggi di
questa soluzione.
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Introduction

In the last few years, the interest in cyber security problems is really increasing,
as cyber crime seriously threatens national governments and the economy of many
industries [22]. The complexity and the diversity of modern systems make addressing
new issues more complex and the security has gained a growing importance.

Regarding this topic, the two main common questions are “how to protect a sys-
tem” and “how to protect the users of a system”. The first issue is referred to tech-
nologies and policies to protect a system. The second one is related to protection
of of the users and to the prevention of malicious activities mainly caused by ac-
count violations. Obviously, the protection against external and malicious intrusion
is the main priority of all the system administrators. Moreover, the damages caused
from identity/credential theft are growing thanks to social engineering techniques
and phishing attacks.

Many types of systems in the industry, in communication and in cyber-physical
systems have security issues to handle. Due to complexity, a general/unique solution
is not easy to find, but the problem must be solved by multiple points of view. For
instance, the data mining techniques can be seen as a good solution for a particular
class of problems. In fact, the classification can be efficiently used for many cyber
security application, i.e. in intrusion detection systems, in the analysis of the user
behavior, risk and attack analysis, etc. However, in this particular domain, datasets
often have different number of features and each attribute could have different im-
portance and costs. Furthermore, the entire system must also works if some datasets
are not present. Therefore, it would be really unlikely a single classification algo-
rithm will perform well for all the datasets, especially in presence of changes and
with constraints of real time and scalability.

User profile classification and intrusion detection systems are common scenarios
that can be coped with the techniques presented in this work.

The first scenario is a system, which permits to divide users in groups with same
behavior and same weakness. This task is very important in modern architecture
because the complexity makes difficult to detect attack started from legitimate users.
Many data breaches come from user accounts and they are used as vehicle for more
complex attacks.
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Another common problem is represented by unauthorized intrusion in systems.
Intrusion Detection Systems (IDS) cope with the issue of detecting unauthorized ac-
cesses to computer systems and computer networks. An intrusion can be defined as
an attempt by an outsider to gain access to the target system (local or network sys-
tem). Data Mining methods and algorithms can support the detection phase of known
attacks and indeed, from this research trend, a plethora of proposals appeared in re-
cent years. Despite this, classical sequential algorithms are not suitable to capture
in real time new trends and changes in streaming data, which may denote a net-
work intrusion, as they assume that data are static and not changing due to external
modifications. In this specific application scenario, ensemble-based algorithms (e.g.,
[62]) supply some specific characteristics of great interest in the context of intrusion
detection, and, as a consequence, several ensemble-based intrusion detection tech-
niques have been proposed recently. Among well-recognized characteristics of such
class of Data Mining algorithms, some that make them particularly suitable to sup-
port intrusion detection are the following ones: (i) they can be easily implemented
in parallel/distributed architectures; (ii) they can improve the accuracy of a weak
learner; (iii) they can be specialized for the detection of a particular class; (iv) they
are particularly suitable to the special case of unbalanced datasets.

Such type of applications can be implemented effectively with a new paradigm
based on combination of multiple models.

The ensemble [17, 44] is a learning paradigm where multiple component learners
are trained for the same task by a learning algorithm, and the predictions of the
component learners are combined for dealing with new unseen instances. Among
the advantages in using ensemble of classifiers, they help to reduce the variance of
the error, the bias, and the dependence from a single dataset; furthermore, they can
be build in an incremental way and they are apt to distributed implementations. They
are also particularly suitable for distributed intrusion detection, because they permit
to build a network profile by combining different classifiers that together provide
complementary information. However, the phase of building of the ensemble could
be computationally expensive as when new data arrives, it is necessary to restart the
training phase.

To this aim, this thesis proposes a more flexible approach, and designs a dis-
tributed Genetic Programming (GP) framework, based on the distributed CellulAr
GEnetic programming (CAGE) environment [36], to evolve a function for combin-
ing the classifiers composing the ensemble, having some attractive characteristics.
First, the models composing the ensemble can be trained only on a portion of the
training set, and then they can be combined and used without any extra phase of
training. Moreover the models can be specialized for a single class and they can be
designed to handle the difficult problems of unbalanced classes and missing data.

Furthermore, in case of changes in the data, the function can be recomputed
in an incrementally way, with a moderate computational effort and, in a streaming
environment, drift strategies can be used to update the models.

In addition, all the phases of the algorithm are distributed and can exploits the
advantages of running on parallel/distributed architectures to cope with real time
constraints.
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This framework is oriented and specialized towards cyber security applications.
For this reason, the algorithm is designed to work with different type of input such
as the missing data and unbalanced classes, and with various models like one spe-
cialized on some tasks or models working with streaming data. All the approaches
described above are parts of the general framework, while two specializations, to
be applied in the previously illustrated scenarios, are presented. The first is an ar-
chitecture for a system to detect user profiles. The second one is an new software
architecture of a distributed intrusion detection system.

1.1 Thesis Overview

The Chapter 2 of the thesis describes some cyber security applications that motivated
this research. In particular, a system to identify user behavior and an intrusion de-
tection system are presented as two application scenarios that can be implemented
using the proposed framework.

Then some information about the techniques used to build the architecture and
the model are provided in the Chapter 3 along with an introduction to the problem of
missing data.

The Chapter 4 shows the most correlated works in scientific literature providing
the notions behind the formulation of the algorithm to build the ensemble; in ad-
dition, it shows the state-of-the-art of the distributed IDS. Moreover, it presents an
overview of the main architectures to build a network intrusion system along with
an overview of the main ensemble-based techniques implemented in such type of
systems.

The Chapter 5 presents the architecture of a framework for combining an ensem-
ble of classifiers. First of all, a definition of the problem and the description of the
ensemble approach is presented along with the definition of the components of the
system: the base classifiers, the combination function, the tool to build the combi-
nation function and the working principles of the approach. Then, the details of the
application scenarios addressed by this approach are described: in particular, an op-
timization to handle missing data and unbalanced classes are the first improvement
of the base algorithm. The remaining part of the Chapter presents a solution for han-
dling streaming data and some specialized models useful to detect different classes
of attacks. Lastly, a software architecture for a distributed intrusion detection system
is described.

The Chapter 6 shows the framework experimental results on artificial and some
real datasets proving the effectiveness of the proposed approach.

Finally, Chapter 7 reviews the contributions of this work, and outlines future
research to be conducted.
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Cyber security applications

Two main common questions, in the cyber security field, concern “how to protect a
system” and “how to protect the users of a system”. The first sentence is referred to
technologies and policies to protect a system. The second one is related to protec-
tion of of the users and to the prevention of malicious activities mainly caused by
account violations. Obviously, the protection against external and malicious intru-
sion is the main priority of all sys admin, today, many security breaches are caused
by escalation privileges from normal user account. Moreover, the damages caused
from identity/credential thefts are growing thanks to social engineering techniques
and phishing attacks.

Many types of systems in the industry, in communication and in cyber-physical
systems have security issues to handle.

Frequently, the word cyber security is related with credit card fraud and identity
theft. In the case of credit card fraud, an attacker obtains a person’s credit card and
uses it to make unauthorized purchases. An illecite use of a system can be observed
also with telephone calling cards. In this type of attack, someone has access to the
physical sim-card or he clones the phone number to impersonate a target person with
important security implication.

A more serious risk is the identity theft. In this case, someone assumes the iden-
tity of another person by acquiring key personal information such as social security
number, and uses that information to carry out transactions under the other person’s
name. Even a single such transaction, such as selling a house and depositing the in-
come in a fraudulent bank account, can have devastating consequences for the victim.
By the time the owner finds out it will be far too late.

One example of critical physical system that have security implications is the
smart grid, a new form of electricity network with high fidelity power-flow control,
self-healing, and energy reliability. The process to conduct a risk analysis and to up-
grade the procedure to assure an high level of security is very complicated. It requires
significant dependence on intelligent and secure communication infrastructures. It
requires security frameworks for distributed communications, pervasive computing
and sensing technologies in smart grid. The cost of an attack is very high, indeed it
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could lead to unreliable system operations, causing unnecessary expenditure, even
consequential disaster to both utilities and consumers.

Many of these problems can use data mining techniques to deal with cyber se-
curity issues. For instance, considering the attacks to building and critical infrastruc-
tures such as power grids and telecommunication systems, these techniques could be
applied to identify suspicious individuals and groups, and to discover which individ-
uals and groups are capable of carrying out malicious activities. They can be used
also for protecting computer and network systems from corruption due to malicious
software or in softwares for intrusion detection and auditing.

To this aim, in this Chapter two scenarios are presented as use cases for cy-
ber security applications. In both cases, a distributed implementation in a platform
ensemble-based can achieve excellent results and guarantee a boost of performance
with a low resources requirement. The first example shows a system to divide users in
groups with same behavior and same weakness. The second example is a distributed
architecture for an intrusion detection system.

2.1 Users profile classification

Many works present in literature [88], [99] remarked that most serious threats and
vulnerabilities concern the user and its wrong behaviors. In modern payment sys-
tems, the user is often the weakest link in the security chain. Indeed, in 2015, ac-
cording to Kaspersky Lab research1, 73% of organizations had internal data breach
issues that can severely compromise their business. Typical examples are the use of
insecure passwords, saving critical data not encrypted on a notebook. In particular
for e-payment systems, the users, the operators and even the top managers of these
systems are often unaware of the risks associated with vulnerabilities enabled by
their behavior and that can be dangerous. Therefore, a system for the protection of
payment systems cannot be separated from analyzing the vulnerabilities related to
users and the appropriate countermeasures must be undertaken.

In light of these considerations, it is a very hard task to identify the key vulner-
abilities associated with the user behavior and to implement a number of measures
useful to protect the payment systems against these kinds of vulnerabilities.

A scalable solution for operating with the security weaknesses derived from the
human factor, must consider a number of critical aspects, such as profiling users
for better and more focused actions, analyze large logs in real-time and also works
efficiently in the case of missing data.

Data mining techniques could be used to fight efficiently, to alleviate the effect or
to prevent the action of cybercriminals, especially in the presence of large datasets. In
particular, classification is used efficiently for many cyber security applications, i.e.
classification of the user behavior, risk and attack analysis, intrusion detection sys-
tems, etc. However, in this particular domain, datasets often have different number
of features and each attribute could have different importance and cost. Furthermore,

1 https://blog.kaspersky.it
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the entire system must also work if some features are missing. Therefore, a single
classification algorithm performing well for all the datasets would be really unlikely,
especially in the presence of changes and with constraints of real time and scalabil-
ity. In the ensemble learning paradigm [17][44], multiple classification models are
trained by a predictive algorithm, and then their predictions are combined to classify
new tuples.

In order to protect systems, in particular e-payment systems which are the main
target for cyber-criminal, from the problems concerning the user behavior, as a proof
of concept, a general architecture was designed and it is based on the paradigm of
the ensemble. It is useful to monitor the user behavior, divide the users of a payment
system into pre-defined classes according to the type of vulnerability enabled and
to make possible to address suitable actions (information campaigns, alerts, etc.)
towards targeted users of a specific group. Typically, the data useful to classify the
user presents many missing features. To overcome this issue, a classification tool
was also used, based on artificial intelligence and adopting a meta-ensemble model
to operate efficiently with missing data.

2.1.1 Methods for classifying user profiles

The inspiration of the approach to design an architecture for a system to assign a
profile of risk to each user of a service comes from a project on cyber security, in
which one of the main tasks consists in dividing the users of an e-payments systems
into homogenous groups on the basis of their weakness or vulnerabilities from the
cyber security point of view. In this way, the provider of an e-payment system can
conduct a different information and prevention campaign for each class of users,
with obvious advantages in terms of time and cost savings. In addition, specialized
security policies can be conducted towards the users of a specific class.

This technique is usually named segmentation, i.e. the process of classifying cus-
tomers into homogenous groups (segments), so that each group of customers shares
enough characteristics in common to make it viable for a company to design spe-
cific offerings or products for it. It is based on a preliminary investigation in order to
individuate the variables (segmentation variables) necessary to distinguish one class
of customers from others. Typically, the goal is to increase the purchases and/or to
improve customer satisfaction.

Different techniques can be employed to perform this task; in order to cope with
large datasets, the most used are based on data mining approaches, mainly clustering
and classification; anyway, many other techniques can be employed (see [48] for a
survey of these techniques). The authors describe the result of the traditional machine
learning techniques applied to a collection of data representing the users interests.
The main downside of that approach is the limited reuse of the model learned. The
WebMate algorithm is an incremental clustering approach adopted to understand
topic of a set of web documents. The WebAce algorithm maps visited URL of a
group of users to a vector and cluster together the users with "similar" behavior: i.e.
users visiting same sites. Both approaches are limited to identify user profile in term
of users visiting pages with shared topic or users visiting same sites. The models
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are not easily adaptable to new contests. Same consideration can be applied to [54]
in which the algorithm requires a sequence of predefined actions with an associated
frequency.

Another issue to be considered in order to construct the different profiles is the
information collection process used to gather raw information about the user, which
can be conducted through direct user intervention, or implicitly, through software
that monitors user activity. Finally, profiles maintaining the same information over
time are considered static, in contrast to dynamic profiles that can be modified or
improved over time [46].

In the general case of computer user profiling, the entire audit source can in-
clude information from a variety of sources, such as command line calls issued
by users, system calls monitoring for unusual application use/events, database/file
accesses, and the organization policy management rules and compliance logs. The
type of analysis used is primarily the modeling of statistical features, such as the
frequency of events, the duration of events, the co-occurrence of multiple events
combined through logical operators, and the sequence or transition of events. An
interesting approach to computer user modeling is the process of learning about or-
dinary computer users by observing the way they use the computer. In this case, a
computer user behavior is represented as the sequence of commands she/he types
during her/his work. This sequence is transformed into a distribution of relevant sub-
sequences of commands in order to find out a profile that defines its behavior. The
ABCD (Agent behavior Classification based on Distributions of relevant events) al-
gorithm discussed in [54] is an interesting approach using this technique.

2.2 An introduction to intrusion detection systems

This Chapter shows some common applications in the cyber security fields. The
intrusion detection systems are an example of that applications and the distributed
implementations are very attractive, so one feature of the proposed framework is
to detect network intrusions. To this aim, an analysis of the main characteristics of
an intrusion detection system together with the most common implementations are
presented in the following.

2.2.1 The problems of modern NIDS architecture

Network Intrusion Detection Systems (NIDS) are usually distinguished in signature-
based or misuse-based intrusion detection systems and anomaly-based intrusion de-
tection systems. In the misuse based approach, that can be summarized as “detect
what I know”, when an attack has been discovered, the different steps of the attack
are encoded in a signature, then the signature is stored in a database and finally it
is used by the system to detect the attacks. On the contrary, anomaly-based systems,
first try to model the normal behavior of the system to be protected, and then gen-
erate an alarm when a significant deviation from this normal behavior is detected.
However, it is problematic to define opportunely how significant the deviation is in
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these kinds of systems, as it is necessary to find a trade-off between generating a
large number of false alarms and letting some attacks elude the system.

As a consequence of our interconnected society and also due to the increased
speed of the underlining network connections (gigabits per second) [63], computer
network activities, human actions, systems, etc. generate large amounts of data and
network traffic (typical examples of these streaming data in this particular domain are
network logs, credit card transactional flows, and sensor network data). Indeed, this
aspect must be seriously taken into account in designing modern NIDSs, which have
to handle these large and fast-changing data. Typically, data mining-based algorithms
are among the most used to this aim [33]. However, the ever-changing nature, the
high volume of these data, the large amount of storage necessary, etc. can put in
crisis traditional sequential data mining algorithms, as they are not able to capture
new trends in the stream. In fact, traditional algorithms assume that data is static,
i.e. a concept, represented by a set of features, which does not change because of
modifications of the external environment.

A more flexible approach is that of ensemble-based algorithms [62], which have
been stimulating an increasing interest in the intrusion detection community as they
have some characteristics of interest in this particular domain. Indeed, they can be
easily implemented in parallel/distributed architectures, improve the accuracy of a
weak learner, can be specialized for the detection of one particular class and are
particularly suitable to the case of unbalanced datasets.

In the last few years, distributed computing has considerably changed due to the
emergence of new environments, such as grid and cloud computing. In particular, the
Cloud Computing paradigm has enormous potential for intrusion detection systems.
The availability of distributed resources on demand permits data and computational
power to be accessible, previously hardly obtainable, and make it possible to deal
with complex problems with real-time constraints. Furthermore, even for industries
or institutions that do not have the opportunities to use expensive clusters, it is pos-
sible to design and to execute massively parallel algorithms also by exploiting the
potentialities of the modern multicore CPU and GPU-based architectures.

The increase in the volume of data that need to be processed tends to push the
computational load that the underlying hardware needs to sustain to its limits. Indeed,
recall that in order to be really useful a NIDS should work in real time, and it needs
to sustain the analysis of the data stream involved without saturating all the resources
available.

Moreover, increased network connections also mean an increase in the number of
alarms generated, especially in the case of signature-based NIDS. As a consequence,
there is an ever increasing need for solutions that do not overwhelm human operators
with a number of unmanageable alarms. Finally, NIDSs need to be capable of dealing
with new undocumented attacks, for which a signature is not already available, i.e.,
the 0-day attacks.
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2.2.2 NIDS environment and ensemble-based techniques

In the field of cyber security applications, the NIDS are one of the main systems that
can see an enhancement using ensemble-based algorithm. Detecting malicious action
with data mining techniques is a growing trend because they can handle efficiently
complex and distributed attack. So, the ensemble-based algorithms combined with
modern data mining techniques can be implemented in a parallel/distributed envi-
ronment with success and in a straightforward way. In this section the main methods
for the intrusion detection systems are reviewed to rough out the state-of-the-art.

More in detail, this review aims not only to analyze supervised data mining al-
gorithms, but also works based on anomaly detection and, in particular on clustering
suitable to operate in an environment that requires the analysis of data streams in
real-time. Sharing knowledge across multiple nodes is another of the key points in
designing appropriate NIDS systems and for this reason, collaborative IDS were also
included in this study.
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Background

Before the presentation of the framework, some information about the techniques
applied in the implementation and some background on the missing data problem are
provided in this Chapter. In particular, the technique used to implement the proposed
framework is based on Genetic Programing and it is used to compute the combining
function of the ensemble. Then an introduction of the ensemble paradigm is also
provided.

3.1 Evolutionary algorithms and Genetic Programming

Evolutionary algorithms (EA) are heuristics that mimic the processes of natural evo-
lution in order to solve global search problems. Whereas a more traditional opti-
mization technique starts from a single solution with iterative improvements, the EA
algorithms search in a "population" of solutions to find an optimum. The search is an
application of different operators like recombination, crossover and mutation, each
one generate new solutions that are biased towards different regions of the search
space. In the following reference is made to a particular branch of EA: the Genetic
Programming.

Genetic programming (GP) [61] is an extension of genetic algorithms (GAs) that
iteratively evolves a population of (typically) trees of variable size, by applying vari-
ation operators. Each individual encodes a candidate solution and is associated with
a fitness value that measures the goodness-of-fit of that solution.

The combination function of the ensemble used in the architecture defined in
this thesis is a tree of simple operators. The choice to use a GP tool is a natural
consequence of the tree nature of the combination function.

GP starts from a population of computer programs and make only best fit pro-
grams survive during the evolution. The programmer of the system must choose the
functions and the terminals necessary to solve the problem and a fitness function that
represents the program’s ability to perform the task. The search space will be com-
posed from all the possible programs generated recursively from the functions and
the terminals chosen. A computer program (individual) is represented as a parse tree.
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Genetic programming uses four main steps to solve problems:

1. Generate an initial population of random compositions of the functions and ter-
minals of the problem (computer programs).

2. Execute each program in the population and assign it a fitness value according
to how well it solves the problem.

3. Create a new population of computer programs by applying genetic operators
(mutation, crossover, etc.) to some selected tree (best fit trees are selected most
likely)

4. The best computer program that appeared in any generation, the best-so-far so-
lution, is designated as the result of genetic programming.

Steps 2 and 3 are repeated until a maximum number of generations is reached
or a termination criterium is met (problem is solved exactly or error is less than a
threshold).

The most frequent operators of GP are mutation and crossover applied to a tree.
The first one chooses a random point in the tree and it create a new random tree
linked to the that point. The crossover operator chooses two random points in two
different trees and exchanges the respective subtree.

Large sizes of population and a sufficient number of generations are the main
problems of the GP. Also the necessity of high computational resources, both in
terms of memory, to store large populations of trees, and in terms of time, to evalu-
ate the fitness of the individuals in the population, may degrade the GP performance
drastically or make the algorithm inapplicable when it must cope with large difficult
problems. The modern distributed architectures partially solve or alleviate this prob-
lem, for this reason the GP tools are a good choice to find optimum or sub-optimum
solutions.

3.1.1 Parallel implementation of a GP tool

The generation of combining function is computed by a tool based on Genetic Pro-
gramming. A simple option is represented by a distribueted tool named Cage. Cage
is based on a cellular model to parallelize GP. The cellular model is fully distributed
with no need of any global control structure and it is naturally suited for implemen-
tation on parallel computers. In this model, the individuals of the population are lo-
cated on a specific position in a toroidal two-dimensional grid and the selection and
mating operations are performed, cell by cell, only among the individual assigned
to a cell and its neighbors. This local reproduction has the effect of introducing an
intensive communication among the individuals that could influence negatively the
performance of the parallel implementation of GP. Moreover, unlike genetic algo-
rithms, where the size of individuals is fixed, the genetic programs are individuals
of varying sizes and shapes. This requires a large amount of local memory and in-
troduces an unbalanced computational load per grid point. Therefore, an efficient
representation of the program trees must be adopted and a load balancing algorithm
must be employed to maintain the same computational load among the processing
nodes.
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CAGE implements the cellular GP model using a one-dimensional domain de-
composition (in the x direction) of the grid and an explicit message passing to ex-
change information among the domains. The one-dimensional decomposition per-
mits to achieve a small number of messages sent. The concurrent program that im-
plements the architecture of CAGE is composed of a set of identical slice processes.
No coordinator process is necessary because the computational model is decentral-
ized completely. Each slice process, which contains a portion of elements of the
grid, runs on a single PE of the parallel machine and updates all the individuals of
the subpopulation.

Cage has many parameters that change its behavior such as the population size,
the max depth that the trees can have after the crossover, the parsimony factor, the
number of iterations, the number of neighbors of each individual, and the replace-
ment policy.

The parsimony factor parameter measures the complexity of the individuals pe-
nalizing the solutions with many members. The increase of the value is tied to a more
simple solutions, although can affects negatively the results.

The size of the subpopulation of each slice process is calculated by dividing the
population for the number of the processors on which CAGE is executed. Each slice
process updates the individuals belonging to its subgrid sequentially.

Because of the data decomposition, physically neighboring portions of data are
allocated to different processes. To improve the performance and to reduce the over-
head due to the remote communications, a local copy of boundary data in each pro-
cess is introduced. This avoids remote communication more than once on the same
data.

3.2 The problem of missing data

One of the main problems of modern cyber security applications is how to handle
the missing data. Different missing patterns can be considered to model the problem.
Missing completely at random (MCAR), to describe data, in which the complete
cases are a random sample of the originally dataset, i.e., the probability of a feature
being missing is independent of the value of that or any other feature in the dataset;
missing at random (MAR) describe data that are missing for reasons related to com-
pletely observed variables in the data set. Finally, the MNAR case considers the
probability that an entry will be missing depends on both observed and unobserved
values in the data set. Therefore, even if MCAR is more easy to handle, the most
interesting case is the MAR case, as it is a more realistic model and it is suitable to
many real-world applications, i.e. weather forecast with multiple source of data and
each one can be missing (many features belong to each sources).

Data mining and in particular classification algorithms must handle the problem
of missing values on useful features. The presence of missing features complicates
the classification process, as the effective prediction may depend heavily on the way
missing values are treated. The performance is strictly related to rates of missing
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data: a low rate (typically less than 5%) is generally considered manageable, while
higher rate can be very problematic to handle.

In a scenario where the data comes from multiple sources, the most common
hypothesis is to consider the missing values are present in both the training and the
testing data as the same sources of data are not available for all the instances of the
dataset. However, without any loss of generality, it is more easy to suppose that the
training dataset is complete. Even in the case of the presence of a moderate number
of tuples presenting missing data, it can be reported to the previous case, simply
by deleting all the incomplete tuples. However, handling missing data by eliminating
cases with missing data will bias results, if the remaining cases are not representative
of the entire sample. Therefore, different techniques can be used to handle these
missing features (see [67] for a detailed list of them).

The easiest way to handle missing data is the listwise deletion method: only com-
plete records are retained, others are removed from dataset. Although it is very sim-
ple, it has two main drawbacks. Firstly, with real data where missing are frequently
many tuples must be discarded and the worst scenario is a dataset with no complete
tuple: in this case, after the method elaboration, the dataset becomes empty. The
second problem is the computation of statistics: the result of a statistical operator is
biased even with a very low rate of missing data.

An alternative to deletion is the imputation, i.e. the missing value is replaced
by an estimation. The most simple way to find a replacement value is to use the
most common value in the attribute domain or the mean value. The result is altered
significantly because the model gives a greater importance to a mean value which is
not the real mean; indeed, with this approach the standard deviation of the attribute
is underestimated.

Some improvements are proposed to mitigate these problems. Multiple imputa-
tion computes several values for each missing item, while local imputation methods
are based on local knowledge to find the estimation. As example, the hot deck impu-
tation finds an estimation of the attribute within all tuples of the same class. These
approaches reduce but not eliminate the drawback of the imputation task but the re-
sults depend from the missing rate. When the missing data increase, the effectiveness
of the method is reduced.

A statistical approach can be used to estimate a missing value. The EM (Expec-
tation Maximization) algorithm is a well-known approach to estimate the parame-
ters of a PDF (probability density function) of an incomplete sample. This approach
presents two main problems: the distribution of the samples could be not known (it is
a required parameter of EM) and the method is an iterative algorithm cpu-intensive
not suitable for large dataset.

The above-mentioned strategies handles missing data by removing any tuple with
missing values or replacing the missing value with a meaningful estimate. Another
approach is to build models can handle missing data natively. Indeed, with MAR type
problems where groups of features are missing (which is the focus of this thesis),
multiple classifiers can be trained on dataset partition that have no missing data and
the classification is the result of the combination of single predictions. In this way,
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the model can handle missing data directly without the need of replacing/estimating
the missing value.

To understand the MAR problem in which multiple sources are combined to form
the input of the system, the problem is described as following.

Given D1,D2, . . . ,Dk datasets; typically each dataset comes from a different
source of data, but can be used to predict the same class. Therefore, the correspond-
ing ith tuple of the different datasets can be used to predict the class of the same
instance. However, a particular tuple of a dataset can be missing, i.e., all the features
belonging to the same source of data of that tuple are missing.

However, without any loss of generality, even a problem of missing features of
an incomplete dataset can be reported to the previous one, by grouping tuples with
the same missing features.

If we consider a dataset
D = {(x1i,x2i, ...,xdi), i = 1..N}
the dataset is incomplete if at least one entry in [1,d] is missing.
For instance, consider the incomplete dataset represented in Table 1 consisting

of 6 tuples and 5 features.

Table 3.1. An incomplete dataset of 6 tuples and 5 features.

N x1 x2 x3 x4 x5
1 ? ?
2 ?
3
4 ? ?
5 ?
6

This dataset can be partitioned in complete datasets by grouping features having
the same missing features. A possible partition could be the following; D1 = {1,4}
considering the features x1, x2 and x5, D2 = {2,5} considering the features x1, x3,
x4 and x5 and D3 = {3,6} considering all the features. Then, each complete dataset
obtained can be used as training set for a classifier algorithm and the different models
obtained can be used to classify each tuple. The problem of decomposing the dataset
could become complex whether the missing features follows a random pattern and
cannot be easily grouped in order to decompose the original datasets in a few com-
plete datasets. In this case, the technique illustrated in this thesis is not adequate.
However, it is difficult to find a single technique that can handle all types of missing
feature. In this thesis the focus is on a pattern of missing data that covers a large
number real applications in which a group of features come from the same source of
data and potentially can be all missing.
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3.3 Ensemble-based techniques

For the classification problems, the ensemble-based techniques permit to combine
multiple (heterogeneous or homogeneous) models in order to classify new unseen
instances. In practice, after a number of classifiers are built usually using some parts
of the original dataset, the predictions of the different classifiers are combined and
a common decision is taken. Different schemas can be considered to generate the
classifiers and to combine the ensemble, i.e. the same learning algorithm can be
trained on different datasets or/and different algorithms can be trained on the same
dataset.

The best known and used ensemble-based algorithm is the boosting algorithm,
first introduced by Schapire [83] and Freund [84]. In order to boost the performance
of any “weak" learning algorithm, i.e. an algorithm that “generates classifiers which
need only be a little bit better than random guessing" [84], the boosting method
adaptively changes the distribution of the training set according to how difficult each
example is to classify. This algorithm, in common with many ensemble-based al-
gorithms, has the drawback of needing to repeat the training phase for a number of
rounds and that is really time-consuming in the case of large datasets or not practi-
cable in the case of real-time requirements, i.e. in the intrusion detection domain. On
the contrary, other variants of ensemble-based algorithms use functions to combine
the classifiers that do not need to reuse the original training set. The majority vote is
a classical example of this kind of combiner function, but there are many other func-
tions with this property and they are named non-trainable combiners [62]. Combiner
functions having this property considerably reduces the time requirements needed to
compute them, as it is not necessary to reuse the training set in this phase.

The information fusion approach, which combines information coming from dif-
ferent sources in order to build new aggregate features or to enhance the solution
of a problem, may permit to solve better or more efficiently an IDS task [30]. In
fact, different aspects can motivate the use of information fusion for this kind of
problems, i.e., information may be present at multiple abstraction levels and may
be collected from multiple sources, different abstraction levels can be present in the
data, it is effective in increasing timeliness of attack identification and in reducing
false alarm rates and usually obtain high detection rate, etc. A typical example of ap-
plication based on information fusion is a software for sensor data analysis: the data
collected by sensors can be generated in different environment and with different
features. However, as an additional computational overhead must be also taken into
account to process these different sources, a fast and effective fusion of information
is fundamental to enhance the value of the classification and clustering task and the
computational cost of the process must be taken into account. Many fusion-based
techniques can be applied to the intrusion detection task. An interesting classifica-
tion [8] considers three cases depending whether the algorithm operates at the level
of the data (data level), of the features (feature level), and of the final decision (deci-
sion level). Indeed, some methods try to consider the semantic groups in which the
high dimensionality space of the features is divided or the hierarchical abstraction
levels or the type of information contained. Furthermore, as the intrusion detection
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task can be computationally expensive, many of the information fusion-based ap-
proaches adopt non-trainable functions to combine the classifiers.

An approach of network intrusion detection based on five decision fusion algo-
rithm is presented in [47]. The algorithm combines data of the transmitted content,
the information about connections and the statistics about traffic related to the same
service. For each source, multiple classifiers are trained and their results are com-
bined by a fusion rule. In the paper, five different method are presented along with
an experimental comparison. The reported results showed that dynamic classifier se-
lection approach provides a better trade-off between generalization abilities and false
alarm generation.

Another example of algorithm that process multiple sources of data is dLEARNIN
[75]. It is an ensemble of classifiers based on a combining function that try to mini-
mize the cost of classification errors. In order to minimize the cost of classification,
the algorithm computes a cost matrix on validation data and uses these informations
to find the best thresholds for each class. Then the classification of an instances is
based only on the classifiers that exceed the threshold; if none or multiple outputs
satisfy this requirement, then a voting algorithm is used to find the final decision.

HMMPayl [4] is an example of fusion-based IDS, where the payload is rep-
resented as a sequence of bytes; but to reduce the computational complexity, only
a small percentage of the sequences (randomly sampled) are used. The analysis is
performed using Hidden Markov Models (HMM). HMMPayl follows the Multiple
Classifiers System paradigm to provide better classification accuracy, to increase the
difficulty of evading the IDS, and to mitigate the weaknesses due to a non-optimal
choice of HMM parameters.

IDSs benefit from using information fusion and ensemble-based algorithms for
a number of reasons. First, these techniques perform well both when data are very
scarce and when we have a huge amount of data; furthermore, they can be easily
implemented in efficient computing environments such as parallel, multi-core, and
GPGPU architectures and also on P2P and Cloud computing environments. In ad-
dition, they can easily model different abstractions or parts of a network, i.e., some
models can be trained on some parts or on some levels of the network and finally
combined together, to assure a better prediction.

3.4 Combining ensemble of classifiers

In this section, a general schema for combining an ensemble of classifiers is shown
and the introduction of the concept of "non-trainable functions", that can be used
in order to combine an ensemble of classifiers without the need of a further phase
of training, is presented. Then, the distributed GP framework used to evolve the
combining function of the ensemble is illustrated.

3.4.1 Ensemble of classifiers and non-trainable functions

Ensemble permits to combine multiple (heterogenous or homogenous) models in or-
der to classify new unseen instances. In practice, after a number of classifiers are
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built usually using part of the dataset, the predictions of the different classifiers are
combined and a common decision is taken. Different schemas can be considered to
generate the classifiers and to combine the ensemble, i.e. the same learning algo-
rithm can be trained on different datasets or/and different algorithms can be trained
on the same dataset. The framework is based on schema shown in Figure 3.1, in
which different algorithms are used on the same dataset in order to build the differ-
ent classifiers/models.

Fig. 3.1. A general schema for combining ensemble of classifiers

A formalization of this approach is described in the following.
Let S = {(xi,yi)|i = 1, . . . ,N} be a training set where xi, called example or tuple

or instance, is an attribute vector with m attributes and yi is the class label associated
with xi. A predictor (classifier), given a new example, has the task to predict the class
label for it.

Ensemble techniques build g predictors, each on a different training set, then
combine them together to classify the test set. As an alternative, the g predictors
could be built using different algorithms on the same/different training set.

The combining function is composed by operators that does not need to be trained
on data and consequently, the ensemble is ready for operation as soon as the base
classifiers are trained. These functions are named non-trainable combiners [62] and
could be used as functions in a genetic programming tree.

To understand how the algorithm works, some definitions are useful.
Let x ∈ RN be a feature vector and Ω = {ω1,ω2 ...,ωc} be the set of the possible

class labels. Each classifier hi in the ensemble outputs c degrees of support, i.e., for
each class, it will give the probability that the tuple belong to that class. Without
loss of generality, all the c degrees are in the interval [0,1], that is, hi : RN → [0,1]c.
Denote by Hi, j(x) the support that classifier hi gives to the hypothesis that x comes
from class ω j. The larger the support, the more likely the class label ω j. A non-
trainable combiner calculates the support for a class combining the support values
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of all the classifiers. For each tuple x of the training set, and considering g classifiers
and c classes, a Decision Profile matrix DP can be build as follow:

DP(x) =

H1,1(x) ... H1, j(x) ... H1,c(x)
Hi,1(x) ... Hi, j(x) ... Hi,c(x)
Hg,1(x) ... Hg, j(x) ... Hg,c(x)


where the element Hi, j(x) is the support for j-th class of i-th classifier.

The functions used in this approach simply combine the values of a single column
to compute the support for j− th class and can be defined as follow:

µ j(x) = F [H1, j(x),H2, j(x), ...,Hg, j(x)]
For instance, the most simple function we can consider is the average, which can

be computed as: µ j(x) = 1
g ∑

g
i=1 Hi, j(x)

The class label of x is the class with maximum support µ .
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Related works

In this section, an overview of the related work to evolutionary algorithms and intru-
sion detection approaches is presented. The study of these techniques is a preliminary
work to design of an architecture for the systems proposed in this thesis.

In the first part of this Chapter two topics are addressed. The first topic shows
related approaches about missing data and incomplete data. The main works that
handle these problems are described. Then, the works about evolutionary algorithms
applied to ensemble based model are presented. The same technique is used to com-
bine base classifiers in the proposed framework.

In the second part of the Chapter, related works about ensemble paradigm are
presented. Similar approaches as well as the different techniques to combine ensem-
ble are described.

Moreover, the main implementations of distributed IDS are presented and they
become the base reference for the design of the IDS architecture presented in Chap-
ter 5. The paragraphs describes different types of IDS: distributed and collaborative
implementations, applications based on data mining approaches, and solutions de-
signed for high performance computing.

4.1 Works on incomplete datasets and related approaches

In this section, an analysis of the main methods to cope with missing data and in-
complete datasets and a general schema for combining an ensemble of classifiers
and the concept of "non-trainable functions" that can be used in order to combine an
ensemble of classifiers without the need of a further phase of training is presented.

4.1.1 Incomplete datasets and missing data

Several approaches use the ensemble as method to cope with incomplete and/or un-
balanced data. Most of the analyzed approaches employ a high number of resources
to generate the function and therefore, their usage is not particularly recommended
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for large real datasets. Moreover, most of them require to process the training set in
the phase of generating the combiner function, with a considerable overhead. Other
approaches do not use the training set, however, they builds a number of random
subsets of the features of the original dataset and therefore, its application is prob-
lematic when the number of features is high. In this Section some examples of that
approaches are introduced and an analysis of the missing data problem is presented.

Chen et al. [24] use multiple ensembles to classify incomplete datasets. Their
strategy consists in partitioning the incomplete datasets in multiple complete sets
and in training the different classifiers on each sample. Then, the predictions of all
the classifiers could be combined according to the ratio between the number of fea-
tures in this subsample and the total features of the original dataset. This approach is
orthogonal to our and therefore, it could be included in our system.

Another approach to cope with incomplete datasets can be found in [98]. The
authors build all the possible LCP (Local Complete Pattern), i.e., a partition of the
original datasets into complete datasets, without any missing features; a different
classifier is built on each LCP, and then they are combined to predict the class label,
basing on a voting matrix. If a dataset presents missing values for many attributes,
this approach requires to build partitions for each combination of attributes: the result
is an increasing of the complexity of the overall process.

An LCP is a subset of feature such that a portion of original data expressed
in term of that features does not contains missing data. As example, if a dataset
is defined by attributes {x1,x2,x3,y} where y is the label and contains the tuples
[a(5,6,?,1),b(3,4,9,1),c(?,3,5,0),d(?,7,5,0)] where ? denotes missing value; one
LCP could be the subset defined by the features {x1,x2} and contains the tuple [a,b];
another one could be defined by features {x2,x3} and contains the tuples [b,c,d].

The experiments compared the proposed approach with two techniques to cope
with missing data, i.e., deletion and imputation, on small datasets and show how
the approach outperforms the other two techniques. However, the phase of building
the LCP could be really expensive. Also considering the size and the dimensionality
of data collected by modern software, the time and resources required to find and
process all possible LCP represent an unacceptable limit.

Learn++.MF [80] is an ensemble-based algorithm with base classifiers trained
on a random subset of the features of the original dataset. The approach generates
a large number of classifiers, each trained on a different feature subset. Each clas-
sifier is trained on instances with no missing data for the selected features subset.
In practice, the instances with missing attributes are classified by the models gener-
ated on the subsets of the remaining features. The algorithm uses a majority voting
strategy in order to assign the correct class under the condition that at least one clas-
sifier must cover the instance. When the number of attributes is high, it is unfeasible
to build classifiers with all the possible sets of features; therefore, the subset of the
features is iteratively updated to favor the selection of those features that were pre-
viously undersampled. However, even with this optimization that reduce the number
of classifier to train, the number of learners required to achieve good results remains
high, particularly when there are many features with missing values, and this limits
the real applicability of the approach to datasets with a low number of attributes.
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Indeed, the results presented by the authors show the decreasing of the performance
when a dataset with many features is processed. These aspect must be addressed by
all modern frameworks.

4.2 Ensemble and evolutionary algorithms for classification

Evolutionary algorithms have been used mainly to evolve and select the base classi-
fiers composing the ensemble [74, 37] or adopting some time-expensive algorithms
to combine the ensemble [87]; however a limited number of papers concerns the evo-
lution of the combining function of the ensemble by using GP, which are illustrated
in the following.

Chawla et al. [89] propose an evolutionary algorithm to combine the ensemble,
based on a weighted linear combination of classifiers predictions, using many well-
known data mining algorithm as base classifiers, i.e. J48, NBTree, JRip, etc. In [23],
the authors extend their work in order to cope with unbalanced datasets. In practice,
they increase the total number of base classifiers and adopt an oversampling tech-
nique. In [90], the authors consider also the case of homogenous ensemble and show
the impact of a cut-off level on the total number of classifiers used in the generated
model. The approach proposed in Chapter 5 also uses heterogeneous classifiers, but
it combines functions of different types, also considering weights derived by the per-
formance of the classifiers on the training set; it takes also into account the effect of
unbalanced datasets and, in addition, the method is apt to operate with incomplete
datasets, without using oversampling techniques.

Yan Wang et al. [98] use multiple ensembles to classify incomplete datasets.
Their strategy consists in partitioning the incomplete datasets in multiple complete
sets and to train the different classifier on each sample. Then, the predictions of all the
classifiers could be combined according to the ratio between the number of features
in this subsample and the total features of the original dataset.

In [1], the authors develop a GP-based framework to evolve the fusion function
of the ensemble both for heterogenous and homogeneous ensemble. The approach is
compared with other ensemble-based algorithms and the generalization properties of
the approach are analyzed together with the frequency and the type of the classifiers
presents in the solutions. The main aim of the paper is to improve the accuracy of the
generated ensemble, while distributed implementations and the problems concerning
incomplete and unbalanced datasets are not explored. In addition, the authors do not
consider weights depending from the performance of the classifiers on the datasets.

In [16], Brameier and Banzhaf use linear genetic programming to evolve teams
of ensemble. A team consists of a predefined number of heterogeneous classifiers.
The aim of genetic algorithm is to find the best team, i.e. the team having the best
accuracy on the given datasets. The prediction of the team is the combination of indi-
vidual predictions and it is based on the average or the majority voting strategy, also
considering predefined weights. The errors of the individual members of the team are
incorporated into the fitness function, so that the evolution process can find the team
with the best combination of classifiers. The recombination of the team members is
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not completely free, but only a maximum pre-defined percentage of the models can
be changed. In order to have a more flexible system, a GP module should generate
tree-based models and the number of base classifiers in the tree should not be prede-
fined; therefore, it will be the evolution process to select the best combination of the
base classifiers.

4.3 Ensemble technique for cyber security applications

Ensemble [17, 44, 62] is a learning paradigm where multiple component learners are
trained for the same task by a learning algorithm, and the predictions of the com-
ponent learners are combined for dealing with new unseen instances. Among the
advantages in using ensemble of classifiers, they help to reduce the variance of the
error, the bias, and the dependence from a single dataset; furthermore, they can be
build in an incremental way and they are apt to distributed implementations. Finally,
for the particular task of intrusion detection, they are able to combine different clas-
sifiers that together provide complementary information and also are particularly apt
to handle unbalanced classes.

In [60], specialized detectors were successful employed to improve the classifica-
tion accuracy of malware detection. The detectors are combined in an ensemble using
standard pre-defined functions, i.e., majority voting, stacking, etc. Therefore, the ap-
proach is not easily adaptable to the case of data stream and when the data change.
The adoption of non-trainable functions for cyber security problems in general, and
also for the intrusion detection, is also explored in [35], in which, the non-trainable
functions were used for handling missing data.

In [1], the authors develop a GP-based framework to evolve the fusion function
of the ensemble both for heterogenous and homogeneous ensemble. The main aim of
the paper is to improve the accuracy of the generated ensemble, while distributed im-
plementations and the problems concerning incomplete and unbalanced datasets are
not explored. The authors do not consider weights depending from the performance
of the classifiers on the datasets.

4.3.1 Data stream and time window

A stream of data is a particular data source that can be seen as an infinite data sets.
With this model, it is not possible to have a "global" view of the stream. Hence, a
partition method is required. Usually, a fragment or a chunk of data are collected
and analyzed. The size of that chuck is a parameter and it can be measured by the
number of instance, by a time interval (all data observed in 5 minutes, hours, etc.)
or by a quantity that depends from the domain/use case. In the literature, a chunk of
data is named window. Independently of the method used to build a window, many
algorithms are processed window-by-window: i.e. they are trained on a window and
updated on the next one. The most common types of window are:

• fixed window, in which the size of instances in each window is fixed;
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• sliding window, in which the size is fixed but the content depends from a time
interval, after each step oldest data are removed and newest data are added;

• windows based on sessions, in which the data comes from a session defined by
the nature of the data and each one has an identifier.

A simple use of a window can be found in [29]. In the paper the ensemble clas-
sifier is constructed from the one-class base classifiers for mining data streams with
a concept-drift. The stream is processed in chunks and the instances are selected ap-
plying the one-class k Nearest Neighbor method. The classification process is based
on a weighted combination of the base classifiers. The classifier’s weight is calcu-
lated from its accuracy and the length of time spent as a member of the ensemble.
Many classifiers are trained on each chunks and the classifiers which have a weight
above the mean values along with the ones used in the last update are maintained in
the ensemble.

In the [79] the authors propose a method to add/remove classifiers to/from en-
semble depending on results on a chunk of the stream data. The decision is based
of an improvement of the accuracy when the classifier is added to ensemble and on
the absence of effects (in term of decreasing of accuracy) for the removing case.
The method calculates a probability as an approximation of a binomial distribution
proving that the accuracy obtained on a single chuck is valid for the stream.

4.3.2 Ensemble technique and IDS systems

In the cyber security domain, computer and network technologies have intrinsic se-
curity weaknesses, i.e., protocol, operating system weaknesses, etc. In addition, com-
puter network activities, human actions, etc. generate large amounts of data, hard to
handle without using ad-hoc designed algorithms and distributed machines.

Intrusion Detection Systems (IDS) cope with the issue of detecting unauthorized
accesses to computer systems and computer networks. An intrusion can be defined
as an attempt by an outsider to gain access to the target system (local or network
system). Data Mining methods and algorithms can support the detection phase of
known attacks and indeed, from this research trend, a plethora of proposals appeared
in recent years. Despite this, classical sequential algorithms are not suitable to cap-
ture in real time new trends and changes in streaming data, which may denote a
network intrusion, as they assume that data are static and not changing due to exter-
nal modifications. In this specific application scenario, ensemble-based algorithms
(e.g., [62]) supply some specific characteristics of great interest in the context of in-
trusion detection, and, as a consequence, several ensemble-based intrusion detection
techniques have been proposed recently [39]. Among well-recognized characteristics
of such class of Data Mining algorithms, some that make them particularly suitable
to support intrusion detection are the following ones: (i) they can be easily imple-
mented in parallel/distributed architectures; (ii) they can improve the accuracy of a
weak learner; (iii) they can be specialized for the detection of a particular class; (iv)
they are particularly suitable to the special case of unbalanced datasets.
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Moreover, building the ensemble could be computationally expensive. For this
reason, a wide area of research is dedicated to study of methods for executing ef-
ficiently this task. Evolutionary algorithms are an interesting solutions. They have
been used mainly to evolve and select the base classifiers composing an ensemble
[74, 37] or adopting some time-expensive algorithms to combine an ensemble [87].
Chawla et al. [89] propose an evolutionary algorithm to combine the ensemble, based
on a weighted linear combination of classifiers predictions, using many well-known
data mining algorithm as base classifiers, i.e. J48, NBTree, JRip, etc. Yan Wang et
al. [98] use multiple ensembles to classify incomplete datasets. Their strategy con-
sists in partitioning the incomplete datasets in multiple complete sets and to train the
different classifier on each sample. Then, the predictions of all the classifiers could
be combined according to the ratio between the number of features in this subsample
and the total features of the original dataset. In [1], the authors develop a GP-based
framework to evolve the fusion function of the ensemble both for heterogeneous and
homogeneous ensemble. The approach is compared with other ensemble-based algo-
rithms and the generalization properties of the approach are analyzed together with
the frequency and the type of the classifiers presents in the solutions.

Meanwhile previous works are mainly dedicated to solve the general problem
of computing the combining function with genetic programming, some interesting
solutions are more oriented to design of a network anomaly detection systems, for
instance [81] and [58]. Moreover, an interesting work in the field of anomaly-based
network intrusion detection can be found in [45], which also includes a panoramic
of the principal anomaly-based intrusion detection techniques, namely statistical-
based, machine learning-based and knowledge-based. For each of the techniques
illustrated, the main systems present in the literature are described together with the
main challenges of the field.

However, one of the most comprehensive introductions to the field of Network
Anomaly Detection (NAD) is presented in [8]. The main aim of this paper is to
provide enough informations for a new researcher to acquire a certain familiarity
with every aspect of the field. Accordingly, it contains a clear categorization of most
common attacks encountered and of the main systems for network intrusion detec-
tion, according to the anomaly detection method and to the computational technique
adopted. Based on this classification, an in-depth comparison is performed of the
different architectures. A review of the principal tools that are useful to researchers
in the network anomaly detection field is also included, as well as a comparative
description of the datasets of network traffic publicly available.

Other works, described in the following, are more specific to a topic, types of
data or technique. The problem of preprocessing and feature selection in the anomaly
detection field is illustrated in detail in [31]. The review covers both automated meth-
ods for features extraction and techniques used to reduce the dimensionality of the
problem. In fact, the authors analyze the literature on this topic and identify a shift
from techniques that rely on the analysis performed by human domain experts to
automatic solutions that implement a broad range of techniques of analysis.

Generally, systems are categorized according to the detection paradigm consid-
ered and to the type of attack, i.e., denial of service, worms, etc. The work in [86]
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concentrates on the intrusion detection systems that operate at the level of network
flow. In [76], the authors present a review of the main machine learning techniques
employed in the network intrusion detection field. The techniques considered in-
clude rule-based learning, decision tree, Bayesian reasoning, neural networks, sup-
port vector machines and clustering. Moreover, a section devoted to nature-inspired
techniques is also included, which covers artificial immune systems, genetic pro-
gramming and swarm intelligence. In addition, a comparison of the performance of
the different techniques is illustrated, reporting experimental results contained in the
literature. Finally, the current challenges of the field are discussed.

In [50], a panoramic of tools useful to researchers in the intrusion detection field
is presented. In particular, the main steps necessary to perform an attack are de-
scribed. Scanning and sniffing tools are discussed, as well as an extensive discussion
of attack launching tools. Network monitoring systems and working attack detection
systems are also covered. Finally, the main challenges that researchers in the field
have to face are the subject of the closing considerations of the work. The same au-
thors also reviewed the topics of port scans, scanning tools and launching attacks in
[9] and the main detection techniques in [11, 10].

An in-depth analysis of network intrusion detection systems from the distributed
point of view can be found in [103] and [93]. Zhou et al. [103] point their attention to
coordinated attacks such as large-scale scans, worm diffusion and distributed denial
of service and on the research in the field of collaborative intrusion detection that
aims to detect and prevent these kinds of attack. The work describes the different
architectures of a collaborative intrusion detection system and also illustrates some
algorithms used for the task of alert correlation. Vasilomanolakis et al., [93] out-
line the general architecture of a collaborative intrusion detection system. The main
building blocks of these systems and the methodology to integrate them in a common
environment are described. In comparison with the latter two papers, the work pro-
posed in this thesis is more focused on the ensemble-based paradigm and supervised
data mining techniques. In addition, the analysis is focused on the main distributed
algorithms used for these topics, while the above-cited papers are more aimed at a
general discussion of the possible collaborative and distributed architectures, without
discussing the interesting ensemble-based techniques.

Another related work [25] reviews many state-of-the-art solutions for computer
security from the point of view of the information fusion and proposes a general
scheme to perform information fusion for intrusion detection in computer systems. In
addition, the work discusses strengths and weaknesses of currently used approaches
and examines some interesting research issues. However, the paper treats computer
security in general, and furthermore it does not analyze parallel/distributed solutions.

4.4 IDS techniques in distributed environment

In this Section, the main techniques and some IDS with a distributed implementation
are presented. The different types of IDS include collaborative IDS, IDS based on
data mining algorithms and IDS implementation for high performance computing.
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4.4.1 Distributed and collaborative IDS

Attacks conducted against online systems which occur in multiple networks simulta-
neously (i.e. large-scale stealthy scans, worm outbreaks and distributed DDoS), are
among the most dangerous. In addition, coordinated attacks are really difficult to de-
tect using isolated intrusion detection systems since these systems usually monitor
only a small portion of a network. Moreover, it is often the case that a particular IDS
is more efficient in detecting certain type of attacks, while a different one is more
suitable for other type of attacks. For instance, it is well known that misuse based
IDSs are very efficient in detecting known attacks based on a database of signatures,
but they are rather weak in detecting new attacks. On the contrary, anomaly based
IDSs are able to detect a certain number of new attacks but they usually show a rather
high false positive rate even in the case of known attacks. As already remarked, ar-
chitectures of IDSs based on the anomaly detection paradigm implement relatively
complex analysis techniques in order to detect outliers in the network traffic being
monitored. For instance, these techniques can be either data mining based or statisti-
cal based, but in any case, in order to attain a suitable detection rate and to minimize
the false positive rate, they usually involve a rather high computational complexity.
As a consequence, in order to cope with the high volume data involved in a real
time environment, the natural choice is to exploit the potentiality of modern parallel
hardware. Finally, detecting anomalies in network traffic often requires the use of
time-consuming computational techniques, e.g. data mining and statistical analysis,
and it is difficult for them to operate in real-time. Therefore, it is necessary to dis-
tribute the computational load required using distributed environments, i.e., parallel
machines, cloud computing, etc.

Recently, for the reasons described above, the interest in distributed IDS has
grown and different methodologies have been proposed. In the following subsec-
tions, Collaborative Intrusion Detection Systems (CIDS) are presented. Basically, in
the CIDS approach, the aim is to correlate information on attacks coming from dif-
ferent subnetworks. Next, the attention is directed to solutions based on data mining
techniques that, although not all of them are set up and tested in a fully parallel en-
vironment, nonetheless the solutions and the algorithms employed are particularly
suitable for a parallel implementation. Lastly, a Section is dedicated to a brief dis-
cussion on solutions whose implementation takes full advantage of modern readily
available parallel hardware.

4.4.2 Collaborative IDS

The approach to intrusion detection based on the collaborative paradigm has the po-
tential to design IDSs capable of detecting intrusions that occur across large networks
and to correlate alarms coming from different sensors. Moreover, CIDSs reduce com-
putational costs by sharing intrusion detection resources among different networks
and they mitigate the problem of false alarms that would be generated by a single
IDS operating alone. The main components of a CIDS, in accordance to the work of
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[103], are a detection unit and a correlation unit. The detection unit consists of mul-
tiple sensors deployed in a network that generates low level intrusion alerts. These
low level intrusion alerts are combined by the correlation unit, then high level reports
are generated and finally the real nature of the attacks is confirmed. The design of a
CIDS faces then two main challenges, namely system architecture and alert correla-
tion methodologies. From the point of view of the architecture, a typical implemen-
tation is represented by the Centralized approach, in which the data are collected by
different sources but analyzed and correlated by a single central unit. This approach
suffers from various drawbacks; first, as most of the work is done by a single unit,
serious problems of reliability are present, since the failure of the central unit causes
the CIDS stops from properly working. Moreover, a large computational power is
required in order to prevent the degradation of the performance of the CIDS. In the
hierarchical approach, the correlation units are structured in a pyramidal way, with
layers that perform increasing complex analysis on the data acquired by the detection
units, but the final analysis is always performed by a central unit, namely the top of
the pyramid. This approach frees the central unit from a part of the computational
load, with respect to the centralized approach, but suffers from similar analogous
problems to the ones mentioned above. Finally, there is a fully distributed approach
in which the detection and the correlation work is spread among different units. This
approach can be set up by a P2P network, for instance, but it is often hard to coordi-
nate a large number of nodes in order to attain a suitable detection accuracy and to
guarantee the scalability of the global system. Indeed, the mechanism implemented
to share information should be efficient enough to hinder the speed at which menaces
spread across a network; moreover, it should remain so as nodes are added to the sys-
tem. Just to give a glimpse of how hard this problem is, in some extreme cases, as
in the case of the SQL-slammer worm, it has been estimated that as the worm began
spreading through the Internet it infected over 90% of the vulnerable hosts just in
ten minutes. In the following, the main collaborative IDS and a summary of their
characteristics is reported in Table 4.1.

In [102], the authors focus their attention on the problem of alert correlation,
with the purpose of improving the scalability without renouncing the accuracy of
the system, in particular for DDoS attacks and worms. In order to accomplish the
above task, the architecture of the system is based on two main ideas. First of all, to
speed up the correlation of the raw alarms, exploiting the knowledge on the different
types of attacks, the search is limited to specific “patterns”, where pattern means a
subset of features. For instance, the features of the network flow, “source address”,
“source port” and “destination port” should be sufficient to correlate raw alarms for
a broad class of DDoS attacks. Moreover, in order to deal with the large number of
raw alerts coming from the various IDSs of the network, the alert correlation system
is implemented in a fully distributed form, based on a P2P protocol. Each member of
the alert network is made up of a detection unit and a correlation unit. The detection
unit is responsible for collecting raw alarms relative to the local traffic. These alerts
are analyzed by the correlation unit that implements a multi-dimensional clustering
algorithm. In particular, the traffic is preliminarily filtered according to a combina-
tions of key features or patterns of different attacks previously described, the filtered
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traffic is clustered and the traffic patterns are identified as suspicious by building a
pattern lattice. Afterwards, the local results of this analysis are exchanged among
the peers of the network for further analysis and correlation. The proposed system
is tested on two data sets obtained from the Dshield.org website, which comprises
a large number of firewall and NDIS logs collected from various platforms all over
the world. In particular, one of the datasets employed in the testing contains data
collected during the outbreak of the SQL-Slammer worm. The system is evaluated
by conducting a large scale experiment on the PlanetLab network of the Princeton
University in comparison to a fully centralized approach using metrics as detection
accuracy and message exchange rate. The experiments demonstrates that the fully
distributed approach is more efficient than the centralized approach in terms of the
time required to correlate the alerts. Moreover, the above-mentioned probabilistic
approach is really efficient in the case of stealthy attack scenarios.

In [14], a method to correlate alerts collected by different IDSs is presented.
The IDSs inspect the local traffic by analyzing the content of the payload of HTTP
requests. The analysis is based on the technique of n-grams analogously to the
ANAGRAM algorithm[96]. The detection stage in the ANAGRAM system is im-
proved following the technique of STAND (Sanitization Tool for ANomaly Detec-
tion) [26, 27] by a sanitization phase of the training set; then, the technique intro-
duced in [28] is employed to tune the sensor parameters automatically. Once the
payload is processed, the models associated with the normal traffic and with the
suspicious packets are stored by using Bloom filters [13], which constitute their sig-
natures. It is worth noting that storing the models of traffic by using Bloom filter has
also the positive effect of preserving the privacy of the users during the correlation
phase in which signatures are shared across different sites. Cross-site correlation of
the alerts is obtained by using the method described in [68], i.e. the Worminator sys-
tem. After that signatures are shared across sites, correlation is performed locally, by
comparing the unencoded local alerts with the Bloom filter representing the alerts
coming from remote systems. The system is evaluated on the datasets collected from
the web servers of three different locations: www.cs.columbia.edu, www.gmu.edu
and www.cs.gmu.edu. During the testing period the prototype was able to detect a
considerable number of application-specific attacks previously unknown as well as
a wide range of well-known attacks without human intervention. Finally, the system
shows a very low rate of false positives.

In [51], another CIDS is presented. Its architecture is based on different local
nodes, in which, during the training stage, the local network traffic is modeled by
using an ensemble of gaussian mixture models. In practice, the ensemble is built by
a variation of the AdaBoost algorithm, adapted to a streaming environment. Local
parametric detection models are exchanged among the nodes and then they are com-
bined on the local nodes in order to constitute a global model, by using a process
based on particle swarm optimization and SVM to select the fusion function. Ex-
perimental tests, performed on the KDD’99 dataset, shows the effectiveness of the
system in improving the detection accuracy, in spite of exchanging a relative small
quantity of data among the nodes, i.e., the parameters that determine the gaussian
mixture models.

www.cs.columbia.edu
www.gmu.edu
www.cs.gmu.edu
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It should be remarked that since only models of the traffic are shared and not
network traffic itself, this guarantees the privacy of the various nodes involved.

An interesting point of view on the topic of correlating intrusion data coming
from different nodes of a given subnetwork is proposed in [70]. The solution pro-
posed relies on the concept of conversation exchange model introduced in [41]. This
scheme has the scope of modeling the network traffic dynamic using aggregate traffic
features and decision trees that encode, for each protocol, the way in which the pack-
ets are exchanged in the subnetwork considered. This process permits estimation of
the distribution of the number of packets exchanged across the nodes of the subnet-
work during nominal operations. At detection time, this distribution is monitored and
techniques inspired by statistical mechanic and thermodynamics are used to detect
anomalies in the distribution of the packets due to malicious activities. This approach
is tested using different scenarios, i.e., different attacks on different segments of the
network either occurring in different time slots or simultaneously. For each scenario,
the system was able to detect the presence of attacks; however, it is worth remarking
that the system detects deviations in the normal network dynamic. In order to detect
the type of the attack or the nodes in which it has occurred, a deeper inspection at the
level of packet content or of the network flow should be used.

In [78], the authors present a system to cluster malwares based on their behav-
ior. Simple statistical features are extracted from the HTTP traffic generated by the
malware, i.e., the length of the GET requests, the number of requests, etc. Then, the
models of the malware behavior are clustered in a two stage procedure. In the first
stage, the BIRCH ([100]) clustering algorithm is used, and its results are further re-
fined by a hierarchical clustering. During the clustering process, cluster stability is
performed by using the Davies-Boulding index in order to assess whether the clusters
obtained are compact and well separated. Lastly, the signatures are generated from
the clustering stages by using the Token-Subsequences algorithm [72]. Basically, for
each cluster, signatures are generated considering substrings that are common to all
HTTP payloads in that cluster. In [77], the same authors introduce some tweaks in the
architecture, which presents a more balanced computational load and a better scala-
bility in comparison with the original method. Experiments are conducted on many
datasets of malware activities collected from various sources and the system proves
to be able to generate signatures for different types of HTTP malwares.

4.4.3 Data mining-based approaches

As there are not many data mining distributed implementation of intrusion detection
systems, this section also includes some works based on data mining that are partic-
ularly suitable to be implemented in a parallel/distributed environment. A summary
of the main works is reported in Table 4.2.

The work in [97] describes a framework for the problem of adaptive intrusion de-
tection over unlabeled HTTP traffic streams, which follows the autonomic paradigm
proposed by IBM [59]. Indeed, it is able to self-label the incoming data stream, to
update continuously the detection model and moreover, it is capable of adapting
the detection model after a change happens in the data stream. The IDS works by
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Author(s) Year Technique Correlation Architecture Dataset(s) Evaluation

Zhou et al.
[102]

2009 Raw alarms aggregation Clustering Fully
distributed

Internet Storm
Center
Dshield.org

PlanetLab network of
the Princeton University

Boggs et al.
[14]

2011 n-grams analogously to the ANAGRAM
algorithm [96], models are encoded by Bloom
filters

Exchanging models
of traffic

Fully
distributed

Real traffic from
different sources

Real traffic from
different sources

Horng et al.
[51]

2014 Ensemble of Gaussian mixture models Particle swarm
optimization, SVM

Fully
distributed

KDD’99 None

McEachen et
al. [70]

2007 Aggregate features Conversation
Exchange Model

Centralized M.I.T. Lincoln Lab
1999

Appositely set up
subnetwork

Perdisci et al.
[78, 77]

2010, 2013 Statistical techniques Hierarchical
Clustering: BIRCH
([100])

Centralized Malware samples None

Table 4.1. Summary table of papers reviewed, CIDS. The column Evaluation indicates
whether the framework is also evaluated on a real network.

inspecting HTTP packets at the payload level by essentially employing a 1-grams
technique. After the preprocessing phase, in an initial stage, the data stream is clus-
tered by an affinity propagation algorithm that employs a message passing technique
named WAP (weighted affinity propagation). It is worth noting that clustering algo-
rithms based on affinity propagation are graph-based and require a high computa-
tional load; therefore, they are generally more adapted to off-line analysis. However,
the system adopts a message updating mechanism, which is suitable to be imple-
mented in a distributed approach and that would extend its use to an online system.
After the clustering phase is completed, the system analyzes the size and the sparse-
ness of each cluster, in order to identify anomalous items. When a change is detected
in the traffic, the models are rebuilt by restarting the clustering process. Three param-
eters control the rebuilding phase, i.e., the number of suspicious items, the length of
the time window and the number of suspicious items since the last clustering stage.
If one of these three parameters exceeds a certain threshold, the clustering phase is
restarted. Finally, the system is compared with other existing clustering solutions: the
k-Nearest Neighbor algorithm, the Principal Component Analysis ([56]), a one class
SVM method and a version of the system based on the Sequential Karhunen-Loeve
([65]) transform. Testing is conducted on the KDD’99 dataset and on two large real
HTTP traffic streams and the proposed system outperforms the other methods.

The approach in [21] presents an IDS (named UNIDS, Network unsupervised in-
trusion detection system) based on the misuse detection paradigm. The solution pro-
posed, based on a ensemble clustering method, is suitable to be easily implemented
on parallel/distributed architectures. In addition, although the authors test it on data
stream coming from a single source, they point out it is well capable of dealing with
data collected from different sources. The algorithm works in three phases: prepro-
cessing, clustering and outlier identification. In the pre-processing phase, network
traffic is captured from a single source using consecutive time windows of prefixed
length. Afterwards, the captured traffic is aggregated into flows, and from each flow,
some numerical features, i.e., source and destination network prefixes, traffic per
time slot, etc. are extracted and a multi-dimensional vector representing the flow is
obtained. A change detection algorithm is applied to the resulting vector and per-
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mits to flag some flows in the time slot as anomalous, which are passed to clustering
phase. Then, in the clustering phase, a sub-space clustering algorithm is applied to
the data, in the following way. First, the flows are aggregated using either IPsrc or
IPdst aggregation keys and each aggregated flow is described by a number of traf-
fic attributes. Multidimensional data, obtained as described before, are projected on
multiple 2-dimensional subspaces of the feature space and a density-based DBSCAN
algorithm [34] is performed on each subspace by using different notions of similarity
or distance (i.e., a simple Euclidean distance, but also more complex statistical-based
similarities). Finally, the results of the different clustering applied in each subspace
are combined by an evidence accumulation clustering method [43]; in particular, the
algorithm of Evidence Accumulation for Ranking Outliers (EA4RO) is employed,
better described in [21]. In the last phase, the top-ranked outlying flows are flagged
as anomalies, using a simple thresholding detection approach.

Experimental results are conducted both on the well-known KDD’99 dataset and
on traffic captured from two real networks. UNIDS is compared to traditional misuse
based NIDs and it is comparable to the traditional approaches in its ability to detect
unknown attacks; however, it is suitable to parallel computation, which permits a
drastic reduction in the overall analysis time of the system.

An unsupervised approach based on clustering is introduced in [64]. The system
adopts an adaptive grid algorithm, named fpMAFIA, based on the CLIQUE cluster-
ing technique [2], and its improvement pMAFIA described in [71]. The fpMAFIA
algorithm basically employs frequent-pattern tree techniques in order to mine fre-
quent item sets. This algorithm, based on the grid density clustering paradigm, starts
by partitioning the features space in a grid, and part of the elaboration is basically
performed by counting instances of the dataset in each element of the grid and estab-
lishing their relative density there, this involves the computation of the mean distance
between two instances. Based on this elaboration grid elements are then merged to
form clusters. The above analysis can then be implemented in parallel form by as-
signing, for instance, a certain number of grid elements to a single elaboration unit,
e.g. a CPU core. The methodology proposed is tested on the KDD’99 dataset and it
shows good performance in terms of elaboration speed and detection rate, but false
positive rate is relatively high with respect to other methods proposed in the litera-
ture.

Huang et al. [52] propose an architecture based on an ensemble of on line se-
quential extreme learning machines, which is a type of neural network that supports
on line sequential learning, i.e., the predictor is updated as soon as new instances be-
come available, see [66] for more details. The approach combines different ensemble
techniques such as Bagging, Subspace Partitioning and Cross Validation; in addition,
in order to speed up the overall training phase, the data are distributed across the
nodes of a cluster by means of the Hadoop framework. Experimental testing is con-
ducted on the well-known KDD’99 dataset and the parallel implementation obtain
a good scalability and a considerable reduction of the execution time and maintains
the same accuracy as the sequential version of the approach.

Another distributed architecture based on neural networks is presented in Bukhto-
yarov et al. [18]. In this system, a probabilistic approach (more detail on this tech-
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nique are given in [19]) is used for the generation of a neural network on each node
of a network. Then, the neural networks are combined in an ensemble, in which the
combination function is evolved by employing genetic programming using the same
technique presented in [19]. Afterwards, each node classifies the traffic indepen-
dently from the other nodes and it inquires the ensemble only in the case in which
it is not “confident” in its prediction. “Confidence” is implemented by a function
based on the signal level at the output of a neuron corresponding to the class de-
termined by the individual neural network classifier; if the value of this function is
below a prefixed threshold, then the individual classifier needs to require the help of
the ensemble. The system is evaluated on the KDD’99 dataset in term of Detection
Accuracy and False Positive Rate against standard ensemble algorithms and in gen-
eral it is capable of equal or better score than the competition with optimal choice of
the above mentioned threshold for the confidence function.

The architecture in Brahmi et al. [15] combines misuse based and anomaly de-
tection techniques with the multi agent paradigm. Indeed, the analysis of the traffic
is subdivided among many agents and some of them are devoted to collecting and
pre-preocessing the traffic; then, the traffic is filtered by the so-named misuse de-
tection agent, which checks it by using some rules related to known attacks. Then,
the filtered traffic is passed to the anomaly detection agent that analyze it by using
a clustering algorithm that combines K-means and DBSCAN and identify normal
and abnormal traffic. Finally, the result of this analysis is passed to the rule mining
agent that, by using an association rule-based technique, builds new rules that will
be used by the misuse detection agent. The system is implemented using the JADE
(Java Agent DEvelopment Framework), and the agent platform and is suitable to be
implemented in a distributed environment, however the experiments are conducted
on a sequential version of the framework. Experimental testing is conducted on a
real traffic dataset, in which the attacks are injected by the Metasploit1 tool. The low
bandwidth consumption and the network latency prove that the system is capable to
cope with an increasing number of attacks and volume of network traffic. Moreover,
the system is able to outperform largely used IDS systems, as SNORT, in term of
detection rate and false positive rate.

4.4.4 High-performance implementations

Recently, efforts have been made in order to take advantage of modern parallel hard-
ware in the analysis of network traffic for the purpose of intrusion detection [95]. In
fact, in the last few years, massively parallel hardware is readily available in the form
of off the shelf components, namely multi-core CPUs and graphic hardware capable
of general purpose computations (GPGPUs).

Most of the works present in the literature try to boost the signature verification
stage by using a parallel implementation. For instance, there are projects that ex-
pand existing solutions in order to take advantage of GPGPU hardware, i.e., GNORT
that is based on the well-known open source solution SNORT. Others works adopt a

1 http://www.metasploit.com/
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Author(s) Year Tecnique(s) Dataset(s) Preprocessing Metric(s) Implementa-
tion

Wang et al.
[97]

2014 HTTP packet payload analysis based on 1-grams, WAP
(Weighted Affinity Propagation) clustering

KDD’99, real
traffic

None ROC Curve S

Casas et al.
[21]

2012 DBSCAN algorithm [34], clustering ensemble: Evidence
Accumulation for Ranking Outliers (EA4RO) ([21])

KDD’99, real
traffic

Random
Projections

ROC Curve, Detection
Accuracy

S

Leung et al.
[64]

2005 Grid density clustering [71] KDD’99 None ROC Curve S

Folino et al.
[38]

2010 Genetic Programming, Ensemble of Decision Trees KDD’99 None Detection Rate, False Positive
Rate, Detection Accuracy

D

Folino et al.
[40]

2016 Genetic Programming, Meta-Ensemble of Decision Trees KDD’99, real
traffic

None Detection Rate, False Positive
Rate, Detection Accuracy

D

Huang et al.
[52]

2016 Ensemble of on line sequential extreme learning machines KDD’99 None Detection Accuracy D

Bukhtoyarov
et al. [18]

2014 Genetic Programming, Neural Networks KDD’99 None Detection Accuracy, False
Positive Rate

D

Brahmi et al.
[15]

2011 Multi Agent System, DBSCAN clustering, association rule
mining

Real traffic None Detection Rate and False
Positive Rate

S

Table 4.2. Summary table of papers reviewed, data mining distributed (In the last column
(Implementation): D indicates Distributed implementation, S indicates Suitable to distributed
implementation)

.

signature-based solution from scratch, and concentrate their efforts on implement-
ing a very efficient signature verification based on parallel pattern matching algo-
rithms [55, 7]. This approach can be extended by distributing the signature verifi-
cation among different nodes. In this case, a particular attention is devoted to the
problem of synchronizing the elaboration between nodes, see [92, 55, 94, 82].

An interesting work is presented in [6], in which GPGPU hardware is paired
to a cluster. In particular, computational tasks relative to signature matching are
performed by the GPGPUs. The cluster is employed to process and mine the data
streams of the alarms, and to assess the most common vulnerabilities and threats, by
exploiting the advantages of the Hadhoop framework.

In order to take full advantage of a parallel implementation, a key point is to
guarantee the scalability and a good load balancing. To this aim, the system pro-
posed in [101] adopts a solution called negative pattern matching, which splices the
preprocessed network traffic into small segments suitable to be analyzed in parallel
and to perform a fine grained load balancing of the computational load. This tech-
nique ensures that no key information is lost in the process. Moreover, the rule set is
subdivided into independent subsets, which can be applied independently, providing
another means to parallelize the pattern matching process. Finally, the pattern match-
ing is performed by a technique based on the ternary content addressable memory
method. Experimental results show that the above-mentioned techniques are able
to improve remarkably pattern matching performance and scalability in many real-
world scenarios.

The approach in [3] uses an anomaly-based technique, which adopts a parallel
local outlier algorithm. The technique used comprises a heavy phase of computation
of the mutual distances of the points in some regions of the dataset. Therefore, a
parallel implementation that increases the speed of the algorithm can be set up, as
the computation of the distances can be performed independently. It would be in-
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teresting to implement more sophisticated solutions on parallel hardware and to test
the systems on traffic data captured and processed in real time. For instance, modern
database systems such as Oracle Database 10g (see [20]) provide all the necessary
instruments to easily implement an intrusion detection architecture, from the data
preprocessing to the phase of clustering and analysis. The possibility of exploiting
the potentialities of the Oracle grid computing infrastructure is really interesting.
In fact, this infrastructure enables sharing the content of the databases, or in other
words the network traffic to be analyzed using the power capacity of many comput-
ing nodes. Therefore, it is possible to distribute the computational load in a trans-
parent way and to ensure the availability of flexible on-demand computing resources
capable of guaranteeing scalability and reliability. This infrastructure could provide
a good testbed to compare different solutions and techniques.
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An architecture for combining ensemble of classifiers

In this Chapter the proposed architecture for combining an ensemble of classifiers is
presented. First of all, a definition of the problem and the description of the ensemble
approach is presented along with the definition of the components of the system: the
base classifiers, the combination function, the tool to build the combination function
and the working aspects of the approach.

Then, the details of some possible scenarios apt to be exploited with this approach
are described.

The first scenario concerns the problem of the user profiling, i.e. to identify group
of users that exhibit the same behaviors. The problem is presented in Chapter 2.1.
Afterwards, a version of the algorithm optimized to work with missing data is pre-
sented.

The user profiling is a common scenario in the cyber security field that deals with
missing data problem, but others cases could be addressed by the framework, for
instance the problem of unbalanced classes. This topic is very related with intrusion
detection task. Considering that the classes relative to attacks are very ”uncommon”
compared with normal instances, it is easy to model the problem of detecting attacks
as a problem of unbalanced data.

Thus, a solution to handle unbalanced classes is proposed and the architecture of
an intrusion detection system based on an ensemble of classifiers is presented. The
main goal of the proposed architecture is the detection of different type of attacks
in a distributed environment. Moreover, a desired behavior is that the model should
be updated during execution and it should work with streaming data. The last part
of this Chapter presents solutions to achieve these goals. First, a general architecture
for an IDS is defined along with some preprocessing procedure to explain how the
IDS works. Then the description of the algorithm in the case of static data is pre-
sented. In this context, the term ’static data’ is referred to the traditional approach
of the classification where the model is builded on a training dataset then it is used
to classify new instances. The other case addressed is the streaming data problem
where the model must be updated to handle new concepts observed in the stream.

In the latter case, the algorithm is extended with a module to handle different
types of drift. The combination of ensembles and drift detection algorithms produces
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a system able to update its models with the advantages of a major flexibility in de-
tecting new attacks. To improve such type of applications, the Section 5.4 presents a
variant using specialized classifiers, each one devoted to a specific type of attack. Fi-
nally, the general architecture of an intrusion detection system based on the ensemble
paradigm is provided.

5.1 The technique for combining the ensemble of classifiers

Although, the Section 3 provides the background of the techniques used in the frame-
work, the main concepts are summarized also in this Section and the implementation
details of building an ensemble are provided. The general schema for combining an
ensemble of classifiers is shown and can be specialized for a particular application.
It can be used in order to combine an ensemble of classifiers without the need of
a further phase of training. Then, the distributed GP framework used to evolve the
combining function of the ensemble is illustrated.

5.1.1 The combining function

The framework is based on schema shown in Figure 3.1, in which different algo-
rithms are used on the same dataset in order to build the different classifiers/models
and the formalization of this approach is described in the following.

The result of the process is to obtain the models of the ensemble’s classifiers and
the combination function sed to combine their prediction.

Let S = {(xi,yi)|i = 1, . . . ,N} be a training set where xi, called example or tuple
or instance, is an attribute vector with m attributes and yi is the class label associated
with xi. A predictor (classifier), given a new example, has the task to predict the class
label for it.

The work of the algorithm is to build g predictors, each on a different training set,
then combine them together to classify the test set. As an alternative, the g predictors
could be built using different algorithms on the same/different training set.

The combination function is based on the schema shown in Figure 3.1: it does
not need any further phase of training, whether the functions used can be combined
without using the original training set.

The combination function combines the support computed by each base classi-
fiers. The support is the probability that a tuple belong to a certain class according
to the prediction ability of the classifier. The formal definition is described in the
following.

Let x ∈ RN be a feature vector and Ω = {ω1,ω2 ...,ωc} be the set of the possible
class labels. Each classifier hi in the ensemble outputs c degrees of support, i.e., for
each class, it will give the probability that the tuple belongs to that class. Without
loss of generality, all the c degrees are in the interval [0,1], that is, hi : RN → [0,1]c.
Denote by Hi, j(x) the support that classifier hi gives to the hypothesis that x comes
from class ω j. The larger the support, the more likely the class label ω j. A non-
trainable combiner calculates the support for a class combining the support values
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of all the classifiers. For each tuple x of the training set, and considering g classifiers
and c classes, a Decision Profile matrix DP can be build as follow:

DP(x) =

H1,1(x) ... H1, j(x) ... H1,c(x)
Hi,1(x) ... Hi, j(x) ... Hi,c(x)
Hg,1(x) ... Hg, j(x) ... Hg,c(x)


where the element Hi, j(x) is the support for j-th class of i-th classifier.

The functions used in the approach simply combine the values of a single column
to compute the support for j− th class and can be defined as follow:

µ j(x) = F [H1, j(x),H2, j(x), ...,Hg, j(x)]
The class label of x is the class with maximum support µ .

5.1.2 A distributed tool to evolve the combiner functions

The combining function presented above needs a tool able to compute it. The tool
used in this work is a distributed/parallel GP implementation, named CellulAr GE-
netic programming (CAGE) [36], running both on distributed-memory parallel com-
puters and on distributed environments.

Functions, terminals and fitness evaluation

The model that the GP system uses in order to combine the predictions of multi-
ple base classifiers is presented in background section. This Section describes the
implementations of nodes and terminals of the combining function.

Differently from classical models in which the GP tool is used to evolve the mod-
els, in this approach, the classifiers (with an associated weight previously computed
on the training set) are the leaves of the tree, while the combiner functions are placed
on the nodes. A combiner function is an algebraic function to combine probabilities.
In particular, the functions chosen to better combine the classifiers composing the en-
semble are non-trainable functions and are listed in the following: average, weighted
average, multiplication, maximum and median. They can be applied to a different
number of classifiers, i.e. each function is replicated with a different arity, typically
from 2 to 5.

The average function, used with an arity of 2, 3 and 5, is defined as: µ j(x) =
1
g ∑

g
i=1 Hi, j(x).
The multiplication function (arity 2, 3 and 5) is defined as: µ j(x) =∏

g
i=1 Hi, j(x).

The maximum function returns the maximum support for 2, 3 and 5 classifiers
and can be computed as: µ j(x) = maxi

{
Hi, j(x)

}
.

The median function (arity 3 and 5) can be computed as: µ j(x)=mediani
{

Hi, j(x)
}

.
Finally, the weighted version of the average function uses the weights com-

puted during the training phase to give a different importance to the models on
the basis of the performance on the training set, and can be computed as: µ j(x) =

1
∑

g
i=1 wi, j

∑
g
i=1 wi, j ∗Hi, j(x). For this function the values of 2, 3 and 5 are chosen for

the arity.
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Fig. 5.1. An example of GP tree generated from the tool.

In order to better clarify, how the tree is built, in Figure 5.1, an example of tree
generated from the tool is illustrated. The GP model requires the computation of a
fitness function, i.e. an objective function that give informations about the distance of
the current solution from the goal to achieve. In this formulation the fitness function
is simply computed as the error of the ensemble on the validation set, i.e. the ratio
between the tuples not correctly classified and the total number of tuples. A solution
with an error close to 0 is the ideal result.

Unbalanced data

However, in the particular case of unbalanced datasets, a weighted fitness is adopted.
When the data have unbalanced classes the difference between instances of minority
classes and other classes is measured in orders of magnitude. Then, an error on a
minority class has a very little weight compared to the overall performance. In this
case the standard fitness function used to compute the model produces a classifier
that penalize the minority class. To overcome this issue a modified fitness function is
used. In practice, if a tuple belonging to a minority class is misclassified, the fitness
function is penalized by a weight equal to the ratio between the total number of tuples
and the total number of tuples belonging to that class (to avoid really high weights,
if the weight exceeds the threshold value of 10, it is fixed to this threshold). For the
tuple belonging to the majority class, the penalty weight is fixed to 1, as in the case
of balanced datasets. In this way, like a cost-based approach, errors on minority class
have a greater importance than errors on other classes and the final classifier is able
to address successfully the unbalanced data problem.

The main algorithm used for computing the combining functions

The function defined above is computed by a tool based on a fine-grained cellular
model. The overall population of the GP algorithm is partitioned into subpopulations
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of the same size. Each subpopulation can be assigned to one processor and a standard
(panmictic) GP algorithm is executed on it. Occasionally, migration process between
subpopulations is carried out after a fixed number of generations. For example, the
n best individuals from one subpopulation are copied into the other subpopulations,
thus allowing the exchange of genetic information between populations. The model
is hybrid and modifies the island model by substituting the standard GP algorithm
with a cellular GP (cGP) algorithm. In the cellular model each individual has a spatial
location, a small neighborhood and interacts only within its neighborhood. The main
difference in a cellular GP, with respect to a panmictic algorithm, is its decentralized
selection mechanism and the genetic operators (crossover, mutation) adopted.

This tool is used to evolve the combiner functions and obtain an overall com-
biner function, which the ensemble will adopt to classify new tuples. Implicitly, the
function selects the classifiers/models more apt to the particular datasets considered.

To summarize, considering a dataset partitioned in training, validation and test
set, the approach works using the following steps.

1. The base classifiers are trained on the training set; then, a weight, proportional
to the error on the training set, is associated to each classifier together with the
support for each class, i.e. the decision support matrix is built. This phase could
be computationally expensive, but it is performed in parallel, as the different
algorithms are independent from each other.

2. The combiner function is evolved by using the distributed GP tool, CAGE, on
the validation set. No extra computation on the data is necessary, as validation
is only used to verify the correct class is assigned and consequently to compute
the fitness function.

3. The final function is used to combine the base classifiers and classify new data
(test set). This phase can be performed in parallel, by partitioning the test set
among different nodes and applying the function to each partition.

5.2 The missing data problem and the framework solution

The first issue addressed designing the framework is the missing data problem. This
Section illustrates the software architecture designed to deal with this issue and the
cyber security scenario presented in Section 2.1 is detailed; then, it is presented the
description of mechanism used by the distributed GP framework to evolve the com-
bining function of the ensemble in the case of missing data.

5.2.1 An architecture for classification of user profiles in e-payment systems

A special case of missing data problem is the scenario presented in Chapter 2.1. In the
following an architecture specialized for classification of user profiles in e-payment
systems is presented.

In the scenario of classification of user profiles, the classes, in which the users
will be divided, are individuated on the basis of their expertise in computer science
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and in the domain of the e-payments systems. Indeed, most of the vulnerabilities are
associated with the behavior and the practices correlated with the knowledge of the
computer and/or of the e-payment system. As example, contrarily to the normal be-
lief, a vulnerability study confirmed that software developers are the most vulnerable
to attacks [88]. Furthermore, an excess of confidence and the consequent download
and installation of a number of applications can cause vulnerabilities; in the same
way, misconfigurations of the system due to inconsistent application of security as-
sociated with a lack of competency could abilitate other kinds of vulnerabilities.
Similar behavior could be seen in the activities of users of the e-payments system.

Fig. 5.2. A general architecture to monitor and to classify the users of an e-payment system
and to undertake the needed countermeasures.

Given these considerations, Figure 5.2 shows the general architecture designed
to handle the problem of mitigating the consequences of the user behavior. The in-
formation concerning the user is supplied by using different sources of informa-
tion or monitoring tools (i.e. generally automatic software analyzing the action and
the behavior of the users). Going more into detail, user datasets can include demo-
graphic and education information, e.g., name, age, country, education level, com-
puter knowledge, task knowledge, etc. and may also includes information concerning
the contest in which the users operate and the roles they have in the systems. In addi-
tion to these data, which usually do not change if we consider a reasonable amount of
time, the monitoring tool collects operational and behavioral data (e.g. IP addresses
from which users connect to the system, operating system and browser used, the du-
ration of the session, etc.), for which changes over time should be also considered.
Finally, we also collect user input (i.e., commands entered using the keyboard or via
GUI, using the mouse, etc.) This information should be captured in a dynamic way,



5.2 The missing data problem and the framework solution 43

by logging user actions. Unfortunately, all these kinds of data are not present for
each user for clear reasons of privacy and for a number of different motivations (i.e.,
we have users with different roles and therefore, it is possible to monitor only some
types of user, some users do not want to give authorization to disclose some data,
etc.). Therefore, for different users, some sources are missing and this problem must
be faced efficiently in order to obtain an accurate classification.

5.2.2 The software architecture of the meta-ensemble approach.

The architecture presented in Section 5.2.1 is exploited with the details about the
scheme of the combination of the base classifiers. The Figure 5.3 shows the soft-
ware architecture of the meta-ensemble approach adopted to analyze the first sce-
nario introduced in Section 2.1. Note that CAGE-MetaCombiner is able to work on
incomplete datasets (named D1,D2, . . . ,Dk in the figure). It is worth noticing that,
as described in the background section, it is equivalent whether each dataset comes
from a different source of data, or they are obtained from a partition of an incom-
plete dataset by removing groups of missing features. The only strong assumption
is that each corresponding tuple of the different datasets is used to predict the same
class. The corresponding tuple can be missing in one or more datasets, but if it is
missing in all the datasets, it will be discarded and counted as a wrong prediction in
the evaluation phase.

Fig. 5.3. The software architecture of the meta-ensemble architecture.

In practice, an ensemble is built for each dataset by using a distributed GP tool,
CAGE (better described in the next subsection), to generate the combiner function
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(see Figure 5.1 for an example). The learning models (classifiers) composing the
ensemble are taken from the well-known WEKA tool (see subsection 6.3.1 for more
details on the algorithms used). The different ensembles perform a weighted vote
in order to decide the correct class. It is worth remembering that each ensemble
evolves a function for combining the classifiers, which does not need any extra phase
of training on the original data. The final classification is obtained computing the
error using the same formulae as the Adaboost.M2 algorithm used by the boosting
algorithm, by computing the error of the entire ensemble instead of a single classifier
as in the original boosting algorithm.

The entire process is better detailed in the pseudocode in Figure 5.8. We consider
ł base classifiers and k incomplete datasets. Each incomplete dataset is partitioned
into train, validation and test set. A number of classification algorithms were trained
on the training sets and only the best l (a predefined threshold) are maintained and
take part in the ensemble. Then, a decision profile matrix is built for each classifier in
order to optimize the subsequent phase, in which the GP tool evolves the combiner
function of the ensemble, by using the validation set. A weight is associated with
each ensemble on the basis of the error of the ensemble on the validation set.

Afterwards, for each tuple x, for each possible class j and for each ensemble i,
the errors are computed using a weighted mean: µ j(x) =

∑wi∗Ei j(x)
∑wi

where wi is the
weight of ensemble Ei computed in the validation phase and the term Ei j(x) is the
probability that the tuple x belongs to class j returned by ensemble i. The weight is
equal to the error rate of the ensemble computed on the classification of the tuples
of the validation dataset. The purpose of associating a weight to an ensemble is to
penalize/reward the ensembles having best/worse performances and also reducing
the impact of classification errors.

The final classification is obtained by using the formula class(x)= argmax j(µ j(x));
if a tuple xi is missing, the corresponding ensemble Ei is discarded.

Let α be the total number of base classification algorithms.
Let ł be the number of base classification algorithms effectively used.
Given a set of k incomplete datasets D1 ,D2 , . . . ,Dk .
where a dataset Di = {Xi1

,Xi2
, . . . ,Ximi

} and Xik
is a tuple {A1 ,A2 , . . . ,Ad ,C}

where Ai is an attribute and the class C can have c possible values.
Note that each tuple Xik

can potentially be missing.
For each Di

Consider the dataset Di partitioned into train, validation and test set: Dtraini , Dvalidi and Dtesti
Train α different classification algorithms on Dtraini
Maintain the l classifiers obtaining the highest accuracy on the training set.
Build l decision profile matrices, one for each of the classifiers, DP1 ,DP2 , . . . ,DPl
using the respective validation set, one for each classifier of dimension |Dvalidi |× c
Run the distributed GP tool on the validation set Dvalidi in order to obtain
the combiner function of the ensemble.
Obtain an Ensemble Ei , a combiner function Fi and a weight Wi ,
computed on the basis of the error of the given ensemble on the validation set.

end for each
Build the decision profile matrix DP of the entire ensemble E,
where each element Hi, j (x) is the support that classifier hi gives to the hypothesis
that the tuple x comes from class j.

Compute the weighted mean for each class j: µ j (x) =
∑wi∗Hi j (x)

∑wi
on the test set.

Compute the class by using the formula class(x) = argmax j (µ j (x)).
Note that if a tuple Xik

is missing, the corresponding ensemble Ei does not participate to the voting procedure.

Fig. 5.4. The pseudo-code of the algorithm.
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5.3 A distributed framework for intrusion detection

In the following, it is outlined a specialization of the general architecture presented
in the previous sections and adapted for the detection of network intrusion and it is
illustrated the particular preprocessing phase adopted.

5.3.1 Preprocessing methodology

Usually network traffic is acquired with the aid of software based on libpcap, such
as tcpdumpb, and stored in the standard pcap (packet capture) format. Other soft-
ware alternatives for this task include Gulp more apt to an high performance envi-
ronment more apt to an high speed network environments.

A dataset of network connections consists of standards PCAP (packet capture)
files, one for each day containing the relative network traffic. Network data streams
acquired in form of PCAP files require a preprocessing phase in order to extract
features needed in the subsequent analysis. With respect to this task, network traffic
may be modeled at the level of flows, i.e., first the connections are aggregated into
flows and then suitable features are extracted and aggregated. Beside the level of
flows, data streams may be analyzed at the level of packet payloads, using the so-
named deep packet inspection technique. Indeed, the payload of HTTP packets is
made up of textual content and then it may be analyzed by using the technique of
n-grams, usually employed for the analysis of textual content. It is worth to notice
that n-grams based techniques have the drawback of presenting an exponential grow
in n of the feature space and consequently they are computationally intensive. In any
case, note that the choice of techniques used to analyze the data streams depends
clearly on the type of analysis performed in the subsequent stages. In order to extract
a relatively compact set of features, the choice is to model the traffic at the level of
flows; in practice, the pcap files are aggregated in flows and preprocessed with the
aid of the flowcalc 1 tool from the MuTriCs project, Fomerski et al. [42].

This tool is preferred over more common choices such as tcptrace since it is
more apt to a streaming environment. Moreover, it can be extended with a number of
plugins; for instance, the plugins which permit to process the payload and to extract
basic statistics from it. In particular, in this work the following plugins are enabled:
basic, counters, pktsize, lpi, web. These modules provide respectively basic
statistics on packets payload such as size and inter arrival times, number of packets
and bytes, sizes of the first packets in the flow, payload protocol and finally various
statistics on the web traffic content.

5.3.2 The architecture of the IDS

In this Section the specialization of the framework to deal with the detection of the
intrusions is presented. The proposed architecture is build around the Collabora-
tive Intrusion Detection paradigm, i.e. it implements a mechanism that correlates

1 http://mutrics.iitis.pl/flowcalc

http://mutrics.iitis.pl/flowcalc
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information coming from different nodes or sensors in which network data stream is
collected. This mechanism permits the discovery of more complex attacks and may
work either at the level of alarms or at the level of models generated for a particular
type of attack. Sharing models of malicious activity has the side effect of spreading
the knowledge acquired locally to other nodes; in practice, a node can receive models
for attacks observed elsewhere, but not locally and use them in a proactive way to
inspect the local traffic. Moreover, working at the level of alarms, has the advantage
of enabling collaboration among nodes of different nature, i.e. running commercial
IDSs as well as open source solutions such as Snort and BroIDS to share meaningful
information, see Figure 5.5.

Fig. 5.5. Ensemble-Based NIDS General Architecture

For the sake of scalability, a distributed alert correlation mechanism that involves
each single node as active part is illustrated in the architecture.

In order to accomplish the above tasks, and also to cope with the fast chang-
ing nature of network traffic and attacks, the local components of the architecture
contains some specialized interacting modules. In fact, the module Change Detec-
tor is responsible for a large scale analysis of the data stream that flows through a
local node in search of significant deviations from the normal behavior. In order to
guarantee real time responses, the Change Detector analyzes the data stream in time
windows and subsequently it computes suitable functions on values obtained from
aggregated features extracted from each time window; we call the set of values of
these functions, obtained from a window, a “concept” (relative to that time window).

Many algorithms, based for instance on time series or fractal dimension, can be
employed to detect anomalies in the sequence of “concepts”, and, in the case anoma-
lies are detected, the Model Generator is activated consequently. It builds new mod-
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Fig. 5.6. A general architecture for classifying large streams of attacks and normal connec-
tions.

els by classification, clustering and by using other statistical methods and maintains
the model together with the relative “concept”. The overall ensemble is employed to
monitor the network data stream, see Figure 5.6. Since it is not plausible to add mod-
els indefinitely to the ensemble, a module called Update Ensemble is responsible for
managing the active models of the ensemble; a strategy, currently in development,
permits to compare “concepts” stored as metadata in the models with that coming
from the current data stream, and consequently activate/deactivate the models.

As already said, the ensemble incorporates models of traffic and it is responsible
for the analysis of the incoming data stream in search of malicious activities.
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IDSs benefit from using algorithms based on the ensemble paradigm for a num-
ber of reasons. Indeed, given the speed of modern networks and the consequent in-
crease in the volume of data that need to be processed, solutions based on algorithms
that can be easily implemented in parallel/distributed environment (multi-core CPUs
and GPGPU hardware) should be preferred, and clearly solutions based on the en-
semble paradigm can be easily implemented on parallel hardware. Moreover, models
may be trained on different type of attacks or on some parts or on some levels of the
network and finally combined together, to assure a better prediction. The follow-
ing section provides the implementation description of the model generator mod-
ule based on a evolutionary approach and the meta-ensemble technique used in the
framework.

5.4 A meta-ensemble approach for combining specialized
ensemble of evolved classifiers

In this Section, the approach is adapted to combine specialized classifier. Each model
of the ensemble is created to handle a specific type of attacks or a particular class.
In this way, the classifier is able to adapt its behavior to different distribution of
connections, also the model can be shared between different nodes of a network
without reducing the ability to detect attacks.

This approach can be seen as a preliminary work to extend the general framework
to a new class of intrusion detector: the final goal is to design a system suitable to
process data stream and it can adapt/update its models to changes of the data.

The model generator of the distributed architecture shown in section 5.5 is built
on the well-known Massive Online Analysis (MOA) toolbox2, adopted to handle the
data streams and also used for the implementation of the classifier algorithms and
on the distributed GP tool, CellulAr GEnetic programming (CAGE) [36], which is
used to evolve the combining function of the ensemble. The latter is based on the
fine-grained cellular model and runs both on distributed-memory parallel computers
and on distributed environments, by partitioning the overall population of the GP al-
gorithm into subpopulations, one for computation node; then a standard (panmictic)
GP algorithm is executed on each node.

As the streams flows, a common supposition is required to run the software:
that part of input data is labelled. When a sufficient number of labelled tuples is
collected, they are divided into training set and validation set and used to train the
ensemble, as described in the following. The base classifiers, chosen among the best
performing on a set of benchmarks of the MOA toolbox, are trained on the training
set; then, a weight, proportional to the error on the training set, is associated to each
classifier; at the same time a decision support matrix is built. This phase could be
computationally expensive, but it could be performed in parallel, as the different
algorithms are independent from each other.

2 http://moa.cms.waikato.ac.nz/overview/.
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After that, the combiner function of the ensemble is evolved by using the dis-
tributed GP tool, CAGE, on the validation set. As nodes of the GP tree, some non-
trainable functions are chosen, while the leafs of the tree are the different classifiers
selected in the previous phase (see Figure 5.1) and the fitness function is simply the
accuracy of the ensemble computed on the validation set. It is worth to remember that
no extra computation on the data is necessary, as the validation set is only used to
verify the correct class is assigned and consequently to compute the fitness function.

Finally, the overall combiner function is used to classify the new coming tuples
of the stream. Implicitly, the function selects the classifiers/models more apt to the
particular datasets considered. The final function is used to combine the base classi-
fiers and classify the incoming stream. Also this phase can be performed in parallel,
by partitioning the stream among different nodes and applying the function to each
partition.

Fig. 5.7. The software architecture of the meta-ensemble architecture.

The entire process is better illustrated in Figure 5.7 and then specified in the
pseudocode of Figure 5.8. An infinite stream of tuples is supposed to flow as input to
the model generator and only part of them are labelled. In the startup phase, in which
the ensemble is built, each newly arrived tuple, i.e. Ti, is passed to the classifier
that assigns a class to it. The main idea of this approach is adopt a meta-ensemble
paradigm and to specialize each ensemble on a particular type or set of attacks. To
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this aim, a sampler module extracts the labelled tuples coming from the streams and
assigns them to the appropriate datasets (together to a corresponding percentage of
normal connections, 50% in our experiments), named SD1,SD2, . . . ,SDk. Then, an
ensemble for each specialized dataset is built, by using the distributed GP tool.

Finally, the different ensembles perform a weighted vote in order to decide the
correct class. It is worth to remember that each ensemble evolves a function for com-
bining the classifiers, which do not need of any extra phase of training on the original
data. The final classification is obtained computing the error using the same formulae
of the Adaboost.M2 algorithm used by the GP tool, by computing the error of the
entire ensemble instead of a single classifier as in the original boosting algorithm.

Afterwards, for each tuple x, for each possible class j and for each ensemble i,
the errors are computed using a weighted mean:

µ j(x) =
∑wi ∗Ei j(x)

∑wi

an the final classification is obtained by using the formula

class(x) = argmax j(µ j(x))

Let α be the total number of base classifiers algorithms.
Let ł be the number of base classifiers algorithms effectively used.
Given a set of k datasets SD1,SD2, . . . ,SDk .
For each Di

Consider the dataset SDi partitioned in train, validation and test set: SDtraini, SDvalidi and SDtesti
Train α different classification algorithms on SDtraini
Maintain the l classifiers obtaining the best accuracy on the training set.
Build l decision profile matrixes, one for each classifiers, DP1,DP2, . . . ,DPl using the respective validation set,
one for each classifier of dimension n× c, where n is the number of tuples and c the number of classes.
Run the distributed GP tool on the validation set SDvalidi in order to obtain the combiner function of the ensemble.
Obtain an Ensemble Ei, a combiner function FCi and a weight Wi,
computed on the basis of the error of the given ensemble on the validation set.

end for each
Build the decision profile matrix DP of the entire ensemble E,
where each element Hi, j(x) is the support that classifier hi gives to the hypothesis that the tuple x comes from class ω j .

Compute the weighted mean for each class j: µ j(x) =
∑wi∗Hi j (x)

∑wi
on the test set.

Compute the class by using the formula class(x) = argmax j(µ j(x)).

Fig. 5.8. The overall algorithm of the distributed IDS.

5.5 The framework and the drift algorithms

The general architecture of the IDS presented in the previous Section is extended to
be applied in another context, i.e data streaming, and a new module is added to the
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framework, a change detector based on well-known drift algorithms. In this case, the
strategy adopted is to update/replace base models of the ensemble when a "change"
is detected.

Referring to the Figure 5.5, in which the general architecture for an innovative
intrusion detection system is described, in this Section the focus is on the Change
Detector Module. Typically, the stream of data, that is the input of the framework, can
originate from different sources: network traffic coming from a particular interface or
coming from a router, system logs, application logs concerning the software installed
on the system, etc. After the preprocessing phase, the features are extracted and the
data stream is ready for further analysis. The stage of the elaboration of the stream is
performed by the module called Change Detector. It performs an analysis of the data
stream seeking qualitative deviations from the normal behavior. Indeed, as it must
perform a real time analysis, it typically divides the data stream in time windows of
prefixed duration and then some functions are computed on the values of aggregated
features coming from the window considered. The set of the values of these functions
captures qualitative characteristics of the data stream; if an anomaly is detected in
these sequences, or in the initial training phase of the system, the module Model
Generator is activated in order to generate new models for the analysis of the data
stream, performed by the Distributed Ensemble module. These new models are used
to update the ensemble by using some replacement strategies or simply by adding
them to the current ensemble. Finally, the overall ensemble is used to classify the
new incoming tuples and to generate some alerts to be processed in some way.

Following the schema illustrated in Subsection 5.5, the framework, which must
operate in order to quickly detect and manage drift, must be composed by some main
modules: a drift (change) detector, a generator of classifiers (models), a module to re-
place old/inefficient/overlapping classifiers. In addition, the framework also includes
a module to generate the combiner function of the ensemble by using a genetic pro-
gramming approach, in the same way described before.

The combining function is computed with the same approach described in 5.1.2.
This tool is used to evolve the combiner functions and obtain an overall combiner
function, which the ensemble will adopt to classify new tuples. Implicitly, the func-
tion selects the classifiers/models more apt to the particular datasets considered.
Briefly, as nodes of the GP tree, some non-trainable functions are chosen, better
specified in the experimental section, while the leafs of the tree are the different
classifiers selected in the previous phase (see Figure 5.1) and the fitness function is
simply the error of the ensemble computed on the validation set.

The model generator is built on the well-known Massive Online Analysis (MOA)
toolbox, adopted to handle the data streams and also used for the implementation of
the classifier algorithms and for the drift detection strategies described in the Sub-
section 5.5.1. Finally, the module to replace old/inefficient/overlapping classifiers
adopts the strategies also described in the Subsection 5.5.1.

The way in which the overall algorithm works is better illustrated in the pseu-
docode of Figure 5.9. In current implementation an hypothesis is made: the detection
method uses a window of prefixed length of tuples; however, the methodology can
be applied to most of the drift detection methods present in the MOA framework. In
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Let α be the maximum number of base classification algorithms used.
Let ł be the number of base classification selected (with l < α) .
Let M be the maximum number of classifiers composing the ensemble.
Let wind the size of the window examined.
Given T1,T2, . . .T∞, the infinite tuples composing the stream, analyze in windows of size n,
named {Tw1 ,Tw2 , . . . ,Tw∞}.
where Ti = {Ti1 ,Ti2 , . . . ,Tim} is a tuple with associated a number of attributes m and a class.
The current ensemble E = {C1,C2, . . . ,CM}
for each ( Twi )

if (drift_detection_function (Twi ))
Partition the tuples composing Twi in a training set and a validation set: Traini and Validi
Train α different classification algorithms on Traini
Select the l classifiers obtaining the best accuracy on the training set.
Add these classifiers to the ensemble E
if (| E |> M)

prune the ensemble E, removing M−|E| classifiers, by using a strategy of pruning.
end if
Build l decision profile matrixes, one for each of the classifiers, DP1,DP2, . . . ,DPl using the validation set,
one for each classifier of dimension k× c, where k is the number of tuples and c the number of classes.
Run the distributed GP tool on the validation set Validi in order to obtain
the combiner function of the ensemble.
Obtain an Ensemble E, a combiner function FC ,

else
Build the decision profile matrix DP of the entire ensemble E,
where each element Hi, j(x) is the support that classifier hi gives to the hypothesis that
the tuple x comes from class ω j .
Compute for each class j: µ j(x) = ∑Hi j(x).
Compute the class by using the formula class(x) = argmax j(µ j(x)).

end if
end for each

Fig. 5.9. The pseudo-code of the algorithm with drift detection.

this work there is not a comparison between different strategy of drift but the choice
of drift algorithms used in the experiments is based on work [57].

The main steps of the process are described in the following. An infinite stream
of tuples is the input of the model generator and they are analyzed in windows of pre-
fixed length n. On each window, a function verifies whether a drift occurred; only in
the positive case, the labelled tuples of the current window are partitioned equally
into training and validation set. The training set is used to train the base classifier
algorithms selected among the available in the MOA tool and better specified in the
experimental section. Among them, the l classifiers having the better accuracy on
the training set are chosen and added to the current ensemble. A replacing strategy
removes some classifiers from the ensemble, whether the maximum number of ele-
ments is reached. Afterwards, the GP tool is run to generate the combiner function,
which will be applied to the ensemble, by using the validation set.

Finally, if no drift is detected, the new incoming tuples are classified using the
schema illustrated before: for each tuple x, for each possible class j, the supports are
computed using the formula:

µ j(x) = ∑Hi j(x)

and the final classification is computed using the formula
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class(x) = argmax j(µ j(x))

5.5.1 Drift detection and replacement strategies

This Section describes the drift detection algorithms used to handle changes in the
data and the replacement strategies used to update the base classifiers of the ensem-
ble. No new drift detection strategy is developed, but the algorithms included in the
MOA tool are integrated in the main architecture. In particular, on the basis of the
experiments reported in [57], which analyze the performance of the most important
drift detection strategies, the STEPD and ADWIN methods are used as base algo-
rithm of the module that detect drifts.

Statistical Test of Equal Proportions (STEPD) [73] is a drift detection algorithm
based on the accuracy. It computes two statistics: the overall accuracy from the be-
ginning of the stream and the accuracy of the model computed on a testing window
W. If the difference between the accuracy computed on W and the overall accu-
racy is greater than a threshold, then a drift is detected and the model must be re-
built/updated. In the implementation described in the above-cited paper, the instances
stored in memory are used to update the classifier when a drift is detected. The en-
semble algorithm updates the models by using the instances of the last window. The
window size is fixed, and it contains the target instance (when STEPD detects drift)
and its neighbors. The threshold value P is computed as the percentile of the standard
normal distribution in order to obtain the observed significance level. STEPD uses
three parameters: the window value to detect recent changes (by default the value is
fixed to 20 instances, as in original paper) and the significance levels αw and αd . In
practice, STEPD stores the instances in its memory when P < αw and it resets all the
variables (i.e., clear its memory, reset the window accuracy, etc.) when P < αd . As
suggested in the original paper, the default values used are 0.03 for αd and 0.08 for
αw.

The ADaptative WINdowing method [12] keeps a sliding window W with the
most recent examples and compares the distribution on two sub-windows of W.
When the difference of the average value of the two sub-windows is greater than
a threshold, then the older sub-window is dropped and a change in the distribution of
examples is assigned. However, this idea is computationally intensive and requires
a huge amount of memory. Therefore, the current implementation is based on a dif-
ferent data structure. The input records are stored in exponential histograms, a data
structure that maintains an approximation of the number of 1 contained in a sliding
window of length W using logarithmic memory and update time. The length W is
updated to fit stream variations. The input of the algorithm are real numbers in the
interval [0,1] and to detect drift, only values of 0 and 1 are processed: wrong predic-
tions are marked as 1, good one as 0. A confidence parameter δ with value of 0.002
is used to control the false positive rate, i.e. if the expected value of distribution re-
mains constant within W, the probability that ADWIN shrinks the window at this
step is at most δ .
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As for the strategies for replacing the classifiers composing the ensemble with
the new generated by the algorithm, three strategies are selected, named old, best
and wheel selection. In the training phase, the dataset is partitioned into two parts:
50% of the instances are selected to train classifiers and the remaining instances
compose a validation set to build the ensemble model. The old strategy replaces 1/3
of classifiers in the ensemble with the new generated. The classifiers are removed
considering the insertion time in the ensemble model, i.e. the oldest are removed.
The new classifier is chosen by considering the accuracy result on the validation set.
The best strategy works as the previous one, but it removes classifiers having the
worst accuracy on the validation set and it inserts the best ones. As in the previous
case, only a 1/3 of classifiers are replaced. Finally, the wheel selection strategy is a
selection algorithm based on the wheel mechanism. When a drift is detected, all the
classifiers in the repository are trained on the training dataset. Then, classifiers are
replaced with a roulette wheel selection algorithm. The performance on validation
set is used as a probability, then 1/3 classifiers are selected with probability pi using
formula pi =

fi
∑

N
j=1 f j

where fi is the accuracy on the validation set.



6

Experimental results

In this Chapter, the datasets used in the experiments and the performance of the
framework are shown. The main goals are quantifying the performance of the ap-
proach with different use cases and understanding the limits and the advantages com-
paring to existing algorithms. The strategies presented in the previous chapters are
analyzed separately and compared with similar approaches.

The results show how the approach can handle unbalanced data and missing fea-
tures and the software is tested with different dataset to detect advantages and dis-
advantages. The experiments were conducted on both artificial and real datasets to
evaluate the performance on targeted tests (e.g. different values of missing data are
created artificially) and in real environment.

Furthermore, a set of experiments are conducted to test the ability handling
changes. The first set uses specialized models, then the results using configuration
with the drift detection algorithms are presented. The well-known metrics like er-
ror/accuracy, precision, recall, AUC are used to evaluate the results.

6.1 Description of the datasets used in the experiments

Many datasets are used in the experiments to test the different problems of missing
data, unbalanced data, intrusion detection, etc. Some datasets can be used in mul-
tiple cases; others can be used to test only a particular case. As example, a dataset
with many features and unbalanced classes can be used to test the capacity of han-
dling unbalanced data but also in the case of missing data because the dataset can be
partitioned in multiple subset grouping the attributes. For this reason, a general de-
scription is presented in this Section and the specific details are also provided when
the results of the experiments are discussed.

Unbalanced datasets

The following datasets are selected to test the capacity of the algorithm handling
unbalanced data. Each dataset has one or more classes with a very low number of
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instances compared with other classes. Moreover, these datasets are very common in
the machine learning literature about classification.

The main characteristics of each dataset are showed in Table 6.1: the size, the
number of features and of classes and the percentage of the minority class of the
datasets used in the experiments.The datasets present different characteristics in
terms of number of attributes and classes; in addition, most of them have a dis-
tribution of the tuples belonging to one or more classes really unbalanced, as it is
evident from the percentage of the minority class. The DNA dataset come from the
UCI KDD Archive1, the Pendigit and the Satimage are taken from the UCI Machine
Learning Repository2, the Phoneme dataset is from the ELENA project3.

The DNA dataset is composed by splice junctions which are points on a DNA
sequence at which ‘superfluous’ DNA is removed during the process of protein cre-
ation in higher organisms. The problem posed in this dataset is to recognize, given
a sequence of DNA, the boundaries between exons (the parts of the DNA sequence
retained after splicing) and introns (the parts of the DNA sequence that are spliced
out).

The Pendigit dataset is designed for the pen-based recognition of handwritten
digits and is created by collecting 250 samples from 44 writers. Each sample is the
handwritten numerals 0-9 and the number is the class.

The Satimage dataset was generated taking a small section (82 rows and 100
columns) from the original data, the landsat dataset. It consists of the multi-spectral
values of pixels in 3x3 neighbourhoods in a satellite image, and the classification
associated with the central pixel in each neighbourhood. The aim is to predict this
classification, given the multi-spectral values. In the sample database, the class of a
pixel is coded as a number.

For the Phoneme dataset, the aim is to distinguish between nasal (class 0) and
oral sounds (class 1). The class distribution is 3,818 samples in class 0 and 1,586
samples in class 1.

Table 6.1. Description of datasets ordered by decreasing percentage of minority class.

Dataset Number of examples Number of features Number of Class Minority Class
Satimage 6,435 36 6 0.0972
DNA/Splice 3,190 61 3 0.2404
Phoneme 5,404 5 2 0.2938
Pendigit 10,992 16 10 0.0959
KDDCup 494,020 41 5 1.052E-4

1 http://kdd.ics.uci.edu.
2 http://www.ics.uci.edu/ mlearn/MLRepository.html
3 ftp.dice.ucl.ac.be in the directory pub/neural/ELENA/databases.
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Datasets for the missing data experiments

In Table 6.2, the characteristics of three datasets are illustrated, with a significant
number of features and they are used for the comparison of the capacity of the frame-
work in handling missing data with the work in [80]. The dataset are Covtype, M-
Feat, OCR and DNA datasets, Pendigit and Satimage.

The Covtype dataset is a real large dataset, representing the prediction of forest
cover type from cartographic variables determined by the U.S. Forest Service and the
U.S. Geological Survey. The task of classifying this dataset is not easy, especially in
the presence of missing attributes, as it contains 44 binary attributes out of 54 totals,
representing qualitative independent variables such as wilderness areas and soil type.

The M-Feat dataset consists of features of handwritten numerals (0-9) extracted
from a collection of Dutch utility maps. 200 patterns per class (for a total of 2,000
patterns) have been digitized in binary images. These digits are represented in terms
of the following six feature sets:

1. mfeat-fou: 76 Fourier coefficients of the character shapes;
2. mfeat-fac: 216 profile correlations;
3. mfeat-kar: 64 Karhunen-Love coefficients;
4. mfeat-pix: 240 pixel averages in 2 x 3 windows;
5. mfeat-zer: 47 Zernike moments;
6. mfeat-mor: 6 morphological features.

The OCR dataset is the result of an extraction of normalized bitmaps of handwrit-
ten digits from a preprinted form. Each bitmap, sized 32x32, is divided into nonover-
lapping blocks of 4x4 and the number of on pixels are counted in each block. This
generates an input matrix of 8x8 where each element is an integer in the range 0..16.
This reduces dimensionality and gives invariance to small distortions. The total num-
ber of attributes is 64.

Table 6.2. Description of the additional datasets used for the missing data experiments.

Dataset Number of examples Number of features Number of Class Partitions
OCR 5,620 62 10 3

M-Feat 2,000 216 10 4
Covtype 581,012 54 7 3

The Unix dataset

The Unix Users Data is created by Greenberg [49]. It contains the commands typed in
a Unix shell by 168 users with different level of skills. Each user is assigned to one of
four profiles: nonprogrammer, novice programmers, experienced programmers and
computer scientist.
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The novice programmers profile represents users with little exposure to program-
ming and command-based interfaces. The experienced programmers members have
fair knowledge with the unix environment. The computer scientist group contains
users with an extensive knowledge in programming and command-line tools. The
latter profile consists of users with no programming skills, their dominant activities
are the processing and preparation of documents. This dataset is preprocessed in the
same way used in [54]. For each user the first 100 and 500 commands typed are con-
sidered; then the commands subsequences of fixed length (from 3 to 6) are extracted
from the list. Each user represents a record in the processed dataset and all the dis-
tinct subsequences are used as record attribute and the attribute value is the number
of times the subsequence is typed by the user (0 means that the subsequence is never
typed).

KDDCup’99

KDDCup 19994 is a well-known dataset in the cyber security domain. This dataset
contains 494,020 records, representing normal connections and 24 different attack
types. Each attack is clustered into four main categories, so each connection belongs
to the following classes: normal (normal, i.e., no attack), DoS (Denial of Service
connections), R2L (Remote to User, remote attacks addressed to gain local access),
U2R (User to Root, exploits used to gain root access) or Probe (probing attack to
discover known vulnerabilities).

The ISCX dataset

An improvement of the KDD99 dataset is ISCX IDS, consisting of 2,230,620
records, fully labelled, representing realistic traffic scenarios of 7 days, containing
different types of attack, i.e., HTTP Denial of Service, DDos, Brute Force SSH and
attempts of infiltrating the subnetwork from the inside (see Table 6.3).

Day Description Size of the pcap file (GB) Number of Flows Percentage of Attacks

Day 1 Normal traffic without malicious activities 16.1 359,673 0.000 %
Day 2 Normal traffic with some malicious activities 4.22 134,752 1.545 %
Day 3 Infiltrating the network from the inside & Normal traffic 3.95 153,409 6.395 %
Day 4 HTTP Denial of Service & Normal traffic 6.85 178,825 1.855 %
Day 5 Distributed Denial of Service using an IRC Botnet 23.4 554,659 6.686 %
Day 6 Normal traffic without malicious activities 17.6 505,057 0.000 %
Day 7 Brute Force SSH + Normal activities 12.3 344,245 1.435 %

Table 6.3. Main characteristics of the ISCX IDS dataset.

DARPA5 and KDD99 are two very popular datasets used in the classification in
the IDS domain, see Travallaee et al. [91]; however, they have been thoroughly crit-
icized for being unable to provide a realistic scenario. To overcome this issue, this
set of experiments are based on the ISCX IDS dataset from the Information Security

4 http://www.sigkdd.org/kdd-cup-1999-computer-network-intrusion-detection
5 https://www.ll.mit.edu/ideval/data
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Centre of Excellence of the University of New Brunswick [85]. The ISCX dataset
is the result of capturing seven days of network traffic in a controlled testbed made
of a subnetwork placed behind a firewall. Normal traffic was generated with the aid
of agents that simulated normal requests of human users following some probabil-
ity distributions extrapolated from real traffic. Attack were generated with the aid
of human operators. The result is a fully labelled dataset containing realistic traffic
scenarios. Indeed, the dataset consists of standards pcap (packet capture) files one
for each day containing the relative network traffic, as illustrated in Table 6.3. Dif-
ferent days contain different attack scenarios, ranging from HTTP Denial of Service,
DDos, Brute Force SSH and attempts of infiltrating the subnetwork from the inside.
The main characteristics of this dataset are summarized in Table 6.3.

Artificial datasets

The performances of the framework with streaming data are evaluated on an artificial
dataset and on a real dataset of the cyber security domain. To generate the artificial
dataset, the HyperPlane generator available in MOA6 is used. This generator is very
popular as benchmark for drift detection algorithms. It was originally used in (Hul-
ten et al. 2001) [53]. It generates data for a binary classification problem, taking a
random hyperplane in d-dimensional Euclidean space as a decision boundary. The
user can customize the number of attributes generated, the attributes used to gener-
ate drift (the others can be considered as irrelevant), the magnitude of changes and
the percentage of noise to add to the data.

6.2 Experimental section on unbalanced data

In this section, in order to assess the goodness of the proposed framework handling
unbalanced data, using the parameters and the datasets described in the next subsec-
tion, an analysis of the model size and the accuracy obtained by CAGE-Combiner
is presented, with different configurations and compared the approach with differ-
ent state-of-the-art combination strategies (subsection 6.2.2). Then, the performance
of the approach was analyzed on a really unbalanced and hard intrusion detection
dataset (subsection 6.4.1).

6.2.1 Environment configuration and parameter settings

All the experiments were performed on a Linux cluster with 16 Itanium2 1.4GHz
nodes, each having 2 GBytes of main memory and connected by a Myrinet high
performance network. No tuning phase has been conducted for the GP algorithm, but
the same parameters used in the original paper [36] were used, listed in the following:
a probability of crossover equal to 0.7 and of mutation equal to 0.1, a maximum depth
equal to 7, and a population of 132 individuals per node. The algorithm was run on

6 http://moa.cms.waikato.ac.nz
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4 nodes, using 1000 generations and the original training set was partitioned among
the 4 nodes. The parsimony factor is varied using the values of 0, 0.01 and 0.1 in
order to generate classifiers of different size and to study the effect of the size of
classifiers on the classification error and on the generalization of the algorithm. All
the results were obtained by averaging 30 runs.

The process of model building is based on three partitions of the original dataset.
The different classifiers composing the ensemble are trained on the same training

set. In practice, each dataset is partitioned in three subsamples: the 70% of original
dataset is used to train the base classifiers, the remaining 30% is equally partitioned
in two parts: validation and test set. The validation part is used by the evolutionary
algorithm to build the combination function, while the error rate of the best tree is
calculated on the test partition. The learning algorithms are implemented in WEKA
platform and the models are built using standard parameters.

The algorithms used as base classifiers in the experiments are based on the
WEKA implementation7 and are listed in the following: J48 (decision trees), JRIP
rule learner (Ripper rule learning algorithm), NBTree (Naive Bayes tree), Naive
Bayes, 1R classifier, logistic model trees, logistic regression, decision stumps and
1BK (k-nearest neighbor algorithm).

Table 6.4. Error rate of the base classifiers used to build the ensemble

Dataset Type J48 Jrip NBTree NaiveBayes OneR LMT Logistic DecisionStump Ibk

Satimage
training 2.60 7.90 17.30 19.90 39.10 8.80 12.00 55.80 0.00
validation 15.00 13.20 19.10 20.40 43.40 13.20 14.50 58.30 9.30
test 15.30 14.20 20.60 22.90 41.30 13.60 15.80 56.60 10.10

Phoneme
training 8.40 11.30 10.80 23.10 18.20 9.00 24.60 24.30 0.00
validation 14.40 14.90 13.90 22.90 25.60 12.80 25.40 24.80 9.40
test 14.80 16.60 14.30 25.20 23.20 15.20 26.00 25.40 11.30

Pendigit
training 0.70 1.20 0.20 13.50 59.40 0.30 3.70 79.70 0.00
validation 4.10 4.50 4.90 14.90 63.50 1.70 4.40 79.20 1.00
test 3.90 3.30 5.20 14.90 60.50 1.90 4.80 79.80 0.50

Dna
training 4.00 4.20 0.00 3.30 0.00 0.00 0.00 37.00 0.00
validation 5.50 4.80 8.30 5.00 71.40 3.50 11.30 40.90 27.80
test 4.50 4.30 5.50 4.30 73.70 3.80 11.00 37.80 24.10

In Table 6.4, it is shown the error rate of each base classifier respectively on
the training, validation and test set and this helps to understand the improvement
obtained in terms of accuracy using an ensemble, as shown in the next subsection.

6.2.2 Comparing with other evolutionary strategies and ensemble techniques

As stated in the previous subsection, the GP framework is executed without any
tuning of the parameters. The only exception is the analysis (Table 6.5) of the effect
of the combiner function size on the accuracy, i.e. the ratio of the number of correctly

7 http://www.cs.waikato.ac.nz/ml/weka
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classified tuples to the total number of tuples, varying the value of the parsimony
factor.

Generally, when using GP-based algorithms, there are different methods to limit
the uncontrolled growth of the average size of an individual in the population (bloat
problem); the simplest way is to limit their maximum depth and to punish individ-
uals of excessive size. In the depth analysis presented in [69], the effect of many
other complex methods are experimentally tested, but none of them results predom-
inant over the other to justify the complexity introduced. Therefore, the widely used
method of parsimony is adopted, consisting in simply adding to the fitness function
a penalty given by the product of a constant parameter (the parsimony factor) and of
the overall number of nodes and leaves of the genetic programming tree. Typically,
the higher the parsimony, the simpler the tree, but the accuracy could diminish. The
parsimony factor is varied using the values of 0 (no parsimony), 0.01 and 0.1.

Table 6.5. The error rate for different values of parsimony (0, 0.1 and 0.01), along with the
average number of classifiers and functions used in the best tree.

Dataset Parsimony Error Train Error Test Distinct Classifiers Total Classifiers Functions

Satimage
0 7.77 ± 0.60 9.08 ± 0.56 8.64 ± 0.79 78.44 ± 42.03 30.56 ± 15.01

0.01 7.46 ± 0.62 9.25 ± 0.58 7.26 ± 1.34 25.70 ± 11.49 11.10 ± 4.16
0.1 7.48 ± 0.41 9.09 ± 0.51 6.57 ± 1.54 14.46 ± 4.61 6.76 ± 2.45

Phoneme
0 8.27 ± 0.43 11.63 ± 1.30 8.70 ± 0.55 99.95 ± 74.63 38.85 ± 30.36

0.01 7.62 ± 0.65 11.14 ± 0.44 6.61 ± 1.41 26.15 ± 18.37 11.96 ± 6.98
0.1 7.80 ± 0.46 10.91 ± 0.51 5.53 ± 1.33 13.73 ± 5.47 7.00 ± 2.75

Pendigits
0 0.66 ± 0.22 0.74 ± 0.22 8.86 ± 0.33 71.30 ± 37.16 27.95 ± 14.82

0.01 0.60 ± 0.12 0.68 ± 0.12 6.13 ± 1.50 14.48 ± 7.84 6.10 ± 3.30
0.1 0.64 ± 0.10 0.67 ± 0.12 6.13 ± 1.08 10.40 ± 3.20 5.16 ± 2.35

Dna
0 2.46 ± 0.85 3.71 ± 1.05 8.48 ± 0.89 88.31 ± 92.59 33.86 ± 36.10

0.01 1.86 ± 0.15 3.48 ± 0.28 6.53 ± 0.92 11.70 ± 2.53 4.50 ± 1.25
0.1 1.82 ± 0.13 3.53 ± 0.22 6.26 ± 0.81 9.20 ± 1.75 4.30 ± 1.29

For each dataset, the experiments are conducted to show different values of the
parsimony factor and the highlighted values are the ones having statistically signif-
icant differences using the Friedman test. The critical value of the Friedman test
[32] is obtained from a chi-square distribution with two degree of freedom and the
number of cases considered is 30 for each set. A significancy level of 5% is used.

In all the tables in this Section, the following rules are used: the parsimony value
is underlined when the Friedman test, comparing experiments with same value of
parsimony but different values of the missing data, presents statistically significant
differences. The accuracy/error values are marked in bold when the Friedman test,
comparing experiments with the same missing percentage but with different parsi-
mony factors, presents statistically significant differences.

In Table 6.5, as only the behavior of the algorithm when the parsimony factor is
changed is considered, values in bold represent significantly different results in terms
of parsimony. In two of the four datasets, the differences in terms of error rates are
significant statistically; however, the differences are not remarkable. On the contrary,
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the size of the trees and the distinct classifiers selected by the algorithm are greatly
affected by the parsimony factor. For this reason, a parsimony factor of 0.1 for the
other experiments conducted on the following is used.

Table 6.6. Error rate for different strategies for the 4 datasets used in the experiments.

Satimage Phoneme Pendigit DNA
CAGE-Combiner 9.09 10.92 0.68 3.53
EVEN 8.91 11.68 0.68 4.20
EVEN (cut-off = 0.8) 8.69 11.06 0.66 4.34
Majority Vote 10.52 15.85 0.98 4.20
Weighted Vote 10.40 15.04 0.93 4.32
Best classifier 10.60 12.59 0.89 4.82
Stacking NB 10.75 14.93 0.81 4.55
Stacking LR 9.72 11.12 0.82 5.03

In table 6.6, CAGE-Combiner is compared with the EVEN algorithm [90] and
also with the meta-algorithms used in the same paper. Note that EVEN uses a popu-
lation size of 120 (the number of classifiers) for 1000 generations. The results show
that CAGE-Combiner obtain better or comparable accuracy for all the datasets; how-
ever, the number of classifiers used is sensibly minor than the 120 used by the EVEN
algorithm. In the latter, a cut-off threshold is introduced and only those classifiers
whose weights are above this threshold are allowed to participate to the ensemble.
The maximum value of cut-off used in the paper (0.8) and shown in the table permits
to reduce the number of classifiers to about 25% of the original size, while CAGE-
Combiner (see Table 6.5) using the parsimony value of 0.1, obtains a better reduction
of the number of classifiers (about 10%), without any relevant reduction in term of
accuracy.

6.2.3 Results for the KDDCup’99 dataset

To evaluate the system proposed on a real-world dataset in the field of cyber security,
the same experiments as the previous subsection are performed using one of the most
used dataset for the task of classification of intrusions: the KDDCup’99 dataset.

Table 6.7. The error rate for different values of parsimony (0, 0.1 and 0.01), along with the
average number of classifiers and functions used in the best tree: KDD Cup 99.

Pars. Error Distinct Cls Total Cls Functions DoS Normal Probe R2L U2R
0 0.0106 ± 0.0015 7.60 ± 0.71 65.23 ± 50.46 26.53 ± 19.03 0.0000 0.0003 0.0114 0.0506 0.2000

0.01 0.0105 ± 0.0012 6.20 ± 1.01 13.30 ± 6.76 5.80 ± 2.65 0.0000 0.0003 0.0109 0.0510 0.2333
0.1 0.0121 ± 0.0016 5.37 ± 0.80 9.03 ± 3.01 3.80 ± 1.45 0.0000 0.0003 0.0106 0.0490 0.2667

In Table 6.7, it is evident that the size of the trees and the distinct classifiers
selected by the algorithm strongly depends on the parsimony factor, while for the
accuracy the differences are minimal and the best results are obtained with the par-
simony value of 0.01.
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Furthermore, the goal of this experiment is to understand the behavior of the
framework for the unbalanced datasets and in particular, for the minority classes of
the KDD Cup dataset, i.e., Probe, R2L and U2R.

To this aim, the work in [5] is considered as competitor, which describes a boost-
ing approach, named Greedy-Boost, to build an ensemble of classifiers based on a
linear combination of models, specifically designed to operate for the intrusion detec-
tion domain. The main idea of the Greedy-Boost algorithm is to extend the boosting
process maintaining the models that behave better on the examples badly predicted
in the previous round of the boosting algorithm (while the classical algorithm adjust
only the weights and not the models).

In Table 6.8, CAGE-Combiner is compared with the Greedy-Boost algorithm on
the KDDCup 99 datasets and the precision and the recall values are reported for
all the classes. It is evident how the CAGE-Combiner performs better both for the
precision and the recall measure, especially in the case of the minority classes R2L
and U2R.

Table 6.8. Precision and Recall for different strategies for the KDD Cup dataset. In the first
column, it is reported the class distribution for the test set.

Precision Recall
Class Distribution Greedy-Boost CAGE-Combiner Greedy-Boost CAGE-Combiner

DoS 0.7960 100.0 100.0 100.0 100.0
Normal 0.1936 99.1 99.9 100.0 100.0
Probe 0.0079 99.0 99.6 97.1 98.9
R2L 0.0023 93.2 98.5 71.9 94.9
U2R 4.85E-5 88.5 93.1 44.2 76.7
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6.3 Experimental results on missing features

In this section, the experiments on handling missing features are described to-
gether with the main parameters. In addition to a number of well-known benchmark
datasets, a real and hard dataset was used to validate the approach: the Unix dataset.
Finally, the framework is compared with a correlated work for the case of missing
data.

6.3.1 Parameter settings

All the experiments were performed on a Linux cluster with same characteristics
described in the previous section.

Each dataset is partitioned into three subsamples: 70% of original dataset is used
to train the classifiers, which will compose the ensemble, the remaining 30% is
equally partitioned into two parts: validation and test set. The validation part is used
by the evolutionary algorithm to build the combination function of the ensemble,
while the error rate, i.e. the ratio of the number of misclassified tuples to the total
number of tuples, of the best tree is calculated on the test partition. The learning al-
gorithms are implemented in the WEKA tool and the different models are built by
using standard parameters.

More in detail, the algorithms used as classifiers in the experiments are based on
the WEKA implementation8 and are listed in the following: J48 (decision trees), K
random tree, Function Tree (based on logistic regression) JRIP rule learner (Ripper
rule learning algorithm), ConjunctiveRule, NBTree (Naive Bayes tree), Naive Bayes,
DTNB (decision table with naive bayes), 1R classifier, logistic model trees, logistic
regression, decision stumps and 1BK (k-nearest neighbor algorithm).

The results of these classifiers are showed in Table 6.4.

6.3.2 Experiments on the capacity of handling missing features

Two sets of experiments were performed in order to evaluate the ability of the CAGE-
MetaCombiner approach in handling missing features. The first set analyzes the be-
havior of the algorithm in respect of different percentage of tuples with missing data
and different values of the parsimony factor affecting the size of the solutions. The
second set compares the approach with a related work: the Learn++.MF framework
[80], described in the related work section.

For these experiments, in addition to the OCR, M-Feat and Pendigits datasets,
used by the Learn++.MF framework, the Satimage, Dna and Covtype datasets are
also used, which present a significant number of features. It is worth remembering
that the main goal of this section is understanding the case in which entire groups
of features are missing and not in coping with random patterns of missing features.
Therefore, as the features of the above-mentioned datasets are logically divided into

8 http://www.cs.waikato.ac.nz/ml/weka



6.3 Experimental results on missing features 65

groups, the datasets OCR, M-Feat, Satimage, Pendigits, Dna and Covtype are parti-
tioned respectively in 3, 4, 3, 2, 3 and 3 partitions, trying to not separate correlated
(or coming from the same source) attributes. Then, to simulate the missing data, for
each partition a tuple can be removed according to a probability threshold, i.e., this
parameter controls the percentage of tuples, which have missing attributes. For in-
stance, if this parameter is set to 10%, the entire partition of the features belonging
to this tuple has a probability of 0.1 to be missing. If all the partitions of a tuple are
missing, this tuple will be considered as an error of classification. The values of the
threshold are in the range 0-40%, with an interval of 10%, with 0% means no missing
data.

Table 6.9. The error rate of CAGE-MetaCombiner using three parsimony values and different
percentages of missing data.

Missing Percentage Classifiers
Dataset Pars. 0% 10% 20% 30% 40% Distinct Total Functions

OCR
0 5.43 ± 0.26 6.37 ± 0.21 7.90 ± 0.35 10.27 ± 0.37 14.16 ± 0.57 8.77 ± 0.12 84.80 ± 4.36 33.97 ± 0.21

0.1 5.36 ± 0.27 6.19 ± 0.28 7.65 ± 0.40 10.31 ± 0.39 13.99 ± 0.62 7.50 ± 0.22 21.20 ± 0.93 9.10 ± 0.64
0.4 5.30 ± 0.22 6.23 ± 0.20 7.54 ± 0.39 9.95 ± 0.35 13.85 ± 0.41 6.33 ± 0.19 11.63 ± 0.24 5.23 ± 0.41

Pendigits
0 4.96 ± 0.28 6.81 ± 0.34 10.21 ± 0.36 15.09 ± 0.29 21.31 ± 0.35 8.95 ± 0.05 104.75 ± 13.75 41.95 ± 3.25

0.1 4.97 ± 0.27 6.88 ± 0.19 10.12 ± 0.42 14.89 ± 0.19 21.35 ± 0.55 7.75 ± 0.35 25.55 ± 1.05 11.30 ± 0.30
0.4 5.20 ± 0.34 7.07 ± 0.40 10.49 ± 0.48 15.21 ± 0.50 21.24 ± 0.35 5.70 ± 0.60 11.05 ± 2.95 4.95 ± 1.25

Dna
0 7.33 ± 1.40 9.29 ± 1.45 11.91 ± 1.26 15.02 ± 0.94 18.98 ± 0.73 8.77 ± 0.19 85.33 ± 6.36 33.67 ± 2.72

0.1 7.86 ± 1.52 9.93 ± 1.16 12.55 ± 1.32 16.11 ± 1.30 20.10 ± 0.57 6.29 ± 1.23 18.17 ± 5.69 8.46 ± 1.94
0.4 7.31 ± 0.77 9.49 ± 0.65 12.05 ± 0.90 15.56 ± 0.83 19.21 ± 1.33 5.77 ± 0.38 9.47 ± 1.16 4.13 ± 0.80

M-Feat
0 4.85 ± 0.22 4.95 ± 0.24 5.35 ± 0.30 6.11 ± 0.44 7.70 ± 0.51 8.10 ± 0.12 53.80 ± 14.24 21.23 ± 5.58

0.1 4.93 ± 0.22 5.04 ± 0.18 5.32 ± 0.25 6.17 ± 0.41 7.66 ± 0.75 5.36 ± 0.29 9.94 ± 0.88 4.53 ± 0.85
0.4 4.78 ± 0.14 4.97 ± 0.20 5.20 ± 0.17 5.97 ± 0.28 7.64 ± 0.58 3.20 ± 1.27 4.28 ± 2.00 1.77 ± 1.16

Satimage
0 12.62 ± 0.23 12.84 ± 0.26 13.54 ± 0.28 15.05 ± 0.34 17.13 ± 0.40 8.80 ± 0.14 74.60 ± 13.45 30.53 ± 5.33

0.1 12.63 ± 0.17 12.86 ± 0.12 13.59 ± 0.20 15.02 ± 0.24 17.79 ± 0.31 7.07 ± 0.69 18.23 ± 1.24 8.47 ± 0.59
0.4 12.62 ± 0.20 12.86 ± 0.21 13.64 ± 0.20 14.84 ± 0.41 17.53 ± 0.56 5.30 ± 0.57 8.73 ± 0.73 3.40 ± 0.42

Covtype
0 21.95 ± 1.09 23.08 ± 0.89 24.54 ± 0.72 26.43 ± 0.54 28.95 ± 0.43 8.90 ± 0.08 123.87 ± 26.44 50.43 ± 9.73

0.1 21.81 ± 0.83 22.69 ± 0.50 24.22 ± 0.40 26.25 ± 0.32 28.80 ± 0.27 8.33 ± 0.12 57.00 ± 4.65 26.07 ± 2.04
0.4 21.71 ± 0.54 22.90 ± 0.45 24.38 ± 0.41 26.32 ± 0.33 28.89 ± 0.27 7.20 ± 0.36 32.27 ± 11.01 14.80 ± 4.81

Table 6.9 shows the error of classification of the CAGE-MetaCombiner algo-
rithm by varying the parsimony factor using the values of 0 (no parsimony), 0.1 and
0.4, using the above-defined percentages of missing features. Therefore, the effect
of the two parameters are evaluated: the parsimony factor, to reduce the complexity
of the overall meta-ensemble, and the percentage of missing values, to evaluate the
capacity of the algorithm to handle missing data. The Friedman test is computed in
the same way specified in the previous subsection to highlight statistically significant
differences. Varying the parsimony, for each value of missing data, there is no sig-
nificant difference in most of the cases. On the contrary, by varying the percentage
of missing data, the differences for the error rate are statistically significant with the
exception of the Covtype dataset for the cases of 30% and 40% of missing data.

For all the datasets, and for a percentage of missing features up to 20%, the
degradation in accuracy is moderate (it is always less than 3%), while using 30% or
40% as values of the threshold, the error has a remarkable increase (in some cases,
it arrives at 7%). More specifically, the error for the M-Feat and for the Satimage
dataset does not deteriorate much, even though a threshold of 30% and 40% is used.
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As for the Covtype dataset, the number of distinct classifiers selected by the
algorithm does not vary much (from 7 to 9), while the average size of the tree is
substantially different; therefore, with a parsimony factor set to 0.4, the algorithm
performs quite well and the size of the overall ensemble is compact. Increasing the
missing percentage threshold from 0% to 40%, the degradation of the accuracy is
limited. These results confirm the effectiveness of CAGE-MetaCombiner in handling
missing data.

The comparison between Learn++.MF and CAGE-MetaCombiner is evaluated
on the three datasets, which are also used in [80] and the results are shown in Table
6.10. For CAGE-MetaCombiner, the value of 0.4 is used for the parsimony factor.
For Learn++.MF, the number of missing features is chosen to be equal to the size of
the partition used by our algorithm.

Owing to the strategy of computing the base classifiers used by Learn++.MF
algorithm, the ability to handle missing data is determined by how many features are
missing. So the missing percentage values, reported in the original paper, arrive at
30%, and in almost all cases both the algorithms are able to classify each dataset with
a reasonable accuracy. As for the M-Feat dataset, the ’n/a’ value in the table means
that no classifiers are usable for instances with more of 30% of missing attributes for
the Learn++.MF algorithm. This limits the applicability of the algorithm for large
percentages of missing data. Anyway, for all the datasets, CAGE-MetaCombiner has
better results then Learn++.MF when missing data increase, and this is more evident
when the datasets have many features.

Table 6.10. Comparison between CAGE-MetaCombiner and Learn++.MF. nof represents the
number of missing features for each record of the dataset (error rate).

Percentage of Missing
10% 20% 30%

nof CageMC Learn++.MF CageMC Learn++.MF CageMC Learn++.MF
OCR 20 6.23 ± 0.20 3.50 ± 0.10 7.54 ± 0.39 8.20 ± 0.4 9.95 ± 0.35 13.50 ± 1.10

Pendigits9 8 7.07 ± 0.40 10 10.49 ± 0.48 13 15.21 ± 0.50 17
M-Feat 50 4.97 ± 0.20 6.62 ± 0.08 5.20 ± 0.17 7.44 ± 2.87 5.97 ± 0.28 n/a

6.3.3 Analysis on a real-world dataset: the Unix dataset.

In this Section the results of the algorithm on a real-world dataset are shown. The
description of the Unix dataset is provided in Section 6.1. The goal is to test the
approach handling missing data with real data, instead in the previous Section the
results are obtained on artificial data.

In Table 6.11, the Cage-MetaCombiner performance on the Unix dataset using
different subsequence lengths and different percentage of missing data is shown. The

9 The value reported concerning the accuracy Learn++.MF for the Pendigit dataset have been
taken from a graph of the original paper, in which the values of the standard deviation were
not present.
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classification rate for the 100 commands experiment is slightly better than for the
case with 500 commands probably because the increase in the number of commands
could lead to an increment in the number of features and consequently the training
phase becomes harder than the previous case. Owing to the high number of features,
the results are not much affected by the missing rate, that is the algorithm has good
performance with all the percentages of missing data. In all the cases, the results
show that the algorithm presents comparable performance by using different values
of parsimony.

It’s worthwhile to remember the advantage of a high value of parsimony factor.
The parameter controls the size of combining functions and the increase of the value
is tied to a small tree size (that is both base classifiers and combining operators).

Table 6.11. Classification rate (Percent) of Cage-MetaCombiner with the Unix dataset us-
ing three parsimony values, different subsequence lengths and with different percentages of
missing data.
Commands Sequence Percentage of Missing

100

Parsimony 0% 10% 20% 30% 40% 80% Distinct Classifiers Total Classifiers Functions

3
0 83.96 ± 1.90 83.84 ± 3.68 83.70 ± 2.43 82.67 ± 2.91 82.64 ± 2.51 81.32 ± 2.21 7.75 ± 0.45 52.97 ± 9.42 21.62 ± 3.27

0.1 85.73 ± 1.22 84.00 ± 1.33 83.60 ± 1.95 83.57 ± 2.07 83.20 ± 2.82 81.69 ± 3.00 4.19 ± 0.31 6.73 ± 0.83 3.51 ± 0.32
0.4 84.16 ± 0.35 83.96 ± 1.20 83.90 ± 1.05 83.86 ± 1.64 83.49 ± 1.64 83.00 ± 2.92 3.41 ± 0.28 4.66 ± 0.39 2.49 ± 0.25

4
0 83.81 ± 3.97 83.70 ± 1.89 82.81 ± 1.72 82.54 ± 2.24 81.98 ± 3.65 81.82 ± 2.42 7.71 ± 0.28 44.79 ± 3.04 18.41 ± 1.17

0.1 83.86 ± 0.81 83.73 ± 1.24 83.20 ± 1.74 83.10 ± 1.73 82.89 ± 1.51 82.11 ± 3.01 4.50 ± 0.31 7.61 ± 1.51 3.75 ± 0.63
0.4 84.76 ± 0.53 84.19 ± 0.54 83.86 ± 0.93 83.76 ± 1.34 83.13 ± 1.70 81.65 ± 2.70 3.57 ± 0.33 4.68 ± 0.38 2.49 ± 0.18

5
0 83.37 ± 1.31 82.97 ± 1.54 82.67 ± 2.09 82.00 ± 2.41 81.92 ± 3.25 81.45 ± 2.34 7.52 ± 0.34 43.31 ± 8.23 17.79 ± 3.07

0.1 83.96 ± 0.74 83.93 ± 0.81 83.73 ± 1.46 83.33 ± 1.62 83.21 ± 2.02 82.51 ± 2.66 4.57 ± 0.40 7.40 ± 1.17 3.67 ± 0.51
0.4 85.14 ± 3.96 83.83 ± 1.15 84.29 ± 1.19 84.09 ± 1.64 83.33 ± 3.63 82.84 ± 2.23 3.77 ± 0.27 4.83 ± 0.58 2.64 ± 0.31

6
0 84.74 ± 3.96 84.09 ± 1.33 83.96 ± 1.89 83.86 ± 1.18 82.05 ± 3.08 81.19 ± 2.24 8.01 ± 0.24 51.23 ± 7.28 20.91 ± 2.51

0.1 85.06 ± 0.53 84.23 ± 0.99 84.26 ± 1.29 83.60 ± 1.32 83.09 ± 2.01 82.38 ± 2.43 4.54 ± 0.44 7.61 ± 1.44 3.83 ± 0.63
0.4 84.96 ± 0.74 84.19 ± 0.54 83.93 ± 0.55 83.85 ± 1.31 83.64 ± 1.72 82.21 ± 2.32 3.63 ± 0.13 4.77 ± 0.39 2.56 ± 0.16

500

3
0 86.70 ± 7.05 85.78 ± 5.83 85.58 ± 5.37 85.08 ± 5.07 85.02 ± 5.27 82.44 ± 3.05 7.87 ± 0.15 50.06 ± 5.56 20.38 ± 2.12

0.1 84.39 ± 7.36 84.08 ± 7.59 84.26 ± 6.93 83.80 ± 6.84 83.27 ± 5.38 82.01 ± 5.00 4.46 ± 0.65 7.55 ± 1.66 3.93 ± 0.80
0.4 90.56 ± 2.21 89.58 ± 5.58 88.86 ± 5.40 87.92 ± 5.38 87.46 ± 2.42 82.64 ± 3.51 3.03 ± 0.32 3.77 ± 0.57 2.12 ± 0.30

4
0 83.63 ± 1.22 82.78 ± 4.03 82.31 ± 3.44 82.25 ± 3.23 82.10 ± 2.27 82.08 ± 2.28 7.83 ± 0.14 57.41 ± 7.51 22.93 ± 3.28

0.1 83.86 ± 0.85 83.57 ± 2.15 82.93 ± 1.59 82.10 ± 2.12 81.91 ± 2.70 81.04 ± 3.28 4.21 ± 0.27 6.97 ± 0.84 3.71 ± 0.46
0.4 84.16 ± 0.80 83.96 ± 0.65 83.80 ± 1.26 83.43 ± 1.69 83.50 ± 1.74 82.84 ± 2.33 3.27 ± 0.15 4.46 ± 0.45 2.42 ± 0.22

5
0 83.48 ± 4.32 82.97 ± 2.83 82.88 ± 3.22 82.59 ± 2.86 82.54 ± 3.56 82.38 ± 2.60 7.96 ± 0.28 51.84 ± 11.70 21.03 ± 4.44

0.1 83.76 ± 1.04 83.73 ± 1.22 83.63 ± 1.51 83.30 ± 1.86 83.34 ± 2.08 82.11 ± 2.53 4.15 ± 0.34 6.84 ± 0.66 3.35 ± 0.43
0.4 84.26 ± 0.11 84.23 ± 0.67 83.93 ± 1.10 83.86 ± 1.43 83.13 ± 1.18 82.44 ± 1.91 3.43 ± 0.28 5.02 ± 0.46 2.67 ± 0.21

6
0 82.87 ± 1.47 82.42 ± 4.03 82.42 ± 4.21 82.08 ± 3.79 81.98 ± 2.13 80.86 ± 2.53 8.08 ± 0.24 54.59 ± 4.36 21.65 ± 1.69

0.1 83.76 ± 1.01 83.20 ± 1.41 83.17 ± 2.12 83.14 ± 2.36 83.10 ± 2.11 82.44 ± 2.68 4.47 ± 0.35 7.49 ± 0.96 3.80 ± 0.41
0.4 84.96 ± 0.74 84.36 ± 0.47 84.26 ± 1.90 84.13 ± 1.24 84.06 ± 1.01 82.48 ± 3.04 3.29 ± 0.15 4.29 ± 0.22 2.41 ± 0.09

In Table 6.12 the results of comparison between Cage-MetaCombiner and Ev-
ABCD are reported [54]. The EvABCD algorithm is a technique for classification of
the behavior profiles of users. As Cage-MetaCombiner, it learns different behaviors
from training data. For a different profile, it builds one or more prototypes computing
the frequency of all the sequences of commands with a defined length. Moreover, it
updates the models in an incremental way. The proposed algorithm performs better
than EvABCD in most cases. By using Cage-MetaCombiner, the results for a differ-
ent number of commands extracted do not influence the accuracy much, while the
EvABCD algorithm improves its accuracy when using 500 commands.
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Table 6.12. Comparison of the Cage-MetaCombiner vs the EvABCD algorithm for the Unix
dataset (accuracy rate).

Commands Sequence Cage-Combiner EvABCD

100

3 85.73 64.90
4 83.86 64.50
5 83.96 67.90
6 85.06 64.30

500

3 84.39 59.50
4 83.86 59.20
5 83.76 66.70
6 83.76 70.80
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6.4 Experimental investigation on specialized ensemble approach

In this Section, the preliminary experiments performed to evaluate the effectiveness
of the ensembles of specialized detectors are illustrated. To this aim, a comparison
with other related approaches is presented using the well-known KDD dataset along
with an analysis of the performance of the specialized ensembles on a really interest-
ing dataset in the field of intrusion detection, presented in the Section 6.5.3, which
overcomes the drawbacks of the KDD dataset.

6.4.1 Experiments on KDD 99 and ISCX IDS.

To evaluate the system proposed, the algorithm processes two datasets: the first, the
KDD Cup 1999 is one of the most used in this field, but present some drawbacks,
remarked in Section 6.5.3. However, it is included in the experiments for the sake of
comparison with other similar approaches using this dataset. The details of connec-
tions and attacks are presented in the Section 6.1. The second dataset is ISCX IDS,
also described in the Section 6.1.

Among the many metrics for evaluating classifier systems, the results are pre-
sented with the comparison of recall and precision, because they give an idea of the
capacity of the system in individuating the attacks and in reducing the number of
false alarms; indeed, recall represents the proportion of correctly predicted attack
cases to the actual size of the attack class (a value of 100% indicates the detection
of all the attacks, however, it can individuate also a large number of false attacks);
precision represents the proportion of attack cases that were correctly predicted rel-
ative to the predicted size of the attack class (a value of 100% indicates that no false
alarms were signaled, however a large number of alarms could be not detected).

In order to analyze the behavior of the approach in recognizing the minority
classes, i.e., the attacks, the approach is compered with the one presented in [5], for
the KDD Cup dataset. The authors propose a boosting approach, named Greedy-
Boost, which builds an ensemble of classifier based on a linear combination of mod-
els, specifically designed to operate for the intrusion detection domain. The main
idea of that algorithm is to extend the boosting process maintaining the models that
behave better on the examples badly predicted in the previous round of the boosting
algorithm (while the classical boosting algorithm adjusts only the weights and not
the models).

Differently from the previous experiment done with this dataset 6.4.1, in this case
only the specialized version of the ensemble is used. The main difference is the way
how ensemble is composed. In this case CAGE-MetaCombiner builds an ensemble
in which each model is trained to detect one type of attacks. In the previous case, all
classifiers are able to detect all types of attack but with different results.

In Table 6.13, the results of the comparison between CAGE-MetaCombiner and
the Greedy-Boost algorithm on the KDDCup 99 dataset are reported (precision and
recall are reported for all the classes). It is evident that the approach performs better
both for the precision and the recall measure when considering the minority classes,
i.e. the attacks, and it is comparable for the other classes.
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Table 6.13. Precision for different strategies for the KDD Cup dataset. In the first column, it
is reported the class distribution for the dataset.

Precision
Class Distribution Greedy-Boost CMC specialized

DoS 79.28% 100.0 99.99
Normal 19.86% 99.1 99.83
Probe 0.84% 99.0 99.43
R2L 0.023 % 93.2 98.29
U2R 1.06E-3 % 88.5 91.07

Table 6.14. Recall for different strategies for the KDD Cup dataset. In the first column, it is
reported the class distribution for the dataset.

Recall
Class Distribution Greedy-Boost CMC specialized

DoS 79.28% 100.0 99.99
Normal 19.86% 100.0 99.97
Probe 0.84% 97.1 97.31
R2L 0.023 % 71.9 86.43
U2R 1.06E-3 % 44.2 74.54

As for the ISCX dataset, in this case the goal is to verify the performance of the
algorithm, trying to understand the benefits of using specialized classifier. It is worth
to remember that an intrusion detection algorithm must able to detect all the types of
attack. Therefore, the labelled tuples of the dataset are randomly sampled and used as
training and validation datasets to train one ensemble for each class; for the normal
class, a completely random subsample of the dataset is extracted; for a given attack,
a subsample having 50% of normal connections and 50% of the attack is extracted.
The overall sample extracted represents 2% of the entire dataset. Finally, the entire
dataset is classified with a weighted combination of the ensembles, as illustrated in
Section 5.4.

In Table 6.15 are reported precision and recall for the CAGE-MetaCombiner
algorithm, for the case of using specialized ensembles and for the case of using not
specialized ensemble. The specialized ensembles behaves better in terms of precision
for all the types of attack (every day presents a different type of attack) while, as for
the precision metric, the two approaches are comparable, with the exception of day 4,
in which the behavior of the specialized ensembles is worst; this could be due to the
nature of the attacks: indeed, most connections are related to HTTP DDoS attacks
and these are quite close to normal connections resulting in increasing of the false
positive rate.
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Table 6.15. Precision and Recall for different strategies (with and without specialized ensem-
ble) for the ISCX dataset.

Precision Recall
non specialized specialized non specialized specialized

Day 2 96.12 99.47 99.95 100.00
Day 3 56.67 67.00 92.56 91.82
Day 4 42.24 54.88 81.63 67.55
Day 5 91.50 96.89 97.83 97.49
Day 7 96.58 97.35 99.94 100.00
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6.5 Results with drift detection

Two set of experiments were performed, by using an artificial dataset and an intru-
sion detection dataset, in order to verify the goodness of the approach in a stream
environment with the detection of drifts. In the next two subsections, the parameters
used in the experiments and the results are illustrated.

6.5.1 Parameter settings

Among the many metrics for evaluating classifier systems, in this Section the results
are reported in term of AUC. The AUC metric is the value of the area under the
ROC curve. The ROC curve is computed comparing the false positive rate and the
true positive rate. The first term measures the capacity to correctly detect attacks (i.e.
recall). The second term measures the rate between the false alarm signaled above all
normal connections processed. Computing the area, we have a number to describe
the goodness of classifier. An AUC close to 1 means an optimal recognition rate.

The different classifiers composing the ensemble are trained on the same training
set. In practice, for each window of the stream, 50% is used to train the base classi-
fiers, the remaining 50% is used as validation set. The validation part is processed by
the evolutionary algorithm to evolve the combination function. The maximum num-
ber of classifiers is fixed to 20 and the number of classifiers composing the ensemble
are 10.

The CMC uses many learner as base classifiers, then it makes a selection using a
strategy chosen among best, old and wheel selection.

The algorithms used as base classifiers in the experiments are based on the
WEKA implementation10 and are listed in the following: J48 (decision trees), JRIP
rule learner (Ripper rule learning algorithm), NBTree (Naive Bayes tree), Naive
Bayes, 1R classifier, logistic model trees, logistic regression, decision stumps and
1BK (k-nearest neighbor algorithm).

6.5.2 Experiments conducted on the artificial datasets

In order to evaluate the effectiveness of the replacement strategies, of the drift detec-
tion techniques used and in general of the approach, the experiments are conducted
by varying the size of the evaluation window of the stream. In addition, the proposed
approach is compared with the well-known incremental algorithm HoeffdingTree
using the same drift detection algorithm and with a boosted version of the Hoeffd-
ingTree. Moreover, considering that the window size is the number of records used
to train the base classifiers and to build the base classifier; the metrics of recall, pre-
cision and AUC are computed for each window and averaged over all the windows.

In all the tables of this Section and of the next one, the values that are not statis-
tically significant different using the Friedman test (this choice is motivated by the
observation that most of the differences are significative) are reported in bold. The

10 http://www.cs.waikato.ac.nz/ml/weka
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critical value of the Friedman test [32] is obtained from a chi-square distribution with
two degree of freedom and a significancy level of 5%. The Friedman test is a non-
parametric statistical test and it is used to detect differences across multiple test. The
null hypothesis of this test is that the median value of all the populations is equal.

In Tables 6.16, 6.17 and 6.18, are shown respectively the precision, the recall
and the AUC metrics concerning the HoeffdingTree algorithm (classic and boosted
version) and the different replacement strategies used for CAGE-MetaCombiner:
old, best and wheel. The experiments show that the size of the evaluation win-
dow does not affect significantly the performance of the algorithms. The CAGE-
MetaCombiner approach is slightly better than the others and the better strategy of
replacement is that replaces the worst trees with the best ones. This behavior can be
referred to nature of the generated dataset. The same conclusions can be drawn for
the AUC metric.

Table 6.16. Precision for CMC and HoeffdingTree (classic and boosted version) with Hyper-
Plane dataset.

Precision
1k 2k 5k 10k

STEPD
HT boosted 87.66±2.12 87.66±2.93 87.80±1.97 87.97±0.68
HoeffdingTree 87.48±1.75 87.56±0.27 87.64±2.97 87.86±2.81
CMC wheel 87.68±1.52 87.87±2.61 87.39±1.26 87.49±2.98
CMC best 87.68±2.72 90.01±0.81 93.28±0.74 85.52±0.99
CMC old 87.47±2.61 89.78±1.78 90.28±2.35 85.55±1.27

ADWIN
HT boosted 84.83±0.05 85.00±1.54 83.52±0.33 83.52±0.78
HoeffdingTree 86.44±0.46 85.99±0.07 86.25±0.06 85.41±0.59
CMC wheel 87.68±2.46 85.48±2.19 83.83±0.92 84.72±1.38
CMC best 87.68±2.53 90.01±0.41 91.92±2.71 85.52±0.21
CMC old 87.13±1.71 89.29±1.41 90.63±1.77 84.23±2.06

Table 6.17. Recall for CMC and HoeffdingTree (classic and boosted version) with HyperPlane
dataset.

Recall
1k 2k 5k 10k

STEPD
HT boosted 87.30±2.69 87.37±0.85 87.53±2.07 87.59±0.58
HoeffdingTree 87.25±0.50 87.51±2.66 87.55±2.90 87.82±1.04
CMC wheel 87.33±0.32 87.48±0.71 88.59±1.17 87.98±1.17
CMC best 91.32±1.31 91.40±2.67 85.86±0.69 87.55±0.15
CMC old 90.56±2.77 89.01±2.89 85.48±0.83 87.32±0.43

ADWIN
HT boosted 84.11±1.40 84.16±2.46 83.47±1.85 83.77±2.66
HoeffdingTree 86.48±1.62 86.39±1.62 85.45±2.94 84.67±1.70
CMC wheel 91.32±0.84 85.36±1.72 84.41±1.59 83.79±1.35
CMC best 91.32±1.55 91.40±1.16 91.66±1.06 87.55±1.92
CMC old 89.72±2.75 89.80±2.76 89.66±2.13 85.55±2.48

6.5.3 Experiments conducted on the real dataset

Generally, in the intrusion detection datasets, most of the instances represent normal
connections, while the attacks represent the minority classes, often with different
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Table 6.18. AUC metric for CMC and HoeffdingTree (classic and boosted version) with Hy-
perPlane dataset.

AUC
1k 2k 5k 10k

STEPD
HT boosted 0.87± .029 0.88± .013 0.88± .012 0.88± .025

HoeffdingTree 0.87± .010 0.88± .022 0.88± .015 0.88± .001
CMC wheel 0.89± .019 0.89± .023 0.90± .002 0.89± .018
CMC best 0.89± .003 0.91± .001 0.90± .006 0.86± .019
CMC old 0.89± .013 0.90± .012 0.89± .004 0.86± .025

ADWIN
HT boosted 0.86± .014 0.84± .010 0.83± .015 0.83± .029

HoeffdingTree 0.86± .078 0.86± .029 0.86± .007 0.85± .025
CMC wheel 0.89± .030 0.85± .010 0.84± .025 0.82± .015
CMC best 0.89± .016 0.91± .014 0.92± .026 0.86± .028
CMC old 0.88± .094 0.90± .012 0.92± .013 0.85± .022

orders of magnitude. Therefore, the ISCX dataset, described in the Subsection 6.1,
which is representative of this behavior, was used for the experiments of this Section.

Analyzing Table 6.3 and the relative dataset, it is evident that the attacks are
grouped in a small range of windows and, for different days, different kinds of attack
can be observed. It worth to notice that drifts (changes in the data) can be detected
when a new type of attack appears for the first time. Therefore, this dataset is appro-
priate in order to test the CMC approach.

In Tables 6.19, 6.20 and 6.21 the experimental results for the ISCX dataset are
shown and the behavior of the approach is examined with the different replacement
strategies.

In this case, the wheel selection strategy has the better performance for both the
precision and recall metrics. The same behavior is observable in Table 6.21 for the
AUC metric.

Table 6.19. Precision for different replacement strategies for CMC (ISCX dataset).
Precision

1k 2k 5k 10k
STEPD

CMC wheel 83.46±0.29 89.40±0.31 87.75±2.24 89.97±0.11
CMC best 79.19±0.19 82.31±2.65 74.30±0.36 84.67±2.29
CMC old 70.99±0.95 75.98±0.32 75.25±0.59 78.98±0.29

ADWIN
CMC wheel 83.46±0.81 87.59±1.07 92.42±0.77 88.28±2.71
CMC best 57.98±2.01 61.90±0.79 65.90±0.15 58.67±1.92
CMC old 56.75±2.73 63.65±0.12 63.83±1.99 59.80±2.67

Table 6.20. Recall for different replacement strategies for CMC (ISCX dataset).
Recall

1k 2k 5k 10k
STEPD

CMC wheel 88.39±2.75 85.47±1.62 85.10±2.71 80.41±2.38
CMC best 65.98±2.51 66.56±2.40 82.85±0.33 71.70±2.96
CMC old 59.34±1.63 62.35±0.26 63.35±1.09 67.98±0.16

ADWIN
CMC wheel 88.39±2.51 88.25±2.38 82.44±2.44 80.79±0.08
CMC best 67.44±1.82 67.62±0.60 73.90±1.56 62.82±0.69
CMC old 63.54±2.82 64.34±2.12 64.90±0.71 61.98±2.41



6.5 Results with drift detection 75

Table 6.21. AUC metric for different replacement strategies for CMC (ISCX dataset).
AUC

1k 2k 5k 10k
STEPD

CMC wheel 0.84± .019 0.86± .018 0.87± .007 0.87± .018
CMC best 0.72± .029 0.79± .016 0.86± .013 0.84± .008
CMC old 0.59± .009 0.60± .002 0.60± .007 0.62± .017

ADWIN
CMC wheel 0.84± .014 0.87± .017 0.89± .007 0.89± .002
CMC best 0.51± .026 0.51± .018 0.55± .019 0.52± .015
CMC old 0.53± .003 0.53± .015 0.53± .001 0.52± .017

In Tables 6.22, 6.23 and 6.24 are shown respectively the recall and precision
and the AUC metrics concerning the comparison between the HoeffdingTree algo-
rithm (classic and boosted version) and the CMC approach with the wheel selection
strategy. The choice of using ADWIN as drift detection algorithm is motivated by the
consideration that it has equivalent performance (better in some cases) in comparison
with STEPD. Furthermore, considering only the AUC metric, ADWIN has a slight
advantage on the performance of the STEPD algorithm for the ISCX dataset. Note
that, the HoeffdingTree algorithm updates more frequently its model, and therefore,
also for small windows, it can improve quickly the predictive capacity. However, the
CMC approach has performance close to the HoeffdingTree for small windows and
it performs sensibly better when the window size grows. Furthermore, comparing
the performance for both the version of the HoeffdingTree, a performance degrada-
tion of the ensemble-based algorithm can be observed. This behavior does not affect
CMC, probably because when a drift is detected, it updates/replaces the models and
re-weights the classifiers (by recomputing the combination function).

Table 6.22. Precision for the comparison among CMC and the Hoeffding tree (classical and
boosted version) on ISCX dataset.

Precision
1k 2k 5k 10k

ADWIN
CMC wheel 83.46±0.28 87.59±0.03 92.42±2.20 88.28±2.69
HT boosted 84.72±2.67 81.79±2.82 79.50±0.14 75.29±2.82
HoeffdingTree 89.22±1.67 87.51±2.23 87.23±1.80 87.48±1.51

Table 6.23. Recall for the comparison among CMC and the Hoeffding tree (classical and
boosted version) on ISCX dataset.

Recall
1k 2k 5k 10k

ADWIN
CMC wheel 88.39±0.69 88.25±1.08 82.44±0.69 80.79±0.26
HT boosted 85.20±1.04 81.35±2.14 70.62±1.15 58.72±1.90
HoeffdingTree 92.66±0.92 87.76±2.86 79.69±0.53 75.62±2.10
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Table 6.24. AUC metric for the comparison among CMC and the Hoeffding tree (classical
and boosted version) on ISCX dataset.

AUC
1k 2k 5k 10k

ADWIN
CMC wheel 0.84± .022 0.87± .003 0.89± .001 0.89± .007
HT boosted 0.82± .021 0.79± .007 0.75± .009 0.69± .003
HoeffdingTree 0.89± .014 0.88± .001 0.85± .012 0.83± .013
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Conclusion and future works

In this thesis, a general architecture based on the ensemble paradigm is proposed.
The main aim of work is to design a distributed system for environment in which
performance and scalability are the most important aspect to be considered. Two
scenarios in the cyber security field are illustrated: a system to identify user profiles
and an innovative architecture for a distributed intrusion detection system. In both
cases, the classifiers must have the ability to handle unbalanced data, missing data
and, considering streaming data, the ability to detect different types of drifts.

The first scenario is a system, which permits to divide users in groups with the
same behavior and the same weaknesses. This task is very important in modern ar-
chitecture because the complexity makes difficult to detect attacks started from legit-
imate users. An architecture to solve this problem is proposed and the experimental
results have proved the effectiveness of the approach. Moreover, the system is able
to works with large logs.

Another scenario considered is a system designed to detect network intrusions.
The flexibility and versatility of the ensemble approach is easy to apply in the re-
search theme of intrusion detection. The goal is to design a distributed architecture
for an IDS. First of all, many data mining algorithms that present an approach suit-
able to network intrusion detection to take advantage of modern parallel/distributed
and cloud environments are reviewed. Then, all components of the system are de-
fined considering two types of input: data generated from "static" applications and
data generated in a streaming environment.

These scenarios have highlighted problems such as unbalanced data, missing
data, changes in data (drift), etc. Indeed, in this particular domain, datasets often
have different number of features and each attribute could have different importance
and costs. Furthermore, some data source could be not present but the system must
work anyway. Therefore, it would be really unlikely a single classification algorithm
will perform well for all the datasets, especially in presence of changes and with
constraints of real time and scalability.

The solutions proposed by this thesis to these problems is a general frame-
work based on ensemble paradigm and evolutionary algorithm. The framework is
described in term of problems addressed and an architecture is defined for each ap-
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plication considered. The experimental results are conducted to test the effectiveness
of the approach and they are divided in several test suites.

The first test suite analyzes the performance of the approach with unbalanced
data. The system based on an ensemble model evolves a combiner function, which
does not need additional phases of training, after the heterogeneous classifiers com-
posing the ensemble are trained. The experiments showed that the proposed system
improves or is comparable to the performance of state-of-the-art approaches for com-
bining ensemble, by using a smaller number of models.

The second test suite concerns the missing data problem. A meta-ensemble-based
framework for classifying datasets in the cyber security domain and a real scenario
concerning the segmentation of the users of an e-payment system, which illustrates
the real applicability of the approach, is realized. The main advantages of the frame-
work are its capacity in handling groups of missing feature and the possibility of
operating in an incremental way without the need for re-training on the original data.
In addition, in the case of missing features, it works better than other similar ap-
proaches when an entire group of features is missing.

The third test suite is dedicated to test the ability to handle very difficult problems
in the field of intrusion detection, the system is extended using specialized models
as base classifiers for the ensemble. A distributed framework for the problem of
intrusion detection has been presented and the different components were illustrated.
In particular, the meta-ensemble engine used to classify the attacks and the normal
connections, based on a non-trainable function evolved by the GP tool, is test on
well-known datasets.

The experiments conducted on the KDD dataset and on a more up-to-date dataset
demonstrate that the framework is able to cope with the intrusion detection task even
in the case of really unbalanced classes, by exploiting the advantages of the special-
ized classifiers. The algorithm succeeds in minimizing the false alarms and generally
recognizes well the attacks.

Finally, the last tests are analyzed the performance of the proposed approach
with the streaming data and a drift detection module is added to the general architec-
ture. As for the previous cases, the system evolves a combiner function afterwards
the heterogeneous classifiers composing the ensemble are trained. The framework
includes a drift detection function to detect changes in the data and a strategy for re-
placing classifiers, which permits to build the ensemble in an incremental way. The
experiments showed that the framework is apt to cope with large streams of normal
connections and attacks and that the new proposed selection strategy obtains encour-
aging results in comparison with classical replacement strategies.

The design of the framework has highlighted some considerations that have a
key role for any cyber security applications. The distributed computing as well as the
sharing of the models are two approaches that permit to build a very efficient system
able to satisfy the hard requirements of modern applications. Moreover, an in depth
analysis on real data has high relevance to understand the ability of an application to
solve a specific problem.
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The experiments has also shown how the framework is flexible to handle many
different problems, and the phase of optimization and setting tuning for each dataset
is the proof that some improvements are feasible.

The time and space requirements of this research have been limited by the ap-
propriate scope of research for the thesis, but a number of possible future topics that
would be interesting to explore can be identified.

As example, a real environment can be used to test the framework. Regarding
the data dimension, an interesting field of research is to understand how the frame-
work works with big data. Although, the framework has a distributed implementa-
tion, working with big data has new issues to address.

Another research field is the use of modern infrastructure of cloud computing.
Map-reduce based technologies are an interesting field, and the extension of the
framework to work with these approaches can be seen as an interesting improve-
ments.

The integration of framework in popular platform of machine learning makes
easy to work with streaming data.

In the field of intrusion detection, many attacks are new, i.e. never met before;
however the classification algorithms used in the framework require that the attacks
are known in advance. Therefore, the usage of unsupervised approaches could ad-
dress this issue, but their integration in the framework must be carefully analyzed.
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