

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XXIII ciclo

Tesi di Dottorato

Agent architectures for modelling and
parallel simulation of complex systems

Andrea Giordano

In memory of my father

Acknowledgements

I would like to thank prof. Libero Nigro for his professionalism and dedication
with which he supervised my research work.

I acknowledge all my colleagues at L.I.S., and especially Ing. Franco Ci-
cirelli for its nearness and friendship during my PHD activity.

I would like to thank my family and my friends who have always sustained
me in the important situations of my life.

Finally, I thank also the group ’precari invisibili della ricerca’ which keeps
the fight alive with passion and intelligence.

Preface

A fundamental step in systems engineering lifecycle is represented by require-
ments specification and thorough property analysis before proceeding with
design down to the implementation phase. What are needed are suitable mod-
elling languages able to ensure the necessary rigor in the expression of system
behaviour. Property analysis can hopefully be based on exhaustive verifica-
tion (e.g. by model checking) but more often has to resort to techniques such
as discrete-event simulation (DES) which although is unable to reproduce the
full execution state graph of a modelled system, can anyway provide valuable
insights in the functional and behavioural properties of a system.

Modelling and analysis get further complicated when dealing with large-
scale systems, like telecommunication systems, biological or social or eco-
nomic systems, artificial intelligence systems, weather forecasting systems
and so forth, which normally can only be studied through simulation. Such
systems challenge for the avalability of adequate modelling languages, run-
time executive infrastructures and powerful computing architectures for high-
performance execution.

Nowadays, agent-based computing is often regarded as a very promising
paradigm for modelling and simulation (M&S) of complex systems. Agents
are typically encapsulated software entities which can naturally be associ-
ated to system components, and interact and coordinate to one another to-
wards the achievement of a common goal (system mission or emerging be-
havior from agent individual behaviors). Agents favour software modularity
and reusability and can allow an exploitation of e.g. a distributed execution
context. Although exist several agent-based modelling languages and tools,
this work argues that solutions are often unsatisfactory to provide the flexi-
bility and the execution performance required by complex systems M&S. This
PHD thesis develops some M&S solutions based on a particular agent-based
framework in Java -Theatre- proposed in the Software Engineering Laboratory
(www.lis.deis.unical.it), headed by Prof. L. Nigro, of the Department of Infor-
matics Electronics and Systems Science of the University of Calabria. Theatre
is a light-weight architecture centred on the actor computational model. It

X Preface

characterizes by its ability to support a huge number of agents in a simulation
model, and to work with different transport layers and standard or emerging
middleware like HLA or Terracotta. Theatre can effectively be used for M&S
of large and scalable systems, and can act as an efficient runtime system for
supporting several formal modelling languages. Specific contributions of this
thesis are in the following areas:

- customizing Theatre for supporting hierarchical actors and statecharts,
thus controlling the explosion of states in situations where even at the
agent level the dynamic behavior becomes complex

- experimenting with Theatre for supporting DEVS particularly in the case
of simulator interoperability by web services

- using Theatre for distributing RePast models for high-performance simu-
lation of complex agent-based systems over HLA/RTI

- developing a Theatre kernel on top of Terracotta to enable parallel/dis-
tributed simulation of large systems on a multi-core cluster

- evaluating the use of Theatre in supporting spatial environments organi-
zations in situated multi-agent systems.

The thesis is structured in 6 chapters as follows.

� Chapter 1 is devoted to a presentation of fundamental concepts of agent-
based computing.

� Chapter 2 focuses on some exemplar M&S formalisms, HLA and Terra-
cotta middleware for parallel/distributed simulation, and to well-known
agent-based toolkits like RePast. The chapter covers also basics of aspect
oriented programming.

� Chapter 3 presents the Theatre actor-based architecture and reports some
experience in M&S of variable structure systems. In addition details of a
mapping of Theatre on HLA are discussed and applied in the context of a
conservative time management algorithm.

� Chapter 4 describes two particular developments: (a) statecharts based
actors and (b) a DEVS implementation in terms of Theatre.

� Chapter 5 illustrates an actor kernel based on Terracotta and reports
about its performance using a multi-core cluster.

� Chapter 6 presents some techniques for handling spatial environment par-
titioning of situated multi-agent systems. The chapter also focuses on a
software engineering project and its concretization, concerning the distri-
bution of RePast agent models using the Theatre architecture over HLA.

Rende, November 2010 Andrea Giordano

Contents

1 Concepts of Agent-based Computing . 1
1.1 Introduction . 1
1.2 Agent metaphor . 2
1.3 Architectures . 5

1.3.1 Deliberative Architectures . 5
1.3.2 Reactive Architectures . 6
1.3.3 Hybrid Architectures . 8

1.4 Foundation technologies . 9
1.4.1 Agent platforms . 9

1.5 Mobile agents . 11
1.5.1 Benefits of mobile agents . 11
1.5.2 Mobile agents technology . 12

1.6 Distributed agent-based simulation . 14
1.6.1 Discrete-event simulation . 14
1.6.2 Distributed simulation . 14
1.6.3 The problem of shared state . 15

1.7 Conclusions . 16

2 M&S formalisms, middleware, tools . 17
2.1 Introduction . 17
2.2 Formalisms . 18

2.2.1 DEVS . 18
2.2.2 Statecharts . 21

2.3 Middleware . 25
2.3.1 HLA-RTI. 25
2.3.2 Terracotta . 29

2.4 Tools . 34
2.4.1 RePast . 34
2.4.2 Aspect oriented programming: AspectJ 37

XII Contents

3 The Theatre architecture . 43
3.1 Introduction . 43
3.2 Theatre basics . 44

3.2.1 Actor modeling and behavior . 44
3.2.2 Structure of a theatre . 46
3.2.3 Agent naming . 46
3.2.4 Agent migration . 47
3.2.5 Dynamic model reconfiguration . 48

3.3 Theatre on top of HLA . 48
3.3.1 Time management . 50
3.3.2 Lifecycle of a Theatre-based mederation 50
3.3.3 An UAV modeling and simulation example 51
3.3.4 Experimental mesults . 59
3.3.5 Model scaling and simulation performance 61
3.3.6 Related work . 63

4 Supporting M&S formalisms through Theatre 67
4.1 Introduction . 67
4.2 Hierarchical actors . 67

4.2.1 A modelling example . 68
4.3 Actors for DEVS M&S . 75

4.3.1 ActorDEVS . 75
4.3.2 DEVS-WORLD Vision . 77
4.3.3 Wrapping ActorDEVS in DEVS-WORLD 79
4.3.4 Variable structure system example 84
4.3.5 Configuration, deployment and simulation 86

5 Theatre over Terracotta . 89
5.1 Introduction . 89
5.2 Design issues . 90
5.3 A Predator/Prey model . 94

5.3.1 Greedy strategy (str1) . 94
5.3.2 Minority game strategy (str2) . 95
5.3.3 EnvActor behavior . 97

5.4 Simulation experiments . 98
5.4.1 Strategies performance . 99
5.4.2 Simulation performance . 100

6 Distributing situated multi-agent systems 105
6.1 Introduction . 105
6.2 Distributing spatial environments . 107

6.2.1 The problem of distributed shared state 108
6.2.2 A mechanism for conflict resolution 110

6.3 Using time as a tie-breaking mechanism . 112
6.3.1 The basic version of CLT . 113

Contents XIII

6.3.2 Consistency among updates: adding the step slot 114
6.3.3 Multiple events at the same virtual-time: adding the

epoch slot . 114
6.3.4 Remote operations . 115

6.4 Supplying stage to actors in Theatres . 115
6.5 Distributing RePast on top of Theatre . 118

6.5.1 Related work . 118
6.5.2 Inside RePast . 119
6.5.3 HLA ACTOR REPAST Design Issues . 121
6.5.4 Tileworld Model Example . 128
6.5.5 Simulation experiments . 130

Conclusions and Outlook . 135

References . 137

1

Concepts of Agent-based Computing

1.1 Introduction

Agent-based computing is a promising approach for the development of appli-
cations in complex and distributed scenarios where no global control is pos-
sible. It provides a way to design and develop software applications in terms
of autonomous entities, referred to as agents, which are situated in an envi-
ronment and flexibly can achieve their goals by interacting to one another by
means of high-level protocols and languages [Jen01, OZ04]. Compared to other
computing paradigms, agent-based computing can be defined as evolutionary,
however in terms of practical usage it appears to be revolutionary [Lev04].

Currently, agents are the focus of intense interest in many sub-fields of
computer science and artificial intelligence. Agents are being used in an in-
creasingly and incredible wide variety of applications [LMP04, JW98], ranging
from comparatively small systems such as email filters to large, open, com-
plex, mission-critical systems such as air traffic control. Knowledge Manage-
ment, Team Working, Bio-Inspired Architecture, Supply Chain Management,
Entertainment and Health Care are growing areas for agent research and de-
velopment, especially when complex interactions among entities in the same
environment make it extremely difficult to understand and thoroughly analyse
system behaviour.

An agent is a high-level software abstraction which is a key for modern
software because: (i) the autonomy of application components reflects the
intrinsically decentralised nature of distributed systems and can be considered
as the natural evolution of notions like modularity and encapsulation; (ii) the
flexible way in which agents operate and interact (both with each other and
with the environment) is suited to the dynamic and unpredictable scenarios
where software is expected to operate.

Although in widespread use, agent computing cannot be considered as a
�panacea� in computer science: nothing that can be done with agents cannot
be done with other means [HCK97, WJ98]. However, research areas involved
and the number of deployed applications related to agents bear testament

2 1 Concepts of Agent-based Computing

of potential advantages [Jen01, HCK97, Pic01, Lev04, GKCR00, BHR+02,
Bra97] of this approach.

The chapter is structured as follows. Section 1.2 provides basic defini-
tions and concepts related to the agent metaphor. A discussion about agent
architectures is provided in section 1.3. 1.4 offer a survey on some methodolo-
gies, technologies and infrastructures relevant to the agent paradigm. Finally,
conclusions are presented with an indication of current directions in agent
research.

1.2 Agent metaphor

The term agent literally means one that acts or one that does something
[Woo02] and it origins from the dog latin �to do�. A tacit assumption is
that agents take an active role and originate actions that can affect their
environment, rather than passively allowing their environment to affect them.

Even if the above definition is very simple and clear, there is no general
consensus on what software agents really are. Probably this is due to the sheer
breadth of subject areas in which agents are being applied (see section 1.1).

The concept of agent can be traced back to in the 1970s to Carl He-
witts concurrent Actor model [Hew77a]. In this model, Hewitt proposed a
self-contained, interactive and concurrently executing object which he termed
actor. This object has some encapsulated internal state and can respond to
messages coming from other similar objects.

Above statement provides an operational definition of an agent but it
owns a low level of abstraction in describing agent behaviour. Franklin and
Graesser [FG97] critically reviewed a number of agent definitions showing
that none of them is perfect or complete. Bradshaw [Bra97] instead charac-
terises agents in terms of ascriptions and descriptions. A classical definition
of agent is owed to Wooldrige and Jennings [WJ95]:

...the term agent is used to denote a hardware or (more usually) software-
based computer system that enjoys the following properties:

� autonomy: agents operate without direct intervention of humans or oth-
ers, and have some kind of control over their actions and internal state

� social ability: agents interact with other agents (and possibly humans)
via some kind of agent-communication language

� reactivity: agents perceive their environment (which may be the physical
world, a user via a graphical user interface, a collection of other agents,
the INTERNET, or perhaps all of these combined) and respond in a timely
fashion to changes that occur in the environment.

This provide the so called weak definition of an agent. However for some
researchers the term agent has a stronger and more specific meaning than that

1.2 Agent metaphor 3

sketched out above, so in a strong definition, an agent can hold also some of
the following properties:

� mobility: the ability of an agent to move across a network
� veracity: the assumption that an agent will not knowingly communicate

false information
� benevolence: the assumption that agents do not have conflicting goals,

and that every agent will therefore always try to do what is asked to it
� rationality: (crudely) the assumption that an agent will act in order to

achieve its goals, and will not act in such a way to prevent its goals being
achieved at least insofar as its beliefs permit.

An agent (see figure 1.1) can be viewed as a problem-solving entity with
well-defined boundaries and interfaces [Jen01] that can act on behalf of an
user, another agent or itself. Agents are situated (or better embedded) in an
environment upon which they have partial control and partial observability.
An agent senses the environment through sensors and acts on it through ac-
tuators. Autonomy means that agents can choose how and if respond to some
external stimuli. In other words an agent can say no if it wants. Reactive-
ness and proactivity mean instead that an agent is able to respond in a timely
fashion to external changes that occur in it’s environment and take initiatives.

An environment provides the conditions under which an agent can exist
and it defines the properties of the world (e.g., laws, rules, constraints and
policies) in which an agent will function. Agents may also use the environment
as communication channel to exchange messages to one another (see section
??). It’s important to describe precisely such an environment since a slight
change in it can impact the results of the agent system in an unpredictable
way. Environment attributes include accessibility, determinism, diversity, con-
trollability, volatility. Each of them heavily affects agent behaviour and capa-
bilities. Currently there are no standardised way to describe these important
features, and to clearly differentiate them from the agent code [Lev04].

In adopting an agent-oriented view, it soon becomes clear that modelling
or dealing with most problems requires or involves more than one single
agent. The issue is to choose many simpler and smaller agents or a reduced

Fig. 1.1. An agent representation

4 1 Concepts of Agent-based Computing

Environment Sphere of visibility
and influence

organisational
relationship

interaction

agent

Fig. 1.2. A canonical view of a MAS

number of more complex agents. It’s impossible to give an ultimate answer
to this question. It depends on, for instances, to the intrinsic nature of the
problem to solve, to the degree of modularity and the abstraction level, the
kind and number of relations occurring among system entities, the kind of
properties that are required to study or to emphasize, the expertise of the
system developer. A system in which multiple agents are involved is usually
referred to as a Multi Agent System (MAS):

...[an agent] is in a multi-agent system (MAS) that contains an environ-
ment, objects and agents (the agents being the only ones to act), relations
among all the entities, a set of operations that can be performed by the en-
tities and the changes of the universe in time and due to these actions [Fer99].

A MAS can be viewed as a loosely coupled network of problem solvers
(i.e., agents) that interact to solve problems that are beyond the individual
capabilities or knowledge of each problem solver which in turn has only a lim-
ited viewpoint of the problems themself. In a such system there is no global
control, data are decentralised and computation is intrinsically asynchronous.
Improving system reliability, availability and efficiency are some of the advan-
tages in using a MAS (see [Syc98]). A MAS, however, is more than a bunch
of agents which merely interact. Agents can form societies in which every
participant exhibits roles and owns rules (see figure 1.2).

Agent interactions can vary from simple semantic operations (for instance
through traditional client/server communications) to rich social interactions
(i.e., the ability to cooperate, coordinate, and negotiate about a course of
actions). An agent communication language (see section ??) permits to main-
tain relationships among agent acquaintances and, as in human society, these
relationships are dynamic: they can evolve, change or be broken.

The notion of an environment, together with social ability, are key features
which distinguish agent-based computing from other computing paradigms
like Object Oriented Programming [Lev04, Woo97]. With respect to other
paradigms, the agent metaphor provides a convenient and powerful way to
properly describe real world pictures and to deal with scenarios in which

1.3 Architectures 5

collective behaviour and interaction may produce emerging properties that
cannot be achieved by single entities [NNS05, SS03, BSdS+05]. It’s also effec-
tive in systems with high runtime uncertainty or incomplete information (e.g.,
telecommunication service across multiple providers) and when, in a dynamic
environment, there are some decisions to take based on multiple sources and
large amounts of data (e.g., e-markets, logistics).

Further agent disquisition should require at this point to speak about
agent classification and agent taxonomy. Agents can be better qualified in
term of their purposes and their behaviours like degree of mobility, degree of
autonomy and so forth. These issues are beyond the scope of this chapter, the
reader is referred to [FG97, Bra97, Nwa96].

1.3 Architectures

Agent architectures can be thought of as software engineering models of agents.
Research in this area is concerned with the problem of designing software or
hardware systems that will support various agent properties and behaviours.

Maes [Mae91] defines an agent architecture as a methodology for building
agents which specifies how agents can be decomposed into a set of interacting
modules whose aim is to model how perceptions and the internal state of
an agent may determine an action and changes in the agent state. Agent
architecture can be divided in three broad categories [WJ95]: deliberative,
reactive and hybrid. The proposals are fundamentally different in their view
of the term of �intelligence�.

1.3.1 Deliberative Architectures

Rely on the reduction of the world to a representation of realisable symbols
that can be combined to form structures upon which processes can be executed
to operate upon the symbols according to a coded set of instructions [NS76].
Decision regarding actions to perform are made via logical reasoning, pattern
matching and symbolic manipulation. From a theoretical point of view two
issues exist. The first one concerns translating the real world in an accurate,
adequate and useful symbolic representation (transduction problem), the sec-
ond one concerns on how symbolically represent information about real-world
entities and process, and how to get agents to reason upon these information
(representation/reasoning problem).

The idea of having a deliberative agent, i.e., able to exhibit a �rational
behaviour�, is very attractive but, from a practical point of view, it is difficult
to build useful symbol manipulation algorithms that will be guaranteed to
terminate with useful results in an acceptable time bound.

A particular type of deliberative architecture, perhaps the most known
example, is the BDI architecture [BIP88, RG95], which is founded on rational
agents having certain mental attitudes expressed in term of Belief, Desire and

6 1 Concepts of Agent-based Computing

Intention. The BDI architecture draws its inspiration from the philosophical
theories of Bratman [BIP88] who argues that intentions play a significant
and distinct role in practical reasoning that cannot be reduced only to beliefs
and desires. Beliefs, desires and intentions represent respectively the informa-
tion, motivational and deliberative states of an agent. These mental attitudes
determine the system behaviour and are critical for achieving adequate or
optimal performance when deliberation is subject to resource bounds.

Beliefs can be viewed as the informative components of system state which
has to be appropriately kept updated after each sensing action.

An agent requires also to have information about the objectives (or de-
sires) to be accomplished and, more generally, what priorities and payoff are
associated with them. Unlike the system beliefs, these information are usually
generated instantaneously, or functionally, without requiring any state repre-
sentation. This component is representative of system desires which can be
thought of as representing the motivational state of the system or what an
agent wishes to become true. Adopted desires are often called goals.

Taken actions, or changes into environment, may affect system beliefs and
desires. Thus it becomes necessary to include a component into system state
to represent the currently chosen course of actions. This additional state com-
ponent represents the agent intentions which, in essence, capture the delib-
erative component of an agent system or what an agent will try to make
true. An intension also captures the notion of commitment with respect to
a previous decision. A commitment embodies the balance between reactivity
and goal directedness of an agent-oriented system. Static and dynamic con-
straints [RG95] may be added to relate together beliefs, desires and intentions
in order to characterise agent behaviour. These constraints, for instances, are
particularly important to ensure stability when frequent changes occur into
the agent environment.

A whole range of practical development efforts related to BDI systems have
been undertaken. These include for instances IRMA [BIP88], COSY [BS92]
and GRATE* [Jen93] which are all reviewed in [HS96]. Deepening on BDI-
architecture, and related BDI-logic, can be found instead in [RG91, Rao95].

1.3.2 Reactive Architectures

They rely on the basic and fundamental assumption that �intelligent be-
haviour� may be achieved without using complex symbolic representations
[Bro90, Bro91a, Bro91b]. Intelligence is assumed to be an emergent property
of certain complex systems which arises as a result of interactions among
agents and interactions between agents and their environment. This philoso-
phy presumes that real intelligence exists only in the real world and it is not
in disembodied systems such as theorem provers or expert systems.

Explicit symbolic models and symbolic reasoning mechanisms disappear
within reactive architectures which in turn provide an opposed point of view
with respect to deliberative architectures.

1.3 Architectures 7

One of the first, and most known, reactive architecture is the subsumption
architecture [Bro86].

A subsumption architecture is a hierarchy of possible concurrent task-
accomplishing behaviours. Each behaviour �competes� with the others to ex-
ercise control over agent activities. Lower layers represent more primitive kinds
of competences (such as obstacle avoidance in a scout agent) and have prece-
dence over layers further up in the hierarchy which offer some increasingly
more abstract behaviour like identifying objects, taking decisions and so forth
(see figure 1.3).

A layer L1 is unaware of the existence of a possible upper layer L2. L2
in turn is able to examine data coming from L1 and injects data into it
suppressing the normal data flow. In such a schema additional �blocks� can
be easily added without changes into the initial working system. All of this
fosters an aspect oriented programming style [EFB01] in defining the whole
agent behaviour in which every layer has an asymmetric knowledge about the
other one.

A subsumption architecture offers an horizontal slicing of control aspects
which contrasts classical functional decompositions [Bro86] in which every
module (or layer) has to be entirely �traversed� in order to take an action,
for instance, after sensing some changes into the environment.

By using this approach the resulting systems are very simple and efficient
in terms of the amount of computational resources needed. A subsumption
architecture fosters also robustness because a fail into a higher layer could not
impair lower layer functionalities. However, against to these benefits, agents
with many behaviours may become undoable and if more layers are used then
more difficult is understanding what is going on.

Another different way for building reactive agents bases on the situated
automata approach [RK95]. By using this approach an agent is viewed as an
automaton which, on sensory input, takes an action and changes its current
state to a new state. Each agent is first specified in terms of a declarative
formalism and then this specification is translated into a low-level digital ma-

Layer 0

Layer 1

Layer 2

Sensors Actuators

Fig. 1.3. Subsumption architecture layers

8 1 Concepts of Agent-based Computing

chine which satisfies the declarative specification. The machine can operate
in a provably time-bounded fashion because it does not use any symbol ma-
nipulation. At runtime the agents are purely reactive.

The situated automata approach is not intended to replace deliberative ar-
chitectures. It allows one to describe the informational content of an agent’s
computational state in a semantically rigorous way without requiring a com-
mitment to conventional run-time symbolic processing. This is suitable to the
development of so called situated agents whose characteristic is in their close
interaction with the environment in which they are situated. Adopting this
view, the fundamental phenomena to be explained is not the �reasoning� but
the mutual constraints exhibited among parts of a physical system over time.
Further reading may be found in [RK95, WJ95, BMS02].

1.3.3 Hybrid Architectures

They rely on the assumption that neither a completely deliberative nor com-
pletely reactive approach is adequate for building agents. An hybrid approach
results from combining best elements of both reactive and declarative systems.

From this perspective an agent can be composed of two (or more) subsys-
tems: a deliberative one, containing a symbolic world model, which develops
plans and takes decisions, and a reactive one which is capable of reacting
to events that occur in the environment without engaging complex reasoning.
The reactive component may exhibit a kind of precedence over the deliberative
one, so that it can provide a rapid response time to important environmental
events. This kind of structuring leads naturally to the idea of a layered archi-
tecture where major issues are related to better understanding relationships
and interdependences occurring among layers.

One of the most known hybrid architecture (see [WJ95]) is the Procedu-
ral Reasoning System (PRS) which is considered the best established agent
architecture currently available. Originally described in [GL87], this archi-
tecture has progressed from an experimental LISP version to a fully fledged
C++ implementation known as the distributed Multi-Agent Reasoning Sys-
tem (dMARS), which has been used in most significant multi-agent applica-
tions [GR96]. As an example, Oasis is a system for air traffic management
that addresses issues of aircraft scheduling, comparing actual progress with
established sequences of aircrafts, estimating delays, and notifying controllers
to correct deviations. Oasis successfully completed operational tests at Sydney
Airport in 1995.

The PRS architecture has its conceptual roots in the belief-desire-intention
(BDI) model. In tandem with the evolution of the PRS architecture into an
industrial-strength production architecture, the theoretical foundations of the
BDI model have also been closely investigated (see [RG95]).

Using dMARS architecture (see figure 1.4), the BDI model is made opera-
tional through plans. Each agent has a set of plans (plans library) specifying

1.4 Foundation technologies 9

B eliefs

Des ires

P lan
Library

Interpreter

Intentions

S ensor Input Action Output

Fig. 1.4. dMARS architecture

courses of actions that may be undertaken by an agent in order to achieve its
intentions. An agent plan library represents its procedural knowledge.

Each plan contains several components: (i) a trigger or invocation condition
which specifies the circumstances under which the plan should be considered,
(ii) a plan context, or pre-condition, specifying the circumstances under which
the execution of the plan may commence, (iii) a maintenance condition char-
acterising the circumstances that must remain true while the plan is executing,
(iv) a body defining a potentially quite complex course of actions, which may
consist of both goals (or subgoals) and primitive actions. Primitive actions
can be thought of as procedure calls. An interpreter (figure 1.4) is responsible
for managing the overall operations of the agent.

Further details about dMARS architecture may be found in [DLG+04].

1.4 Foundation technologies

As stated in previous sections, agent based computing appears to be very
useful in many different and heterogenous contexts. For instance, the usage of
agent systems to simulate real-world domains may provide answers to complex
physical or social problems otherwise very hard do obtain or practically unob-
tainable (e.g., modelling the impacts of climate changes on various biological
populations, or modelling the impact of public policy options on social or eco-
nomic behaviours). However the characteristics making the agent metaphor
very appealing require to be supported and implemented. As a consequence
many links exist between the agent metaphor and other disciplines considered
as sources of so called �foundation� technologies exploitable for support-
ing mobility, social ability and so forth. A survey on some of these topics is
reported in [LMP04, LMSW05].

1.4.1 Agent platforms

An agent platform can be viewed as middleware layer providing a platform-
independent execution locus in which software agents may act. It provides

10 1 Concepts of Agent-based Computing

support for software agents to execute, to manage their execution, to access
system resources, and to guarantee integrity and protection of agents and
the platform itself. Agent platforms also support migration, naming, location
and communication services. They may enable methodologies and offer tools
which aid in developing a multi-agent system.

This section may be considered as a complement to section 1.3 where
agent architectures are introduced and where an architecture taxonomy is
reported on the basis of the agent rational behaviours. Here agent platforms
are differentiated on the basis of offered functionalities.

A very large number of agent platforms, coming either from academia or
industrial contexts and often developed using Java technologies, exist today.
Attempts to standardise agent platforms have resulted in the establishment
of two main standards, MASIF [MBB+99] and FIPA [FIP]. Agents belonging
to specific platforms affiliating to these standards can collaborate in achieving
common goals via inter-agent messaging. However, agents can only migrate
to and execute in remote sites only if the site’s hosts run a compatible agent
platform and the agent has the credentials to surpass the site security checks.
This means that the concept of agents freely roaming Internet sites performing
tasks on behalf of the user is yet unrealistic.

Jade [BR01] from TLAB, is an open source platform for peer-to-peer agent
based applications fully implemented in Java. Jade simplifies the implemen-
tation of multi-agent systems through a middleware that complies with the
FIPA specifications [FIP] and through a set of graphical tools that supports
the debugging and deployment phases. System configuration is achieved by
means of a remote GUI.

JACK [HRHL01] is an example of commercial agent platform. It incorpo-
rates a suite of graphical tools, targeted at analysts as well as programmers,
suitable for building, running and integrating commercial-grade multi-agent
systems using a component-based approach. Agent development rely on the
JACK Agent Language which extends Java with agent-oriented concepts.

The JAMES platform [SBS00] instead, pays attention to agent system
fault tolerance issues [OWB04, FD02]. It provides schemes for error detec-
tion, checkpointing and restarting failed agents, as well as a reliable migration
protocol that deals with network partitioning.

Notable cornerstones of agent platform work include Actor
Foundry [VA01a] based on the Gul Agha Actor model [Agh86], Aglets
from IBM [DM98], Mole from the University of Stuttgart [BHR+02],
Concordia [WPW+97], TACOMA from the Universities of Tromso and
Cornell [JLvR+02], Grasshopper from IKV [BBCM98], as well as D´Agents
from Dartmouth College [GCK+02b] and Voyager [Gla98], though there are
many many others.

1.5 Mobile agents 11

1.5 Mobile agents

Mobile agents [Pic01, Ple99] provide a valuable alternative to the traditional
client/server programming model (among others), because they provide a uni-
form paradigm for distributed systems. Nevertheless, mobile agent technology
is not yet widespread in today’s applications. Conventional distributed sys-
tems typically assume a static configuration of the environment where the
distributed application executes. Communication among a set of hosts is en-
abled by physical links whose configuration is fixed and statically determined.
Similarly, the various portions of the distributed applications that run on the
nodes of the system are typically bound to such nodes for their whole life. This
view is being challenged by technical developments that introduce a degree
of mobility in the distributed system. The so called code mobility allows for
the code and possibly the state of an executing program to be migrated, in
part or as a whole, at run-time. The paradigm of mobile code generalizes this
concept by performing changes along two orthogonal axes:

� Where is the know-how of the service located?
� Who provides the computational resources?

Depending on the choices made on the server and client sides, the following
additional paradigms can be identified [FPV98]]:

� Remote Evaluation (REV). In the REV paradigm a component A
sends instructions specifying how to perform a service to a component B.
The instructions can, for instance, be expressed in Java bytecode. B then
executes the request using its resources.

� Code on Demand (CoD). In the CoD paradigm the same interactions
take place as in REV. The difference is that component A has the resources
collocated with itself but lacks the knowledge of how to access and process
these resources. It gets this information from component B. As soon as A
has the necessary know-how, it can start executing.

The mobile agent paradigm is an extension of the REV paradigm. Whereas
the latter focuses primarily on the transfer of code, the mobile agent paradigm
involves the mobility of an entire computational entity, along with its code,
state, and potentially resources required to solve the task.

1.5.1 Benefits of mobile agents

In the following some advantages of mobile agent computing are described:

� Reduced bandwidth consumption. The ability to migrate can be used to
achieve co-location among agents and resources they must access in or-
der to reduce the need for remote communication. In addition, a seman-
tic compression concept can be realized. Semantic compression reduces
the amount of information being transmitted by filtering it at the source,

12 1 Concepts of Agent-based Computing

based on its content. This is dramatically different from the client/server
approach where an unfiltered over-set of information transit on the net.
In mobile agent approach, a filtering agent is sent on the server in order
to send back only the data that is really useful to client. The locality of
the communicating entities allows to decrease the latency and save band-
width. Clearly the gain in latency and bandwidth must overcome the cost
of sending the agent to the server node.

� Improved fault tolerance. In conventional systems, a high-level interaction
between a client and a server involves a series of pairwise low-level interac-
tions under the form of requests and replies. During these interactions, the
state of the overall computation is distributed. This fact heavily compli-
cates the task of recovering from a fault, due to the distributed consensus
problem. In mobile agent approach, agents embedding the code describing
the whole high-level interaction can migrate on the server. Thus the state
of interaction remains local, and faults can be dealt with easily.

� Support for disconnected operations. Mobile agents can carry out their
tasks autonomously and independently of the application that dispatched
them. This capability, that is at the core of many of the advantages mobile
agents provide, is particularly useful in scenarios characterized by physical
mobility, where the constraints posed by terminals and communication
links often force the user to disconnect from the network to perform some
task on behalf of a user, who meanwhile is totally disconnected. Results
can be eventually gathered by the user upon reconnection.

� Protocol encapsulation. Mobile agents allow a packet of information to
travel within the system together with the application logic needed to
interpret and manipulate it. This improves the flexibility of the system,
simplifying the deployment of different, co-existing policies for using data.

� Load balancing. An overloaded host (in terms of cpu and memory utiliza-
tion) can migrate a part of his agents toward low loaded hosts.

1.5.2 Mobile agents technology

Technology has traditionally been the main focus of research on mobile agents.
As a matter of fact, the term ’mobile agent’ was made popular by the tele-
script language [Whi99], developed by General Magic in 1994. The emphasis
on technology is witnessed, among the other things, by the large number of
systems contained in the Mobile Agent List [Hoha], maintained at the univer-
sity of Stuttgart, Germany, that provides an approximate census of existing
mobile agent systems.

Mobile agent systems typically identify the agent with a unit of execution
belonging to the lower layers of the virtual machine, e.g. a thread or a pro-
cess. A unit of execution [FPV98] is constituted by the code governing its
behaviour, the data associated with it and necessary to its computation, and
by its execution state, e.g. program counter, and call stack.

1.5 Mobile agents 13

Mobile agent systems allow migration of the whole unit or a part thereof,
i.e. one or more of the three constituents mentioned above. The most rel-
evant differences among existing systems lie exactly in what they allow to
move, and how it is actually moved. A first distinction can be drawn based on
whether the execution state is migrated along with the executing unit or not.
Systems providing the former option are said to support strong migration, as
opposed to systems that discard the execution state across migration, and are
hence said to provide only weak migration. In this latter kind of systems, if
the application requires the ability to retain the thread of control, extra pro-
gramming is required in order to save manually the execution state. Instead,
in systems supporting strong mobility, migration is completely transparent
to the migrated entity, which resumes execution right after the migration
instruction. Despite these advantages, most of the mobile agent systems sup-
port only weak mobility. Example of systems that support strong mobility
are: Telescript, Tacoma [PS97], Ara [JvRS95], and D’Agents [GCK+02a].

Another dimension to understand the mechanisms supporting mobility
is constituted by the strategies employed to relocate the code constituting
the execution unit. Although a number of strategies are potentially mean-
ingful and useful, the use of Java as an implementation language has often
encouraged the designers of mobile agent systems towards mechanisms that
are directly inspired by the Java class loader. under this scheme, only agent’s
root class is migrated along with the agent; after migration, additional classes
needed for execution of the agent are downloaded dynamically from the agent
source host, or from some other code repository on the network. This mecha-
nism, adopted by many of the Java-based systems, notably Mole [BHR+02]
and Aglets [LO98], relies on the assumption that the code repository is al-
ways available, thus implicitly neglecting one of the main advantages of mobile
agents, i.e. the ability to support disconnected operations. On the other hand,
other systems, e.g. D’Agent, always ship the whole code base together with
the agent, thus in many cases sending also classes that are used infrequently.

Finally, the third dimension is constituted by the data the mobile agent
may carry along during migration. The unit of execution running at the source
is likely to contain bindings to resources (e.g. objects, files, other units) that
are shared with other units on that host. To allow mobility of the executing
unit requires both a mechanism and a policy to determine how these bind-
ings are handled upon migration. In [FPV98] a number of strategies are
showed. Essentially, the binding to a resource can be severed, retained, or
re-estabilished with a different but compatible resource. When the binding is
retained, two alternatives are possible: either the resource is migrated along
with the agent, or the binding is stretched across the network by creating a
network reference from the new host of the agent. When the binding is in-
stead re-established to a new, compatible resource, such resource is typically
constituted either by a copy of the original one, or by a stationary resource
having the same type (e.g. a printer).

14 1 Concepts of Agent-based Computing

1.6 Distributed agent-based simulation

Simulation is the imitation of a system behaviour and structure in an ex-
perimental model in order to studying emerging system properties which are
transferable to reality. In multiagent-based simulation (MABS) real world sys-
tems are modelled using multiple agents. A software agent is typically defined
as a program that acts autonomously, communicates with other agents, is
goal-oriented (pro-active) and uses explicit knowledge. The modelled system
emerges by interaction of the individual agents as well as their collective be-
haviour. Agents typically send messages according to some communication
protocol.

However, the computational requirements of simulations of agent-based
systems far exceed the capabilities of conventional sequential von Neumann
computer systems. Each agent is typically a complex system in its own right
(e.g. with sensing, planning, inference etc. capabilities), requiring considerable
computational resources, and many agents may be required to investigate the
behaviour of the system as a whole or even the behaviour of a single agent. One
solution to this problem is to attempt to exploit the high degree of parallelism
inherent in agent-based systems to parallelise the simulation. Decentralised,
event-driven distributed simulation is particularly suitable for systems with
inherent asynchronous parallelism, such as agent-based systems.

1.6.1 Discrete-event simulation

In discrete-event simulation the operation of a system is represented as a
chronological sequence of events. Each event occurs at an instant in time and
marks a change of state in the system. The simulation must keep track of
current simulation time, in whatever measurement units are suitable for the
system being modeled. The simulation maintains at least one list of simulation
events. This is sometimes called the pending event set because it lists events
that are pending as a result of previously simulated event but have yet to be
simulated themselves. An event is described by the time at which it occurs and
a type, indicating the code that will be used to simulate that event. Discrete
event techniques have been used in a number of MAS simulators. For example,
the SPADES system [BGFL94] and the JAMES system [SU00] and RePast
[Hohb].

1.6.2 Distributed simulation

Distributed simulation addresses two key problems of existing MAS simula-
tions and simulators [Log07, PS09]: scalability and simulation re-use. Dis-
tributed simulation (along with conservative or optimistic algorithms for time
coordination and synchronization in the-large[Fuj00]) exploits the natural par-
allelism of MAS. Simulation components can be distributed so as to make the

1.6 Distributed agent-based simulation 15

best use of available computing resources, allowing agent researchers and de-
velopers to run agent simulations in less time and/or investigate multi-agent
systems which are simply too large to be effectively simulated on a single
computer. Distribution also promotes inter-operability of simulators and sim-
ulation components. No one simulator or testbed is, or can be, appropriate
to all agents and environments. Investigating a particular problem therefore
frequently entails the development of a new simulation. The effort required
to develop a new simulation from scratch is considerable. There is therefore a
strong incentive to reuse existing simulation components, toolkits and testbeds
for a new problem.

In the last years there was an explosion of interest in distributed simulation
as a strategic technology for linking simulation components of various types
at multiple locations to create a common virtual environment.

1.6.3 The problem of shared state

While conventional distributed simulation can bring real benefits from an
inter-operability point of view, the speedups that can be attained in practice
(particularly for situated MAS) are often rather limited. The simulation of
situated agents (e.g., robots situated in a physical environment, or characters
in a computer game or interactive entertainment situated in a virtual envi-
ronment) presents particular challenges which are not addressed by standard
parallel discrete event simulation (PDES) models and techniques. While the
modelling and simulation of agents, at least at a coarse grain, is relatively
straightforward, it is harder to apply conventional PDES approaches to the
simulation of the agents environment. In a conventional decentralised event-
driven distributed simulation, the model is divided into a network of Logical
Processes (LPs). Each LP maintains its own portion of the simulation state
and LPs interact with each other in a small number of well defined ways. The
topology of the simulation is determined by the topology of the simulated
system and its decomposition into LPs, and is largely static.

In contrast, the interaction of agents in a situated MAS is often hard to
predict in advance. Different kinds of agents have differing degrees of access
to different parts of the environment at different times. The degree of access
is dependent on the range of the agent sensors (read access) and the actions
it can perform (write access). For example, what a mobile agent can sense is
a function of the actions it performed in the past which is in turn a function
of what it sensed in the past. As a result, it is difficult to predict which
parts of the simulation state an agent can or will access without running
the simulation. This makes it hard to determine an appropriate topology for
a MAS simulation a priori, and simulations of MAS typically have a large
shared state, the agents environment, which is only loosely associated with
any particular process. This shared state can form a bottleneck, limiting the
speedups that can be attained.

16 1 Concepts of Agent-based Computing

1.7 Conclusions

This chapter surveys basic concepts of agent oriented computing and get into
focus about property of mobility and the use of agents in distributed simu-
lation. Even if agent computing is considered useful for developing complex
software systems, it is worth of note that adopting a technology in place of
another is a very important issue [WJ98]. For instance, agent computing is
not suitable in application domains where an high degree of orchestration,
i.e., a strong centralized coordination, is required. Moreover, agents usually
involves multiple threads which intrinsically introduce uncertainty in estab-
lishing temporal behaviour of a software system.

Nowadays the adoption of agent technologies has not yet entered in the
mainstream of commercial and industrial organisations [LMSW05]. Probably
this is due to research area of agent technology which is still only in its infancy
and to the lack of proven methodologies, tools and widely accepted standards.

Much of the standardisation effort in the agent community fall in the Foun-
dation of Intelligent and Physical Agent (FIPA) and the Object Management
Group (OMG), which are the premier agent standardisation bodies.

In particular, FIPA is a promising organisation that promotes agent-based
technology and the interoperability of its standards with other technologies.
FIPA was officially accepted by the IEEE as its eleventh standards committee
on June 2005.

Current research efforts (see [LMP04, LMSW05]) are mainly devoted to
cover previously stated holes. In particular, standardisation efforts appear
to be very critic. Extending links with other disciplines (biology, economics,
sociology, game theory, and so forth), whose techniques could be applied to
agent systems, represents another main issue.

2

M&S formalisms, middleware, tools

2.1 Introduction

This chapter is organized into three parts dealing with some M&S formalisms,
some standard or emerging middleware, some agent-based toolkits and related
concept.

The size and complexity of systems which are usually modelled as dis-
crete event systems (DESs) (e.g. communication networks, biological systems,
weather forecasting, etc.) is ever increasing. Modelling and simulation of such
systems is challenging in that it requires suitable specification languages and
efficient simulation tools.

Many languages exist to cope with complexity issues. In the first part two
formalisms are discussed. First DEVS [ZPK00] are briefly reviewed which
are capable of ensuring the necessary rigor in the modelling phase and in
particular Parallel DEVS (P-DEVS) which is highly recognized as a reference
point in M&S. The second formalism concerns statecharts [Har87, BRJ99]
that is an evolution of finite state machines that offer a nested state structure
and other powerful mechanisms for specifying complex system.

In the second part of the chapter some common and standard middleware
are examined which can effectively be used for modelling and distributed/-
parallel simulation. More specifically the IEEE standard HLA/RTI and the
emerging Terracotta architecture are discussed.

In the last part of the chapter some fundamental tools supporting agent-
based software engineering are presented. In particular the focus is on the
RePast toolkit which is representative of current state-of-art of agent-based
M&S tools. In addition basic concepts of aspect oriented programming (AOP)
are discussed, which are a key for solving some software engineering problems.

18 2 M&S formalisms, middleware, tools

2.2 Formalisms

2.2.1 DEVS

The Discrete-Event System Specification (DEVS) is a well known formalism
[ZPK00] which enables the specification of discrete-event systems through
mathematical concepts borrowed from the systems theory. A system specifi-
cation is characterised by a time base and proper sets of inputs, outputs and
states, and functions for determining the next state and outputs on the basis
of current state and input. The strength of the formalism is in the rigorous
and systematic way through which the modeller has to proceed during the
abstraction of the parameters and behaviour of the system model. After the
abstraction phase, the specification can then be mapped onto a implementa-
tion framework for simulation and output analysis. In the classic DEVS for-
malism, Atomic DEVS captures the system behaviour, while Coupled DEVS
describes the structure of system.

In the following the extension to classic DEVS named Parallel DEVS is
considered which is more expressive in capturing simultaneity and parallelism
in component behaviour.

Atomic DEVS

In P-DEVS an atomic component specification (Atomic DEVS) is a structure
M defined as

M =< X,S, Y, δint, δext, δcon, λ, ta > where

� X is the set of input values
� S is a set of states
� Y is the set of output values
� δint : S → S is the internal transition function
� δext : Q×Xb → S is the external transition function, where

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is is the set of total states
e is the is the elapsed time since last transition
Xb denotes the collection of bags over X (in a bag some elements may
occur more than once)

� δcon : Q×Xb → S is the confluent transition function
� ta : S → <+

0,∞ is the time advance function

The interpretation of the elements of M can be summarized as follows. At
any time the system is in some state s ∈ S. The system can remain in s for
the time duration (dwell-time) ta(s). ta(s) can be 0, in which case s is said a
transitory state, or it can be∞, in which case it is said a passive state because
the system can remain forever in s if no external event interrupts. Provided
no external event arrives, at the end of (supposed finite) time value ta(s),
the system moves to its next state s′ = δint(s) determined by the internal
transition function δint. In addition, just before making the internal transition,
the system produces the output computed by the output function λ(s). During

2.2 Formalisms 19

its stay in s, the system can receive an external event x which can cause s to be
exited earlier than ta(s). Let e ≤ ta(s) be the elapsed time since the enter time
in s (or, equivalently, the time of last transition). The system then exits state
s moving to next state s′ = δext(s, e, x) determined by the external transition
function δext. As a particular case, the external event x can arrive when e =
ta(s). In this case two events occur simultaneously: the internal transition
event and the external transition event. The next state s′, in this collision
situation, is determined by the confluent transition function δcon. The default
behaviour of δcon first applies the internal transition function and then the
external transition function. This behaviour, though, can be redefined. After
entering state s′, the new time advance value ta(s′) is computed and the same
story continues. The presence of confluent transition function together with
the presence of bags instead of normal sets qualify model as Parallel DEVS.
P-DEVS allows multiple components to be activated and send their output
to other (influences) components at the same time. It is worth noting that
there is no way to generate an output directly from an external transition. An
output can only occur just before an internal transition. To have an external
transition cause an output without a delay, a transitory state can be entered
from which the exiting internal transition is preceded by the generation of the
output value.

In reality inputs arrive to a component through input ports and outputs are
trasmitted externally through output ports. An input is thus a pair < inp, x >
of an input port inp and an event x. Similarly, an output is a pair < outp, y >
of an output port outp and symbol value y. Ports are topological entities which
decouple components and favour reconfiguration.

Coupled DEVS

Basic models may be coupled to form a coupled model. A coupled model tells
how to several component models connect each other and with the external
environment to form a new model. A coupled model can itself be employed as
a component in a larger model, thus giving rise to hierarchical construction.
A coupled model contains the following information:

� a set of components
� a set of input ports from which external events are received
� a set of output ports through which external events are sent

These components can be synthesized together to create hierarchical models
having external input and output ports. The coupling specification (see Fig.
2.1) consists of:

� the external input coupling which connects input ports of the coupled
model to one or more of the input ports of internal components, this
directs inputs received by the the coupled model to designated component
models

20 2 M&S formalisms, middleware, tools

� the external output coupling which connects output ports of internal com-
ponents to output ports of the coupled model. Thus when an output is
generated by a component it may be sent to a designated output port of
the model and thus transmitted externally

� the internal coupling which connects output ports of internal components
to input ports of other internal components. When an input is generated
by a component it may be sent to the input ports of designed components
(in addition to being sent possibly to an output port of the component
model

A coupled model is equivalent to a basic model in the DEVS formalism and
can itself be employed in a larger coupled model. This shows the formalism
is closed under coupling as required for hierarchical model construction. Ex-
pressing a coupled model as an equivalent basic model hides logic by which
components interact to yield an overall behaviour.

Fig. 2.1. Schema of a coupled model

DEVS tools

In the last years many toolkits and libraries have been developed for the DEVS
formalism. One of the most known is DEVSJAVA [ZS03]. The software is writ-
ten in Java and supports parallel execution on a uni-processor. It supports
higher-level, application specific modeling. Models in DEVSJAVA can also be
easily mapped to DEVS/HLA or DEVS/CORBA for distributed execution in
combined logical/real-time settings. Other Java DEVS tools are: JAMES II
[JAM] that provides support for many different formalisms, among these vari-
ants of DEVS formalism (e.g., PDEVS) and JDEVS [FDB02]. DEVS/C++
[ZMKK96] based on the parallel DEVS formalism, is a modular hierarchi-
cal discrete event simulation environment implemented in C++. Other C++
DEVS tools are: PowerDEVS [KLP03] , ADEVS [ADE] and CD++ [CDP].
Besides tools is worth to note some important projects related to DEVS. DE-
VS/HLA [ZBC+98] is a project aimed at demonstrate how an HLA-compliant

2.2 Formalisms 21

DEVS environment can significantly improve the performance of large-scale
distributed modeling and simulation exercises. This project has its foundation
on the High Level Architecture. Another project, SimBeans [PSS99], employs
the system theoretic simulation modeling methodology of DEVS as formal,
mathematical foundations for modular, hierarchical modeling and simulation
and a component based software architecture based on Java and JavaBeans.

An integrated approach (eUDEVS) for M&S was proposed in
[RMDLCMZ09]. It characterises for the use of the DEVS formalism for mak-
ing an UML specification executable and analyzable by simulation. eUDEVS
permits the modeller to start a project with UML diagram models which al-
low to abstract system structure and behaviour. UML diagrams, including
statecharts, are then mapped into the specific class of DEVS models named
Finite and Deterministic DEVS (FD-DEVS) which are represented in an XML
format. A transformed UML specification can be simulated using e.g. DEVS-
JAVA

2.2.2 Statecharts

Statecharts [Har87, BRJ99] are an extension of classical state transition dia-
grams. Statecharts are used to model the dynamic behaviour of a component
or a system. Statecharts are specifically used to define state-dependent be-
haviour, or behaviour that varies depending on the state in which a model
element is in. A statechart consists of states, linked by transitions. A state
is a condition of a system in which it performs some activity or waits for an
event. A transition is a relationship between two states which is triggered by
some event, which performs certain actions or evaluations. The basic difference
with classic state transition diagrams consists in the possibility of nesting a
sub automaton within a (macro) state thus encouraging step-wise refinement
of complex behaviour. In addition, a macro state can be and-decomposed for
supporting a notion of concurrency. Statecharts have been successfully applied
to the design of reactive event-driven real-time systems [HP98, SR98, FNP06],
as well as to modelling and performance analysis, e.g. [VCA02, VCAA06].
An example of a statechart diagram is shown in Figure 2.2.

States

A state is a condition of a modelled system in which it performs some activity
or waits for an event. A state has several properties:

� name: A textual string which distinguishes the state from other states; a
state may also be anonymous, meaning that it has no name.

� entry/exit actions executed on entering and exiting the state.
� internal transitions i.e. transitions that are handled without causing a

change in state.
� substates: the nested structure of a state, involving disjoint (sequentially

active) or concurrent (concurrently active) substates.

22 2 M&S formalisms, middleware, tools

Fig. 2.2. Statechart example

States are denoted by a rounded square symbol. As depicted in Figure
2.2, there are two special states that may be defined for a statechart. The
initial default state indicates the starting place for the statechart or substate.
An initial state is depicted as reached by a pseudo-transition leaving from a
filled black circle. final state indicates the completion of the execution of the
state machine or that the enclosing state has been completed. A final state
is represented as a filled black circle surrounded by an unfilled circle. Initial
and final states are really pseudostates. Neither may have the usual parts of
a normal state, except for a name. A state of statechart can recursively be
decomposed into a set of sub states, in which case it is said to be a macro
state. A state that is not decomposed is said to be a leaf state. The root state
of the decomposition tree is the only one having no parent and it is referred to
as the top state. This nested structure of states implies that system modelled
by a statechart, at a given point in time, finds itself simultaneously in a set
of states that constitutes a path leading from one of the leaf states to the top
state. Such a set of states is called a configuration [HN96]. A configuration is
uniquely characterised by the only leaf state which it contains.

Statecharts admit two types of state decomposition: or -decomposition and
and decomposition [HP98]. In the former case a state is split into a set of
sub states which are in an “exclusive-or” relation, i.e. if at a given time the
modelled system is in a macro state it is also in exactly one of its sub states.
In the other case sub states are related by logical “and”, i.e. if the modelled
system is in a macro state it is also in all of its direct sub states, each of which
acts as an independent concurrent component.

2.2 Formalisms 23

Transitions

A transition is a relationship between two states indicating that system in
the first state will perform certain actions and enters a second state when a
specified event occurs and stated conditions are satisfied. On such a change
of state, the transition is said to ’fire’. Until the transition fires, the object
is said to be in the ’source’ state; after it fires, it is said to be in the ’target’
state. A transition has several properties:

� source state: the state affected by the transition; in a source state, an
outgoing transition may fire on receiving the trigger event of the transition
provided the guard condition, if any, is satisfied.

� event trigger : the event that makes the transition eligible to fire (providing
its guard condition is satisfied) when received by the object in the source
state.

� guard condition: a boolean expression that is evaluated when the transition
is triggered by the reception of the event trigger; if the expression evaluates
to true, the transition is firable; if the expression evaluates to false, the
transition is disabled. If there is no other transition that could be triggered
by the same event, the event is lost.

� action: an executable atomic computation associated with the transition.
� target state: the state that is active after the completion of the transition.

A transition may have multiple sources, in which case it represents a join
from multiple concurrent states, as well as multiple targets, in which case
it represents a fork to multiple concurrent states. An event is an occurrence
of a stimulus that can trigger a state transition. Events may include signal
events, call events, the passing of time, or a change in state. A signal or call
may have parameters whose values are available to the transition, including
expressions for the guard conditions and action. It is also possible to have a
triggerless transition, represented by a transition with no event trigger. These
transitions, also called completion transitions, is triggered implicitly when its
source state has completed its activity. A guard condition is evaluated after
the trigger event for the transition occurs. It is possible to have multiple
transitions from the same source state and with the same event trigger, as
long as the guard conditions don’t overlap. A guard condition is evaluated just
once for the transition at the time the event occurs. The boolean expression
may reference the state of the object. An action cannot be interrupted by
an event and therefore runs to completion. This is in contrast to an activity,
which may be interrupted by arrival of other events. Actions may include
operation calls, the creation or destruction of objects, or the sending of a
signal to another object. In the case of sending a signal, the signal name is
prefixed with the keyword ’send’. An internal transitions allow events to be
handled within the state without leaving the state, thereby avoiding triggering
entry or exit actions. Internal transitions may have events with parameters
and guard conditions. State transitions are represented by edges with arrows.

24 2 M&S formalisms, middleware, tools

Each transition is labelled by ev[guard]/action where ev is the trigger, guard
the guard condition, and action the action to perform.

History pseudo-states

When a transition enters a composite state, the action of the nested state
machine starts over again at the initial state (unless the transition targets a
substate directly). History states allow the state machine to re-enter the last
substate that was active prior to leaving the composite state. An example of
history state usage is presented in Figure 2.3.

Fig. 2.3. History connector

This pseudo-state is graphically identified by an history connector or H -
connector. Such a connector is depicted as a small circle containing an H (shal-
low history) or an H* (deep history), and it is always inside the boundary of
a compound state. The difference between shallow and deep history concerns
composite states with nesting level greater than one. With shallow history,
when a macro state is left, only the directed substate is “remembered”. With
deep history, instead, all configuration until the leaf state is kept in memory.
More specifically, Let S be the destination state of a transition tr. The con-
figuration which is assumed as consequence of firing tr depends on the way tr
reaches S :

� If S is a leaf state the new configuration is the only one that contains S.
� If S is a macro state and tr ends on its border, the next configuration

corresponds to the destination state being the initial state of S.
� If S is a macro state and tr ends on a shallow history connector, the next

configuration corresponds to the destination state being the state that is
the history of S

� Finally, if S is a macro state and tr ends on a deep history connector,
the configuration depends on the nature of the state D which is currently

2.3 Middleware 25

history of S. If D is a leaf state, the configuration will be the only one that
contains D, otherwise the configuration corresponds to the case tr would
end on a deep history connector of D.

2.3 Middleware

2.3.1 HLA-RTI

HLA (High Level Architecture) [KWD99, HLA], originally developed under
the leadership of the Defense Modeling and Simulation Office (DMSO), facil-
itates reuse and interoperability among (possibly heterogeneous) simulations
[HLA]. HLA was accepted as an IEEE standard (IEEE 1516) in Septem-
ber 2000. HLA supports component-based simulation development, where
the components are referred as federates that interact each other in order
to form a combined simulation system known as federation. More specifically,
a federation contains: the federates, a common object model specifying data
exchanged between federates in federation, called Federation Object Model
(FOM), and a supporting software for federation execution called RunTime
Infrastructure (RTI).

HLA defines a software architecture, not an implementation. Shaw and
Garlan [SG96] defines a software architecture as:

...Abstractly, software architecture involves the description of elements
from which systems are built, interaction among those elements, patterns that
guide their composition, and constraints on those patterns.

HLA as architecture defines as its elements the federates and an execu-
tion supporting software RTI. HLA interactions concern rules and interface
specification defining interactions between federates and RTI, and between
federates (always mediated by RTI). The Object Model Template is a meta-
model for all FOM (Federation Object Model), that is, it defines the structure
of every valid FOM. Finally, the allowed patterns of composition in the HLA
are constrained by the rules and defined in the interface specification.

The RTI provides the infrastructure that allows federates belonging to the
same federation to communicate with each other in a distributed environment.
Figure 2.4 shows how the federates interact with the RTI. Federates do not
directly communicate with each other but always through the RTI.

Federates communicate with the RTI through a well defined interface.
This interface, the RTI Ambassador interface, defines several services which
a federate can call upon the RTI. A federate is only allowed to communicate
through this service interface with the RTI. Callbacks from the RTI to the
federate are defined through the Federate Ambassador interface. The RTI can
call services on this interface to interact with the federates. Figure 2.5 shows
the communication channels between a federate and the RTI.

26 2 M&S formalisms, middleware, tools

Fig. 2.4. Basic structure of a federation

Fig. 2.5. Interfaces between RTI and federates

FOM

Executing a federation requires designing a Federation Object Model (FOM)
and using the services of the RTI middleware. The FOM, specified in a Fed-
eration Execution Data file (FED file), defines types and relationships of the
data exchanged between federates. In particular, the FOM introduces a set of
object classes and a set of interaction classes. Object classes, along with
their attributes, are created by federates and constitute a persistent state of
a simulation. An interaction is made up of parameters and models an event
occurrence. An interaction is consumed after being received. Object and in-

2.3 Middleware 27

teraction classes are organized into separate hierarchies. A class inherits the
attributes or parameters of its superclasses.

RTI

The runtime infrastructure (RTI) is implemented as a distributed component
in itself, split into a Central RTI Component (the CRC) and one or more Local
RTI Components (LRC). Figure 2.6 shows these components of the RTI.

Fig. 2.6. RTI components

Each of the RTI components (CRC and LRC) can run on a different node
and each RTI component can communicate with any other component. This
allows the LRC to directly communicate with another LRC but it also allows
the CRC to communicate with any LRC. Note, however, that a federate never
communicates with the CRC directly but always through the LRC. In prac-
tice this means that the LRC exposes the RTI Ambassador interface to the
federate. Accordingly, the CRC does not communicate directly with a federate
either but again through the LRC only. The LRC translates calls from the
CRC to calls on the Federate Ambassador interface on the federate.

RTI services

Communication between federates and federation is mediated by RTI services.
Communication between a federate and RTI is structured following a request/-
callback mechanism through their interfaces (RTI Ambassador and Federate
Ambassador). From this point of view, a publish/subscribe design pattern is
used. For example, when a federate updates the value of a published attribute,

28 2 M&S formalisms, middleware, tools

the RTI ensures the update is automatically notified, through RTI initiated
callbacks, to federates which subscribed to the attribute. RTI provides ser-
vices to federations that fall into six groups that are defined by similarity of
interest:

� federation management these services manage a federation in two ways:
(i) by defining a federation execution in terms of existence and member-
ship, (ii) by accomplishing federation-wide operations.
To define a federation, there are services to create/destroy a federation
execution and to permit a federate to join the execution or resign from it.
Federation-wide operations include the coordination of federation saves
(checkpoints) and restore. There are also services to allow a federation to
define and meet a federation-wide synchronization points.

� declaration management The HLA is characterized by an implicit-
invocation style of data exchange. Federates don’t send data to other
federates by name; they make it available to the federation, and the RTI
ensures its delivery to interested parties. The declaration management ser-
vices are the way federates declare their intent to produce (publish) or
consume (subscribe) data. The RTI uses these declaration for routing
data, transforming data, and interest management.

� object management these services are those used for actual exchange
of data. A federate uses services from this group to send and receive
interactions or to register new instances of an object class and to update
its attributes. Other federates will have services from this group invoked on
them to receive interactions, discover new instances, and receive updates
of instance attributes.

� ownership management In HLA terms, simulating an entity means
furnishing values for instance attributes. The ownership management ser-
vices implement the HLA’s notion of responsibility for simulating an entity.
They allow that responsibility to be shared or transferred among feder-
ates. The RTI ensures that at most one federate at a time owns a given
instance attribute.

� time management With federates executing in their own thread of con-
trol, the proper ordering of events between federates is a significant prob-
lem to be solved. In the HLA, ordering of events is expressed in “logical
time”. The RTI’s time management services do two things: (i) allow each
federate to advance its logical time in coordination with other federates;
(ii) control and delivery of time-stamped events so the federate need never
receive events from other federates in the “past”, that is, events with log-
ical times less than its logical time.
The RTI allows a federate to choose the degree to which it participates in
time management. A federate may be time constrained, in which case its
advance of logical time is constrained by other federates. A federate may
be time regulating, in which case its advance of logical time regulates other
federates.

2.3 Middleware 29

Services of this group allow: both time-stepped simulation and event-
driven simulation. They also permit: conservative, optimistic, and
episodic simulation.

� data distribution management Services of this group control the pro-
ducer/consumer relationships among federates. Whereas the declaration
management services manage those relationships in terms of interaction
and object classes, data distribution management manages in terms of
object instances.

2.3.2 Terracotta

Terracotta [ZBB+08, Ter] is a transparent clustering service for Java applica-
tions. It can also be referred to as JVM-level clustering. Terracotta JVM-level
clustering technology aids applications by providing a simple, scalable, highly
available world in which to run.

JVM-level clustering simplifies development of enterprise Java systems by
enabling applications to be deployed on multiple JVMs, yet interact with each
other as if they were running on the same JVM.

Terracotta is based on extending the Java Memory Model of a single JVM
to include a cluster of virtual machines such that threads on one virtual ma-
chine can interact with threads on another virtual machine as if they were all
on the same virtual machine with an unlimited amount of heap. This approach
aids the programming model of applications clustered using Terracotta to be
the almost same to that of an application written for a single JVM.

Terracotta provide a global (or super) heap in the form of a cache-like
network-attached memory (NAM) managed by Terracotta server. NAM can
host arbitrarily large shared object graphs which are kept consistent and au-
tomatically replicated/updated, at access time, in the local heap memory of
clustered and interested JVMs.

There is no developer API specific to Terracotta. Indeed, NAM is con-
trolled through an XML configuration file (tc-config.xml) specifying which
objects have to be shared and how they have to be managed.

The real work on global shared objects occurs behind the scene through
aspect oriented programming (AOP)(see 2.4.2) mechanisms and weaving, and
precisely through bytecode injection at class loading time. In other terms,
any access to shared data is intercepted and handled by injected bytecode.
All of this ensures transparency and makes it simple to switch the execution
environment of an application from a single JVM to a cluster of JVMs.

Terracotta is made up of libraries installed next to any JVM that is to join
a cluster, and a Terracotta server that is a separate Java process, as shown
in figure 2.7.

Benefits of Terracotta can be grouped in key-words that are explained
below:

30 2 M&S formalisms, middleware, tools

Fig. 2.7. Terracotta architecture

� Transparency: to users, transparency means that an application written
to support Terracotta will still function as implemented with zero changes
when Terracotta is not installed.

� Clustering Service: while clustering refers to servers talking to each
other over a network, a clustering service refers to technology that allows
to take an application written without any clustering logic or libraries and
spread it across servers by clustering in the JVM, below the application

� Simplicity: Complexity and its antithesis simplicity refer to the changes
that developers have to make along the road to building scalable applica-
tions.

� Scalability: is important to save money by starting small and growing
only when demand requires. Scalability is the result of low latency and
high throughput. An application can be very quick to respond but might
only handle one request at a time (low latency and low throughput). Alter-
natively, an application can be very slow to respond but handle thousands
of concurrent requests (high latency and high throughput)

2.3 Middleware 31

� Availability: Availability means that every piece of shared data must
get written to disk. If the data center in which the application cluster is
running on top of Terracotta loses power, nothing will be lost when the
power is restored.

Clustered objects

Objects that have to be clustered are specified in a configuration file (tc-
config.xml). In general, objects refer each others to form object graphs, the
top level of clustered object graphs are said roots objects. A root is any field
in any class declared in the Terracotta configuration as the beginning of a
clustered object graph. The first time a value is assigned to a field declared
as a root, Terracotta goes through the process of turning that object into a
root. Terracotta traverses the object graph, transforming each of those objects,
including the root itself, into a clustered object. Roots are declared in the
Terracotta configuration by name, and it is possible to create as many roots
as needed.

Fields that are declared as roots assume special behavior. This is the one
area of Terracotta that diverges significantly from regular Java semantics. The
first time a JVM assigns a value to a root (which assigns it for the lifetime
of the cluster), the root is created in the Terracotta cluster. Once assigned,
the value of a root field may never be changed, after the first assignment all
subsequent assignments to fields declared to be that root are ignored.

Roots persist beyond the scope of a single JVMs life cycle, they are some-
times called superstatic fields, i.e. while static field references have the same
life cycle as the classes they are declared in, roots have the same life cycle as
the virtual heap (this is true no matter what the scope modifier of the root
field is).

While the reference of the root field itself cannot be changed, the object
graph of that root object can. When an object becomes clustered, all of its
field data is collected and stored in the Terracotta virtual heap. That object
is also assigned to a cluster wide unique object ID that is used to uniquely
identify the object in the Terracotta virtual heap. At the appropriate time,
all of this object data is sent to the Terracotta server, and thereafter, it is
managed by Terracotta as a clustered object.

The Terracotta client libraries running in application JVMs are free to
manipulate the physical heap in the client JVMs. This means that not every
object on the virtual heap needs to be instantiated in any JVM. Terracotta can
load an object from the server automatically as it is needed by an application.
When a reference to a clustered object that is not currently instantiated on
the local physical heap is traversed, Terracotta will automatically request that
objects data from the Terracotta server, instantiate it on the local heap, and
wire up the reference that are traversing, transparently from the application
point of view.

32 2 M&S formalisms, middleware, tools

Clustered POJOs

POJO is an acronym for Plain Old Java Object. The name is used to
emphasize that a given object is an ordinary Java Object, not a special object,
and in particular not an Enterprise JavaBean. POJO refers to a Java object
that lives on the heap of the JVM and does not need any extra framework
or component to enable the functionality it is intended to provide. Terracotta
enables a POJO programming model when running applications in a cluster.
The model is represented by the ability to honor the Java Memory Model
as well as the language semantics. Specifically, POJO clustering implies that
object identity is preserved across JVMs.

Clustered POJOs are the same object in different JVMs, not merely copies
or clones that have the same data.

If a POJO object is clustered in the Terracotta virtual heap, it is possible
to exploit typical Java object operation available for local heap objects. This
include comparisons with the == operator evaluate to true or modifying the
fields of a POJO through the normal access (.) operator (e.g., foo.bar = baz)
without having to later call some commit or put-back operation. It is also
possible to put a POJO Object into a data structure (like a Map) and get it
out again without being handed back a copy of the object.

Terracotta guarantees consistency in execution of concurrency operations
(e.g., synchronized, wait(), and notify()) on a POJO. To provide this function-
ality, Terracotta must address cross-JVM thread communication issues.

The JVM has simple and elegant built-in mechanisms for coordinat-
ing threads: the bytecode instructions MONITORENTER and MONI-
TOREXIT and the various signatures of the Object methods wait() and
notify(). With Terracotta, thread coordination constructs that exist in the
Java language will transparently work across JVM process boundaries. One
thread in one JVM can call wait() on an object and another thread in an-
other JVM on another machine can call notify() to wake up the waiting thread.
Terracotta exploits MONITORENTER and MONITOREXIT bytecode
instructions as it can be seen in figure 2.8.

Figure 2.8 suggests that Terracotta also needs a cluster-wide lock notion.

Cluster-wide Locks

Terracotta extends the built-in locking semantics of the JVM to have a clus-
terwide, cross-JVM meaning. Clustered locking is injected into application
code based on the locks section of the Terracotta configuration file, each lock
configuration stanza uses a regular expression that matches a set of methods.

A lock stanza must be specified as either a named lock or an autolock.
Methods that match an autolock stanza are augmented by Terracotta to ac-
quire a cluster wide lock on a clustered object wherever there is synchroniza-
tion on that object. Autolock can be seen as an extension of methods existing
for Java synchronization to have a cluster wide meaning. Unlike autolocks,
named locks function only at method entry and exit. This means that, for

2.3 Middleware 33

Fig. 2.8. Terracotta hooks into the MONITORENTER and MONITOREXIT byte-
codes

methods that match a named lock configuration stanza, a thread must first
acquire the lock of that name from the Terracotta server before being allowed
to execute that method.

As a result, named locks are very coarse grained and should only be used
when autolocks are not possible.

Another configuration option in the lock configuration stanza is the lock
level. Terracotta locks come in four levels:

� Write locks are mutual exclusion locks that act like regular Java locks.
They guarantee that only one thread in the entire cluster can acquire that
lock at any given time.

� Synchronous write locks add the further guarantee that the thread
holding the lock will not release the lock until the changes made under the
scope of that lock have been fully applied and acknowledged by the server.

� Read locks allow multiple reader threads to acquire the lock at a time,
but those threads are not allowed to make any changes to clustered objects
while holding the read lock.

� Concurrent locks are always granted.

34 2 M&S formalisms, middleware, tools

2.4 Tools

2.4.1 RePast

RePast [Hohb] is a free, open source library of classes for creating, run-
ning, displaying and collecting data from agent based simulations. In addition,
RePast includes several varieties of charts for visualizing data (e.g. histograms
and sequence graphs) and can take snapshots of running simulations and cre-
ate QuickTime movies of such. RePast is a fully Object Oriented architecture
created by University of Chicago, Chicago Socials Science Research Comput-
ing division.

Fig. 2.9. a snapshot of RePast

RePast borrows much from the design of the Swarm simulation toolkit
[Swa] and can properly be termed a Swarm-like simulation framework.

At its heart, RePast behaves as a discrete event simulator whose quantum
unit of time is known as a tick. The tick exists only as a hook on which the
execution of events can be hung, ordering the execution of the events relative
to each other. Ticks are merely a way to order the execution of events relative
to each other.

2.4 Tools 35

In RePast events are referred as actions, and a RePast schedule is in
charge for correct scheduling/dispatching issues.

RePast simulation is primarily a collection of agents of any type and
a model that sets up and controls the execution of these agents’ behaviors
according to a schedule. This schedule not only controls the execution of
agent behaviors, but also actions within the model itself, such as updating
the display, recording data, and so forth. Scheduling can be automated via
the model or manually implemented by the modeller. In addition, this model
is typically responsible for setting up and controlling simulation visualiza-
tion, data recording and analysis. The model is said to be composed of these
additional components (the schedule, the display, and so forth). There are dif-
ferent implementations of RePast [NCV06]: RePastJ for Java, RepastPy
for python scripting, Repast.Net for microsoft .Net framework and the more
recent RePast Symphony [Hohb]. The following focuses on RePastJ

RePastJ packages

The features offered by RePastJ toolkit are grouped into packages that are
explained below:

� Analysis
The classes in the analysis package are used to gather, record, and chart
data. Using these classes a modeller defines data sources and hooks up
recording or charting classes to these sources. Data can be easily recorded
in a tabular or customized format and charted in a sequence graph, his-
togram or user-defined plot.

Fig. 2.10. Charting options

� Engine
The engine classes are responsible for setting up, manipulating, and driv-
ing a simulation. The SimModel interface is the super-class for all models

36 2 M&S formalisms, middleware, tools

written with RePast. A partial implementation of SimModel, the SimMod-
elImp class is provided and can be used as the base class for most, if not
all, models written with RePast. Alternatively, the SimpleModel class can
be used to automate event scheduling as described above. The controller
classes (BaseController, Controller, and BatchController) are responsible
for handling user interaction with a simulation either through a GUI or
by automating such interaction through the use of a batch parameter file.
In addition, the engine package contains the classes that make up the
scheduling mechanism.

� event
As mentioned above, the schedule is responsible not only for the execution
of agent actions, but also actions within the model itself, such as display
updates and so on. However, not all communication between parts of a
model is done via the scheduler. A small portion is performed using an
event mechanism; these classes together with those in the engine pack-
age constitute this event mechanism. These classes are used internally by
RePast and are not of real concern to the modeller.

� Gui
The gui classes are responsible for the graphical animated visualization of
the simulation as well as providing the capability to take snapshots of the
display (see figure 2.11) and make QuickTime movies of the visualization
as it evolves over time. The various Display classes work in conjunction
with the classes in the space package to display these spaces appropriately.
Via a DisplaySurface, the LocalPainter class handles the actual display of
these spaces on the screen, and the DisplaySurface itself allows for the
probing of the displayed objects. Probing, left clicking on the visualization
of a simulation object, introspects that object (an agent for example) and
displays its current parameters in a separate window. The gui package also
contains the graph layouts used to visualize networks and an extensible
Display class that can be used to build custom displays.

� Network
The network package contains the core classes used to build network simu-
lations. These include default node and edge classes working together such
that a node knows its incoming and outgoing edges and an edge knows its
source and target node. The NetworkFactory class is used to load networks
from a file in a variety of formats as well as to generate networks (Small
World, Random Density, and Square Lattice). Networks can be recorded
as adjacency matrices in a variety of formats using the NetworkRecorder.
In addition there are some utility classes that can be used to collect some
simple yet useful network statistics.

� Space In an agent simulation, agents often have some sort of spatial rela-
tionship to each other. The space package contains classes that instantiate
various sort of spacial relationships. The classes themselves are essentially
container classes that represent various types of spaces (two-dimensional
grids, torii, single or multiple occupancy, and so forth) accessible through

2.4 Tools 37

Fig. 2.11. Display example

the appropriate interfaces. For example, the grid spaces allow objects to
be inserted and retrieved based on x and y coordinates. Spaces work in
conjunction with the display classes in the gui package to present a visu-
alization of the space and the objects (e.g., agents) that it contains.

� Util
This utilities package, contains a variety of utility classes used both in-
ternally by RePast and by the modeller. The two most important classes
here are Random which encapsulates a large number of random number
distributions and operations on them, and SimUtilities which contains a
number of static methods that shuffle lists, display dialogs, update probes
and so forth.

2.4.2 Aspect oriented programming: AspectJ

Object-oriented programming (OOP) has been presented in the past as a tech-
nology that can fundamentally aid software engineering, because the underly-
ing object model provides a better fit with real domain problems. In reality,
however, there are many programming problems where OOP techniques are

38 2 M&S formalisms, middleware, tools

not sufficient to clearly capture all the important design decisions the program
must implement.

There are some programming problems that fit neither the OOP approach
nor the procedural approach it replaces. From these considerations comes the
so-called aspect-oriented programming (AOP).

Aspect-oriented programming entails breaking down program logic into
distinct parts, the so-called concerns, i.e. cohesive areas of functionality. All
programming paradigms support some level of grouping and encapsulation of
concerns into separate, independent entities by providing abstractions (e.g.
procedures, modules, classes, methods) that can be used for implementing,
abstracting and composing these concerns. But some concerns defy these forms
of implementation and are called crosscutting concerns because they “cut
across” multiple abstractions in a program.

Logging exemplifies a crosscutting concern because a logging strategy nec-
essarily affects every single logged part of the system. Logging thereby cross-
cuts all logged classes and methods.

All AOP implementations have some crosscutting expressions that encap-
sulate each concern in one place. The difference between implementations lies
in the power, safety, and usability of the constructs provided.

AOP provides several tools that can help with crosscutting concern prob-
lem. The first is the language used to code the requirements or concerns into
units of code (either objects or functions). The AOP literature commonly calls
this the component language. The secondary or support requirements (aspects)
are coded as well, using an aspect language. Nothing in the paradigm states
that either language needs to be object-oriented in nature, nor do the two lan-
guages need to be the same. The result of the component and aspect languages
is a program that handles the execution of the components and the aspects.
At some point, the respective programs must be integrated. This integration
is called weaving, and it can occur at compile, link, run, or load time.

Figure 2.12 shows how a component Product is compiled along with the
aspect. The compiler weaves the aspect code into the component code to
create a functioning system.

AspectJ semantics

AspectJ adds to Java just one new concept, a join point, and a few new
constructs: pointcuts, advice, introduction and aspects.

Pointcuts and advice dynamically affect program flow, and introduction
statically affects a program’s class heirarchy.

A join point is a well-defined point in the program flow. Pointcuts select
certain join points and values at those points. Advice defines code that is
executed when a pointcut is reached. These are, then, the dynamic parts of
AspectJ.

AspectJ also has a way of affecting a program statically. Introduction is
how AspectJ modifies a program’s static structure, namely, the members of

2.4 Tools 39

Product Logger

Product with
Logger

Weave

Fig. 2.12. Weaving example

its classes and the relationship between classes. The last new construct in As-
pectJ is the aspect. Aspects, are AspectJ’s unit of modularity for crosscutting
concerns. They are defined in terms of pointcuts, advice and introduction.

The Dynamic Join Point Model

A critical element in the design of any aspect-oriented language is the join
point model. The join point model provides the common frame of reference
that makes it possible to define the dynamic structure of crosscutting concerns.

Join points are certain well-defined points in the execution of the program.
AspectJ provides for many kinds of join points, for example: method call join
points. A method call join point encompasses the actions of an object receiving
a method call. It includes all the actions that comprise a method call, starting
after all arguments are evaluated up to and including normal or abrupt return.
Each method call itself is one join point. The dynamic context of a method
call may include many other join points: all the join points that occur when
executing the called method and any methods that it calls.

Pointcut Designators

In AspectJ, pointcut designators (or simply pointcuts) identify certain join
points in the program flow. For example, the pointcut

call(void Point.setX(int))

40 2 M&S formalisms, middleware, tools

identifies any call to the method setX defined on Point objects. Pointcuts
can be composed using a filter composition semantics, so for example:

call(void Point.setX(int)) ||

call(void Point.setY(int))

identifies any call to either the setX or setY methods defined by Point.
Programmers can define their own pointcuts, and pointcuts can identify join
points from many different classes, in other words, they can crosscut classes.
So, for example, the following declares a new, named pointcut:

pointcut move(): call(void FigureElement.setXY(int,int)) ||

call(void Point.setX(int)) ||

call(void Point.setY(int)) ||

call(void Line.setP1(Point)) ||

call(void Line.setP2(Point));

The effect of this declaration is that move is now a pointcut that identifies
any call to methods that move figure elements.

Property-Based Primitive Pointcuts

The previous pointcuts are all based on explicit enumeration of a set of
method signatures. This is called name-based crosscutting. AspectJ also pro-
vides mechanisms that enable specifying a pointcut in terms of properties
of methods other than their exact name. This is called property-based cross-
cutting. The simplest of these involve using wildcards in certain fields of the
method signature. For example:

call(void Figure.make*(..))

identifies calls to any method defined on Figure, for which the name begins
with make, e.g. makePoint, makeLine and so on;

call(public * Figure.* (..))

identifies calls to any public method defined on Figure. One very powerful
primitive pointcut, cflow, identifies join points based on whether they occur
in the dynamic context of another pointcut. For example:

cflow(move())

identifies all join points that occur between receiving method calls for
the methods in move and returning from those calls (either normally or by
throwing an exception)

2.4 Tools 41

Advice

Pointcuts are used in the definition of advice. AspectJ has several different
kinds of advice that define additional code that should run at join points.

� Before advice runs when a join point is reached and before the computation
proceeds, i.e. it runs when computation reaches the method call and before
the actual method starts running.

� After advice runs after the computation ’under the join point’ finishes, i.e.
after the method body has run, and just before control is returned to the
caller.

� Around advice runs when the join point is reached, and has explicit control
over whether the computation under the join point is allowed to run at
all.

Introduction

Introduction is AspectJ’s form for modifying classes and interface and their hi-
erarchy. Introduction adds new members to classes and alters the inheritance
relationship between classes. Unlike advice that operates primarily dynami-
cally, introduction operates statically, at compile time. Introduction changes
the declaration of classes, and it is these changed classes that are inherited,
extended or instantiated by the rest of the program.

Consider the problem of adding a new capability to some existing classes
that are already part of a class hierarchy, i.e. they already extend a class.
In Java, one creates an interface that captures this new capability, and then
adds to each affected class a method that implements this interface. AspectJ
can do better. The new capability is a crosscutting concern because it affects
multiple classes. Using AspectJ’s introduction form, we can introduce into
existing classes the methods or fields that are necessary to implement the
new capability.

Aspect Declarations

An aspect is a modular unit of crosscutting implementation. It is defined
very much like a class, and can have methods, fields, and initializers. The
crosscutting implementation is provided in terms of pointcuts, advice and
introductions. Only aspects may include advice, so while AspectJ may define
crosscutting effects, the declaration of those effects is localized.

3

The Theatre architecture

3.1 Introduction

Agents are characterised by their computational autonomy, mobility, pro-
activity and communication capabilities. To handle scalability and complexity
of particular systems to be analyzed, e.g. large-scale dynamic structure sys-
tems, telecommunications, business process modelling, computer games etc.,
parallel and distributed simulations are often required [JA06, LT01, MT08,
LLT07, CFNP07]. In an open multi-agent system, agents can dynamically join
or abandon the simulation model. Open multi-agent distributed simulation
systems challenge for proper agent naming solutions and efficient communi-
cation mechanisms despite dynamic migration [VA01b, JAA05, WVP+05].

In the work described in this chapter the actor model of computation
[Hew77b, Agh86] is assumed as the starting point for building multi-agent
systems. Concrete multi-agent systems directly founded on the actor vision
include ActorFoundry [Ast99] and SALSA [VA01b]. SALSA adopts a naming
mechanism for actors which influenced the solution described in this chapter.

The Theatre architecture is based on Java and actors. It differs from
Agha’s actor model in that it uses a light-weight notion of actors. The-
atre actors are reactive thread-less objects instead of being self-active ob-
jects, i.e. equipped of internal threads of control. Reactive actors favor tim-
ing predictability in real-time applications [NP01], facilitate the expression
of custom message-based scheduling/dispatching strategies in execution the-
atres, simplify migration operations and make it possible to build large-
scale, high-performance and dynamically reconfigurable distributed applica-
tions [FNP02, CFN06, CFN07b, CFNP07].

Theatre naturally supports variable structure systems through agent-
migration and location-transparent naming. It embodies mechanisms as in
[JAA05] for efficient agent communications. In addition, Theatre can work
with strategies for load-balancing as described in [JA06]. This particu-
lar actor model was also successfully employed in a time-warp algorithm

44 3 The Theatre architecture

[Fuj00, BNO03] e.g. devoted to the distributed simulation of modular time
Petri nets [CFN07a].

In order to deploy Theatre as an architecture for parallel/ditributed sim-
ulation, time management and transport layer are realized through standard
middleware thus opening to simulator interoperability and reuse. Two differ-
ent middleware which can be adopted are considered: HLA/RTI (see 2.3.1)
for execution e.g. upon a computer network and Terracotta (see chapter
5) for parallel execution e.g. on a multi-core hardware architecture. Other
solutions exist (e.g. based on Java sockets and Java RMI).

3.2 Theatre basics

The architecture of Theatre consists of two main parts:

� execution platforms, i.e. theatres, which provide “in-the-large” features,
i.e. the environmental services supporting actor execution, migration and
interactions. Services are made available to actors through suitable APIs

� actor components, i.e. the basic building blocks “in-the-small”, which cap-
ture the application logic. In this chapter the terms actor and agent will
be used interchangeably.

Theatre can be hosted by different object-oriented programming languages.
In this work, though, Java is used as the implementation language (see also
[CFNP07]).

3.2.1 Actor modeling and behavior

Actors are reactive objects which encapsulate a data state and communicate
to one another by asynchronous message passing. Messages are typed objects.
Actors are at rest until a message arrives. Message processing is atomic: it
cannot be suspended nor preempted. Message processing represents the unit
of scheduling and dispatching for a theatre. The dynamic behavior of an actor
is modelled in a basic case as a finite state machine (see Fig. 3.1) that is
synthesized in the handler(message) method which receives the message
to process as a parameter. Responding to a message causes in general the
following actions to be executed:

� new actors are (possibly) created
� some messages are sent to known actors (acquaintances). For proactive

behavior, an actor can send to itself one or more messages
� the actor migrates to another theatre
� the message can be deferred by remembering it in state or data
� current state of the actor is changed (become operation).

3.2 Theatre basics 45

User-defined actor classes are heir of the Actor base class. Message classes are
heir of Message base class. Message deferral can be required when the received
message cannot be processed and answered by the agent in its current state.
Each actor is without internal threads. Therefore, message handling extends
the control thread of the theatre within which the agent runs.

It is worth noting that the use of actors with an internal thread of control
as in [JA06] makes it difficult to achieve an efficient and scalable simulation
framework. Explicit messages must be exchanged with the control engine to
avoid virtual time inconsistencies among actors. In addition, message delivery
suffers from space/time overhead caused by reflective method calls and thread-
level context-switches. In the actor model adopted in this paper, though, de-
livering a message to a local actor costs a normal method invocation and no
context-switch. Moreover, when a message processing terminates, the engine
control loop is automatically and implicitly re-entered.

Being thread-less, a huge number of application actors can be created
with very limited demand on the underlying operating system resources and
services with respect to thread-based agencies. All of this improves model
scalability while ensuring the achievement of good execution performance
[CFN07b] (see also later in this thesis).

The actor concept can be related to that of “Logical Process” (LP) which
is well-known in the parallel/distributed simulation field [Fuj00]. Different
design scenarios can be considered. For example, in [BNO03, CFN07a] a sin-
gle coarse-grain actor is used as an LP allocated for execution on a physical
processor/theatre, and managed by time warp operation (state saving and
restoring). In this paper, as in [CFN07b], an LP consists of a (dynamic) col-
lection of fine-grain actors, operated under a conservative simulation control
structure.

m1

m2

m3

message
interface

Actor

state variables

behavior
(message handler)

Fig. 3.1. Actor structure

46 3 The Theatre architecture

3.2.2 Structure of a theatre

Basic components of a theatre are (see Fig. 3.2):

� an instance of the Java Virtual Machine (JVM)
� a Control Machine (CM)
� a Transport Layer (TL)
� a Local Actor Table (LAT)
� a Network Class Loader (NCL).

m2

LocalActorTable ControlMachine

NetworkClassLoader

ControlMachine

TransportLayer

LocalActorTable

Theater1 Theater2

NetworkClassLoaderTransportLayer

a1 a2 proxy of a4a3 a4 proxy of a2 a5

m1

m1 m1

m2

m2

msg logical message exchange msg actual message exchange

Fig. 3.2. Theatre architecture

The Control Machine hosts the runtime executive of the theatre, i.e. it
offers basic services of message scheduling/dispatching which regulate local
actors. The Control Machine can be made time-sensitive by managing a time
notion (“real” or simulated). Actually, the Control Machine organizes all pend-
ing (i.e., scheduled) messages in one or multiple message queues. Instead of
having one mail queue per actor [Agh86], the Control Machine buffers all sent
messages and superimposes to them an application-dependent control strat-
egy. During the basic control loop, a pending message is selected (e.g., the
most imminent in time) and dispatched to its destination agent by activating
the relevant handler() method. At the handler() termination, the control
loop is re-entered, it schedules all messages sent by the last activated agent
and, finally, starts its next cycle. The Transport Layer furnishes the services
for sending/receiving network messages and migrating agents. The Local Ac-
tor Table contains references to local agents of the theatre. The Network Class
Loader is responsible for getting dynamically and automatically the class of
an object (e.g., a migrated agent) by retrieving it from a network Code Server
acting as a code repository for the distributed application.

3.2.3 Agent naming

At its creation, an actor receives its unique id (string) and its Java reference
gets included in the Local Actor Table of the creating theatre, with the actor-
id used as a key. After that, the agent can be migrated to a different theatre

3.2 Theatre basics 47

and so forth. The Java reference of an agent persists despite migration. After
migration, in the Local Actor Table of the source theatre the agent refer-
ence is kept but now refers to a shadow version (proxy) of the agent, which
behaves as a forwarder. The forwarder keeps the network information about
the destination theatre where the agent migrated. Dispatching a message to a
forwarder automatically generates a network message toward the destination
theatre. In general, a certain number of hops can be required to reach the
agent. Of course, during its migration, an actual agent can come back to a
theatre where a forwarder of it exists. In this case, the shadow agent gets its
state replaced with that of the real agent. Agent migration implies the relation
proxy/normal of its acquaintances to be reviewed according to the viewpoint
of the receiving theatre. Some acquaintances become proxies because the cor-
responding actors reside in a remote theatre, e.g. that from which the mobile
agent originated. Other acquaintance references can change from proxy to
normal in the case the referred actor is local to the migrated site. The update
operation is accomplished with the help of the Local Actor Table and by using
location information which is carried by the migrated actor.

The universal actor name [VA01b] of an agent consists of the tuple
<theatre-id, actor-id>. The theatre-id is the tuple <host-name, port>

where host-name is the IP address of the computing node where the theatre
is allocated, and port is a unique port number associated with the theatre. To
improve the efficiency of communications, a network message actually counts
the number of hops performed to reach its destination and automatically asks
for an update of the addressing information in the forwarder agent in the
source theatre with the actual position of the destination agent.

3.2.4 Agent migration

A customization of the standard Java serialization mechanism is used to sup-
port the transmission of actors and messages between theatres. To comply
with proxy/normal representations of actors and the persistence of local ac-
tor references despite migrations, actor parameters in messages and acquain-
tances in actors are transparently replaced, during serialization, with serialized
objects of an auxiliary class ActorInfo. An actor info carries the following in-
formation about an agent: actor name, class name, IP address and port of
residing theatre. To enable replacement, the Actor base class redefines the de-
fault writeReplace() method which is able to distinguish if an actor is under
migration or if it is part of a message/actor which is migrated, in which case
its standard serialization is replaced.

When a serialized message/actor object is received by a theatre it gets
de-serialized in the standard way. A serialized actor info object, though, is
handled by invoking on it the default readResolve() method which is rede-
fined by the ActorInfo class. It is responsibility of readResolve() to adjust an
actor parameter or acquaintance to the reference to a newly created or already

48 3 The Theatre architecture

existing proxy actor or to an already existing normal actor. The adjust oper-
ation relies on the information in the Local Actor Table. In the case a normal
actor finds a proxy version of itself in the receiving theatre, the proxy status
gets updated with that of the normal actor with the help of object intro-
spection as permitted by the features of the Java API java.lang.reflect.
Agent mobility follows a weak migration semantics [BHRS98]. The absence
of internal threads in an actor reduces the migration to the serialization/de-
serialization of the actor data status. No thread control status has to be saved
and subsequently restored. A migration request is implemented with the help
of a behind of the scene Migrate message. Therefore, migration is not syn-
chronously executed as part of a message handling.

3.2.5 Dynamic model reconfiguration

Theatre specifically addresses modelling and simulation of complex systems
which are component-based [CFNP07], timed, mobile and whose structure
can change during runtime [HZM05, JRT+03, JA06, PV07]. Such systems are
not adequately supported by conventional M&S tools where the structure is
often assumed to be static and dynamism only relates to state changes caused
by the occurrence of events. However, many systems exist (e.g. predator/prey
models in biology, adaptive networks in telecommunication systems accommo-
dating for the presence of mobile users, and so forth) which require structure
dynamism for them to be effectively modelled and analyzed.

As in Kiltera [PV07] model adaptivity depends on link mobility, i.e. the
possibility of reconfiguring during runtime the interconnection infrastructure
of agents by adjusting the acquaintance network of the system. The approach
preserves the contract of agents’ message interfaces and it is very flexible
when paired with the mobile capabilities of actors which can migrate among
the theatres allocated to different physical nodes of a distributed system.

3.3 Theatre on top of HLA1

HLA (see 2.3.1) was chosen because it is a standard middleware for dis-
tributed simulations, offers time management services which help structuring
the simulation control engine, favours interoperability with existing (possibly
heterogeneous) HLA-compliant simulators, thus promoting simulation reuse.
However, distributed simulation engines for Theatre were also implemented
outside of HLA using such transport layers as Java Socket and Java RMI
[CFN07b, CFN07a].

A key point of the approach is a fine-grain migration process compli-
ant with HLA, which occurs at the agent level and not at the federate level
[TPA05, CYLT05]. The migration mechanism is transparent to HLA. It does

1 based on [DAAL07]

3.3 Theatre on top of HLA 49

not depend on federation wide synchronization based on save/restore oper-
ations. Moreover, migration does not introduce “freeze” constraints on the
federation.

Theatre makes mobile agents fully integrated in an HLA distributed sim-
ulation. With respect to similar frameworks, e.g. Cougaar [KFC04], Theatre
distinguishes for its simplicity and lean implementation. In other approaches,
e.g. [LHF05], agents are often used for supporting data-filtering strategies
from an HLA based simulation.

The proposed UAV model is highly dynamic and introduces communi-
cation patterns among mobile agents (UAVs and targets) which are deter-
mined at runtime. The goal is to experiment with different engagement and
attack strategies. The example inherits from the agent-environment model
[WVP+05, LT01] in the sense that agents can interact indirectly with other
agents by communicating with the environment (itself abstracted as an agent).
This solution can improve agent communications and the performance of sim-
ulations.

Theatres naturally map on to HLA federates (see Fig. 3.3). The trans-
lation, in particular, was designed so as to keep the Java-based agent pro-
gramming level totally unaware of HLA, with the Control Machine component
of a theatre which hides all the machinery required for interfacing RTI. The
prototyped solution basically uses HLA as a transport layer and exploits its
time management services.

Theatre1

NCL LAT

HLA/RTI

RTI
Ambassador

TransportLayer ControlMachine

Theatre
Ambassador

TheatreN

NCL LAT

RTI
Ambassador

TransportLayer ControlMachine

Theatre
Ambassador

Fig. 3.3. Theatre over HLA

The event-driven character of actors, which depends on explicit message
passing, suggested the use of only interaction classes in order to ensure com-
munications between the federates of a Theatre federation. A specific interac-
tion class is responsible for carrying all the message/actor exchanges between
an ordered pair of federates. As a consequence, in the Federation Object Model
(FOM) of a federation with N theatres, a collection of N×(N−1) interaction
classes should be anticipated. A generic interaction class takes as a parameter
a byte array which can store a serialized message or actor object. At configu-
ration time, a table is initialized in each Control Machine which maps a partner
theatre-id with the corresponding interaction class. A theatre t publishes

50 3 The Theatre architecture

all the interaction classes which have t as source (output interaction classes)
and subscribes to all the interaction classes which have t as destination (input
interaction classes).

3.3.1 Time management

The following considers an event-driven conservative Control Machine of a
time-constrained and time-regulating theatre/federate. Except for the ini-
tialization phase, a distributed simulation is based on the exchange of time
stamped messages, i.e. an interaction object is always provided of its occur-
rence time stamp. The Control Machine manages the federate logical time
and a Timed Message Queue (TMQ) which holds, ranked by ascending time
stamps, both local and external received simulation messages.

Fig. 3.4 shows in pseudo-code the operation of the control loop. Provided
the TMQ is not empty, the control engine asks RTI to advance the local logical
time to the minimal time stamp in TMQ. While the control loop is waiting
for the grant, RTI can deliver to the theatre a set of external originated
messages whose time stamp (effective granted time) is less than or equal to
the proposed time advancement. Each such message gets scheduled on the
TMQ. Following a grant, the logical time is advanced to the time stamp of the
next imminent message in TMQ which is then dispatched to its destination
actor. Finalization messages, i.e. messages destined to transmit to a supervisor
agent the simulation results collected by the federate, scheduled with the
simulation time limit tEnd as time stamp, can be pre-allocated in the TMQ. As
a consequence, when the simulation time limit is reached, finalization messages
get executed in the normal way.

When TMQ is empty, the federate asks RTI to advance its logical time to
tEnd+1. On the arrival of the corresponding grant, the control loop is exited.
After that, the federate typically resigns from the federation. In the worst
case, a Theatre federation can require to execute with zero lookahead.

3.3.2 Lifecycle of a Theatre-based mederation

Execution of a Theatre federation requires preliminarily the files FED, contain-
ing the FOM, and TheatreConfig.properties, containing configuration data, to
be prepared. TheatreConfig.properties specifies such information as the number
of participating federates and the names of the interaction classes. An addi-
tional Manager federate is assumed in the federation, whose goal is to properly
boot and terminate federation execution. Manager is not time-constrained nor
time-regulating. At start-up, each federate tries to create the federation. After
that every federate joins the federation. Following its own join, the Manager
federate waits for all the remaining federates to join the federation. Then the
Manager creates a synchronization point (“Start”) which RTI announces to all
the participating federates. The purpose of the synchronization point is to en-
sure that no federate starts its control loop and then begins to exchange time

3.3 Theatre on top of HLA 51

ask RTI to advance logical time to 0
wait for grant
logical time=0
loop

if(TMQ is not empty){
let minTS be the time stamp of the first message in TMQ
if(minTS > logical time){

ask RTI to advance logical time to minTS
wait for grant
let minTS be the time stamp of the first message in TMQ
logical time = minTS

}
extract the first message in TMQ and dispatch it

to its destination actor
}
else{//TMQ is empty

ask RTI to advance logical time to tEnd+1
wait for grant
if(grant arrived for advancement to tEnd+1) break

}
end-loop

Fig. 3.4. Control loop of a theatre/federate

stamped messages, while some federates still exist which are not completely
initialized. The initialization actions of a federate are summarized in Fig. 3.5.

ask RTI and wait grant for becoming time-constrained
ask RTI and wait grant for becoming time-regulating
publish output interaction classes
subscribe input interaction classes
achieve the Start synchronization point
start the control loop of the simulation engine

Fig. 3.5. Federate initialization work

Manager gets notified each time an actor federate resigns from federation.
When there are no other federates except itself, Manager resigns and then
destroys the federation.

3.3.3 An UAV modeling and simulation example

As a test bed of using Theatre over HLA/RTI, a complex simulation model was
developed which is highly dynamic and based on mobile agents whose identity
and communication patterns are discovered at runtime. The model is original
and is concerned with coordination and control of Unmanned Aerial Vehicles
(UAVs) [JRT+03, JA06] devoted to shooting moving targets over a territory of
interest (mission area) in the presence of static obstacles. The goal is to study
and compare different engagement strategies of UAVs with respect to targets.

52 3 The Theatre architecture

obstacle

target

UAV

UAV's visiblity area

target's visiblity area

Fig. 3.6. UAV mission area

UAVs are aircrafts that operate without needing human control and have
an autonomous behavior in accomplishing their mission. An UAV does not
know in advance the target locations nor the topology of the territory. After
reaching the mission area, an UAV starts the exploration by flying low in order
to discover the presence of interesting entities in its neighborhood with the
help of its radar. The information about number and positions of surrounding
entities influence UAV behavior. Each UAV is supplied with a certain amount
of fuel and ammunition. UAVs begin exploration always starting from a certain
zone (entry area). An UAV can operate in the mission area while it has enough
fuel and ammunition. When it needs to stock up on something, an UAV starts
to fly high to reach its base (located outside the mission area) and after comes
back in the entry area to continue its mission. During an engagement, an UAV
tries to hit the target in order to consume target energy. Targets move over
the territory and, like UAVs but with a small visibility range, can detect the
presence of obstacles or other entities.

The mission area is modeled as a bi-dimensional grid (see Fig. 3.6) where
each cell is supposed to be large enough to host up to a certain number
of UAVs and targets. An obstacle is supposed to occupy a whole cell thus
excluding other entities in the same cell. Information about (part of) the
mission area is handled by a specific environment actor (EnvActor). UAVs and
targets are modeled as actors (UAVActor and TargetActor) whose behaviors
dictate how the respective entities dynamically reacts to the information about
the surrounding environment. This information is obtained by exchanging
messages with the EnvActor.

UAV Behavior

The behavior of an UAVActor is modeled by the finite state automaton de-
picted in Fig. 3.7. At its start-up, the UAVActor finds itself in the INIT state.
When the actor receives an Init message, which contains initial configuration
data such as the UAV position in the mission area, the engagement strategy
(see section 3.3.3) and the storage of fuel and ammunition, it switches to the

3.3 Theatre on top of HLA 53

EXPLORE state. UAVActor waits there for the arrival of an EnvInfo message,
coming from the local EnvActor, that brings information about the UAV visi-
ble surrounding environment. This mirrors the information-retrival process of
a real UAV which is based on its onboard radar system.

UAV_TOP

HOME

Init/move(initPosition())

[runOut()]
/move(homePosition)

EnvInfo[!targetEngaged()]
 /move(nextPosition())

[runOut()]
/move(homePosition)

StartMission
/move(initPositon()),
recharge()

EnvInfo[targetEngaged()]
/handleEngagement()

EnvInfo[!targetEngaged()]
/move(nextPosition())

EnvInfo[targetEngaged()]
/handleEngagement()

INIT

ENGAGE

EXPLORE

Fig. 3.7. UAVActor behavior

In the case in the current cell there are no targets to engage, the UAVActor
stays in the EXPLORE state and continues exploring the mission area. It moves
to one of its surrounding cells by first computing the direction to follow and
then sending a timed message communicating its next position to the EnvActor
(see also Fig. 3.11). The EnvActor will reply with an EnvInfo message at the
time the UAVActor reaches its destination cell. When the UAV moves from a
cell to another, it consumes its fuel in proportion to the covered distance.

If the UAVActor detects in the current cell the presence of an interesting
target (e.g. one which is not already engaged by another UAV), it switches
to the ENGAGE state where it begins the engagement by interacting with the
corresponding TargetActor. The interaction is actually carried out by having
the UAVActor which sends an Hit message to the TargetActor. After having
shooted the target, the UAVActor remains in or abandons the ENGAGE state
depending on the adopted strategy (see section 3.3.3) and on the position and
state of the visible targets. In particular, a target may disappear because it
has been destroyed or has become hidden behind an obstacle. In these cases
the UAVActor goes back to the EXPLORE state where it resumes exploration.

An UAV will eventually run out of fuel or ammunition thus requiring to
come back to the base station. UAVActor accounts for these situations by the
two transitions leaving EXPLORE and ENGAGE states and reaching the HOME
state.

While an UAV moves over the mission area, the direction to follow is
computed according to a discrete random variable θ.

54 3 The Theatre architecture

Let Dir = {N,NE,E, SE, S, SW,W,NW} be the set of directions, θ is
defined as follows:

θ(N) = 0, θ(NE) =
π

4
, . . . , θ(NW) =

7

4
π

Let wuav : Dir 7→ R∗ be the weight function that maps each direction d to a
non-negative real number. The mass function of θ is defined as:

fθ(d) =
wuav(d)∑

d′∈Dir wuav(d
′)

The values of wuav are calculated from the following quantities.

Directional Term. In the absence of interesting entities, an UAV explores
the mission area. In this case, the choice of the direction to follow is determined
by the following directional term, which favors the direction taken at the
previous step by giving it the maximum weight:

wdir(d) = Cdir · e−
δ(d,dp)

2

k

δ(d1, d2) =

{
|θ(d1)− θ(d2)| if |θ(d1)− θ(d2)| < π
2π − |θ(d1)− θ(d2)| otherwise

where dp is the direction previously followed by the UAV, Cdir is the
maximal value, which is assumed for d = dp, and k is a parameter that
accounts for the influence of the deviation from dp. Function δ gives the value
of the minimal angle between the two directions.

Attractive terms. Let t be a target that is inside the visibility radius of the
UAV and that is not obscured by any obstacle. The attractive term due to t
is computed as:

wt(d) = Tmax · e−α·∆(t) · e−
δ(d,dt)

2

k

where ∆(t) is the distance between t and the UAV, dt is the direction of
minimal distance from the target, α is a decay factor which controls how this
term decreases with the distance, Tmax is the maximum value that can be
assumed by such term and k has the same meaning as in the directional term.

Obstacle repulsive factor. Each obstacle, which is located in the immediate
surroundings of the UAV, must be avoided. As a consequence the direction
bringing to the obstacle must not be considered and then the corresponding
value of the weight function must be zero. This is accounted by the obstacle
repulsive factor wro(d) which assumes value zero if there is an obstacle located
in the adjacent cell along direction d, and value 1 otherwise.

UAV repulsive factor. In order to avoid collisions among UAVs there is
a threshold on the maximum value of UAVs which can stay together in the

3.3 Theatre on top of HLA 55

same cell. The UAV repulsive factor avoids the directions which, if taken, may
lead to a violation of this property and it is defined as follows:

wru =

{
0 if nr(d) ≥MaxUAV
1 otherwise

where nr(d) is the total number of UAVs located in the cell which would
be reached by taking direction d and in its eight adjacent cells, and MaxUAV
is the threshold value. The weight function is then computed as follows:

wuav(d) =

(
wdir(d) +

∑
t∈T

wt(d)

)
· wro(d) · wru(d)

where T is the set of targets that are visible by the UAV. If there are no
entities in the visibility radius of the UAV, the set T is empty, and both
repulsive factors are equal to 1. The decision of the next direction is then
determined only by the directional term. If T is not empty, the influence of
attractive terms should prevail over the directional term. This is obtained by
choosing Tmax � Cdir.

Engagement Strategies

Similarly to [JRT+03] three different engagement/shooting strategies for
UAVs were considered.

- First strategy (STR1). After it has fired one shoot, the UAV stays in the
same cell and following a little while tries to shoot again. If in meanwhile
there are no more targets in the cell (because they left or are destroyed)
the UAV starts again its exploration

- Second strategy (STR2). Once a target has been engaged, the UAV
remembers target identity. In the case the target moves, while remaining
visible, the UAV tries to follow it and ignores other targets. If the UAV
looses visibility of the engaged target, the latter is no longer considered as
engaged

- Third strategy (STR3). It is similar to STR2 but in this case targets
already engaged are not interesting for exploring UAVs.

The goal of STR2 and STR3 is to maintain the UAV focus only on the
engaged target. In addition, STR3 avoids that multiple UAVs insist on the
same target.

Target Behavior

Fig. 3.8 illustrates the automaton modeling the behavior of TargetActor. A
target moves on the mission area trying to escape from the UAVs it detectes
in its surroundings. The way a target moves is in part similar to that of an

56 3 The Theatre architecture

TARGET_TOP

Init/move(initPosition())

EnvInfo/move(nextPosition())

INIT DEADMOVE

Hit[energy>=MIN]/decreaseEnergy()

Hit[energy<MIN]

Fig. 3.8. TargetActor behavior

UAV. At each step it chooses the direction to follow by using the same random
variable θ but the weight function is now the following:

wtarget(d) =

(
wdir(d) +

∑
u∈U

wu(d)

)
· wro(d) · wrt(d)

where, the directional term and the obstacle repulsive factor are computed in
the same way as in wuav, wrt is a target repulsive factor which is analogous
to wru, U is the set of UAVs which are visible by the target, and wu is an
UAV repulsive term. wu is defined as follows:

wu(d) = Umax · e−β·∆(t) · e−
δ(d,rev(du))2

k

where ∆(t) is the distance between the UAV u and the target, du is the
direction of minimal distance from u, β is a decay factor which controls how
this term decreases with the distance, Umax is the maximum value that can be
assumed by such term, k has the same meaning as before and rev : Dir 7→ Dir
is a function that gives the direction which is opposite to its argument, thus
mirroring the goal of a target which is to escape from UAVs.

EnvActor Behavior

In the context of a distributed version of the simulation model, the mission
area is partitioned among more theatres. For this reason, an actor modeling a
moving entity needs to migrate from one theatre to another when its next po-
sition is located outside the portion managed by the current hosting theatre.
In addition, when a moving actor is located in the nearness of the local bound-
aries, it needs also information about the entities inside its visibility radius
but located in a different partition. Both issues are transparently addressed
by EnvActors (see Fig. 3.9 and Fig. 3.10).

For each theatre there is one EnvActor whose role is handling the envi-
ronmental information [WPM+05] that may be of interest for the UAVActors
and/or TargetActors located inside the theatre. In addition to the local por-
tion of the mission area, the EnvActor maintains an updated snapshot of the

3.3 Theatre on top of HLA 57

EnvActor1

Theatre1

HLA/RTI

EnvActor2

Theatre2

UAVActor

TargetActor

Fig. 3.9. Model partitioning

environment parts that are not handled locally but which may fall in the
visibility radius of a local moving entity. Fig. 3.10 portrays boundary details
among adjacent (sub) environments. The EnvActor exchanges messages with
its neighbor peers (see Fig. 3.11) by sending them updates every time a local
event causes a change in a shared zone of interest handled locally, and by
receiving updates from the other EnvActors notifying a change in a shared
zone handled outside.

shared zones handled by other theatres
shared zones handled by local theatre
not shared zone

visibility radius

Fig. 3.10. Boundary cells among adjacent (sub) environments

When a TargetActor or an UAVActor wants to move, it sends to the En-
vActor a timed message communicating its next position. The time stamp of
the messages mirrors the time needed to reach the destination cell. If this po-
sition is of competence of the EnvActor, the EnvActor replies with a message
containing information about the area in the visibility radius of the sender.
Otherwise the EnvActor migrates the sender to the relevant theatre and asks
the pertinent EnvActor to reply to the migrating actor. Each moving actor up-
dates its local reference to the EnvActor every time it receives a reply message.
On the basis of the information contained in this message the actor regulates
its next decision. The described protocol makes TargetActors and UAVActors
unaware of distributed simulation concerns.

58 3 The Theatre architecture

Move

EnvInfo

:UAVActor :TargetActor env1:EnvActor

Move

EnvInfo

env2:EnvActor

Move

EnvInfo

Move

EnvInfo

Hit

Hit

Update

Update

Update

Fig. 3.11. A typical interaction scenario

Model Bootstrap

The mission area is configured by means of an editor application (Fig. 3.12)
that allows the visual specification of the territory layout, i.e. the obstacle po-
sitions and the initial placements of targets and UAVs. Targets are represented
by × marks and UAVs by black circles. Remaining symbols denote obstacles,
e.g. walls. The territory configuration is saved on a file, which is fed to the
simulator. After federation startup, the distributed model gets actualized by
creation, on a predefined theatre, of a Master actor which is in charge of mak-
ing and deploying the application actors over the theatres according to the
model specification. The Master actor migrates on each theatre and creates
there the instance of the local EnvActor. After all the EnvActors have been
established, the Master actor sends to each of them an Init message contain-
ing the specification of the part of the mission area assigned to that theatre.
The Master actor tries to split equally the territory among the theatres. Each
EnvActor handles the Init message by creating its own representation of the
territory, populating it and finally replying to the Master. When all the reply
messages are received, the Master broadcasts a Start message to the EnvActors.
At this point, model initialization is completed and the simulation actually
begins. The Master actor is also in charge of collecting simulation results at
the end of the simulation.

Simulation Scenario

A first simulation scenario was chosen for comparing the engagement strate-
gies (see section 3.3.3). The simulation model consists in the grid territory

3.3 Theatre on top of HLA 59

Fig. 3.12. Editor pane used for configuring a territory with targets, UAVs and
obstacles

shown in Fig. 3.12, which has dimension of 150 × 60 cells. A total number
of 200 targets were deployed over the mission area and a number of UAVs
ranging from 20 to 56 were used. The placement of obstacles was chosen in
order to investigate the exploration capabilities according to moving strate-
gies. Table 3.1 collects the values of the parameters adopted for the simulation
experiments (s.u., t.u., f.u. and e.u. respectively denote space, time, fuel and
energy units). Each time a target is hit it loses 10% of its initial energy. For
the sake of simplicity it was assumed that targets have no fuel limitations.
When an UAV needs to stock up on something it employs 50 t.u. in order to
be again in the mission area.

3.3.4 Experimental mesults

The simulation model was separately configured, validated and executed on
a single machine and through a federation of three theatres plus the manager
federate, using pRTI1516 [Pit] as HLA implementation. The three theatres,
each of which is assigned a distinct region of 50×60 cells of the entire territory,
and the manager were allocated on three Pentium IV, 3.4GHz, 1GB RAM,
WinXP platforms interconnected by a Gigabit Ethernet switch. The goal of
the experiments was to evaluate the performance of the various engagement
strategies with respect to the time needed to complete the mission, i.e. to
achieve that all targets are consumed. Fig. 3.13 shows a snapshot of the viewer,
useful for monitoring the evolution of the model for debugging purposes.

During the effective simulation work the viewer is disabled. All the simula-
tion results were obtained as the mean value of five runs. Fig. 3.14 illustrates
how the mission time varies in function of the number of UAVs whilst Fig.
3.15 shows the corresponding fuel consumption. As one can see, strategies
STR2 and STR3 perform better than STR1 in any case. In addition, STR3
gives slight better results than STR2. This is due to the fact that in STR1 an

60 3 The Theatre architecture

Fig. 3.13. A viewer screenshot during the execution

Parameter Value

UAV visibility radius 15 s.u.
Target visibility radius 10 s.u.
UAV speed 10 s.u./t.u.
Target speed 5 s.u./t.u.
UAV initial fuel 500 f.u.
UAV initial ammunition 50
UAV fuel consumption 1 f.u/s.u.
Target initial energy 100 e.u.
α 0.1535
β 0.23
k 0.5
Cdir 1
Tmax 100
Umax 100
MaxUAV 3
MaxTarget 3

Table 3.1. Model parameter values

UAV may be attracted by other targets despite the fact that it has already
engaged with a target. In STR2 and STR3 an UAV focus its attention to a
specific target once engaged.

0

50

100

150

200

250

300

20 24 28 32 36 40 44 48 52 56

Number of UAVs

M
is

si
on

 T
im

e

STR1
STR2
STR3

Fig. 3.14. Mission time vs. deployed UAVs

3.3 Theatre on top of HLA 61

0

10000

20000

30000

40000

50000

60000

70000

20 24 28 32 36 40 44 48 52 56

Number of UAVs

Fu
el

STR1
STR2
STR3

Fig. 3.15. Total amount of consumed fuel vs. deployed UAVs

0

30

60

90

120

150

180

210

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210

Simulation Time

N
um

be
r o

f A
liv

e
Ta

rg
et

s STR1
STR2
STR3

Fig. 3.16. Total number of alive targets vs. simulation time (32 UAVs)

From Fig. 3.14 and Fig. 3.15, it can be seen that, for the modeled scenario,
using more than 32 UAVs does not result in a significant reduction in the
completion time despite an increase in the total amount of employed fuel. Fig.
3.16 illustrates the evolution of the number of alive targets vs. the simulation
time in the scenario where 32 UAVs are deployed.

3.3.5 Model scaling and simulation performance

A second set of simulation experiments addressed explicitly model scaling and
corresponding simulation performance. The simulation model was run under
strategy STR3 (see section 3.3.3). A larger grid territory of 450 × 60 cells
with obstacles as in Fig. 3.12 and varying total agent population were split in
an equilibrated way into three regions allocated to three theatres/federates,
each running on a separate physical processor. Simulation parameters were
those shown in Table 3.1. Agent population was scaled by keeping a ratio
of 1 UAV per 6 targets, starting from an initial configuration of 270 UAVs
and 1620 targets, and varying the scale factor from 1 to 10 times the initial
configuration. For simplicity, all the upper side of the grid was used as entry
area for the UAVs.

The wallclock time (WCT) required for completing the mission (i.e., all
targets are consumed) was measured respectively in the distributed context
(using the same physical architecture as described in section 3.3.4) and on a

62 3 The Theatre architecture

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8

Scale factor

no
rm

al
iz

ed
 W

C
T

[s
ec

./t
.u

.] Centralized
Distributed

Fig. 3.17. Normalized WCT vs. scale factor

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Scale factor

S
pe

ed
up

Fig. 3.18. Simulation speedup vs. scale factor (three processors)

centralized (serial) context (in this case the simulation model was run on a
single machine of the distributed system, without HLA).

Fig. 3.17 shows the wallclock time vs. the scale factor. Each point is the
mean value of five runs. To cope with small variations in the mission time dur-
ing model scaling, in Fig. 3.17 the wallclock time is shown normalized with re-
spect to the simulation mission time, i.e. normalized WCT=WCT/simulation
mission time. For the scale factor 10, i.e. with agent population of 2700 UAVs
and 16200 targets, the WCT of centralized and distributed execution of the
simulation model was found to be about respectively 1551 sec and 619 sec.
The mission time ranges from a maximum value of about 94 t.u. to a mini-
mum value of about 83 t.u.. Lower values of the simulation mission time with
respect to that shown in Fig. 3.16 are due to increased density of agent pop-
ulation and wider entry area which diminish UAVs average search time for
targets.

Fig. 6.21 portrays the simulation speedup, i.e. the ratio between normal-
ized values of centralized WCT and distributed WCT, vs. the scale factor.

As one can see from Fig. 3.17, both in the centralized and distributed
case the wallclock time increases almost linearly vs. the scale factor, thus
witnessing a good scaling of the simulation model.

Scalability and simulation performance can be related to the intrinsic con-
currency degree of the simulation model. Despite an increase in the agent
population, mostly of the exchanged messages are local. Only when an UAV/-
target enters the boundary section of two adiacent regions, a network message

3.3 Theatre on top of HLA 63

is sent by the local EnvActor to its neighbor peer (see Fig. 3.11) for updating
the environment of the remote federate. Network communications also occur
when a moving entity passes from a region to another. Message locality mir-
rors that for a given time advance granted by HLA, many local and concurrent
messages exist to be processed without HLA intervention.

3.3.6 Related work

The approach based on Theatre over HLA can be related to known tools
and methodologies for distributed simulation of multi-agent systems. Further
related work can be found in references [JA06] and [LLT07].

Agent Framework Services (AFS) [JA06] is directly founded on the Actor
Model [Agh86] which inspired the Theatre agent infrastructure. AFS char-
acterizes by its dynamic agent distribution services which are based on two
mechanisms: a communication localizing mechanism which co-locates agents
that communicate intensively to one another, and a load sharing mechanism
which moves agent groups from heavily agent platforms to lightly loaded agent
platforms. An agent can migrate from its platform to another according to its
own decision but also is moved by its platform according to communication
locality. Agent platforms, though, negotiate actual agent migrations on the
basis of their runtime load. Another fundamental service is ATSpace which
supports agent discovery by properties. An ATSpace agent uses a tuple space
where a tuple contains the name of an agent and its property, and supports
agent discovery by tuple matching and tuple template matching. For com-
plex search conditions, a search object can be sent to an ATSpace with the
algorithm to be used for the selection process. ATSpace is a key for open agent-
based systems and can be exploited for developing the (possibly decomposed)
environment through which agents indirectly interact. AFS was experimented
using an UAV simulation model [JA06] with conservative synchronization,
witnessing reduced agent communication overhead and scaling. However, no
speedup information is furnished with respect to a sequential version of the
model. This is perhaps due to difficulties in managing thousands threads on
a single machine. Interoperability was not a design issue and rests on the use
of Java as the implementation language.

PDES-MAS project [LT01] defines a general framework for the manage-
ment of the environment and shared state variables of agents. The framework
is based on the concept of spheres of influence which characterize the immedi-
ate effect of agent events on related environment state variables. An algorithm
is proposed which by tracking changes in (an approximation of) the spheres of
influence of events is dynamically capable of decomposing an environment in
sub-environment components, moving state variables to selected environment
components etc. so as to reduce costs of accessing interested state variables.
The approach is suggested to operate under an optimistic control structure.
PDES-MAS concepts are felt interesting to experiment with in future Theatre

64 3 The Theatre architecture

agent-based systems, e.g. using conservative synchronization which is more
natural for highly reconfigurable systems.

Cougaar [KFC04] is a complex Java-based architecture integrated with
HLA. It uses the concept of Society as a collection of agents. Agents in a
society can be organized in (not distinct) Communities. Agent functionalities
are provided by plug-ins. Plug-ins can share objects through a publish/sub-
scribe API and the Blackboard collective memory store of agents. Blackboard
objects can be used for communications. The Logic Providers are agent com-
ponents which watch Blackboard activities and are responsible for messaging
and Blackboard modifications. Messaging is out of plug-ins, which allows plug-
ins to focus only on business logic instead of infrastructure details. Binders are
used as wrappers to control communications among agent components and re-
quested services. Being based on HLA, Cougaar favours interoperability with
existing simulators. It has been used for developing such complex applications
as UltraLog (military logistics), addressing robustness, survivability, scalabil-
ity and security concerns. Policy is the primary means by which a system
adapts and responds to changing conditions and attacks [?]. Agent mobil-
ity can be constrained (latency in the move) by the distribution of necessary
policies required by the agent on the destination node. Execution performance
rests to be documented.

HLA AGENT [LLT07] is a recent tool developed for casting the SIM AGENT
legacy agent simulation toolkit [Sim] into HLA, with the major goal of back-
ward compatibility with existing SIM AGENT simulations. By providing ad-
ditional information about which simulation entities are to be simulated by
each federate, a developer can distribute a legacy SIM AGENT simulation so
as to make best use of available computational resources. The realization
depends on RTI/C++ and it is assisted by a library which defines wrappers
from and to RTI. Agent migration is simulated by object/proxy creation/dele-
tion operations. A particular problem concerns concurrent access/update to
shared attributes e.g. of the environment. Conflicts resolution, as in [?], can
be achieved by divesting attribute ownership to RTI. In the Theatre UAV
model, the environment is accessed only by messages (which are atomically
processed) and consistency is automatically ensured. When an UAV agent
plans to change position, it sends a timestamped message to the local EnvAc-
tor which replies to the agent after the move time is elapsed then, if needed,
the agent is migrated to a different theatre. HLA AGENT was experimented
with a distributed version of SIM TILEWORLD and its execution performance
compared to the original sequential version of SIM AGENT. A system of 50×50
cells, with a dynamic number of tile, hole and obstacle objects, and maximum
number of 64 agents (reactive, i.e. network bound, in one test; deliberative,
i.e. planning or CPU bound, with explicit plan time in another test) was
simulated using a maximum of 16 cluster processors. Modest speedup was
measured both for reactive agents and (better) for deliberative agents. The
experience confirmed scalability of the simulation model but with an impor-
tant overhead introduced by HLA.

3.3 Theatre on top of HLA 65

HLA REPAST [MT08] is a complex development similar to HLA AGENT.
The goal is to allow modelling of a multi-agent system using the popular
sequential toolkit RePast [rep] and then offering the possibility of either exe-
cuting the model on a single machine or, when it is too complex and compu-
tationally demanding, on a distributed context using a standard middleware.
The reported simulation performances, using the same tileworld model, are
similar to that obtained using HLA AGENT.

Of course, results achieved using Theatre with UAVs cannot be directly
compared with those of HLA AGENT or HLA REPAST with tileworld but the
actor implementation over HLA seems to be more lightweight, lean and effi-
cient, thus capable of delivering better execution performance to applications.
Further work is required, though, for investigating the usage of Theatre in the
modelling and simulation of more large and challenging multi-agent systems.

4

Supporting M&S formalisms through Theatre

4.1 Introduction

The Theatre agent-based architecture can be flexibly used as runtime infras-
tructure for various M&S formalisms. In this chapter, a specialization of actors
as statecharts and the support of DEVS are discussed.

4.2 Hierarchical actors1

This section discusses the use of Theatre for the distributed simulation of dis-
crete event systems (DESs) whose entities have a complex behaviours. Com-
plexity is dealt with by exploiting statechart-based actors which constitute
the basic building blocks of a model. Even if state-based formalism have been
successfully used for specifying agent behaviours, drawbacks arise when each
single agent may express a very complex behaviour. This means that such
languages have to face the well-known phenomenon of state-explosion which
is typically addressed by resorting to hierarchical and modular constructs.

Statecharts (see 2.2.2) are an extension of classical state transition di-
agrams which have such type of features. The basic mechanism consists in
the possibility of nesting a sub automaton within a (macro) state thus en-
couraging step-wise refinement of complex behaviour. Statecharts have been
successfully applied to the design of reactive event-driven real-time systems
([HP98],Selic:98,furfaro:06), as well as to modelling and performance analysis,
e.g. ([VCA02, VCAA06]).

The type of statecharts used for modeling actor behavior are “distilled”,
in the sense that they permit only the or-decomposition. All of this complies
with the basic assumptions of the adopted actor computational model where
concurrency exists at the actor level but not within actors (see 3.2).

1 based on [CFGN09b]

68 4 Supporting M&S formalisms through Theatre

Distributed simulation is accomplished by partitioning the system model
among a set of logical processes (theatres). Timing management and inter-
theatre communications rest on High Level Architecture (HLA) services. In
the following it is show a practical application of the approach through a
manufacturing system model.

4.2.1 A modelling example

This section illustrates an application of the approach by considering a model
of a manufacturing system. The example is adapted from ([VCA02, VCAA06])
where it has been handled by statecharts with and-decomposition and event
broadcasting [HP98], and analytically studied by preliminarily transforming
the model into a continuous time Markov chain (CTMC). In this paper the
model is simulated. Obviously, simulation opens to the possibility of using
probability distribution functions for event occurrences beyond the exponen-
tial one which is normally a prerequisite for building a CTMC. In addition,
simulation can be exploited for investigation of more general properties about
system behaviour. In the considered manufacturing systems (Fig. 4.1), two
machines, respectively referred as Machine A and Machine B, operate in se-
ries processing the submitted jobs for producing a single product. Jobs are
first processed by Machine A and then by Machine B. A bounded capacity
Inventory is used for decoupling the operation of the machines thus reducing
their wait times. A Robot is actually in charge of loading/unloading the two
machines with jobs, possibly using the Inventory for temporary job buffering.
Both machines and the robot may be subject to failures. Repairing from a
failure is responsibility of an Operator. Machines, Robot, Operator and the
Inventory are modelled as actors. Event broadcasting, which was present in
the original model, is replaced by direct communications. In particular, be-
cause the robot bases its decisions on the operation state of the two machines
and of the inventory, it gets directly notified by these components about rele-
vant state changes. Analogously, when the robot, or one of the machines, goes
in a failure state it directly asks the operator for being fixed.

Statechart models

Figures 4.2 4.3 4.4 4.5 depict the statecharts modelling respectively the be-
haviours of Machine, Operator, Inventory and Robot actors. The top states
of all these statecharts have a default state named New, which is a leaf state,
where each actor waits for the arrival of an Init message carrying initialization
information. After being initialized, a machine (see Fig. 4.2) goes into state
W where it waits for a job to be processed.

From W, it moves into state P when it has been loaded by the robot
with a job. While residing in state P the machine processes the loaded job.
At processing end, the machine moves into WU waiting for being unloaded.
Both states W and WU have an entry action that consists in sending a Notify

4.2 Hierarchical actors 69

Inventory

Robot

Operator

MachineBMachineA

Get Put
Load/Unload

EndRepairEndRepair

Load/Unload

Repair

Notify

EndRepair

RepairRepair

Notify Notify

Fig. 4.1. A manufacturing system model

Init

MachineTop

Unload

P

B

New

Load

EndProcess

EndRepair[!loss]

Failure/
rb.send(Repair)

EndRepair[loss]

WU
entry/rb.send(Notify(WU))

W
entry/rb.send(Notify(W))

Fig. 4.2. Machine behaviour

OperatorTop

on Repair/storeRequest()
R

EndProcess/
 recv.send(EndRepair)

send(Check)

New
Init

Check[cond]

WRepair

Fig. 4.3. Operator behaviour

70 4 Supporting M&S formalisms through Theatre

New

Partial

Full

Empty

Init

Put[size<n-1]

InventoryTop

Get[size>1]

Get[size>1]Put[size==n-1]

Get[size==1]Put[size<n-1]

Get[size==1]

Put[size==n-1]

entry/rb.send(Notify(Empty))

entry/rb.send(Notify(Partial))

entry/rb.send(Notify(Full))

Fig. 4.4. Inventory behaviour

message to the robot for letting it know that the sending machine needs to
be loaded or unloaded.

The message EndProcess is an internal message which a machine sends
to itself for simulating the processing time (dwell time in P). During its stay
in P, a machine can be subject to a failure in which case it moves to state
B. As for processing end, failure is also modelled by another internal mes-
sage which the machine sends to itself according to the next time to failure
defined by a corresponding probability distribution function. When a Failure
message is received, a request for being fixed is sent to the operator through
a Repair message. After being repaired (arrival of the external message En-
dRepair coming from the Operator), the machine can return into state P for
continuing processing of the interrupted job, or it can go back to W in the case
the partial processed job is lost. The two possibilities are controlled by the
boolean variable loss whose value is determined accordingly to the specified
loss probability.

The behaviour of the Operator is depicted in Fig. 4.3. After being initial-
ized, it waits in state W for a repairing request. As soon as such a request
is received it moves into state R. The Operator resides in R for a dwell time
that models the repairing time whose mean duration changes depending on
the actor (a machine or the robot) that has made the request. While in R,
other repair requests may arrive. They are handled by an internal transi-
tion whose action consists in storing them into suitable internal variables,
thus postponing their processing. The completion of the repairing process is
achieved with an internal message EndProcess to which the actor reacts by
sending an EndRepair message to the relevant actor and a Check message
to itself. Upon receiving a Check message, the operator inspects its internal

4.2 Hierarchical actors 71

variables for checking whether there are pending repair requests. When faced
with the decision of which entity to repair first, the operator chooses accord-
ing to the following priority order: first machine Mb, then machine Ma and
lastly the Robot.

The behaviour of the Inventory is portrayed in Fig. 4.4. It is a bounded
buffer of capacity n, which can be 0 or a positive value. After initialization, the
Inventory can be in one of the states among Empty, Partial or Full. Depending
on the current available space, a Get/Put message can switch the inventory
between Empty, Partial or Full as shown in Fig. 4.4. All of these three states
have an entry action which consists in notifying the robot about the current
inventory state.

The robot is the most complex entity as can be seen from the statechart
of Fig. 4.5 which models its behaviour. While in state W, the robot waits for
an operation to be exercised on the machines. Whenever the robot receives
a Notify message it always updates its internal variables according to the
received information. This is mirrored by the internal transitions of states W,
P and B. In particular, if the robot gets notified when it is in state W, it
proactively sends to itself a Check message. On the basis of the information
about the state of the other components, if it is able to do some operation
when the Check message is received, it switches to macro state P and sends
to itself a Start message.

P

H

U2

UL

L2

U1

L1

D E

B

W
New

RobotTop

Init/send(Check)

Check[condP]/send(Start)

Passivate/send(Check)

Start[cond1]

Start[cond2]

Start[cond3]

Start[cond4]

Start[cond5]

End/send(Passivate)

Failure/op.send(Repair)

EndRepair

on Notify/update()

on Notify/update()

on Notify/update()
 send(Check)

End/
send(Passivate)

End/
send(Passivate)

End/send(Passivate)

End/
send(Passivate)

Fig. 4.5. Robot behaviour

72 4 Supporting M&S formalisms through Theatre

cond1 = Mb is in WU;
cond2 = Ma is in WU && Mb is in W;
cond3 = Mb is W && (Inv is empty);
cond4 = Ma is in WU && (Inv is Full);
cond5 = Ma is in W;
condP = cond1 || cond2 || cond3 || cond4 || cond5;

Fig. 4.6. Environmental conditions for the robot

Machine A Machine B Robot
Production rate βA=8,10 or 12 βB=10
Failure rate λA=1 λB=0.5 λR=1
Repairing rate µA=10 µB=15 µR=10
Loss probability pA=0.5 pB=0.3
Loading rate
machine A

γL1=100

Unloading rate
machine A

δU1=100

Loading rate
machine B

γL2=100

Unloading rate
machine B

δU2=100

Moving rate from
m. A to m. B

αUL=70

Fig. 4.7. Simulation parameters

This condition is reflected by the value of the boolean variable condP
which is the logical or of various conditions as summarized in Fig. 4.6. State
D is the default sub state of P which is left as soon as the Start message is
delivered. At least one of the guards of the transitions leaving D is satisfied
because each of them implies condP (see Fig. 4.6). The robot gives priority
to unloading machine Mb (cond1 and sub state U2), then to simultaneously
unloading machine Ma and loading machine Mb (cond2 and sub state UL),
then to loading machine Mb (cond3 and sub state L2), then to unloading
machine Ma (cond4 and sub state U1) and, finally, to loading machine Ma
(cond5 and sub state L1).

The time spent by the robot in any operating state depends on the par-
ticular operation (see Fig. 4.7) that it is accomplishing. The internal message
End is self-sent for witnessing the end of the operation, in which case the
robot moves first into the E state and then sends itself a Passivate message
whose arrival takes the robot from state P to state W where the behaviour
repeats again.

The transition having Failure as the trigger message is an example of a
group transition. It means that whatever is the internal sub state of P, the
arrival of the Failure message causes the state P to be exited and state B to
be entered, where the Robot requires to be repaired by the Operator.

While the Robot is in an operating state, it can fail (internal message
Failure received). In this case the on-going operation is interrupted and the

4.2 Hierarchical actors 73

operator is asked for intervention. Which event arrives first between End and
Failure depends on the next time respectively for completing the operation
and for failing.

The transition triggered by EndRepair causes the Robot to return into
macro state P with history (see the shallow connector history H). This way,
the actor returns exactly into the internal sub state of P which was current
when P was last left off at the time of Failure.

For the purpose of experimentation, all the timed events in the system are
assumed to be exponentially distributed. Fig. 4.7 summarizes the rates (num-
ber of events per time unit) used for simulation (as in [VCA02, VCAA06]).
Loading/unloading rate of machines are shown as dwell times in the corre-
sponding operation state of the robot.

Simulation results

The manufacturing model was simulated using the parameter values in Fig.
4.7, with the aim of validating the distributed runtime infrastructure of
statechart-based actors. Simulation uses dense time. Each experiment lasts
after a time limit of tEnd=5 105. The model was split in two Logical Processes
(LPs)/federates assigned to two distinct processors (Pentium IV 3.4GHz, 1GB
RAM) interconnected by a 1Gb Ethernet switch in the presence of HLA (pRTI
1516). One LP was assigned the machines and the Operator, the other LP the
Robot and the Inventory. Into each LP is also present a Monitor actor for col-
lecting useful information about the simulation. Each monitor has methods
for capturing such data about system productivity, utilization of machines,
robot and operator, losses in machines, average inventory size etc. In addi-
tion, every monitor sends to itself, at the beginning of the simulation, a timed
message to be received at tEnd. Following the arrival of such a message, the
actor displays collected statistical information.

The system model was studied in three cases: when machine A has re-
spectively a lower/equal/greater production rate than B (see Fig 4.7). Sys-
tem properties were analyzed vs. the inventory bounded capacity which was
varied from 0 to 20. Experimental results comply with those reported in
([VCA02, VCAA06]), but furnish more detailed information about system
behaviour.

Fig. 4.8 portrays measured system productivity (number of unloads from
machine B per time unit) vs. the inventory capacity. As one can see, starting
from 0, an increase in the inventory capacity increases the system productivity
until the system reaches full-busy condition. In this condition the system
exhibits maximum parallelism among components, with the inventory which
smooths out instantaneous differences in the production speed of the two
machines. The smoothing effect is obviously greater when the production rate
of machine A grows.

The positive effect of using a not zero inventory size can be checked in Fig.
4.9 which shows the waiting time for unloading machine A vs. the inventory

74 4 Supporting M&S formalisms through Theatre

capacity. This statistic was achieved by summing up the dwell time of machine
A in state WU, waiting for the robot to unload the finished product, and then
dividing the sum for the simulation time limit.

For completeness, Fig. 4.10 illustrates the wait time for unloading machine
B, which has priority with respect to unloading machine A. As expected,
machine B has a small wait time.

4

4.5

5

5.5

6

6.5

7

7.5

8

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

Pr
o

d
u

ct
io

n
s/

ti
m

e
u

n
it

β
A
=8

β
A
=10

β
A
=12

Fig. 4.8. Observed system productivity vs. inventory capacity.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

W
ai

t t
im

e
fo

r u
nl

oa
di

ng
 m

A

β
A
=8

β
A
=10

β
A
=12

Fig. 4.9. Average wait time for unloading machine A

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Inventory capacity

W
ai

t t
im

e
fo

r u
n

lo
ad

in
g

 m
B

β
A
=8

β
A
=10

β
A
=12

Fig. 4.10. Average wait time for unloading machine B

4.3 Actors for DEVS M&S 75

4.3 Actors for DEVS M&S2

In this section it is proposed a minimal and efficient Java framework -
ActorDEVS- based on actors (agents) which enables modelling and simulation
activities of discrete-event systems formalized by DEVS (see 2.2.1). A map-
ping of DEVS on to actors is described which leverages the expressive power
of Parallel DEVS and makes it possible to build both atomic and complex
hierarchical coupled models.

In particular, ActorDEVS is used under the perspective of the DEVS-
World project, whose goal is the development of a net-centric modelling
and simulation (NCMS) infrastructure having the net as the computer, thus
favouring different levels of interoperability among research groups operating
world wide. The section discusses some architectural scenarios for wrapping
ActorDEVS in the DEVS-World infrastructure, opening to interoperability
with other DEVS or (possibly) non-DEVS systems. The proposal clearly sep-
arates model and simulation concerns. An entire model is partitioned among
a number of simulation nodes with web services, in a case, which act as the
transport layer for inter-node message exchanges. A global coordinator with a
minimal interface of operations governs the “in-the-large” simulation aspects.

4.3.1 ActorDEVS

ActorDEVS is a customization of the Theatre actor model (see 3.2) for sup-
porting modelling and simulation of DEVS systems in Java.

The UML class diagram in Fig. 4.11 shows basic classes and their rela-
tions, useful for modelling (i.e., programming) and discrete event simulation
of a single coupled model. The minimal framework rests on a few GoF de-
sign patterns. For example, the pattern strategy is employed to transparently
weave the control structure, i.e. the simulation engine, to an application; the
template method is adopted for structuring the AtomicDEVS abstract actor
class which is the base for achieving, through inheritance, the concrete atomic
components required by the application. Typed input/output ports of com-
ponents are directly mapped on to messages. Toward this, the Output<V> and
Input<V> derived classes of Message are introduced which are generic in the
type V of the carried data. In particular, Input<V> is derived from Output<V>.
Class Output<V> exploits the command and prototype design patterns. As a
command, it has a send message to transmit its content to its destination
actor, whose identity is established at configuration time. As a prototype, an
output message is cloned in order to create an initialized copy of itself which
is actually sent to its destination. Services get()/set() permit respectively
to achieve/modify the data component of an Output<V> message. Method
linkTo(receiver) allows an output message to be bound to a given receiver
actor. The Output<V> class is provided of a recycler so as to avoid cloning

2 based on [CFGN08]

76 4 Supporting M&S formalisms through Theatre

when a consumed (i.e., already processed) output message is available for re-
cycling. A Timer class is provided which inherits from Message and provides
the notion of a timed message. A timer can be set()/reset() and the elapsed
time since its setting or the remaining time before its expiring can be checked.
When a timer is set, the identity of a timeout message, its receiver actor, and
the relative expiration time must be given. Before expiring, a timer can be
reset. A discrete time model is assumed. However, a dense time model could
in alternative be used.

DEVS Simulation embodies a discrete-event simulation control structure
which manages two message data structures: an ordered queue of set timers,
and a collection of instantaneous messages which have to be dispatched at
current simulation time. Instantaneous messages take precedence with respect
to timers. The control structure repeats a basic loop. At each iteration, a bag of
instantaneous messages, if there are any, directed to a receiver atomic actor is
formed and passed to an invocation of the handler() method of AtomicDEVS.
If there are no pending instantaneous messages, the most imminent timer is
allowed to fire thus advancing the simulation time. The corresponding timeout
message is then passed to the invocation of the receiver handler() method.

The programming style is dictated by the abstract class AtomicDEVS which
exports all the basic DEVS functions as abstract methods which a user-defined
component class must override. The actual signature of functions is clarified
in Fig. 4.12. As one can see, all transition functions return an int which cod-
ifies the next phase of the atomic component (from the point of view of the
actor model, a DEVS component is a finite state machine built over the con-
trol states or phases of the component). The delta con() method is concrete
in AtomicDEVS and implements the default behaviour of the confluent func-
tion. Of course, a concrete component can redefine delta con() to achieve a
different behaviour.

Fig. 4.11. UML Class Diagram of ActorDEVS basic Framework

4.3 Actors for DEVS M&S 77

Fig. 4.12. Signatures of DEVS Functions

A bag of inputs is an object created by the DEVS Simulation engine, of
an Iterable<Message> class. This way the modeller can navigate over the
received messages (i.e. external events) by iterating over the x object.

An atomic component is initialized through the constructor whose pa-
rameter values are assigned to fields in the concrete atomic class. The
initialPhase(phase) method must be called in the constructor for es-
tablishing the initial phase of the component. The boolean acceptable(

Iterable<Message> x) method, always to redefine, returns true if messages
in the bag x effectively belong to the input messages of the component; false
otherwise.

The void handler(Iterable<Message> x) method of AtomicDEVS im-
plements the DEVS semantics, i.e. it is in charge of making internal/external
transitions and of checking simultaneity of an external event and an internal
event (internal transition) in which case the confluent function is invoked.
AtomicDEVS uses a timer and a timeout built-in message to enforce the tem-
poral behaviour of the component. The class also exports the constant IN-
FINITY for programming passive states.

4.3.2 DEVS-WORLD Vision

DEVS-World [Wor07] aims at developing a world-wide standard platform for
modelling and simulation (M&S), promoting collaborative research and exper-
imentation in the engineering, i.e. design, evaluation, implementation, deploy-
ment and execution of complex, scalable, dynamic structure systems [HW07]
belonging to diverse and significant problem domains like biology and bioin-
formatics, environment systems, traffic simulation etc.

Novel in DEVS-World is the definition of a development methodology for
supporting world-scale distributed open systems of systems M&S [Wor07].
Openness is a fundamental property which expands along different directions
with different levels of integration and interoperability. A first level of inte-
gration is relevant to model interoperability. Many different implementations
of DEVS simulators currently exist, and usually each of them uses a built-in
modelling language often tied to a specific programming language like Java or
C++. To cope with this problem, specific conversion tools capable of translat-
ing a DEVS model from a language to another can be realized. A more general

78 4 Supporting M&S formalisms through Theatre

solution would be that of adopting emerging DEVS standard language such
as DEVSML [Wor07]. Another direction of integration concerns interoper-
ability at architectural level. In [Wor07] but also in [SPR+08] the proposed
world-wide architecture is aimed at harmonizing heterogeneous models based
on special-case DEVS tools, programming languages and engines, through the
use of Web Services and SOAP dependent messages and other DEVS concepts
(ports, simulators, coordinator etc.). Web Services are viewed as a world-wide
glue enabling interoperation through DEVS/SOA mechanisms, with WSDL
used for web services interface specification.

Besides standardization of models and simulation infrastructure, the defi-
nition of a standard simulation protocol is mandatory. The protocol (see 4.13)
describes how a DEVS model should be simulated and how service/simulation
engines should coordinate each other. Such a protocol opens also to a scenario
in which both DEVS and non-DEVS simulators may (possibly) participate in
a simulation.

Fig. 4.13. Simulation protocol in a federation of DEVS and non-DEVS simulators

CoreSimulatorInterface (see 4.13) is the common interface to simulators.
The term “core” means “essential” in that as long as a simulator implements
this interface, it can participate in a simulation driven by a DEVS coordinator.
In the case of DEVS-simulators, the CoupledSimulatorInterface is considered.
This interface extends the core interface by providing other functionalities e.g.
for adding/removing couplings among DEVS models.

CoordinatorInterface must be implemented by the coordinator. The coor-
dinator is in charge of synchronizing the activities of the various simulators
guiding them through the simulation control cycle. Basic phases of the simu-
lation cycle are shown in Fig. 4.14.

4.3 Actors for DEVS M&S 79

Step Description
nextTN the coordinator requests that each

simulator sends its time of next
event and takes the minimum of
the returned values to obtain the
global time of next event

computeInputOutput each simulator applies its
computeInputOutput method to
produce/gather an output that
consists of a collection of
Contents (i.e. port/value pairs)

sendMessages each simulator partitions its
output into messages intended for
recipient simulators and sends
these messages to these recipient
simulators. Sending a message
implies to call the recipient’s
putContentOnSimulator for any
target simulator

applyDeltFunc each simulator executes its
ApplyDeltFunc method which
computes the combined effect of
the received messages and
internal scheduling on its state. A
side effect is in producing the
time horizon gives back at the
nextTN

Step Description
nextTN the coordinator requests that each

simulator sends its time of next
event and takes the minimum of
the returned values to obtain the
global time of next event

computeInputOutput each simulator applies its
computeInputOutput method to
produce/gather an output that
consists of a collection of
Contents (i.e. port/value pairs)

sendMessages each simulator partitions its
output into messages intended for
recipient simulators and sends
these messages to these recipient
simulators. Sending a message
implies to call the recipient’s
putContentOnSimulator for any
target simulator

applyDeltFunc each simulator executes its
ApplyDeltFunc method which
computes the combined effect of
the received messages and
internal scheduling on its state. A
side effect is in producing the
time horizon gives back at the
nextTN

Fig. 4.14. Simulation cycle phases

In handling simulation of hierarchical coupled models, a coordinator or-
chestrates a set of controlled simulators within it and, at the same time,
can participate with peers in a coupled model above it. To allow such down-
ward/upward facing interfaces, the CoupledCoordinatorInterface is introduced
which extends both the CoordinatorInterface and the CoupledSimulatorInter-
face.

4.3.3 Wrapping ActorDEVS in DEVS-WORLD

This section highlights a service-based approach extending the Theatre/Ac-
torDEVS architecture in order to meet requirements of DEVS-World. Pro-

80 4 Supporting M&S formalisms through Theatre

vided extensions support architectural interoperability among heterogeneous
DEVS simulators. The approach adopts previously described DEVS simula-
tion protocol. At the moment, interoperability at modelling language level is
not addressed. Each DEVS model is assumed to be implemented as a Java
class complying with the ActorDEVS API [DAL08]. A Coordinator is intro-
duced in order to coordinate the evolution of the overall simulation and it
is in charge of implementing the DEVS simulation cycle (see Table 4.14). A
Configurator makes it possible to configure the whole simulation system and
start execution. An UML class diagram of system components is reported in
Fig. 4.15.

interface
Coordinator

setSimulators
simulate

DEVSControlMachine

ControlMachine

interface
TheatreCM

configureServer
loadApplication
stop
pause
resume
reset interface

Coupled

addCoupling
removeCoupling

Configurator

Theatre

TransportLayer

coordinates

1..*

configures
1..*

configures

configures

1..*

interface
CoupledSimulator

interface
CoreSimulator

setSimulators

computeInputOutput
applyDeltFunc
putContentOnSimulator
sendMessages
setCoordinator

initialize
nextTN

acquaintance

0..*

0..*

sendMessagesEnd

1..*

knows

Fig. 4.15. Class diagram of system components

public interface Coordinator{
 void setSimulators(SimulatorInfo[] si)throws Exception;
 void simulate(long simulationTime)throws Exception;
 void sendMessagesEnd(Check check)throws Exception;
}

Fig. 4.16. Coordinator interface

4.3 Actors for DEVS M&S 81

The Theatre component and the Configurator are not exclusive of DEVS
simulations, they are common to all actor-based applications. The Coordina-
tor (see Fig. 4.16), instead, is tightly related to DEVS-World perspective. A
DEVSControlMachine has been purposely developed in order to work in pair
with the coordinator and be compliant with the DEVS simulation protocol.
This control machine implements a CoupledSimulatorInterface-like (see Fig.
4.13) and behaves as a DEVS simulator. With respect to the approach pro-
posed in [Wor07] the Coordinator is only concerned with the execution of the
DEVS simulation cycle. In particular it does not manage coupling information
among DEVS models allocated to different simulators. Such information is di-
rectly handled at simulator level. As a consequence, “local” and “external”
couplings are handled in the same way. In addition, being in a net-centric
context, the Coordinator must wait until all outgoing messages, i.e. inter-
simulator messages, are received by recipient simulators before proceeding to
the applyDeltFunc phase (see Table 4.14). This is ensured by Check mes-
sages (see Fig. 4.16) sent by simulators to the coordinator. Toward this, the
setCoordinator method was added to CoreSimulator (see Fig. 4.15). Check
messages are actually generated at the end of sendMessages phase and after
external messages are received. CoupledSimulator interface (Fig. 4.15), which
does not introduce further methods, extends both CoreSimulator and Cou-
pled interfaces. This is to guarantee a clear separation of concerns among
configuration (i.e. coupling management addressed by the Coupled interface)
and simulation aspects (simulation protocol management addressed by the
CoreSimulator interface).

In order to support the NCMS vision, a whole Theatre/ActorDEVS sys-
tem, which can span from a single atomic model to a complex coupled model,
is made usable through Web Services. Each system component is made avail-
able as a Web Service by means of specific objects called Wrappers. Client-
side interactions are instead mediated by means of specific Proxy objects. It
is worthy of note that in a service oriented architecture the roles of client
and provider are not strictly defined, being possible for a same node to act as
client or provider on the basis of the required/offered functionalities.

Wrappers and Proxies are transparently used. As a consequence, would e.g.
Java RMI be used in place of Web-Services based protocols, only Wrappers
and Proxies would be accordingly changed. Fig. 4.17 shows the architecture
of a resultant Theatre/ActorDEVS system.

A Code Server is shared among theatres and it is used as a remote Java-
class repository from which download the actor-based application to execute,
i.e. in this case the DEVS models to simulate. Configuring and starting a
simulation consists of four steps. The first step is devoted to setting-up the
Theatre nodes by specifying the control machine, the transport layer to use
and the code server IP address.

This is accomplished by exploiting the Configuration and Management
Web Service (see the C&M-WS in Fig. 4.17). After the control machine is
instantiated its functionality is made available as a Web Service which is au-

82 4 Supporting M&S formalisms through Theatre

Fig. 4.17. Architecture of a Theatre/ActorDEVS system

tomatically published (see the Simulator-WS in Fig. 4.17). The DEVSControl-
Machine oversees message exchange with other simulators. As a consequence,
the transport layer (see the TL-WS in Fig. 4.17) in this scenario is used only
to manage inter-theatre control messages.

The second step consists in assigning to each Theatre the DEVS model(s)
to simulate. A single model may correspond to an atomic or to a coupled
DEVS component. The Java class name of each model requires to be speci-
fied along with the parameters possibly required by its constructor. This step
is carried out by exploiting the C&M-WS and completes when models get
assigned to target theatres, i.e. downloaded from the code server and instan-
tiated.

The third step consists in establishing the necessary bindings among coor-
dinator and simulator services (i.e. acquaintance relationships). In particular,
a CoordinatorInfo object is provided to each simulator and a list of all Simula-
torInfo objects, relevant to simulators involved in the federation, is furnished
to each simulator and to the coordinator. An info object contains the name
of the service and the relevant service endpoint address which is necessary
to contact and use it. As stated above, each simulator has to know the coor-
dinator in order to communicate information about the state of the current
sendMessages phase (see Table 4.14).

The fourth step consists in defining couplings among deployed models in
order to build the entire simulation model. This is achieved by invoking the
method addCoupling onto simulators. Coupling information mainly contains

4.3 Actors for DEVS M&S 83

a couple of names, identifying the two ports to be connected. The first name
is relevant to an output port of a DEVS component local to the simulator.
The second name is relevant to an input port of a DEVS component which
can be either local to the simulator or residing on a remote simulator. In the
latter case, the name of the remote simulator is provided along with coupling
information. A naming policy is required to distinguish ports belonging to
different instances of the same model. In particular, full name of a port is
assumed to be specified in the form modelInstanceName.portName.

At runtime, remote couplings get actualized by means of the so called
RelayPort objects. Making a remote coupling implies linking an output port
of a DEVS component to a relay port which, in turn, is logically connected
to a remote input port. All of this makes the DEVS component unaware of
network partitioning.

All data needed during configuration steps are contained in an XML file
whose schema is reported in Fig. 4.18. In the current prototype system im-
plementation, the Settings type is used only to contain the simulation time
info. The CodeServer and Coordinator types contain information required
to contact the relevant components on the web (e.g. service name, host, port).
Other types are self-explanatory.

At configuration end, the Configurator may launch the simulation by call-
ing the simulate method on the Coordinator which in turn triggers into exe-
cution the simulation control loop.

Fig. 4.18. XML schema of the configuration files

84 4 Supporting M&S formalisms through Theatre

4.3.4 Variable structure system example

The achieved implementation of WS-based Theatre/ActorDEVS architecture
was tested by modelling and simulation of a variable structure system based
on server relocation [DAL08]. The modelled system consists of a collection
(closed pipeline) of interconnected node components (see Fig. 4.19).

Each node receives from its environment a stream of jobs, stores them in
a buffer (of unbounded size) and ultimately processes them using a number
of server components. A system is assumed to work with a fixed number of
servers. Servers cannot be dynamically generated because they model physical
computing resources. However, a high loaded node can ask for a server to its
neighbours. A dispatcher component in a node is in charge of handling the
server relocation issues. Main difference between the model as handled in
[DAL08] and here, consists in the achievement of structure dynamism.

In [DAL08], server components migrate from a node to another as mobile
agents. In the scenario of this paper, though, servers do not migrate but port
objects are created/destroyed dynamically in order to contact servers.

Asking for a server may return a server port through which a dispatcher
can submit a job to a server allocated on a different node. As a consequence,
server relocation is achieved by changing the number of servers a node can
contact to process its jobs. Different strategies of server relocation can be
considered (see later).

Fig. 4.19 depicts a three node system, together with input/output ports
and connectors. Each node can direct useful statistical data to an external
Statistics (transducer) component connected to the StatOut output port.
When used, the OverloadGenerator can inject jobs randomly to any node.

Fig. 4.20 shows the internal structure of a node. Inter-node ports serve to
send/receive an ask to/from a neighbour for a server (ask-OUT?, askIN), to
send/receive a server to/from a neighbour (moveIN?, moveOUT?, moveIN]),
or to send/receive back a no longer useful server (sendBackOUT?, send-
BackIN). Fig. 4.19 shows delegate connections (represented by using dashed
lines) within a coupled node. The shadowed TimerToken component in Fig.
4.20 is required only by some relocation protocols.

A high loaded node, that is a node with a pending job but without idle
servers, asks for a server port to its neighbours. When the Dispatcher of a
node receives a request for a server, it honours the request with a server port
if at least one idle server is available. Otherwise the request is ignored. If no
server ports are obtained, a node asks again for a server port after a certain
time delay. Three particular strategies (Cicirelli et al. 2008) were considered
about the way a node can handle external utilizable servers.

On-demand strategy - A node which achieves an external server, views it
as an own server. Therefore, the protocol freely distributes server ports among
nodes on a on-demand basis. It can be anticipated that this strategy makes it
possible for nodes to behave in a selfish-way, possibly leading to an unbalanced
distribution of server use.

4.3 Actors for DEVS M&S 85

sendBackIN

moveOUT1

askIN

sendBackIN
moveOUT2

askOUT1

sendBackOUT1
moveIN

:Node sendBackOUT2

moveIN

jobIN

statOUT

askIN

sendBackIN
moveOUT2

askOUT1

sendBackOUT1
moveIN

:Node

askOUT2

sendBackOUT2

moveIN

jobIN

askIN askOUT2 askIN

sendBackIN

moveOUT1

askIN

sendBackIN
moveOUT2

askOUT1

sendBackOUT1
moveIN

:Node

askOUT2

sendBackOUT2

moveIN

jobIN

askIN

sendBackIN

moveOUT1

statOUT statOUT

:JobGenerator
jobOUT:OverloadGenerator

:JobGenerator
jobOUT

:JobGenerator
jobOUT

jobOUT1

jobOUT2

jobOUT3

Fig. 4.19. A ring of three nodes

askOUT1

sendBackOUT1
moveIN

jobIN

statOUT

sendBackIN
moveOUT1

askIN askOUT2

sendBackOUT2
moveIN

sendBackIN
moveOUT2
askIN

:Buffer

:Dispatcher

:Server

getJobIN

jobReplyOUT

jobIN

getJobIN

jobReplyOUT

askIN

sendBackIN
moveOUT1

sendBackOUT1
moveIN
askOUT1 askIN

sendBackIN
moveOUT2

sendBackOUT2

moveIN

askOUT2

statOUT

jobCompletedIN

submitJobOUT

jobCompletedIN

submitJobOUT

Node
:TimerToken

setOUT notifyIN

setIN notifyOUT

[*]

[*]

Fig. 4.20. Internal structure of a node

Debt strategy - A debt concept for server allocation is introduced. A node
which receives a server port from a neighbour, annotates the identification of
the furnishing node. As soon as the Dispatcher of a debtor node has no pending
job but has at least one idle server, it tries to exhaust its debits by anticipating
restitution of some server ports to its creditor nodes. Intuitively, the protocol
attempts to avoid non uniform utilization of servers. Token passing strategy -
One server port is used as a token which circulates upon the closed pipeline.
A node receiving the token-server can use it if has a pending job but has no
available local server. Otherwise, or after token usage, the token is forwarded
to the next node in the ring. The strategy tries to anticipate a server request. A
node which receives the token as well as server ports coming from neighbours,
uses the token and sends back the other server ports.

86 4 Supporting M&S formalisms through Theatre

4.3.5 Configuration, deployment and simulation

Some simulation experiments concerning the server relocation model described
in the previous section were carried out by using two Theatre/ActorDEVS
systems allocated on two Win platforms. Another Win platform was used to
host the Coordinator, the Code Server and the Configurator. The experiments
were directed to study the effects of overloads starting from an equilibrium
situation. Simulation parameters which, under either On-Demand or Debt
strategy, ensure the buffers size or equivalently the mean delay time of jobs is
definitely constant and of a low value are as follows.

The job interarrival time is in the interval [2,4], the job size (which indi-
cates the time needed to process the job) belongs to the interval [8,15]. The
time delay a Node waits between two consecutive asks for a server was set
to 1 time unit. The number of servers initially allocated to each node is 4.
Starting from the equilibrium, the OverloadGenerator (see Fig. 4.19) is capa-
ble of injecting each generated job to a randomly chosen node. To respond to
the overload, one additional server was introduced, whose management ulti-
mately depends on the adopted strategy(ies). For instance, under On-demand
or Debt strategies the extra server is initially assigned to a given node. In the
Token passing strategy, instead, the extra server (its port) circulates in the
pipeline ring. In this case, to avoid Zeno behaviours, the token which reaches
the node where it was last used, is forced to wait one time unit before start-
ing the next round. The job mean delay time (that is the time which elapses
between the instant in time a job is received by Buffer and the subsequent
time the job gets assigned to a server) was measured by the Statistics com-
ponents. The investigated strategies for responding to overload were: Debt &
Token, On-demand & Token, On-demand alone. The DEVS models relevant
to Node, JobGenerator, OverloadGenerator and Statistics were deployed to
the Code Server. A number of Nodes, varying from one to five, along with
the relevant instances of JobGenerators were assigned to each Theatre. The
OverloadGenerator and the Statistics were allocated on a single Theatre. The
simulation time limit was set to tEND = 105. Different system configurations
were actualized by specifying different configuration files. An excerpt of such
a file is reported in Fig. 4.21. The configuration is relevant to a relocation
system model made up of two Nodes allocated to two theatres. Only the Debt
strategy is considered. Coupling information, common to all the configuration
files, is used to build up the overall simulation model. In particular:

� each JobGenerator was coupled with the relevant Node
� each Node was coupled with its neighbors in the closed pipeline
� the OverloadGenerator was coupled with all the Nodes
� each Node was coupled with the Statistics.

Coupling information dictates system topology at configuration time. At
runtime, on the basis of the adopted strategy, a Node may dynamically change
the servers it actually contacts without resorting to the add/remove coupling

4.3 Actors for DEVS M&S 87

<?xml version="1.0" encoding="utf-8"?>
<Configuration name="RelocationServers"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="./TheatreDEVS.xsd">
<theatrelist>
 <theatre id="PERSEUS8000" host="perseus" port="8000">
 <controlmachine name="theatre.DEVSControlMachine"/>
 <transportlayer name="theatre.transport.WSTransport"/>
 <marshaller name="theatre.marshaler.ByteArrayMrshlr"/>
 </theatre>
 <theatre id="HYDRA8000" host="hydra" port="8000">
 ...
 </theatre>
</theatrelist>
<codeserver url="http://orion:8989"/>
<coordinator name="Coordinator" host="orion" port="8080"/>
<coupledmodel>
 <component name="Node1" theatre="PERSEUS8000">
 <componentClass name="relocation.Node"/>
 <!-- number of servers -->
 <constructorparam type="java.lang.Long" value="4"/>
 <!-- token disabled -->
 <constructorparam type="java.lang.Boolean" value="false"/>
 <!-- debt enabled -->
 <constructorparam type="java.lang.Boolean" value="true" />
 </component>
 <component name="Node2" theatre="HYDRA8000">
 <componentClass name="relocation.Node"/>
 ...
 </component>
 <component name="OverloadGenerator" theatre="PERSEUS8000">
 <componentClass name="relocation.OverloadGenerator" />
 </component>
 ...
 <coupling>
 <source theatre="PERSEUS8000" port="Node1.sendBackOut2"/>
 <dest theatre="HYDRA8000" port="Node2.sendBackIn1"/>
 </coupling>
 <coupling>
 <source theatre="PERSEUS8000" port="Node1.askOut2"/>
 <dest theatre="HYDRA8000" port="Node2.askIn"/>
 </coupling>
 <coupling>
 ...
</coupledmodel>
<simulatiosettings>
 <simulationtime>100000</simulationtime>
</simulatiosettings>
</Configuration>

Fig. 4.21. An excerpt of a configuration file

88 4 Supporting M&S formalisms through Theatre

mechanism. Simulation experiments (see Fig. 4.22) indicate that the combi-
nation of Debt & Token strategies minimizes the job mean delay time when
compared to the other strategies.

Fig. 4.22. Job mean delay time vs. number of nodes

5

Theatre over Terracotta1

5.1 Introduction

This chapter describes a work on high-performance agent-based modelling and
parallel/distributed simulation using the Terracotta middleware (see section
2.3.2). The research goal is an exploitation of Multi-Core Clusters (MCCs)
[BHJ+10] where each machine is made up of one or more multi-core CPUs.
MCCs represent a cost-effective paradigm shift in modern microprocessor ar-
chitectures, but they challenge the development of suitable software infrastruc-
tures capable of exploiting the available computing power. In this work the
adopted approach is based on the Theatre agency (see section 3.2). Multiple
theatres/JVMs are capable of executing in truly parallelism when allocated
to distinct cores of an MCC. The approach is novel in that it combines three
levels of concurrency: (a) cooperative concurrency among non pre-emptive
light-weight actors local to a same theatre/JVM, (b) pre-emptive concurrency
among actors executive thread and JVM i/o interface threads, and (c) truly
parallelism among JVMs executing on distinct cores of an MCC. Terracotta
is used so as to provide a transport layer to communicating actors belonging
to different theatres, and to support the implementation of a conservative
synchronization algorithm [Fuj00] which coordinates theatres’ global time ad-
vancement. Terracotta transparently clusters the JVM by a network-attached
heap memory holding shared object graphs. Trasparency depends on aspect
oriented programming and bytecode injection at class loading time. This chap-
ter reports a performance study concerning modelling and simulation of a
scalable predator/prey model under different MCC distributed/parallel exe-
cution scenarios. The developed model naturally requires agent mobility and
relies on a coordination strategy among competing predators which is based
on the evolutionary minority game [CZ97].

1 based on [CFGN10b, CFGN10c]

90 5 Theatre over Terracotta

5.2 Design issues

Terracotta data mechanisms were carefully exploited for supporting message
passing among theatres allocated for execution to different JVMs. The real-
ization purposely reduces message traffic and lock overheads with Terracotta
server which are very important to improve the execution performance. Not
only it was immediately abandoned the idea of turning actors/agents as global
objects, which would imply too much Terracotta intervention at each actor
change, but as a fundamental design principle it was realized to keep hidden
to Terracotta both actor and message contents. As a consequence, Terracotta
use was limited to transport layer services and global time coordination. Ac-
tors remain local agents to a theatre/JVM, but can move from a theatre to
another. Fig. 5.1 shows the architecture of a typical Theatre system based on
Terracotta. Each theatre is hosted by a JVM instance and represents a Log-
ical Process (LP) of the application. TTI stands fore Theatre to Terracotta
Interface component, and provides services to theatres for sending/receiving
remote messages.

JVM

Theatre

Actor model

Terracotta
Library

TTI

JVM

Theatre

Actor model

Terracotta
Library

TTI

JVM

Theatre

Actor model

Terracotta
Library

TTI

Terracotta server - global heap

...

Fig. 5.1. Architecture of a Theatre system based on Terracotta

Intra-theatre communications are directly supported by the control ma-
chine services. Inter-theatre communications depend on FIFO channels
(buffers) as depicted in Fig. 5.2 which refers to three interacting theatres.
Channels are unidirectional and point-to-point, that is there exists a buffer
for each partner theatre.

A view to the internal details of a theatre is portrayed by Fig. 5.3. The or-
ganization was designed according to a lock striping strategy [GPB+00], i.e. by
introducing distinct locks for the various buffers and for guarding specifically
the data used for time coordination.

TTI contains the local heap versions of clustered input buffers, output
buffers and data supporting the algorithm for time coordination. Each in-
put buffer is associated with a reader thread. The writer thread of output
buffers coincides with the control machine thread. A reader thread is nor-

5.2 Design issues 91

Theatre1 Theatre2 Theatre3

Global heap

Buffers

Fig. 5.2. Theatre transport layer based on Terracotta

mally blocked, waiting for incoming messages. The arrival of external mes-
sages awakes a reader which then gets a block of messages and schedules them
(according to message timestamps) upon the message queue of the control ma-
chine. To reduce lock synchronization burden, sending/receiving operations of
external messages involve bag of messages. In fact, working with buffers always
implies taking a local then a global lock with Terracotta server intervention.
At its awaking time, a reader thread empties its input buffer. Similarly, an
output buffer is filled and at due times, i.e. when the output local bag (see
Fig. 5.3) is full or a time advancement is requested (see later in this section),
flushed upon the output buffer.

A critical design issue concerns the transmission of an inter-theatre mes-
sage or migrating actor. To minimize automatic Terracotta mirroring task,
objects (i.e. messages or actors) are sent as raw byte arrays. In particular, a
customization of Java standard serialization mechanism is used. Customiza-
tion refers to the fact that an actor field in a message/actor object is never
serialized in the standard way. Rather, URL information about the actor are
actually transmitted, that is the specification of the originating theatre where
the actor resides. To avoid even accidental modification actions, a sent remote
object is copied (i.e. marshalled or serialized) and then the copy is put in the
output buffer. After that, reference to the copied object is locally lost. Sim-
ilarly, at the time an object is received, it gets unmarshalled (deserialized)
and then the reference to received byte array object lost. A deserialized actor
which finds a proxy version of itself in the receiving theatre copies its status
back on the proxy object through minimal recourse to reflection. Then the
proxy becomes a normal actor.

92 5 Theatre over Terracotta

Fig. 5.3. Details of internal organization of a theatre

5.2 Design issues 93

Reader threads serve also as a callback mechanism which implicitly Ter-
racotta invokes. When a message arrives in an input buffer, it is the reader
thread which has the responsibility of action prosecution into the receiving
theatre. In the normal case, a received message has only to be scheduled at
its occurrence time in the message queue of the control machine. A different
course of actions happens when time management is involved.

A distributed conservative synchronization algorithm (zero lookahead)
[Fuj00] was implemented where every theatre can play the role of time man-
ager or time coordinator. Clustered data for time management include a ms-
gCounter of sent/received messages and an array of proposed times, in which
each theatre has its own entry. The local msgCounter of control machine (see
Fig. 5.3) is incremented at each remote send, decremented at each remote
receive. The use of global and local msg counter reduces the need to take the
clustered lock at each change of the counter of messages.

When the control machine has no more messages to process at current
simulation time, it asks for a time advancement to the (absolute) timestamp
of the most imminent message in the message queue. Such a time is the theatre
proposed time, and it is stored in the clustered proposed time array at theatre
index. In addition, the value of the local msgCounter is added to the global
msgCounter. In the case the requesting theatre finds global msgCounter is
zero (meaning no in-transit message exists) and all theatres have proposed
a time advancement, the theatre qualifies as current time manager. Then it
finds the minimum of proposed times and broadcast such a new time to all
the theatres who have requested advancement to the same minimum time.
As a consequence a TAG (Time Advance Grant) message with new minimum
global time is prepared and sent to relevant theatres.

As in [CFN08], for generality reasons, the theatre simulation time is ac-
tually a composed time made up of a triple ¡virtual-time, generation, step¿
where virtual time is the model time. Remaining fields are useful to estab-
lish precedence constraints among concurrent messages. Concurrent messages
generated by a given (causal) message can be tagged with the same virtual
time of the cause but with a new value of the generation (step is 0). If a
message must occur at the end of current generation, the step field 1 can be
used which acts as the least significant bit of the compound time notion. As
shown in [CFGN10a] message generations can be exploited in a case to estab-
lish a partial-order for resolving conflicts among actors e.g. in boundary cells
of adjacent regions of a partitioned agent space. An example of a message to
be heard at the end of current generation is an actor migration message. Mi-
gration can be actually accomplished when no more contemporary messages
exist in the originating theatre, directed to the migrating actor. By scheduling
the migration message to occur at current time and generation but at step
1, it is guaranteed that the message will be processed at the end of current
generation, i.e. after having processed any other contemporary message.

94 5 Theatre over Terracotta

5.3 A Predator/Prey model

As a case study, a complex multi-agent system based on predator-prey model
[JG00, PL05] was developed and simulated. Agents move over a territory and
have a visibility radius. Predators have a greater visibility radius than preys.
With respect to other predator-prey models, the goal of a predator here is to
attack a prey in order to eat it thus consuming its vital energy.

Once a prey has been perceived, a predator has to decide about head-
ing toward it. Information about the number, position and status of both
surrounding preys and predators may influence the hunting behavior of a
predator.

The territory is assumed to be a bi-dimensional grid where each cell is
supposed to be large enough to host a certain number of predators and preys.
Information about (part of) the hunting ground is handled by a specific envi-
ronment actor (EnvActor). Predators and preys are modeled as agents (Preda-
torActor and PreyActor) whose behavior states how the respective entities
dynamically react to information about the surrounding environment. This
information is obtained by exchanging messages with the EnvActor.

Predators normally explore the territory using a random walk until some
preys enter the visibility radius. The way in which a predator decides to move
to a prey depends on the adopted hunting strategy. Two different strategies
were considered and compared. The first one is a greedy strategy which drives
a predator to move to a visible zone in the territory that contains the greatest
number of preys. No coordination is actually used by predators. The sec-
ond strategy introduces a coordination among predators which is based on a
minority game. Once a prey is seen, the minority game is used to establish
which predators cooperate to capture the prey and which one remain free to
engage another hunt. Also preys make a random walk for the exploration of
the territory avoiding directions leading to predators.

5.3.1 Greedy strategy (str1)

A PredatorActor follows the simple behavior expressed by statechart in Fig.
5.4 In the Explore state, the predator receives a message EnvInfo from the
EnvActor containing information about other actors residing in the visible
surrounding area. The information is used to determine the next move. In
addition, a timed message is sent to the EnvActor in order to communicate
predator next position which will cause the EnvActor to reply with a subse-
quent EnvInfo with updated territory information. When the predator arrives
in the cell of a prey, the predator switches to Capture state from where it
hits the prey and eventually follows any prey movement. On prey death the
predator comes back to Explore status.

5.3 A Predator/Prey model 95

Predator_top

EnvInfo/
move(nextPosition())

Explore

[preyCaught()]

Capture
EnvInfo[preyCaught]/
hit()

[preyDeath()]

EnvInfo[!preyCaught]/
move(towardPrey())

Fig. 5.4. Predator actor behavior in the greedy strategy

5.3.2 Minority game strategy (str2)

Minority Game (MG) is an evolutionary game originally proposed in [CZ97].
In its basic formulation, there are N (supposed odd) players that make a
choice between two options at each turn. Winners are those that have made
the choice which is in the minority side, i.e. the one chosen by at most (N−1)/2
players. Each player is initially fed with a set of strategies that it may use
to calculate its next choice on the basis only of the past M outcomes of
the game recorded in the player memory. Since there are only two possible
outcomes, M is also the number of bits needed to store this information. The
number of possible histories is of course 2M . Players rank their own strategies
based on their respective capability to predict the winner side. Every player
associates each strategy with a virtual score, which is incremented every time
the strategy, if applied, would have predicted the minority side. At each turn,
a player uses the first ranked strategy. The players earn a reward at every step
they choose a winner strategy. At the beginning of the game, the content of
player memories is randomly initialized and the strategies are equally ranked.

96 5 Theatre over Terracotta

A modification of MG, also used in this work, consists in blaming bad
strategies (and also the players applying them) by decrementing their virtual
score. In another scenario, the minority side is identified by using a cutoff
value k different from (N − 1)/2 [JHZT99]. Other variations generalize the
MG by introducing an acquaintance relation among players. Each player owns
a local view of the game, i.e. it will win or loose because of the decisions taken
by players who are in the acquaintance relationship (Local Minority Game)
[RC05].

In the hunting strategy proposed in this paper, a Local MG with a cutoff
value k was adopted. Let O = {−1,+1} be the set of possible outcomes of
the game where −1 corresponds (see Fig. 5.5) to the Explore state (i.e. the
predator does not contribute to capture a prey) and +1 to the Capture state
(i.e. the predator goes to capture a prey), P be the set of predators involved in
a local MG and I a subset of natural numbers corresponding to game steps. Let
h : P × I → OM be the function modeling the history of predators, i.e. h(p, i)
returns the last M outcomes of the games of a predator p preceding a given

game step i. Let S = {s1, . . . , sn} be the set of all allowed strategies (n = 22
M

)
and sj : OM → O be the strategy function which guesses the next winner side
by looking at the game history. Let Vsj : P × I → Z, where Z is the set of
integers, be the virtual score given by a predator p to the strategy sj at game
step i. The initial value Vsj (p, 0) is set to zero for every predator. The play
outcome of a predator p at game step i is sj(h(p, i)) where sj is the strategy
having the highest virtual score, i.e. ∀st ∈ S \ {sj} : Vsj (p, i) ≥ Vst(p, i). The
winner side at step i ∈ I is computed as:

ws(i) =

{
+1 if nc(i) < k

−1 otherwise
(5.1)

where k is the adopted cutoff value and nc : I → N counts the number
of predators which in the step i gave +1 as play outcome. The reward r :
P × S × I → {−1,+1} of a strategy sh for predator p at game step i is
calculated as: r(p, sh, i) = sh(h(p, i)) ∗ ws(i) and the relevant virtual score is
updated as: Vsh(p, i+ 1) = Vsh(p, i) + r(p, s, i).

Fig. 5.5 shows the behavior of a PredatorActor according to local MG.
While exploring the territory, a PredatorActor stays into the Explore status.
As soon as it recognizes a prey which is not already engaged by other preda-
tors, it engages the prey and goes into the Manager status. Here the predator
first checks for the presence of other predators within its visibility radius and
then asks them to play a game by sending Invitation messages. The manager
predator remains into the Invitation Reply status until all predators reply
with an Accept or Decline message. When all the replies are received, the
game may begin: the manager sends a Play message to the game participants
(i.e. predators which replied with Accept) and then wait for collecting the
game results in the Wait Result status. As soon as all the results arrived, the
manager (i) plays its game, (ii) evaluates the winner side and the reward, (iii)

5.3 A Predator/Prey model 97

communicates winner side and reward to all players and then switches to the
Game End status. The game can be repeated a number of times in order to re-
fine the virtual score of the strategies. All of this is mirrored by the presence
of the playAgain() function as guard of outgoing arcs from the Game End
state. When the playAgain() becomes false, on the basis of the outcome of
the last own game the manager comes back to the Explore state or goes to
Capture where starts moving towards the engaged prey in order to eat it. In
the Capture state the engaged prey becomes the only interesting entity for
the predators. When the prey is eventually caught the predator hits it. The
exploration begins again after the prey dies. The behavior of the predator in
the Player state is dual to that of the manager. A predator becomes Player
on accepting an Invitation message which contains both the identity of the
game manager and that of the prey to catch. The default state of Player is
Wait PlayMsg where the player waits for the Play message which triggers a
state transition to Wait MG Outcome. Before this, the player evaluates its
own game outcome and then sends its result to the manager. When receiving
the winner side and reward, the player goes to Game End state. Here another
game can be repeated or, on the basis of the own game result, the Explore
state or Capture state is entered.

Predator_top

EnvInfo[!FreePreySeen()]/
move(nextPosition())

Explore

EnvInfo[FreePreySeen()]/
prey.send(Engage)

PreyEngaged

Manager

Invitation_Reply

/sendInvitation()

Wait_Results

Accept[!allReplyReceived()]

Accept[allReplyReceived()]/
sendPlayMsgs(),playMyGame()

GameResult[!allResultsReceived()]

Game_End

GameResult[allResultsReceived()]/
sendWinnersideAndReward(),rewardMyStrategies()

[playAgain()]/
sendInvitation()

Capture
[!playAgain()&&
myGame==CAPTURE]

[!playAgain()&&
myGame!=CAPTURE]

Player

Wait_PlayMsg

Wait_MG_Outcome

Play/
playMyGame(),
sendMyResult()

Game_End

WinnersideAndResult/
rewardMystrategies()

Invitation[playAgain()]/
accept()

Invitation/
accept()

[!playAgain()&&
myGame==CAPTURE]

H

Invitation/decline()

H

Invitation/decline()

Invitation/
decline()EnvInfo[preyCaught]/

hit()

[!playAgain()&&
myGame!=CAPTURE]

EnvInfo[!preyCaught]/
move(towardPrey())

[preyDeath()]

Fig. 5.5. Predator behavior in the MG strategy

5.3.3 EnvActor behavior

The role of an EnvActor is handling the environmental information that may
be of interest to local agents. Besides the local portion of the mission area,
the EnvActor maintains an updated snapshot of the environment parts that
are not handled locally but which may fall in the visibility radius of a moving
entity. Fig. 5.6 (similarly to Fig. 3.9) portrays boundary details between adja-
cent (sub) environments. The EnvActor exchanges messages with its neighbor

98 5 Theatre over Terracotta

EnvActor1

Theatre1

EnvActor2

Theatre2

Predator Prey

EnvActor3

Theatre3

shared zones handled by other theatres
shared zones handled by local theatre
not shared zone

prey
predator

visibility radius

Fig. 5.6. An example of territory partitioning for distributed simulation

peers by sending them updates every time a local event causes a change in a
shared zone handled locally, and by receiving updates from the other EnvAc-
tors notifying a change in a shared zone handled outside. When a PreyActor
or a PredatorActor wants to move, it sends to the EnvActor a timed message
with next position. The time-stamp of the message mirrors the time needed
to reach the destination cell. If the position is under the influence of the En-
vActor, the latter replies with a message containing information about the
area in the visibility radius of the sender. Otherwise the EnvActor migrates
the sender to an adjacent theatre and asks the relevant EnvActor to reply
to the migrating actor. It should be noted that the described protocol makes
PreyActors and PredatorActors unaware of distributed simulation concerns.

5.4 Simulation experiments

The multi-agent predator-prey model described in the previous section was
simulated on three Win7 (64 bit) Intel i7 CPU 960, 4-core, 3.20 GHz, 6GB
RAM, interconnected by a Gigabit Ethernet switch. The adopted Terracotta
version was the 3.2.1ee on top of a Java HotSpot 64-bit Server VM version
14.3. This version of Terracotta limits the number of JVMs per federation to
be at most 10. The considered hunting ground was of 3204x800 cells populated
by an equal number of predators and preys, ranging from 20000 to 240000,
randomly deployed. Each model execution lasts until all preys disappear from
the territory. The simulation time of this event constitutes the model hunt-
ing time (MHT). The goal was estimating the simulation performance of the

5.4 Simulation experiments 99

predator/prey model and that of the actor infrastructure over Terracotta.
Different execution scenarios, characterized by different model partitioning
schemas and hardware/software configurations, were considered.

5.4.1 Strategies performance

As a metric for comparing the two hunting strategies of predators (see sections
5.3.1 and 5.3.2) the model hunting time (MHT) was chosen. Better strategy
minimizes MHT. A preliminary set of experiments were accomplished for the
MG strategy, by using different values of the number of game steps, from 5 to
30, always played at each detection of a new prey. It emerged that despite the
augment in the number of game steps, the local MG strategy results in almost
the same value of the MHT but, as expected, it requires a greater value of the
WCT. As a consequence, the str2 strategy was evaluated by using the following
parameters: cutoff k=10, M=2 (two bits of history), number of initial game
steps equals to 5. This initial number of game steps serve as training for the
predators, so as to refine the available score strategies. After initial training,
each predator plays only one game for each new prey, in order to decide
if hunting it. Fig. 5.7 collects the measured MHT vs. predator population
for the two strategies. The MHT decreases as the number of predators and
preys augments. This is because as the density of predators-preys increases
it becomes easier for a predator to catch a prey. The strategy based on local
Minority Game (str2) outperforms the other simple greedy based strategy
(str1). For simplicity, remaining experiments on the performance study will
be based on the minority games only.

90

130

170

210

250

20000 60000 100000 140000 180000

Number of Predators

M
od

el
 H

un
tim

g
Ti

m
e

(t.
u.

)

Minority Game Greedy

Fig. 5.7. Model hunting time vs. predator population

100 5 Theatre over Terracotta

5.4.2 Simulation performance

Execution performance was evaluated by considering the WCT required for
completing a hunt, i.e. all preys disappear from the territory. Obviously, WCT
is influenced by the value of MHT. As a consequence, the value of WCT
is normalized with respect to the model hunting time (normalized WCT =
WCT/MHT).

Fig. 5.8 reports the normalized WCT vs. the number of predators in the
case of a sequential simulation. This scenario refers to the case of one sin-
gle theatre which is assigned the entire simulation model. Terracotta is not
used and one single core was enabled on the computing node. The curve wit-
nesses that the model scales well as the number of agents increases. These
results were used for evaluating the relative speedup with respect to the other
parallel/distributed scenarios.

0

10

20

30

40

50

20 40 60 80 100 120 140 160 180 200 220 240

N
or

m
al

iz
ed

 W
C

T
(s

ec
/t.

u.
)

Number of Predators (thousands)

Fig. 5.8. Sequential simulation: normalized WCT vs. predator population

0

2

4

6

8

10

12

20 40 60 80 100 120 140 160 180 200 220 240

N
or

m
al

iz
ed

 W
C

T
(s

ec
/t.

u.
)

Number of Predators (thousands)

Fig. 5.9. Normalized WCT vs. predator population in a multi core cluster config-
uration

Figures 5.9 and 5.10 show normalized WCT and the achieved speedup vs.
the number of predators in the case a multi-core cluster (MCC) configura-
tion is considered. In particular, the scenario refers to three computing nodes

5.4 Simulation experiments 101

0,5

1,3

2,0

2,8

3,5

4,3

5,0

20 40 60 80 100 120 140 160 180 200 220 240

Sp
ee

du
p

Number of Predators (thousands)

Fig. 5.10. Speedup vs. predator population in a multi core cluster configuration (3
machines, 9 applicative cores)

with four cores each. The model was equally split among nine theatres with
a territory region of 356x800 cells assigned to each of them. A server array of
three active instances of Terracotta was used. In this configuration, clustered
data is automatically and equally split among the active servers in the cluster
thus fostering high system availability. All of this avoids the bottleneck of
managing shared heap data arising when one single active Terracotta server
is used. Obviously, for performance issues, system configuration supporting
shared-data persistence or fail-over mechanisms was not considered. In the
scenario of 240000 predators, the above MCC configuration was able to re-
duce simulation time by nearly 1.5 hours (sequential simulation) to about 20
minutes.

Fig. 5.11 and 5.12 report respectively the normalized WCT and the
speedup vs. the number of predators in the case a mere multi-core configura-
tion is used. This parallel scenario consists of one single computing node with
all the 4 cores enabled. One instance of Terracotta and three theatres were
used. The simulation model was partitioned into three regions of 1068x800
cells and each region was assigned to one distinct theatre.

0

4

8

12

16

20

20 40 60 80 100 120 140 160 180 200 220 240

N
or

m
al

iz
ed

 W
C

T
(s

ec
/t.

u.
)

Number of Predators (thousands)

Fig. 5.11. Normalized WCT vs. predator population in a pure multi core configu-
ration

102 5 Theatre over Terracotta

1,5

1,7

1,9

2,1

2,3

2,5

20 40 60 80 100 120 140 160 180 200 220 240

Sp
ee

du
p

Number of Predators (thousands)

Fig. 5.12. Speedup vs. predator population in a pure multi core configuration

As another configuration (“pure” distributed), a scenario composed by
three computing nodes each with one core only enabled, was considered. Model
partitioning was the same as for the pure multi-core scenario, i.e. the model
equally partitioned into three regions assigned to three distributed theatres.
A server array composed by three active instances of Terracotta was used.
Performance of this simulation scenario is reported in Fig. 5.13 and Fig. 5.14.
These figures also show information about the performance achieved by en-
abling 2-cores in each computing node

0

4

8

12

16

20

20 40 60 80 100 120 140 160 180 200 220 240

N
or

m
al

iz
ed

 W
C

T
(s

ec
/t.

u.
)

Number of Predators (thousands)

2-cores
1-core

Fig. 5.13. Normalized WCT vs. predator population in distributed scenarios

As one can see from Fig. 5.12 and Fig. 5.14, the speedup diminishes in the
case of 240000 predators. Moreover, differently from what one would expect,
the speedup is lower in the “pure” multi-core scenario (Fig. 5.12) than in the
“pure” distributed scenario (case 1-core in Fig. 5.14. In order to highlight the
underlying behavior in the two configurations, simulations were profiled. Pro-
filing was aimed to evaluating the overhead due to Terracotta with respect to
the overall simulation. As described in section 5.2, Terracotta is used for inter-
theatre data exchanges (send operation) and for managing time advancement
(time advance operation). In particular, during a inter-theatre send, data ex-
change is achieved by putting data (put operation) within an output buffer
(see section 5.2). A time-advance operation lasts until a grant message is re-
ceived by the theatre that asked an advance of simulation time. In Fig. 5.15

5.4 Simulation experiments 103

1,2

1,6

2,0

2,4

2,8

20 40 60 80 100 120 140 160 180 200 220 240

Sp
ee

du
p

Number of Predators (thousands)

2-cores
1-core

Fig. 5.14. Normalized WCT vs. predator population in distributed scenarios

and Fig. 5.16 is portrayed the real time needed to carry out the operations
previously mentioned. The Send-Put curve refers to the time needed by send
minus the overhead due to Terracotta. It is worth nothing that (i) despite
the obtained speedup, in the multi-core scenario Terracotta performs better.
In fact, both the send and time-advance operations require less time with re-
spect to the mere distributed configuration, (ii) as expected, the send time is
dominated by the time required to put data inside the shared heap, (iii) the
send time suddenly increase, in both cases, when a higher simulation load is
considered.

0

100

200

300

400

500

600

20 40 60 80 100 120 140 160 180 200 220 240

Ti
m

e
(s

ec
)

Number of Predators (thousands)

Send

Send-Put

Put

Time Advance

Fig. 5.15. Timing behavior of mere multi-core scenario

Fig. 5.17 portrays another view of the overhead times in the two simulated
scenarios. Here relative computational times (i.e. the ratio between considered
times in the parallel scenario and those of the distributed scenario) are shown.
The curve Sent MSGs in Fig. 5.17 refers to the ratio between the numbers of
exchanged messages that, as expected, tends to 1.

From Fig. 5.17 it emerges that, even if the number of sent messages re-
mains almost the same in the two scenarios, the time spent in the Send-Put
operations (without Terracotta intervention) increases in the multi-core con-
figuration. Therefore, the multi-core configuration incurs a penalty during
the simulation although Terracotta performs better (curves Put and Time
Advance always remain below 1). All of this mirrors the fact that in a multi-

104 5 Theatre over Terracotta

0

100

200

300

400

500

600

20 40 60 80 100 120 140 160 180 200 220 240

Ti
m

e
(s

ec
)

Number of Predators (thousands)

Send

Send-Put

Put

Time Advance

Fig. 5.16. Timing behavior of mere distributed scenario

0,2

0,4

0,6

0,8

1,0

1,2

1,4

20 40 60 80 100 120 140 160 180 200 220 240

Number of Predators (thousands)

Send Send-Put Put
Sent MSGs Time Advance

Fig. 5.17. Ratio between computation times in the parallel scenario and the dis-
tributed one

core scenario [BHJ+10] the overhead for managing concurrent accesses to the
physical memory increases with the number of cores.

6

Distributing situated multi-agent systems1

6.1 Introduction

In the context of discrete-event simulation [ZPK00], the operation of a sys-
tem is represented by a chronological sequence of events. Each event occurs
at an instant in time and marks a change in the state of the system. The
size and complexity of systems which are usually modelled as discrete-event
systems (DESs) is ever increasing. Modelling and simulation of such systems
is challenging in that it requires suitable specification languages and efficient
simulation tools. Agent-based modelling [Woo02, Fer99, Jen01, OZ04] is a
computational approach that models and simulates the interactions of au-
tonomous and reactive entities with each other and their local environment
to predict higher level emerging behavior. Distributed simulation [Fuj00] is
ofter required to cope with the high resource demands of large system models
with an inherent asynchronous behaviour like agent-based models. For dis-
tributed/parallel simulation a model is split into a network of interconnected
concurrent Logical Processes (LPs), each maintaining and processing a dis-
joint portion of the simulation state.

The “spatial” nature of a broad range of studied phenomena and modelled
systems (e.g. in biology, sociology, wildfires etc. domains) leads to the concept
of situated agent [Fer99], i.e. an agent that owns spatial coordinates and is
embedded in a spatial environment (territory). Situated multi-agent systems
(MASs) are systems of agents whose behavior is strongly influenced by their
position in the environment [BMS02]. Although there is an agreement about
the importance of environments for MASs [WVP+05], in most cases the en-
vironment is not integrated in MASs or its responsibilities are minimized. As
a consequence, a rich potential of applications and techniques that can be
developed using MASs is not handled properly. Popular frameworks such as
Jade, Jack, Retsina or Zeus reduce the environment to a message transport
system or broker infrastructure. Well-known methodologies such as Message,

1 based on [CGN10]

106 6 Distributing situated multi-agent systems

Prometheus or Tropos offer support for some basic elements of the environ-
ment; however they fail to consider the environment as a first-class entity
[WVP+05].

The simulation of situated agents introduces particular challenges which
are not addressed by standard parallel discrete-event simulation (PDES) mod-
els and techniques. Basic problems are tied to handling a large shared state,
the agents’ environment (territory), which is only loosely associated with any
agent. This shared state introduces a bottleneck which limits the speedups
that can be attained [Log07][PS09].

The following approaches can be traced in the literature on the subject.
In [LT01] the distribution of shared state upon the LPs is based on the
metaphoric concept of spheres of influence. Spheres of influence are dynam-
ically determined on the basis of the mutual interactions among entities in
the system. The goal is to distribute the shared state in order to favor near-
ness between an agent and the information it requires during execution. In
[LLM+05] shared data is maintained in a tuple-space and an optimistic sim-
ulation algorithm is adopted for driving the simulation. The tuple-space is
partitioned by following a hierarchical schema based on the spheres of in-
fluence so as to avoid bottleneck in managing the shared data. The same
approach is exploited in [VMT09] where range query operations are allowed
on shared data. In [vVJP09] is proposed an agent-based distributed archi-
tecture for the simulation of air-traffic systems. Handling of spatial data is
achieved by partitioning the territory and allocating each single partition to
a different LP. A partition, along with the agents situated on it, determines
the work-load of an LP. No details are provided about the strategy used to
ensure consistency and to avoid conflicts on shared data, e.g. occurring when
different agents located on different LPs try to modify the same spatial data.

This chapter proposes an original approach to distributing situated agent-
based models with the goal of simplifying modeling tasks while avoiding bot-
tlenecks and fostering system scalability. The approach is based on the as-
sumption that an agent privileges accesses to information located in its im-
mediate “vicinity” (i.e. its neighborhood) without inhibiting the ability to ma-
nipulate or access information wherever located. To this end, the concepts of
visibility radius and action radius are introduced. Such radiuses are designed
to delimit the area within which an agent can efficiently read and change the
status of the territory and the state of agents located in it. The territory is
partitioned and distributed among various LPs. The portion of the territory
(region) assigned to an LP and the set of agents located in it, constitutes
the workload of the LP. The approach avoids the use of system-wide locks by
purposely exploiting time management concerns to achieve data consistency
issues. Such mechanisms are used to implements a framework which provides
the notion of stage for the Theatre (see chapter 3 architecture.

In section 6.5 is described a concrete implementation of these mechanisms
focused on distribution of RePast model using the Theatre architecture over
HLA

6.2 Distributing spatial environments 107

6.2 Distributing spatial environments

In situated multi-agent systems, each agent is “embedded” into a spatial en-
vironment (territory) and has partial control and partial observability about
the space “surrounding” it. An agent can perceive a partial view of the state
of the spatial environment, and may act in order to change it. Even if the
environment issues could be explicitly addressed by the modeller, there exists
a general agreement on the fact that it is more convenient to manage envi-
ronment issues as a “system-wide” concept thus promoting it as a “first class
entity” [WVP+05], i.e. directly accessed by the multi-agent infrastructure.

Agents can interact with the spatial environment by following two main
different approaches. The first is based on asynchronous communication, i.e.
message passing. The second relies on the use of synchronous communication,
i.e. method calls. The former requires a more complex coordination policy
among the agents in order to ensure atomicity and consistency in read/write
operations on the environment. Consider two competitive agents that want to
read a property of a resource from the space and to change it on the basis of the
read value. In the asynchronous scenario, each agent sends a read message to
the space to know the state of the resource. The environment replies to both
agents with the same value and the agents modify the value by sending a
write message. The final state of the resource remains unclear because it is
determined by the last processed write message. This could also result into
an inconsistent state of the resource. A specific coordination among the two
agents should be taken into account by the modeller. Another drawback of
this approach is relevant to the higher number of messages which require to
be handled during runtime and which can impair simulation performance.

The above considerations guide toward the adoption of a synchronous
approach. However, by itself the synchronous approach does not fully resolve
the problem, it is also required to guarantee that the read and write operation
must be executed atomically.

In a sequential model it would be quite easy to guarantee atomicity e.g. by
using lock mechanisms or by enforcing atomic agent actions to be interleaved.
In a distributed scenario similar approaches could be also exploited but they
could have an heavy impact on the performance. Moreover further mechanisms
(e.g. remote method calls) are required.

In a distributed context, the territory is a “huge shared variable” of a con-
current system. Frequent remote accesses of agents to the territory, can be the
basis for a “bottleneck” that degrades system performance and scalability. Fur-
thermore, assigning the whole territory to a single LP and distributing agents
among various LP, implies that the scalability of the system is constrained by
the memory of the LP that contains the territory.

In the approach proposed in this chapter, spatial environment is arranged
as a bi-dimensional grid, which is divided in spatial regions (see Fig. 6.1).
Each region is allocated to a different LP. In addition, each situated agent is
allocated to the LP that manages the region it belongs to.

108 6 Distributing situated multi-agent systems

The approach favors local synchronous access of the agents upon the ter-
ritory. Naturally, splitting the space among different LPs requires agent mi-
gration when an agent moves from a region to another one.

Space

Local LP Space

Fig. 6.1. Environment space partitioning

6.2.1 The problem of distributed shared state

The overall state of a situated multi-agent system is composed by the union
of the state of each agent and the state of the territory. By considering the
territory as a grid of cells, the status of the territory is the union of the states
of the various cells.

An agent could be able to perceive and act upon the state of all the envi-
ronment but more often it needs to read and write only its “neighbourhood”.
The neighbourhood of an agent located in a cell, is defined in terms of a
visibility radius and a action radius centred on the cell. “Visibility” and
“action” refer to read and write operations respectively.

In the proposed approach, operations ’inside the neghibourhood’ and re-
mote operations are explicitly distinguished. In the following, mechanisms are
described that provide an efficient execution of operations in the neighbour-
hood realized by using a synchronous approach even in a distributed scenario.
In section 6.3.4 the approach is extended for supporting remote operations in
an asynchronous way.

Splitting the space ensures that if the agent’s neighbourhood entirely falls
in a single region, local synchronous access remains guaranteed. When agent
visibility or action radius fall outside the local region, remote read/write oper-
ations and coordination among LPs are required. To avoid remote operations,
a copy of the edge portion of a region is replicated in adjacent LP(s) which
manage contiguous regions of space. Such a portion is referred to as a border

6.2 Distributing spatial environments 109

of the region. In figure 6.2 the gray part highlights border areas of a territory
split between two LPs.

Local LP 0

Shared LP 0 Shared LP 1

Local LP 1

Fig. 6.2. Boundary regions of two adjacent LPs

The border area is made up of two distinct parts (see figure 6.3): a local
border part, locally managed by the LP, and a mirror border part which is a
replica of adjacent LP local part. Agents located in a border area, along with
their states, are also mirrored. Each agent located in a local border part is
reflected in the mirror border part of an adjacent LP through a proxy version.

Local LP 0

Local border LP 0

Mirrir border LP 0 (Local broder LP 1)

Mirror border LP 1 (Local border LP 0)

Local border LP 1

Local LP 1

Fig. 6.3. Detailed view of border regions

110 6 Distributing situated multi-agent systems

The width of both local and mirror borders is set to the maximum between
visibility and action radiuses. This ensures that within the neighbourhood
read/write operations will be performed locally, i.e. in the same LP where the
agent resides.

Boundary regions obviously creare problems of keeping consistency in bor-
der areas. An update to a boundary local cell must be also reflected in the mir-
ror part of an adjacent LP. A second kind problem concerns conflict resolution
during concurrent accesses to shared space cells by border agents executing
in different LPs. In the approach proposed in this chapter, such problems are
resolved by a mechanism based on a composite logical time notion as described
in the following.

6.2.2 A mechanism for conflict resolution

As has been previously stated, the border area of a region needs to be carefully
managed. Every state change in a local border must be reflected in the mirror
side of a neighbour LP. The state update should be accomplished at suitable
real time so as to guarantee data consistency during simulation. In addition,
a border area should be guarded against conflicts as explained below.

A

B

C

D

E F

LP1 LP2

Fig. 6.4. A situation of potentially conflicting agents

For the sake of simplicity the following examples refer to a scenario in
which each cell in the territory can contains at most one agent. In figure 6.4
a scenario in which a group of agents is involved in cell conflicts is shown.
A naive solution to prevent conflicts should be that of statically establishing

6.2 Distributing spatial environments 111

an execution order among all the agents deployed over border area. Such
a solution suffers of two drawbacks: ordering the agents results in a unfair
system evolution in which some agent is always preferred over others. The
second problem concerns a poor exploitation of the inherent parallelism of
the multi-agent system. Indeed, as one can see in Fig. 6.4, not all agents are
conflicting each other. More than one agent can be allowed to move at the
same time. For example, agents A and B in Fig. 6.4 are completely independent
from the others.

LP1 LP2 LP1 LP2

Fig. 6.5. Another scenario of conflicting agents

In Fig. 6.5 a more complex scenario is portrayed. In this example it is
assumed that the action radius is set to 1. The cells highlighted are the cells
upon which conflicts by agents can occur. In the right side of the figure it
is shown a possible consistent advancement of the simulation (i.e. the agents
have moved without causing conflicts) where different agents moved at the
same time. Fig. 6.6 shows the portion of space that is shared by agents in the
case the action radius is equals to 2.

Potentially conflicting agents are characterized as having intersection be-
tween their spheres of actions, i.e. the spheres determined by the action ra-
diuses. It is easy to see that the spheres of action of two agents have an inter-
section when the two agents are far each other less than 2 ∗ actionradius. In
order to prevent conflicts while favoring parallelism among the agents, each
border agent is tagged with a Collision-Free Number (CFN) that satisfies
the following conflict-free assumption: two agents which are distant less than
2 ∗ actionradius and belong to different LPs must be flagged with a different

112 6 Distributing situated multi-agent systems

LP1 LP2

Fig. 6.6. An example of conflicting agents when action radius is set to 2

CFN. The conflict-free assumption ensures that potentially conflicting agents
will have different CFNs.

CFN is used to define a partial order relation among agents which prevent
conflicts.

CFNs are assigned to agents on the basis of their spatial positions. CFNs
assignment can follow a repetitive pattern in which the conflict-free assump-
tion is met. For example, in Fig. 6.7, is shown a repetitive pattern in the case
the action radius is 2. The cells flagged with CFN equals to 3 can use the same
CFN because agents located on them can not conflict each other. In these cells,
indeed, can not exist agents which are both belonging to the same LP and are
far from each other less than or equal to 2 ∗ actionradius. The pattern gets
shuffled from time to time, to avoid “privileged” positions. This is achieved by
using a pseudo-random generator which takes the virtual time as seed. The
latter property ensures that the assignment algorithm, played at both sides
of a boundary region and at a same virtual time, despite shuffling, remains
deterministic: each adjacent LP takes the same decision about the CFN val-
ues of shared positions. It should be noted in Fig. 6.7 that the partial-order
re-uses as most as possible the same CFNs. CFN reuse is important because
it improves the concurrency degree of agents.

6.3 Using time as a tie-breaking mechanism

In discrete event simulation [Fuj00] two different notions of time exist: logical
time and wall clock time. Logical time (or virtual time) is the time related to

6.3 Using time as a tie-breaking mechanism 113

1
1

1
1

1
1

1
1

1

2

2
2

2
2

2
2

2
2

4
4

4
4

4
4

4
4

4

5
5

5
5

5
5

5
5

5

33
33
33
33
33
33
33
33
33

33
33
33
33
33
33
33
33
33

33
33
33
33
33
33
33
33
33

33
33
33
33
33
33
33
33
33

LP1

1
1

1
1

1
1

1
1

1

2

2
2

2
2

2
2

2
2

4
4

4
4

4
4

4
4

4

5
5

5
5

5
5

5
5

5

33
33
33
33
33
33
33
33
33

33
33
33
33
33
33
33
33
33

33
33
33
33
33
33
33
33
33

33
33
33
33
33
33
33
33
33

LP2

Fig. 6.7. A CFN repetitive pattern

the model, namely the time advancement of the simulation. Wall clock time
refers, instead, to the real time during the execution of the simulation itself.
Logical time and wall clock time are not tied together except in the case of
a real time simulation. Time management is in charge to keeping a coherent
virtual-time advancement among LPs.

In the approach proposed in this chapter the time management is based
on a notion of a composite logical time (CLT), i.e. an expanded version of
the logical time. CLT is constituted by the virtual-time plus other informa-
tion (fields) useful for conflict resolution and consistency issues. The use of
CLT is based on the assumption that virtual-time only defines a partial order
relation among the execution of events. Events marked with the same virtual-
time could be potentially executed in any order. CLT enforces a particular
execution order among events so as to guarantee conflict resolution and data
consistency during the simulation.

6.3.1 The basic version of CLT

CLT is a number which in binary can be seen as the concatenation of two slots:
the virtual time in the most significant slot and the Collision-Free Number
(CFN) (see section 6.2.2) in the least significant one. It is worth noting that
the model remains unaware of CFN, whereas the entire CLT constitutes the
“logical time” from the time management point of view. The basic structure
of the adopted CLT is thus:

< -------CLT-------- >

[Virtual time | CFN]

Given an event scheduled to be received by an agent at a certain virtual
time t, the time-stamp of the event is set to the composite logical time where
the slot of virtual time is set to t and the CFN is computed as described in

114 6 Distributing situated multi-agent systems

the previous section. As a consequence, a tie-breaking mechanism is ensured
among events scheduled at the same virtual time, which always guaratees that
potentially conflicting agents will be processed at different wall clock times.

6.3.2 Consistency among updates: adding the step slot

As stated before, every change occurring in a local border part must be re-
flected in the mirror part of an adjacent LP. All the changes occurred in a local
border of an LP are gathered in a single update message and sent toward the
LPs containing the relative mirror parts. In order to avoid the processing of
“stale” data, it must be ensured that update messages have to be actualized
before the agents, potentially influenced by such updates, undertake a new
action. To prevent this, a further step slot is added to the CLT thus:

< ---------CLT----------- >

[Virtual time | CFN | Step]

Step field is set to 1 e.g. for the update messages. In other cases the field
is kept to 0. More in particular, given a state change occurring at a specific
virtual-time and CFN, the time-stamp of an update message will be marked
with a CLT having the same virtual time and CFN but the step slot is set to
1.

6.3.3 Multiple events at the same virtual-time: adding the epoch
slot

The notion of CLT as described before is not enough for ensuring a coherent
and consistent model evolution in the general case. For example, let us consider
a scenario in which the action radius of agents is set to 1 and in which the
agents move from cell to cell by receiving a tick event. If two tick events are
scheduled to be received by an agent at the same CLT, the agent behaves as
it would move of two cells at the same time, thus violating its action radius.
In order to avoid such a problem, it is required that only one event must
be processed by an agent at the same CLT. Another slot named epoch is
purposely added to the CLT for dealing with this problem. If an agent has
already processed events at a given CLT, the next event at the same CLT will
be rescheduled at a next epoch. The definitive structure of CLT is portrayed
below:

< --------------CLT------------- >

[Virtual time| Epoch | CFN | Step]

Another case in which the epoch is used is when an agent sends an imme-
diate event (i.e. at the same virtual-time) to an agent marked with a lesser
CFN. To avoid scheduling events in the past, the epoch slot is incremented
again.

6.4 Supplying stage to actors in Theatres 115

6.3.4 Remote operations

Read and write operations occurring respectively out of the visibility radius
and action radius are referred to as remote operations. Extending the above
described approach by considering all the territory as “neighbourhood” would
result in the use of a huge number of different CFNs limiting the parallelism
within the entire system. For this reason remote operations will be admin-
istered asynchronously through the use of suitable read and write messages
exchange between agents and the environment.

As previously described in section 6.2, the asynchronous approach needs
to be assisted by further mechanisms offering read/write operations to be
executed atomically in order to prevent data inconsistency.

In the approach proposed in this chapter, the atomicity is guaranteed
without resorting to an explicit locking mechanism. The CLT is used again
for that purpose.

Messages exchanged between agents and the environment are scheduled
with a CLT in which CFN is set to a specific reserved value in order to avoid
conflict between remote operations and operations in the neighbourhood. If
multiple agents refer to the same remote cell at the same virtual-time, a
different (incrementally) value of the epoch is used to ensure atomicity among
remote operations. In particular, a specific epoch value is assigned to any
involved agent. Given an agent, the assigned epoch remains the same for all
the operations concerning the same cell at the same virtual-time.

6.4 Supplying stage to actors in Theatres

In the following the mechanisms described in sections 6.2 and 6.3 are used
for implementing a stage concept (i.e. a spatial environment) as first class
entity for the Theatre multi-agent architecture [CFN09]. In the following a
conservative synchronization structure [Fuj00] [CFN09] is assumed which is
based on HLA and is capable of handling actor migrations.

A stage for actors was achieved by providing a first class entity for
managing spatial environments in the Theatre architecture. A special actor
(ActorEnv) is introduced per LP which is devoted to implement the mecha-
nisms previously described in this chapter. A suitable model interface (API)
is provided through which the agents can access/modify the territory. In ad-
dition, the control machine was customized to host the composite logical time
notion illustrated in the previous section.

Actors interact with the ActorEnv for both local (i.e. in the neighbour-
hood) or remote read/write operations. Read/write operations concern the
shared state of the environment. This shared state is composed by the state
of each cell (i.e. by the actors located on it) along with the shared state of
the agents. An agent can declare public-accessible variables (shared variables)
through the environment. It is worth noting that other approaches to sharing

116 6 Distributing situated multi-agent systems

agent state could be exploited, e.g. the agents could provide setter and get-
ter methods. In this way, though, supporting the mechanisms proposed in this
chapter, would require the use of techniques like aspect oriented programming
[KHH+01] or Java reflection.

Remote operations are concretely implemented by message exchanges
among actors and the ActorEnv. The message interface of the ActorEnv fore-
sees four kind of messages:

� Read : used to request the content of a remote cell of the territory
� Write: used to situate or move an agent in a remote cell or change the

shared state of a remote agent
� ContentMsg : is the reply of a Read message containing the list of the actors

located in the read cell along with the relevant shared agent status
� PutSucceeded : is the reply to a write message. It simply triggers an agent

to continue its behaviour after a write operation.

For the operations ’in the neighbourhood’ the ActorEnv furnishes a “view”
of the neighbourhood of an agent through the following method:

Neighbourhood neigh = ActorEnvironment.getMyNeighbourhood();

Fig. 6.8. Use of the ActorEnvironment for getting the Neighbourhood

Despite the usually Java programming style, requesting the neighbour-
hood does not require the specification of the identity of the requesting ac-
tor. ActorEnv is in charge to retrieved such identity by querying the The-
atre runtime infrastructure. This avoid a malicious and guideless use of the
Neighbourhood. Actors can operate in their neighbourhood by exploiting
functionality offered by the Neighbourhood interface shown in Fig. 6.9:

The software engineering process underlying the design of the realized
framework is also devoted to foster robustness so as to limit possible errors
during the modelling activity. For example, an actor is prevented to ask its
ActorEnv for a Neighourhood of another actor (see figure 6.8). Moreover, the
use of the Neighbourhood interface enforces the constraints about visibility
and action radiuses.

As one can see, the interface functionalities provided by the API in Fig.
ref make the modeller completely unaware of the distribution concerns. Mod-
eller remains in charge to carefully choosing the size of visibility and action
radiuses. Using a wrong size for such radiuses could introduce an high syn-
chronization level during the distributed execution. For example, reducing the
size of the radiuses increases the number of remote operations, while choosing
a big size implies the number of required CFN increases (see section 6.2.2).

6.4 Supplying stage to actors in Theatres 117

Actor createAndLocate(String actClass, Position p);

creates a new actor belongs to the actClass and locates it to the position p and
return the just created actor

void moveActor(Actor act, Position p);

moves the actor act to the new position p

void removeActor(Actor act);

remove the actor act from the territory. After removed act results no longer
situated

List<Actor> getCell(Position p, Class actClass);

return a list of actors contained in the cell with p position matching to a given
actClass class

boolean isCellEmpty(Position p);

check if a cell is empty

List<Actor> getActors(Class actClass);

return a list of actors contained in the neighbourhood matching with actClass class.
The returned list is ordered by distance with respect to actor invoking the method

Position getPosition(Actor act);

return the position of the act actor

void addShared(String name, Class type);

add a shared variable named name of class type for the actor which call the method

<T> T getShared(String name, Class<T> type, Actor act);

return the value of the variable name belonging to the act actor. For type-safety
the class of the variable must be specified

<T> void setShared(String name, Class<T> type, T value, Actor act);

change the value of the variable name belonging to the act actor to the new value

value. For type-safety the class of the variable must be specified

Fig. 6.9. Neighbourhood interface

The values of these radiuses are estabilished during the configuration phase.
In this phase too the partitioning schema of the territory has to be specified.

118 6 Distributing situated multi-agent systems

6.5 Distributing RePast on top of Theatre2

RePast (see 2.4.1) is a popular agent toolkit with proven capabilities to
fulfill the modelling challenges of large multi-agent systems (MASs). The
toolkit, though, is normally used on a standalone workstation and therefore
its practical use can be constrained (in space and time) by the limited avail-
able computing resources. In this section is described an original approach
HLA ACTOR REPAST aimed to distributing RePast models for high-performance
simulation of complex scalable models. Actors bring to RePast agents such
features as migration, location-transparent naming, efficient communications,
and a control-centric framework. Distribution and time management concerns
depend on the IEEE standard HLA middleware (see 2.3.1. In the following it
is discussed details of the software engineering process underlying the develop-
ment of HLA ACTOR REPAST. The mapping techniques, assisted by Java text an-
notations and aspect oriented programming, try to minimize “code intrusions”
in the original model and favor model transparency. Finally, some experimen-
tal data are show which witness the good performance results achieved by
applying HLA ACTOR REPAST to a distributed version of a classic MAS bench-
mark model.

6.5.1 Related work

An experience of distributing sequential RePast on top of the High Level
Architecture/Runtime Infrastructure (HLA/RTI) middleware [KDW00] is de-
scribed in (Minson & Theodoropolous, 2008) and it is referred as HLA REPAST.
HLA was chosen because it eases interoperability with existing simulation sys-
tems, and promotes model reuse. The implementation directly integrates the
RePast mechanisms within the HLA/RTI infrastructure. A distributed RePast
simulator is an HLA federation consisting of multiple interacting instances of
RePast sub-models. Distributed synchronization depends on conservative syn-
chronization [Fuj00] which favours transparency and backward compatibility
with sequential RePast model. The RePast scheduling algorithm was replaced
with a new one which constrains local time advancement in a federate, in syn-
chronization with the rest of the federation. Space/environment objects are
mapped on the object architecture (Federation Object Model or FOM) and
the publish/subscribe design pattern supported by HLA. A critical problem
concerns concurrent access/update to shared attributes, e.g. of the environ-
ment. Conflicts resolution is achieved by divesting attribute ownership to RTI.
All of this can have performance penalties in the runtime. A similar realiza-
tion was previously experimented with distributing the SIM AGENT toolkit on
top of HLA [LLT07]. A different approach is described in [LCZ07] where a
federated agent-based architecture for crowd simulations is proposed. Here, a
RePast crowd model is used for studying individual and group/environment

2 based on [CFGN10a, DAAL09, CFGN09a]

6.5 Distributing RePast on top of Theatre 119

behaviours which result from interactions among individuals and the individ-
uals and the environment. The RePast model is mapped onto one HLA fed-
erate which is integrated with ontology and inference system for dynamically
adjusting the behaviour of individuals and of the environment. The RePast
federate can interoperate with other, possibly heterogeneous, special compo-
nents, e.g. devoted to visualization purposes. Therefore, in this approach the
RePast model is not partitioned but only exposed for interactions in a dis-
tributed domain. Another approach -REPAST JDSM- to interfacing RePast with
the HLA is discussed in [YWCTM09] where a generic architecture support-
ing Commercial Off-The-Shelf simulation package interoperability is adopted
which hides and simplifies the use of HLA services. The approach favours
interoperability of RePast models by relying on an explicit sending/receiv-
ing entity mechanism. REPAST JDSM, though, has to be extended for dealing
with conflict management among shared variables. In [TZC+06][CTT+08] the
HLA GRID REPAST architecture is proposed which combines HLA REPAST con-
cepts [MT08] with HLA GRID platform (Zong et al., 2004) in order to favour
cooperative development of simulation services, with automatic discovery and
deployment of services in a distributed model, and with the possibility of
accessing large and geographically decentralized data sets. The proposal ad-
dresses the vision of the Grid as a plug-and-play distributed simulation system.
Flexibility and openness of the architecture have the consequence of reducing
the achievable performance with respect to HLA REPAST which in turn can suf-
fer from the use of HLA object management mechanisms. Another approach
to distributing RePast models has been recently proposed by integrating the
visual toolkit RePast Symphony with Terracotta (see 2.3.2) object infrastruc-
ture. The use of Terracotta enables JVM-level clustering and offers a shared
virtual heap. The approach requires time coordination at-large and has still
to demonstrate its performance potential.

6.5.2 Inside RePast

The RePast toolkit comes with a runtime executive (scheduler and controller
components) which provides an event-driven simulation engine, and a user in-
teraction interface through which a simulation experiment can be controlled.
Typically, a system (see Fig. 6.10) consists of a collection of agents, a collec-
tion of spaces modelling the physical environment within which the agents are
situated, and a model object which contains information (e.g. for configura-
tion) about the entire system. The state of system is scattered among model,
agent and space objects.

An agent-based simulation normally proceeds in two stages. The first one
is a setup stage that prepares the simulation for execution. The second stage
is the actual running of the simulation. During the setup phase, the model
object is created as an instance of a Model class (implementing the SimModel
interface) which, in turn, instantiates agents and spaces, the display and the
scheduler (the latter is an instance of the Schedule class). It is the executive

120 6 Distributing situated multi-agent systems

which actually asks the model object to execute the setup phase. After that,
i.e. when the simulation has been started, the executive achieves from the
model object the scheduler object used to control the simulation. Fig. 6.10
sketches the operations of model bootstrap, whereas Fig. 6.11 highlights model
execution.

Space 0 Space 1 Space N

Display

Application

Agent 0 Agent1 Agent N

Scheduler
SimModel Interface

MODEL

Controller

make

make

make

make

Executive

Fig. 6.10. Startup scenario

RePast events are instances of the BasicAction class. An event occurrence
is mirrored by an invocation of the execute() method of a basic action object.
Actions are scheduled to occur at certain simulation times (ticks). Ticks can
be equally spaced or, more in general, not equally-spaced or event-driven. All
pending events existing at a given moment are buffered, ranked by ascending
timestamps, within the scheduler object. At each iteration of its control loop,
the controller asks the scheduler to extract the (or one) most imminent pend-
ing action and to dispatch it to its destination object, i.e. model or agent. The
consequence of an event occurrence is in general a chain of method invocations,
which can cause state changes in agents, in model or in space objects.

Space objects can be data (or diffusive) spaces or object (agent) spaces. An
application based on diffusive spaces typically has the model which repeat-
edly executes a cycle made up of three basic phases: diffuse-modify-update. In
the diffuse phase, the environment is queried to synchronously update itself

6.5 Distributing RePast on top of Theatre 121

Space 0 Space 1 Space N

Display

Application

Agent 0 Agent1 Agent N

Scheduler
SimModel Interface

MODEL

Controller

schedule/dispatch

Interact

get/put

Executive

execute

Interact
schedule/dispatch

get/put

Fig. 6.11. Runtime scenario

according to a diffusive logic. Then, in the modify phase agents are permitted
to introduce further changes to the data space. For consistency, though, these
changes are stored in a temporary copy of the environment. Finally, in the
update phase, the temporary copy is restored upon the actual environment.
An object space, on the other hand, behaves more asynchronously. Agents
can issue get/put operations to spaces, which affect immediately the environ-
ment. At each tick, the Model object causes the environment changes to be
displayed by invoking the Display redraw method.

6.5.3 HLA ACTOR REPAST Design Issues

Distributing sequential RePast multi-agent models requires in general address-
ing some fundamental design issues concerning: event scheduling/dispatching
and time management, state consistency, conflict resolution on shared vari-
ables. These issues are also tied to the distribution of the spatial environment
(i.e., territory) where the agents are situated.

Different strategies can be adopted for model partitioning [MT08]. A par-
ticular strategy may depend both on load balancing issues and on the way
shared variables are accessed or modified [DET+08][?][VMT09]. Space par-
titioning adopted as well as conflict resolution and to ensure consistency

122 6 Distributing situated multi-agent systems

Middleware (e.g. HLA)/
transort layer

Theatre

RePast

Application model

Middleware (e.g. HLA)/
transort layer

Theatre

RePast

Application model

Middleware (e.g. HLA)/
transort layer

Theatre

RePast

Application model

Comunication Network

Fig. 6.12. Architecture of a distributed RePast model

on shared state in this work rely on ideas and mechanisms previously de-
scribed (see 6.2. This because presence of space objects qualify RePast as a
situated agent-based infrastructure. In particular we make the assumption
that an agent can read and update only the spatial environment belonging
to its surrounding territory (neighbourhood). Such neighbourhood represents
the “sphere of influence” [LT01] of the agent, i.e. the portion of shared state
which can influence or that can be influenced by the agent behaviour. More
specifically, a RePast model is assumed to be partitioned into a collection of
LPs which are allocated for the execution to different computing nodes of a
networked system (see Fig.6.12). Each LP/federate hosts a portion (region)
of the environment and a subset of agents (turned into actors).

Mapping RePast onto actors

Figure 6.13 summarizes the mapping process of RePast over actors. Every
RePast agent becomes an actor and its class inherits from a specific actor
class -ACTOR AGENT- which is specialized in handling RePast agent concerns.
ACTOR AGENT, in turn, inherits from the Actor base class. In the same way, the
class of a model object inherits from ACTOR MODEL which derives from Actor
base class.

RePast action objects are transformed into actor messages and scheduled
in the theatre control machine of the LP. A key point of HLA ACTOR REPAST

is a transfer of control responsibilities from RePast to the theatre control
machine. Basically, RePast controller remains in charge of interactive events
only. Simulation and time management services are instead provided by the-
atres. In the proposed mapping, local action executions behave exactly as in
the non distributed version of the model. However, remote action requests,
which occur when the target agent is located on a remote LP, are converted
into actor messages and sent across the network. In a similar way, a method

6.5 Distributing RePast on top of Theatre 123

ActorAgent ActorAgent ActorAgent

Agent 0 Agent1 Agent N

Scheduler

Model

Controller

schedule action

interact

interact

sc
he

du
le

 a
ct

io
n

ActorModel

Theatre
Control

Machine

interactive
issues

d
isp

atch

d
is

p
a

tc
h

schedule actor m
essage

Fig. 6.13. Outline of RePast mapping onto actors

invocation on a remote object is wrapped in a message which is sent to the
target object. The actor message carries the method name and specifies the
receiver ACTOR AGENT (or ACTOR MODEL) upon which the method has to be
invoked. On receiving one such a message an ACTOR AGENT (or ACTOR MODEL)
is logically responsible, through its handler() method, of invoking the specific
method of the corresponding RePast agent, e.g. with the help of Java reflec-
tion. In another case, when a message is up to be dispatched to a forwarder,
i.e. a proxy version of an actor, the ACTOR AGENT (or ACTOR MODEL) could
manage to route the message to the corresponding remote actor. In reality,
dispatching a message to a forwarder is a concern directly handled by the con-
trol machine. In addition, the recourse to “heavyweight” reflection techniques
is avoided. The handler() method of ACTOR AGENT (or ACTOR MODEL) is cus-
tomized with application-specific code that directly invokes the agent method.
It is worth noting that an ACTOR AGENT stores through instance variables such
common data as the agent coordinates and temporal information which are
required by the distributed model execution. An important actor, created in
every LP during start-up, is the “environment actor” (EnvActor) which knows
about configuration information (taken from a configuration file) of the entire
RePast model, and offers a common interface for accessing spaces and envi-
ronments. For example, the provision that every node/LP is an instantiation

124 6 Distributing situated multi-agent systems

of the “entire” model implies that within each sub-model assigned to an LP
be present the “global view” to the environment. The transformation of posi-
tional coordinates of a situated agent from the global-view to the local-view
corresponding to the portion of the environment effectively managed by the
LP is realized by the corresponding instance of EnvActor (see Fig.6.14).

message
exchange

LP 1 LP 2

ActorAgent

Agent X

Theatre
Control

Machine

Perceived Global Space

Local Space Hosted

Space Y

ActorEnvironment

Agent k

Theatre
Control

Machine

Perceived Global Space

Local Space Hosted

Space Y

ActorEnvironment

ActorAgent

g
et/p

u
t

in
te

ra
ct actu

alize u
p

d
ate / m

ig
ratio

n

send / receive
update,

migration,
etc.

g
et/p

u
tin

teract

actu
alize u

p
d

ate / m
ig

ratio
n

send / seceive
update,

migration,
etc.

Fig. 6.14. Actor environments and local vs. global environment view

A second responsibility of EnvActor is that of propagating to its peer(s)
in neighbouring LP(s) the updates to agents in the local border of the belong-
ing LP. Similarly, when an agent moves to the border region, the EnvActor
is in charge of migrating the agent, if needed, to an adjacent LP. EnvActor
also plays a key role in the diffuse/update/redraw processes. In particular,
when the model raises a diffuse/update/redraw operation, the request is in-
tercepted and a corresponding message is made and sent to all the LPs, which
is finally heard by the EnvActors. An EnvActor then acts so as to actuate the
diffuse/update/redraw operation in the local environment.

Text annotations and aspects

The software engineering process underlying HLA ACTOR REPAST was driven
by the main goal of keeping transparency between the sequential model and
its corresponding distributed version. The mapping techniques described in
previous subsection, indeed, are realized without changing code in the source
model (except for a few text annotations described in the following). This
goal is achieved through the use of aspect oriented programming, in partic-
ular through an AspectJ aspect [KHH+01][Asp]. The Aspects supply mech-
anisms to transparently change source code in a static way, through the so

6.5 Distributing RePast on top of Theatre 125

called introductions, and in a dynamic way (at runtime) through the so called
interceptors.

Two kinds of static “introductions” are needed to make the model com-
pliant with HLA ACTOR REPAST. The first one concerns the requirement that
each RePast agent class has to inherit from the ACTOR AGENT class. The sec-
ond kind of introduction affects specifically the handler() method of agents.
The introduced handler() method is filled with application-specific code for
directly invoking an agent method in response to a received message.

A first type of interceptor is triggered on the occurrence of method invoca-
tions on an agent or a model object. The aspect interceptor captures method
calls and superimpose to them a suitable behaviour. When the target agent
of a method invocation is local, the aspect lets the agent execute the method
call in the normal way. In the case the receiver is remote, the aspect replaces
the standard behaviour of method call by building a message, filling it with
information about the requested method, and sending the message over the
network (see Fig. 6.15). This interceptor and the introduction which regards
the handler() method make ACTOR AGENT independent of any particular model.

A second kind of interceptor is responsible of ensuring agent state con-
sistency. When an agent is located in the border area and a state change
occurs in it, the change must be reflected in adjacent LP(s). Therefore, when
a change refers to an application relevant field of an agent, the aspect inter-
ceptor captures the field setting and acts to achieve a suitable behaviour: in
the case the agent is on a border the aspect asks the EnvActor to notify the
update to the appropriate neighbour LPs; otherwise, the aspect annotates the
field change in the actor agent part of the agent (see Fig. 6.13). As soon as the
agent moves to a border position, the EnvActor will be in charge of updating
the mirror version of the agent on adjacent LPs thus avoiding them to refer
to a stale status.

Application specific information are required to build the above-described
Aspect and link it to the model. The information are supplied by the modeller
through a few Java text annotations. An annotation processor was developed
which reads these annotations in the source model and automatically gener-
ates and customize the Aspect code.

The required annotations are @Agent, @Method and @Field:

� @Agent qualifies a class as a RePast agent class
� @Method qualifies methods of RePast object classes (of agents and model)

which will be called on behalf of another object of the model. Such methods
are assumed to return no data (void return type)

� @Field qualifies a field of an agent as one which is “relevant” to the rest
of the system, i.e. of which consistency update and conflict resolution have
to be guaranteed

An excerpt of an annotated class is shown in the following.

@Agent

126 6 Distributing situated multi-agent systems

ActorAgent

Agent X

ActorAgent

Agent Y

ActorAgent

Agent Y

Theatre
Control

Machine

Aspect

method invocation

intercept

Theatre
Control

Machine

Handler

schedule

di
sp

at
ch

method invocation

(proxy)

send message

LP 1 LP 2

Fig. 6.15. Method invocations and aspect-oriented programming

public class AgentClass {

public boolean f2; //field unaffected by consistency updates

@Field public int f1; //field involved in consistency updates

public int statusReading(){} //method reserved for reading the agent status

@Method public void doSomething(){} //method which may be invoked by other agents

}//AgentClass

Consistency updates and conflict resolution

Consistency update and conflict resolution in HLA ACTOR REPAST rest on the
approach described in 6.2.2 and 6.3. Composite logical time is used as a tie-
breaking mechanism. Nevertheless, the approach was specialized to specifically
deal with issues related to HLA ACTOR REPAST.

A main difference relies on inter-agent method calls. In the general ap-
proach previously described an agent can synchronously perceive the envi-
ronment in its neighbourhood as well as the neighbour agent states via the
environment but it can not make a method call upon another agent.

The management of inter-agent method calls which RePast makes it pos-
sible, was based on Aspect Oriented Programming and Java Annotations as
described in 6.5.3. In addition the technique to handle conflicts and data con-
sistency was refined as well.

The state of an agent can change when an action is delivered to it or
when a method call is executed on it. Of course, actions scheduled at different

6.5 Distributing RePast on top of Theatre 127

virtual times always ensure causal order. In the case of method calls, however,
it must be considered that a method call is not immediately actualized when
the target agent is situated on a border. One such a method call is intercepted
by the Aspect (see Fig. 6.15) and if the agent belongs to a different LP or
if the agent is on a border (which means it has to receive messages with a
generation greater than zero) a message must be created and scheduled. As
a consequence, an agent state change could be deferred at a future real time
(greater generation) although the same virtual time is involved. Visibility
problems arise if one tries to read and use the agent state in the meantime.
This is a second kind of conflicts which can occur in the distributed version
of a RePast model. The following proposes a refinement of the partial-order
described in section 6.3 which in its basic form is not capable of dealing with
the new kind of conflicts too. In particular the Collision-Free Number (CFN)
needs to be refined.

To clarify problems, consider a scenario with three agents, two of which
are in charge of shooting the third one modelling a target. When an agent
shoots the target, the latter could decrease its energy (or vitality degree) so
that when the energy becomes zero agents can stop shooting it. Shooting can
be modelled by a method call upon the target agent. Suppose now that, at
a given virtual time, the three agents are located in three contiguous border
cells, and that cells containing the shooting agents have respectively 1 and 2
as the assigned CFN, whereas the cell containing the target agent has 3 as
the assigned CFN. In the hypothesis that both shooting agents try to shoot
target at the same virtual time, the agent in the cell tagged with CFO 1
will be the first executing and shoots the target. Since agents are in a border
area, the method call is intercepted and a corresponding message created
and scheduled at current virtual time but with the CFN dictated by the cell
hosting the receiver, in this case the value 3. Next, it is the turn of the agent
in the cell tagged by CFN value 2. The latter agent considers target vitality
in order to decide if shooting the target or not, without any knowledge of
the fact that the target has already been shot, this because the target agent
has not yet received the shooting message which decreases its vitality. The
solution proposed for coping with the above problems splits the CFN field in
the composite logical time, in such a way that the CFN consists of multiple
sub-fields. In the discussed example it is important that the target receives the
shooting message before the CFN becomes 2. Roughly speaking this means
that the message could be scheduled with a CFN equals to 1.x. In this way,
the target agent would decrease its vitality at composite logical time with
CFN 1.x and step 0 although the change would be reflected in neighbour LP
actually at CFN 1.x and step 1 due to the management of update messages. As
a consequence, the second agent running at composite logical time with CFN
1.x and step 0 will be able to correctly read and see the updated vitality status
of the target regardless the LP which hosts it. More concretely, a “composed”
CFN looks like gs.gr where gs is the CFN assigned to the cell hosting the caller
agent and gr is the CFN assigned to the cell holding the called agent. This

128 6 Distributing situated multi-agent systems

provision, paired with space cell conflict resolution mechanism 6.2.2, ensures
that method calls on contiguous border agents, raised at a same virtual time,
are always cell conflict-free because they will necessarily occur at different real
times. In general, a chain of method calls can occur. If an agent receives a
message with CFN x.y and reacts by calling a method on another border agent,
the corresponding message would be scheduled with generation x.yz where z
is the CFN assigned to the cell of the called agent. The solution demands
for a flexible fine-grain CFN field, i.e. with a certain number of sub-fields
ranging from a most significant one down to a least significant one. Actually,
the HLA ACTOR REPAST allows the modeller to configure the composed logical
time by specifying the number of bits allocated to the virtual time and that
allocated to the CFN (the step field is always one bit long). Moreover, the
internal decomposition of the CFN into sub-fields can be customized according
to the estimated maximum nesting level of a method-call chain. The control
machine, Env Actor and the aspect/interceptor are in charge of handling the
described refinement of the partial-order, transparently with respect to the
source model.

6.5.4 Tileworld Model Example

Tileworld [PR90] is a widely used benchmark for testing multi-agent systems.
It defines an environment with tiles, holes and obstacles. Agents are able to
move over the environment in order to pick up tiles and subsequently using
them to fill holes. Tiles and holes appear and disappear randomly. When a tile
is picked up by an agent it disappears definitively, when a hole is totally filled
it disappears definitively as well. Each hole has an associated value. An agent
knows ahead of time the value associated with the visible holes. An agent gets
score when totally filling a hole. The goal of each agent is to maximize its
score as possible. A representation of the game is portrayed in Fig. 6.16. The
model developed in this paper differs from that proposed in [PR90] in two
points:

� holes size is one cell but each hole owns a ’depth’ that is the number of
tiles that the hole can contain

� agents can explore the territory moving also in diagonal directions.

The behaviour of an agent can be modelled according to two alternative strate-
gies: reactive and deliberative. In the reactive strategy the agent follows the
behaviour recapitulated by the statechart model depicted in Fig. 6.17. At its
start-up, the agent is in the LOOK FOR TILE state where it checks its neigh-
bourhood in order to detect visible tiles whilst avoiding surrounding obstacles.
A tile is visible if it falls in the visibility area of the agent. In this state, other
agents and holes are considered obstacles as well. On detecting a tile, the
agent switches to the MOVE TO TILE state and heads towards reaching the tile.
When reached, the tile is picked up and the agent moves into LOOK FOR HOLE

state. While moving to tile, if the latter disappears the agent comes back into

6.5 Distributing RePast on top of Theatre 129

LOOK FOR TILE state. The behaviour of the agent into LOOK FOR HOLE and
MOVE TO HOLE states is similar to the behaviour exhibited respectively when
looking for a tile and moving to a tile. In this strategy agent does not take care
about a value of a hole. The deliberative strategy is borrowed from Pollack &
Ringuette strategy: each agent plans its behaviour on the basis of an appro-
priate metric. It reconsiders its plan using only a filtered set of environmental
information (more details in [PR90]). When an agent is in LOOK FOR TILE or
MOVE TO TILE states it behaves as in the other strategy. However, the choice
of the hole is made by considering the visible holes and computing the SEU
indicator (Subjective Expected Utility):

SEU(h) =
score(h)

dist(a, h) + tileavail(h)
(6.1)

where a is the agent, h is the hole, score(h) is the value of h, dist(x, y) is
the cell distance between x and y in the territory and tileavail(h) is defined
as:

tailavail(h) =

n∑
i=1

2 ∗ dist(ti, h) (6.2)

where n is the depth of h and ti is the ith nearest tile with respect to h.
In practice, tileavail(h) estimates the travelling needed by an agent in order
of totally filling the hole h.

T

T

T T

T

T

T

T

T

Agent T Tile Hole Wall

Fig. 6.16. A Tileworld board

A RePast model of Tileworld consists of the following entities:

130 6 Distributing situated multi-agent systems

TILEWORLDAGENT_TOP

Step[!seeTile()]
/lookForTile()

LOOK_FOR_TILE

LOOK_FOR_HOLEMOVE_TO_HOLE

MOVE_TO_TILE

Step[tileStillAvailable()&&
!reached()]/headTowardTile()

Step[!tileStillAvailable()]
/lookForTile()

Step[seeTile()]
/headTowardTile()

Step[tileStillAvailable()
&&reached()]/pickup()

Step[seeHole()]
/headTowardHole()

Step[!holeStillAvailable()]
/lookForTile()

Step[holeStillAvailable()&&!reached()]
/headTowardHole()

Step[holeStillAvailabe()
&& reached()]/fill()

Step[!seeHole()]
/lookForHole()

Fig. 6.17. TileWorldAgent behaviour

� (i) TileWorldAgent objects modelling the agents moving around the envi-
ronment. The behaviour of these agents is triggered by invoking, at each
simulation step, a step() method

� (ii) a TileWorldModel object which is in charge of configuration and de-
ployment of the entire system and the scheduling of an action to be ex-
ecuted, on itself, at each tick. Each time the model object receives this
action, it invokes the step() method on each TileWorldAgent

� (iii) Tile objects
� (iv) Hole objects
� (v) Obstacle objects
� (vi) a bi-dimensional toroidal grid modelling the spatial environment. Each

cell in the grid can contain one single object.

Environment configuration is assisted by a visual editor. A randomly gen-
erated environment can be also obtained by simply specifying the environment
dimension and the number of entities to put on it.

6.5.5 Simulation experiments

The Tileworld model based on the deliberative strategy was used as a test-bed
for checking the simulation performance achievable with HLA ACTOR REPAST.
A set of simulation experiments was carried out where the model consists of
a fixed large territory of 825x276 cells and a variable number of agents, tiles
and holes, randomly initialized on top of the environment. The model was

6.5 Distributing RePast on top of Theatre 131

equally split into three LPs/federates allocated on three Pentium IV, 2 GHz,
256MB RAM, WinXP platforms, hosting RePastJ 3.0 and interconnected by
a Gigabit Ethernet switch, in the presence of HLA pRTI 1516 (Pitch, on-
line). Each theatre/federate hosts a sub model which manages a territory
of 275x276 cells. The time required by an agent to make a move is 1 time
unit (tu). The dwell time of a tile/hole into a cell is uniformly distributed
in [1..50]. The re-appearance time for a tile/hole is uniformly distributed in
[1..20]. The simulation time limit was then chosen by ensuring that with the
above time parameters, agents would “complete their mission”, i.e. picking-up
and dropping into holes almost all tiles, by the end of simulation. In particular,
a simulation time limit of 200 tu emerged. Some preliminary tests used the
same model executed separately using RePast and HLA ACTOR REPAST. Differ-
ences introduced by the use of HLA ACTOR REPAST concern the addition of the
appropriated Java annotations as described in section 4.3, and the use of a
configuration file containing distribution information such as IP & port of the
various LPs, visibility radius of each agent i.e. border size etc. Wall clock time
was measured in both cases and the ratio between RePast wall clock time
and HLA ACTOR REPAST wall clock time was calculated for performance com-
parison. Experiments used a configuration of 500 Agents, 250 holes, 250 tiles
and 100 obstacles randomly spread across the territory. This configuration
was scaled by a K factor which ranges from 1 to 10 in order to test speed-up
vs. an increasing load. Fig. 6.18 summarizes the measured speed-up vs. the
number of agents in these preliminary tests.

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

K Scale Factor
(Agents=500*K, Tiles=Holes=250*K)

Sp
ee

du
p

Fig. 6.18. Preliminary tests showing super speed-up (three processors)

As one can seen from Fig. 6.18 a super speed-up emerged. Another set of
experiments were carried out specifically for taking a comparison between the
model ran by sequential RePast and the model executed using ACTOR REPAST,
i.e. the system developed in this work but running on a standalone machine.
The adopted territory configuration was the same but K now ranges from 1
to 5. Fig. 6.19 shows the observed wall clock time in both cases. Reasons un-
derlying the behaviour depicted in Figures 6.18 and 6.19 are concerned with

132 6 Distributing situated multi-agent systems

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5
K Scale Factor

(Agents=500*K,Tiles=Holes=250*K)

W
al

l C
lo

ck
 T

im
e

(s
ec

)

ACTOR_REPAST
RePast

Fig. 6.19. Comparison of sequential RePast vs. sequential ACTOR REPAST

creation/scheduling of actions. There are many scheduling methods offered by
RePast. However they can be roughly divided in two method types: one that
accepts an action already created by the model itself and another method that
accepts reference to the called object and name of the method to call. This
latter scheduling method was used in the Tileworld model. When a model
schedules an action by supplying object reference and method name, RePast
dynamically creates the bytecode of a new action class, makes an instance
of this class and finally schedules it. ACTOR REPAST, instead, always directly
creates and schedules an instance of a specific existing message class, so no cre-
ation of bytecode is ever needed. For subsequent experiments, it was decided
to compare the performance achievable by ACTOR REPAST (centralized) and by
HLA ACTOR REPAST (distributed), by varying the number of agents from 5000
to 52500 (as permitted by memory constraints of utilized machines). Alterna-
tively, the original RePast model could have been modified so as to use model
specific action classes only, thus avoiding the above described overheads. Fig.
6.20 shows the observed wall clock time, while Fig. 6.21 portrays the achieved
simulation speedup. From Fig. 6.20 it follows that the model scales well as
the number of agents increases.

0

100

200

300

400

500

600

700

5000 15000 25000 35000 45000

Number of Agents

W
al

l C
lo

ck
 T

im
e

(s
ec

)

centralized (ACTOR_REPAST) distributed (HLA_ACTOR_REPAST)

Fig. 6.20. Wall clock time vs. number of agents

6.5 Distributing RePast on top of Theatre 133

0

0.5

1

1.5

2

2.5

5000 15000 25000 35000 45000

Number of Agents

Sp
ee

du
p

Fig. 6.21. Simulation speedup vs. number of agents (three processors)

Conclusions and Outlook

The work behind this PHD thesis was devoted to designing and implement-
ing agent-based tools and approaches, addressing modelling and simulation
(M&S) of complex dynamic systems. The starting point was the use of the
open, flexible and efficient Theatre architecture in Java, developed within the
Software Engineering Laboratory at DEIS/UNICAL. Theatre offers an agent-
infrastructure centred on a light-weight actor computational model, whose
control engine can be customized through programming. Theatre admits a
fine-grain migration mechanism for actors, and can easily be adapted to work
with different transport layers like Java Sockets or Java RMI. In this thesis
such standard or emerging middleware were favored as HLA/RTI and Terra-
cotta. Terracotta, in particular, was appealing for its ability to transparently
clustering the JVM thus allowing to experiment with high-performance paral-
lel/distributed simulation of scalable systems on top of modern cost-effective
multi-core clusters. Theatre was successfully exploited for supporting rigor-
ous modelling languages and formalisms like DEVS and statecharts. It is felt
useful to prosecute the accomplished work e.g. in the following directions.

- Experimenting with a notion of statecharts based actors also in the pres-
ence of the and-decomposition construct, using the UML semantics which
rests on the step notion comprising the run-to-completion processing of
one event at a time. Such a semantics is already at the hearth of the
adopted Theatre actor model.

- Developing a visual tool in Java supporting the graphical design of an
actor model, where actors can have a statechart-based behavior. The tool
would allow checking/debugging and code generation of a graphical model,
also considering the partitioning task over a parallel/distributed context.

- Optimizing the software engineering project carried out in distributing the
sequential RePast toolkit, using it for for high-performance simulation of
large variable structure systems on multi-core clusters.

- Improving the management of spatial environments in situated multi-agent
systems. This is a challenging and hot research line in current technical

136 6 Distributing situated multi-agent systems

literature, because of its relevance in many multi-agent systems. The goal
is to go beyond the prototype realization underlying the approach to dis-
tributing RePast models on top of Theatre actors, and to check it with
significant application models and related execution performances.

References

ADE. ADEVS online. http://www.ornl.gov/~1qn/adevs/index.html.
Agh86. G. Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, Cambridge, MA, USA, 1986.
Asp. AspectJ.
Ast99. M. Astley. The Actor Foundry. University of Illinois, http:

//yangtze.cs.uiuc.edu/foundry/foundry.ps, 1999.
BBCM98. M. Breugst, I. Busse, S. Covaci, and T. Magedanz. Grasshopper:

A mobile agent platform for IN based service environments. In
Proceedings of the IEEE Intelligent Networks Workshop, pages 279–
290, May 1998.

BGFL94. S. Bandinelli, C. Ghezzi, A. Fuggetta, and L. Lavazza. Spade: An
environment for software process analysis, design, and enactment.
In Software Process Modeling and Technology, pages 223–248. Wiley,
1994.

BHJ+10. Ketan Bahulkar, Nicole Hofmann, Deepak Jagtap, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. Performance evaluation of pdes
on multi-core clusters. Distributed Simulation and Real Time Appli-
cations, IEEE/ACM International Symposium on, 0:131–140, 2010.

BHR+02. J. Baumann, F. Hohl, K. Rothermel, M. Strasser, and W. Theil-
mann. MOLE: A mobile agent system. Software - Practice and
Experience, 32(6):575–603, 2002.

BHRS98. J. Baumann, F. Hohl, K. Rothermel, and M. Straßer. Mole - con-
cepts of a mobile agent system. World Wide Web, 1(3):123–137,
1998.

BIP88. M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded
practical reasoning. Computational Intelligence, 4(4):349–355, 1988.

BMS02. S. Bandini, S. Manzoni, and C. Simone. Dealing with space in
multiagent systems: a model for situated MAS. In Proceedings of the
First International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 1183–1190, New York, NY, USA, July
2002. ACM Press.

BNO03. R. Beraldi, L. Nigro, and A. Orlando. Temporal Uncertainty Time
Warp: an implementation based on Java and ActorFoundry. Simu-
lation, 79(10):581–597, 2003.

http://www.ornl.gov/~1qn/adevs/index.html
http://yangtze.cs.uiuc.edu/foundry/foundry.ps
http://yangtze.cs.uiuc.edu/foundry/foundry.ps

138 References

BR01. F. Bellifemine and G. Rimassa. Developing multi-agent systems
with a FIPA-compliant agent framework. Software - Practice &
Experience, 31(2):103–128, 2001.

Bra97. J.M. Bradshaw. Software agents, chapter An Introduction to Soft-
ware Agents. MIT Press, Cambridge, MA, USA, 1997.

BRJ99. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language user guide. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1999.

Bro86. R.A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, RA–2(1):14–23, March
1986.

Bro90. R.A. Brooks. Elephants don’t play chess. Robotics and Autonomous
Systems, 6(1–2):3–15, June 1990.

Bro91a. R.A. Brooks. Intelligence without reason. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence
(IJCAI’91), pages 569–595, Sydney, Australia, 1991.

Bro91b. R.A. Brooks. Intelligence without representation. Artificial Intelli-
gence, 47(1–3):139–159, 1991.

BS92. B. Burmeister and K. Sundermeyer. Cooperative problem solving
guided by intentions and perception. In E. Werner and Y. De-
mazeau, editors, Proceedings of the Third European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, pages 77–
92, Amsterdam, The Netherlands, 1992. Elsevier Science Publishers
B.V.

BSdS+05. A. Brabazon, A. Silva, T. Ferra de Sousa, M. O’Neill, R. Matthews,
and E. Costa. Investigating strategic inertia using OrgSwarm. In-
formatica, 29(2):125–136, 2005.

CDP. CD++ online. http://cell-devs.sce.carleton.ca/mediawiki/
index.php/Main_Page.

CFGN08. F. Cicirelli, A. Furfaro, A. Giordano, and L. Nigro. Net centric
modelling and simulation using actordevs. In Proc. of 20th Eu-
ropean Modeling and Simulation Symposium (EMSS’08), Campora
San Giovanni, Italy, 17–19 September 2008.

CFGN09a. F. Cicirelli, A. Furfaro, A. Giordano, and L. Nigro. Distributing
RePast simulations using actors. In Proc. of 23rd European Con-
ference on Modelling and Simulation (ECMS’09), pages 226–232,
Madrid, Spain, June 9-12 2009.

CFGN09b. F. Cicirelli, A. Furfaro, A. Giordano, and L. Nigro. Statechart-based
actors for modeling and distributed simulation of complex multi-
agent systems. In Proc. of 23rd European Conference on Modeling
and Simulation (ECMS’2009), Madrid, Spain, 9–12 June 2009.

CFGN10a. F. Cicirelli, A. Furfaro, A. Giordano, and L. Nigro.
HLA ACTOR REPAST: An approach to distributing RePast
models for high-performance simulations. Simulat. Modell. Pract.
Theory, 2010. doi:10.1016/j.simpat.2010.06.013.

CFGN10b. F. Cicirelli, A. Furfaro, A. Giordano, and L. Nigro. Parallel simula-
tion of multi-agent systems using terracotta. In Proc. of 14th ACM
International Symposium on Distributed Simulation and Real Time
Applications (DS-RT2010), Fairfax, Virginia USA, 17–20 October
2010.

http://cell-devs.sce.carleton.ca/mediawiki/index.php/Main_Page
http://cell-devs.sce.carleton.ca/mediawiki/index.php/Main_Page

References 139

CFGN10c. F. Cicirelli, A. Furfaro, A. Giordano, and L. Nigro. Performance of a
multi-agent system over a multi-core cluster managed by terracotta.
In submitted, 2010.

CFN06. F. Cicirelli, A. Furfaro, and L. Nigro. A distributed agent-based
simulation model for large wireless sensor networks. In Proc. of
Agent-Directed Simulation (ADS’06), pages 115–122, 2006.

CFN07a. F. Cicirelli, A. Furfaro, and L. Nigro. Distributed simulation of
modular time Petri nets: an approach and a case study exploiting
temporal uncertainty. Real-Time Systems, 35(2):153–179, 2007.

CFN07b. Franco Cicirelli, Angelo Furfaro, and Libero Nigro. Exploiting
agents for modelling and simulation of coverage control proto-
cols in large sensor networks. Journal of Systems and Software,
80(11):1817–1832, 2007.

CFN08. F. Cicirelli, A. Furfaro, and L. Nigro. Actor-based simulation of
PDEVS systems over HLA. In Proc. 41st Annual Simulation Sym-
posium (ANSS’08), pages 229–236, 2008.

CFN09. F. Cicirelli, A. Furfaro, and L. Nigro. An agent infrastructure over
HLA for distributed simulation of reconfigurable systems and its
application to UAV coordination. SIMULATION, Trans. of SCS,
85(1):17–32, 2009.

CFNP07. F. Cicirelli, A. Furfaro, L. Nigro, and F. Pupo. A component-based
architecture for modelling and simulation of adaptive complex sys-
tems. In Proc. of 21th European Conference on Modelling and Sim-
ulation (ECMS 2007), pages 156–163, 2007.

CGN10. F. Cicirelli, A. Giordano, and L. Nigro. Distributed simulation of
situated multi-agent systems. In submitted, 2010.

CTT+08. Dan Chen, Georgios K. Theodoropoulos, Stephen J. Turner, Wen-
tong Cai, Robert Minson, and Yi Zhang. Large scale agent-based
simulation on the grid. Future Gener. Comput. Syst., 24:658–671,
July 2008.

CYLT05. W. Cai, Z. Yuan, M.Y.H. Low, and S.J. Turner. Federate migration
in HLA-based simulation. Future Generation Computer Systems,
21(1):87–95, 2005.

CZ97. D. Challet and Y.-C. Zhang. Emergence of cooperation and or-
ganization in an evolutionary game. Physica A, 246(3–4):407–418,
1997.

DAAL07. Cicirelli F. D., Furfaro A., Giordano A., and Nigro L. An agent
infrastructure for distributed simulations over hla and a case study
using unmanned aerial vehicles. In 40th Annual Simulation Sympo-
sium (ANSS’07), Norfolk, VA, USA, March 26 - 28 2007.

DAAL09. Cicirelli F. D., Furfaro A., Giordano A., and Nigro L. Distributed
simulation of repast models over hla/actors. In 13th ACM Interna-
tional Symposium on Distributed Simulation and Real Time Appli-
cations (DSRT’09), Singapore, 25-28 October 2009.

DAL08. Cicirelli F. D., Furfaro A., and Nigro L. Actor-based simulation of
pdevs systems over hla. In Anss’08, Ottawa, ON, Canada, April
14-16 2008.

DET+08. Chen D., R. Ewald, G. Theodoropoulos, R. Minson, T. Oguara,
M. Lees, B. Logan, and A. Uhrmacher. Data access in distributed

140 References

simulation of complex systems. Journal of Systems and Software,
81:2345–2360, July 2008.

DLG+04. M. D’Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge.
The dMARS Architecture: A Specification of the Distributed Multi-
Agent Reasoning System. Autonomous Agents and Multi-Agent
Sytems, 9(1–2):5–53, 2004.

DM98. B.L. Danny and O. Mitsuru. Programming and Deploying Java
Mobile Agents Aglets. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1998.

EFB01. T. Elrad, R.E. Filman, and A. Bader. Aspect Oriented Program-
ming: Introduction. Communications of the ACM, 44(10):29–99,
April 2001.

FD02. A. Fedoruk and R. Deters. Improving fault-tolerance by replicating
agents. In Proceedings of the First international Joint Conference on
Autonomous Agents and Multiagent Systems, pages 737–744, New
York, NY, USA, 2002. ACM Press.

FDB02. J.B. Filippi, M. Delhom, and F. Bernardi. The jdevs modelling and
simulation environment, 2002.

Fer99. J. Ferber. Multi-Agent Systems: An Introduction to Distributed Ar-
tificial Intelligence. Addison Wesley Longman, 1999.

FG97. S. Franklin and A. Graesser. Is it an agent, or just a program?: A
taxonomy for autonomous agents. In J.P. Muller, M.J. Wooldridge,
and N.R. Jennings, editors, Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages, pages
21–35. Springer-Verlag, 1997.

FIP. FIPA. http://www.fipa.org.
FNP02. A. Furfaro, L. Nigro, and F. Pupo. ActorServer: A Java middleware

for programming distributed applications over the Internet. In Proc.
of the International Network Conference (INC’2002), pages 433–
440, University of Plymouth, UK, July 16–18 2002.

FNP06. A. Furfaro, L. Nigro, and F. Pupo. Modular design of real-time
systems using hierarchical communicating real-time state machines.
Real-Time Syst., 32(1-2):105–123, 2006.

FPV98. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobil-
ity. IEEE Transactions on Software Engineering, 24:342–361, 1998.

Fuj00. R.M. Fujimoto. Parallel and distributed simulation systems. John
Wiley, 2000.

GCK+02a. R.S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and D. Rus. Da-
gents: applications and performance of a mobile-agent system. 32,
2002.

GCK+02b. R.S. Gray, G. Cybenko, D. Kotz, R.A. Peterson, and D. Rus.
D’Agents: Applications and performance of a mobile-agent system.
Software - Practice & Experience, 32(6):543–573, 2002.

GKCR00. R.S. Gray, D. Kotz, G. Cybenko, and D. Rus. Mobile agents: Moti-
vations and state-of-the-art systems. Technical Report TR2000-365,
Dartmouth College, Hanover, NH, April 2000.

GL87. M.P. Georgeff and A.L. Lansky. Reactive reasoning and planning.
In Proceedings of the Sixth National Conference on Artificial Intel-
ligence (AAAI’87), pages 677–682, Seattle, WA, 1987.

http://www.fipa.org

References 141

Gla98. Graham Glass. Objectspace voyager - the agent orb for java. In
Proceedings of the Second International Conference on Worldwide
Computing and Its Applications, WWCA ’98, pages 38–55, London,
UK, 1998. Springer-Verlag.

GPB+00. B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea.
Java concurrency in practice. Addison-Wesley, 2000.

GR96. M.P. Georgeff and A.S. Rao. A profile of the Australian AI Institute.
IEEE Expert, 11(6):89–92, December 1996.

Har87. D. Harel. Statecharts: a visual formalism for complex systems. Sci-
ence of Computer Programming, 8:231–274, 1987.

HCK97. C.G. Harrison, D.M. Chess, and A. Kershenbaum. Mobile agents:
are they a good idea? In J. Vitek and C. Tschudin, editors, Mobile
Object Systems: Towards the Programmable Internet, pages 24–47.
Springer, Berlin, April 1997.

Hew77a. C. Hewitt. Viewing control structures as patterns of passing mes-
sages. Artificial Intelligence, 8(3):323–364, 1977.

Hew77b. C. Hewitt. Viewing control structures as patterns of passing mes-
sages. Artificial Intelligence, 8(3):323–364, 1977.

HLA. Defense Modeling and Simulation Office. HLA-RTI. http:

//www.dmso.mil/public/transition/hla.
HN96. D. Harel and A. Naamad. The statemate semantics of statecharts,

1996.
Hoha. F. Hohl. Mobile Agent List. http://mole.informatik.

uni-stuttgart.de/mal.html.
Hohb. F. Hohl. RePast online. http://repast.sourceforge.net/

repast_3/index.html.
HP98. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts:

The Statemate Approach. McGraw-Hill, Inc., New York, NY, USA,
1998.

HRHL01. N. Howden, R. Ronnquist, A. Hodgson, and A. Lucas. JACK intel-
ligent agents: Summary of an agent infrastructure. In Proceedings of
the Fifth International Conference on Autonomous Agents, Work-
shop on Infrastructure for Agents, MAS and Scalable MAS, pages
251–257, 2001.

HS96. A. Haddadi and K. Sundermeyer. Belief-Desire-Intention agent ar-
chitectures. In Foundations of Distributed Artificial Intelligence,
pages 169–185. Wiley, New York, NY, USA, 1996.

HW07. Yinfeng Henry and Yu Gabriel Wainer. ecd++: an engine for exe-
cuting devs models in embedded platforms, 2007.

HZM05. X. Hu, B.P. Zeigler, and S. Mittal. Variable structure in devs
component-based modelling and simulation. Simulation, 81(2):91–
102, 2005.

JA06. M.-W. Jang and G. Agha. Agent framework services to reduce
agent communication overhead in large-scale agent-based simula-
tions. Simulation Modelling Practice and Theory, 14(6):679–694,
2006.

JAA05. M.-W. Jang, A. Ahmed, and G. Agha. Efficient agent communi-
cation in multi-agent systems. In Proc. of SELMAS 2004, LNCS
3390, pages 236–253. Springer, 2005.

http://www.dmso.mil/public/transition/hla
http://www.dmso.mil/public/transition/hla
http://mole.informatik.uni-stuttgart.de/mal.html
http://mole.informatik.uni-stuttgart.de/mal.html
http://repast.sourceforge.net/repast_3/index.html
http://repast.sourceforge.net/repast_3/index.html

142 References

JAM. JAMES II online. http://wwwmosi.informatik.uni-rostock.

de/mosi/projects/cosa/james-ii?set_language=en.
Jen93. N.R. Jennings. Specification and implementation of a belief desire

joint-intention architecture for collaborative problem solving. Jour-
nal of Intelligent and Cooperative Information Systems, 2(3):289–
318, 1993.

Jen01. N. Jennings. An agent-based approach for building complex soft-
ware systems. Communications of the ACM, 44(4):35–41, 2001.

JG00. K.-C Jim and C. L. Giles. Talking helps: Evolving communicat-
ing agents for the predator-prey pursuit problem. Artificial Life,
6(3):237–254, 2000.

JHZT99. N.F. Johnson, P.M. Hui, D. Zheng, and C.W. Tai. Minority game
with arbitrary cutoff. Physica A, 269(2–4):493–502, 1999.

JLvR+02. D. Johansen, K. J. Lauvset, R. van Renesse, F. B. Schneider, N. P.
Sudmann, and K. Jacobsen. A TACOMA retrospective. Software -
Practice & Experience, 32(6):605–619, 2002.

JRT+03. M.-W. Jang, S. Reddy, P. Tosic, L. Chen, and G. Agha. An actor-
based simulation for studying uav coordination. In Proc. of the 15th
European Simulation Symposium (ESS 2003), pages 593–601, Delft,
The Netherlands, October 2003.

JvRS95. D. Johansen, R. van Renesse, and F.B. Schneider. Operating sys-
tem support for mobile agents. In In Proceedings of the 5th IEEE
Workshop on Hot Topics in Operating Systems, pages 42–45, 1995.

JW98. N.R. Jennings and M.J. Wooldridge. Applications of intelligent
agents. In N.R. Jennings and M.J. Wooldridge, editors, Agent
Technology: Foundations, Applications, and Markets, pages 3–28.
Springer-Verlag: Heidelberg, Germany, 1998.

KDW00. F. Kuhl, J. Dahmann, and R. Weatherly. Creating computer simula-
tion systems: An introduction to the High Level Architecture. Pren-
tice Hall, Upper Saddle River, NJ, USA, 2000.

KFC04. Gary Kratkiewicz, Amelia Fedyk, and Daniel Cerys. Integrating
a distributed agent-based simulation into an hla federation. In In
Simulation Interoperabilty Workshop SIW 04, 2004.

KHH+01. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold. Getting started with AspectJ. Com-
mun. ACM, 44(10):59–65, 2001.

KLP03. E. Kofman, M. Lapadula, and E. Pagliero. Powerdevs: A devs-based
environment for hybrid system modeling and simulation. Technical
report, 2003.

KWD99. F. Kuhl, R. Weatherly, and J. Dahmann. Creating computer simula-
tion systems: an introduction to the high level architecture. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1999.

LCZ07. M.Y.H. Low, W. Cai, and S. Zhou. A federated agent-based crowd
simulation architecture. In Proc. of 21st European Conference on
Modelling and Simulation (ECMS 2007), pages 188–194, 2007.

Lev04. R. Levy. Representing agent and their system: A challenge for cur-
rent modelling. Informatica, 28(1):3–11, April 2004.

LHF05. T. Lu, C. Hsu, and C. Feng. High Level Architecture with mo-
bile data filtering agents. In Proc. of 2005 Workshop on Compiler

http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii?set_language=en
http://wwwmosi.informatik.uni-rostock.de/mosi/projects/cosa/james-ii?set_language=en

References 143

Techniques for High Performance Computing, pages 83–92, Taiwan,
2005.

LLM+05. Michael Lees, Brian Logan, Rob Minson, Ton Oguara, and Geor-
gios Theodoropoulos. Modelling environments for distributed sim-
ulation. In 1st International Workshop on Environments for Multi-
Agent Systems (E4MAS), in conjunction with the 3rd International
Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS04, 2005.

LLT07. Michael Lees, Brian Logan, and Georgios Theodoropoulos. Dis-
tributed simulation of agent-based systems with hla. ACM Trans.
Model. Comput. Simul., 17(3):11, 2007.

LMP04. M. Luck, P. McBurney, and C. Preist. A manifesto for agent tech-
nology: Towards next generation computing. Autonomous Agents
and Multi-Agent Systems, 9(3):203–252, 2004.

LMSW05. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent tech-
nology roadmap: a roadmap for agent based computing. Technical
report, European Coordination Action for Agent-Based Computing
(AgentLink III), 2005.

LO98. D.B. Lange and M. Oshima. Programming and Deploying Java
Mobile Agents Aglets. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1998.

Log07. Brian Logan. Evaluating agent architectures using simulation.
In Evaluating Architectures for Intelligence: Papers from the 2007
AAAI Workshop. AAAI Press, AAAI Press, July 2007.

LT01. B. Logan and G. Theodoropoulos. The distributed simulation of
multiagent systems. 89(2):174–185, Feb 2001.

Mae91. P. Maes. The agent network architecture (ANA). SIGART Bulletin,
2(4):115–120, 1991.

MBB+99. D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Fried-
man, K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Vird-
hagriswaran1, and J. White. MASIF: The OMG Mobile Agent Sys-
tem Interoperability Facility. In Mobility: processes, computers, and
agents, pages 628–641. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1999.

MT08. R. Minson and G. Theodoropoulos. Distributing repast agent-based
simulation with hla. Concurrency and Computation: Practice and
Experience, 20:1225–1256, 2008.

NCV06. M.J. North, N.T. Collier, and J.R. Vos. Experiences creating three
implementations of the repast agent modeling toolkit. ACM Trans.
Model. Comput. Simul., 16:1–25, January 2006.

NNS05. A. Nguyen, T. Nakano, and T. Suda. Learning from nature: Network
architecture inspired by biology. ACM Crossroads, 11(4):3–7, 2005.

NP01. L. Nigro and F. Pupo. Schedulability analysis of real-time actor
systems using Coloured Petri Nets. In G.A. Agha, F. De Cindio, and
G. Rozenberg, editors, Concurrent Object-Oriented Programming
and Petri Nets – Advances in Petri Nets, LNCS 2001, pages 493–
513. Springer, 2001.

NS76. A. Newell and H.A. Simon. Computer science as empirical enquiry.
Communications of the ACM, 19(3):113–126, 1976.

144 References

Nwa96. H.S. Nwana. Software agents: An overview. Knowledge Engineering
Review, 11(3):205–244, 1996.

OWB04. T. Osman, W. Wagealla, and A. Bargiela. An approach to roll-
back recovery of collaborating mobile agents. IEEE Transaction on
Systems, Man and Cybernetics, 34(1):48–57, February 2004.

OZ04. A. Omicini and F. Zambonelli. Challenges and research directions
in agent-oriented software engineering. Autonomous Agents and
Multi-Agent Sytems, 9(3):253–283, November 2004.

Pic01. G.P. Picco. Mobile agents: an introduction. Microprocessors and
Microsystems, 25(2):64–75, February 2001.

Pit. Pitch Kunskapsutveckling AB. prti 1516. http://www.pitch.se/

prti1516/default.asp.
PL05. L. Panait and S. Luke. Cooperative Multi-Agent Learning: The

State of the Art. Autonomous Agents and Multi-Agent Systems,
11(3):387–434, 2005.

Ple99. S. Pleisch. State of the art of mobile agent computing - security,
fault tolerance, and transaction support, 1999.

PR90. M.E. Pollack and M. Ringuette. Introducing the tileworld: experi-
mentally evaluating agent architectures. In Proc. of National Con-
ference on Artificial Intelligence, pages 183–189, 1990.

PS97. H. Peine and T. Stolpmann. The architecture of the ara platform
for mobile agents. pages 50–61. Springer Verlag, 1997.

PS09. D. Pawlaszczyk and S. Strassburger. Scalability in distributed sim-
ulations of agent-based models. In Winter Simulation Conference
(WSC), 2009.

PSS99. H. Praehofer, J. Sametinger, and A. Stritzinger. Keywords discrete
event simulation using the javabeans component model, 1999.

PV07. E. Posse and H. Vangheluwe. Kiltera: A simulation language for
timed, dynamic structure systems. In Proc. of 40th Annual Simu-
lation Symposium (ANSS ’07), pages 293–300, March 2007.

Rao95. A.S. Rao. Decision procedures for propositional linear-time
belief-desire-intention logics. In M. Wooldridgen, J. Muller, and
M. Tambe, editors, Proceedings of the Workshop on Agent Theo-
ries, Architectures and Languages (ATAL’95), pages 1–39, Berlin,
Germany, 1995. Springer-Verlag.

RC05. M. Remondino and A. Cappellini. Minority game with communica-
tion of statements and memory analysis: a multi-agent based model.
Int. J. of Simulation, 6(5):42–53, 2005.

rep. Repast projects.
RG91. A.S. Rao and M. Georgeff. Modelling rational agents within a BDI-

architecture. In J.F. Allen, R. Fikes, and E. Sandewall, editors,
Proceedings of the International Conference on Knowledge Repre-
sentation and Reasoning, pages 473–484, 1991.

RG95. A.S. Rao and M.P. George. BDI agents: From theory to practice.
In Proceedings of the First International Conference on Multi-Agent
Systems, pages 312–319, San Francisco, USA, 1995.

RK95. S.J. Rosenschein and L.P. Kaelbling. A situated view of represen-
tation and control. Artificial Intelligence, 73(1–2):149–173, 1995.

http://www.pitch.se/prti1516/default.asp
http://www.pitch.se/prti1516/default.asp

References 145

RMDLCMZ09. José L. Risco-Mart́ın, Jesús M. De La Cruz, Saurabh Mittal, and
Bernard P. Zeigler. eudevs: Executable uml with devs theory of
modeling and simulation. Simulation, 85:750–777, November 2009.

SBS00. L. Silva, V. Batista, and J. Silva. Fault-tolerant execution of mo-
bile agents. In Proceedings of International Conference on Depend-
able Systems Networks, pages 135–143, Washington, DC, USA, June
2000. IEEE Computer Society.

SG96. M. Shaw and D. Garland. Software architecture: perspective on an
emerging discipline. Prentice-Hall, 1996.

Sim. Simagent.
SPR+08. Mittal S., Zeigler B. P., Martn J. L. R., Sahin F., and Jamshidi.

modeling and Simulation for Systems of Systems Engineering. John
Wiley & Sons, Ltd., 2008.

SR98. B. Selic and J. Rumbaugh. Using UML for modelling complex real-
time systems. http://www.rational.com/media/uml/resources/

documentation/umlrt.pdf, 1998.
SS03. K.M. Sim and W.H. Sun. Ant colony optimization for routing and

load-balancing: Survey and new directions. IEEE Transactions on
Systems, Man and Cybernetic, 33(5):560–572, September 2003.

SU00. Bernd Schattenberg and Adelinde M. Uhrmacher. Planning agents
in james, 2000.

Swa. Swarm. http://www.swarm.org.
Syc98. K.P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92, 1998.
Ter. Terracotta. http://www.terracotta.org.
TPA05. G. Tan, A. Persson, and R. Ayani. HLA federate migration. In

Proc. of the 38th Annual Simulation Symposium (ANSS05), pages
243–250. IEEE Computer Society, 2005.

TZC+06. G. Theodoropoulos, Yi Zhang, D. Chen, R. Minson, S. J. Turner,
Wentong Cai, Yong Xie, and B. Logan. Large scale distributed sim-
ulation on the grid. In Proc. Sixth IEEE International Symposium
on Cluster Computing and the Grid Workshops, volume 2, pages
63–63, 16–19 May 2006.

VA01a. C. Varela and G. Agha. Programming dynamically reconfigurable
open systems with SALSA. ACM SIGPLAN Notices, 36(12):20–34,
December 2001.

VA01b. C. Varela and G. Agha. Programming dynamically reconfigurable
open systems with SALSA. In Proc. of OOPSLA’01, 2001.

VCA02. N. L. Vijaykumar, S. V. Carvalho, and V. Abdurahiman. On
proposing statecharts to specify performance models. International
Transactions in Operational Research, 9(3):321–336, 2002.

VCAA06. N. L. Vijaykumar, S. V. Carvalho, V. M. B. Andrade, and V. Abdu-
rahiman. Introducing probabilities in statecharts to specify reactive
systems for performance analysis. Comput. Oper. Res., 33(8):2369–
2386, 2006.

VMT09. Suryanarayanan V., R. Minson, and G. Theodoropoulos. Synchro-
nised range queries in distributed simulations of multi-agent sys-
tems. In 13th IEEE International Symposium on Distributed Simu-
lation and Real Time Applications (DS-RT 2009), Singapore, 2009.

http://www.rational.com/media/uml/resources/documentation/umlrt.pdf
http://www.rational.com/media/uml/resources/documentation/umlrt.pdf
http://www.swarm.org
http://www.terracotta.org

146 References

vVJP09. David Šǐslák, Přemysl Volf, Michal Jakob, and Michal Pěchouček.
Distributed platform for large-scale agent-based simulations. pages
16–32, 2009.

Whi99. J.E. White. Telescript technology: mobile agents. pages 460–493,
1999.

WJ95. M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(1):115–152, 1995.

WJ98. M. Wooldridge and N.R. Jennings. Pitfalls of agent-oriented devel-
opment. In K.P. Sycara and M. Wooldridge, editors, Proceedings of
the Second International Conference on Autonomous Agents, pages
385–391, New York, 1998. ACM Press.

Woo97. M. Wooldridge. Agent-based software engineering. In IEE Proceed-
ings on Software Engineering, pages 26–37, February 1997.

Woo02. M. Wooldridge. An introduction to multi-agent systems. John Wiley
& Sons, Ltd., 2002.

Wor07. DEVS World. Devs world: A platform for developing advanced
discrete-event simulation at worldwide scale. In Internal documen,
2007.

WPM+05. D. Weyns, H.V.D. Parunak, F. Michel, T. Holvolet, and J. Ferber.
Environments for multiagent systems, state-of-the-art and research
challenges. In Environments for Multi-Agent Systems: First Int.
Workshop, E4MAS 2004, LNAI 3374, pages 1–47. Springer-Verlag,
2005.

WPW+97. D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet.
Concordia: An infrastructure for collaborating mobile agents. In
Proceedings of the First International Workshop on Mobile Agents,
pages 86–97, London, UK, 1997. Springer-Verlag.

WVP+05. Danny Weyns, H. Van, Dyke Parunak, Fabien Michel, Tom Holvoet,
and Jacques Ferber. Environments for multiagent systems: State-
of-the-art and research challenges. in: Revised papers of the e4mas
workshop at aamas04. volume lncs, 2005.

YWCTM09. Liang Y., S.J. Turner W. Cai, G.K. Theodoropoulos, and R. Min-
son. Interfacing repast with hla using a generic architecture for
cots simulation package interoperability. In Joint SISO/SCS Spring
Simulation Interoperability Workshop, San Diego, CA, 2009.

ZBB+08. A. Zilka, G. Bevin, G. Boner, T. Gautier, O. Letizi, and A. Miller.
The Definitive Guide to Terracotta: Cluster the JVM for Spring,
Hibernate and POJO Scalability. Apress, Berkely, CA, USA, 2008.

ZBC+98. B.P. Zeigler, G. Ball, H. Cho, J.S. Lee, and H.S. Sarjoughian. the
devs/hla distributed simulation environment and its support for
predictive filtering, 1998.

ZMKK96. B. P. Zeigler, Y. Moon, D. Kim, and J. G.n Kim. Devs-c++: A
high performance modeling and simulation environment. In HICSS,
pages 350–359. IEEE Computer Society, 1996.

ZPK00. B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling
and Simulation (second ed.). Academic Press, New York, 2000.

ZS03. B.P. Zeigler and H.S. Sarjoughian. Introduction to devs modelling
and simulation with java: developing component based simulation
models. http://www.acims.arizona.edu, 2003.

http://www.acims.arizona.edu

	Concepts of Agent-based Computing
	Introduction
	Agent metaphor
	Architectures
	Deliberative Architectures
	Reactive Architectures
	Hybrid Architectures

	Foundation technologies
	Agent platforms

	Mobile agents
	Benefits of mobile agents
	Mobile agents technology

	Distributed agent-based simulation
	Discrete-event simulation
	Distributed simulation
	The problem of shared state

	Conclusions

	M&S formalisms, middleware, tools
	Introduction
	Formalisms
	DEVS
	Statecharts

	Middleware
	HLA-RTI
	Terracotta

	Tools
	RePast
	Aspect oriented programming: AspectJ

	The Theatre architecture
	Introduction
	Theatre basics
	Actor modeling and behavior
	Structure of a theatre
	Agent naming
	Agent migration
	Dynamic model reconfiguration

	Theatre on top of HLA
	Time management
	Lifecycle of a Theatre-based mederation
	An UAV modeling and simulation example
	Experimental mesults
	Model scaling and simulation performance
	Related work

	Supporting M&S formalisms through Theatre
	Introduction
	Hierarchical actors
	A modelling example

	Actors for DEVS M&S
	ActorDEVS
	DEVS-WORLD Vision
	Wrapping ActorDEVS in DEVS-WORLD
	Variable structure system example
	Configuration, deployment and simulation

	Theatre over Terracotta
	Introduction
	Design issues
	A Predator/Prey model
	Greedy strategy (str1)
	Minority game strategy (str2)
	EnvActor behavior

	Simulation experiments
	Strategies performance
	Simulation performance

	Distributing situated multi-agent systems
	Introduction
	Distributing spatial environments
	The problem of distributed shared state
	A mechanism for conflict resolution

	Using time as a tie-breaking mechanism
	The basic version of CLT
	Consistency among updates: adding the step slot
	Multiple events at the same virtual-time: adding the epoch slot
	Remote operations

	Supplying stage to actors in Theatres
	Distributing RePast on top of Theatre
	Related work
	Inside RePast
	HLA_ACTOR_REPAST Design Issues
	Tileworld Model Example
	Simulation experiments

	Conclusions and Outlook
	References

