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Introduction

1.1 Background and Motivations

An information society [17], such that we live in, is a society in which information
has a great impact on daily life. We are entering a new phase ofsociety [17]: we
are moving from an industrial economy to aknowledge economywhereby wealth is
created through the economic exploitation of understanding.

According toInternet World Stats1 currently there are more than 1,966,514,816
internet users (June 30, 2010). These users generate a greatquantity of data. Few
examples are (year 2009)2:

• 90 trillion - The number of emails sent on the Internet in 2009.
• 247 billion - Average number of email messages per day.
• 234 million - The number of websites as of December 2009.
• 47 million - Added websites in 2009.
• 126 million - The number of blogs on the Internet.
• 350 million - People on Facebook.
• 4 billion - Photos hosted by Flickr (October 2009).
• 12.2 billion - Videos viewed per month on YouTube in the US (November 2009).

1 http://www.internetworldstats.com/stats.htm
2 Website stats from Netcraft (http://news.netcraft.com/archives/2009/
12/24/december_2009_web_server_survey.html).

Email stats from Radicati Group (http://www.radicati.com/?p=3237).
Malware stats from Symantec (http://eval.symantec.com/mktginfo/
enterprise/other_resources/b-symc_intelligence_quarterly_
oct-dec_2009_20949850.en-us.pdf) and McAfee (http://www.mcafee.
com/us/local_content/reports/7315rpt_threat_1009.pdf). Online
video stats from YouTube (http://youtube-global.blogspot.com/2009/
10/y000000000utube.html).

Photo stats from Flickr (http://blog.flickr.net/en/2009/10/12/
4000000000/) and Facebook (http://www.facebook.com/press/info.
php?statistics). Social media stats from BlogPulse (http://www.blogpulse.
com/) and Facebook
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• 2.6 million - Amount of malicious code threats at the start of2009 (viruses,
trojans, etc.).

These numbers highlight two increasing needs:

1. Information management, which consists in the creation,distribution, diffusion,
use, integration and manipulation of data.

2. Discovery of useful knowledge from this information.

In this scenario, new application contexts arise, whose solutions represent new
forms of economic gain for industry and new challenges for researchers. Examples
are bioinformatics, fraud detection, collaborative filtering, text analysis, spatial and
temporal data analysis, and so on. Each one of these contexts, due to their own intrin-
sic difficulty, needs specific solutions aimed to effectively and efficiently resolve the
related problems; very often solutions require a domain knowledge of the application
context environment.

The goal of the thesis is to study some of these contexts, where knowledge dis-
covery is needed, and to provide them formal and organic solutions.

1.2 Main Contributions

The first effort, of the thesis, is to provide a formalizationfor the process of knowl-
edge discovery, through the definition of a formal language for data mining [67].

This need arises from the fact that, although in recent yearsdata mining has
become increasingly in research, yet to date it has no standard formalization, rec-
ognized by the scientific community. This means that, unlikethe related problem of
Query Answering [77], with its Relational Calculus [36], Relational Algebra [5] and
SQL [14], data mining is associated with no formal language and no operational al-
gebra. The reason is rather obvious: data mining tasks are incredibly heterogeneous
(in the input data format, data structures, algorithms, etc), so it is very difficult to de-
fine basic operators that can support the birth of an algebra and that don’t affect the
complexity of the operations (dealing with large amounts ofdata, there are practical
constraints on the complexity of the algorithms).

The proposed language comes from the Object Oriented SQL [69] and enriches
its grammar with some operators that allow to express miningprocesses. The lan-
guage is based on a formally defined algebra, which aims to unite the world of data
and information with the world of concepts and knowledge.

After the definition of this inductive query language, the thesis tries to analyze
some application contexts and tries to give them solutions that could be competitive
with the current literature. The studied problems are three: classification in hostile
environments, collaborative filtering and tree-based datamining.

Classification in hostile environments

Given a domain, whose elements can be grouped into known categories,classifica-
tion is defined as the process of assigning domain samples, whose category (class)
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is not known, to one of the categories of the domain. Classification consists of two
phases:

1. Generation of mathematical models (classifiers) from a subset of the domain
(called training set), whose elements exhibit the categorythey belong to.

2. Assignment to the categories of new domain elements whoseclasses are un-
known, exploiting the mathematical models defined in the previous phase.

Classification in hostile environments has mainly three difficulties: low occurrence
in the domain of cases of interest, low separability betweenthe cases of interest and
the rest of the samples, the presence of noise. The difficultylies in the definition
of mathematical models, since in this context, the statistical theory fails for lack of
sufficient samples and their common characteristics, and for errors in the data.

The thesis proposes two solutions. One solution is a hierarchical model based
on an associative classifier whose accuracy is improved by a series of probabilistic
classifiers. The second solution is based on a maximum entropy model [20] whose
features are determined by association rules discovered inthe data.

Collaborative filtering

Recommender systems are applications born for that companies that offer a range
of products/services to a user base. Their goal is to answer to this question: given a
specific user, which are the products/services that she has not yet purchased, but for
which she may show a strong interest?

Giving an answer to this question is not simple, and in many cases, the currently-
in-use recommender systems answer by using collaborative filtering techniques [97].
These techniques are a family of mathematical models that are based on past pur-
chases of the users without considering additional information. The basic assump-
tion is a principle of conservation of the users’ tastes: users who have shown similar
preferences in the past, most likely will continue to show similar preferences in the
future.

All data in this case can be seen as a big matrixM , where theu-th row represents
the preferences of a useru, while thei-th column represents the set of preferences
given to an item (product or service)i. The preferences can be quantified with a real
or natural number. The biggest problem, associated with this data structure, is the
sparsity ofM : not all users give a preference to all items, indeed the total number of
votes recorded inM is considerably smaller than the size of the matrix.

The thesis proposes a model for collaborative filtering based on latent factors. Its
scheme is hierarchical and differs from the state-of-the-art approaches in the liter-
ature for its flexibility and for the reduction of imposed constraints. The algorithm
is a coclustering (or biclustering) approach [25], which aims to minimize the mean
square error of prediction procedure via an Expectation Maximization Model [22].

Tree-based data mining

In some context, data mining tasks need of domain knowledge in order to get good
accuracies, hence, it’s crucial to be able to manage this knowledge. Today, with the so
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called Semantic Web and Internet of the Future, more and moreof this knowledge is
stored in a format become a de facto standard: XML (Extensible Markup Language).

In these years, researches proposed new formulations and formalization of XML
mining. The difficulty lies in the fact that the XML format is tree-structured and not
flat like the tuples in a database. It’s essential to define what are the features on which
to base the techniques of mining. Moreover, given this nature of tree-like structure, it
becomes incredibly important to pay attention to the computational complexity of the
defined algorithms (since the structure of an XML document can be very complex).

The thesis proposes a model for the mining of tree structureddata: its goal is to
show a hierarchical clustering that can be competitive withthe current literature and
can simplify the complexity of the data analysis. The model addresses the problem
in several steps:

1. first defines the features to separately analyze; in order nodes, edges and paths.
2. for each feature launches mining tasks.
3. returns the results of the entire analysis.

1.3 Organization

The the thesis is structured as follows.

• Chapter 2 presents an overview of the aforesaid topics studied in this work;
• Chapter 3 presents a framework for a definition of a language for the knowledge

discovery process;
• Chapter 4 presents the two proposed algorithms for the classification in imprecise

environments;
• Chapter 5 proposes an hierarchical approach for collaborative filtering;
• Chapter 6 shows an algorithm for clustering of tree-base data mining (XML doc-

uments);
• Finally, Conclusions and Future Works are in chapter 7
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In this chapter, a view of the state-of-art of the literaturewith regard to the aforesaid
topics is presented.

2.1 Languages for data mining

The development of suitable data mining query languages hasbeen lately investi-
gated from different perspectives, with two main objectives [53]. On the one hand,
focus is to provide an interface between data sources and data mining tasks. Under
this perspective, a data mining query language is seen as a standard mean for specify-
ing data sources, patterns of interest and properties characterizing them. On the other
hand, a data mining query language is meant to support the design of specific proce-
dural workflows, which integrate reasoning on the mining results and possibly define
ad-hoc evaluation strategies and activations of the data mining tasks. The underlying
idea here is to embody data mining query languages in a more general framework,
where effective support to the whole knowledge discovery process is provided.

An influential foundation for data mining is the3W Model, originally intro-
duced into [64] and subsequently refined by [26], that is reviewed next.

3W Model stands for Three Worlds for data mining: the D(ata)- world, the
I(ntensional)-world, and the E(xtensional)-world. TheD-World represents the raw
data to be analyzed in terms of the basic entities of relational algebra, i.e. relational
schemas and extensions. The attributes of such entities areassociated with corre-
sponding domains, that can be either categorical or numeric. Most activities, carried
out in the preprocessing phase of a typical knowledge discovery application, can be
modeled by means of specific operators of an extended relational algebra, that adds
to the usual algebraic operators.

Objects in theI-World represent, instead, a particular class of data mining
models, i.e. regions that can be defined as (sets of) conjunctions of linear inequality
constraints on the attributes of the entities in theD-World. Starting from a set of
basic regions, further regions can be formed via the definition of composition opera-
tors.
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In theE-World, a region is simply represented as an enumeration of all the tu-
ples belonging to that region. Relations in this world are obtained by combining the
relations of the two worlds previously defined, so that the schema of the resulting re-
lation is the union of the schemas of some relation in theD-World and some other
relation in theI-World. Thus, the resulting3W Model can be specified as a set of
three worlds: theD-World (data world), theI-World (intensional world), and the
E-World (extensional world). Entities in the three aforesaid worlds can be related
via suitable inter-world operators. Precisely, a generic mining operatorregionize
extracts regions in theI-World from data in theD-World. These regions can be
iteratively refined by means of a mining loop from theI-World to theI-World.
The population operatorPOP creates a relation in theE-World, starting from some
regions in theI-World and some other relations in theD-World. Finally, compos-
ite objects of theE-World can be projected to the other two worlds via the operators
πRDA andπA, that allow to return in theI-World andD-World, respectively, via
a simple selection of the proper attributes (data or constraints) within theE-World
relation.

The3W Model is mightily interesting for many reasons. Foremost, it provides
a view of data mining in algebraic terms: a knowledge discovery process is the appli-
cation of a sequence of operators in order to transform a set of tables. Furthermore,
it is also fascinating from a methodological point of view: the object representa-
tion of 3W Model entities and the implementation of a suitable set of operators are
key elements in the design of a powerful tool for knowledge discovery. However,
some major limitations affect the3W Model. In theD-World there is no possibil-
ity to express complex relations (i.e. cyclic relation), because the nesting of this data
model has a fixed depth. Furthermore, a more serious limitation lies in theI-World,
where regions are expressed by linear inequality sets. Thismeans that fundamental
mining models are not expressible, since their representations require more complex
mathematic structures (i.e. SVM and clustering results, time point series, surround-
ing regions and so forth). This thesis, in chapter 3, proposes an algebra, namely2W
Model, that avoids both the aforesaid limitations of the3W Model. Indeed, it en-
ables the description of complex objects and their properties and also supports the
extraction all required patterns from raw data.

2.2 Classification in hostile environments

A wealth of approaches to learning classification models within imprecise domains
exists in the literature, whose emphasis is mainly at addressing the issues related to
class imbalance and different misclassification costs.

Cost-sensitive learning methods [38, 85] have been explored for accounting the
issues related to rare classes and different misclassification costs. The idea is to bias
the learning process towards rare classes by assigning an appropriately higher value
to the recognition of the minority class(es) with respect tothe identification of the
majority class(es). The resulting classification model hashence broader decision re-
gions associated to the minority class(es), would boundaries are suitably extended
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via the specification of misclassification costs to cover more cases from the minority
class(es), even if at the expense of an increased number of (misclassified) cases from
the majority class(es). Nonetheless, the domain-specific information on the individ-
ual misclassification costs is seldom known or hardly quantifiable in an objective
manner whenever related to domain experts’ subjectiveness.

Various specific evaluation metrics have been also investigated for dealing with
rare classes and different misclassification costs. The starting point here is that classi-
fication accuracy is not well-suited for imprecise domains,since it is strongly biased
against rare classes and assumes equal misclassification costs. This has caused the
widespread use of some alternative metrics in imprecise domains. ROC analysis is
commonly used in machine learning for visualizing and evaluating the performance
of classifiers. In particular, within an imprecise domain, the ROC space allows to
decouple classifier performance from knowledge of both class and cost distributions.
The overall performance can be summarized into a single figure, namely the Area
Under the ROC Curve (AUC), which is not biased in favor of the majority classes.
The approach in [89] proposes an elegant framework that combines ROC analysis,
decision analysis and computational geometry for robust classification in imprecise
domains. However, a disadvantage of the method is that it requires the apriori identi-
fication of some classifiers, whose ROC curves are dominatingfor certain operating
conditions. This clearly involves the selection and exploitation of different induction
schemes to learn as many classification models under variousoperating conditions
as well as their experimental evaluation for the purpose of identifying those areas of
the ROC space, in which the curve of one classifier dominates over the others. Such
a preliminary process also impacts the time efficiency of building the ROC convex
hull.

Sampling involves altering the original class distribution for the purpose of at-
tenuating or removing rarity. There two basic forms of sampling. In particular, un-
dersampling [73] aims at filtering cases from the majority classes, while retaining
the initial population of the minority classes. Oversampling [60] is instead devoted
to replicate examples from the minority classes. Both methods have disadvantages.
Precisely, undersampling wastes potentially significant examples from the majority
classes that may be useful to enforce class separation, thereby hindering the perfor-
mance of the resulting classifier. Oversampling prevents from missing certain por-
tions of the data space, in which a very small number of cases from the minority
classes are located. This leads to the formation of the associated decision regions.
Replication clearly involves augmenting the duration of the learning process. Also,
since no new information is injected into the training data,oversampling is also sus-
ceptible to overfitting especially when data is noisy. In some circumstances, this
could lead to the formation of classification rules that cover one replicated case.

Advanced sampling methods have also been considered. In particular, undersam-
pling for majority classes is coupled in [29] with a special form of oversampling for
the minority classes, that creates new synthetic cases fromthese latter classes. The
technique is effective at inducing a stronger generalization for the minority classes
which neatly contrasts to the specialization induced by pure replication. However, it
is still susceptible to overfitting.
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Progressive sampling [105] approximates the best class distribution for learn-
ing by iteratively adding to some initial training data a certain proportion of cases
from the majority and minority classes, by using a geometricsampling schedule. The
method is empirically proven to converge towards a nearly optimal class distribution
for training. Nonetheless, it assumes the existence of costs for procuring additional
training data and thus it is actually useful when procurement costs are known.

Cost-sensitive boosting [98] has been considered for addressing two major char-
acteristics of imprecise environments, namely the rare classes and the different mis-
classification costs. Boosting is an iterative meta-technique for learning ensemble
classifiers, that associates a weight with each training data. Weights determine the
probability with which the corresponding training cases are adaptively sampled at
each iteration for the purpose of forming a new dataset. The latter is used to learn
a classifier through the application of some basic learning scheme. Cost-sensitive
boosting lends to being used for improving the recognition of minority classes
[49, 66, 30], since the latter are more error-prone w.r.t. tomajority classes and, hence,
their weights are suitably increased. While weight updatingis uniform in pure boost-
ing, i.e. no focus is paid on differentiating between correct and incorrect predictions
of a certain kind, cost-sensitive boosting assigns varyingweights to training cases on
the basis of their classifications (e.g., in the two-class scenario, TP, FP, TN and FN).
The weight updating process in [49] incorporates a misclassification cost adjustment
function: the weights assigned to misclassified (resp. classified) cases from a minor-
ity class are more aggressively (resp. conservatively) increased (resp. decreased) with
respect to the ones associated to misclassified (resp. classified) cases from majority
classes. However, since no distinction is made between cases from a minority class
that are incorrectly classified into a majority class and theviceversa, the approach
in [49] may overly favor recall at the expense of a much lower precision. The latter
limitation is avoided in [66] through a finer weight modification scheme.

A criticism to such approaches is that cost-sensitive boosting may incur into over-
fitting [103], by progressively increasing the weights for cases of the minority classes
that are misclassified. For the purpose of avoiding overfitting and better catching the
minority class, synthetic creation of cases of the minorityclass and boosting are com-
bined in [30]. At each boosting iteration, a certain amount of artificial cases from the
minority class are created. This allows to sample a higher number of cases from such
a class, which ultimately enables the basic learning schemeto focus more on (i.e.
to learn more general decision regions for) the minority class without modifying the
weights of the training cases. However, it is not clear how toestablish the appropri-
ate amount of synthetic minority-class cases to generate. Besides the specific disad-
vantages of the enumerated methods, cost-sensitive boosting presents some general
weaknesses when used for learning classification models in an imprecise domain.
One such a weakness follows from the well-known inability ofboosting at properly
working in the presence of noise. Additionally, there is notgeneral guarantee that it
can improve the recognition of the rare class(es) since its performance is strictly de-
pendent on the performance of the basic learning scheme. If the underlying scheme
always achieves low recall or precision on the rare class(es) of an imprecise domains,
the performance of boosting is also poor [65].
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Finally, segmentation [103] is another major method for catching rare classes
in imprecise domains. The underlying idea is to suitably divide the data space into
disjoint regions, wherein globally rare classes tend to become less rare. Within each
such a region there are two possibilities. The density of rarity is (much) higher w.r.t.
the density in the whole training data. This clearly allows to focus on the rarities
local to the region, which are also less affected by noise. Alternatively, the density of
rarity is (much) lower than the corresponding density in thetraining data. In this cir-
cumstance, rarity becomes nearly unidentifiable in the specific region. Nonetheless,
this is acceptable in practice, since most of the original class rarity is still captured
within other regions.

2.3 Collaborative Filtering Approaches

In this section a brief discussion of the most used techniques for rating prediction
in the collaborative filtering, namelyBaseline, Nearest NeighborsandLatent Factor
models, is provided.

Baseline modelsare basic techniques to compute a rating prediction and are con-
sidered a first step towards the rating personalization and user profiling. These first
approaches to rating prediction are summarized in table 2.1, whereµ denotes the
overall mean of the ratings,ri is the average rating given on the itemi and, sym-
metrically,ru is the average of the ratings given by the useru. Another simple and

Baseline Personalization Predictionr̂ui
OverallMean None µ

ItemAvg Item-oriented ri
UserAvg User-oriented ru

WeightedCenteringItem&User orientedα ri + (1− α)ru
0 ≤ α ≤ 1

Table 2.1.Baseline Approaches

effective baseline approach has been proposed in [16], which describes a set of global
effects that might influence user’s ratings. For example, some users might tend to as-
sign higher or lower ratings to items respect to their ratingaverage (which is known
asUser effect), while some items tend to receive higher (or lower) rating values than
others (Item effect).

Neighborhood based approachesbased on explicit user feedback are the most
commonly used techniques for generating suggestions and predictions. According
to the item-based version [94], the predicted rating is computed by aggregating the
ratings given by each user on the most similar items to the considered item. The
underlying assumption is that the user might prefer items more similar to the ones
she liked before, because they might belong to the same category or might share
similar features. More formally:

r̂ui =

∑

j∈ NK(i;u) sij · ruj
∑

j∈ NK(i;u) sij
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whereNK(i;u) is the set ofK items rated by the useru most similar toi, sij
is the similarity coefficient between the itemi and j, and ruj is the rating given
by the useru to the itemj. Similarity coefficients are compute on a global basis:
two products are considered similar if they have received similar preference values
from common users. Hence, this strategy fails in recognizing local item similarity
within a same user community. Some alternative and more effective formulations
of the neighborhood based approach have been proposed in [16, 70, 15]; the key
idea is to determine the interpolation weights simultaneously according to a global
optimization schema, which better reflects intra neighborhood relationships.

The assumption behindLatent Factor modelsis that the rating value can be ex-
pressed by considering a set of contributes which representthe interaction between
a user and the target item on a set of features. Assuming that there are a set ofK
features which determine the user’s preference on an item, the prediction can be
generated as:

rui =
K
∑

z=1

Uu,z Mz,i

whereUu,z is the response of the user u to the featurez andMz,i is the response
on the same feature by itemi. Several learning scheme have been proposed to over-
come the sparsity of the original rating matrix and to produce accurate predictions.
The learning phase relies either on agradient descenterror-minimization [52, 7] or
a likelihood optimization procedure (based e.g., on Gibbs Sampling or Expectation
Maximization). The peculiarity of a probabilistic model isthe capability of estimat-
ing either the joint probabilityP (r, u, i) (probability that a useru gives ratingr to
the itemi) or the conditional probabilityP (r|u, i) (given a useru and an itemi,
the probability of rating =r). The identification of̂rui for a pair〈u, i〉 can hence be
computed as:

r̂ui = E [r|u, i] =
∑

r

r · P (r|u, i)

whereE [.] is the expected value operator.
ThepLSA(probabilistic latent semantic analysis, orAspect Model) proposed by

Hoffman in [58], is the reference probabilistic approach toCF. The underlying as-
sumption is that the observed user preferences can be modeled as a mixture of user
communities, and each user can be included into one or more groups[58]. Introduc-
ing a latent variableZ (ranging overK possible states) and assuming that userU
and itemI are conditionally independent given the state ofZ, the probability of
observing ratingr for the pair(u, i) can be computed as:

P (r|u, i) =
K
∑

z=1

P (r|i, Z = z)P (Z = z|u)

whereP (Z = z|u) represents the interest ofu to topicz, andP (r|i, Z = z) is the
probability that a user belonging to patternz gives ratingr on the itemi.
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TheUser Profile Modelextends this formulation by employing Dirichlet priors
which provide a full generative model at the user level [78, 79]; a further adoption of
the Latent Dirichlet Allocation approach [24] which includes a response variable, in
this case the ratings on an item, has been proposed in [23].

Recently, novel probabilistic approaches [93, 2, 95] have been proposed to over-
come the need for regularization and in order to prevent overfitting in matrix factor-
ization methods. In particular, theProbabilistic Matrix Factorization[93] proposes
a generative gaussian model for ratings, in the low-rank latent space of users and
items. Extensions of this model include bayesian priors [92] and non-linear matrix
factorization with gaussian processes [74].

Other works focus on combining preference data and content features [63, 3, 96]
to produce more accurate recommendations and to address thecold-start problem.
The underlying idea is to associate items and users with content-specific latent factors
and thus to use this low-dimensional feature representations for regularization.

So far, co-clustering approaches exhibited limited predictive capability (cluster-
ing both items and users makes these approaches more prone tooverfitting). In ad-
dition, the high computational burden make them unfeasiblefor realistic problems.
[54] proposes simultaneous clustering of users and items based on an adaptation
of theBregman coclustering[11]: given an initial co-clustering assignment, the user-
clusters (rows) and item-clusters (columns) are alternately optimized till convergence
is achieved. A probabilistic approach to determine user-item memberships follow-
ing a coclustering strategy has been discussed in [58]: the assumption behind the
Two-Sided Clustering Modelis that the rating value is independent of the user and
item identities given their respective cluster memberships. The clustering approach
is based on a standard EM likelihood maximization procedure.

Both these co-clustering approaches assume the existence of a unique partition
over the item-set and the number of user-communities. Within these models, each
user belongs to exactly a single user-community and each item belong to a single
groups of item. By contrast, theFlexible Mixture Model (FMM)[62] extends the
two-sided model by allowing an individual (either a user or an item) to be included
in different clusters, with different degrees of membership. A novel approach to co-
clustering have been proposed in [88];the resulting model,known asBi-LDA, inte-
grates Dirichlet priors and discovers simultaneous groupsof users/items modeled via
LDA.

2.4 Tree-based data mining

Analyzing tree-based data has become a very important research field, especially
because a lot of information is recorded within XML document, that has become
a frequently used format in the web. The main feature of the XML format is its
structure, that allows to represent a lot of entities.

Hierarchical clustering has been widely adopted for grouping XML documents
by structure [41, 46, 43, 47], because of the high quality of its results.
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However, a major criticism to such proposals is that hierarchical clustering is
impractical for processing large-scale databases of XML documents, being its time
complexity isO(N2), whereN represents the size of the available collectionD of
XML documents. This basic time requirement is further exacerbated in those ap-
proaches, such as [46], that compute similarity between XMLtrees or their struc-
tural summaries through some variant of the tree-edit distance [108]. The latter es-
sentially involves computing the minimum-cost sequence ofoperations, necessary to
transform one entity into the other. This is prohibitively expensive in the aforesaid
setting, i.e., at least quadratic in the number of nodes within both entities [56].

As far as cluster summarization is concerned, the representative introduced
in [41] actually catches all structural properties in a cluster of XML documents.
However, it is computationally expensive, both in time and space. In particular, its
time complexity is proportional to the product of the numberof nodes in the repre-
sentatives associated to the two least dissimilar clustersto be merged in the hierarchy.

A main limitation of [47] is the loose-grained similarity catched by the notion
of s-graph, which is exploited to summarize clusters of XML documents. Indeed,
two XML documents can share the same prototype s-graph and still have significant
structural differences, such as in the hierarchical relationship between nodes. This
has an undesirable effect, i.e., that structurally heterogeneous XML documents may
be placed within a same cluster, with a consequent degrade ofclustering quality.

No emphasis is paid in [46, 43] on providing an intelligible description of the
discovered clusters.

XProj [39] is instead a partitioning method in whichk clusters are formed around
their representatives. These are collections of substructures, with a fixed numbern
of nodes, that frequently occur in the respective clusters and need be recomputed at
each relocation of the XML documents.

A main shortcoming ofXProj is the presence of many input parameters that re-
quire a careful tuning, namely the numberk of clusters, the sizen of the frequent
substructures in a cluster representative and the minim frequency threshold for the
substructures themselves. An improper setting of these parameters makes the dis-
covery of clusters in the data problematic and too dependenton the characteristics
of the available XML documents. Unfortunately, there is no general tuning for such
parameters: a setting may ensure an acceptable performanceover a dataset with cer-
tain structural properties and deliver very poor performances on other datasets with
even small changes in their properties.

Also, in XProj, the notion of cluster representative is functional to somedegree
of cohesiveness of the intermediate clusters of XML documents. It is not meant for
providing an understanding of their structural properties. This justifies two strong ap-
proximations: the inclusion in the representatives of structures only with a fixed size
n (with a consequent loss of structural information from the corresponding clusters),
that may also be unrepresentative (i.e., such that their edge sequences are subse-
quences of the edge representations of the XML documents in the clusters, although
the structures themselves are not substructures of the XML documents).
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Inductive Query Language

The thesis proposes a foundational model for the knowledge discovery process,
called the2W Model, that enables progressive data-mining workflows and, thus,
provides the underlying procedural semantics for data mining query languages. The
2W Model follows from the3W Model [64, 26].

Knowledge discovery is a multi-step process, that involvesdata preprocessing,
different pattern mining stages and pattern postprocessing. In the2W Model the
essence of a knowledge discovery process is summarized as the interaction between
two neatly divided worlds: thedata world and themodel world. More precisely,
as shown in fig. 3.1, data pre-processing and model post-processing are viewed as
world-specific operations. Instead, each intermediate pattern-mining step is consid-
ered as a suitable interaction relating entities in the two worlds.

Fig. 3.1.The KDD process in the 2W Model

This allows to formalize any knowledge discovery process asan algebraic expres-
sion, that is essentially a composition of operators representing (pseudo-)elementary
operations on the two worlds. There are three main kinds of operators for data and
models:



14 3 Inductive Query Language

• Filtering operators are self-injecting operations: indeed, they take a set of entities
as input and produce a new set of entities. Within the figure, theData Filtering
andModel Filteringarrows denote such operations.

• Mining operators relate data entities to model entities. Inpractice, such opera-
tions correspond to the application of a data mining algorithm to a given data
source. The result is a composite object, describing a pattern holding over such
data sources.

• Population operators are meant to model a sort of dual operation w.r.t. mining
functions. In general, a model is a specification of a set of properties holding
in the data. Applying a model to a data source essentially means making such
properties explicit in extensional form: e.g., by associating each trajectory in a
table with the most likely target class according to the model, or by enumerating
the frequent patterns appearing within the trajectory

For the definition of the contours of the two worlds and their operators, one has to
concentrate on which entities (i.e. which patterns) are supported in the model world,
how data entities relate to model entities, and how constraint solving takes place.
The formalization of such aspects strictly depends on the nature of the underlying
applicative domain and pursued objectives. The2W Model is a general model for
the knowledge discovery process within any applicative setting.

3.1 The D-World

The D-World represents the entities to be analyzed, as well as their properties and
mutual relationships. Raw data is organized in an object-relational format. The
D-World can be viewed as a databaseD = {r1(R1), . . . , rn(Rn)} of meaning-
ful entities. The generic entityr(R) is a relation with schemaR. Formally,R =
{A1 : Dom(A1), ..., Ah : Dom(Ah)}, whereA1, . . . , Ah correspond to descriptive
attributes of the data withinr(R) andDom(A1), . . . , Dom(Ah) are their respec-
tive domains. Relationr(R) is defined asr(R) ⊆ Dom(A1) × . . . × Dom(Ah).
Attribute domains can be either primitive or object data types. Primitive types are
assigned to simple features of the data and divide into categorical and numerical do-
mains. Instead, object data types abstractly represent complex real-world entities as
objects, equipped with application-dependant operations. Hereafter, the specification
of relation schema is omitted and it is used the resulting simplified notation to indi-
cate an entity ofD. Furthermore, let denote byt ∈ r a tuple of relationr and, also,
exploit notationt[Ai] to indicate the value of tuplet over a schema attributeAi. So
far, the description of theD-World is general enough to be employed within any
applicative setting. Since this thesis aims at dealing withmovement data, hereafter
theD-World is assumed to be a repository of movement data. From this point of
view, relation schemas involve object data types, modelingthe addressed moving
entities (such as points and regions).

Example 3.1.To elucidate, the reference relationTrajectoriesis introduced, that shall
be used throughout the thesis to describe pedestrian and/orvehicle routes. Its schema
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attribute comprisesID of type integer,Type which takes on the categorical values
(i.e. vehicle and pedestrian), andTrajectory that is of an object data type, named
Moving Point [86]. The latter object actually models the notion of trajectory. More
precisely, given a tuplet ∈ Trajectories, t[Trajectory] represents a sequence of
object locations evolving over time and, also, provides a set of basic operations, for
manipulating route data as well as answering topological and distance queries. 2

3.1.1 D-World Operators

Data in theD-World is manipulated via the usual (unary and binary) operators of
traditional relational algebra, namelyρ, σ, π, ∪, ∩,
and×. Also, aggregation functions (such asSUM,COUNT,AVERAGE,MIN andMAX)
are allowed to operate on collections of domain elements. Notably, aggregates are
not relational algebra operators. In principle, they are used as parameters of some
suitable aggregate formation operator. In this formalization, express queries involv-
ing aggregates are expressed by means of suitably extended projection operators, in
the spirit of the idea in [91], that allow the incorporation of aggregation functions
into the algebra. Algebraic operators can be used to model suitable data preparation/
manipulation tasks.

Example 3.2.The composite operator below

πtrajectory (σType=′′vehicle′′(Trajectories))

represents a trivial reduction of data size and dimensionality. 2

More complex preparation/manipulation tasks can be expressed by incorporating
the basic operations of the (domain-specific) object-relational entities in the corre-
sponding algebraic formulation. This is shown below.

Example 3.3.A basic operation of theMoving Point data type isintersects, which
queries whether two trajectories encounter each other. Such a functionality can be
exploited to filter fromTrajectoriesand count all those vehicle routes that encounter,
somewhere and at any given point in time, the route followed by a reference moving
point (i.e. with a specified identifier). To this purpose, by means of the expression

T = ρRoute←Trajectory(σID=3(Trajectories))

one obtains a new answer relationT consisting of the route followed by the moving
point with ID = 3. Here, for convenience, theTrajectoryattribute ofT is renamed
asRoute. T can now be joined with the whole content ofTrajectoriesto find and
count the desired routes, i.e. those paths that intersect the one inT . This can be
expressed as

πcount(Trajectory)(σTrajectory.intersects(Route)(Trajectories× T ))

whereπcount(Trajectory)(·) is an extended projection operator [91] that returns the
size of the columnTrajectory if it appears in the input relation,0 otherwise. Notice
that, the aforesaid extended projection operator can come in two flavors, depending
on whether or not theTrajectorycolumn is viewed as a bag.
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3.2 The M-World

Movement patterns concerning data entities, their properties and relationships are
modeled as suitable decision regions in the model world, which provides an ele-
gant and expressive framework for both exploratory analysis and reasoning. The
M-World can be represented as a collectionP of patterns, unveiled at the differ-
ent stages of the knowledge discovery process. Each patternp is associated with
an object-relational schemaR and represents a (possibly infinite) relationr overR.
Intuitively, p represents a decision region over the schemaR, so that a decidable
operator⊢ can be devised for bounding such a region.

Definition 3.4. A patternp is any (possibly infinite) set{t1, . . . , tn} of tuples inD
such that, for eachr ∈ D and t ∈ r, the assertiont ∈ p is decidable. The property
t ∈ p is denoted asp ⊢ t. 2

Different types of movement patterns can be defined to populate theM-World,
on the basis of the decision regions of interest. Hence, various definitions are possible
for the⊢ operator. To elaborate on the latter aspect, the semantics of the operator for
some models of fig. 3.2 is exemplified in the next. In particular, the thesis focuses on
the identification of moving objects within theTrajectoriesrelation of Example 3.1,
since this is generally a major target of investigation in movement data analysis.

Fig. 3.2.A taxonomy of abstract data types in the M-World

Example 3.5.SINGLE-CLASS CLASSIFIER . Also, let the patternp(pedestrian)

be of the formspeed ≤ 10Km/h, wherespeed is the instant speed of the moving
object at hand. Informally,p(pedestrian) represents all those tuples exhibiting instant
speed less than10Km/h, which, according to the common sense, can be labeled
as ”pedestrian”. Each moving objectt ∈ Trajectories can be equivalently repre-

sented by its explicit route(l1, ts1)
speed1→ . . .

speedn−1→ (ln, tsn), i.e. a time-ordered
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sequence of locationsli with respective time stampstsi, wherespeedi is the instant
speed of the transition between locationsli−1 and li. A generic moving objectt is
recognized byp(pedestrian), i.e., p(pedestrian) ⊢ t, if speedi ≤ 10Km/h for all
i ∈ {1, . . . , n− 1}. 2

Example 3.6.T-Pattern Let p be a temporal annotated pattern [55] of the formr1
tc1→

. . .
tcn−1→ rn) (whereri is a spatial region andtci is a time constraint of the form

tmin
i ≤ t ≤ tmax

i . A moving objectt ∈ Trajectories is recognized byp, i.e.,p ⊢ t,
if t traverses all regionsri in sequence, and the traversal time betweenri andri+1 is
within the time constrainttci. 2

Starting from the basic patterns inP , it is possible to define composite patterns
as suitable combinations of patterns from possibly different prototypes. The individ-
ual instance of a prototype enumerates only the raw data thatresults into a certain
outcome when related to the pattern. However, in general, raw data can originate
multiple outcomes. The notion of composite pattern is essentially an abstraction that
allows to succinctly query multiple patterns of different prototypes for the recognized
raw spatio-temporal data.

Definition 3.7. COMPOSITE PATTERN. A composite patternp is defined as fol-
lows:

• p ≡ p with p ∈ P is a composite pattern and the⊢ operator is straightforwardly
extended top, sincep ⊢ t coincides withp ⊢ t in this basic definition;

• the disjunctionp1 ∨ p2 of two composite patternsp1 andp2 is still a composite
pattern and the⊢ operator is defined asp1 ∨ p2 ⊢ t if and only if eitherp1 ⊢ t
or p2 ⊢ t;

• the conjunctionp1 ∧ p2 of two composite patternsp1 andp2 is still a composite
pattern and the⊢ operator is defined asp1 ∧ p2 ⊢ t if and only if bothp1 ⊢ t
andp2 ⊢ t;

• the negation¬p of a composite pattern is still a composite pattern, where¬p ⊢ t
if it is not the case thatp ⊢ t. 2

In practice, a composite pattern is an abstraction for representing a new decision
region that follows from the ones associated to the individual patterns.

Example 3.8.Let p(pedestrian) be the predictor defined in Example 3.5 , andp1, p2
two further temporal annotated patterns introduced in Example 3.6. The compos-
ite patternp = p(pedestrian) ∧ (p1 ∨ p2) is a pattern characterizing all pedestrians
traveling with an instant speed less than10Km/h and traversing eitherp1 or p2. 2

Definition 3.9. Let p be a composite pattern. The structural operators�(·), �(·)
and⊙(·) are defined as follows:

• The left and right operators onp, namely�(p) and�(p), return, respectively,
the left and right component ofp. Formally, ifp = p1 ∧ p2 or p = p1 ∨ p2 then
�(p) = p1 and�(p) = p2; otherwise�(p) = �(p) = p.
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• The inside operator⊙(p) on a composite patternp extracts the positive com-
ponent ofp. Precisely, ifp = ¬p1, then⊙(p) = p1; otherwise⊙(p) = p.
2

With an abuse of notation, in the followingP is assumed to be extended to con-
tain both singleton and composite patterns. The latter can be further classified into
local or global patterns, depending on whether such patterns are capable of recog-
nizing each tuple in the associated domain.

Definition 3.10.GLOBAL/LOCAL PATTERN. Letp be a (composite) pattern and
R an object-relational schema.p is said a global pattern w.r.t.R if and only if, for
each relationr overR and eacht ∈ r, it holds thatp ⊢ t. Otherwise,p is said a
local pattern. 2

Example 3.11.Let us consider the patternp(vehicle), which recognizes tuples repre-
senting trajectories exhibiting an instant speed greater than10Km/h. The pattern
p(vehicle) ∨ p(pedestrian) is a global pattern forTrajectories, as it recognizes each
tuple in the relation.

As shown in fig. 3.2, a prototypeP can be associated to a given patternp, de-
pending on whether the decision region characterizes the pattern as a predictive or
descriptive spatio-temporal model. In practice, a prototypeP enumerates a subset of
P , such that some attributesϕ(P)

1 , . . . , ϕ
(P)
n n can be associated to each component

patternp in P. Formally, a prototype associates each pattern with a relational schema,
where some specific pattern properties can be specified.

Definition 3.12.LetR be a relational schema. A pattern schemaP onR is defined
asP = {S × r|S ⊆ P, r ∈ R}. P ∈ P is defined apattern instance.

Example 3.13.Assume thatO = {pedestrian, vehicle} is a set of class labels de-
noting two alternative types of moving-object routes. Then, ClassifierO is any
subset ofP×O. In practice, each pair〈p, c〉 ∈ ClassifierO represents a decision
region denoted byp, whose tuples are associated to classc.

As a further abuse,p ∈ P and〈p, ϕ1, . . . , ϕn〉 ∈ P will be used interchangeably,
where the former notation is a shorthand for the latter.

Definition 3.14. INTRA-WORLD OPERATORS. The usual definitions of theσ and
π (relational) operators can be extended, and can be introduced the three (structural)
operators,�(·), �(·) and ⊙(·), over a pattern schemaP as follows. LetP be a
pattern instance ofP. Then

• σE(P ) = {〈p, t〉 ∈ P |E(t)} whereE is any boolean expression over the schema
R;

• πX(P ) = {〈p, πX(t)〉 | 〈p, t〉 ∈ 2P} whereX ⊆ R.
• γ(P ) = {〈γ(p), t〉 | 〈p, t〉 ∈ 2P}, whereγ(·) corresponds to either�(·), �(·) or

⊙(·). 2
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Example 3.15.Assume that prototypeT - pattern is a pattern schema consist-
ing of three attributes, namely Pattern, Length and Type, that associates each tempo-
ral annotated pattern inP with two characteristic features, respectively the lengthof
the pattern in terms of consecutive spatial regions and the kind of routes that traverse
it. Given the below instanceP of P

Pattern LengthType
p1 5 vehicle
p2 2 pedestrian
p3 3 mixed
p4 4 vehicle
p5 2 pedestrian
p6 3 mixed
p2 ∧ p5 2 pedestrian
p3 ∨ p6 3 mixed

the intra-world operatorsσE(P ) andπX(P ) can be used to suitably manipulate
P . For instance,

σLength≥4∧Type=′′vehicle′′(P )

selects those temporal-annotated patterns inP , i.e.,p1 andp4, that consist of at least
4 spatial regions and are traversed only by vehicles. In the selected fragment ofP ,
theType feature assumes a uniform value, thus becoming uninteresting. It can be
filtered by means of the projection operator

πPattern,Length(σLength≥4∧Type=′′vehicle′′(P ))

Finally, the generic structural operatorγ(P ) can used to decompose the composite
patterns inP into their constituents. Notice thatP contains the composite patterns
p2 ∨ p5 andp3 ∧ p6. In general, depending on the required constituents,γ(P ) can be
instantiated as either�(·), �(·) or⊙(·). 2

Patterns are originated into theM-World from the raw data in theD-World
via a mining operator. Such patterns are in turn used to inject new raw data into the
D-World. Mining and populate operators formalize suitable interactions between
raw data within theD-World and patterns in theM-World. Such interactions are
the basic building-blocks in the definition of a knowledge discovery workflow.

3.2.1 Mining and Population Operators

The population of theM-World starting from the raw data in theD-World is per-
formed through the mining operatork.
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Definition 3.16.MINING OPERATOR. The inter-world mining operator is defined
as k : Dk →!2P . k represents a generic mining scheme, that receives a certain
number of input relations and instantiates in theM-World an instance (i.e., multiple
patterns) of a prototype (that is a pattern schema). 2

Example 3.17.Assume thatD = {Trajectories}, whereTrajectories is the ref-
erence relation of Example 3.1. Ifk represents the T-pattern mining scheme in [55],
k(Trajectories) results into an instanceT − pattern of a prototypeT - pattern . 2

Once accomplished the forward population of theM-World with the required
patterns, these can be employed in the opposite direction, i.e. to backwardly popu-
late theD-World with further data. Interestingly, this does not involve theexplicit
representation of further (composite) objects as in theE-World of the3W Model.
More simply, the raw data that falls within the decision region of a certain pattern
is accumulated in theD-World as new data. The inter-world population operator
1: P ×D → D, is the basic step of the population process.

Definition 3.18.BASIC POPULATION OPERATOR. Letp be a pattern inP and
r a relation inD over an object-relational schemaR. The basic population operator
p 1 r yields a new relation including each tuplet ∈ r within the decision region of
p. Formally,

p 1 r
△
= {t ∈ r|p ⊢ t}

Clearly, the resulting relationp 1 r is still an instance ofR. 2

Example 3.19.Let D andP be respectively theD-World andM-World of Ex-
ample 3.17. Ifp is a temporal annotated pattern over theT - pattern prototype, the
expression

Trajectories1
△
= p 1 Trajectories

results intoD1 = Trajectories, T rajectories1, whereTrajectories1 is a new
relation including those moving entities fromTrajectories, whose routes traverse
the temporal annotated patternp. In practice,D1 represents the population of the
originalD-World with the new raw dataTrajectories1, whose schema is identical
to the one of theTrajectories relation.

The population operator can be straightforwardly generalized to deal with a com-
posite pattern.

Definition 3.20.EXTENDED POPULATION OPERATOR. Let p be a composite
pattern andr a relation inD over an object-relational schemaR. By abuse of nota-
tion, the extended population operator1: 2P → D is defined as follows

p 1 r
△
= t ∈ r|p ⊢ r

Relationp 1 r is again an instance ofR. 2
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The above expression yields an enumeration of all the tuplesin r that fall within
the composite decision regionp.

Example 3.21.Again, letD andP be respectively theD-World andM-World of
Example 3.17. Moreover, assume thatp = pi ∨ pj is a composite pattern such that
both pi andpj are two temporal annotated patterns from the Trajectories relation.
The below expression

Trajectories2 = p 1 Trajectories

populates the originalD-World with a furtherTrajectories2 relation, that enu-
merates all moving objects ofTrajectories that traverse eitherpi or pj . 2

Besides the population operator, it is also defined a patternidentification operator,
that is dual with respect to the former.

Definition 3.22.PATTERN IDENTIFICATION OPERATOR. Assume thatP is a
prototype andP an instance ofP. LetS be any subset ofP . The pattern identification
operator⋄ : 2P ×D → 2P is defined as follows:

S ⋄ r = {p ∈ S|∃t ∈ r : t ∈ p 1 r}
2

In practice, the pattern identification operator queries a homogeneous pattern
collectionS for those models that recognize certain raw data.

Example 3.23.One may ask which are the temporal annotated patterns from pedes-
trian routes, that are also traversed by vehicles. To this purpose, let

Trajectories1 = πType=′′pedestrian′′(Trajectories)

and
Trajectories2 = πType=′′vehicle′′(Trajectories)

be the two required partitions of theTrajectories relation. If T − pattern is an
instance of theT - pattern prototype, that consists of the temporal annotated patterns
in Trajectories1, the foregoing query can be expressed via the following expression

T − pattern ⋄ Trajectories2
2

As a final remark, this work emphasizes that pattern-identification and population
operators can be suitably combined to express complex analytical queries.

Example 3.24.With respect to the setting of Example 3.23, one may further ask
which are the individual vehicle trajectories that traverse the pedestrian T-patterns.
This query can be expressed as

(T − pattern ⋄ Trajectories2) 1 Trajectory2

2
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3.2.2 Discussion

The 2W Model introduces several meaningful differences w.r.t. the3W Model.
Firstly, entities in theM-World can represent any required patterns, even if with a
mathematically complex structure, whereasI-World models correspond to simple
regions, expressible via linear inequalities on the data attributes. Secondly, in the
2W Model, k is not predefined and acts as a template to extract a model fromthe
raw data. Thirdly, the compositeE-World representation is avoided and the objects
of the3W Model that reside within such a world are directly mapped, in the2W
Model, to simple raw data in theD-World. In particular, by the definition of the
population operator, the application of any model to the data in a relation of the
D-World always produces a further relation within theD-World. This ensures
that mining results can be progressively analyzed on a par with raw data via further
manipulations, as exemplified next.

Example 3.25.KDD WORKFLOWS IN THE 2W MODEL.
Consider the case where one wishes to uncover the groups objects that move

close to each other within a certain temporal annotated pattern [55]. In such a
case, temporal annotated patterns are first extracted into the M-World via a spe-
cific mining operatork from theTrajectories relation. This results into an instance
k(Trajectories), that groups all the unveiled patterns. The latter are then treated on
a par with raw data, to the purpose of identifying the trajectories inside the required
pattern, which is accomplished by means of the inter-world population operator. For
instance, Moving clusters [84] are then discovered in the required pattern, by apply-
ing a second mining operatork1 to the newly obtained raw data. In the2W Model,
the algebraic formulation of the aforesaid knowledge discovery workflow is

k1 (p 1 Trajectories)

where p ∈ k(Trajectories) is the pattern to investigate for moving clusters,
that can be chosen by means of the structural operators�(k(Trajectories)) and
�(k(Trajectories)). The above expression reveals the fundamental role of the pop-
ulation operator in the definition of a knowledge discovery workflow. Indeed, the op-
erator enables the progressive and seamless discovery of further patterns in the raw
data resulting at the end of a previous analytical process. 2

Finally, the D-World operators contribute to the expressiveness of the2W
Model framework, by playing a twofold role. On the one hand, such operators can
be used to represent preprocessing tasks, e.g. the reduction in size and/or dimen-
sionality of the available data. On the other hand, they are useful for postprocessing
purposes, such as in the act of filtering interesting patterns.

3.3 IMPLEMENTING THE 2W MODEL

The2W Model is a natural foundation for the development of domain-specific data
mining query languages. Within a specific applicative domain, this mainly involves
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the definition of appropriate mining and population operators, as well as the spec-
ification of the basic object-relational entities. In this thesis, a data mining query
language is proposed. It is designed to support knowledge discovery from movement
data as an actual multi-step knowledge discovery process. The intuition consists in
starting from the conventional SQL language, that providesbasic mechanisms for
interactively querying and manipulating the entities within theD-World (i.e. both
original raw data and the outcome of population operators).These are extended in
two major respects. Firstly, the introduction of a pattern definition statement, i.e.
CREATE MODEL, for the specification of the required movement models, with
which to populate theM-World. Secondly, the capability of supporting generic pop-
ulation operators, which ultimately allows the application of models in theM-World
to raw data within theD-World. For this reason, the traditional join semantics in-
herent in theSELECT-FROM-WHEREstatement is revised, so that raw data and
unveiled patterns can be uniformly manipulated and joined for further analysis.

3.3.1 Model Definition

The CREATE MODELstatement implements the mining operatork of the 2W
Model and builds a particular model in theM-World.

Definition 3.26.MODEL DEFINITION STATEMENT. The syntax of theCRE-
ATE MODEL statement is reported below.

CREATE MODEL <model_name> AS MINE <mining_algorithm>

FROM <<table>>

WHERE <mining_algorithm>.param1 = val1 ⊗ . . .⊗

<mining_algorithm>.paramn = valn 2

The above statement specifies a pattern-discovery task, viaa call to some cor-
responding mining algorithm. In terms of the2W Model algebra, the definition
creates a model object in theM-World named<model_name>, according to the
procedural semanticsk(table), where the effect of the mining operatork is the appli-
cation of the<mining_algorithm> to table. In this respect, an important differ-
ence with respect to the traditional SQLCREATE statement is that the latter guaran-
tees closure by returning a table, so that further SQL statements can be issued over it.
Instead, theCREATE MODEL statement results into a (singleton or composite) ob-
ject, that is an instance of some corresponding abstract data type. Closure is enforced
by the possibility of manipulating both raw data and patternobjects, as previously
said.

TheCREATE MODEL statement enables the development of data mining query
languages, that meet users requirements in any given applicative setting. This chapter
focuses on data analysis and assumes that, hereafter,<mining_algorithm> de-
notes any methods for discovering patterns.<<table>> denotes the primary data
of theD-World, from which<model_name> is extracted, that can be in the form
of either a materialized database table, a view, or a query. TheWHERE clause allows
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to properly specify the input parameters of the invoked<mining_algorithm>,
that involve algorithm-specific parameters, search biasesand thresholds for inter-
estingness measures. Combinations of logical conditions on input parameters are
expressed via any connectors⊗ from traditional SQL grammar.

Notice that, depending on the<mining_algorithm>, background knowl-
edge within some further table of theD-World can be directly taken into account
to assist pattern discovery, by either specifying further tables in theFROM clause or
exploiting the relational organization of the trajectory data. This is useful for several
reasons, such as either enriching the data at hand, derivinggood initial hypotheses
with which to start the search for patterns, defining preference biases that prune the
pattern search space, or providing a reference for the interpretation of the discovered
patterns. Furthermore, since it is often difficult to define adequate statistical measures
for subjective concepts like novelty, usefulness, and understandability, background
knowledge can be also helpful in capturing such concepts more accurately.

Example 3.27.The followingCREATE MODEL statement exemplifies the definition
of a T-pattern mining task, which requires the availabilityin theD-World of the
Trajectories table introduced in the previously section.

CREATE MODEL T_Patterns AS MINE Dynamic_TPattern_Mining

FROM Trajectories

WHERE Dynamic_TPattern_Mining.density = δ AND

Dynamic_TPattern_Mining.snr = ǫ AND

Dynamic_TPattern_Mining.tt = τ

TheT Patterns composite object, as easy to see, is instantiated by applying the
Dynamic_TPattern_Mining algorithm to the basic Trajectory data.

Algorithm-specific parameters appear in the above syntax asfeatures of the
T Patternsobject and are suitably set in theWHERE clause. Here, the minimum den-
sity threshold (density), spatial neighborhood radius (snr) and temporal thresh-
old (tt) are set to suitable values, respectively represented byδ, ǫ andτ . Further
details on the T-pattern mining algorithm and the mentionedinput parameters are
provided in [55]. 2

3.3.2 Data and Model Manipulation

TheSELECT-FROM-WHERE statement can be used to accomplish several different
tasks of the knowledge discovery process. The procedural semantics of the individ-
ual statement is defined as some suitable combinations of2W Model operators.
In the following, the thesis elucidates theSELECT-FROM-WHERE statement in the
manipulation of raw data as well as in the definition and further analysis of patterns.

Raw Data Manipulation. Data manipulation and querying represents the sim-
plest exploitation of the statement.

Example 3.28.QueryQ1 defines a simple preprocessing of trajectory data, before it
is used in any subsequent analytical task.
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SELECT Trajectories.id, Trajectories.Trajectory

FROM Trajectories

WHERE Trajectories.type="vehicle".

Clearly, Q1 filters vehicle trajectories and projects them on attributes ID and
Trajectory, deemed relevant for subsequent pattern discovery.

In terms ofD-World operators, the procedural semantics of the above statement
is

πID,Trajectory(σtype=′′vehicle′′(Trajectories))

2

Hybrid Manipulation of Raw Data and Models . The manipulation of pattern
objects in theM-World enables more advanced uses of theSELECT-FROM-WHERE
statement. By suitably joining data within theD-World and models in theM-World,
it is possible to find out the raw data that meets a particular constraint on some feature
of a certain pattern.

Example 3.29.Consider the below queryQ2, that asks for all trajectories within the
database that intersect a T-pattern.

CREATE MODEL T_Patterns AS MINE Dynamic_TPattern_Mining

FROM Trajectories

WHERE Dynamic_TPattern_Mining.density = δ AND

Dynamic_TPattern_Mining.snr = ǫ AND

Dynamic_TPattern_Mining.tt = τ ;

SELECT Trajectories.id

FROM Trajectories, T_Patterns

WHERE T_Patterns.contains(Trajectories.id)

Procedurally, the above statement involves two steps, i.e.the identification of the
required T-patterns and the hybrid manipulation of the latter with raw trajectory data.
In algebra:

πID(σk(Trajectories).contains(Trajectories.ID)(Trajectories))

2

Progressive Mining Tasks. The possibility of specifying suitable population op-
erators allows multiple stages of analysis for the mining results.

Example 3.30.For instance, to diagnose the causes of mobility congestion, the user
may wish to gain an insight into the collective movement of the vehicles in the answer
to the lastQ2 (example 3.29. In particular, she may focus on the ones returned by
Q2.

CREATE MODEL T_Patterns AS MINE Dynamic_TPattern_Mining

FROM Trajectories
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WHERE Dynamic_TPattern_Mining.density = δ AND

Dynamic_TPattern_Mining.snr = ǫ AND

Dynamic_TPattern_Mining.tt = τ ;

CREATE MODEL Moving_Clusters AS MINE MC

FROM (SELECT *

FROM Trajectories, T_Patterns

WHERE T_Patterns.contains(Trajectories.id))

This pattern discovery task involves the execution of the moving cluster algo-
rithmMC, that is one of the schemes in [84]. In algebra:

kMC(σkTPattern(Trajectories).contains(Trajectories.ID)(Trajectories))

2
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Classification in hostile environments

Various types of classifiers have been proposed in the literature, that meet several
different requirements in a wealth of distinct applicativesettings, such as decision
trees, rule-based classifiers, neural networks, bayesian classifiers, support vector ma-
chines and statistical classifiers [37]. In particular, rule learning is a method for in-
ducing minimal rule-based concept descriptions, that can be used for classification.
Rule-based classifiers are a mainstay of research in machinelearning, because of
various desirable properties such as, e.g., their expressiveness and intelligibility to
humans as well as their efficiency and effectiveness in classification. Such classifiers
have been empirically shown to be effective in processing (sparse) high-dimensional
training data with categorical attributes [99] and are comparable in performance with
other classification methods in several applicative domains [81]. Unfortunately, like
most classification models, rule-based classifiers exhibita poor classification per-
formance in imprecise (multi-class) learning environments, which are challenging
domains wherein cases and classes of primary interest for the learning task are rare.
Besides, minority and majority classes can be hardly separable and the cost of mis-
classifying a case of a minority class as belonging to a predominant class is much
higher than the cost of the dual error. Also, training data may be corrupted by noise,
which further obstacles the identification of rarities.

Imprecise domains are often encountered in practical applications. Examples
include fraud detection [50, 87], intrusion detection, manufacturing line monitor-
ing [90], risk management, telecommunications management[48], medical diagno-
sis [29], text classification [103] and oil-spill detectionin satellite images [72]. The
peculiarities of such settings pose several challenging issues to traditional algorithms
for learning rule-based classifiers, that essentially makethe resulting models low sen-
sitive to rarities.

Rarity is clearly the major obstacle. Rare classes corresponds to the well known
class imbalanceissue [60, 61], i.e. an evenly distribution of classes, suchthat ma-
jority classes overwhelm minority ones. Instead, rare cases are very small portions
of the training data, that can be viewed as exceptional sub-concepts seldom occur-
ring within predominant or rare classes. As it is pointed outin [103], rarity actually



28 4 Classification in hostile environments

prevents conventional algorithms for rule induction from finding and reliably gener-
alizing the regularities within infrequent classes and exceptional cases.

Indeed, class imbalance generally leads to classification models tending to ex-
hibit a high specificity (i.e. capability at recognizing majority classes), coupled with
a low sensitivity (i.e. capability at recognizing minorityclasses).

Rare cases, instead, tend to materialize within the learnt classification models as
small disjuncts[59], i.e. rules covering very few training cases [102]. Small disjuncts
were empirically shown to be a major cause of poor predictiveperformance [104] and
cannot be easily removed without adversely affecting the remaining classification
rules.

The foregoing effects of rarity on rule learning are exacerbated by noise. On one
hand, the latter may further skew class imbalance. On the other hand, it may also
appear to the learner as nearly indistinguishable from rarecases.

Besides rarity and noise, different misclassification costs as well as low class sep-
arability also have a role in making conventional rule learning schemes inadequate
within imprecise domains.

In the last decade, classification based on frequent patterns, also known asasso-
ciative classification, has emerged as a powerful enhancement of conventional rule
learning, based on converging research efforts in machine learning and data mining.
Precisely, the basic intuition behind associative classification is to substitute conven-
tional rule induction with an association-rule mining step. The resulting classification
models, said associative classifiers, consist of class association rules, i.e. suitable as-
sociation rules meeting some specific constraints. The antecedents of these rules are
co-occurrent attribute values, that frequently appear across the training data, while
their consequents are suitable values of the target class attribute. Associative clas-
sification is in principle better suited for unsupervised predictive modeling within
imprecise learning settings: it retains the advantages of traditional rule learning and
also tends to achieve a better performance for several reasons. Foremost, while rule
induction dilutes rarity and produces overly biased rules,associative classification
yields rules with an appropriate degree of generality/specificity, that summarize the
whole training data. Also, the individual class association rules catch strong, i.e.
frequently occurring, associations between (combinations of) data items and class
labels. This is a robust mechanism with which to handle noisein data. Addition-
ally, such associations reflect the inherent semantics of the training data and, thus,
have a high discriminative power. The resulting associative classifiers are statisti-
cally significant and are hence deemed to properly generalize on unseen data [31].
Furthermore, frequent patterns represent a more expressive feature space, where the
original training data is likelier to be linearly separable.

One limitation for associative classification, that is particularly relevant in impre-
cise learning settings, is borrowed from traditional rule learning. More specifically,
the decision regions induced by a rule-based classifier and the true distribution of the
classes in the space of data do not match. Indeed, classes form regions with irregular
and interleaved shapes, whereas the induced decision regions are neatly separated by
boundaries parallel to the features of the data space. As a consequence, those cases
falling within and close to the boundary of a decision regionmay be misleadingly
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predicted as belonging to the class associated with that decision region, even if the
true class membership in the surroundings of the boundary isdifferent. This is prob-
lematic in imprecise applicative domains, wherein the separability between classes is
low, since these form true overlapping (or embedded) regions. In such cases, indeed,
the true regions formed by rare classes may be (partly or completely) overlapped by
the decision regions associated to the predominant classesand, thus, the recognition
of previously unseen cases of the rare classes becomes a major concern.

in this thesis, two approaches are proposed that look at associative classification
from two dual perspectives.

From theglobal-to-localpoint of view, associative rule learning yields a global
(high level) classification model, whose class assignmentsare then refined locally
to the individual classifier rules. In this regard, one approach essentially builds a
hierarchical classification framework, that combines associative rule learning and
probabilistic smoothing [34]. The underlying idea is to usethe individual rules of
an associative classifier to divide the original training data into as many segments,
wherein it is likely that some globally rare cases/classes become less rare. The result-
ing segments are then used to build as many local probabilistic generative models,
that better catch the forms of rarity local to their segments. These probabilistic gen-
erative models are then used to refine the predictions from the classifier rules. Two
distinct schemes are proposed for tightly integrating associative classification and
probabilistic smoothing, that decide the class of an unlabeled case by considering
multiple class association rules as well as their corresponding probabilistic genera-
tive models.

From thelocal-to-globalpoint of view, instead, associative rule learning provides
local data features, that determine global assignments of class probabilities. Therein,
in the second approach, the individual rules of an associative classifier are used as
features. Given a data case, classification takes into account the predictions from
all those rules that are local to the case (i.e. that cover thecase). The relevance of
a rule with respect to its targeted class determines the weight of the corresponding
feature on the discrimination of that particular class. This enables the recognition
of minority classes via those classification rules, that arehighly representative of
such classes (i.e. whose antecedent reflects item co-occurrences that are inherently
characteristic of such classes). The maximum entropy framework is used to elegantly
and seamlessly integrate associative classification with discriminative learning.

4.1 Preliminaries

Here is an introduction of the notation used throughout the manuscript and some
basic notions. LetD be a relation storing the labeled training cases. Also, let the
schema ofD be a setA = {A1 : Dom(A1), . . . , An : Dom(An), L : L} of
descriptive attributes. In particular, featuresA1, . . . , An are defined over as many
categorical or numeric domains, whereas the target class attributeL is a categor-
ical feature. The generic labeled training caset ∈ D is a structured tuple, i.e.
t ∈ Dom(A1) × . . .Dom(An) × Dom(L). Each tuplet can also be equivalently
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represented in a transactional form. Therein, assume thatM = {i1, . . . , im} is a
finite set of items denoting relationships between any attribute ofA butL and a cor-
responding value. Precisely, the generic itemi has the formA = v whereA ∈ A−L.
In the proposed formulation,v ∈ Dom(A) if A is a categorical attribute. Otherwise,
if A is a numeric attribute,v stands for the label of some suitable range of numeric
values, whose center is closest in Euclidean distance to theoriginal value ofA (more
details on the discretization of numeric attributes are provided within section 4.4).

Any unlabeled caseI defined overA can be represented as some suitable subset
of items inM. Notice that there must be exactly one item inI for each attribute
of the relational schemaA. This is concisely expressed by means of the⊂ operator,
whose meaning is revised as followsI ⊂ M = {ij1 , . . . , ijn | ijh ∈ M∧attr(ijh) =
Ah, ∀h = 1, . . . , n}, where notationattr(·) indicates the attribute referred to by the
individual items ofI. Viewed from this perspective, a labeled case overA simply
becomes an unlabeled case supplemented with its corresponding class label. LetL
be a finite domain of class labels, the original datasetD can thus be equivalently
expressed in transactional form overM as a collectionD = {t1, . . . , tn}, in which
the generic labeled case is represented ast = I ∪ {class(t)}, whereI ⊂ M and
class(t) ∈ L denotes the class label oft.

A number of definitions recalled in throughout the manuscript are reported next.

Definition 4.1 (Class association rule).A class association rule (CAR)r : I → c is
a pattern whose implicative catches the association (i.e. the co-occurrence) inD of
some subset of itemsI ⊂ M with a class labelc fromL. ⊓⊔

The notions of support, coverage and confidence are typically employed to define
the interestingness of a ruler.

Definition 4.2 (Support of a class association rule).Let D be a set of training
cases. A training caset ∈ D is said tosupportrule r : I → c if it holds that
(I ∪ {c}) ⊆ t. The support count ofr, denoted byσ(r), is the overall number of
training cases that supportr, i.e.,σ(r) = |{t ∈ D|(I ∪ {c}) ⊆ t}|. The support of
r is instead the fraction of training cases supportingr, i.e.,supp(r) = σ(r)

|D| , where
|D| indicates the cardinality ofD. ⊓⊔

Support is useful to avoid spurious rules. Intuitively, rule antecedents with high
support in the individual classes capture the inherent semantics of the underlying
data, rather than being artifacts.

Definition 4.3 (Coverage of a class association rule).Let D be a set of training
cases. Ruler : I → c is said tocovera training caset ∈ D (and, dually,t is said
to trigger or firer) if the conditionI ⊆ (t− {class(t)}) holds. The set of training
cases covered byr is denoted byDr = {t ∈ D|I ⊆ (t− {class(t)})}. Hence, the
coverage ofr can be defined as the fraction of cases inD that are covered byr, i.e.
coverage(r) = |Dr |

|D| . Analogously, the aforesaid ruler : I → c is said tocoveran
unlabeled training caseI ′ if it holds thatI ⊆ I ′. ⊓⊔
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Definition 4.4 (Confidence of a class association rule).The confidence of a ruler,
denoted byconf (r), is the ratio of support to coverage, i.e.conf (r) = supp(r)

coverage(r) .
⊓⊔

Confidence measures the predictive strength of a CAR.
Although the traditional support and confidence framework allows to effectively

discover all the required class association rules, it stillproduces uninteresting rules
when the class distribution is imbalanced. The point is that, in such cases, confidence
is not a reliable measure of the interestingness of a rule, since it does not properly
take into account the actual implicative strength of the rule, whose antecedent and
consequent can be negatively correlated [8, 6]. To overcomesuch a limitation, it is
possible to consider the degree of positive correlation between the antecedent and
the consequent a rule.

Definition 4.5 (CAR correlation). The correlation of a ruler : I → c, denoted
by corr(r), measures the relationship between the antecedentI and the consequent
c. Formally, it is defined ascorr(r) = P (I∪c)

P (I)P (c) , whereP (I ∪ c) is the occurrence
frequencysupp(I ∪ c) of I ∪ c across a setD of training cases. Analogously,P (I)
andP (c) correspond to the occurrence frequencies ofI andc in D. If corr(r) < 1,
r is negatively correlated. Instead,corr(r) = 1 denotes absence of correlation (i.e.
I andc co-occur by chance), whereascorr(r) > 1 represents positive correlation.
⊓⊔

In highly imprecise learning settings, a class associationrule r is interesting if it
is positively correlated and also meets certain minimum requirements on its support
and confidence. An associative classifier is a suitable disjunction of propositional
if-then rules, that can be used for the classification of unlabeled cases.

Definition 4.6 (Associative classifier).An associative classifierC approximates the
(unknown) discrete-valued case labeling function behindD. The learnt approxima-
tion is represented as a disjunctionC = {r1∨. . .∨rk} of interesting class association
rules extracted fromD. ⊓⊔

An associative classifierC is used in section 4.2 to globally segment the whole
training data, for the purpose of bringing to the surface those originally rare data, that
becomes less rare within each resulting segment. Instead, in section 4.3, the CARs
of C are viewed as properties local to each individual data case.

4.2 TheGlobal-to-Local Supervised Learning Framework

Here is a discussion on aglobal-to-local approach aimed to learn a hierarchical
framework from the training casesD, that consists of two classification levels. At
the higher level, an associative classifier is built such that its component CARs meet
some requirements on the minimum support and confidence. Foreach CARr ∈ C,
the lower level of the framework includes a local probabilistic generative modelP (r)
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that allows to confirm or rectifyr in the classification of an unlabeled case. The over-
all learning process is shown in algorithm. 1. Given a databaseD of training cases
(defined over a setM of items and a setL of class labels), the algorithm begins (at
line 1) by extracting a setR of class association rules fromD via the MINECARS

search strategy.
The rule setR is subsequently sorted (at line 2) according to the total order≺,

which is a refinement of the one in [75]. Precisely, given two rulesri, rj ∈ R, ri
precedesrj , which is denoted byri ≺ rj , if ( i) the confidence ofri is greater than
that ofrj , or (ii ) their confidences are the same, but the support ofri is greater than
that ofrj , or (iii ) both confidences and supports are the same, butri is shorter than
rj .

The learning process proceeds (at line 3) to distil a classifier C by pruningR,
which generally includes a very large number of CARs, that may overfit the train-
ing cases. For this purpose, the overfitting avoidance strategy presented in [27] is
exploited to reduce the complexity of the discovered CARs, while still improving
their error rate. This is essentially accomplished via the removal of individual items
and/or whole rules.

The resulting classifierC may leave some training cases uncovered. Therefore, a
default rulerd : ∅ → c∗ is appended toC (at line 5), such that its antecedent is empty
andc∗ is the majority class among the uncovered training cases.

As a remark, notice that, due to the total order≺ enforced overR, the associative
classifierC is actually a decision list: each training case is classifiedby the first CAR
in C that covers it. In other words, the CARs inC are mutually exclusive, i.e. a
training case is covered by at most one rule of the classifier.As a consequence, the
generic CARr : I → c hereinafter covers the set of all those training cases that are
not covered by any other CAR with higher precedence. More precisely, the definition
of the coverageDr of CAR r is refined intoDr = {t ∈ D|I ⊆ (t − {class(t)}) ∧
∄r′ ∈ C : r′ ≺ r, r′ : I ′ → c′, I ′ ⊆ (t − {class(t)})}. Moreover, the addition to
C (at line 5) of the default rulerd ensures thatC is also exhaustive, i.e. that every
training case ofD is covered by at least one CAR ofC.

Finally, for each CARr ∈ C other thanrd, a local probabilistic modelP(r)

is built (lines 7-9) overDr to catch a better generalization of those globally rare
cases/classes that become less rare withinDr. This allows to refine the prediction
from r with a local generative model that is better suited to deal with the local facets
of rarity.

The MINECARS procedure is covered in subsection 4.2.1. The TRAINLOCAL-
CLASSIFIERstep is instead discussed in subsection 4.2.2, that also covers the classifi-
cation of unlabeled cases (not reported in algorithm 1) in the context of two schemes
for a tight integration between associative and local probabilistic classification.

4.2.1 Mining the Class Association Rules

M INECARS is an Apriori-based algorithm, adopted to mine positively-correlated
CARs from the available training dataD. M INECARS combines into the basic Apri-
ori algorithm [4] two individually effective mechanisms, namely multiple minimum
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Algorithm 1 HierarchicalLearning(M,D,L,τ )
Input: a finite setM of boolean attributes;

a training datasetD;
a setL of class labels inD;
and a support thresholdτ ;

Output: An associative classifierC = {r1 ∨ . . . ∨ rk} and a set of local classifierPri ;
1: R ← M INECARS(M,D, τ);
2: R ← ORDER(R);
3: C ← PRUNE(R);
4: if there are cases inD that are not covered by any rule withinC then
5: C ← C ∪ {rd};
6: end if
7: for each ruler ∈ C, such thatr 6= rd do
8: P(r) ← TRAINLOCALCLASSIFIER(r);
9: end for

10: RETURNC andP(r) for eachr ∈ C

class support [76] and complement class support [8]. Although both designed to deal
with rarity in data, to the best of the candidate’s knowledge, the joint effectiveness
of such mechanisms has not yet been exploited. Algorithm 3 sketches the scheme of
M INECARS algorithm, which divides into frequent itemset discovery (lines 1- 18)
and CAR generation (lines 19- 26).

Frequent itemset discovery starts (at line 3) withC2, a set of candidate2-itemsets,
including an item and a class label. At the generic iteration, M INECARS buildsLk,
a set of frequentk-itemsets, fromLk−1. Two steps are performed to this purpose.
The join step(at line 14) involves joiningLk−1 with itself to yieldC ′k, a collection
of candidatek-itemsets. Notice that this requires joining pairs of frequent k − 1-
itemsets with identical class labels. The well-knownApriori property, according to
which an infrequent itemset cannot have frequent supersets, is then used (at line 15)
to drop fromC ′k thosek-itemsets with at least onek − 1-subset that is not inLk−1.
The support counting step(lines 5- 12) involves counting the occurrences of the
surveyed candidate itemsets inCk by scanning the training dataD. Those candidates
whose support exceeds a class-specific threshold are considered to be frequent and
retained withinLk. The level-wise search halts when no more frequent itemsetscan
be discovered.

Multiple minimum class support [76] is employed at line 13 tothe purpose of au-
tomatically adjusting the global minimum support threshold τ provided by the user
to minimum support threshold specific for each class. Essentially, the generic candi-
date itemsetc is frequent if its support is overτ · σ(class(c)), the minimum support
threshold forclass(c). Multiple minimum class support implements a first stage of
focused pruning, that dynamically assigns a higher minimumsupport threshold to
majority classes (which prevents from yielding several overfitting rules) and a lower
minimum support threshold to minority classes (which enforces the generation of an
appropriate number of rules).
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Complement class support [8] is instead used in the CAR generation stage, to
avoid the specification of a global minimum confidence threshold. In particular, a
specific property of complement class support (shown in [8])is exploited at line 22
to automatically identify a class-specific minimum confidence threshold. According
to such a property, a ruler : I → c is such thatI andc are positively correlated if
and only ifconf (I → c) > σ(c)

|D| , whereσ(c) is the overall number of occurrences
of classc in D. Therefore, the CARs whose confidence exceeds (at line 22) the min-
imum threshold corresponding to their targeted class are guaranteed to be positively
correlated. Thus, both confidence and positive correlationbetween rule components
can be verified without additional parameters or further correlation analysis.

The dynamic selection of a class-specific minimum confidencethreshold acts
essentially a second stage of focused pruning, that ensuresthe discovery of accurate
rules targeting the rare classes and still avoids the generation of an overwhelming
number of rules from the predominant classes.

4.2.2 Training Local Classifiers

To improve the classification performance both in the surroundings of decision
boundaries as well as within the inner areas of decision regions (wherein classes
other than the ones associated to the whole regions may influence the classification
of nearby unlabeled cases), each CARr ∈ C is associated with a local probabilistic
generative modelP(r), trained over the regularities across the training cases local
to Dr. In principle, such regularities are likely to be more descriptive of those glob-
ally rare cases/classes that become less rare withinDr. Hence, the individualP(r)

can be involved into the classification process for more accurately dealing with the
corresponding forms of rarity.

In this thesis, it is adopted, as probabilistic generative model, the näıve Bayes
classification model. It, naturally, allows to incorporatethe effects of locality on
classes and cases in terms of, respectively, class priors and item posteriors. To eluci-
date, an unlabeled caseI ⊂ M is assigned by the generic generative modelP(r) to
the classc ∈ L with highest posterior probability

P(r)(c|I) , p(c|I, r) =
∏

i∈I p(i|c, r)p(c|r)
∑

c∈L

∏

i∈I p(i|c, r)p(c|r)
Locality influences factorsp(c|r)’s andp(i|c, r)’s, whose values are estimated by

computingp(c) andp(i|c) overDr, and allows to better value rare cases/classes. In-
deed, if a significant extent of some form of rarity falls within Dr, the corresponding
cases/classes are obviously less rare than inD and, hence, factorsp(c)’s andp(i|c)’s
are accordingly higher (w.r.t. their values inD). Dually, p(c)’s andp(i|c)’s are sen-
sibly lower, if the density of that form of rarity withinDr is much lower than inD.
However, this is acceptable, since most of that form of rarity is still captured within
some other region(s). An inconvenient behind the adoption of näıve Bayes as the
underlying model for local probabilistic classifiers is itsperformance degrade (e.g.
accuracy loss) due to the attribute independence assumption. To alleviate such an is-
sue, the weaker attribute independence assumption postulated in AODE [101] can be
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Algorithm 3 The process for mining class association rules from data with rarity
Input: a finite set of boolean attributesM;

a training datasetD;
and a support thresholdτ ;

Output: a setR of class association rules;
/* Frequent itemset discovery */

1: I ← ∅, k ← 2;
2: LetL be the set of class labels inD;
3: LetC2 ← {c|c = {l, i} wherel ∈ L, i ∈M};
4: while Ck 6= ∅ do
5: for each candidate itemsetc ∈ Ck do
6: supp(c)← 0;
7: end for
8: for t ∈ D do
9: for c ∈ Ck such thatc ⊆ t do

10: supp(c)← supp(c) + 1
|D|

;
11: end for
12: end for
13: Lk ← {c ∈ Ck|supp(c) > τ · supp(class(c))};
14: C′

k+1 ← {ci ∪ cj |ci, cj ∈ Lk ∧ class(ci) = class(cj) ∧ |ci ∪ cj | = k + 1};
15: Ck+1 ← {c ∈ C′

k+1|∀c
′ ⊂ c such that|c′| = k it holds thatc′ ∈ Lk};

16: k ← k + 1;
17: end while
18: I ← ∪kLk;

/* CAR generation */
19: R ← ∅;
20: for each frequent itemsetI ∈ I do
21: create ruler : I − class(I)→ class(I);
22: if conf (r) > σ(class(I))

|D|
then

23: R ← R∪ {r};
24: end if
25: end for
26: RETURNR;

plugged into the above formulation, that simply refines naı̈ve Bayes by considering
each attribute dependent upon at mostn other attributes in addition to the class. This
is more realistic in practical applications and is empirically shown in section 4.4 to
yield a better performance.

Two alternative approaches for refining the predictions from the associative clas-
sifierC through the local probabilistic generative modelsP(r)’s are discussed next.

Local priors and local instance posteriors.

The idea is to reformulate a generative approach to classification which spans into
local generative models. Given an unlabeled caseI, letΩ = {er|r ∈ C} a space of
events related to the classification ofI via an associative classifierC. More precisely,
the individual eventer corresponds to the coverage ofI through a corresponding
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CAR r ∈ C. The exclusiveness and exhaustiveness of the CARs inC imply, respec-
tively, the mutual exclusiveness and the collective exhaustiveness of the events inΩ.
Therefore, it is possible to employ the well-known law of total probability to define
a joint probability distribution over unlabeled cases and class labels as shown below

p(c, I) =
∑

er∈Ω

p(c, I, r) =
∑

er∈Ω

p(c, I|r)p(r) =
∑

er∈Ω

P(r)(c|I)p(I|r)p(r)

The interpretation of the terms within the above formula is provided next.p(I|r)
represents the compatibility ofI with the ruler. p(I|r) is modeled as the relative
number of items thatI shares withr: intuitively, the number of (mis)matches repre-
sents the closeness ofI to the region bounded byr.P(r)(c|I) denotes the probability
associated withc by the local näıve Bayes classifierP(r) trained overDr. p(r) indi-
cates the supportsupp(r) of CAR r and weights its contributions top(c, I) by the
relative degree of rarity of its antecedent and consequent.

Finally, the probability of classc given the unlabeled caseI can be formalized as
the following generative model

p(c|I) = p(c, I)
∑

c∈L p(c, I)

Cumulative rule effect.

A stronger type of interaction between global and local effects can be injected into
the classification process, if the predictions from a CARr and unrelated local gener-
ative modelP(r′) (with r 6= r′) are compared for selecting the most confident one.
The overall approach sketched in algorithm 4. Precisely, the generic unlabeled case
I ⊂ M is presented to the associative classifierC and the first CARr : I → c (in
the precedence order≺ enforced overC) is chosen (at line 1). Ifr does not coverI,
it is skipped and the next rule is recursively taken into account (at line 20). Other-
wise,r is used for prediction. However, its target classc is not directly assigned toI.
Rather, the local probabilistic generative modelP(r) corresponding tor is exploited
to produce a possibly more accurate prediction (at line 4). Some tests are performed
to identify the more confident prediction (lines 9- 15). If both counterparts agree or
one is deemed to be more reliable than the other one, the better prediction (in terms
of class-membership probability distribution) is returned (lines 10 and 12). Other-
wise, in the absence of strong evidence to reject the prediction fromP(r) (which is
in principle preferable tor, being more representative of the local regularities that
may come from globally rare cases/classes that fall withinDr), r is skipped in favor
of the next CARr′ ∈ C coveringI (at line 14). To this point, ifP(r′) predictsI more
confidently thanP(r) (at line 5), the probability distribution fromP(r′) replaces the
current best distribution yielded byP(r) (at line 6) and the choice of a better predic-
tion is hence made betweenr′ andP(r′). In the opposite case, the choice involves
r′ and the current best distributionP(r). If no prediction is clearly eligible as the
most confident throughout the search, the process halts whenthe default rule is met
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and the current best distribution is returned (at line 17). Notice that the so far best
class-membership probability distribution is rememberedthroughout the consecu-
tive stages of the search process via the input argumentsp1, . . . , pk (such arguments
are individually set to0 at the beginning of the search process). A key aspect of the
overall search process is represented by the criteria adopted to choose the more confi-
dent prediction between the ones from a CARrh and a local probabilistic generative
modelP(ri). Accuracy is used as a discriminant between the alternatives. In partic-
ular, the accuracyacc(c)

(

P(ri)
)

is the percent of cases inD(r) correctly predicted
by P(ri) as belonging to classc. The accuracyacc(c)(rh) of a CAR rh predicting
classc is its confidenceconf (rh). When comparing the accuracies of a CARrh and
a local probabilistic generative modelP(ri) there four possible outcomes.

1. P(ri) is clearly deemed more reliable thanrh (at line 9), if the weighted accuracy
of the former,p∗, is greater than the accuracy of the latter.

2. rh is preferred toP(ri) (at line 11) if the accuracy of the former is greater than
or equal to the weighted accuracy of the latter and both agreeanyhow.

3. rh is preferred toP(ri) (again at line 11) if its accuracy is much greater than
the weighted accuracy ofP(ri). Therein, p

∗

p
> p∗ is a prudential threshold,

that represents the normalized weighted accuracy fromP(ri). In practice,rh is
actually preferable toP(ri) iff its accuracy exceedsp

∗

p
.

4. There is no strong evidence (at line 16) to reject eitherrh or P(ri) when the
accuracy ofrh lies in the interval(p∗, p∗

p
). In such a case,r is skipped and the

search proceeds to considering the next CAR in the associative classifierC that
coversI (through the recursive call at line 14).

4.3 TheLocal-to-Global Supervised Learning Framework

Here is proposed alocal-to-globallearning framework, that uses suitable features lo-
cal to a data case, for predicting the global conditional probability of classes given the
case. Features are a sort of declarative mechanism for specifying aspects of data cases
that are relevant, to some extent, towards classification into the individual classes.
The relevance of a feature with respect to a certain class determines the weight of
that feature on the discrimination of the particular class.Thus, the recognition of
minority classes can be addressed by identifying specific features that are highly
representative of such classes.

The starting point is the observation that the training dataD generally provides
partial information on the associations between data casesand corresponding class
labels. The latter is especially true in imprecise domains because of rarity. This sug-
gests that the conditional probability distribution of classes should minimize com-
mitment, i.e. fit the evidence observable inD and still be as uniform as possible in
the prediction of whatever is not observable inD. Such a conditional probability dis-
tribution represents the most unbiased assignment of classprobabilities complying
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Algorithm 4 Prediction(C,I,p1, . . . , pk)
Input: An associative classifierC;

an unlabeled caseI ⊂M;
Output: the class distribution forI;
1: select the first ruler : I ′ → ch in sequence withinC;
2: if r coversI (i.e. I ′ ⊆ I) then
3: if |C| > 1 (i.e.r is not the default rule)then

4: letpi = P
(r)(ci|I) · acc

(ci)
(

P(r)
)

, ∀i = 1, . . . , k;

5: if max i(pi) > max i(pi) then
6: letpi = pi, ∀i = 1, . . . , k;
7: end if
8: letp∗ = max i(pi) andi∗ = argmax i(pi) andp =

∑

i
pi;

9: if acc(ch)(r) < p∗ then
10: RETURN the distribution(p1/p, . . . , pk/p);
11: else ifi∗ = h or acc(ch)(r) > p∗

p
then

12: RETURN the distribution(acc(c1)(r), . . . , acc(ck)(r));
13: else
14: Prediction(C − {r},I,p1, . . . , pk);
15: end if
16: else
17: RETURN the distribution(p1/p, . . . , pk/p);
18: end if
19: else
20: Prediction(C − {r},I,p1, . . . , pk);
21: end if

with the observable evidence. Any other probabilistic assignment would be biased,
i.e. would assume the availability of arbitrary information that is not present inD.

To elucidate, consider an hypothetical four-class classification setting, where
L = {c1, c2, c3, c4}. Classesc1 and c2 are rare, whereasc3 and c4 are predomi-
nant. Assume that an exploratory analysis ofD reveals that a certain itemsetI ⊂ M
appears within classesc1 andc2 with a frequency that amounts to, respectively,50%
and30% of the overall number of its occurrences.I can be viewed as a data fea-
ture and the statistical observations concerningI can be stated as constraints for the
conditional probability distribution in order for the latter to agree with the empirical
evidence. When a newly arrived caseI ′ is presented to the conditional probability
distribution for classification, there are two possibilities. IfI ′ includesI (i.e.I ⊆ I ′),
the conditional probability distribution provides the assignmentsp(c1|I ′) = 0.5 and
p(c2|I ′) = 0.3. The remaining0.2 of the probability mass is uniformly distributed
between classesc3 andc4 (in the absence of any further specific information on this
aspect), so thatp(c3|I ′) = 0.1 andp(c4|I ′) = 0.1. Notably,I is inherently charac-
teristic of the rare classesc1 andc2 and its adoption as a data feature allows for a
proper discrimination of such classes. If insteadI ′ does not containI, the conditional
probability distribution assumes (in the absence of any further evidence observable
in D) maximal ignorance and, hence, predicts each of the four possible classes with
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uniform probability, i.e.p(c1|I ′) = p(c2|I ′) = p(c3|I ′) = p(c4|I ′) = 0.25. In this
manner, the conditional probability distribution agrees with the observed evidence in
D and still avoids assumptions on whatever is unknown.

The local-to-globalapproach relies on statistical modeling and learning to fit the
evidence inD. For this purpose, the training data is used to identify a setof fea-
tures useful for classification. The individual features are then employed to specify
as many constraints for the conditional probability distribution to learn. The generic
constraint essentially forces the expected value that the conditional probability dis-
tribution assigns to some corresponding feature to be the same as the expected value
of that feature empirically observed inD. In general, the space of features can be
potentially very large. In these cases, computing the optimal conditional probability
distribution as a closed form solution that meets all the specified constraints is pro-
hibitive. Maximum entropy model [19] provides an expressive and powerful mathe-
matical framework for iteratively computing the required distribution. It is also used
to elegantly and seamlessly integrate two established methods from the fields of ma-
chine learning and data mining. On the machine learning side, discriminative learn-
ing is used to directly compute the conditional probabilitydistribution of the classes,
given an unseen case. The main difference with respect to generative learning, that
would instead model a joint probability distribution over classes and cases, is that
discriminative learning allows to better fit the training data by carefully setting the
distribution parameters. On the data mining side, associative classification provides
the space of features to which the training and newly arriveddata is mapped.

4.3.1 Modeling Data Evidence through CARs, Features and Constraints

In the proposedlocal-to-global learning framework, features are associated to the
individual CARs of an associative classifier formed as described in subsection 4.2.1
(no further post-pruning is applied to these CARs). Therein, let C be an associative
classifier. The space of featuresF = {fri |ri ∈ C} is essentially a finite set of real-
valued indicator functionsfri , each of which is associated to a corresponding CAR
ri ∈ C. Assume that the genericri has the implicative structureri : I ′ → c′, with
I ′ ⊂ M andc′ ∈ L. Moreover, letI ⊂ M denote a data case andc ∈ L represent
any class label. The generic featurefri is defined as the following indicator function

fri:I′→c′(I, c) =

{

1 if I ′ ⊆ I ∧ c′ = c
0 otherwise

The individual featurefri:I′→c′ is said to belocal to I if fri:I′→c′(I, c) > 0.
Training and newly arrived cases can hence be represented assuitable configurations
of local features, which are useful for classification. Intuitively, the interpretation of
CAR ri is thatI ′ can be viewed as a sort of contrast set [13] for the targeted class
c′, i.e. as a co-occurrence of items that is inherently characteristic of c′, since its
distribution inD is meaningfully associated with the classc′. Therefore, ifri covers
I (i.e. I ′ ⊆ I) and the classc considered forI coincides with the classc′ targeted
by ri, c′ is an eligible class forI. Therein, a measure of the suitability ofc′ for I is
provided by the value offri:I′→c′ .
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Actually, features are normalized so that their sum amountsto 1. Here, it is spec-
ified that the generic featurefri:I′→c′(I, c) is normalized into the corresponding

f ′ri:I′→c′(I, c) =
fri:I′→c′(I, c)

∑

ri
fri:I′→c′(I, c)

and additionally highlight that, for simplicity, the original notationfri:I′→c′(I, c) is
still maintained in the ongoing discussion to meanf ′ri:I′→c′(I, c).

Features are the basic building block for specifying constrains. These are nec-
essary to make the required conditional probability distribution fit the observed evi-
dence inD. To elaborate, the empirical evidence relative to each featurefri is sum-
marized intoED(fri), which is the expected value offri observed inD. Its definition
is

ED(fri) =
∑

t∈D

pD(t)fri(t− class(t), class(t))

wherepD is the observed occurrence frequency oft in D, i.e. pD(t) = 1
|D| . Con-

straints force the required conditional probability distribution P to agree with the
feature expectations observed inD. In other words, for each featurefri , a corre-
sponding constraint is specified that equates the expected value thatP assigns tofri
to the expected valueED(fri) observed inD. With respect to the generic featurefri ,
the expected value offri due toP can be approximated as shown below

E(fri) =
∑

I⊂M,c∈L

p(I, c)fri(I, c)

=
∑

I⊂M

p(I)
∑

c∈L

P(c|I)fri(I, c)

≈
∑

I⊂M

pD(I)
∑

c∈L

P(c|I)fri(I, c)

where the (unknown) prior probability distribution of cases p(·) is approximated by
the empirical distributionpD(·). The termpD(I) approximatesp(I) by the occur-
rence frequency ofI in D.

Finally, restrictingP to have the same feature expectations as the ones observed
in D requires setting the following constraints

E(fri) = ED(fri) for eachfri ∈ F
The above restrictions exclude from further considerationall those conditional

probability distributions, that do not accord with the observed feature expectations.
In principle, there are infinitely many conditional probability distributions con-

sistent with the specified constraints. The maximum entropyprinciple suggests to
choose the conditional probability distributionP that fits the constraints (i.e. agrees
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with the observed evidence) and maximizes entropy for thosecases that are not sub-
ject to the constraints. These latter cases are hence predicted to be members of the
distinct classes with the most uniform probability distribution.

The mathematical derivation of the required conditional distributionP as well
as the estimation of its parameters are beyond the scope of this manuscript. The
interested reader is referred to [19] for an exhaustive coverage.

4.4 Evaluation

It was conducted a systematical experimental study devotedto understand whether
the proposed hierarchical classification scheme exhibits improvement in classifica-
tion performance with respect to established competitors.To this purpose, the com-
parative evaluation is carried out over some standard datasets. In particular, some
datasets chosen from the UCI KDD repository [9], with high class imbalance, are
used. Also, the approach is tested over the KDD99 intrusion detection dataset, named
kdd99. The latter is a extremely unbalanced dataset, wherein low-frequency classes
are characterized by noise. A further non-publicly available test dataset,fraud, is a
real-life fraud detection dataset, with a very low class separability.

Experiments consists in comparisons against several established rule-based and
associative classifiers. The selected rule-based competitors are Ripper [33] and
PART [51], while the associative ones include CBA [75] and CMAR [106]. In par-
ticular, the implementations of CBA and CMAR in [32] were exploited. All tests are
conducted on an Intel Titanium processor with4Gb of memory and2Ghz of clock
speed.

All numeric attributes in the selected datasets are suitably discretized prior to the
application of the devised schemes. The adopted discretization strategy partitions the
values of each numeric attribute into natural clusters, viamodel-based clustering. The
idea is to view the values of a numeric attribute as the resultof a statistical generative
process, which is modeled through a mixture of univariate Gaussian distributions.
For each numeric attribute, the choice of the most appropriate number of clusters
(i.e. distinct Gaussian distributions in the mixture model) is performed by letting
such number range from1 up to a certain maximum, which is fixed to16 in the
experimental setting. The discretization of each numeric attribute into any number
of clusters in the aforesaid range is then assessed through5-fold cross validation.
More precisely,4 folds of attribute values are used to estimate the values of the
parameters in the hypothesized mixture model (i.e. the meanand standard deviation
for each Gaussian distribution as well as the weights of the individual distributions)
by means of the well-known EM algorithm [80]. The remaining fold is employed
to evaluate discretization quality. This latter step involves employing the estimates
of model parameters to compute the likelihood of the attribute values in the test
fold. Eventually, the number of clusters chosen to partition the values of the generic
numeric attribute is the one with maximum average likelihood on the test fold and,
thus, the values of the attribute are replaced by the label ofthe cluster to which they
belong with highest probability.
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The execution of the selected classifiers is reiterated several times, under different
parameter configurations and the result of the individual execution were averaged
through leave-one-out method. For each classifier, the results corresponding to the
best parameter configuration are reported.

Schemes simply require the specification of a global minimumsupport. Due to
the adoption of minimum class support [75], such threshold is automatically adjusted
to become a class specific threshold. In particular, the global support threshold is
fixed to20%, which is transparently adjusted to be, within the individual class in the
data at hand, the20% of the frequency of that class. The exploitation of complement
class support [76] permits to avoid specifying a minimum confidence threshold.

The approaches are compared using accuracy, some meaningful ROC curves and
the Area Under the Curve (AUC) relative to the minority class. Tables 4.1 and 4.2
display the results. Within the tables, competitors are numbered from(1) to (4). Pre-
cisely, (1) indicates Ripper,(2) corresponds to PART, while(3) and(4) stand for
CBA and CMAR, respectively. Proposed schemes are instead numbered from(5)
to (9). More specifically,(5) and (6) indicate naive Bayesian smoothing (respec-
tively through local priors or cumulative effect),(7) and(8) are AODE smoothing
(respectively, through local priors or cumulative effect). Finally, (9) represents the
maximum entropy approach.

Table 4.1. Classification accuracy

Dataset (1) (2) (3) (4) (5) (6) (7) (8) (9)
anneal 98.2698.2592.8196.3398.5398.5398.4398.43 66.70
balance-scale 80.3083.1768.8168.4981.4081.0480.2780.30 63.52
breast-cancer 71.4569.4169.2067.6770.3470.3472.3072.30 76.02
horse-colic 85.1084.3781.6283.9682.5682.5683.2083.20 85.21
credit-rating 85.1684.4581.7483.7680.4880.4885.9085.90 85.32
germancredit 72.2170.5473.1073.3474.0374.0374.8774.87 69.67
pima diabetes 75.1873.4577.8773.0373.3173.3175.0275.02 64.39
Glass 66.7868.7572.6974.2358.9459.1767.4867.15 67.32
cleveland-14-heart-diseas79.9578.0082.1275.1281.2981.2981.1581.01 90.54
hungarian-14-heart-diseas79.5781.1482.0679.6981.2481.2482.6282.38 86.70
heart-statlog 78.7077.3382.5984.1980.4180.4178.9678.96 88.70
hepatitis 78.1379.8079.8981.0881.2281.2281.1081.10 80.63
ionosphere 89.1690.8387.8989.7482.8582.8588.3088.30 75.21
labor 83.7077.7386.6788.7784.6084.6087.1387.13100.00
lymphography 76.3176.3781.1889.5978.3878.3878.0078.08 88.54
sick 98.2998.6297.5197.6498.2598.2598.3998.39 97.64
sonar 73.4077.4080.0082.7875.2875.2873.7973.79 96.63
fraud 93.0793.0280.8290.5291.7891.7992.6192.61 93.27
kdd99 96.6196.9894.6594.6395.9895.9896.6596.65 92.34

The results clearly state that the combination of associative classification and
probabilistic smoothing is at least as accurate as the seminal rule-based classifiers
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Table 4.2. Area Under the Curve

Dataset (1) (2) (5) (6) (7) (8) (9)
anneal 0.760.880.930.930.930.930.90
balance-scale 0.860.920.940.940.870.870.67
breast-cancer 0.600.590.670.670.690.690.75
horse-colic 0.830.860.850.850.880.880.95
credit-rating 0.870.880.880.880.930.930.94
germancredit 0.630.670.770.770.780.780.71
pima diabetes 0.720.780.780.780.790.790.76
Glass 0.800.790.800.800.810.800.76
cleveland-14-heart-diseas0.810.800.880.880.900.890.97
hungarian-14-heart-diseas0.780.860.880.880.900.900.92
heart-statlog 0.800.780.860.860.810.810.96
hepatitis 0.620.780.800.800.840.840.99
ionosphere 0.890.890.900.900.900.900.97
labor 0.820.730.860.860.950.951.00
lymphography 0.400.640.560.560.980.890.94
sick 0.940.950.970.970.960.960.90
sonar 0.750.790.800.800.770.771.00
fraud 0.680.770.810.810.920.900.60
kdd99 0.980.990.990.990.990.990.92

chosen for the comparison. In many cases, however,(5) and(9) achieve improve-
ments in accuracy, that are statistically significant according to the t-test. In addition,
a deeper analysis reveals that the response versus the classes of interest is strongly
improved. Such an improvement can be appreciated by lookingat the details of the
individual datasets. To elucidate, in fig. 4.4 the confusionmatrices originated by(1)
and(7) over thegerman-credit dataset are reported. Notice that the probabilistic
smoothing recovers39 tuples to the minority class, thus allowing to achieve higher
precision.

Predicted -> good bad
good 607 93
bad 155 145

Predicted -> good bad
good 611 89
bad 194 106

AODE local priors(9) Ripper(1)

Fig. 4.1.A comparison between the confusion matrices yielded by AODE local priors (7) and
Ripper(1) over thegerman-credit dataset

A further analysis of the results obtained over thefraud and thekdd99 datasets
provides an in-depth into the effects of smoothing. Figure 4.4 shows the ROC curves
relative to(1), (2), (5) and(7). There is an evident improvement in the underlying
area with respect to the competitors(1) and (2), whose trends are plotted in red.
Results with thekdd99 dataset are even more surprising, and in particular with the
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u2r class, as shown in figure4, that represents the curves relative to the schemes
(1), (2) and (7). Theu2r class is made of56 tuples (out of 150K), and still the
probabilistic adjustment is capable of recovering some problematic cases.

Fig. 4.2.ROC curve for the minority class offraud

Fig. 4.3.ROC curve for the minorityu2r class within thekdd99 dataset
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Finally, the ability of the approaches at dealing with the classes is compared in
table 4.2, which tabulates the average of the AUC values overthe classes within
the selected datasets. Overall, the devised schemes outperform the competitors by
exhibiting a significantly improved performance (i.e. a considerable increase in the
area under the ROC curve) across all classes within the distinct datasets and, in par-
ticular, withhepatitis, lymphography andfraud, where the improvement
is over10%.





5

Collaborative Filtering

Collaborative filtering(CF) data exhibit global patterns (i.e. tendencies of some
products of being ‘universally’ appreciated) as well significative local patterns (i.e
tendency of users belonging to a specific community to express similar preference
indicators on the same items). Local preferences affect theperformance of theRec-
ommender System(RS) especially when the number of users and items grows, and
their importance has been acknowledged by the current CF literature.

Typically, local patterns can be better detected by means ofco-clustering ap-
proaches [54, 58, 62, 68, 83]. Unlike traditional CF techniques, which try to discover
similarities between users or items using clustering techniques or matrix decom-
position methods, co-clustering approaches aim to partition data into homogeneous
blocks enforcing a simultaneous clustering on both the dimensions of the preference
data. This highlights the mutual relationships between users and items: similar users
are detected by taking into account their ratings on similaritems, which in turn are
identified considering the ratings assigned by similar users.

However, a main weakness of the current approaches to co-clustering is the static
structure enforced by fixed row/column blocks where both users and items have to
fit. For example, the movies “Titanic” and “Avatar”, are typically associated with dif-
ferent categories: the former is about romance, whereas thelatter can be considered
an action, sci-fi movie. Assuming a global and unique partition on the item-set, it is
expected to see the movies into different partitions. However, that structure would
fail to recognize a group of users who are really into the movies of James Cameron
(the director of both movies). Analogously, any method associating the two movies
with the same partition would fail in catching the difference in genre.

The issue in the previous example is that different user groups can infer different
interpretations of item categories. A more flexible structure, where item categories
are conditioned by user categories, would better model suchsituation, by e.g., al-
lowing “Titanic” and “Avatar” to be observed in the same itemcategory within the
“Cameron” group, and in different categories outside. Notice that traditional cluster-
ing approaches are not affected by this problem, as they onlyconcentrate on local
patterns in one dimension of the rating matrix. The drawback, however, is that they
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ignore structural information in the other dimension, which by the converse can be
exploited both for more accurate prediction and user profiling.

This thesis presents a probabilistic hierarchical approach which is able to dis-
cover both global and local trends in data, allowing different user communities to
show different preference values on distinct groups of items. The proposed schema
differs from the previously proposed coclustering approaches to CF data because it
does not assume the existence of a unique partition on the item-set: each user com-
munity is characterized by having its own set of topics involving items and user pref-
erences. Following a hierarchical clustering approach, initially, user communities,
gathering together similar users, are determined. Then, for each user community the
clustering phase produces a mixture of topics upon which theitem set and the user
preferences are accommodated into categories. Each item group is characterized by
theintracluster consistency propertywith respect to the considered user community:
each item and its neighbors, associated by having received common rating value in
the context of the community, will belong to the same clusterwith high probability.

The hierarchical coclustering model does not enforce any strong assumption on
the membership of users and items improving the flexibility of the model itself. Each
user participates to different user communities with a certain degree and, given a
user community, each item may belong to different item-categories. As a result, the
proposed model summarizes the advantages of a flexible probabilistic structure for
user profiling and a competitive prediction accuracy on userratings.

5.1 Notation

A RS consists of a set ofM usersU = {u1, · · · , uM}, which will be indicated for
short as theuser-set, a set ofN itemsI = {i1, · · · , iN}, nameditem-set, and a
collection of rating values expressing the preference of one user on a corresponding
item. Such collection of preference indicators can be represented as aM ×N rating
matrix R, whererui is the rating given by the useru on the itemi. Ratings can be
integer values within a scale1 (low interest) toV (strong interest). Even in the case of
a very dynamic system, the rating matrix is typically characterized by an exceptional
sparsity rate; if the rating for the pair(user, item) is unknown it will be assumed
rui = 0.

LetU(i) the set of users who evaluated the itemi, whileI(u) will denote the set
of all the items for which the useru has expressed her preference. An example of
rating matrix withM = 7 users andN = 5 items is shown in Fig 5.1. The goal of
a RS is to learn a preference functionp : U × I → {1, · · · , V }, which associates to
each pair(user, item) a rating value within the admissible range. Letr̂ui denote the
predicted rating for the pair(u, i). Considering the case of users and products which
have provided/received at least one preference value, several evaluation metrics have
been proposed to quantify the quality of a prediction algorithm. Denoting byT a test-
set collection of triples(user, item, rating), one of the most referenced methods
to measure the performance of a predictor is the Root Mean Squared Error, which
emphasizes large errors:
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Fig. 5.1.An example of rating matrix

RMSE =

√

∑

(u,i) ∈ T (rui − r̂ui )
2

|T |
In a probabilistic settings, random variablesR, I, andU are adopted, and denote a

rating, an item and a user respectively. Then,P (R = r) will denote the probability to
observe a rating with valuer, and analogouslyP (U = u) will denote the probability
that a given rating has been give by useru. With an abuse of notation, the random
variable in the specification will be omitted. For example,P (r, u, i) will denote the
joint probabilityP (R = r, U = u, I = i).

5.2 A Hierarchical Co-Clustering Approach for Modeling User
Preferences

The starting point in the proposed approach is the observation that different com-
munities can infer different evaluations of the same item. Specific groups of users
tend to be co-related according to different subsets of features. However, though
semantically-related, two users with (possibly several) differences in their item rat-
ings would hardly be recognized as actually similar by any global model imposing
a fixed structure for item categories. Individual user can beintended as a mixture
of latent concepts, each of which being a suitable collection of characterizing fea-
tures. Accordingly, two users are considered as actually similar if both represent at
least a same concept. Viewed in this perspective, the identification of local patterns,
i.e. of proper combinations of users and items, would lead tothe discovery of nat-
ural clusters in the data, without incurring into the aforesaid difficulties. Consider
fig. 5.2. In this toy example, there are 7 users clustered intotwo main communi-
ties. Community 1 is characterized by 3 main topics (with groupsd11 = {i1, i2, i3},
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d12 = {i4, i5, i6, i7} and d13 = {i8, i9, i10}), whereas community 2 includes 4
main topics (with groupsd21 = {i1, i4, i5}, d22 = {i2, i3, i7}, d23 = {i6, i10} and
d24 = {i8, i9}). The novelty is that different communities group the same items dif-
ferently. This introduces a topic hierarchy which in principle increases the semantic
power of the overall model.

Fig. 5.2.Example of Local Pattern in CF Data

The generative model for the proposed scheme is shown fig. in 5.3 and can be
summarized as follows:

1. Select a user communityck according to the probability distributionπk;
2. select a useru with probabilityPk(u) = P (u|ck) and an itemi with probability
Pk(i) = P (i|ck);

3. Choose a topicdh with probabilityP (dh|i, ck)P (dh|u, ck);
4. produce the ratingr with probabilityφh(r) = P (r|dh).

Formally, the probability of a triplet〈u, i, r〉 is

P (u, i, r) =
K
∑

k=1

πkPk(u)Pk(i)P (r|i, u, ck) (5.1)

where

P (r|i, u, ck) =
Hk
∑

h=1

φh(r)Pk(dh|i)Pk(dh|u) (5.2)

The latter correspond to a “local” probabilistic latent semantic analysis, provided
that the user communities are known.

The idea, in the above formula, is learning latent communities from the data as
well as a collection of characterizing concepts for each community. In particular,
each rating can be seen as the outcome of a mixture of various concepts, where some
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Fig. 5.3.Graphical Model for the Hierarchical Approach

concepts are more or less probable according to the cluster where the user fits. Hence,
a data tuple can be thought as the outcome of the following generative model: firstly
pick a distribution over latent clusters; next, choose the concepts associated and fi-
nally generate the individual values. Also, notice the roleof theπk, k = 1, . . . ,K
prior probabilities in the generative process. In practice, they model the assumption
that observing a pair〈u, i〉 is not totally random, but it is instead the result of the
grouping of users into communities.

Due to the strong coupling between the user community latentvariablec and the
one corresponding to local patternsd, the exact inference for the model characterized
by the joint probability in eq. 5.1, which would maximize both the user community
cohesion and the local topic similarity, is difficult to solve analytically. Hence, an
approximated solution is adopted, it is based on a hard clustering policy for user
communities, such that the inference of the parameters can be performed efficiently
without compromising the generative semantic and the flexibility of the model.

A hierarchical approach is devised to the estimation of the components involved
into eq. 5.1. In practice, the proposed approach consists ina preliminary discovery
structure, where user communities are detected. Next, for each user community, a
topic model is investigated, and the most prominent topics are discovered and prop-
erly modeled.

The general scheme of the algorithm is shown in algorithm 5 and could be sum-
marized as follows: given a rating matrixR, discoverk user communities; then, for
each of those communities, according to an hard clustering approach, select fromU
a subset of users that belong to the considered community andgenerate a set ofHk

topic models for their ratings.
The hierarchical model for users’ ratings consists in a set of K user community

models and for each of them a set ofHk topic models which represent local pref-
erence patterns for the member of the considered community.The user community
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Algorithm 5 HierarchicalModelbuild
Input: The setsU = {u1, . . . , uM} andI = {i1, . . . , iN}

and the corresponding rating matrixR;
Output: a setC = {c1, . . . cK} of user community models

and a subsetDk = {d(k)1 , . . . , d
(k)
Hk
} for each user communityk

1: C ← GenerateUserCommunities(R);
2: for all community modelck, k = 1, . . . ,K do
3: let Uk = {u ∈ U|p(ck|u) ≥ p(cj |u), j = 1, . . . ,K}, andRk the corresponding

submatrix ofR;
4: Dk ← GenerateTopicModels(Rk );
5: end for

level specifies the probabilitiesγuk = P (ck|u) with k = 1, . . . ,K, which measure
how much the ratings given by the useru fit the preference behavior underlined by
each of the communities.

The probability of observing the ratingr for the pair(u, i) can be computed
considering two schema, summarized in algorithm 6:

• Hard-Clustering Prediction:

P (r|i, u) =
Hk
∑

h=1

φh(r)Pk(dh|i)Pk(dh|u) (5.3)

where
k = argmaxj=1,··· ,K(γuj) (5.4)

is the cluster that better represents the previously observed rating of the user
u. This prediction rule relies exclusively on the information given by the topic
model corresponding to the user’s cluster; thus it might produce low quality pre-
dictions if the user’s community is not identified with enough confidence.

• Soft-Clustering Prediction:

P (r|i, u) =
∑

k

γuk · P̃ (r|i, u, ck) (5.5)

where the probabilitiesγuk act as mixture weights and the distribution over rating
values corresponding to the communityck is computed taking into account both
global and local patterns:

P̃ (r|i, u, ck) =
{

P (r|i, u, ck) if u ∈ Uk

P (r|i, ck) otherwise
(5.6)

Note that ifu ∈ Uk thenγuk is the dominant mixing weight and the distribu-
tion over ratings is refined by considering the corresponding set of topic models;
in the opposite case the distribution over ratings can be estimated by consider-
ing the probability of observing each rating given an item within the considered
community.
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Algorithm 6 HierarchicalModelcomputeRatingsProbability
Input: a pair〈u, i〉
Output: a probabilityP (R = r|u, i) for each rating valuer
1: letc = argmaxj=1,··· ,Kp(ck|u)
2: for all r = 1 to V do
3: if Hard-Clusteringthen
4: P (R = r|u, i) =

∑Hk

h=1 φh(r)Pk(dh|i)Pk(dh|u)
5: else
6: for all community modelck, k = 1, . . . ,K do
7: if k = c then
8: prob ← Dk .getRatingProbability(r , u, i)
9: else

10: prob ← ck.getRatingProbability(r, i)
11: end if
12: P (R = r|u, i)← P (R = r|u, i) + γuk × prob

13: end for
14: end if
15: end for

5.2.1 Modeling User Communities.

The discovery of the communities is accomplished essentially via a model-fitting
procedure based on a maximum-likelihood estimation. In practice, the rating matrix
R is modeled as a set of user vectors, where each vector is characterized by the
preferences of the user. Formally, this means that the probability p(r, i|u) for each
triplet 〈r, i, u〉 can be modeled.

The corresponding probability of observing a user hence corresponds to the joint
probability of observing all his ratings, that is

P (u|Θ,R) =

N
∏

i=1

V
∏

r=1

(P (i|Θ) · P (r|i, Θ))
δ(u,i,r)

where

δ(u, i, r) =

{

1 if rui = r
0 otherwise

This modeling allows us to adopt a maximum likelihood approach to the estimation
of theΘ parameters characterizing theP (i|Θ) andP (r|i, Θ). For example,P (i|Θ)
can be characterized via a bernoullian pdf parameterized byαi, andP (r|i, Θ) as a
multinomial (with factorsσri).

The componentP (r, u, i, ck) and the posteriorsγuk can be estimated by assum-
ing the existence of a set of communities, where each community models specific
user attitudes. In particular, the probability of observing a user is given by the mix-
ture

P (u|C) =
K
∑

j=1

P (u|cj)πj
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Where a single communityj is characterized by the parametersαij andσrij .
Estimating the parameters by means of an EM procedure yieldsthe following

equations:

• E-Step:

γuj = P (cj |u) =
P (u|cj) · πj

∑K
j′=1 P (u|cj′) · πj′

• M-Step:

πj =

∑M
u=1 γuj
M

αij =

∑M
u=1 γuj

∑V
r=1 δ(u, i, r)

∑M
u=1 γuj

∑N
i′=1

∑V
r=1 δ(u, i

′, r)

σrij =

∑M
u=1 γuj · δ(u, i, r)

∑M
u=1

∑V
r′=1 γuj · δ(u, i, r′)

A further advantage of the above formalization is the possibility of exploiting
the above model for prediction purposes as well as for for structure discovery. A
prediction function in fact can be defined as

r̂ui = E[R|u, i] =
V
∑

r=1

r ·
∑

k

σrik · γuk (5.7)

and used as a baseline for the special case described in step 10 of algorithm 6. The
resulting baseline function is even competitive with state-of-the art approaches.

The above formalization also allows an alternative gaussian model

P (r|i, cj) = N (vru;µij , σij) =
1√

2πσij
exp

[

− (vru − µij)
2

2σ2
ij

]

wherevru is the Z-score normalization ofr with regards to useru:

vru =
r − µu

σu

and the means and the variances are estimated as proposed in [57].
The rating prediction for the pair(u, i) can be hence computed as:

r̂ui = µu + σu

(

K
∑

k=1

γuk · µik

)

(5.8)

and theM-Stepscan be rewritten as:

µik =

∑M
u

∑V
r γuk · δ(u, i, r) · vru

∑M
u

∑V
r γukδ(u, i, r)

σ2
ik =

∑M
u=1

∑V
r γuk · δ(u, i, r)(vru − µik)

2

∑M
u=1

∑V
r γukδ(u, i, r)
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5.2.2 Local Community Patterns via Topic Analysis

The approach to the discovery of local community patterns isbased again on a EM
procedure which aims at maximizing the likelihood of theRk = {〈r, u, i〉|p(ck|u) ≥
p(cj |u), j = 1, . . . ,K} rating matrix associated to a community modelck. In prac-
tice, the expected log-likelihood is defined

Q(Rk;Ψ) =

M
∑

u

N
∑

i

V
∑

r

Hk
∑

h

ψk(h; r, i, u) ·

[log φh(r) + logPk(dh|i) + logPk(dh|u)]

whereψk(h; r, i, u) = P (dh|r, i, u, ck). The EM algorithm can hence be defined in
terms of the following formulas:

• E-Step:

ψk(h; r, i, u) =
φh(r)Pk(dh|i)Pk(dh|u)
∑

j φj(r)Pk(dj |i)Pk(dj |u)

• M-Steps:

Pk(dh|i) =
∑M

u

∑V
r ψk(h; r, i, u)

∑

h′

∑M
u

∑V
r ψk(h′; r, i, u)

Pk(dh|u) =
∑N

i

∑V
r ψk(h; r, i, u)

∑

h′

∑N
i

∑V
r ψk(h′; r, i, u)

P (r|dh) = N (r;µdh
, σdh

)

where

µdh
=

∑M
u

∑N
i

∑V
r ψk(h; r, i, u)δ(u, i, r) · r

∑M
u

∑N
i

∑V
r ψk(h; r, i, u)δ(u, i, r)

σdh
=

∑M
u

∑N
i

∑V
r ψk(h; r, i, u)δ(u, i, r) · (r − µdh

)
2

∑M
u

∑V
r

∑N
i ψk(h; r, i, u)δ(u, i, r)

5.2.3 Computational aspects

Once the parameters of the hierarchical model have been estimated, the on-line com-
plexity for computing predictions scales with the number ofuser communities and
corresponding topics, while the off-line phase requires more resources. In fact, the
complexity of the learning phase is determined by the complexity of discovering user
communities, which is linear with the number of observed ratings.

To avoid overfitting, which could deteriorate the predictive skills of the models
on unobserved data anEarly Stoppingcriterion is adopted: a fraction of the data has
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been retained as held-out dataset and the models have been trained on the remaining
part of the data until the accuracy on the held-out data begins to increase.

The estimation of the correct number of clusters is accomplished by resorting
to a Cross-Validation approach based on a penalized Log-Likelihood principle, as
described below. Given a setD of observations (in this case, the rating matrixR

and its subsetsRk), the objective is to find the model parametersΘ maximizing the
probabilityP (Θ|D). In logarithmic terms,

log(P (Θ|D)) ∝= logP (D|Θ) + logP (Θ)

= log(L(Θ|D)) + logP (Θ)

The idea in the above formula is to counterbalance two opposing requirements: the
fitting of the data and the complexity of the model. By modeling P (Θ) can be mod-
eled as an exponential distribution w.r.t the size ofΘ, so

log(P (Θ|D)) ≈ log(L(Θ|D))−m log n

wherem is the size ofΘ (i.e., the number of model parameters), andn is the size
of D. The evaluation strategy hence consists in computinglog(P (Θ|D)) for each
possibleΘ, and in choosing the model where it is maximal. In particular, the strategy
can be summarized as follows:

1. fix the valuesKmin andKmax;
2. choose the numberC of cross-validation trials;
3. for each trialc:

a) sample a subsetDtrain fromD;
b) for k ranging fromKmin andKmax:
c) computelog(P (Θk|Dtrain))

c;
4. for eachK, average the valueslog(P (Θk|Dtrain))

c overc;
5. choose the valuek∗ such thatlog(P (Θk∗ |Dtrain))

avg is maximal.

5.2.4 Discussion.

There are several major differences between the models described in section 2.3 and
the above formalization. Considering pLSA, the hidden variablez there is used to
discover similar trends in the rating behavior and encourages grouping users into
user communities. The prediction relies solely onP (r|i, z) and does not consider
item hierarchies and, hence boosted predictions triggeredby similar items. By con-
trast, the proposed hierarchical approach aims to discoverlocal patterns for each user
community. Also, there are two further components which boost the prediction ac-
curacy of the underlying user community model. First, the multinomial priorπj for
each user communityj, which helps in preventing overfitting by counterbalancing
the contribute of each useru in γuj . Theπj component can be interpreted as a lapla-
cian smoothing based on uniform Dirichlet priors. Clearly,explicit modeling of such
priors via Bayesian estimation, in the style of [78], can be adopted. However, as dis-
cussed in the next section, the computational cost would leverage significantly. Also,
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theαij component explicitly models the likelihood that itemi has been rated within
communityj. The latter also is a major difference, at the user communitylevel, with
respect to the multinomial mixture and the User Rating Profile models, discussed in
[79].

Also, notice that the co-clustering techniques discussed in the previous section,
like the Flexible Mixture Model, assume the existence of a fixed partition both for
user communities and for item categories. In the analyzed case instead, each user
community is characterized by its own partition over the item-set with a flexible
number of topics. In addition, co-clustering models only produce prediction on the
basis of local contributionP (r|ck, dh). By contrast, according to eq. 5.6, prediction
of the proposed model benefits from both local and global information.

A final remark is concerned with the possibility of considering the proposed ap-
proach symmetrical. The proposed model starts with user communities and then gen-
erates topics. In theory a dual scheme could be viable as well, by first generating
item categories and then specific user communities conditioned to item categories.
However, duality only holds if the number of rows and columnsof the rating matrix
are of the same order of magnitude. In fact, the number of model parameters in an
item-based mixture grows linearly to the number of users. Ifthe number of items is
significantly less than the number of users, this would causethe generation of few
categories characterized by too many parameters (and as a consequence the resulting
model would be prone to overfitting).

5.3 Evaluation

The effectiveness of the proposed approach is evaluated in three different respects:

• To measure the effectiveness of the EM algorithm adopted in the first stage in
discovering communities fitting the training data. Since each community should
be able to model a user’s preferences, it is interesting to measure the prediction
accuracy of eq. 5.7 and eq. 5.8, which exploit the community mixtures.

• To measure the overall prediction accuracy of the hierarchical approach, and to
compare it to other well-known approaches in the literature.

• To inspect informative content of the structures discovered by the hierarchical
approach proposed so far. Essentially, the objective is to inspect the communities
and the relevant topics discovered, and to find empirical confirmations concern-
ing the key ideas explained in the beginning of section 5.2.

Two popular benchmark datasets (Netflix and Movielens) are used for rating pre-
diction and validation of the predictive performance of theproposed approach. In
short, Netflix dataset contains over100 million of ratings given by480, 189 users
on a set of17, 770 movies, collected between October1998 and December2005.
The Netflix Prize dataset has been the reference data for empirical comparisons of
Collaborative Filtering algorithms during the last years,mainly for3 reasons: (i) size
of dataset and sparseness coefficient; (ii) availability ofresults from competitive al-
gorithms; (iii) availability of a baseline score for the prediction error, achieved by a
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Netflix MovieLens
Training Set Test Set Training SetTest Set

Users 435,656 389,305 6,040 6,040
Items 2,961 2,961 3,706 3,308

Ratings 5,714,427 3,773,781 800,168 200,041
Avg ratings (user) 13.12 9.69 132,47 33,119
Avg ratings (item) 1929.90 1274.50 215.91 60.47
Sparseness Coeff 0,9956 0,9643

Table 5.1.Summary of the Data used for validation.

real RS (the Netflix Cinematch algorithm) on the same dataset. A subsample of the
above data was exploited. The data is divided into training and test set, where the
latter contains ratings given by a subset of the users in the training set over the same
set of items. Info about this dataset are summarized in tab. 5.1.

fig. 5.4 shows the empirical cumulative densities for both user and item ratings
within the subsample adopted here. There are some major differences between the
original Netflix dataset and the subsample used here. For example, it can be see from
fig. 5.4(a) that over60% of the users have less than10 ratings and the average number
of evaluations given by users is13 (whereas the original dataset exhibits an average
200 ratings). In addition, figure 5.4(b) shows that over50% of the items have received
less than200 ratings, with an average value of1929. Again, the average ratings in
the original dataset were5000. In practice, the exploited subsample is more difficult
than the original dataset.1

The MovieLens-1M2 dataset consists of1, 000, 209 ratings given by6, 040 users
on approximately3, 706 movies; each user in this dataset has at least20 ratings. The
original data is randomly partitioned into4/5 training and1/5 test set. Again, tab.
5.1 summarizes the values exhibited by the subsets. MovieLens has been a reference
dataset for several CF algorithms.

5.3.1 Predictive Accuracy.

The proposed approach is compared with most algorithms mentioned in section 2.3.
In particular, Regularized SVD [7], pLSA [57], FMM [62], Multinomial Mixture
Model [79] and URP [78]. The summary of the results can be found in tab. 5.1(a)
and tab. 5.1(b). The algorithms not listed here will be discussed separately.

In a first set of experiments, the achieved performance is evaluated by the User
Community Models, considering both the Multinomial and theGaussian version and
performed a suite of experiments varying the number of user communities and com-
pared the obtained RMSE values with the ones achieved by the Gaussian pLSA al-
gorithm on the same data.

1 This also explains the difference between the values declared in the original papers by the
competitors and the values reproduced on the subsample.

2 http://www.grouplens.org/system/files/ml-data-10M100K.tar.gz
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Experiments on the three models were performed by retainingthe 10% of the
training (user,item,rating) triplets as held-out data; finally 10 attempts have been ex-
ecuted to determine the best initial configurations. Predictions for the User Com-
munity Models are generated according to eq. 5.6, because preliminary experiments
have shown that it outperforms the Hard-Clustering prediction rule. Performance re-
sults of the two User Communities Models and pLSA are shown inFigures 5.5(a)
and 5.5(b).

Considering NetFlix, the multinomial User Community approach and the pLSA
do not produce a significant improvement over the Cinematch base, which is close
to 0.95; for both these models the best RMSE values is achieved by considering150
user communities. The average RMSE for the pLSA model is0.9474 and only minor
improvements on this result are observed varying the numberof clusters. The gaus-
sian User Community version outperforms both the multinomial model and pLSA,
achieving the best RMSE value of0.9280 when30 user communities are employed.
The learning phase corresponding to the best model takes about 30 minutes on a
INTEL XEON E5520 at2.27 Ghz, with an average of6 iterations needed to reach
convergence. It was not possible to extensively report on FMM and URP here, due
essentially to the high computational resources needed by these models. Tab. 5.1(a)
shows some partial results on FMM obtained with a limited number of user clusters.
Surprisingly, the multinomial User Community model has a significant worsening
on MovieLens. The z-score normalization, exploited in eq. 5.8, plays an important
role in improving both the clustering and the predictive capabilities of the gaussian
model respect to the multinomial version.

Switching to the hierarchical schema allows us to obtain more refined results.
The Hierarchical approach has been evaluated by considering both the multinomial
and the gaussian version on the first layer clustering (by restricting to a range of
user communities from10 to 100), and adopting the procedure for the dynamic esti-
mation of the number of topics described in section 5.2.3. fig. 5.5(d) and fig. 5.5(c)
show the performances achieved by the two version and the ones achieved by a nat-
ural competitor based on latent factors: the regularized SVD. In both the cases, the
hierarchical approach produces a significant improvement over the first clustering
layer, outperforming the SVD model. On Netflix, hierarchical approach produces
RMSE values0.9222 (multinomial model) and0.9211 (gaussian model), while the
best result achieved by the SVD model is0.9275. This situation is also reflected in
MovieLens where the Reg. SVD produced0.9345. Again, it’s a surprise to see that
in this case the multinomial hierarchical approach (0.9274) outperforms the Gaus-
sian hierarchical (0.9296). This result is even more surprising, especially because the
multinomial user communities didn’t perform very well in the first level. It seems that
the adoption of specific item categories boosts the performance significantly.

Figure 5.5(e) compares all the probabilistic approaches toco-clustering on Movie-
Lens data. Here there is a comparison of the proposed approaches with FMM, Breg-
man Co-clustering [54] and Block Mixture Model [83]. Again,the hierarchical ap-
proaches outperform the other co-clustering approaches. This gives evidence that
conditioning item categories to user communities providesbetter structures. Finally,
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fig. 5.5(f) shows the execution times of these co-clusteringapproaches. Here,10 item
categories and vary the number of user communities are employed.

A final validation qualitatively compares the proposed approach approach with
some among the most popular and effective approaches for making recommenda-
tions. Thesis focused on single techniques rather than ensembles or combinations
of multiple predictors. Also, models, that directly model temporal aspects, was not
taken into account, such as theTime Effectnormalization [16] or theSVD withtempo-
ral dynamics[71]: in fact they exploit temporal information about the preference of
the users in a given period in order to refine predictions in the same period, while in
a typical setting a recommender system is asked to make suggestions for the future.

(a) NetFlix Data

(b) MovieLens-1M Data

Table 5.2.Summary of the comparative analysis

Results on Netflix data show that the prediction accuracy achieved by proposed
model is competitive to the ones achieved by other popular recent approaches, such
asPMF [93], Bi-LDA [88] andSVD++ [70]: the first one is reported to achieve on a
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sample of 1M ratings of Netflix data an RMSE equals to0.9253; the latter achieves
0.9333 on the overall Netflix dataset. As far as theSVD++ is concerned, although it
achieves an RMSE value0.904 on the considered dataset, the problem with such an
approach is that it takes advantage of implicit informationcontained in the test-set.

The proposed model seems to be also competitive withfLDA [3] and theRegression-
based latent factor models[2], which integrate user/item features and on a75% −
25% split of the MovieLens-1M achieve RMSE values of0.9381 and0.9258.

5.3.2 Structure Discovery

The hierarchical model can be used for classical pattern discovery tasks for CF, such
as the identification of significant or the most appreciated items for each user com-
munity, as well a new kind of analysis, in which focus is on different topics and
their impacts on the rating behavior of users within the samecommunity. Table 5.3.2
shows a selection from the most significant items for10 user communities and their
topics. Only5 communities are shown, and the5 most relevant topics within them.
An item i is considered significant with respect to a topich within the community
k if Pk(dh|i) > Pk(d

′
h|i) ∀h′ 6= h. For each community, its prior probability (in

square brackets) and the a-posteriori interpretation of its topics are registered.
For instance, user community #2 is characterized by the topics: “Fantasy”, “Sci-

Fi”, “Live-Music Performance” “Action” and “Drama”. It is worth noticing how the
informative content in the hierarchy allows to better discriminate among topics and
tendencies. By focusing on the first level only, the same community would exhibit a
global attitude towards action movies (as “Gladiator”, “Die Hard” and “Terminator
2” are the most probable items here).
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Table 5.3.User communities and relevant topics



5.3 Evaluation 63

(a) User ratings

(b) Item ratings

Fig. 5.4.ECDF for user and item ratings on NetFlix.
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(a) Latent factors on Netflix (b) Latent factors MovieLens

(c) Hierarchical approach on Netflix(d) Hierarchical approach on Movie-
lens

(e) Coclustering results on Movie-
lens

(f) Execution times on Movielens

Fig. 5.5.Performance results.
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Tree-based data mining

XML is a popular model for data representation, in which two main types of infor-
mation coexist, i.e., pure content and structural information. The latter is a valuable
support for information management, since it allows the definition of irregular struc-
tures explaining the nested content.

Conventional approaches to information handling are not meant for exploiting
the structural information of XML data [42, 100], being either devoted to the man-
agement of highly structured data, such as relational databases, or too focused on
the textual nature of the data, such as in the case of information retrieval techniques.
From this perspective, XML data is a challenging research domain [39], that calls
for the development of suitable methods for information handling.

The analysis of the structural information enables more effective processing of
XML data, since it allows both to understand the spectrum of queries answerable by
the available XML documents (i.e. the type of information aswell as its organization)
and to identify XML documents with similar structures as sources of the same type
of contents.

In particular, clustering XML documents by their structural features is useful
in several applicative contexts. For example, the detection of structural similarities
among documents can help to recognize different sources providing the same kind of
information [18]. Also, it can support the extraction of (schema or DTD) structures
from a collection of XML documents [44, 82], by enabling the identification of more
accurate structures from structurally-homogeneous subsets of the original collection.
Yet, query processing can substantially benefit from the re-organization of the XML
documents on the basis of their structure [41, 47].

The problem of clustering XML documents by structure has been extensively in-
vestigated, with the consequent development of several approaches, such as [39, 41,
46, 43, 47]. Catching structural resemblance between XML trees is a challenging re-
search issue, that has an impact on both the effectiveness and efficiency of the cluster-
ing process. XML trees can share various forms of common structural components,
ranging from simple node/edge and pairwise tags [56], to more complex substruc-
tures such as groups of siblings, paths (either root-to-node [56] or root-to-leaf [41]),
as well as subtrees or even summaries [47, 46]. Therefore, ifthe addressed form
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of structural patterns does not accord with the underlying properties of XML data,
valuable relationships of structural resemblance betweenthe XML documents can
be missed, with a consequent degrade of clustering effectiveness. Moreover, judging
differences only in terms of one type of structural components may not suffice to ef-
fectively separate the available XML documents. Therein, acareful investigation of
the resulting clusters is likely to reveal an extent of intra-cluster inhomogeneity, that
may be due to uncaught differences in the structures of the XML documents within
the same clusters, ascribable to further unconsidered forms of structural patterns.

To address the aforesaid challenging issues, this thesis proposes a new hierarchi-
cal approach to clustering that considers various forms of structural patterns in the
XML documents to progressively derive a hierarchy of nestedclusters. The basic
idea is that, at any level in the hierarchy, clusters are formed by grouping the XML
documents by some form of structural patterns. Other forms of structural patterns
are used to divide the resulting clusters into sub-clustersat the subsequent levels of
the hierarchy, to highlight previously uncaught structural differences. In addition,
the characterization of each cluster is accomplished by means of new summarization
method, aimed at subsuming the structural properties within each cluster in terms of
strongly representative substructures.

As a result, an experimental evaluation over both real-world and artificial XML
data reveals that the quality of the attained results, in terms of effectiveness and
cluster summarization, is on a par and even better than the quality of established
competitors.

6.1 Preliminaries

The notation used throughout this chapter as well as some basic concepts are intro-
duced. The structure of XML documents without references can be modeled in terms
of rooted ordered labeled trees, that represent the hierarchical relationships among
the document elements (i.e., nodes).

Definition 6.1. XML Tree. An XML tree is a rooted, labeled, ordered tree, repre-
sented as a tuplet = (rt,Vt,Et, λt), whose individual components have the fol-
lowing meaning.Vt ⊆ N is a set of nodes andrt ∈ Vt is the root node oft, i.e.
the only node with no entering edges.Et ⊆ Vt × Vt is a set of edges, catching
the parent-child relationships between nodes oft. Finally, λt : Vt 7→ Σ is a node
labeling function andΣ is an alphabet of node tags (i.e., labels).⊓⊔

Let ni andnj be any two nodes fromVt. If (ni, nj) ∈ Et ni is said to be
the parent ofnj , which is instead a child ofni. This type of parent-child structural
relationship is represented asni ≺ nj . If there is a path of any positive lengthp from
ni to nj , ni is an ancestor ofnj , whereasnj is a descendant ofni. The ancestor-
descendant structural relationship is indicated asni ≺p nj : clearly, if p = 1, the
ancestor-descendant relationship reduces to the parent-child relationship. Nodes in
Vt divide into two disjoint subsets: the setLt of leavesand the setVt − Lt of
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inner nodes. A leaf is a node with no children, whereas an inner node has atleast
one child. The children of each inner node are ordered [1]. Nodistinction is made
between elements and tags of an original XML documents: bothare mapped to nodes
in the corresponding XML-tree representation.

Tree-like structures are also used to represent generic structural patterns occur-
ring across a collection of XML trees (such as individual nodes, edges and root-to-
leaf paths).

Definition 6.2. Substructure. Let t and s be two XML trees.s is said to be a sub-
structure oft, if there exists a total functionϕ : Vs → Vt, that satisfies the following
conditions for eachn, ni, nj ∈ Vs. Firstly, (ni, nj) ∈ Es iff ϕ(ni) ≺p ϕ(nj) in t

with p ≥ 1. Secondly,λs(n) = λt [ϕ(n)]. ⊓⊔
The mappingϕ preserves node labels and hierarchical relationships. In this latter

regard, depending on the value ofp, two definitions of substructures can be distin-
guished. In the simplest casep = 1 and a substructures is simply aninducedtree
pattern that matches a contiguous portion oft, sinceϕ maps the parent-child edges
of s onto parent-child edges oft. This is indicated ass ⊑ t. A refined definition
follows whenp ≥ 1 [40, 107]. In such a case,s matches not necessarily contiguous
portions oft, sinceϕ summarizes hierarchical relationships by mapping parent-child
edges ofs into either parent-child or ancestor-descendant edges oft. This is denoted
ass ⊆ t ands is also said to be anembeddedtree pattern oft. The notion of embed-
ded substructure (i.e.,⊑) is useful to catch structural patterns, that may be missed by
exploiting the basic notion of induced substructure (i.e.,⊆). Embedded substructures
are exploited (in sec. 6.4.1) to mine representative substructures, that subsume a col-
lection of XML trees with common (i.e., characteristic) structures intermixed with
infrequent (i.e., unrepresentative) structures. Hereafter, the notions of substructure,
(structural) component and tree pattern are used as synonyms.

Clustering by structure aims to divide a collectionD = {t1, . . . , tN} ofN XML
trees in order to form a partitionP = {C1, . . . , CK} of nonempty clustersCi, with
i = 1, . . . ,K. The clustering process generally attempts to maximize thedegree of
structural resemblance exhibited by the XML trees in the same cluster and to mini-
mize the extent of structural similarity between XML trees inside distinct clusters.

At the heart of the problem is the definition of structural resemblance. Ideally,
the clustering process should take into account the most suitable forms of structural
components for the specific applicative domain. Moreover, efficiency and scalability
should not suffer from the number and the structural complexity of the chosen com-
ponents, although more complex substructures could make clustering less efficient.

In order to accommodate the aforesaid requirements, a multi-stage clustering
approach, that produces a hierarchy of nested clusters, is developed. The devised ap-
proach substantially differs from conventional hierarchical clustering in that a same
basic partitioning algorithm is exploited at each stagei for further separating the indi-
vidual clusters discovered at the previous stagei−1. Furthermore, cluster separation
at stagei is performed with respect to some specific type of structuralcomponents,
that has not been taken into account up to stagei − 1. Examples of structural com-
ponents for the generic stage of clustering include:
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1. The selection of one-node substructures modeling the individual nodes in the
XML trees, i.e.,

T (v) , {s|Vs = {rs}, ∃t ∈ D, s ⊑ t}

In such a case, the generic substructures consists only of its rootrs, that matches
some corresponding node of an XML treet in D.

2. The selection of one-edge substructures modeling the different parent-child
edges in the XML trees, i.e.,

T (e) , {s|Es = {(rs, n)}, ∃t ∈ D, s ⊑ t}

Here, the individual substructures consists only of one edge(rs, n), that matches
some corresponding parent-child edge of an XML treet in D.

3. The selection of one-path substructures modeling the distinct root-to-node paths
in the XML trees, i.e.,

T (p) , {s|paths(s) = {〈rs, . . . , n〉}, ∃t ∈ Ds ⊑ t}
In the above,pathss indicates the set of all all root-to-node paths of a substructure
s. Eachs in T (p) consists of only one such a path, matching some (root-to-node
or root-to-leaf) path of an XML treet in D.

At any stage of clustering, the structural components enable the projection of the
XML trees into a high-dimensional space, wherein the occurrence of the individual
substructures within each XML tree is explicitly represented. More precisely, letT (i)

denote the collection of substructures selected at the generic stagei of clustering.
The XML trees at this stage are modeled as transactions over afeature spaceS(i) ,

{Fs|s ∈ T (i)}. Here, the generic featureFs is a boolean attribute, whose value
indicates the presence/absence of the corresponding components of T (i) within the
individual XML trees.

Assume thatx(t) is the high-dimensional representation of an XML treet. Also,
let x(t) [Fs] be the value assumed byFs in the context ofx(t). x(t) [Fs] is true if
s ⊑ t, otherwise it is false. Hence,x(t) can be modeled as a proper subset ofS(i),
namelyx(t) , {Fs ∈ S(i)|s ⊑ t}, with the meaning that the features explicitly
present inx(t) take value true, whereas the others assume value false. In the resulting
feature spaceS(i), the cost for testing the presence of the selected components within
the individual XML trees is independent of the structural complexity of the same
components. However, the transactional representation over S(i) involves the non-
trivial discovery of meaningful clusters in large-scale databases of high-dimensional
transactions.

From this perspective, the proposed approach reformulatesthe original prob-
lem of groupingD by structure as that of progressively projectingD into high-
dimensional representationsD(i) = {x(t) ⊆ S(i)|t ∈ D} and then to exploit such
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representations throughout the various stages of clustering. As it has been antici-
pated, this is accomplished by forming a hierarchy of nestedclusters rooted atD(1).
In this hierarchy, the structural homogeneity of each parent clusterC(i−1) resulting
at the end of stagei− 1 (over a feature spaceS(i−1)) is refined by separatingC(i−1)

into an appropriate numberk of child clustersC(i)
1 , . . . , C(i)

k (with respect to another
feature spaceS(i)) at the end of stagei.

6.2 Partitioning XML Trees

At a given stagei, finding clusters in the high-dimensional feature spaceS(i) is
a challenging issue for various reasons [28]. Foremost, transactions tend to form
different clusters on distinct subsets of features, which penalizes the effectiveness of
clustering and exacerbates its time requirements. Also, poor scalability in both the
size and the dimensionality of the transactions is usually amajor limitation. Yet, an
underestimation (resp. overestimation) of the numberK of child clusters for a parent
cluster misses (resp. uncovers) actual (resp. artificial) groups in the XML data.

To best fit the peculiarities of the transactional setting ateach stage of clustering,
the XML trees are partitioned by means of theAT-DC algorithm [28]. The latter is an
effective and parameter-free method for transactional clustering, that autonomously
partitions each parent cluster into a natural numberk of child clusters by isolating
groups of transactions with meaningful and discriminatoryco-occurrences of struc-
tural features.AT-DC was shown to outperform several established competitors. It
achieves nearly-optimal results in terms of cluster homogeneity, compactness and
separation and, also, linearly scales with respect to both the size and the dimension-
ality of the underlying transactions. These properties make AT-DC an ideal basic
partitioning scheme to be used in the design of an overall multi-stage clustering pro-
cess as discussed in the next section.

AT-DC implements a top-down divisive clustering approach. The algorithm ini-
tially maps the original setD of XML trees to a space of clustering features inS(i).
This yields the transactional representationD(i). The algorithm hence starts with
a partitionP containing a single cluster corresponding to the whole transactional
dataset. The core of the algorithm is a loop, where an attemptto generate a new clus-
ter is performed by (i) choosing a candidate node (corresponding to a cluster with
low quality); (ii ) splitting the candidate cluster into two subclusters; and(iii ) eval-
uating whether the splitting allows a new partition exhibits better quality than the
original partition. If this is the case, the partition is updated, by replacing the candi-
date cluster with the new subclusters. Viceversa, subclusters are discarded and a new
candidate cluster is considered for splitting.

The core of theAT-DC algorithm is the definition of local cluster quality: ideally,
a cluster exhibits a good quality if it there is a core subset of relevant features. Thus,
it is possible to measure the gain in feature strength with respect to the whole dataset,
i.e.,
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Quality(C) ∝
∑

F∈S(i)

[

Pr(F|C)2 − Pr(F|D)2
]

(6.1)

wherePr(F|C)2 corresponds to the relative strength ofF within C. Features with
a high occurrence frequency, compared to the occurrence frequency in the original
dataset, define a subset of relevant features, as opposed to low-occurrence features,
that are irrelevant for the purpose of clustering.

AT-DC is embedded in the main clustering procedure, as reported infig. 7. The
latter consists ofm stages of clustering (line 1). The end user incorporates (atline 1)
valuable domain knowledge and application semantics into the clustering process,
by establishing the most appropriate set of structural featuresS(i) for each stage as
well as the overall numberm of stages.

The generic stagei (lines 4-19) consists of two phases: cluster separation and
summarization. Cluster separation exploitsAT-DC to divide the individual clusters
belonging to the current partitionP with respect to the feature spaceS(i) (lines 5
- 13). At the beginning, i.e. wheni = 1, the current partitionP includes a single
cluster, which coincides with the whole datasetD of XML trees (line 3). The partition
P(i) resulting at the end of stagei (line 13) is itself a collection of partitions. More
precisely, at the current stagei, each parent clusterC from P(i−1) is divided into an
appropriate number of child clusters (line 8), which together form the partitionR of
the aforesaidC. At this point, each child clusterC′ in R is associated (lines 9-11)
with its siblingsC′ , R− C (for the cluster summarization purpose) andR is then
added to the ongoingP(i).

Cluster summarization (lines 14-16) is applied to each clusterC from the obtained
P(i). It consists of a procedure, discussed in section 6.4, whichassociatesC with a
setRep(C) of representative substructures, that subsume the structural information
within C. P(i) becomes (at line 17) the current partitionP for the subsequent stage
i+1. At this stage,AT-DC is re-applied to further divide every clusterC ∈ P(i) with
respect to another set of structural features, i.e.,S(i+1).

The choice of a distinct feature space at each stage guarantees a progressively
increasing degree of structural homogeneity, since the XMLtrees (corresponding to
the transactions) within the generic cluster ofP(i) (that are already homogeneous ac-
cording to the so far considered sets of featuresS(1), . . . ,S(i)) can still be separated
by isolating groups of such XML trees, which are strongly discriminated by mean-
ingful co-occurrences of the (previously unconsidered) structural patterns relative to
S(i+1). Obviously, this also implies a significant differentiation in the representatives
of clusters at different stages. Indeed, at each distinct stage, representatives provide
a summarization of the tree structures within the corresponding clusters in terms of
(a combination of) the structural features considered a that particular stage. Hence,
the representative of a subcluster highlights local patterns of structural homogeneity,
that are not caught by the representative of the parent cluster.
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Algorithm 7 Generate-Hierarchy(D)
Input: a setD = {t1, . . . , tN} of XML trees;
Output: a set∪iP

(i) of multiple cluster partitions;
1: letS(i) be the set of features at stagei, with i = 1, . . . ,m;
2: let i← 1;
3: letP ← {D };
4: while i ≤ m do
5: while P 6= ∅ do
6: letC be a cluster inP;
7: P ← P − C;
8: R ← Generate-Clusters(C,S(i));
9: for eachC′ ∈ R do

10: letC′ ← R− {C′} be the set of siblings ofC′;
11: end for
12: P(i) ← P(i) ∪R;
13: end while
14: for eachC ∈ P(i) do
15: Rep(C)← MineRep(C, C, α);
16: end for
17: P ← P(i);
18: i← i+ 1;
19: end while
20: RETURN∪iP

(i);

6.3 TheAT-DC Algorithm

In this section, is shown review of the fundamentals of theAT-DC algorithm and
show how it can be exploited to develop a cluster hierarchy. Adiscussion on the
convergence ofAT-DC together with a comparative analysis of its empirical behavior
against a wide variety of established competitors can be found in [28].

6.3.1 The Basic Partitioning Method

The key idea behindAT-DC is to develop a clustering procedure which resembles
the general schema of a top-down decision-tree learning algorithm. It starts from
an initial partition containing a single cluster (representing the whole dataset), and
then iteratively tries to split a cluster within the partition into two subclusters. If sub-
clusters guarantee a higher homogeneity in the partition than the original cluster, the
latter is removed and the outcome of splitting is added to thepartition. The approach
is based on the capability of splitting clusters on the basisof their homogeneity. Let
assume that a functionQuality(C) measures the degree of homogeneity of a cluster
C. In practice, clusters with high intra-homogeneity exhibit high values ofQuality .

The general schema of theAT-DC algorithm is specified in alg. 8.AT-DC initially
maps (lines 1- 2) the original setD of XML trees to a space of clustering features in
S. This yields the transactional representationD′. The algorithm starts with a parti-
tion P containing a single cluster corresponding to the whole transactional dataset
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Algorithm 8 Generate-Clusters(D,S)
Input: A setD = {t1, . . . , tN} of XML trees;

a set of clustering featuresS;
Output: A partitionP = {C1, . . . , Ck} of clusters;
1: letx(ti) ← {Fs ∈ S|s ⊑ ti} for eachi = 1, . . . , N ;
2: letD′ ← {x(ti) ⊆ S|ti ∈ D};
3: letP ← {D′};
4: repeat
5: Generate a new clusterC initially empty;
6: for eachclusterCi ∈ P do
7: Partition-Cluster(Ci, C);
8: P ′ ← P ∪ {C};
9: if Quality(P) < Quality(P ′) then

10: P ← P ′;
11: Stabilize-Clusters(P);
12: break
13: else
14: Restore allx(tj) ∈ C into Ci;
15: end if
16: end for
17: until no further clusterC can be generated

(line 3). The core of the algorithm is the body of the loop between lines 4-17. Within
the loop, an attempt to generate a new cluster is performed by(i) choosing a can-
didate node (corresponding to a cluster with low quality) tosplit (line 6); (ii ) split-
ting the candidate cluster into two subclusters (line 7); and (iii ) evaluating whether
the splitting allows a new partition exhibits better quality than the original partition
(lines 8-15). If this is the case, the loop can be stopped (line 12) and the partition
is updated, by replacing the candidate cluster with the new subclusters (line 10).
Viceversa, subclusters are discarded and a new candidate cluster is considered for
splitting.

The PARTITION-CLUSTER procedure at line 7 iteratively evaluates, for each
transactionx(t) ∈ Ci ∪ C, whether a membership reassignment improves the de-
gree of local homogeneity of the two clusters. The contribution of x(t) to the local
quality is evaluated in two cases: both in the case thatx

(t) is maintained in its orig-
inal cluster of membership and in the case thatx

(t) is moved to the other cluster. If
movingx(t) causes an improvement in the local quality, then the swap is accepted.

Differently from the PARTITION-CLUSTER procedure, where the improvement
in quality is attempted locally to a cluster, the STABILIZE -CLUSTERS procedure
tries to increase global quality, by finding, for each element, the most suitable cluster
among the ones available in the partition. Precisely, the generation of a new cluster
triggers the call to STABILIZE -CLUSTERS on line 11, which aims at further im-
proving the overall quality by attempting relocations among the the clusters. Also,
clusters at line 6 are considered in increasing order of quality. This guarantees that
the effects of splitting are evaluated first on clusters withlower quality. Indeed, if a
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cluster exhibits a lower degree of homogeneity, it is more eligible for producing an
improvement in the overall quality, provided that it is properly split.

6.3.2 Cluster and Partition Qualities

AT-DC exploits two different quality measures, namely one for thelocal homogene-
ity within a cluster and the other for the global homogeneityof the partition. These
measures are employed with opposed objectives. Indeed, as shown in alg. 8, it can
be noticed that partition quality is used to establish whether the insertion of a new
cluster is really convenient: in a sense, it is aimed at maintaining compactness. By
the converse, cluster quality in procedure PARTITION-CLUSTERat line 7 of alg. 8 is
aimed at the best localized splitting and, hence, at a good separation.

Let SC be the subset of features that appear within the generic cluster C, i.e.,
SC , {F|F ∈ x

(t),x(t) ∈ C}. The quality ofC is defined as the gain in feature
strength with respect to the whole dataset, i.e.,

Quality(C) = Pr(C)
∑

F∈SC

[

Pr(F|C)2 − Pr(F|D)2
]

wherePr(F|C)2 corresponds to the relative strength ofF within C, whereas
Pr(C) represents the relative strength ofC. These two factors work in contraposi-
tion: singleton clusters exhibit strong features in a sparse region, whereas highly
populated clusters exhibit weaker features in a dense region. The above formula finds
an interpretation in terms of subspace clustering. Features exhibiting a high occur-
rence frequency compared to the occurrence frequency in theoriginal dataset, define
a subset of relevant features, as opposed to low-occurrencefeatures which are indeed
irrelevant for the purpose of clustering. Thus, clusters exhibit high quality whenever
a subspace of relevant features occurs whose frequency is significantly higher than
in the whole dataset.

The quality of a partitionP is instead meant to measure both the homogeneity of
clusters and their compactness. Viewed in this respect, partition quality is defined as
the weighted sum of the qualities of the available clusters:

Quality(P) =
∑

C∈P

Pr(C)Quality(C)

The formula finds an interpretation in terms of average increase in quality obtained
by partitioning the dataset. Notice that the componentQuality(C) is already pro-
portional to the contributionPr(C). As a result, in the overall partition quality, the
contribution of each cluster is weighted byPr(C)2. This weighting has a major ef-
fect in the GENERATE-CLUSTERSprocedure: splitting in extremely small clusters
is penalized. Indeed, the generated clusters are added to the partition only if their
contribution is really worth. Notice the different role of the contributionPr(C) in
the two quality measures: a strong penalization on singleton clusters would not al-
low a proper splitting in the PARTITION-CLUSTERprocedure. In particular, splitting
would suffer from the bottleneck of the initial reassignment, since in principle the
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possible loss in clusterC1 would not be counterbalanced by a proper gain inC2.
On the contrary, the (stable) result of the PARTITION-CLUSTER procedure has to be
accepted only if it yields a significant change in the averagecluster quality.

6.4 Cluster Summarization

The representative of a cluster of XML trees is modeled as a set of highly represen-
tative tree patterns, which provide an intelligible summarization of the most relevant
structural properties in the cluster. Notice that, as mentioned before, a cluster is al-
ready characterized by a set of relevant features. However,features can be combined
further, and they do not necessarily allow to distinguish among different clusters.

A set of tree patterns is actually viewed as the representative of a cluster of XML
trees, if the following two conditions are satisfied. Firstly, each tree pattern must
appear as a substructure of the XML trees in the cluster with an occurrence frequency
that is much higher than the one with which it occurs throughout the whole collection
of XML trees. Secondly, there must be a strong degree of correlation between the
individual tree pattern and the cluster of XML trees, which guarantees that the former
is an actual summarization of specific structural properties of the latter.

An XML tree pattern is essentially a substructure that catches some common
structural properties of a collection of XML trees. The features inS(i) are consid-
ered as the basic tree pattens within a cluster. However, tree patterns can be suitably
combined intocompositetree patterns. To avoid combinatory explosion, only two
types of composite tree pattern are admitted, namelyparent-childandsibling tree
patterns.

Definition 6.3. Parent-child tree pattern. A parent-child tree pattern is an arrange-
ment of two basic tree patterns, in which one of the two tree patterns is rooted at some
leaf node of the other tree pattern. Letsi andsj be two generic tree patterns. Also,
assume thatl is some leaf node ofsi. The operatorsi �l sj defines a new parent-
child tree patterns, such that|Vs| = |Vsi

| + |Vsj
| and |Es| = |Esi

| + |Esj
| + 1,

wherein the rootrsj of sj is a child ofl. Formally,si �l sj defines a tree patterns
such that there exist two mappingsϕi : Vsi

→ Vs andϕj : Vsj
→ Vs satisfying

the following conditions:

• ϕi(rsi) = rs (i.e. rsi matchesrs)
• ∀n ∈ Vsi

and∀n′ ∈ Vsj
, it holds thatϕi(n) 6= ϕj(n

′);
• ∀n ∈ Vsh

, λsh(n) = λs(ϕh(n)) for eachh ∈ {i, j};
• ∀n, n′ ∈ Vsh

, it holds that(n, n′) ∈ Esh
iff (ϕh(n), ϕh(n

′)) ∈ Es for each
h ∈ {i, j};

• (ϕi(l), ϕj(rsj )) ∈ Es (i.e.,ϕi(l) ≺ ϕj(rsj ) in s);

Given any two tree patternssi and sj , the set of all possible parent-child tree
patterns in which the root ofsj is a child of the individual leaves ofsi is denoted as
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si � sj ,
⋃

l∈Lsi

{si �l sj}

whereLsi
represents the set of leaves ofsi. ⊓⊔

A parent-child tree pattern is a vertical arrangement of twocomponent tree pat-
terns. Instead, a sibling tree pattern follows from an horizontal arrangement of its
components.

Definition 6.4. Sibling tree pattern. Given two tree patterns with a same label at
their roots, a sibling tree pattern is a composite structure, whose root-to-leaf paths
are the union of the root-to-leaf paths in the two component patterns. Letsi andsj
be two tree patterns such thatλsi(rsi) = λsj (rsj ). The operatorsi ∧ sj defines
a sibling tree patterns, such that there exist two mappingsϕi : Vsi

→ Vs and
ϕj : Vsj

→ Vs satisfying the following conditions:

• ϕi(rsi) = ϕj(rsj ) = rs;
• ∀n ∈ Vsh

, λsh(n) = λs(ϕh(n)) for eachh ∈ {i, j};
• ∀n, n′ ∈ Vsh

, it holds that(n, n′) ∈ Esh
iff (ϕh(n), ϕh(n

′)) ∈ Es for each
h ∈ {i, j}. ⊓⊔

6.4.1 Mining Representative XML Tree Patterns

The MINEREP procedure, illustrated in fig. 9, is an Apriori-based technique to mine
a representative for a clusterC of XML trees. The latter is a set of discriminatory sub-
structures, obtained through progressive combinations ofthe elementary structures
in C.

M INEREP receives three input parameters, namely the clusterC to be summa-
rized, the setC of all siblings ofC (as defined at line 10 of fig. 7) and a significance
thresholdα. The procedure starts (at line 3) by considering a spaceSC of features,
whose occurrence frequency in clusterC is higher than in the whole partitionC ∪ C.
These features are inherently characteristic ofC and, according to the definition of
cluster quality in (6.1), are directly provided byAT-DC without having to be re-
computed. It is worth to emphasize that focusing on such characteristic features from
the beginning strongly prunes the search space into which tosearch for progressively
more-complex candidates.

The elementary structures from the feature spaceSC are considered (at line 4)
as candidate tree patterns. Each such a candidates is associated (lines 5-7) with a
bitmapB(s), that keeps trace of the transactions fromC ∪ C exhibiting the corre-
sponding featureFs. Notice that, in fig. 9, the generic bitmapB(s) is represented as
a set for clarity. The interpretation is that the transactions explicitly present inB(s)
exhibitFs, whereas all others do not includeFs. Henceforth, the bitmaps associated
to the elementary structures allow to obtain the bitmap of any combination of such
structures, without scanning the transactions inC ∪ C again. This is accomplished
by intersecting the bitmaps associated to the combined substructures (line 4 of the
CANDIDATE -GENERATION sub-procedure in fig. 10).
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At the heart of MINEREP is a loop (lines 8-20), whose purpose is twofold: dis-
tilling representative tree patterns fromC(k) and generating more-complex (parent-
child or sibling) candidates through structural combinations of representative tree
patterns. The loop is reiterated until no more candidates from which to distill repre-
sentative tree patterns.

At any generic iterationk, M INEREP computes the occurrence frequencies
Pr(s|C) andPr(s|C) of each candidates from C(k) within, respectively,C andC.
This is accomplished by looking at the transactions in the associated bitmapB(s).
The latter, by construction (at line 4 of the CANDIDATE -GENERATION scheme in
fig. 10), includes all those transactions inC ∪ C that exhibit all and only the features
in s. However, at any iterationk ≥ 2 (tested at line 10), such transactions cannot
be directly exploited to compute the occurrence frequencies. This is due to the fact
thats is not necessarily an embedded substructure of all the XML trees associated to
the transactions ins, because of the possibility that, in some of these trees, thefea-
tures ofs originate distinct structural combinations. Therefore,B(s) is inspected for
the purpose of identifying (at line 11) the subsetD(s) of those transactions, whose
corresponding XML trees do not actually contains as a substructure.D(s) is then
removed fromB(s) (at line 12), which enables the computation of the occurrence
frequenciesPr(s|C) andPr(s|C) (at lines 14 and 15) from the bitmap.

As a matter of fact, the identification ofD(s) is optimized. Precisely, the avail-
able XML trees are individually associated with revised s-graphs [47]. These are
explicit representations of the parent-child and ancestor-descendant hierarchical re-
lationships within the XML trees. Such representations areused to avoid the time-
expensive test (at line 11) on the embedding of a substructure s in an XML treet,
whenever all edges ofs are not included in the revised s-graph associated tot.

The representative tree patterns are distilled inL(k) (at line 17) from the set
C(k) of candidates, by choosing the ones that satisfy the following two conditions.
Firstly, the occurrence frequency of each representative tree patterns must be higher
in C than in the whole partition to whichC belongs, namelyPr(s|C) > Pr(s|C).
Both Pr(s|C) andPr(s|C) are computed (respectively at lines 14 and 15) after the
pruning phase. Secondly, there must be a strong degree of correlation betweens and
C. This is useful to establish whether the occurrence ofs in C is statistically relevant
and, hence, structurally representative. Statistical hypothesis testing is used for this
purpose, as it shall be discussed hereafter. The resulting setL(k) of representative tree
patterns provides the basic structures for the generation of candidate tree patterns at
the subsequent iterationk + 1.

M INEREPhalts whenC(k) is empty and, hence, no more representative tree pat-
terns can be discovered. In such a case MINEREP returns (line 22) all of the XML
tree patterns, that were found in the previous steps to be strongly discriminatory of
the structural properties of clusterC. The candidate generation phase as well as the
exploitation of statistical hypothesis testing for the identification of representative
substructures are analyzed next.
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Algorithm 9 MineRep(C, C, α)

Input: a setC = {x(t1), . . . ,x(th)} of XML trees;
the setC of siblings ofC as defined at line 10 of fig. 7;
a significance thresholdα;

Output: a setR of representative XML structures;
1: R ← ∅;
2: k ← 1;
3: letSC ← {Fs|∃x

(t) ∈ C,Fs ∈ x
(t),Pr(Fs|C) > Pr(Fs|C ∪ C)};

4: letC(k) ← {s|Fs ∈ SC};
5: for eachs ∈ C(k) do
6: letB(s)← {x(t) ∈ C ∪ C|Fs ∈ x

(t)};
7: end for
8: while (C(k) 6= ∅) do
9: for eachs ∈ C(k) do

10: if (k > 1) then
11: D(s)← {x(t) ∈ B(s)|s * t};
12: B(s)← B(s)−D(s);
13: end if
14: Pr(s|C)← |{x(t)∈B(s)∩C}|

|C|
;

15: Pr(s|C ∪ C)← |{x(t)∈B(s)}|

|C∪C|
;

16: end for
17: L(k) ← {s ∈ C(k)|Pr(s|C) > Pr(s|C ∪ C), χ2(s, C) > τα};
18: k ← k + 1;
19: C(k) ← Candidate-Generation(L(k−1));
20: end while
21: R ← ∪kL

(k);
22: return R;

Candidate generation

The CANDIDATE -GENERATION sub-procedure is fed with the current setL of fre-
quent and discriminative tree patterns. CANDIDATE -GENERATION is a tree-pattern
growth strategy, that considers each pair of distinct tree patternss ands′ from L for
combination into further candidate (parent-child or sibling) tree patterns. Precisely,
the setT contains all possible parent-child tree patterns obtainable from s ands′.
The bitmapB (at line 4) is common to all of the parent-child tree patternsin T . The
candidate generation strategy soon prunesT (lines 5-11): the height of each candi-
dates in T , denoted asheight(s), is tested (lines 6-10) against the maximum height
H of the XML trees in clusterC. If height(s) does not to exceedH, s is left in T
and it is associated with the bitmapB (at line 7). Otherwise,s is removed fromT
(at line 9). The distilledT is added to the ongoing setC of candidates (at line 12).
At this point, CANDIDATE -GENERATION considers the sibling pattern obtainable
from si andsj , if both are not tree-like representations of individual nodes (tested
at line 13) and share a common root label (tested at line 14). The sibling pattern
is retained (at lines 13-21) as a candidate withinC if it passes the pruning condi-
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Algorithm 10 Candidate-Generation(L)
Input: a setL of discriminative tree patterns;
Output: a setC of new (combined) candidate tree patterns;
1: C ← ∅;
2: for eachsi, sj ∈ L do
3: T ← si � sj ∪ sj � si;
4: B ← B(si) ∩ B(sj);
5: for eachs ∈ T do
6: if (height(s) ≤ H) then
7: B(s)← B;
8: else
9: T ← T − {s};

10: end if
11: end for
12: C ← C ∪ T ;
13: if (|Vsi

| > 1) and (|Vsj
| > 1) then

14: if (λsi
(rsi) = λsj

(rsj )) then
15: s← si ∧ sj ;
16: if (width(s) ≤W ) then
17: B(s)← B;
18: C ← C ∪ {s};
19: end if
20: end if
21: end if
22: end for
23: return C;

tion on its width (at line 16), that must not be greater than the maximum widthW
of the XML trees in the cluster. CANDIDATE -GENERATION halts by returning (at
line 23) the resulting setC of new candidate tree patterns. The pseudo-code for the
CANDIDATE -GENERATION procedure is illustrated in fig. 10.

Representativeness of Candidate Tree Patterns

As to the use of statistical hypothesis testing in MINEREP (at line 17), the non-
parametric chi-square test is used to establish whether therepresentativeness of a
candidate tree patterns is statistically grounded. This involves a decision between
two alternative hypotheses: anull hypothesis according to which the occurrence ofs

in C is a consequence of chance (and, thus, the representativeness ofs must necessar-
ily be considered as statistically groundless) and analternativehypothesis, according
to which the occurrence ofs in C is statistically relevant (and, hence,s must be rep-
resentative of some corresponding structural properties). To make a proper decision
between the two alternative hypotheses, the following fourstatistics are considered
(that can be efficiently computed fromB(s) andD(s)): nsC , the number of XML
trees inC of which s is an embedded substructure;ns¬C , the number of XML trees,
within any cluster other thanC, of which s is an embedded substructure;n¬sC , the
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number of XML trees withinC of whichs is not an embedded subtree; andn¬s¬C ,the
number of XML trees within all clusters butC of whichs is not an embedded subtree.

The above statistics enable the computation of two marginaltotals, namely, the
overall numbersns andn¬s of XML trees inC ∪ C that contain, respectively, do not
contains as an embedded substructure. Marginal totals, in turn, allow to compute
the expected values of the foregoing statistics, respectively denoted asnsC , ns¬C ,
n¬sC , n¬s¬C , that represent those values that would be expected if therewas no
meaningful correlation betweens andC, i.e., if s occurred inC by chance. Precisely,

nsC ,
ns|C|

|C∪C|
, n¬sC ,

n¬s|C|

|C∪C|
, ns¬C ,

ns|C|

|C∪C|
, n¬s¬C ,

n¬s|C|

|C∪C|
. Given both the

observed and expected statistics, it is possible to computethe value of the following
test-statistic:

χ2(s, C) =
∑

s′∈{s,¬s},C′∈{C,¬C}

(ns′C′ − ns′C′)
2

ns′C′

The null hypothesis is rejected in favor of a statistically relevant occurrence
of s in C if the difference between observed and expected statisticsis high, i.e. if
χ2(s, C) > τα, whereτα is the threshold for the chi-square distribution with one
degree of freedom at a significance levelα.

6.5 Evaluation

In this section, the behavior of the devised clustering approach is investigated through
an empirical evaluation with three main objectives: the assessment of clustering qual-
ity, the evaluation of cluster-summarization and a performance comparison.

All experiments were conducted on a Windows machine, with anIntel Itanium
processor,2Gb of memory and2Ghz of clock speed. Standard benchmark data sets
were employed for a direct comparison among the competitors. Real-world data,
namedReal, encompasses the following collections.

• Astronomy, 217 documents extracted from an XML-based metadata repository,
that describes an archive of publications owned by theAstronomical Data Center
at NASA/GSFC.

• Forum, 264 documents concerning messages sent by users of a Web forum.
• News, 64 documents concerning press news from all over the world, daily col-

lected byPR Web, a company providing free online press release distribution.
• Sigmod, 51 documents concerning issues of SIGMOD Record. Such documents

were obtained from the XML version of the ACM SIGMOD Web site produced
within theAraneusproject [35].

• Wrapper, 53 documents representing wrapper programs for Web sites, obtained
by means of theLixto system [12].

The distribution of tags within the above documents is quiteheterogeneous, due to
the complexity of the DTDs associated with the classes, and to the semantic differ-
ences among the documents. It is worth noticing that theSigmod dataset consists of
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a larger collection of 988 documents, complying to three different DTDs (reported
in http://www.sigmod.org/record/xml/). This larger collection can be
exploited for testing the evaluating the generation of the cluster hierarchy.

Three further synthetic data sets were generated from as many collections of
DTSs reported in [39]. The first synthesized data set, referred to asSynth1, com-
prises1000 XML documents produced from a collection of10 heterogeneous DTDs
(illustrated in fig. 6 of [39]), that were individually used to generate100 XML docu-
ments. These DTDs exhibit strong structural differences and, hence, most clustering
algorithms can produce high-quality results.

A finer evaluation can be obtained by investigating the behavior of the compared
algorithms on a collection of XML documents, that are very similar to one another
from a structural point of view. To perform such a test, a second synthesized data set,
referred to asSynth2and consisting of3000 XML documents, was assembled from
3 homogeneous DTDs (illustrated in fig. 7 of [39]), individually used to generate
1000 XML documents. Experiments overSynth2clearly highlight the ability of the
competitors at operating in extremely-challenging applicative-settings, wherein the
XML documents share multiple forms of structural patterns.

In addition, the collectionSynth3consisting of the synthesized documents in [41],
is used. It exhibits a 30% degree of overlap. Again, this dataset allows us to compare
the effectiveness of the current proposed approach to the previous approach proposed
in [41].

The generation of artificial data was performed by means of the XML data gen-
erator described in [45]. The latter essentially accepts aninput DTD and produces
a set of conforming documents, on the basis of suitable statistical models govern-
ing the occurrences of elements marked by operators∗, ?, |, and+. The generation
process was constrained as in [39]. Precisely, the maximum number of occurrences
of a child node in the context of its parent node is fixed to6. The actual number of
repetitions is, hence, randomly chosen in the interval[0, 6]. The maximum depth of
the synthetic XML trees was set to7.

GENERATE-HIERARCHY effectiveness is evaluated in multiple steps. LetP(l)

be the partition of a data setD produced by GENERATE-HIERARCHY at level l of
the resulting cluster hierarchy.

One interesting aspect is to fixl to 1, which reduces GENERATE-HIERARCHY to
GENERATE-CLUSTERS, and assess the effectiveness of the basic partitioning scheme
at separatingD with respect to multiple formsS(1), . . . ,S(m) of structural patterns.
This involves a comparison of clustering quality across thepartitionsP(1)

i , with i =

1, . . . ,m, whereP(1)
i is the outcome of GENERATE-CLUSTERS(D,S(i)).

Clustering effectiveness is evaluated over each partitionP(1)
i = {C1, . . . , Ck}

according to external criteria, i.e. some pre-specified structure, that corresponds
to a meaningful explanation of the data at hand. More precisely, the XML docu-
ments within the generic data setD can be grouped into structurally-homogeneous
groups on the basis of the known conformity to some generating DTD. Thus, exper-
iments aim to assess the effectiveness of GENERATE-HIERARCHY in recognizing
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such groups. Effectiveness is measured in terms of average precision and recall [10]
of partitionP(1)

i , as described follows.
Let C1, . . . ,Ch be the true classes that actually partitionD, i.e., such thatD =

∪iCi andCi ∩Cj = ∅ for eachi 6= j. Also, letP(1)
i = {C1, . . . , Ck} be a partition

of D into k clusters, wherek is automatically fixed by GENERATE-CLUSTERS. P(1)
i

can be summarized into a contingency tablem, where columns represent discovered
clusters and rows represent true classes. Each entrymij indicates the number of
transactions, related to XML documents inD, that were associated with clusterCj ,
with 1 ≤ j ≤ k, and actually belongs to classCi, with 1 ≤ i ≤ h. The table
provides an immediate visual description of the degree of agreement between the
results yielded by GENERATE-CLUSTERSand the actual class partition. The table
also permits a quantitative evaluation of such a degree of correspondence, that can be
finely caught through two traditional measures from the fieldof information retrieval,
namely precision and recall. Intuitively, each clusterCj corresponds to the classCi

that is best represented inCj , i.e., such thatmij is maximal. For any clusterCj , the
indexh(j) of the class with maximalmij is defined ash(j) , max i mij . Precision
P (Cj) and recallR(Cj) for clusterCj are, hence, defined as follows:

P (Cj) =
|{x(t) ∈ Cj |t ∈ Ch(j)}|

|Cj |
, R(Cj) =

|{x(t) ∈ Cj |t ∈ Ch(j)}|
|Ch(j)|

Starting from the above measures, it is possible to define theaverage preci-
sion P (1) and recallR(1), respectively, asPP (1) = 1

|P(1)|

∑

C∈P(1) P (C), R =
1
|P(i)|

∑

C∈P(i) R(C). The average precision and recall for all other partitionsP(i)

with i > 1 are defined analogously.
Table 6.1 shows the results of clustering on such collections. Precision and recall

are optimal, even for the collectionSynth2of homogeneous documents.

Collection N. of DocsClassesClusters Precision Recall Avg Γ Time
Real 649 5 5 1 1 0.955820.48s

Synth1 1000 10 10 1 1 0.945513.32s
Synth2 3000 3 3 1 1 0.3833 7.5s
Synth3 1400 7 7 1 1 0.7875 2.68s
Synth4 800 8 10 1 0.8 0.7127 3.68s

Table 6.1.Evaluation of Separability and homogeneity

A second aspect to investigate is the effectiveness of the GENERATE-HIERARCHY

procedure when all of them forms of structural patterns are progressively consid-
ered (in some meaningful sequence) to progressively partition D. To this purpose, a
new synthetic dataset was producedSynth4, with 800 documents complying to the
schema shown in fig. 6.1. Four separate classes of documents can be noted, each
using a different subset of nodes (in particular,DTD1 andDTD2 share the nodes
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A1, . . . , A5, whereasDTD3 andDTD4 share nodesA6, . . . , A10). The clustering pro-
cess was applied by considering node, edge and path features, in sequence.

Fig. 6.1.DTDs for theSynth3dataset

The DTDs capture substantial similarities and differences. In particular, all
dataset exhibit different paths (but they can share some edges). Further, the docu-
ments inDTD4 can further split, since they can exhibit trees with paths ending in the
nodeA6. Also, node frequencies inDTD4 can substantially differ, thus differentiat-
ing this DTD from the others even at a node level. This situation is fully captured
by the clustering algorithm, as shown in fig. 6.2.DTD4 is kept separate fromDTD3
at a node level, and further split in two subclusters at the edge level, according to
whether edges contain or not edge(A9,A6). Also, the trees containing such an edge
can be further split according on whether they contain the path from A10 to A6 or
not. Notice that, by contrary,DTD8 does not behave similarly, since there’s no such
a node likeA6 capable of differentiating the trees in the class.

Fig. 6.2.Cluster hierarchy for theSynth3dataset

The evaluation of the multi-stage clustering is further confirmed by experi-
menting onSigmod. As already mentioned, this dataset consists of documents
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complying with three different DTDs. In particular, the distribution of the doc-
uments is unbalanced, since one of the DTDs, namedIndexTermsPage (see
http://www.sigmod.org/record/xml/ for details), contains920 docu-
ments. Figure 6.3 shows that GENERATE-HIERARCHY separates all documents com-
plying to different DTDs and further splits the documents inthe class related to
IndexTermsPage, according to whether or not these documents contain the op-
tional elements described in the DTD (categoryAndSubjectDescriptorsTuple,
category, content andterm). In particular, the separation of such a class leads
to two subclassesC1 andC2, that can be described by two DTDs, both subsumed by
IndexTermsPage. C1 is a subclass of437 documents, in which the optional ele-
ments ofIndexTermsPage are absent. Instead, the remaining483 documents in
which such optional elements occur are assembled into subclassC2, which finely
catches the overall degree of structural resemblance induced by these additional
pieces of structures.

Fig. 6.3.Cluster hierarchy for theSynth3dataset

The evaluation of the accuracy of cluster summarization is inspired to an idea
originally proposed in [39] for a different purpose, i.e., measuring the structural ho-
mogeneity of a set of intermediate clusters obtained while partitioning a collection
of XML documents. Lett be an XML tree andR a set of substructures. The repre-
sentativenessγ(R, t) of R with respect tot is the fraction of nodes int matched by
the embedded substructures ofR:

γ(R, t) , | ∪s∈R,s⊆t {n ∈ V|Vs 7→ V ⊆ Vt}|
|Vt|

where,Vt andVs are the sets of nodes of, respectively, the XML treet and the
generic substructures.V is instead the subset of the nodes int matched by the nodes
of s (which is the meaning of notationVs 7→ V). Representativeness can be eas-
ily generalized to clusters. The representativenessΓ [Rep(C)] of the representative
Rep(C) with respect to a clusterC can be defined as the average representativeness
of the documents in the cluster.
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Cluster representativeness finds an interpretation in terms of intra-cluster struc-
tural homogeneity. Indeed,Γ [Rep(C)] is low if clusterC includes structurally het-
erogeneous XML trees and, hence, MINEREP (fig. 9) is unable to extract frequent-
occurring and statistically-representative substructures. On the contrary,Γ [Rep(C)]
is high if C contains structurally homogeneous XML trees, whose nodes are matched
in a high percentage by the variety of embedded substructures extracted by MINEREP.
Table 6.1 shows the averageΓ value exhibited in each experiment.Synth1exhibits
the maximum value ofΓ among the synthetic datasets, and by contrastSynth2ex-
hibits the lowest. Indeed, documents inSynth2share several features, and hence
the representative pattern trees only cover small fragments that really discriminate
among clusters.

Scalability and Comparison

In order to evaluate the scalability of the algorithm, were used the DTDs forSynth1
and produced respectively100, 1000, 10.000 and100.000 documents with2, 4, and
8 clusters. The results are shown in fig. 6.4. The algorithm is linear both in the num-
ber of documents and in the number of clusters. This is mainlyinherited by the
intrinsic scalability of the coreAT-DC algorithm, which is used for clustering. The
only possible issue of the algorithm is the computation of the representative when
the documents are complex and the intra-similarity is high.This is shown in table
6.1, where the times are higher than all the others on synthesized data. Clearly, a
levelwise approach to the computation of a representative might suffer from the high
density of the substructures in the documents.

Fig. 6.4.Performance results for datasets of different size
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At the end of this intensive empirical evaluation, the proposed approach can be
compared against a state-of-the-art competitor, namely the XProj approach [39]. Un-
fortunately, a direct comparative evaluation is not possible since, it was not possible
to obtain the latter framework from its authors. Notwithstanding, the exploitation of
the same data sets used in [39], namelySigmod, Synth1andSynth2, still enables an
indirect and robust comparison. By looking at the performance of XProj reported
in [39], it can be seen that the result of the proposed clustering approach attains the
same quality. However, two strong advantages of the proposed approach are: the de-
velopment of a hierarchy of nested clusters, that explain multiple forms of structural
relationships in the data, that remain uncaught with XProj;the summarization of a
cluster of XML documents, which provides an intelligible subsumption of its struc-
tural properties, which is not offered by XProj. Also, notice that the scalability of the
proposed approach is much higher than the one of XProj. Finally, the proposed ap-
proach is fully-automatic, parameter-free, whereas the optimal performance of XProj
on each dataset requires a complex parameter-setting process.
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Conclusions and FutureWork

This thesis has proposed formal solutions to complex problems born from needs of
the information society. Below are presented in detail the obtained results.

7.1 Inductive Query Language

For the sake of formality, the thesis first proposed a language for formulating ana-
lytical statements with which to progressively mine and query data. The procedural
semantics of the language is founded on the2W Model algebraic framework, that
allows to accommodate and combine disparate mining tasks into a multi-step knowl-
edge discovery process.

There are some challenging issues, that are worth further research. Foremost, the
identification of a compact2W Model algebra, consisting of a fixed, minimal set
of operators. Analogously to the case of the3W Model framework, this is useful
in two respects, i.e. the possibility of expressing the required patterns via suitable
combinations of such basic operators, rather than relying on an arbitrary number
of task-oriented mining operators, and the development of asolid theoretical back-
ground concerning expressiveness and complexity results.

The development of strategies for optimizing processing plans is also an interest-
ing task, because it would increase the overall performanceof a possible engine that
implements this language.

7.2 Classification in hostile environments

In this area the thesis proposed two novel schemes for a tightintegration between
rule-learning and probabilistic learning [21], aimed to improve the classification per-
formance on the classes of interest in imprecise environments. A massive evaluation
revealed that the resulting learning framework is competitive and often superior in
classification performance w.r.t. established rule-basedcompetitors. There are many
viable lines of research that may improve performance on rare classes even further.
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The ongoing research efforts are geared towards the definition of a discriminative
model, based on the maximum entropy principle, that explicitly enables the specifi-
cation of the features (i.e. the CAR antecedents) that either concur to or prevent from
the individual class memberships.

Also, it’s possible to pursue the improvement of the accuracy of the local proba-
bilistic generative models through the analysis of ROC curves. The point is that the
classification threshold typically used in the proposed framework assigns a class la-
bel when the associated probability is higher than0.5. However, the latter may not
necessarily be the best threshold, especially if the bias introduced by the CAR as-
sociated with the probabilistic classifier is considered. In general, lower thresholds
produce improvements in recall, by contemporarily degrading precision as a side
effect. However, as suggested by fig.4.4 where a better threshold value can be ob-
tained in correspondence to the (0.8,0.01) pair (corresponding to the threshold 0.2),
by automatically choosing the best class-specific threshold, probabilistic smoothing
can still allow to remove some locality effects within the CAR and maintain high
precision.

7.3 Collaborative filtering

In this field, the thesis proposed a probabilistic model for the discovery of both global
and local patterns from users’ preference data. Experimental evaluation showed that
both the User Community model (for the discovery of global patterns) and the hierar-
chical topic detection model (for the discovery of local patterns) exhibits prediction
capabilities comparable to state-of-the art approaches. Also, the proposed approach
exhibits high flexibility in discovering structural patterns capable of providing suit-
able interpretations of the users’ preference data.

The proposed approach is suitable for further investigations in several respects.
Foremost, the proposed strategy can be combined with temporal information in order
to better model user changes in preferences. Also, the proposed approach allows
suitable integration of prior modeling for the ”cold-start” issues. Finally, more in
general, the ”local patterns” approach can be extended to other approaches based on
ensembles.

7.4 Tree-Structured data mining

In this thesis a new approach to clustering of XML documents was proposed, that
produces a hierarchy of nested clusters. Along the paths from the root to the leafs
of the hierarchy, the approach progressively separates theXML data by looking at
the occurrence of different types of structural patterns intheir structures. Also, each
cluster in the hierarchy is subsumed, through a novel summarization method, by a
set of representative substructures, that provide an understanding of the structural
properties considered in the cluster. A comparative evaluation proved that the de-
vised approach is on a par and even better than established competitors in terms of
effectiveness, scalability and cluster summarization.
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In contrast to previous works, the devised approach does notrely on fixed ref-
erence structures (such as summaries and s-graphs) to partition XML documents.
Rather, it takes into account various (user-supplied) forms of structural patterns in
the XML documents to guide the clustering process.

Multi-stage clustering is also a parameter-free method, that only requires setting
a significance threshold for testing the statistical representativeness of the substruc-
tures during cluster summarization. No tuning is required:usual settings correspond
to well-known values, e.g.,0.05, or 0.01.

Finally, multi-stage clustering efficiently processes large-scale databases of XML
documents and provides an intelligible understanding of the structural properties of
the clusters in the hierarchy.
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