
I slept
and dreamt that life was joy.

I awoke and saw that life was service.
I acted and behold, service was joy

(Tagore)

to my grand-parents, my family,
all my angels, for their support

Acknowledgement

This thesis is the result of an intense research activity performed at Depart-
ment of Electronics, Computer Sciences and Systems (DEIS) of the University
of Calabria with the support of a number of people to which I want to express
my thankfulness.

My first “thank you” goes to my advisor, prof. D. Saccà, whose personality
and deepness has always been the light to follow in this research experience,
without him anything would have been the same, the lighthouse of this re-
search world! Secondly I’d like to thank Elio Masciari he started to support
me when I was just a student, and because of him I’m able to finish this
awesome research program.

I’m also very grateful to prof. Luigi Palopoli for his careful guidance as
PhD program coordinator.

Furthermore I can not forget all my friends ICAR-CNR institute, which
supported me in every situation and helping to make me stronger: thanks to
Gianni, Ettore, Francesco, Eugenio, Giuseppe, Agostino, Massimo, they have
been so precious, and Alfredo who guided me in my first years of this PhD
course.

Foremost, I owe a special thank to my mother and my father, they promote
me in all situations and in every difficulties, they always encouraged me to
overcome problems and sadness, making me much more motivated and enthu-
siastic. Thanks to my incomparable and inimitable sister, always a true and
real support for everything and to my cousin Michele, my “missing brother”;
thanks to my best friends Damiano, Eliana and Serena who have been always
kind and encouraging me everytime

A real thanks to all my ‘American’ friends I met at UCLA and most of all
to prof. Carlo Zaniolo who made my seven months experience at Computer
Science department the best I could ever had.

The latter but not the last, a special thanks to Angela, my little curly
angel, who supported, tolerated and endured me with her beautiful smile and
love.

Contents

1 Introduction . 1
1.1 Background and Motivations . 1
1.2 Main Contributions of the Thesis . 4
1.3 Thesis Organization . 6

2 Querying and Answering Multidimensional Static Data 9
2.1 Introduction . 9

2.1.1 Storage of Data: Normalized VS Dimensional Approach 9
2.2 On Line Analytical Processing (OLAP) . 10
2.3 Advanced OLAP Visualization Using Hierarchies 12

2.3.1 Dimension Flattening . 13
2.3.2 Hierarchy-Driven Compression of Two-Dimensional

OLAP Views . 14
2.3.3 Experimental Study . 18

2.4 Compressing Data Cubes under Simultaneous Queries 21
2.4.1 The Compression Process . 25
2.4.2 Experimental Results . 29

3 Privacy and OLAP . 33
3.1 Introduction . 33
3.2 Privacy Preserving Techniques in OLAP . 37
3.3 Security techniques in OLAP . 39
3.4 A Robust Sampling-Based Technique for Privacy Preservation

in OLAP Environment . 40
3.4.1 Theoretical Model . 41
3.4.2 Computing the Privacy Preserving Synopsis Data Cube 45
3.4.3 Experimental Results . 48

4 A Data Stream Overview . 55
4.1 Data Streams: Definition and Characteristics 55

4.1.1 DBMS and DSMS: similarities and differences 56

X Contents

4.2 Issues on Query Execution . 57
4.3 Continuous Queries . 58

4.3.1 CQ and Blocking Operators . 60
4.3.2 Order . 62

4.4 Approximate Query Answering . 62
4.4.1 Sliding Window . 62
4.4.2 Other Approximation Techniques . 64

4.5 Continuous Query Languages for DSMS . 65
4.5.1 The Power of UDAs . 65

4.6 Query Plan: DBMS vs DSMS . 66
4.7 DSMS Optimization: QoS and Scheduling 67

4.7.1 Approaches for Scheduling Continuous Queries in DSMS 68
4.8 Quality of Service and Load Shedding . 69
4.9 Complex Event Processing (CEP) and DSMS 69
4.10 DSMS Projects . 70
4.11 SensorGrid System . 72

4.11.1 Experimentation . 77

5 Data Stream Mining . 83
5.1 Introduction . 83
5.2 Mining Trajectories: Proposal Using Frequent Itemsets

Techniques . 85
5.2.1 Defining Regions of Interest . 87
5.2.2 Principal Component Analysis . 87
5.2.3 The Trajectory Regioning algorithm 89

5.3 Mining Frequent Pattern . 90

6 Pattern Queries . 93
6.1 Introduction . 93

6.1.1 Match oriented approaches . 94
6.1.2 Index oriented approaches . 95

6.2 Efficient Pattern Matching over Streams . 96
6.2.1 Importance of Kleene-* in continuous queries 97
6.2.2 Real-world example . 97
6.2.3 KMP and OPT . 98
6.2.4 Brief overview and contributions . 98
6.2.5 The Problem . 99
6.2.6 Architecture overview . 101
6.2.7 Query ordering . 102
6.2.8 The index . 103
6.2.9 Query Execution Manager . 104
6.2.10 Indexing of Klene Closure and functions 106
6.2.11 Dealing with stars . 107
6.2.12 Dealing with functions . 108
6.2.13 Query strength . 110

Contents XI

6.2.14 Experiments . 110
6.2.15 Effects of query strength . 112

7 Conclusions . 113
7.1 Summary . 113
7.2 Conclusions and Further Research . 114

References . 117

List of Figures

2.1 Merging OLAP hierarchies . 14
2.2 Modeling Splitting Strategy. 15
2.3 Accuracy metrics w.r.t query selectivity . 20
2.4 Accuracy metrics w.r.t compression ratio . 20
2.5 Visualization metrics w.r.t depth of HRQ . 21
2.6 An example of Generalized Partition Gℓ(L) (a) and a possible

corresponding Pℓ(L) (b) . 26
2.7 ARE vs query selectivity ∥Q∥ on the benchmark data cube

TPC-H (left) and on the real-life data cube USCensus1990
(right) with r = 10% . 31

2.8 ARE vs compression ratio r on the benchmark data cube
TPC-H with ∥Q∥ = 750× 700 (left) and on the real-life data
cube USCensus1990 with ∥Q∥ = 350× 300 (right) 32

3.1 Access control mechanism on a ROLAP data cube 37
3.2 Experimental results for the privacy factor ((a) on a CVA

data cube, (b) on a SKEW data cube) and the accuracy factor
((c) on a CVA data cube, (d) on a SKEW data cube) w.r.t the
sparseness coefficient of synthetic data cubes 51

3.3 Experimental results of the effectiveness analysis on a CVA
data cube (a) and on a SKEW data cube (b) with respect to
the selectivity of queries . 52

3.4 Experimental results of the sensitivity analysis on a CVA data
cube ((a), (c), (e)) and on a SKEW data cube ((b), (d), (f))
w.r.t. the space bound . 53

4.1 A Sliding Window . 64
4.2 Query Processing in a DSMS vs DBMS . 67
4.3 Sensorgrid Overview . 73
4.4 the Aggregation Hierarchy and the Multi-level Aggregation

Scheme . 74

XIV List of Figures

4.5 the Grid Snapshot Protocol . 75
4.6 the Multi Resolution Data Stream Summary 76
4.7 Two-dimensional representation and querying of summarized

readings . 77
4.8 Experimental results for Window Queries . 80
4.9 Experimental results for Window Queries . 81

5.1 A set of example trajectories . 86
5.2 Principal eigenvalues identified by PCA . 88
5.3 Augmented fp− tree to support sequential patterns. 91
5.4 A kid database of sequence transactions. 92

6.1 Query evaluation . 100
6.2 System Architecture . 102
6.3 Workflow of the execution manager . 104
6.4 Optimal Search for K (32K Queries) . 106
6.5 Hash VS index graph showing costs according to different hashes107
6.6 Regular Expression Permutation . 107
6.7 Indexing speed and Kleene closure . 108
6.8 Memory usage of Kleene closure . 109
6.9 Minimization of the number of functional predicates 109

List of Tables

4.1 Main differences between DBMS and DSMS 57

6.1 Typical query on which it is possible to run experiments 111
6.2 Parameters for synthetic query generation 112

1

Introduction

1.1 Background and Motivations

How can a manager get out of a data-flooded mire? How can a confused
decision maker navigate through a maze? How can an over-bursty stream of
data be queried? How can is possible to better show data in a mess cuboid?
How can the best moment to invest be found in the Stock Market trends?

The answer to all of these is challenging, last years saw many contribu-
tions from many research groups, trying to find the best way to manage huge
amount of data, in all scenarios real life can avoid. Data management sys-
tems are becoming every day critical for companies and most of them trust
innovative techniques to support decision in their business processes.

Decision making support frameworks and all related technologies innova-
tive strategies are rising up introducing improvement and efficiency in query-
ing, analysing and extracting information from data. All of these improve-
ments are providing great perspectives to marketing research initiatives and
investigations, network data storage management, massive data querying ca-
pabilities and knowledge retrieval from huge amount of raw data.

All these techniques are able to turn data into money; transform informa-
tion into intelligence; change patterns into profit; and convert relationships
into resources. To obtain knowledge, one must understand the patterns that
emerge from information. Patterns are not just simple relationships among
data; they exist separately from information, as archetypes or standards to
which emerging information can be compared so that one may draw inferences
and take action. Over the last 40 years, the tools and techniques used to pro-
cess data and information have continued to evolve from databases (DBs) to
data warehousing (DW), to Data Mining. DW applications, as a result, have
become business-critical and can deliver even more value from these huge
repositories of data.

Although technologies are deeply widespread in many economical and so-
cial environment, considerable differences related to ‘how ’ to manage poten-
tially unbounded data when they arrive with a very high rate with respect to

2 1 Introduction

the processing capabilities of system, and the storage space is always limited.
It is clear that systems which deal with bursty data need to take into account
policies to process incoming data very fast and if needed to shed load when
it is too much to be processed. It is straightforward at this point that it is
possible to identify two main areas strictly related one another, which try to
study new aspects, technologies, algorithms when manipulating static data -
data that reside in a classical Database Management System (DBMS) / Data
Warehouse (DW) - and dynamic data which are characterized by data streams
which need to be processed.

These two areas received and receive today as well, great attention from
research groups. The basic issue related to these two areas is that techniques
to process and analyse static data using classic DBMS and DW systems, might
not be applied to do the same kind of job considering data streams. The main
motivation is that data streams are not bounded - information flood can be
infinite - therefore it is not possible to store such kind of data in a classical
DBMS which has a finite - even if large - storage capacity. Moreover data
streams are often generated in sensor networks which are usually involved for
monitoring activities, i.e. in geographical areas, network traffic, trend analysis
etc.

Starting from these assumptions the problem of provide efficiently answers
to queries which involve massive data, in case of static and dynamic data is
challenging, and as stated above, techniques are reasonably different.

Static data are often analysed i.e. when a company (or corporation) needs
to provide a realistic evaluation of the next marketing plan, to extract knowl-
edge from them, perform data mining processes like classification, when a
support to decision making process is needed.

The latter case is one of the most interesting aspects and it is usually
performed adopting the well-known-in-literature on line analysis techniques,
also known as On Line Analytical Process (OLAP). OLAP analysis is very
efficient particularly when it is needed to process hierarchical data - i.e. date
(day-month-year), job position (simple employer - project manager - area
manager etc.) - and aggregate ones (i.e. querying using aggregate operators
like SUM, AVG, etc), because it provides operators which are particularly
efficient to change data visualization in such a way as searched information is
much easier to get. About OLAP systems there are some interesting aspects
to be considered, like the querying problem, related to how much the answer
approximation has to deal with exactness, if time constraints are hard; the way
how data are represented and processed and above all how to represent data
inside OLAP systems. The last cited point is very challenging and tricky but
at the same time it adds great value to decision making support frameworks,
in fact it is much easier to analyse data when they are better shown to the
user (or application). Also data compression can provide great improvements
in query answering process time execution, in fact it is possible to consider
different policies that show recent data or data with certain characteristics in
order to meet application requirements.

1.1 Background and Motivations 3

Strictly connected with these aspects, OLAP systems are very critical in
privacy issues management. Many literature works have shown that malicious
users can easily get sensible information from the datacube exploiting OLAP
operators in manipulating data visualization. To this end, techniques aim-
ing to protect sensitive information have been proposed and many of them
exploit different aspects related to privacy preservation in OLAP and Data
Warehousing in general.

It is clear that static data needs to be managed trying to improve perfor-
mances in query answering, when queries involve huge amount of data and/or
query complexity need too much calculate power to be performed.

Recently researchers are trying to apply benefits of multidimensional anal-
ysis of static data to systems dealing with dynamic ones, which have however
a considerably different kind of architecture. As already said above, a new
class of applications has emerged that requires managing data streams, i.e.,
data composed of continuous, real-time sequence of items. Moreover, database
management systems were originally developed to support business applica-
tions. The data in such applications is changed as a result of human-initiated
transactions. Similarly data is queried as a result of human-initiated queries.
The database management system acts as a passive repository for the data,
executing the queries and transactions when these are submitted. However,
this model of a database management system as a repository of relatively
static data that is queried as a result of human interaction, does not meet the
challenges posed by streaming applications.

A data stream is a possibly unbounded sequence of data items. Streaming
applications have gained prominence due to both technical and business rea-
sons. Technologically data is now available from a wide variety of monitoring
devices, including sensors that are extremely cheap. Data from such devices
is potentially unbounded and needs to be processed in real-time.

Streaming applications pose new and interesting challenges for data man-
agement systems. Such application domains require queries to be evaluated
continuously as opposed to the one time evaluation of a query for traditional
applications.

Streaming data sets grow continuously and queries must be evaluated on
such unbounded data sets. The monitoring aspect of many streaming appli-
cations requires support for reactive capabilities in real-time from data man-
agement systems. These, as well as other challenges, require a major rethink
of almost all aspects of traditional database management systems to support
streaming applications.

Key themes are related to compression of data, i.e. “ancient” data could
be less important than “newer” ones, and therefore the challenging trade off
between accuracy and exactness in answering queries.

In sum , the motivation of the thesis is to investigate the problem of provid-
ing effective support to handling huge amount of data and enabling spreading
share and delivery of contents. To achieve this ambitious goal, different is-
sues must to be dealt with such as: methods and algorithms to aggregate

4 1 Introduction

raw data using lossy compression (size resilience), amenities to disseminate
information by removing privacy concerns in information exchange (privacy
resilience), and tools for managing data streams (dynamicity resilience). The
thesis does not offer a unified framework to the problem, for a solution is too
far to be achieved; it rather gives insights on how to proceed toward such
a solution and put some lights to all facets of the problem, by presenting
novel results on each of them, which are relevant ”per se” and may eventually
represent a step forward a more comprehensive ways to manage continuous
streams of large amount of data.

1.2 Main Contributions of the Thesis

This thesis is focused on management of data considering both the case of
static and dynamic data. It proposes a number of novel contributions aiming
at easing query optimization in the fields of OLAP data compression and
privacy preservation, and approximate query answering in data streams, also
in case of queries defined using a pattern syntax.

OLAP systems have been deeply investigated and analysed with partic-
ular regard to techniques related to intelligent and efficient compression and
visualization techniques, in order to perform querying process with great per-
formances. In the first case it has been proposed a novel top-down compression
technique for data cubes, which takes into account the case in which multi-
ple Hierarchical Range Queries (HRQ), a very useful class of OLAP queries,
must be evaluated against the target data cube simultaneously. As result of
the study, an innovative multiple-objective OLAP computational paradigm,
and a hierarchical multidimensional histogram, has been shown, whose main
benefit is meaningfully implementing an intermediate compression of the in-
put data cube able to simultaneously accommodate an even large family of
different-in-nature HRQ.

Another very interesting aspect has been taken in consideration, in the
same area, it is a semantics-driven compression technique for efficiently sup-
porting advanced OLAP visualization of multidimensional data cubes. One of
the main contribution this thesis present consists in the amenity of using the
data compression paradigm as a way of visualizing multidimensional OLAP
domains, in order to overcome the natural disorientation and refractoriness of
human beings in dealing with hyper-spaces. Experimental results conducted
on several kind of synthetic data sets clearly confirm the effectiveness and the
efficiency of this technique, also in comparison with state-of-the-art proposals.

As stated above, OLAP systems are very vulnerable if they contain sensi-
ble information. Literature proposed many works on this, and here it is pre-
sented a robust sampling-based framework for privacy preserving OLAP. The
most distinctive characteristic of the proposed framework consists in adopt-
ing an innovative privacy OLAP notion, which deals with the problem of
preserving the privacy of OLAP aggregations rather than the one of data

1.2 Main Contributions of the Thesis 5

cube cells, like in conventional perturbation-based privacy preserving OLAP
techniques. This results in a greater theoretical soundness, and lower com-
putational overheads due to processing massive-in-size data cubes. Also, per-
formances of this privacy preserving OLAP technique is compared with the
one of the method Zero-Sum[SLXN06], the state-of-the-art privacy preserving
OLAP perturbation-based technique, under several perspectives of analysis.
The derived experimental results confirm to us the benefits deriving from
adopting our proposed framework for the goal of preserving the privacy of
OLAP data cubes.

In Data Stream Management Systems (DSMS) it is not possible to manage
data using classical DBMS techniques, because of space bounds and incoming
data rate which can be very high. To this end, DSMS introduces new policies
and compression approaches which characterizes the whole system architec-
tures. In this thesis is presented the system SensorGrid [CFMS04], a Grid-
based sensor network data warehouse, which encompasses several metaphors
of data compression/approximation and high performance and high reliabil-
ity computing that are typical of Grid architectures. Experimentation focuses
on two main classes of aggregate range queries over sensor readings, namely
(i) the window queries, which apply a SQL aggregation operator over a fixed
window over the reading stream produced by the sensor network, and (ii)
the continuous queries, which instead consider a “moving” window, and pro-
duce as output a stream of answers. Both classes of queries are extremely
useful to extract summarized knowledge to be exploited by OLAP-like anal-
ysis tools over sensor network data. The experimental results, conducted on
several synthetic data sets, clearly confirm the benefits deriving from embed-
ding the data compression/approximation paradigm into Grid-based sensor
network data warehouses.

The querying process in DSMS needs to be very fast and concrete, as
already said, in order to provide answers as soon as possible. In many cases
queries might not have the classical SQL form, but used languages borrow
main constructs and syntax. A very exciting field, still not analysed enough is
strictly related to optimization of queries execution when using Kleene closure
operator. In this case literature does not provide many techniques able to deal
with Kleene-* operator, except for [SZZA01a], but it can be sensibly improved
with respect to scalability in case of many complex queries at a time. The
problem has been centered on designing a framework to efficiently evaluate
patterns queries containing general predicate, Kleene closure and predicate
functions.

Complex patterns queries involving Kleene closure are finding applications
in many areas including financial services, healthcare monitoring, RFID-based
inventory management etc.

Many continual predicate queries can be issued against a rapid and bursty
data stream. Furthermore query predicates may be comprised of Kleene clo-
sure or predicate functions. Previous approaches involving query indexing

6 1 Introduction

techniques are not scalable in this environment, therefore to efficiently evalu-
ate continual queries a new framework is required to address these issues.

The proposed framework has been is a hybrid method that uses indexing
and string matching techniques to provide high performance pattern match-
ing over streams (HPSM) involving general predicates, Kleene closure and
functions. While indexing of patterns involving general predicates was well
studied, indexing of Kleene closure and functional patterns over streams have
unique issues regarding scalability in both performance and size of the in-
dex. All these issues are explained in a context of thousands of continuous
queries. In particular, such a hybrid framework provides a scalable solution
to a pattern matching problem and describe support for indexing functional
patterns.

The main literature works chosen to compare against are the one on the
YFilter (see [yfi02]) and Suffix Tree (see [McC76]) approaches. In both cases
raw experimentation seems to show that the proposed approach significantly
outperforms the existing ones in terms of both storage and time. However this
is still an on-going work, therefore all motivations justifying experimentation
will be better presented in 7.

1.3 Thesis Organization

The reminder of this thesis is structured as follows.
Chapter 2 presents an overview of data warehouse and OLAP systems. In

particular it focus on data representation and compression in OLAP, explain-
ing with the right theoretical details all advantages in using such techniques.
Better data visualization helps user/application to easier retrieve knowledge
and make querying process faster. Data compression in OLAP datacube is a
pretty straightforward techniques that allows to consider multiple aggregate
levels in order to quickly obtain approximated query answers keeping a very
high accuracy level.

Chapter 3 is centred on security and privacy preservation techniques in
OLAP systems. They become very important since malicious users can use
statistical inference to get sensitive information from the system. Literature
proposed technique are focusing many aspects and it is also explained a new
technique which introduce a new privacy OLAP definition, based on aggre-
gates and compares experimental result one of the most famous literature
work from prof. Ng.

Chapter 4 presents a detailed overview on data stream systems and their
main features. It deeply analyse motivations and differences against classical
DBMS. Many existing DSMSs provide nice features and challenging goals,
trying to enrich the system with functionalities. To this end it describes a
DSMS system (SensorGrid)and its architecture and shows experimental eval-
uation of its performances with many different parameters over synthetic and
real data sets.

1.3 Thesis Organization 7

Chapter 5 introduces actual works on a particular aspect of the wide
stream mining field: the frequent trajctory mining. It proposes a technique
that will be better extended to support ordering in frequent patterns research
in data stream itemsets.

Chapter 6 deals with the open problem of Kleene closure operator in pat-
tern queries when considering data streams. In this case it is to be hoped
that if a multiquery environment is set, then an optimized scheduling pre-
processing phase would improve performances and the speed in getting the
right answer from all pattern queries.

Finally Chapter 7 draws some conclusions and highlights some still open
issues that are worth considering in further investigation.

2

Querying and Answering Multidimensional
Static Data

2.1 Introduction

When companies are dealing with huge amounts of data, often they need to
consider technologies that allow to efficiently manage them, providing fast
answer and when it is needed the maximum accuracy possible. Most of these
technologies are strictly related to the datawarehousing area and therefore all
aspects concerning decision support, efficient query answers have to be taken
into consideration, mainly when data are static, that basically means that
they are relying on large storage devices and they do not change within small
amount of time.

There are many meanings stating what a data warehouse is and what
are its main functions and characteristics. From a certain point of view we
can assert a data warehouse is a repository of an organization’s electronically
stored data and it is usually designed to facilitate reporting and analysis.
More technically, a data warehouse houses a standardized, consistent, clean
and integrated form of data sourced from various operational systems in use
in the organization, structured in a way to specifically address the reporting
and analytic requirements.

This definition of the data warehouse focuses on data storage. However,
the means to retrieve and analyze data, to extract, transform and load data,
and to manage the data dictionary are also considered essential components
of a data warehousing system. Many references to data warehousing use this
broader context. Thus, an expanded definition for data warehousing includes
business intelligence tools, tools to extract, transform, and load data into the
repository, and tools to manage and retrieve metadata.

2.1.1 Storage of Data: Normalized VS Dimensional Approach

There are two leading approaches to storing data in a data warehouse - the
dimensional approach and the normalized approach.

10 2 Querying and Answering Multidimensional Static Data

In the dimensional approach, transaction data are partitioned into either
facts, which are generally numeric transaction data, or dimensions, which
are the reference information that gives context to the facts. For example, a
sales transaction can be broken up into facts such as the number of products
ordered and the price paid for the products, and into dimensions such as order
date, customer name, product number, order ship-to and bill-to locations,
and salesperson responsible for receiving the order. A key advantage of a
dimensional approach is that the data warehouse is easier for the user to
understand and to use. Also, the retrieval of data from the data warehouse
tends to operate very quickly.

The main disadvantages of the dimensional approach are: 1) In order to
maintain the integrity of facts and dimensions, loading the data warehouse
with data from different operational systems is complicated, and 2) It is diffi-
cult to modify the data warehouse structure if the organization adopting the
dimensional approach changes the way in which it does business.

In the normalized approach, the data in the data warehouse are stored fol-
lowing, to a degree, database normalization rules. Tables are grouped together
by subject areas that reflect general data categories (e.g., data on customers,
products, finance, etc.) The main advantage of this approach is that it is
straightforward to add information into the database. A disadvantage of this
approach is that, because of the number of tables involved, it can be difficult
for users both to 1) join data from different sources into meaningful informa-
tion and then 2) access the information without a precise understanding of
the sources of data and of the data structure of the data warehouse.

These approaches are not mutually exclusive, and of course there are other
approaches. Dimensional approaches can involve normalizing data to a degree.

Data warehouses are optimized for speed of data retrieval. Frequently data
in data warehouses are denormalised via a dimension-based model. Also, to
speed data retrieval, data warehouse data are often stored multiple times -
in their most granular form and in summarized forms called aggregates. Data
warehouse data are gathered from the operational systems and held in the
data warehouse even after the data has been purged from the operational
systems.

2.2 On Line Analytical Processing (OLAP)

One of the most important technique to retrieve efficiently data providing
good support to business intelligence is the On Line Analytical Process-
ing (OLAP). It is an approach to quickly answer multi-dimensional ana-
lytical queries. The typical applications of OLAP are in business reporting
for sales, marketing, management reporting, business process management
(BPM), budgeting and forecasting, financial reporting and similar areas. The
term OLAP was created as a slight modification of the traditional database
term OLTP (Online Transaction Processing).

2.2 On Line Analytical Processing (OLAP) 11

Databases configured for OLAP use a multidimensional data model, al-
lowing for complex analytical and ad-hoc queries with a rapid execution time.
They borrow aspects of navigational databases and hierarchical databases
that are faster than relational databases.

The output of an OLAP query is typically displayed in a matrix (or pivot)
format. The dimensions form the rows and columns of the matrix; the mea-
sures form the values.

At the core of any OLAP system is the concept of an OLAP cube (also
called a multidimensional cube or a hypercube). It consists of numeric facts
called measures which are categorized by dimensions. The cube metadata
is typically created from a star schema or snowflake schema of tables in a
relational database. Measures are derived from the records in the fact table
and dimensions are derived from the dimension tables.

Each measure can be thought of as having a set of labels, or meta-data
associated with it. A dimension is what describes these labels; it provides
information about the measure.

A simple example would be a cube that contains a store’s sales as a mea-
sure, and Date/Time as a dimension. Each Sale has a Date/Time label that
describes more about that sale.

Any number of dimensions can be added to the structure such as Store,
Cashier, or Customer by adding a column to the fact table. This allows an
analyst to view the measures along any combination of the dimensions.

Three relevant challenges of OLAP systems [CD97, GCB+97] have cap-
tured a lot of attention during the last years: (i) the data querying problem,
which concerns with how data are accessed and queried to support summa-
rized knowledge extraction from massive data cubes; (ii) the data modeling
problem, which concerns with how data are represented and, thus, processed
inside OLAP servers (e.g., during query evaluation); (iii) the data visualiza-
tion problem, which concerns with how data are presented to OLAP users and
decision makers in Data Warehouse environments. Indeed, research communi-
ties have mainly studied and investigated the first two problems, whereas the
last one, even if important-with-practical-applications, has been very often
neglected.

Approximate Query Answering (AQA) techniques address the first chal-
lenge, and can be reasonably considered as one of the most important topics
in OLAP research. The main proposal of AQA techniques consists in provid-
ing approximate answers to resource-consuming OLAP queries (e.g., range-
queries) instead of computing exact answers, as decimal precision is usually
negligible in OLAP query and report activities. Due to a relevant interest
from the Data Warehousing research community, AQA techniques have been
intensively investigated during the last years, also achieving important results.
Among the others, histograms (e.g., [APR99a, BCG01, GKTD00a]), wavelets
([VWI98]), and sampling (e.g., [GM98]) are the most successful techniques,
and they have also inducted several applications in even different contexts than
OLAP. Conceptual data models for OLAP are widely recognized as based on

12 2 Querying and Answering Multidimensional Static Data

data cube concepts like dimension, hierarchy, level, member, and measure,
first introduced by Gray et al. [GCB+97], which inspired various models for
multidimensional databases and data cubes (e.g., [HS98, Vas98]). Neverthe-
less, despite this effort, recently, several papers have put in evidence some
formal limitations of accepted conceptual models for OLAP (e.g., [CT98]),
or theoretical failures of popular data cube operations, like aggregation func-
tions. Contrarily to data querying and modeling issues, since data presentation
models do not properly belong to the well-founded conceptual-logical-physical
hierarchy for relational database models (which has also been inherited from
multidimensional models), the problem of OLAP data visualization has been
studied and investigated only so far (e.g., [GJJ97, MVSV03]). On the other
hand, being essentially OLAP a technology to support decision making, thus
based on (sensitive) information exploration and browsing, it is easy to un-
derstand that, in future years, tools for advanced visualization of multidimen-
sional data cubes will rapidly conquest the OLAP research scene.

2.3 Advanced OLAP Visualization Using Hierarchies

Starting from the fundamentals of data cube compression and OLAP data
visualization research issues, it is possible to meaningfully exploit the main
results coming from the first one and the goals of the second one in a combined
manner, and obtaining a novel technique for supporting advanced OLAP vi-
sualization of multidimensional data cubes. The basic motivation of such an
approach is realizing that (i) compressing data is an (efficient) way of visual-
izing data, and (ii) this intuition is well-founded at large (i.e., for any data-
intensive system relying on massive data repositories), and, more specifically,
it is particularly targeted to the OLAP context where accessing multidimen-
sional data cubes can become a realistic bottleneck for Data Warehousing
systems and applications. Briefly, it is possible to distinguish two steps. The
first one consists in generating a two-dimensional OLAP view D from the
input multidimensional data cube A by means of an innovative approach that
allows us to flatten OLAP dimensions (of A), and, as a consequence, effectively
support exploration and browsing activities against A (via D), by overcoming
the natural disorientation and refractoriness of human beings in dealing with
hyper-spaces.

Particularly, the (two) OLAP dimensions on which D is defined are built
from the dimensions of A according to the analysis goals of the target OLAP
user/application. The second step consists in generating a bucket-based com-
pressed representation of D named as Hierarchy-driven Indexed Quad-Tree
Summary (H-IQTS), and denoted by H-IQTS(D), which meaningfully ex-
tends the compression technique for two-dimensional summary data domains
presented in [BFSS03], by introducing the amenity of generating semantics-
aware buckets, i.e. buckets that follow groups of the OLAP hierarchies of D.
In other words, OLAP hierarchies defined on the dimensions of D are used to

2.3 Advanced OLAP Visualization Using Hierarchies 13

drive the compression process. The latter step allows us to achieve space effi-
ciency, while, at the same time, supporting approximate query answering and
advanced OLAP visualization features. Similarly to [BFSS03], H-IQTS(D) is
shaped as a quad-tree (thus, each internal bucket in H-IQTS(D) has four child
sub-buckets), and the information stored in its buckets is still the sum of the
items contained within them.

Given an OLAP dimension di, and its domain of members Ψ(di), each
of them denoted by ρj , a hierarchy defined on di, denoted by H(di), can be
represented as a general tree (i.e., such that each node of the tree has a number
N ≥ 0 of child nodes) built on top of Ψ(di). H(di) is usually built according
to a bottom-up strategy by (i) setting as leaf nodes of H(di) members in
Ψ(di), and (ii) iteratively aggregating sets of members in Ψ(di) to obtain other
(internal) members, each of them denoted by σj , (the latter are internal nodes
in H(di)). In turn, internal members in H(di) can be further aggregated to
form other super-members until a unique aggregation of members is obtained;
the latter corresponds to the root node of H(di), and it is known-in-literature
as the aggregation ALL. Each member in H(di) is characterized by a level
(of the hierarchy), denoted by Lj ; as a consequence, we can define a level
Lj in H(di) as a collection of members. For each level Lj , the ordering of
Lj , denoted by O(Lj), is the one exposed by the OLAP server platform for
the target data cube on which H(di) is defined. Given a multidimensional
data cube A such that Dim(A) = d0, d1, dn−1 is the set of dimensions of
A and Hie(A) = {H(d0),H(d1), · · · ,H(dn−1)} the set of hierarchies defined
on A, the collection of members σj at the level Lj ≥ 0 (note that, when
Lj = 0, σj ≡ ρj) of each hierarchy H(di) in Hie(A) univocally refers, in
a multidimensional fashion, a certain (OLAP) data cell Cp in A at level Lj

(in other words, Cp is the OLAP aggregation of data cells in A at level Lj).
Such collection is named as j-level OLAP Metadata (for Cp), and denoted as
J −M(Cp).

Given a member σj at level Lj of H(di) and the set of its child nodes
Child(σj), which are members at level Lj+1, we define as the Left Boundary
Member (LBM) of σj the child node of σj in Child(σj) that is the first in
the ordering O(Lj+1). Analogously, we define as the Right Boundary Member
(RBM) of σj the child node of σj in Child(σj) that is the last in the ordering
O(Lj+1).

2.3.1 Dimension Flattening

The OLAP dimension flattening process is the first step for supporting ad-
vanced OLAP visualization of multidimensional data cubes. In more detail,
dimensions of the input multidimensional data cube A can be flatten into
two specialized dimensions called Visualization Dimensions (VDs). VDs sup-
port advanced OLAP visualization of A via constructing an ad-hoc two-
dimensional OLAP view D defined just on VDs.

14 2 Querying and Answering Multidimensional Static Data

Fig. 2.1. Merging OLAP hierarchies

The process that allows to obtain the two V Ds from the dimensions of A
works as follows. LettingDim(A) andHie(A) be the set of dimensions and the
set of hierarchies of A, respectively, each V D is a tuple vi = ⟨di,H∗(di)⟩ such
that (i) di is the dimension selected by the target OLAP user/application, (ii)
H∗(di) is a hierarchy built from meaningfully merging the original hierarchy
H(di) of di with the hierarchies of other dimensions in A according to an
ordered definition set

MD(vi) = {⟨HLi, dj , P j⟩, ⟨HLj , dj+1, Pj+1⟩, · · · , ⟨HLj+K−1, dj+K , Pj+K⟩}

where K = |MD(vi)| − 1. More in detail, for each pair of consecutive tuples
⟨⟨HLj , dj+1, Pj+1⟩, ⟨HLj+1, dj+2, Pj+2⟩⟩ in MD(vi) the subtree of H(dj+2)
rooted in the root node of H(dj+2) and having depth equal to Pj+2, denoted

by H
Pj+2

S (dj+2) , is merged to H(dj+1) by appending a clone of it to each
member σj+1 at level HLj+1, named as hooking level, in H(dj+1). From the
described approach, it follows that: (i) the ordering of items inMD(vi) defines
the way of building H∗(di); (ii) the first hierarchy to be processed is just
H(di). As an example of the flattening process of two OLAP dimensions into
a new one, consider 2.1 where the hierarchy H∗(dj) is obtained by merging
H(dj+1) to H(dj) via setting Pj+1 = 1 and HLj = 1.

2.3.2 Hierarchy-Driven Compression of Two-Dimensional OLAP
Views

Compressing the two-dimensional OLAP view D (extracted from A according
to the OLAP dimension flattening process presented in 2.3.1) is the second
step of our proposed technique.

Given D, for each step j of our compression algorithm, we need to

1. greedily select the leaf bucket b of H − IQTS(D) having maximum Sum
of the Squared Errors (SSE) [BFSS03],

2. split b in four sub-buckets through investigating, for each dimension dk of
D, levels of the hierarchy H(dk).

Formally, given the current bucket bj = D[lj,0 : uj,0][lj,1 : uj,1] to be split
at step j of our compression algorithm, such that [lj,k : uj,k] is the range

2.3 Advanced OLAP Visualization Using Hierarchies 15

of bj on the dimension dk of D, the problem is finding, for each dimension
dk of D, a splitting position Sj,k belonging to [lj,k : uj,k]. To this end, for
each dimension dk of D, our splitting strategy aims at (i) grouping items into
buckets related to the same semantic domain, and (ii) maintaining as more
balanced as possible the hierarchy H(dk).

For the sake of simplicity, let us consider the hierarchy-driven compression
algorithm for two-dimensional OLAP views through showing how to handle
the hierarchy of an OLAP dimension dk (i.e., how to determine a splitting
position Sj,k on dk). Obviously, this technique must be performed for both the
dimensions of the target (two-dimensional) OLAP view D, thus obtaining, for
each pair of splits at step j (i.e., Sj,0 and Sj,1), four two-dimensional buckets
to be added to the current partition of D.

Fig. 2.2. Modeling Splitting Strategy

Let bj = D[lj,0 : uj,0][lj,1 : uj,1] be the current bucket to be split at step j.
Consider the range [lj,k : uj,k] of bj on the dimension dk of D. To determine
Sj,k on [lj,k : uj,k], we denote as Tj,k(lj,k : uj,k) the sub-tree ofH(dk) whose (i)
leaf nodes are the members of the sets 0−M(Cw) defined on data cells Cw in
D[lj,k : uj,k] (i.e., the one-dimensional bucket obtained by projecting bj with
respect to the dimension dk), and (ii) the root node is the (singleton) member
of the set Pk − M(Cr) defined on the data cell Cr that is the (singleton)
aggregation of D[lj,k : uj,k] at level LP of H(dk), being Pk the depth of
H(dk) (and also the depth of Tj,k(lj,k : uj,k)). To give an example, consider
2.2, where the one-dimensional OLAP view Dk = D[0 : |dk| − 1], obtained by
projectingD with respect to the dimension dk, along with the hierarchyH(dk)
are depicted. As shown in 2.2, the tree T0, properly denoted by Tj,k(0 : 17),
is related to the whole OLAP view Dk = D[0 : 17], and corresponds to the

16 2 Querying and Answering Multidimensional Static Data

whole H(dk). At step j, dk is split in the position Sj,k = 11, thus generating
the buckets D[0 : 11] and D[12 : 17]. In consequence of this, the tree T1,
properly denoted by Tj+1,k(0 : 11), is related to D[0 : 11], whereas the tree
T2, properly denoted by Tj+1,k(12 : 17), is related to D[12 : 17].

Formally, let (i) dk be the dimension of D to be processed; (ii) H(dk) the
hierarchy defined on dk; (iii) bj = D[lj,k : uj,k] the current (one-dimensional)
bucket to be split at step j of our algorithm; (iv) Tj,k(lj,k : uj,k) the tree
related to bj . In order to select the splitting position Sj,k on [lj,k : uj,k], letting
T 1
j,k(lj,k : uj,k) be the second level of Tj,k(lj,k : uj,k), we initially consider the

data cell Ck in D[lj,k : uj,k] whose indexer is in the middle of D[lj,k : uj,k],
denoted by

Xj,D =

⌊
1

2
· |D[lj,k : uj,k]|

⌋
It should be noted that processing the second level of Tj,k(lj,k : uj,k) (i.e.,
Tj,k(lj,k : uj,k)) derives from the use of the aggregation ALL in OLAP con-
ceptual models, which, in total, introduces an additional level in the general
tree modeling an OLAP hierarchy.

Then, starting from ρk, being ρk the member in the set 0 − M(Ck), we
go up on H(dk) until the parent of ρk at the level T 1

j,k(lj,k : uj,k), denoted by
σk, is reached, Sj,k is determined on the basis of the nature of σk. If σk is the
LBM of the root node of Tj,k(lj,k : uj,k) denoted by Rj,k, then

Sj,k =

⌊
1

2
· |D[lj,k : uj,k]|

⌋
− 1

and, as a consequence, the following two (one-dimensional) buckets as child
buckets of bj are obtained:

b′j+1 = D

[
lj,k :

⌊
1

2
· |D[lj,k : uj,k]|

⌋
− 1

]

b′′j+1 = D

[⌊
1

2
· |D[lj,k : uj,k]|

⌋
: uj,k

]
Otherwise if σk is the RBM of Rj,k, then

Sj,k =

⌊
1

2
· |D[lj,k : uj,k]|

⌋
and as a consequence

b′j+1 = D

[
lj,k :

⌊
1

2
· |D[lj,k : uj,k]|

⌋]

b′′j+1 = D

[⌊
1

2
· |D[lj,k : uj,k]|

⌋
+ 1 : uj,k

]

2.3 Advanced OLAP Visualization Using Hierarchies 17

Finally, if σk is different from both the LBM and the RBM of Rj,k, i.e. it
follows the LBM of Rj,k in the ordering O(T 1

j,k(lj,k : uj,k)) and precedes the
RBM of Rj,k, then it can be performed a finite number of shift operations on
the indexers of D[lj,k : uj,k] starting from the middle indexer Xj,D and within

the range Γj,k =
⌊
Γ lo
j,k : Γup

j,k

⌋
, such that

Γ lo
j,k =

⌊
1

2
· |D[lj,k : uj,k]|

⌋
−
⌊
1

3
· |D[lj,k : uj,k]|

⌋

Γup
j,k =

⌊
1

2
· |D[lj,k : uj,k]|

⌋
+

⌊
1

3
· |D[lj,k : uj,k]|

⌋
until a data cell Vk in D[lj,k : uj,k]] such that the corresponding member σk

at the level T 1
j,k(lj,k : uj,k) is the LBM or the RBM of Rj,k, if exists, is found.

It should be noted that admitting the specified maximum offset

maxOffset = ±
⌊
1

3
·
∣∣Dk[lj,k : uj,k]

∣∣⌋
with respect to the middle of the current bucket is coherent with the aim of
maintaining as more balanced as possible the hierarchy H(dk), which allows
to take advantages from the above-highlighted benefits.

To this end, starting from the middle of Γj,k (which is equal to the one of
D[lj,k : uj,k], Xj,D), it is possible to iteratively consider indexers Ij,q within

j,k on the basis of the following function:

Ij,q = {Xj,Difq = 0; Ij,q−1 + (−1)q · qifq > 1}

. If such data cell Vk exists, then Sj,k is set as equal to the so-determined
indexer I∗j,q , and, as a consequence, the pairs of buckets are:

bj+1 = D
⌊
lj,k : I∗j,q1

⌋
b′j+1 = D

⌊
I∗j,q : uj,k

⌋
if I∗j,q is the LBM of Rj,k, or, alternatively, the pairs of buckets area

bj+1 = D
⌊
lj,k : I∗j,q

⌋
b′j+1 = D

⌊
I∗j,q + 1 : uj,k

⌋
if I∗j,q is the RBM of Rj,k.

On the contrary, if such data cell Vk does not exist, then no split can be
performed on D[lj,k : uj,k], and the splitting is remanded at the next step of
the algorithm (i.e., j + 1) where the splitting position Sj+1,k is determined
by processing the third level T 2

j+1,k(lj+1,k : uj+1,k) of the tree Tj+1,k(lj+1,k :
uj+1,k) (i.e., by decreasing the aggregation level of OLAP data with respect
to the previous step). The latter approach is iteratively repeated until a data

18 2 Querying and Answering Multidimensional Static Data

cell Vk verifying the above condition is found; otherwise, if the leaf level of
Tj,k(lj,k : uj,k)) is reached without finding any admissible splitting point, then
D[lj,k : uj,k] is added to the current partition of the OLAP view without being
split. This way to do still pursues the aim of obtaining balanced partitions of
the input OLAP view.

2.3.3 Experimental Study

It is possible to consider two kinds of experiments. The first one is oriented
to probe the data cube compression performance (or, equally, the accuracy)
of our technique, whereas the second one is instead oriented to probe the vi-
sualization capabilities of this technique in meaningfully supporting advanced
OLAP visualization of multidimensional data cubes.

As regards the data layer of our experimental framework, engineered two
kinds of synthetic two-dimensional OLAP views (which, in turn, have been
extracted from synthetic multidimensional data cubes via a random flattening
process): (i) the view DC(L1, L2), for which data are uniformly distributed
on a given range [L1, L2] (i.e., the well-known Continuous Values Assump-
tion (CVA) holds), and (ii) the view DZ(zmin, zmax), for which data are
distributed according to a Zipf distribution whose parameter z is randomly
chosen on a given range [zmin, zmax].

For the first kind of experiments (i.e., that focused on the accuracy), given
a population of synthetic range-SUM queries QS , we measure the Average
Relative Error (ARE) between exact and approximate answers to queries in
QS, i.e.:

Erel =
1

|QS |
·
|Q|−1∑
k=0

Erel(Qk)

such that for each query Qk in QS :

Erel(Qk) =
|A(Qk)− Ã(Qk)|

A(Qk)

where (i) A(Qk) is the exact answer to Qk, and (ii) Ã(Qk) is the approximate
answer to Qk. Particularly, fixing a range sizes∆k for each dimension dk of the
target synthetic OLAP view D, we generate queries in QS through spanning
D by means of the seed ∆0 ×∆ℓ query Qs.

For the second kind of experiments, inspiration comes from the Hierarchi-
cal Range Queries (HRQ) introduced by Koudas et al. in [KMS00]. A HRQ
QH(WH , PH) can be considered as a full tree such that: (i) the depth of such
tree is equal to PH ; (ii) each internal node Ni has a fan-out degree equal
to WH ; (iii) each node Ni stores the definition of a (traditional) range-SUM
query Qi; (iv) for each node Ni in QH(WH , PH), there not exists any sibling
node Nj of Ni such that Qi ∩Qj <> ∅. Similarly to the previous kind of ex-
periments, for each node Ni in QH(WH , PH), the population of queries QS,i

2.3 Advanced OLAP Visualization Using Hierarchies 19

to be used as input query set was generated by means of the above-described
spanning technique. It should be noted that, due the nature of HRQs, the
selectivity of seed queries Qs

i,k of nodes Ni at level k of QH(WH , PH) must
decreases as the depth Pk of QH(WH , PH) increases.

In consequence of this, letting γ be an input parameter and ∥D∥ the selec-
tivity of the target OLAP view D, it is possible to impose that the selectivity
of the seed query of the root node N0 in QH(WH , PH), denoted by ∥Qs

0,0∥ , is
equal to the γ% of ∥D∥, and then, for each internal nodeNi inQH(WH , PH) at
level k, the seed queries of the child nodes of Ni can be randomly determined
by checking the following constraint:

|(Wff)
k+1|−1∑

i=0

∥Qs
i,k+1∥ ≤ ∥Qs

i,k∥Qs
i,k+1 ∪Qs

j,k+1 = ∅

for each i and j in [0, |(WH)k+1|1] , with i <> j, and adopting the criterion
of maximizing each ∥Qs

i,k∥.
Given a HRB QH(WH , PH), it is interesting to measure the Average Ac-

cessed Bucket Number (AABN), which models the average number of buckets
accessed during the evaluation of QH(WH , PH), and it is defined as follows:

AABN(QH(WH , PH)) =

PH∑
k=0

1

(WH)k
·
|(Wff)

k|−1∑
l=0

AABN(Nℓ)

where, in turn, AABN(Nℓ) is the average number of buckets accessed dur-
ing the evaluation of the population of queries QS,l of the node Nℓ in
QH(WH , PH), i.e.

AABN(Nℓ) =
1

|QS,l|
·
|QS,l|−1∑

k=0

ABN(Qk)

each query Qk in QS,l, ABN(Qk) is the number of buckets accessed during
the evaluation of Qk. Summarizing, given a compression technique T, AABN
allows to measure the capabilities of T in supporting advanced OLAP visu-
alization of multidimensional data cubes as the number of buckets accessed
can be reasonably considered as a measure of the computational cost needed
to extract summarized knowledge, as a sort of measure of the entropy of the
overall knowledge extraction process.

Experimental study, compares performances against the following well-
known histogram-based techniques for compressing data cubes: MinSkew by
Acharya et al. [APR99b], GenHist by Gunopulos et al. [GKTD00b], and
STHoles by Bruno et al. [BCG01]. More in detail, having fixed the space
budget G (i.e., the storage space available for housing the compressed repre-
sentation of the input OLAP view), we derived, for each comparison technique,
the configuration of the input parameters that the respective authors consider

20 2 Querying and Answering Multidimensional Static Data

Fig. 2.3. Accuracy metrics w.r.t query selectivity

the best in their papers. This ensures a fair experimental analysis, i.e. an anal-
ysis such that each comparison technique provides its best performance.

2.3 shows experimental results for what regards the accuracy of the com-
pression techniques w. r. t. the selectivity of queries in QS on the 1000×1000
two-dimensional OLAP views DC(25, 70) (left side) and DZ(0.5, 1.5) (right
side), respectively. For all the comparison techniques, letting r be the para-
metric compression ratio and size(D) the total occupancy of D, we set the
space budget G as equal to the r% of size(D). For instance, r = 10 (i.e., G
is equal to the 10% of size(D)) is widely-recognized as a reasonable setting.
2.4 shows experimental results of the same experiment when ranging r on the
interval [5, 20] (i.e., G on the interval [5, 20]% of size(D)), and fixing the se-
lectivity of queries ——Q——; this allows us to measure the scalability of the
compression techniques, which is a critical aspect in OLAP systems (e.g., see
[8]). Finally, Fig. 5 shows experimental results for what regards the visualiza-
tion capabilities of the compari- son techniques (according to the guidelines
drawn throughout the paper) with respect to the depth of HRQs (i.e., PH)
having fan-out degree WH equal to 5 and the parameter equal to 70

Fig. 2.4. Accuracy metrics w.r.t compression ratio

2.4 Compressing Data Cubes under Simultaneous Queries 21

From 2.3, 2.4 and 2.5, it follows that, with respect to the accuracy met-
rics, our proposed technique is comparable with MinSkew, which represents
the best on two-dimensional views (indeed, as well-recognized-in-literature,
MinSkew presents severe limitations on multidimensional domains); instead,
with respect to the visualization metrics, the proposed technique overcomes
the comparison techniques, thus confirming its suitability in efficiently sup-
porting advanced OLAP visualization of multidimensional data cubes.

Fig. 2.5. Visualization metrics w.r.t depth of HRQ

2.4 Compressing Data Cubes under Simultaneous
Queries

As it has already been seen, conventional data cube compression techniques,
such as histograms, are devoted to drive the compression of the input data
cube in dependence on one constraint only. Traditionally, this requirement is
represented by a given space bound available to house the compressed repre-
sentation of the data cube, like in conventional approaches. Without loss of
generality, this scheme can be classified as adhering to what is usually called
the single-objective data cube compression paradigm, which defines a class of
methodologies wide enough to include most of the data cube compression
proposals appeared in literature during the last two decades. This consol-
idated paradigm has been subsequently made more complex via including
novel additional requirements to be considered simultaneously to the main
space bound constraint, such as (i) compressing data cubes with the addi-
tional goal of minimizing the overall query error of a given query-workload
(e.g., [BCG01, CW07]), (ii) ensuring probabilistic guarantees over the qual-
ity of approximate answers evaluated against compressed data cubes (e.g.,
[CW07]), or (iii) mediating on the degree of approximation of the retrieved
answers (e.g., [Cuz06b, Cuz06a]).

22 2 Querying and Answering Multidimensional Static Data

More problematic issues appear when the data cube compression process
must be performed in the presence of multiple constraints, under the multiple-
objective data cube compression paradigm, which is a novel OLAP computa-
tional paradigm not considered by previous research. Basically, according to
this novel paradigm, the compressed representation of the input data cube
is obtained as that intermediate (compressed) representation which accom-
plishes, as much as possible, the multiple constraints defined by the input
multiple-objective computational scheme. In fact, it is worthy noticing that,
in the presence of multiple constraints, it is not possible to obtain a valid-
for-all data cube compressed representation (i.e., the compressed representa-
tion that simultaneously satisfies all the multiple constraints) so that devising
sub-optimal solutions appears to be the most promising strategy for the so-
complex computational setting dictated by the multiple-objective application
scenario. The idea of introducing multiple-objective computational paradigms
in order to deal with complex Database and Data Warehousing research chal-
lenges has been considered in few contexts previously, and mostly with re-
spect to requirements defined by multiple queries (i.e., simultaneous queries
belonging to different query classes e.g., [Sel88]). Among these initiatives,
it is important to recall: (i) multiple-query optimization for the view selec-
tion and materialization problem [MRSR01], (ii) multiple-query based data
sources integration [NK01], (iii) multi-objective query processing in database
systems [BG04] and OLAP [KP03], (iv) multi-objective query processing for
specialized contexts such as data aggregation [FK06], complex mining tasks
[JSA05] and data stream processing [WRGB06a], and, more recently, (v) sky-
line query processing [BKS01], which aims at extracting Pareto distributions
from relational data tables according to multiple preferences. Contrary to the
above-listed research contributions, to the best of our knowledge, there did
not exist in literature data cube compression techniques that take into con-
sideration the issue of performing the compression process on the basis of
multiple objectives.

Despite theoretical issues, when a multiple-objective OLAP computational
paradigm is adopted, one must first set the nature and the typology of multi-
ple goals with respect to which the paradigm has to be implemented. Similarly
to the above-listed research experiences, it is ordinary to choose different-in-
nature queries as playing the role of multiple objectives to be accommodated
during the compression process. In parallel to the nature and typology of mul-
tiple goals, a specific query class must be set. The general multiple-objective
data cube compression paradigm can be easily customized to any class of
OLAP queries, from simple range queries [HAMS97], which are defined as the
application of a SQL aggregate operator (e.g., SUM, COUNT, AVG etc) to
a given range of multidimensional data, to more complex ones such as ice-
berg queries [FSGM+98]. Considering this assumption, it is possible to con-
sider the class of Hierarchical Range Queries (HRQ), already introduced as a
meaningful extension of those defined by Koudas et al. in [KMS00]. As it will
be evident HRQ define very useful tools for extracting hierarchically-shaped

2.4 Compressing Data Cubes under Simultaneous Queries 23

summarized knowledge from data warehouse servers, beyond the capabilities
of conventional OLAP environments. Definition 1 introduces HRQ.

Definition 2.1. Given a data cube L = ⟨D,H,M⟩, such that (i) D is the set
of dimensions of L, (ii) H is the set of hierarchies of L, and (iii) M is the
set of measures of L, a Hierarchical Range Query (HRB) QH against L is a
tuple QH = ⟨T, F, ϑ⟩, such that: (i) T is a general tree, (ii) F is a domain
of range queries, (iii) ϑ is a mapping function that maps queries in F onto
nodes in T , (iv) for each level ℓ in T ,

|queries(l)|1∩
k=0

∥Qk∥ = ∅

such that queries(l) is the set of range queries at level ℓ of T , and (v) for each
node n T such that depth(n) < depth(T)

|child(n)|−1∪
k=0

∥Qk∥ ̸= ∥Qn∥

where: (v.i) depth(n) denotes the depth of n, (v.ii) depth(T) denotes the depth
of T , (v.iii) child(n) denotes the set of child nodes of n, (v.iv) Qk denotes the
range query related to the node k, and (v.v) ∥Q∥ denotes the volume of Q.

It should be noted that, similarly to the multi-level and hierarchical nature
of the target data cube L, HRQ are multi-level and hierarchical in nature as
well, meaning that, for each level ℓ of T , the set of range queries at level ℓ,
denoted by queries(l), must be evaluated against the maximal cuboid of L
at level ℓ, denoted by Lℓ, i.e. the collection of (OLAP) data cells obtained by
aggregating data cells of L at the lowest level of detail (i.e., L0 ≡ L) with
respect to all the aggregation levels of hierarchies in H at level ℓ. Due to the
illustrated properties, it is a matter to note that, given a data cube L and a
HRQQH having T as structural tree, the answer to QH against L, denoted
as A(QH), is modeled in terms of a general tree Y having the same topology
of T and such that each node n stores the answer A(Qn) to the corresponding
range query Qn. Also, without loss of generality, for the sake of simplicity here
we assume that (i) hierarchies in H have all the same depth P , and (ii) the
depth of T is also equal to P .

Depending on the kind of SQL aggregate operator characterizing range
queries in F , different classes of HRQ can be obtained. It is quite straight-
forward to focus on Hierarchical Range-SUM Queries, as SUM aggregations
are very popular in OLAP, and represent the most common solution for ex-
tracting useful knowledge from massive data cubes, while also encompassing
the amenity of acting as baseline operators to build more complex OLAP
aggregations/functions.

Range-SUM queries have been widely investigated in OLAP. As a conse-
quence, in literature there exist a number of proposals dealing with the issue of

24 2 Querying and Answering Multidimensional Static Data

answering such queries efficiently via data cube compression techniques (e.g.,
[HAMS97, Cuz06b]). Basically, histogram-based compression approaches have
been proposed, with the appreciable idea of evaluating approximate answers
by means of linear interpolation techniques applied to buckets of the his-
togram via meaningfully exploiting the Continuous Value Assumption (CVA)
formulated by Colliat in [Col96], which assumes that data are uniformly dis-
tributed. Given (i) a data cube L, (ii) the histogram Hist(L) computed on
L, and (iii) a range-SUM query Q against L such that Q overlaps the bucket
set B(Q) = b0, b1, , bW−1 of Hist(L), based on CVA the approximate answer
to Q, denoted by Ã(Q), can be obtained as follows:

Ã(Q) =

W−1∑
w=0

∥Q ∩ bw∥
∥bw∥

· SUM(bw)

where SUM(bw) denotes the sum of (OLAP) data cells contained in bw. More-
over, when the CVA fails (i.e., the target data cube is characterized by skewed,
i.e. asymmetric e.g., see [Cuz05], distributions), outliers contained in L can
seriously decrease the accuracy degree of Ã(Q), as it has been demonstrated
in [CW07], and also recognized in [CDD+01]. In this case, in [CW07] the ap-
proximate answer to Q is obtained by means of separately considering the
contribution given by outliers involved by Q, and summing-up this contribu-
tion to the contribution given by classical linear interpolation. This imposes
to separately handling outliers, and originates a different formula for Ã(Q),
which, for the sake of simplicity, here can be modeled as:

Ã(Q) =

W−1∑
w=0

[
∥Q ∩ bw∥
∥bw∥

· SUM(bw) + outlier(Q ∩ bw)

]
where outlier(R) is the set of outliers (of L) involved by the region R.

The latter query evaluation scheme gives good performance when a fixed,
single (range) query or, better, a workload QWL of queries of the same nature
and with similar geometrical characteristics is considered, as argued in [CW07]
and in [BCG01]. According to this experimental evidence, the compression
process tries to generate buckets such that the final bucket ranges define a
partition of the input data cube L that, as much as possible, accommodates
all the queries of QWL, thus improving the accuracy of linear interpolation
techniques. To this end, the goal is two-fold: (i) obtaining buckets defined on
uniform data (i.e., data with low variance), and (ii) minimizing the geomet-
ric difference between buckets and queries, in a global fashion. This provides
a query performance better than the one given by computing the histogram
without a fixed query-workload, as demonstrated in [CW07]. The same ap-
proach could be extended in order to deal with the issue of evaluating a given
single HRQQH embedding several range queries. One can think of modeling
the set of range queries embedded in QH as the target query-workload, and
then adopting the same query evaluation scheme described above. Therefore,

2.4 Compressing Data Cubes under Simultaneous Queries 25

QH can be straightforwardly evaluated by iteratively evaluating range queries
of its nodes, one at time.

It is worthy noticing that, in this case, linear interpolation techniques fail
as ranges of queries of HRQ can be very different one from another, at the
same level as well as at different levels of the hierarchy of the target data
cube L. This makes the previous query evaluation scheme inefficient, and
requires ad-hoc solutions able to deal with the complexity and the difficult
nature of HRQ, in a global fashion. According to the proposed solution, the
final histogram-based compressed representation of L, denoted by L̃ , is ob-
tained as an intermediate representation given by meaningfully partitioning
the bucket domain defined by the different query ranges of HRQ at the same
level ℓ of L, for each level ℓ of the L hierarchy. In fact, it is a matter to note
that, an arbitrary compression of the data cube could easily origin the unde-
sired situation in which some HRQ could take advantage from the compression
process (i.e., retrieved approximate answers have a high degree of accuracy),
as the final partition fits data and geometric properties of these HRQ, whereas
some other HRQ could be disadvantaged (i.e., retrieved approximate answers
have a low degree of accuracy), as the final partition does not fit the above-
mentioned properties for such HRQ. As a consequence, the idea of generating
an intermediate compressed representation of L makes sense, as, on the aver-
age, a fair final representation is obtained (i.e. retrieved approximate answers
have acceptable/good accuracy in most cases). On the other hand, it should
be noted that this approach has several conceptual points in common with
other multiple-query data processing paradigms, such as those focusing on the
view selection and materialization problem, where common sub-expressions of
target queries are considered in order to obtain efficient solutions.

On a more practical plane, due to the hierarchical nature of cubes and
queries, the compressed data cube L̃ is implemented as a hierarchical multidi-
mensional histogram, denoted by MQ−Hist(L), which is obtained by means
of a greedy algorithm, namely computeMultQHist, that meaningfully exploits
the multi-level and hierarchical nature of the input data cube L, and defines
a top-down compression process able to accommodate the different objectives
of multiple, simultaneous HRQ against L.

2.4.1 The Compression Process

Given: (i) a n-dimensional data cube L having P hierarchical levels; (ii) the
set of m HRQ that must be evaluated against L simultaneously, SHRQ =
{QH0 , QH1 , · · · , QHm−1} (recall that, for the sake of simplicity, HRQ in SHRQ
have the same depth, P , which is also equal to the number of hierarchical
levels of L); (iii) the space bound B available for housing the compressed
representation of L, L̃ , which is implemented by the histogramMQ−Hist(L).
The multiple-query compression process we propose is accomplished according
to the following multi-step approach:

26 2 Querying and Answering Multidimensional Static Data

• for each level ℓ of L, such that ℓ belongs to [0, P − 1], starting from the
bottom level 0 (i.e., according to a bottom-up strategy), generate, for each
dimension d of Lℓ, the ordered union of range bounds of queries (modeled
as multidimensional points in the Lℓ (≡ L) multidimensional space) at
level ℓ of HRQ in SHRQ along d, thus obtaining the so-called Multiple-
Range (MR) for the dimension d at level ℓ, denoted by MRd,l first step
finally generates, for each cuboid Lℓ of L, the set of n MR, denoted by
MR(Lℓ) = {MR0,l,MR1,l, · · · ,MRn−1,l};

• for each level ℓ, generate a Generalized Partition (GP) of the cuboid Lℓ

at level ℓ, denoted by Gℓ(L), such that buckets in Gℓ(L) are obtained via
(i) projecting, for each dimension d of Lℓ, axes along points of MR in
MR(Lℓ), and (ii) storing the sum of items they contain the collection
of GP (one for each level ℓ of L), denoted by MQ − Coll(L), constitutes
the sketch of MQ−Hist(L), meaning that from MQ−Coll(L) it is pos-
sible to finally obtain MQ − Hist(L) according to our greedy algorithm
computeMulQHist;

• (algorithm computeMulQHist) for each level ℓ, obtain from Gℓ(L) of MQ−
Coll(L) the so-called Multiple-Query Partition (MQP) of the cuboid Lℓ,
denoted by Pℓ(L), via meaningfully merging buckets in Gℓ(L) with the
criterion that Pℓ(L) must be able to fit, at level ℓ, all the different query
requirements of HRQ in SHRQ;

• return MQ−Hist(L) via hierarchically combining the PPℓ(L).

From the described approach, it follows that the most important task of
this technique is represented by algorithm computeMulQHist, whereas the
other steps are quite obvious.

Fig. 2.6. An example of Generalized Partition Gℓ(L) (a) and a possible correspond-
ing Pℓ(L) (b)

2.4 Compressing Data Cubes under Simultaneous Queries 27

First, it is useful to illustrate how MR, GP and MQP are obtained through-
out a meaningful example. For the sake of simplicity, consider the following
OLAP scenario (see 2.6 (a)): (i) a |d0| × |d1| two-dimensional cuboid Lℓ,
such that the domain of d0 is Dom(d0) = {a, b, c, d, e, f, g, h, i, l,m, n, o, p, q},
and the domain of d1 is equal to that of d0 (i.e., Dom(d1) = Dom(d0)), be-
ing the common-intended lexicographical ordering defined on both of these
domains; (ii) three range queries, Qi,l, Qj,l, and Qk,l of distinct HRQ de-
fined on Lℓ, defined as follows: Qi,l = ⟨[b, d], [c, f]⟩, Qj,l = ⟨[d, e], [d, g]⟩, and
Qk,l = ⟨[h, i], [m,m]⟩. According to the third step of the multiple-query
compression process: (i) the two MR of Lℓ are: MR0,l = {b, d, e, h, i} and
MR1,l = {c, d, f, g,m}; (ii) the GP of Lℓ, Gℓ(L), is that depicted in 2.6 (a);
(iii) a possible MQP of Lℓ, Pℓ(L), is that depicted in 2.6 (b). From 2.6 (a),
note that the so-generated buckets of Gℓ(L) are all the buckets that would
allow to provide, at level ℓ, approximate answers having the highest accuracy
for all HRQ in SHRQ at level ℓ. The same for the other GP of MQ−Coll(L).
Obviously, it is not possible to materialize all the buckets of all the GP of
MQ − Coll(L), due to the space constraint posed by the input bound B.
If this would be the case, it would be easy to finally obtain the histogram
MQ−Hist(L) as corresponding to MQ− Coll(L) directly, i.e. as a full ma-
terialization of MQ − Coll(L). Being this impossible for reasonable configu-
rations of the input parameters, the adopted strategy is based on obtaining
the MQP Pℓ(L) via meaningfully merging buckets in Gℓ(L), thus reducing
the overall final size of Pℓ(L) and, as a consequence, the overall final size of
MQ−Hist(L), keeping in mind the priority goal of accommodating, as much
as possible, the multiple query constraints posed by HRQ in SHRQ. As stated
before, this strategy, which is implemented by algorithm computeMulQHist,
allows us to finally compute Pℓ(L) as a sub-optimal partition of Gℓ(L).

To this end, computeMulQHist introduces a global strategy and a local
strategy . The first one deals with the problem of how to explore the overall
hierarchical search (bucket) space represented by MQ − Coll(L). The sec-
ond one deals with the problem of how to explore the search (bucket) space
represented by a given Gℓ(L).

First, consider the latter one, which properly realizes the main greedy cri-
terion used to obtain a Pℓ(L) from a given Gℓ(L). The strategy that is inspired
by the one adopted by traditional multidimensional histograms (e.g., MHist
[PI97]), i.e. obtaining final buckets storing as much uniform data as possible
via minimizing the skewness among buckets themselves. This, in turn, has
beneficial effects on the accuracy of approximate answers computed against
the histogram, as widely recognized (e.g., see [Cuz05]). The difference with
respect to this approach lies in the fact that traditional histograms operate
on the original data cube directly, whereas MQ − Hist(L) is built starting
from the bucket space defined by MQ−Coll(L), and, in turn, by each Gℓ(L).

According to these guidelines, in the local computation of computeMulQHist,
given the GP Gℓ(L), the most uniform bucket can be greedily selected, said bU ,
among buckets of the overall bucket space of Gℓ(L), and then we explore the

28 2 Querying and Answering Multidimensional Static Data

neighboring buckets of bU in search for buckets having a homogeneity close
to that of bU , having fixed a threshold value VU that limits the maximal dif-
ference between the homogeneity of bU and that of its neighboring buckets.
To meaningfully support this task, given a bucket b of Gℓ(L), we adopt as
homogeneity definition the greatest quadratic distance from the average value
of outliers in b, meaning that the less is such a distance, the more is the ho-
mogeneity of b. This approach is modeled by the function unif(b), defined as
follows:

unif(b) =
1

max
i∈Out(b)

{0, |b[i]−AV G(B)|2}

such that (i) Out(b) is the set of outliers of b, (ii) b[i] is the value of the i-th
item of b, and (iii) AV G(b) is the average value of items in b. Note that the
use of the second power to ensure the convergence of the introduced function
unif(·).

When a set of neighboring buckets is detected and must be merged in a
singleton bucket, said bM , the criterion is imposed to obtain bM as a hyper-
rectangular bucket instead of an arbitrary bucket (i.e., a bucket with irregular
shape). This reasonably follows the geometry of arbitrary range queries. In
doing this, based on geometrical issues, protruding parts of merged neighbor-
ing buckets can be thrown away in such a way as to obtain a maximal, internal
hyper-rectangular bucket. In turn, the protruding bucket parts are then ma-
terialized as new buckets of the GP Gℓ(L), and then the same task is iterated
again on the remaining bucket set of Gℓ(L). Comparing with STHoles [4], we
observe that [4] proposes a total hierarchical strategy for merging buckets,
whereas we propose a planar strategy for merging buckets, but applied to
each level of our hierarchical search (bucket) space. Of course, the underlying
greedy criterion is different in the two proposals.

For what regards the second aspect of computeMulQHist (i.e., the global
strategy), the key is to adopt an in- depth visit of MQ−Coll(L) starting from
the aggregation ALL (i.e., from the corresponding GP at level P , GP (L)),
meaning that, starting from the level P (i.e., the cuboid LP), when a merged
bucket bM is obtained in the GP Gℓ(L) at level ℓ, the idea is to hierarchically
move down to the GP Gl+1(L) at level l + 1, and consider the collection of
buckets of Gl+1(L) contained by bM , and so forth. When the leaf level GP is
reached (i.e., the cuboid L0), we re-start from the aggregation ALL. As said
before, the whole process is bounded by the consumption of the storage space
B.

Basically, the above-described one defines a top-down approach in the
computation of MQ−Hist(L). Without going into details, it should be noted
that the in-depth visit approach is in favor of the idea of accommodating a
large family of range queries embedded in HRQ rather than range queries
referred to a particular level of the logical hierarchy underlying the input
data cube L. The rationale of this way to do comes from arguing that, in a
typical OLAP scenario, client applications are mainly interested in querying

2.4 Compressing Data Cubes under Simultaneous Queries 29

OLAP data at granularities different from the lowest one [NK01]. To become
convinced of this, consider a repository R of sale data (which are particularly
suitable to be processed and analyzed by means of OLAP technology) and a
data cube L defined on top of R such that L includes, among all, the dimension
Time with hierarchy HTime. Also, suppose that HTime is organized as follows:

HTime : Y ear → Quarter → Month → Day

Even if sale data are available in all the defined temporal granularities (i.e.,
Year, Quarter, Month, and Day), OLAP client applications typically access
and query data at theMonth or Quarter or Year granularities mostly [Han05].
This evidence, combined with (i) the need of accommodating a large family
of queries, and (ii) the presence of a bounded storage space (i.e., B), gives
raise to the proposed top-down approach.

2.4.2 Experimental Results

In order to test the effectiveness of the proposed technique, experiments have
been designed aiming at probing the data cube compression performance (or,
equally, the accuracy) of our technique. Experiments involve several aspects
ranging from the data layer to query layer, metrics, and comparison tech-
niques.

Data Layer

As regards the data layer of the experimental framework, two different kinds of
data cubes have been engineered. The usage of different classes of data cubes
allowed to submit our proposed technique to a comprehensive and “rich” ex-
perimental analysis, and, as a consequence, carefully test its performance.
Data cube classes considered are the following: (i) benchmark data cubes,
which allow to test the effectiveness of the technique under the stressing of
an in-laboratory-built input, and to evaluate the technique against competi-
tor ones on “well-referred” data sets that have been widely used in similar
research experiences; (ii) real data cubes, which allow to probe the efficiency
of this technique against real-life data sets. Experiments are also conducted
on synthetic data cubes, which allow us to completely control the variation
of input parameters such as the nature of OLAP data distributions. How-
ever, experimental results on benchmark and real-life data cubes, typically,
are more probing than synthetic ones. For what regards benchmark data sets,
it has been considered the popular benchmark TPC-H, which is well-known
in the Database and Data Warehousing research communities.

By exploiting data generation routines made available at the benchmark
Web site, a two-dimensional benchmark data cubes has been built by means
of the well-known Microsoft Analysis Services 2000 OLAP platform. In more
detail, a two-domensional datacube 2, 000×2, 000 is built and populated with
4M data cells. For what regards real-life data sets, we considered the popular

30 2 Querying and Answering Multidimensional Static Data

data set USCensus1990, and we built a 1, 000 × 1, 000 two-dimensional data
cube, still on top of Microsoft Analysis Services 2000.

Query Layer

As regards the input of the experimental study, it has been considered ran-
dom populations of synthetic HRQ with range-SUM queries, modeled in the
experimental framework by the set SQH. For these queries, the underlying
trees have also been obtained randomly with the constraint of “covering” the
different cuboids of the target data cube as much as possible (i.e., obtaining
GP having a large number of buckets) at, however, a “reasonable” granularity.
Query Selectivity ∥ · ∥, which for OLAP queries is totally equal to the query
volume of the range-SUM queries, is the control parameter used to cost the
complexity needed to evaluate queries in SQH (e.g., see [Cuz06b]).

Metrics

As regards the outcomes of the experimental study, given a population of syn-
thetic HRQ SQH , it has been introduced the Average Relative Error (ARE)
between exact and approximate answers to queries in SQH , defined as follows:

ε(SQH) =
1

|SQH | − 1
·
|SQH |−1∑

j=0

ε(QHj)

such that (i) ε(QHj is defined as follows:

ε(QHj =
1

P
·
P−1∑
ℓ=0

 1

|queries(ℓ)| − 1

|queries(ℓ)|−1∑
k=0

ε(Qk)

and (ii) ε(Qk) is the Relative Error (RE) of the range-SUM query Qk in QHj

, defined as follows:

ε(Qk) =
|A(Qk)− Ã(Qk)|

A(Qk)

Comparison Techniques

In the experimental study, the compared performances are related to the pro-
posed technique against the following well-known histogram-based techniques
for compressing data cubes: MinSkew by Acharya et al. [APR99b], GenHist
by Gunopulos et al. [GKTD00b], and STHoles by Bruno et al. [BCG01]. This
because all these techniques are similar each other, and also represent the
state-of-the-art for histogram-based data cube compression research. In more
detail, having fixed the space budget B (i.e., the storage space available for
housing the compressed data cube), it has been derived, for each comparison
technique, the configuration of the input parameters that respective authors

2.4 Compressing Data Cubes under Simultaneous Queries 31

consider the best in their papers. This ensures a fair experimental analysis,
i.e. an analysis such that each comparison technique provides its best per-
formance. Furthermore, for all the comparison techniques, we set the space
budget B as equal to the r% of size(L), being r the compression ratio and
size(L) the total occupancy of the input data cube. As an example, r = 10%
(i.e., B is equal to the 10% of size(L)) is widely recognized as a reasonable
experimental setting (e.g., see [BCG01]).

Fig. 2.7. ARE vs query selectivity ∥Q∥ on the benchmark data cube TPC-H (left)
and on the real-life data cube USCensus1990 (right) with r = 10%

2.7 shows experimental results related to the percentage variation of ARE
on both benchmark and real-life data cubes with respect to the selectivity
of queries in SQH . This allows us to measure the quality of compression
techniques, i.e. their capability of introducing low query approximation errors.
2.8 shows the results for the same experiment when ranging r on the interval
[5, 20] (i.e., B on the interval [5, 20]% of size(L)), and fixing the selectivity of
range-SUM queries to ||Q|| = 750×700 for the benchmark data cube TPC-H,
and to ∥Q∥ = 350×300 for the real-life data cube USCensus1990. This allows
to measure the scalability of compression techniques, which is a critical aspect
in approximate OLAP query answering engines (e.g., see [Cuz05]). From the
analysis of the set of experimental results on two-dimensional benchmark and
real-life data cubes, it follows that compression performance of MO−Hist(L)
outperforms those of comparison techniques. Also, the proposed technique
ensures a better scalability with respect to that of comparison techniques when
ranging the size of the storage space B available for housing the compressed
representation of the input data cube.

32 2 Querying and Answering Multidimensional Static Data

Fig. 2.8. ARE vs compression ratio r on the benchmark data cube TPC-H with
∥Q∥ = 750 × 700 (left) and on the real-life data cube USCensus1990 with ∥Q∥ =
350× 300 (right)

3

Privacy and OLAP

3.1 Introduction

The problem of ensuring the privacy and security of OLAP data cubes
([GCB+97]) arises in several fields ranging from advanced Data Warehousing
(DW) and Business Intelligence (BI) systems to sophisticated Data Mining
(DM) tools. In DW and BI systems, decision making analysts aim at avoiding
that malicious users access perceptive ranges of multidimensional data in or-
der to infer sensitive knowledge, or attack corporate data cubes via violating
user rules, grants and revokes. In DM tools, domain experts aim at avoiding
that malicious users infer critical-for-the-task knowledge from authoritative
DM results such as frequent item sets, patterns and regularities, clusters, and
discovered association rules. In more detail, the former application scenario
(i.e., DW and BI systems) deals with both the privacy preservation and the se-
curity of data cubes, whereas the latter one (i.e., DM tools) deals with privacy
preserving OLAP issues solely.

Specifically, privacy preservation of data cubes refers to the problem of en-
suring the privacy of data cube cells (and, in turn, that of queries defined over
collections of data cube cells), i.e. hiding sensitive information and knowledge
during data management activities, according to the general guidelines drawn
by Sweeney in her seminar paper (k-anonimity), whereas access control issues
refer to the problem of ensuring the security of data cube cells, i.e. restricting
the access of unauthorized users to specific sub-domains of the target data
cube, according to well-known concepts studied and assessed in the context
of DBMS security.

Nonetheless, it is quite straightforward foreseeing that these two even dis-
tinct aspects should be meaningfully integrated in order to ensure both the
privacy and security of complex data cubes, i.e. data cubes built on top of
complex data/knowledge bases.

During last years, these topics have became of great interest for the Data
Warehousing and Databases research communities, due to their exciting the-
oretical challenges as well as their relevance and practical impact in modern

34 3 Privacy and OLAP

real-life OLAP systems and applications. On a more conceptual plane, the-
oretical aspects are mainly devoted to study how probability and statistics
schemes as well as rule-based models can be applied in order to efficiently
solve the above introduced problems. On a more practical plane, researchers
and practitioners aim at integrating convenient privacy preserving and secu-
rity solutions within the core layers of commercial OLAP server platforms.

Basically, to tackle deriving privacy preservation challenges in OLAP, re-
searchers have proposed models and algorithms that can be roughly classified
within two main classes: restriction-based techniques, and data perturbation
techniques. First ones propose limiting the number of query kinds that can
be posed against the target OLAP server. Second ones propose perturbing
data cells by means of random noise at various levels, ranging from schemas
to queries. On the other hand, access control solutions in OLAP are mainly
inspired by the wide literature developed in the context of controlling accesses
to DBMS, and try to adapt such schemes in order to control accesses to OLAP
systems.

Handling sensitive data, which falls in privacy preserving issues, is common
in many real-life application scenarios. For instance, consider a government
agency that collects information about client applications/users for a specific
e-government process/task, and then makes this information available for a
third-party agency willing to perform market analysis for business purposes.
In this case, preserving sensitive data of client applications/users and protect-
ing their utilization from malicious behaviors play a leading role. It should be
taken into account that this scenario gets worse in OLAP systems, as the inter-
active nature of such systems naturally encourages malicious users to retrieve
sensitive knowledge by means of inference techniques ([WJW04],[WWJ04])
that, thanks to the wide availability of OLAP tools and operators ([Han05]),
can reach an high degree of effectiveness and efficiency.

Theoretical background of privacy preserving issues in OLAP relies on
research experiences in the context of statistical databases ([Sho97]), where
these issues have been firstly studied. In statistical databases, this problem
has been tackled by means of Statistical Disclosure Control (SDC) techniques
(Domingo-Ferrer, 2002), which propose achieving the privacy preservation of
data via trade-offing the accuracy and privacy of data. The main idea of
such an approach is that of admitting the need for data provisioning while,
at the same time, the need for privacy of data. In fact, full data hiding or
full data camouflaging are both useless, as well as publishing completely-
disclosed data sets. Therefore, balancing accuracy and privacy of data is a
reasonable solution to this challenge. In this context, two meaningful mea-
sures for evaluating the accuracy and privacy preservation capabilities of an
arbitrary method/technique have been introduced. The first one is referred as
Information Loss (IL). It allows us to estimate the lost of information (i.e.,
the accuracy decrease) due to a given privacy preserving method/technique.
The second one is the Disclosure Risk (DR). It allows to estimate the risk of
disclosing sensitive data due to a given privacy preserving method/technique.

3.1 Introduction 35

[DFK+01] introduces two metrics for probabilistically evaluating IL and
DR. Given a numerical attribute A that can assume a value w with probability
Pw, such that Dw is the domain of w (i.e., the set of all the values that A can
assume), a possible metrics of IL is given by the Data Utility (DU), which is
defined as follows:

DU(w) =
|Dw|∑

w Pw · (w − 1)2
(3.1)

where |Dw| denotes the cardinality of Dw. It should be noted that DU and IL
are inversely proportional, i.e. the more is IL the less is DU, and, conversely,
the less is IL the more is DU.

Different formulations exist. For instance, [SLXN06] introduce the so-
called accuracy factor Fa,Q of a given query Q against a data cube D, i.e.
the relative accuracy decrease of the approximate answer to Q, denoted by
Ã(Q), which is evaluated on the synopsis data cube D obtained from D by
means of perturbation-based techniques (presented next), with respect to the
exact answer to Q, denoted by Ã(Q), which is evaluated on the original data
cube D̃. Fa,Q is defined as follows:

Fa,Q = 2
−
∣∣∣A(Q)−Ã(Q)

A(Q)

∣∣∣
(3.2)

With regards to DR, [DFK+01] consider the probability with respect to the
malicious user that A can assume the value w, denoted by PU

w , and intro-
duce the following metrics that models DR in terms of the reciprocal of the
information entropy, as follows:

DR(w) =
1

−
∑

w PU
w · log(PU

w)
(3.3)

Indeed, being impossible to estimate the value of Pw , as one should know
all the information/knowledge held by the malicious user, in ([DFK+01]) the
conditional version of 3.3 is proposed as follows:

DR(w) =
1

−
∑

w p(w|u) · log2p(w|u)
(3.4)

such that p(w|u) denotes the conditional probability that the actual value
of A is w while the value known by the malicious user is u.

Just like for IL, different formulations for measuring DR exist. [SLXN06]
introduce the so-called privacy factor Fp,D of a given data cube D with re-
spect to the corresponding perturbation-based synopsis data cube D . Fp,D
is defined as follows:

Fp,D =
1

N
·

N∑
i=1

|C̃i − Ci|
|Ci|

(3.5)

such that Ci denotes a data cell of the data cube D, and C̃i the corre-
sponding perturbed data cell of the synopsis data cube D̃.

36 3 Privacy and OLAP

According to research results presented in ([DFK+01]), accuracy and pri-
vacy of a privacy preserving technique are related and must be traded-off.
Intuitively enough, an increase of one of these properties causes a correlated
decrease of the other one. Also, it is a matter to notice that having maxi-
mum accuracy implies a very high DR while, conversely, minimum accuracy
implies minimum DR. On the other hand, accuracy cannot be minimized,
and DR cannot be maximized. As we will describe in next Section, most of
privacy preserving OLAP techniques of the active literature are based on this
terminology, and on the fundamental idea of trading-off accuracy and privacy.

For what regards the background of security issues, actual literature fo-
cuses on access control techniques, as discussed above. Access control has a
quite long history in DBMS, where the goal is protecting data objects from
unauthorized accesses. In this context, an authorization is modeled as a triple:
⟨Object, Subject,+/−Action⟩, such that (i) Object is the data object to be
protected, (ii) Subject is the user/application accessing the objectObject, and
(iii) Action is the operation that the user/application Subject can or cannot
(i.e., +/-) perform on the object Object. Typically, read-only operations are
controlled, since data updates are indeed allowed to few users/user-groups
only.

Because of (very) different data models, the main difference between ac-
cess control issues in DBMS and OLAP systems is represented by the na-
ture of data objects. In DBMS, an object can be a data table, a query or
a record. This allows to achieve very precise authorization mechanisms, as
singleton records or partitions of data tables (they may be vertical or hor-
izontal) can be handled. Indeed, it is possible to claim that access control
techniques take great advantages from the flexibility of DBMS models and
schemas. When OLAP systems are considered, models and schemas are char-
acterized by dimensionality and multi-resolution of data, and access control
mechanisms need to become more sophisticated in order to prevent malicious
user attacks. Target data objects are represented by data cubes, which can
be generally thought as collections of cuboids, one for each combination of
hierarchy levels. Also, dimensional hierarchies pose additional challenges, as
malicious users can successfully exploit the multi-resolution data models de-
fined by dimensional hierarchies in order to devise very effective knowledge
inference techniques able to hierarchically browse the structure of the cube
with the goal of discovering aggregations computed over sensitive ranges of
data. Also, rich OLAP tools and operators ([Han05]), such as roll-up, drill-
down and slice & dice, represent “sophisticate instruments” in the hands of
malicious users, as they can be used to extract sensitive knowledge from a
secured cuboid at a given level ℓ starting from disclosed cuboids at levels
different from ℓ.

To overcome security breaches like those described above, access con-
trol techniques for OLAP data cubes usually apply a restriction-based ap-
proach, and limit the set of cuboids that can be accessed by external ap-
plications/users. Nevertheless, even in this case a trade-off strategy must be

3.2 Privacy Preserving Techniques in OLAP 37

Fig. 3.1. Access control mechanism on a ROLAP data cube

devised, as securing a large number of cuboids can become useless in real-life
OLAP scenarios. All considering, as studied by Wang et al. in ([WJW04];
[WWJ04]), the inference problem in OLAP introduces more probing issues
rather than precursor scientific areas related to inference issues in statistical
databases ([DS83]).

To give an example on a simple access control mechanism in Relational
OLAP (ROLAP) data cubes (i.e., data cubes stored in form of tables of a
RDBMS ([Han05])), consider 3.1, where a data cubeD with the related cuboid
lattice is depicted. In this case, the cuboids D1,0, D2,0, and D2,3 are secured
to authorized applications/users only and forbidden to unauthorized ones.

3.2 Privacy Preserving Techniques in OLAP

Privacy Preserving OLAP (PPOLAP) ([AST05]) is a specialized case of Pri-
vacy Preserving Data Mining (PPDM) ([AS00]). While PPDM concerns with
the privacy of data during DM activities (e.g., clustering, classification, pat-
tern discovery, association rule discovery etc), PPOLAP deals with the prob-
lem of preserving the privacy of data cells of a given data cube during typical

38 3 Privacy and OLAP

OLAP activities such as performing classical operators (e.g., roll-up and drill-
down) or evaluating complex OLAP queries (e.g., range- ([HAMS97]), top-
k ([XHCL06]), and iceberg ([FSGM+98]) queries). With respect to PPDM,
PPOLAP introduces more semantics into the privacy preservation due to its
well-known knowledge-intensive tools such as multidimensionality and multi-
resolution of data, and hierarchies.

In the following, two kinds of privacy preserving techniques in OLAP
are reviewed (i.e., restriction-based and perturbation-based techniques) in-
troduced in the previous Section.

Restriction-based techniques limit the queries that can be posed to the
OLAP server in order to preserve the privacy of data cells. This problem is
related to the issue of auditing queries in statistical databases, which consists
in analyzing the past (answered) queries in order to determine whether these
answers can be composed by a malicious user to infer sensitive knowledge in
the form of answers to forbidden queries. Therefore, in order to understand
which kinds of queries must be forbidden, a restriction-based technique needs
to audit queries posed to the target data (e.g., OLAP) server during a given
interval of time. Auditing queries in statistical databases is the conceptual
and theoretical basis of auditing queries in OLAP systems.

Interesting auditing techniques for queries against statistical databases
have been proposed by [DJL79], which introduce a model for auditing average
and median queries, and [CO82], which propose a technique for handling the
past history of SUM queries in order to reduce the sequence of answered
queries to privacy preservation purposes. Also, [CO82] describe how to check
the compromisability of the underlying statistical database when using the
reduced sequence. The proposed auditing technique is called Audit Expert .

More recently, few approaches focusing on the problem of auditing tech-
niques for OLAP data cubes and queries appeared. Among all, it is useful
to recall: (i) the work of [ZZC04], which propose an interesting information
theoretic approach that simply counts the number of cells already covered to
answer previous queries in order to establish if a new query should be an-
swered or not; (ii) the work of [MMM06], which introduce a novel notation
for auditing range-SUM queries (i.e., an OLAP-like class of queries) against
statistical databases making use of Integer Linear Programming (ILP) tools
for detecting if a new range-sum query can be answered safely.

Perturbation-based techniques add random noise at various levels of the
target database, ranging from schemas, like in ([Sch81]), to query answers,
like in (Beck, 1980).

[AST05] first propose the notion of PPOLAP. They define a PPOLAP
model over data partitioned across multiple clients using a randomization
approach on the basis of which (i) clients perturb tuples which with they par-
ticipate to the partition in order to gain row-level privacy, and (ii) server is ca-
pable of evaluating OLAP queries against perturbed tables via reconstructing
original distributions of attributes involved by such queries. In ([AST05]), au-
thors demonstrate that the proposed approach is safe against privacy breaches.

3.3 Security techniques in OLAP 39

[HZW+05] propose a different approach to preserve the privacy of OLAP
data cubes. They argue that hiding parts of data that could cause inference
of sensitive cuboids is enough in order to achieve the notion of “secure” data
cubes. While a strengthness point of the proposed approach is represented by
its simplicity, authors do not provide sufficient experimental analysis to prove
in which measure the data hiding phase affects the target OLAP server.

[SLXN06] propose a random data distortion technique, called zero-sum
method, for preserving secret information of individual data cells while pro-
viding accurate answers to range-queries over original aggregates. Roughly
speaking, data distortion consists in iteratively altering the values of indi-
vidual data cells of the target data cube in such a way as to maintain the
marginal sums of data cells along rows and columns of the data cube equal
to zero. This ensures the privacy of individual data cells, and the correctness
of answers to range-queries.

Due to different, specific motivations, both restriction-based and perturbation-
based techniques are ineffective in OLAP. Specifically, restriction-based tech-
niques cannot be applied to OLAP systems since the nature of such sys-
tems is intrinsically interactive, and based on a wide set of operators and
query classes. On the other hand, perturbation-based techniques cannot be
applied in OLAP systems since they introduce excessive computational over-
heads when executed on massive data cubes.

3.3 Security techniques in OLAP

The problem of security control methods has been widely studied in the con-
text of statistical databases, and it has produced a wide and consolidate liter-
ature ([AW89]) that, in turn, is inspiring actual initiatives for securing OLAP
data cubes, i.e. limiting their access to authorized applications/users only.

As stated in previous sections, the main idea of these approaches is devis-
ing access control schemes that establish how applications/users must access
multidimensional data on the basis of grants and revokes ([GW76]), roles
([SCFY96]), and authorization rules ([JSSS01]).

Following the above-mentioned pioneristic approaches, some preliminary,
sporadic studies in the context of securing data warehouses ([Bha00]) and
data cubes ([PP00]) have been appeared in literature subsequently. While
these works are clearly in their initial stages, they have inspired most part
of actual research effort in the context of access control schemes for OLAP
data cubes. ([WJW04]; [WWJ04]) represent the state-of-the-art for access
control schemes in OLAP. They propose a novel technique for limiting in-
ference breaches in OLAP systems via detecting cardinality-based sufficient
conditions over cuboids, in order to make data cubes safe with respect to ma-
licious users. Specifically, the proposed technique combines access control and
inference control techniques ([DS83]), being (i) first one based on the hier-
archical nature of data cubes in terms of cuboid lattice and multi-resolution

40 3 Privacy and OLAP

of data, and (ii) second one based on directly applying restriction to coarser
aggregations of data cubes, and then removing remaining inferences that can
be still derived.

3.4 A Robust Sampling-Based Technique for Privacy
Preservation in OLAP Environment

Beyond effectiveness and efficiency limitations, actual proposals lack of a rig-
orous theoretical foundation, as they do not consider any so-called privacy
OLAP notion. In other words, while these proposals focus the attention on
the privacy of data cells, they completely neglect to introduce a rigorous no-
tion of privacy in their research. It is a matter of fact to note that, contrary
to the trend of actual privacy preserving OLAP proposals, similar initiatives
in the context of privacy preserving Databases [WJW04] and Data Mining
[AS00] instead introduce a proper notion of privacy for their data processing
goals, i.e. they formally define what privacy means in their research. A posi-
tive side-effect of such an approach is represented by the amenity of devising
properties and theorems on top of the theoretical framework founding on the
privacy notion.

Starting from these considerations, it is possible to consider a a robust
sampling-based framework for computing privacy preserving data cubes at
a provable computational cost. Contrary to state-of-the-art initiatives, in our
framework we introduce a meaningful privacy OLAP notion that considers the
privacy of OLAP aggregates, and, by adopting this notion as theoretical base-
line, we devise a theoretical framework that allows us to nicely treat privacy
preservation of data cubes. In particular, due to typical OLAP data cube
processing requirements, which usually involve tight computational bounds
dictated by enormous sizes and high dimension number, it is useful to con-
sider the constraint B that imposes to adopt the well-known data cube com-
pression paradigm (e.g., [Cuz05], [HZW+05]). Basically, techniques adhering
to this paradigm, called approximate query answering techniques, propose to
compute compressed representations of data cubes in order to mitigate compu-
tational overheads deriving from evaluating resource-intensive OLAP queries.
According to the proposed methodology, input queries are issued against the
compressed data cube instead of the original one, thus obtaining approximate
answers whose introduced query error is perfectly tolerable for OLAP analysis
goals.

Given an input data cube A and the space bound B, the main goal of the
proposed framework is that of computing the sampling-based synopsis data
cube A, whose aggregations are obtained via satisfying the so-called privacy
constraint. In particular, the privacy constraint requires that approximate an-
swers over the synopsis data cube embed a certain degree of privacy, which
is measured by means of a meaningful privacy metrics, and is bounded by a
given privacy threshold determined by application-oriented requirements. The

3.4 A Robust Sampling-Based Technique for Privacy Preservation in OLAP Environment 41

metric-based approach for handling privacy of data is well-established in the
community, due to its flexibility and nice theoretical properties. To compute
the synopsis data cube A, the so-called privacy grid has been introduced,
which is a grid-based partition of A. The privacy grid allows to meaningfully
exploit the multi-resolution nature of OLAP data, and hence obtain an ef-
fective information gain during the computation of A. In this respect, in this
framework the granularity of the privacy grid (i.e., the size of its elementary
cell) is meaningfully chosen as an adequately-small fraction of the selectivity
of queries populating typical query-workloads posed against A. Note that this
selectivity can be easily gathered thanks to popular active/monitoring com-
ponents that one can find in conventional OLAP server platforms. Also, since
a compression is introduced (due to sampling), the experimental assessment
tests the degree of approximation of retrieved answers, as supporting privacy
of answers without considering the accuracy of answers is useless. Results
clearly show that the framework is able to provide privacy preserving answers
that simultaneously retain a good degree of approximation. Therefore, the
underlying accuracy constraint is also satisfied, beyond the (main) privacy
constraint.

The key idea in [CRS08] is based on a robust sampling-based framework
for privacy preserving OLAP, and it provides a comprehensive experimental
evaluation of this framework on synthetic data cubes. These data cubes allow
us to easily control all the functional characteristics of a cube (e.g., dimen-
sion number, size, sparseness coefficient etc), thus leading to the achievement
of a reliable and multi-perspective experimental assessment. Performance of
the proposed framework is also compared with the one of the method Zero-
Sum [SLXN06], which can be reasonably considered as the state-of-the-art
for perturbation-based privacy preserving OLAP techniques, under several
perspectives of analysis that encompass (i) the quality of the final synopsis
data cube in accomplishing the privacy and accuracy constraints, (ii) the ef-
fectiveness of the final synopsis data cube in providing retrieved approximate
answers having the desired degree of privacy, and, finally, (iii) the sensitivity
of the final synopsis data cube under the ranging of the space bound con-
straint, which is a critical parameter of our framework. Specifically, the study
of the latter property confirms the robustness of this framework, i.e. its low
dependency on configuration parameters. Experimental results underline the
benefits due to the privacy preserving OLAP framework, and state that per-
formance of this framework outperforms the one of the comparison method
Zero-Sum.

3.4.1 Theoretical Model

Using definition introduced in 2 a data cube A is a tuple A = ⟨D,L,H,M⟩,
such that: (i) D is the data domain of A containing (OLAP) data cells, which
are the elementary aggregations of A computed against the relational data
source S; (ii) L is the set of dimensions of A, i.e. the functional attributes with

42 3 Privacy and OLAP

respect to which the underlying OLAP analysis is defined (in other words,
L is the set of attributes with respect to which relational tuples in S are
aggregated); (iii) H is the set of hierarchies related to the dimensions of
A, i.e. hierarchical representations of the functional attributes shaped in the
form of general trees; (iv) M is the set of measures of A, i.e. the attributes
of interest for the underlying OLAP analysis (in other words, M is the set of
attributes with respect to which SQL aggregations stored in data cells of A are
computed). Given these definitions, (i) |L| denotes the number of dimensions
of A, (ii) d denotes a generic dimension of A, (iii) |d| the cardinality of d, and
(iv) H(d) the hierarchy of d. Finally, for the sake of simplicity, let assume data
cubes having a unique measure (i.e., |M| = 1). However, extending schemes,
models and algorithms proposed to deal with data cubes having multiple
measures (i.e., |M| > 1) is straightforward.

Given an |L|-dimensional data cube A, an m-dimensional range-query
Q against A, with m ≤ |L|, is a tuple Q = ⟨Rk0 , Rk1 , . . . , Rkm−1 , A⟩, such
that: (i) Rki denotes a contiguous range defined on the dimension dki of
A, with ki belonging to the range [0, |L|1], and (ii) A is a SQL aggregation
operator. Applied to A, Q returns the A-based aggregation computed over the
set of data cells in A contained within the multidimensional sub-domain of A
bounded by rangesRk0 , Rk1 , . . . , Rkm−1 . Range-SUM queries, which return the
SUM of the involved data cells, are trendy examples of range queries. In this
framework, range-SUM queries are considered as SUM aggregations, which
are very popular in OLAP, and efficiently support other SQL aggregations
(e.g., COUNT, AVG etc) as well as summarized knowledge extraction from
massive amounts of data.

Given a query Q against a data cube A, the query region of Q, de-
noted by R(Q), is defined as the sub-domain of A bounded by ranges
Rk0 , Rk1 , . . . , Rkm−1 of Q.

Given an n-dimensional data domain D, the volume of D, denoted by
∥D∥, is defined as follows: ∥D∥ = |d0|× |d1|× . . .×|dn−1|, such that |di| is the
cardinality of the dimension di of D. This definition can also be extended to
a multidimensional data cube A, thus introducing the volume of A, A , and
to a multidimensional range query Q, thus introducing the volume of Q, Q .
The latter parameter is also recognized-in-literature as the selectivity of Q.

Given an |L|-dimensional data cube A, the privacy grid (P(A) of A is a
tuple P(A) = ⟨∆ℓ0,∆ℓ1, . . . , ∆ℓ|L|−1⟩ such that ∆ℓk is a range partitioning
the dimension dk of A, with k belonging to [0, |L|1], in a ∆ℓk-based (one-
dimensional) partition. By combining the partitions along all the dimensions
of A, it is possible to finally obtain P(A) as a regular partition of R(A)
(the multidimensional region associated to A) composed by the so-called grid
regions RP(A),k = [∆ℓ0,k;∆ℓ1,k; . . . ;∆ℓ|L|−1,k]. Formally, P(A) can also be
defined as a collection of (grid) regions, i.e.

P(A) = {RP(A,0,RP(A,1, . . . ,RP(A,|P(A|−1}

.

3.4 A Robust Sampling-Based Technique for Privacy Preservation in OLAP Environment 43

As accuracy metrics for answers to queries, the relative query error has
been used between exact and approximate answers, which is a well-recognized-
in-literature measure of quality for approximate query answering techniques
in OLAP. Formally, given a query Q, A(Q) is the exact answer to Q (i.e., the
answer to Q evaluated against the original data cube A), and as Ã(Q) the
approximate answer to Q (i.e., the answer to Q evaluated against the synopsis
data cube A′).

Therefore, the relative query error EQ(Q) between A(Q) and Ã(Q) is
defined as follows:

EQ(Q) =
|A(Q)− Ã(Q)|

A(Q)

Since the challenging problem is related to ensure the privacy preserva-
tion of OLAP aggregations, this privacy metrics takes into consideration how
sensitive information can be discovered from aggregate data, and tries to con-
trast this possibility. To this end, it is important to first study how sensitive
aggregations can be discovered from the knowledge about exact answers, and
metadata about data cubes and queries.

Starting from the knowledge about the target data cube A (e.g., range
sizes, OLAP hierarchies etc), and the knowledge about a given query Q (i.e.,
the volume of Q, Q , and the exact answer to Q, A(Q)), it is possible to infer
knowledge about sensitive ranges of data contained within R(Q). For instance,
it is possible to derive the average value of the contribution throughout which
each elementary data cell ofA within R(Q) contributes to A(Q). This quantity
is named as singleton aggregation of Q, denoted by I(Q). I(Q) is defined as
follows:

I(Q) =
A(Q)

∥Q∥
It is easy to understand that, in turn, starting from the knowledge about
I(Q), it is possible to progressively discover aggregations of larger ranges of
data within R(Q), rather than those stored within the elementary data cell,
thus inferring further knowledge.

Secondly, it is interesting to study how OLAP client applications can dis-
cover sensitive aggregations from the knowledge about approximate answers,
and, similarly to the previous case, from the knowledge about data cube and
query metadata. Starting from the knowledge about the synopsis data cube A,
and the knowledge about a given queryQ, it is possible to derive an estimation
on I(Q), denoted by ĨQ) , as follows:

Ĩ(Q) =
Ã(Q)

S(Q)

such that S(Q) is the number of samples extracted from R(Q) to compute
A′ (note that S(Q) < ∥Q∥). The relative difference between I(Q) and Ĩ(Q),
named as relative inference error and denoted by EI(Q), gives us a metrics
for the privacy of Ã(Q), defined as follows:

44 3 Privacy and OLAP

EI(Q) =
|I(Q)− Ĩ(Q)|

I(Q)

Indeed, while OLAP client applications are aware about the definition and
metadata of both the target data cube and queries, the number of samples
S(Q) for each query Q is not disclosed to them. As a consequence, in or-
der to model this facet of the framework, the key idea is to introduce the
user-perceived singleton aggregation, denoted by ĨU (Q), which is the effective
singleton aggregation perceived by external applications on the basis of the
knowledge made available to them. ĨU (Q) is defined as follows:

ĨU (Q) =
Ã(Q)

∥Q∥

Based on ĨU (Q), the definition of the relative user-perceived inference error
EU

I (Q), as follows:

EU
I (Q) =

|I(Q)− ĨU (Q)|
I(Q)

It is trivial to demonstrate that ĨU (Q) provides a better estimation of the
singleton aggregation of Q rather than the one provided by ĨQ) , as ĨU (Q)
is evaluated with respect to all the items contained within R(Q) (i.e., ∥Q∥),
whereas ĨQ) is evaluated with respect to the number of samples extracted
from R(Q) (i.e., S(Q)). In other words, ĨU (Q) is an upperbound for Ĩ(Q).
Therefore, Ĩ(Q) is considered to compute the synopsis data cube, whereas
ĨU (Q) is considered to model inference issues on the OLAP client application
side.

The privacy OLAP notion is built upon I(Q). According to this approach,
the final goal is maximizing the relative inference error EU

I (Q), as this condi-
tion means-in-practice that OLAP client applications retrieve from the synop-
sis data cube A′ “sampled” singleton aggregations (i.e., ĨU (Q) that are very
different from the “real” singleton aggregations (i.e., I(Q) of the original data
cube A (i.e., ĨU (Q) ̸= I(Q))) This way, the privacy of OLAP aggregations of
A is preserved.

Similarly to related proposals appeared in literature recently [SLXN06],
in this framework has been introduced the privacy threshold ΦI that gives
a lower bound for the relative user-perceived inference error EU

I (Q) due to
evaluating a given query Q against the synopsis data cube A′. Therefore, the
privacy constraint can formally be modelled as follows: EU

I (Q) ≥ ΦI . Above
all, ΦI allows to meaningfully model and treat privacy OLAP issues at a
rigorous mathematical/statistical plane.

Application-wise, ΦI is set by OLAP client applications, and the privacy
preserving OLAP engine must accomplish this requirement accordingly, while
also ensuring the accuracy of approximate answers. The issue of determining
how to set this (user-defined) parameter is a non-trivial engagement. Intu-
itively enough, we set this parameter in terms of a percentage value, as this

3.4 A Robust Sampling-Based Technique for Privacy Preservation in OLAP Environment 45

way its semantics can be immediately captured by OLAP client applications,
which indeed do not know the exact values of singleton aggregations. With-
out going into more details, this approach is similar to the one adopted by a
plethora of research experiences in the context of approximate query answer-
ing techniques, which make use of a widely-accepted query error threshold
(belonging to the interval [15, 20]%) as reference for the accuracy of answers
(e.g., see [Cuz05]).

3.4.2 Computing the Privacy Preserving Synopsis Data Cube

Algorithm computeSPPDataCube implements the technique above for comput-
ing the synopsis data cube A′, given the following input parameters: (i) the
target data cube A; (ii) the space bound B; (iii) the integer parameter δ; (iv)
the privacy threshold ΦI ; (v) the typical query-workload QWL on A. Basi-
cally, computeSPPDataCube is a multi-step algorithm. In next sections each
step will be described separately.

The Privacy Grid

The first step of computeSPPDataCube consists in computing the privacy grid
P(A) for A. This task finally aims at determining the range ∆ℓk for each
dimension dk of A, with k belonging to [0, |L|1]. In turn, this allows to ob-
tain the volume of grid regions RP(A),k, ∥RP(A),k∥ by regularly partitioning
A. ∆ℓk is determined as an adequately-small fraction of the selectivity of
queries in QWL. Let ST be the “typical” selectivity of queries in QWL, and
∥RP(A),k∥ be the volume of RP(A),k . If ∥RP(A),k∥ ≪ SmathcalT , then A can
be computed by using the grid region as the elementary reasoning unit, and
adopting a resolution level lower than the resolution level of queries against A.
This allows to achieve an effective information gain during the computation
of A′. In fact, if the grid region RP(A),k is sampled in such a way as to satisfy
the privacy constraint, while ensuring the accuracy of approximate answers
that involve RP(A),k, then the same properties can also be inherited by input
queries on A as well, being the latter queries “defined” on top of grid regions.

On the other hand, it should be noted that adopting the alternative ap-
proach of sampling the regions defined by queries in QWL directly, without
referring to the reasoning layer of grid regions, would cause that, due to the
space bound constraint B, a sub-set of query regions of QWL will be sam-
pled by means of an adequately-wide set of samples, whereas the remaining
query regions of QWL will be sampled by means of a lower number of samples
(under-sampling), or, even, not sampled at all. It is a matter of fact to notice
that the latter situation would lead to an “unfair” synopsis data cube A′, i.e.
a synopsis data cube such that queries involving some regions of A′ are char-
acterized by low privacy and low accuracy, whereas queries involving other
regions of A′ are characterized by high privacy and high accuracy. Contrary
to this, the goal is to obtain a “fair” synopsis data cube A′, i.e. a synopsis

46 3 Privacy and OLAP

data cube able to accommodate a large number of queries while satisfying the
privacy constraint, and also ensuring the accuracy of retrieved (approximate)
answers.

How to determine SmathcalT from the given query-workload QWL? A
reasonable solution consists in selecting SmathcalT by composing all the most
frequent query ranges in QWL. Notice that these ranges can be easily gathered
by means of popular active/monitoring components of conventional OLAP
server platforms. Overall, this strategy allows to easily obtain a very-reliable
“representative” value of selectivity of queries in QWL. However, determining
SmathcalT is an orthogonal aspect for this framework, so that other different
strategies can be devised, and straightforwardly integrated within the core
layer of the framework.

The Greedy Strategy

The second step of computeSPPDataCube embeds a greedy strategy for sam-
pling the input data cube A in order to obtain the synopsis data cube A′. The
greedy choice is dictated by the space bound constraint B that imposes to com-
pute a “best-effort” synopsis data cube A′, i.e. a synopsis data cube such that
simultaneously (i) satisfies the privacy constraint, (ii) ensures the accuracy
of approximate answers, and (iii) fits within B. The reasoning unit of the
sampling phase of computeSPPDataCube is the grid region RP (A),k, meaning
that, at each iteration j and until B is not consumed, computeSPPDataCube
greedily selects from P(A) a grid region, denoted by RP (A),k, and extracts

from Rj
P (A),k a set of samples, denoted by S(RP (A),k). By iterating the above-

illustrated task for each one of the selected grid regions, the final synopsis data
cube A′ is obtained.

computeSPPDataCube adopts a greedy criterion to select the grid region
to be sampled. This criterion considers the properties of data distributions
associated to grid regions in P(A), and selects the most skewed grid region
among the available ones (i.e., the regions of P(A) not chosen during previous
iterations of the algorithm). Without any loss of generality, given a grid region
RP (A),k in P(A) the associated data distribution, denoted by F(RP (A),k),
can be reasonably intended as a multidimensional distribution, following the
nature of regions (which, in turn, are defined on top of multidimensional
data cubes). The main idea that underlines this greedy criterion is based
on assuming that in order to “describe” a skewed grid region, i.e. a grid
regionRP (A),k whose data distribution F(RP (A),k) is skewed (e.g., distributed
according to a Zipf distribution with asymmetric peaks), it is needed a number
of samples greater than the number of samples that are necessary in order
to “describe” a uniform grid region, i.e. a grid region RP (A),k whose data
distribution F(RP (A),k) is Uniform (that is, values of F(RP (A),k) are regularly
distributed around the average value of F(RP (A),k).

In order to determine if a given data distribution F is skewed or not, it is
possible to adopt a well-established theoretical result of the literature [SO87].

3.4 A Robust Sampling-Based Technique for Privacy Preservation in OLAP Environment 47

According to [SO87], given a data distribution F , F is considered as skewed
if the skewness value of F , denoted by γ1(F), is greater than its standard
deviation, denoted by σ(γ1(F)), by a factor equal to 2.6 (i.e., γ1(F) > 2.6 ·
σ(γ1(F))). γ1(F) can be computed as follows [Pap84]:

γ1(F =
(µ3(F))2

(µ2(F))3

such that µr(F) denotes the r-th central moment of F , defined as follows
[Pap84]:

µr(F =

q−1∑
k=0

(k − µ)′ · F(k)

where q is the number of samples of F (i.e., data items of F) and µ is the mean
value of F . [SO87] also provides with a method for computing the standard
deviation of the skewness. According to [SO87], σ(γ1(F)) can be computed
as follows:

σ(γ1(F)) =

√
6

q

On the basis of results of [SO87], it is usefult to introduce the so-called charac-
teristic function Ψ(F), which allows to determine if a given data distribution
F is skewed (Ψ(F) = 1) or uniform (Ψ(F) = 0). Ψ(F) is defined as follows:

Ψ(F) =

1 if
√
q·(

∑q−1
k=0(k−µ)3·F(k))

2

√
6·(

∑q−1
k=0(k−µ)2·F(k))

3 > 2.6

0 otherwise
(3.6)

such that q and µ are the number of data items and the mean value of F ,
respectively. As regards performance issues, it should be noted that 3.6 can be
easily implemented within a software component having low computational
cost.

Sampling the Grid Regions

Now it is important to focus the attention on how the set of samples
S(Rj

P(A),k) is extracted from the grid region Rj
P(A),k at the iteration j of

computeSPPDataCube, being Rj
P(A),k selected by means of the greedy crite-

rion described above. Recall that sampling the grid region is the baseline
operation for computing the final synopsis data cube A′. In particular, as re-
gards the sampling strategy the classical Uniform sampling can be adopted,
i.e. based on a conventional Uniform generating distribution.

Briefly, this sampling strategy works as follows. Given a one-dimensional
data domain D whose definition interval is: [Imin, Imax], with Imax > Imin,
the i-th sample is extracted according to a two-step task: (i) random sample
an indexer i in [Imin, Imax] by means of a Uniform distribution defined on

48 3 Privacy and OLAP

the range [Imin, Imax] (i.e., i = Unif(Imin, Imax)); (ii) return the sample
D[i]. Given an n-dimensional data domain D, the i-th sample is extracted via
iterating the above-illustrated task for each of the n dimensions of D. Also the
sampling without duplicates has been used, i.e. at each random extraction is
ensured that the sampled indexer has not been picked before.

Given the grid region Rj
P(A),k at the iteration j of computeSPPDataCube,

firstly it is needed to consider the corresponding range-SUM query, denoted
by Qj

P(A),k , whose multidimensional range is equal to the range of Rj
P(A),k.

Then, on the basis of a metrics-driven approach, given an integer parameter
δ, such that δ > 0, it is possible to iteratively sample Rj

P(A),k by extracting

δ-sized sub-sets of samples from Rj
P(A),k until one of the following two con-

ditions becomes true: (i) the privacy constraint on Rj
P(A),k is satisfied (i.e.,

EI(Qj
P(A),k) ≥ ΦI), or (ii) B is consumed (i.e., B = 0). It is a matter of fact

to note that δ represents the size of a sort of buffer used during sampling.
This solution avoids excessive computational overheads that instead would be
caused if sampling is performed on massive-in-size data cube without buffer-
ing. The nature of sampling used in this framework carefully takes into ac-
count the nature of OLAP queries considered (i.e., range-SUM queries), and
the requirements of the privacy constraint. Let Vj

P(A),k be the average value

of Rj
P(A),k , and U j

P(A),k the sub-set of data cells in Rj
P(A),k whose values are

greater than Vj
P(A),k i.e.

Uj
P(A),k = {C ∈ Rj

P(A),k|val(C) > Vj
P(A),k}

Then it is possible to apply the Uniform sampling on Uj
P(A),k rather than

Rj
P(A),k . It is easy to understand that this particular sampling strategy natu-

rally allows to obtain an approximate answer to Rj
Q(A),k having a good degree

of approximation, and, at the same time, a high degree of privacy (in other
words, our sampling strategy is in favor of the satisfaction of the constraint

EI(Qj
P(A),k) ≥ ΦI

As above-highlighted, these properties are in turn inherited by input
queries on A.

3.4.3 Experimental Results

In order to test performances authors conducted an extensive series of exper-
iments on several classes of synthetic data cubes. Ranging the input parame-
ters (such as dimension number, size, sparseness coefficient etc) is the major
benefit coming from using synthetic data cubes instead of real-life ones. As
highlighted in previous sections, several perspectives of analysis have been

3.4 A Robust Sampling-Based Technique for Privacy Preservation in OLAP Environment 49

taken into account, and all oriented to test the quality, the effectiveness, and
the sensitivity of the proposed technique, respectively. Also, performances of
this technique have been compared with the one of the method Zero-Sum
[SLXN06], the state-of-the-art privacy preserving OLAP perturbation-based
technique.

As regards the data layer of our experimental framework, has been con-
sidered the case of two-dimensional data cubes, which well covers the goals
of a reliable experimental evaluation focused on evaluating privacy preserva-
tion capabilities. Indeed, the privacy preserving OLAP technique has been
tested on more probing multi-dimensional data cubes, and the observed re-
sults are very similar to those experienced on two-dimensional data cubes.
In particular, two kinds of two-dimensional (synthetic) data cubes have been
considered: CVA and SKEW. In the first kind of data cubes (i.e., CVA), data
cells are generated according to a Uniform distribution defined on a given
range [Umin, Umax], with Umin < Umax. In other words, for such data cubes
the Continuous Value Assumption (CVA) holds. CVA assumes that data cells
are uniformly distributed over the target domain.

In the second kind of data cubes (i.e., SKEW), data cells are generated
according to a Zipf distribution defined on a given parameter z, with z in
[0, 1]. In the experimental framework, the parameter D denotes the kind of
generating data distributions. D can thus assume the following values: Uni-
form, Zipf. For what regards data cube size, considering two-dimensional data
cubes, the cardinality of each dimension of the data cube can be denoted by
L0 and L1, respectively (i.e., |d0| = L0 and |d1| = L1). Accordingly, K0 and
K1 denote the range sizes of grid regions of the privacy grid, respectively.
Finally, to obtain close-to-real-life data cubes, the sparseness coefficient s is
introduced, which measures the percentage ratio of non-null data cells with
respect to the total number of data cells of a given data cube.

Other parameters of the experimental framework are the following: (i)
B, which models the space bound constraint B; (ii) P , which models the
privacy threshold ΦI . Also, for each perspective of analysis captured in the
experimental assessment, has been introduced an ad-hoc metrics.

In the quality analysis, we inherit the factors introduced by Sung et al. in
[SLXN06] (the method Zero-Sum), namely the privacy factor and the accuracy
factor. Let (i) A be the input data cube, (ii) A′ be the synopsis data cube, (iii)
Y {k} be data cube cell having k as multidimensional indexer, with Y = A,A′,
the privacy factor FP measures the average amount of distorted data cells
contained in blocks of A′.

A block in the method Zero-Sum is a sub-cube with respect to which
marginal sums of perturbed data cells along rows and columns are maintained
equal to zero. FP is defined as follows [SLXN06]:

FP (A,A′) =
1

∥A∥
·
∥A∥−1∑
k=0

|A′{k} − A{k}|
|A{k}|

(3.7)

50 3 Privacy and OLAP

In other words, FP provides with a measure on how much good the privacy
preservation of A′ is. Being Zero-Sum a method oriented to data cells, and
the described technique instead based on the privacy OLAP notion, when
measuring 3.7 on synopsis data cube, a slight change is needed. First, the
concept of block underlying 3.7 is meaningfully changed with the concept of
grid region (as, indeed, they are very similar natively). Secondly, if A′{k}
has not been sampled (i.e., A′{k} = NULL), then change A′{k} with the
corresponding singleton aggregation computed with respect to the grid region
that contains A′{k}.

The accuracy factor FA is instead defined in dependence of a given query
Q on the synopsis data cube A′, as follows:

FA(Q) = 2−
|A(Q)−Ã(Q)|

|A(Q)| (3.8)

such that A(Q) is the exact answer to Q and Ã(Q) is the approximate
answer to Q (note that 3.8 is very similar to the classical definition). In other
words, FA provides with a measure on how much good the degree of approx-
imation ensured by A′ for a given query Q is. Since the interest is related to
global testing of the accuracy of synopsis data cubes, 3.8 can be extended to
an input query-workload QWL, as follows:

FA(QWL) =
1

|QWL|

|QWL|∑
k=0

FA(Q∥ (3.9)

In the quality analysis, QWL is composed by the collection of range-SUM
queries corresponding to blocks for the case of the method Zero-Sum, and to
grid regions for the case of the technique above.

3.2 shows the experimental results of the quality analysis for what regards
the privacy factor (3.2 (a) on a CVA data cube and 3.2 (b) on a SKEW data
cube) and the accuracy factor (3.2 (c) on a CVA data cube and 3.2 (d) on a
SKEW data cube) with respect to the sparseness coefficient s of synthetic data
cubes, respectively. The proposed technique is here labeled as SPPOLAP.

In the effectiveness analysis, given a query-workload QWL, experiments

show the average relative user-perceived inference error E
U

I (QWL) due to

evaluating queries in QWL against the synopsis data cube A′. E
U

I (QWL) is
defined as follows:

E
U

I (QWL) =
1

|QWL|

|QWL|∑
k=0

EU
I (Qk) (3.10)

such that EU
I (Qk) is the relative user-perceived inference error due to

evaluating the query Qk in QWL against the synopsis data cube A′. In this
experimental framework, queries in QWL are synthetically generated as those
queries that completely “span” the target synthetic data cube, and having
selectivity S equal to a fixed percentage value of the volume of the data cube.

3.4 A Robust Sampling-Based Technique for Privacy Preservation in OLAP Environment 51

Fig. 3.2. Experimental results for the privacy factor ((a) on a CVA data cube, (b)
on a SKEW data cube) and the accuracy factor ((c) on a CVA data cube, (d) on a
SKEW data cube) w.r.t the sparseness coefficient of synthetic data cubes

3.3 shows the experimental results of the effectiveness analysis on a CVA data
cube (3.3 (a)) and a SKEW data cube (3.3 (b)) with respect to the query
selectivity S, respectively.

Finally, 3.4 shows the same set of previous experiments (i.e., quality anal-
ysis and effectiveness analysis) when ranging the space bound constraint B.
This allows to perform the sensitivity analysis of the discussed technique,
i.e. studying its dependency on a so-critical parameter like the space bound
available to house the synopsis data cube.

From the analysis of the experimental results of the privacy preserving
OLAP technique in comparison with the method Zero-Sum, it clearly follows
that, for what regards the accuracy of synopsis data cubes, the performance
of this technique is comparable with the one of Zero-Sum. Contrary to this,
for what regards the privacy of synopsis data cubes, the performance of the
SPPOLAP is significantly better than the one of Zero-Sum. This confirms
to the relevance of our research contribution. Besides this, this technique in-
troduces computational overheads that are clearly lower than those due to
the method Zero-Sum, as the latter method is data-cell-oriented and neglects
to consider any privacy OLAP notion (like the one introduced in previous
sections). Finally, although based on the privacy OLAP notion, this com-

52 3 Privacy and OLAP

Fig. 3.3. Experimental results of the effectiveness analysis on a CVA data cube (a)
and on a SKEW data cube (b) with respect to the selectivity of queries

prehensive experimental evaluation states that this technique is also lowly
dependent on the space bound constraint, which is a critical parameter of any
data-intensive processing technique in OLAP.

3.4 A Robust Sampling-Based Technique for Privacy Preservation in OLAP Environment 53

Fig. 3.4. Experimental results of the sensitivity analysis on a CVA data cube ((a),
(c), (e)) and on a SKEW data cube ((b), (d), (f)) w.r.t. the space bound

4

A Data Stream Overview

Last years have seen traditional data bases used in applications that require
persistent data storage and complex querying processes. However, the past
few years have seen rising applications that were managing information in
the form of sequence (stream) of data values, as it happens in environment
like sensor data, Internet traffic, transaction logs etc. Data streams became
very pervasive on the internet therefore some application could be handled
by classical DBMS, by first storing information in a DB, and processing it as
another application. But today they are too bursty and massive for a store-
now and process-later approach.

In this scenarioData Stream Management Systems (DSMS) became always
more popular as they are designed to provide efficient, robust support for
online applications and continuous queries.

4.1 Data Streams: Definition and Characteristics

Trying to give an informal definition, it’s enough to cite what authors say in
[GÖ03a]:

A data stream is a real-time, continuous, ordered (implicitly by arrival
time or explicitly by timestamp) sequence of items. It is impossible to
control the order in which items arrive, nor is feasible to locally store
a stream in its entirety.

Some of the main characteristics of data streams depend on arrival rates
of each data item, the number of attributes, the range of values, the data
distribution etc. Moreover sources may introduce typical characteristics into
the data stream objects.

Data items can be considered arriving continuously and sequentially, as
a matter of fact they are ordered either explicitly by a timestamp or by the
values of one or more elements; usually they are processed in the order they
arrive. Once one element has been processed it is discarded or archived - it

56 4 A Data Stream Overview

cannot be retrieved easily unless it is explicitly stored in memory, which is
usually small relative to the size of the data streams.

After sources generate data streams, they are processed by a Data Stream
Management System (DSMS).

The arrival rate among various streams can be very different and irregular
according to the application environment.

Data attributes can be of different types like well-structured (i.e. temper-
ature readings), semi-structured (i.e. XML documents) or unstructured (i.e.
emails).

Because of the stream nature, network and transmission problems may
cause corruption to data item and loss of information.

4.1.1 DBMS and DSMS: similarities and differences

Data Stream Management Systems are designed to process data streams con-
tinuously, since a store-now-and-process-later approach will not work due to
response requirements (real time or quasi real time) and streams are too mas-
sive and also bursty. There are many applications similar to those of DBMS,
therefore a DSMS is supposed to consider some for of SQL. On the other hand,
computing environments of DBMS is quite different from that of DSMS (e.g.
persistent queries on transient data vs transient queries on persistent data).

DSMSs have to follow some specific requirements:

• all stream based applications have to be able to process continuously
newest arrived data. For instance a query is long running and needs to
be evaluated repeatedly against new data until the query is terminated;

• exact results are not always needed, therefore approximation is tolerated
as long as some critical aspects are satisfied;

• some applications have specific QoS requirements like response time, pre-
cision, allowed memory usage etc. As these requirements are not indepen-
dent of each other exists such a kind of trade-off among all parameters
that need to be balanced by the DSMS based on the application needs;

• resource optimization is a critical aspect, so that it is very important
to incorporate mechanisms for capacity planning and optimal resources
usages;

• Complex Event Processing (CEP), rule processing and notifications are at
the same time very important requirements, in particular for applications
that detect dangerous events or conditions and provide actions to catch
and manage them (i.e. call emergency services in case of fire etc.).

DBMS can not satisfy those requirements simply loading data streams
and processing queries. It’s suitable for providing persistent data management
but it can not easily manage transient data. A DBMS is always working on
a set/bag of tuples unlike DSMS manages infinite sequences of tuples. The
update process is also very different: DBMSs provide updates referring to

4.2 Issues on Query Execution 57

all tuples but in DSMS only append operation are feasible. In table 4.1 are
pointed out main differences between DBMS and DSMS.

DBMS DSMS

Model: persistent data Model: transient data
Table: set/bag of tuples infinite sequence of tuples
Updates: all Updates: append only
Query: transient Query persistent
Query Answer: exact Query Answer: often approximate
Query Evaluation: multi-pass Query Evaluation: one-pass
Operator: blocking and unblocking Operator: unblocking only
Query Plan: fixed Query Plan: adaptive

Table 4.1. Main differences between DBMS and DSMS

Moreover we will see operations over DSMS are well-known, in the sense
that they are the operations of relational algebra but the evaluation of these
operations is entirely different than in traditional database systems. The main
reason derive from the fact that moving from disk-based data to network-
bound data, two of the fundamental database assumptions are dropped: firstly,
the data is no longer stored on a local disk; as if this were not enough, a stream
may in fact be infinite in length, as we have already said. This means that the
query processing paradigm employed by database systems needs to be revis-
ited and, in consequence, largely modified to address the new assumptions.

4.2 Issues on Query Execution

The main approaches to query execution and optimization for queries over
streaming information sources can be classified into two broad categories the
static approach and the adaptive approach. The first one is applied when the
system is relatively static, i.e., the optimize-time environment is not signif-
icantly different than the run-time environment. The latter is also expected
to remain stable throughout query execution. For instance, a query over a
continuous feed of data arriving at a constant rate is a good candidate for
static optimization and execution.

The second approach is considered when the environment is completely
dynamic in the sense that the system cannot make any assumptions on the
nature of the inputs, the rates at which they arrive, the selectivity factors of
the predicates and so on. The only thing the system can do is adapt to the
changing environment.

To give a general idea on how execution is performed, we will concentrate
on a powerful subset of relational algebra: conjunctive queries, i.e., queries
containing projections and conjunctions of selections and joins. We assume

58 4 A Data Stream Overview

that the system employs push-based execution model1, i.e., the tuples of the
incoming streams, as well as the operator output tuples, are immediately
pushed to subsequent operators for further processing. A very important as-
pect is also related to the semantics of queries over infinite sources. It is
obvious that they have to be modified for certain operators. For instance, a
join over infinite sources means that infinite memory is needed to buffer the
inputs. We need to a mechanism to extract finite subsets of the inputs. It will
later be seen (4.4) this mechanism is based on sliding windows.

4.3 Continuous Queries

Queries over continuous data streams have much in common with queries in a
traditional database management system. However, there are two important
distinctions peculiar to the data stream model. The first distinction is between
one-time queries and continuous queries [TGNO92]. One-time queries (a class
that includes traditional DBMS queries) are queries that are evaluated once
over a point-intime snapshot of the data set, with the answer returned to the
user. Continuous queries, on the other hand, are evaluated continuously as
data streams continue to arrive. Continuous queries are the more interesting
class of data stream queries, and it is to them that we will devotemost of our
attention. The answer to a continuous query is produced over time, always re-
flecting the stream data seen so far. Continuous query answers may be stored
and updated as new data arrives, or theymay be produced as data streams
themselves. Sometimes one or the other mode is preferred. For example, ag-
gregation queriesmay involve frequent changes to answer tuples, dictating the
stored approach,while join queries are monotonic andmay produce rapid, un-
bounded answers, dictating the stream approach.

The second distinction is between predefined queries and ad-hoc queries.
A predefined query is one that is supplied to the data stream management
system before any relevant data has arrived. Predefined queries are generally
continuous queries, although scheduled one-time queries can also be prede-
fined. Ad hoc queries, on the other hand, are issued online after the data
streams have already begun. Ad hoc queries can be either one-time queries
or continuous queries. Ad hoc queries complicate the design of a data stream
management system, both because they are not known in advance for the pur-
poses of query optimization, identification of common subexpressions across
queries, etc., and more importantly because the correct answer to an ad hoc
query may require referencing data elements that have already arrived on the
data streams (and potentially have already been discarded).

In [BW01] and [BBD+02] authors demonstrate with simple examples the
need of continuous queries and why conventional DBMS technologies are in-
adequate. They consider also a very simple scenario, based on network traffic

1 in 4.6 we will better point out the characteristics of this model

4.3 Continuous Queries 59

management system for large network, to illustrate the differences between
querying data streams and traditional stored data sets. Such systems monitor
a variety of continuous data streams that may be characterized as unpre-
dictable and arriving at a high rate, including both packet traces and net-
work performance measurements. Typically, current traffic-management tools
either rely on a special-purpose system that performs online processing of
simple hand-coded continuous queries, or they just log the traffic data and
perform periodic offline query processing. Conventional DBMSs are deemed
inadequate to provide the kind of online continuous query processing that
would be most beneficial in this domain. A data stream system that could
provide effective online processing of continuous queries over data streams
would allow network operators to install, modify, or remove appropriate mon-
itoring queries to support efficient management of the network resources.

Given a continuous stream of tuples and a single query Q we are interested
in answering over the stream. Q is a continuous query that operates continu-
ously as new tuples appear in the stream and suppose we are interested in the
exact answer to Q (as opposed to an approximation). Let us further suppose
that the data stream is append only2 therefore we can think of the stream as
an unbounded append-only database D. Even in this simplest of cases, there
are different possible ways to handle Q, with different ramifications:

1. suppose we want to always store and make available the current answer
A to Q. Since the database D may be of unbounded size, the size of A
also may be unbounded (e.g., if Q is a selection query).

2. suppose instead we choose not to store answer A, but rather to make new
tuples in A available when they occur, e.g., as another continuous data
stream. Although we no longer need unbounded storage for A, we still may
need unbounded storage for keeping track of tuples in the data stream in
order to determine new tuples in A (e.g., if Q is a self-join).

3. even if the stream is append-only, there may be updates or deletions to
tuples in answer A (e.g., if Q is a group-by query with aggregation). Now,
in case above we may need to somehow update and delete tuples in our
output data stream, in addition to generating new ones.

4. In the most general scenario, the input data stream also may contain
updates or deletions. In this case, typically more of the stream needs to
be stored in order to continuously determine the exact answer to Q. One
way to address these issues is to restrict the expressiveness (see 4.3.1) of Q
and/or impose constraints on characteristics of the data stream so that we
can guarantee that the size of Qs answer A is bounded, or that the amount
of extra storage needed to continuously compute A is bounded. Another
possibility is to relax the requirement that we always provide an exact
answer to Q, which relates to the area of approximate query answering
that will be further investigated.

2 it has no updates or deletions

60 4 A Data Stream Overview

To guarantee a syntax semantic uniformity between DSMS and DBMS,
researches use simple extensions of the standard SQL (Structured Query Lan-
guage). In general queries for DSMS can be tested on DBMS, and it could be
a practical solution if arrival rates are modest. It’s quite clear that the vice
versa might not work.

In next sections we will discuss more in detail how to manage operators in
data stream query processing and how to guarantee a certain expressiveness
level during query definition.

4.3.1 CQ and Blocking Operators

Continuous queries consist of classical relational operators like select, join
and some other aggregation operators. Although those similarities, it im-
portant to point out operators in DSMS do not assume the stream to be
finite. Therefore many complications crop up due to unbounded nature of the
input stream, in fact some of these operations and aggregations like join or
sort can not be completed if the entire input data set has not been processed.
Those operators block the processing phase producing no output until the end
of the stream. They are called blocking operators. On the other hand there are
operators like projection and selection, that work on a single data item at a
time and do not block computation, those are named non-blocking operators.
Traditional SQL aggregates are blocking. In DBMS several query operators
are implemented in blocking ways, but they express functions that are not
intrinsically blocking. DBMS use blocking implementations for many opera-
tors and they are not suitable for DSMS, however if it’s possible to implement
the same operator in non-blocking ways, then it can be used in DSMS. For
instance GROUP BY, JOIN can be implemented in blocking (by sorting) and
non-blocking (e.g. by hash tables), other operators are intrinsically blocking,
therefore it’s needed to specify which one is can be represented in a non-
blocking manner. This complication produce a significant loss of expressive
power. However by [LWZ04] we can point out a theorem:

Theorem 4.1. Queries can be expressed via nonblocking computations iff they
are monotonic w.r.t. the presequence ordering.

As a sketch of the proof we can observe for additional input the output is
larger than the previous one, so we can just add to output!

This theorem generalizes from presequences to sets, i.e. presequences where
duplicates are not allowed and order is immaterial.

Traditional aggregate operators (MAX, AVG, etc.) always return a se-
quence of length one and they are all non-monotonic, and therefore blocking.
Continuous COUNT and SUM are monotonic and non-blocking and thus suitable
for continuous queries.

If we then consider a query language L, we can assert that it can express a
given set of functions on its input (DB, sequences, data streams). Thus non-
monotonic functions are intrinsically nonblocking and they cannot be used

4.3 Continuous Queries 61

on data streams. For continuous queries on data streams, we should disallow
blocking (i.e., nonmonotonic) operators and constructs and only allow non-
blocking (i.e., monotonic) operators: NB-operators for short (including the
query constructs used to express them).

It is useful at this point to introduce the Non-Blocking-Completeness prop-
erty, which gives more generalization to the use of monotonic operators into
queries in DSMS:

Definition 4.2 (NB-completeness). When using only NB-operators, L can
express all the monotonic queries expressible in L, then L is said to be NB-
complete.

As we know Relational Algebra/Calculus, non-recursive Datalog achieve
a level of expressive power known as relational completeness. These are NB-
complete iff they can express all their monotonic functions only using their
monotonic operators/constructs. Let us now consider DB relations, the mono-
tonicity property is with respect to subset containment, i.e. selection, projec-
tion, union, and joins are monotonic but set difference R-S is monotonic on
R and antimonotonic on S (it will block on S till it has seen the whole S but
not on R).

Using new constructs the expressive power for NB-threshold is higher.
Moreover User defined Aggregates functions remain a viable extensibility
mechanism for continuous queries, but only non blocking aggregates can be
used and with UDAs we get Turing Completeness3. Then NB-Completeness
requires expressing all computable monotonic functions, using only non-
blocking constructs.

Because of its nonmonotonic operators SQL-2 is not suitable for executing
queries over data streams, in fact SQL’s lack of expressive power is a major
problem for database-centric applications. These are significantly more serious
for data streams since only monotonic queries can be used and actually not
even all monotonic ones since SQL is not nb-complete, neither embedding
SQL code into programming languages, as often happens with Java or C++.
In this case is quite useful to access the tuples returned by SQL using a
’Get Next of Cursor ’ statement. But the problem is that cursors are a pull
based mechanism and cannot be used on data streams: the DSMS cannot hold
tuples until the programming language request them. On the other hand the
DSMS can only deliver its output to the programming language as a stream,
that would be fine some simple situations, but not if more complex scenarios,
where the core of the work has to be done by the programming language.
As a conclusion it is easy to understand that to support applications of any
complexity we must have a DSMS with real expressive power as opposed to
DBMS that are useful even with a weak query language.

3 A computational system that can compute every Turing-computable function is
called Turing-complete (or Turing-powerful). Alternatively, such a system is one
that can simulate a universal Turing machine

62 4 A Data Stream Overview

As a matter of fact embedding continuous query language in programming
languages does not work well, but embedding programming languages into
continuous query languages works. In particular UDA can be defined using
a programming language or SQL itself and moreover with natively defined
UDAs, SQL becomes Turing complete and NB-complete because it can express
all monotonic functions.

4.3.2 Order

Another complication arises: as it has already been seen in most applications,
data streams are viewed as ordered either explicitly by their timestamps or
implicitly by the arrival order. Thus queries and Relational Algebra (RA)
operators must preserve this order. E.g. union of two or more streams becomes
a merge that preserves the order of the incoming streams and the order of
their timestamps (if they are present). But order also finds many uses, in fact
windows and window operators assume an order. Moreover powerful SQL
extensions for pattern search have been proposed for ordered sequences of
tuples. It’s clear that there’s a similarity between order-based construct for
DSMS and DBMS.

4.4 Approximate Query Answering

As described in the previous section, when we are limited to a bounded amount
of memory, e.g. find the average volume of trades during the last hour, it is
not always possible to produce exact answers for data stream queries; how-
ever, high-quality approximate answers are often acceptable in lieu of exact
answers. Approximation algorithms for problems defined over data streams
has been a fruitful research area in the algorithms community in recent years.
These activities have led to some general techniques for data reduction and
synopsis construction, including: sketches, random sampling, histograms, and
wavelets. Based on these summarization techniques, there have been many
on approximate query answering. However, research problems abound in the
area of approximate query answering, with or without streams. Even the ba-
sic notion of approximations remains to be investigated in detail for queries
involving more than simple aggregation.

4.4.1 Sliding Window

One technique for producing an approximate answer to a data stream query is
to evaluate the query not over the entire past history of the data streams, but
rather only over sliding windows of recent data from the streams. For example,
only data from the last week could be considered in producing query answers,
with data older than one week being discarded.

4.4 Approximate Query Answering 63

When a sliding window is set over a data stream, it is a natural method for
approximation that has several attractive properties. One of the best advan-
tages is that the semantics of the approximation are clear, therefore users of
the system can be confident that they understand what is given up in produc-
ing the approximate answer. At the same time there is no danger that different
choices will cause a bad approximation. One of the most important property
is that the sliding window emphasizes recent data, which in the majority of
real-world applications is more important and relevant than old data. In many
applications where monitoring environment and applications is a critical task,
it is much more useful to spend resources in analyzing recent data despite
older one. For instance, one is trying in real-time to make sense of network
traffic patterns, or phone call or transaction records, or scientific sensor data,
then in general insights based on the recent past will be more informative and
useful than insights based on stale data. In fact, for many such applications,
sliding windows are considered not only as an approximation technique but
rather as part of the desired query semantics, expressed as part of the users
query. There are a variety of research issues in the use of sliding windows over
data streams. There is the fundamental issue of how we define timestamps
over the streams to facilitate the use of windows.

Data streams are (basically ordered according their timestamps. The
meaning of relational algebra operators such as unions and joins is based on
timestamps. DSMS are considering timestamps assignment and meaning in
different ways. We can distinguish external timestamps, internal timestamps,
missing timestamps4.

Extending SQL or relational algebra to incorporate explicit window speci-
fications is nontrivial. The implementation of sliding window queries and their
impact on query optimization is a largely untouched area. In the case where
the sliding window is large enough so that the entire contents of the window
cannot be buffered in memory, there are also theoretical challenges in design-
ing algorithms that can give approximate answers using only the available
memory.

Aggregates are very frequently applied to windows and also joins of data
rely on windows. Windows are historical snapshot of a finite portion of a
stream at any time point, and two basic types of windows are used widely:
time-based (or a physical window) and tuple-based (or a logical window). For
instance a time-based window is used when in case of high arrival rate it is
only possible to keep tuples arrived in the last hour or something like [Range
N time units, advance M time units]; and a tuple-based window can be
expressed as [Row N tuples, advance M tuples]5. There is a clear way
of moving from time-based to tuple-based windows: Little’s Theorem[BG92]
states that given a process with an average arrival rate of A and a time period

4 missing timestamps are also called latent
5 In this notation we consider: Range specifies the size of the first window. How the
window advances to form a new window is specified by the advance component.

64 4 A Data Stream Overview

T, then the expected number of arrivals is equal to A · T . From the previous
equation, a time-based window of length T becomes a tuple-based window of
size N.

Generally speaking, a window can be specified for each data stream used
by a query and is applied to all the operators of that query. Of course the
window characteristics can be different for the same stream in different queries.
A window is usually specified as a sliding (or rolling) one either as overlapping
or as disjoint (or tumbling). An overlapping window shares a portion of the
current window with the next one whereas a disjoint one does not. In many
SQL extensions proposed in literature, the FROM clause often includes the
window specification. A sliding overlapping window is shown in Fig. 4.1 along
with start and end boundaries.

Fig. 4.1. A Sliding Window

4.4.2 Other Approximation Techniques

Sliding windows are not, as we already said, the only way to perform approx-
imation over incoming data streams. They are surely one the most important
and widely used. Another class of techniques for producing approximate an-
swers is to give up on processing every data element as it arrives, considering
sampling or batch processing techniques to speed up query execution. In any
case the primary performance goal is to ensure that space required in pro-
cessing phase is small and if possible independent of the number of streams
N (which is unbounded).

Batch and Sample Processing

When a DSMS needs a very fast update operation but the way to compute
the answer is quite slow, the natural solution is to process the data in batches.
Rather than producing a continually up-to-date answer, as long as the data
elements arrive, they are buffered and the answer to the query is computed
according to a specified time period. Because of answer is not in run-time

4.5 Continuous Query Languages for DSMS 65

then this approach is considered to be approximate, i.e., it represents the
exact answer at a point in the recent past rather than the exact answer at the
present moment. This approach of approximation through batch processing is
very attractive because it does not cause any uncertainty about the accuracy
of the answer, sacrificing timeliness instead. On the other hand, if the time to
compute the answer is fast, it is unuseful to wait all data before computing
the answer, because data arrives faster than it can be processed. Therefore,
some tuples must be skipped altogether, so that the query is evaluated over a
sample of the data stream rather than over the entire data stream. We obtain
an approximate answer, but in some cases one can give confidence bounds on
the degree of error introduced by the sampling process. However sampling-
based approaches cannot give good approximation guarantees and designing
sampling-based algorithms that can produce good approximate answers is an
important and active area of research.

Synopsis Data Structures

The case when both the update and the computation operations are fast is
most desirable. For classes of data stream queries where no exact data struc-
ture with the desired properties exists, one can often design an approximate
data structure that maintains a small synopsis or sketch of the data rather
than an exact representation, and therefore is able to keep computation per
data element to a minimum. Performing data reduction through synopsis data
structures as an alternative to batch processing or sampling is a fruitful re-
search area with particular relevance to the data stream computation model.

4.5 Continuous Query Languages for DSMS

Most of DSMS projects use SQL as a language to write and define continuous
queries. There are many good reasons that carry out this choice. First of all
many applications span data streams and DB tables, therefore a unique lan-
guage will facilitate integration and common operations on both management
systems; secondly a continuous query language based on SQL will be easier
to learn and use, therefore it is not needed to introduce new formalism to de-
scribe new syntax and semantic. On the other hand DSMS were designed for
persistent data and transient queries not for persistent queries on transient
data therefore adaptation of SQL and its enabling technology presents many
research challenges. As we already said because of all limitations in defining
queries due to blocking operators, the lack of expressive power can be reduced
considering User-Defined Aggregates (UDAs).

4.5.1 The Power of UDAs

One of the best and useful feaures related to UDAs, is that they allow to con-
cisely express complex applications, with good performance and one of the first

66 4 A Data Stream Overview

system allowing this feature is ATLAS [WZ03], a single-user DBMS developed
at UCLA. It provides support for SQL with UDAs on top of Berkeley-DB
record manager and allows data mining analysis by defining classifiers in very
small amounts of code. But most of SQL-2 aggregates are blocking therefore
windows (logical, physical, slides, tumbles,) are the most suitable and flexible
synopses that solve the blocking problem for aggregates. ESL [LTWZ05] is
the first to support the complete integration of UDAs. UDAs are the key to
power and extensibility, and thus it can support data mining, XML and also
sequences not supported by other DSMS. In this way it is possible to consider
just one framework for aggregates and windows, whether they are built-ins or
user-defined, and independent on the language used to define them.

4.6 Query Plan: DBMS vs DSMS

The key difference between DBMS and DSMS is the way the system processes
the data. DBMSs follow a pull based model as opposed to push based model of
DSMS. In fact in traditional DBMS the query plan is a pipelined or iterator-
based pull paradigm, and it is processed by starting the computation at the
root operator by obtaining tuples from each of its child operators. Each of
them, recursively, calls on its child operators to get required tuples in order
to output computed results to its parent. On the other hand a DSMS can not
satisfy the pull paradigm as the operator would be as the operators would
be blocked in the case there was no input from one of its child operator
temporarily. Also, when there are no inputs at one operator, the processing of
that operator needs to be suspended and switched to another operator that has
inputs. Hence, to accommodate the input nature of data stream processing, a
push paradigm is used and the tuples are pushed from leaf operators gradually
to the parent operators. In addition, each operator can go with a main memory
buffer (or a queue), which stores unprocessed or partially processed data items.
The result of an operator is directly sent to the input queues of one or more
operators.

Due to the processing differences outlined, a query plan processed by a
DSMS consists of a set of non-blocking operators and the queues that connect
them. In Fig. 4.2 is shown the query plan of a DBMS with that of a DSMS.
Continuous query processing over data streams can be conceptualized as a
data flow diagram. In Fig. 4.2-(a) a node (e.g. BOP1) represents the so called
non-blocking operator. While directed edge (along with the buffer) between
two nodes represents the input and output relationship between those two op-
erators. Each leaf node (e.g. BOP1) has one or more buffers (depending on the
operator type) into which the incoming streams are fed. The root node of the
plan (e.g., BOP2) produces the results of a CQ and are consumed by an appli-
cation. With each node (or operator) there is a synopsis which corresponds to
the resources (primarily main memory) that are needed to perform window-
based computations correctly. For some operators such as select, there is no

4.7 DSMS Optimization: QoS and Scheduling 67

need for a synopsis as no state information need to be maintained; whereas
for a symmetric hash join, a synopsis is needed. For the symmetric hash join,
the synopsis consists of the hash tables for the two participating relations for
the duration of the window. On the right side of the picture, Figure 4.2-(b)
represents the widely-used, iterator-based (or pull-based) left-deep tree for
processing relational queries. Typically, the intermediate results are pipelined
(and not materialized) unless warranted for operations such as sort-merge join
and aggregation.

Fig. 4.2. Query Processing in a DSMS vs DBMS

4.7 DSMS Optimization: QoS and Scheduling

At this point it is easy to understand that the DSMS optimization problem
is quite different. In DSMS data is stored in memory and execution time is
mostly determined by the query graphs and the cost of tuples being processed.
But there are many queries competing for resources and thus schedules must
be optimized to minimize latency and memory (it is alike tasks scheduling
in operating systems). In DBMS it is well known how to obtain execution
time savings by selecting operator implementation indexes and join reorder-
ing: all of them are measured by page swap counts. Then the scheduling of
various query tasks might be left up to the operating system. On the other
hand in DSMS data lies in memory and execution time is mostly determined
by the query graphs and the costs of the tuples being processed. Because
many queries are competing for resources, schedules must be optimized to
minimizelatency and memory (like in operating systems).

68 4 A Data Stream Overview

4.7.1 Approaches for Scheduling Continuous Queries in DSMS

As we have already seen a DSMS is supposed to compute functions over data
streams in real-time and in a possibly smooth and continuous manner. Let’s
consider a (multiple) continuous query processing system that processes data
items arriving on input streams. The problem of resource allocation, similar
to the scheduling of individual operators of a CQ, is critical. In few words, our
goal is to find a mechanism such that it establishes which query or operator of
a query should be scheduled and when, and it has to compute over the newly
arrived data items or partially processed data items.

In a multiple query processing system, different queries can have different
QoS requirements. Some of them may favor a real-time response and some may
prefer accurate results. Others may be interested in a combination of response
time and accuracy or may not even care about QoS metrics at all. From a QoS
perspective, a DSMS can allocate resources by choosing scheduling strategies
based on individual querys QoS requirements. However, the problem is more
complicated because:

• A DSMS may have a limited amount of resources (i.e., CPU cycles and
main memory).

• Different objects (queries or operators) have different processing require-
ments and different capacities in releasing the amount of memory after a
tuple is processed by an operator.

• The input pattern of a data stream can be irregular and bursty.

These considerations carry out the significant impact of scheduling strategies
on various performance aspects of a DSMS and hence a DSMS can manage
different strategies to maximize the available physical resources to handle the
bursty nature of data streams.

Let’s consider for instance two operators A and B in the system; operator
A needs 1 second to process 1 tuple with a size of 2 bytes and outputs 1 tuple
with a size of 1 byte (processing rate is 1 tuple/second, and memory release
rate is 1 byte/second). However, operator B needs 2 seconds to process 1 tuple
with a size of 2 bytes and outputs a tuple with a size of 1 byte (processing
rate is 0.5 tuple/second and memory release rate is 0.5 byte/second). If input
streams of both operator A and B have an input rate of 1 tuple per second for
5 consecutive seconds and then a pause, a scheduling strategy which schedules
A rst if there is any tuple waiting at A, then schedules B, requires a maxi-
mal memory of 10 bytes (or 5 tuples) that are waiting at B right after the
bursty input period. Another strategy which gives B a higher priority than
A requires a maximal memory of 14 bytes (5 tuples at A and 2 tuples at B)
right after the bursty input period. If the system only has 12 bytes memory
in total, the second scheduling strategy is denitely not the best one. Similarly,
a scheduling strategy also has a signicant impact on overall tuple latency and
throughput of a DSMS. For this problem, the goal is to develop low overhead
scheduling strategies for optimizing main memory usage, tuple latency, and
their combination.

4.9 Complex Event Processing (CEP) and DSMS 69

4.8 Quality of Service and Load Shedding

The mail goal of scheduling strategies is to allocate resources carefully in such
a way that QoS requirements are satisfied for different queries in a DSMS, as-
suming sufficient total amount of resources. However, a DSMS may be short
of resources for processing all registered queries and satisfy their QoS require-
ments during temporary overload periods due to bursty inputs. Therefore
when the input stream exceeds the system capacity it may be infeasible for a
scheduling strategy, no matter how good (or optimal) it is, to satisfy QoS re-
quirements of all registered queries in the system. A natural and even the more
drastic solution to this problem is to selectively discard some unprocessed or
partially processed tuples from the system. It is important to understand
that discarding tuples degrade the quality (in terms of accuracy) of query
results. However, recall from the characteristics of stream-based applications
that many of these applications can tolerate approximate results. The process
of gradually discarding some tuples from a DSMS with the goal of minimiz-
ing errors introduced towards the nal results is termed load shedding . The
load shedding process is necessary and important in a DSMS to deal with the
bursty nature of its input data streams.

Introducing load shedding in a data stream manager is a challenging prob-
lem. Issues that arise for the problem of load shedding are:

• where to discard tuples along the query plan,
• the choice of tuples to discard,
• how much to discard,
• when to discard,
• when to stop discarding

For instance queries can be cut all together, or if possible some tuples
might be dropped from certain streams in ways that only reduce the accuracy
of the queries, by random shedding or semantic shedding that drops the less
valuable first.

4.9 Complex Event Processing (CEP) and DSMS

A monitoring application needs to continuously process stream data in order
to detect interesting events. These interesting events are usually composed
to form higher-level events or situations (e.g., re as a composition of sudden
increase in temperature accompanied by smoke within a time interval in a
small geographic location) to trigger a sequence of predened actions once the
situation is detected.

A CEP component is not usually a part of the QoS-aware DSMS archi-
tecture and a DSMS is not likely to have this component as part of its func-
tionality. DSMSs have little or no support to express events as the outcome of

70 4 A Data Stream Overview

continuous queries and further compose them to form complex events. In con-
trast, event processing systems that use the Event-Condition-Action (ECA)
paradigm have been researched extensively from the situation monitoring
viewpoint to detect complex or composite events and to take appropriate
actions. Several event specication languages and processing models have been
developed, analyzed, and implemented. Researchers have addressed these two
topics independently at different periods of time. Many systems claim to be
both a stream as well as a complex event processing system further blurring
the differences between the two. CEP and DSMS seems to be competing for
the same applications and as a matter of fact they use similar acronyms. But
they have different technical roots:

• query languages of databases inspired DSMS
• message systems, CORBA

According to David Luckham, author of the book “The Power of Events”
([Luc08]) they belong to two different conceptual models:

• An event stream is a sequence of events linearly ordered by time such as
stock market feed.

• An event cloud is a Poset of Events, that is the result of many event
generating activities with different sources destinations in an IT system.
A cloud might contain many streams.

More in details, event stream processing is focused more on high speed
querying of data in streams of events. As a consequence, processing a stream
of events in their order of arrival means fast and less memory. Clouds do not
assume that events arrive in nice order and users are often interested in events
that have complex relationships. It’s easy to see that CEP applies to a richer
set of business problem, not only event data processing, but also business
process management (e.g extracting information from clouds of events created
in enterprise IT and business systems. CEP takes more memory and more
time.

4.10 DSMS Projects

In last years many research groups presented their works in designing DSMS.
Each product have different characteristics. Most of them lost the support
from founders and many other new systems are growing. In folloing paragraph
we present one of the most important DSMS which opened important research
topics and posed bases to most challenging data stream research problems.

STREAM

One of the first and most famous is STREAM (STanford StREam DatA
Manager) [ABB+04] from the the Stanford University which is no more offi-
cially supported. In the STREAM project builds a general-purpose prototype

4.10 DSMS Projects 71

that supports a large class of declarative continuous queries over continuous
streams and traditional stored data sets. The STREAM prototype targets
environments where streams may be rapid, stream characteristics and query
loads may vary over time, and system resources may be limited.

TelegraphCQ

The Telegraph project [CCC+03] at UC Berkeley began in early 2000 with
the goal of developing an Adaptive Dataflow Architecture for supporting a
wide variety of dataintensive, networked applications. The Telegraph concept
grew out of earlier projects on adaptive relational query processing aimed at
building systems that could adjust their processing on the fly, in response to
changes in user needs or to intermittent delays in accessing data across wide-
area networks. The basic technologies underlying Telegraph were developed
to provide adaptivity to individual dataflow graphs.

Aurora

Aurora[CcC+02] is a prototype system which is designed to better support
monitoring applications. this system assume data to come from a variety of
data sources such as computer programs that generate values at regular or
irregular intervals or hardware sensors. The basic job of Aurora is to pro-
cess incoming streams in the way defined by an application administrator.
Aurora is fundamentally a data-flow system and uses the popular boxes and
arrows paradigm found in most process flow and workflow systems. Hence,
tuples flow through a loop-free, directed graph of processing operations (i.e.,
boxes). Ultimately, output streams are presented to applications, which must
be programmed to deal with the asynchronous tuples in an output stream.
Aurora can also maintain historical storage, primarily in order to support
ad-hoc queries.

Gigascope

Gigascope [CJSS03] is a stream database for network applications includ-
ing trafc analysis, intrusion detection, router conguration analysis, network
research, network monitoring, and and performance monitoring and debug-
ging. Gigascope is undergoing installation at many sites within the AT&T
network, for detailed monitoring. The Gigascope query language, GSQL, is
a pure stream query language with SQL-like syntax (being mostly a restric-
tion of SQL). That is, all inputs to a GSQL are streams, and the output
is a data stream. The query model used by most of the recently proposed
stream database systems is that of a continuous query over a sliding window
of the data stream. While this model has some advantages (e.g., presentation
of results to the end user) and some areas of best application (e.g. sensor

72 4 A Data Stream Overview

networks), we felt that the continuous query model to be inappropriate for
network data analysis. One significant problem is that the continuous query
model makes query composibility difficult. The input to a query is one or more
data streams, but the output is a (continuously changing) table.

4.11 SensorGrid System

There are many other systems based on stream processing issues and many
of them are still in a work in progress state. Although cited systems repre-
sent the main works on DSMS, there are many of them working on some
different aspect and environment. One of them is the SensorGrid system
[CFM+04, CFMS04] which is based on a grid architecture which carries out
many challenging problems. The key idea is based on providing fast approx-
imate answers to aggregate queries on sensor data streams. It is based on
a hierarchical summarization of the data stream embedded into a exible in-
dexing structure, which permits to both access and update compressed data
efficiently. The compressed representation of data is updated continuously, as
new sensor readings arrive. When the available storage space is not enough to
store new data, some space is released by compressing the oldest stored data
progressively, so that recent information (which is usually the most relevant
to retrieve) is represented with more detail than old one.

In [CKR08] there is a comprehensive experimental evaluation of the Sen-
sorGrid query performance for two important classes of OLAP-like queries
over sensor readings, namely the window queries [CFM+04] and continuous
queries [BW01]. Window queries apply a SQL aggregation operator over a
fixed window over the materialized sensor readings (i.e., in an OLAP-like
manner). Continuous queries instead consider a moving window, and produce
as output a stream of answers. Both classes of queries are extremely useful to
extract summarized knowledge to be further exploited by OLAP-like analysis
tools over sensor network data. Also, the experimental assessment proposal is
conducted on several synthetic data sets, and takes into account several per-
spectives of performance analysis. The experimental results clearly confirm
the benefits deriving from embedding the data compression/approximation
paradigm into Grid-based sensor network data warehouses.

SensorGrid system consists of the following entities (see 4.3): (i) Sensor : is
the basic data source; (ii) Stream Source: is the Grid node collecting readings
produced by sensors; (iii) Source Domain: is a domain of Stream Sources; (iv)
Stream Server : is the Grid node handling the summarized information stored
in a certain Source Domain; (v) Server Domain: is a domain of Stream Servers
that establish a subscriber/executor snapshot protocol, called Grid Snapshot
Protocol (GSP). According to the architecture sketched above, SensorGrid is
based on the definition of several domains at different levels of abstraction,
and each of these domains is responsible for a particular task. The final goal
of such an approach is to obtain a multi-level Grid framework able to effi-

4.11 SensorGrid System 73

Fig. 4.3. Sensorgrid Overview

ciently manage and analyze readings produced by high dimensional and high
performance sensor networks.

In order to efficiently support approximate aggregate query answering on
sensor readings, we adopt a two-dimensional aggregation scheme for represent-
ing summarized readings, first proposed in [CFM+04]. Under this scheme,
the first dimension, called sensor dimension, represents the sensor domain,
and the other one, called temporal dimension, represents the time. Each cell
of the so-obtained two-dimensional array stores the sum of all the readings
produced by the corresponding range of sensors during the corresponding
time interval. Specifically, due to the aggregation function considered, it is
clear that this approach addresses the problem of efficiently evaluating range-
SUM aggregate queries [HAMS97], which apply the SQL aggregation opera-
tor SUM on a set of selected data. Supporting SUM-based aggregations al-
lows to also manage AVG and COUNT-based aggregations as well, which are
very useful to a large number of large-scale scientific applications. SensorGrid
further improves the semantics of the sensor dimension. In fact, while the
temporal dimension can be aggregated by means of several strategies (e.g.,
Minute → Hour → DayorWeek → Month → Y ear), as time is naturally
ordered, the sensor dimension is not naturally ordered and then an enumer-
ation (e.g., based on the absolute sensor identifier) must be introduced. This
is the main assumption of the proposal [CFM+04] and in SensorGrid the

74 4 A Data Stream Overview

evolution of the original aggregation scheme is achieved via superimposing an
Aggregation Hierarchy (AH) on the sensor domain. AH is finally implemented
as a general tree where leaf nodes represent sensors, and internal nodes repre-
sent aggregations of sensors, following a given semantics. AH allows us to ob-
tain aMulti-Level Aggregation Scheme (MAS) over the whole two-dimensional
sensor-time domain of aggregate readings (see 4.4, which is a significant evo-
lution of the previous (single-level) aggregation scheme. In particular, each
level of the AH involves in a specific aggregation partition of the summarized
readings, and the time range is kept unaltered. This amenity allows to take
advantages from an OLAP-like multi-resolution manner of representing and
querying the examined sensor readings.

Fig. 4.4. the Aggregation Hierarchy and the Multi-level Aggregation Scheme

Another important component of SensorGrid is represented by the Grid
Snapshot Protocol (GSP) (see 4.5). On the basis of this Grid-oriented data
exchange protocol, a Stream Server Si maintains a succinct version of sum-
marized readings stored in another Stream Server Sj , and exploits it at query
time. Specifically, in the GSP two roles are introduced, namely the Snap-
shot Executor and the Snapshot Subscriber . These roles are played by Stream
Servers that establish the so-called Snapshot Contract , on the basis of which
the executor is in charge of performing a set of Snapshot Queries required by
the subscriber. The contract is governed by some pre-fixed rules (e.g., execu-
tion frequency, null value management, transmission bulk etc) codified into
a Snapshot Policy shared between the contractors. Snapshot queries allow us
to obtain near the subscriber the succinct representation of the summarized
readings stored near the executor (see 4.5).

4.11 SensorGrid System 75

Fig. 4.5. the Grid Snapshot Protocol

GSP is meant to support both data and replica management facilities (e.g.,
load balancing, fault tolerance etc), but mostly a distributed query evalua-
tion paradigm based on the approximation concept. Under this vision, during
the evaluation of a query Q posed to a server Si and involving the domain
of summarized readings handled by another server Sj , Si can alternatively
re-direct Q towards the responsible server Sj , or answer Q by using its local
succinct representation of summarized readings stored in Sj , thus providing
a less-detailed answer, or decompose Q in a subset of queries q0, q1, . . . , qN−1

to be executed in another set of Grid nodes based on their own succinct rep-
resentations of summarized readings stored in Sj . The above-described query
scenario leads to the definition of the socalled Grid-aware Distributed Query
Engine (GaDQE). The main functionality carried out by GaDQE consists in
dynamically determining cost-based optimal distributed query execution plans
on top of (i) traditional parameters such arrival rate, transmission bandwidth,
Grid nodes computational power, load balancing issues etc, and (ii) the ap-
proximation paradigm, i.e. the amenity of querying a certain Grid node or
a set of Grid nodes instead of the original one on the basis of the required
approximation degree and summarized reading replicas.

This framework, oriented to streaming data, is general enough to include
sensor readings as a specialized instance of more general data streams. Briefly,
the proposal [CFM+04] is based on a quad-tree based hierarchical summa-
rization of data streams over fixed time windows, called Quad-Tree Windows
(QTW), implemented by means of conventional quad-trees and embedded
into a flexible B-tree indexing data structure. At the lowest level of aggre-
gation, a QTW represents summarized readings into two-dimensional sensor-
time arrays. The whole collection of QTW plus the B-tree index form the
so-called Multi-Resolution Data Stream Summary (MRDS). In SensorGrid,
Stream Servers store MRDS data structures as summarized representations

76 4 A Data Stream Overview

of readings produced by sensors belonging to their own Source Domains .
Also, Stream Servers store MRDS data structures as succinct representations
of readings produced by sensor belonging to other Source Domains. Each
(native) MRDS is progressively compressed meaning that it is updated con-
tinuously, as new sensor readings arrive, and, when the available storage space
is not enough to host new data into newest QTW, some space is released via
compressing the oldest QTW. By adopting this approach, the recent knowl-
edge on the MRDS is represented with more detail than the old one. Note
that the recent knowledge is usually more relevant to extract for the con-
text of sensor network applications. 4.6 shows a sketch of the MRDS data
structure.

Fig. 4.6. the Multi Resolution Data Stream Summary

Using such a representation, an estimate of the answer to a (general) range-
SUM query

Q = ⟨[Ss : Se], [ts : te]⟩

over summarized data streams, such that Ss and Se are the starting and
ending stream sources, respectively, and ts and te are the starting and end-
ing timestamps, respectively, can be obtained by summing two contributions.
The first one is given by the sum of those ranges completely contained by
the query range. The second one is given by the sum of those ranges that
are partially contained by the query range. Note that the first of these con-
tributions does not introduce any approximation, whereas the second one
is approximate, as the use of the time granularity ∆j makes impossible to
discriminate the distribution of data streams within the same interval ∆tj .
Specifically, the latter contribution can be evaluated by means of well-known
linear interpolation techniques, assuming that data distributions inside each
range are uniform (see 4.7) the depicted gray box represents the range-SUM
query Q = ⟨[S1 : S3], [5 : 15]⟩.

4.11 SensorGrid System 77

Fig. 4.7. Two-dimensional representation and querying of summarized readings

4.11.1 Experimentation

Experimental evaluation of the SensorGrid query performance for both win-
dow (range-SUM) queries and continuous (range-SUM) queries on synthetic
data sets is further presented. First, note that, since our emphasis is on testing
the accuracy of approximation due to the compression paradigm on materi-
alized sensor readings, in this experimentation authors introduce an error
metrics that considers the relative difference between the exact answer (i.e.,
the answer evaluated on the uncompressed sensor readings) and the approx-
imate answer (i.e., the answer evaluated on the compressed sensor readings).
Therefore, this imposes to run experiments on the compressed portions of
the MRDS, and neglect the uncompressed MRDS portions accordingly. As
regards the experimental environment, a Java-based framework has been im-
plemented where sensor sources are modeled by Java threads, and located on
different Grid nodes of the experimental architecture.

Continuous (Range-SUM) Queries

A continuous (range-SUM) query QC on summarized sensor readings is de-
fined as the tuple

QC = ̸ ̸ [Ss : Se], [ts : te]⟩,∆tstep, fQ⟩

such that (i) [Ss : Se] is a fixed sensor range, (ii) [ts : te] is a moving time
range, (iii) ∆tstep is the step by which the range [ts : te] moves forward, and
(v) fQ is the query frequency that establishes the time period by which QC is
evaluated as a window query on the actual window ⟨[Ss : Se], [ts+ tstep× k :

78 4 A Data Stream Overview

te + ∆tstep × k], at the iteration k. This produces in output a stream of
answers.

In order to carefully test the query performance of SensorGrid under the
stress of a ranging input, we considered two kinds of data sets. Data sets
considered are the following ones: synthetic and real-life data sets. Experi-
mental results are similar for both classes of data sets. For space reasons, let
us take in consideration results obtained from synthetic data sets. To gen-
erate synthetic data sets, customizable data distributions characterizing the
nature of (synthetic) sensor readings have been used. In particular, authors
introduce three distributions of sensor readings: Uniform, Gauss, Zipf. These
distributions are together able to capture the most popular cases of sensor
reading distributions that one can finds in real-life sensor networks. The ben-
efits deriving from using synthetic data sets mainly rely in the possibility of
completely controlling the nature of such data sets, thus better studying how
the query performance of the system varies with respect to the variation of
characteristics of the input data set.

Error Metrics

We introduce a different error metrics in dependence on the kind of queries
considered. For window queries, we consider synthetically-generated popula-
tions of range queries over the compressed portion of the MRDS. This portion,
which in our model is delimited by the value Tmax on the temporal dimension,
can be easily determined during the run of the experimental framework via
monitoring when the compression process is activated. Let ⟨[S0 : SN−1], [t0 :
Tmax]⟩ denote the compressed portion of the MRDS, and ∆S and ∆T two
input parameters that represent a range on the sensor dimension and a range
on the temporal dimension, respectively. The population of window queries
QPW as those queries contained by the range ⟨[S0 : SN−1], [t0 : Tmax]⟩, and
having (i) selectivity equal to ∆S ×∆T and (ii) left-up corners correspond-
ing with items of the range ⟨[S0 : SN − 1], [t0 : Tmax]⟩. To establish how
much window queries generate, and hence the cardinality of QPW , denoted
by |QPW |, we introduce the sampling factor s that determines a sample of
the maximal query population QPW,MAX (for which s = 100%). QPW,MAX is
that population that can be defined on the range ⟨[S0 : SN − 1], [t0 : Tmax]⟩
via considering queries having as left-up corners corresponding to all the items
of the range ⟨[S0 : SN−1], [t0 : Tmax]⟩. Upon this model, authors introduce the
error metrics given by the Average Relative Error ϵQPW

, defined as follows:

ϵQPW
=

1

| QPW |
·
|QPW |−1∑

k=0

ϵ(QW,k)

such that ϵ(QW,k) is the relative error due to the approximate evaluation
of the window query QW,k. In turn, ϵ(QW,k) is defined as follows:

4.11 SensorGrid System 79

ϵ(Q) =
| A(QW,k)Ã(QW,k) |

A(QW,k)

where A(QW,k is the exact answer to QW,k, and Ã(QW,k) is the approximate
answer to QW,k.

For continuous queries, authors instead fix both the (query) range on the
sensor dimension, ∆S, and the (query) range on the temporal dimension, ∆T ,
and moves forward the∆S×∆T window query by steps equal to∆tstep, being
the latter one an input parameter. The (approximate) answer is evaluated
with frequency fQ. Due to the particular nature of continuous queries, in this
case is not appropriate to adopt an averaged value as metrics (like in window
queries), but rather it is interesting observing how distant is the variation of
the approximate answer from the one of the exact one, and the corresponding
relative error. Authors also consider two distinct queries simultaneously. The
first one is a small query, i.e. a query having low selectivity, and the second
one is a large query, i.e. a query having high selectivity. It is well-recognized
that query selectivity heavily impacts on the performance of any query engine.

Experimental Results

4.8 shows the experimental results when considering window queries as input.
4.9 instead shows the case for continuous queries. In particular, 4.8-(a) shows
the variation of the percentage value of ϵQPW with respect to the selectivity of
(window) queries in QPW on an Uniform (synthetic) data set. 4.8-(b) shows
the same experimentation when ranging the compression ratio r. 4.8-(c) and
4.8-(d) show the above-illustrated metrics for a Gaussian (synthetic) data set,
whereas 4.8-(e) and 4.8-(f) for a Zipfian (synthetic) data set.

4.9-(a) focuses on the variation of the distance between exact and approx-
imate answers to two small and large (continuous) queries on an Uniform
(synthetic) data set. 4.9-(b) plots the percentage variation of ϵ(QC) due to
exact and approximate answers shown in 4.9-(a). Finally, 4.9-(c) and 4.9-(d),
and 4.9-(e) and 4.9-(f) show the same experimentation on a Gaussian (syn-
thetic) data set, and a Zipfian (synthetic) data set, respectively. It should be
noted that for continuous queries, a different configuration of the experimental
parameters has been considered, due to need for (i) adequately testing with
continuous queries, and (ii) capturing the starting time of the related MRDS
compression process (this involved Tmax = 75,225 for the Uniform data set,
and Tmax = 75,133 for Gaussian and Zipfian data sets).

From the analysis of the experimental results presented above, it clearly
follows that SensorGrid effectively supports the approximate evaluation of
OLAP-like queries over Grids at a provable degree of accuracy and with good
performance with respect to the ranging of the storage space available to
house the compressed representation of the MRDS. The latter one is a critical
parameter of our proposed Grid framework. Also, note that, for populations
of window queries, the percentage average query error is mostly between the

80 4 A Data Stream Overview

Fig. 4.8. Experimental results for Window Queries

interval [10, 27]%. For what instead regards continuous queries, the percent-
age query error for low-selective and high-selective queries is mostly between
the interval [5, 20]%. These observed values are well-recognized as best per-
formance for any approximate query engine over OLAP data.

4.11 SensorGrid System 81

Fig. 4.9. Experimental results for Window Queries

5

Data Stream Mining

5.1 Introduction

A largely untested hypothesis of modern society is that it is important to
record data as it may contain valuable information. This occurs in almost
all facets of life from supermarket checkouts to the movements of cows in a
paddock. To support the hypothesis, engineers and scientists have produced
a raft of ingenious schemes and devices from loyalty programs to RFID tags.
Little thought however, has gone into how this quantity of data might be
analyzed.

Machine learning , the eld for nding ways to automatically extract informa-
tion from data, was once considered the solution to this problem. Historically
it has concentrated on learning from small numbers of examples, because only
limited amounts of data were available when the eld emerged. Some very so-
phisticated algorithms have resulted from the research that can learn highly
accurate models from limited training examples. It is commonly assumed that
the entire set of training data can be stored in working memory.

More recently the need to process larger amounts of data has motivated
the eld of data mining. Ways are investigated to reduce the computation time
and memory needed to process large but static data sets. If the data cannot
t into memory, it may be necessary to sample a smaller training set. Alterna-
tively, algorithms may resort to temporary external storage, or only process
subsets of data at a time. Commonly the goal is to create a learning process
that is linear in the number of examples. The essential learning procedure is
treated like a scaled up version of classic machine learning, where learning is
considered a single, possibly expensive, operationa set of training examples
are processed to output a nal static model.

The data mining approach may allow larger data sets to be handled, but it
still does not address the problem of a continuous supply of data. Typically, a
model that was previously induced cannot be updated when new information
arrives. Instead, the entire training process must be repeated with the new

84 5 Data Stream Mining

examples included. There are situations where this limitation is undesirable
and is likely to be inefcient.

The data stream paradigm has recently emerged in response to the contin-
uous data problem. Algorithms written for data streams can naturally cope
with data sizes many times greater than memory, and can extend to chal-
lenging real-time applications not previously tackled by machine learning or
data mining. The core assumption of data stream processing is that training
examples can be briey inspected a single time only, that is, they arrive in a
high speed stream, then must be discarded to make room for subsequent ex-
amples. The algorithm processing the stream has no control over the order of
the examples seen, and must update its model incrementally as each example
is inspected. An additional desirable property, the so-called anytime property,
requires that the model is ready to be applied at any point between training
examples.

Studying purely theoretical advantages of algorithms is certainly useful
and enables new developments, but the demands of data streams require this
to be followed up with empirical evidence of performance. Therefore, claiming
that an algorithm is suitable for data stream scenarios implies that it possesses
the necessary practical capabilities.

Data stream classication algorithms require appropriate and complete eval-
uation practices. The evaluation should allow users to be sure that particular
problems can be handled, to quantify improvements to algorithms, and to
determine which algorithms are most suitable for their problem.

Measuring data stream classication performance is a three dimensional
problem involving processing speed, memory and accuracy. It is not possible
to enforce and simultaneously measure all three at the same time so in many
approaches it is necessary to x the memory size and then record the other
two.

Various memory sizes can be associated with data stream application sce-
narios so that basic questions can be asked about expected performance of
algorithms in a given application scenario.

The recent growth of interest in data stream systems and data stream
mining is due to the fact that, in many applications, data must be processed
continuously, either because of real time requirements or simply because the
stream is too massive for a store-now & process-later approach. However,
mining of data streams brings many challenges not encountered in database
mining, because of the real-time response requirement and the presence of
bursty arrivals and concept shifts (i.e., changes in the statistical properties of
data). In order to cope with such challenges, the continuous stream is often
divided into windows, as already said in 4.4, thus reducing the size of the data
that need to be stored and mined. This allows detecting concept drifts/shifts
by monitoring changes between subsequent windows. Even so, association rule
mining over such large windows remains a computationally challenging prob-
lem requiring algorithms that are faster and lighter than those used on stored
data. Thus, algorithms that make multiple scans of the data should be avoided

5.2 Mining Trajectories: Proposal Using Frequent Itemsets Techniques 85

in favor of singlescan, incremental algorithms. In particular, the technique of
partitioning large windows into slides (a.k.a. panes) to support incremental
computations has proved very valuable in DSMS [LMT+05, BTW+06] and is
often exploited in many approaches. The following observation is important:
in realworld applications there is an obvious difference between the problem
of (i) finding new association rules, and (ii) verifying the continuous validity
of existing rules.

Normally, finding new rules requires both machines and domain experts,
since size of the data is too large to be mined by a person and importance
of new rules with respect to the application can only be validated by do-
main experts. In this situation, delays by the mining algorithms in detecting
new frequent itemsets are also acceptable, provided that they add little to
the typical time required by the domain experts to validate new rules. Thus,
in [MTZ08] authors propose an algorithm for incremental mining of frequent
itemsets that compares favorably with existing algorithms when real-time re-
sponse is required. Furthermore, the performance of the proposed algorithm
improves when small delays are acceptable.

5.2 Mining Trajectories: Proposal Using Frequent
Itemsets Techniques

Frequent pattern mining techniques, are often needed, when there is a need of
analyzing trajectories in order to efficiently extract useful information. It has
received a great attention since it was originally introduced for transactional
data [AS94, HPY00] due to its intriguing challenges. The same problem for
trajectory data has been studied in [GNPP07, LCP+07]. In order to better un-
derstand the problem of sequential pattern mining the following toy example
is quite useful.

Example 5.1. Consider the trajectories depicted in Fig. 5.1 and the simple
regioning associated to the search space. it is possible to represent the set
of trajectories as T = {ABCDE,EDCBA,AGMS,UVWST, Y TOJ}. It is
easy to see that while in the transactional case the first two items would be
considered the same, in this case they have to be treated separately.

Based on this representation of trajectory data, it is possible to intro-
duce an approach for mining frequent patterns based on suitable space par-
titioningindexspace partitioning. Indeed, since trajectory data carry informa-
tion about actual position and timestamp of a moving object, it is possible to
split the search space in regions having the suitable granularity and represent
them as symbols. The sequence of regions define the trajectory traveled by a
given object. Note that regioning is a common assumption in trajectory data
mining [LHLG08, GNPP07] and in this case it is even more suitable since
our goal is to extract typical routes for moving objects, in order to identify

86 5 Data Stream Mining

Fig. 5.1. A set of example trajectories

as an example critical junctions in a vehicular system, or as a counterpart,
alternative routes when the traffic is heavy. For trajectory representation it
is possible to use a novel data structure for representing itemset called aug-
mented FP-Tree. The underlying idea is that it is needed to be fast while
counting frequent items and due to intrinsic nature of trajectory data (order
of appearance of an item is important). In this respect items appearing be-
fore and after that timestamp are taken into account separately for each node
in the tree (that has a proper timestamp). This allow to maintain the nice
features of FP-Trees and also to have the chance to move efficiently forward
and backward on the trajectory while searching for frequent itemsets. Then a
suitable strategy is used to check incoming trajectories w.r.t. existing patterns
based on pane comparison in order to avoid inefficiencies due to comparing
all the trajectories at the same time. Moreover, matching indexed frequent
pattern against moving objects window, is a peculiar feature of this approach
since in all the mentioned application scenarios it could happen to deal with
a prohibitive number of input streams. This technique can be used to mine
frequent patterns and as a nice side effect it allows to identify relevant fea-
tures among data thus it can be used as a feature selection phase in trajectory
classification.

While for transactional data a pattern is a subset of single items, a se-
quential pattern is an ordered set (i.e., a sequence) of timestamped items. For
instance, if the toy database in Example 5.1 were transactional, the frequency
of pattern {A,B} would be 2, whereas for the same database (if each tuple
represented a trajectory) it is clear that the frequencies of sequential patterns
< A,B > and < B,A > are considered 2 and 0, respectively.

Trajectory data are usually recorded in variety of different formats, and
they can be drawn from a continuous domain. Here is assumed a standard
format for each trajectory, as defined next.

Definition 5.2 (Trajectory). Let P and T denote the set of all possible
(spatial) positions and all timestamps, respectively. A trajectory is defined as

5.2 Mining Trajectories: Proposal Using Frequent Itemsets Techniques 87

a finite sequence s1, · · · , sN , where N ≥ 1 and each si is a pair (pi, ti) where
pi ∈ P and ti ∈ T .

It is assumed that P is a set of discrete symbols. For continuous locations,
one can partition the space into regions to map the initial locations into
discrete symbols. Notice that the way chosen for the assignment of symbols
to locations is totally irrelevant for our goal since we are interested in frequent
pattern mining. The granularity of the regioning can be decided according to
the application requirements. For example, for tracking trucks, the GPS data
can be rounded within 15 meters of precision and so on.

A sequential pattern is any sub-sequence of a trajectory. Given a collection
of trajectories, it is possible to define the frequency (support) for a sequential
pattern as the number (ratio) of its occurrence in the trajectories. Throughout
the rest of this paper we use the term ‘pattern’ to simply refer to ‘sequential
pattern’, unless otherwise is stated. The problem of mining sequential patterns
from trajectories, is finding all the patterns whose frequency is larger than or
equal to a given minimum support, called α. In general, traditional methods
developed for mining transactional (non-sequential) patterns are not applica-
ble to sequential patterns, as they do not differentiate between different items
orders in the same pattern.

5.2.1 Defining Regions of Interest

The problem of finding a suitable partitioning for both the search space and
the actual trajectory is a core problem when dealing with spatial data. Every
technique proposed so far, somehow deals with regioning and several have
been proposed such as partitioning of the search space in several regions of
interest (RoI)[GNPP07] and trajectory partitioning [LHW07].

Principal Component Analysis PCA finds preferred directions for data
being analyzed and thus it is possible to exploit this information for saving
both space and time since the goal is finding frequent patterns, so it is likely
that less frequently crossed regions are not significant.

5.2.2 Principal Component Analysis

Principal Component Analysis (PCA) [Jol02] finds a linear transformation l
which reduces n-dimensional feature vectors to an h-dimensional feature vec-
tors (where h < n) in such a way that the information is maximally preserved
in terms of minimizing the mean squared error. The PCA also allows rolling
back to n-dimensions from the h-dimensional feature vectors, with of course
introducing some reconstruction error. The h-column vectors define the basis
vectors. The first basis vector is in the direction of maximum variance of the
given feature vectors. The remaining basis vectors are mutually orthogonal
and, maximize the remaining variances subject to the orthogonal condition.
Each basis vector represents a principal axis. These principal axes are those

88 5 Data Stream Mining

orthonormal ones onto which the remaining variances under projection are
maximum. The orthonormal axes are given by the leading eigenvectors (i.e.
those with the largest associated eigenvalues [Jol02]) of the measured covari-
ance matrix.

In PCA, the original feature space is characterized by these basis vectors
and the number of basis vectors used for characterization is usually less than
the dimensionality d of the feature space. The covariance matrix is built for the
trajectories by using the multidimensional points contained in each trajectory.
Many tools have been implemented for computing PCA such as [Jol02], in
particular experiments the fixed-point algorithm in [SP07] has been used.

Before defining the simple and effective regioning strategy it is needed to
give an intuitive interpretation of the results of PCA analysis on trajectory
data.

Consider the set of trajectories depicted in 5.2.2, running the PCA al-
gorithm on the above set of trajectories identify the preferred directions(the
red arrows), i.e. the directions along which the density of trajectories is the
highest. Indeed, in 5.2.2 is drawn the first two eigenvalues that offers the best
initial assignment for regioning, even if PCA returns all the eigenvalues (thus
all the principal directions) with a proper rank that can be used for further
refining the initial region assignment.

Fig. 5.2. Principal eigenvalues identified by PCA

This information are exploited using a partition strategy that gives more
effort to regions along the principal directions. This allows to focus on the pre-
ferred regions when computing clusters thus saving space and computational
time.

More formally, the results of running PCA on trajectories data is a set of
eigenvalues that states the principal directions followed by data. Each eigen-
values define an angle α w.r.t. the principal axes. Depending on the scenario
being analyzed it is choosen a suitable level of granularity that defines the

5.2 Mining Trajectories: Proposal Using Frequent Itemsets Techniques 89

size d of each region (it is assumed squared regions). The size d of each region
is defined according to the domain being analyzed, for example for cellular
nets it could be some meters while for truck movements it could be hundred
of meters and for hurricane control it will be of kilometers. In order to define
regions of interest we partition the search space in squared regions along the
directions set by the eigenvalues so far obtained by PCA and having size d.
It could happen that this regioning strategy could also consider regions not
parallel to the principal axes thus not covering the whole space. Indeed, this
“white” regions, i.e. regions not on the principal directions, could be consid-
ered as not interesting regions and thus no more investigated. This strategy,
is quite effective in practice since as we point out, unfrequent regions will not
affect clustering results (since few trajectories cross that regions), so pruning
the search space will increase the efficiency and accuracy of the mining step.

The size of the regions can be choosen a priori since for the scenario being
analyzed this choice offer really good performances, however a possible im-
provement could be to consider the region size as a parameter that can be set
in an unsupervised way exploiting information about density of trajectories.

5.2.3 The Trajectory Regioning algorithm

Once obtained the set of regions REG = {R1, R2, · · · , Rm} as explained in
previous sections we assign to each region a symbol in a given alphabet Σ.

As mentioned above a trajectory Tri is a sequence of multidimensional
points Tri = p1, p2, · · · , pn where n is the trajectory length. In this section
we will define a strategy for partitioning the trajectory as a list of regions,
thus encoding the sequence of points as a smaller and meaningful sequence of
regions.

Given a trajectory Tri, we define Tr′i = encode(Tri) its encoded version.
An encoded trajectory Tr′i is a sequence regions Tr′i = Ri,1, Ri,2, · · · , Ri,n.
The encoding is performed by substituting each point pi with the region Ri,j

it belongs to (here we use index i to denote that the region Rj appears in
trajectory i), indeed many points could fall in a given region, in this case
we can either consider that region multiple times or consider it only once
and assign as overall timestamp the one assigned to the last point belonging
to the trajectory and falling in that region (the choice will depend on the
clustering strategy we choose as will be clear in next sections). 1 implements
the regioning strategy.

Function PCAFAst run PCA algorithm on the original trajectory (each
row in the initial matrix is composed by the sequence of points in each tra-
jectory) using the algorithm in [SP07] and then choose the region dimension
exploiting the information about data density along the principal axes. The
output is a set of annotated regions and “white” regions.

Function locate simply returns for a given point pi the region in RPCA it
belongs to, while function append add the region to the current encoded tra-
jectory. In more detail, function append has to check if the last added region

90 5 Data Stream Mining

Algorithm 1 PCA regioning pseudo code

INPUT: a set trajectory T represented as sequences of points
OUTPUT:a set of trajectory T’ represented as sequences of regions
VARS:
RPCA: the region partition obtained by PCA
radd: a candidate region for appending in the output trajectory
RPCA = PCAFAst(T);
T ′ = ∅;
for each (Tri ⊆ T) do

Tr′i = ∅;
for each (pi ⊆ Tri) do

radd = locate(pi, RPCA);
Tr′i = append(Tr′i, radd);

end for
T ′ = T ′ ∪Tr′i;

end for
return T ′;

in the encoded trajectory is the same of the one being currently considered
(radd), in that case simply update its timestamp, otherwise append radd to
the encoded trajectory. The encoding phase allows us to obtain a set of tra-
jectories that could be mined using the algorithms that will be exploited in
next sections.

This regioning is a lossless operation since even if we transform a 2-D space
in a 1-D one we are interested in clustering data, i.e. grouping data according
to a suitable distance measure that in this case as will be clear in next section
is not affected by regioning.

5.3 Mining Frequent Pattern

SWIM [MTZ08] exploits the well-known fp − tree [HPY00] data structure,
which allows a compact representation of transactions. SWIM splits the win-
dow into several slides and then for each slide S, inserts the transactions in a
separate fp− tree. Then, it computes the frequent itemsets in this small slide
using any of existing static-data frequent miners (e.g. FP-growth [HPY00]).
Since slides are mined separately and the occurrence of each pattern should be
counted over all slides (to determine the total frequency), counting becomes a
major bottleneck of the algorithm. The counting in SWIM is thus performed
using a separate fast algorithm, which is based on conditional counting (=ver-
ification), called verifier. The verifier internally uses another fp−tree to store
the patterns that need to be counted. This latter tree is called a Pattern Tree
(PT). Then, counting is performed via conditionalizing both the pattern tree
the fp− tree of the slide in parallel. More details can be found in [MTZ08].

5.3 Mining Frequent Pattern 91

While SWIM was originally designed to discover only frequent (transac-
tional) patterns, maybe it can be easily extended to sequential patterns as
well. The plan is on modifying SWIM algorithms based on the following ob-
servation. The main difference between mining transactional patterns and
sequential ones in a tree-based approach is due to the importance of the order
of the single items in each subset. In other words, if looking for a sequential
pattern, say < a, b > and see an ordered transaction 1, say < c, b, a >, the
data structure must be able to realize that the requested order is not satisfied.

To solve this issue, an “augmentation” to the traditional fp − tree data
structure has been proposed, as shown in 5.3, since the normal fp − tree is
not able to capture the order between the items in the original transactions.

Fig. 5.3. Augmented fp− tree to support sequential patterns.

Note that a naive approach of reserving a different path for each different
order of the same set of items, will not be applicable, as it results in an ex-
ponential explosion of the tree. This explosion is due to loosing compactness
of the tree (i.e., overlapping of the same single items) which is the main fea-
ture of the fp − tree data structure. However, our proposal, shown in figure
6, will double the number of the single items, by introducing negative and
positive versions for every original item. As a running example, consider the
kid database of 5.3. For example, item b will be replaced with −b and +b, in
order to differentiate between the predecessor and successor items. In 5.3 all
the itemsets that include a and then b will be stored under < a,+b > and
those that include b and then a will be stored under < a,−b >. Note that
this schema will result a significant improvement on memory, compared to
the naive scheme in which each order of the items produces a unique path
in the tree. Denoting the average transaction length with L, the naive ap-
proach can generate up to L! different paths for the same set of single items,
according to their appearance order. But this scheme can only take up to at
most 2L different paths, as each item in the transaction has only two states

1 For instance, the items within the same transaction could be ordered based on
their timestamps.

92 5 Data Stream Mining

compared to its parent: either it precedes its immediate parent or it comes
afterwards (respectively, annotated with − and +). To further clarify the
advantage of many-to-one representation of the sequential transactions, note
that both < b, a, d, f, c > and < b, d, f, c, a > will be stored under the path of
a,−b,+c,−d,+f .

Consequently, the search algorithm for normal (=transactional) patterns
can be adapted to sequential patterns by annotating the single items. Having
a search algorithm for sequential patterns in the augmented fp − tree, the
other operations (except mining) will be naturally adapted as well, including
conditionalization, verification.

TID Single items (ordered by their timestamps)

T1 e d b c a

T2 b a d f c

T3 g a b c

T4 a c g b

T5 c a b

T6 h e b g

Fig. 5.4. A kid database of sequence transactions.

6

Pattern Queries

6.1 Introduction

Query language extensions that allow users to search for patterns in se-
quences have long been recognized as important by database researches who
made seminal contributions toward solving this problem [SLR94, SS95, Ses98,
RDR+98, PP99, SZZA01a, SZZA01b, SZZA04]. The need for such exten-
sions has been recently recognized in many and diverse application areas,
such as financial services services [SZZA01b], RFID-based inventory manage-
ment [LWL07, BWL+07], click stream analysis [SZZA01b]. publish-subscribe
[SZZA01b], and electronic health system [HH05]. In fact, this application pull
is so strong that vendors and DSMS startup companies are proposing new SQL
standards for pattern queries [ZWCC07]. The pattern SQL in [ZWCC07] is
largely based on the Kleene-* query construct introduced in [SZZA01a].

While Kleene-* query language [SZZA04, ZWCC07, ADGI08] have been
shown to be applicable to both databases and data streams, the queries ex-
pressed in these languages will execute poorly unless sophisticated query op-
timization techniques are used. Ideally the goal is to have a general optimiza-
tion model that defines a wide spectrum of logically equivalent executions
to which different cost estimates can be assigned depending on the specific
computational environment. Relational algebra provided the basis for such
optimization models for the traditional queries of relational DBMS; but new
models are needed here since they must deal more complex computations
and ordered sets of tuples rather than the unordered ones of database rela-
tions. In fact optimization models are needed in such a way that they can
adapt to the many possible environments under which these queries will be
executed. Indeed any combination from the following pairs represents a possi-
ble execution environment:individual queries or query flocks, serial execution
or parallel processing, data bases or data streams. In reality, good optimiza-
tion techniques have already been proposed for specific environments. For
instance, a generalization of the Knuth-Morris-Pratt algorithm was proven in
[KJP77] to be very effective in minimizing backtracking on individual queries

94 6 Pattern Queries

- whereby the average performance was improved by two orders of magnitude.
Also significant speed-ups on the execution of multiple concurrent queries on
data streams were reported in [ADGI08] using FSA-oriented models. These
specialized techniques must be integrated and generalized to the different ex-
ecution environments described above, and re-targeted to different optimiza-
tion objectives (e.g. minimization of overall execution time for DBMS, and
minimization of response-time or memory in DSMS).

6.1.1 Match oriented approaches

Baeza-Yates and Gonnet [BYG96] studied how to index regular expressions
by using a trie [MM90, McC76, Ukk95]. The regex search can be performed
directly on a trie and thus given a small problem size this approach is very
effective, however given a large set of patterns this approach suffers due to
both space and time complexity. Aho-Corasick (AC) [AC75] generalizes KMP
in order to handle sets of strings. New ideas presented by AC include keyword
trees, failure functions and output links. By having multiple patterns, the
naive extension of KMP would have a time complexity of O(n+ zm) where z
is the number of patterns, however what AC did was to provide an algorithm
that runs in O(n+m+k) where k is the number of occurrence of some pattern
Pi in text T .

In Aho-Corasick a keyword tree is constructed which can be done in O(n)
where n is the total length of all patterns. A naive approach would simply
use this tree and align each character of the text against this tree, however
this would produce a O(nm) running time. Aho-Corasick uses KMP ideas to
speed this up.

Matching text has many useful applications, nevertheless, XML also is
widely used and requires no less research into pattern matching. [yfi02] intro-
duces YFilter which is a way to build an NFA to match XML documents. The
basic idea is we merge queries together by exploiting commonality among path
queries and combine them into a single NFA. The authors specify four basic
pieces (/a, //a, /* and //*) which represent possible parts of the path expres-
sion. By representing these pieces as separate state machines, the authors use
these building blocks to combine them into a single machine. The resulting
machine consists of states, where each state stores the following information:

1. ID of the state
2. Type information
3. Hash table for transitions [symbol — ID]
4. For accepting states, ID list of queries

The authors show that their YFilter approach is in fact faster than XFilter
and the hybrid approach. YFilter remains one of the dominant works in XML
document parsing.

6.1 Introduction 95

There is a large body of literature that deals with matching regex on string
using a finite state automata (FSA) [BS86, Brz64, HMU06]. Usually a Deter-
ministic Finite Automaton is constructed for a particular pattern (regular
expression) and then it is used to match a particular text. This constructed
DFA can be saved and re-used for comparisons against a similar regex. In
our case however, due to the large size of the number of patterns, the scal-
ing issue becomes a problem and without good parallel implementation the
performance suffers.

6.1.2 Index oriented approaches

There have also been methods that deal with indexing of intervals.
Traditional indexing techniques rely on multidimensional indexes such as

the R-tree which minimizes the number of insertions, however because the
performance deteriorates exponentially as the number of dimensions grows
these approaches are not efficient to process large set of queries.

Authors in [LM92] describe a checkpoint and indexing scheme that is used
in temporal database environment. The generalized data stream index is de-
veloped that can efficiently process a subclass of joins qualified with a snapshot
operator.

Authors in [WBTG06] present a query index based on a decision tree. The
index presented is applicable to queries consisting of conjunction relationship
between predicates. The authors study methods of how to select a dividing
attributes during tree construction which is crucial to index performance. Two
dividing attribute selection algorithms are presented: Information Gain (IG)
and Estimated Time Cost (ETC). The experiments presented suggest that
tree built using ETC is more efficient, however given a dynamic nature of
queries, this approach would not be applicable.

FREE algorithm is proposed in [CR02] FREE is a pre-built index to speed
up regular expression matching on large text databases. By using careful in-
dexing techniques based on selectivity speed-ups of two orders of magnitude
were observed. Also a proposed multi-gram index provides size reduction of
orders of magnitude without degradation in performance. The FREE algo-
rithm, however, works by indexing on the underlying data and not on the
regular expression itself.

Hashed multiple lists were proposed in [LJLR08] to speed up continuous
query evaluation in data stream environment. The proposed technique decides
the level of node based on a binary tree and uses a hash table to speed up the
search. Because a hash-table is used, the approach was able to search linearly
when number of index objects increases.

Very small body of work exists regarding the indexing of Kleene closure.
The work is mostly comprised of languages such as SASE+ [DIG07] and SQL-
TS [SZZA04] and application specific indexing methods such as query indexing
of RFID data streams.

96 6 Pattern Queries

SASE+ proposes a compact language that can be used to define a wide
variety of Kleene closure patterns. The authors rigorously studied language
semantics and analyzed the expressive power of SASE+, SQL-TS and Cayuga.
Also it was shown that these languages belong to several standard complexity
classes.

Authors in [PHB07] present a technique for indexing complex continuous
queries. It was observed that due to large storage and build time requirements
of Kleene closure an aggregate transformation technique to index a group of
segment was necessary. The aggregated data developed is representative of
the system and therefore only a small fraction of all objects (segments) needs
to be stored. A new tree, KDBAT − Tree was designed to support aggregate
transformation.

All of the methods presented do not deal with indexing and evaluation
of arbitrary patterns consisting of predicates with Kleene closure, general
functions in a streaming environment which is the focus of this paper.

In next section is discussed one of the most speculative objective that focus
on discovering patterns represented by Kleene-* expressions. Many successful
methods of knowledge discovery are based on the simple idea of learning a
descriptive model from a set of training examples, and then using that model
to predict the class to which new instances belong to. Current learners use
predictive models based on different representations, such as decision tree,
probability vectors, and neural nets.

6.2 Efficient Pattern Matching over Streams

With a rapid development of the internet more and more data stream ap-
plications have emerged in recent years. Continuous queries (CQs) are an
important type of queries that are issued on a data stream. CQs are reg-
istered in a Data Stream Management System (DSMS) in advance and are
executed on a continuously arriving data stream. An important type of CQ
that is widely used is a filtering query. A filtering query (FQ) is a condition on
a stream of data that is checked on each arriving data tuple. If FQ condition
is evaluated to true we say that an FQ is satisfied. A satisfied filtering query
will trigger an action in a specified application system. FQs are used in data
stream applications involving sensor network (RFIDs), financial applications,
network intrusion detection and so on.

An FQ is a query defined on a data stream and characterized by a relation
R R(a1 : ω1, a2 : ω2, . . . , am : ωm) where ωi is the domain of attribute ai,
and m is the number of attributes. Thus an FQ is defined as a conjunction
of m predicates, where predicate i can depend on any attribute ai, FQ =
P (a1) ∧ P (a2) ∧ ... ∧ P (am).

6.2 Efficient Pattern Matching over Streams 97

6.2.1 Importance of Kleene-* in continuous queries

The amount of data in databases grows at a tremendous rate which makes
simple tasks such as matching difficult. Matching of a regular expression (i.e.
finding all occurrences of a particular string in text) in this large set of data
therefore presents a challenging task. It was noted that in order to execute
a regular expression matching algorithm on a large text database of size 100
GB may take several days [CR02]. The goal to reach is a matching problem
given a streaming environment and a large number of queries (patterns).

Of particular importance are Kleene closure patterns which can be used to
extract an unbounded number of objects from a data stream. The extracted
objects can represent events which are of growing importance in emerging
applications including financial services, RFID-based inventory management,
click stream analysis, electronic health record system etc.

While indexing of patterns involving general predicates was well studied,
indexing of and functional patterns over streams have unique issues regarding
scalability in both performance and size of the index

Several notable languages exist that support Kleene closure including
SQL-TS, MATCH-RECOGNIZE and SASE+. MATCH-RECOGNIZE comes
from a 2007 ANSI standard proposal to add new SQL functionality for
finding patterns defined as regular expressions over sequence of rows via a
MATCH RECOGNIZE clause. The new syntax allows pattern definition via
a PATTERN component which is used to specify the regular expression. Some
of the operations supported in the PATTERN component are: * (0 or more
rows), + (1 or more rows), ? (0 or 1 row). In addition, aggregate operators
can be used on group variables like AVG(A) where A is a group variable.
In addition columns of the matched rows are also accessible via D.price >
A.price.

SQL-TS (Simple Query Language for Time Series) is another main pro-
posal for SQL language extension to support pattern queries. SQL-TS, be-
sides proposing a set of new language constructs also discusses optimizations
of pattern queries. An extension of the well-known Knuth, Morris, and Pratt
(KMP)[KJP77] algorithm is introduced in order to optimize pattern queries.

6.2.2 Real-world example

In financial services area, a stock broker may want to retrieve stock transaction
that caused the price of a stock to increase steadily which resulted in a steady
increase of the trading volume. In a retail store equipped with RFID capability,
a store manager would like to capture events that signal shoplifting activity
which are caused by abnormal inventory depletion. Example 6.1 display an
SQL-TS query to find the maximal periods in which the price of a stock fell
by more than 50%, and return the stock name and these period. Efficient
evaluation of these types of queries serve as motivation of this paper.

98 6 Pattern Queries

Example 6.1.

SELECT X.name, X.date AS start date,
Z.previous.date AS end date

FROM quote
CLUSTER BY name
SEQUENCE BY date
AS (X, *Y, Z)

WHERE Y.price < Y.previous.price
AND z.previous.price < 0.5 * X.price

6.2.3 KMP and OPT

Next is briefly discussed KMP and OPT approaches which are successful string
matching algorithms.

Removing inequalities, functional predicates and Kleene closure from
query in example 6.1 it is possible to invoke algorithm by Knuth, Morris and
Pratt (KMP) which provides a solution of proven optimality for this query.
A KMP algorithm takes a sequence pattern of length m : P1, P2, . . . , Pm and
text T of length n : t1, t2, . . . , tn and finds all occurrences of P in T . The
algorithm starts from left to right and compares successive characters until
the first mismatch occurs. At each step the ith element in the text is com-
pared with the jth element in the pattern. i and j are kept increasing until a
mismatch occurs.

When mismatched, a naive algorithm would reset j to 1 and i to the
next position from where matching began. Instead, however, KMP avoids
backtracking by utilizing knowledge acquired by the fact that some characters
might have matched. Thus, KMP is an algorithm that exploits the relationship
between elements in the pattern to never have to backtrack on the text.

Unfortunately, KMP algorithm only works when qualifications in the query
are equalities with constants. An Optimized Pattern Search (OPS)[SZZA01a]
algorithm is proposed to extend KMP to be directly applicable to SQL-TS
queries. Thus, OPS is applicable to more general conditions that often occur in
time-series queries including Kleene closure. OPT, similar to KMP, exploits
relationship between elements in the pattern in order to infer shifts of the
pattern that can possibly succeed and shifts which need not be checked.

6.2.4 Brief overview and contributions

In order to take proper actions in many applications including financial
streams a large number of range queries or filtering queries must be created
and continuously executed against the running stream. For example in sensor

6.2 Efficient Pattern Matching over Streams 99

network stream applications a large number of range queries must be created
to monitor temperatures, flows of traffic and other readings.

Thus the focus is on scalability problem of evaluating thousands of queries
containing Kleene closure and general predicates over data streams. One ap-
proach to accomplish this task is to have a query index. On each incoming
tuple, an index is searched for matching queries.

Conceptually this is a simple task, however designing a memory efficient,
fast index in a rapid streaming environment is quite a challenge due to the
memory and performance scalability issues. Thus indexing and string match-
ing approaches can be combined to overcome these challenges.

The solution proposed is perhaps the easiest and most intuitive, neverthe-
less it produces promising results. Even in this simple solution to the problem
we have a large number of interesting choices to make. Considering N queries
similar to those in example 6.1, it is possible to see the challenge of this prob-
lem due to the number of queries, general predicates and functions as well as
Kleene closure. A full indexing approach would produce a large memory-print
and would not scale well in performance. Thus, this simple example paves way
to many important questions: How do build an index on these queries? How
do we determine query order execution to achieve best performance? How to
we index Kleene closure and general predicate functions?

A simple answer to these questions would be to store entire patterns in a
multidimensional tree with all possible permutations for both functions and
Kleene closure. This approach however is clearly unrealistic due to hefty re-
quirements for both build time, storage and maintenance of such an index.

This approach assumes a large number of patterns. Furthermore assume
a representation of patterns as queries similar to those defined in SQL-TS
[SZZA01a] where each element of the pattern can be defined as a constraint
consisting of general predicates or functions such as x > previous where
previous is a value of the last tuple. The proposal is related to a hybrid ap-
proach which combines an indexing method with a string matching approach.
Our algorithm indexes first K elements of each pattern using a multidimen-
sional tree or a multidimensional hash table, thus given an input i1, i2, . . . , ik
it is possible to eliminate irrelevant queries that do not match. Remain-
ing queries are matched using an existing string matching approach such as
KMP . The algorithm seamlessly shares information between these seemingly
very different phases.

6.2.5 The Problem

In this section is provided the general architecture of the algorithm. Its goal
is to fast process multiple pattern queries in a data stream environment. The
trivial solution is to visit each pattern predicate and test whether it satisfies
a given input i, which requires O(m) time, where m is the number of predi-
cates in the pattern. However, by observing the fact that a mismatch is more
common than a match it is possible to use an indexing technique to eliminate

100 6 Pattern Queries

queries that will never much. This task is not trivial due to the need to index
not only regex -like queries but queries that contain general predicates and
functions. As far as anyone knows there exists no literature which addresses
pattern matching given that definition.

For discussion purposes, assume that a large number of queries Q1, ..., Qn

is available. Each query consists of a sequence of states, and say that a simple
condition, such as var > C, is checked at each state. It is important to note
that C can be an interval or an equality as well as a general function such as
x > previous where previous is the value of the last tuple.

Figure 6.1 represents a set of queries consisting of inequality predicates.
Qij represents a predicate j of query i. Given a set of K inputs we want to
output which queries are evaluated to true by these K inputs.

Fig. 6.1. Query evaluation

Given a stream environment, matching must be performed quickly and
should scale well with the number of queries. Given a continuous, bursty and
fast arrival of tuples our framework must be fast and also have a small memory
footprint.

It is interesting to deal with Kleene closure, as the size of the index grows
exponentially when Kleene closure are used. As discussed later, indexing of
Kleene closure requires generation of up to O(2K−1) more patterns, however
this is not a problem in the current case. When matching Kleene closure
patterns a strategy of maximal match is employed where for each input i it
always tries to match a Kleene closure element first.

As discussed in the introduction example 6.1, functional predicates such as
Y.price < Y.previous.price must also be efficiently supported. The problem
with functional predicates is that the range of possible values is unknown
a-priori and this makes indexing of these functions challenging.

The core is to efficiently organize query predicates in an index structure
that quickly points to the states of the queries that are satisfied by the input
values. The key idea is to construct our index on the first K predicates of each

6.2 Efficient Pattern Matching over Streams 101

query. Later it will be shown that the optimal value of K which is extremely
small relative to the length and number of queries.

It is important to note that any indexing technique can be used, thus this
approach can be thought of as a Black Box approach where any appropriate
algorithm can be applied. Experiments are run focusing on basic Hash Table
index and Tree index to run. As an example, given an input value A,B and
K = 2 then index would tell that:

1. The input value A satisfies state 1 of Q1 and Q3, input value B satisfies
state 2 of Q2 and Q3 etc.

2. Therefore given these two inputs Q3 is returned as a candidate match
query.

Thus, by combining results returned on K input values, it is possible to
determine the queries that are satisfied (or might be satisfied) in their first K
states. Ideally, only a few of the initial N queries are satisfied by the K input
values, however it is interesting to address the case when it is not possible to
eliminate most of the queries based on initial K inputs by employing query
strength, which is a query ordering technique, as discussed later. After the
initial indexing phase, fulfilment the check of the validity of the candidate
queries by using the standard matching algorithms such as KMP or OPT .
Any matching algorithm can in fact be used, thus the matching phase can be
considered as another Black Box in the proposed algorithm.

The optimal value ofK to be used depends on the nature of the queries and
their number, N . For N = 1, K = 0 it falls back to the standard approaches.
As shown later K depends on the average number of states in the queries,
and never exceed that.

6.2.6 Architecture overview

A high level overview of the discussed approach is depicted in figure 6.2. Our
system architecture consists of four main components: 1) a query execution
stage, 2) an indexing phase 3) a filtering phase and a 4) matching engine. The
user of the system interacts with the query execution phase through which
the queries are submitted and matched queries are retrieved. We briefly go
over some of these components now and discuss them in detail later.

Query execution and indexing can be thought of as a light pre-processing
stages that are meant to eliminate as many pattern queries as possible as
described above. Candidate queries are passed onto the Matching Engine for
validation. Based on the results from Matching Engine a filter is employed in
order to eliminate those queries returned by the index that will never match
based on the results from the Matching Engine. filter step is also responsible
for generating query execution plan which is based on query ordering.

102 6 Pattern Queries

Fig. 6.2. System Architecture

6.2.7 Query ordering

The order of query execution is an important issue, and it will play a ma-
jor role in query performance. A well known problem, MQP (Multiple-Query
Processing) exists which deals with the order of query execution.

Definition 6.2. MQP: Given n sets of access plans P1, P2, . . . , P3 with Pi =
Pi1, Pi2, . . . , Pik being the set of possible plans for processing Qi, 1 ≤ i ≤ n,
and a constant K, is there a global access plan GP such that the cost of GP
is less than equal to K?

Based on the definition 6.2, if MPQ is NP-complete then our query or-
der optimization problem is NP-hard. Authors in [SG90] prove that MPQ is
indeed NP-complete, by first noting that MQP belongs to NP since a non-
deterministic algorithm can pick 1 query plan and check whether the cost of

6.2 Efficient Pattern Matching over Streams 103

all merged local plans (to produce one global plan) exceeds that of K. The
authors then show that MQP is NP-complete by transforming 3SAT to MQP.

Thus, a heuristic algorithm to optimize query execution is provided. Given
N queries Q1, Q2, . . . , Qn these are ordered based on query strength.

Query strength is computed by observing the number of implications Qi

has between other queries.

Definition 6.3. Implication: Predicate pi implies predicate pj iff pi and pj are
some selection predicates on attribute A of some relation R and Qpi ̸= Qpj

and it is the case that for any input i the result of evaluating a predicate pi is
a superset of the result of evaluating pj.

Definition 6.3 is used to find negative implications where a mismatch on a
predicate pj would imply a mismatch on a predicate pi. Note that predicates
are identical if pi implies pj and pj implies pi. It is possible now to define
implication between queries.

Definition 6.4. Query implication: Query qi implies query qj iff for a spec-
ified number of predicates U the number of predicate implications in qi is
greater than that of in qj.

Query strength is more formally defined later, but to get an intuition con-
sider example 6.5.

Example 6.5. Consider a set of queries:
Q1: EMP.age ≤ 40, EMP.ID > 30, EMP.dept-id < 4
Q2: EMP.age ≤ 30, EMP.ID > 20, EMP.dept-id < 5
Q3: EMP.age ≤ 20, EMP.ID > 10, EMP.dept-id < 6

One way to order these queries based on the first predicate (when U = 1) is
Q3, Q2, Q1. It is important to note that probability of a mismatch is assumed
to be greater, thus negative implication is used to order queries, and the order
when U = 1 would be reversed.

6.2.8 The index

Once the queries are received from the user they are indexed, but only con-
sidering the first K states (predicates) of each query.

Furthermore it is clear that it is inefficient to pass queries from indexing
phase to matching phase without any order because of possible implications
between queries which can be leveraged. By using the implications it is possible
to further eliminate queries that will not match in the Matching Engine.

We refer to the query order of the queries as query strength. Query strength
stems from the observation that there are more mismatches then matches
when evaluating queries. Therefore by first evaluating queries that would help
eliminate other queries if mismatch occurs would provide a more efficient
execution model. query strength of Qi denotes the number of queries that can
be eliminated if Qi mismatches on predicate pi. Therefore order queries are
ordered based on their query strength.

104 6 Pattern Queries

6.2.9 Query Execution Manager

Query Execution Manager reads a list of queries provided by the user or by
the system and returns matching queries. 6.3 shows a more detailed workflow
of the execution manager. The main process consists of three main stages: (i)
reading of queries and constructing an implication graph of U states of each
query, (ii) computing the strength of queries by measuring the in-edges of
each node and finally (iii) ranking of the queries based on their strength.

Fig. 6.3. Workflow of the execution manager

The execution system of this approach is appealing for several reasons:

1. It is easily implementable in conventional database systems
2. Parameter U and ranking of queries based on query strength have direct

impact on performance of the queries.

The following example is useful to better illustrate some of the ideas pre-
sented above:

Example 6.6. Consider a large number of queries similar to example 6.1. We
can make 2 observations:

1. We can vary K or the number of predicates in query Q which we will
index. By varying K we can eliminate a certain number of queries given K
input values. The remaining candidate queries are matched using standard
string matching approaches (e.g. KMP). Later is established the fact that
optimal K occurs where time to index is equivalent to time to validate
candidate queries.

2. After indexing stage, there can be a substantial number of queries left,
especially if N was initially large. We can also observe that the order of
queries that are passed onto the Matching Engine matters. We will show
how we can leverage this query order by using query strength.

Index structures

As stated before, we use a Tree index and a Hash index to implement the
indexing stage of our algorithm. As also noted, any indexing technique can
be used that fulfils the requirement of the user. The chosen index will index
K states of N queries in hopes of eliminating most of N queries upon arrival

6.2 Efficient Pattern Matching over Streams 105

of input i. After this initial elimination, candidate queries are verified using
standard matching approaches.

Here for a tree index is used a multidimensional interval tree. An interval
tree is an ordered tree data structure to hold intervals. Specifically, it allows
one to efficiently find all intervals that overlap with any given interval or
point. It is often used for windowing queries, for example, to find all roads on a
computerized map inside a rectangular viewport, or to find all visible elements
inside a three-dimensional scene.The interval tree employs a red-black n-node
tree and therefore the height of this tree is O(logn). Interval-tree therefore
takes O(logn) time to find an overlapping node.

In order to build a hash index we use a straight forward multidimensional
hashing approach for testing. For better performance, approach such as in
[LJLR08] can be used which proposes a combination of the binary tree and a
hash table to deliver dynamic hash table support.

Insertions and deletions are performed by utilizing existing approaches.
Given a tree index T and a new pattern query Qnew, Qnew can be inserted
into T in O(logn) time.

Given a hash index, upon arrival of a new query in our tests algorithm
simply maps the new query to the hash. In approaches suggested by [MW94]
upon insertion or deletion of a query from a hash table it performs additional
adjustment of the nodes for efficient retrieval later. Given an input i searches
can be performed on a tree in O(lgN) time whereN is the number of queries in
the tree. Hash performance is dependent on the number of intervals (buckets)
in the hash. Evaluations are performed where the number of buckets varies
and generally achieve better performance than using a tree index.

Overview of the matching engine

As mentioned previously a KMP/OPT approach is employed to carry out the
validation procedure of validating candidate matches.

1. Input: A set of candidate queries from Index stage
2. Output: Matched Queries

In Figure 6.2 Matching Engine is responsible for analysing which of the
candidate queries that was generated as the output from Index actually is
a match. This phase uses standard approaches to accomplish this task. This
phase also sends information to the filter phase in order to notify Indexing
Stage of any queries that will never match on input i+K where i is the current
input and K is a value that Indexing Stage will use to eliminate irrelevant
queries based on the first K states.

Once the execution of Matching Engine is complete, the next time K in-
puts arrive and once again irrelevant queries are eliminated. Matching Engine
however could have eliminated some of the queries which might be returned
by Indexing Stage, therefore it is needed to intersect the set of queries which

106 6 Pattern Queries

are returned by Indexing Stage with those returned by Matching Engine effi-
ciently. Filter is also responsible for query ordering as defined above. Exper-
iments section confirms that given large number of queries returned by the
index, query ordering speed up evaluation.

6.2.10 Indexing of Klene Closure and functions

It needed now to determine which is the optimal value for K, given N number
of queries. First we need to define what we mean by optimal K. Because K
refers to the length of the sub-pattern which is indexed, the following idea is
valid:

Definition 6.7. Optimal K: Given a pattern P of length M , an optimal K
is an integer such that the time it takes to index P [0 . . .K] using an index
stage is equal to the time it takes to match P [K+1 . . .M] using the Matching
Engine.

In the following is proved that optimal K will give us optimal matching
performance Intuitively it is possible to say that if K is smaller, than it takes
longer to match, if K is larger, then it takes longer to index.

Based on these considerations the optimal value can be determined ex-
perimentally. 6.4 presents time complexity for naive and indexing approach.
The time for indexing approach is cumulative, and as we can see, according
to definition 6.7, the optimal value for K (or the number of states that need
to be indexed by this indexing approach is C ∗ lg2(N), where experimentally
it has been determined that C is 0.5.

Fig. 6.4. Optimal Search for K (32K Queries)

6.2 Efficient Pattern Matching over Streams 107

Using a hashing approach experiments shows that in order for the hashing
approach to make sense, about 1

16 -
1
32 partitions need to be made of equal size.

Fig. 6.5. Hash VS index graph showing costs according to different hashes

6.2.11 Dealing with stars

Fig. 6.6. Regular Expression Permutation

108 6 Pattern Queries

Knowing that K is relatively small, an approach is needed to simply enu-
merate all possibilities of the Kleene closure pattern and index them. Consider
a regular expression R A+BC+D. In 6.6 are represent all possible expressions
of R using a binary tree. Consider K = 4. As already known, the maxi-
mum possible number of permutation of pattern P with Kleene closure + is
O(2K−1) where K is the height of the tree. Therefore if M is the number of
queries with Kleene closures an overhead added to do indexing is O(M2K−1).
Because K is generally small, it is possible to index this amount of patterns.

Below there are two figures that show memory (6.8) and execution speed
(Figure 6.7) of indexing in the presence of Kleene closure.

Fig. 6.7. Indexing speed and Kleene closure

It is clear that in most cases the overhead shown is acceptable.

6.2.12 Dealing with functions

As stated before, this algorithm also is capable of indexing general functions
in the form y > Previous or y > previous + 10. The approach considered
is similar to that when indexing Kleene closure. The idea is to enumerate
all possibilities, however it is a good point to further minimize the number
of permutations by considering implications among functional predicates of
query Qi and previously matched states of query Qi. Once again, because K
is relatively small the overhead is limited.

6.2 Efficient Pattern Matching over Streams 109

Fig. 6.8. Memory usage of Kleene closure

An example of minimizing the number of functional predicates is presented
in figure 6.9.

Fig. 6.9. Minimization of the number of functional predicates

110 6 Pattern Queries

6.2.13 Query strength

It i suseful to discuss about the meaning of query strength and the role it has
on the whole algorithm.

Definition 6.8 (Query order). : an order of a given set of queries repre-
sents an order of query evaluations given input i. This order is represented as
acyclic graph P = (V, A, L) where (V, A and L represent sets of verticies,
arcs and vertex labels repsectivley) defined as follows.

1. For every query Qi we introduce a vertex vi.
2. If Qi implies Qj we introduce an arc from vi to vj.
3. DFS traversal is done and queries are ordered by the number (in decreasing

order) of incoming arcs (hence negative implications).

Definition 6.9 (Query Strength). : using definition 6.8 query strength of
Qi is greater than of Qj if Qi appears before Qj in query order.

We can thus summarize the initialization of the index in algorithm 2. The
running time of the indexing phase is based on the underlying index structure
and we evaluate its performance in the experiments section.

Algorithm 2 Initialize

1: Given N queries, expand first K states containing Kleene closure or functional
predicates

2: Compute query strength of resulting queries
3: Initialize the Tree index or Hash Index with K ∗N expanded predicates
4: Given K inputs, evaluate them using an index and return candidate queries to

the filter stage.
5: Based on |candidate queries| applying ordering by strength to these queries
6: In the filter stage, filter out queries that were determined to be unnecessary in

the Matching Engine

After Indexing and filter stages, remaining candidate queries are passed
to the Matching Engine. As stated previously, the Matching Engine is respon-
sible for validating the candidate queries on the remaining set of inputs. The
Matching Engine also updates the filter state with a set of queries that are
possible to be executed on the next input.

As noted before, the running time of this phase is based on the running
time of the matching algorithm. Algorithm 3 summarizes our matching frame-
work.

6.2.14 Experiments

The experimentation part is not coompleted yet and it will be conducted con-
sidering synthetic data and enforcing the comparison against other techniques.

6.2 Efficient Pattern Matching over Streams 111

Algorithm 3 Matching

1. Input: Query Set Q over data stream S and window W . Qi is a pattern query
which consists of any general predicates.

2. Output: Remaining patterns after matching K states of each pattern.

1: For each query received from filter stage
2: invoke KMP, OPT etc..
3: Upon a mismatch for query Qi, update filter with a next possible starting posi-

tion for query Qi

4: Upon a match, return query.

Actually synthetic data-set queries have been generated with pre-specified
number of Kleene closure and predicates. Queries generated are based on two
main distributions, namely only unique queries, and queries with specified
amount of overlap (potentially duplicate queries). The framework has been
implemented in Java and had run tests on an Intel Core duo 2.53Ghz with
4GB of RAM.

As with every experiment it is important to select a fair set of queries to
execute, however due to the lack of a standardized benchmark suites for this
field of study synthetically generated data have been considered. Therefore it
should be noted that the results presented are a potential of improvement of
the technique and not necessarily a representative of a real-life query execution
performance.

The query that have been considered are similar in nature to those posed
by bio-informatics researchers. 6.2.14 specifies what kind of parameters have
been set and which queries which have been used.

List of Queries

Q1 : ABC WHERE A > x,B > y,C > Z
Q2 : ABC WHERE A > x,B > y,C > previous

Q1 : AB∗C WHERE A > x,B > y,C > Z

Table 6.1. Typical query on which it is possible to run experiments

Measurements

Interesting aspects can be relevant when evaluating performaces of the pro-
posed technique against others. It is possible to enumerate the main that in
the future will have a considerable attention:

1. Index size and Construction time K: it is related to the size of the index
as a function of the number of queries; tests will compare the Tree index,
Hash index and YFilter approach.

112 6 Pattern Queries

Synthetic Query Parameter List

Parameter Range Description

Q 1000 to 500000 Number of queries
W 0 to 1 Probability of a wild-card

”*” occurring in a query
Distinct True or False Generate unique or random

predicates
P 0 to 20 Number of predicates per

query

Table 6.2. Parameters for synthetic query generation

2. Execution time as a function of queries: hash index, tree index and YFilter
are compared.

3. Effect on execution time when ordering queries based on their strength
parameter : only tree index is evaluated.

General performaces will be evaluated in two main ways with respect to
the concept of unique-query and non-unique-query environment.

Performance (Unique queries)

Considering both the case of unique-query and non-unique queries, running
the experiments against the YFilter, the nested elements are ignored. As the
number of queries increases, the Hash index and Tree index will perform better
than YFilter. The intuition behind the result is that this approach 1) Prunes
queries quicker 2) Utilizes strength ordering and 3) Removes queries from
index result which will not be satisfied (filter stage).

6.2.15 Effects of query strength

Also very intersting will be the behaviour of this algorithm when measure the
effect of ordering the queries by their query strength. The intuition is that
as number of queries pruned decreases the performance increases when using
query ordering by strength.

7

Conclusions

7.1 Summary

With the rapid development of technologies and IT applications, the need
of manage efficiently data have become critical for all companies which were
dealing with huge amount of data. To this purpose, researchers have pro-
posed many techniques and algorithms which are able to optimize or improve
performances of systems in challenging situations which were typical in IT
environment.

While data are stored in a general Data warehouse or DBMS the problem is
strictly related to manage massive data in efficient ways and at the same time
user or application can easier retrieve information when data are represented
in a particular way, exploiting main characteristics of OLAP systems, like
hierarchical representation of data. In the case that data contains sensible
information, it is needed to make sure the user accesses the system with the
right privileges. Malicious users can retrieve with some inference operations
information that are not devoted to, and they must be avoided in such a kind
of activities. Privacy preservation in OLAP can be considered cell-based or
aggregate-based. Considering the latter case, it is possible to define a whole
framework which gain a good point in trade-offing between accuracy and
privacy in answering queries over a OLAP datacube.

On the other side, when incoming data are like a stream, and it not possible
to store everything into a DBMS, it is needed to adopt different policies to
manage such a kind of data. Data Stream Management System provide ad
hoc features and characteristics to efficiently query and analyse data streams,
when particular memorization techniques are taken into account.

The problem of query incoming data streams can be very challenging if
the number of queries is very big and a quick answer is needed. In this case
an intelligent query scheduler might try to reduce the workload size, exploit-
ing queries properties. Pattern queries are still very difficult to manage effi-
ciently and frameworks which extend the main pattern matching algorithm

114 7 Conclusions

are presented in many works. It is a still open problem that will be further
investigated.

7.2 Conclusions and Further Research

This thesis is concluding by mentioning final results obtained and some future
developments on further research.

The novel multi-objective data cube compression paradigm, which deals
with the problem of compressing data cubes according to multiple constraints
rather than only one like in traditional schemes, orients future work towards
the following two main directions: (i) It is possible to extend the multiple-
query data cube compression framework to deal with more complex data
warehouse schemas such as multi-measure data cubes and fact constellations,
beyond conventional data cubes like those investigated; (ii) extending the
multiple-query data cube compression framework as to deal with OLAP ag-
gregations different than SUM.

Same kind of analysis can be done with respect to advanced OLAP visu-
alization techniques of multidimensional data cubes which meaningfully ex-
ploits the data compression paradigm to overcome the natural disorientation
and refractoriness of human beings in dealing with hyper-spaces. In this direc-
tion, the OLAP dimension flattening process and the amenity of computing
semantics-aware buckets are, to the best of our knowledge, innovative contri-
butions to the state-of-the-art OLAP research.

Privacy preserving OLAP framework knowledge has further confirmed the
benefits deriving from adopting the privacy notion and all technical aspects
for the goal of preserving the privacy of OLAP data cubes, also in comparison
with the method Zero-Sum, the state-of-the-art privacy preserving OLAP
perturbation-based technique. It would be interesting to extend the privacy
OLAP notion towards complex OLAP aggregations, beyond conventional ones
(e.g., SUM, COUNT, AVG).

Data stream systems literature reported many works on how to man-
age incoming data. Techniques and methods for managing them are various
and goal-dependent. The SensorGrid system, founds on the data compres-
sion/approximation paradigm. The experimental evaluation has been con-
ducted on several synthetic data sets, and with regard to both window and
continuous OLAP-like queries, which are very useful to extract summarized
knowledge from large amounts of materialized readings stored in Grid nodes.
A good point to continue is the capability of dealing with multidimensional
sensor readings, which arise in several novel application contexts and the one
of supporting innovative classes of meaningful queries based on complex pred-
icates over sensor readings.

The problem of preserving order when trying to find frequent patterns
inside a trajectoy is a very interesting problem that has led many ideas on

7.2 Conclusions and Further Research 115

how to extend already known algorithms defining a data structure called aug-
mented FP-Tree in order to efficiently mine frequent sequential pattern among
data. Managing more complex patterns is a good proposal for next research
topics which are stimulating new ideas

When dealing with the problem of optimization of query execution in a
multi-pattern-query environment, the design of a pattern matching algorithm
which supports Kleene-closures, is able to work on streams and multiple pat-
terns. System architecture aims at extend the KMP [KJP77] algorithm and
its extension to Kleene closure on pattern queries [SZZA01a]. Considering
preliminary results it seems to be clear that there a performance guarantee
of the algorithm and also this approach is faster than previous approaches.
By combining the indexing approach with a string matching approach it is
possible to create a much more efficient query matching framework. Very im-
portant is at the same time the framework for ordering queries based on the
number of implications among queries. The problem with KMP algorithm is
that it requires compilation stage to generate the next arrays and does not
work with Kleene closure. Finally it seems that using intelligent scheduling
properties it might be possible to get very good results also in presence of
Kleene-* and therefore generalize this kind of problem.

References

[ABB+04] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R Mot-
wani, U. Srivastava, and J. Widom. Stream: The stanford data stream
management system. Technical Report 2004-20, Stanford InfoLab,
2004.

[AC75] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an
aid to bibliographic search. Commun. ACM, 18(6):333–340, 1975.

[ACTY09] Pankaj K. Agarwal, Siu-Wing Cheng, Yufei Tao, and Ke Yi. Indexing
uncertain data. In PODS ’09: Proceedings of the twenty-eighth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, pages 137–146, New York, NY, USA, 2009. ACM.

[ADGI08] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman.
Efficient pattern matching over event streams. In SIGMOD ’08: Pro-
ceedings of the 2008 ACM SIGMOD international conference on Man-
agement of data, pages 147–160, New York, NY, USA, 2008. ACM.

[APR99a] Swarup Acharya, Viswanath Poosala, and Sridhar Ramaswamy. Selec-
tivity estimation in spatial databases. In SIGMOD ’99: Proceedings of
the 1999 ACM SIGMOD international conference on Management of
data, pages 13–24, New York, NY, USA, 1999. ACM.

[APR99b] Swarup Acharya, Viswanath Poosala, and Sridhar Ramaswamy. Selec-
tivity estimation in spatial databases. In SIGMOD ’99: Proceedings of
the 1999 ACM SIGMOD international conference on Management of
data, pages 13–24, New York, NY, USA, 1999. ACM.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In VLDB ’94: Proceedings of the
20th International Conference on Very Large Data Bases, pages 487–
499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[AS00] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data
mining. SIGMOD Rec., 29(2):439–450, 2000.

[AST05] Rakesh Agrawal, Ramakrishnan Srikant, and Dilys Thomas. Privacy
preserving olap. In SIGMOD ’05: Proceedings of the 2005 ACM SIG-
MOD international conference on Management of data, pages 251–262,
New York, NY, USA, 2005. ACM.

118 References

[AW89] Nabil R. Adam and John C. Worthmann. Security-control methods
for statistical databases: a comparative study. ACM Comput. Surv.,
21(4):515–556, 1989.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and issues in data stream systems. In PODS,
pages 1–16, 2002.

[BC07] Angela Bonifati and Alfredo Cuzzocrea. Xppx: A lightweight framework
for privacy preserving p2p xml databases in very large publish-subscribe
systems. In EC-Web, pages 21–34, 2007.

[BCG01] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Stholes: a mul-
tidimensional workload-aware histogram. SIGMOD Record (ACM Spe-
cial Interest Group on Management of Data), 30(2):211–222, 2001.

[BDM02] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from
a moving window over streaming data. In SODA ’02: Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 633–634, Philadelphia, PA, USA, 2002. Society for Industrial and
Applied Mathematics.

[BFSS03] Francesco Buccafurri, Filippo Furfaro, Domenico Sacca, and Cristina
Sirangelo. A quad-tree based multiresolution approach for two-
dimensional summary data. In SSDBM ’03: Proceedings of the 15th
International Conference on Scientific and Statistical Database Man-
agement, pages 127–140, Washington, DC, USA, 2003. IEEE Computer
Society.

[BG92] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall,
second edition, 1992.

[BG04] Wolf-Tilo Balke and Ulrich Güntzer. Multi-objective query processing
for database systems. In VLDB ’04: Proceedings of the Thirtieth in-
ternational conference on Very large data bases, pages 936–947. VLDB
Endowment, 2004.

[Bha00] Bharat K. Bhargava. Security in data warehousing. In DaWaK 2000:
Proceedings of the Second International Conference on Data Ware-
housing and Knowledge Discovery, pages 287–289, London, UK, 2000.
Springer-Verlag.

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The sky-
line operator. In Proceedings of the 17th International Conference on
Data Engineering, pages 421–430, Washington, DC, USA, 2001. IEEE
Computer Society.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM,
11(4):481–494, 1964.

[BS86] G. Berry and R. Sethi. From regular expressions to deterministic au-
tomata. Theor. Comput. Sci., 48(1):117–126, 1986.

[BTW+06] Yijian Bai, Hetal Thakkar, Haixun Wang, Chang Luo, and Carlo Zan-
iolo. A data stream language and system designed for power and ex-
tensibility. In CIKM ’06: Proceedings of the 15th ACM international
conference on Information and knowledge management, pages 337–346,
New York, NY, USA, 2006. ACM.

[BW01] Shivnath Babu and Jennifer Widom. Continuous queries over data
streams. SIGMOD Rec., 30(3):109–120, 2001.

References 119

[BWL+07] Yijian Bai, Fusheng Wang, Peiya Liu, Carlo Zaniolo, and Shaorong Liu.
Rfid data processing with a data stream query language. In ICDE,
pages 1184–1193, 2007.

[BYG96] Ricardo A. Baeza-Yates and Gaston H. Gonnet. Fast text search-
ing for regular expressions or automaton searching on tries. J. ACM,
43(6):915–936, 1996.

[CcC+02] Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and
Stanley B. Zdonik. Monitoring streams - a new class of data manage-
ment applications. In VLDB, pages 215–226, 2002.

[CCC+03] Sirish Chandrasekaran, Sirish Ch, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krish-
namurthy, Sam Madden, Vijayshankar Raman, Fred Reiss, and Mehul
Shah. Telegraphcq: Continuous dataflow processing for an uncertan
world, 2003.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An overview of data ware-
housing and olap technology. SIGMOD Rec., 26(1):65–74, March 1997.

[CDD+01] Surajit Chaudhuri, Gautam Das, Mayur Datar, Rajeev Motwani, and
Vivek R. Narasayya. Overcoming limitations of sampling for aggrega-
tion queries. In Proceedings of the 17th International Conference on
Data Engineering, pages 534–542, Washington, DC, USA, 2001. IEEE
Computer Society.

[CFG+05] Alfredo Cuzzocrea, Filippo Furfaro, Sergio Greco, Elio Masciari,
Giuseppe M. Mazzeo, and Domenico Sacca. A distributed system for
answering range queries on sensor network data. In PERCOMW ’05:
Proceedings of the Third IEEE International Conference on Pervasive
Computing and Communications Workshops, pages 369–373, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[CFM+04] Alfredo Cuzzocrea, Filippo Furfaro, Elio Masciari, Domenico Saccà,
and Cristina Sirangelo. Approximate query answering on sensor net-
work data streams. 2004.

[CFMS04] Alfredo Cuzzocrea, Filippo Furfaro, Giuseppe M. Mazzeo, and
Domenico Sacca. A grid framework for approximate aggregate query
answering on summarized sensor network readings. In In Proceedings of
the 1st International Workshop on Grid Computing and its Application
to Data Analysis, LNCS, pages 144–153, 2004.

[CJ09] Sharma Chakravarthy and Qingchun Jiang. Stream Data Processing:
A Quality of Service Perspective Modeling, Scheduling, Load Shedding,
and Complex Event Processing. Springer Publishing Company, Incor-
porated, 2009.

[CJSS03] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: a stream database for network applications.
In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 647–651, New York, NY,
USA, 2003. ACM.

[CKR08] Alfredo Cuzzocrea, Abhas Kumar, and Vincenzo Russo. Experimenting
the query performance of a grid-based sensor network data warehouse.
In Globe, pages 105–119, 2008.

120 References

[CKV+02] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and
Michael Y. Zhu. Tools for privacy preserving distributed data mining.
SIGKDD Explor. Newsl., 4(2):28–34, 2002.

[CO82] F. Y. Chin and G. Ozsoyoglu. Auditing and inference control in statis-
tical databases. IEEE Trans. Softw. Eng., 8(6):574–582, 1982.

[Col96] George Colliat. Olap, relational, and multidimensional database sys-
tems. SIGMOD Rec., 25(3):64–69, 1996.

[CR02] Junghoo Cho and Sridhar Rajagopalan. A fast regular expression in-
dexing engine. In ICDE ’02: Proceedings of the 18th International Con-
ference on Data Engineering, page 419, Washington, DC, USA, 2002.
IEEE Computer Society.

[CR08] Alfredo Cuzzocrea and Vincenzo Russo. Compressing data cubes in
the presence of simultaneous multiple olap queries. In SEBD, pages
422–429, 2008.

[CRS08] Alfredo Cuzzocrea, Vincenzo Russo, and Domenico Saccà. A robust
sampling-based framework for privacy preserving olap. In DaWaK,
pages 97–114, 2008.

[CRSS07] Alfredo Cuzzocrea, Vincenzo Russo, Domenico Saccà, and Paolo Ser-
afino. Advanced olap visualization of multidimensional data cubes:
A semantics-driven compression approach. In SEBD, pages 365–372,
2007.

[CSA05] N. Chaudhry, K. Shaw, and M. Abdelguerfi. Stream Data Management
(Advances in Database Systems). Springer, 1 edition, April 2005.

[CT98] Luca Cabibbo and Riccardo Torlone. From a procedural to a visual
query language for olap. Scientific and Statistical Database Manage-
ment, International Conference on, 0:74, 1998.

[Cuz05] Alfredo Cuzzocrea. Overcoming limitations of approximate query an-
swering in olap. In IDEAS ’05: Proceedings of the 9th International
Database Engineering & Application Symposium, pages 200–209, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[Cuz06a] Alfredo Cuzzocrea. Accuracy control in compressed multidimensional
data cubes for quality of answer-based olap tools. In SSDBM ’06:
Proceedings of the 18th International Conference on Scientific and Sta-
tistical Database Management, pages 301–310, Washington, DC, USA,
2006. IEEE Computer Society.

[Cuz06b] Alfredo Cuzzocrea. Improving range-sum query evaluation on data
cubes via polynomial approximation. Data Knowl. Eng., 56(2):85–121,
2006.

[CW07] Alfredo Cuzzocrea and Wei Wang. Approximate range-sum query an-
swering on data cubes with probabilistic guarantees. J. Intell. Inf.
Syst., 28(2):161–197, 2007.

[DF02] Josep Domingo-Ferrer, editor. Inference Control in Statistical
Databases, From Theory to Practice, volume 2316 of Lecture Notes in
Computer Science. Springer, 2002.

[DFK+01] G. Duncan, S. Fienberg, R. Krishnan, R. Padman, and S. Roehrig.
Disclosure limitation methods and information loss for tabular data.
In Confidentiality, Disclosure, and Data Access: Theory and Practical
Applications for Statistical Agencies, 2001.

[DGGR02] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi.
Processing complex aggregate queries over data streams. In SIGMOD

References 121

’02: Proceedings of the 2002 ACM SIGMOD international conference
on Management of data, pages 61–72, New York, NY, USA, 2002. ACM.

[DGIM02] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
Maintaining stream statistics over sliding windows. SIAM J. Comput.,
31(6):1794–1813, 2002.

[DIG07] Yanlei Diao, Neil Immerman, and Daniel Gyllstrom. Sase+: An agile
language for kleene closure over event streams, 2007.

[DJL79] David Dobkin, Anita K. Jones, and Richard J. Lipton. Secure
databases: protection against user influence. ACM Trans. Database
Syst., 4(1):97–106, 1979.

[DS83] D. E. Denning and J. Schlorer. Inference controls for statistical
databases. Computer, 16(7):69–82, 1983.

[FK06] Jianchun Fan and Subbarao Kambhampati. Multi-objective query pro-
cessing for data aggregation, 2006.

[FSGM+98] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Mot-
wani, and Jeffrey D. Ullman. Computing iceberg queries efficiently. In
VLDB ’98: Proceedings of the 24rd International Conference on Very
Large Data Bases, pages 299–310, San Francisco, CA, USA, 1998. Mor-
gan Kaufmann Publishers Inc.

[GCB+97] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don
Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. J. Data Mining and Knowledge Discovery, 1(1):29–
53, 1997.

[GJJ97] Michael Gebhardt, Matthias Jarke, and Stephan Jacobs. A toolkit for
negotiation support interfaces to multi-dimensional data. In SIGMOD
’97: Proceedings of the 1997 ACM SIGMOD international conference
on Management of data, pages 348–356, New York, NY, USA, 1997.
ACM.

[GKS01] Johannes Gehrke, Flip Korn, and Divesh Srivastava. On computing
correlated aggregates over continual data streams. In SIGMOD ’01:
Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, pages 13–24, New York, NY, USA, 2001. ACM.

[GKTD00a] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta
Domeniconi. Approximating multi-dimensional aggregate range queries
over real attributes. SIGMOD Rec., 29(2):463–474, 2000.

[GKTD00b] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta
Domeniconi. Approximating multi-dimensional aggregate range queries
over real attributes. SIGMOD Rec., 29(2):463–474, 2000.

[GM98] Phillip B. Gibbons and Yossi Matias. New sampling-based summary
statistics for improving approximate query answers. In SIGMOD ’98:
Proceedings of the 1998 ACM SIGMOD international conference on
Management of data, pages 331–342, New York, NY, USA, 1998. ACM.

[GNPP07] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Tra-
jectory pattern mining. In KDD ’07: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 330–339, New York, NY, USA, 2007. ACM.

[GÖ03a] Lukasz Golab and M. Tamer Özsu. Issues in data stream management.
SIGMOD Record, 32(2):5–14, 2003.

122 References

[GÖ03b] Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-
joins in continuous queries over data streams. In VLDB, pages 500–511,
2003.

[GW76] Patricia P. Griffiths and Bradford W. Wade. An authorization mech-
anism for a relational database system. ACM Trans. Database Syst.,
1(3):242–255, 1976.

[HAMS97] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan
Srikant. Range queries in olap data cubes. SIGMOD Rec., 26(2):73–88,
1997.

[Han05] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[HFAE03] Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and
Ahmed K. Elmagarmid. Scheduling for shared window joins over data
streams. In VLDB, pages 297–308, 2003.

[HH05] Lilian Harada and Yuuji Hotta. Order checking in a cpoe using event
analyzer. In CIKM ’05: Proceedings of the 14th ACM international
conference on Information and knowledge management, pages 549–555,
New York, NY, USA, 2005. ACM.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation (3rd Edi-
tion). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2006.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In SIGMOD ’00: Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 1–12,
New York, NY, USA, 2000. ACM.

[HS98] Mohand-Said Hacid and Ulrike Sattler. Modeling multidimensional
databases: A formal object-centered approach. In In: Proc. of the 6th
European Conference on Information Systems (ECIS, 1998.

[HZW+05] Ming Hua, Shouzhi Zhang, Wei Wang, Haofeng Zhou, and Baile Shi.
Fmc: An approach for privacy preserving olap. In DaWaK, volume
3589, 2005.

[Jol02] I. T. Jolliffe. Principal Component Analysis. Springer, second edition,
October 2002.

[JSA05] Ruoming Jin, Kaushik Sinha, and Gagan Agrawal. Simultaneous opti-
mization of complex mining tasks with a knowledgeable cache. In KDD
’05: Proceedings of the eleventh ACM SIGKDD international confer-
ence on Knowledge discovery in data mining, pages 600–605, New York,
NY, USA, 2005. ACM.

[JSSS01] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S.
Subrahmanian. Flexible support for multiple access control policies.
ACM Trans. Database Syst., 26(2):214–260, 2001.

[KJP77] Donald E. Knuth, Jr, and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[KMS00] Nick Koudas, S. Muthukrishnan, and Divesh Srivastava. Optimal his-
tograms for hierarchical range queries. In Proceedings of the Nine-
teenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, May 15-17, 2000, Dallas, Texas, USA, pages 196–
204. ACM, 2000.

References 123

[KP03] Panos Kalnis and Dimitris Papadias. Multi-query optimization for on-
line analytical processing. Inf. Syst., 28(5):457–473, 2003.

[KS03] Nick Koudas and Divesh Srivastava. Data stream query processing: a
tutorial. In VLDB ’2003: Proceedings of the 29th international confer-
ence on Very large data bases, pages 1149–1149. VLDB Endowment,
2003.

[LCP+07] Yunhao Liu, Lei Chen, Jian Pei, Qiuxia Chen, and Yiyang Zhao. Min-
ing frequent trajectory patterns for activity monitoring using radio fre-
quency tag arrays. In PERCOM ’07: Proceedings of the Fifth IEEE In-
ternational Conference on Pervasive Computing and Communications,
pages 37–46, Washington, DC, USA, 2007. IEEE Computer Society.

[LHLG08] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez. Traclass:
trajectory classification using hierarchical region-based and trajectory-
based clustering. Proc. VLDB Endow., 1(1):1081–1094, 2008.

[LHW07] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering:
a partition-and-group framework. In SIGMOD ’07: Proceedings of the
2007 ACM SIGMOD international conference on Management of data,
pages 593–604, New York, NY, USA, 2007. ACM.

[LJLR08] Dong Gyu Lee, Young Jin Jung, Young Wook Lee, and Keun Ho
Ryu. Hashed multiple lists: A stream filter for processing continuous
query with multiple attributes in geosensor networks. In CITWORK-
SHOPS ’08: Proceedings of the 2008 IEEE 8th International Conference
on Computer and Information Technology Workshops, pages 104–109,
Washington, DC, USA, 2008. IEEE Computer Society.

[LM92] T. Y. Cliff Leung and Richard R. Muntz. Temporal query process-
ing and optimization in multiprocessor database machines. In VLDB
’92: Proceedings of the 18th International Conference on Very Large
Data Bases, pages 383–394, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

[LMT+05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.
Tucker. No pane, no gain: efficient evaluation of sliding-window aggre-
gates over data streams. SIGMOD Rec., 34(1):39–44, 2005.

[LTWZ05] Chang Luo, Hetal Thakkar, Haixun Wang, and Carlo Zaniolo. A native
extension of sql for mining data streams. In SIGMOD ’05: Proceedings
of the 2005 ACM SIGMOD international conference on Management
of data, pages 873–875, New York, NY, USA, 2005. ACM.

[Luc08] David Luckham. The power of events: An introduction to complex
event processing in distributed enterprise systems. In RuleML, page 3,
2008.

[LWL07] Shaorong Liu, Fusheng Wang, and Peiya Liu. Integrated data modeling
for querying physical objects in rfid-enabled pervasive computing. In
MDM ’07: Proceedings of the 2007 International Conference on Mobile
Data Management, pages 140–145, Washington, DC, USA, 2007. IEEE
Computer Society.

[LWZ04] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Query languages and
data models for database sequences and data streams. In VLDB, pages
492–503, 2004.

[McC76] Edward M. McCreight. A space-economical suffix tree construction
algorithm. J. ACM, 23(2):262–272, 1976.

124 References

[MM90] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line
string searches. In SODA ’90: Proceedings of the first annual ACM-
SIAM symposium on Discrete algorithms, pages 319–327, Philadelphia,
PA, USA, 1990. Society for Industrial and Applied Mathematics.

[MMM06] Francesco M. Malvestuto, Mauro Mezzini, and Marina Moscarini. Au-
diting sum-queries to make a statistical database secure. ACM Trans.
Inf. Syst. Secur., 9(1):31–60, 2006.

[MRSR01] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham.
Materialized view selection and maintenance using multi-query opti-
mization. SIGMOD Rec., 30(2):307–318, 2001.

[MTZ08] Barzan Mozafari, Hetal Thakkar, and Carlo Zaniolo. Verifying and min-
ing frequent patterns from large windows over data streams. In ICDE
’08: Proceedings of the 2008 IEEE 24th International Conference on
Data Engineering, pages 179–188, Washington, DC, USA, 2008. IEEE
Computer Society.

[MVSV03] Andreas S. Maniatis, Panos Vassiliadis, Spiros Skiadopoulos, and Yan-
nis Vassiliou. Cpm: A cube presentation model for olap. In DaWaK,
pages 4–13, 2003.

[MW94] Udi Manber and Sun Wu. Glimpse: a tool to search through entire
file systems. In WTEC’94: Proceedings of the USENIX Winter 1994
Technical Conference on USENIX Winter 1994 Technical Conference,
pages 4–4, Berkeley, CA, USA, 1994. USENIX Association.

[NK01] Zaiqing Nie and Subbarao Kambhampati. Joint optimization of cost
and coverage of query plans in data integration. In CIKM ’01: Proceed-
ings of the tenth international conference on Information and knowledge
management, pages 223–230, New York, NY, USA, 2001. ACM.

[Pap84] A. Papoulis. Probability, Random Variables, and Stochastic Processes.
Mc-Graw Hill, 1984.

[PHB07] Jaekwan Park, Bonghee Hong, and Chaehoon Ban. A continuous query
index for processing queries on rfid data stream. In RTCSA ’07: Pro-
ceedings of the 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 138–145, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[PI97] Viswanath Poosala and Yannis E. Ioannidis. Selectivity estimation
without the attribute value independence assumption. In VLDB ’97:
Proceedings of the 23rd International Conference on Very Large Data
Bases, pages 486–495, San Francisco, CA, USA, 1997. Morgan Kauf-
mann Publishers Inc.

[PP99] Chang-Shing Perng and Douglas Stott Parker, Jr. Sql/lpp: A time se-
ries extension of sql based on limited patience patterns. In DEXA ’99:
Proceedings of the 10th International Conference on Database and Ex-
pert Systems Applications, pages 218–227, London, UK, 1999. Springer-
Verlag.

[PP00] Torsten Priebe and Günther Pernul. Towards olap security design —
survey and research issues. In DOLAP ’00: Proceedings of the 3rd ACM
international workshop on Data warehousing and OLAP, pages 33–40,
New York, NY, USA, 2000. ACM.

[RDR+98] Raghu Ramakrishnan, Donko Donjerkovic, Arvind Ranganathan,
Kevin S. Beyer, and Muralidhar Krishnaprasad. Srql: Sorted relational

References 125

query language. In SSDBM ’98: Proceedings of the 10th International
Conference on Scientific and Statistical Database Management, pages
84–95, Washington, DC, USA, 1998. IEEE Computer Society.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. IEEE Computer, 29(2):38–
47, 1996.

[Sch81] Jan Schlörer. Security of statistical databases: multidimensional trans-
formation. ACM Trans. Database Syst., 6(1):95–112, 1981.

[Sel88] Timos K. Sellis. Multiple-query optimization. ACM Trans. Database
Syst., 13(1):23–52, 1988.

[Ses98] Praveen Seshadri. Predator: a resource for database research. SIGMOD
Rec., 27(1):16–20, 1998.

[SG90] T. Sellis and S. Ghosh. On the multiple-query optimization problem.
IEEE Trans. on Knowl. and Data Eng., 2(2):262–266, 1990.

[Sho97] Arie Shoshani. Olap and statistical databases: similarities and dif-
ferences. In PODS ’97: Proceedings of the sixteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages
185–196, New York, NY, USA, 1997. ACM.

[SLR94] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Sequence
query processing. SIGMOD Rec., 23(2):430–441, 1994.

[SLXN06] Y. Sung, Yao Liu, Hui Xiong, and A. Ng. Privacy preservation for data
cubes. Knowl. Inf. Syst., 9(1):38–61, 2006.

[SO87] Alan Stuart and J. Keith Ord. Kendall’s advanced theory of statistics.
Griffin, London, 5. ed. edition, 1987.

[SP07] Alok Sharma and Kuldip K. Paliwal. Fast principal component analysis
using fixed-point algorithm. Pattern Recogn. Lett., 28(10):1151–1155,
2007.

[SS95] Praveen Seshadri and Arun N. Swami. Generalized partial indexes.
In ICDE ’95: Proceedings of the Eleventh International Conference on
Data Engineering, pages 420–427, Washington, DC, USA, 1995. IEEE
Computer Society.

[Swe02] Latanya Sweeney. k-anonymity: a model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570, 2002.

[SZZA01a] Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. Optimiza-
tion of sequence queries in database systems. In PODS ’01: Proceed-
ings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 71–81, New York, NY, USA, 2001.
ACM.

[SZZA01b] Reza Sadri, Carlo Zaniolo, Amir M. Zarkesh, and Jafar Adibi. A se-
quential pattern query language for supporting instant data mining for
e-services. In VLDB ’01: Proceedings of the 27th International Con-
ference on Very Large Data Bases, pages 653–656, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

[SZZA04] Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. Expressing
and optimizing sequence queries in database systems. ACM Trans.
Database Syst., 29(2):282–318, 2004.

[TGNO92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Contin-
uous queries over append-only databases. In SIGMOD ’92: Proceedings
of the 1992 ACM SIGMOD international conference on Management
of data, pages 321–330, New York, NY, USA, 1992. ACM.

126 References

[Ukk95] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

[Vas98] Panos Vassiliadis. Modeling multidimensional databases, cubes and
cube operations. In SSDBM ’98: Proceedings of the 10th International
Conference on Scientific and Statistical Database Management, pages
53–62, Washington, DC, USA, 1998. IEEE Computer Society.

[VWI98] Jeffrey Scott Vitter, Min Wang, and Bala Iyer. Data cube approxi-
mation and histograms via wavelets. In CIKM ’98: Proceedings of the
seventh international conference on Information and knowledge man-
agement, pages 96–104, New York, NY, USA, 1998. ACM.

[WBTG06] Ying Wang, Shuo Bai, Jianlong Tan, and Li Guo. Efficient filtering
query indexing in data stream. In WISE Workshops, pages 1–12, 2006.

[WJW04] Lingyu Wang, Sushil Jajodia, and Duminda Wijesekera. Securing olap
data cubes against privacy breaches. Security and Privacy, IEEE Sym-
posium on, 0:161, 2004.

[WRGB06a] Song Wang, Elke Rundensteiner, Samrat Ganguly, and Sudeept Bhat-
nagar. State-slice: new paradigm of multi-query optimization of
window-based stream queries. In VLDB ’06: Proceedings of the 32nd in-
ternational conference on Very large data bases, pages 619–630. VLDB
Endowment, 2006.

[WRGB06b] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, and Sudeept
Bhatnagar. State-slice: New paradigm of multi-query optimization of
window-based stream queries. In VLDB, pages 619–630, 2006.

[WWJ04] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. Cardinality-
based inference control in data cubes. J. Comput. Secur., 12(5):655–
692, 2004.

[WZ03] Haixun Wang and Carlo Zaniolo. Atlas: A native extension of sql for
data mining. In SDM, 2003.

[XHCL06] Dong Xin, Jiawei Han, Hong Cheng, and Xiaolei Li. Answering top-k
queries with multi-dimensional selections: the ranking cube approach.
In VLDB ’06: Proceedings of the 32nd international conference on Very
large data bases, pages 463–474. VLDB Endowment, 2006.

[yfi02] Yfilter: Efficient and scalable filtering of xml documents. In ICDE ’02:
Proceedings of the 18th International Conference on Data Engineering,
page 341, Washington, DC, USA, 2002. IEEE Computer Society.

[ZWCC07] Fred Zemke, Andrew Witwoski, Mitch Cherniak, and Latha Colby. Pat-
tern matching in sequences of rows. 2007.

[ZZC04] Nan Zhang, Wei Zhao, and Jianer Chen. Cardinality-based inference
control in olap systems: an information theoretic approach. In DOLAP
’04: Proceedings of the 7th ACM international workshop on Data ware-
housing and OLAP, pages 59–64, New York, NY, USA, 2004. ACM.

