

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XX ciclo

Tesi di Dottorato

Discovering Exceptional Individuals
and Properties in Data

Fabio Fassetti

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XX ciclo

Tesi di Dottorato

Discovering Exceptional Individuals
and Properties in Data

Fabio Fassetti

Coordinatore
Prof. Domenico Talia

Supervisori

DEIS

DEIS – Dipartimento di Elettronica, Informatica e Sistemistica
Novembre 2007

Settore Scientifico Disciplinare: ING–INF/05

Acknowledgments

I wish to gratefully acknowledge my Ph.D. supervisor Luigi Palopoli for his
teachings and for having provided me with ideas and suggestions; my super-
visor Fabrizio Angiulli for having been a guidance for me, for his encourage-
ments and for his support as a friend. I want to thank my Ph.D. coordinator,
Domenico Talia, and all the colleagues I worked with during these years, for
many valuable comments and stimulating discussions. My deepest gratitude
goes to my family and to all my friends for their help, their unlimited support
in any difficult time and for making pleasant my days.

Contents

1 Introduction . 7
1.1 Overview on Exceptional Object Discovery 9

1.1.1 Outlier Detection . 9
1.1.2 Anomalies in Streams of Data . 11

1.2 Overview on Exceptional Property Discovery 12

Part I Outlier Detection

2 The Outlier Detection Problem . 17
2.1 Introduction . 17
2.2 Related Work . 20

3 Outlier Detection in Data . 25
3.1 Contribution . 25
3.2 Algorithm . 26
3.3 Analysis of the algorithm . 29

3.3.1 Spatial cost analysis . 29
3.3.2 Implementation and time cost analysis 32

3.4 Experimental Results . 33

4 Outlier Detection in Streams of Data . 41
4.1 Contribution . 41
4.2 Statement of the Problem . 41
4.3 Algorithm . 43

4.3.1 Exact algorithm . 44
4.3.2 Approximate algorithm . 46

4.4 Analysis of the Algorithm . 48
4.4.1 Approximation Error Bounds . 48
4.4.2 Implementation and Cost Analysis 53

4.5 Experimental results . 55

VIII Contents

Part II Outlying Property Detection

5 Detecting Outlying Properties of Exceptional Objects 61
5.1 Introduction . 61
5.2 Related Work . 62
5.3 Contribution . 67
5.4 Outlying Properties . 69

5.4.1 Preliminaries . 69
5.4.2 Outlierness . 71
5.4.3 Outlier Explanations . 75

5.5 The Outlying Property Detection Problem 76
5.6 Complexity of The Outlying Property Detection Problem 76

5.6.1 Preliminaries on Computational Complexity 77
5.6.2 Complexity analysis . 78

5.7 Upper Bound Properties . 87
5.8 Algorithms . 96

5.8.1 Global outlying properties . 96
5.8.2 Local Outlying Properties . 98

5.9 Algorithm implementation details, time and spatial cost 100
5.9.1 Data structures . 100
5.9.2 Temporal cost . 105
5.9.3 Spatial cost . 106

5.10 Experimental results . 107
5.10.1 Scalability . 107
5.10.2 Sensitivity to parameters . 109
5.10.3 About mined knowledge . 110
5.10.4 Random data . 114

Conclusion . 115

References . 117

List of Figures

3.1 The DOLPHIN distance-based outlier detection algorithm. 26
3.2 Analysis of the algorithm. 29
3.3 Course of the size of INDEX. 35
3.4 Execution time and effectiveness of pruning rules. 36
3.5 Sensitivity to parameters R and k. 37
3.6 Comparison with other methods. 38

4.1 Exact data stream distance-based outlier detection algorithm. . . 44
4.2 Approximate data stream distance-based outlier detection

algorithm. 45
4.3 Precision and Recall of approx-STORM. 54
4.4 Number of nearest neighbors associated with the misclassified

objects of the Rain data set. 56

5.1 Zoo database (A=hair, B=feathers, C=eggs, D=milk,
E=airborne, F=aquatic, G=predator, H=toothed,
I=backbone, J=breathes, K=venomous, L=fins, M=legs
(set of values: 0,2,4,5,6,8), N=tail, O=domestic, P=catsize,
Q=type (integer values in range [1,7])). 63

5.2 Example Database . 70
5.3 Histograms of the example data base. 71
5.4 The areas associated with the curve of the cumulated

frequency histogram. 72
5.5 Example of outlierness computation. 73
5.6 Example of Dataset with Functional Dependencies 75
5.7 An example of the reduction used in Theorem 3 79
5.8 Example of reduction used in Theorem 4 . 81
5.9 Example of upper bounds obtained on the database DBex. 94
5.10 The algorithm FindOutliers. 97
5.11 The algorithm FindLocalOutliers. 98
5.12 Example of data structure db. 101

2 List of Figures

5.13 Index structure . 102
5.14 Example of frequency histogram management. 104
5.15 Explanation tree example. 106
5.16 Experimental results on the synthetical data set family. 108
5.17 Mean number of node visited (starting from the top of each

figure the curves are for σ = 0.25, 0.5, 0.75, and 1.0). Notice
that, on the Voting records database, curves for σ = 0.75 and
σ = 1.0 overlap. 109

5.18 Mean execution times per node (milliseconds). 111

List of Tables

3.1 Experiments on a massive dataset. 39

4.1 Elaboration time per single object [msec]. 57

5.1 Computational complexity results concerning the outlying
property detection problem. 87

5.2 Breast cancer data: attribute domains. 113
5.3 Random dataset family: experimental results. 114

List Of Publications

Fabio Fassetti, Gianluigi Greco and Giorgio Terracina. Efficient discovery of
loosely structured motifs in biological data. In Proceedings of the 2006 ACM
Symposium on Applied Computing(SAC), pages 151–155, 2006.

Fabrizio Angiulli, Fabio Fassetti and Luigi Palopoli. Un metodo per la scoperta
di proprietà inattese. In Proceedings of the Fourteenth Italian Symposium on
Advanced Database Systems (SEBD), pages 321–328, 2006.

Fabio Fassetti, Gianluigi Greco and Giorgio Terracina. L-SME: A Tool for
the Efficient Discovery of Loosely Structured Motifs in Biological Data. In
Proceedings of the Fifteenth Italian Symposium on Advanced Database Systems
(SEBD), pages 389–396, 2007.

Fabio Fassetti and Bettina Fazzinga. FOX: Inference of Approximate Func-
tional Dependencies from XML Data. In Proceedings of Eighteenth Inter-
national Workshop on Database and Expert Systems Applications (DEXA),
pages 10–14, 2007.

Fabio Fassetti and Bettina Fazzinga. Approximate Functional Dependencies
for XML Data. In Local Proceedings of Eleventh East-European Conference on
Advances in Databases and Information Systems (ADBIS), pages 86–95,2007.

Fabrizio Angiulli and Fabio Fassetti. Very Efficient Mining of Distance-Based
Outlier. In Proceedings of the 2007 ACM CIKM International Conference on
Information and Knowledge Management, pages 791–800, 2007.

Fabrizio Angiulli and Fabio Fassetti. Detecting Distance-Based Outliers in
Streams of Data. In Proceedings of the 2007 ACM CIKM International Con-
ference on Information and Knowledge Management, pages 811–820, 2007.

Fabrizio Angiulli, Fabio Fassetti and Luigi Palopoli. Detecting Outlying Prop-
erties of Exceptional Objects.Submitted to an international journal, 2007.

Fabio Fassetti, Gianluigi Greco and Giorgio Terracina. Mining Loosely Struc-
tured Motifs from Biological Data. Submitted to an international journal,
2007.

1

Introduction

This thesis aims at providing novel techniques and methods in the complex
scenario of knowledge discovery. This research field can be defined as “the
nontrivial extraction of implicit, previously unknown, and potentially useful
information from data”, and it has witnessed increasing interest in the last
few years and a lot of research efforts have been spent on related problems.
Knowledge discovery tasks mainly belong to four general categories:

1. dependency inference
2. class identification
3. class description
4. outlier detection

The former three categories focus on the search of characteristics applicable
to a large percentage of objects. Many data mining tasks belong to these
categories as association rules, classification and data clustering. Conversely,
the fourth category deals with a very small percentage of dataset objects,
which are often regarded as noise. Nevertheless, “one person’s noise may be
another person’s signal”. Indeed, in a lot of real world domains, an object
that, for some reasons, is different from the majority of the population which it
belongs to, is the real interesting knowledge to be inferred from the population.
Think, for example, an anomalous traffic pattern in a computer network that
could signal the presence of an hacked computer. Similarly, anomalies in credit
card transaction data could represent an illegal action, or in monitoring athlete
performances, the detection of data which do not conform to expected normal
behavior, is the main issue. Many clustering, classification, and dependency
detection methods produce outliers as a by-product of their main task. For
example, in classification, mislabeled objects are considered outliers and thus
they are removed from the training set to improve the accuracy of the resulting
classifier, while, in clustering, objects that do not strongly belong to any
cluster are considered outliers. Nevertheless, searching for outliers through
techniques specifically designed for tasks different from outlier detection could
not be advantageous. As an example, clusters can be distorted by outliers

8 1 Introduction

and, thus, the quality of the outliers returned is affected by their presence.
Moreover, other than returning a solution of higher quality, outlier detection
algorithms can be vastly more efficient than non ad-hoc algorithms.

The design of novel and efficient outlier detection techniques is the field in
which the first part of this thesis aims to provide novel contributions. Here,
the discovery of exceptionalities is tackled by considering a classical setting.

On the contrary, the second part of the thesis is concerned with a novel
data mining task related to abnormality search. In classical meaning, outlier
detection consists of mining objects which are anomalous, for some reasons,
with respect to the population which they belong to. Conversely, here the
anomalous object is known in advance and the goal is to find the features it
posses that can justify its exceptionality. In more details, it is assumed that
you are given a significantly large data population characterized by a certain
number of attributes, and you are provided with the information that one of
the individuals in that data population is abnormal, but no reason whatso-
ever is given to you as to why this particular individual is to be considered
abnormal. The interest here is precisely to single out such reasons.

This thesis is organized as follows. In the following of this chapter some
data mining concepts and issues are briefly surveyed. Particular attention is
dedicated to outlier detection tasks, introducing the basic terminology and
some problems that arise in this scenario. Finally, the main contribution of
the thesis are presented.

The remainder of the thesis is divided in two parts. The first one regards
the detection of anomalous objects in a given population. In particular, Chap-
ter 2 introduces the outlier detection problem and surveys related work; Chap-
ter 3 presents a novel efficient technique for mining outlier objects coming from
huge disk-resident data sets. The statistical foundation of the efficiency of the
proposed method is investigated. An algorithm, called DOLPHIN, is presented
and its performance and its complexity are described. Finally, the results of
a large experimental campaign are reported in order to show the behavior of
DOLPHIN on both synthetic and real data cases. Furthermore, comparisons
with existing methods have been conducted, showing DOLPHIN to outper-
form the current state-of-the-art algorithms. Chapter 4 presents a method to
detect outliers in streams of data, namely, when data objects are continuously
delivered. Two algorithms are presented. The first one exactly answers outlier
queries, but has larger space requirements. The second algorithm is directly
derived from the exact one, has limited memory requirements and returns an
approximate answer based on accurate estimations with a statistical guaran-
tee. Several experiments have been accomplished, confirming the effectiveness
of the proposed approach and the high quality of approximate solutions.

The second part of the thesis is concerned with the problem of discovering
sets of attributes that account for the (a-priori stated) abnormality of an in-
dividual within a given data population. A criterion is presented to measure
the abnormality of combinations of attribute values featured by the given ab-

1.1 Overview on Exceptional Object Discovery 9

normal individual with respect to the reference population. The problem of
individuating abnormal properties is formally stated and analyzed, and the in-
volved computational complexity is discussed. Such a formal characterization
is then exploited in order to devise efficient algorithms for detecting outlying
properties. Experimental evidence, which is also accounted for, shows that
the algorithms are able to mine meaningful information and to accomplish
the computational task by examining a negligible fraction of the search space.

1.1 Overview on Exceptional Object Discovery

In exceptional object discovery, the purpose is to find the objects that are dif-
ferent from most of the other objects. These objects are referred to as outliers.
In many applications, singling out exceptional objects is much more interest-
ing than detecting common characteristics. For example, consider fraud de-
tection, commerce monitoring, athlete performances, and so on. Traditionally,
the goal of the outlier detection task is to find outliers in a given population;
nevertheless, there are many other emerging applications, such as network
flow monitoring, telecommunications, data management, etc., in which the
data set is not given, but data arrive continuously and it is either unnecessary
or impractical to store all incoming objects. In this context, a hard challenge
becomes that of finding the most exceptional objects in the data stream. In
the following of this chapter, some preliminary concepts about both outlier
detection and data streams are presented.

1.1.1 Outlier Detection

Outlier Detection aims at singling out exceptional objects. A natural ques-
tion arises, that is: “What is an exceptional object (an outlier)?”. Although
there is not a formal and general definition of an outlier, the Hawkins’ def-
inition well capture the essence of an outlier: “an outlier is an observation
that deviates so much from other observations as to arouse suspicions that
it was generated by a different mechanism”[Hawkins, 1980]. Former works in
outlier detection rely on statistics, and more than one hundred discordancy
tests have been developed to identify outliers. Nevertheless, this kind of ap-
proach is not generally applicable either because there may not be a suitable
test for a distribution or because no known distribution suitably models the
data. Moreover, since in the data mining context data distribution is almost
always unknown, a suitable standard distribution modeling data has to be
inferred from data and the cost of this operation is often high, especially for
large dataset. Thus, in recent years, numerous efforts have been made in this
outstanding context to overcome these shortcomings.

Proposed approaches to outlier detection can be mainly classified in super-
vised, semi-supervised, and unsupervised. In supervised methods, an already

10 1 Introduction

classified data set is available and it is employed as training set. The ob-
jects belonging to it are already known to be normal or abnormal, and they
are exploited to learn a model to correctly classify any other object. In semi-
supervised methods, instead, only a set of normal objects is given and available
as the training set. The aim of this methods is to find a rule to partition the
object space into regions, an accepting region and a rejecting one. The for-
mer contains the normal objects, whereas the latter contains the objects that
significantly deviate from the training set. Finally, in unsupervised methods,
no training set is given and the goal of finding outliers in a given data set is
pursued by computing a score for each object suited to reflect its degree of
abnormality. These scores are usually based on the comparison between an
object and its neighborhood.

Data mining researchers have largely focused on unsupervised approaches.
These approaches can be mainly further classified in deviation-based [Arning
et al., 1996], density-based [Breunig et al., 2000], MDEF-based [Papadimitriou
et al., 2003], and distance-based [Knorr and Ng, 1998].

Deviation-based techniques [Arning et al., 1996] identify as exceptional
the subset Ix of the overall data set I whose removal maximizes the similarity
among the objects in I\Ix.

Density-based methods, introduced in [Breunig et al., 2000], are based
on the notion of local outlier. Informally, the Local Outlier Factor (LOF)
measures the outlierness degree of an object by comparing the density in its
neighborhood with the average density in the neighborhood of its neighbors.
The density of an object is related to the distance to its kth nearest neighbor.
Density-based methods are useful when the data set is composed of subpop-
ulations with markedly different characteristics.

The multi-granularity deviation factor (MDEF), introduced in [Papadim-
itriou et al., 2003], is similar to the LOF score, but the neighborhood of an
object consists of the objects within an user-provided radius and the den-
sity of an object is defined on the basis of the number of objects lying in its
neighborhood.

Distance-based outlier detection has been introduced by Knorr and Ng
[1998] to overcome the limitations of statistical methods, this novel notion of
outliers, is a very general one and is not based on statistical considerations.
They define outliers as follows:

Definition 1. Let DB be a set of objects, k a positive integer, and R a positive
real number. An object o of DB is a distance-based outlier (or, simply, an
outlier) if less than k objects in DB lie within distance R from o.

The term DB(k,R)−outlier is a shorthand for Distance-Based outlier de-
tected using parameters k and R. Objects lying at distance not greater than
R from o are called neighbors of o. The object o is considered a neighbor of
itself.

This definition is very intuitive since it defines an outlier as an object lying
distant from others dataset objects.

1.1 Overview on Exceptional Object Discovery 11

Moreover, Definition 1 is a solid one, since it generalizes many notions of
outliers defined in statistics for standard distributions and supported by statis-
tical outlier tests. In other words, for almost all discordancy tests, if an object
o is an outlier according to a specific test, then o is also a DB(k, R)−outlier
for suitable values of parameters k and R. Nevertheless, this definition can not
replace all statistical outlier tests. For example, if no distance can be defined
between dataset objects, DB-outlier notion cannot be employed.

Some variants of the original definition have been subsequently introduced
in the literature. In the previous one, the number of DB-outliers is not fixed.
In some applications can be useful to find the top − n outliers, namely the
n outliers scoring the highest score of abnormality. Then, a score function
able to rank outliers is needed. In particular, in order to rank the outliers,
Ramaswamy et al. [2000] introduced the following definition:

Definition 2. Given two integers k and n, an object o is an outlier if less than
n objects have higher value for Dk than o, where Dk denotes the distance of
the kth nearest neighbor of the object.

Subsequently, Angiulli and Pizzuti [2002], with the aim of taking into account
the whole neighborhood of the objects, proposed to rank them on the basis of
the sum of the distances from the k nearest neighbors, rather than considering
solely the distance to the kth nearest neighbor. Therefore, they introduced the
following definition:

Definition 3. Given two integers k and n, an object is an outlier if less than
n objects have higher value for wk, where wk denotes the sum of the distances
between the object and its k nearest neighbors

Last definition was also used by Eskin et al. [2002].
The three definitions above are closely related to one another. In particular,

there exist values for the parameters such that the outliers found by using the
first definition are the same as those obtained by using the second definition,
but not the third one. In this work we will deal with the original definition
provided by Knorr and Ng [1998], even if we will compare also with approaches
following the definition given by Ramaswamy et al. [2000].

1.1.2 Anomalies in Streams of Data

A data stream is a large volume of data coming as an unbounded sequence
where, typically, older data objects are less significant than more recent ones.
This is because the characteristics of the data may change over time, and then
the most recent behavior should be given larger weight.

Therefore, data mining on evolving data streams is often performed based
on certain time intervals, called windows. Two main different data streams
window models have been introduced in literature: landmark window and
sliding window [Golab and Özsu, 2003].

12 1 Introduction

In the first model, some time points (called landmarks) are identified in
the data stream, and analysis are performed only for the stream portion which
falls between the last landmark and the current time. Then, the window is
identified by a fixed endpoint and a moving endpoint.

In contrast, in the sliding window model, the window is identified by two
sliding endpoints. In this approach, old data points are thrown out as new
points arrive. In particular, a decay function is defined, that determines the
weight of each point as a function of elapsed time since the point was observed.
A meaningful decay function is the step function. Let W be a parameter
defining the window size and let t denote the current time, the step function
evaluates to 1 in the temporal interval [t−W + 1, t], and 0 elsewhere.

In all window models the main task is to analyze the portion of the stream
within the current window, in order to mine data stream properties or to single
out objects conforming with characteristics of interest.

Due to the intrinsic characteristics of a data stream, and in particular
since it is neverending, finding outliers in a stream of data becomes a hard
challenge.

1.2 Overview on Exceptional Property Discovery

The anomaly detection issues introduced in the previous two sections is
a prominent research topic in data mining, as the numerous proposed ap-
proaches witness. A lot of efforts have been paid to discover unexpected ele-
ments in data populations and several techniques have been presented [Tan
et al., 2005].

The classical problem in outlier detection is to identify anomalous objects
in a given population. But, what does the term anomalous mean? When an
object can be defined anomalous? As discussed in the previous section, there
are many definition to establish the exceptionality of an object. An object
is identified as outlier if it possesses some characteristics, established by the
chosen definition, that the other dataset objects do not possess, or if it does
not posses some characteristics that the other dataset objects posses. Hence,
in words, the characteristics distinguishing inliers from outliers are a-priori
chosen, and then, outliers are detected according to the choice. Nevertheless,
in many real situations, a novel but related problem arises, which is someway
the inverse of the previous one: it is a-priori known which objects are inliers
and which ones are outliers and the characteristics distinguishing them have to
be detected. A limited attention has been paid till now to this problem. This
problem has many practical applications. For instance, in analyzing health
parameters of a sick patient, if a history of healthy patients is given and if
the same set of parameters is available, then it is relevant to single out that
subset of those parameters that mostly differentiate the sick patient from the
healthy population. As another example, the history of the characteristics
athlete that has established an exceptional performance can be analyzed to

1.2 Overview on Exceptional Property Discovery 13

detect those characteristics distinguishing the last exceptional performance
from the previous ones.

Hence, in this context, a population is given. It can consist of entries re-
ferred to the same individual (performance history of an athlete) or to different
individuals (sick and healthy patients), and for each entry several attributes
are stored. The outlier is known and the goal is to single out properties it
posses, that justify its abnormality. Often, such properties are subsets of at-
tribute values featured by the given outlier, that are anomalous with respect
to the population the outlier belongs to. Naturally, the following question
arises: what does the term anomalous mean? When a property can be defined
anomalous? Also in this context, a lot of definitions can be introduced. For
example, a property can be defined as anomalous, if it is different from the rest
of the population, and this difference is statistically significative. Moreover,
different definitions characterize properties referred to numerical attributes
and properties referred to categorical attribute. For example, for numerical
attributes a distance among properties can be defined, while for categorical
attributes the frequency of a property can be meaningful.

Part I

Outlier Detection

2

The Outlier Detection Problem

2.1 Introduction

In this part of the thesis, the outlier detection problem is addressed. In par-
ticular, two scenarios are considered. In the first one, outliers have to be
discovered in disk-resident data sets. These data sets can be accessed many
times, even if they are assumed to be very large and then the cost to be
spent to read them from disk is relevant. In the second scenario considered in
this thesis, data are assumed to come continuously from a given data source.
Thus, they can be read only once, and this adds further difficulties and novel
constraints to be taken in account.

There exist several approaches to the problem of singling out the objects
mostly deviating from a given collection of data [Barnett and Lewis, 1994,
Arning et al., 1996, Knorr and Ng, 1998, Breunig et al., 2000, Aggarwal and
Yu, 2001, Jin et al., 2001, Papadimitriou et al., 2003]. In particular, distance-
based approaches [Knorr and Ng, 1998] exploit the availability of a distance
function relating each pair of objects of the collection. These approaches iden-
tify as outliers the objects lying in the most sparse regions of the feature space.

Distance-based definitions [Knorr and Ng, 1998, Ramaswamy et al., 2000,
Angiulli and Pizzuti, 2002] represent an useful tool for data analysis [Knorr
and Ng, 1999, Eskin et al., 2002, Lazarevic et al., 2003]. They have robust
theoretical foundations, since they generalize diverse statistical tests. Further-
more, these definitions are computationally efficient, as distance-based outlier
scores are monotonic non-increasing with the portion of the database already
explored.

In recent years, several clever algorithms have been proposed to fast detect
distance-based outliers [Knorr et al., 2000, Ramaswamy et al., 2000, Bay and
Schwabacher, 2003, Angiulli and Pizzuti, 2005, Ghoting et al., 2006, Tao et al.,
2006]. Some of them are very efficient in terms of CPU cost, while some others
are mainly focused on minimizing the I/O cost. Nevertheless, it is worth to

18 2 The Outlier Detection Problem

notice that none of them is able to simultaneously achieve the two previously
mentioned goals when the dataset does not fit in main memory.

In this thesis a novel technique for mining distance-based outliers in an
high dimensional very large disk-resident dataset, with both near linear CPU
and I/O cost, is presented.

The proposed algorithm, DOLPHIN, performs only two sequential scans
of the data. It needs to maintain in main memory a subset of the dataset and
employs it as a summary of the objects already seen. This subset allows to
efficiently search for neighbors of data set objects and, thus, to fast determine
whether an object is an inlier or not. An important feature of the method
is that memory-resident data is indexed by using a suitable proximity search
approach. Furthermore, DOLPHIN exploits some effective pruning rules to
early detect inliers, without needing to find k neighbors for each of them.
Importantly, both theoretical justifications and empirical evidences that the
amount of main memory required by DOLPHIN is only a small fraction of
the dataset are provided. Therefore, the approach is feasible on very large
disk-resident datasets.

The I/O cost of DOLPHIN corresponds to the cost of sequentially reading
two times the input dataset file. This cost is negligible even for very large
datasets. As for the CPU cost, the algorithm performs in quadratic time but
with a little multiplicative constant, due to the introduced optimizations. In
practice, the algorithm needs to compute only a little fraction of the overall
number of distances (which is quadratic with respect to the size of the data
set) in order to accomplish its task. DOLPHIN has been compared with state
of the art methods, showing that it outperforms existing ones of at least one
order of magnitude.

As previously stated, in the data stream context, new challenges arise
along with the outlier detection problems. First of all, data come continuously.
Second, with each data stream object, a life time is associated. While in data
sets each object is equally relevant, in data streams an objects expires after
some periods of time, namely, it is no more relevant in the analysis. Third,
the characteristics of the stream, and then the characteristics of the relevant
population may change during time.

In this thesis, a contribution in a data stream setting is given. Specifically,
the problem of outlier detection adopting the sliding window model with the
step function as the decay function is addressed.

The proposed approach introduces a novel concept of querying for outliers.
Specifically, previous work deals with continuous queries, that are queries eval-
uated continuously as data stream objects arrive; conversely, here, one-time
queries are considered. This kind of queries are evaluated once over a point-
in-time (for a survey on data streams query models refer to [Babcock et al.,
2002]). The underlying intuition is that, due to stream evolution, object prop-
erties can change over time and, hence, evaluating an object for outlierness
when it arrives, although meaningful, can be reductive in some contexts and

2.1 Introduction 19

sometimes misleading. On the contrary, by classifying single objects when a
data analysis is required, data concept drift typical of streams can be cap-
tured. To this aim, it is needed to support queries at arbitrary points-in-time,
called query times, which classify the whole population in the current window
instead of the single incoming data stream object.

The example below shows how concept drift can affect the outlierness of
data stream objects.

Example 1. Consider the following figure.

o1

t2t1 t3 t4 t5 t6 t7

va
lu

e

o2

o3 R

R

o7o5o4

o6

time

o9

t2t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

va
lu

e

o12

R

R

time

o6

o11

o10

o1

o3
o5o4

o2
o7

o8

The two diagrams represent the evolution of a data stream of 1-dimensional
objects. The abscissa reports the time of arrival of the objects, while the
ordinate reports the value assumed by each object. Let the number k of nearest
neighbors to consider be equal to 3, and let the window size W be equal to 7.
The dashed line represents the current window.

The left diagram reports the current window at time t7 (comprehending
the interval [t1, t7]), whereas the right diagram reports the current window at
time t12 (comprehending the interval [t6, t12]).

First of all, consider the diagram on the left. Due to the data distribution
in the current window at time t7, the object o7 is an inlier, since it has four
neighbors in the window. Then, if an analysis were required at time t7, the
object o7 would be recognized as an inlier. Note that o7 belongs to a very
dense region.

Nevertheless, when stream evolves the data distribution change. The re-
gion, which o7 belongs to, becomes sparse, and data stream objects assume
lower values. The right figure shows the evolution of the stream until time t12.
In the novel distribution, o7 has not any neighbor. Then, if an analysis were
required at time instant t12, o7 should be recognized as an outlier. Note that
now o7 belongs to a very sparse region.

20 2 The Outlier Detection Problem

2.2 Related Work

Distance-based outliers have been first introduced by Knorr and Ng [1998],
which also presented the early three algorithms to detect distance-based out-
liers. The first one is a block nested loop algorithm that runs in O(dN2) time,
where N is the number of objects and d the dimensionality of the data set. It
extends the näıve nested loop algorithm by adopting a strategy to reduce the
number of data blocks to be read from the disk. This kind of approach has a
quadratic cost with respect to N , that can be impractical for handling large
data sets.

The second and the third one are two cell-based algorithms, which are
linear with respect to N , but exponential in d. Then, they are fast only if d
is small. In particular, the former is designed to work with memory-resident
data sets, whereas the latter deals with disk-resident ones and, then, aims at
minimizing the number of passes over the data sets (indeed it guarantees at
most three passes over the data sets). Basically, the main idea of cell-based
algorithms is to partition the space into cells of length R

2
√

d
, and counting

the number of objects within cells. The number of neighbors of an object can
be determined by examining only the cells close to the cell which the object
belongs to.

A shortcoming of this technique is that the number of cells is exponential
with respect to the number of dimensions d.

Therefore, the latter kind of techniques is impractical if d is not small, and
the former approach does not scale well w.r.t. N ; then, efforts for develop-
ing efficient algorithms scaling well to large datasets have been subsequently
made.

Ramaswamy et al. [2000] present two novel algorithms to detect outliers.
The first assumes the dataset to be stored in a spatial index, like the R∗-tree
[Beckmann et al., 1990], and uses it to compute the distance of each dataset
object from its kth nearest neighbor. Pruning optimizations to reduce the
number of distance computations while querying the index are exploited. The
authors noted that this method is computationally expensive and introduced
a partition-based algorithm to reduce the computational cost. The second
algorithm first partitions the input points using a clustering algorithm, and
then prunes the partitions that cannot contain outliers. Experiments were
reported only up to ten dimensions.

Bay and Schwabacher [2003] introduce the distance-based outlier detec-
tion algorithm ORCA. Basically, ORCA enhances the naive block nested loop
algorithm with a simple pruning rule and randomization, obtaining a near lin-
ear scaling on large and high dimensional data sets. The major merit of this
work is to show that the CPU time of the their schema is often approximately
linear in the dataset size.

In order to improve performances of ORCA, Ghoting et al. [2006] propose
the algorithm RBRP (Recursive Binning and Re-Projection). The method has
two phases. During the first phase, a divisive hierarchical clustering algorithm

2.2 Related Work 21

is used to partition objects into bins, i.e. group of objects likely to be close
to each other. Then, objects in the same bin are reorganized according to
the projection along the principal component. During the second phase, the
strategy of ORCA is employed on the clustered data, obtaining improved
performances.

Recently, Tao et al. [2006] point out that for typical values of the parame-
ters, ORCA has quadratic I/O cost. Then, they present an algorithm, named
SNIF (for ScaN with prIoritized Flushing), intended to work with datasets
that do not fit into main memory, and whose major goal is to achieve linear
I/O cost. They propose two algorithms, the first one retrieves the outliers
by scanning the dataset three times but has smaller space requirements, the
second algorithm needs to perform in some cases only two data set scans, but
has larger space requirements. Roughly speaking, the first algorithm initially
accommodates in memory a sample set of objects of fixed size s and then
counts and stores the number of neighbors within distance R

2 of these objects
by scanning the data set. Using the stored information, during a second scan,
some objects are recognized as inliers, and all the other objects are stored in
memory.

The authors show that, in practice, the total amount of memory required
is smaller than the available memory. Then, they propose a second algorithm,
which stores much more objects in memory, in order to reduce the proba-
bility of the third scan. In particular, dataset objects, and for each of them
the number of neighbors found till now, are stored. Whenever the available
memory gets full, the algorithm halves the occupied memory, by discarding
recognized inliers and by storing objects with lower priority in a verification
file. The priority is the probability that the object is an outlier. Next, a sec-
ond scan is performed to classify the objects in memory and the objects of
the verification file that are loaded in memory. If the memory becomes full
before the verification file is exhausted, then the second scan is performed to
empty the memory and a third scan is required for the remaining verification
file objects. Authors show that, in practice, the verification file contains a
very small number of objects and in some cases is empty, then SNIF needs
only two scans to accomplish its task. Furthermore, authors show that the
I/O cost of their algorithm is low and insensitive to the parameters, but time
performances of the method were not deeply investigated.

The HilOut algorithm, [Angiulli and Pizzuti, 2005], detects the top distance-
based outliers, according to the weight score, in a numerical data sets. It makes
use of the Hilbert space-filling curve in order to linearize the data set and con-
sists of two phases: the first phase guarantees at least an approximate solution,
by scanning at most d+1 times the data set and with temporal cost quadratic
in d and linear in N , where d is the number of dimensions of the data set and
N is the number of data set objects. If needed, the second phase is performed.
It provides the exact solution after a second data set scan examining the can-
didates outlier returned by the first phase. Experimental results show that the

22 2 The Outlier Detection Problem

algorithm always stops, reporting the exact solution, during the first phase
after much less than d + 1 steps.

In domains where distance computations are very expensive, e.g. the edit
distance between subsequences or the quadratic distance between image color
histograms, determining the exact solution may become prohibitive. Wu and
Jermaine [2006] considered this scenario and describe a sampling algorithm for
detecting distance-based outliers with accuracy guarantees. Roughly speaking,
the algorithm works as follows. For each data point, α points are randomly
sampled from the data set. Using the user-specified distance function, the
kth-NN distance of the data set objects in those α samples are computed.
When the data set objects end, the sampling algorithm returns the objects
whose sampled kth-NN distance is the greatest. The total number of com-
puted distances is αN , where N is the number of data set objects. Authors
analyze the statistical properties of the proposed algorithm to provide accu-
racy guarantees thereof.

This thesis presents a novel distance-based outlier detection algorithm,
named DOLPHIN (for Detecting OutLiers PusHing data into an INdex),
whose goal is to achieve both near linear CPU and I/O cost on very large
disk-resident datasets, with a small usage of main memory. It gains efficiency
by integrating pruning rules and state of the art database index technologies.

It must be preliminary noted that none of the existing methods is able
to achieve both these goals. Some algorithms exploit indexing or clustering
[Ramaswamy et al., 2000, Ghoting et al., 2006], but require to build the in-
dex, or to perform clustering, on the whole dataset, and, in some cases, to
store the clustered data in main memory. On the other hand, the technique of
detecting outliers by directly exploiting existing indexing techniques [Bentley,
1975, Beckmann et al., 1990, Berchtold et al., 1996, Böhm et al., 2001, Chávez
et al., 2001] in order to search for the kth nearest neighbor of an object, suffers
of the drawback that all the dataset objects have to be stored into the index
structure. Besides, note that the approach of computing the k nearest neigh-
bors of each object is not very efficient for outlier detection, since, for a lot of
objects, this task can be avoided by using clever algorithms. Furthermore, the
approach in [Bay and Schwabacher, 2003] works directly on disk-resident data
and is efficient in CPU time, being able to achieve roughly near linear time
for some combinations of the parameters but, as pointed out by Tao et al.
[2006], its I/O cost may be quadratic. On the other hand, the approach in
[Tao et al., 2006] keeps low the I/O cost, but it is not as efficient from the
point of view of the CPU cost (for example, note that, SNIF compares each
dataset object to all the s centroids, but s = 1,000, or greater, is a typical
value for this parameter), and cannot be used in nonmetric spaces.

DOLPHIN detects outliers in disk-resident datasets. It performs two se-
quential scans of input dataset file. During the first scan, it maintains a data
structure storing a small subset of the dataset objects in main memory, to-
gether with some additional information. This memory-resident data structure
represents a summary of the already seen objects, and it is used to determine

2.2 Related Work 23

whether the object currently read from disk is an inlier or not. If it can-
not be determined that the current object is an inlier, then it is added to
the memory-resident data. At the same time, objects already stored in main
memory could be recognized as inliers and may be discarded. By retaining
a moderate fraction of proved inliers, DOLPHIN is able to effectively exploit
the triangular inequality to early prune inliers, without the need of computing
k distances per object.

Outlier detection methods previously discussed are designed to work in a
batch framework, namely under the assumption that the whole data set is
stored in secondary memory and multiple passes over the data can be accom-
plished. Hence, they are not suitable for the online paradigm or for processing
data streams. While the majority of the approaches to detect anomalies in
data mining consider the batch framework, some researchers have attempted
to address the problem of online outlier detection. In [Yamanishi et al., 2000],
the SmartSifter system is presented, addressing the problem from the view-
point of statistical learning theory. The system employs an online discounting
learning algorithm to learn a probabilistic model representing the data source.
An important feature of the employed algorithm is that it discounts the effect
of past data in the on-line process by means of a decay function. It assigns a
score to the datum, measuring how large the model has changed after learning.
Every time a datum is input, SmartSifter updates the model and assigns a
score to the input datum on the basis of the model. In particular, SmartSifter
measures how large the model updated with the new datum has moved from
the one learned before. The algorithm returns ad outliers the data having high
scores, that have, then, an high probability of being statistical outliers.

In [Ghoting et al., 2004], authors present LOADED (Link-based Outlier
and Anomaly Detectin in Evolving Data Sets), an algorithm for outlier de-
tection in evolving data sets. The authors focus on two main aspects: first,
their algorithm accomplishes only one-pass over the data set and, then, it
is employable for on-the-fly outlier detection; second, their algorithm deals
with both categorical and continuous attributes. In particular, authors define
a metric that is able to determine dependencies between both categorical and
continuous attributes. As for categorical attributes, they define that there is a
link between two objects if they have a pair attribute-value in common. The
strength of the link between two objects is the number of links they posses.
Conversely, for continuous objects, they employ correlation coefficients be-
tween each pair of continuous attributes. Based on these dependencies, they
define that an object is linked to another one in the mixed attribute space if
there is a link between them in the categorical attribute subspace, and if their
continuous attributes adhere according to the correlation coefficients. Objects
having few objects linked to them are considered outliers.

In [Aggarwal, 2005], the focus is on detecting rare events in a data stream.
Their technique is able to detect exceptional events in a stream in which also
some other anomalies are present. These other anomalies are called spurious

24 2 The Outlier Detection Problem

abnormalities and affect the stream in a similar way as rare events. Then, they
deal with the further difficulty to capture the subtle differences between rare
events of interest and other similar, but more frequent and less interesting,
anomalies. Their method is a supervised one, and performs statistical analysis
on the stream. In particular, the incoming objects are unlabeled but when an
event is recognized as “rare” by external mechanism (for example the user
can recognize the rare event for its actual consequences) this information is
given to the system for improving the accuracy of the abnormality detection.
This algorithm continuously detects events using the data from a history, and
rare events are defined on the basis of their deviation from expected values
computed on historical trends.

In [Subramaniam et al., 2006] a distributed framework to detect outliers in
a sensor network is presented. The main focus of the work is to deal with sen-
sors, that are characterized by limited resource capabilities. In the proposed
settings, each sensor stores a model that approximates the distribution of the
data it receives. In particular, since the sliding window model is adopted, the
model refers only to data in the current window. To compute an approxi-
mation of data distributions, kernel estimators are employed. Based on these
estimations, each sensor can detect the outliers among the data it receives.
Next, in order to mine outliers of the overall network, the outliers coming by
single sensors are combined. This work detects outliers according two outlier
definitions, i.e. distance-based and MDEF-based [Papadimitriou et al., 2003].
According to the latter definition, an object o is an outlier if its number
of neighbors is statistically significantly different from the average number of
neighbors of the objects in a random sample of the neighborhood of o. It must
be said that this method is specifically designed to support sensor networks.

Moreover, all the techniques discussed above, detect anomalies online as
they arrive, and one-time queries are not supported.

In this thesis, a novel technique, called STORM, is proposed and two al-
gorithms are presented, an exact and an approximate one. The algorithms
are designed to mine distance-based outliers in data streams under the sliding
window model, and outlier queries are performed in order to detect anomalies
in the current window. The exact algorithm always returns all and only the
outliers in the window actual at query time. The approximate algorithm re-
turns an approximate set of outliers, has smaller space requirements than the
exact one, and anyway guarantees an high accuracy of the provided answer.

3

Outlier Detection in Data

3.1 Contribution

In this chapter the problem of outlier detection in data is addressed, and an
efficient algorithm for solving it is presented and analyzed in details.

This chapter is organized as follows. In this section the contribution given
by this thesis is stated. Subsequent section 4.3 describes the DOLPHIN al-
gorithm. Section 3.3 analyzes the spatial and temporal cost of DOLPHIN.
Finally, section 3.4 presents a thorough experimental activity, including com-
parison with state of the art outlier detection methods.

The contribution of this thesis in the context of the outlier detection in
data can be summarized as follows:

• DOLPHIN, a novel distance-based outlier detection algorithm, is pre-
sented, capable on working on huge disk-resident datasets, and having
I/O cost corresponding only to the cost of sequentially reading two times
the input dataset file;

• both theoretical justification and experimental evidence that, for meaning-
ful combinations of the parameters R and k, the number of objects to be
retained in memory by DOLPHIN in order to accomplish its task amounts
to a small fraction of the dataset, is provided;

• the DOLPHIN algorithm easily integrates database indexing techniques.
Indeed, by indexing the objects stored in main memory, the neighbors
of the dataset objects are searched as efficiently as possible. Importantly,
this task is accomplished without needing to preliminarily index the whole
dataset as done by other methods;

• the strategy pursued by DOLPHIN allows to have expected near linear
CPU time, for suitable combinations of the parameters R and k;

• DOLPHIN is very simple to implement and it can be used with any type
of data;

26 3 Outlier Detection in Data

Algorithm DOLPHIN

1. Build an empty DBO-index INDEX
2. Perform the first scan of the data set DB:

a) for each object obj of DB:
i. associate with it a DBO-node ncurr

ii. perform a range query search with center obj and radius R into INDEX.
For each node nindex returned by the range query:
A. if dist(obj, nindex.obj) ≤ R−nindex.rad, then stop search and report

obj as an inlier [PR1]
B. if dist(obj, nindex.obj) ≤ R, then

– oldrad = nindex.rad
– update the list nindex.nn with the object obj
– if oldrad > R and nindex.rad ≤ R then, with probability 1 −

pinliers, remove the node nindex from INDEX [PR2]
– update the list ncurr.nn with the object nindex.obj
– if ncurr.rad ≤ R then stop search and report obj as an inlier [PR3]

iii. if the range query finishes without reporting obj as an inlier, then insert
ncurr into INDEX

b) Remove from INDEX all the nodes n such that n.rad ≤ R
3. Perform the second scan of the data set DB:

a) For each object obj of DB, perform a range query search with center obj and
radius R into INDEX. For each node nindex returned by the range query:

i. if dist(obj, nindex.obj) ≤ R then
A. update the list nindex.nn with obj, taking care of avoiding duplicates
B. if nindex.rad ≤ R the delete nindex from INDEX

4. The objects n.obj stored into the remaining nodes n of INDEX are the outliers
of DB

Fig. 3.1. The DOLPHIN distance-based outlier detection algorithm.

• DOLPHIN has been compared with state of the art distance-based outlier
detection algorithms, specifically SNIF, ORCA, and RBRP, proving itself
more efficient than these ones.

3.2 Algorithm

In this section the algorithm DOLPHIN is described. The algorithm uses
a data structure called DBO-index (where DBO stands for Distance Based
Outlier) defined next.

Let DB be a disk-resident dataset. First of all the definition of DBO-node
is provided.

Definition 4. A DBO-node n is a data structure containing the following
information:

• n.obj: an object of DB;

3.2 Algorithm 27

• n.id: the record identifier of n.obj in DB;
• n.nn: a list consisting of at most k − 1 pairs (id, dst), where id is the

identifier of an object of DB lying at distance dst, not greater than R,
from n.obj;

• n.rad: the greatest distance dst stored in n.nn (n.rad is +∞ if less than
k − 1 pairs are stored in n.nn).

A DBO-index is a data structure based on DBO-nodes, as defined in the
following.

Definition 5. A DBO-index INDEX is a data structure storing DBO-nodes
and providing a method range query search that, given an object obj and a
real number R > 0, returns a (possibly strict) superset of the nodes in INDEX
associated with objects whose distance from obj is not greater than R.1

Figure 3.1 shows the algorithm DOLPHIN. The algorithm performs only
two sequential scans of the dataset.

During the first scan, the DBO-index INDEX is employed to maintain a
summary of the portion of the dataset already examined. In particular, for
each dataset object obj, the nodes already stored in INDEX are exploited in
order to attempt to prove that obj is an inlier. The object obj will be inserted
into INDEX only if, according to the schema described in the following, it will
be impossible to determine that it is an inlier. Note that, by adopting this
strategy, it is guaranteed that INDEX contains at least all the true outliers
encountered while scanning the dataset.

After having picked the next object from the dataset, first of all, a range
query search with center obj and radius R is performed into INDEX, and,
for each DBO-node nindex encountered during the search, the distance dst
between obj and nindex.obj is computed.
Since nindex.rad is the radius of a hyper-sphere centered in nindex.obj and
containing at least k − 1 dataset objects other than nindex.obj, if dst ≤ R −
nindex.rad then within distance R from obj there are at least k objects and
obj is not an outlier. In this case, the range query is stopped and the next
dataset object is considered.

Thus, this rule is used to early prune inliers. The more densely populated is
the region the object lies in, the higher the probability of being recognized as
an inlier through this rule. This can be intuitively explained by noticing that
the radius of the hyper-spheres associated to the objects lying in its proximity
is inversely proportional to the density of the region. This is the first rule used
by the algorithm to recognize inliers. Since other rules will be used to reach
the same goal, this one will be called Pruning Rule 1 (PR1 for short).

1 More precisely, assume that the method range query search is implemented
through two functions, i.e. getFirst(obj,R), returning the first node of the re-
sult set, and getNext(obj,R), returning the next node of the result set, so that
candidate neighbors are computed one at a time.

28 3 Outlier Detection in Data

Otherwise, if dst ≤ R then the list nnindex.nn (nncurr.nn, resp.) of
the nearest neighbors of nindex.obj, (ncurr.obj resp.) is updated with n.obj
(nindex.obj resp.). In particular, updating a n.nn list with a neighbor obj
of n.obj, consists in inserting in n.nn the pair (obj, dst), where dst is the
distance between obj and nn.obj. Furthermore, if after this insertion n.nn
contains more than k− 1 object, than the pair (obj′, dst′) in n.nn having the
greatest value for dst′ must be deleted from n.nn.

After having updated the nearest neighbors lists, if the radius nindex.rad
becomes less than R, then nindex.obj is recognized as an inlier. For clarity,
these objects are called in the following proved inliers. In this case there are
two basic strategies to adopt.

According to the first one, the node nindex is removed from INDEX since it
is no longer a candidate outlier (recall that an object is inserted into INDEX
only if it is not possible to determine that it is an inlier). This strategy has the
advantage of releasing space as soon as it is not strictly needed, and maybe
of making cheaper the cost of the range query search (when its cost is related
to the size of INDEX), but it may degrade inlier detection capabilities since
the PR1 becomes ineffective. Indeed, if this strategy is used, the field n.rad
of each node n stored into INDEX is always +∞, otherwise the node n has to
be cancelled from INDEX. According to the second strategy, the node nindex

is maintained into the index since it can help to detect subsequent dataset
inliers through the PR1.

In between the above two strategies, there is a third intermediate one,
that is to maintain only a percentage of the proved inliers. In particular, even
though the latter strategy makes the PR1 effective, it must be said that it
may introduce an high degree of redundancy. Being real data clustered, often
objects share neighbors with many other dataset objects. Thus, it is better
to maintain not all the proved inliers, but only a portion of them, say pinliers

percent. According to this third strategy, if nindex.rad is greater than R before
updating nindex.nn, but becomes less or equal to R after updating nindex.nn,
then, with probability pinliers, the node nindex is maintained into INDEX,
while with probability (1− pinliers) it is removed from INDEX. This pruning
rule will be referred to, in the following, as PR2. The effect of the parameter
pinliers, on the size of INDEX and on the ability in early recognizing inliers,
will be studied in the following.

As for the current dataset object obj, if ncurr.rad becomes less or equal to
R, then it is recognized as an inlier. In this case the range query is stopped,
the object in not inserted into INDEX (this is the third pruning rule of inliers,
PR3, for short, in the following), and the next dataset object is considered.

This completes the description of the first dataset scan. When the first
dataset scan terminates, INDEX contains a superset of the dataset outliers.
The goal of the second scan is to single out the true outliers among the objects
stored in INDEX. Since the proved inliers stored in INDEX at the end of the
first scan are no longer useful, they are removed from INDEX before starting
the second dataset scan.

3.3 Analysis of the algorithm 29

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Index size [m]

P
ro

ba
bi

lit
y

of
 in

se
rt

in
g

th
e

cu
rr

en
t o

bj
ec

t [
p

m
]

N=1000, x=95

k=20
k=5

(a)

0 200 400 600 800 1000
0

20

40

60

80

100
Circle, k=5, R=0.3

Number of dataset objects

N
um

be
r

of
 in

de
x

no
de

s

p
inliers

=1.0
p

inliers
=0.1

p
inliers

=0.0

(b)

0 200 400 600 800 1000
0

50

100

150

200

250

300
Circle, k=20, R=0.3

Number of dataset objects

N
um

be
r

of
 in

de
x

no
de

s

p
inliers

=1.0
p

inliers
=0.1

p
inliers

=0.0

(c)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250
Circle, R=0.3

p
inliers

In
de

x
si

ze
 a

fte
r

fir
st

 s
ca

n

k=20
k=5

(d)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Index size [m]

P
ro

ba
bi

lit
y

of
 in

se
rt

in
g

th
e

cu
rr

en
t o

bj
ec

t [
p

m
]

N=1000, x=499

k=100
k=25

(e)

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90
Clusters, k=25, R=0.400

Number of dataset objects

N
um

be
r

of
 in

de
x

no
de

s

p
inliers

=1.0
p

inliers
=0.1

p
inliers

=0.0

(f)

0 200 400 600 800 1000
0

50

100

150

200

250

300
Clusters, k=100, R=0.400

Number of dataset objects

N
um

be
r

of
 in

de
x

no
de

s

p
inliers

=1.0
p

inliers
=0.1

p
inliers

=0.0

(g)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200
Clusters, R=0.4

p
inliers

In
de

x
si

ze
 a

fte
r

fir
st

 s
ca

n

k=100
k=25

(h)

Fig. 3.2. Analysis of the algorithm.

During the second scan, for each dataset object obj, a range query search
with center obj and radius R is performed into INDEX. This returns at least
all the objects nindex.obj of INDEX such that obj lies in their neighborhood
of radius R. Thus, if dst, the distance between nindex.obj and obj, is less or
equal to R, the list of the nearest neighbors of nindex.obj can be updated using
obj. If nindex.rad becomes less or equal to R then nindex.obj is a proved inlier
and it is removed from INDEX.

At the end of the second dataset scan, INDEX contains all and only the
outliers of DB. It can be concluded that, provided INDEX is a DBO-index,
DOLPHIN returns all and only the outliers of DB after two sequential scans
of DB.

3.3 Analysis of the algorithm

It immediately follows from the description of the algorithm, that the I/O
cost of DOLPHIN corresponds to the cost of sequentially reading the input
dataset file twice. This cost is really negligible even for very large datasets.

As for the CPU cost, it is related to the size of INDEX. Next it is investi-
gated how the size of INDEX changes during the execution of the algorithm.

3.3.1 Spatial cost analysis

Interestingly, it can be provided evidence that, for meaningful combinations
of the parameters k and R, even in the worst case setting where objects are
not clustered and are never removed from INDEX, the size of any DBO-index
INDEX at the end of DOLPHIN is only a fraction of the overall dataset.

Let N be the number of objects of the dataset DB. Say pm the probability
that the current object of DB will be inserted into INDEX when it has size

30 3 Outlier Detection in Data

m, and assume that pinliers is one, so that no node inserted into INDEX is
removed during the first scan.

Let Ym be a random variable representing the number of objects to be
scanned to insert a novel object into INDEX when it already contains m
objects. Assuming that the neighbors of a generic object are randomly picked
from the dataset, i.e. that no relationship holds among the neighbors of the
dataset objects, the problem is equivalent to a set of independent Bernoulli
trials, and

pr(Ym = y) = pm(1− pm)(y−1).

Hence, the expected number of objects to be scanned before inserting a novel
object, when the index has size m is

E[Ym] =
N∑

y=1

y · pr(Ym = y) =
1

pm
.

Consequently

sm =
m∑

i=1

E[Yi] =
1
p1

+ . . . +
1

pm
(3.1)

is the expected number of dataset objects to be scanned in order to insert m
nodes into INDEX. It can be concluded that the expected size of INDEX at
the end of the first phase is SN = max{m | 1 ≤ m ≤ N and sm ≤ N}.

Now we are interested in validating the above analysis by studying the
growth of this function, and in empirically demonstrating that the value SN

is a worst case, since the size of INDEX is noticeable smaller for pinliers less
than one.

For simplicity, assume that each dataset object has approximately x neigh-
bors. Also, assume that the outliers form a small fraction of the dataset, so
that their presence can be ignored in the analysis. With this assumption, the
probability that an inlier of DB, but out of INDEX, is inserted into INDEX
(recall that it is supposed the neighbors of a generic object are randomly
picked objects of the dataset) is

pm =

∑k−2
j=0

(
n−x
m−j

)(
x−1

j

)
(
n−1
m

) (3.2)

which is the probability, conditioned to the fact that the current object is an
inlier, that among the m objects of INDEX there are less than k−1 neighbors
of obj (p1 = . . . = pk−2 = 1, by definition).

Two synthetical datasets and a radius R such that x is almost constant for
all the objects, were considered. The first dataset, named Circle, is composed
by 1,000 points equally ranged over a circumference of diameter 1.0, plus a
single outlier in the center of the circle. For R = 0.3 each point has x = 95
neighbors. The second dataset, named Clusters, is composed by two well-
separated uniform clusters, having 499 points each, plus two outliers. For

3.3 Analysis of the algorithm 31

R = 0.4 each object has x = 499 neighbors, that are all the objects of the
cluster it belongs to.

Figure 3.2(a) shows, for the Circle dataset, the probability pm of inserting
an inlier into INDEX, computed by using formula (3.2) with N = 1,000,
x = 95, and k = 5 (solid line) and k = 20 (dashed line). Note that there exists
a limit on the index size beyond which the probability of inserting becomes
close to zero. Figures 3.2(b) and 3.2(c) show the expected size of INDEX versus
the number of dataset objects processed (dashed-pointed line) computed by
using formula (3.1). Figures 3.2(b) and 3.2(c) also show the actual size of
INDEX for varying values of the parameter pinliers, that is pinliers = 0 (solid
line), pinliers = 0.1 (dashed line), and pinliers = 1 (dotted line).

Interestingly, if objects inserted in INDEX are never removed (pinliers =
1), then the observed final size of INDEX is below the value SN . This behavior
can be explained by noting that in real data common neighbors are biased.
Moreover, if pinliers is decreased, then the final size of INDEX may be notice-
ably smaller than the value SN , even a little fraction of the overall dataset.
This behavior is confirmed by Figure 3.2(d), showing the size of INDEX at
the end of the first phase of DOLPHIN as a function of pinliers for k = 5
(solid line) and k = 20 (dashed line).

Even though one may expect that by deleting all the proved inliers
(pinliers = 0) the size of INDEX should be smaller (see Figure 3.2(b) for
an example of this behavior), it was observed that, in terms of maximum size
of the index, the best value of pinliers is either a value close to 0.1 or exactly
zero, depending on the characteristics of the dataset.

Since, for meaningful combinations of the parameters k and R, very often
the mean number of objects lying in spheres of radius R is high if compared
with k, as we shall see, a value for pinliers slightly greater than zero is optimal
in practice in terms of execution time, and, sometimes, also in terms of index
size. As an example, see Figure 3.2(c). For pinliers = 0, after INDEX has
accumulated enough objects to recognize inliers, the algorithm deletes the
proved inliers from INDEX and forgets what has already seen. The size of
the index becomes thus oscillating. The greater is the value of k, and the
greater is the fluctuation of the size. On the contrary, for pinliers = 0.1, after
having accumulated in INDEX enough objects to recognize inliers, a large
portion of proved inliers is removed but, since the algorithm has learned the
dense regions of the feature space (this information is stored together with
the proved inliers left into the index), the PR1 is applied efficiently and the
size of the index stabilizes on a small fraction of the dataset. Using a greater
value for pinliers has the effect of increasing the size of INDEX, but does not
augment the number of objects pruned by the PR1.

This behavior is much more evident on the dataset Clusters. Figures 3.2(e),
3.2(f), 3.2(g), and 3.2(h) report, on the Clusters dataset, the same kind of ex-
periments described above (R = 0.4, x = 499). For pinliers = 0, the fluctuation
is now more pronounced as the objects are strongly clustered and the param-
eter k is relatively large. Note that, for pinliers = 0.1 the final size of INDEX

32 3 Outlier Detection in Data

is a small fraction of the dataset. It can be observed in Figure 3.2(h) that for
pinliers = 0 the size of the index is exactly 2k, as there are two clusters and
at least k objects have to be seen in each cluster in order to recognize all the
inliers.

Summarizing, in practice, the size of INDEX does not reach the value SN

(we measured this value only by simulating a dataset where nearest neigh-
bors are randomly picked objects). Furthermore, as real data is clustered, by
properly tuning the parameter pinliers, only a small fraction of the dataset
is inserted into the index. As will be confirmed in the following, setting ap-
proximately pinliers to 0.1 is a good trade-off between index size (amount of
redundant information into the index) and execution time (efficient applica-
tion of the PR1).

3.3.2 Implementation and time cost analysis

DOLPHIN uses as INDEX data structure a pivot-based index [Chávez et al.,
2001]. A pivot-based index is a data structure performing proximity search
in any metric space. It makes use of a certain number of objects (also called
pivots), usually selected among the objects stored into the index. Distances
among pivots and objects stored into the index are precalculated at indexing
time. When a range query with center obj and radius R is submitted to the
index, the distances between the pivots and the query object obj are computed.
The precalculated distances are exploited to recognize the index objects lying
at distance greater than R from obj. For each index object obj′, if there exists
a pivot p, such that |dist(obj, p) − dist(obj′, p)| > R, then, by the triangular
inequality, it is known that dist(obj, obj′) > R, and obj′ is ignored. Otherwise
it is returned as candidate neighbor of obj. By using this kind of technique
the range query search returns a list of candidates that is a superset of the
objects that truly satisfy the query. The performances of pivot-based indexes
are related to the number of employed pivots. In particular, the larger is the
number of pivots, the more accurate (and then smaller) is the list of returned
candidates, but the cost of querying and building the index clearly increases.

Now we want to depict a qualitative analysis of the expected temporal
cost of DOLPHIN. The execution time of the first scan of DOLPHIN is given
by the sum of the following three terms2:

N · (Cquery + Squery · d) + Nins · Cins + Ndel · Cdel (3.3)

where N is the number of dataset objects, Cquery is the mean temporal cost
of executing a range query search during the first phase, Squery is the mean
number of candidate neighbors examined per dataset object during the first
phase, d is the cost of computing a distance, Nins (Ndel, resp.) is the number
of insertions (deletions, resp.) into INDEX during the first scan, and Cins

2 This formula ignores minor costs due to non dominating operations, like updating
the list of nearest neighbors and so on.

3.4 Experimental Results 33

(Cdel, resp.) is the mean cost of insertion (deletion, resp.) during the first
phase.

The cost of the second scan can be expressed with a similar formula.
Consider the first term N · (Cquery +Squery ·d) of Formula (3.3). It follows

from the discussion of previous section, that we can roughly approximate
the maximum size of INDEX to O(αN), where α is a small constant, and,
hence, also the term Squery is upper bounded by O(αN). The cost Cquery of
executing the range query search amounts to computing the distances between
a dataset object and all the pivots plus the cost of pruning index objects. Since
the number of pivots we used is logarithmic in the size of the index this cost
is upper bounded by O(d log αN + dαN). As a whole the term N · (Cquery +
Squery · d) can be approximated by O(dαN2). As for the cost of removing
an object from a pivot-based index, note that it is constant (practically it
consists in flagging as empty the entry of an array), thus the term Ndel ·Cdel

of Formula (3.3) can be ignored. Finally, as for the insertion an object obj
into the index, it requires to compute the distances among obj and all the
pivots. However, since insertion is always performed after the range query
search, these distances are already available and, then, insertion has virtually
no cost.

Summarizing, the temporal cost of the algorithm can be roughly approxi-
mated to O(dαN2). Basically, this expression assumes that all the objects in
the dataset are compared with all the objects in INDEX and, then, it does
not take into account that the range query search returns only a subset of the
nodes of INDEX. Furthermore, the above analysis does not take into account
that DOLPHIN does not need to find k neighbors since it is able to exploit
the triangular inequality (through the PR1) to early prune inliers.

Bay and Schwabacher [2003] showed that, if the dataset is randomized,
then the expected number of objects to be compared with each dataset object
in order to find its k nearest neighbors is a constant depending only on the
values of k and x. Based on this property, ORCA performs in near linear
CPU time. The above upper bound on the number object comparisons is
also applicable to DOLPHIN, since INDEX stores a random sample of inliers
together with the true outliers. Nevertheless, DOLPHIN greatly reduces this
number by exploiting both range searching and pruning rules. Furthermore,
ORCA performs a block nested loop reading of disk pages which may lead to
a quadratic I/O cost, while DOLPHIN needs only two sequential readings of
the dataset.

This expected behavior will be confirmed by experimental results reported
in the following section.

3.4 Experimental Results

Experiments are organized as follows. First of all, it is analyzed the course of
the size of INDEX. Then, it is determined how the parameter pinliers affects

34 3 Outlier Detection in Data

the execution time, and a study of the sensitivity to the parameters R and
k is accomplished. Next, DOLPHIN is compared with other outlier detection
algorithms and, finally, experiments on a massive dataset are presented.
Employed datasets. Datasets employed in the experiments are summarized
in the following table and briefly described next.

Dataset Objects Attributes
Color Histogram 68,040 32
DARPA 1998 499,467 23
Forest Cover Type 581,012 54
Household 1,000,000 3
Landsat 275,465 60
Server 500,000 5
Mixed Gauss 18,000,000 30

Color Histogram contains image features extracted from a Corel image collec-
tion3. DARPA 1998 consists in network connection records, from five weeks
of training data, of intrusions simulated in a military network environment
[DARPA, 1998] (also referred to as Weeks in the following). Forest Cover Type
contains forest cover type data determined from US Forest Service (USFS) Re-
gion 2 Resource Information System (RIS) data4. Household is released by the
US Census Bureau and contains the annual expenditure of American families
on electricity, gas, and water, as described in [Tao et al., 2006]. Landsat con-
tains normalized feature vectors associated with tiles of a collection of large
aerial photos5. Server is an excerpt of the KDD Cup 1999 data, as described
in [Tao et al., 2006]. Finally, Mixed Gauss is a synthetic dataset described in
the last part of the section.
Course of the index size. According the methodology suggested in [Tao
et al., 2006], in most of the experiments reported in the following, for the
parameter k it will be employed a value ranging from the 0.02% to the 0.1%
of the dataset size, while, for the parameter R, the value employed will range in
the interval [Rmin, Rmax], where Rmin (Rmax, resp.) is the radius corresponding
to exactly one outlier (the 0.1% dataset size of outliers, resp.) when k is set
to the 0.05%.

Next, it is studied the course of the size of INDEX during the execution
of DOLPHIN on the two real datasets Household and Landsat. In particular,
Figures 3.3(a) and 3.3(e) show, for three values of k in the range above men-
tioned, the number of outliers versus the radius R. These curves provide an
idea of the severity of the problem in correspondence of various combinations
of the parameters R and k.

Figures 3.3(b), 3.3(c), 3.3(d), and 3.3(f), 3.3(g), 3.3(h) show the size of
INDEX versus the percentage of objects read from the input dataset. Note
3 See http://kdd.ics.uci.edu/databases/CorelFeatures/

CorelFeatures.html.
4 See http://kdd.ics.uci.edu/databases/covertype/ covertype.html.
5 See http://vision.ece.ucsb.edu

3.4 Experimental Results 35

2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

Household data set, p
inliers

=0.10

Radius [R]

N
um

be
r

of
 o

ut
lie

rs

k=200
k=600
k=1000

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Household, k=200, R=2600.781

Data set percentage

N
um

be
r

of
 in

de
x

no
de

s
[%

]

p
inliers

=1
p

inliers
=0.1

p
inliers

=0

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Household, k=600, R=2600.781

Data set percentage

N
um

be
r

of
 in

de
x

no
de

s
[%

]

p
inliers

=1
p

inliers
=0.1

p
inliers

=0

(c)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Household, k=1000, R=2600.781

Data set percentage

N
um

be
r

of
 in

de
x

no
de

s
[%

]

p
inliers

=1
p

inliers
=0.1

p
inliers

=0

(d)

0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

Landsat data set, p
inliers

=0.10

Radius [R]

N
um

be
r

of
 o

ut
lie

rs

k=55
k=165
k=275

(e)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
Landsat, k=55, R=0.451

Data set percentage

N
um

be
r

of
 in

de
x

no
de

s
[%

]

p
inliers

=1
p

inliers
=0.1

p
inliers

=0

(f)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
Landsat, k=165, R=0.451

Data set percentage

N
um

be
r

of
 in

de
x

no
de

s
[%

]

p
inliers

=1
p

inliers
=0.1

p
inliers

=0

(g)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
Landsat, k=275, R=0.451

Data set percentage

N
um

be
r

of
 in

de
x

no
de

s
[%

]

p
inliers

=1
p

inliers
=0.1

p
inliers

=0

(h)

Fig. 3.3. Course of the size of INDEX.

that in all cases, as predicted, the growth of the size of INDEX slows down
as the percentage of seen dataset objects increases.

On the Household dataset, by using k = 1,000 and R = 2,600 (for
these parameters there are more than 2,000 outliers, see Figure 3.3(a)), when
pinliers = 1 INDEX contains at most the 2% of the dataset objects, while for
pinliers equal to 0 or 0.1 the maximum size of INDEX is approximatively the
0.5% of the dataset (see Figure 3.3(d)). For pinliers = 0 the size of INDEX is
oscillating, while for pinliers = 0.1 it is more stable, confirming the analysis
of the previous section. From these curves it is clear that, on this dataset, in
terms of index size, setting pinliers to 0.1 is better than having it set to 0, as
the former value avoids fluctuations of the size. For smaller values of k, the
maximum size of INDEX sensibly decreases (see Figures 3.3(b) and 3.3(c)).
For example, when k = 200 the size is always below 0.5%.

As for the Landsat dataset (see Figures 3.3(f), 3.3(g), and 3.3(h)), the
maximum size of INDEX is always directly proportional to the value of the
parameter pinliers. This behavior will be observed also on other datasets. For
R = 0.451 and k = 275 (see Figure 3.3(h)), in the worst case, the size of index
reaches the 2%, but it is about the 1% for pinliers = 0.1, and about the 0.5%
for pinliers = 0.
Execution time and effectiveness of pruning rules. Figure 3.4 shows
the execution time6 of DOLPHIN on the Household and Landsat datasets,
together with the number of times the pruning rules PR1, PR2, and PR3 are
applied during the first scan of the algorithm. From the top to the bottom,
curves displayed are obtained by setting pinliers to 0, 0.1, and 1, respectively.

6 We used a Pentium IV Dual Core 3.4GHz based machine with 1GByte of main
memory and the Linux operating system.

36 3 Outlier Detection in Data

2000 3000 4000 5000 6000 7000 8000
200

400

600

800

1000

1200

1400

1600

1800

Household data set, p
inliers

=0.00

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=200
k=600
k=1000

(a)

2000 3000 4000 5000 6000 7000 8000
10

0

10
2

10
4

10
6

Household data set, k=1000, p
inliers

=0.00

Radius [R]

P
ru

ne
d

ob
je

ct
s

PR1
PR2
PR3

(b)

0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

Landsat data set, p
inliers

=0.00

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=55
k=165
k=275

(c)

0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Landsat data set, k=275, p
inliers

=0.00

Radius [R]

D
el

et
ed

 o
bj

ec
ts

PR1
PR2
PR3

(d)

2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

Household data set, p
inliers

=0.10

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=200
k=600
k=1000

(e)

2000 3000 4000 5000 6000 7000 8000
10

0

10
2

10
4

10
6

Household data set, k=1000, p
inliers

=0.10

Radius

D
el

et
ed

 o
bj

ec
ts

PR1
PR2
PR3

(f)

0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

Landsat data set, p
inliers

=0.10

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=55
k=165
k=275

(g)

0.4 0.5 0.6 0.7 0.8 0.9
10

1

10
2

10
3

10
4

10
5

10
6

Landsat data set, k=275, p
inliers

=0.10

Radius [R]

D
el

et
ed

 o
bj

ec
ts

PR1
PR2
PR3

(h)

2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

300

Household data set, p
inliers

=1.00

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=200
k=600
k=1000

(i)

2000 3000 4000 5000 6000 7000 8000
10

0

10
2

10
4

10
6

Household data set, k=1000, p
inliers

=1.00

Radius [R]

D
el

et
ed

 o
bj

ec
ts

PR1
PR2
PR3

(j)

0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

Landsat data set, p
inliers

=1.00

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=55
k=165
k=275

(k)

0.4 0.5 0.6 0.7 0.8 0.9
10

3

10
4

10
5

10
6

Landsat data set, k=275, p
inliers

=1.00

Radius [R]

D
el

et
ed

 o
bj

ec
ts

PR1
PR2
PR3

(l)

Fig. 3.4. Execution time and effectiveness of pruning rules.

Note that pinliers = 0 gives the worst performance, while pinliers = 0.1 gives
the best one (see Figures 3.4(a), 3.4(e), 3.4(i), for the Household dataset, and
3.4(c), 3.4(g), 3.4(k), for the Landsat dataset).

In order to understand this behavior, it is useful to study how frequently
the pruning rules, i.e. PR1, PR2, and PR3, are used (see Figures 3.4(b), 3.4(f),
3.4(j), and 3.4(d), 3.4(h), 3.4(l)). For pinliers = 0, almost all the objects are
pruned by PR2, that is, almost all the objects read from disk are firstly in-
serted into INDEX, and, subsequently, deleted from INDEX after having seen
their k neighbors. On the contrary, by using pinliers = 0.1, almost all the
inliers are pruned by the PR1, but also the PR2 and PR3 may be effective,
even if the number of objects pruned by the last two rules is more than an
order of magnitude smaller. Finally, using a greater value for pinliers, has the
effect of increasing the size of INDEX, but without significantly augmenting
the number of objects pruned by the PR1. Thus, due to the presence of redun-
dant objects, the range query performs worse, and the total execution time
increases. Interestingly, by forgetting most of the information already seen,
both the spatial and temporal complexities are improved. The best trade-
off between space occupancy and execution time appears to be achieved for
pinliers ≈ 0.1, and this value will be used in the subsequent experiments.

3.4 Experimental Results 37

0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

ColorHistogram data set, p
inliers

=0.10

Radius [R]

N
um

be
r

of
 o

ut
lie

rs

k=13
k=40
k=68

(a)

0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

160

ColorHistogram data set, p
inliers

=0.10

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=13
k=40
k=68

(b)

0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ColorHistogram data set, p
inliers

=0.10

Radius [R]

M
ax

im
um

 n
um

be
r

of
 in

de
x

no
de

s
[%

] k=13
k=40
k=68

(c)

0.3 0.4 0.5 0.6 0.7
10

3

10
4

10
5

ColorHistogram data set, k=68, p
inliers

=0.10

Radius [R]

D
el

et
ed

 o
bj

ec
ts

PR1
PR2
PR3

(d)

0.6 0.8 1 1.2 1.4 1.6
10

0

10
1

10
2

10
3

10
4

Weeks data set, p
inliers

=0.10

Radius [R]

N
um

be
r

of
 o

ut
lie

rs

k=100
k=300
k=500

(e)

0.6 0.8 1 1.2 1.4 1.6
0

500

1000

1500

2000

2500

Weeks data set, p
inliers

=0.10

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=100
k=300
k=500

(f)

0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

Weeks data set, p
inliers

=0.10

Radius [R]

M
ax

im
um

 n
um

be
r

of
 in

de
x

no
de

s
[%

] k=100
k=300
k=500

(g)

0.6 0.8 1 1.2 1.4 1.6
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Weeks data set, k=500, p
inliers

=0.10

Radius [R]

D
el

et
ed

 o
bj

ec
ts

PR1
PR2
PR3

(h)

450 500 550 600 650 700 750
0

1000

2000

3000

4000

5000

Forest data set, p
inliers

=0.10

Radius [R]

N
um

be
r

of
 o

ut
lie

rs

k=116
k=348
k=581

(i)

450 500 550 600 650 700 750
0

1000

2000

3000

4000

5000

6000

Forest data set, p
inliers

=0.10

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=116
k=348
k=581

(j)

450 500 550 600 650 700 750
0

1

2

3

4

5

6

7

8

9

Forest data set, p
inliers

=0.10

Radius [R]

M
ax

im
um

 n
um

be
r

of
 in

de
x

no
de

s
[%

] k=116
k=348
k=581

(k)

450 500 550 600 650 700 750
10

1

10
2

10
3

10
4

10
5

10
6

Forest data set, k=581, p
inliers

=0.10

Radius [R]

D
el

et
ed

 o
bj

ec
ts

PR1
PR2
PR3

(l)

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

Server data set, p
inliers

=0.10

Radius [R]

N
um

be
r

of
 o

ut
lie

rs

k=100
k=300
k=500

(m)

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

Server data set, p
inliers

=0.10

Radius [R]

E
xe

cu
tio

n
tim

e
[s

ec
]

k=100
k=300
k=500

(n)

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

Server data set, p
inliers

=0.10

Radius [R]

M
ax

im
um

 n
um

be
r

of
 in

de
x

no
de

s
[%

] k=100
k=300
k=500

(o)

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Server data set, k=500, p
inliers

=0.10

Radius [R]

P
ru

ne
d

ob
je

ct
s

PR1
PR2
PR3

(p)

Fig. 3.5. Sensitivity to parameters R and k.

Note that when the parameter k is relatively small, pinliers = 0 can give
performances similar to pinliers = 0.1 (see, e.g., Figures 3.4(c) and 3.4(g)
for k = 55). Thus, in some cases, deleting all proved inliers may provide
advantages in terms of space7 with a moderate loss in terms of execution time.
Nevertheless, as k increases, deleting all the proved inliers may greatly degrade
performances. See, for example, Figures 3.4(a) and 3.4(e) for k = 1,000.
Sensitivity to parameters R and k. Figure 3.5 shows the behavior of
DOLPHIN on the datasets ColorHistogram, DARPA 1998, Forest Cover Type,
and Server for various values of k and R.

7 Indeed, the number of nodes in INDEX is fewer, and it is not required to store
the list n.nn in the nodes n of INDEX.

38 3 Outlier Detection in Data

0 1 2 3 4 5

x 10
5

10
0

10
1

10
2

10
3

10
4

DARPA 1998 dataset, k=0.02%, R=0.527

Dataset size

E
xe

cu
tio

n
tim

e
[s

ec
]

DOLPHIN
SNIF
ORCA

(a)

0 1 2 3 4 5 6

x 10
5

10
0

10
1

10
2

10
3

10
4

10
5

Forest dataset, k=0.02%, R=496.8

Dataset size

E
xe

cu
tio

n
tim

e
[s

ec
]

DOLPHIN
SNIF
ORCA

(b)

0 1 2 3 4 5

x 10
5

10
0

10
1

10
2

10
3

10
4

Server dataset, k=0.02%, R=1529.4

Dataset size

E
xe

cu
tio

n
tim

e
[s

ec
]

DOLPHIN
SNIF
ORCA

(c)

0 1 2 3 4 5

x 10
5

0

100

200

300

400

500

600
DARPA 1998 dataset, k=0.02%, R=0.527

Dataset size

E
xe

cu
tio

n
tim

e
[s

ec
]

DOLPHIN−pivot
DOLPHIN−naive
ORCA

(d)

0 5 10 15 20 25 30
10

1

10
2

10
3

ColorHistogram dataset, outliers=30

Number of neighbors [k]

E
xe

cu
tio

n
tim

e
[s

ec
]

DOLPHIN
RBRP
ORCA

(e)

0 5 10 15 20 25 30
10

2

10
3

10
4

10
5

Forest dataset, outliers=30

Number of neighbors [k]

E
xe

cu
tio

n
tim

e
[s

ec
]

DOLPHIN
RBRP
ORCA

(f)

Fig. 3.6. Comparison with other methods.

Figures 3.5(a), 3.5(e), 3.5(i), and 3.5(m) show the number of found outliers.
The curves of execution time (see Figures 3.5(b), 3.5(f), 3.5(j), and 3.5(n))
confirm the behavior previously observed on other datasets. The algorithm
has good performances even when large values of k and small values of R are
employed, and, consequently, a considerable number of outliers is found.

The maximum size of INDEX (see Figures 3.5(c), 3.5(g), 3.5(k), and 3.5(o))
is always a small fraction of the dataset, up to the 1.5% or 5% depending on
the dataset and the parameters. There is a peak of the 8.5% for the Forest
Cover Type dataset in correspondence of k = 581 and R = 496.8. This is due
to the very large number of outliers detected (about 5,000 objects). Even in
this case, if a smaller number of outliers is searched for, e.g. one thousand,
then the maximum index size is about the 4%.

As for the pruning rules (see Figures 3.5(d), 3.5(h), 3.5(l), and 3.5(p)),
the PR1 is effective on all the combinations of the parameters. For Forest
Cover Type with k = 581, when the radius R decreases, the PR3 is applied
as frequently as the PR1. This indicates that an high fraction of the data lies
in relatively sparse regions of the space for that value of R, and explains the
very high number of outliers.
Comparison with other methods. Figure 3.6 shows the comparison with
the distance-based outlier detection algorithms SNIF, ORCA, and RBRP.

We compared DOLPHIN with SNIF8 and ORCA9 through scaling anal-
ysis. Figures 3.6(a), 3.6(b), and 3.6(c) show the execution time of DOL-
PHIN, SNIF, and ORCA on the DARPA 1998, Forest Cover Type, and Server
datasets, respectively. The parameter k was set to the 0.02% of the dataset

8
http://www.cse.cuhk.edu.hk/∼taoyf/paper/kdd06.html

9
http://www.isle.org/∼sbay/software/orca/

3.4 Experimental Results 39

size, while R was fixed to the value Rmin previously described. The number
of centroids employed by SNIF was 1,000 while the memory buffer used was
the 10% of the dataset size, as suggested by the authors. As for ORCA, we
set the cutoff value to R, and the number of outliers to be found to a value
greater than the number of distance outliers present in the dataset. All the ex-
periments showed the same behavior, that is DOLPHIN is faster than ORCA
of about one order of magnitude, while ORCA is faster than SNIF. In two
experiments DOLPHIN is faster than SNIF of about two orders of magnitude,
while in the remaining one of about one order of magnitude.

We performed the same type of experiment on the DARPA 1998 dataset,
but with an implementation of DOLPHIN that uses the naive index. The
curve of the execution time of this implementation (called DOLPHIN-naive)
is reported in Figure 3.6(d) together with the curves of DOLPHIN using the
pivot-based index (there called DOLPHIN-pivot) and of ORCA. It is clear
that DOLPHIN gains in efficiency by exploiting indexing techniques though,
even if it is not used, it always maintains great performances and performs
noticeably better than ORCA. This can be explained since the I/O cost of
DOLPHIN is lower than that of ORCA, and since, even if DOLPHIN uses the
naive index, it is still able to apply the pruning rules (specifically, the PR1)

We compared DOLPHIN also with RBRP, even if it must be recalled
that RBRP indexes all the dataset into the main memory. We considered the
experimental results described in [Ghoting et al., 2006] on the ColorHistogram
and Forest Cover Type datasets10. Figures 3.6(e) and 3.6(f) show the execution
time of DOLPHIN, RBRP, and ORCA, for various values of k when the
number n of outliers to mine is 30. In order to run DOLPHIN, we computed
the radiuses R corresponding to various combination of the parameters k ∈
[2, 30] and n = 30, and measured its execution time. The curves show that,
on this type of experiment, DOLPHIN outperformed RBRP of at least one
order of magnitude.

k Outliers Time Index Memory
[sec] size usage [MB]

5 6 930.7 248 0.05
200 118 3,006.0 1,173 1.97
500 141 7,284.8 1,479 5.87

1,000 160 10,320.2 1,922 14.96

Table 3.1. Experiments on a massive dataset.

Experiments on massive datasets. We considered the Mixed Gauss
dataset, composed by 18,000,000 objects consisting in points of R30. The

10 We used a machine similar to that there employed in order to compare execution
times.

40 3 Outlier Detection in Data

dataset is composed of 10 gaussian clusters, having different sizes, whose cen-
ters are randomly generated in the square [−25, +25]30, and whose variances
are randomly chosen in the range [0.5, 2], plus 1,000 randomly generated points
in the square [−30,+30]30. The dataset occupies more than 2GBytes of sec-
ondary memory and cannot be entirely stored in the main memory of the
machine.

We fixed the parameter R to 25.0,11 and gradually increased the value of
the parameter k. Table 3.1 shows the results of these experiment. Interestingly,
the memory usage was very limited due to the small number of objects that
are to be stored in INDEX. The number of outliers found is significative,
confirming that the parameters used are meaningful.

11 This value amounts to about the 7% of the maximum estimated distance sepa-
rating two points in the dataset.

4

Outlier Detection in Streams of Data

4.1 Contribution

In this chapter a method for detecting distance-based outliers in data streams
is proposed. The two proposed algorithms, an exact and an approximate one,
are analyzed in details.

This chapter is organized as follows. This section describes the contribu-
tion given by this thesis in the outlier detection in data stream context. The
following section formally states the data stream outlier query problem. Sec-
tion 4.3 describes both the exact and the approximate algorithm. Subsequent
section 4.4 analyzes in details the algorithms. Finally, section 4.5 illustrates
experimental results.

The contribution of the thesis in this context can be summarized as follows:

• the novel task of data stream outlier query is introduced;
• an exact algorithm to efficiently detect distance-based outliers in the in-

troduced model is presented;
• an approximate algorithm is derived from the exact one, based on a trade

off between spatial requirements and answer accuracy; the method approx-
imates object outlierness with a statistical guarantee;

• by means of experiments on both real and synthetic data sets, the efficiency
and the accuracy of the proposed techniques are shown.

4.2 Statement of the Problem

Next, the formalism employed will be presented. First of all, the formal defi-
nition of distance-based outlier is recalled [Knorr and Ng, 1998].

Definition 6 (Distance-Based Outlier).
Let S be a set of objects, obj an object of S, k a positive integer, and R a
positive real number. Then, obj is a distance-based outlier (or, simply, an
outlier) if less than k objects in S lie within distance R from obj.

42 4 Outlier Detection in Streams of Data

Objects lying at distance not greater than R from obj are called neighbors of
obj. The object obj is not considered a neighbor of itself.

A data stream DS is a possible infinite series of objects . . . , objt−2,
objt−1, objt, . . ., where objt denotes the object observed at time t. It will be
interchangeably used the term identifier and the term time of arrival to refer
to the time t at which the object objt was observed for the first time.

Data stream objects are assumed to be elements of a metric space on which
a distance function is defined. In the following d will be used to denote the
space required to store an object, and ∆ to denote the temporal cost required
for computing the distance between two objects.

Given two object identifiers tm and tn, with tm ≤ tn, the window
DS[tm, tn], is the set of n − m + 1 objects objtm

, objtm+1, . . ., objtn
. The

size of the window DS[tm, tn] is n−m + 1.
Given a window size W , the current window is the window DS[t−W +1, t],

where t is the time of arrival of the last observed data stream object.
An expired object obj is an object whose identifier id is less than the lower

limit of the current window, i.e. such that id < t−W + 1.
Now, the main problem to be solved can be defined.

Definition 7 (Data Stream Outlier Query).
Given a data stream DS, a window size W , and fixed parameters R and k,
the Data Stream Outlier Query is: return the distance based outliers in the
current window.

The time t, which a data stream outlier query is requested at, is called query
time.

In the following the neighbors of an object obj that precede obj in the
stream and belong to the current window are called preceding neighbors of
obj. Furthermore, the neighbors of an object obj that follow obj in the stream
and belong to the current window are called succeeding neighbors of obj.

According to Definition 6, an inlier is an object obj having at least k
neighbors in the current window. In other words, let α be the number of
preceding neighbors of obj and β be the number of succeeding neighbors of
obj, obj is an inlier if α + β ≥ k.

Let obj be an inlier. Since during stream evolution objects expire, the
number of preceding neighbors of obj decreases. Therefore, if the number
of succeeding neighbors of obj is less than k, obj could become an outlier
depending on the stream evolution. Conversely, since obj will expire before
its succeeding neighbors, inliers having at least k succeeding neighbors will be
inliers for any stream evolution. Such inliers are called safe inliers.

Example 2. The following diagram represents the evolution of a one-dimensional
data stream. Let k be 3, and let W be 16.

4.3 Algorithm 43

o6

t1 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t15t14 t16 t17 t18 t19 t20 t21 t22

R

R

R

R

o1

o2

o3 o4

o7

o8

o9
o10

o11

o12

o13

o14

o15

o16

o17

o18
o19

o20

o21

o22

time

va
lu

e

o5

t2

Consider the current window (the dashed one) at time t18: both o9 and o11

are inliers, since o9 has four neighbors (o5, o10, o14, o15), and also o11 has four
neighbors (o3, o4, o6, o13). Moreover, since o9 has three succeeding neighbors,
it is a safe inlier, while o11 is not a safe inlier.

Indeed, consider instant t22. The object o9 is still an inlier: object o5

expired, but o9 has still three (succeeding) neighbors. Conversely, o11 is now
an outlier: objects o3, o4 and o6 expired, and now it has only one neighbor.

4.3 Algorithm

In this section the algorithm STORM, standing for STream OutlieR Miner,
is described. Two variants of the method are presented.

When the entire window can be allocated in memory, the exact answer
of the data stream outlier query can be computed. In the above setting, the
algorithm exact-STORM is able to exactly answer outlier queries at any time
(section 4.3.1).

Nevertheless, there are some applications in which only limited memory
can be allocated, or interesting windows can be so large that do not fit
in memory. In this case approximations must be employed. The algorithm
approx-STORM is designed to work in the latter setting by introducing effec-
tive approximations in exact-STORM (section 4.3.2). These approximations
guarantee highly accurate answers with limited memory requirements (section
4.4.1).

After having described the two methods, temporal and spatial costs re-
quired to obtain exact and approximate answers will be stated (section 4.4.2).

44 4 Outlier Detection in Streams of Data

Procedure Stream Manager

Input: DS is the data stream;
W is the window size;
R is the neighborhood radius;
k is the number of neighbors.

Method:
For each data stream object obj with identifier t:

1. if the oldest node noldest of ISB expires, then remove the node
noldest from ISB;

2. create a new node ncurr, with ncurr.obj = obj, ncurr.id = t,
ncurr.nn before = ∅, ncurr.count after = 1;

3. perform a range query search with center obj and radius R into
ISB. For each node nindex returned by the range query:
a) increment the value nindex.count after;
b) update the list ncurr.nn before with the object identifier

nindex.id;
4. insert the node ncurr into ISB.

Procedure Query Manager

Output: the distance-based outliers in the current window;
Method:

1. For each node n stored in ISB:
a) let prec neighs be the number of identifiers stored in

n.nn before associated with non-expired objects, and let
succ neighs be n.count after;

b) if prec neighs+n.succ neighs ≥ k then mark n.obj as inlier,
else mark it as an outlier;

2. return all the objects marked as outliers.

Fig. 4.1. Exact data stream distance-based outlier detection algorithm.

4.3.1 Exact algorithm

The algorithm exact-STORM is shown in Figure 4.1. This algorithm consists
of two procedures: the Stream Manager and the Query Manager. The former
procedure receives the incoming data stream objects and efficiently updates
a suitable data structure that will be exploited by the latter procedure to
effectively answer queries.

In order to maintain a summary of the current window, a data structure,
called ISB (standing for Indexed Stream Buffer), storing nodes is employed
(nodes are defined next). Each node is associated with a different data stream
object.

ISB provides a range query search method, that, given an object obj and
a real number R ≥ 0, returns the nodes in ISB associated with objects whose
distance from obj is not greater than R. The implementation of ISB will be
described in section 4.4.2.

4.3 Algorithm 45

Procedure Stream Manager

Input: DS is the data stream;
W is the window size;
R is the neighborhood radius;
k is the number of neighbors.

Method:
For each data stream object obj with identifier t:

1. if the oldest node noldest of ISB expires, then remove the node
noldest from ISB;

2. create a new node ncurr, with ncurr.obj = obj, ncurr.id = t,
ncurr.count after = 1, and set count before = 0;

3. perform a range query search with center obj and radius R into
ISB. For each node nindex returned by the range query:

a) increment the value nindex.count after. If the number of
safe inliers in ISB is greater than ρW , then remove from
ISB a randomly selected safe inlier;

b) increment the value count before;

4. set ncurr.fract before = count before
safe inliers

, where safe inliers is the
number of safe inliers into ISB, and insert the node ncurr into
ISB.

Procedure Query Manager

Output: the distance-based outliers in the current window;
Method:

1. For each node n stored in ISB:
a) let prec neighs be n.fract before · (W − t + n.id), and let

succ neighs be n.count after;
b) if prec neighs + succ neighs ≥ k then mark n.obj as inlier,

else mark it as an outlier;
2. return all the objects marked as outliers.

Fig. 4.2. Approximate data stream distance-based outlier detection algorithm.

Now, the definition of node is provided. A node n is a record consisting of
the following information:

• n.obj : a data stream object.
• n.id : the identifier of n.obj, that is the arrival time of n.obj.
• n.count after : the number of succeeding neighbors of n.obj. This field is

exploited to recognize safe inliers.
• n.nn before: a list, having size at most k, containing the identifiers of

the most recent preceding neighbors of n.obj. At query time, this list is
exploited to recognize the number of preceding neighbors of n.obj. Both
the operation of ordered insertion of a novel identifier in the list and the
operation of search of an identifier in the list are assumed to be executed
in time O(log k) (see [Knuth, 1973] for a suitable implementation).

46 4 Outlier Detection in Streams of Data

The Stream Manager takes as input a data stream DS, a window size W , a
radius R, and the number k of nearest neighbors to consider.

For each incoming data stream object obj, a new node ncurr is created with
ncurr.obj = obj. Then a range query search with center ncurr.obj and radius
R is performed in ISB, that returns the nodes associated with the preceding
neighbors of obj stored in ISB.

For each node nindex returned by the range query search, since the object
obj is a succeeding neighbor of nindex.obj, the counter nindex.count after is
incremented. Moreover, since the object nindex.obj is a preceding neighbor of
obj, the list ncurr.nn before is updated with nindex.id.

If the counter nindex.count after becomes equal to k, then the object
nindex.obj becomes a safe inlier. Thus, it will not belong to the answer of
any future outlier query. Despite this important property, a safe inlier can-
not be discarded from ISB, since it may be a preceding neighbor of a future
stream object. Finally, the node ncurr is inserted into ISB. This terminates
the description of the procedure Stream Manager.

In order to efficiently answer queries, when invoked by the user, the Query
Manager performs a single scan of ISB. In particular, for each node n of ISB,
the number prec neighs of identifiers stored in n.nn before associated with
non-expired objects is determined. This is accomplished in O(log k) time by
performing a search in the list n.nn before of the identifier closest to the value
t−W + 1, that is the identifier of the oldest object in n.nn before belonging
to the current window.

The number succ neighs of succeeding neighbors of n.obj is stored in
count after. Thus, if prec neighs + succ neighs ≥ k then the object n.obj
is recognized as an inlier, otherwise it is an outlier and is included in the
answer of the outlier query.

4.3.2 Approximate algorithm

Figure 4.2 shows the algorithm approx-STORM. The exact algorithm requires
to store all the window objects. If the window is so huge that does not fit
in memory, or only limited memory can be allocated, the exact algorithm
might be not employable. However, as described in the following, the algorithm
described in the previous section can be readily modified to reduce the required
space.

With this aim, two approximations are introduced.
Firstly, in order to significantly reduce the occupied space, not all the

window objects are stored in ISB. In particular, objects belonging to ISB
can be partitioned in outliers and inliers. Among the latter kind of objects
there are safe inliers, that are objects that will be inliers in any future stream
evolution. As already observed, despite safe inliers cannot be returned by any
future outlier query, they have to be kept in ISB in order to correctly recognize
outliers, since they may be preceding neighbors of future incoming objects.

4.3 Algorithm 47

However, as shown in subsequent section 4.4.1, it is sufficient to retain in
ISB only a fraction of safe inliers to guarantee an highly accurate answer to
the outlier query. Thus, in order to maintain in ISB a controlled fraction ρ
(0 ≤ ρ ≤ 1) of safe inliers, the following strategy is adopted.

During stream evolution, an object obj of the stream becomes a safe inlier
when exactly k succeeding neighbors of obj arrive. At that time, if the total
number of safe inliers into ISB exceeds ρW , then a randomly selected object
of ISB is removed. The random selection policy adopted guarantees that safe
inliers surviving into ISB are uniformly distributed in the window.

To answer one-time queries both outliers and unsafe inliers, which are ob-
jects candidate to become outliers if the stream characteristics change, have to
be maintained in ISB. Note that, meaningful combinations of the parameters
R and k are only those for which the number of outliers, and hence of unsafe
inliers, amounts to a negligible fraction of the overall population. Thus, the
number of nodes in ISB can be assumed approximately equal to ρW. In the
following section it will be discussed how to compute an optimal value for ρ
in order to obtain a statistical guarantee on the approximation error of the
estimation of the number of preceding neighbors of each data stream object.

The second approximation consists in reducing the size of each node by
avoiding storing the list of the k most recent preceding neighbors. This is
accomplished by storing in each node n, instead of the list n.nn before, just
the fraction n.fract before of previous neighbors of n.obj observed in ISB at
the arrival time n.id of the object n.obj. The value n.fract before is determined
as the ratio between the number of preceding neighbors of n.obj in ISB which
are safe inliers and the total number of safe inliers in ISB, at the arrival time
of n.obj.

At query time, in order to recognize outliers, a scan of ISB is performed
and, for each stored node n, the number of neighbors of n.obj in the current
window has to be evaluated. Since only the fraction n.fract before is stored
now in n, the number of preceding neighbors of n.obj in the whole window at
the current time t has to be estimated.

Let α be the number of preceding neighbors of n.obj at the arrival time
of n.obj. Assuming that they are uniformly distributed along the window, the
number of preceding neighbors of n.obj at the query time t can be estimated
as

prec neighs = α · W − t + n.id

W
.

Note that n.fract before does not directly give the value α, since it is computed
by considering only the objects stored in ISB and, thus, it does not take into
account removed safe inliers preceding neighbors of n.obj. However, α can be
safely (see next section) estimated as

α ≈ n.fract before ·W.

Summarizing, the number of preceding neighbors of n.obj at the query time
t can be estimated as

48 4 Outlier Detection in Streams of Data

prec neighs = n.fract before · (W − t + n.id).

Recall that, to classify objects the sum between the estimated number of its
preceding neighbors and the number of succeeding neighbors is computed. It is
worth to point out that the number of succeeding neighbors is not estimated,
since n.count before provides the true number of succeeding neighbors of n.obj.
Therefore as stream evolves, the sum above approaches the true number of
neighbors in the window.

4.4 Analysis of the Algorithm

4.4.1 Approximation Error Bounds

Now, how to set the parameter ρ in order to obtain safe bounds on the ap-
proximation error of the estimation is discussed.

Let W be the window size, let w be the number of safe inliers in ISB, let α
be the exact number of preceding neighbors of an object at its time of arrival,
let α̃ be the number of preceding neighbors of the object in ISB which are
safe inliers at its time of arrival, and let µ denote the ratio α

W .
In order to determine an optimal value for ρ, a value for w, such that eα

w
is a good approximation for µ, has to be determined. Formally, the following
property has to be satisfied. For given δ > 0 and 0 < ε < 1, the following

should hold:

Pr
[∣∣∣∣

α̃

w
− µ

∣∣∣∣ ≤ ε

]
> 1− δ. (4.1)

Since ISB contains a random sample of the window safe inliers, a safe bound
for w can be obtained from the well known Lyapounov Central Limit Theorem.

This theorem asserts that, for any λ

lim
w→∞

Pr

[
α̃− wµ√
wµ(1− µ)

≤ λ

]
= Φ(λ)

where Φ(λ) denotes the cumulative distribution function of the normal distri-
bution.

Thus, if w is large enough, then the following relation holds:

Pr

[
α̃− wµ√
wµ(1− µ)

≤ λ

]
≈ Φ(λ). (4.2)

Now, the result that will allow us to get the needful safe bound for w can be
formally presented.

4.4 Analysis of the Algorithm 49

Theorem 1. For any δ > 0 and 0 < ε < 1, if w satisfies the following
inequality

w >
µ(1− µ)

ε2

(
Φ−1

(
1− δ

2

))2

(4.3)

then it satisfies (4.1).

Proof. Theorem 1 is a direct consequence of the central limit theorem (see [Watan-
abe, 2000] for details).

Starting from relation (4.2), and setting

λ =
ε
√

wp
µ(1− µ)

it is easy to obtain that, for any 0 < ε < 1:

Pr

� eα
w

> µ + ε

�
≈ 1− Φ

ε
√

wp
µ(1− µ)

!
(4.4)

Pr

� eα
w

< µ− ε

�
≈ 1− Φ

ε
√

wp
µ(1− µ)

!
(4.5)

The goal (4.1) is equivalent to:

Pr

����� eαw − µ

���� > ε

�
< δ

and, then, to:

Pr

� eα
w

> µ + ε

�
+ Pr

� eα
w

< µ− ε

�
< δ

Thus, using relations (4.4) and (4.5), it can be rewritten as:
1− Φ

ε
√

wp
µ(1− µ)

!!
+

1− Φ

ε
√

wp
µ(1− µ)

!!
< δ

Finally, from the above inequality, it is easy to get relation (4.3).

Now, the bound stated in the above theorem is examined. Although the
provided bound depends on the unknown value α, it can be safely applied
by setting µ to 1

2 . Therefore, in order to satisfy (4.1), being w = ρW , it is
sufficient to set ρ to the value

ρ =
1

4ε2W

(
Φ−1

(
1− δ

2

))2

. (4.6)

It is worth noting that the bound for w given by expression (4.3) does not
depend on the window size W . Furthermore, since in expression (4.6) the
unknown value µ is safely set to 1

2 , whenever µ is different to 1
2 , the property

50 4 Outlier Detection in Streams of Data

(4.1) is guaranteed for values of ε and δ better than those used to compute
w. In particular, the two following inequalities hold:

Pr

[∣∣∣∣
α̃

w
− µ

∣∣∣∣ ≤ ε

]
> 1− δ∗, and (4.7)

Pr

[∣∣∣∣
α̃

w
− µ

∣∣∣∣ ≤ ε∗
]

> 1− δ. (4.8)

In the first inequality, δ∗ is obtained from the following equation:

1
4ε2

(
Φ−1

(
1− δ

2

))2

=
µ(1− µ)

ε2

(
Φ−1

(
1− δ∗

2

))2

whereas, in the second one, ε∗ is obtained from

1
4ε2

(
Φ−1

(
1− δ

2

))2

=
µ(1− µ)

ε∗2

(
Φ−1

(
1− δ

2

))2

.

Note that, if the true value for µ is 1
2 , then δ∗ = δ and ε∗ = ε.

Equation (4.8) can be rewritten as

Pr

[
α̃

w
− ε∗ ≤ α

W
≤ α̃

w
+ ε∗

]
> 1− δ.

It follows that the maximum error err made in computing α is

err = Wε∗ = W · 2ε
√

µ(1− µ).

This value provides the maximum error made in estimating the total number
of neighbors of an object when it arrives.

Now, it must be determined when the above error will cause a misclassifi-
cation, i.e. when an inlier (resp., an outlier) will be estimated to be an outlier
(resp., an inlier).

For an object obj having identifier id, when it arrives, the number of
true preceding neighbors is µW . As stream evolves, some preceding neighbors
expire, and, assuming they are uniformly distributed along the window, in
the portion of the stream preceding obj in the current window their number
becomes µ(W − t + id).

To correctly classify obj, if the sum between the number α of preceding
neighbors of obj and the number β of succeeding neighbors is greater (resp.
smaller) than k in the current window, then also the estimated value for α
plus the number β of succeeding neighbors should be greater (resp. smaller)
than k. Formally, let W = W − t + id be the number of objects of the current
window preceding the object obj with identifier id, let α = µW be the true
value of preceding neighbors of obj in the current window, let β be the number
of its succeeding neighbors, and let 2Wε

√
µ(1− µ) be the error err. If α + β

is greater than k, then the following inequality should hold:

4.4 Analysis of the Algorithm 51

µW − 2Wε
√

µ(1− µ) + β > k

Assuming that the distribution of succeeding neighbors is the same as the
distribution of preceding neighbors, β can be approximated to µ(W − W),
where (W −W) is the portion of the stream in the current window succeeding
obj. Thus, for

µ >
kW + 2W

2
ε2 +

√
(kW + 2ε2W

2
)2 − k2(W 2 + 4W

2
ε2)

W 2 + 4W
2
ε2

= µup (4.9)

an inlier is recognized with probability (1− δ).
Analogously, if α + β < k, starting from

µW + 2Wε
√

µ(1− µ) + β < k

with the same assumption stated above, it holds that for

µ <
kW + 2W

2
ε2 −

√
(kW + 2ε2W

2
)2 − k2(W 2 + 4W

2
ε2)

W 2 + 4W
2
ε2

= µdown (4.10)

an outlier is recognized with probability (1− δ).
It can be concluded that, if an object obj has more than µupW or less

than µdownW neighbors, it is correctly classified with probability 1− δ.
Contrariwise, if the number of neighbors of obj is in the range [µdownW,µupW]

then the estimation error at most is equal to 2Wε
√

µ(1− µ), that could lead
to a misclassification. Both the error and the range are small and directly pro-
portional to ε. Moreover, they depend on the current time t. As t increases,
the error goes to zero and the range tends to be empty.

Before concluding, it is worth to recall that object classification depends
also on the number of succeeding neighbors of the object, whose true value is
known.

Next, the analysis of the expected distribution of misclassified objects is
conducted. In particular, it is analyzed the number of inliers that are incor-
rectly recognize as outliers. The inverse case, namely the number of outliers
that are incorrectly recognized as inliers, is not detailed, since it can be triv-
ially get by the following analysis.

Suppose that the real number of inliers µW in the current window is
greater than k. Then, also the estimated number of inliers should be greater
than k. Therefore, the error err = eα

wW−µW should be such that µW−err ≥
k.

Equation (4.2) can be rewritten as:

Pr

[√
w

W

W (α̃− wµ)
w

√
µ(1− µ)

≤ λ

]
≈ Φ(λ)

52 4 Outlier Detection in Streams of Data

and, then, as:

Pr

[
err · √w

W
√

µ(1− µ)
≤ λ

]
≈ Φ(λ)

Finally:

Pr

[
err ≤ λ

W
√

µ(1− µ)√
w

]
≈ Φ(λ)

By setting

γ = λ
W

√
µ(1− µ)√

w

Pr [err ≤ γ] ≈ Φ

(
γ
√

w

W
√

µ(1− µ)

)

follows.
Recall that the aim is to estimate the probability that err ≤ µW − k,

hence, setting γ to µW − k, it holds

Pr [err ≤ µW − k] ≈ Φ

(
(µW − k)

√
w

W
√

µ(1− µ)

)

From above equation, the probability of misclassifying objects can be ob-
tained as:

Pr [err > µW − k] ≈ 1− Φ

(
(µW − k)

√
w

W
√

µ(1− µ)

)
(4.11)

The misclassification distribution depends on the object age, in particular
the probability of misclassifying an object o decreases with the age of o. Then,
the Equation (4.11) represents the probability of a misclassification, given the
object age.

Hence, the probability of misclassifying objects can be estimated by ex-
ploiting the law of total probability :

Pr [misclass] =
∑

η

Pr
[
missclass

∣∣ age = η
]
Pr[age = η]

The term Pr
[
missclass

∣∣ age = η
]

is computable by means of Equation
(4.11), whereas Pr[age = η] can be assumed equal to 1/W .

Finally:

Pr [misclass] =
1
W

W∑
η=1

[
1− Φ

(
(µW − k)

√
w

η
√

µ(1− µ)

)]
(4.12)

Example 3. For example, consider a window size equal to 10000, δ = 0.1,
ε = 0.016 and k = 100. From Equation 4.3, it follows that w = 1088. The
distribution of misclassified objects is reported in the following figure.

4.4 Analysis of the Algorithm 53

100 120 140 160 180 200 220 240 260 280 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Real Number of Neighbors (µW)

M
is

cl
as

si
fic

at
io

n
P

ro
ba

bi
lit

y

The previous example shows that if the distribution of misclassified objects
is very tight to the value of the parameter k, then only objects with a number
of neighbors very close to k are expected to be misclassified. This behavior
will be confirmed in the experimental section (Section 4.5).

4.4.2 Implementation and Cost Analysis

In this section the implementation of ISB is detailed, and then, temporal and
spatial costs of STORM are analyzed.

Implementation details. The ISB data structure is a pivot-based index.
This data structure has been already described in Section 3.3.2.

Recall that it performs proximity search in any metric space making and
that its performances are related to the number of employed pivots. In par-
ticular, the larger is the number of pivots, the more accurate is the list of
candidates and, then, the lower is the number of computed distances. Never-
theless, the cost of querying and building the index increases. In this work the
number of pivots used is logarithmic with respect to the index size. In order
to face concept drift, the older pivot is periodically replaced with an incoming
object.

Now, the temporal cost of operations to be executed on the ISB data
structure is analyzed. Recall that the cost of computing the distance between
two objects is ∆. Assume that the number of nodes stored in ISB is N .

The cost of performing a range query search corresponds to the cost of
computing the distances between an object and all the pivots plus the cost
of determining true neighbors. Since the number of used pivots is logarithmic
in the size of the index, the former cost is O(∆ log N). As for the latter cost,
let η (0 ≤ η ≤ 1) be the mean fraction of index objects marked as candidate

54 4 Outlier Detection in Streams of Data

0.01 0.05 0.10
0

10

20

30

40

50

60

70

80

90

100
Mixed Gauss data set

ρ

P
re

ci
si

on
 a

nd
 R

ec
al

l

0.01 0.05 0.10
0

10

20

30

40

50

60

70

80

90

100
Rain data set

ρ

P
re

ci
si

on
 a

nd
 R

ec
al

l

0.01 0.05 0.10
0

10

20

30

40

50

60

70

80

90

100
TAO data set

ρ

P
re

ci
si

on
 a

nd
 R

ec
al

l

0.01 0.05 0.10
0

10

20

30

40

50

60

70

80

90

100
DARPA data set

ρ

P
re

ci
si

on
 a

nd
 R

ec
al

l

Fig. 4.3. Precision and Recall of approx-STORM.

neighbors when the radius is set to R. In order to determine if a candidate is
a true neighbor, its distance from the query object has to be computed. Then,
the cost is O(∆ηN). Supposing that the latter cost is always greater than the
former one, the total cost for the range query search is O(∆ηN).

The cost of removing an object from the index is constant, since it prac-
tically consists in flagging as empty the entry of an array.

Finally, as for the insertion of an object obj into ISB, it requires to compute
the distances among obj and all the pivots. However, since insertion is always
performed after the range query search, these distances are already available
and, then, the insertion cost is constant too.

Spatial analysis. For exact-STORM, ISB stores all the W objects of the
current window and, for each of them, the list nn before of the k most recent
preceding neighbors, and two integer numbers. Recall that each object requires
space d and each list requires space k.

For approx-STORM, assuming meaningful combinations of the parame-
ters, ISB stores approximately ρW objects of the current window and, for
each of them, a counter of preceding neighbors, and two integer numbers.

Summarizing, the spatial cost of the algorithm STORM is

• O(W (d + k)) for exact-STORM, and
• O(ρWd) for approx-STORM.

Temporal analysis. The procedure Stream Manager consists of four steps
(see Figures 4.1 and 4.2). The cost of the step 1 corresponds to the cost of
removing an object from ISB, which, from the discussion above, is constant.
Also step 2 has a constant cost.

Step 3 performs a range query search, whose cost is O(∆ηN). For each
of the ηN objects returned by the search, the exact-STORM performs an
ordered insertion into the list nn before, that costs O(log k) (see Section 4.3.1),
and executes some other operations having constant cost. Contrariwise, the
approx-STORM possibly removes a node from ISB and executes some other
operations. Both the removal and the other operations have constant cost.

Finally, step 4 inserts a node into ISB and hence has constant cost. Sum-
marizing, the cost of the procedure Stream Manager is

• O(∆ηW log k) for exact-STORM, and
• O(∆ηρW) for approx-STORM.

4.5 Experimental results 55

The procedure Query Manager consists of a scan of the ISB structure. For
each node n, the exact-STORM computes prec neighs in time O(log k) (see
Section 4.3.1) by determining the number of identifiers in n.nn before associ-
ated with non-expired objects. Conversely, the approx-STORM performs only
steps having constant cost. Summarizing, the cost of the procedure Query
Manager is

• O(W log k) for exact-STORM, and
• O(ρW) for approx-STORM.

4.5 Experimental results

In this section, results obtained by experimenting the proposed techniques on
both synthetic and real data sets are presented.

First of all, the data set employed are described. The Gauss data set is a
synthetically generated time sequence of 35,000 one dimensional observations,
also used by Papadimitriou et al. [2003]. It consists of a mixture of three
Gaussian distributions with uniform noise.

Also some public real data from the Pacific Marine Environmental Labora-
tory of the U.S. National Oceanic & Atmospheric Administration (NOAA) are
used. Data consist of temporal series collected in the context of the Tropical
Atmosphere Ocean project (TAO)1. This project collects real-time data from
moored ocean buoys for improved detection, understanding and prediction of
El Niño and La Niña, which are oscillations of the ocean-atmosphere system
in the tropical Pacific having important consequences for weather around the
globe. The measurements used in experiments have been gathered each ten
minutes, from January 2006 to September 2006, by a moored buoy located in
the Tropical Pacific.

Both a one and a three dimensional data stream have been considered.
The Rain data set consists of 42,961 rain measurements. The TAO data set
consists of 37,841 triplets (SST, RH, Prec), where SST is the sea surface
temperature, measured in units of degrees centigrade at a depth of 1 meter,
RH is the relative humidity, measured in units of percent at a height of 3
meters above mean sea level, and Prec is the precipitation, measured in units
of millimeters per hour at a height of 3.5 meters above mean sea level. The
three attributes were normalized with respect to their standard deviation.

Finally, 1998 DARPA Intrusion Detection Evaluation Data [DARPA,
1998] has been employed, it has been extensively used to evaluate intrusion
detection algorithms. The data set consists of network connection records of
several intrusions simulated in a military network environment. The TCP con-
nections have been elaborated to construct a data set of 23 numerical features.
50,000 TCP connection records from about one week of data have been used.
1 See http://www.pmel.noaa.gov/tao/. A gratefully acknowledgement is due to

the TAO Project Office for making available the collected measurements.

56 4 Outlier Detection in Streams of Data

0 20 40 60 80 100
0

5

10

15

20

25
Rain data set, k=50, R=0.5, ρ=0.01

Number of nearest neighbors

M
is

cl
as

si
fie

d
ob

je
ct

s
cu

m
ul

at
ed

 fr
eq

ue
nc

y

Outliers
Inliers

0 20 40 60 80 100
0

5

10

15

20

25
Rain data set, k=50, R=0.5, ρ=0.05

Number of nearest neighbors

M
is

cl
as

si
fie

d
ob

je
ct

s
cu

m
ul

at
ed

 fr
eq

ue
nc

y

Outliers
Inliers

0 20 40 60 80 100
0

5

10

15

20

25
Rain data set, k=50, R=0.5, ρ=0.10

Number of nearest neighbors

M
is

cl
as

si
fie

d
ob

je
ct

s
cu

m
ul

at
ed

 fr
eq

ue
nc

y

Outliers
Inliers

Fig. 4.4. Number of nearest neighbors associated with the misclassified objects of
the Rain data set.

In all experiments, the window size W was set to 10,000 and the parameter
k was set to 0.005 ·W = 50. The parameter R was selected to achieve a few
percent of outliers in the current window (R = 0.1 for Gauss, R = 0.5 for
Rain, R = 1 for TAO, and R = 1,000 for DARPA).

Furthermore, it was submitted an outlier query every one hundred objects.
Measures reported in the sequel are averaged over the total number of queries
submitted. The first query was submitted only after having observed the first
W data stream objects.

The classification accuracy of the method was evaluated. It is worth to re-
call that exact-STORM exactly detects distance-based outliers in the current
window. Thus, the answer returned by this algorithm was used to evaluate
the quality of the approximate solution returned by approx-STORM.

The precision and recall measures were employed. Precision represents
the fraction of objects reported by the algorithm as outliers that are true
outliers. Recall represents the fraction of true outliers correctly identified by
the algorithm.

Figure 4.3 shows precision (dark bars, on the left) and recall (light bars,
on the right) achieved by approx-STORM on the four considered data sets,
for increasing values of ρ, that is ρ = 0.01, ρ = 0.05, and ρ = 0.10.

Interestingly, on the Gauss data set the method practically returned all
and only the true outliers. This is because, in this data set, outliers are repre-
sented by noise which is well separated from the data distribution. Notice that
other methods were not able to obtain this very good classification result.

As for the data sets from the TAO Project, since outliers there contained
are associated to large oscillations of earth parameters, they lie on the bound-
ary of the overall measurement distribution and are not completely separated
from the rest of the population. Thus, there exists a region of transition where
the approximate algorithm can fail to exactly recognize outliers (see below in
this section for an evaluation of the characteristics of objects on which classi-
fication errors are made).

It is clear by the diagrams that, by augmenting the parameter ρ, the
precision tends to decrease while the recall tends to increase. This can be
explained since by using a small sample size the number of nearest neighbors

4.5 Experimental results 57

tends to be overestimated. Anyway, the classification accuracy was very good,
e.g. precision 0.965 and recall 0.942 on the Rain data set, and precision 0.948
and recall 0.935 on the TAO data set, for ρ = 0.05.

The DARPA data set represents a challenging classification task due the
considerable number of attributes it is characterized by. The precision-recall
trade-off previously observed is confirmed also on this data set. Moreover, the
classification accuracy is of remarkable quality: for ρ = 0.05, precision 0.947
and recall 0.956 were achieved.

Data set ρ = 0.01 ρ = 0.05 ρ = 0.10 Exact

Gauss 0.17 0.43 0.84 7.52
Rain 0.17 0.47 0.81 7.86
TAO 0.17 0.42 0.62 3.94
DARPA 0.17 0.29 0.47 3.28

Table 4.1. Elaboration time per single object [msec].

Table 4.1 reports the time (in milliseconds) employed by approx-STORM
for various values of ρ (first three columns), and by exact-STORM (fourth
column) to process an incoming data stream object2. Approx-STORM guar-
antees time savings with respect to exact-STORM which are in most cases
proportional to the parameter ρ. Differences in performances among the var-
ious experiments are justified by the different characteristics of the data sets
and, among them, particularly, by the mean fraction η of objects falling in
the neighborhood of radius R of data stream objects.

Figure 4.4 shows the distribution of the number of nearest neighbors as-
sociated with objects of the Rain data set which are misclassified by exact-
STORM. These diagrams are interesting to comprehend the nature of the
misclassified returned objects and the quality of the approximation. From left
to right, diagrams are associated with increasing values of ρ.

The abscissa reports the number of nearest neighbors, while the ordinate
the cumulated absolute frequency of misclassified objects. Two cumulated
histograms are included in each diagram, one concerning outliers and the
other concerning inliers.

Light bars (on the left) represent the mean number of outliers which are
reported as inliers. Thus, these misclassifications concern the recall measure.
Specifically, a bar of position k0 and height h0 represents the following infor-
mation: among the objects having at most k0(< 50) nearest neighbors (and
hence outliers), on the average, h0 of them have been recognized as inliers.

2 Experiments were executed on a Core 2 Duo based machine having 2GB of main
memory.

58 4 Outlier Detection in Streams of Data

Dark bars (on the right) represent the mean number of inliers which are
reported as outliers. Thus, these misclassifications concern the precision mea-
sure. Specifically, a bar of position k0 and height h0 represents the following
information: among the objects having at least k0(≥ 50) nearest neighbors
(and hence inliers), on the average, h0 of them have been recognized as out-
liers.

These diagrams show that for small sample sizes the number of errors is
biased towards the outliers, due to the overestimation effect. Moreover, more
interestingly, they show the nature of the misclassified objects. Indeed, as
predicted by the analysis of section 4.4.1, for an object the probability of
being misclassified greatly decreases with the distance |k0 − k| between the
true number k0 of its nearest neighbors and the parameter k.

Indeed, the majority of the misclassified inliers have a number of neighbors
close to k. For example, when ρ = 0.05, almost all the misclassified outliers
have at most 60 neighbors (compare this value with k = 50).

The quality of the approximate answer is thus very high. Although these
objects are not outliers according to Definition 6, from the point of view of
a surveillance application, they could be as interesting as true outliers, since
they anyhow lie in a relatively sparse region of the feature space.

Part II

Outlying Property Detection

5

Detecting Outlying Properties of Exceptional
Objects

In this chapter the problem of discovering sets of attributes that account for
the abnormality of an individual that is known to be an outlier with respect to
a given data population is addressed. A novel way to evaluate the abnormality
of subsets of attributes (properties) is introduced and motivated. Next, the
problem is analyzed from the complexity point of view, and clever algorithms
to solve it are presented. This way, a fully automated support can be provided
to decode those properties determining the abnormality of the given object
within the reference data context. Finally, some experiments on both real
and synthetic data set have been conducted in order to show the algorithm
performances and the meaningfulness of the information mined.

5.1 Introduction

Let a data population be given, stored into a database DB represented in the
form of a relational table. Let o be an object of the population, which is known
to be abnormal on the basis of available external knowledge. The objective
here is that of devising techniques by which it is possible and effective to
single out those combinations of attributes that justify the abnormality of the
object with the highest plausibility.

Several criteria to measure the abnormality of properties can be defined.
In this thesis a suitable one is presented. The proposed measure does not
require the definition of a distance relating pairs of objects but, rather, it is
based on a simple concept of relative frequency.

In particular, the point of view adopted is that a property, or set of at-
tributes, is abnormal for the object o if the combination of values o assumes
on these attributes is very infrequent with respect to the overall distribution
of the attribute values in the data set: to this end, in the following, it is intro-
duced a measure by which, how much a set of attributes should be considered
relevant as to explain the abnormality of the given individual can be faithfully

62 5 Detecting Outlying Properties of Exceptional Objects

captured. A discussion on the peculiarities of the measure and its relation-
ship with related measures will be presented later in the chapter (see Section
5.2). From this discussion, and from some of the results of the experiments, it
shall clearly turn out that our measure is a sensible and significant one in the
context of the analyzed abnormality explanation problems. Both global and
local forms of abnormal properties can be defined, where local properties are
ones justified by some others playing the role of explanation for the former,
and algorithms to mine the top most relevant ones are described.

As an example of knowledge that can be mined by using the approach here
described, consider the Zoo database from the UCI Machine Learning repos-
itory [Newman et al., 1998] reported in Figure 5.1. This database stores in-
formation about animals. In particular it contains 15 boolean-valued and two
numerical attributes representing animal features. Attributes are described
in the caption of the figure. It is known that the platypus is an exceptional
animal, since it is a mammal, but it lays eggs. This intuitive notion can be
formally illustrated on the database by noticing that among dataset objects
having value “y” for the attribute C, that is eggs, the platypus is the only ani-
mal having value “y” for the attribute D, that is milk. Obviously the value “y”
for the attribute milk is not an exceptional feature “per se”, but it becomes
surprising if we restrict our attention to the animals which lay eggs. This is
a case where a local property is individuated, where the attribute eggs plays
the role of explanation for the outlying property, milk, of the platypus.

5.2 Related Work

The mining technique illustrated here is of the unsupervised kind.
Methods discussed in Paragraph 2.2 search for objects which can be re-

garded as anomalous by looking at the full dimensional space. In many real
situations an object shows exceptional characteristics only when the attention
is restricted to a subset of the features. Searching for outliers in subspaces is
a relatively novel research topic. In the rest of the section, works on outlier
detection dealing with a search space consisting in a subset of the overall set
of data set attributes are briefly surveyed.

In [Sarawagi et al., 1998], a discovery-driven technique for the discovery of
anomalies into OLAP data cubes is presented. The analyst search for anoma-
lies is guided by precomputed indicators of exceptions at various levels of
detail in the cube. Loosely speaking, a value y in the cube is recognized as an
exception if it differs significantly from the value ŷ predicted by a statistical
model taking into account all the higher-level aggregations the value y belongs
to. The absolute difference r = |y − ŷ| between the actual value y and the
value ŷ anticipated by the model is called the residual r. If the standardized
residual s = |y−by|

σ , where σ is the anticipated standard deviation associated
with residuals, is higher than some threshold τ , then the value y is called an
exception. The value τ = 2.5, corresponding to a probability of 99% in the

5.2 Related Work 63

A B C D E F G H I J K L M N O P Q A B C D E F G H I J K L M N O P Q

bass n n y n n y y y y n n y 0 y n n 4 toad n n y n n y n y y y n n 4 n n n 5
carp n n y n n y n y y n n y 0 y y n 4 tortoise n n y n n n n n y y n n 4 y n y 3
catfish n n y n n y y y y n n y 0 y n n 4 tuatara n n y n n n y y y y n n 4 y n n 3
chicken n y y n y n n n y y n n 2 y y n 2 tuna n n y n n y y y y n n y 0 y n y 4
chub n n y n n y y y y n n y 0 y n n 4 vulture n y y n y n y n y y n n 2 y n y 2
clam n n y n n n y n n n n n 0 n n n 7 wasp y n y n y n n n n y y n 6 n n n 6
crab n n y n n y y n n n n n 4 n n n 7 worm n n y n n n n n n y n n 0 n n n 7
crayfish n n y n n y y n n n n n 6 n n n 7 wren n y y n y n n n y y n n 2 y n n 2
crow n y y n y n y n y y n n 2 y n n 2 aardvark y n n y n n y y y y n n 4 n n y 1
dogfish n n y n n y y y y n n y 0 y n y 4 antelope y n n y n n n y y y n n 4 y n y 1
dove n y y n y n n n y y n n 2 y y n 2 bear y n n y n n y y y y n n 4 n n y 1
duck n y y n y y n n y y n n 2 y n n 2 boar y n n y n n y y y y n n 4 y n y 1
flamingo n y y n y n n n y y n n 2 y n y 2 buffalo y n n y n n n y y y n n 4 y n y 1
flea n n y n n n n n n y n n 6 n n n 6 calf y n n y n n n y y y n n 4 y y y 1
frog n n y n n y y y y y n n 4 n n n 5 cavy y n n y n n n y y y n n 4 n y n 1
frog n n y n n y y y y y y n 4 n n n 5 cheetah y n n y n n y y y y n n 4 y n y 1
gnat n n y n y n n n n y n n 6 n n n 6 deer y n n y n n n y y y n n 4 y n y 1
gull n y y n y y y n y y n n 2 y n n 2 dolphin n n n y n y y y y y n y 0 y n y 1
haddock n n y n n y n y y n n y 0 y n n 4 elephant y n n y n n n y y y n n 4 y n y 1
hawk n y y n y n y n y y n n 2 y n n 2 fruitbat y n n y y n n y y y n n 2 y n n 1
herring n n y n n y y y y n n y 0 y n n 4 giraffe y n n y n n n y y y n n 4 y n y 1
honeybee y n y n y n n n n y y n 6 n y n 6 girl y n n y n n y y y y n n 2 n y y 1
housefly y n y n y n n n n y n n 6 n n n 6 goat y n n y n n n y y y n n 4 y y y 1
kiwi n y y n n n y n y y n n 2 y n n 2 gorilla y n n y n n n y y y n n 2 n n y 1
ladybird n n y n y n y n n y n n 6 n n n 6 hamster y n n y n n n y y y n n 4 y y n 1
lark n y y n y n n n y y n n 2 y n n 2 hare y n n y n n n y y y n n 4 y n n 1
lobster n n y n n y y n n n n n 6 n n n 7 leopard y n n y n n y y y y n n 4 y n y 1
moth y n y n y n n n n y n n 6 n n n 6 lion y n n y n n y y y y n n 4 y n y 1
newt n n y n n y y y y y n n 4 y n n 5 lynx y n n y n n y y y y n n 4 y n y 1
octopus n n y n n y y n n n n n 8 n n y 7 mink y n n y n y y y y y n n 4 y n y 1
ostrich n y y n n n n n y y n n 2 y n y 2 mole y n n y n n y y y y n n 4 y n n 1
parakeet n y y n y n n n y y n n 2 y y n 2 mongoose y n n y n n y y y y n n 4 y n y 1
penguin n y y n n y y n y y n n 2 y n y 2 opossum y n n y n n y y y y n n 4 y n n 1
pheasant n y y n y n n n y y n n 2 y n n 2 oryx y n n y n n n y y y n n 4 y n y 1
pike n n y n n y y y y n n y 0 y n y 4 polecat y n n y n n y y y y n n 4 y n y 1
piranha n n y n n y y y y n n y 0 y n n 4 pony y n n y n n n y y y n n 4 y y y 1
pitviper n n y n n n y y y y y n 0 y n n 3 porpoise n n n y n y y y y y n y 0 y n y 1
platypus y n y y n y y n y y n n 4 y n y 1 puma y n n y n n y y y y n n 4 y n y 1
rhea n y y n n n y n y y n n 2 y n y 2 pussycat y n n y n n y y y y n n 4 y y y 1
seahorse n n y n n y n y y n n y 0 y n n 4 raccoon y n n y n n y y y y n n 4 y n y 1
seawasp n n y n n y y n n n y n 0 n n n 7 reindeer y n n y n n n y y y n n 4 y y y 1
skimmer n y y n y y y n y y n n 2 y n n 2 scorpion n n n n n n y n n y y n 8 y n n 7
skua n y y n y y y n y y n n 2 y n n 2 seal y n n y n y y y y y n y 0 n n y 1
slowworm n n y n n n y y y y n n 0 y n n 3 sealion y n n y n y y y y y n y 2 y n y 1
slug n n y n n n n n n y n n 0 n n n 7 seasnake n n n n n y y y y n y n 0 y n n 3
sole n n y n n y n y y n n y 0 y n n 4 squirrel y n n y n n n y y y n n 2 y n n 1
sparrow n y y n y n n n y y n n 2 y n n 2 vampire y n n y y n n y y y n n 2 y n n 1
starfish n n y n n y y n n n n n 5 n n n 7 vole y n n y n n n y y y n n 4 y n n 1
stingray n n y n n y y y y n y y 0 y n y 4 wallaby y n n y n n n y y y n n 2 y n y 1
swan n y y n y y n n y y n n 2 y n y 2 wolf y n n y n n y y y y n n 4 y n y 1
termite n n y n n n n n n y n n 6 n n n 6

Fig. 5.1. Zoo database (A=hair, B=feathers, C=eggs, D=milk, E=airborne,
F=aquatic, G=predator, H=toothed, I=backbone, J=breathes, K=venomous,
L=fins, M=legs (set of values: 0,2,4,5,6,8), N=tail, O=domestic, P=catsize, Q=type
(integer values in range [1,7])).

normal distribution, is used. In order to summarize exceptions in lower levels
of the cube as single values at higher levels of the cube, some quantities, called
SelfExp, InExp, and PathExp, are associated with each cell. SelfExp denotes

64 5 Detecting Outlying Properties of Exceptional Objects

the value s described above, InExp represents the degree of surprise some-
where beneath this cell if the cell is drilled down, and PathExp represents the
degree of surprise for each drill-down path from the cell. These precomputed
quantities are used to lead the analyst to interesting regions of the cube dur-
ing navigation. This technique is specifically designed for OLAP data cubes
[Chaudhuri and Dayal, 1997] and works only on numerical attributes. Fur-
thermore, it is able to discover single exceptional values at cell level or at an
aggregate level, and then it cannot be focused on a single tuple to search for
anomalous values associated with it.

[Knorr and Ng, 1999] focus on the identification of the intensional knowl-
edge associated with distance-based outliers. First, they detect the distance-
based outliers P in the full attribute space and, then, for each outlier P , they
search for the subspaces that better explain why it is exceptional. In particular,
this subspace coincides with the minimal subspace in which P is still an out-
lier. Note that the distance-based outlier measure is monotonic with respect to
the subset inclusion relationship: if an object is an outlier in a subspace, then
it will be an outlier in all its supersets. Although meaningful when dealing
with homogeneous numerical attributes, this kind of monotonicity may not
be in general suitable for categorical attributes, where often objects exhibit
outlierness only in characterizing subspaces. Also, according to this approach,
the exceptional object is not provided in input, but it belongs to the set of
distance-based outliers of the data set in the full attribute space. Further-
more, this setting models outliers which are exceptional with respect to the
whole population, but does not capture objects which are exceptional only
with respect to homogeneous subpopulations, e.g. those identified by objects
with similar characteristics.

In [Aggarwal and Yu, 2001], anomalies are detected by searching for sub-
spaces in which the data density is exceptionally lower than the mean density
of the whole data set. An abnormal lower projection is one in which the den-
sity of the data is exceptionally lower than the average. Assume that each
attribute of the data is divided into φ equi-depth ranges, and let f = 1/φ.
Let us assume that there are a total of N points in the data set, and let
n(D) be the number of points in the k-dimensional cube D. Then the sparsity
coefficient S(D) of the cube D is defined as follows:

S(D) =
n(D)−N · fkp
N · fk · (1− f)k

, (5.1)

where the term N ·fk denotes the expected number of points in D, and the de-
nominator of S(D) denotes the expected standard deviation. Negative sparsity
coefficients indicate cubes in which the presence of the points is significantly
lower than expected. In order to search the exponential space of possible
projections, a technique based on evolutionary algorithms is presented. The
user must specify the number m of abnormal projections to be determined
and, also, the dimensionality k of the projection which is used in order to
determine the outliers. After having determined m abnormal projections and,

5.2 Related Work 65

hence, m sparse cubes, a post-processing phase retrieves the data set objects
lying in these cubes and reports them as outliers. This approach requires some
non-intuitive parameters to be specified, e.g. the the dimensionality k of the
abnormal projections. It is well suited for numerical attributes, and cannot
be focused on a single individual to search for its outlying properties.

In [Zhu et al., 2005], the authors’ goal is to find the example-based outliers
in a data set. Given an input set of example outliers, i.e. of objects known
to be outliers, they search for the objects of the data set which mostly ex-
hibit the same exceptional characteristics as the example outliers. In order
to single out these objects, they search for the subspace S maximizing the
average value of sparsity coefficients of Expression (5.1) of cubes containing
user examples. This subspace is detected by means of a genetic algorithm.
After finding S, the method returns the objects contained in the cubes which
are sparser than or as sparse as cubes containing examples in the subspace S.
As the preceding one, this method is suited for numerical attributes and does
not take into account subpopulations. Furthermore, the interest is in detect-
ing outliers showing a behavior similar to a set of known individuals used as
examples of exceptionality.

In [Zhang and Wang, 2006], the algorithm HighDOD is presented. The in-
terest there is on finding the subspaces in which a given point is an outlier. The
outlying degree (OD) of a point is measured using the sum of the distances be-
tween this point and its k nearest neighbors [Angiulli and Pizzuti, 2002]. OD
has a monotonic property: if a point is an outlier in a subspace, then it will be
an outlier in any superset of that subspace. Two different strategies to iden-
tify outlying subspaces are presented. The Global-T pruning strategy adopts
a unique distance threshold for all the subspaces. Contrariwise, the Local-T
pruning strategy adopts different distance thresholds for different subspaces in
order to take into account the varied denseness of points there. This Local-T
strategy was introduced since it could mine more interesting subspaces than
those found by the Global-T one. The Local-T strategy is comparatively slow
and less scalable to high-dimensional data sets than the Global-T strategy,
while this latter strategy may be able to prune a larger number of subspaces
than the former one. The algorithm HighDOD is a dynamic subspace search
method that utilizes a sampling-based learning process to identify the sub-
spaces in which a given point is an outlier. Informally, the Total Saving Factor
(TSF) of a m-dimensional subspace is defined as the expected (in terms of
probabilities of applying upward and downward pruning; these probabilities
are estimated through a sampling-based learning process) savings (in terms
of subspaces to be visited) obtained after having visited the subspace and
having applied the pruning rules. The basic idea of the dynamic subspace
search method is to search beginning with those subspaces with the same di-
mension that has the highest current TSF value. The search terminates when
all the subspaces have been evaluated or pruned. The proposed algorithm is
compared with top-down and bottom-up like techniques.

66 5 Detecting Outlying Properties of Exceptional Objects

Zhang et al. [2006] present a variant of the above described task. They
focus on outlying subspace detection, that is, finding subsets of attributes in
which a given data point significantly deviates from the rest of the population.
Let p be a data set object, k be a positive integer, and s be a subspace. Then
Dk

s (p) denotes the distance from p to its k-th nearest neighbor in the data
set projected on the subspace s. The Subspace Outlying Factor (SOF) of a
subspace s w.r.t. a given object p is defined as the ratio of Dk

s (p) against
average Dk

s for points in the data set. Outlying subspaces are detected by
using a genetic algorithm.

Both the approaches outlined above use the distance-based outlier measure
which is not suitable for categorical or non homogeneous attributes. Further-
more, the algorithms used to single out subspaces are non-optimal.

Wei et al. [2003] deal with outlier detection for categorical data. They
present a novel definition of outlier based on an hypergraph model. By means
of this modeling they aim at capturing the characteristics of data distribution
in subspaces. In particular, they focus on detecting outliers by discovering
sets of categorical attributes, called common attributes, being able to single
out a portion of the data set in which the value assumed by some objects on
a single additional attribute, called exceptional attribute, becomes infrequent
with respect to the mean frequency of the values in the domain of that at-
tribute. The degree of infrequency for a value v in the attribute A is measured
through the deviation measure f−µ

σ , where f is the absolute frequency of the
value v, µ is the mean absolute frequency associated with values of A, and σ
is their standard deviation. The objects whose value on the exceptional at-
tribute exhibits a meaningful deviation are called outliers. Common attributes
are determined by selecting the sets of frequent attributes of the data base.
In [Wei et al., 2003] an algorithm is presented, called HypergraphBasedOut-
lierTest (HOT), to mine hypergraph-based outliers. HOT works by executing
the following steps. First, all the frequent itemsets, having a user-specified
support min sup, are mined by using the Apriori algorithm [Agrawal and
Srikant, 1994]. Then, these frequent itemsets are arranged in a hierarchy ac-
cording to the containment relationship. Next, the hierarchy is visited using a
bottom-up strategy. Frequent itemsets I represent common attributes, while
each attribute A not in I represents a potential exceptional attribute. For each
itemset I, the histogram of frequencies associated with each attribute A not
in I is stored, and used to compute the deviation of each value taken by A in
the database. Finally, the objects assuming a value on the attribute A whose
deviation is smaller than a user-provided threshold are returned as outliers.
Both temporal and spatial costs of this method are O(‖HE‖ ·k ·max{‖he‖}),
where ‖HE‖ is the number of frequent itemsets returned by Apriori, k is the
number of attributes, and max{‖he‖} is the size of the largest set of tuples
selected by a frequent itemset.

The objective of Wei et al. [2003] is to find out a single exceptional at-
tribute. Furthermore, they mine outliers as exceptional objects on an attribute
with respect to a frequent itemset which they belong to. Moreover, the first

5.3 Contribution 67

step of the method consists in the Apriori algorithm. Thus, HOT does not ex-
ploit pruning rules to reduce the portion of search space to be explored. Also,
its space requirements are impractical, since the number ‖HE‖ of frequent
itemsets is exponential in the number of attributes.

The Subgroup Discovery Task (SDT) [Klösgen, 1996] aims at finding an
interesting subgroup of objects with common characteristics with respect to
a given attribute, called target variable. Typically a subgroup is identified
by using a conjunction of selection expressions. For example, for the target
variable coronary heart disease = true, an interesting subgroup can be that
including the objects selected by the expression: smoke = true AND family
history = true. The usefulness of the subgroup found is typically obtained by
means of a statistical test. The SDT outputs a group of exceptional objects
and the target variable is only one and it is given as input.

As pointed out earlier in this section, all these methods share the fact
of dealing with the search space composed of the subsets of the data set
attributes, but major differences exist among them. Before leaving the section,
it is thus of interest to summarize the main differences among our approach
and approaches referred to above, which is accounted for in the following. In
[Sarawagi et al., 1998, Aggarwal and Yu, 2001, Zhu et al., 2005, Wei et al.,
2003, Klösgen, 1996] the task considered is different from the task investigated
here, since the goal of these works is to detect outliers in subspaces or single
out interesting subgroups, though Zhu et al. [2005] make use of examples to
guide the detection, whereas in our approach the outlier object is part of
the input and the goal is to single out the attributes that better justify its
exceptionality. Wei et al. [2003] use the concept of common attributes to single
out relevant subpopulations, which is similar to our concept of explanation,
but exceptional properties are single attributes, while outlying properties are
sets of attributes. Knorr and Ng [1999], Zhang and Wang [2006], Zhang et al.
[2006] consider the problem of singling out subspaces in which given points
are outliers. All these methods use distance-based definitions and are suitable
for data sets having homogenous numerical attributes, but not for categorical
attributes, which our technique conversely manages. In [Knorr and Ng, 1999],
the exceptional objects are the distance-based outliers of the data set in the
full attribute space and, hence, cannot be provided as input. Moreover, Zhang
and Wang [2006], Zhang et al. [2006] use local search methods, which are non-
optimal. Furthermore, all those three methods do not mine objects which are
exceptional with respect to homogeneous subpopulations, e.g. those identified
by objects with similar characteristics, like it is done when singling out local
properties.

5.3 Contribution

The contributions of this thesis, given in the illustrated context, can be sum-
marized as follows:

68 5 Detecting Outlying Properties of Exceptional Objects

• the somewhat novel problem of singling out outlying properties with asso-
ciated explanations for an object given as abnormal within a categorical
data set is presented;

• a measure of outlierness for detecting very infrequent combinations of at-
tribute values for an object in a data set is introduced;

• computational complexity figures of the problem of singling out top out-
lying properties of a given object, with complexity classes ranging from
F∆P

2 [O(log n)] to FΣP
2 are precisely depicted;

• accurate upper bounds for the outlierness of supersets of a property are
provided;

• linear space algorithms for computing top outlying properties are pre-
sented;

• the results of experiments conducted on several domains are presented,
they show that, despite the high theoretical complexity associated with
handled problems, the algorithms presented here are, on the average, ca-
pable to converge and yield the result within a reasonable amount of time;
also, experimental evidence demonstrates the effectiveness of our algo-
rithms in mining significant information.

The rest of the chapter is organized according to the following road map.
Paragraph 5.4 defines the measure of abnormality of a property, called

outlierness, and discusses about the intuition underlying this definition. Major
differences with other known measures are commented upon. Moreover, the
concept of explanation is introduced, which leads to the definition of local
properties.

Paragraph 5.5 formally states the Outlying Property Detection Problem (or
OPD), which is the problem of knowledge discovery to be solved. In particular,
the problem consists in searching for the outlying properties mostly character-
izing a given outlier object, that are the properties scoring the greatest values
of outlierness.

Paragraph 5.6 studies the computation complexity of the OPD. In order
to precisely characterize the complexity of the OPD, several variants of it
are defined and studied, namely: OPD(D), its decision version, OPD(O), its
optimization version, and OPD(S), its recognition version. The complexity
study reveals that the general OPD problem is F∆P

2 [O(log n)]-hard, hence
intractable, but within FΣP

2 if the number of properties the user is interested
in discovering is polynomially bounded in the number of attributes.

In Paragraph 5.7, some properties of the measure employed here are de-
rived, which are needful to design a smart search algorithm capable of deliver-
ing the result by visiting an as-much-restricted-as-possible part of the search
space. Basically, given a property and an explanation, the two following ques-
tions are answered: (A) how to obtain an upper bound to the outlierness of
any superset of the given property justified by the given explanation? (B)
how to obtain an upper bound to the outlierness of any superset of the given
property justified by any superset of the given explanation?

5.4 Outlying Properties 69

Equipped with the results presented in Paragraph 5.7, the following Para-
graph 5.8 presents algorithms for computing the most unexpected properties
associated with a given object. Algorithms are designed with two goals in
mind. First, the optimal solution of OPD has to be obtained. Also, to make
the method as practical as possible, the algorithms has to run in linear space.
In order to prune unfruitful subspaces and speed up computation, algorithms
exploit the upper bound properties derived in the previous section.

Paragraph 5.9 describes data structures exploited in order to implement
the methods in a way as to comply with the linear space requirements. Both
spatial and temporal concrete cost of algorithms are analyzed in detail.

Finally, Paragraph 5.10 shows and discusses experimental results. In par-
ticular, the scalability of the method and the sensitivity to parameters varia-
tions are studied, and examples of mined knowledge are shown.

5.4 Outlying Properties

5.4.1 Preliminaries

An attribute a is an identifier with an associated domain. Let A = a1, . . . , am

be a set of m attributes1. Then, an object o on A is a tuple o = 〈v1, . . . , vm〉
of m values, such that each vi is a value in the domain of ai. The value vi of
the attribute ai in the object o will be denoted by o[ai]. A database DB on a
set of attributes A is a multi-set (that is, duplicate elements are allowed), of
objects on A.

In the following, DB will denote a database on the set of attributes A and
o will be an object of DB. Moreover, let S = a1, . . . , al denote a subset of the
attributes in A.

The projection o[S] of the object o on the subset of attributes S, is the new
object 〈o[a1], . . . , o[al]〉. The projection DB[S] of the database DB on the set
of attributes S is the new database {o[S] | o ∈ DB} where it is assumed that
possible duplicate objects are maintained. Accordingly, the selection DBo[S]

of the database DB w.r.t. o and S is the database {o′ ∈ DB | o′[S] = o[S]}.
In the following, for simplicity of notation and whenever the database

is clear from the context, when a function having database DB among its
parameters is denoted, the parameter DB will be omitted. If it is not the
case, then the database of reference will be specified as a superscript of the
function.

The frequency freqS(o) of o in the database DB w.r.t. the subset of at-
tributes S ⊆ A, is the rational number |DBo[S]|/|DB|.

Next, the definitions of frequency histogram, cumulated frequency his-
togram, and marginal frequency histogram are given, which will then be used
to define the outlierness measure of an object.
1 For the sake of simplicity and w.l.o.g., it is assumed that an arbitrary ordering of

the attributes in A has been fixed.

70 5 Detecting Outlying Properties of Exceptional Objects

Car ID Tyres Weight Pit-Stops Cylinders Engine Failures

c1 B 605 2 10 3
c2 B 605 2 8 1
c3 B 605 2 10 1
c4 B 605 2 10 2
c5 B 605 3 8 0
c6 M 605 2 8 1
c7 M 605 2 10 4
c8 M 605 2 8 1
c9 M 605 3 10 0
c10 M 605 3 10 5
c11 M 605 3 8 1

(a) An example database DBex.

Objects Freq
〈B, 3〉 1/11
〈M, 2〉 3/11
〈M, 3〉 3/11
〈B, 2〉 4/11

(b) DBex objects
and associated fre-
quencies.

Fig. 5.2. Example Database

The frequency histogram histS of DB w.r.t. S is the ordered multiset of
the rational numbers {f1, . . . , fn}, where each fi is the frequency freqS(oi)
associated to a distinct object oi ∈ DB[S], such that for each i ∈ {2, 3, . . . , n},
it holds that fi−1 ≤ fi.

Example 4. The database DBex of Figure 5.2(a) encodes information about
Formula 1 car performances. Suppose it is known that the car c5 is excep-
tional since it established a striking new total time race record on a certain
circuit. Consider the set S including the attributes {Tyres, Pit-Stops}. Then
the distinct objects of DBex[S] are o1 = 〈B, 2〉, o2 = 〈B, 3〉, o3 = 〈M, 2〉,
and o4 = 〈M, 3〉, and the frequency histogram histDBex

S is the set { 1
11 , 3

11 , 3
11 ,

4
11}; this frequency histogram is reported on the right column of the table in
Figure 5.2(b).

Let h be a frequency histogram. The cumulated frequency histogram |h|
of h, is the set consisting of the pairs (0, 0) and (1, 1) plus the pairs (fj , gj),
where fj is a distinct frequency of h and gj is

∑
hi≤fj

hi. In the following, the
value gj will be denoted by |h| (fj).

The diagram associated to the cumulated frequency histogram {(f1, g1),
. . ., (fn, gn)} is the curve on the plane drawn by the 2(n − 1) − 1 segments
linking the point (fi, gi) to the point (fi+1, gi), and the point (fi+1, gi) to the
point (fi+1, gi+1), respectively.

Example 4 (continued). The cumulated frequency histogram |histS| of DBex w.r.t.

the set of attributes S = {Tyres, Pit-Stops} is reported in the second and third

columns of the table in Figure 5.3(a), whereas its associated curve is depicted in

Figure 5.3(b). ¤

Let h be a frequency histogram. The marginal frequency histogram ‖h‖ of
h, is the set of pairs (fj , Fj), where (fj , gj) is a pair of the cumulated frequency
histogram |h| and Fj is

∑
fk>fj

(fk − fk−1)gk−1. In the following, the value
Fj will be denoted by ‖h‖(fj). It immediately follows from this definition that

5.4 Outlying Properties 71

j fj gj

1 0 0
2 1

11
1
11

3 3
11

7
11

4 4
11

11
11

5 1 1

(a)

7/11

1

11/11 3/110 4/11

1/11

(b)

j fj Fj

1 0 86
121

2 1
11

86
121

3 3
11

84
121

4 4
11

7
11

5 1 0

(c)

Fig. 5.3. Histograms of the example data base.

the value ‖h‖(fj) equals the area below the portion of curve of the cumulated
frequency histogram included between the frequencies fj and 1.

Example 4 (continued). Consider again the database DBex. The marginal frequency

histogram of DBex w.r.t. S = { Tyres, Pit-Stops } is reported in the last two columns

of the table in Figure 5.3(c). ¤

5.4.2 Outlierness

Next, the concept of outlierness, that is, the abnormality measure employed
throughout the chapter, is introduced.

The intuition underlying the definition provided below is that a set of
attributes makes an object exceptional in an object w.r.t. a database if the
frequency of the combination of values assumed by that object on those at-
tributes is rare if compared to the frequencies associated with the other com-
binations of values assumed on the same attributes by the other objects of
the database.

A way to quantify the “degree of unbalanceness” between the frequency
of the object under consideration o and the frequencies of the rest of the
database is to measure the area above the cumulated frequency histogram of
the database w.r.t. the set of attributes of interest, starting from the frequency
of o. Indeed, the larger this area is, the smaller the frequency of o is w.r.t. the
frequencies associated with the other data set objects.

Thus, the outlierness outS(o) of the set of attributes S in o w.r.t. DB is
defined as follows

outS(o) = 1− [freqS(o) + ‖histS‖(freqS(o))].

The outlierness takes values in the range [0, 1] and it is zero when the property
can be considered usual, whereas the more the property denoted by the given
set of attributes is outlying, the more it will get close to one. Given a threshold

72 5 Detecting Outlying Properties of Exceptional Objects

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��1

11/11 3/110 4/11

1/11

7/11

(a) Area associated with
the term freqS(c5).

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������1

11/11 3/110 4/11

1/11

7/11

(b) Area associ-
ated with the term
‖histS‖(freqS(c5)).

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������1

11/11 3/110 4/11

1/11

7/11

(c) Area representing the
outlierness of c5.

Fig. 5.4. The areas associated with the curve of the cumulated frequency histogram.

θ ∈ [0, 1], S is said a θ–outlying property, or simply an outlying property, for
o if outS(o) ≥ θ.

Example 4 (continued). Recall that, in our example, S is the set {Tyres, Pit-Stops}.
Figure 5.4 shows the diagram of the cumulated frequency histogram |histS|. The

area associated to freqS(c5), is reported on the left, which corresponds to the value
1
11

, while the area associated to ‖histS‖(freqS(c5)), is displayed in the center as Fig-

ure 5.4(b), whose value is 1
11
· (3

11
− 1

11
) + 7

11
· (4

11
− 3

11
) + 1 · (1− 4

11
) = 86

121
. Finally,

the outlierness outS(c5) is equal to 1 − (1
11

+ 86
121

) ' 0.2, which corresponds to the

area depicted on the right (Figure 5.4(c)). Notice that, by considering any proper

subset S′ of S, the value of outS′(c5) would be zero. ¤

It is easily seen from the definition provided above that, for any S and o,
the measure of outS(o) satisfies the following intuitive properties:

• If histS = { c
n , . . . , c

n}, then outS(o) = 1 − [c
n + (1 − c

n)] = 0, that is, if
the frequency histogram corresponds to a uniform distribution, then any
subset of attribute values will be associated to a constant frequency and,
hence, accordingly, its outlierness is zero;

• If freqS(o) = max(histS(o)) = f , then outS(o) = 1 − [f + (1 − f)] = 0,
that is, if the frequency of the value assumed by the test object o corre-
sponds to the maximum frequency then, regardless of the distribution of
the frequency histogram, the property encoded by the considered attribute
set S is going to be regarded as rather usual and, hence, consistently, the
corresponding outlierness is zero;

• If histS = { 1
n , n−1

n } and freqS(o) = 1
n , then outS(o) = 1 − [1

n +
‖histS‖(1

n)] = 1 − [1
n + 1

n · (n−1
n − 1

n) + 1 · (1 − n−1
n)] = (n−1)(n−2)

n2

and, hence, limn→∞ outS(o) = 1, that is, if all the database objects as-
sume the same values on the set of attributes S, while the test object o
assumes a different value on the same attributes, then, as expected, the

5.4 Outlying Properties 73

larger the database is, the closer the outlierness associated with S for the
object o will get to one.

Conceptually, it is useful and intuitive to define the outlierness in terms of
an area obtained from the cumulated frequency histogram; however, for the
sake of computing the outlierness, it is more convenient to reformulate it, as
explained in the following theorem.

Theorem 2. Let o be an object such that freqS(o) = f and let histS =
{f1, . . . , fk}. Then outS(o) =

∑
fi>f fi(fi − f).

Proof. By using a graphical argument – see Figure 5.5 for an example – the
area above the curve of the cumulated frequency histogram starting from f ,
can be obtained by superimposing k′ rectangles, where k′ is the number of
frequencies fi such that fi > f , having height fi and breadth (fi − f) each.
Thus, each single frequency fi > f contributes to increase the total area of a
quantity fi(fi − f), and the outlierness outS(o) is thus

∑
fi>f fi(fi − f).

For example, consider a given frequency histogram w.r.t. a property S (Fig-
ure 5.5(a)). Let 1

11 be the frequency associated to the object o. It follows from
Theorem 2 than the outlierness outS(o) can be obtained by summing up the
areas of the three highlighted rectangles.

j fj

1 1
11

2 3
11

3 3
11

4 4
11

(a) Histogram

7/11

4/11

3/11

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

1

11/11 3/110 4/11

1/11

3/11

(b) Area representing the
outlierness.

Fig. 5.5. Example of outlierness computation.

A different measure

In order to quantify the unexpectedness of the frequency f of a certain com-
bination of attribute values, a measure based on the cumulated histogram of
frequencies is adopted. A supposedly more immediate solution would be in-
stead obtained by combining measures of centrality and dispersion, e.g. like
in f−µ

σ where µ is the mean and σ2 is the standard deviation of the frequency
histogram (which is similar to that employed in [Wei et al., 2003]).

74 5 Detecting Outlying Properties of Exceptional Objects

The rationale underlying this choice is that our measure of outlierness is
more suitable for singling out very infrequent combinations of values than the
one just recalled, which has instead the undesirable property of associating
the same score to very different distributions.

As an example, let n ≥ 2 be an integer, and consider the distribution
consisting of the n frequencies f0 < 1

2n , plus the n frequencies f1 = 1−nf0
n . The

mean of this distribution is µ = 1
2n , while the variance is σ = 1−2nf0

2n . Assume
that f0 is the frequency associated to the object being under examination, that
is f = f0. As a whole, the term f−µ

σ is equal to −1. It is clear thus that, in this
case, this measure comes out to be independent of f0. Therefore, with a very
unbalanced distribution, like, e.g., that obtained for n = 10 and f0 = 0.001
and f1 = 0.099, the same score will be returned as an almost uniform one, like,
e.g., that obtained for n = 10 and f = 0.049 and f1 = 0.051. Counterwisely,
the outlierness would be 0.097 for the former distribution, and 0.001 for the
latter.

A similar consideration holds even if the analyzed measure is not nor-
malized, that is, if the distance from the mean f − µ is employed as the
measure of exceptionality. Indeed, consider the histogram h = { 1

n , c
n , n−c−1

n },
and let freqS(o) be 1

n . Since the mean is independent of c, it would be ob-
tained the same score for very different distributions as, for example, with
h1 = { 1

n , 1
2 , 1

2 − 1
n} and h2 = { 1

n , 1
n , n−2

n }, while the outlierness is 0.995 for
the former distribution and 0.498 for the latter.

Functional Dependencies and Outlierness

If functional dependencies [Ullman, 1982] are defined on the input database,
they can be exploited to prune the search space associated to our problem. In
particular, suppose that a functional dependency A → B holds in the input
dataset. By definition of functional dependency, if two objects assume the
same value on A, then they will assume the same value on B and then, also
on the pair of attributes {A,B}; similarly, if two objects assume a different
value on A, they will assume a different value on every superset of A and then,
also on {A,B}. This implies that {A,B} is an outlier property if and only
if A is an outlier property, as well. Then, {A,B} can be safely pruned from
the search space while computing outlier properties. Conversely, it is worth
noticing that nothing can be deduced about B, since the outlierness computed
for B can be greater than, smaller than or equal to the outlierness computed
for A. For example consider the following two datasets:

Suppose that t0 is the exceptional object and that in both datasets the
functional dependency A → B holds. It is easy to see that for the dataset
in Figure 5.6(a), the outlierness of t0 w.r.t. B is greater than the outlierness
computed w.r.t. A. Conversely, for dataset in Figure 5.6(b), the outlierness
computed w.r.t. B is 0 and, then, smaller than the outlierness computed w.r.t.
A.

5.4 Outlying Properties 75

Obj A B

t0 a a
t1 a a
t2 b b
t3 b b
t4 b b
t5 c b
t6 c b
t7 c b

(a)

Obj A B

t0 a a
t1 a a
t2 b a
t3 b a
t4 b a
t5 c b
t6 c b
t7 c b

(b)

Fig. 5.6. Example of Dataset with Functional Dependencies

Obviously, if in a dataset both the functional dependencies A → B and
B → A hold, B can be safely discarded from the search space.

5.4.3 Outlier Explanations

Sometimes, some properties S of an object o that behave normally w.r.t. the
database as a whole, may be unexpected when attention is solely restricted
to a portion of the database. Relevant subsets of the database to hand are
those obtainable by selecting database objects agreeing with o on a subset
of E attributes disjoint from S. In such a case, the subset E plays the role
of explanation of the unexpected property S. In the following, the formal
framework is generalized to outlying property detection under explanations.

The outlierness of the set S of attributes in o w.r.t. DB with explanation
E is defined as

outE,S(o) = outDBo[E]

S (o)

Notice that this definition represents a generalization of the analogous defini-
tion reported in Section 5.4.2, since the outlierness of S in o, when no expla-
nation is considered, coincide with the outlierness of S in o with explanation
E = ∅.
Example 5. Consider the database DBex of Figure 5.2, let S be {Engine Failures},
and let o be the object c5. Then outS(c5) = 1−[2

11 +(5
11− 2

11)· 6
11 +(1− 5

11)·1] '
0.12. However, if the attention is restricted to the portion of the database
agreeing with c5 on the explanation E = {Cylinders}, i.e. to the objects o
such that o[E] =“8”, then the outlierness measure computed as outE,S(c5) for

c5 becomes considerably larger, since histDBo[E]

S = {1
5 , 4

5} and outE,S(c5) is,
therefore, 1− [15 + (4

5 − 1
5) · 1

5 + (1− 4
5) · 1] = 0.48.

However, it is apparent that not all the explanations should be considered
equally relevant. As a limit case, consider a situation where DBo[E] includes
one single object. And, in fact, the larger the portion of the database selected
by the explanation is the more interesting it should be considered. Thus,

76 5 Detecting Outlying Properties of Exceptional Objects

an explanation E is said a σ-explanation, where σ ∈ [0, 1] is a user-defined
parameter, if E is such that freqE(o) ≥ σ.

5.5 The Outlying Property Detection Problem

In this section, the knowledge discovery task of interest here is defined.
Assume the following be given:

• an object o of a database DB on a set of attributes A,
• parameters σ ∈ [0, 1] and θ ∈ [0, 1],
• two disjoint subsets S and E of A.

Then the pair (E,S) is an explanation–outlying property (σ,θ)–pair, or sim-
ply an explanation–property pair, if S is a θ–outlying property for o with
σ–explanation E.

Definition 8 (Outlying Property Detection Problem). Given a data
set DB on the set of attributes A, an object o, thresholds σ, θ ∈ [0, 1],
and a positive integer number k, the problem Outlying Property Detec-
tion 〈A, DB, o, σ, θ, k〉 (OPD for short) is defined as follows: among all the
pairs (E,S) of disjoint subsets of the set of attributes A of DB, find the
k explanation–outlier (σ,θ)–pairs {(E1,S1), . . . , (Ek,Sk)}, also called top-k
pairs, scoring the greatest values of outlierness outE,S(o).

Note that, depending on the particular instance of the problem, the number
of (σ,θ)–pairs might be less than k. Thus, in general, the solution set of the
problem includes at most k pairs.

Besides by setting E = ∅, explanations can be dropped off the scenario
by simply setting σ = 1, since when the frequency threshold σ is set to one,
clearly, explanations play no role in the problem at hand. To be more precise,
since attributes assuming the same value on all the database objects might
exist, an explanation E 6= ∅ can anyway exist even if σ is set to 1; however E
would represent a trivial explanation and, then, they are not considered any
further. In the case where explanations are not taken into account, the top k
outlying properties w.r.t. the overall database, in the following also referred
to as searching for global (outlying) properties, are looked for. Vice versa, if
σ is less then one, this means that explanations are actually of interest, and
outlying properties will be referred to as local (outlying) properties.

5.6 Complexity of The Outlying Property Detection
Problem

In this section, definitions of computational complexity classes and tools that
will be used in the sequel are recalled first (Section 5.6.1) and, then, the
computational complexity of the OPD problem is investigated (Section 5.6.2).

5.6 Complexity of The Outlying Property Detection Problem 77

5.6.1 Preliminaries on Computational Complexity

Some basic definitions about complexity theory are recalled next. The reader
is referred to [Garey and Johnson, 1979, Papadimitriou, 1994] for more on
this.

Decision problems are maps from strings (encoding the input instance over
a suitable alphabet) to the set {“yes”, “no”}. A (possibly nondeterministic)
Turing machine M answers a decision problem, if on a given input x, (i) a
branch of M halts in an accepting state iff x is a “yes” instance, and (ii) all
the branches of M halt in some rejecting state iff x is a “no”instance.

The class P is the set of decision problems that can be answered by a
deterministic Turing machine in polynomial time. The classes ΣP

k and ΠP
k ,

forming the polynomial hierarchy, are defined as follows: ΣP
0 = ΠP

0 = P and,
for all k ≥ 1, ΣP

k = NPΣP
k−1 , ∆P

k = PΣP
k−1 , and ΠP

k = co-ΣP
k where

• co-ΣP
k denotes the class of problems whose complementary problems are

solvable in ΣP
k ,

• ΣP
k (resp. ∆P

k) models computability by a nondeterministic (resp. deter-
ministic) polynomial-time Turing machine which may use an oracle that
is, loosely speaking, a subprogram that can be run with no computational
cost, for solving a problem in ΣP

k−1.

The class ΣP
1 of decision problems that can be solved by a nondeterministic

Turing machine in polynomial time is also denoted by NP, while the class ΠP
1

of decision problems whose complementary problem is in NP, is denoted by
co-NP.

Functions (also computation problems) are (partial) maps from strings to
strings, which can be computed by suitable Turing machines, called trans-
ducers, that have an output tape. In particular, a transducer T computes a
string y on input x, if some branch of the computation of T on x halts in
an accepting state and, in that state, y is on the output tape of T . Thus, a
function f is computed by T , if (i) T computes y on input x iff f(x) = y, and
(ii) all the branches of T halt in some rejecting state iff f(x) is undefined.

In this chapter, some classes of computation problems will be referred
to which are illustrated next (see, also, [Krentel, 1988, Selman, 1994]). The
class FP is the set of all the polynomial time computable functions, that are
functions computed by polynomial-time bounded deterministic transducers.
More generally, for each class of decision problems, say C, FC denotes its
functional version; for instance, FNP denotes the class of functions computed
by nondeterministic transducers in polynomial time, FΣP

2 denotes the class of
functions computed in polynomial time by nondeterministic transducers that
use an NP oracle, and F∆P

2 denotes the functions computed, in polynomial
time, by a deterministic transducer which uses an NP oracle. F∆P

2 [O(log n)]
is the subset of F∆P

2 denoting the class of functions computed in polynomial
time by deterministic transducers which, on input x, query a total of O(log |x|)
times the NP oracle.

78 5 Detecting Outlying Properties of Exceptional Objects

Finally, the notion of reduction for decision and computation problems
is needed to be recalled. A decision problem A1 is polynomially reducible to
a decision problem A2 if there is a polynomial time computable function h
such that for every x, h(x) is defined and A1 output “yes” on input x iff A2

outputs “yes” on input h(x). A decision problem A is complete for the class
C of the polynomial hierarchy iff A belongs to C and every problem in C is
polynomially reducible to A. Moreover, a function f1 is reducible to a function
f2 if there is a pair of polynomial-time computable functions h1, h2 such that,
for every x, h1(x) is defined, and f1(x) = h2(x,w) where w = f2(h1(x)). A
function f is hard for a class of functions FC, if every f ′ ∈ F is polynomially
reducible to f , and is complete for FC, if it is hard for FC and belongs to FC.

5.6.2 Complexity analysis

In this section, the OPD problem is shown to be intractable. To characterize
the complexity of this problem, next three variants of the basic problem are
introduced. First, the decision version OPD(D) of the OPD problem is defined.

Definition 9 (Outlying Property Detection Decision Problem). Given
a set of attributes A, a database DB on A, an object o of DB, a threshold
σ ∈ [0, 1], and a threshold θ ∈ [0, 1], the problem Outlying Property Decision
〈A, DB, o, σ, θ〉(D) (OPD(D), for short) is: does there exist a pair (E,S) of
disjoint subsets of A that is a (σ, θ) explanation-property pair?

The OPD(O) problem, defined next, is the restricted variant of the OPD
problem in which the maximum value of outlierness associated with any
explanation-property pair for an input object is looked for, and it this for-
mally defined in the following.

Definition 10 (Maximum Outlierness Value Problem). Given a set of
attributes A, a database DB on A, an object o of DB, and a threshold σ ∈
[0, 1], the problem Maximum Outlierness Value 〈A, DB, o, σ〉(O) (OPD(O),
for short) is: compute the maximum value θ∗ of outlierness outE,S(o) associ-
ated with any pair (E,S) of disjoint subsets of A that is a (σ, θ) explanation-
property pair for o.

Now, assume that someone provides us the potential solution of the gen-
eral OPD problem. A further interesting problem thereof is to verify if this
provided solution is indeed a correct solution for the problem at hand. Such
a checking problem is defined next.

Definition 11 (Outlying Property Solution). Given a data set DB, an
object o of DB, an integer k, thresholds σ, θ ∈ [0, 1], and a set Sol =
{(E1,S1), (E2,S2), . . ., (Eh,Sh)} of at most k (0 ≤ h ≤ k) explanation-
property (σ, θ)-pairs for o in DB, the Outlying Property Solution problem
〈A, DB, o, σ, θ, k, Sol〉(S), OPD(S) for short, is defined as follows: is Sol the
solution of the given OPD problem?

5.6 Complexity of The Outlying Property Detection Problem 79

2

1

6
4 5

3

(a) The graph G

A1 A2 A3 A4 A5 A6

t0 0 0 0 0 0 0

t1 1 1 0 0 1 0
t2 2 2 2 0 2 0
t3 0 3 3 3 0 0
t4 0 0 4 4 4 4
t5 5 5 0 5 5 0
t6 0 0 0 6 0 6

t7 1 1 0 0 1 0
t8 2 2 2 0 2 0
t9 0 3 3 3 0 0
t10 0 0 4 4 4 4
t11 5 5 0 5 5 0
t12 0 0 0 6 0 6

t13 −1 −2 −2 −2 −2 −2
t14 −2 −1 −2 −2 −2 −2
t15 −2 −2 −1 −2 −2 −2
t16 −2 −2 −2 −1 −2 −2
t17 −2 −2 −2 −2 −1 −2
t18 −2 −2 −2 −2 −2 −1

t19 −2 −2 −2 −2 −2 −2
t20 −2 −2 −2 −2 −2 −2
t21 −2 −2 −2 −2 −2 −2

(b) The database DBG

Fig. 5.7. An example of the reduction used in Theorem 3

Next, the complexity of the afore-defined problems will be discussed. First,
the problem OPD(D) (of Definition 9) for the special case when E = ∅ (or
equivalently, σ = 1) is dealt with.

Theorem 3. For σ = 1 the OPD(D) problem is NP-complete.

Proof. (Membership) A succinct certificate for 〈A, DB, o, 1, θ〉(D) is given by
a property S, where S is a subset of A. Since outS(o) is computable in poly-
nomial time (see Theorem 2), it can be checked in polynomial time that S is
a θ-outlying property for o in DB.

(Hardness) The proof is by reduction of the Dominating Set Problem,
which is known to be NP-complete [Garey and Johnson, 1979]. Let G = 〈V, E〉
be un undirect graph, where V = {v1, . . . , vn} is a set of nodes, and E =
{e1, . . . , em} is a set of edges ei = {vpi , vqi} s.t. pi, qi ∈ {1, . . . , n}, for i =
1, . . . , m. Let k be a given integer. A dominating set is a subset W of V such
that every node of V not in W is joined to at least one member of W by
some edge in E. The Dominating Set Problem is: “Does there exist in G
a dominating set of size at most k?”.

The reduction used is as follows.
Given an undirected graph G = 〈V,E〉, consider the problem 〈AG , DBG , oG , 1, θG,k〉(D),

where (an example of this reduction is shown in Figure 5.7):

• AG is the set of attributes {A1, . . . , An}, where Aj represents the node vj

of G, for each j = 1, . . . , n;

80 5 Detecting Outlying Properties of Exceptional Objects

• DBG is a database defined on A and composed by 3n + 4 objects, in
particular:
– the object t0, a tuple of n zeros;
– the objects ti and ti+n, i ∈ {1, . . . , n}, such that: for each j = 1, . . . , n,

if there exists an edge linking vi with vj or i = j then ti[j] = i, otherwise
ti[j] = 0;

– the objects ti, i ∈ {2n + 1, . . . , 3n}, such that: for each j ∈ {1, . . . , n},
ti[j] = −1 if j = i, ti[j] = −2 otherwise;

– finally, three objects whose attribute values are all equal to −2.
• oG is the object t0.
• θG,k is equal to (n−k)2+5n−4k

(3n+4)2 .

Next it is proved that the following holds:

G has a dominating set of size k iff 〈AG , DBG , oG , 1, θG,k〉(D) is a “yes”
instance of the OPD(D) problem.

(⇒)Let W = {vw1 , . . . , vwk
} be a dominating set of G having size k. On the

set of attributes SW = {Aw1 , . . . , Awk
}, the objects ti (i ∈ {1, . . . , 2n+1})

have a value different from 〈0, . . . , 0〉, since, if an object ti had such value,
the node vi would be not in W and would be not adjacent to any node of
W , and this is impossible since W encodes a dominating set.
Thus:
– t0 (the object oG) is the unique object assuming value 〈0, . . . , 0〉 on

SW ;
– Each object ti, i ∈ {1, . . . , n} is equal only to ti+n on SW ;
– Since |W | = k, in the set of tuples {ti | 2n + 1 ≤ i ≤ 3n}, there are

exactly n−k+3 tuples having value 〈−2, . . . ,−2〉 on SW , and k tuples
s.t. each of them has a distinct value on SW ;

– The cumulated frequency histogram of SW in DBG consists of three
pairs:

(
1

3n+4 , k+1
3n+4

)
,

(
2

3n+4 , 2n+k+1
3n+4

)
, and

(
n−k+3
3n+4 , 3n+4

3n+4

)
; notice

that, since 0 ≤ k ≤ n, then ∀k, n− k + 3 > 2;
– outSW (o) =

(
2

3n+4 − 1
3n+4

)
·
(

3n+4
3n+4 − k+1

3n+4

)
+

(
n−k+3
3n+4 − 2

3n+4

)
·
(

3n+4
3n+4 − 2n+k+1

3n+4

)
=

(n−k)2+5n−4k
(3n+4)2 .

Then, SW is a property of size k s.t. outSW (o) ≥ θG,k.
(⇐)Let SW = {As1 , . . . , Ask

} be a property s.t. outSW (o) ≥ σ = (n−k)2+5n−4k
(3n+4)2 .

If there existed an object ti 6= t0 in DBG assuming value 〈0, . . . , 0〉 on SW ,
then the frequency associated to the object oG in the cumulated frequency
histogram of SW would be equal to or greater than 3

3n+4 .
Since the value assumed by the object ti, for 1 ≤ i ≤ 2n, is taken only
by the object ti+n and by no other objects in DBG , the frequency of ti is

2
3n+4 .

5.6 Complexity of The Outlying Property Detection Problem 81

0
0
0 DB
0
0

1 Φ1 Φ1

...

1 Φm Φm

Fig. 5.8. Example of reduction used in Theorem 4

Furthermore, there are n − k + 3 tuples assuming value 〈−2, . . . ,−2〉 on
SW , and k tuples s.t. taking values different from one another.
Summarizing, there were only n−k+3 tuples with frequency greater then

3
3n+4 . Thus outSW (o) would be at most equal to

(
n−k+3
3n+4 − 3

3n+4

)(
n−k+3
3n+4

)
=

(n−k)2+3n−3k
(3n+1)2 < σ. But this is impossible by the definition of SW , a con-

tradiction.
It can be concluded that no object ti, for 1 ≤ i ≤ 2n, assumes value
〈0, . . . , 0〉 on SW . Hence, for each node vi of G, either vi belongs to W or
vi is adjacent to at least one node in the set W = {vs1 , . . . , vsk

}, so that
W is a dominating set of size k.

The previous result obtained for σ = 1 can be used to determine the complex-
ity of the general OPD(D) problem. The proof is by reduction of the problem
〈A, DB, o, 1, θ〉(D) to the problem 〈A, DB, o, σ, θ〉(D).

Theorem 4. The OPD(D) problem is NP-complete.

Proof. (Membership) A certificate for 〈A, DB, o, σ, θ〉(D) is given by a pair
(E, S), where E and S are disjoint subsets of A. Since freqE(o) and outE,S(o)
can be computed in polynomial time (see Theorem 2), it can be checked in
polynomial time that E is a σ-explanation and S is a θ-outlying property for
o.

(Hardness) The proof is by reduction of the NP-complete 〈A, DB, o, 1, θ〉(D)

problem.
Given 〈A, DB, o, 1, θ〉(D):

• let A∗ = A ∪ {aE}, where aE is a novel attribute distinct from attributes
in A;

• let DB∗ be a database obtained from DB as follows:
– let DB′ = {t | t[aE] = 0 ∧ t[A] ∈ DB};
– let DB′′ = {ti | i ∈ {1, 2, . . . ,m} ∧ ti[aE] = 1 ∧ ti[A] = 〈Φi, . . . , Φi〉 },

where m = 1−σ
σ |DB| and for each i (1 ≤ i ≤ m), Φi is a distinct value

not belonging to any active domain of DB attributes.
– DB∗ = DB′ ∪DB′′

82 5 Detecting Outlying Properties of Exceptional Objects

An example of such a reduction is reported in Figure 5.8.
Next it is proved that the following holds: 〈A, DB, o, 1, θ〉(D) is a “yes”

instance if and only if 〈A∗, DB∗, o, σ, θ〉(D) is a “yes” instance.

(⇒)Assume that 〈A, DB, o, 1, θ〉(D) is a YES instance. Then, there exists a
subset S of A that is a θ-outlying property for o w.r.t. DB. Let E be
equal to {aE}, then by construction it follows that freqE(o) ≥ σ and
that S is a θ-outlying property with explanation {aE} for o w.r.t. DB∗.
Hence, (E,S) is an explanation-property pair for o in DB∗, and then,
〈A∗, DB∗, o, σ, θ〉(D) is a “yes” instance.

(⇐)Assume that 〈A∗, DB∗, o, σ, θ〉(D) is a YES instance. Then, there exists a
(σ, θ)-pair (E, S) of disjoint subsets of A∗.
It is recalled that for each attribute a in A∗ there is no object in DB′′ which
agrees with the object o on a, that is ∀a ∈ A∗, ∀i ∈ {1, 2, . . . , m}, o[a] 6=
ti[a].
First of all consider the case in which E is empty. Then, S − {eE} is a
θ-outlying property with empty explanation w.r.t. DB. Indeed, by con-
struction, it holds the following

outDB∗
S (o) ≤ outDB∗

{aE},S−{aE}(o) ≤ outDB
S−{aE}(o).

Assume now that the set E is not empty. From what above recalled, it holds
that E is such that DB∗

o[E] ⊆ DB′. Moreover, since σ|DB∗| = |DB′|, it
follows that DB∗

o[E] = DB′.
Now, there are two cases to consider:
1. if aE 6∈ S then S is a θ-outlying property for o w.r.t. DB′[A], that is,

DB;
2. if aE ∈ S, since ti[aE] = tj [aE] for each ti, tj ∈ DB′, S′ = S − {aE}

is also a θ-outlying property for o w.r.t. DB′. Then, S′ is a θ-outlying
property for o w.r.t. DB′[A], that is, DB.

In all cases, an outlying property for o in DB can be determined, and then
〈A, DB, o, 1, θ〉(D) is a YES instance.

It immediately follows from the result above that the computation version of
our problem (that is, the OPD problem) is NP-hard. This result can however
be sharpened. Let us proceed with first characterizing the complexity of the
optimization version OPD(O) of the problem.

Theorem 5. The OPD(O) problem is F∆P
2 [O(log n)]-complete.

Proof. (Membership) First of all, it can be noted that, given a data set, the
range of values on which the outlierness function ranges is polynomially large
in the number of objects stored in the data set. Indeed, let DB be a data set
composed of n objects, o a generic object of DB, and S a generic property.
It follows from Theorem 2 that the outlierness function outS(o) outputs a
rational number belonging to the set Qn = { i

n2 | i ∈ {0, 1, 2, . . . , n2 − 1, n2}}.
Thus, the number of distinct values assumed by outS(o) is upper bounded by

5.6 Complexity of The Outlying Property Detection Problem 83

n2. Consider now a generic explanation E. The number of objects j of the data
set DBo[E] is always such that 1 ≤ j ≤ n. Hence, the results returned by the
function outS,E(o) belong to the set Q = Q1∪Q2∪ . . .∪Qn, whose cardinality
|Q| is

∑n
j=1 j2 = 12 + 22 + . . . + (n − 1)2 + n2 ≤ n3. It can be concluded

that the number of distinct values assumed by the function outE,S(o) is upper
bounded by n3.

Let A be the set of attributes of DB, and let σ be an explanation threshold.
Let θ∗ be the maximum outlierness outE,S(o) associated with a explanation-
property pair (E,S) for the object o in DB, with E a σ-explanation for o.
Let Q denote the set Q sorted in increasing order. Then, by a binary search
in the ordered set of rational numbers Q, the value θ∗ can be computed:
at each step of the search, a threshold θ is given in Q, and it is decided
whether the OPD(D) problem 〈A, DB, o, σ, θ〉(D) has some solution. After
log |Q| = O(log n) steps at most the procedure ends, and the value θ∗ can
be returned. Since OPD(D) is feasible in NP, it follows that the described
procedure is feasible in FPNP[O(log n)].

(Hardness) Recall that computing the size of the maximum clique in
a graph is F∆P

2 [O(log n)]-complete [Chen and Toda, 1995]. Next, the NP-
complete problem Clique is reduced to the OPD Problem.

Let G = (V, E) be an undirected graph. By Gc the graph (V, Ec) obtained
from G by replacing the set of edges E with Ec = {{u, v} | u, v ∈ V ∧ u 6=
v∧{u, v} 6∈ E} is denoted. The graph Gc has |V |

2−|V |
2 −|E| edges. Furthermore,

By G the graph (V , E) obtained from G as follows: V is the set of nodes
V ∪{uv | {u, v}}, and E is the set of edges E∪{{u, uv}, {v, uv} | {u, v} ∈ E},
is denoted. The graph G has |V |+ |E| nodes.

The three following properties are known:

1. C is a clique of size k in G if and only if V − C is a vertex cover of size
|V | − k in Gc [Karp, 1972],

2. C is a vertex cover of size k in G if and only if C is dominating set of size
k in G [Garey and Johnson, 1979], and

3. by Theorem 3 above, C = {v1, . . . , vk} is a dominating set of size k in
G = (V, E) if and only if SC = {A1, . . . , Ak} ⊆ AG is a θn,k-outlying
property for the object oG in the data set DBG with explanation threshold
σ = 1, where θn,k = θG,k = (n−k)2+5n−4k

(3n+4)2 and n = |V |.
Let G = (V, E), n = |V |, and m = |E|. It follows from properties (1-3) above
that C is a clique of size k in G ⇐⇒ V −C is a vertex cover of size n−k in the
graph Gc (having n nodes and n2−n

2 −m edges) ⇐⇒ V − C is a dominating
set of size n − k in the graph Gc (having n′ = n2+n

2 −m nodes) ⇐⇒ SV−C

is a θn′,(n−k)-outlying property for t0 in the data set DBGc

with explanation
threshold σ = 1.

The outlierness θn′,n−k is monotonically increasing with k, indeed

84 5 Detecting Outlying Properties of Exceptional Objects

∂

∂k
θn′,n−k > 0 ⇐⇒ k > k0 = m− n2 − n

2
− 4,

but m ≤ n2−n
2 , and, hence, k0 ≤ −4 and the condition k > k0 is always

satisfied, being k ∈ {1, 2, . . . , n}.
In order to conclude the proof, observe that the clique C∗ of G having

maximum size k∗ is in one-to-one correspondence with the outlying property
SV−C∗ for t0 in DBGc

having maximum outlierness θ∗ = θn′,n−k∗ when the
explanation threshold σ is set to 1, and, hence, computing θ∗ amounts to
computing the size of the maximum clique.

Since the OPD(O) problem straightforwardly reduces to the OPD problem,
the above theorem immediately establishes even an F∆P

2 [O(log n)]-hardness
result for the OPD problem and, hence, a more precise lower bound to its
computational complexity. To make this complexity scenario more complete,
next also a tight upper bound to the complexity of this problem can be proved.
Clear enough, just to compute the topmost explanation-property pair is a
relevant special problem on its own. Therefore, the analysis starts from this
specific problem, by assuming that k = 1.

Theorem 6. The Outlying Property Detection problem for k = 1 is in F∆P
2 .

Proof. Let DB be a data set on the set of attributes A, let o be an object
of DB, and let σ, θ ∈ [0, 1]. The top explanation-property (σ, θ)-pair (E∗,S∗)
can be computed by a deterministic polynomial time Turing machine with an
oracle in NP as follows.

First of all, the machine determines the maximum outlierness value θ∗

associated with an explanation-property pair for o in DB with explanation
threshold σ. This value can be computed with O(log |A|) oracle calls, as de-
tailed in the proof of Theorem 5. If θ∗ is less than θ, then the machine ter-
minates returning the empty set. Otherwise, the pair (E∗,S∗) exists, and the
machine continues its work by executing the following steps:

1. set E′ to ∅.
2. for each A ∈ A, if |DBo[E′∪{A}]| ≥ σ|DB|:

a) compute the maximum outlierness value θ′ associated with an explanation-
property pair for o in DBo[E′∪{A}][A − (E′ ∪ {A})] with explana-
tion threshold σ′ = σ|DB|

|DBo[E′∪{A}]| . The value θ′ can be computed with
O(log |A|) oracle calls, as detailed in the proof of Theorem 5.

b) if θ′ = θ∗ then set E′ to E′ ∪ {A}.
3. set S′ to A−E′.
4. for each A ∈ S′:

a) compute the maximum outlierness value θ′ associated with an outlying
property for o in DBo[E′][S′−{A}] with explanation threshold σ′ = 1.
The value θ′ can be computed with O(log |A|) oracle calls, as detailed
in the proof of Theorem 5.

5.6 Complexity of The Outlying Property Detection Problem 85

b) if θ′ = θ∗ then set S′ to S′ − {A}.
Let us show that steps 2 and 4 above are correct.

First, it is proved that, after the second step, E′ is the explanation of an
outlying property S′ such that (E′,S′) is a (θ∗,σ)-pair. By construction, E′ is
such that, at each iteration, in A− (E ∪ {A}) there exist disjoint subsets E′′

and S′ such that the pair (E′ ∪E′′,S′) is a (θ∗, σ)-pair. As a consequence, E′

is contained in the optimum set E∗. By contradiction, assume that at the end
of step 2 the set E′ is not equal to E∗. Then, there exists an attribute A ∈ E∗

not in E′. Let EA denote the value of E′ at the beginning of the iteration in
which the attribute A is considered for insertion. Since A was not added to
EA, it follows that in A− (EA ∪ {A}) there not exist disjoint subsets E′′ and
S′ such that the pair (EA ∪ {A} ∪ E′′,S′) is a (θ∗, σ)-pair. But, this is not
possible since E∗ can be always expressed as EA ∪ {A} ∪E′′.

Now, let us consider step 4. By construction, S′ is such that, at each
iteration, there exists a subset S′′ of S′ such that the pair (E′,S′′) is a (θ∗, σ)-
pair. As a consequence, S′ contains the optimum set S∗. By contradiction,
assume that at the end of step 4 the set S′ is not equal to S∗. Then, there
exists an attribute A ∈ S′ not in S∗. Let SA denote the value of S′ at the
beginning of the iteration in which the attribute A is considered for deletion.
Since A was not removed from SA, it follows that there does not exist a subset
S′′ of SA − {A} such that the pair (E′,S′′) is a (θ∗, σ)-pair. But, this is not
possible since S∗ is contained in SA − {A}.

Thus, the sets E′ and A′ computed by the above procedure represent the
sets E∗ and A∗, respectively.

To conclude the proof, note that the total number of oracle calls performed
by the Turing machine is O(|A| log |A|), hence polynomial w.r.t. the size of
the input.

Next, the recognition version OPD(S) of the OPD problem is analyzed. This
result will be exploited in the following in order to characterize the complexity
of the OPD problem in a more general setting.

Theorem 7. The Outlying Property Solution problem is co-NP-complete.

Proof. (Membership) A “no” instance of the problem presented in Defini-
tion 11 has a succinct disqualification represented by an explanation-property
(σ, θ)-pair (E,S), not belonging to Sol, such that either (1) outE,S(o) ≥ θ, if
h < k, or (2) outE,S(o) > mini{outEi,Si

(o)}, if h = k.
(Hardness) It is recalled that deciding whether a boolean formula in con-

junctive normal form is unsatisfiable is a co-NP-complete problem, also known
as UNSAT. This problem remains co-NP-complete even if clauses are re-
stricted to contain at most three literals. UNSAT is the complement of the
well-known problem SAT.

Now a reduction from the UNSAT problem to the OPD(S) problem can
be shown. Let φ denote a 3CNF formula with n variables and m clauses. It
is known that there exists a polynomial time transformation G(φ) from SAT

86 5 Detecting Outlying Properties of Exceptional Objects

to the Vertex Cover problem [Garey and Johnson, 1979], with G(φ) a graph
composed of 2n+3m nodes and n+6m edges, such that φ is satisfiable if and
only if the graph G(φ) has a vertex cover of size at most K = n + 2m.

The transformations recalled in the Theorem 5 can be exploited to prove
that the formula φ is satisfiable ⇐⇒ the graph G(φ) has a vertex cover of size
at most K = n + 2m ⇐⇒ the graph G(φ), having N = 3n + 9m nodes, has a

dominating set of size at most K ⇐⇒ there exists a θG(φ),K-outlying property
for the object oG(φ) in the data set DBG(φ) with explanation threshold σ = 1
(see Theorems 3 and 5).

By construction, it follows that the formula φ is unsatisfiable if and only
if

〈AG(φ), DBG(φ), oG(φ), 1, θG(φ),K , k, ∅〉(S)

is a “yes” instance, with k > 0 an arbitrary integer, that is, if the empty set
is the solution of the OPD problem associated with φ.

From the practical viewpoint, it is of interest singling out the top-k out-
lying properties for small values of k (in several application cases, it will be
supposedly enough to consider k = 1). The notion of “small” number of solu-
tion can be reasonably formalized by requiring that k does not grow too much
with respect to the number m of attributes of the database, that is, that the
value k is polynomially related to m as k ∈ O(mp), for a fixed positive integer
p. Next, a strict upper bound to complexity of the OPD problem for any such
restricted value of k is proved.

Theorem 8. The OPD problem for k = O(mp) is in FΣP
2 .

Proof. A nondeterministic polynomial time transducer with an oracle in NP
solving the OPD problem is built. Let m denote the number of attributes of
the input data set. The machine performs the following steps:

1. guesses the number h ≤ k of solutions of the OPD problem. Since h is
encoded with O(log m) bits, the required time is logarithmical in the input
size;

2. guesses the set Sol = {(E1,S1), (E2,S2), . . . , (Eh,Sh)} composed of ex-
actly h (σ, θ)-pairs. The set Sol can be encoded with at most O(mp+1)
bits, since it is composed of at most O(mp) pairs of disjoint subsets of
attributes and each pair can be encoded by means of 2m bits. Hence, this
step can be accomplished in polynomial time;

3. verifies in polynomial time that they are actually (σ, θ)-pairs;
4. calls the oracle to verify that Sol is the solution set of the OPD problem

(see Theorem 7 above);
5. if Sol is the solution set, writes Sol on the output tape.

The total number of steps performed by the transducer is polynomially
bounded w.r.t. the size of the input, and the machine makes use of an or-
acle in NP. This completes the proof.

5.7 Upper Bound Properties 87

Problem Complexity

OPD(D) NP-complete (Th. 3, 4)

OPD(O) F∆P
2 [O(log n)]-complete (Th. 5)

OPD(S) co-NP-complete (Th. 7)

F∆P
2 [O(log n)]-hard (Th. 5)

OPD in F∆P
2 , for k = 1 (Th. 6)

in FΣP
2 , for k = O(mp) (Th. 8)

Table 5.1. Computational complexity results concerning the outlying property de-
tection problem.

Table 5.1 summarizes the computational complexity results concerning the
Outlying Property Detection problem.

5.7 Upper Bound Properties

In the previous section it has been shown that the OPD problem is intractable.
It follows that, in order to detect the top outlying properties, a possibly smart
search algorithm is needed and it should be capable of delivering the result
by visiting an as-much-restricted-as-possible part of the search space (which,
overall, would include all the explanation-property pairs). In other words, it
is sensible to devise techniques by which such a potentially demanding search
can be effectively pruned. To this end, it is very useful to early detect pairs
(E,S) that can be disregarded in the search. This issue is the subject of this
section.

In the sequel, let o denote an outlier object of a database DB, S a property
of DB, σ ∈ [0, 1] a frequency threshold, (E,S) a (σ, θ) explanation-property
pair (with S and E disjoint sets). Moreover, let DB′ be the database DBo[E],
S′ denote a generic superset of S, and E′ ⊇ E be a generic explanation such
that (E′,S′) is a (σ, θ) explanation-property pair (with S′ and E′ disjoint
sets).

Two basic questions naturally arise, that are:

A Is it possible to compute an upper bound to the outlierness of the property
S′ in o w.r.t. DB with explanation E?

B It is possible to compute an upper bound to the outlierness of the property
S′ in o w.r.t. DB with explanation E′?

These upper bounds should be both accurate and fast to compute, in order to
be effectively exploited for the sake of pruning our search space. The following
Theorems 9 and 10 provide an answer to questions A and B, respectively.

First, Question A is analyzed. It is worth noticing that the outlierness is
not monotone w.r.t. property inclusion. That is, fixed an explanation set E
and an object o, for any pair of sets of attributes S and S′ such that S ⊆ S′,

88 5 Detecting Outlying Properties of Exceptional Objects

the outlierness outE,S′(o) can be the same, greater, or smaller than outE,S(o).
Nevertheless, a tight upper bound to the outlierness of any superset of S can
be provided, as showed in the following.

Let h be a frequency histogram, and let f be a frequency in h. In the rest
of the section, for the sake of simplicity, the notation outh(f) will be used to
refer to the outlierness of a property S, with h = histS, associated with an
object o, such that f = freqS(o).
Before presenting the next main results, three technical lemmata are needed to
be proved. These lemmata provide upper bounds to the value of the outlierness
function outhc

(fc), where c denotes a non-negative integer, while hc and fc

denote certain families of histograms and frequency values, respectively, that
are of interest for proving main results.

Lemma 1. Let h be the frequency histogram

h =
{

b

n
,
a1

n
, . . . ,

ak

n

}
.

Consider the family of histograms

hc =
{

c

n
,
b− c

n
,
a1

n
, . . . ,

ak

n

}
,

with 1 ≤ c ≤ b and n = b +
∑

i ai. Then f(c) = outh
c

(c
n) has its maximum in

c = 1.

Before presenting the proofs, it is needed to introduce an alternative for-
mula for computing the outlierness which is derived from formula of Theo-
rem 2 and that will be exploited in the proofs. Given a frequency histogram
h = {a1

n , . . . , ak

n } and a frequency ap

n in h, by Theorem 2, the outlierness
outh(ap

n) is equal to ∑
ai>ap

ai

n

(ai

n
− ap

n

)

Starting from the above formula, outh(ap

n) can also be formulated as follows

outh
(ap

n

)
=

∑
ai>ap

ai

n

ai

n
−

∑
ai>ap

ai

n

ap

n
=

=
∑

ai>ap

ai

n

ai

n
−

∑
ai>ap

ai

n

ap

n
+

∑

ai≤ap

ai

n

ap

n
−

∑

ai≤ap

ai

n

ap

n
=

=
∑
ai

ai

n

max{ai, ap}
n

− ap

n

∑
ai

ai

n
=

=
∑
ai

ai

n

max{ai, ap}
n

− ap

n
· 1 =

=
(
∑

i ai max{ai, ap})− apn

n2
.

5.7 Upper Bound Properties 89

In particular, if ap = 1, it holds that

outh

(
1
n

)
=

(
∑

a2
i)− (

∑
ai)

(
∑

ai)2
.

Proof. of Lemma 1. Next, it is proved that the function

f̄(c) = outhc
(c

n

)
=

[(
∑

i ai max{ai, c}) + c2 + (b− c) max{b− c, c}]− c(b +
∑

i ai)
(b +

∑
i ai)2

is not increasing. This function is a discrete one, since c assumes only non-
negative integer values.

Consider the function f(c), defined as

f(c) =
[(

∑
i ai max{ai, c}) + c2 + (b− c)max{b− c, c}]− c(b +

∑
i ai)

(b +
∑

i ai)2

with c now ranging in R+.
Clearly, f(c) = f̄(c) whenever c assumes integer values. Moreover, if f(c)

is not increasing then also f̄(c) has to be not increasing.
In order to prove that f(c) is not increasing, the derivative of f(c) is

computed:

[f(c)]′ =
2c− b + t(c)− (

∑
ai≥c ai)

n2

where t(c) = 2(c−b) for c ≤ b b
2c, and t(c) = b−2c for c ≥ b b

2c. To complete the
proof, it is sufficient to show that [f(c)]′ ≤ 0. For c ≤ d b

2e, f(c) is decreasing
and the inequality is strict:

(
∀c ≤

⌊
b

2

⌋)
, [f(c)]′ < 0 ⇐⇒

∑

ai≥c

ai < 4c− 3b.

The above inequality is always verified, since (
∑

ai≥c ai) ≥ 0 as the ais are
positive integers and 4c− 3b < 0. Indeed, 4c ≤ 4b b

2c ≤ 2b < 3b. Furthermore,
for c ≥ d b

2e, f(c) is not increasing:
(
∀c ≥

⌊
b

2

⌋)
, [f(c)]′ ≤ 0 ⇐⇒

∑

ai≥c

ai ≥ 0.

Note that the latter inequality is always satisfied. In particular f(c) is strictly
decreasing between 1 and maxi{ai} and equals zero between maxi{ai} and b.
ut
Lemma 2. Let h be the histogram of frequencies

h =
{

1
n + 1

,
a1

n + 1
, . . . ,

ak

n + 1

}

90 5 Detecting Outlying Properties of Exceptional Objects

with ai (1 ≤ i ≤ k) positive integers, and n =
∑

i ai. Let c be an integer such
that a1 < c ≤ n. Consider the histogram

hc =
{

1
n + 1

,
A− c

n + 1
,

c

n + 1
,

aj+1

n + 1
, . . . ,

ak

n + 1

}
,

where j is the smallest integer such that A =
∑

i≤j ai is greater than or equal
to c. Then outh(1

n+1) > outhc

(1
n+1).

Proof. of lemma 2. Proof of Lemma 2. First of all, consider the two
expressions:

outh

(
1

n + 1

)
=

(
∑

i a2
i)− (

∑
i ai)

(n + 1)2
, and

outhc

(
1

n + 1

)
=

(
∑

i a2
i)− (

∑
i ai)− [(

∑
i≤j a2

i)−A] + [((A− c)2 + c2)− ((A− c) + c)]
(n + 1)2

.

Notice now that

outhc

(
1

n + 1

)
− outh

(
1

n + 1

)
> 0 ⇐⇒ (A− c)2 + c2 >

∑

i≤j

a2
i

But, (A−c)2+c2 ≥ c2 ≥ (
∑

i≤j ai)2 >
∑

i≤j a2
i , and, hence, the result follows.

ut
Lemma 3. Let hc be the histogram of frequencies

{
1

n + c + 1
,

c

n + c + 1
,

a1

n + c + 1
, . . . ,

ak

n + c + 1

}
,

with (w.l.o.g.) 1 ≤ a1 ≤ . . . ≤ ak integers, ak > 1, n =
∑

i ai, and where
c is an integer number such that 0 ≤ c ≤ ak. Let g(c) denote the function
outhc

(1
n+c+1). Then g(c) is convex and it is maximized in c = 0.

Proof. of lemma 3. Proof of Lemma 3. By using the formula of Theorem
2, the function g(c) can be expressed as follows:

g(c) =

(∑
i a2

i

)− (
∑

i ai) + c(c− 1)

(
∑

i ai + c + 1)2
.

First of all, the following claim is proved.

Claim. For c ∈ [0, ak] and c ∈ N, the function g(c) is convex.

Proof. In order to prove that g(c) is convex, the function ḡ(c) defined as

ḡ(c) =

�P
i a2

i

�− �Pi ai

�
+ c(c− 1)�P

i ai + c + 1
�2

5.7 Upper Bound Properties 91

with c ∈ [0, ak] and c ∈ R, is considered.
Clearly, if ḡ(c) is convex then also g(c) is convex. Thus, in order to prove the

claim, ḡ(c) is proved to be convex. To this end, it can be verified that the second
derivative of ḡ(c) is greater than or equal to 0 for all c ∈ [0, ak].

The first order derivative of ḡ(c) is:

ḡ′(c) =
(2c− 1)((

P
i ai + 1) + c)− 2((

P
i a2

i −
P

i ai) + c2 − c)

((
P

i ai + 1) + c)3
=

=
2(
P

i ai + 1)c + c− (
P

i ai + 1) + 2(
P

i a2
i −

P
i ai)

((
P

i ai + 1) + c)3
;

Computing the derivative of ḡ′(c), it follows:

ḡ′′(c) =
(2(
P

i ai + 1) + 1)((
P

i ai + 1) + c)− 3(2(
P

i ai + 1)c + c− (
P

i ai + 1)− 2(
P

i a2
i −

P
i ai))

((
P

i ai + 1) + c)4

Now, the range of c in which the second derivative ḡ′′(c) ≥ 0 has to be computed,
and, then, the values of c such that:

(2(
P

i ai +1)+1)((
P

i ai +1)+c)−3(2(
P

i ai +1)c+c− (
P

i ai +1)−2(
P

i a2
i −P

i ai)) ≥ 0

that is equivalent to�P
i ai

�2
+ 2

P
i ai + 1 + 2

P
i ai + 2 + 3

P
i a2

i − 3
P

i ai ≥ c
�
3 + 2

P
i ai

�
Then ḡ(c) is convex for:

c ≤
�P

i ai

�2
+
P

i ai + 3
P

i a2
i + 3

3 + 2
P

i ai

For concluding the proof, it must be shown that

ak ≤
�P

i ai

�2
+
P

i ai + 3
P

i a2
i + 3

3 + 2
P

i ai

The latter inequality can be rewritten as:

ak

�
3 + 2

P
i ai

� ≤ �Pi ai

�2
+
P

i ai + 3
P

i a2
i + 3

⇒ 3ak + 2ak

P
i ai ≤

�P
i ai

�2
+
P

i ai + 3
P

i a2
i + 3

⇒ 3ak ≤
�Pk−1

i ai

�2

+
P

i ai + 3
Pk−1

i a2
i + 3 + 2a2

k

⇒ 2a2
k − 3ak + 3 +

�Pk−1
i ai

�2

+
P

i ai + 3
Pk−1

i a2
i ≥ 0

Since

92 5 Detecting Outlying Properties of Exceptional Objects�Pk−1
i ai

�2

+
P

i ai + 3
Pk−1

i a2
i ≥ 0

and
2a2

k − 3ak + 3 ≥ 0, ∀ak ∈ R

it can be concluded that ḡ(c) is convex for all c ≤ ak.

Now, the main proof of Lemma 3 can be resumed.
Since c ≤ ak, the following inequality holds:

g(c) ≤ g∗(c) =

(∑
i a2

i

)− (
∑

i ai) + ak(ak − 1)

(
∑

i ai + c + 1)2
.

To determine the range of values of c for which g∗(c) is increasing, the function
ḡ∗(c) is considered. It is defined as

ḡ∗(c) =

(∑
i a2

i

)− (
∑

i ai) + ak(ak − 1)

(
∑

i ai + c + 1)2

with c ∈ R+ and c ≤ ak.
The derivative of ḡ∗(c) is:

[ḡ∗(c)]′ =
−2

(∑
i a2

i −
∑

i ai + ak(ak − 1)
)

(
∑

i ai + c + 1)3
≥ 0.

Since
∑

i a2
i >

∑
i ai, ∀ai ∈ N and ak > 1, the numerator of [ḡ∗(c)]′ is always

less then 0, whereas the denominator is always greater then 0. It follows that
ḡ∗, and clearly also g∗, are strictly decreasing for c ≥ 0 and they must have
their maximum value in c = 0. To conclude, since (i) g∗(0) = g(0), (ii) g∗ has
its maximum in c = 0, (iii) g∗ is monotonically decreasing for c ≥ 0, and (iv)
g∗(c) ≥ g(c), then it is the case that also g has its maximum in c = 0. ut

Now, question A can be considered and it is answered by the following
theorem.

Theorem 9. Let h = histDB′
S = {f1, . . . , fk} be the frequency histogram of

DB′ w.r.t. S, let f be the frequency of o in DB′ w.r.t. S, and let n be the
number of objects in DB′. Then

outE,S′(o) ≤
(∑

i

f2
i

)
− (2f + 1)n− 2

n2
.

the term on the right of the inequality is called oubE,S(o); it denotes an upper
bound on the outlierness of S′ in o with explanation E.

5.7 Upper Bound Properties 93

Proof. The proof uses Lemmas 1 and 2. Let fi = ai

n , for i = 1, . . . , n. First of
all, note that a frequency histogram h of DB′ w.r.t. any superset S′ of S is of
the form

h =
k⋃

i=1

{ai,1

n
, . . . ,

ai,ki

n

}

with ai,1 + . . . + ai,ki = ai, for each i = 1, . . . , k.
Let f = fp, and h∗ be the histogram

(
h−

{ap

n

})
∪

{
1
n

,
ap − 1

n

}
=

{
1
n

,
a1

n
, . . . ,

ap−1

n
,
ap − 1

n
,
ap+1

n
, . . .

ak

n

}
.

Next, it will be shown that outE,S′(o) ≤ outh∗(1
n). By contradiction, as-

sume that there exists an histogram h of the form depicted above such
that the frequency of o in h is ap,1

n and outh(ap,1
n) > outh∗(1

n). Consider
the histogram h

∗
= ((h − {ap,1

n }) ∪ { 1
n ,

ap,1−1
n }). By Lemma 1 it follows

that outh∗(ap,1
n) ≤ outh

∗
(1

n). Furthermore, by Lemma 2 it can be concluded
that outh

∗
(1

n) ≤ outh∗(1
n) since h∗ can be obtained from h

∗
by grouping

together the frequencies ai,1
n , . . . ,

ai,ki

n to obtain the frequency ai

n , for each
i = 1, . . . , p− 1, p + 1, . . . , k, and the frequencies ap,1−1

n ,
ap,2
n , . . . ,

ap,kp

n to ob-
tain the frequency ap−1

n . Hence, a contradiction is obtained.
Thus, the upper bound is given by the outlierness outh∗(1

n), where h∗ =
{f1, . . . , fp−1, fp+1, . . . , fk, 1

n ,
nfp−1

n }. To conclude the proof, note that:

outh∗
(

1
n

)
=

∑

i6=p

f2
i

 +

(
1
n

)2

+
(

nfp − 1
n

)2

− 1

n
=

=

∑

i 6=p

f2
i

 + f2

p +
1− 2nfp + 1− n

n2
=

=

(∑

i

f2
i

)
− (2f + 1)n− 2

n2
.

Theorem 9 above states that the outlierness of the test object o is maximized,
w.r.t. any superset S′ of S, when S′ preserves the actual histogram of fre-
quencies, except for the case of making o different from any other object. For
example, consider the portion of the database DBex depicted in Figure 5.9(a).
Let o be c5, let S = {Tyres}, and let E = ∅. If the set S is augmented with
the virtual column S′ − S, then the maximum possible achievable outlierness
value by c5 on any superset of S is obtained. Notice that, while outS(o) = 0,
outS′(o) ' 0.35.

Having answered Question A, let us consider Question B. A strict upper
bound based on the histogram of frequencies of DB′ is provided next by the
following theorem.

94 5 Detecting Outlying Properties of Exceptional Objects

Car ID Tyres
(S) S′ − S

c1 B n
c2 B n
c3 B n
c4 B n
c5 B y
c6 M n
c7 M n
c8 M n
c9 M n
c10 M n
c11 M n

(a)

Car ID Tyres
(S) S′ − S E′

c1 B n n
c2 B n n
c3 B n n
c4 B n n
c5 B y y
c6 M n y
c7 M n y
c8 M n y
c9 M n y
c10 M n y
c11 M n y

(b)

Car ID Tyres
(S) S′ − S E′

c1 B n n
c2 B n n
c3 B n y
c4 B n y
c5 B y y
c6 M n y
c7 M n y
c8 M n y
c9 M n y
c10 M n y
c11 M n y

(c)

Fig. 5.9. Example of upper bounds obtained on the database DBex.

Theorem 10. Let h =
{

a1
n , . . . , ak

n

}
be the frequency histogram of DB′ w.r.t.

S, let ap

n be the frequency of the object o in DB′, and let m denote the integer
number dσne. Let b0 = 1, let b1, . . . , bk denote the integers a1, . . . , ap−1, ap −
1, ap+1, . . . , ak sorted in non increasing order, that is b1 ≥ b2 ≥ . . . ≥ bk, and
let j (0 ≤ j ≤ k) be the greatest integer such that s = (

∑
i≤j bi) ≤ m. Let

hA =
{

1
m

,
b1

m
, . . . ,

bj

m
,
m− s

m

}
, and hB =

{
1

s + bj+1
,

b1

s + bj+1
, . . . ,

bj+1

s + bj+1

}
,

and let A = outhA

(1
m) and B = outhB

(1
s+bj+1

). Then

outE′,S′(o) ≤ max{A,B}.
the upper bound term appearing on the right of the inequality is called eubE,S,σ.

Proof. First of all, note that every histogram h of DBo[E′] w.r.t. S′ has the
form

h =
k⋃

i=1

{ai,1

M
, . . . ,

ai,ki

M

}

where ai,1 + . . . + ai,ki ≤ ai, for each i = 1, . . . , k, with kp ≥ 1 and m ≤ M =∑
i

∑
j ai,j .

Let E ⊆ E∗ and S ⊆ S∗ be the explanation and the property maximizing
the outlierness outE′,S′(o), respectively, and let h∗ be the histogram of DBo[E∗]
w.r.t. S∗. From Theorem 9 it follows that the outlier object in the optimal
histogram h∗ must have frequency 1

M , where M is the number of objects
selected by the optimal explanation E∗.

Now, assume that exactly m objects are selected by the explanation E∗.
By repeatedly applying Lemma 2 and starting from a generic histogram h,
it follows that the optimal histogram hA, when the number m of objects is
held fixed, is { 1

m , b1
m , . . . ,

bj

m , m−s
m }. The histogram hA is obtained by selecting

the object o as a singleton, plus the j most frequent groups of objects, plus
exactly m− s objects of the (j + 1)-th most frequent group.

5.7 Upper Bound Properties 95

Consider now the family of the histograms hc = { 1
s+c , c

s+c , b1
s+c , . . . ,

bj

s+c },
with (m− s) ≤ c ≤ bj+1, obtained by selecting some of the remaining objects
of the (j + 1)-th most frequent group (note that h(m−s) = hA).

Since g(c) = outhc

(1
s+c) is convex (see Lemma 3), it is the case that the

maximum of g(c) is in one of the extreme points of its domain, i.e. either in
c = (m − s) (and in this case the maximum is A = g(m − s)) or in c = bj+1

(and in this case the maximum is B = g(bj+1)).
Assume now, by contradiction, that there exists an histogram h, relative

to a subset of M ≥ m objects, such that g = outh(1
M) is strictly greater than

max{A, B}.
By exploiting Lemma 2 in conjunction with Lemma 3, it can be shown

that there exists an histogram hc, belonging to the family hc defined above,
such that g ≤ g(c). To obtain hc from h, first, the j most frequent groups
of objects plus c objects of the (j + 1)-th most frequent one are introduced
by exploiting the transformation described in Lemma 2, and second, all the
other remaining groups of objects, except for the outlier object, are removed
by exploiting Lemma 3. Indeed, having the function g(c) its maximum in
c = 0, Lemma 3 can be interpreted also as follows: if a group of objects, which
are not the most frequent, is removed from the database, then the outlierness
of o does not decrease.

To conclude, since g ≤ g(c) ≤ max{A,B}, it has been shown that, given
DBo[E][S], for each possible database DBo[E′][S′] including M ≥ m objects,
where E′ ⊇ E and S′ ⊇ S, the associated histogram h is such that outh(1

M) ≤
max{A, B}. Hence, max{A,B} is the upper bound eubE,S,σ(o).

Before leaving the proof, two notable cases of the statement are to be
mentioned.

The first case is when the most frequent group of objects of DB[E], call
bk

n the frequency of these objects, together with the outlier o are sufficient
to reach the frequency threshold σ, i.e. when (bk + 1) ≥ m. In this case the
optimal histogram is always h∗ = { 1

bk+1 , bk

bk+1}.
The second case is when m = s, i.e. when no object of the (j + 1)-th most

frequent group is used to form the histogram hA. In this case, by Lemma 3,
h∗ = hA is always the optimal histogram.

The property stated in Theorem 10 tells that the outlierness of the object o
is maximized, w.r.t. any superset S′ of S and any superset E′ of E, when S′

preserves the actual histogram of frequencies, except for making o different
from any other object, and E′ is such that DBo[E′] contains both o and the
most frequent objects w.r.t. S′. Nevertheless, if those objects are less than
dσ|DB|e in number, then they do not form a σ-explanation. In such a case,
the second most frequent objects w.r.t. S′ are to be taken into account, and
so on, till at least dσ|DB|e objects are included in the database DBo[E′].

As an example, consider the portion of the database DBex depicted in
Figure 5.9(b), let S = {Tyres}, let E = ∅, let o = c5, and let σ = 0.5. The
most frequent objects w.r.t. S′, which is the optimal superset of S in the sense

96 5 Detecting Outlying Properties of Exceptional Objects

explained above, are those assuming the value “M” on the attribute Tyres.
Then, the column named E′ represents the optimal explanation, i.e., that
maximizing the outlierness of o, among all the supersets of E. Notice that the
frequency freqE′(o) is 0.64 > σ, and, hence, no further objects are needed. In
this case, eubE,S,0.5(o) = 0.612.

Assume, conversely, the threshold σ to be set to 0.8. Then, the best expla-
nation must select at least nine objects. (the portion of data set above is not
large enough). The second most frequent group of objects in S′ is that con-
sisting of the objects having identifiers ID = {c1, c2, c3, c4}. Since the most
frequent objects w.r.t. S′ together with the object o are seven in number, then
the best explanation is either that selecting also two objects with identifiers in
ID, say E′, or that of selecting in addition all the four objects with identifiers
in ID, say E′′. Since A = outE′,S′(o) = 0.375, while B = outE′′,S′(o) = 0.0496,
then the upper bound eubE,S,0.8(o) is max{A,B} = 0.375.

5.8 Algorithms

By exploiting the results presented above in Section 5.7, in this paragraph the
algorithms for mining the top k explanation–outlying properties pairs is pre-
sented. The algorithms are designed with two main goals in mind. First, they
have to compute the optimal solution. Second, in order to make the method as
practical as possible, they should have only linear limit space requirements. In
particular, the algorithm core is a complete depth-first search enhanced with
pruning of unfruitful subspaces on the basis of the upper bound properties
described above.

For clarity, the presentation of the algorithms is organized in two sections.
First, Section 5.8.1 describes the algorithm FindOutlyingProperties, taking
care of the special case in which explanations are not considered (σ = 1). This
algorithm then is exploited as a subroutine by the algorithm FindLocalOut-
lyingProperties, described in Section 5.8.2, which conversely solve the general
version of the OPD problem (any σ ∈ [0, 1]).

5.8.1 Global outlying properties

Figure 5.10 shows the algorithm FindOutlyingProperties, which computes the
top k global outlying properties. The algorithm receives in input the database
DB, the set of attributes A, the outlier object o and an outlierness threshold
θ, representing the minimum value of outlierness of a property the user is
interested in. Moreover, a further parameter S is employed, denoting a subset
S of the attributes A, which is initially set to the empty set, and then exploited
through recursive calls. The algorithm returns the set Tk of the top k global
outlying properties of the database.

The search space of the problem, consisting in the 2n subsets of the set A,
is visited by exploiting a set enumeration tree [Rymon, 1992]. Enumeration of

5.8 Algorithms 97

FindOutlyingProperties(DB,A, o, θ,S,Tk)
out := Outlierness(DB,S, o);
if out > θ then UpdateTopOutliers(Tk,S, out);
θ∗ := MinOutlierness(Tk);
upperBound := OutliernessUB(DB,S, o);
if upperBound > max{θ∗, θ} then

AO := SortAttributes(A, DB,S, o);
for a := FirstAttribute(AO) to LastAttribute(AO) do

A := A− {a};
FindOutlyingProperties(DB,A, o, θ,S ∪ {a},Tk);

Fig. 5.10. The algorithm FindOutliers.

the sets is dynamic since, at each node of the tree, remaining attributes are
reordered, as explained in the following.

Initially Tk is set to ∅. First of all, the outlierness out of S in o w.r.t. DB is
computed and the set Tk is updated, provided that out is above the threshold
θ. The function UpdateTopOutliers inserts S in Tk only if either |Tk| < k
or out is greater than the value associated with the kth outlying property in
Tk. In such a case, if Tk already contains k properties then, before inserting
S, the kth outlying one is removed from Tk.

The function MinOutlierness returns the outlierness θ∗ associated to the
kth outlying property in the set Tk. If Tk contains less than k elements,
then this value is set equal to −∞. An upper bound upperBound to the
outlierness of any superset of S is returned by the function OutliernessUB,
which exploits Theorem 9 in order to compute the bound.

If upperBound is greater than the maximum between θ∗ and θ, then the
algorithm continues exploring the subsets of A containing S (in the enumer-
ation tree); otherwise the search space is pruned since the children of the
current node are associated to properties whose outlierness cannot be better
than those of the current top-k properties. It is worth noting that the larger
the bound given by the maximum between θ∗ and θ is, the more the property
stated in Theorem 9 shall prove itself effective in pruning the search space.
Such a bound is initially set equal to the value θ, and begins to increase,
and to be equal to θ∗, only after that the algorithm has detected at least k
properties with an outlierness value greater than θ.

As anticipated above, before starting the visit of the subtree rooted in
the current node, its children are ordered. Ordering is done in decreas-
ing order of outlierness, that is, let ai, ai+1 ∈ A, then ai precedes ai+1 if
outS∪{ai}(o) ≥ outS∪{ai+1}(o). This strategy allows us to visit the most
promising subsets of attributes earlier in order to hopefully accelerate the
convergence of the threshold θ∗ towards the outlinerness of the kth top global
outlier, thus improving the pruning power of the method.

98 5 Detecting Outlying Properties of Exceptional Objects

FindLocalOutlyingProperties(DB,A, o, σ, θ, e, eA,Tk)
FindOutlyingProperties(DBo[e],A, o, θ, ∅,Tk);
u := OutliernessWithExplanationUB(DB,A, o);
upperBound := max{ua | a ∈ A};
θ∗ := MinOutlierness(Tk);
if upperBound > max{θ∗, θ} then

eO := SortAttributes(eA, DB, e, o);
for a := FirstAttribute(eO) to LastAttribute(eO) do

if freqe∪{a}(o) ≥ σ then
eA := eA − {a};
θ∗ := MinOutlierness(Tk);
A′ := {a′ ∈ A | ua′ > max{θ∗, θ}};
if A′ − {a} 6= ∅ then

FindLocalOutlyingProperties(DB,A′ − {a}, o, σ, θ, e ∪ {a}, eA,Tk);

Fig. 5.11. The algorithm FindLocalOutliers.

Completeness of the method is guaranteed by the use of a set enumeration
tree in conjunction with the property enunciated in Theorem 9. Furthermore,
since the outliers stored in Tk are exactly those scoring the largest outlierness
among the set of attributes visited during the search, the following result
holds.

Theorem 11. Algorithm FindOutlyingProperties computes the top k global
outlying properties of the test object w.r.t. the input database.

Proof. Without the pruning rule, the algorithm FindOutlyingProperties ex-
haustively visits the whole search space including all the subsets of the
attribute set A by exploiting a set enumeration tree. During the visit, it
maintains the top k outlying properties in Tk. By Theorem 9, the value
upperBound returned by the function OutliernessUB on the set S, is an up-
per bound to the outlierness of any superset of S. Hence, if upperBound is
not greater than the outlierness of the best k-th outlying property encoun-
tered till now, then the subtree rooted at S can be pruned without affecting
completeness. This closes the proof.

5.8.2 Local Outlying Properties

Figure 5.11 shows the algorithm FindLocalOutlyingProperties. The input pa-
rameters of the method are: the database DB, its set of attributes A, the
test object o, the frequency threshold σ, the outlierness threshold θ, the ex-
planation set e, and the set eA of attributes that can be used to augment
the current explanation e. Initially, the parameter e is set to ∅, whereas eA

is set to A. The output of the algorithm is the set Tk containing the top k
explanation–outlying properties (σ,θ)–pairs for the input problem.

5.8 Algorithms 99

First of all, the algorithm calls the method FindOutyingProperties in order
to update the set Tk with the global outlying properties of o w.r.t. the subset
DBo[e] of the database DB.

Then the function OutliernessWithExplanationUB returns the vector u
including |A| rational numbers. Each element ua of u is associated with a
distinct attribute a of A, and represents an upper bound to the outlierness
of any explanation–property pair (e′,S′) such that e ⊆ e′ and a ∈ S′. These
upper bounds are computed as explained in Theorem 10. The maximum upper
bound included in u is stored in the variable upperBound.

If upperBound is greater than the maximum between the threshold θ
and the outlierness of the current kth top outlying property, then the search
proceeds on the supersets of e. Also in this case, explanation sets are visited
by exploiting a set enumeration tree. The attributes in the set EA to be
added to the current set E are ordered by increasing frequency, that is, let
ai, ai+1 ∈ EA, then ai precedes ai+1 if freqE∪{ai}(o) ≥ freqE∪{ai+1}(o), and
then visited according to this ordering.

Before visiting the children of the current node, the set A′, containing the
attributes that are candidates to form a top k outlying property, is determined.
This set includes the attributes a′ of A such that the upper bound ua′ referred
to above is greater than the outlierness of the kth outlying property. Note
that, after visiting a subtree, the solution set Tk is updated and, hence, the
set A′ may get smaller while visiting the children of the current explanation.
If A′ becomes empty, then this corresponds to pruning a portion of the search
space, since for the subtrees rooted at the remaining attributes of eA, the
attributes employable as property have an upper bound to their outlierness
that is smaller than the outlierness of k-th current top outlying property.

Completeness of the method is guaranteed by the use of a set enumeration
tree in conjunction with properties enunciated in the previous section. Fur-
thermore, since the outliers stored in Tk are exactly those scoring the largest
outlierness among the set of attributes visited during the search, the following
result can be derived.

Theorem 12. Algorithm FindLocalOutlyingProperties computes the top k lo-
cal outlying properties of the test object w.r.t. the input database together with
the associated explanations.

Proof. Without the pruning rule, the algorithm FindLocalOutlyingProperties
exhaustively visits the whole search space including all the pairs of disjoint
subsets of the attribute set A, by exploiting two nested set enumeration trees.
The outer set enumeration tree concerns explanations and is directly visited
by the procedure FindLocalOutlyingProperties, while the inner set enumera-
tion tree concerns outlying properties and is visited by the procedure Find-
OutlyingProperties described in previous section. In particular, each node of
the outer tree is associated with an explanation E, while each node of the
inner tree is associated with an outlying property S which has E as explana-

100 5 Detecting Outlying Properties of Exceptional Objects

tion. During the visit the algorithm maintains the top k explanation-outlying
property pairs in Tk.

Consider the set {ua | a ∈ A} returned by the function OutliernessWith-
ExplanationUB on the set A. By Theorem 10, for each a ∈ A, ua is an upper
bound to the outlierness for any property S having as explanation a superset
of E and such that a ∈ S. The value max{ua | a ∈ A} is an upper bound
to the outlierness for any property S having as explanation a superset of
E. Hence, if upperBound is not greater than the outlierness of the best kth
explanation-outlying property pair encountered till now, then the subtree in
the outer set enumeration tree rooted at E can be pruned without affecting
completeness.

Note that, the inner tree rooted at E does not include in its visit the
attributes a′ whose associated upper bound ua′ is less than the outlierness
associated with the current top kth pair. This pruning rule does not affect
completeness, since it cannot exist a top pair (E′,S′) with E′ ⊇ E and a′ ∈ S′.
This closes the proof.

5.9 Algorithm implementation details, time and spatial
cost

In this paragraph implementation details of the algorithms are provided, and
their concrete time and space requirements are discussed. In the following, n
denotes the size of DB and m denotes the size of A. The section is organized as
follows. First, the data structures employed by the algorithms are described.
Then, both their temporal and spatial costs are discussed.

5.9.1 Data structures

First, the data structures, exploited in implementing the algorithms, are de-
scribed.

Database

The input database is preprocessed as to encode each distinct attribute value
in the same domain with a distinct integer number. The transformed database
is then stored in an ad-hoc data structure, called db in the following, which
serves the purpose of efficiently computing both the outlierness of a generic
object and any projection of the database. The structure db consists of m
arrays dba, each associated with a distinct attribute a of A. Every entry dba,v

of the array dba is associated with a distinct value v in the active domain of
the attribute a and it stores the identifiers, sorted in increasing order, of the
objects of DB assuming the value v on the attribute a.

Figure 5.12 shows an example of the data structure db.

5.9 Algorithm implementation details, time and spatial cost 101

Using the structure db, the projections of the database can be computed
efficiently. Indeed, assume that the identifiers of the objects in DBo[E] are
available; then, the identifiers of the objects in DBo[E∪{a}] can be obtained
by intersecting the former set of identifiers with the identifiers of the objects
of DB assuming the value o[a] on the attribute a. The latter identifiers are
immediately available in the entry dba,o[a] of db. Since both set of identifiers
are ordered, the cost of the above operation is linear in the size of the longest
of the two lists, that is O(n). Subsequent Section 5.9.3 will provide details
on how the list of the identifiers associated with the objects of the database
DBo[E] is maintained.

Car ID Tyres . . .

c1 B . . .
c2 B . . .
c3 B . . .
c4 B . . .
c5 B . . .
c6 M . . .
c7 M . . .
c8 M . . .
c9 M . . .
c10 M . . .
c11 M . . .

(a) Some columns from
the example database DB
of Figure 5.2.

0 1 . . .

0 0 . . .
1 0 . . .
2 0 . . .
3 0 . . .
4 0 . . .
5 1 . . .
6 1 . . .
7 1 . . .
8 1 . . .
9 1 . . .
10 1 . . .

(b) Encoding of
the database DB.

11

1

2

3

4

5

6

7

8

9

10

11

1

0 1

1

2

3

4

5

6

7

8

9

10

0

1

0 2 3 4 5

6 7 8 9 10

(c) The data structure
db employed to store the
database DB.

Fig. 5.12. Example of data structure db.

Frequency histogram

The frequency histogram of DB w.r.t. S is represented as an array of object
identifiers. The identifiers are sorted w.r.t. the values they assume on the set
of attributes S. Thus, the array can be viewed as partitioned in blocks of
adjacent object identifiers. Each block is associated with a distinct value of S.
It is important to note that, within each single block, it is not required that
object identifiers are sorted. However, blocks starting indexes are stored in an
auxiliary array, called index.

This kind of representation has the advantage that if the identifiers of the
objects of DB are sorted w.r.t. the values they assume on the attributes S ∪
{a}, then they are also sorted w.r.t. the values they assume on the attributes
S.

Thus, while visiting the set enumeration tree associated with outlying
properties, only a single frequency histogram has to be stored, since saving

102 5 Detecting Outlying Properties of Exceptional Objects

the index list in the father node is sufficient to recover its frequency histogram
when returning from visiting the child node.

Furthermore, it is interesting to point out that the index list associated
with each node of the current branch of the properties tree can be obtained
from the index list associated with the leaf of the current branch by simply
augmenting each entry of index with a positive integer number, say level.
This number represents the smallest level of the tree in which the entry has
been introduced. Indeed, the index list associated with a generic node of the
current branch includes precisely the entries of the index list associated with
the leaf node having a value for the field level which is less than or equal to
the current level of the node.

Thus, while visiting the properties tree, only one single index list has to
be stored and maintained.

Figure 5.13(b) shows two examples of a histogram and an index list (the
first item of each entry denotes the first element in the histogram associated
with a block of identical objects, while the second entry is the field level)
obtained on the portion of database of Figure 5.13(a). On the left of Figure
5.13(b) the histogram (array) of the attribute set S1 = {Pit−Stops} together
with the associated index list are reported. On the right it is shown the his-
togram of the attribute set S2 = {Pit−Stops, Cylinders}. Note that both the
histogram and the index list on the left can be obtained from the histogram
and the index list on the right by simply removing the entries of index hav-
ing level > 1. Indeed, the only difference between the two histogram arrays is
that the identifiers of the objects belonging to the same group are reordered,
a condition which, as already stated (see the top of this paragraph), leaves
unchanged the histogram represented by the array and its associated index
list.

Row-id . . . Pit-Stops Cylinders . . .
0 . . . 0 0 . . .
1 . . . 0 1 . . .
2 . . . 0 0 . . .
3 . . . 0 0 . . .
4 . . . 1 1 . . .
5 . . . 0 1 . . .
6 . . . 0 0 . . .
7 . . . 0 1 . . .
8 . . . 1 0 . . .
9 . . . 1 0 . . .
10 . . . 1 1 . . .

(a) Example DB

1

1

2

7

0

3

5

4

8

10

9

0

1

2

3

5

6

76
4

8

9

10

0

S={Pit−Stops}

Index

1

2

6

0

3

2

3

6

1

5

7

0

8

9

4

10

0

4

5

7

8

9

10

S={Pit−Stops, Cylinders}

Index
1 2

7

4

9

7

#

#

1

1 2

2

1

(b) Index examples

Fig. 5.13. Index structure

Building an histogram of frequencies can be performed in time linear in
n, since it requires only a single scan of an entry of db, having size n. Indeed,

5.9 Algorithm implementation details, time and spatial cost 103

if S = {a} is a singleton set, then the frequency histogram is the intersection
of the entries of the array dba of db with the list of identifiers of the objects
of DBo[E]. Furthermore, if the frequency histogram of S is available, then
the frequency histogram of S ∪ {a} can be obtained with a single scan of
dba, as follows. For each value v in the active domain of a, the entry dba,v

of dba is visited: each set of identifiers stored in the entry and belonging to
the same block in the old frequency histogram yields a novel block in the new
frequency histogram. The rest of this subsection takes care of describing how
this operation is accomplished in our implementation.

Frequency histogram update. Consider an array that stores, for each object
in the database, the block it belongs to in the current frequency histogram
(see Figure 5.14; each block is identified by a distinct natural number), or a
special value if the object does not belong to the current database DBo[E]. In
the following this array shall be denoted by B. Consider, now, a second array,
whose size is equal to the number of these blocks. In the following this array
will be denoted by LB.

The new frequency histogram is built by scanning the entry dba of db.
Remember that the entries of dba are partitioned into blocks. Assume a generic
block b∗ of dba is being scanned and let ID∗ be the current identifier in dba,b∗ :
B[ID∗] is the block identifier of ID∗ in the original frequency histogram, and
b∗ is the block identifier for ID∗ in dba.

For each block b of the original frequency histogram, LB[b] stores the
block identifier in dba which the last object in b already inserted in the new
frequency histogram belongs to.

In the new frequency histogram, each block of the original frequency his-
togram may be kept as it is, or split in two or more blocks. To this end, the
values stored in the array LB are exploited. In particular, if the last object
ID already inserted in the new frequency histogram and belonging to the
block B[ID∗] belongs to the same block b∗ in dba as the object ID∗ currently
under examination, then that ID∗ assumes the same value of ID in S ∪ {a},
and thus they must belong to the same block in the new frequency histogram.
Otherwise a new block is created.

Summarizing, if LB[B[ID∗]] = b∗ then ID∗ is inserted in the new fre-
quency histogram without creating a new block; otherwise, a new block is
created (that is, a new item is added to the index list). In any case, the value
LB[B[ID∗]] is updated to b∗.

Example 6. Consider Figure 5.14. The frequency histogram h associated with
S = {Pit−Stops} consists of two blocks, with identifiers 0 and 1, respectively.
Hence, the array LB will consists of two entries. The array B stores, for each
object, the block in h which that object belongs to. The frequency histogram
h′ associated with S′ = S ∪ {Engine−Failures} has to be built. A block
starting from 0 and a block starting from 7 will certainly occur in h′, since
these are the starting points of the two blocks of h. All the objects in the first

104 5 Detecting Outlying Properties of Exceptional Objects

5

5

0

2 5 7

0

1 10

3

4 8

6

9

1

2

3

4

(a) dbEngine−Failures

0

B

0

1

2

3

5

6

7

8

9

10

4

0

1

1

1

1

0

0

0

0

0

0

LB

0

1

0

(b) B and LB

S’={Pit−Stops, Engine−Failures}

0

7

1

1

0

1

2

0

1

2

3

5

6

7

4

8

9

10

S={Pit−Stops}

Index Index

1 2

5 2

6 2

8

10 2

5

7

6

3

10

4

8

9

0 1

7

2

1

(c) Frequency Histograms

Fig. 5.14. Example of frequency histogram management.

block of h will take in h′ a position in the interval [0 . . . 6], whereas all other
objects in h′ will take a position in the interval [7 . . . 10].

In order to build the new frequency histogram h′, the structure dbEngine−Failures

reported in Figure 5.14(a) is analyzed. The first object has identifier 0 and its
block in h is 0 (B[0] = 0).

Each entry of LB is built as composed by two fields. The first is used to
store a block identifier, as explained above, while the second is used to main-
tain the number of objects of the block of the original frequency histogram
associated with entries from LB that have been already examined.

Since the first entry of LB[0] is empty, 0 is the first object encountered in
the block 0 of h. Therefore, 0 is added in h′ as the first object in the interval
[0 . . . 6] (the position in which to insert 0 is given by the second field of LB[0]),
the first field of the entry LB[0] is set to 0, and the second field is increased
by one.

The second object encountered while scanning dbEngine−Failures is 1, its
block in h is 0. The first field of LB[0] is equal to 0, while the block in
dbEngine−Failures of 1 is 1. Then, 1 is put in h′ in the interval [0 . . . 6] (since
B[1] = 0), but a new block must be created (the entry 1 is added to Index),
and the first field of the entry LB[0] will thus be set to 1 (notice that Figure
5.14 just reports the initial state of the arrays).

Continuing with the analysis, the third object encountered is 2, its block
in h is 0, the first field of LB[0] is 1, and also the block in dbEngine−Failures

of 2 is 1. Then 2 is inserted in h′ without creating a new block.
The objects with identifiers 5 and 7 are managed analogously as object

having identifier 2. As for the object 10, since the first field of LB[B[10]] is
empty, it is inserted in h′ as first object in the interval [7 . . . 10].

The remaining objects are handled analogously. Figure 5.14(c) (on the
right) reports the final frequency histogram obtained.

Concluding, by adopting the above described strategy, the frequency his-
togram of DB[S∪{a}] can be obtained from the frequency histogram of DB[S]

5.9 Algorithm implementation details, time and spatial cost 105

by performing a single sequential scan of the entry dba. Thus, the temporal
cost of this operation is O(n), linear in the number of objects of the database
DB. Also, the spatial cost of this operation is linear, since the auxiliary data
structures B and LB are arrays of size at most n.

5.9.2 Temporal cost

Given a frequency histogram, the cost of computing the outlierness is linear in
the size of the histogram (see Theorem 2), that is, O(n). The same cost must
be spent also for computing the upper bound oubE,S(o) as stated in Theorem
9. The upper bound eubE,S,σ(o), as stated in Theorem 10 can be obtained
after sorting the elements belonging to the frequency histogram. Since in this
case the range of values to be sorted is known in advance, this operation can
be performed in linear time and space by using the counting sort algorithm
[Knuth, 1973] or similar algorithms.

Find Outlying Properties

Next, the cost of visiting a node of the tree explored by the algorithm Find-
OutlyingProperties shall be stated. Computing the outlierness and the upper
bound oubE,S(o) is feasible in time O(n), as seen above. Updating the set Tk

can be done in time O(log k). The procedure SortAttributes consists in com-
puting the outliernesses outS∪{a}(o), for each a ∈ A, and then sorting them.
Thus, its cost is upper bounded by O(mn + m log m). Notice that attributes
whose oubE,S(o) is lower than the threshold θ are not further considered while
visiting the subtree rooted at the current node.

Summarizing, the cost paid in FindOutlyingProperties for visiting each
node is O(nm+m log m+log k), where m decreases with the level of the node
in the tree. Notice that the number of nodes of the tree is 2m. The m nodes of
the first level of the property tree require O(nm + m log m + log k) ≤ O(nm)
time, assuming that nm ≥ m log m and nm ≥ log k.

Find Local Outlying Properties

As far as the FindLocalOutlyingProperties algorithm is concerned, the cost
of visiting a single node is determined as follows (in this cost analysis the
procedure FindOutlyingProperties shall not be taken in account). The cost of
computing DBo[E] is O(n) (see above Section 5.9.1). The vector u of upper
bounds, returned by the procedure OutliernessWithExplanationUB, is com-
puted by exploiting the property stated in Theorem 10, for each S∪{a}. Since,
in our implementation, these values, together with their maximum, are com-
puted by the procedure FindOutlyingProperties when visiting the first level
of the outlying properties tree, then this procedure can be assumed to have
no cost. The procedure SortAttributes computes the databases DBo[E∪{a}],

106 5 Detecting Outlying Properties of Exceptional Objects

for each a ∈ eA, and then sorts the attributes a in order to decrease the size
of the database. Its cost is thus O(mn + m log m). Thus, the cost of visiting
a node of the explanations tree is O(n + nm + m log m) ≤ O(nm), where n
decreases with the level of the node in the tree, and can be reduced to O(n)
if a static ordering of the attributes is employed.

Summarizing, if N is the total number of nodes explored by the algo-
rithm FindLocalOutlyingProperties, both in the explanation and in the prop-
erty trees, then the overall cost of the method is O(Nnm).2 Notice, conversely,
that the total size of the search space, i.e. the number of possible explanation–
outlier pairs, is much larger, being equal to Nmax =

∑m
i=0

(
m
i

)
2m−i. Hence,

the efficiency of the algorithm relies in its ability of keeping N much smaller
than Nmax by effectively pruning the search space.

5.9.3 Spatial cost

Next, the algorithm is shown to have linear space complexity w.r.t. the di-
mension O(mn) of the input. The number k of top pairs to find is assumed
to be fixed, so that the space required to store the set Tk is O(m).

The input database DB is stored using the structure db that includes nm
integers.

Since the adopted strategy is of the depth-first kind, the total required
space is the sum of that occupied by the nodes along a branch of the ex-
planation and property trees. While visiting a branch of the properties tree,
whose depth is upper bounded by m, each node has to store the ordering
of the m attributes w.r.t. their outlierness. Then, a total O(m2) spatial cost
is implied along the current branch of the tree. Furthemore, FindOutlying-
Properties stores a single index structure, whose size is upper bounded by
n.

Row-id . . . Pit-Stops Cylinders . . .
. . . 3 4 . . .

0 . . . 0 0 . . .
1 . . . 0 1 . . .
2 . . . 0 0 . . .
3 . . . 0 0 . . .
4 . . . 1 1 . . .
5 . . . 0 1 . . .
6 . . . 0 0 . . .
7 . . . 0 1 . . .
8 . . . 1 0 . . .
9 . . . 1 0 . . .
10 . . . 1 1 . . .

(a) Example database

E={Pit−Stops,Cylinders}

Deleted Tuples=[]

Deleted Tuples= 0 1 2 3 5 6 7

Deleted Tuples=8 9

E={ }

E={Pit−Stops}

(b) Explanation tree

Fig. 5.15. Explanation tree example.

2 It is worth to point out that the actual cost to be paid in each node (E′,S′) is
O(n0m0), where n0 is the size of DB[E′], and m0 is the size of S′.

5.10 Experimental results 107

While visiting a branch of the explanation tree, the algorithm Find-
LocalOutlyingProperties should store, for each node, the identifiers of the
database objects selected by the explanation as associated with that node.
Nonetheless, a more efficient strategy can be pursued. Indeed, a unique global
array can be used to maintain the identifiers of the objects selected by the cur-
rent explanation. Identifiers of the objects of DB not included in this global
array are stored in the nodes of the current branch. Specifically, each node
stores the identifiers of the objects selected by the explanation associated with
its father but not selected by the explanation associated with it. Thus, main-
taining the identifiers selected by the current explanation along a branch of
the tree requires space O(n).

Figure 5.15 shows an example of the strategy adopted to store the identi-
fiers associated with the current database DBo[E]. The object o is that having
Row-id 4. The array ”Deleted Tuples” associated with each node E ∪ {a} of
the explanation tree stores the identifiers of the objects which are in DBo[E]

but not in DBo[E∪{a}].
Furthermore, each node of the explanation tree has to store the upper

bounds u of the objects in A together with the ordering of the attributes in
EA. Notice that A and EA are disjoint, and this requires space O(m). Since
the explanations tree has depth at most m, the total space required along a
branch of the tree is O(m2).

Summarizing, the algorithm requires spaceO(mn) to maintain the database,
space O(n + m2) to visit the explanation tree and space O(n + m2) to visit
the property tree. Assuming, as is reasonable, that m ¿ n, then the cost
simplifies to O(mn), which is linear in the input size.

5.10 Experimental results

In this paragraph, results of experiments conducted by using proposed algo-
rithms are presented.

Experiments are organized as follows. First of all, the scalability of the
method is studied (Section 5.10.1). Then, the sensitivity to the parameters is
investigated (Section 5.10.2). Examples of knowledge mined by the algorithms
are illustrated in Section 5.10.3. Finally, the behavior of the method on random
data is investigated to verify that it does not report supposedly “interesting”
knowledge when no meaningful information actually occurs in the input data
collection (Section 5.10.4).

5.10.1 Scalability

In order to study the scalability of the method, a family of synthetically
generated data sets is considered. Each data set of the family consists of n
objects having m attributes. Attribute values are obtained as follows. Initially,
n−1 values are generated according to a normal distribution and sorted. Then,

108 5 Detecting Outlying Properties of Exceptional Objects

0 1 2 3 4 5

x 10
4

10
2

10
3

10
4

Synthetic data set, θ=0.8, σ=0.2, m=30

Data set size, n

N
um

be
r

of
 v

is
ite

d
no

de
s,

 N

k=1
k=10
k=100

(a) Number of visited
nodes.

10 15 20 25 30
0

10

20

30

40

50

60

70
Synthetic data set, θ=0.8, σ=0.2, n=50000

Number of attributes, m

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
ec

]

k=1
k=10
k=100

(b) Scalability w.r.t. the
number of attributes.

0 1 2 3 4 5

x 10
4

0

10

20

30

40

50

60

70
Synthetic data set, θ=0.8, σ=0.2, m=30

Data set size, n

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
ec

]

k=1
k=10
k=100

(c) Scalability w.r.t. the
number of objects.

Fig. 5.16. Experimental results on the synthetical data set family.

these values are grouped into ten equally spaced bins and replaced with the
center of the bin they belong to.

Finally, a single outlier object o, that is going to be used as input in the
experiments, is generated as follows: 50% of its attribute values are set to the
center of the most populated bin (call E these attribute set), 25% of them
are set to the center of the less populated bin (call S these attribute set),
and the remaining 25% are set according to randomly chosen bin centers.
By construction, the attributes in S represent exceptional properties for the
object o, while the attributes in E select a large portion of the data set and,
then, denote meaningful explanations.

In all experiments the parameter σ was set to 0.2 and the parameter θ
to 0.8. The outlierness associated with outlying properties for o was always
greater than 0.98. Figure 5.16 reports the experimental results on this family
of data sets.

Figure 5.16(a) shows the number of nodes visited by the algorithm Find-
LocalOutlyingProperties w.r.t. the data set size when the number of attributes
is held fixed to thirty. The number of analyzed nodes remained almost con-
stant with the size of the data set. This can be explained since the number of
attributes is constant over all the executions. Moreover, the experiment clar-
ifies that pruning rules are almost insensitive to the data set size whenever
the underlying distribution does not change.

Figure 5.16(b) shows the total execution time of the algorithm w.r.t. the
number of attributes, for increasing values of k. As expected, the execution
time increases with the number of attributes, but, interestingly, its growth is
slow, confirming the effectiveness of the pruning rules.

Finally, Figure 5.16(c) shows the total execution time w.r.t. the data set
size n, for increasing values of k. Since, as discussed above, the number of
visited nodes is almost constant with n, and since m is held fixed, as expected
by results about the temporal cost stated in Section 5.9.2, the total execution
time increases almost linearly with n.

5.10 Experimental results 109

10
0

10
1

10
2

10
3

10
1

10
2

10
3

Post−operative, outlierness threshold θ = 0.75

Numbero of top k outliers

M
ea

n
nu

m
be

r
of

 v
is

ite
d

no
de

s

(a)

10
0

10
1

10
2

10
1

10
2

10
3

Voting records, outlierness threshold θ = 0.75

Numbero of top k outliers

M
ea

n
nu

m
be

r
of

 v
is

ite
d

no
de

s

(b)

10
0

10
1

10
2

10
2

10
3

10
4

Mushroom, outlierness threshold θ = 0.75

Numbero of top k outliers

M
ea

n
nu

m
be

r
of

 v
is

ite
d

no
de

s

(c)

10
0

10
1

10
2

10
3

10
1

10
2

10
3

Post−operative, outlierness threshold θ = 0.5

Numbero of top k outliers

M
ea

n
nu

m
be

r
of

 v
is

ite
d

no
de

s

(d)

10
0

10
1

10
2

10
1

10
2

10
3

10
4

Voting records, outlierness threshold θ = 0.5

Numbero of top k outliers

M
ea

n
nu

m
be

r
of

 v
is

ite
d

no
de

s

(e)

10
0

10
1

10
2

10
2

10
3

10
4

10
5

Mushroom, outlierness threshold θ = 0.5

Numbero of top k outliers

M
ea

n
nu

m
be

r
of

 v
is

ite
d

no
de

s

(f)

Fig. 5.17. Mean number of node visited (starting from the top of each figure the
curves are for σ = 0.25, 0.5, 0.75, and 1.0). Notice that, on the Voting records
database, curves for σ = 0.75 and σ = 1.0 overlap.

5.10.2 Sensitivity to parameters

In these experiments, three real-life data sets, namely the Post-operative, Vot-
ing records, and Mushroom data sets [Newman et al., 1998], whose character-
istics are briefly described next, are considered. The Post-operative data set
has 9 categorical attributes and includes 90 objects, the Voting records data
set consists in 435 objects each having 17 binary attributes, while the Mush-
room data set has 22 attributes, all categorical, and includes 8,124 objects.
The total number of explanation–outlier pairs is 19,683 for the Post-operative
data set, about 129 millions for the Voting records data set, and about 31
thousand millions for the Mushroom data set.

For different values of k, the number of nodes visited by the algorithm
FindLocalOutlyingProperties on a random sample containing the 1% of the
database objects is measured, and different curves, each associated to a dif-
ferent combination of the parameters θ (0.5 and 0.75) and σ (0.25, 0.5, 0.75,
and 1.0) are obtained. Figure 5.17 reports the mean number of visited nodes.

It is worth to note that, for many combinations of the parameters θ and
σ, the curves are insensitive to the parameter k. Furthermore, the pruning
power of the method improves by increasing the parameters θ or σ. Moreover,
it must be pointed out that the number of visited nodes always represents a
negligible fraction of the overall search space.

110 5 Detecting Outlying Properties of Exceptional Objects

As for the execution times, Figure 5.18 reports a table showing the pro-
cessing time per node. Interestingly, it clearly results from this table that the
time spent to process a single node gets smaller while σ is decreasing. Since,
by decreasing σ, the number of visited nodes increases, the above behavior has
the desirable effect of mitigating the increase of the overall execution time.

5.10.3 About mined knowledge

In the sequel the meaningfullness of the knowledge mined using our technique
is discussed by illustrating some exceptional properties found.

Mushroom data

This data set, having 22 categorical attributes and including 8,124 objects,
includes descriptions of hypothetical samples corresponding to 23 species of
gilled mushrooms in the Agaricus and Lepiota Family.

The algorithm FindLocalOutlyingProperty, when run on this data set for
the object of row 4,977, returned an explanation habitat=“grasses” for the
abnormal property consisting of the attributes stalk-color-above-ring=“buff”,
stalk-color-below-ring=“buff”. Indeed, among the 2,148 objects selected by the
explanation, 1,716 assume value “white” on both the two attributes, while only
48 are such that the two attributes are “buff”.

Post-operative data

This database, having 9 categorical attributes and including 90 objects, has
been used in order to determine where patients in a postoperative recovery
area should be sent to next. Because hypothermia is a significant concern
after surgery, the attributes correspond roughly to body temperature mea-
surements, except for the attribute COMF, representing patient’s perceived
comfort at discharge, and DECS, representing discharge decision, that is “I”
(patient sent to Intensive Care Unit), “S” (patient prepared to go home), and
“A” (patient sent to general hospital floor). The database is shown below after
the description of the experiments.

The top explanation–outlier pair returned by the algorithm FindLocalOut-
lyingProperty for the object of row 59 has as explanation the attributes L-
BP=“high”, SURF-STBL=“stable”, and BP-STBL=“stable”, and as property
the attribute L-CORE=“low”, where L-BP represents the last measurement
of blood pressure, SURF-STBL represents the stability of patient’s surface
temperature, BP-STBL represents the stability of patient’s blood pressure,
and L-CORE represents the patient’s internal temperature. The portion of
database selected by this explanation includes the 10% of the objects. On this
portion, all the objects assume the value L-CORE=“mid” except for the test
object, which conversely assumes the value low.

5.10 Experimental results 111

Threshold θ 0.5 0.75
Threshold σ 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

Post-operative 0.191 0.349 0.662 0.687 0.260 0.479 0.965 0.892
Voting records 0.223 0.359 0.918 0.851 0.299 0.572 1.350 1.336

Mushroom 2.172 3.210 3.976 4.131 1.913 3.025 3.728 3.718

Fig. 5.18. Mean execution times per node (milliseconds).

On the object of row 4 the algorithm singled out the property CORE-
STBL with explanation SURF-STBL=“stable”. The attribute CORE-STBL
denotes stability of patient’s core temperature. Indeed, among the forty-five
objects (50% of the database) selected by this explanation, only this object
is such that CORE-STBL=“unstable”, while all the others assume the value
“stable”.

Finally, consider the object of row 15. It resulted in singling out an “un-
stable” core temperature (attribute CORE-STBL) as outlying property with
explanation L-O2=“good” and BP-STBL=“stable”. Indeed, among all the pa-
tients having a “good” oxygen saturation (attribute L-O2) and a “stable”
blood pressure (attribute BP-STBL), the object of row 15 is the only one
having unstable core temperature, whereas all the other have a stable core
temperature.

The following table shows the Post-Operative database. For the sake of
readability the database objects were reordered, so that the object of row 15
is the first one, and the 25 objects selected by the explanation (L-O2=“good”,
BP-STBL=“stable”) are reported at the top of the table.

112 5 Detecting Outlying Properties of Exceptional Objects

L-CORE L-SURF L-O2 L-BP SURF-STBL CORE-STBL BP-STBL COMF DECS
15 mid low good high unstable unstable stable 15 S
9 mid high good mid stable stable stable 10 S
11 mid mid good mid stable stable stable 15 A
18 mid low good high unstable stable stable 10 A
20 mid mid good mid stable stable stable 10 A
21 low high good mid unstable stable stable 15 A
24 mid mid good mid unstable stable stable 10 A
26 low mid good mid unstable stable stable 10 A
31 mid mid good high unstable stable stable 10 A
34 mid low good mid stable stable stable 10 A
36 mid mid good mid stable stable stable 10 A
39 low low good mid stable stable stable 7 S
41 low low good mid unstable stable stable 10 A
42 low mid good mid stable stable stable 15 S
43 high high good high unstable stable stable 15 S
44 mid mid good mid stable stable stable 10 S
46 low mid good mid unstable stable stable 10 S
47 low mid good high unstable stable stable ? I
50 mid high good low unstable stable stable 10 A
56 mid mid good mid unstable stable stable 15 A
59 low low good high stable stable stable 10 A
66 mid mid good high stable stable stable 10 S
80 mid mid good high stable stable stable 10 A
88 mid mid good mid unstable stable stable 15 A
90 mid mid good mid unstable stable stable 15 S
1 mid low excellent mid stable stable stable 15 A
2 mid high excellent high stable stable stable 10 S
3 high low excellent high stable stable mod-stable 10 A
4 mid low good high stable unstable mod-stable 15 A
5 mid mid excellent high stable stable stable 10 A
6 high low good mid stable stable unstable 15 S
7 mid low excellent high stable stable mod-stable 5 S
8 high mid excellent mid unstable unstable stable 10 S
10 mid low excellent mid unstable stable mod-stable 10 S
12 mid low good high stable stable mod-stable 10 A
13 high high excellent high unstable stable unstable 15 A
14 mid high good mid unstable stable mod-stable 10 A
16 high high excellent high unstable stable unstable 10 A
17 low high good high unstable stable mod-stable 15 A
19 mid high good mid unstable stable unstable 15 A
22 low mid excellent high unstable stable unstable 10 S
23 mid mid good mid unstable stable unstable 15 A
25 high high good mid stable stable mod-stable 10 A
27 high mid good low stable stable mod-stable 10 A
28 low mid excellent high stable stable mod-stable 10 A
29 mid mid excellent mid stable stable unstable 15 A
30 mid mid good mid unstable stable unstable 10 S
32 low low good mid unstable stable unstable 10 A
33 mid mid excellent high unstable stable mod-stable 10 A
35 low mid excellent high stable stable mod-stable 10 A
37 low mid excellent mid stable stable stable 10 S
38 low low good mid unstable stable unstable 10 S
40 mid mid good high unstable stable mod-stable 10 A
45 low low excellent mid stable stable stable 10 A
48 mid mid excellent mid unstable stable stable 10 A
49 high high excellent high stable stable unstable ? A
51 mid high good mid unstable mod-stable mod-stable 10 A
52 low high excellent mid unstable stable stable 10 A
53 mid low excellent high unstable stable unstable 10 A
54 mid mid good mid unstable stable mod-stable 10 S
55 high high excellent mid unstable stable mod-stable 10 A
57 high mid good high stable stable unstable 15 A
58 mid low good high unstable stable mod-stable 10 A
60 mid high good mid stable stable mod-stable 10 A
61 mid high good mid unstable stable unstable 10 A
62 mid low excellent high stable stable stable 10 A
63 mid mid good mid stable stable unstable 10 A
64 mid low excellent mid stable stable unstable 10 S
65 high mid excellent mid unstable unstable unstable 10 A
67 mid low excellent mid unstable stable stable 10 A
68 mid mid excellent mid unstable stable stable 10 A
69 mid mid excellent high stable stable stable 10 A
70 mid mid excellent low stable stable stable 10 A
71 mid low excellent mid unstable unstable unstable ? A
72 low low excellent mid stable stable stable 10 A
73 mid mid excellent mid stable stable mod-stable 10 S
74 mid mid excellent high stable stable stable 10 A
75 mid low excellent high stable stable mod-stable 10 A
76 low mid good mid stable stable unstable 10 A
77 mid mid excellent mid stable stable mod-stable 10 A
78 mid mid excellent mid stable stable unstable 10 A
79 mid mid excellent mid unstable unstable stable 10 S
81 mid mid excellent mid stable stable stable 15 A
82 mid mid excellent mid stable stable stable 10 S
83 mid low good mid stable stable unstable 10 I
84 high mid excellent mid unstable stable unstable 5 A
85 mid mid excellent mid stable stable unstable 10 A
86 mid mid excellent mid unstable stable stable 10 A
87 mid mid excellent mid unstable stable stable 15 S
89 mid mid excellent mid unstable stable stable 10 A

5.10 Experimental results 113

Breast cancer data

This breast cancer domain was obtained from the UCI repository [Newman
et al., 1998] and was originally provided to UCI by M. Zwitter and M. Soklic of
the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia.
The data set includes 286 instances. The instances are described by 9 cate-
gorical attributes, shown in the Table 5.2.

Attribute Values
1 class no-recurrence-events, recurrence-events.
2 age 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
3 menopause lt40, ge40, premeno.
4 tumor-size 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59.
5 inv-nodes 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39.
6 node-caps yes, no.
7 deg-malig 1, 2, 3.
8 breast left, right.
9 breast-quad left-up, left-low, right-up, right-low, central.

10 irradiat yes, no.

Table 5.2. Breast cancer data: attribute domains.

The algorithm is executed on some interesting objects, with parameters
θ = 0.7 and σ = 0.3. Next three objects that showed a clear outlierness are
discussed about.

The object of row 129 scores outlierness 0.960 with explanation { irra-
diat, inv-nodes, no-recurrence-events } and outlier property { node-caps }.
This property is exceptional since among the objects with irradiat=“no”, inv-
nodes=“9-11”, class=“no-recurrence-events”, very few objects are such that
node-caps=“yes”.

The object of row 274 scores outlierness 0.906 with explanation { inv-
nodes, menopause } and outlier property { node-caps }. This property is ex-
ceptional since among the objects with inv-nodes=“0-2”, menopause=“ge40”,
very few objects are such that node-caps=“yes”.

Finally, the object of row 286 scores outlierness 0.904 with explanation {
node-caps, irradiat, breast } and outlier property { inv-nodes }. This property
is exceptional since among the objects with node-caps=no, irradiat=“no”,
breast=“left”, very few objects are such that inv-nodes=“3-5”.

Water supply data

The table of water supplies of an Italian town is analyzed. The table con-
sists of supplies of a single month of the year 2001. It includes 38 attributes
and 31,084 rows, each associated with a single customer. Attributes spec-
ify some customer information like, e.g., consumed water quantity, amounts
due, and others. The town administrator provided us with an exceptional
individual who complained about a bill to pay relative to the period which

114 5 Detecting Outlying Properties of Exceptional Objects

Attrs / Vals 10 100 1000

50 mean 0.029976 0.002234 0.000640
max 0.041120 0.003511 0.000902

100 mean 0.033693 0.002364 0.000067
max 0.045251 0.003741 0.000090

Table 5.3. Random dataset family: experimental results.

the table refers to. The object under examination is found to have an ex-
ceptional property AMOUNT-DUE=“very high” with explanation WATER-
QUANTITY=“very low” and TYPE=“normal”. This property has an out-
lierness 0.999537 in that it is the only object with AMOUNT-DUE=“very
high” among 28,044 selected by the explanation, of which 28,038 are such that
AMOUNT-DUE=“very low”, four such that AMOUNT-DUE=“low”, and an
other such that AMOUNT-DUE=“medium”.

Notice that, even in this case, the method succeeded in singling out a sig-
nificant justification for the notified abnormality, which evidently corresponds
to an error made with the computation of the amount due for the water sup-
ply at hand.

5.10.4 Random data

To verify if the method finds meaningful outlying properties also for non-
exceptional objects, how it performs on uniformly distributed data is studied.
Six random datasets, each composed by ten thousands objects, consisting of 50
or 100 attributes whose domain includes ten, or one hundred, or one thousand
distinct and uniformly distributed values, have been considered. For σ = 0.1
and θ = 0.0, the mean and the maximum outlierness of the top outlier–
explanation pair associated with one hundred randomly selected objects, is
computed. Table 5.3 shows the result of this experiment. From this table,
it is clear that, on random data, the top outlying property has a negligible
score. Also, it is worth noting that, even though the outlierness threshold is
set to zero and the explanation threshold is set to the ten percent, in all the
executions the algorithm explored only the first level of the explanation tree
and only the first two levels of the outlier tree.

This proves that the algorithms do not found exceptional properties if no
meaningful one is present, and that the algorithms are able to recognize very
quickly the absence of outlying properties.

Conclusions

In this thesis an outstanding data mining task as the anomaly detection is
tackled. Its wide practical applications are well known, and a lot of efforts
have been made in these recent years, to find efficient and effective techniques
to accomplish this task. Among the many facets of the anomaly detection,
this thesis deals mainly with three of them: outlier detection in data, outlier
detection in data streams and outlier property detection.

The first one is the classical problem for anomaly detection. It consists of
finding objects that are significantly different with respect to the population
they belong to. In this context, the main contribution of the thesis is the pre-
sentation of a novel algorithm. By means of it, it is shown that distance-based
outlier detection is possible on very large disk resident datasets with both near
linear CPU and I/O cost and simultaneously gaining efficiency by exploiting
database indexing technology. The algorithm DOLPHIN, here described, out-
performs existing methods by at least one order of magnitude. The proposed
technique can be interestingly extended in several ways. DOLPHIN has very
low space requirements that, for meaningful values of parameters, amounts to
a little percentage of the input data set; however, in some applications, the
mining tasks must be accomplished using only an limited amount of memory.
Then, designing a variant of DOLPHIN which uses only a fixed amount of
main memory may arouse a great interest. Furthermore, a deeper theoretical
analysis may be conducted, in order to statistically bound the spatial cost of
the algorithm, and to study the expected behavior of the algorithm on data
set with a known distribution.

As for the second aspect this thesis deals with, the problem of detecting
distance-based outliers in streams of data has been addressed. The novel data
stream outlier query task was proposed and motivated, and both an exact
and an approximate algorithm to solve it were presented. Also, bounds on the
accuracy of the estimation accomplished by the approximated method are
precisely stated. Finally, experiments conducted on both synthetic and real
data sets showed that the proposed methods are efficient in terms processing
time, and the approximate one is effective in terms of precision and recall of

116 Conclusions

the solution. This approach may be further improved by extending the statis-
tical analysis and by studying the theoretical behavior of STORM when the
data stream distribution is a known one. Moreover, a more extensive experi-
mental campaign may be conducted, especially on real cases of study, and the
embedding of STORM in real applicative system may be accomplished.

Finally, the third problem tackled in this thesis is a relatively new and
till now less considered task of finding exceptional properties of exceptional
objects. The problem consists of singling out subsets of attributes that best
justify a given abnormal individual for its exceptionality with respect to a
reference data population. This problem is somehow orthogonal to that of
individuating outliers in a database. In this latter case, indeed, given a char-
acteristics to be analyzed, the aim is to find those individuals that are signifi-
cantly dissimilar from the other individuals of the data population they belong
to as far as that characteristics is concerned. In the context analyzed here,
conversely, the abnormal individual is given in advance, and it is of interest
singling out the characteristics that best distinguish this individual from the
rest of the data population.

From a practical viewpoint, the problem dealt with appears to be signif-
icant: think of singling out the peculiarities of exceptional performances in
sports, or those of sick individuals in a context of otherwise healthy people
or, finally, those characterizing people committing financial criminal acts.

A precise framework for the problem at hand has been first defined, and
then its formal characterization has been developed. As a result, both an
analysis of the computational complexity of involved problems and several
formal tools, which have been exploited in designing as efficient as possible
algorithms for computing the most relevant justification for the abnormality
of the given individual, are obtained. This way, a fully automated support is
provided to decode those properties determining the abnormality of the given
object within the given data context. This work might be further extended
along several directions. First of all, it might be interesting to devise meth-
ods to single out outlying properties conjunctively associated with a set of
abnormal individuals. Second, it would be sensible to exploit additional infor-
mation possibly available in specific application contexts in order to speed-up
the search using heuristic functions. Third, a more extensive experimental
campaign would be useful to further assess the behavior of the algorithms
over actual data domains.

References

C. C. Aggarwal. On abnormality detection in spuriously populated data streams.
In Proceedings of the SIAM International Conference on Data Mining (SDM),
2005.

C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Pro-
ceedings of the International Conference on Management of Data (SIGMOD),
pages 37–46, 2001.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 487–499, 1994.

F. Angiulli and C. Pizzuti. Fast outlier detection in large high-dimensional data sets.
In Proceedings of the International Conference on Principles of Data Mining and
Knowledge Discovery (PKDD), pages 15–26, 2002.

F. Angiulli and C. Pizzuti. Outlier mining in large high-dimensional data sets.
IEEE Transactions on Knowledge and Data Engineering (TKDE), pages 203–
215, 2005.

A. Arning, C. Aggarwal, and P. Raghavan. A linear method for deviation detection
in large databases. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD), pages 164–169, 1996.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), pages 1–16, 2002.

V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 1994.
S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time

with randomization and a simple pruning rule. In Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Mining (KDD), pages
29–38, 2003.

N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An effi-
cient and robust access method for points and rectangles. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages 322–331,
1990.

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, pages 509–517, 1975.

118 References

S. Berchtold, D. A. Keim, and H. P. Kriegel. The x-tree: An index structure for
high-dimensional data. In Proceedings of the International Conference on Very
Large Data Bases System (VLDB), pages 28–39, 1996.

C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases. ACM
Computing Surveys, pages 322–373, 2001.

M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-based
local outliers. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 93–104, 2000.

S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology.
SIGMOD Record, pages 65–74, 1997.

E. Chávez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroqúın. Searching in metric
spaces. ACM Computer Surveys, pages 273–321, 2001.

Z. Chen and S. Toda. The complexity of selecting maximal solutions. Information
and Computation, pages 231–239, 1995.

Defense Advanced Research Projects Agency DARPA. Intrusion detection evalua-
tion. In www.ll.mit.edu/IST/ideval/index.html, 1998.

E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework
for unsupervised anomaly detection : Detecting intrusions in unlabeled data. In
Applications of Data Mining in Computer Security, 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

A. Ghoting, M. E. Otey, and S. Parthasarathy. Loaded: Link-based outlier and
anomaly detection in evolving data sets. In Proceedings of the International
Conference on Data Mining (ICDM), pages 387–390, 2004.

A. Ghoting, S. Parthasarathy, and M. E. Otey. Fast mining of distance-based out-
liers in high-dimensional datasets. In Proceedings of the SIAM International
Conference on Data Mining (SDM), 2006.

L. Golab and M. Tamer Özsu. Issues in data stream management. SIGMOD Record,
pages 5–14, 2003.

D. Hawkins. Identification of Outliers. Chapman and Hall, 1980.
W. Jin, A. K. H. Tung, and J. Han. Mining top-n local outliers in large databases.

In Proceedings of the ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), pages 293–298, 2001.

R. M. Karp. Complexity of Computer Computations, chapter Reducibility Among
Combinatorial Problems, pages 85–103. New York: Plenum, 1972.

W. Klösgen. Explora: a multipattern and multistrategy discovery assistant. Ad-
vances in knowledge discovery and data mining, pages 249–271, 1996.

E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large
datasets. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 392–403, 1998.

E. Knorr, R. Ng, and V. Tucakov. Distance-based outlier: algorithms and applica-
tions. VLDB Journal, pages 237–253, 2000.

E. M. Knorr and R. T. Ng. Finding intensional knowledge of distance-based out-
liers. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 211–222, 1999.

D. E. Knuth. The Art of Computer Programming, Vol.3 – Sorting and Searching.
Addison-Wesley (Reading MA), 1973.

References 119

M. W. Krentel. The complexity of optimization problems. Journal of Computer and
System Sciences (JCSS), pages 490–509, 1988.

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. A comparative study
of anomaly detection schemes in network intrusion detection. In Proceedings of
the SIAM International Conference on Data Mining (SDM), 2003.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz.
UCI repository of machine learning databases, 1998. URL
www.ics.uci.edu/∼mlearn/MLRepository.html.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier

detection using the local correlation integral. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 315–326, 2003.

S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers
from large data sets. In Proceedings of the International Conference on Man-
agement of Data (SIGMOD), pages 427–438, 2000.

R. Rymon. Search through systematic set enumeration. In Proceedings of the Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR), pages 539–550, 1992.

S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of olap data
cubes. In Proceedings of the International Conference on Extending Database
Technology (EDBT), pages 168–182, 1998.

A. L. Selman. A taxonomy of complexity classes of functions. Journal of Computer
and System Sciences (JCSS), pages 357–381, 1994.

S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos.
Online outlier detection in sensor data using non-parametric models. In Proceed-
ings of the International Conference on Very Large Data Bases (VLDB), pages
187–198, 2006.

P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-
Wesley, 2005.

Y. Tao, X. Xiao, and S. Zhou. Mining distance-based outliers from large databases in
any metric space. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD), pages 394–403, 2006.

J. D. Ullman. Principles of Database Systems, 2nd Edition. Computer Science Press,
1982.

O. Watanabe. Simple sampling techniques for discovery science. IEICE Transactions
on Communications, Electronics, Information and Systems (TIEICE), 2000.

L. Wei, W. Qian, A. Zhou, W. Jin, and J.X. Yu. Hot: Hypergraph-based outlier test
for categorical data. In Proceedings of the International Conference on Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pages
399–410, 2003.

M. Wu and C. Jermaine. Outlier detection by sampling with accuracy guarantees. In
Proceedings of the International Conference on Knowledge Discovery and Data
Mining (KDD), pages 767–772, 2006.

K. Yamanishi, J. Takeuchi, G.Williams, and P. Milne. On-line unsupervised learning
outlier detection using finite mixtures with discounting learning algorithms. In
Proceedings of the International Conference on Knowledge Discovery and Data
Mining (KDD), pages 250–254, 2000.

120 References

J. Zhang and H. Wang. Detecting outlying subspaces for high-dimensional data: the
new task, algorithms, and performance. Knowledge and Information Systems
(KAIS), pages 333–355, 2006.

J. Zhang, Q. Gao, and H. Wang. A novel method for detecting outlying subspaces
in high-dimensional databases using genetic algorithm. In Proceedings of the
International Conference on Data Mining (ICDM), pages 731–740, 2006.

C. Zhu, H. Kitagawa, and C. Faloutsos. Example-based robust outlier detection in
high dimensional datasets. In Proceedings of the International Conference on
Data Mining (ICDM), pages 829–832, 2005.

