
To my parents, for their love





Preface

In several scientific domains large data repositories are generated. To find in-
teresting and useful information in those repositories, efficient data mining
techniques must be used. Many scientific fields, such as astronomy, biology,
medicine, chemistry and earth science, get advantages from data mining anal-
ysis. The exploitation of data mining techniques in science help scientists
in hypothesis formation and give them a support on their scientific prac-
tices, taking advantage from the knowledge that can be extracted from large
data sources. Data mining tasks are often distributed since they involve data
and tools located over geographically distributed environments, like the Grid.
Therefore, it is fundamental to exploit effective paradigms, such as services
and workflows, to model data mining tasks that are both multi-staged and
distributed.

This thesis presents the results of our research aimed at providing data
mining services and workflow systems for analyzing scientific data in a high
performance distributed environment such as the Grid. Two alternative ap-
proaches have been investigated: one was to extend an existing data mining
open source toolkit to make it suitable to support distributed data analysis
workflows in grid settings, the second one was to work on a service oriented
framework, the Knowledge Grid, to provide a high level visual interface able
to support the wide range of distributed data mining scenarios.

The result of our first study is the implementation of Weka4WS, an exten-
sion of the open source Weka data mining suite, allowing users to exploit the
computing power of distributed Grid nodes; in particular we have extended
the Knowledge Flow environment of Weka to allow the execution of its data
mining workflows on a set of distributed nodes. In this way, data mining ex-
perts can focus on the composition of their applications using a familiar tool,
without having to learn a new environment or to learn complex tools and
languages for the use and management of a Grid.

Our work on the Knowledge Grid framework focused in three main aspects:
(i) designing and implementing Web Services that constitute the core of its
jobs execution functionalities, (ii) defining a workflow formalism and (iii) pro-



VIII Preface

viding a visual environment, called DIS3GNO, for composing and executing
data mining tasks on the Grid.

Experiments have been performed to assess the efficiency of both workflow
systems as well as to test effective design of real data mining applications. The
results of the tests performed have proven their good scalability and that the
overhead introduced by the remote invocations of the algorithms does not
affect significantly the performance of the systems.

Finally we focused on fault tolerance issues in data mining workflows.
The result of this study is the definition of a fault taxonomy for scientific
workflows that may help in conducting a systematic analysis of faults, so that
the potential faults that may arise at execution time can be corrected. The
proposed taxonomy has a particular focus on workflow environments and is
demonstrated through its use in Weka4WS.



Prefazione

In diversi settori scientifici vengono generati repository di dati di grandi di-
mensioni. Per trovare informazioni utili e interessanti in quei repository, de-
vono essere utilizzate efficienti tecniche di data mining. Molti campi scientifici,
come l’astronomia, la biologia, la medicina, la chimica e le scienze della terra,
traggono vantaggio dall’analisi di data mining. Utilizzare tecniche di data
mining in campo scientifico aiuta gli scienziati nella formazione di ipotesi e d
loro un supporto nella loro pratica scientifica, potendo trarre vantaggio dalla
conoscenza che pu essere estratta da grandi sorgenti di dati. I task di data
mining sono spesso distribuiti in quanto richiedono dati e strumenti situati in
ambienti geograficamente distribuiti, come la Grid. Pertanto è fondamentale
sfruttare paradigmi efficaci, come i servizi e i workflow, per modellare task di
data mining che siano sia a pi fasi che distribuiti.

Questa tesi presenta i risultati della nostra ricerca volti a fornire servizi
di data mining e sistemi di workflow per l’analisi dei dati scientifici in un
ambiente distribuito ad alte prestazioni come il Grid. Sono stati esaminati due
approcci alternativi: uno è stato l’estensione di un toolkit di data mining open
source esistente per renderlo adatto a supportare workflow di data mining
distribuito in ambienti Grid, il secondo è stato la realizzazione di un framework
orientato ai servizi, la Knowledge Grid, per fornire un’interfaccia visuale di
alto livello in grado di supportare una vasta gamma di scenari di data mining
distribuito.

Il risultato del nostro primo studio è l’implementazione di Weka4WS,
un’estensione della suite di data mining open source Weka per permettere
agli utenti di sfruttare la potenza di calcolo di nodi distribuiti di Grid; in
particolare abbiamo esteso l’ambiente Knowledge Flow di Weka per consen-
tire l’esecuzione dei workflow di data mining su un insieme di nodi distribuiti.
In questo modo gli esperti di data mining possono concentrarsi sulla com-
posizione delle loro applicazioni utilizzando uno strumento a loro familiare,
senza dover imparare un nuovo ambiente o dover imparare strumenti comp-
lessi e linguaggi per l’uso e la gestione di una Grid.



X Preface

Il nostro lavoro sul framework della Knowledge Grid si è focalizzato su tre
aspetti principali: (i) progettazione e implementazione di Web Service che cos-
tituiscono il nucleo delle sue funzionalit di esecuzione dei job, (ii) definizione
di un formalismo di workflow e (iii) progettazione e sviluppo di un ambiente
visuale, chiamato DIS3GNO, per la composizione e l’esecuzione di task di data
mining su Grid.

Sono stati condotti degli esperimenti per valutare l’efficienza di entrambi i
sistemi di workflow, nonché per testare la progettazione efficace di applicazioni
di data mining reali. I risultati dei test effettuati hanno dimostrato la loro
buona scalabilit e che l’overhead introdotto dalle invocazioni remote degli
algoritmi non influisce in modo significativo sulle prestazioni dei sistemi.

Infine ci siamo focalizzati sugli aspetti di tolleranza ai guasti nei workflow
di data mining. Il risultato di questo studio ha portato alla definizione di una
tassonomia per workflow scientifici che pu aiutare nello svolgimento dell’analisi
sistematica dei guasti, in modo che gli eventuali guasti che possono verificarsi
in fase di esecuzione possano essere corretti. La tassonomia proposta è focal-
izzata in particolare sugli ambienti di workflow ed dimostrata attraverso il
suo uso in Weka4WS.

Arcavacata di Rende, Cosenza, Italy Marco Lackovic

November 2010



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Weka4WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Knowledge Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Book Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Papers in refereed conference proceedings . . . . . . . . . . . . . 7

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Examples of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 The data mining process model . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Data mining techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Distributed Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Grid computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Grid History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Grid Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 OGSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 WSRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.6 Globus Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Workflow Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Workflow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Failure Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



XII Contents

2.4.3 Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Askalon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 DVega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 GridAnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Gridbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Grid-Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 GWES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 GRMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 ICENI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Java CoG Kit-Karajan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Kepler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.11 Pegasus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.12 Taverna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.13 Triana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.14 ScyFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.15 UNICORE Rich Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.16 Grid-based Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Weka4WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 System Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 User node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Computing node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Knowledge Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 How the system works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Supporting data-parallel workflows . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Knowledge Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 The DIS3GNO System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Workflow Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.2 Workflow Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Execution Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Workflow level fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Weka4WS extended architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Faults Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Fault identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Contents XIII

6.5 Corrective Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Fault detection & monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1 Weka4WS use cases and performance . . . . . . . . . . . . . . . . . . . . . . 93

7.1.1 Classification workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1.2 Clustering workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.1.3 Execution on a multi-core machine . . . . . . . . . . . . . . . . . . 97

7.2 Knowledge Grid use cases and performance . . . . . . . . . . . . . . . . . 98
7.2.1 Parameter sweeping workflow . . . . . . . . . . . . . . . . . . . . . . . 99
7.2.2 Ensemble learning workflow. . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 Analysis of potential faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113





1

Introduction

1.1 Problem context

The past two decades have been characterized by the emergence of increasingly
powerful and less expensive ubiquitous computing, and by the large use of the
World Wide Web and related technologies [21]. Due to such advances in infor-
mation technology and high performance computing, digital data volumes are
growing exponentially in many fields of human activities. Such technological
development generated also new challenges: the world is drowning in a huge
quantity of data, which is still growing very rapidly both in the volume and
complexity.

This phenomenon is particularly interesting in scientific applications, that
continually produce enormous volumes of data. For example, in the biologi-
cal, medical, astronomic and earth science fields, large data sets are produced,
whose analysis could add important contributions to the scientific knowledge.
Unfortunately, huge data sets are hard to understand, and in particular models
and patterns present in them cannot be comprehended by humans directly.
Hence, since the volumes of scientific data are typically enormous, most of
data will never be read by humans, but have to be processed and analyzed by
computers. To this purpose, the exploitation of data mining techniques in sci-
ence helps scientists in hypothesis formation and give them a support on their
scientific practices and in problem solving environments, getting the benefits
coming from knowledge that can be extracted from large data sources. A fur-
ther important aspect to be considered is that researchers needing to access
data belong to different communities and are often geographically distributed.

When data is large and is maintained over geographically distributed sites
the computational power of distributed systems can be exploited for im-
plementing knowledge discovery applications. Distributed data mining algo-
rithms are suitable to such a purpose. Moreover, in this scenario distributed
computing infrastructures, like Grids and Clouds, can provide an effective
computational support for data intensive applications and for knowledge dis-
covery from large and distributed datasets. Due to the complexity of dis-



2 1 Introduction

tributed data mining applications in the scientific domain, it is fundamental
to provide effective formalisms, such as workflows, to easily model such appli-
cations and to enable their efficient execution on a Grid.

As outlined earlier, data can be collected from many sources and stored
at enormous speeds (GBs/hour). Both such aspects imply that scientific ap-
plications have to deal with a massive volume of data. Mining large data
sets requires powerful computational resources. A major issue in data min-
ing is scalability with respect to the very large size of current-generation and
next-generation databases, given the excessively long processing time taken
by (sequential) data mining algorithms on realistic volumes of data. In fact,
data mining algorithms working on very large data sets take a very long time
on conventional computers to get results. In order to improve performances,
some distributed approaches have been proposed.

Distributed data mining (DDM ) works by analyzing data in a distributed
fashion and pays particular attention to the trade-off between centralized col-
lection and distributed analysis of data. This approach is particularly suitable
for applications that typically deal with very large amount of data (e.g., trans-
action data, scientific simulation and telecommunication data), which cannot
be analyzed in a single site on traditional machines in acceptable times.

In particular, in the last decade, the Grid computing systems integrated
both distributed and parallel computing, representing a privileged infrastruc-
ture for high-performance data and knowledge management. Grid computing
was conceived as a paradigm for coordinated resource sharing and problem
solving in advanced science and engineering applications. For these reasons,
Grids offer an effective support to the implementation and use of knowledge
discovery systems by exploiting Grid-based data mining approaches.

1.2 Motivation

The advances in information technology and high performance computing are
leading to an exponential growth of digital data volumes in many scientific and
human fields. This phenomenon has been becoming more and more relevant,
especially in the last years. In particular, there are two important trends,
technological and methodological, which seem to particularly distinguish the
new, information-rich science from the past:

• Technological issue. A huge amount of data is collected and warehoused in
various repositories distributed over the world: data can be collected and
stored at high speeds in local or remote databases. Some examples include
data sets from the fields of medical imaging, bio-informatics, remote sens-
ing and several digital sky surveys. This implies a need for reliable data
storage, networking, and database-related technologies, standards and pro-
tocols.



1.2 Motivation 3

• Methodological issue. Huge data sets are hard to understand, and in par-
ticular models and patterns present in them cannot be comprehended by
humans directly. This is a consequence of the growth in complexity of
information, and mainly its multi-dimensionality. A computational simu-
lation can generate Terabytes of data within a few hours, whereas human
analysts may take several weeks to analyze them. For example, the NASA
Earth Observing System1 daily generates over 3 Terabytes of data that
correspond to more than 1,000 Terabytes per year.

We can summarize what we foresaid as follows: whereas some decades ago
the main problem was the lack of information, the challenge now seems to
be (i) the very large volume of information and (ii) the inherent complex-
ity of data analysis processes. However, the first aspect does not represent a
limitation nor a problem for the scientific community: current data storage,
architectural solutions and communication protocols provide a reliable tech-
nological base to collect and store such abundance of data in an efficient and
effective way. Moreover, the availability of high throughput scientific instru-
mentation and very inexpensive digital technologies facilitated this trend from
both technological and economical view point. On the other hand, the com-
putational power of computers is not growing as fast as the demand of such a
data computation requires, and this represents a limit for the knowledge that
potentially could be extracted.

The impact of the above-mentioned issues in the biological field is well
described in literature [64], where it is pointed out that the emergence of
genome and post-genome technology has made huge amount of data available,
demanding a proportional support for analysis. However, an important factor
to be considered is that the number of available complete genomic sequences is
doubling almost every 12 months, whereas according to Moore’s law, available
computing cycles (i.e., computational power) double every 18 months. That
is, data to be processed are growing more quickly than computational and
technological instruments. Additionally, we have to consider that analysis of
genomic sequences requires binary comparisons of the genes involved in it. As
a direct consequence of that, the computational overhead is very high. We can
see the impact of such issues in Figure 1.1 [64] which contrasts the number
of genetic sequences obtained with the number of annotations generated. The
figure shows that the knowledge (annotations, models, patterns) has a sub-
linear rate compared with the available data sequences they are extracted
from.

To handle this abundance in data availability, applications are emerging
to explore, query, analyze, visualize, and in general, process very large-scale
data sets: they are collectively named data intensive applications. Computa-
tional science is evolving toward data intensive applications that include data
integration and analysis, information management, and knowledge discovery.
In particular, knowledge discovery in large data repositories can be effectively

1 http://eospso.gsfc.nasa.gov/

http://eospso.gsfc.nasa.gov/


4 1 Introduction

J
u
n
-8

2
 

J
u
n
-8

4
 

J
u
n
-8

6
 

J
u
n
-8

8
 

J
u
n
-9

0
 

J
u
n
-9

2
 

J
u
n
-9

4
 

J
u
n
-9

6
 

J
u
n
-9

8
 

J
u
n
-0

0
 

J
u
n
-0

2
 

J
u
n
-0

4
 

J
u
n
-0

6
 

10
8

10
7

10
6

10
5

10
4

10
3

10
2

Annotations 

Sequences 

Year

#
 o

f 
e
n

tr
ie

s
 i
n

 d
a
ta

b
a
s
e
 

Fig. 1.1. Growth of sequences and annotations between 1982 and 2006 (source:
[64]).

used to find what is interesting in them by exploiting data mining algorithms.
Some examples on the use of data mining techniques in scientific domains are
mentioned in the following [37, 49].

1. In medical domain, patient records collected for diagnosis and prognosis
include symptoms, body measurements and laboratory test results. Such
data are processed by data mining methods to improve decision-making.
Examples of such applications are the induction of rules for early diagnosis
of rheumatic diseases and neural nets to recognize the clustered micro-
calcifications in digitized mammograms that can lead to cancer.

2. In astronomic domain, a photographic survey of the night sky (composed
of thousands pictures) could contain around a billion faint objects. For
the astronomers and astrophysics, the problem is to classify each object
as a particular type of star or galaxy. Given the number of features to
consider, as well as the huge number of objects, classification algorithms
(i.e., decision-tree learning) have been found accurate and reliable for this
task.

3. In biological domain, genetic data such as the nucleotide sequences in
genomic DNA are digital. Unfortunately, experimental data are inher-
ently noisy, making the search for patterns and the matching of sub-
sequences difficult. Data mining algorithms such as neural network and
hidden Markov models are a very suitable way to tackle this computa-
tionally demanding problem.

Medical, astronomic, and genomic data are just some examples of massive
amounts of digital data that today must be stored and analyzed to find useful
knowledge in them. As seen in the aforementioned examples, this data and
information patrimony can be effectively exploited if it is used as a source to
produce knowledge necessary to support decision making. In this context, an



1.3 Objectives of the Research 5

important aspect to be considered is that data is usually collected in different
sites. When scientific data is maintained over geographically distributed sites
the computational power of distributed systems can be exploited for analyzing
data where they are for speeding up knowledge discovery in them. In this case,
distributed data mining algorithms are suitable to such a purpose.

The distribution of tasks to third-party, inter-organizational resources
makes fault tolerance an important subject for scientific workflows. Some
faults may be managed directly by the underlying resource management sys-
tems. However, this cannot always be guaranteed and depends on the type
of resource manager being used. Consequently, the development of fault tol-
erance mechanisms at workflow (user) level become important. However, be-
cause scientific workflows have no control over external resources, the set of
available actions to overcome faults directly, on external systems, is limited.
This characteristic implies that, in case of big data mining experiments (big
datasets involved requiring long-running analysis), the overall performance
maybe hindered by occurring faults.

1.3 Objectives of the Research

1.3.1 Weka4WS

Grid computing can provide an effective data management and computational
infrastructure support for distributed data mining. Rather than building a
distributed data mining system from scratch, we took an already existing
data mining software, which works on a single machine, and we extended it
to support distributed data mining applications in a Grid environment. The
system we chose for this purpose is Weka: being it a well established and wide-
spread project, cross-platform (written in Java), and open source (available
under the GNU General Public License), made it the most suitable candidate.
This extended version of Weka has been called Weka4WS, which stands for
Weka for Web Services, meaning that the data mining algorithms are executed
remotely through Web Services. Weka4WS uses the Web Services Resource
Framework (WSRF) technology for the implementation of the Grid services
and Globus Toolkit for the remote execution of the data mining algorithms
and for managing the remote computations. By extending a well established
data mining environment, domain experts can exploit the computing power
and storage capability of a Grid infrastructure but can focus on designing their
data mining applications, without worrying about learning complex tools or
languages for Grid submission and management. Weka4WS use cases and
performance evaluation are presented at the end of this thesis.

1.3.2 Knowledge Grid

The Knowledge Grid is a software system that we developed for providing ser-
vices to execute distributed data mining tasks in Grid environments. Work-



6 1 Introduction

flows play a fundamental role in the Knowledge Grid at different levels of
abstraction. We designed and developed the DIS3GNO component to pro-
vide a set of visual programming facilities to design and execute distributed
data mining workflows on the Knowledge Grid. The DIS3GNO GUI operates
as an intermediary between an end user and the Knowledge Grid allowing
the management of the resources and an high-level development of service-
oriented high-performance distributed KDD applications. All the Knowledge
Grid services for metadata access and execution management are accessed
transparently by DIS3GNO, thus allowing the domain experts to compose
and run complex data mining applications without worrying about the un-
derlying infrastructure details. Contrary to Weka4WS, DIS3GNO allows the
composition of abstract workflows, that is workflows whose nodes may be not
completely specified. In this way, a user can concentrate on the application
logic, without focusing on the actual datasets or data mining tool to be used.
The Knowledge Grid services will take care of finding the resources that fit
user specifications. Knowledge Grid use cases and performance evaluation are
presented at the end of this thesis.

1.3.3 Fault Tolerance

Inspired by a general fault taxonomy for Grids developed in [42], we have
proposed a taxonomy for conducting a systematic analysis on faults within
scientific workflows, focusing on fault tolerance capabilities that must be sup-
ported at the workflow level, as a user executing a workflow often has limited
control of an external resource management system. The taxonomy we propose
is general purpose, and can be applied across a variety of different workflow
systems. We demonstrate through Weka4WS how the approach can be used
for a realistic data mining workflow which includes Web Services (supporting
WSRF and Globus).

1.4 Publications

The following publications have been produced while accomplishing this the-
sis.

1.4.1 Book Chapters

• M. Lackovic, D. Talia, P. Trunfio, “A Framework for Composing Knowl-
edge Discovery Workflows in Grids”. In: Foundations of Computational
Intelligence Vol 6: Data Mining Theoretical Foundations and Applications,
Studies in Computational Intelligence, A. Abraham, A. Hassanien, A. Car-
valho, V. Snel (Editors), Springer, 2009;



1.5 Organization of the Thesis 7

• E. Cesario, M. Lackovic, D. Talia, P. Trunfio, “A Visual Environment for
Designing and Running Data Mining Workflows in the Knowledge Grid”.
DATA MINING: Foundations and Intelligent Paradigms, Springer (to ap-
pear);

• E. Cesario, M. Lackovic, D. Talia, P. Trunfio, “Service-Oriented Distributed
Data Analysis in Grids and Clouds”. High Performance Scientific Comput-
ing with special emphasis on Current Capabilities and Future Perspectives
(to appear).

1.4.2 Papers in refereed conference proceedings

• Lackovic M, Talia D, Trunfio P, “Service-Oriented KDD: A Framework for
Grid Data Mining Workflows”. Proc. of 10th International Workshop on
High Performance Data Mining (HPDM 2008), in conjunction with ICDM
2008, Pisa, Italy, IEEE Computer Society Press, December 2008.

• Lackovic M, Talia D, Trunfio P, “A Service-Oriented Framework for Exe-
cuting Data Mining Workflows on Grids”. Proc. of the 4th International
Workshop on Workflow Management (ICWM 2009), in conjunction with
GPC 2009, Geneva, Switzerland, IEEE Computer Society Press, May 2009.

• Lackovic M, Talia D, Tolosana-Calasanz R, Banares J A, Rana O F, “A
Taxonomy For the Analysis of Scientific Workflow Faults”. Proc. of the
2nd International Workshop on Workflow Management in Service and
Cloud Computing (WMSC 2010), in conjunction with CSE 2010, Hong
Kong, China, December 2010;

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows: Section 2 presents a short
description of all the technologies involved in the thesis, in Section 3 related
work is reviewed, Section 4 outlines the main features of the Weka4WS system,
Section 5 describes the Knowledge Grid system with special emphasis on its
DIS3GNO component and its workflow formalism, in Section 6 a multi-criteria
taxonomy for scientific workflows is proposed and then fault detection and
monitoring aspects are discussed, in Section 7 both Weka4WS and Knowledge
Grid use cases and performance evaluation are presented and a case study that
supports our taxonomy and demonstrate how the taxonomy can be used in
practice. Finally, conclusions and future work are then discussed.





2

Background

This chapter presents a short description of all the technologies involved in
the thesis.

2.1 Data Mining

In the last decades the ability to generate, acquiring and store data has in-
creased rapidly due to the technology evolution and the increasing computer-
ization of commercial, scientific and administrative sectors. It has been esti-
mated the amount of data stored in the worldwide databases doubles every 20
months. This explosive growth has generated the urgent need of new technolo-
gies and automatic tools which could effectively aid in the transformation of
this huge amount of data in useful information. Such information may provide
scientists, engineers, and business people with a vast new resource that can
be analyzed to make scientific discoveries, optimize industrial systems, and
uncover financially valuable patterns.

Data Mining (DM) is the science for the extraction of implicit, previously
unknown and potentially useful information, from a big amount of data or
database. The idea is to automatically analyze databases looking for regulari-
ties or patterns. Naturally most of the results of this search will be trivial and
not interesting, other will be false, depending by accidental coincidences in
the particular database used. Furthermore the database itself may be flawed,
some parts may be broken, some other may be missing. Hence the algorithms
must be robust enough to treat with imperfect data to extract regularities
which may be inaccurate but useful.

The data we are dealing with are in the form of set of examples and takes
the name of dataset. Every single example of a dataset, called instance, is char-
acterized from a set of values (nominal or numerical) each one corresponding
to specific characteristics, or attributes, of the instance itself. Every dataset
is represented by a matrix of instances by attributes, which in the databases
jargon is called single relationship, or also flat file.



10 2 Background

The result of the analysis generally include a concrete description of a
structure which may be used to classify unknown examples. Such structure
is typically expressed as set of rules, or decisional tree, and is itself so much
important as the predictions which is able to perform, because data mining is
frequently used to acquire knowledge and not only to make predictions.

Data mining is a multidisciplinary sector which includes the statistical
analysis, machine learning, databases management, pattern recognition, ar-
tificial intelligence, neural networks, knowledge based systems (KBS), high
performance computing and data visualization. The mastery of data mining
in all its complexity is a very hard challenge because it requires the knowledge
of these disciplines and in particular the full understanding of both statistical
and computational problems.

2.1.1 Examples of applications

Examples of use of data mining are countless and may be found both in the
commercial and in the scientific area. Companies may employ data mining to
take profitable and immediate decisions and take advantage considerably over
competitors, for example by analyzing the behaviour of the past customers
with the aim of taking strategic decisions for the future. Lending institutions
were the first to adopt data mining techniques, not only to improve the success
rate of the loans but also to explain to the applicants the reasons behind the
decisions. Data mining may come in help for the identification of false positives
in the image screening, with which environmental scientists detect oil stains
from the image analysis of the coast waters provided by radar satellites. In
power load forecasting, a crucial problem in the electric power industry, data
mining allows to obtain more rapidly accurate power demand estimates. In
the preventive maintenance of electromechanical appliances such as engines
and generators, data mining helps specialists in the diagnosis of the failure
type in order to prevent the interruption of industrial processes.

2.1.2 The data mining process model

A data mining process model consists of a set of processing steps that can be
followed by practitioners when they execute their data mining projects in order
to help to plan, work through, and reduce the cost by detailing procedures to
be performed in each of the steps. Data Mining is described to be a part of the
Knowledge Discovery in Database (KDD) [24] process, as initially proposed
by Osama Fayyad in 1996 [24]. The approach to gain knowledge out of a set
of data was separated by Fayyad into five steps:

1. Selection: relevant information is selected, a target dataset is created,
focusing on a subset of variables or data samples, on which discovery is
to be performed



2.1 Data Mining 11

2. Pre-processing: unimportant elements of the provided data are detected
and filtered out. The less noise is contained in data the higher will be the
accuracy of the results of data mining. Elements of the pre-processing span
from the cleaning of wrong data (data inconsistencies like out-of-range
values like “Age = -10” or impossible data combinations like “Gender =
male, Pregnant = yes”), the treatment of missing values and the creation
of new attributes.;

3. Transformation: data is transformed into a format compatible to data min-
ing algorithms using dimensionality reduction or transformation methods;

4. Data Mining: this stage consists on the searching for patterns of interest
in a particular representational form, depending on the DM objective
(usually, prediction);

5. Interpretation/Evaluation: this stage reveals whether or not the pattern is
interesting, that is whether it contains knowledge at all. For that is impor-
tant to represent the result in an appropriate way so it can be examined
thoroughly. If the located pattern is not interesting, then it’s important
to study the cause for it and possibly fall back on a previous step for an
attempt in another direction.

Other modified approaches to analyze the data followed the original pro-
posal, for instance the former called 5A’s (Assess, Access, Analyze, Act and
Automate) proposed by SPSS, or SEMMA (Sample, Explore, Modify, Model,
Assess), proposed by SAS to be used in the Enterprise Miner. Both of these
solutions though are closely connected to vendor products.

A standard that is industry-neutral, tool-neutral, and application-neutral
is CRISP-DM [12] (Cross-Industry Standard Process for Data Mining): de-
veloped in 1996 by analysts representing DaimlerChrysler, SPSS, and NCR
provides a nonproprietary and freely available standard process for fitting
data mining into the general problem-solving strategy of a business or re-
search unit. A poll of data mining practitioners, conducted by KDnuggets in
2002 1, 2004 2, and 2007 3, revealed that CRISP-DM is the leading method-
ology used by data miners. It consists on a cycle that comprises six stages:

1. Business understanding: the project objectives and requirements are enun-
ciated clearly in terms of the business or research unit as a whole. These
goals and restrictions are translated into the formulation of a data mining
problem definition and a preliminary strategy for achieving these objec-
tives is prepared;

2. Data understanding: initial data is collected and exploratory data analysis
is used to familiarize with the data and discover initial insights, the quality
of the data is evaluated, interesting subsets are selected that may contain
actionable patterns;

1 http://www.kdnuggets.com/polls/2002/methodology.htm
2 http://www.kdnuggets.com/polls/2004/data mining methodology.htm
3 http://www.kdnuggets.com/polls/2007/data mining methodology.htm

http://www.kdnuggets.com/polls/2002/methodology.htm
http://www.kdnuggets.com/polls/2004/data_mining_methodology.htm
http://www.kdnuggets.com/polls/2007/data_mining_methodology.htm


12 2 Background

3. Data preparation: the final data set that is to be used for all subsequent
phases is prepared from the initial raw data, the cases and variables to
be analyzed and that are appropriate are selected for the analysis, trans-
formations are performed on certain variables, if needed, the raw data is
cleaned so that it is ready for the modeling tools;

4. Modeling: appropriate modeling techniques are selected and applied,
model settings are calibrated to optimize results, if necessary we loop
back to the data preparation phase to bring the form of the data in line
with the specific requirements of a particular data mining technique;

5. Evaluation: one or more models delivered from the modeling phase are
evaluated for quality and effectiveness before deploying them for use in
the field. It is determined whether the model in fact achieves the objectives
set for it in the first phase and established whether some important facet
of the business or research problem has not been accounted for sufficiently.

6. Deployment: the models created are used.

2.1.3 Data mining techniques

It is convenient to categorize data mining into types of tasks, corresponding
to different objectives for the person who is analyzing the data. A possible
categorization [40] is the following:

• Exploratory Data Analysis (EDA): as the name suggests, the goal here is
simply to explore the data without any clear ideas of what we are look-
ing for. Typically, EDA techniques are interactive and visual, and there
are many effective graphical display methods for relatively small, low-
dimensional datasets.

• Descriptive Modeling: the goal of a descriptive model is describe all of
the data (or the process generating the data). Examples of such descrip-
tions include models for the overall probability distribution of the data
(density estimation), partitioning of the p-dimensional space into groups
(cluster analysis and segmentation), and models describing the relation-
ship between variables (dependency modeling). In segmentation analysis,
for example, the aim is to group together similar records, where the number
of groups here is chosen by the researcher; there is no “right” number. This
contrasts with cluster analysis, in which the aim is to discover “natural”
groups in data.

• Predictive Modeling (Classification and Regression): the aim here is to
build a model that will permit the value of one variable to be predicted
from the known values of other variables. In classification, the variable be-
ing predicted is categorical, while in regression the variable is quantitative.
The key distinction between prediction and description is that prediction
has as its objective a unique variable, while in descriptive problems no
single variable is central to the model.



2.1 Data Mining 13

• Discovering Patterns and Rules: The three types of tasks listed above
are concerned with model building. Other data mining applications are
concerned with pattern detection. One example is spotting fraudulent be-
havior by detecting regions of the space defining the different types of
transactions where the data points significantly different from the rest.
Another use is in astronomy, where detection of unusual stars or galaxies
may lead to the discovery of previously unknown phenomena. Yet an-
other is the task of finding combinations of items that occur frequently
in transaction databases (e.g., grocery products that are often purchased
together). A significant challenge here is deciding what constitutes truly
unusual behavior in the context of normal variability. Background domain
knowledge and human interpretation can be invaluable.

• Retrieval by Content: here the user has a pattern of interest and wishes to
find similar patterns in the data set. This task is most commonly used for
text and image data sets. For text, the pattern may be a set of keywords,
and the user may wish to find relevant documents within a large set of
possibly relevant documents (e.g., Web pages). For images, the user may
have a sample image, a sketch of an image, or a description of an image,
and wish to find similar images from a large set of images. In both cases
the definition of similarity is critical, but so are the details of the search
strategy.

Basic data-mining techniques include clustering, association rule discov-
ery, classification, sequential pattern discovery, and outlier detection. Other
techniques exist, but we mention here only the main ones, those either more
frequently used or more general.

Clustering is the process of partitioning or grouping a given set of data
points into distinct groups, or clusters, such that the similarity between the
data points in one cluster is maximized and the similarity between data points
in different clusters is minimized. Clustering can be used for a wide range of
applications from grouping companies with similar stock behavior or similar
growth to identifying genes and proteins that have similar functions.

Given a number of transactions of item sets, association rule discovery
finds all rules that correlate the presence of one set of items with that of
another set of items. One familiar example is the discovery of items that sell
together in a supermarket from mining the sales transactions at the point of
sale. A management decision based on such findings could be to shelve these
items close to one another.

Classification refers to assigning objects to predefined categories or
classes. In a credit-evaluation scenario, classification can categorize applicants’
credit ratings as good or poor, for acceptance or rejection.

Sequential pattern discovery determines strong sequential dependen-
cies among different events. This process has many applications, from medi-
cal diagnosis to sales-transactions analysis to determine which customers are
likely to buy a specific product in the near term.



14 2 Background

Another application of data mining is the detection of outliers (or de-
viations). Outlier detection finds data points that differ significantly from the
majority of the data points in a given data set. Medical diagnosis and credit
card detection are examples of outlier detection.

2.1.4 Distributed Data Mining

Distributed data mining (DDM) is a result of further evolution of the data
mining technology. The huge size of the available datasets and their high-
dimensionality in many emerging applications can make knowledge discovery
computationally very demanding, to an extent that distributed computing
can become an essential component of the solution. DDM embraces the grow-
ing trend of merging computation with communication, accepting the fact
that data may be inherently distributed among different loosely coupled sites
connected by a network and the sites may have heterogeneous data. If the
databases are large it will become nearly impractical to download them on
one site to build the global data model. In some cases the transfer of sen-
sible information may cause security problems or privacy violations. DDM
promises to build a correct global model by performing partial analysis of
data at individual sites and sends out the outcome to other sites. This saves
communication over-head, offers better scalability, requires minimal commu-
nication of possibly secured data, and sometimes offers the only feasible way
to mine distributed data sets.

There are two main paradigms for exploiting algorithm parallelism: Data
and Task Parallelism.Task parallelism (also called simple parallelism [68]) is
a form of parallelism which runs multiple independent tasks in parallel on dif-
ferent locations: it is often used to model embarrassingly parallel computations
(for which little or no effort is required to separate the problem into a num-
ber of parallel tasks, which mostly happens when there exists no dependency
between them) such as parameter-sweep simulations. In data parallelism
instead a large dataset is split into smaller chunks, each chunk is processed
in parallel, and the results of each processing are then combined to produce a
single result. Data parallelism may be static or dynamic whether the number
of partitions is known in advance, at design-time, or is determined automati-
cally at run-time as a function of the number of the available resources. The
data partitioning strategy may be homogeneous or heterogeneous: it’s homo-
geneous when the partitions have the same size, heterogeneous when the data
is split unevenly to ensure that all tasks run to completion in the same amount
of time.

Both parallelism forms aim to achieve execution time speedup, and a better
utilization of the computing resources, but while task parallelism focuses on
running multiple tasks in parallel so that the execution time corresponds to
the slowest task, data parallelism focuses on reducing the execution time of a
single task by splitting it into subtasks, each one operating on a subset of the
original data. The data-parallel approach is widely employed in distributed



2.1 Data Mining 15

data mining as it allows to process very large datasets that could not be
analyzed on a single machine due to memory limitations, computing time,
privacy or security constraints.

Most DDM algorithms are designed upon the potential parallelism they
can apply over the given distributed data. Typically, the same algorithm op-
erates on each distributed data site concurrently, producing one local model
per site. Subsequently, all local models are aggregated to produce the final
model. This schema is common to several distributed data mining algorithms.
Among them, meta-learning, collective data mining and ensemble learning are
the most important.

The meta-learning technique [71] aims at building a global classifier from a
set of inherently distributed data sources. Meta-learning is basically a two-step
process: first, a number of independent classifiers are generated by applying
learning programs to a collection of distributed and homogeneous data sets
in parallel. Then, the classifiers computed by local learning programs are
collected in a single site and combined to obtain a global classifier.

Collective data mining [50] exploits a different strategy: instead of combin-
ing partial local models, it builds the global model through the identification
of significant sets of local information. In other words, the local blocks are
directly composed to form the global model. This result is based on the fact
that any mining function can be expressed in a distributed fashion using a
set of appropriate basis functions. If the basis functions are orthogonal, the
local analysis generates results that can be correctly used as components of
the global model.

Ensemble learning [79] aims at improving classification accuracy by ag-
gregating predictions of multiple classifiers. An ensemble method constructs a
set of base classifiers from training data and performs classification by voting
(in the case of classification) or by averaging (in the case of regression) on
the predictions made by each classifier. The final result is the ensemble clas-
sifier, that tends to have higher classification quality than any single classifier
composing it.

In the DDM process, identifying optimal ways to combine the base clas-
sifiers is a crucial point. Prominent among these are schemes called bagging,
boosting (perhaps the most powerful of the three methods), and stacking.
They can all, more often than not, increase predictive performance over a
single model. And they are general techniques that can be applied to numeric
prediction problems and to classification tasks.

Bagging (called voting for classification, averaging for regression) com-
bines the predicted classifications (prediction) from multiple models, or from
the same type of model for different learning data. It is also used to address
the inherent instability of results when applying complex models to relatively
small data sets.

Boosting also combines the decisions of different models, like bagging,
by amalgamating the various outputs into a single prediction, but it derives
the individual models in different ways. In bagging, the models receive equal



16 2 Background

weight, whereas in boosting, weighting is used to give more influence to the
more successful ones.

Stacked generalization, or stacking for short, is a different way of com-
bining multiple models, but it is less widely used than bagging and boosting.
Unlike bagging and boosting, stacking is not normally used to combine models
of the same type, instead it is applied to models built by different learning
algorithms. Stacking introduces the concept of a metalearner, which replaces
the voting procedure. The problem with voting is that it’s not clear which clas-
sifier to trust. Stacking tries to learn which classifiers are the reliable ones,
using another learning algorithm, the metalearner, to discover how best to
combine the output of the base learners.

2.2 Grid computing

Grid computing in the vision of its creators intend to build, in analogy to
the electricity distribution network (the power grid), a network of computing
power and data storage distribution. In such way, a user who may need com-
puting power (or any other computer service) could draw it from a connected
infrastructure in a transparent manner, rather than from local resources. This
infrastructure, referred to by the term Grid, is composed of an arbitrary num-
ber of heterogeneous computers, interconnected by a network.

Grid computing has received great attention both from the research com-
munity and from industry and governments, watching at this computing in-
frastructure as a key technology for solving complex problems and implement-
ing distributed high-performance applications. Grid computing differs from
conventional distributed computing because it focuses on large-scale dynamic
resource sharing, offers innovative applications, and, in some cases, it is geared
toward high-performance systems.

The Grid emerged as a privileged computing infrastructure to develop ap-
plications over geographically distributed sites, providing for protocols and
services enabling the integrated and seamless use of remote computing power,
storage, software, and data, managed and shared by different organizations.
Basic Grid protocols and services are provided by toolkits such as Globus
Toolkit 4, Condor 5, gLite 6, and Unicore 7. In particular, Globus Toolkit is
the most widely used middleware in scientific and data-intensive Grid appli-
cations, and represents a de-facto standard for implementing Grid systems.
It addresses security, information discovery, resource and data management,
communication, fault-detection, and portability issues.

A Grid is a system [28] which:

4 http://www.globus.org/toolkit/
5 http://www.cs.wisc.edu/condor/
6 http://glite.web.cern.ch/glite/
7 http://www.unicore.eu/

http://www.globus.org/toolkit/
http://www.cs.wisc.edu/condor/
http://glite.web.cern.ch/glite/
http://www.unicore.eu/


2.2 Grid computing 17

1. coordinates resources that are not subject to centralized control;
2. uses standard, open and multi-purpose protocols and interfaces;
3. provides non trivial quality of service.

A Grid node is a combination of both physical and logical resources. It is
a “farm” of resources (computers, processors, services, applications) that is
accessible through a unique address [74]. A minimum operating environment
(middleware) is required for its computing power to be advertised and uti-
lized. Each resource is managed under a single hosting environment accessible
directly or indirectly through a unique reference. In a hosting environment re-
sources are administrated under a single trust domain and they are advertised
and utilized through a single access point called the front-end resource.

Real

organization

"A"

Real

Organization

"C"

Real

Organization

"B"

User

"a"

User

"b"

Virtual

Organization

1

Virtual

Organization

2

Computing Resource

Fig. 2.1. Virtual Organizations

Grid computing allows resources of several distinct organizations, and even
of single users, to be dynamically grouped into Virtual Organizations (VO)
to solve specific problems (Figure 2.1). This task, far from trivial, requires
the use of protocols, methodologies and sophisticated technologies to solve
problems such as:

• the choice of the resources which will be part of each virtual organization;
• the choice of the resources to allocated for each specific task and for how

long;
• the communication among the resources, taking into account the fact that

they are heterogeneous, belonging to different organizations that may use
different operating systems and even different computer architectures;

• the splitting of the task into sub-tasks so that they can be executed in
parallel on multiple machines;

• the certainty that the shared resources will be used only by users with
proper permissions.



18 2 Background

In order for a computational problem to benefit from the Grid, it should
require a high computational time and a large amount of data, and should
be reducible to parallel processes that do not require a intensive inter-
communication. Grid technologies provide mechanisms for the sharing and
the coordination of various resources, thus enabling, starting from organized
and geographically distributed components, the creation of virtual comput-
ing systems that are sufficiently integrated to provide the wanted quality of
service. These technologies include:

• security solutions which support the management of credentials and poli-
cies when the computations span multiple institutions;

• resources management protocols and services that support secure remote
access to computing resources and data, and the co-allocation of multiple
resources;

• protocols for information requests and services that provide information
on the status and configuration of resources, organizations and services;

• data management services that locate and transport datasets between ap-
plications and data base systems.

2.2.1 Grid History

The idea of Grid computing, which has been referred to as the next revolution
in Information Technology (such as once was for the World Wide Web), dates
back to the early 90s. We can identify four distinct phases in its evolution:

1. in the early 90’s ad hoc solutions were developed for Grid computing
problems: the goal of these systems was simply to run the applications and
to explore the possibilities offered by this new computational model. The
applications were built directly over the Internet protocols, typically with
only limited functionality in terms of security, scalability, and robustness.
Interoperability was not a major concern;

2. In 1997, with the release of version 2, Globus Toolkit (GT2) emerged as
the de facto standard for Grid computing. Focusing on usability and inter-
operability, GT2 defined and implemented protocols, APIs, and services
used in thousands of applications based on Grid worldwide. Providing so-
lutions to common problems such as authentication, resource discovery,
and resources access, GT2 has accelerated the construction of real Grid
applications. Furthermore, by defining standard protocols and services,
GT2 has pioneered the creation of interoperable Grid systems and in-
troduced significant advances in programming tools for the Grid. Some
elements of the set of protocols of GT2 were coded in specific formal tech-
niques, in particular the GridFTP [7] data transfer protocol, and elements
of the Grid Security Infrastructure (GSI).

3. The year 2002 saw the birth of the Open Grid Services Architecture
(OGSA), a real standard with multiple implementations, including in par-
ticular the Globus Toolkit 3 one, released in 2003. In addition to defining



2.2 Grid computing 19

a central set of standard interfaces and showing ways on how to solve some
problems, OGSA provides an environment within which it’s possible to
define a wide variety of portable and interoperable services.

4. The definition of the first OGSA specifications is an important headway,
but much remains to be done before the complete vision of the Grid will
be realized. Developing over the service-oriented infrastructure of OGSA
there will be an expansion of a set of interoperable services, an increment
of the degrees of virtualization, and an evolution towards richer forms
of sharing. This work will be carried out more and more heavily on the
results of advanced computer science research in areas such as peer-to-peer
or knowledge-based systems.

Example of Grid Systems are: EGEE 8 (Enabling Grids for E-Science in
Europe), a Grid project that will give scientists access to computational re-
source across 27 countries, also responsible for providing the computational
power required by the Large Hadron Collider (LHC), the world’s largest par-
ticle physics laboratory; TeraGrid 9, a grid system providing a powerful in-
frastructure for open scientific research, as of today offering 2 petaflops of
computing power and 50 petabytes of distributed storage; Access Grid 10, a
grid system used for large-scale distributed meetings, collaborative work ses-
sions, seminars, lectures, tutorials and training; eDiaMoND 11, an example
of how Grid computing can be used for e-Health, this project pools and dis-
tributes information on breast cancer treatment, enables early screening and
diagnosis, and provides medical professionals with tools and information to
treat disease.

2.2.2 Grid Architecture

Creating a complete grid system requires a variety of protocols, services and
software development tools. The Grid architecture, organized in layers [51],
identifies the fundamental system components, specifies the purpose and func-
tion of these components, and shows how these components interact with each
other 2.2.

• Fabric: provides the resources to which shared access is mediated by Grid
protocols: for example, computational resources, storage systems, catalogs,
network resources, and sensors. A “resource” may be a logical entity, such
as a distributed file system, computer cluster, or distributed computer
pool.

• Connectivity: defines core communication and authentication protocols
required for Grid-specific network transactions. Communication protocols

8 http://public.eu-egee.org/
9 http://www.teragrid.org/

10 http://www.accessgrid.org/
11 http://www.ediamond.ox.ac.uk/

http://public.eu-egee.org/
http://www.teragrid.org/
http://www.accessgrid.org/
http://www.ediamond.ox.ac.uk/


20 2 Background

Application

Connectivity

Collective

Fabric

Resource

Fig. 2.2. Grid Architecture

enable the exchange of data between Fabric layer resources. Authentica-
tion protocols build on communication services provide cryptographically
secure mechanisms for verifying the identity of users and resources. These
protocols are drawn from the TCP/IP protocol stack: specifically, the In-
ternet (IP and ICMP), transport (TCP, UDP), and application (DNS,
OSPF, RSVP, etc.) layers of the Internet layered protocol architecture;

• Resource: built on Connectivity layer communication and authentication
protocols, defines protocols (and APIs and SDKs) for the secure negoti-
ation, initiation, monitoring, control, accounting, and payment of shar-
ing operations on individual resources. Resource layer implementations of
these protocols call Fabric layer functions to access and control local re-
sources. Resource layer protocols are concerned entirely with individual
resources and hence ignore issues of global state and atomic actions across
distributed collections;

• Collective: contains protocols and services (and APIs and SDKs) that are
not associated with any one specific resource but rather are global in na-
ture and capture interactions across collections of resources. Collective
components can implement a wide variety of sharing behaviors like: di-
rectory services, which allow VO participants to discover the existence
and/or properties of VO resources; co-allocation, scheduling and brokering
services which allow VO participants to request the allocation of one or
more resources for a specific purpose and the scheduling of tasks on the
appropriate resources; monitoring and diagnostics services to support the
monitoring of VO resources for failure, adversarial attack (”intrusion detec-
tion“), overload, and so forth; workload management systems and collab-
oration frameworks, also known as problem solving environments (PSEs),
to provide for the description, use, and management of multi-step, asyn-
chronous, multi-component workflows; software discovery services, to dis-



2.2 Grid computing 21

cover and select the best software implementation and execution platform
based on the parameters of the problem being solved;

• Applications: comprises the user applications that operate within a VO
environment.

2.2.3 OGSA

The Open Grid Services Architecture (OGSA) [30], developed by the Global
Grid Forum (GGF) is derived from a paper presented in [28] aims at defining a
common architecture and open standards for Grid-based applications. Its goal
is to standardize virtually all services that can be commonly found in a Grid
system (jobs management systems, resource management services, security
services, etc.) by specifying a set of standard interfaces for these services.
Although still under development, OGSA already defines a set of requirements
that these standard interfaces must meet, that is it has already identified the
most important services that may be encountered in Grid systems and that
can mostly benefit from standardization.

Among the different options (such as CORBA, RMI or RPC) over which
OGSA could be based, the Web Services were chosen as the underlying tech-
nology. Web Services though are stateless, that is they do not maintain any
data between an invocation and the next. Web Services alone thus do not meet
one of the most important requirements of OGSA: its infrastructure must be
stateful, that is capable of maintaining the status of a job from an invoca-
tion to another. To overcome this limitation, from a joint effort by the Grid
community and by the Web Service community, the Web Services Resource
Framework (WSRF) [18] was established, a family of specifications that, in
addition to adding a number of interesting features, defines a set of operations
that Web services can implement to become stateful. Ultimately WSRF is the
infrastructure on which the OGSA architecture is built on.

2.2.4 Web Services

Web Services are a software system designed to support distributed comput-
ing (like CORBA, RMI, EJB, etc.): in short, they allow you to create client /
server applications. In contrast to what happens with Internet websites, where
information is intended for people, a Web Service is always aimed to a soft-
ware, never directly to a person. Although Web services make extensive use of
Web technologies (like HTTP) they have no relationship with Web browsers
and the HTML language.

The advantages of the Web Services over technologically equivalent alter-
natives are:

• they are platform and language independent since they use standard XML
languages;



22 2 Background

• the use of HTTP for the transmission of messages makes them extremely
attractive for building Internet-scale applications, since most of the exist-
ing proxies and firewalls are designed to handle this type of traffic;

• naturally lend themselves to building loosely coupled systems because they
are message-oriented, and are based on language-neutral XML dialects to
exchange messages and define interfaces. Such systems are much more scal-
able than tightly coupled systems and impose less architectural demand
on the actual implementation of the Web Services.

Web Services have also some disadvantages:

• overhead: the transmission of data in XML format is obviously not as ef-
ficient as that made using a proprietary binary code. As in many similar
cases, what is gained in portability is lost in efficiency. However, this over-
head is usually acceptable for most applications, although it’s unlikely to
find a real time application which uses Web services;

• lack of maturity: Web Services are a relatively new technology and, al-
though its central specifications that deal with key languages (like XML,
WSDL, etc.) and protocols (like HTTP, SOAP, etc.) are fairly stable, the
world of Web services is rapidly evolving.

Client

Discovery

Service

Server A

Where can I find this service?

The requested service is available on server B

How can I exactly invoke you?

Have a look at this WSDL

SOAP message:

invoke the x() method with y parameters

SOAP message:

the answer to the invocation is z

Web

Service

Server B

Fig. 2.3. A typical Web Service invocation

Figure 2.3 shows in details how a typical Web Service invocation takes
place:



2.2 Grid computing 23

1. the Discovery Service is contacted (which is itself a Web Service) to find
out where the desired service is located;

2. the Discovery Service answers with the address (or addresses) of the ma-
chine (or machines) that hosts the Web Service that offers the requested
service. The address of a Web Service is shown in the form of Uniform
Resource Identifier (URI) [82];

3. the Web Service in the previous step is contacted to ask it to describe
itself in order to know exactly how it can be invoked;

4. the Web Service replies in a language called WSDL (short for Web Ser-
vices Description Language, an XML-formatted language used to describe
a Web service’s capabilities as collections of communication endpoints ca-
pable of exchanging messages);

5. the service is invoked in a language called SOAP (originally defined as
Simple Object Access Protocol, it is a protocol specification for exchanging
structured information in the implementation of Web Services in computer
networks. It relies on XML for its message format, and usually relies on
other Application Layer protocols, most notably RPC and HTTP, for
message negotiation and transmission);

6. the Web Service responds with a SOAP message containing the response
to the request, or possibly an error message if the SOAP request was
incorrect.

Client Server

Application Web Service

Fig. 2.4. Role of the stubs in the Web Service invocation

Although Web services revolve around many languages and protocols, pro-
grammers actually need to focus solely on programming in their language of
choice and, in some cases, to write the WSDL. The SOAP code will be gener-
ated and interpreted automatically by a piece of software called stub (usually
generated, automatically, from the WSDL description of the service). The use
of stubs, shown in a simplified form in Figure 2.4, greatly simplifies applica-
tions developing because it allows to concentrate on writing client and server
code, ignoring all the complex details of network communication.

2.2.5 WSRF

As mentioned in Section 2.2.4, Web Services have some limitations that make
them inadequate for implementing Grid applications. WSRF improves some
aspects of Web Services to make them suitable for Grid applications, in par-
ticular by introducing the ability to store its status information: instead of



24 2 Background

putting the state in the Web service (thus making it stateful, which is gener-
ally regarded as a bad thing) it is kept in a separate entity called a resource,
which stores all the state information. Each resource will have a unique key,
so whenever a stateful interaction with a Web service is required the Web
service will be simply instructed to use a particular resource. The coupling of
a Web Service with a resource is called WS-Resource. There are many ways
to access a WS-Resource, but the preferred one is to use a specification called
WS-Addressing which provides a mechanism to address Web Services which
is much more versatile than plain URIs. WS-Addressing defines a construct
called endpoint reference (EPR) which may include, in addition to the URI
of the Web Service, a resource identifier: in this case the EPR is called WS-
Resource-qualified endpoint reference, although for simplicity is often called
only EPR. Elements within a resource are called resource properties and pro-
vide a view of the current status of the resource (file name, size, descriptors,
etc.).

WSRF is a collection of the following five specifications:

1. WS-Resource: defines a WS-Resource as a composition of a resource and
a Web Service through which the resource can be accessed;

2. WS-ResourceProperties: provides a set of interfaces that allow access,
modification and querying of the resource properties;

3. WS-ResourceLifetime: provides basic mechanisms to manage the lifecycle
of the resource;

4. WS-ServiceGroup: specifies how exactly should be the grouping of the
services or of the WS-Resources. It is the foundation for more advanced
services (such as the IndexService of Globus Toolkit) allowing to group
together different services and to identify them under a single entry point;

5. WS-BaseFaults: provides a standard way to represent errors when some-
thing goes wrong during the invocation of a Web Service.

Other specifications related to WSRF, but that does not belong to it, are:

• WS-Notification: allows a Web Service to be configured as a notifications
producer, and the clients as notifications consumers (or subscribers). In
this way each time a change takes place in the Web Service, or more
specifically in one of its WS-Resources, it will be notified to all its con-
sumers;

• WS-Addressing: as mentioned above, provides a mechanism to address
Web services much more versatile than simple URI. In particular, it is
possible to use WS-Addressing for addressing the couple Web Service and
resource (or the WS-Resource, referred to both).

2.2.6 Globus Toolkit

Globus Toolkit [27] is an integrated set of open source software tools such as
services, programming libraries and development tools designed for building



2.2 Grid computing 25

applications based on Grid. In this thesis we are going to consider the version
4.0.x of the framework, referred to as GT4. The components of GT4 are
grouped into five broad categories:

1. Security: collectively referred to as Grid Security Infrastructure (GSI),
these components facilitate secure communications and the application of
uniform policies across distinct systems;

2. Data management: they ensure the discovery, transfer and access of large
data. These include among others the GridFTP [7] and Reliable File
Transfer (RFT);

3. Execution management: they deal with the deployment, scheduling and
monitoring of executable programs, referred to as jobs. The Grid and
Resource Allocation and Management (GRAM) [26] component, one of
the main ones of GT4, belongs to this category;

4. Information Services: commonly referred to as Monitoring and Discovery
System (MDS), includes a set of components to monitor and discover
resources in a virtual organization. The aforementioned IndexService is
part of this category;

5. Common Runtime: they provide a set of fundamental tools and libraries
for hosting services as well as developing new ones. These include the C
Runtime, the Python Runtime and the Java Runtime.

User Applications

Custom

Web Service

Custom

WSRF Web Service 

GT4 WSRF

Web Service

WS-Addressing, WSRF,

WF-Notification

WSDL, SOAP, WS-Security

G
T
4
 C

o
n
ta

in
e
r

Fig. 2.5. The Java GT4 Web Services Container

Many of the components of GT4 are Web Services and need to run inside
a Web Services Container (a catch-all term for the combination of a SOAP
engine, an application server and possibly also an HTTP server). GT4 includes
a simple Web Service Container, showed in Figure 2.5, based on Apache Axis
(an open source framework for Web services, XML-based), but also offers the



26 2 Background

option of deploying the Web Services into other application servers, such as
the more advanced Apache Jakarta Tomcat 12.

2.3 Workflows

A workflow is a well-defined and possibly repeatable pattern or systematic or-
ganization of activities designed to achieve a certain transformation of data.
Workflow, as practiced in scientific computing, derives from several signifi-
cant precedent programming models that are worth noting because these have
greatly influenced the way we think about workflow in scientific Grid appli-
cations. We can call these the “dataflow” model in which data is streamed
from one actor to another. While the pure dataflow concept is extremely ele-
gant, it is very hard to make work in practice because distributing control in
a distributed system can create applications that are not very fault tolerant.
Consequently, many workflow systems which use a dataflow model for express-
ing the computation may have an implicit centralized control program that
sequences and schedules each action. An important benefit of workflows is
that, once defined, they can be stored and retrieved for modifications and/or
re-execution: this allows users to define typical patterns and reuse them in
different scenarios.

In the Grid context the workflow can be defined as the automation of the
processes, which involves the orchestration of a set of Grid services, agents
and actors that must be combined together to solve a problem or to define a
new service [32].

Data mining tasks and knowledge discovery in databases (KDD) processes
are often composed of multiple stages (e.g., data extraction, data filtering,
data analysis, results evaluation) that may be linked each other by differ-
ent dependencies to form various execution flows. Workflows are well suited
formalisms to represent data and execution flows associated to complex data
mining tasks. A data mining workflow is a graph in which nodes typically rep-
resent data sources, filtering tools, data mining algorithms, and visualizers,
and edges represent execution dependencies among nodes.

Of the many possible ways to distinguish workflow computations on Grids,
one is to consider a simple complexity scale:

• At the most basic level one can consider simple linear workflows in which
a sequence of tasks must be performed in a specified linear order. The
first task transforms an initial data object into new data object which
is the “input” to the next data-transformation task, etc. The execution
time for the entire chain of tasks may be a few minutes, or it may be
days. In the cases where the execution time is short, the most common
workflow programming tool is a simple script written in Python or Perl

12 http://jakarta.apache.org/tomcat/

http://jakarta.apache.org/tomcat/


2.3 Workflows 27

or even Matlab. The case of longer running workflows often requires more
sophisticated tools.

• At the next level of complexity, one can consider workflows that can be
described by an acyclic graph, where nodes of the graph represent a task
to be performed and edges represent dependencies between tasks. This
is harder to represent with a scripting language without a substantial
additional framework behind it, but it is not at all difficult to represent
with a tool like Ant 13 and it is the foundation of the DagMan, a meta-
scheduler of Condor, a specialized workload management system developed
by the University of Wisconsin, and the execution engine of Pegasus (see
Section 3.11). Applications that follow this pattern can be characterized
by workflows in which some tasks depend upon the completion of several
other tasks which may be executed concurrently.

• The next level of workflow complexity can be characterized cyclic graphs,
where the cycles represent some form of implicit or explicit loop or iteration
control mechanisms. In this case the workflow “graph” often describes
a network where the nodes are either services or some form of software
component instances or represent more abstract control objects. The graph
edges represent messages or data streams or pipes that channel work or
information between services and components.

• The final level of workflow is one in which a compact graph model is not
appropriate. This may be the case when the graph is simply too large and
complex to effectively “program” it as a graph. However, some tools allow
one to turn a Graph into a new first-class component or service, which
can then be included as a node in another graph (a workflow of work-
flows or hierarchical workflow). This technique allows graphs of arbitrary
complexity to be constructed.

In the case of workflow enactment, there are two aspects to this: efficiency
and robustness. In terms of efficiency, the critical issue is the ability to quickly
bind workflow tasks to the appropriate Grid resources. It also depends very
heavily on the mechanisms used to move data between tasks and services that
need them at various stages of the enactment. One cannot assume that web
service protocols like SOAP should be used in anything other than “control”
and simple message delivery. Real data movement between components of the
workflow must be either via an interaction with a data movement service, or
through specialized binary-level data channel running directly between the
tasks involved.

Robustness is another issue, making the reasonable assumption that some
parts of a workflow may fail. It is essential that exception handling include
mechanisms to recover from failure as well as detecting it. Also failure is
something that can happen to a workflow enactment engine. A related issue
is the monitoring of the workflow. In addition to being able to restart the
workflow from a failure checkpoint, the user may wish to track progress of the

13 http://ant.apache.org/

http://ant.apache.org/


28 2 Background

enactment. In some cases the workflow is event driven and a log of the events
that trigger the workflow processing can be viewed to see how the workflow
is progressing. This is also an important aspect of debugging a workflow. A
user may wish to execute the workflow step by step to understand potential
errors in the flow logic.

2.3.1 Workflow Levels

Workflow users utilize the interfaces (often graphical) that scientific workflows
expose in order to build their workflow specifications. This corresponds to the
design stage of a workflow. In general terms, two main workflow levels can be
found on this regard, though there are other approaches that even differentiate
more abstraction levels [9, 35]:

1. Abstract workflows. At this high level of abstraction the workflow contains
just information about what have to be done at each task along with
information about how tasks are interconnected. There is no notion of
how input data is actually delivered or how tasks are implemented.

2. Concrete workflows. The mapping down to a concrete workflow annotates
each of the tasks with information about the implementation and/or re-
sources to be used. Information about method invocation and actual data
exchange format are also defined.

In case the user is familiar with the technology and the resources available,
they can even specify concrete workflows directly. Once a workflow specifica-
tion is obtained, it is sent to the workflow engine for the execution stage.
At this phase, workflow tasks are mapped onto third-party, distributed and
heterogeneous resources and the scientific computations are accomplished.

2.3.2 Workflow Models

Although there is a standard workflow language like Business Process Exe-
cution Language (BPEL) [52, 59], scientific workflow systems often have de-
veloped their own workflow model for allowing users to express workflows.
This characteristic makes difficult the sharing of workflow specification of re-
sources and important requirement for scientific workflows. Nevertheless, there
are some historical reasons for that, as many scientific workflow systems and
their workflow models were developed before BPEL existed.

Existing workflow models can be grouped roughly into two classes [44]:

1. Script-like workflow descriptions specify workflows by means of a textual
programming language that can be described by a grammar in an analo-
gous way to programming languages. They often have complex semantics
and an extensive syntax. In this type of descriptions, tasks are described
and typically data dependencies can be established between them. These
languages contain specific workflow constructs, such as sequence or loops,



2.4 Fault Tolerance 29

while do, or parallel constructs in order to build up the workflow. Exam-
ples of script workflow descriptions are GridAnt [86] or Karajan [87]. A
commonly used script-based approach to describe workflows, mainly in
the business workflow community, is BPEL and its recent version for Web
services that builds on IBM’s Web Service Flow Language, WSFL.

2. Graph-based workflow models specify the workflow with only a few basic
graph elements. Compared with script-based descriptions, graphs are eas-
ier to use and more intuitive for the unskilled user mainly because of their
graphical representation: nodes typically represent workflow tasks whereas
communications (or data dependencies) between different tasks are repre-
sented as arcs going from one node to another. Workflow systems which
support graph-based models often incorporate graphical user interfaces
which allow users to model workflows by dragging and dropping graph
elements. Purely graph-based workflow descriptions generally utilize di-
rectly acyclic graphs (DAGs). Directed Acyclic Graph-based languages
offer only a limited expressiveness, so that it is often hard to describe
complex workflows (e.g. loops cannot be expressed directly).

2.4 Fault Tolerance

A characteristic feature of distributed systems that distinguishes them from
single-machine systems is the notion of partial failure. A partial failure may
happen when one component in a distributed system fails. This failure may af-
fect the proper operation of other components, while at the same time leaving
yet other components totally unaffected. An important goal in distributed
systems design is to construct the system in such a way that it can auto-
matically recover from partial failures without seriously affecting the overall
performance. In particular, whenever a failure occurs, the distributed system
should continue to operate in an acceptable way while repairs are being made,
that is, it should tolerate faults and continue to operate to some extent even
in their presence.

There is a considerable ambiguity in the literature on the meaning of some
central terms like fault and failure. The term fault is usually used to name
a defect at the lowest level of abstraction (e.g., a memory cell that always
returns the value 0). A fault may cause an error, an error may lead to a fail-
ure, meaning that the system deviates from its correctness specification [25].
Faults are generally classified as transient, intermittent or permanent. Tran-
sient faults occur once and then disappear. If the operation is repeated, the
fault goes away. A fault is called intermittent when occurs, then vanishes on
its own accord, then reappears, and so on. Intermittent faults cause a great
deal of aggravation because they are difficult to diagnose. A permanent fault
is one that continues to exist until the faulty component is replaced.



30 2 Background

2.4.1 Failure Models

Traditionally, faults are handled by describing the resulting behavior of the
system and grouped into a hierarchic structure of fault classes or fault mod-
els [80]. One scheme by which failures may be classified is the following [14]:

• a crash failure occurs when a server prematurely halts, but was working
correctly until it stopped. An important aspect in this case is that once
the server has halted, nothing is heard from it anymore;

• an omission failure occurs when a server fails to respond to a request. In
the case of a receive omission failure, possibly the server never got the
request in the first place. This will not generally affect the current state
of the server, as the server is unaware of any message sent to it. A send
omission failure happens when the server has done its work, but somehow
fails in sending a response. In contrast to a receive omission failure, the
server may now be in a state reflecting that it has just completed a service
for the client. As a consequence, if the sending of its response fails, the
server has to be prepared for the client to reissue its previous request;

• timing failures occur when the response lies outside a specified real-time
interval. Providing data too soon may cause trouble for a recipient if there
is not enough buffer space to hold all the incoming data. More common,
however, is that a server responds too late, in which case a performance
failure is said to occur;

• a serious type of failure is a response failure, by which the server’s response
is simply incorrect. Two kinds of response failures may happen: in the case
of a value failure a server simply provides the wrong reply to a request, in
the case of a state transition failure the server reacts unexpectedly to an
incoming request.

• the most serious are arbitrary failures, also known as Byzantine failures
(inspired by the Byzantine Generals’ Problem [69]). It may happen that a
server is producing output it should never have produced, but which cannot
be detected as being incorrect. A faulty server may even be maliciously
produce intentionally wrong answers.

• fail-stop failures occur when a server simply stop producing output in such
a way that its halting can be detected by other processes. In the best case
the server may even announce it is about to crash.

• a fail-silent failure occur when it is up to the other processes to decide
that a server has prematurely halted. However in this scenario the other
processes may incorrectly conclude that a server has halted, while instead
it may be just unexpectedly slow, that is, it is exhibiting performance
failures.

• fail-safe failures occur when the server is producing random output, but
in a way that it is recognized as incorrect by other processes. The server
is the exhibiting an arbitrary failure, but in a benign way.



2.4 Fault Tolerance 31

2.4.2 Failure Masking

A way to make a system fault tolerant is to try to hide the occurrence of
failures from other processes. The key technique for masking faults is to use
redundancy. Three kinds of redundancy are possible: information, time and
physical. With information redundancy extra bits (for example a Hamming
code) are added to allow recovery from garbled bits. With time redundancy
an action is performed and then, if needed, it is performed again. Time re-
dundancy is especially helpful when the faults are transient or intermittent.
With physical redundancy extra equipment or processes are added to make it
possible for the system as a whole to tolerate the loss or malfunctioning of
some components.

An important issue with using process redundancy to tolerate faults is how
much replication is needed. A system is said to be k fault tolerant if it can
survive faults in k processes and still meet its specifications. If the processes
fail silently, then having k+1 of them is enough to provide k fault tolerance.
On the other hand, if processes exhibit Byzantine failures then a minimum
of 2k+1 processes are needed to achieve k fault tolerance. In the worst case,
the k failing processes could accidentally (or intentionally) generate the same
reply. However, the remaining k+1 will also produce the same answer, so the
client or voter will have just to believe the majority.

2.4.3 Failure Detection

Failure detection is one of the cornerstones of fault tolerance in distributed
systems. Detecting process failures can be done essentially in two ways: either
processes actively send “are you alive?” messages to each other (for which they
obviously expect an answer), or passively wait until messages come in from
different processes. In practice, actively pinging processes is usually followed
and a timeout mechanism is used to check whether a process has failed. In real
settings though, due to unreliable networks, simply stating that a process has
failed because it hasn’t returned an answer to a ping message may be wrong.
In other words, it is quite easy to generate false positives.

Failure detection can take place also through gossiping in which each node
regularly announces to its neighbors that it is still up and running. Eventually
every process will know about every other process, but more importantly, will
have enough information locally available to decide whether a process has
failed or not: a member for which the availability information is old, will
presumably have failed.

A failure detection system should ideally be able to distinguish network
failures from node failures. One way of dealing with this problem is not to let
a single node decide whether one of its neighbors has crashed: instead, when
noticing a timeout on a ping message, a node requests other neighbors to seee
whether they can reach the presumed failing node. Positive information can
also be shared: if a node is still alive, that information can be forwarded to



32 2 Background

other interested parties, who may be detecting a ling failure to the suspected
node.

2.4.4 Failure Recovery

Once a failure has occurred, it is essential that the process where the failure
happened can recover to a correct state. There are essentially two forms of
error recovery:

1. in backward recovery the main issue is to bring the system from its present
erroneous state back into a previously correct state. To do so, it will be
necessary to record the system’s state from time to time, and to restore
such a recorded state when things go wrong. Each time (part of) the
system’s present state is recorded, a checkpoint is said to be made.

2. in forward recovery when the system has entered an erroneous state, in-
stead of moving back to a previous, checkpointed state, an attempt is
made to bring the system in a correct new state from which it can con-
tinue to execute. The main problem with forward error recovery is that it
has to be known in advance which errors may occur.

The most widely used technique for recovering from failures in distributed
systems is the backward recovery. Its main advantage is that it is generally
applicable independently of any specific system or process; in other words,
it can be integrated into (the middleware layer) of a distributed system as
a general-purpose service. However, backward recovery also introduces some
problems. First, restoring a system or process to a previous state is a generally
costly operation in terms of performance. Second, no guarantees can be given
that once recovery has taken place, the same or similar failure will not happen
again. Finally, although it requires checkpointing, some states can simply
never be rolled back to.



3

Related Work

In this chapter a review of the most important Scientific Workflow Manage-
ment Systems is presented.

3.1 Askalon

ASKALON [23] is an Application Development and Runtime Environment
for the Grid. Developed at the University of Innsbruck, Austria, it uses an
XML-based language called Abstract Grid Workflow Language (AGWL) for
describing Grid workflow applications at a high level of abstraction. It has a
SOA-based runtime environment with stateful services and uses the Globus
Toolkit as Grid platform; its architecture is shown in Figure 3.1. It supports a
rich set of constructs for expressing sequence, parallelism, choice, and iteration
constructs. It includes mechanisms for monitoring workflow execution and
dynamic rescheduling in order to optimize workflow performance.

In the ASKALON Grid application development and computing envi-
ronment, users compose workflows graphically using UML-based workflow
composition and modeling service. Alternatively, users con programmatically
describe workflows using AGWL, at a high level of abstraction that does
not comprise any details of the underlying middleware platform or resources.
The UML-based workflow specifications can be automatically translated into
AGWL specifications, though AGWL serves as input to the ASKALON run-
time environment. At this point, ASKALON transforms the abstract work-
flow representations into concrete and executable workflow specifications, and
maps workflow abstract tasks onto the available resources. This activity is
accomplished by ASKALON’s scheduler in its Execution Engine. ASKALON
has developed a light-weight just-in-time scheduling strategy [22]. This strat-
egy has been used to support dynamic scheduling of scientific workflows in
Grids adapting to the executing resources’ availability and conditions. The
scheduler implements different fault-tolerance and fair-sharing policies (job
restarting in case of failure or job submission to alternative resources). These



34 3 Related Work

Fig. 3.1. Askalon’s architecture

techniques are complemented with checkpointing and rollback at workflow
level.

3.2 DVega

DVega [83, 84] is a scientific workflow engine which adapts itself to the chang-
ing availability of resources, minimizing the human intervention. DVega uti-
lizes Reference nets [85], a specific class of Petri nets, for composing work-
flow tasks in a hierarchical way and the Linda [34] communication paradigm
for isolating workflow tasks from resources. Workflow tasks interact with re-
sources by exchanging messages: in particular workflow tasks send/receive
messages to/from Linda and the existing forwarder-receiver components in
DVega are responsible for taking the messages from Linda and sending them
to the resources and vice-versa. DVega’s architecture, shown in Figure 3.2,
is completely built upon service-oriented principles and by means of a tuple
space shields workflows from the heterogeneity of the middleware.

One of the aspects of the architecture that is worth highlighting is the
mapping between tasks and resources. A workflow task receives its inputs,
generates a tuple with them and writes it into the tuple-space (Linda). After
that, the workflow task is suspended until the expected result is back: once
the tuple is in Linda, the corresponding proxy takes the tuple, transforms it
into the suitable format and forwards it to the destination resource. When
the result arrives to the proxy, it is transformed into a message and written
into the tuple-space. Then, the workflow tasks withdraws the expected tuple



3.3 GridAnt 35

Fig. 3.2. DVega’s architecture

containing the result. The main advantage of this approach is that a work-
flow task will have only to indicate the type of interaction required, without
explicitly sending a message to a specific proxy. In consequence, proxies can
be added and modified at runtime, without having to stop the execution, and
can be shared by workflow tasks.

3.3 GridAnt

GridAnt [86] is a client-side workflow management system that can be used
for executing workflows on Grid resources. It extends the Apache Ant build
system, an existing commodity tool for controlling build processes in Java, by
adding additional components for authenticating, querying and transferring
data between Grid resources. Furthermore, it provides a graphical visualiza-
tion tool for monitoring the progress of the workflow execution. GridAnt is
similar in functionality to the Condor DAGMan workflow manager.

Some disadvantages of GridAnt like the inability to concurrently execute
targets, the lack of full iteration support, the difficulties in expressing condi-
tional execution, etc, have been behind the motivation of the development of
the Java CoG Kit Karajan (see Section 3.9), a more streamlined and powerful
workflow framework.



36 3 Related Work

3.4 Gridbus

Gridbus [90] is another workflow management system that allows users to
specify workflows using a simple XML-based workflow language. A workflow
coordinator (WCO) is responsible for monitoring the status of the tasks in the
workflow and activating the child tasks when they become eligible. An event
service server (ESS) is used for notification purposes. Active tasks register
their status with the ESS, which in turn notifies the WCO. Based on the
status received from the ESS, WCO may activate the child tasks (similar to
DAGMan functionality). It allows users to specify execution resources for each
task in the workflow. Alternatively, it is also able to discover resources using
Grid information services.

3.5 Grid-Flow

Grid-Flow [38] is another Petri net-based workflow system. The Grid-Flow ar-
chitecture (shown in Figure 3.3) is designed as a Service-Oriented Architecture
with multi-layer component models. Their approach to Petri net-based tools is
to employ a generic modeling graphical interface called Generic Modeling En-
vironment (GME) to define the instance of the Petri net user interface tools.
The Petri net specification is then compiled into a lower level Grid-Flow De-
scription Language (GFDL) which is executed by the workflow engine. Grid-
Flow assumes a hierarchical Grid structure consisting of local Grids managed
by the Titan resource management and a global Grid that is an ensemble of
local Grids, it then simulates workflow execution on the global Grid in or-
der to find a near optimal schedule. The best workflow schedule is enacted on
the local Grids using ARMS agents. The system also integrates heterogeneous
data and distributed analysis tools through the unified platform WebRun [39].

Fig. 3.3. Grid-Flow’s architecture



3.6 GWES 37

The Petri-net-based user interface, implemented within a graphical mod-
eling environment, can help users design the workflow via a graphical editor,
translate the workflow specification into the GFDL, and monitor the execu-
tion of the workflow process. The GFDL, which conveys the specifications
of workflow processes, acts as a bridge connecting the Petri-net models with
the Grid-Flow engine. The Grid-Flow engine layer is responsible for inter-
preting user-defined workflow processes and responding to users’ monitoring.
More importantly, it coordinates the activities and execution of user workflow
using appropriate services provided by the layer of Grid-enabled data and
program integration. The data and program integration layer of the system
infrastructure plays a critical role of interconnecting distributed computing
resources in the whole system.

3.6 GWES

The General Workflow Execution Service (GWES) [45] (formerly the Grid
Workflow Execution Service) is a workflow system which proposes a multi-
level abstraction and semantic-based solution to facilitate the de-coupling be-
tween tasks and resources or services. With the implementation of a plugin
concept for arbitrary workflow activities, it has now a broader area of applica-
tion, not limited to the orchestration of Grid and Web Services. The GWES
coordinates the composition and execution process of workflows in arbitrary
distributed systems, such as SOA, Cluster, Grid, or Cloud environments.

The GWES processes workflows that are described using the Grid Work-
flow Description Language (GWorkflowDL), which is based on the formalism
of High-Level Petri nets (HLPNs) [47]. In the workflow specifications, tran-
sitions represent tasks and tokens in the nets represent data flowing through
the workflow. Hierarchical Petri nets are also exploited to model hierarchical
workflow specifications and to support the multi-level abstraction. An ab-
stract task on top of the hierarchy can be mapped dynamically at runtime by
refining the workflow structure.

In Figure 3.4 solution for the automatic mapping of dynamic workflows
to determine the appropriate and available resources. User requests are first
mapped to abstract workflows (yellow). Each activity will be initially assigned
with the help of the resource matcher service candidates (blue) that provide
the appropriate functionality. A scheduler selects one of the candidates (green)
and carries out the activity to the appropriate resources.

In accordance with the Petri net refinement paradigm, places and transi-
tions within the net can be refined with additional Petri nets, thereby facili-
tating the modeling of large real world systems. However, the GWorkflowDL
does not support the inherent modeling of the dynamic refinement process it-
self and, consequently, the workflow structure is modified dynamically by the
workflow engine. This requires from the user a deep knowledge of the work-
flow engine functionality. For instance, there is no simple construct in the



38 3 Related Work

Fig. 3.4. GWES Workflow refinement

GWorkflowDL. Additionally, GWES also supports exception handling in the
hierarchical scientific workflows thereby the workflow engine can modify part
of the workflow structure upon a failure, providing great levels of dynamism
and flexibility. Nevertheless, GWES does not support a clear separation of
the exception handling from the application data and control flow, apart from
simple rescheduling techniques and checkpoint/restart functionalities.

3.7 GRMS

The Grid(Lab) Resource Management System GRMS [53] is a resource man-
agement system with a workflow engine that executes and manages jobs on
remote Grid resources. One can submit to GRMS workflow experiments based
on an XML workflow schema, defining flexible mechanisms for dynamic work-
flow control, including various types of precedence constraints, different lo-
cations of the final data products and executables, etc. All of these features
allow end users to speed up remote workflow calculations and improve data
management mechanisms. The motivations and ideas for this workflow man-
agement were based on some experiences gained in two projects, GridLab and
PROGRESS, where the authors could deal with real use cases and end users’
requirements for workflow management. GRMS was designed as an indepen-
dent set of components for resource management processes which can take
advantage of various low-level Core Services, in particular taken from Globus
Toolkit (GRAM [26], GridFTP [7], GIIS/GRIS [91]) and Mercury Grid 1

Monitoring System.

1 http://www.lpds.sztaki.hu/mercury/

http://www.lpds.sztaki.hu/mercury/


3.9 Java CoG Kit-Karajan 39

3.8 ICENI

ICENI [63], the Imperial College e-Science Network Infrastructure, is a sys-
tem for workflow specification and enactment on Grids. The user creates an
abstract workflow in an XML-based language. The ICENI system is respon-
sible for making the workflow concrete by finding suitable implementations
of the components in the workflow, mapping the components to appropriate
resources, and monitoring the instantiation of the concrete workflow on the
mapped resources. Once a schedule for the workflow has been computed, the
ICENI system tries to reserve the resources at the desired time by negotiating
with the resource provider.

The authors distinguish between an e-Scientists conceptual workflow to
describe tasks to be performed with dependencies and a middleware workflow
for execution on the Grid. The architecture of ICENI supports deployment,
performance, reliability, and charging for resource use. The current ICENI
architecture experiences with e-Science projects, such as the Grid Enabled
Integrated Earth system model (GENIE), e-Protein, and RealityGrid.

3.9 Java CoG Kit-Karajan

In Java CoG Kit-Karajan [87], users can compose workflows through an XML-
scripting language as well as with an equivalent more user-friendly language
called K. Not only both languages support hierarchical workflow descriptions
based on Directed Acyclic Graphs (DAGs), but also have the ability to use
control structures such as if, while and parallel in order to express easy con-
currency.

The architecture of the Java CoG Kit Karajan framework, displayed in
Figure 3.5, contains the workflow engine that interfaces with high level com-
ponents, namely a visualization component that provides a visual represen-
tation of the workflow structure and allows monitoring of the execution, a
checkpointing subsystem that allows the checkpointing of the current state of
the workflow, and a workflow service that allows the execution of workflows
on behalf of a user. A number of convenience libraries enables the workflow
engine to access specific functionalities.

Workflow specifications can be visualized in the system. The analysis of
dynamism support in Karajan reveals that workflows can actually be mod-
ified during runtime through two mechanisms. The first one is through the
definition of elements that can be deposited in a workflow repository that
gets called during runtime. The second one is through the specification of
schedulers that support the dynamic association of resources to tasks. The
execution of the workflows can either be conducted through the instantiation
of a workflow on the users client or can be executed on behalf of the user on
a service. Besides, the execution engine of the system also features workflow
checkpointing and rollback.



40 3 Related Work

Fig. 3.5. The components of the Java CoG Kit Karajan

3.10 Kepler

Kepler [3, 60] provides a graphical user interface and a run-time engine that
can execute workflows (with an emphasis on ecology and geology) either
from within the graphical interface or from a command line. Kepler extends
Ptolemy II 2, a software system for modeling, simulation, and design of con-
current, real-time, embedded systems. It is a Java-based application that is
maintained for the Windows, OSX, and Linux operating systems and freely
available under the BSD License.

Kepler is used in several large Grid projects where the management of bio-
logical data analysis workflows is critical. The approach Kepler takes is based
on an actor-oriented model which allows hierarchical modeling and dataflow
semantics. To support the interaction with web services Kepler uses a form of
actor proxy for each web services that is invoked. In addition they have cre-
ated a set of Grid actors for doing GridFTP [7] file management and Globus
GRAM [26] execution.

In Kepler, users develop workflows by selecting appropriate components
called actors and placing them on a design canvas, after which they can
be “wired” together to form the desired workflow graph. Actors have input
and output ports which provide the communication interface to other actors.
Workflows can be hierarchically structured, yielding composite actors that en-
capsulate subworkflows. A feature of KEPLER, inherited from Ptolemy II, is
that the overall execution and component interaction semantics of a workflow
is not defined by the components, but is factored out into a separate compo-
nent called a director. Taken together, workflows, actors, ports, connections,
and directors represent the basic building blocks of actor-oriented modeling
and design [57]. In order to support execution over Grid resources, Kepler has

2 http://ptolemy.eecs.berkeley.edu/ptolemyII/

http://ptolemy.eecs.berkeley.edu/ptolemyII/


3.11 Pegasus 41

defined a set of Grid actors for access authentication, file coping, job execu-
tion, job monitoring, execution reporting, storage access, data discovery, and
service discovery.

Kepler workflow system implements also exception handling: as described
in [66], for each node in the hierarchy, its input data is checkpointed in advance
so that in case of exception the failed descendant sub-workflow can be replaced
by an alternative one. When a sub-workflow within a Checkpoint produces an
error event, all execution within the Checkpoint is stopped. The Checkpoint
handles the error itself (by re-executing the primary, or running an alternate
sub-workflow), or passes it up the workflow hierarchy. The maximum number
of times to retry the primary or an alternative sub-workflow is configurable.
Once the retry limit is exceeded, the error is sent up the workflow hierarchy to
the nearest enclosing Checkpoint. The criteria for selecting a candidate from
the alternative candidates is not specified and no evidence is given whether the
context in which the exception arose can be taken into account for selecting
the candidate. Besides, the candidate list has to be defined at development
time, thus limiting the flexibility and dynamism of the approach.

3.11 Pegasus

The Pegasus [19, 20] project encompasses a set of technologies to execute
workflow-based applications in a number of different environments, i.e., desk-
tops, campus clusters, grids, clouds, Condor pools, high-performance TeraGrid
systems. The worfklow management system of Pegasus can manage the exe-
cution of complex workflows on distributed resources and it is provided with
a sophisticated error recovery system. Pegasus can use as middleware Condor,
Globus, or Amazon EC2, and takes a modular approach to workflow systems,
working in partnership with workflow execution engine DAGMan, which was
developed by the Condor team at the University of Wisconsin, USA. A sim-
plified view of the system is shown in Figure 3.6.

Pegasus, which stands for Planning for Execution in Grids, focuses on data
intensive applications related with atomic physics, astronomy, biology, etc. Its
scientific workflows can be modeled at a high level of abstraction without the
need to worry about the actual execution environment. The abstract work-
flows can be constructed by using Chimera [31], thereby scientists are allowed
to specify data dependencies among tasks and then, an abstract workflow
specification can be obtained. Then, with information about the available
resources, Pegasus generates an executable workflow. Alternatively, abstract
workflows can also be written by users directly.

In Pegasus, workflows are adapted to a changing environment where re-
sources can come and go suddenly, by mapping only portions of the abstract
workflow to resources at a time (also known as deferred mapping). Pegasus’
objectives have been [58]: (i) to dynamically adjust resource allocation de-
cisions in the light of run-time feedback on the performance of the clusters



42 3 Related Work

Fig. 3.6. Simplified view of the Pegasus system

onto which workflows are being compiled; and (ii) to obtain that dynamic be-
havior through minimal intervention into the existing Pegasus infrastructure.
Pegasus can consider resource allocation on clusters that might be used by
several users at the same time. This allows it to introduce adaptivity into an
environment whose performance is not well known in advance, and in which
there is limited control over the execution of individual jobs.

3.12 Taverna

Taverna [67] is an open source tool for designing and executing workflows.
Its own workflow definition language is characterized by an implicit iteration
mechanism (single node implicit parallelism). The Taverna team has primarily
focused on supporting the Life Sciences community (biology, chemistry and
medical imaging) although does not provide any analytical or data services
itself. It supports different types of Web services, including WSDL-based,
Soaplab, BioMoby and BioMart services. Originally designed to execute Web
service based workflows, Taverna can now interact with arbitrary services.
Taverna workflows can have a hierarchical structure and tasks can be ab-
stract which will be refined at runtime. It is a domain-specific system and the
workflows are limited to the specification and execution of ad hoc in silico
experiments using bioinformatics resources. These resources might include in-
formation repositories or computational analysis tools providing a Web service
based or custom interface. Workflows are enacted by the FreeFluo enactment



3.12 Taverna 43

engine, and progress can be monitored from the Taverna workbench. Taverna
architectural diagram is shown in Figure 3.7.

Fig. 3.7. Overview block diagram of Taverna architecture

Taverna is part of the myGrid 3 project, which is building middleware
to support data-intensive experiments in molecular biology. Taverna provides
over 1000 services that can be used as components in workflows. However,
solving the problems of service discovery and selection become non-trivial
parts of the process when the potential catalog of workflow components is
large. Another issue is that by using the service as a single component in a
workflow, one bypasses many interesting capabilities that some stand-alone
services have, like powerful data analysis and visualization user interfaces.
This passes the problem of doing final data analysis and visualization to the
end of the workflow process where it is often hard to replace what has been
given up along the way. A major problem that Taverna addresses is that of
capturing the full metadata context including the provenance of all aspects
of the scientific experiment that the workflow represents. This includes the
data derivations and the workflow’s audit trail of invoked services. A critical
feature of e-science is the ability to enable the repeatability of experiments.

Two techniques are provided to the user for dealing with faults [67]: task
retry and alternative task. With task retry, workflow designers are allowed to
indicate the maximum number of times that a task will be retried in case of
execution failure. This can also be applied to sub-workflows whenever they

3 http://www.mygrid.org.uk/

http://www.mygrid.org.uk/


44 3 Related Work

fail. The alternative task technique allows users to specify a different task
in case of failure, after a maximum number of retries have been attempted.
However, alternative sub-workflows cannot be specified nor the fault can be
propagated up in the hierarchy.

3.13 Triana

Triana [72] is a problem solving environment that combines a visual inter-
face with data analysis tools. It can connect heterogeneous tools (e.g. Web
services, Java units, JXTA services) on one workflow. Triana uses its own cus-
tom workflow language, although can use other external workflow language
representations such as BPEL4WS [6] which are available through pluggable
language readers and writers. It comes with a wide variety of built-in tools
for signal-analysis, image-manipulation, desk-top publishing, etc.

At the user’s level Triana provides a composition tool and a large toolbox of
ready-to-use components. Workflows in Triana can have a hierarchical struc-
ture and can be defined in an abstract way that is later refined by the execution
engine. The Triana workflow environment can operate in heterogeneous Grid
and P2P environments simultaneously. It uses the Grid Application Toolkit
(GAT) created by GridLab 4 for distributing the workflow components across
Grids. Triana communicates with services through the GAP Interface, a sub-
set of the GridLab GAT-API. The GAP Interface provides applications with
methods for advertising, locating, and communicating with other services.
The GAP Interface is, as its name suggests, only an interface, and therefore
is not tied to any particular middleware implementation. This provides the
obvious benefit that an application written using the GAP Interface can be
deployed on any middleware for which there is a GAP binding, as shown in
Figure 3.8.

Triana’s support for fault tolerance [72] is generally user driven. For exam-
ple, faults will generally cause workflow execution to halt, display a warning
or dialog, and allow the user to modify the workflow before continuing execu-
tion. At workflow level lightweight checkpointing and the restart or selection
of workflow management services are currently supported. At the middleware
and task levels, all the listed faults can be detected by the Engine or GAT,
except for deadlock, livelock and memory leaks. At the lowest level, machine
crashes and network errors are recognized by GridLab GAT and the Triana
Engine respectively, but recovering from these faults or preventing them is
only planned for future versions.

4 http://www.gridlab.org/

http://www.gridlab.org/


3.15 UNICORE Rich Client 45

Fig. 3.8. The relationship between Triana, the GAP Interface, and GAP bindings

3.14 ScyFlow

ScyFlow [62] is a directed graph based workflow tool that is designed to man-
age NASA’s large scale simulation and data analysis work. SkyFlow can handle
both control flow and parameterized data flow within any given workflow.

ScyFlow is part of a larger set of component applications, whose coordina-
tion and interaction is managed by a “container” application called ScyGate.
Other components include one for parameter study, one for transforming one
data format into another data format, one for parsing ASCII data file, etc.
ScyFlow consists of two major components: (i) ScyFlowVis which provides
the visual interface for specifying workflows, translates the visual flow graph
into internal formats (XML, dependency list, pseudo-code) for storing and for
communicating with the other components, and can also be used as a visual
interface to monitor the execution of workflows, and (ii) ScyFlowEngine which
provides the set of services required for the overall execution of the workflow
across distributed grid resources, taking into account the specified control and
data dependencies.

3.15 UNICORE Rich Client

UNICORE [76] is a project to develop a Grid infrastructure and a computing
portal for users to access the Grid resources seamlessly. Its job model supports
directed acyclic graphs with temporal dependencies. The Unicore graphical
tools allow a user to create a job flow that is then serialized by a Unicore
user client and sent to a server for enactment. The server is responsible for
dependency management and execution of the jobs on the target resources.



46 3 Related Work

UNICORE has a two layered design with a separation of the workflow en-
gine and the service orchestrator in order to achieve better scalability, but
also to offer the possibility to plug-in domain-specific workflow languages
and workflow engines. The workflow engine originates from the EU-project
Chemomentum [73]. Besides simple job-chains, while and for loops, workflow
variables and conditional execution are supported.

The workflow capabilities are offered to the users via the UNICORE Rich
Client (URC). URC was based on the Eclipse platform 5 with the intent of
lowering the entry barrier for new users, as many of them are already famil-
iar with the tool, having a smoother integration into different platforms and
making it extremely extensible. The client allows to detail resource require-
ments for jobs (e.g. required number of CPUs, amount of RAM); dedicated
panels deal with setting up security options so that users can specify whom
they trust and how to identify themselves on the Grid.

The UNICORE workflow system offers basic workflow constructs like
while-loops for repeating certain tasks automatically and if-statements for
altering the flow of execution based on the evaluation of conditions. These
constructs can also be nested in order to address more complex tasks. In ad-
dition, the system supports the parallel execution of many similar jobs or
sub-workflows by introducing the for-each-loop. This construct helps to min-
imize the effort of creating workflows with many jobs and reduce the size of
the resulting workflow descriptions. For covering these scenarios, the for-each-
loop offers two different modes of operation: (i) iteration over sets of differing
parameter values, (ii) iteration over a set of files.

3.16 Grid-based Data Mining

A wide set of applications is being developed for the exploitation of Grid plat-
forms. Since application areas range from scientific computing to industry and
business, specialized services are required to meet needs in different applica-
tion contexts. In particular, data Grids have been designed to easily store,
move, and manage large data sets in distributed data-intensive applications.
Besides core data management services, knowledge-based Grids, built on top
of computational and data Grid environments, are needed to offer higher-level
services for data analysis, inference, and discovery in scientific and business
areas [65]. In some papers [5, 16, 48] it is claimed that the creation of knowl-
edge Grids is the enabling condition for developing high-performance knowl-
edge discovery processes and meeting the challenges posed by the increasing
demand of power and abstractness coming from complex problem solving en-
vironments.

Several systems of distributed data mining exploiting the Grid infrastruc-
ture have been designed and implemented [77]. Some of them are:

5 http://www.eclipse.org/

http://www.eclipse.org/


3.16 Grid-based Data Mining 47

• The DataMiningGrid [75] is an environment suitable for executing data
analysis and knowledge discovery tasks in a wide range of different ap-
plication sectors, including the automotive, biological and medical, envi-
ronmental and ICT sectors. Based on open-source Grid middleware, it
provides functionality for tasks such as data manipulation, resource bro-
kering and application searching according to different data mining tasks
and methodologies, and supporting different types of functionality for pa-
rameter sweeps. In summary, it is a Grid software with all the generic
functionality of its component middleware, but with additional features
that ease the development and execution of complex data mining tasks.

• Discovery Net [1] allows users to integrate data analysis software and data
sources made available by third parties. The building blocks are the so-
called Knowledge Discovery Services, distinguished in Computation Ser-
vices and Data Services. Discovery Net provides services, mechanisms and
tools for specifying knowledge discovery processes. The functionalities of
Discovery Net can be accessed through an interface exposed as Web ser-
vice.

• GridMiner [8] aims at covering the main aspects of knowledge discovery on
Grids. Key components in GridMiner are Mediation Service, Information
Service, Resource Broker, and OLAP Cube Management. These are the
so called GridMiner Base services, because they provide basic services to
GridMiner Core services. GridMiner Core services include services for data
integration, process management, data mining, and OLAP.

In the reminder of the thesis we will introduce the two frameworks which
have been developed during this research work: Weka4WS, and the Knowledge
Grid.





4

Weka4WS

Weka4WS is a framework which extend the widely used Weka toolkit for
supporting distributed data mining on Grid environments. Weka provides
a large collection of machine learning algorithms written in Java for data
pre-processing, classification, clustering, association rules, and visualization,
which can be invoked through a common graphical user interface. In Weka,
the overall data mining process takes place on a single machine, since the algo-
rithms can be executed only locally. The goal of Weka4WS is to extend Weka
to support remote execution of the data mining algorithms through WSRF
Web Services. In such a way, distributed data mining tasks can be concur-
rently executed on decentralized Grid nodes by exploiting data distribution
and improving application performance.

Distributed data mining applications can be built in Weka4WS using either
Explorer or Knowledge Flow, two of the four Weka front ends which have
been extended to allow to run single or multiple data mining tasks on remote
hosts of the Grid. In Explorer a data mining application is set up using menu
selection and form filling: at the end of the set up a drop down menu shows a
list of locations where the algorithm may be executed. Knowledge Flow allows
to build workflows representing data mining applications: by clicking on the
nodes of the data mining algorithms the user can choose the locations where
they will be executed. The locations, both in Explorer and in Knowledge Flow,
may be either specified by the user or automatically chosen by the system.

4.1 System Goals

The objective that guided us in the design of Weka4WS is allowing users to
perform distributed data mining on the Grid in a easy and effective way. In
particular, the goals of the system are supporting both:

• the execution of a single data mining task on a remote Grid node; and



50 4 Weka4WS

• the execution of multiple data mining tasks, defined as a workflow, on
multiple nodes of a Grid.

Supporting remote execution of single or multiple data mining tasks allows
users to exploit the computational power and the distribution of data and
algorithms of a Grid.

To make as easier as possible the use of our framework, we decided to start
from a well established data mining environment (the Weka toolkit) and to
extend it with remote execution features. In this way, domain experts can focus
on designing their data mining applications, without worrying about learning
complex tools or languages for Grid submission and management. Indeed, the
Weka4WS visual interface allows users to set up their data mining tasks or
workflows as in Weka, with the additional capability of specifying the Grid
nodes where to execute the data mining algorithms.

To achieve integration with standard Grid environments, Weka4WS uses
the Web Services Resource Framework (WSRF ) as enabling technology.
WSRF is a family of technical specifications concerned with the creation,
addressing, inspection and lifetime management of stateful resources using
Web Services. To enable remote invocation, Weka4WS exposes all the data
mining algorithms originally provided by Weka through a WSRF-compliant
Web Service, which can be easily deployed on the available Grid nodes.

4.2 System Architecture

Weka4WS has been developed using the Java Web Services Resource Frame-
work (WSRF) libraries provided by Globus Toolkit (GT) and uses its services
for the standard Grid functionalities such as security and data transfer. The
application is made up of two separate parts:

• User node: it is the part where the client side of the application runs. It
is made by an extension of the Weka Graphical User Interface, a Client
Module and the Weka library. It requires the presence of the Globus Java
WS Core (a component of Globus Toolkit);

• Computing node: the server side of the application, it allows the exe-
cution of data mining tasks through Web Services. A Globus Toolkit full
installation is required.

Data to be mined may be located either at the user node, or at the com-
puting node, or at some other remote resource (for example some shared
repositories). When data are not available at the computing node they are
transferred by means of GridFTP [2], a high-performance, secure and reliable
data transfer protocol which is part of Globus Toolkit.

Figure 4.1 shows the Weka4WS software components of the user node and
the computing node, and the interactions among them. A user operates on
the Graphical User Interface to prepare and control the data mining tasks:



4.2 System Architecture 51

those to be executed locally will be managed through the local Weka Library,
whereas those to be executed on a remote host will be handled by the Client
Module which will interact with the computing node using the services offered
by the Globus Java WS Core installed on the user node machine.

Fig. 4.1. Weka4WS user node and computing node

In the best network scenario the communication between the client module
and the Web Service is based on the “push-style” [88] mode of the Notifica-
tionMessage delivery mechanism, where the client module is the Notification-
Consumer and the Web Service is the NotificationProducer. The client module
invokes the service and waits to be notified of the required task completion.

There are certain circumstances in which the basic “push-style” of Notifi-
cationMessage delivery is not appropriate, for example when the client resides
behind a NAT Router/Firewall as shown in Figure 4.2, because the messages
sent to the client will be blocked unless they are over a connection initiated
by the client itself.

When the client subscribes to notification of the completion of the required
task it also passes to the service a port number, randomly generated, to which
the client will be listening to receive the notification: from that moment the
client will act as server, awaiting for notifications to the given port. When
the results are ready at the computing node a connection is initiated by the
computing node but the attempt to send the notification fails because it is
blocked by the user node NAT Router/Firewall. In the scenario just depicted
the only way for the client module to get the results is to work in “pull-style”



52 4 Weka4WS

Fig. 4.2. Notifications are blocked when the client runs on a machine behind a NAT
Router/Firewall

mode, that is to continuously try to pull (retrieve), at certain given intervals,
the results from the computing node until they will be available.

In order to make the system to automatically adapt to all possible network
scenarios in a way transparent to the user, the user node starts in pull-mode
by default. At the moment of the notification subscription it also asks for
the immediate send of a dummy notification whose solely purpose is to check
whether the user node may receive notifications: when and if the user node
will receive this dummy notification it will switch to the “push-style” mode,
otherwise it will persist in the “pull-style” one.

At the computing node side, the Web Service uses the Globus Toolkit
services to interact with the user node and answers to its requests by invoking
the requested algorithm in the underlyingWeka Library. The relation between
Web Services and Globus Toolkit is threefold: Web Services are built using
some libraries provided by Globus Toolkit, they are deployed and hosted over
the Globus Toolkit container, and they use some Globus Toolkit services like
security and the notification mechanism [36] to access data and interact with
the user node.

Let’s now examine the two components in more details.

4.2.1 User node

The user node is formed by three components: the Graphical User Interface
(GUI), the Client Module and the Weka library. The GUI is made by the Weka



4.2 System Architecture 53

Explorer and Knowledge Flow components, extended to support the execution
of remote data mining tasks. Explorer is a tool for “exploring” data through
data preprocessing, mining and visualization. Knowledge Flow has essentially
the same features of the Explorer but with a drag-and-drop interface which
allows to build data mining workflows.

The local tasks are executed invoking the local Weka library, while the
remote ones are performed through the Client Module which acts as interme-
diary between the GUI and the remote Web Services. Each task is carried out
in a thread of its own thus allowing to run multiple tasks in parallel, either
using Explorer or Knowledge Flow.

The remote hosts addresses are loaded from a text file located inside the
application directory. This text file is read in background when the application
is launched and for each remote host is checked that:

• the Globus container and GridFTP are running;
• the Weka4WSService is deployed;
• the versions of the client and the service are the same.

Only those hosts which pass all the checks are made available to the user
in the GUI. In order to take into account possible alteration of the Grid
network configuration without having to restart the application, the remote
hosts addresses may be reloaded at any time simply by pressing a given button
provided for the purpose.

A static list of addresses stored in a text file on the client machine is
not actually the ideal solution, as Globus Toolkit already provides a point of
inquiry (the Globus Index Service) regarding the characteristics of a physical
system in a Grid and allows clients or agents to discover services that come
and go dynamically on the Grid. The choice of using that file has been taken
as temporary solution in order to speed up the development of a Weka4WS
prototype and focus on more demanding and crucial aspects of the application.
The use of the Globus Index Service in place of the text file is planned to be
introduced in the near future versions of Weka4WS.

4.2.2 Computing node

A computing node includes two components: a Web Service and the Weka Li-
brary. TheWeb Service answers the user node query by invoking the requested
algorithm in the underlying Weka Library. The invocation of the algorithms
is performed in an asynchronous way, that is, the client submits the task in a
non-blocking mode and results are either notified to it whenever they are com-
puted (push-style mode) or they are repeatedly checked for readiness by the
client (pull-style mode) depending on the network configuration, as described
in Section 4.2.

Table 4.1 lists the operations provided by each Web Service in the
Weka4WS framework. The first three operations are used to request the ex-
ecution of a particular data mining task; operations in the middle row of



54 4 Weka4WS

the table are some useful extra operations, while the last four operations are
related to WSRF-specific invocation mechanisms.

Table 4.1. Operations provided by each Web Service in the Weka4WS framework

Operation Description

classification Submits the execution of a classification task.
clustering Submits the execution of a clustering task.

associationRules Submits the execution of an association rules task.

stopTask Explicitly requests the termination of a given task.
getVersion Returns the version of the service.
notifCheck Checks whether the client is able to receive notifications.

createResource Creates a new stateful resource.
subscribe Subscribes to notifications about resource properties changes.

getResourceProperty Retrieves the resource property values.
destroy Explicitly requests destruction of a resource.

The getVersion operation is invoked at the moment of the hosts check,
described in Section 4.2.1, and is used to check whether the client and the
service versions are the same. The notifCheck operation is invoked just after
the subscribe operation to check whether the client is able to receive notifi-
cations, as described in Section 4.2. All the other operations are described in
Table 4.1.

The parameters required for each operation are shown in Table 4.2; the
operations getVersion and notifCheck do not require any parameter.

The taskID field is required solely for the purpose of stopping a task.
The algorithm field is of a complex type, shown in Table 4.3, which contains
two subfields: name, a string containing the Java class in the Weka library to
be invoked (e.g., weka.classifiers.trees.J48), and parameters, a string
containing the sequence of arguments to be passed to the algorithm (e.g., -C
0.25 -M 2). The dataset and testset are other two fields, of a complex
type which contains four subfields: fileName, a string containing the name of
the file of the dataset (or test set), filePath, a string containing the full path
(file name included) of the dataset , dirPath, a string containing the path
(file name excluded) of the dataset, and crc which specifies the checksum of
the dataset (or test set) file.

The classIndex field is an integer designating which attribute of the
dataset is to be considered the class attribute when invoking a classifying
or clustering algorithm. The testOptions field is of a complex type contain-
ing three subfields: testMode, an integer representing the test mode to be
applied to the classifying or clustering algorithm (1 for Cross-validation, 2
for Percentage split, 3 to use the training set and 4 to use a separate test



4.3 Graphical User Interface 55

Table 4.2. Weka4WS Web Services input parameters

Parameters type Field name Field type

classificationParameters

taskID long
algorithm algorithmType
dataset datasetType
testset datasetType

classIndex int
testOptions testOptionsType
evalOptions evalOptionsType

clusteringParameters

taskID long
algorithm algorithmType
dataset datasetType
testset datasetType

classIndex int
testOptions testOptionsType

selectedAttributes array of int

associationRulesParameters
taskID long

algorithm algorithmType
dataset datasetType

stopParameters taskID long

set), numFolds and percent are two optional fields used when applying a
Cross-validation or a Percentage split test mode respectively.

The evalOptions field is used specifically for the classification algorithms
and contains several subfields like costMatrix (to evaluate errors with respect
to a cost matrix), outputModel (to output the model obtained from the full
training set), and others shown in Table 4.3. The field selectedAttributes

is used specifically for the clustering algorithms and contains those attributes
in the data which are to be ignored when clustering.

4.3 Graphical User Interface

The application starts with the three windows shown in Figure 4.3:

• the Gui Chooser (left side in Figure 4.3), used to launch Weka’s four
graphical environments;

• the remote hosts list checking window (top right side in Figure 4.3), used to
give a visual confirmation of the hosts checking described in Section 4.2.1;

• the Grid Proxy Initialization window (middle right side in Figure 4.3), au-
tomatically loaded at startup only if the user credentials are not available
or have expired.



56 4 Weka4WS

Table 4.3. Weka4WS Web Services input parameters fields types

Fields type Subfield name Subfield type

algorithmType
name string

parameters string

datasetType

fileName string
filePath string
dirPath string

crc long

testOptionsType
testMode int
numFolds int
percent int

evalOptionsType

costMatrix string
outputModel boolean

outputConfusion boolean
outputPerClasss boolean
outputSummary boolean
outputEntropy boolean

rnd int

Fig. 4.3. Weka4WS start up



4.3 Graphical User Interface 57

We will now examine the two Weka components which have been extended
in Weka4WS: Explorer and Knowledge Flow.

4.3.1 Explorer

Explorer, Weka’s main graphical user interface, is a comprehensive tool with
six tabbed panes, each one dedicated to a specific Weka facility like data pre-
processing (loading from file, URL or database, filtering, saving, etc.), data
mining (classification, clustering, association rules discovery) and data visu-
alization. A more detailed description of Explorer may be found in [89].

In Weka4WS the Explorer component is essentially the same as the Weka
one with the exception of the three tabbed panes associated to classification,
clustering and association rules discovery: in those panes the two buttons
for starting and stopping the algorithms have been replaced with a Control
Panel, and a button named Proxy has been added in the lower left corner of
the window. Modifications are highlighted in Figure 4.4.

Fig. 4.4. Weka4WS Explorer: Control Panel and hosts reloading

The drop down menu in the Control Panel allows to choose either the exact
Grid location where we want the current algorithm to be executed (where
localhost will make the algorithm be computed on the local machine) or to let
the system automatically choose one by selecting the auto entry. The currently



58 4 Weka4WS

used strategy in the auto mode is round robin: on each invocation the host in
the list next to the previously used one is chosen.

The Reload hosts button, when pressed, brings up the hosts list checking
window and starts the hosts checking procedure described in Section 4.2.1.
The Proxy button, when pressed, brings up the Grid Proxy Initialization
window described earlier.

Once the Grid node is chosen, be that local or remote, the task may be
started by pressing the Start button and stopped by pressing the Stop button.
As mentioned in Section 4.2.1 in Weka4WS, unlike in Weka, a task is carried
out in a thread of its own thus allowing to run multiple tasks in parallel. In
Figure 4.5, in the lower right corner of the window, the number of running
tasks is displayed. The list of started tasks is displayed in the Result list pane,
just below the Control panel.

Fig. 4.5. Weka4WS Explorer: multiple tasks execution

The Output panel, at the right side of the window, shows the run informa-
tion and results (as soon as they are known) of the task currently selected in
the Result list; at the top of the Output Panel, as highlighted in Figure 4.5,
is shown the host name where the task is being computed.

It is possible to follow the remote computations in their very single steps
as well as to know their execution times through the log window, which is
shown by pressing the Log button in the lower right corner of the Window,
as highlighted in Figure 4.6.



4.3 Graphical User Interface 59

Fig. 4.6. Weka4WS Explorer: detailed log

4.3.2 Knowledge Flow

Knowledge Flow is the component of Weka which allows to compose workflows
for processing and analyzing data. A workflow can be done by selecting com-
ponents from a tool bar, placing them on a layout canvas and connecting them
together: each component of the workflow is demanded to carry out a specific
step of the data mining process. A more detailed description of Knowledge
Flow may be found in [89].

We extended the Weka Knoledge Flow to allow the execution of distributed
data mining workflow on Grids by adding annotations into the Knowledge
Flow. Through annotations a user can specify how the workflow nodes can be
mapped onto Grid nodes.

In Figure 4.7 some of the changes introduced in Weka4WS are highlighted:
in the upper right corner three buttons have been added whose purpose is,
from top to bottom, to start all the tasks at the same time, to stop all the tasks
and to reload the hosts list, as seen in Section 4.2.1. A button named Proxy
has been added in the lower left corner of the window which when pressed,
just like in the Explorer component, brings up the Grid Proxy Initialization
window described earlier. The labels under each component associated to an
algorithm indicate, during the computation, the hosts where that algorithm
is being computed.

The choice of the location where to run a certain algorithm is made into
the configuration panel of each algorithm, accessible right clicking on the given
algorithm and choosing Configure, as shown in Figure 4.8: within the high-
lighted area it can be seen the part added in Weka4WS which, as previously



60 4 Weka4WS

Fig. 4.7. Weka4WS Knowledge Flow: simple flow and Control Panel

seen for the Control Panel of the Explorer component, consists of a drop down
menu containing the available locations where the selected algorithm can be
executed.

Although the algorithms and their performance evaluators are represented
by two separate nodes, the model building and its evaluation are actually
performed in conjunction at the computing node when the chosen location is
not local.

For complex configurations of workflows the sub-flow grouping feature of
Knowledge Flow turns out to be useful in order to easily and quickly set the
remote hosts for the execution of the algorithms. Through this feature it is
possible to group together a set of components of the flow which will then
be represented graphically by only one component, the black-to-gray faded
one shown in Figure 4.9: right clicking on this component it is possible to
either set to auto all the computing locations of the algorithms belonging to
the group, or choosing the specific location of each algorithm by accessing the
relative configuration listed in the menu.

The computations may be started, as shown in Figure 4.10, either by se-
lecting the Start loading entry in the right-click context menu of each loader
component of the flow (just like usually done in the conventional Weka Knowl-
edge Flow) or by pressing the Start all executions button in the right-top
corner of the window (which is more convenient in flows with multiple loader
components).



4.3 Graphical User Interface 61

Fig. 4.8. Weka4WS Knowledge Flow: selection of the remote host

Fig. 4.9. Weka4WS Knowledge Flow: computing locations selection



62 4 Weka4WS

Fig. 4.10. Weka4WS Knowledge Flow: computations start

As for the Explorer component, pressing the Log button in the lower-right
corner it is possible to follow the computations in their very single steps as
well as to know their execution times.

4.4 How the system works

In this section we are going to see in details, through an invocation example,
all the steps and mechanisms involved in the execution of one single data
mining task on the Grid; these steps are the same regardless on whether the
task is invoked from the Explorer or the Knowledge Flow interface.

In this example we are assuming that the client is requesting the execution
of a classification task on a dataset which is present on the user node, but not
on the computing node. This is to be considered a worst scenario because in
many cases the dataset to be mined is already available (or, more specifically,
replicated) on the Grid node where the task is to be submitted.

When a remote data mining task is started an unambiguous identification
number, called taskID, is generated: this number is associated to that par-
ticular task and is used when a stopTask operation is invoked to identify the
task among all the others running at the computing node.

The whole invocation process may be divided in the 8 steps shown in
Figure 4.11:



4.4 How the system works 63

Fig. 4.11. Weka4WS: task invocation

1. Resource creation: the createResource operation is invoked to create a
new resource that will maintain its state throughout all the subsequent
invocations of the Web Service until its destruction. The state is stored as
properties of the resource; more specifically a Result property, detailed
in Table 4.4, is used to store the results of the data mining task.

Table 4.4. Result resource property composition

Field name Type Subfield names

model ModelResult model, models
evaluation EvalResult summary, classDetails, matrix

visualization VisResult predInstances, predictions,
plotShape, plotSize

exception Weka4WSException thrown, message
stopped boolean
ready boolean



64 4 Weka4WS

The first three fields of the property stores the inferred model and/or
models, the evaluation outcomes and additional information about visu-
alization and prediction. The last three fields, exception, stopped and
ready are used only when certain circumstances arise:

• if during the computation phase something goes wrong and an excep-
tion is thrown then the field exception is set accordingly: its boolean
parameter thrown is set to true and in its string parameter, message,
is stored the generated exception message;

• if during the computation a request of termination is received through
the stopTask operation then the boolean field stopped is set to true;

• after the end of the computation the results are put into the Result
property and the field ready is set to true: this field is used by the
client when it’s unable to receive notifications, like in the scenario
depicted in Figure 4.2, to periodically check whether the results have
been computed;

After the resource has been created the Web Service returns the endpoint
reference (EPR) of the created resource. The EPR is unique within the
Web Service, and differentiates this resource from all the other resources in
that service. Subsequent requests from the Client Module will be directed
to the resource identified by that EPR;

2. Notification subscription and notifications check: the subscribe op-
eration is invoked in order to be notified about changes that will occur
to the Result resource property. Upon this property value change (that
is upon the conclusion of the data mining task) the Client Module will
be notified of it. Just after the subscribe operation the notifCheck oper-
ation is invoked to request the immediate send of a dummy notification
to check whether the client is able to receive notifications, as described in
Section 4.2: when and if the user node will receive this dummy notifica-
tion it will switch to the “push-style” mode, otherwise will persist in the
“pull-style” one;

3. Task submission: the classification operation is invoked in order to ask
for the execution of the classification task. This operation requires the 7
parameters shown in Table 4.2, among which the taskID previously men-
tioned. The operation returns the Response object, detailed in Table 4.5.

Table 4.5. Response composition

Field name Type

datasetFound boolean
testsetFound boolean

dirPath string
exception Weka4WSException



4.5 Supporting data-parallel workflows 65

If a copy of the dataset is not already available at the computing node,
then the field datasetFound is set to false and the dirPath field is set to
the URL where the dataset has to be uploaded; similarly, when a valida-
tion is required on a test set which is different from the dataset and the
test set is not already available at the computing node, the testsetFound
field is set to false. The URL where the test set has to be uploaded is the
same as for the dataset. If during the invocation phase something goes
wrong and an exception is thrown then the field exception is set ac-
cordingly: its boolean parameter thrown is set to true and in its string
parameter, message, is stored the generated exception message;

4. File transfer: since in this example we assumed that the dataset was
not already available at the computing node, the Client Module needs to
transfer it to the computing node. To that end, a Java GridFTP client [2]
is instantiated and initialized to interoperate with the computing node
GridFTP server: the dataset (or test set) is then transferred to the com-
puting node machine and saved in the directory whose path was specified
in the dirPath field contained in the Response object returned by the
classification operation;

5. Data mining: the classification analysis is started by the Web Service
through the invocation of the appropriate Java class in the Weka library.
The results of the computation are stored in the Result property of the
resource created on Step 1;

6. Notification reception: as soon as the Result property is changed a
notification is sent to the Client Module by invoking its implicit deliver
operation. This mechanism allows the asynchronous delivery of the execu-
tion results whenever they are generated. In those cases where the client
is unable to receive notifications the client will be periodically checking
the results for readiness through the value of the Result’s field ready (see
Table 4.4);

7. Results retrieving: the Client Module invokes the operation getResourceProperty
in order to retrieve the Result property containing the results of the com-
putation;

8. Resource destruction: The Client Module invokes the destroy opera-
tion, which eliminates the resource created on Step 1.

4.5 Supporting data-parallel workflows

The workflow presented in the previous section employs simple parallelism [68],
a form of parallelism which runs multiple independent tasks in parallel on dif-
ferent processors, available on a single parallel machine or on a set of machines
connected through a network like the Grid.

Another form of parallelism that could be effectively exploited in data
mining workflows is data parallelism [68], where a large data set is split into



66 4 Weka4WS

Fig. 4.12. An example of data-parallel workflow using the DataSetPartitioner and
ModelChooser components.

smaller chunks, each chunk is processed in parallel, and the results of each
processing are then combined to produce a single result.

Both parallelism forms aim to achieve execution time speedup, and a better
utilization of the computing resources, but while simple parallelism focuses on
running multiple tasks in parallel so that the execution time corresponds to
the slowest task, data parallelism focuses on reducing the execution time of a
single task by splitting it into subtasks, each one operating on a subset of the
original data.

The data-parallel approach is widely employed in distributed data mining
as it allows to process very large datasets that could not be analyzed on a single
machine due to memory limitations and/or computing time constraints. An
example of data-parallel application is distributed classification: the dataset
is partitioned into different subsets that are analyzed in parallel by multiple
instances of a given classification algorithm; the resulting “base classifiers” are
then used to obtain a global model through various selection and combining
techniques [11].

To support the data parallelism paradigm, we developed a new compo-
nent in the KnowledgeFlow, called DataSetPartitioner. A DataSetPartitioner
component receives one dataset in input, divides it into a number of parti-



4.5 Supporting data-parallel workflows 67

tions equal to the number of its outgoing arcs, and assigns each partition
to one workflow node representing a data mining algorithm (for example, a
classification algorithm). In case the data mining algorithm is annotated to
be executed on a remote computing node, the subset assigned to it will be
transferred to that computing node as described in Section 4.4.

In the DataSetPartitioner the output partitions have by default the same
number of instances: however the size of each partition, expressed as a per-
centage of the original dataset size, may be changed by the user through the
configuration panel of the component.

We also developed a ModelChooser component that receives a set of base
classifiers, resulting from the classification tasks performed on the different
partitions, and returns the “best” model based on the chosen criterion (e.g.,
the lowest error rate).

An example of workflow using these two components is the one shown in
Figure 4.12: it includes, from left to right, an ArffLoader node, used to load a
dataset from file. A DataSetPartitioner node, used to generate five subsets of
equal size of the incoming dataset. Each subset is sent to a different evaluation
component, precisely to four TrainingSetMakers and one TestSetMaker.

Each one of the four TrainingSetMakers marks the incoming dataset par-
tition as training set and sends it to one of the four J48 Classifiers, while the
only TestSetMaker marks the incoming dataset partition as test set and sends
it to all the four J48 Classifiers. The four J48 Classifiers are then connected
with four ClassifierPerformanceEvaluators which are all connected with one
ModelChooser component. The ModelChooser chooses the best model as ex-
plained earlier and sends such model to the TextViewer component for its
visualization.

Figure 4.13 shows how to configure the DataSetPartitioner component to
customize the size of the various partitions of the dataset.

Fig. 4.13. Configuration panel of the DataSetPartitioner used in the workflow of
Figure 4.12.



68 4 Weka4WS

4.6 Conclusions

We presented a Grid-enabled version of Weka, called Weka4WS, which pro-
vides an extension of the KnowledgeFlow environment to support distributed
execution of data mining workflows on a Grid. Weka4WS uses a service-
oriented approach in which all the Weka data mining algorithms are wrapped
as Web Services and deployed on Grid nodes; users can compose and invoke
those services in a transparent way by defining data mining workflows as in the
original Weka KnowledgeFlow. This approach allows to define simple parallel
data mining applications in a easy and effective way.

The Weka4WS code is available 1 for research and application purposes,
and can be used and modified under the terms of the GNU General Public
License 2 as published by the Free Software Foundation 3.

1 http://grid.deis.unical.it/weka4ws/
2 http://www.gnu.org/licenses/gpl.txt
3 http://www.fsf.org/

http://grid.deis.unical.it/weka4ws/
http://www.gnu.org/licenses/gpl.txt
http://www.fsf.org/


5

Knowledge Grid

The Knowledge Grid [10] supports the implementation of data mining appli-
cations on a Grid by providing mechanisms and services for publishing and
searching the needed resources (data sources, data mining tools, etc.), creating
and executing distributed data mining processes, and managing data mining
results.

The Knowledge Grid services are organized in two hierarchical layers: the
core layer and the high-level layer, as shown in Figure 5.1. The design idea is
that client applications directly interact with high-level services that, in order
to satisfy client requests, invoke suitable operations exported by the core-level
services. In turn, core-level services perform their operations by invoking basic
services provided by available Grid environments running on the specific host,
as well as by interacting with other core-level services.

The high-level layer includes the following services:

• Data Access Service (DAS ), which provides operations for publishing,
searching and downloading data to be mined (publishData, searchData,
and downloadData operations);

• Tools and Algorithms Access Service (TAAS ), which is responsible for
publishing, searching and downloading tools and algorithms for data
extraction, pre-processing and mining (publishTool, searchTool, and
downloadTool operations);

• Execution Plan Management Service (EPMS ), which receives a conceptual
model of the data mining task through the submitKApplication opera-
tion, translates it into an abstract execution plan, and passes it to the
RAEMS service (see below).

• Results Presentation Service (RPS ), which allows to retrieve the results
(i.e., the inferred models) of previous data mining computations through
the getResults operation.

The core-level layer includes two services:



70 5 Knowledge Grid

H
ig

h
-l

e
v
e

l
s
e

rv
ic

e
s

KDS

publishR

searchR

downloadR KMR

C
o

re
-l

e
v
e

l
s
e

rv
ic

e
s

KEPR

KBR

DAS TAAS

RAEMS

EPMS RPS

publishD

searchD

downloadD

publishT

searchT

downloadT

subKApp getRes

mngKEx

Fig. 5.1. Knowledge Grid layered services.

• Knowledge Directory Service (KDS ), which is responsible for managing
metadata about the Knowledge Grid resources (data, tools and algo-
rithms). It provides three operations (publishResource, searchResource,
and downloadResource) to publish, search and download resource meta-
data, which are stored in a Knowledge Metadata Repository (KMR) as
XML documents (details about structure and use of metadata in the
Knowledge Grid can be found in [61]).

• Resource Allocation and Execution Management Service (RAEMS ), which
starting from an abstract execution plan (received through the manageKAp-
plication operation) generates a concrete execution plan and manages its
execution. Generated execution plans are stored in a Knowledge Execution
Plan Repository (KEPR), while the results are stored in a Knowledge Base
Repository (KBR).

All the Knowledge Grid services have been implemented as Web Services
that comply with the Web Services Resource Framework (WSRF) family of
standards, as described in a previous work [15]. In particular, we used the
WSRF library provided by Globus Toolkit 4 [27], as well as some basic Grid
services (e.g., reliable file transfer, authentication and authorization) provided
by the same toolkit.

Within the Knowledge Grid project, a visual software environment named
DIS3GNO has recently been implemented to allow a user to: i) compose a dis-
tributed data mining workflow; ii) execute the workflow onto the Knowledge
Grid; iii) visualize the results of the data mining task. DIS3GNO performs the
mapping of the user-defined workflow to the conceptual model and submits it
to the Knowledge Grid services, managing the overall computation in a way
that is transparent to a user.



5.1 The DIS3GNO System 71

5.1 The DIS3GNO System

DIS3GNO represents the user interface for two main Knowledge Grid func-
tionalities:

• Metadata management. DIS3GNO provides an interface to publish and
search metadata about data and tools, through the interaction with the
DAS and TAAS services.

• Execution management. DIS3GNO provides an environment to design and
execute distributed data mining applications as service-oriented workflows,
through the interaction with the EPMS service.

The DIS3GNO GUI, depicted in Figure 5.2, has been designed to reflect
this two-fold functionality. In particular, it provides a panel (on the left)
devoted to search resource metadata, and a panel (on the right) to compose
and execute data mining workflows.

In the top-left corner of the window there is a menu used for opening,
saving and creating new workflows, viewing and modifying some program
settings and viewing the previously computed results present in the local file
system. Under the menu bar there is a toolbar containing some buttons for
the execution control (starting/stopping the execution and resetting the nodes
statuses) and other for the workflow editing (creation of nodes representing
datasets, tools or viewers, creation of edges, selection of multiple nodes and
deletion of nodes or edges).

Fig. 5.2. A screenshot of the DIS3GNO GUI.



72 5 Knowledge Grid

5.1.1 Workflow Representation

In DIS3GNO a workflow is represented as a directed acyclic graph whose
nodes represent resources and whose edges represent the dependencies among
the resources.

The types of resources that can be present in a data mining workflow
(graphically depicted by the icons in Figure 5.3) are:

• Dataset, representing a dataset;
• Tool, representing a tool to perform any kind of operation which may be

applied to a dataset (data mining, filtering, splitting, etc.) or to a model
(e.g., voting operations);

• Model, represents a knowledge model (e.g., a decision tree, a set of associ-
ation rules, etc.), that is the result produced by a data mining tool.

Fig. 5.3. Nodes types.

Each node contains a description of a resource as a set of properties which
provide information about its features and actual use. This description may
be full or partial: in other words, it is both possible to specify a particular
resource and its location in the Grid, or just a few of its properties, leaving to
the system the task to find a resource matching the specified characteristics
and its location. In the former case we will refer to the resource as concrete,
in the latter one as abstract.

For example, in the case of a data mining tool, one could be interested in
any algorithm, located in any node of the Grid, provided it is a classification
algorithm able to handle “arff” files, or could want specifically the algorithm
named NaiveBayes located in a specified host. Once the workflow will be exe-
cuted, the Knowledge Grid middleware will find a concrete resource matching
the metadata, whether they are completely or partially specified. Clearly only
dataset and tool nodes can be either concrete or abstract, the model node
can’t be abstract as it represents the result of a computation. The model
node has only one property, the location, which if left empty will be implicitly
set to the same location of the tool node in input.

When a particular resource property is entered, a label is attached below to
the corresponding icon, as shown in the example in Figure 5.4. The property
chosen as the label is the one considered most representative for the resource,



5.1 The DIS3GNO System 73

i.e. the Name for the dataset and tool nodes and the Location for the model
node.

Fig. 5.4. Nodes labels.

In order to ease the workflow composition and to allow a user to monitor
its execution, each resource icon bears a symbol representing the status in
which the corresponding resource is at a given time. When the resource status
changes, as consequence of the occurrence of certain events, its status symbol
changes accordingly. The resource statuses can be divided in two categories:
the composition-time and the run-time statuses.

The composition-time statuses (shown in Table 5.1), useful during the
workflow composition phase, are:

1. No information provided = no parameter has been specified in the resource
properties;

2. Abstract resource = the resource is defined through constraints about its
features, but it is not known a priori; the S in the icon stands for search,
meaning that the resource has to be searched in the Grid;

3. Concrete resource = the resource is specifically defined through its KDS
URL; the K in the icon stands for KDS URL;

4. Location set = a location for the model has been specifically set (this
status is pertinent to model nodes only);

The run-time statuses (shown in Table 5.2), useful during the workflow
execution phase, are:

Symbol Meaning

No information pro-
vided

Abstract resource

Concrete resource

Location set

Table 5.1. Nodes composition-time sta-
tuses.

Symbol Meaning

Matching resource found

Running

Resource not found

Execution failed

Task completed success-
fully

Table 5.2. Nodes run-time statuses.



74 5 Knowledge Grid

1. Matching resource found = a concrete resource has been found matching
the metadata;

2. Running = the resource is being executed/managed.
3. Resource not found = the system hasn’t found a resource matching the

metadata;
4. Execution failed = some error has occurred during the management of the

corresponding resource;
5. Task completed successfully = the corresponding resource has successfully

fulfilled its task;

Each resource may be in one of these run-time statuses only in a specific
phase of the workflow execution: i.e. status 1 and 2 only during the execution,
status 3 and 4 during or after the execution, status 5 only after the execution.

The nodes may be connected with each other through edges, establishing
specific dependency relationships among them. All the possible connections
are show in Table 5.3; those not present in Table 5.3 are not allowed and the
graphical user interface ensures a user is prevented to create them.

First
resource

Second
resource Label Meaning

Graphical
representation

dataset dataset transfer Explicit file transfer

dataset tool

dataset,

train,

test

Type of input for a
tool node

tool dataset dataset
Dataset produced by a
tool

tool model model
Model produced by a
DM algorithm

model tool model
Model received by a
tool

model model transfer
Explicit transfer of a
model

Table 5.3. Nodes connections.

When an edge is being created between two nodes, a label is automatically
attached to it representing the kind of relationship between the two nodes.
In most of the cases this relationship is strict but in one case (dataset-tool
connection) requires further input from a user to be specified.

The possible edge labels are:

• dataset : indicates that the input or output of a tool node is a dataset;
• train: indicates that the input of a tool node has to be considered a training

set;



5.1 The DIS3GNO System 75

Dataset

Test Set

Training  SetPartitioner

Classifier 1 Classifier N

Model 1

Voter

Classified
Test Set

Model N

Fig. 5.5. Logical schema of an ensemble learning application.

• test : indicates that the input of a tool node has to be considered a test
set;

• transfer : indicates an explicit transfer of a dataset, or a result of a com-
putation, from one Grid node to another;

• model : indicates a result of a computation of a data mining algorithm.

5.1.2 Workflow Composition

To outline the main functionalities of DIS3GNO, we briefly describe how it is
used to compose and run a data mining workflow. By exploiting the DIS3GNO
GUI, a user can compose a workflow by selecting from the toolbar the type
of resource to be inserted in the workflow (a dataset, a tool or a model node),
dragging it into the workflow composition panel. Such operation can be re-
peated as many times as needed to insert all the required application nodes.
Then, she/he has to insert suitable edges by setting, for each one, the spe-
cific dependency relationship between the nodes (as described in Section 5.1.1
and summarized in Table 5.3). Typically, most nodes in a workflow represent
abstract resources. In other terms, a user initially concentrates on the appli-
cation logic, without focusing on the actual datasets or data mining tool to
be used.

Let us suppose that a user wants to compose and execute the ensemble-
learning application depicted in Figure 5.5. In contrast to ordinary machine
learning approaches which try to learn one model from training data, en-
semble methods build a set of models and combine them to obtain the final
model [92]. In a classification scenario, an ensemble method constructs a set
of base classifiers from training data and performs classification by taking a
vote on the predictions made by each classifier.



76 5 Knowledge Grid

As shown in Figure 5.5, the input dataset is split, using a partitioner tool,
into two parts, namely a training set and a test set. The training set is given in
input to N classifiers which run in parallel to build N independent classifica-
tion models from it. Then, a voter tool performs an ensemble classification by
assigning to each instance of the test set the class predicted by the majority
of the N models generated at the previous step.

Using DIS3GNO, the ensemble learning application can be designed as fol-
lows. First, a user chooses the input dataset (Figure 5.6). To do that, she/he
selects from the toolbar the dataset icon and drags it into the workflow compo-
sition panel. In order to associate such an icon to a concrete resource, the user
specifies name and format of the desired dataset into the Search parameters
panel. The search is started by pressing the Search button; on completion,
the system lists the set of datasets matching the search criteria (left-bottom
part of the GUI).

After having selected one of the datasets listed, the URL of such dataset is
associated with the dataset icon (Figure 5.7a). This also changes the dataset
icon mark from S (resource still to be selected) to K (resource identified by a
KDS URL). In the same way, the user inserts a tool node, which is associated
with the KDS URL of the desired partitioner (Figure 5.7b). Then, the user
must specify the relationship between the two nodes. To do that, an edge
linking the dataset and the tool icons is created and labelled appropriately
(Figure 5.7c).

According to the ensemble-learning scenario, two dataset icons represent-
ing the output of the partitioner are added to the workflow (Figure 5.8a).

Fig. 5.6. Insertion of the input dataset icon with specification of its properties and
search for matching resources.



5.1 The DIS3GNO System 77

Then, the user proceeds by adding the classifiers that are required to build the
base models. We assume that the user wants to use four classifiers (Conjunc-
tiveRule, NaiveBayes, RandomForest and J48) specified as abstract resources
(see Section 5.1.1). For example, Figure 5.8b shows the insertion of the first
classifier (ConjunctiveRule) and the specification of its properties (name of
software and type of data supported). The classifier icon is marked with an
S to remind that the corresponding resource will be searched and made con-
crete at runtime. Similarly, the other three classifiers are added, and an edge
between the training set and the four classifiers is created (Figure 5.8c).

Figure 5.9 shows the complete workflow. It includes: (i) a model node
connected to each classifier; (ii) a tool node representing a voter that takes in
input the test set and the four base models; (iii) the output dataset obtained
as output of the voter tool.

The workflow can be submitted to the EPMS service by pressing the Run
button in the toolbar. As a first action, if a user credentials are not available
or have expired, a Grid Proxy Initialization window is loaded. After that,

a)

b)

c)

Fig. 5.7. a) Selection of the input dataset; b) Insertion and selection of a partitioner
tool; c) Insertion of a labelled edge between dataset and partitioner.



78 5 Knowledge Grid

a)

b)

c)

Fig. 5.8. a) Insertion of two dataset icons representing the partitioner output; b)
Insertion and specification of an abstract tool resource; c) Workflow after insertion
and specification of all the classifiers and associated input edges.

the workflow execution actually starts and proceeds as detailed in the next
section.



5.1 The DIS3GNO System 79

Fig. 5.9. The complete workflow including the base models, a voter tool, and the
output dataset.

5.1.3 Execution Management

Starting from the data mining workflow designed by a user, DIS3GNO gen-
erates an XML representation of the data mining application referred to as
conceptual model. DIS3GNO passes the conceptual model to a given EPMS,
which is in charge of transforming it into an abstract execution plan for sub-
sequent processing by the RAEMS. The RAEMS receives the abstract exe-
cution plan and creates a concrete execution plan. In order to carry out such
a task, the RAEMS needs to evaluate and resolve a set of resources and ser-
vices, by contacting the KDS and choosing the most appropriate ones. As
soon as the RAEMS has built the concrete execution plan, it is in charge of
coordinating its execution by invoking the coordinated execution of services
corresponding to the nodes of the concrete execution plan. The status of the
computation is notified to the EPMS, which in turn forwards the notifications
to the DIS3GNO system for visualization.

Figure 5.10 describes the interactions that occur when an invocation of
the EPMS is performed. In particular, the figure outlines the sequence of
invocations of others services, and the interchanges with them when a data
mining workflow is submitted for allocation and execution. To this purpose,
the EPMS exposes the submitKApplication operation, through which it re-
ceives a conceptual model of the application to be executed (step 1).



80 5 Knowledge Grid

KDSs
search

KDSs
search

Local interaction

Possibly remote interaction

RAEMS
mngKEx

EPMS
subKApp

KDSs
searchR

KBR

KDS
searchR

KMR

KEPR

1

2

4

7

6

publishR

3

7

4

5

8

Basic
Grid Services

OPs

DM
Services

OPs

5

DIS3GNO

Fig. 5.10. Execution management. The sequence of operation invocations is showed
for all services involved in the mapping and execution of a data mining workflow.

The basic role of the EPMS is to transform the conceptual model into
an abstract execution plan for subsequent processing by the RAEMS. An
abstract execution plan is a more formal representation of the structure of
the application. Generally, it does not contain information on the physical
Grid resources and services to be used, but rather constraints about them.

The RAEMS exports the manageKExecution operation, which is invoked
by the EPMS and receives the abstract execution plan (step 2). First of all,
the RAEMS queries the local KDS (through the searchResource operation)
to obtain information about the resources needed to instantiate the abstract
execution plan (step 3). Note that the KDS performs the searching both ac-
cessing the local Knowledge Metadata Repository (KMR) and querying all the
reachable remote KDSs (step 4). To reach as many remote KDSs as needed,
an unstructured peer-to-peer overlay is built among Knowledge Grid nodes.
To this end, each node possesses a configurable set of neighboring nodes to
which forward a query.

After the instantiated execution plan is obtained, the RAEMS coordinates
the actual execution of the overall computation. To this purpose, the RAEMS
invokes the appropriate data mining services (DM Services) and basic Grid
services (e.g., file transfer services), as specified by the instantiated execu-
tion plan (step 5). The RAEMS stores the results of the computation into



5.2 Conclusions 81

Fig. 5.11. The final visualization of DIS3GNO after the completion of the applica-
tion running.

the Knowledge Base Repository (KBR) (step 6), while the execution plan
is stored into the Knowledge Execution Plan Repository (KEPR) (step 7).
To make available the results stored in the KBR, it is necessary to pub-
lish results metadata into the KMR. To this end, the RAEMS invokes the
publishResource operation of the local KDS (steps 7 and 8).

Figure 5.11 shows the final screenshot of the DIS3GNO interface when
the execution of the data mining workflow has been completed and the final
classification result has been created and showed in an ad hoc window.

5.2 Conclusions

The DIS3GNO system described in this chapter provides a set of visual pro-
gramming facilities to design and execute distributed data mining workflows
in Grids according to the service-oriented model. The DIS3GNO GUI operates
as an intermediary between an end user and the Knowledge Grid allowing the
high-level development of service-oriented high-performance distributed KDD
applications. All the Knowledge Grid services for metadata access and exe-
cution management are accessed transparently by DIS3GNO, thus allowing
the domain experts to compose and run complex data mining applications
without worrying about the underlying infrastructure details.





6

Workflow level fault tolerance

Due to the heterogeneous and distributed nature of Grid systems, faults in-
evitably happen. Unfortunately up to now, most of the existing Grid work-
flow systems still cannot deliver the quality, robustness and reliability that is
needed for widespread acceptance as tools used on a day-to-day basis for sci-
entists from a multitude of scientific fields [70]. The scientists typically want
to use the grid to compute solutions for complex problems, potentially utiliz-
ing numerous resources for workflows that can run for an extended period of
time. With a system that has a low tolerance for faults, the users will regularly
be confronted with a situation that makes them lose days or even weeks of
valuable computation time because the system could not recover from a fault
that happened before the successful completion of their workflow applications.
This is, of course, intolerable for anyone trying to effectively use the Grid, and
makes scientists accept a slower solution that only uses their own computing
resources because of a higher reliability and controllability of these systems.

The enactment of a scientific workflow typically requires the mapping of
tasks onto third-party resources which are geographically distributed. This
execution of tasks across multiple autonomous administrative domains makes
the mapping process highly unreliable: faults may arise due to hardware
and network failures, and software or application errors. A workflow environ-
ment can generally consist of multiple tiers – such as resource management,
middleware-supported data distribution and workflow enactors, and user front
ends (portals). Each of these tiers may support their own fault tolerance capa-
bilities. For instance, a resource manager may detect a local fault and invoke
an action without exposing the fault to the user portal. Our focus in this
work is on fault tolerance capabilities that must be supported at the workflow
level, as a user executing a workflow often has limited control of an external
resource management system.

The recovery technique proposed in this chapter consists in systematically
analyzing known faults, and subsequently applying the most suitable recovery
action to them. A fault taxonomy for scientific workflows has been proposed
and a methodology for the analysis has been developed: fault detection, fault



84 6 Workflow level fault tolerance

identification and finally fault correction. We identified fault detection mech-
anisms in the literature, and proposed the identification mechanisms (mon-
itoring mechanisms adhered to the proposed taxonomy) as well as a set of
possible recovery actions at workflow level.

6.1 Methodology

We consider the fault handling activity from an event-condition-action per-
spective. Consider fi being a single fault (hardware/software), and {f} a set
of faults, leading to a known event/error ei. The event causes a single action ai
or a set of actions (executed in some sequence) {a} to be invoked to overcome
the effect of the fault (undertaken using an automated system or by a human
user). This can be expressed as:

(fi|{f}) →d1 ei →d2 {m} →d3 (fi|{a}) →d4

where di represents a time duration, with (d1) representing the time after
which a fault leads to an error message, (d2) the time to monitor the error
message using one or more monitoring tools m, (d3) the time to invoke a
corrective (recovery) action, and (d4) the time over which the action must
execute for the system to recover from the fault.

Thus, we can divide the process into three sub-activities: fault detection,
fault identification and fault correction (recovery). The fault correction sub-
activity may utilize either backward or forward recovery [33] as undertaken in
distributed systems generally, we do not advocate a new approach for under-
taking this process, and primarily identify ways to achieve system recovery.
In this work, we focus on faults that can be detected through error messages
(propagated to a workflow enactor) that can be monitored (although we also
identify the notion of an “unknown” fault for completeness).

We propose a taxonomy for conducting a systematic analysis of faults in
scientific workflows. Our starting point is a general fault taxonomy developed
in [42] for Grids, and our experience in the use of scientific workflow systems
and applications. We demonstrate use of the taxonomy via a workflow within
Weka4WS. We differ from [42] by: (i) focusing on the workflow enactment
process, and not just the middleware or resource management systems; and
(ii) considering an analysis (detection and recovery actions) of faults at the
client side and not at the resource manager, which we believe represents a
more realistic scenario for existing workflow systems.

6.2 Weka4WS extended architecture

An extended version of the Weka4WS architecture (see Figure 6.1) that is
fault-aware was designed and implemented. The implementation is based on
the faults taxonomy identified in this chapter, and demonstrates the use of the



6.2 Weka4WS extended architecture 85

Fig. 6.1. Weka4WS extended architecture

taxonomy in the context of a particular system. In Weka4WS, errors consist
of text messages extracted from Java exceptions and can be due to infras-
tructure or application faults. The infrastructure related errors are detected
during the task submission phase by the Client Module at the user node, or
by the Globus Container at the computing node and then propagated back to
the Client Module. The application related errors are detected during the task
execution phase by the Web Service at the computing node and stored into
the Web Service Resource (as part of the WSRF implementation); the errors
are then retrieved by the Client Module using either the push-style or the
pull-style mode of the NotificationMessage delivery mechanism (Web Services
Base Notification 1.3 OASIS Standard [88]), depending on the network sce-
nario (see Section 4.2), where the Client Module is the NotificationConsumer
and the Web Service is the NotificationProducer. When an error is detected
the execution of the whole workflow is interrupted and the error message is
displayed to the user.

In our proposed extension of the architecture, shown in Figure 6.1, an
internal Fault Detector intercepts errors in the Client Module and redirects
them to an external Fault Tolerance Module. Presently, we focus on fail-stop
faults, however in order to detect more complex behaviors such as Byzantine
faults, the Fault Detector Module would need to be extended with the con-
sensus models described in [43]. The Fault Tolerance Module determines the
fault types by parsing the returned error messages, interacts with Weka4WS
if user intervention is needed, and finally invokes a set of pre-defined actions.
The activity of the Fault Tolerance Module is stored in a Fault log, so that
faults and the selected actions can be subsequently examined by the user.



86 6 Workflow level fault tolerance

6.3 Faults Taxonomy

The proposed faults taxonomy is illustrated in Figure 6.2. Two types of re-
lationships are presented in it: (i) fault detection & identification; (ii) fault
recovery. Fault detection & identification in our approach is an array contain-
ing elements from the fault taxonomy, which can be measured via monitoring
tools (error detectors) to some degree of accuracy. Associated with each such
array is one or more actions (referred to as fault recovery) that must be
invoked to overcome the effects of the fault. An example on the array and
the associated actions can be found in Section 7.3. Additionally, we identify
a number of potential faults that may be propagated to the workflow-level,
and they are shown on the right side of Figure 6.2 and include: insufficient
memory, malformed datasets, incompatible datasets, etc. The circled numbers
cross reference elements of the taxonomy with the identified faults, indicating
that a fault can be a member of a number of different elements.

Fig. 6.2. Our Fault Taxonomy for Scientific workflows



6.4 Fault identification 87

6.4 Fault identification

Elements that are part of fault detection & identification are presented in
this section. These elements must be measurable directly or capable of being
inferred from the measured data.

• Knowledge: refers to the degree of accuracy to which a fault can be de-
tected. Faults may be known or unknown; a known fault is one which
can be detected correctly, whose effects are monitorable, and which may
or not be corrected by the execution of an available action. Among the
known faults, there are application domain specific faults, which are due
to the specific algorithms utilized by a particular application, and infras-
tructure specific faults, which are due to the infrastructure(s) being used
by the workflow system for the enactment process. Insufficient memory
faults when executing data mining algorithms, malformed datasets, data
mining algorithm misconfiguration, and dataset-algorithm incompatibili-
ties belong to the application domain specific class; whereas a machine
blocked by a firewall, disconnected machines, containers not started, ser-
vices not deployed or other infrastructure configuration faults belong to
the infrastructure specific class. In general terms, an insufficient memory
fault occurs when a machine’s memory is not sufficient to perform the
execution of a remote request. A malformed data fault happens when the
dataset in input presents some error in its header, attribute declaration or
in its instances. An algorithm misconfiguration fault occurs when a wrong
argument is passed to the algorithm, or a required argument is missing or
when the argument values are out of range. Finally, an incompatibility be-
tween a correct dataset and an algorithm can happen when the algorithm
is not suitable for the structure of the dataset.
An unknown fault occurs when: i) suitable monitoring tools are not avail-
able to detect the outcome of the fault – i.e. no error conditions are gen-
erated when the fault occurs; ii) the error conditions cannot be monitored
to any degree of confidence (accuracy).

• Location: refers to the part of the system where a fault manifests itself.
We distinguish three main locations: resource, middleware, and workflow
(or application). Examples of these types of faults can be: at resource level,
an insufficient memory fault can occur due to insufficient memory at the
computing node. Malformed dataset is produced due to data corruption
during the data down/uploading process. Additionally, an incompatibility
between a dataset and a particular data mining algorithm may occur when
loading and checking the data at this stage. At middleware level, the trans-
fer of datasets (accomplished by the middleware data movement services)
can lead to dataset corruptions (i.e. a network failure). At workflow level,
an algorithm misconfiguration fault can occur at development time and is
generally presented to the user.

• Originator: refers to the component within the system responsible for
having caused the fault – which can include resource, middleware, work-



88 6 Workflow level fault tolerance

flow, and user. An insufficient memory fault may be caused by a resource,
a malformed dataset may be due to the middleware, for instance when
a data movement service transmitted the data unsuccessfully. The mid-
dleware can also cause an insufficient memory fault, for instance when
the (meta-) scheduling service binds a workflow task to a resource with
insufficient memory for the execution. A user may be responsible for the
misconfiguration of the algorithm or for malformed datasets (i.e. the struc-
ture of the datasets is wrong). Identifying the originator is an important
part of the fault detection process.

• Introduction time: refers to the workflow lifecycle (design, testing or
production) during which a fault was introduced in the system. Insuffi-
cient memory faults, malformed datasets, algorithm misconfigurations, and
dataset-algorithm incompatibility can happen both at production and at
testing. In contrast, faults depending on the infrastructure, such as service
not deployed belong to other classes like deployment or configuration.

• Incidence time: The incidence time, via a timestamp, identifies when a
fault happened during execution.

• Duration: Duration refers to the frequency of a fault, and is related to the
incidence time, and include: transient, intermittent, and permanent faults.
Transient faults occur once and then disappear completely. If the operation
is repeated after a time t, no errors will be observed. An insufficient mem-
ory fault at a resource can belong to this class – as for shared resources,
not enough memory may be available to execute a particular algorithm,
at a particular time. However, due to completion of other processes at the
resource, additional memory may be released non-deterministically. Inter-
mittent faults can recur and there may be variable times between their
occurrence. Insufficient memory faults can also be part of this class, as,
in general terms, we do not have control of the available memory at a
resource. Finally, a fault can be permanent, i.e. it requires recover action
for the system to continue operation. Malformed data, algorithm miscon-
figurations, and dataset–algorithm incompatibilities are permanent faults.

• Severity: identifies the impact of the fault on system operation, and the
difficulty of taking any associated corrective action. Marginal faults may
have very limited effect, for instance some datasets can have attributes
missing whose absence may not be significant. We can also recognise, in
increasing degree of severity minor, major, and critical (the greatest im-
pact) faults. However, in general terms, the severity of a fault is subject
to ambiguous and subjective criteria. For instance, severity may also be
related to whether the fault occurs during the testing or production phase.
Hence, some aspects of “severity” can be inferred/assumed‘ (for instance,
production phase faults are more severe than testing phase faults), whereas
others need to be annotated by a user.

• Caused Behavior: Traditionally, faults have been classified according to
their behavior and/or their severity (i.e. difficulty of detection). A crash
(or fail-stop) fault occurs when a component prematurely halts, but was



6.5 Corrective Actions 89

working correctly until it stopped. Once the component crashed, it did
not show any new activity or functionality. Insufficient memory faults,
some malformed dataset faults (those that cannot be ignored) and incor-
rect configuration belong to this class. An omission fault occurs when a
component fails to respond to a request. This may be due to a message re-
ception problem, for instance when a connection was correctly established
but there was no thread listening to incoming requests. Another class, the
component may also fail to respond when something is wrong with the
delivery functionality of the response, even if the request was successfully
processed. Another class is a timing fault, whereby a response lies outside
the expected real-time interval. A response fault occurs when the server’s
response is incorrect. Two kinds of response fault may happen: a value
fault when the server provides a incorrect reply to a request and a state
transmission fault when the server reacts unexpectedly to an incoming re-
quest. An arbitrary fault (or Byzantine) occurs when a server is producing
inconsistent output but which cannot be detected as being incorrect.

6.5 Corrective Actions

As a consequence of a fault, an action or a set of actions may be undertaken
at client side – which include:
– Simple task retry: on error, a task is retried on the same resource

that failed.
– Alternative resource: on error, the execution of the task is retried

with an alternative resource with equivalent functionality (i.e. due to
an intermittent or permanent fault).

– Alternative simple task: on error, an alternative task that has equiv-
alent functionality is selected and enacted.

– Sub-workflow retry: an intermediate node enacting a sub-workflow
fails, and the execution of the sub-workflow is retried.

– Alternative sub-workflow: an intermediate node enacting a sub-
workflow fails, and is replaced by an alternative one with equivalent
functionality. This is achieved by modifying the workflow structure
at runtime. This action may be taken because there was evidence of
having a persistently failing descendant node which will not be able to
complete successfully. Thus, the only possibility is to find an alternative
set of descendants (alternative sub-workflow).

– Fault propagation: on detection, the error is propagated to higher
layers of the workflow hierarchy – i.e. from an error at a resource level
to the workflow enactor. This occurs because: i) the error cannot be
corrected at the level at which it is detected (i.e. it is a permanent fault,
and there are no alternative resources, tasks or sub-workflow available)
or ii) although some actions for recovery may be available, it may be



90 6 Workflow level fault tolerance

better to accomplish it at another level (i.e. choosing an alternative
dataset configuration to overcome an insufficient memory fault).

– User intervention request: faults may also be due to user error,
such as malformed datasets or algorithm misconfiguration; and their
recovery is very difficult if not impossible to be achieved in an auto-
mated way. To provide a balance between automatic recovery and user
intervention, we propose the use of a “threshold value” which indicates,
for instance, the maximum number of times one or more automated
recovery techniques are attempted without leading to system recovery.
When such a threshold is reached, the system asks for user intervention.

– Fault ignore: this corresponds to a marginal fault whose effect either
can be ignored or can be repaired in an automated way (i.e. some
missing attributes in a malformed dataset can be easily inferred from
other parts of the dataset).

– Fault annotation: on error, in case there is no recovery action avail-
able, the fault can be annotated and tracked so that the user can
examine it afterwards.

– Checkpointing: for intermittent faults, or when error rates exceed a
user defined threshold, a checkpointing strategy may be initiated. In
order to reduce the overheads arising out of a checkpoint strategy, the
system may also modify the checkpoint frequency based on user defined
criteria.

6.6 Fault detection & monitoring

In order to detect faults, we propose two mechanisms. The inherent mechanism
provided by the workflow system and a fault detector that is external to
the system. Workflow enactment systems can typically detect errors arising
from faults at remote nodes. In all of these cases, typically, a programming
language exception is generated at the distributed node which populates the
corresponding attributes in the Web Service. On the other hand, different fault
detection algorithms have been proposed in the literature, some example of
them customised for Grid systems can be found in [43]. In general terms,
their degree of sophistication, understood in terms of variety of faults they
can detect (ranging from fail-stop faults to Byzantine faults), is related to the
number of replicas that need to be provided.

On fault detection, the system attempts to monitor the different elements
of our fault taxonomy, forming what we call the fault array. This can be per-
formed by: (i) obtaining values directly via observation from monitoring tools,
and (ii) inferring values from historical data or from user entered variables and
/ or conditions (i.e. the user provides an annotation to identify that whenever
an insufficient memory fault occurs, then the fault severity is critical).

In particular, we identify how the taxonomy can be used in the Weka4WS
system. For instance, when a Java exception occurs, a timestamp is included



6.6 Fault detection & monitoring 91

to set the incidence time, with the exception information and the timestamp
being sent to the workflow engine. The workflow engine can infer additional
values to populate the fault array and identify the fault, such as:

• Obtaining the Location: whenever a Java exception is generated by
the Weka library in the server node, this value is set to resource. In case
the fault manifests itself within the application container (i.e. WSRF con-
tainer) or picked up by the fault detector, the value is set to middleware.

• Inferring the Originator: this value is specific to the application do-
main. In Weka4WS, potential faults include: insufficient memory, mal-
formed data and algorithm misconfiguration. For the insufficient memory
fault, the user is the originator in case he / she bound a task in the work-
flow with a resource in the environment without enough memory for the
execution. The originator can also be a failed scheduling (middleware) ac-
tion or can be due to a resource (identified by the monitoring process). In
case it is not the resource, the actual originator can only be determined
at workflow level, in case the task was scheduled, it will be a scheduling
problem. For the malformed data, it can be due to a corrupted transfer
of the dataset, a corrupted hard disk storage, or a user error. An MD5 or
CRC check on the dataset can be used to identify a network or hard-disk
problem.

• Obtaining the Introduction time: a user annotation is used to deter-
mine whether the fault occurred during the testing or production phase.

• Obtaining the Incidence time: as described before, this is set when the
fault was detected, and can be obtained from the exception information.

• Inferring the Duration: this is inferred from the incidence type, fault
type and the frequency of occurrence. Currently, we only focus on fail-stop
faults.

• Obtaining the Knowledge: this can be obtained from monitoring, either
by the information captured from the node at which the exception occurred
or by a fault detection algorithm.

• Inferring the Severity: users must annotate conditions in order to allow
the Fault Tolerance module from Figure 6.1 to infer the severity of a fault.
The conditions can make use of values obtained from the monitoring pro-
cess. Such data can be utilized by the Fault Tolerance Module to prioritise
faults that occur within a predefined period of time.

In some scenarios, it is possible for a fault to be detectable, but not fully
identifiable, thereby leading to an unknown fault. Hence, there are no previous
conditions in the log/monitored data that match the obtained fault array :
this could occur because either some values from monitoring could not be
obtained or in spite of having obtained them, no match can be found. In such
circumstances, identifying a suitable action to execute to overcome the fault
remains an open research challenge.



92 6 Workflow level fault tolerance

6.7 Conclusions

The distribution of tasks to third-party, inter-organizational resources makes
fault tolerance an important subject for scientific workflows. Some faults may
be managed directly by the underlying resource management systems. How-
ever, this cannot always be guaranteed and depends on the type of resource
manager being used. Consequently, the development of fault tolerance mecha-
nisms at workflow (user) level become important. Because scientific workflows
have no control over external resources, the set of available actions to over-
come faults directly, on external systems, is limited. For that reason, and in
order to allow a workflow system to select the most suitable action, a taxon-
omy for conducting a systematic analysis on faults within scientific workflows
has been proposed.

Our fault taxonomy, identified in Figure 6.2, considers both a means to
identify faults and suitable corrective actions that need to be invoked to over-
come them. We believe the relationship between these two characteristics is
important to support in a workflow enactment system, particularly when iden-
tifying which action can be automated to overcome the effect of a fault. The
taxonomy we propose is general purpose, and can be applied across a vari-
ety of different workflow systems. However, it is important to note that some
monitoring information is, by necessity, system specific. For instance, in our
taxonomy, we include Globus specific information (for use with Weka4WS),
which does not translate to other workflow systems. However, the general
category under which such information is captured, such as middleware or
configuration, could have alternative counterparts for other systems.



7

Validation

7.1 Weka4WS use cases and performance

In this section we present two examples of distributed data mining work-
flows designed and executed on a Grid using the Knowledge Flow component
of Weka4WS. The first workflow defines a classification application while the
second one defines a clustering application. Both of these workflows have been
executed on a Grid environment composed of five machines, to evaluate per-
formance and scalability of the system. In addition, we present the execution
of a workflow on a multi-core machine to show howWeka4WS can obtain lower
execution times compared to Weka even when executed on a single computer.

7.1.1 Classification workflow

Data mining applications that easily exploit the Weka4WS approach are those
where a dataset is analyzed in parallel on multiple Grid nodes using different
data mining algorithms. For example, a given dataset can be concurrently
classified using different classification algorithms with the aim of finding the
“best” classifier on the basis of some evaluation criteria (e.g., error rate, con-
fusion matrix, etc.). We used the Knowledge Flow component of Weka4WS
to build such kind of application, in which a dataset is analyzed in parallel
using four different classification algorithms: Decision Stump, Naive Bayes,
J48 and Random Forest.

The dataset analyzed is kddcup99, publicly available at the UCI KDD
archive [41]. This dataset contains a wide set of data produced during seven
weeks of monitoring in a military network environment subject to simulated
intrusions. From the original dataset we removed all but 9 attributes and the
class attribute, using a selection filter provided by the Preprocess panel of the
Explorer component. Then, from the resulting dataset, we used another filter
to extract three datasets with a number of instances of 215000, 430000 and
860000, and a file size of about 7.5 MB, 15 MB and 30 MB respectively. The
same classification workflow has been executed for each of those datasets.



94 7 Validation

Figure 7.1 shows the workflow designed to build the application. The work-
flow begins (on the left side) with an ArffLoader node, used to load the kdd-
cup99 dataset from file, which is connected to a CrossValidation FoldMaker
node (set to 5 folds), used for splitting the dataset into training and test
sets according to a cross validation. The CrossValidation FoldMaker node is
connected to four nodes, each one performing the four algorithms mentioned
earlier. These are in turn connected to a Classifier PerformanceEvaluator
node for the model validation, and then to a TextViewer node for results
visualization.

Fig. 7.1. Workflow of the classification application

When the application is started by the user, the four branches of the
workflow are executed in parallel. For each of the three dataset sizes (215,
430 and 860 thousands instances), the workflow has been executed using 1 to
4 Grid nodes in order to evaluate the speedup of the system. The machines
used for the experiments had Intel Pentium processors ranging from 2.8 GHz
to 3.2 GHz, RAM ranging from 1 GB to 2 GB, and belong to two local area
networks. The results of the experiments are shown in Figure 7.2.

For the largest dataset (860k instances) the total execution time decreases
from 2456 sec (about 41 min) using 1 node, to 1132 sec (about 19 min) using 4
nodes, achieving a speedup of 2.17. For the smallest dataset (215k instances)
the total execution time passes from 117 seconds with 1 node, to 55 seconds



7.1 Weka4WS use cases and performance 95

 0

 500

 1000

 1500

 2000

 2500

 3000

4321

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

Number of nodes

215k inst.
430k inst.
860k inst.

Fig. 7.2. Execution times of the classification workflow using 1 to 4 Grid nodes for
datasets with 215, 430 and 860 thousands instances

using 4 nodes, with a speedup of 2.13. We can observe that the speedup value
is not so high as one might expect. The reason of that is the diversity of the
classification algorithms used in the example, coupled with the heterogeneity
of computing nodes.

Since to execute the model evaluation all the four classifiers must have
completed their execution, the total classification time is given by the slower
classifier. However this experiment shows that the workflow execution time
decreases significantly when large datasets are analyzed on Grids.

It is worth noticing that the total execution time is made by the sum
of three contributions: file transfer time, WSRF overhead, and data mining
time. In all cases, the file transfer took just a few seconds to complete (about
6 seconds in the worst case). Also the WSRF overhead, that is the overall time
needed to invoke the service, subscribe to notification, and receive the results
as explained in Section 4.4, took a small time (less than 4 seconds). The sum
of file transfer time and WSRF overhead is therefore negligible compared to
the data mining time which is the most relevant part of the total execution
time, as already detailed in [78].

7.1.2 Clustering workflow

The data mining workflow described in this section implements a parame-
ter sweeping application in which a given dataset is analyzed using multiple
instances of the same algorithm with different parameters. In particular, we
used the Knowledge Flow to compose an application in which a dataset is an-
alyzed by running multiple instances of the same clustering algorithm, with
the goal of obtaining multiple clustering models from the same data source.



96 7 Validation

The dataset covertype, from the UCI KDD archive [41], has been used
as data source. The dataset contains information about forest cover type for
581012 sites in the United States. Each dataset instance, corresponding to a
site observation, is described by 54 attributes that give information about the
main features of a site (e.g., elevation, aspect, slope, etc.). The 55th attribute
contains the cover type, represented as an integer in the range 1 to 7. From
this dataset we extracted three datasets with about 72, 145 and 290 thousands
instances and a file size of about 9 MB, 18 MB and 36 MB respectively.
Then we used Knowledge Flow to perform a clustering analysis on each of
those datasets. The workflow corresponding to the application is shown in
Figure 7.3.

Fig. 7.3. Workflow of the clustering application

This workflow is similar to the one shown in Figure 7.1: it includes an
ArffLoader node connected to a Training SetMaker node, used for accepting
a dataset and producing a training set. The Training SetMaker node is con-
nected to 5 nodes, each one performing the KMeans clustering algorithm, and
each one set to group data into a different number of clusters (3 to 7), based
on all the attributes but the last one (the cover type). These nodes are in turn
connected to a TextViewer node for results visualization.



7.1 Weka4WS use cases and performance 97

The workflow has been executed using a number of computing nodes rang-
ing from 1 to 5 for each of the three datasets (72k, 145k and 290k instances).
The execution times are shown in Figure 7.4.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

54321

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

Number of nodes

72k inst.
145k inst.
290k inst.

Fig. 7.4. Execution times of the clustering workflow using 1 to 5 Grid nodes for
datasets with 72, 145 and 290 thousands instances

With the largest dataset as input, the total execution time decreases from
1326 seconds obtained using 1 computing node, to 632 seconds obtained on
5 nodes. For the smallest dataset, the execution time passed from 403 to 175
seconds using 1 to 5 nodes. The execution speedup with 5 nodes ranged be-
tween 2.10 to 2.82. In this case the speedup is mainly limited by the different
amounts of time taken by the various clustering tasks included in the work-
flow: the slower algorithm determines the total execution time. However, the
speedup values for large datasets are good.

7.1.3 Execution on a multi-core machine

In this section we present the execution times of a classification workflow when
it is executed locally on a multi-core machine. Since Weka4WS executes an
independent thread for each branch of the workflow, we obtain lower execution
times compared to Weka even when the workflow is run on a single multi-
processor and/or multi-core machine.

The workflow considered here is a variant of the parameter sweeping work-
flow presented in the previous section. In this case, a data source is analyzed
in parallel using 4 instances of the J48 classification algorithm, configured to
use a confidence factor of 0.20, 0.30, 0.40 and 0.50.



98 7 Validation

As data source, we used 6 datasets extracted from the covertype dataset
introduced earlier. Those datasets have a number of instances ranging from 39
to 237 thousands, with a size ranging from 5 MB to 30 MB. For each of those 6
datasets as input, we executed the same workflow with Weka and Weka4WS.
The machine used for this experiment has two Intel Xeon dual-core processors
with a clock frequency of 3 GHz and 2 GB of RAM. The execution times are
reported in Figure 7.4

 0

 200

 400

 600

 800

 1000

 1200

 1400

237k197k158k118k79k39k

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

Number of instances

Weka4WS
Weka

Fig. 7.5. Execution times of the classification workflow using Weka and Weka4WS
on a two-processor dual-core machine, for a dataset having 39k to 237k instances

With Weka, the execution time ranges from 19 seconds for the dataset
with 39k instances, to 1204 seconds for the dataset with 237k instances. Using
Weka4WS the execution time passes from 8 to 598 seconds, saving an amount
of time ranging from a minimum of 42% to a maximum of 58%. These results
confirm that the multi-threaded approach of Weka4WS is well suited also to
fully exploit the computational power of multi-processor and/or multi-core
machines.

7.2 Knowledge Grid use cases and performance

In this section we present two examples of distributed data mining work-
flows designed and executed on a Grid using the DIS3GNO system. The first
workflow is a parameter sweeping application in which a dataset is processed
using multiple instances of the same classification algorithm with different pa-
rameters, with the goal of finding the best classifier based on some accuracy



7.2 Knowledge Grid use cases and performance 99

parameters. In the second workflow, a dataset is analyzed using different clas-
sification algorithms. The resulting classification models are combined through
voting to derive a global model that is more accurate than the single ones.
Both of these workflows have been executed on a Grid environment composed
of several machines to evaluated the effectiveness of the systems as well as its
performance in terms of scalability.

7.2.1 Parameter sweeping workflow

We used DIS3GNO to compose an application in which a given dataset is
analyzed by running multiple instances of the same classification algorithm,
with the goal of obtaining multiple classification models from the same data
source.

The dataset covertype1 from the UCI KDD archive, has been used as data
source. The dataset contains information about forest cover type for a large
number of sites in the United States. Each dataset instance, corresponding to a
site observation, is described by 54 attributes that give information about the
main features of a site (e.g., elevation, aspect, slope, etc.). The 55th attribute
contains the cover type, represented as an integer in the range 1 to 7. The
original dataset is made of 581,012 instances and is stored in a file having a size
of 72MB. From this dataset we extracted three datasets with 72500, 145000
and 290000 instances and a file size of 9 MB, 18 MB and 36 MB respectively.
Then we used DIS3GNO to perform a classification analysis on each of those
datasets.

DIS3GNO has been used to run an application in which 8 independent
instances of the J48 algorithm perform a different classification task on the
covertype data set. In particular, each J48 instance has been asked to classify
data using a different value of confidence, ranging from 0.15 to 0.50. The same
application has been executed using a number of computing nodes ranging
from 1 to 8 to evaluate the speedup of the system.

The workflow corresponding to the application is shown in Fig. 7.6. It
includes a Dataset node (representing the covertype dataset) connected to
8 Tool nodes, each one associated to an instance of the J48 classification
algorithm with a different value of confidence (ranging from 0.15 to 0.50).
These nodes are in turn connected to another Tool node, associated to a
model chooser which selects the best classification model among those learnt
by the J48 instances. Finally, the node associated to the model chooser is
connected to a Viewer node having the location set to localhost; this enforces
the model to be transferred to the client host for its visualization.

The workflow has been executed using a number of computing nodes rang-
ing from 1 to 8 for each of the three datasets (9 MB, 18 MB and 36 MB) in
order to evaluate the speedup of the system. Table 7.1 reports the execu-
tion times of the application when 1, 2, 4 and 8 computing nodes are used.

1 http://kdd.ics.uci.edu/databases/covertype/covertype.html

http://kdd.ics.uci.edu/databases/covertype/covertype.html


100 7 Validation

Fig. 7.6. Parameter sweeping workflow.

The 8 classification tasks that constitute the overall application are indicated
as DM1..DM8, corresponding to the tasks of running J48 with a confidence
value of 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50, respectively. The
table shows how the classification tasks are assigned to the computing nodes
(denoted as N1..N8), as well as the execution times for each dataset size.

Table 7.1. Task assignments and execution times for the parameter sweeping work-
flow (times expressed as hh:mm:ss)

No of Task assignments Exec. time Exec. time Exec. time
nodes (Node ← Tasks) 9 MB 18 MB 36 MB

1 N1 ← DM1, ..., DM8 2:43:47 7:03:46 20:36:23

2
N1 ← DM1, DM3, DM5, DM7

1:55:19 4:51:24 14:14:40
N2 ← DM2, DM4, DM6, DM8

4

N1 ← DM1, DM5

58:30 2:26:48 7:08:16
N2 ← DM2, DM6

N3 ← DM3, DM7

N4 ← DM4, DM8

8 Ni ← DMi for 1 ≤ i ≤ 8 32:35 1:21:32 3:52:32



7.2 Knowledge Grid use cases and performance 101

When the workflow is executed on more than one node, the execution
time includes the overhead due to file transfers. For example, in our network
scenario, the transfer of a 36 MB dataset from the user node to a computing
node takes on average 15 seconds. This value is small as compared to the
amount of time required to run a classification algorithm on the same dataset,
which takes between 2.5 and 3.9 hours depending on the computing node. The
overall execution time also includes the amount of time needed to invoke all
the involved services (i.e., EPMS, RAEMS, KDS) as required by the workflow.
However, such an amount of time (approximatively 2 minutes) is negligible as
compared to the total execution time.

For the 36 MB dataset, the total execution time decreases from more than
20 hours obtained using 1 computing node, to less than 4 hours obtained with
8 nodes. The achieved execution speedup ranged from 1.45 using 2 nodes,
to 5.32 using 8 nodes. Similar trends have been registered with the other
two datasets. The execution times and speedup values for different number of
nodes and dataset sizes are shown in Fig. 7.7.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

8421

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

Number of nodes

9 MB
18 MB
36 MB

 1

 2

 3

 4

 5

 6

8421

E
xe

cu
tio

n 
sp

ee
du

p

Number of nodes

9 MB
18 MB
36 MB

Fig. 7.7. Execution times and speedup values for different numbers of nodes and
dataset sizes, for the parameter sweeping workflow

7.2.2 Ensemble learning workflow

Ensemble learning is a machine learning paradigm where multiple learners are
trained to solve the same problem. In contrast to ordinary machine learning
approaches which try to learn one model from training data, ensemble meth-
ods build a set of models and combine them to obtain the final model [92].
In a classification scenario, an ensemble method constructs a set of base clas-
sifiers from training data and performs classification by taking a vote on the
predictions made by each classifier. As proven by mathematical analysis, en-
semble classifiers tend to perform better (in terms of error rate) than any
single classifier [79].



102 7 Validation

The DIS3GNO system has been exploited to design a workflow implement-
ing an ensemble learning application which analyzes a given dataset using
different classifiers and performs a voting on the models inferred by them.

Fig. 7.8. Ensemble learning workflow.

As input dataset we used kddcup99 2. This data set, used for the KDD’99
Competition, contains a wide set of data produced during seven weeks of mon-
itoring in a military network environment subject to simulated intrusions. We
extracted three data sets from it, with 940000, 1315000 and 1692000 instances
and a size of 100 MB, 140 MB and 180 MB.

DIS3GNO has been used to split the dataset into two parts: a test set (1/3
of the original dataset) and a training set (2/3 of the original dataset). The
latter has been processed using four classifiers: ConjuctiveRule, NaiveBayes,
RandomForest and J48. The models generated by the four classifiers are then
collected to a node where they are given to a voter component; the classifi-
cation is performed and evaluated on the test set by taking a vote, for each
instance, on the predictions made by each classifier. The same workflow has

2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


7.3 Analysis of potential faults 103

been executed, for each of the three datasets, using a number of computing
nodes ranging from 1 to 4 (excluding the node where we performed the voting
operation) to evaluate the speedup of the system.

The workflow corresponding to the application is shown in Fig. 7.8. It
includes a Dataset node representing the kddcup dataset, connected to a Tool
node associated to a dataset partitioner, which from which a test set and a
training set are obtained, as detailed above. The training set is connected to
four Tool nodes, associated to the classification algorithms mentioned earlier.
The four models generated by such algorithms are connected to a Tool node
associated to a voter which assigns to each istance of the test set a class
obtained through a voting operation.

Table 7.2 reports the execution times of the application when 1, 2 and 4
computing nodes are used. The four tasks are indicated as DM1..DM4, cor-
responding ConjuctiveRule, NaiveBayes, RandomForest and J48 respectively.
The table shows how the tasks are assigned to the computing nodes, as well
as the execution times for each dataset size.

Table 7.2. Task assignments and execution times for the ensemble learning workflow

No of Task assignments Exec. time Exec. time Exec. time
nodes (Node ← Tasks) 100 MB 140 MB 180 MB

1 N1 ← DM1, ..., DM4 1:30:50 2:31:14 3:34:27

2
N1 ← DM1, DM3 1:03:47 1:37:05 2:07:05
N2 ← DM2, DM4

4 N1 ← DMi for 1 ≤ i ≤ 4 46:16 1:13:47 1:37:23

The execution times and speedup values for different number of nodes and
dataset sizes are represented in Fig. 7.9. In this case, the speedup is lower
than that obtained with the parameter sweeping workflow. This is due to the
fact that the four algorithms used require very different amounts of time to
complete their execution on a given dataset. In fact, the overall execution
time is bound to the execution time of the slowest algorithm, thus limiting
the speedup. However, the absolute amount of time saved by running the
application on a distributed environment is still significant, particularly for
the largest dataset when four computing nodes are used.

7.3 Analysis of potential faults

Let us take the example of data mining workflow shown Figure 7.10 built
using the Knowledge Flow component of Weka4WS. The workflow consists of
two classification algorithms, Näıve Bayes and J48, running in parallel and
bound by the user to two different computing nodes at workflow design time.
At execution time, each computing node receives a copy of a dataset, and



104 7 Validation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

421

E
xe

cu
tio

n 
tim

e 
(s

ec
.)

Number of nodes

100 MB
140 MB
180 MB

 1

 1.5

 2

 2.5

421

E
xe

cu
tio

n 
sp

ee
du

p

Number of nodes

100 MB
140 MB
180 MB

Fig. 7.9. Execution times and speedup values for different numbers of nodes and
dataset sizes, for the ensemble learning workflow

after the execution at the computing nodes, the results are sent back to the
user node and displayed through the Text Viewer component.

Fig. 7.10. A data mining workflow example

Table 7.3. Fault Identification Array and Action Recovery.

Knowledge insuff. mem insuff. mem malf. data malf. data

Location resource resource resource workfow

Originator user / sched. res. res. user

Introd. time production production production production

Incid. time t1 t2 t3 t4
Duration perm. trans./ interm./perm. perm. perm.

Severity critical critical marginal major

Caused Behavior crash crash crash crash

Action user alternative resource ignore user



7.3 Analysis of potential faults 105

We assume that the user has some apriori knowledge about the overall
amount of memory required for each algorithm – this may be the size of the
binary (executable) file associated with each algorithm, or based on previous
executions of the algorithm by the same (or other) users. We consider two
different execution scenarios for the workflow in Figure 7.10, both leading to
an insufficient memory fault. In one scenario, the algorithm is enacted on a
machine without enough memory, and in the other the amount of available
memory varies due to other, concurrently sent, external requests. In both
scenarios, the Weka4WS system can detect insufficient memory faults, as an
insufficient memory fault raises a Java exception in the computing node which
is propagated to the workflow enactor (user node).

In the workflow enactor, the fault is intercepted by the fault detector and
redirected to the fault tolerance module (see Figure 6.1), which will try to
extract the fault type from this data and generate a fault identification ar-
ray. The fault identification array exploits the viewpoints from the taxonomy
introduced in Section 6.3. In both scenarios, the array consists of the follow-
ing values: knowledge (known fault, application domain specific, insufficient
memory fault), location (network address of a computing node), and incidence
time (a timestamp of the occurrence). Once these values are populated, the
fault manager will try to find user’s annotations or infer the rest.

At design time, the user will annotate the workflow as a production or test-
ing workflow, so that the introduction time can be obtained from this. As the
severity depends on a user’s perception, let us suppose that the severity for an
insufficient memory fault type has been set as “critical”. Caused behaviour
is a crash (fail-stop) fault because it was detected by internal mechanisms
provided by Weka4WS. The main difference between these two execution sce-
narios, however, lies in the originator, as in the first case it was the user’s
or the meta-scheduler’s responsibility and in the second it was due to the
resource manager at the computing node. The error message received by the
fault manager identifies the memory available at the computing node and
the total memory required to execute the algorithm. By comparing these two
values, it can be determined whether the fault was due to the user / meta-
scheduler (not enough memory) or due to other external requests. Finally,
the duration can also be inferred to some extent: in case the fault was due
to the user, it is clearly a permanent fault (as it is not going to be fixed on
its own after a period of time); whereas in case the fault was due to multiple
external requests leading to the insufficient memory fault, the fault can be
either transient, intermittent or permanent.

Once the fault has been identified, and the array generated, the fault
manager can try to find a matching in its records (as for instance Table 7.3
shows), so that the most suitable action (or a set of actions) can be executed
for the recovery. According to Table 7.3, in the first execution scenario, the
fault manager can report the problem to the user (though, alternatively, the
fault manager could have been set to attempt to find an alternative computing
node with enough memory). For the second scenario, the fault manager is set



106 7 Validation

to find an alternative resource (it could also have been set to attempt to
retry the execution on the same node). Other policies could also apply, for
instance by introducing multiple alternative actions for a fault and introducing
priorities for each action, indicating which action should be attempted first.

7.4 Conclusions

The experimental evaluation conducted by executing some typical data min-
ing patterns has demonstrated the effectiveness of both the Weka4WS and
Knowledge Grid systems to support data mining workflows design and execu-
tion in distributed Grid environments. The use of the fault taxonomy has been
demonstrated through an example of workflow within Weka4WS, considering
two different execution scenarios leading to a fault.



8

Conclusions and Future Work

This thesis originated from our research aimed at providing data mining ser-
vices and workflow systems for analyzing scientific data in a high performance
distributed environment such as the Grid.

We described the design and implementation of Weka4WS, an extension
of Weka which, adopting both WSRF technologies and the services offered
by Globus Toolkit, provides support to the designing of distributed applica-
tions which coordinate the execution of multiple data mining tasks on a set of
Grid nodes. Our framework extends, in particular, the functionalities of the
Knowledge Flow component of Weka which allow users to compose knowledge
discovery workflows made by several algorithms and data analysis processes.
Thanks to the extensions implemented, the Knowledge Flow of Weka4WS al-
lows the parallel execution of the data mining algorithms which are part of the
workflow on several Grid nodes, hence allowing to reduce the execution time,
as ascertained by the performance tests results presented above. Weka4WS
can help reducing the execution time of multiple data mining algorithms also
when used on a single multi-processor and/or multi-core machine.

We described the Knowledge Grid, a software system that we developed
for providing services to execute distributed data mining tasks in Grid envi-
ronments. In particular, we designed and developed the DIS3GNO component
to provide a set of visual programming facilities to design and execute dis-
tributed data mining workflows and to manage the resources of the Knowledge
Grid. All the Knowledge Grid services for metadata access and execution man-
agement are accessed transparently by DIS3GNO, thus allowing the domain
experts to compose and run complex data mining applications without worry-
ing about the underlying infrastructure details. In addition, DIS3GNO allows
the composition of abstract workflows, that is workflows whose nodes may be
not completely specified. In this way, a user can concentrate on the applica-
tion logic, without focusing on the actual datasets or data mining tool to be
used. The Knowledge Grid services will take care of finding the resources that
fit user specifications.

The main contributions of this thesis to the field are:



108 8 Conclusions and Future Work

• the design and implementation of Weka4WS, an extension of a well estab-
lished data mining environment, the Weka toolkit, to allow the execution
its data mining workflows in a Grid: in this way, domain experts can ex-
ploits the computing power and storage capability of a Grid infrastructure
but can focus on designing their data mining applications, without wor-
rying about learning complex tools or languages for Grid submission and
management;

• the definition a workflow formalism and the design and implementation
of a visual environment, called DIS3GNO, for the composition and exe-
cution of data mining tasks on the Knowledge Grid. DIS3GNO provides
mechanisms for publishing and searching the needed resources, creating
and executing data mining workflows whose nodes may also be not fully
specified, thus leaving the Knowledge Grid services the task of finding the
resources that fit user specifications;

• the definition of a fault taxonomy for scientific workflows that may help
in conducting a systematic analysis of faults, so that the potential faults
that may arise at execution time can be corrected.

Experiments have been performed to assess the efficiency of both workflow
systems as well as to test effective design of real data mining applications. The
results of the tests performed have proven their good scalability and that the
overhead introduced by the remote invocations of the algorithms does not
affect significantly the performance of the systems. As for the fault taxonomy
it has been demonstrated through an example of workflow within Weka4WS,
considering two different execution scenarios leading to a fault.

The approaches and the models used have demonstrated the feasibility
of the workflow systems, which are available 1 and are used in the scientific
community.

Future Work

Future developments of this research work are:

• improve the usability of the workflow systems by: (i) giving the user full
control over the use of their data, allowing for example to choose whether
a dataset they own can be maintained on the node where it is processed or
has to be deleted, (ii) increasing the current expressive power of workflow
by adding constructs for flow control, by adding support for hierarchical
workflows and by adding support for workflow templates. The use of work-
flow templates allows the parameters of the workflow nodes to assume a
range of values, and a step of increment, in order to avoid duplication of

1 http://grid.deis.unical.it/

http://grid.deis.unical.it/


8 Conclusions and Future Work 109

branches of the workflow which are very similar thus providing more flex-
ibility in performing various data mining algorithms in parallel;

• improve the efficiency of the workflow systems by: (i) making an efficient
scheduling of the tasks on the grid nodes by using dynamic information
about the resources, (ii) reusing results from past workflows computa-
tions, or portions of workflows, in order to save time in the execution of
new workflows, in case the new ones would contain portions identical to
some executed in the past (this will imply finding efficient ways for the
workflow to automatically generate the metadata about the way the work
was done), (iii) adding support for the adaptive data parallelism, in which
the optimal number of partitions is determined automatically as a function
of the number of available resources on the Grid.





Acknowledgements

During the time of writing of this PhD thesis I received support and help from
many people. In particular, I am thankful to my supervisor, Prof. Domenico
Talia, who was very generous with his time and knowledge and assisted me
in each step to complete the thesis.

I would like to thank also the people of my research group, especially Paolo
Trunfio and Eugenio Cesario, who helped closely during my study period,
giving me motivation and assistance whenever I needed it. Thanks are also
due to Gianluigi Folino and Carlo Mastroianni for their intellectual support,
ideas and feedback.

I am grateful to Prof. Omer F. Rana, who has given me the privilege to
work with him in Cardiff, as well as to Rafael Tolosana for his encouragement
and friendship. To them and to the other friends I met in Cardiff, Ioan Petri,
Sathish Periyasamy and Yaser Alosefer, goes my deepest gratitude for the
intellectual and cultural growth they have provided me.

And finally, but not least, thanks go to my whole family, who have been an
important and indispensable source of moral support, especially my girlfriend,
Claudia Rotella, whose precious presence has been vital to the achievement
of this goal.





References

1. Al Sairafi S, Emmanouil F S, Ghanem M, Giannadakis N, Guo Y, Kalaitzopou-
los D, Osmond M, Rowe A, Syed J, Wendel P, “The Design of Discovery Net:
Towards Open Grid Services for Knowledge Discovery”. Int. Journal of High
Performance Computing Applications, 17(3): 297-315, 2003.

2. Allcock W, Bresnahan J, Kettimuthu R, Link M, Dumitrescu C, Raicu I, Fos-
ter I, “The Globus striped GridFTP framework and server”. Supercomputing
Conference, 2005.

3. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S, “Kepler: an
extensible system for design and execution of scientific workflows”. 16th Inter-
national Conference on Scientific and Statistical Database Management, 2004.

4. Avizienis A, Laprie J C, Randell B, Landwehr C, “Basic Concepts and Tax-
onomy of Dependable and Secure Computing”, IEEE T. on Dep. and Sec.
Comp.1(1): pp. 11-32, 2004.

5. Berman F, “Viewpoint: From TeraGrid to Knowledge Grid”. Communications
of the ACM 44 (11) (2001)27-28.

6. “Business Process Execution Language for Web Services” (BPEL4WS).
http://www.ibm.com/developerworks/library/specification/ws-bpel/
[Visited: 25 November 2010]

7. Bresnahan J, Link M, Khanna G, Imani Z, Kettimuthu R, Foster I, “Globus
GridFTP: What’s New in 2007”. (Invited Paper). Proceedings of the First
International Conference on Networks for Grid Applications (GridNets 2007),
Oct, 2007.

8. Brezany P, Hofer J, Min Tjoa A, Woehrer A, “GridMiner: An Infrastructure
for Data Mining on Computational Grids”. Proc. APAC Conference and Exhi-
bition on Advanced Computing, Grid Applications and eResearch, Queensland,
Australia, 2003.

9. Caeiro-Rodriguez M, Priol T, Nmeth Z,“Dynamicity in scientific workflows”.
Technical report, CoreGRID, 2008.

10. Cannataro M, Talia D, “The Knowledge Grid”. Communitations of the ACM,
vol. 46, n. 1, pp. 89-93, 2003.

11. Chan P, Stolfo S J, “A Comparative Evaluation of Voting and Meta-learning on
Partitioned Data”. 12th International Conference on Machine Learning, 1995.

12. Chapman P, Clinton J, Kerber R, Khabaza T, Reinart T, Shearer C, Wirth R,
“CRISP-DM Step-by-Step Data Mining Guide”, 2000.

http://www.ibm.com/developerworks/library/specification/ws-bpel/


114 References

http://www.crisp-dm.org/CRISPWP-0800.pdf
[Visited: 25 November 2010]

13. Churches D, Gombas G, Harrison A, Maassen J, Robinson C, Shields M, Tay-
lor I, Wang I, “Programming scientific and distributed workflow with Triana
services: Research articles”. Concurrency and Computation: Practice & Expe-
rience, 18(10):1021-1037, 2006.

14. Cristian F, “Understanding fault-tolerant distributed systems”. Commun. ACM
34, 2, 56-78, February, 1991.

15. Congiusta A, Talia D, Trunfio P, “Distributed data mining services leveraging
WSRF”. Future Generation Computer Systems, vol. 23, n. 1. Elsevier Science:
34-41, 2007.

16. Congiusta A, Talia D, Trunfio P, “Using Grids for Distributed Knowledge Dis-
covery”. In: Mathematical Methods for Knowledge Discovery and Data Mining,
(eds) Felici G, Vercellis. IGI Global, 284-298, 2007.

17. Czajkowski K, et al. (2006) The WS-Resource Framework Version 1.0.
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf
[Visited: 25 November 2010]

18. Czajkowski K, Ferguson D F, Foster I, Frey J, Graham S, Sedukhin I, Snelling
D, Tuecke S, Vambenepe W, “The WS-Resource Framework”. March 5, 2004.

19. Deelman E, Blythe J, Gil Y, Kesselman C, Mehta G, Patil S, Su M H, Vahi
K, Livny M, “Pegasus: Mapping Scientific Workflows onto the Grid”. Across
Grids Conference, 2004.

20. Deelman E, Mehta G, Singh G, Su M, Vahi K (2007). “Mapping Large-Scale
Workflows to Distributed Resources”, in Workflows for eScience, pp 376-394.
Springer, 2006.

21. Djorgovski S G, “Virtual Astronomy, Information Technology, and the New
Scientific Methodology”. Proc. 7th Int. Workshop on Computer Architectures
for Machine Perception, 2005.

22. Duan R, Prodan R, Fahringer T,“Dee: A distributed fault tolerant workflow
enactment engine for grid computing”. In (eds)Yang LT, Rana O F, Martino
B D, Dongarra J, High Performance Computing and Communications, First
International Conference, HPCC 2005, Sorrento, Italy, September 21-23, 2005,
Proceedings, volume 3726 of Lecture Notes in Computer Science, pp 704-716.
Springer, 2005.

23. Fahringer T, Jugravu A, Pllana S, Prodan R, Seragiotto Junior C, Truong H L,
“ASKALON: A Tool Set for Cluster and Grid Computing”. Concurrency and
Computation: Practice & Experience, vol. 17, n. 2-4, 2005.

24. Fayyad U M, et al “From data mining to knowledge discovery: an overview”. In
Fayyad, (eds) U. M.et al, Advances in knowledge discovery and data mining.
AAAI Press / The MIT Press, 1996.

25. Felix C. Gärtner.“Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments”. ACM Comput. Surv. 31, 1 (March 1999), 1-26.

26. Feller M, Foster I, Martin S, “GT4 GRAM: A Functionality and Performance
Study”.

27. Foster I. “Globus Toolkit Version 4: Software for service-oriented systems”.
Conference on Network and Parallel Computing, LNCS 3779, 2005.

28. Foster I,“What is the grid? a three point checklist”. GRIDToday, July, 2002.
29. Foster I, Kesselman C, Nick J, Tuecke S, “The Physiology of the Grid”. In: (eds)

Berman F, Fox G, Hey A, Grid Computing: Making the Global Infrastructure
a Reality, Wiley: 217-249, 2003.

http://www.crisp-dm.org/CRISPWP-0800.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf


References 115

30. Foster I, Kishimoto H, Savva A, Berry D, Djaoui A, Grimshaw A, Horn B,
Maciel F, Siebenlist F, Subramaniam R, Treadwell J, Von Reich J, “The Open
Grid Services Architecture, Version 1.0”. Informational Document, Global Grid
Forum (GGF), January 29, 2005.

31. Foster I, Vöckler JS, Wilde M, Zhao Y (2002), “Chimera: A virtual data system
for representing, querying, and automating data derivation”. In Proceedings of
the 14th International Conference on Scientific and Statistical Database Man-
agement, July 24-26, 2002, Edinburgh, Scotland, UK, pp 37-46. IEEE Computer
Society.

32. Fox G C, Gannon D, “Special Issue: Workflow in Grid Systems”. Con-
currency and Computation: Practice and Experience, 18: 1009-1019. doi:
10.1002/cpe.1019, 2006.

33. Gärtner F C, “Fundamentals of Fault-Tolerant Distributed Computing in Asyn-
chronous Environments”. ACM Computing Surveys, 31(1), 1-26, 1999.

34. Gelernter D, “Generative communication in linda”. ACM Trans. Program.
Lang. Syst., 7(1):80-112, 1985.

35. Gil Y, Ratnakar V, Deelman E, Mehta G, Kim J,“Wings for Pegasus: Creating
large-scale scientific applications using semantic representations of computa-
tional workflows”. In Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada,
pp 1767-1774. AAAI Press, 2007b.

36. Graham S, et al. (2004) Publish-Subscribe Notification for Web services.
http://www.oasis-open.org/committees/download.php/6661/WSNpubsub-1-
0.pdf
[Visited: 25 November 2010]

37. Grossman R L, Kamath C, Kegelmeyer P, Kumar V, Namburu R R, “Data min-
ing for scientific and engineering applications”. Kluwer Academic Publishers,
2001.

38. Guan Z, Hernandez F, Bangalore P, Gray J, Skjellum A, Velusamy V, Liu Y,
“Grid-Flow: a Grid-enabled scientific workflow system with a Petri-net-based
interface: Research Articles”. Concurr. Comput. : Pract. Exper. 18, 10 (August
2006), 1115-1140, 2006.

39. Guan Z, Liu Y, Velusamy V, Bangalore P V, “WebRun: A unified platform
supporting Grid computing environment”. Technical Report UABCIS-TR-2004-
1404-1, Department of Computer and Information Sciences, University of Al-
abama at Birmingham, 2004.

40. Hand D, Mannila H, Smyth P,“Principles of Data Mining”. MIT Press, 2001.
41. Hettich S, Bay S D, The UCI KDD Archive, University of California, Depart-

ment of Information and Computer Science.
http://kdd.ics.uci.edu
[Visited: 25 November 2010]

42. Hofer J, Fahringer T, “A multi-perspective taxonomy for systematic classifica-
tion of grid faults”. In 6th Conf. PDP, pp 126-130. IEEE Comp. Soc., 2008.

43. Hofer J, Fahringer T, “Synthesizing Byzantine Fault-Tolerant Grid Application
Wrapper Services”. In Int Conf on CCGRID 2008, pp 467-474, IEEE Computer
Society, 2008

44. Hoheisel A, Alt M, “Petri Nets” in Workflows for eScience, pp 190-207.
Springer-Verlag, 2006.

45. Hoheisel A,“User tools and languages for graph-based grid workflows: Research
articles”. Concurr. Comput. : Pract. Exper., 18(10):1101-1113, 2006.

http://www.oasis-open.org/committees/download.php/6661/WSNpubsub-1-0.pdf
http://www.oasis-open.org/committees/download.php/6661/WSNpubsub-1-0.pdf
http://kdd.ics.uci.edu


116 References

46. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock M, Li P, Oinn T, “Taverna:
a tool for building and running workflows of services”. Nucleic Acids Research,
vol. 34, Web Server issue, pp. 729-732, 2006.

47. Jensen K, Rozenberg G, (eds), “High-level Petri nets: theory and application”.
Springer-Verlag, London, UK, 1991.

48. Johnston W E, “Computational and Data Grids in Large Scale Science and
Engineering”. Future Generation Computer Systems 18 (8) (2002), 1085-1100.

49. Kamath C, “Scientific Data Mining: A Practical Perspective”. SIAM, 2009.
50. Kargupta H, Park B, Hershberger D, Johnson E, “A New Perspective toward

Distributed Data Mining”. In: Advances in Distributed and Parallel Knowledge
Discovery, (eds) Kargupta H, Chan P. AAAI/MIT Press, 133-184, 2000.

51. Kesselmann C,Foster I, Tuecke S, “The anatomy of the grid: Enabling scalable
virtual organizations”. International J. Supercomputer Applications, 2001.

52. Khalaf R, Keller A, Leymann F, “Business processes for Web services: princi-
ples and applications”. IBM Syst. J., 45(2):425-446, 2006.

53. Kosiedowski M, Kurowski K, Mazurek C, Nabrzyski J, Pukacki J, “Workflow
applications in GridLab and PROGRESS projects”. In Concurrency and Com-
putation: Practice and Experience, 18, 10 (August 2006), 1141-1154.

54. Lackovic M, Talia D, Trunfio P, “A Framework for Composing Knowledge Dis-
covery Workflows in Grids”. In: Foundations of Computational Intelligence Vol
6: Data Mining Theoretical Foundations and Applications, Studies in Compu-
tational Intelligence, Abraham A, Hassanien A, Carvalho A, Snášel V (Editors),
Springer, 2009.

55. Lackovic M, Talia D, Trunfio P, “Service Oriented KDD: A Framework for Grid
Data Mining Workflows”. 10th International Workshop on High Performance
Data Mining, 2008.

56. Lamport L, “Proving the correctness of multiprocess programs”. IEEE Trans.
Softw. Eng. 3, 2, 125-143, Mar 1977.

57. Lee E A, Neuendorffer S, “Actor-oriented models for codesign: Balancing re-use
and performance”. In Formal Methods and Models for System Design. Kluwer,
2004.

58. Lee K, Paton N, Sakellariou R, Deelman E, Fernandes A, Mehta G, “Adap-
tive workflow processing and execution in Pegasus”. In Third International
Workshop on Workflow Management and Applications in Grid Environments
(WaGe08), May 25-28, 2008, Kunming, China, pp 99-106.

59. Leymann F, Roller D,“Modeling business processes with BPEL4WS”. Inf. Syst.
E-Business Management, 4(3):265-284, 2006.

60. Ludscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee E A,
Tao J, Zhao Y. “Scientific workflow management and the Kepler system”. In
Concurrency and Computation: Practice & Experience, 2005.

61. Mastroianni C, Talia D, Trunfio P, “Metadata for Managing Grid Resources in
Data Mining Applications”. Journal of Grid Computing 2 (1) (2004), 85-102.

62. McCann K M, Yarrow M, DeVivo A, Mehrotra P, “ScyFlow: An Environment
for the Visual Specification and Execution of Scientific Workflows”. Concur-
rency and Computation: Practice and Experience, 18: 1155-1167, 2006.

63. McGough A S, Lee W, Cohen J, Katsiri E, Darlington J,“ICENI ” in Workflows
for eScience, pp 395-415. Springer-Verlag, 2006.

64. Meyer F, “Genome Sequencing vs. Moore’s Law: Cyber Challenges for the Next
Decade”. CTWatch Quarterly 2 3, 2006.



References 117

65. Moore R, “Knowledge-based Grids”. Proc. 18th IEEE Symposium on Mass
Storage Systems and 9th Goddard Conference on Mass Storage Systems and
Technologies, 2001.

66. Ngu A, Bowers S, Haasch N, McPhillips T, Critchlow T, “Flexible scientific
workflow modeling using frames, templates, and dynamic embedding”. In Sci-
entific and Statistical Database Management, pp 566-572, 2008.

67. Oinn T, Greenwood M, Addis M, Alpdemir MN, Ferris J, Glover K, Goble C,
Goderis A, Hull D, Marvin D, Li P, Lord P, Pocock MR, Senger M, Stevens R,
Wipat A, Wroe C. “Taverna: lessons in creating a workflow environment for
the life sciences: Research articles”. Concurrency and Computation: Practice
and Experience, 18(10):1067-1100, 2006.

68. Pautasso C, Alonso G, “Parallel Computing Patterns for Grid Workflows”.
Workshop on Workflows in Support of Large-Scale Science, 2006.

69. Pease M, Shostak R, Lamport L, “Reaching Agreement in the Presence of
Faults”. J. ACM 27, 2 (April 1980), 228-234, 1980.

70. Plankensteiner K, Prodan R, Fahringer T, Kertesz A, “Kacsuk: Fault-tolerant
behavior in state-of-the-art Grid Workflow Management Systems”. TR-0091,
Core-GRID, 2007.

71. Prodromidis A L, Chan P K, Stolfo S J, “Meta-learning in Distributed Data
Mining Systems: Issues and Approaches”. In: Advances in Distributed and Par-
allel Knowledge Discovery, (eds) Kargupta H, Chan P. AAAI/MIT Press, 81-87,
2000.

72. Shields M, Taylor I, “Programming Scientific and Distributed Workflow with
Triana Services”. Workflow in Grid Systems Workshop in GGF10, 2004.

73. Schuller B, Demuth B, Mix H, Rasch K, Romberg M, Sild S, Maran U, Bala P,
del Grosso E, Casalegno M, Piclin N, Pintore M, Sudholt W, Baldridge K K,
“Chemomentum - UNICORE 6 based infrastructure for complex applications
in science and technology”. Proceedings of 3rd UNICORE Summit 2007 in
Springer LNCS 4854, Euro-Par 2007 Workshops: Parallel Processing, pp. 82-
93.

74. Siddiqui M, Fahringer T, “Grid Resource Management: On-demand Provision-
ing, Advance Reservation, and Capacity Planning of Grid Resources”. Springer,
2010.

75. Stankovskia V, Swainb M, Kravtsovc V, Niessend T, Wegenerd D et al., “Grid-
enabling data mining applications with DataMiningGrid: An architectural per-
spective”. Future Generation Computer Systems 24 (4) (2008), 259-279.

76. Streit A, Bala P, Beck-Ratzka A, Benedyczak K, Bergmann S, et al. “UNI-
CORE 6 Recent and Future Advancements”. In Annals of Telecommunications,
Springer Paris, 2010.

77. Talia D, Trunfio P, “How Distributed Data Mining Tasks can Thrive as Knowl-
edge Services”. Communications of the ACM 53 (7) (2010), 132-137.

78. Talia D, Trunfio P, Verta O, “The Weka4WS framework for distributed data
mining in service-oriented Grids”. Concurrency and Computation: Practice and
Experience, 20(16) (2008), 1933-1951.

79. Tan P N, Steinbach M, Kumar V, “Introduction to Data Mining”. Addison-
Wesley, 2006.

80. Tanenbaum A S, van Steen M, “Distributed Systems: Principles and
Paradigms”. Prentice Hall International, 2008.



118 References

81. Taylor I, Shields M, Wang I, Harrison A, “The Triana Workflow Environ-
ment: Architecture and Applications”. In: (eds) Taylor I, Deelman E, Gannon
D, Shields M. Workflows for e-Science, Springer: 320-339, 2007.

82. Thompson H S, “What’s a URI and why does it matter?”. School of
Informatics, University of Edinburgh, Markup Systems, 26 August 2010
http://www.ltg.ed.ac.uk/∼ht/WhatAreURIs/
[Visited: 25 November 2010]

83. Tolosana-Calasanz R, Bañares J A, Rana O F, Álvarez P, Ezpeleta J, Hoheisel
A,“Adaptive exception handling for scientific workflows”. Concurr. Comput. :
Pract. Exper. 22, 5 (April 2010), 617-642, 2010.

84. Tolosana-Calasanz R, Bañares J A, Álvarez P, Ezpeleta J, Rana O F, “An un-
coordinated asynchronous checkpointing model for hierarchical scientific work-
flows”. J. Comput. Syst. Sci. 76, 6 (September 2010), 403-415, 2010.

85. Valk R, “Petri nets as token objects: An introduction to elementary object nets”.
In (eds) Desel J, Silva M, Application and Theory of Petri Nets 1998, 19th In-
ternational Conference, ICATPN 98, Lisbon, Portugal, June 22-26, 1998, Pro-
ceedings, volume 1420 of Lecture Notes in Computer Science, pp 1-25. Springer,
1998.

86. Von Laszewski G, Amin K, Hampton S, Nijsure S, “GridAnt - White Paper”.
Technical report, Argonne National Laboratory, Argonne, IL., July 2002.

87. Von Laszewski G, Hategan M, Kodeboyina D,“Java CoG Kit Workflow”, in
Workflows for eScience, pp 340-356. Springer-Verlag, 2006.

88. Web Services Base Notification 1.3 (2006) OASIS Standard
http://docs.oasis-open.org/wsn/wsn-ws base notification-1.3-spec-os.pdf
[Visited: 25 November 2010]

89. Witten H, Frank E, “Data Mining: Practical machine learning tools with Java
implementations”. Morgan Kaufmann, 2000.

90. Yu J, Buyya R, “A Novel Architecture for Realizing Grid Workflow using Tuple
Spaces”. In Fifth IEEE/ACM International Workshop on Grid Computing,
pages 119-128. IEEE Computer Society Press: Los Alamitos, CA, 2004.

91. Zhang X, Schopf J. “Performance Analysis of the Globus Toolkit Monitoring
and Discovery Service, MDS2”. Proceedings of the International Workshop on
Middleware Performance (MP 2004), part of the 23rd International Perfor-
mance Computing and Communications Workshop (IPCCC), April 2004.

92. Zhou Z H,“Semi-supervised learning by disagreement”. 4th IEEE International
Conference on Granular Computing, pp. 93, 2008.

http://www.ltg.ed.ac.uk/~ht/WhatAreURIs/
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

	Introduction
	Problem context
	Motivation
	Objectives of the Research
	Weka4WS
	Knowledge Grid
	Fault Tolerance

	Publications
	Book Chapters
	Papers in refereed conference proceedings

	Organization of the Thesis

	Background
	Data Mining
	Examples of applications
	The data mining process model
	Data mining techniques
	Distributed Data Mining

	Grid computing
	Grid History
	Grid Architecture
	OGSA
	Web Services
	WSRF
	Globus Toolkit

	Workflows
	Workflow Levels
	Workflow Models

	Fault Tolerance
	Failure Models
	Failure Masking
	Failure Detection
	Failure Recovery


	Related Work
	Askalon
	DVega
	GridAnt
	Gridbus
	Grid-Flow
	GWES
	GRMS
	ICENI
	Java CoG Kit-Karajan
	Kepler
	Pegasus
	Taverna
	Triana
	ScyFlow
	UNICORE Rich Client
	Grid-based Data Mining

	Weka4WS
	System Goals
	System Architecture
	User node
	Computing node

	Graphical User Interface
	Explorer
	Knowledge Flow

	How the system works
	Supporting data-parallel workflows
	Conclusions

	Knowledge Grid
	The DIS3GNO System
	Workflow Representation
	Workflow Composition
	Execution Management

	Conclusions

	Workflow level fault tolerance
	Methodology
	Weka4WS extended architecture
	Faults Taxonomy
	Fault identification
	Corrective Actions
	Fault detection & monitoring
	Conclusions

	Validation
	Weka4WS use cases and performance
	Classification workflow
	Clustering workflow
	Execution on a multi-core machine

	Knowledge Grid use cases and performance
	Parameter sweeping workflow
	Ensemble learning workflow

	Analysis of potential faults
	Conclusions

	Conclusions and Future Work
	References

