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Introduction

The modern scientific age begins in XVI century when N. Copernicus suggests

that it is the Sun, rather than Earth, the center of the solar system; it is

the first time that observations and experiments take the place of religious or

philosophical dogma in order to explain natural phenomena. In XVII century I.

Newton expressed the laws of nature in quantitative form and used mathemat-

ics to deduce the motion of physical systems: to each physical system a certain

number of dynamical variables are associated, possessing, at each instant, a

well-defined value; the specification of this set of values defines the dynamical

state of the system at any instant. The time evolution of the system is postu-

lated to be completely determined by the equations of motion if the state at

a given initial time is known. This mathematical approach culminates in XIX

century when J.C. Maxwell shows that all phenomena about electricity and

magnetism can be deduced from four equations (Maxwell’s equations, 1855).

Now it seems that every phenomenon is governed by well known equations:

matter, made up of localizable particle, is subject to Newton’s laws; radiation

obeys to Maxwell’s laws and, in contrast to matter, it exhibits a wave-like

behaviour which manifest itself through phenomena of interference and dif-

fraction. At the end of XIX century, efforts of physicists had the purpose, at

first, to make a precise analysis of the microscopic structure of matter and,
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then, to determine the interaction of particles with the electromagnetic field;

after the discovery of the electron (J.J. Thomson, 1897), a complete theory of

such an interaction is established in the electron theory of Lorentz [1]. From

now on, decisive progresses (study of Brownian motion, determination of Avo-

gadro’s number, measurement of elementary electromagnetic charge by Mil-

likan, Geiger counter, etc.) confirm the existence of atoms and molecules. On

the other hand, new advances in spectral analysis of radiation are established

by the discovery of x-rays (Röntgen, 1895). However, as studies in matter and

radiation becomes more and more precise, the comparison of the prediction

of the theory with the experimental results reveals a deep disagreement. As

a matter of fact, classical theory is not able to justify the energy distribution

in the continuous spectrum of black-body radiation (a detailed study is in [2])

arising from experimental observations. The study of such a phenomenon led

Planck (1900) to give up the classical laws of interaction between matter and

radiation, and to postulate that they cannot exchange energy with each other

in continuous manner but by discrete quantities, called quanta; moreover, he

showed that the quantum of energy must be proportional to the frequency ν

of the radiation, ε = hν, where h is known as Planck’s constant. Taking an

opposite view, the study of the photoelectric effect led Einstein (1905) to pos-

tulate that light radiation itself consists of a beam of particles, light quanta or

photon of energy E = hν and velocity c, hypothesis confirmed by the Compton

effect (1924). From experimental results, it turns out that light exhibits both

particle and wave-like behaviour, depending upon the phenomenon under con-

sideration. The acceptance of wave-particle duality induced Bohr to develop

his idea of complementarity: the two descriptions are mutually exclusive but
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necessary for an exhaustive treatment of a quantum physical system; more-

over, this kind of duality arises from the indeterminateness of the concept of

observation: it is impossible to separate the object to be observed from the

effect of the measuring apparatus that must be expressed in classical terms;

furthermore, the observation depends upon the chosen experimental set-up

(for a detailed description of the conceptual development of quantum theory

see [3]).

The physical situation better describing wave-particle duality is double-slit

experiment; it is an ideal experiment, i.e. simple in principle and disregarding

the difficulties of actually doing it, whose set-up consists of two screens placed

in front of each other; the first is endowed with two slits, labeled slit 1 and slit

2 ; a beam of electrons passes through the first screen and then they impinge

on the second one. Let us suppose that the intensity of the beam is very low,

so that electrons arrive one at a time; we are interested in the distribution of

the electrons on the final screen. If we close slit 2 and measure the distribution

D1 of the electrons on the final screen, with only slit 1 open, we find the curve

in figure 1.a; similarly, if slit 1 is closed and we measure the distribution D2

of the electrons with only slit 2 open, we find curve in figure 1.b. If both slits

are open, we are lead to suppose that, since electrons behave as particles, each

of them either goes through slit 1 or it goes through slit 2; assuming such a

proposition, we expect that the total distribution D12 of the electrons on the

final screen is given by the sum of the previous distributions, D12 = D1 + D2

(figure 1.c); however, by direct measurement, the observed distribution D

(figure 1.d) is not in agreement with the expected D12. It is in this sense that

that electrons behave sometimes like particles and sometimes like wave.

This kind of experiment makes evident that a description of physical reality
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(a) (b)  (c)  (d)

Figure 1. Classical reasoning: a) slit 2 closed; b) slit 1 closed; c) both slits
open

in classical term is not possible; a new and shaking formulation is needed. The

problem of its construction, in the first twenty-five years of XX century, cul-

minates between 1923 and 1927 with more than one formulation of Quantum

Theory; the wave mechanics, proposed by Schrödinger and the matrix mechan-

ics of Heisenberg are the main ones; however, the more rigorous and elegant

formulation, presented for the first time in 1927, is due to Von Neumann. He

develops an axiomatic theory of abstract Hilbert spaces which makes possible

to reformulate a statistical foundation of quantum mechanics. In such a man-

ner, observables and expectation values, represented in mathematical terms

by self-adjoint operators on Hilbert spaces and measurable functions respec-

tively, take the place of the dynamical variables of classical physics and its

well-defined values.

A deep abstraction characterizes quantum theory, that, this notwithstand-

ing, provides the key for the explanation of the unsolved phenomena, in perfect
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agreement with experience. Coherently with the theory, no contradiction arises

from double-slit experiment: there are some properties that make sense for a

system, and some others that do not; in presence of the interference pattern

(figure 1.c) the property of the passage through which slit (that from now on we

shall indicate as WS property) does not make sense and, similarly, the knowl-

edge of which slit the particle passes through makes the interference pattern

without sense. Moreover, the point of impact on the final screen and WS prop-

erty are complementary observables so that, according to the formal definition

of complementarity provided in the eighties by Busch and Lahti, there exists

no measurement apparatus providing knowledge about both of them. Though

no direct measurement is allowed, several devices are conceived over the years

providing indirect knowledge of WS property; among them, the experiment,

conceived in 1991 by Englert, Scully and Walther (ESW) [4], provides WS

knowledge by exploiting recent advances in quantum optics. The experiment

works as follows: instead of measuring WS property, represented by the pro-

jection operator E, a different property, represented by T , correlated with it

and compatible with the measurement of the final impact point, is measured;

in such a manner, inferences about WS property E can be made by means

of the outcome of T and no interference appears, of course. An alternative

set-up of ESW experiment makes possible to indirectly ascertain a different

property L, incompatible with WS one, by means of a second supplementary

measurement V , restoring interference pattern for those particles which turn

out to have this alternative property.

In this work we face the question of ascertaining together more incompat-

ible properties by exploiting the notion of detector, within the framework of

double-slit experiment. Namely, we shall show that WS knowledge can be
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ascertained together with an incompatible property G, by means of two sup-

plementary measurement T (for E) and Y (for G); in such a manner, three

incompatible properties, E, G and the final impact point, can be inferred to-

gether by means of two simultaneous measurements, T and Y . This kind of

detection is made possible by the fact that besides the position of the centre-

of-mass, our system possesses further degrees of freedom. As a consequence,

the Hilbert space describing the entire system can be decomposed as HI⊗HII ,

where HI is the Hilbert space used to represent the position observable, and

HII is the Hilbert space used to represent the observable arising from the fur-

ther degrees of freedom. The detection of Which Slit property E is obtained by

measuring an observable represented by a particular projection operator T act-

ing on HII , which is correlated, in the particular quantum state of the system,

with which-slit property, so that this last can be inferred from the outcome of

T . This kind of detection was studied from a mathematical point of view in

[5] and [6], where the interpretative questions were analyzed. The possibility

of detecting an incompatible property G is provided by the existence of an

observable represented by another projection operator Y acting on HII , but

which can be measured together with T . A systematic investigation establishes

that the existence of such an observable (projection operator) depends on the

dimension of space HI . In particular, no solution exists if dim(HI) < 4; they

exist but are correlated if dim(HI) = 4 [7]; they exist, also non correlated for

dim(HI) = 6 [8]. We notice that our approach to the problem of inferring the

outcomes of more incompatible properties is not the only one. In [9], Vaidman

and his co-workers (VAA) describe a procedure allowing to make inferences

about the three cartesian spin-components of a spin-1
2

particle. However, this

kind of inferences are of a quite different nature with respect to the detections
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we are dealing with in the present work; moreover, VAA claim that, coherently

with their method, it is not possible to produces inferences about more than

three observables. For this reason, the question whether two mutually incom-

patible properties, G and L, both incompatible with Which Slit property E,

can be detected, together with the measurement of the final impact point (four

incompatible properties), is investigated. In particular, we show that such a

question has an affirmative answer; as in the previous case, the existence of

solutions depends on dimension of space HI ; we find a particular solution for

dim(HI) = 10, nevertheless, in such a case the properties L and G turn out

to be correlated.

The content of this thesis is organized in three chapters.

In chapter 1 Von Neumann theory is presented, in a modern form; once

introduced the axiomatic basis (sect. 1.1), an essential tool in order to in-

vestigate the properties of self-adjoint operators, hence of observables, is the

spectral representation theorem (sec 1.2); density operators are the mathemat-

ical representation of the expectation values (sect. 1.3); for these reasons either

observables and expectation values are strictly linked to projection operators,

which represent the particular class of 0-1 observables, interpreted as properties

that the physical system may or may not possesses (sect. 1.4 and 1.5). Taking

into account the system of axioms of the Von Neumann approach, several con-

sequences follow: since the algebraic structure of self-adjoint operators is not

commutative, then it is not possible to measure on an individual specimen of

the physical system (we shall say simultaneously) all the observables but only

those corresponding to commutative self-adjoint operators (sect. 1.6). Hence,

in a natural manner, the concept of complementarity is introduced, following

the approach proposed by Busch and Lahti (sect. 1.8). This chapter has an
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introductory character; its role is to illustrate the notions involved in the thesis

and to establish the notation. It could be skipped by the reader well aware of

Quantum Mechanics.

In chapter 2 we examine the double-slit experiment, according to the quan-

tum theory; after a detailed mathematical description, we can see that empiri-

cal results are perfectly in agreement with the quantum theoretical predictions

(sect. 2.2); moreover, now we are able to solve the interpretative question, re-

mained open, about fig.1: WS property cannot be measured together with the

final impact point because they are complementary observables (sect. 2.3);

indirect WS knowledge can be obtained if, instead of measuring it, a differ-

ent property T is measured, compatible with the measurement of the final

impact point and correlated with WS property; this is the idea beyond ESW

experiment (sect. 2.4).

In chapter 3 the question of ascertaining together more incompatible prop-

erties is investigated, in the framework of the double-slit experiment, by means

of the notion of detector. At first, an ideal experiment where a property L,

incompatible with WS property, is detected together with the measurement

of the final impact point and together with the detection of WS property is

presented; however in the situation envisaged (similar to ESW experiment) the

two detections turn out to be correlated (sect. 3.2). Then, a systematic inves-

tigation of the problem of ascertaining together WS property, an incompatible

one G and the final impact point (three incompatible properties) is carried out

(sect. 3.3). We have to stress the difference between the nature of inferences

provided by our method of attaining indirect knowledge with respect to other

ones. In particular, we refer to VAA procedure (sect. 3.4); since it is inad-

equate for the detection of more than three observables, we treat the case of

8



four incompatible properties in the same kind of ideal experiment described in

sect. 3.3, showing that it has affirmative answer (sect. 3.5).

9



10



Chapter 1

Formulation and Interpretation

of Quantum Theory

Since the birth of Quantum Mechanics, several formulations of the theory

were developed; the main ones are the wave mechanics, proposed by Erwin

Schrödinger [10, 11, 12], and the matrix mechanics of Werner Heisenberg [13];

whereas the starting point of this last is a critical analysis of the old theories,

Schrödinger’s formulation originates from the works of L. de Broglie on matter

waves [14]. As pointed out by Schrödinger himself [11], although apparently

different, these are two equivalent formulations of a more general theory whose

formalism is due to Dirac [15]. However, the more rigorous and elegant for-

mulation of Quantum Theory is due to Von Neumann [16]; the basic idea is

to found the theory on a system of axioms, so that every valid assertion must

be proved as consequence of these assumptions. A deep abstraction arises

because it is formulated by means of the Hilbert space theory. We will see,

in fact, that measurable physical magnitudes are represented by self-adjoint

operators on a suitable Hilbert space. A strict link exists between Quantum
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1 – Formulation and Interpretation of Quantum Theory

Mechanics and the spectral theory; a particularly important role is played by

the spectral theorem for self-adjoint operators, according to which self-adjoint

operators can be decomposed in terms of projections operators.

In spite of its deep abstraction, this theory turns out to agree with empirical

results. It is introduced here in a modern and suitable version.

1.1 Von Neumann Theory

The basic concepts of Von Neumann theory are essentially two:

Observables. By observable we mean any physical magnitude measur-

able, by means of a concrete apparatus, on individual specimens of the

physical system under investigation, and having real numbers as out-

comes; position, momentum along a direction, energy are examples of

observables. Let O be the set of all observables.

Expectation Value of observables or R-functions. By expectation value

we mean a function Ev : O → IR assigning a numerical value Ev(R)

to every observable R, to be interpreted as the expectation value of the

observableR: thus any expectation value Ev must be referred to a statis-

tical ensemble of physical systems. The following physical interpretation

of the notion of expectation value is adopted: let N be an ensemble of

individual physical system corresponding to an expectation value Ev;

the measurement of every observable R on the sub-ensemble N1, made

up of n1 physical systems, provides n1 outcomes a1,a2, . . . ,an1 , whose

mean value (statistical concept) 〈R〉N1 =
∑n1

i=1 ai/n1 converges to the

expectation value Ev(R) (probabilistic concept) as n1 →∞.

12



1 – Formulation and Interpretation of Quantum Theory

For a physical system, more than one expectation value exists: different ex-

pectation values correspond to different ways of preparing - in a laboratory or

by a natural process - ensembles of physical systems. As noticed by Ballentine

[17], the ensembles at issue are different from those used in classical statistical

mechanics, where an ensemble is a virtual set of copies of the physical system

used for calculations whose results are interpreted as a measurement on a sin-

gle system. In Quantum Theory, the ensemble is the set of all systems which

have undergone the same preparation technique, generally by interaction with

a suitable apparatus; these physical systems are similar in their properties,

but not in all of them: thus, in general, the theory does not make predictions

about a single measurement, but rather it establishes the probability of each

possible outcome; then, in general, its prediction can be verified by repeating

the preparation and the measurement many times, and then constructing the

statistical distribution of the results.

Further assumptions, induced by the interpretation of the concepts of ob-

servable and expectation value, are the following:

- Given an observable R, we can introduce the set
∼
σR of its possible out-

comes (said physical spectrum); in correspondence with each function

f :
∼
σR → IR, there is another observable, denoted by f(R), whose out-

comes are obtained by applying the function f to the outcomes of R; we

notice that, if f is injective, R and f(R) measure the same magnitude,

by using two different scales.

- The set of R-functions is endowed with a convex operation: if

{Ev1,Ev2, . . .} is a countable set of R-functions, then
∑

i αiEvi, where

αi ≥ 0 and
∑

i αi = 1, is a R-function too, corresponding to the en-

semble obtained by making a mixture with statistical weights αi of the

13



1 – Formulation and Interpretation of Quantum Theory

statistical ensembles of physical systems corresponding to the Evi.

Von Neumann theory is based on the following axioms:

Axiom 1. Given a physical system, a complex and separable Hilbert space H
can be associated to it such that to every observable R there corresponds one,

and only one, self-adjoint operator R of H. The correspondence is bijective.

Axiom 2. Let R be an observable and f :
∼
σR → IR a measurable function; if

R is represented by the operator R, then f(R) is represented by the operator

f(R) =
∫
IR

f(λ)dER(λ), where ER(λ) denote the spectral resolution of R.

Axiom 3. Let R, S, . . ., be observables represented by the operators R, S,

. . ., then there exists another observable, denoted by R + S + . . ., which is

represented by the operator R + S + . . ..

Axiom 4. If R is a non-negative quantity, then Ev(R) ≥ 0.

Axiom 5. For every R-function Ev, Ev(aR+bS+. . .) = aEv(R)+bEv(S)+

. . ., where R, S, . . . are observables and a, b, . . . are numbers.

Axiom 1 states that observables of a physical system are represented, in

mathematical framework, by self-adjoint operators. Axioms 2-5 establish a

strong link between the algebraic structure of the set of observables and that

of the self-adjoint operators of H.

1.2 Spectral Representation

Because of the correspondence between observables and self-adjoint operators,

it is useful to investigate the properties of such operators on a Hilbert space.

14



1 – Formulation and Interpretation of Quantum Theory

According to the spectral representation theorem [16], each self-adjoint oper-

ator can be analyzed in term of more simple operators (projection operators):

Theorem 1 (Spectral representation). For every self-adjoint operator R

with spectrum σ(R) there exists a unique family of projections {ER(λ)|λ ∈
σ(R)} (spectral resolution), increasing in λ with ER(−∞) = 0 and ER(∞) =

1, such that R =
∫ +∞
−∞ λdER(λ).

The integral is to be understood in the sense that ∀ψ ∈ DR,

〈ψ | Rψ〉 =

∫ +∞

−∞
λd〈ψ | ER(λ)ψ〉

according to the Lebesgue-Stieltjes integral. In particular:

- if ER is non-increasing in λ0, i.e. if δ > 0 exists such that ER
λ =

ER
λ0

∀λ ∈ (λ0 − δ,λ0 + δ), then λ0 /∈ σ(R) or, equivalently, λ0 ∈ ρ(R)

(ρ(R) is the resolvent set);

- if ER is increasing and continuous in λ0, then λ0 is in the continuous

spectrum;

- if ER is increasing and not continuous in λ0, then λ0 is in the point

spectrum, i.e. λ0 is an eigenvalue;

1.3 States and density operators

The mathematical representation of the expectation values makes use of the

density operators :

Definition 1. A linear operator ρ : H → H is said to be a density operator

if the following three conditions hold:

15



1 – Formulation and Interpretation of Quantum Theory

1. ρ is self-adjoint

2. ρ is positive, i.e. 〈ψ|ρψ〉 ≥ 0 ∀ψ ∈ H

3. Tr(ρ) = 1

The following theorem characterizes density operators:

Theorem 2. Every density operator has a purely discrete spectrum. Con-

versely, if P1,P2, . . . are projection operators of rank 1 and if α1,α2, . . . are

positive numbers such that
∑

i αi = 1, the operator ρ =
∑

i αiPi exists and

defines a density operator.

The theorem in this form is in [18](p. 87) (see also [16](p. 328)); it ensures

that eigenvalues suffice in order to construct the identity resolution of a density

operator. Von Neumann proved the following theorem

Theorem 3. For every R-function Ev satisfying axioms 0-4 there is a density

operator ρ, such that Ev(R) = Tr(ρR).

Notice that, taking into account theorem 2, the following equality holds

Ev(R) =
∑

i

αiTr(|ψi〉〈ψi|R) =
∑

i

αi〈ψi|Rψi〉.

The operator ρ is identified as the state of the system; as pointed out in [17, 19],

whereas in classical physics the concept of state is used to refer to the coor-

dinates and momenta of an individual system, a quantum state represents an

ensemble of similarly prepared systems; it is the mathematical representation

of the distribution of the results of a certain state preparation procedure.

The set of all state operators form a convex set. From axioms 0-4, the

spectral representation theorem 1 and theorem 3, it follows that:
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1 – Formulation and Interpretation of Quantum Theory

Proposition 1. For every R-function Ev there exists ρ such that

Ev(R) =

∫

σ(R)

λTr(ρdER(λ))

As a consequence, Tr(ρdER(λ)) has to be interpreted as the probability that

the outcome of R is a value in the interval (λ,λ + dλ).

1.4 0-1 observables and projection operators

We call 0-1 observable any observable P having 0 and 1 as possible outcomes.

For a 0-1 observable P the expectation value Ev(P) must be interpreted as

the probability of occurrence of the outcome 1 for P ; indeed, if p(0) and p(1)

denote the probabilities of occurrence of 0 and 1, then

Ev(P) = 0 · p(0) + 1 · p(1) = p(1).

Fixed an observable A, a 0-1 observable can be constructed in correspon-

dence with every interval. Let A be any observable and ∆ = (a,b] an interval;

let us consider the characteristic function

χ∆ : IR → IR , χ∆ =





1, if x ∈ ∆

0, if x /∈ ∆.

Then χ∆(A) is a 0-1 observable, assuming value 1 if a ∈ ∆ and value 0 other-

wise, represented by the self-adjoint operator

T∆ =

∫
χ∆(λ)dEA

λ = limε→0+

∫ b+ε

a+ε

dEA
λ = EA

b − EA
a .

T∆ is a projection operator.

Such a kind of observable provides a characterization of the spectrum of an

observable. Let A be an observable, represented by the self-adjoint operator
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1 – Formulation and Interpretation of Quantum Theory

A; the probability p(A,∆) that a measurement of A provides a result a ∈ ∆ is

given by

p(A,∆) = Tr(ρ[EA
b − EA

a ]). (1.1)

A real number a is a possible outcome for the observable A if and only if, fixed

δ ≥ 0, the probability p(A,(a−δ,a+δ]) that a measurement of A gives a result

in the neighborhood (a− δ,a + δ] of a is not zero. Then, it follows that

Proposition 2. The real number a is a possible result for the measurement

of A if and only if a ∈ σ(A).

Then, by theorem 1 and (1.1) it follows that the physical spectrum of A coin-

cides with the mathematical spectrum of the operator A.

Let P be a 0-1-observable and P the associated self-adjoint operator; then

proposition 1 implies that σ(P ) = {0,1}. A self-adjoint operator P has such a

spectrum if and only if P 2 = P , i.e. if P is a projection operator; in general,

the following theorem holds:

Proposition 3. If P is the self-adjoint operator associated to a 0-1 observable

P, then σ(P ) = {0,1}, that is to say P is a projection operator. The converse

holds too.

We notice that 0-1 observables can be interpreted as properties that the

system may or may not possess: if the outcome of a measurement is 1 than

the system possesses the property, otherwise it does not.

1.5 Pure states

Within the set of all states operator we distinguish the important class of pure

states.

18
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Definition 2. A density operator is pure if

ρ = λρ1 + (1− λ)ρ2, where λ2 < λ imply ρ1 = ρ2 = ρ

A general state which is not pure is called mixed state. From a physical point

of view, if ρ is pure, then the statistical ensemble described by ρ cannot be

obtained as statistical mixture of ensembles described by differentR-functions.

By definition, a pure state has the form ρ = |ψ〉〈ψ|; the expectation value

of the observable R, in this pure state, is

Ev(R) = Tr(|ψ〉〈ψ|R) = 〈ψ|Rψ〉.

We observe that the state vector is not unique; indeed, any vector of the form

eiα|ψ〉, with α ∈ IR, is physically equivalent.

1.6 Simultaneous measurability

We have seen that the algebraic structure of the set of observables is mirrored

in the algebraic structure of self-adjoint operators, which is not commutative;

then, whereas in Classical Mechanics all the observables can be measured si-

multaneously on a physical system, this is not the case in Quantum Mechanics.

Such a limitation is the object of the following theorem:

Theorem 4. Two observables, A and B are measurable together if and only

if the corresponding self-adjoint operators, A and B, commute i.e. [A,B] =

AB −BA = 0.

This theorem proved by Von Neumann ([16], p. 223) at first for operators

A and B with pure discrete spectra, is extended to the more general case by

means of the following theorems ([16], p. 170).
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Theorem 5. If two self-adjoint operators are commutative, then each function

f(A) of A commute with each function g(B) of B.

Since the hypothesis is always satisfied for A = B, two functions of the same

operator always commute; the converse is also valid:

Theorem 6. A and B are two commuting self-adjoint operators if and only

if there exist a self-adjoint operator C and two functions, f and g, such that

A = f(C) and B = g(C).

(for a proof of theorem 6 see [20]). Hence the following interpretation can

be given to simultaneous measurability: observables A and B are measurable

together if and only if there exist an observable C and functions, f and g, such

that A = f(C) and B = g(C), i.e. two observables A and B are simultaneously

measurable if there is an arrangement, say C, which measures both A and B
on the same system.

The theorem can be extended to the case of more than two observables:

“without this condition [the commutativity of operator R1,R2, . . .], nothing

can be said regarding the results of simultaneous measurement of R1,R2, . . .,

since simultaneous measurements of these quantities are then in general not

possible” ([16], p. 230).

Since we restrict ourselves to the case of projection operators, a character-

ization can be given to simultaneous measurement by means of the following

theorem:

Theorem 7. Two projection operators A and B are commuting if and only if

there exist three mutually orthogonal projection operators A1, B1 and K, such

that A = A1 + K and B = B1 + K.

Then, the following definition can be given:
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Definition 3. Observables A and B, corresponding to projection operators A

and B such that [A,B] = 0, are said compatible.

Examples. Position and momentum are examples of observables; the oper-

ator representing the xi coordinate (i = 1,2,3) of position is the multiplication

operator

(Qiψ)x = xiψ(x) ∀x ∈ IR3 , ∀ψ ∈ DQi

where DQi
= {ψ ∈ L2(IR

3) : xiψ ∈ L2(IR
3)}. The operator representing the pi

coordinate (i = 1,2,3) of momentum is the derivation operator

(Piψ)x = −i
∂ψ(x)

∂xi

∀x ∈ IR3 , ∀ψ ∈ DPi

where DPi
= {ψ ∈ L2(IR

3) : xiψ absolutely continuous and ∂ψ
∂xi

∈ L2(IR
3)}.

Now we ask wether position and momentum can be measured together or

not on the same physical system; this is possible if and only if the respective

operators commute; straightforward calculations show that

- if i = j, then [Qi,Pi] = i1

- if i 6= j, then [Qi,Pj] = 0

Hence we may conclude that different components of position and momentum

can be measured together, whereas same components cannot.

1.7 Uncertainty relations

In previous section we have dealt with the question of measuring simultane-

ously two or more observables. Now we are interested in observables, A and

B, represented by non-commuting operators, A and B.
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In spite of the hypothesis that A and B do not commute, states ψ may

exist in which both quantities have defined values: these are, for instance,

the common eigenvectors of both A and B (however, they cannot form a

complete orthogonal set since, in this case, A and B would commute). In

such a case, indeed, if ψ1, ψ2 . . ., are the set of common eigenvectors, we may

extend it to a complete orthonormal set by the addition of an orthonormal set

φ1, φ2 . . .; now, let us introduce the self-adjoint operator T =
∑

n λn|ψn〉〈ψn|+
∑

n µn|φn〉〈φn| where λ1, λ2 . . ., µ1, µ2 . . . are non-degenerate eigenvalues of T ,

pairwise different to each other. The measurement of the associated observable

T produces one of the eigenvalues; if a λn is found, then we also know the values

of A and B; on the other hand, if a µn is the result, nothing can be said about

the values of A and B.

If no common eigenvector exists for A and B, let 〈A〉ψ = 〈ψ | Aψ〉 and

〈B〉ψ = 〈ψ | Bψ〉 be the expectation values of A and B respectively; let us

define the operators (∆A)2 = (A − 〈A〉ψ)2 and (∆B)2 = (B − 〈B〉ψ)2 and

evaluate the variances (σA)2 = 〈ψ | (A − 〈A〉ψ)2ψ〉 and (σB)2 = 〈ψ | (B −
〈B〉ψ)2ψ〉. Straightforward calculations shows that (σA)2 =|| Aψ ||2 −〈Aψ,ψ〉
and similarly (σB)2 =|| Bψ ||2 −〈Bψ,ψ〉; (σA) and (σB) cannot be jointly zero,

since in this case ψ would be a common eigenvector of A and B. But one of

the variances, say (σA), can be made arbitrary small by choosing a suitable

state vector ψ.

Heisenberg [21] discovered a relation preventing both variances from be-

coming arbitrary small

σAσB ≥ 1

4
|〈ψ|[A,B]ψ〉|2 (1.2)

known as uncertainty relation. For a proof see [22]; in [16] (p. 233) the same

result is established for position and momentum operators (or more generally
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for canonically conjugate operators) which satisfy [σP σQ ≥ ~
2
].

As pointed out by [23], if conditions

1. A and B do not commute,

2. neither A nor B is bounded,

3. A and B have no point spectrum, or, if either of them has nonempty

point spectrum, its eigenvectors lie outside the domain of the other.

are all fulfilled, this inequality states that for certain pairs of observables the

right-hand side of (1.2) majorizes some positive number, independently of the

choice of ψ; otherwise, if at least one condition is not fulfilled, it is always

possible to exhibit a state vector ψ which makes the right-hand side arbitrary

small or null.

Result (1.2) can be interpreted as follows: if A and B do not commute,

observables A and B cannot be measured together on the same physical sys-

tem; however two disjoint sub-ensembles can be extracted from the ensemble

corresponding with ψ, one for measuring A and the other for measuring B.

The uncertainty relation states that there exists a lower bound for the product

σAσB of the variances outcoming from these measurements.

We emphasize that σA and σB are not errors of measurement; as pointed

out by Ballentine [19], the error (or preferably the resolutions) δA and δB of

the measuring instruments, are unrelated to σA and σB, except for the practical

requirement that if δA is larger than σA then it is not possible to determine

σB in the experiment, and so it is not possible to test (1.2).
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1.8 Complementarity

Complementarity is a characteristic feature of quantum theory, discussed since

the birth of Quantum Theory; Bohr’s conception of complementarity arises

from the acceptance of the wave-particle duality [24, 25]. However, the first

definition of complementarity is due to Pauli [26] and it is referred to classical

concepts, rather than to modes of description: two observables are comple-

mentary if the experimental arrangements which permit their unambiguous

definitions are mutually exclusive; a rigorous notion is proposed by Ludwig

[27]- [29]. A less strong, but formal and empirically clear definition of com-

plementary physical quantities, due to Lahti, appeared only in 1979 [30]; a

systematic analysis is found in the context of the so called operational or con-

vex approach proposed by Busch and Lahti. A complete description of this

approach is found in [31]- [35]; here we only sketch the basic ideas in order to

give a formal definition of the notion of complementarity.

1.8.1 The operational approach

Within the operational approach, the description of a physical system is ex-

clusively based on its set of states. The basic assumption is conveniently

summarized as follows: the set of states of a physical system is represented

by a norm closed generating cone T (H)+ for a complete base norm space

(T (H),T (H)+
1 ), where T (H) is the set of all self-adjoint trace class operators

on H, T (H)+
1 is the set of all density operators (normalized states). Thus

T (H)+
1 = {α ∈ T (H)+ : e(α) = 1}, where e : T (H) → IR is the usual trace

operator.
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Operations. The basic idea of the approach is that any change in the sys-

tem, like those caused by measurements, can be described by transformations

of states of the system, formally by operations. An operation when performed

on the system, changes a given initial state into a well-defined final state; it

does not increase the trace of any state; it acts additively and homogenously on

states; it leaves the empty state on its own. Formally, an operation is described

by a positive, norm non-decreasing, linear mapping, φ : T (H) → T (H), and

the set O(T ) of all operations on the state space T (H) is represented as the

set of all positive elements in the unit ball of L(T (H)), the space of bounded

linear operators on T (H) equipped with the strong operator topology. The set

O(T ) of the operations is naturally ordered as follows: for any two operations

φ1 and φ2 in O(T ), φ1 ≤ φ2 if and only if φ1α ≤ φ2α for all α ∈ T (H)+;

the 0 operation, 0 : ρ 7→ 0 is the least element in the partial ordered set

(O(T ), ≤), whereas each φ ∈ O(T ) with the property that Tr(φρ) = Tr(ρ),

for all ρ ∈ T (H)+
1 , is maximal (an example of maximal operation is the iden-

tity operation). Finally, lower bound{φ1,φ2} = {φ ∈ O(T ) : φ ≤ φ1,φ ≤ φ2}.

Effects. Any operation φ lead to a detectable effect when combined with

detecting the trace of a state after it has undergone the operation φ. Thus with

any φ ∈ O(T ) there is associated its detectable effect, e◦φ, which is a positive

linear functional on T (H) with 0 ≤ e ◦ φ ≤ e; on the other hand, for any

positive linear functional a on T (H) such that 0 ≤ a ≤ e there is an operation

φa whose associated effect is e ◦ φa = a [32]. Formally, the set of all effects of

the physical system is represented by the set E of elements a in the dual space

T ∗(H), E = {Tr(φ·) : φ ∈ O(T )} which, due to the duality T ∗(H) ' L(H)

can be identified with the set E(H) = {E ∈ L(H) : 0 ≤ E ≤ I}; in particu-

lar, the set of extreme effects Ex(E) shall be identified with the set P(H) of
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projections on H. To grasp the physical meaning of effects, we shall consider

extreme effects; in section 1.4 we noticed that projection operators correspond

to properties that the system may or may not possess, hence every projection

operator E of P(H) describes a particular kind of effects, those corresponding

to measurements with two possible outcomes, yes and no (or 1 and 0); in such

a case, a single change may happens in the measuring apparatus: the system

may be found to possess or not possess the property. Calling effect a change

in the measuring apparatus, we say that the result of a single measurement is

yes if the effect occurs (i.e. if the system possesses the property) and no if the

effect does not occurs (i.e. if the system does not possess the property). For

any effect a ∈ Ex(E) let a1 = {ρ ∈ T (H)+
1 : a(ρ) = 1} be the yes-domain; a1

may or may not be empty: if a1 is not empty the effect a can be actualized or

realized, by preparing the system in any of the states in a1, where the notion of

state preparation can be described as a constant operation Pρ : x 7→ Pρ(x) = ρ.

The number (e ◦ φ)(ρ) = Tr(φ(ρ)) represents the probability of occurrence of

the effect E, associated to the operation φ in the state ρ. Since the set of

projection operators is not convex, mixing of (extreme) effects would not be

allowed; however, the set of all effects E(H), made up of all non-negative, self-

adjoint operators, bounded by the unit operator, contains P(H) as a proper

subset; it is also convex, i.e. if E1, E2 ∈ E(H) also λE1 + (1 − λ)E2 ∈ E(H)

for every real number λ, with 0 < λ < 1. In such a case, by repeating N times

the preparation procedure, λN times the yes-no measurement of E1 has been

carried out and (1 − λN) times the yes-no measurement of E2, with respec-

tive probabilities of occurrence for E1 and E2. The set of effects is naturally

ordered as follows: for any a,b ∈ E , a ≤ b if and only if aα ≤ bα for any

α ∈ T (H)+.

26



1 – Formulation and Interpretation of Quantum Theory

There is a many to one correspondence between the sets O(T ) of opera-

tions and E of effects, Ψ : O(T ) → E , φ 7→ Ψ(φ), where Ψ(φ)(ρ) = e(φρ),

ρ ∈ T (H)+
1 . The set Ψ−1(a) = {φ ∈ O(T ) : e ◦ φ = a} contains exactly those

operations φ in O(T ) which uniquely define the effect a. A measurement of

an effect is any operation φ in O(T ) which provides information on a, i.e.

which provides knowledge about the (probability of) occurrence of a, when

performed for each system of an ensemble; hence, any φ ∈ ∪(Ψ−1(c) : c ≤ a) is

a measurement of a. A joint measurement of two effects a and b is any opera-

tion which provides the same kind of information about both the two effects;

hence, any operation φ ∈ ∪(Ψ−1(c) : c ≤ a,c ≤ b) is a joint measurement of

a and b. This means that, if we have an ensemble of particles prepared by

means of a certain preparation procedure, we can attain both the probability

of occurrence of the effect a and the probability of occurrence of the effect b,

for each system of the ensemble (i.e. simultaneously).

Instruments and obsevables. Characterizing notions of this approach are

those of instruments and observables. An instrument corresponds to an exper-

imental arrangement, defining a family of operations which can be performed

on the system with the arrangement; hence we give the following definition.

Definition 4. An instrument I is a map I : B(IR) → O(T ) satisfying

1. e(I(IR)ψ) = e(ψ) ∀ψ ∈ T (H)

2. for any countable family (Xi) of pairwise disjoint set in B(IR)

I(
⋃

Xi) =
∑

I(Xi)

where the sum converges in the strong operator topology.
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To each instrument there is an associated observable corresponding to the fam-

ily of the detectable effects of the operations performable with the instruments;

thus

Definition 5. An observable A is defined as an effect-valued measure on the

real Borel space with the properties

1. A(IR) = e;

2. for any countable family (Xi) of pairwise disjoint sets in B(IR)

A(
⋃

Xi) =
∑

A(Xi)

where the sum converge in the weak topology of T ∗(H).

Although the formulation of the operational approach has been given in the

extended frame which results from considering the whole set O(T ), these de-

finitions apply, in particular, to the Von Neumann formulation of quantum

theory where the observable A is represented by the self-adjoint operator A

or, equivalently, by the spectral resolution EA.

For each observable A there is associated at least one instrument, IA :

B(IR) → O(T ), X 7→ IA(X), which uniquely defines this observable, through

the relation Tr(IA(X)ρ) = Tr(ρA(X)), for all Borel set X and ρ ∈ T (H)+
1 .

Through its operations such an instrument characterizes an experimental ar-

rangement which can be used to measure all the possible values of the ob-

servable; actually, for each observable A there is associated a (unique) family

of instruments IA
i , i ∈ I a suitable index set, which contains all the possible

measurements for A.
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1.8.2 Complementarity in the operational approach

Let IA
i , i ∈ I(A) and IB

j , j ∈ I(B), be any pair of instruments associated

with the observables A and B, respectively. The operations IA
i (X) and IB

j (Y ),

where X,Y ∈ B(IR), describe two particular measurements of the two proper-

ties A(X) and B(Y ) of the system. Taking into account the ordering relation

of O(T ), if there exists a non-zero operation φ ∈ O(T ) which is contained in

the lower bound of {IA
i (X),IB

j (Y )}, this operation, when performed on the

system, provides information on both the properties: it is a joint measurement

of A and B. Hence, if we have an ensemble of systems, prepared by means

of a certain preparation procedure, for each system we can attain knowledge

about the occurrence of both the outcome of A and the outcome of B. Thus,

in a natural manner, we can define the notion of mutually exclusiveness of

instruments:

Definition 6. Two instruments I1 : B(IR) → O(T ) and I2 : B(IR) → O(T )

are mutually exclusive if and only if lower bound {I1(X),I2(Y )} = {0} for any

two bounded X and Y in B(IR) for which neither I1(X) nor I2(Y ) is maximal.

The restriction to non-maximal operations allows the possibility that also in-

struments with bounded value set might be mutually exclusive. The existence

of mutually exclusive instruments is expression of the fact that in an ensemble,

knowledge about both the occurrence of A and the occurrence of B is not al-

lowed, in general, on the same system. According to this definition, the formal

definition of complementary observables is attained:

Definition 7. Observables A and B are complementary if and only if any two

instruments IA
i , i ∈ I(A) and IB

j , j ∈ I(B) uniquely defining these observables

are mutually exclusive.
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An immediate consequence of the above two definitions is

Corollary 1. Observables A and B are complementary if and only if

EA(X) ∧ EB(Y ) = 0 for any bounded X and Y in B(IR).

This shows that the notion of complementarity expresses the strongest case of

incompatibility ([A,B] 6= 0): e.g., in the case of purely discrete spectra, incom-

patibility of A and B means that there is not a complete set of eigenvectors,

but it does not exclude the existence of common eigenvectors; complemen-

tary obsevables do have no common eigenvectors [32]. Then, in the extreme

case of incompatibility, which occurs when [A,B] = ic (c is any non-vanishing

constant), the two observables turn out to be complementary.

Corresponding to the intuitive idea that mutually exclusive experimental

arrangements cannot be applied at the same time, there are no simultaneous

measurements of complementary observables A and B. Then

Corollary 2. Complementary observables do not admit any simultaneous

measurements.

Examples. If F is the unitary transformation of L2(−∞,∞) onto itself de-

termined by the Fourier- Plancherel transform

Fψ = lima→∞
1√
2π

∫ a

−a

f(x)e−ikxdx

then P = F−1QF (see [36]), that is Q and P are Fourier- equivalent operators.

Because of this unitary equivalence, the corresponding spectral resolutions are

unitary equivalent, too:

EP (∆) = F−1EQ(∆)F for every Borel-set ∆

As a consequence, from the Paley-Wiener theorem [37], it follows
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Theorem 8. EQ(∆1) ∧ EP (∆2) = 0 for all bounded Borel-sets ∆1 and ∆2.

(see [30] for a proof). Hence position and momentum are complementary

observables. The physical meaning of this theorem is that there are no states of

a physical system such that both the position and the momentum observables

are contained in given finite intervals; that is there is no physical arrangement

in which the proposition “the position has a value in [x0,x0 + DQ]” and “the

momentum has a value in [p0,p0 + DP ]” can be simultaneously verified [30].

1.8.3 Degrees of commutativity

According to [38, 39], complementarity between two observables can be char-

acterized as a form of non-commutativity of these observables. In order to

introduce the notion of degree of commutativity of two observables, the fol-

lowing definition is needed.

Definition 8. For any pair of projection operators E and F , we define the

projection operator com(E,F ) as

com(E,F ) = (E ∧ F ) ∨ (E ∧ F⊥) ∨ (E⊥ ∧ F ) ∨ (E⊥ ∧ F⊥)

where E⊥ = I −E, F⊥ = I −F , ∨ and ∧ denote the meet and the joint in the

projection lattice;

Then,

- com(E,F ) = I if and only if E and F commute,

- if com(E,F ) = 0 they are totally non-commutative and satisfy

E ∧ F = E ∧ F⊥ = E⊥ ∧ F = E⊥ ∧ F⊥ = 0

i.e. they are in generic position;
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- if 0 6= com(E,F ) 6= I, E and F partially commute.

The degree of commutativity of any two observables A and B is characterized

by the commutativity operator :

Definition 9. Let A and B be self-adjoint operators, the commutativity oper-

ator, com(A,B), is the projection operator

com(A,B) = ∧(com(EA(X),EB(Y ))) X,Y ∈ B(IR)

where EA(X) and EB(Y ) are the spectral projections associated with bounded

Borel set X and Y , respectively, on the real line IR.

By definition, it is the projection operator associated with the commutativity

domain

{ψ ∈ H : EQ(X)EP (Y )ψ = EP (Y )EQ(X)ψ ∀X,Y ∈ B(IR)},

One of three cases may occurs:

(a.) com(A,B) = I if and only if A and B commute,

(b.) for com(A,B) = 0 A and B are totally non-commutative, i.e. they

commute with respect to no state ψ in the Hilbert space H;

(c.) if 0 6= com(A,B) 6= I, A and B partially commute, i.e. they commute

with respect to some states ψ in the Hilbert space H.

By definition 8, the study of the degree of commutativity of any pair of ob-

servables A and B reduces to the study of their spectral projections.

It is important to remark that totally non-commutativity of A and B does

not imply that any pair of their spectral projection operators is totally non-

commutative; rather com(EA(X),EB(Y )) = 0 for some operators of the spec-

tral resolutions. Then, even for totally non-commutative observables some of

their values can be measured together.
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Totally non commutativity of position and momentum follows not only

by Fourier-equivalence but also by complementarity and Heisenberg relation;

however, the examination of the degree of commutativity of the spectral pro-

jections EQ(X) and EP (Y ), X,Y ∈ B(IR) shows that any of the three cases,

(a.), (b.) and (c.), occur; in particular, in [38], examples of pairs of position

and momentum projection operators, EQ(X) and EP (Y ) are found for each

case: EQ(X) and EP (Y ) are totally non-commutative for X and Y being

half-lines, partially commutative for X and Y being bounded Borel-sets and

commutative for (X,Y ) being α-periodic, i.e. (X,Y ) = (X + α,Y + 2π
α

).

1.9 Ordering relation and probabilities

Let us denote by E(H) the set of all projection operators ofH. E(H) is endowed

with the following partial relation:

P ≤ Q if 〈ψ | Pψ〉 ≤ 〈ψ | Qψ〉 ∀ψ ∈ H

or equivalently PH ⊆ QH.

Taking into account theorem 3

P ≤ Q implies Ev(P ) ≤ Ev(Q) ∀R − function Ev.

Since P and Q represent 0-1 observables, then formula P ≤ Q may be inter-

preted as follows

The probability of occurrence of outcome 1 for P is less than or equal to the

probability of occurrence of outcome 1 for Q.

We notice that P ≤ Q is equivalent to QP = P (see [40], p. 268) furthermore
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PQ = (QP )∗ = P ∗ = P , hence PQ = QP = P . As a consequence,

P ≤ Q implies [P,Q] = 0.

Let P and Q be two projection operators which commute with each other

so that they can be measured together. Since [P,Q] = 0, the operator PQ is

the projection P ∧Q; then it makes sense to consider the probability that the

outcome 1 for P occurs under the condition that the outcome 1 occurs for Q,

that is the conditional probability P (P | Q). It is clear that

p(P | Q) =
Tr(ρPQ)

Tr(ρQ)
. (1.3)

When ρ describes the pure expectation value Ev(R) = 〈ψ | Rψ〉, where ψ ∈ H
and ||ψ|| = 1, then (1.3) becomes

p(P | Q) =
〈ψ | PQψ〉
〈ψ | Qψ〉 .

Therefore, in a simultaneous measurement of P and Q, the outcome 1 of Q

implies the outcome 1 of P if and only if p(P |Q) = 1, i.e. PQψ = Qψ.

As a consequence, if P ≤ Q, since P = PQ, then p(Q | P ) = 1 implies

Pψ = PQψ for all ψ; in other words

Whenever P and Q are measured together, if the outcome of P is 1, then the

outcome of Q is 1 too.

The outcomes of P and Q are completely correlated, i.e. the outcome 1 of Q

occurs if and only if the outcome of P is 1, when

p(P | Q) = p(Q | P ) = 1 or p(P | Q) = p(Q | P ) = 0,

i.e. if and only if Pψ = Qψ. First (resp. second) equation means that the

outcome 1 (resp. 0) for P occurs if and only if outcome 1 (resp. 0) occurs for

Q.
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1.10 Time evolution

The subject of the previous sections was the mathematical representation of

the states of a physical system and of the properties that can be measured

on it at a fixed time. Now, we deal with the dynamics of the system; for this

purpose we have to specify how states and observables evolve in time. There are

essentially two equivalent descriptions for time evolution, Schrödinger picture

and Heisenberg picture.

Schrödinger picture. In this framework time evolution of the system is

governed by the time evolution of the states, whereas operators representing

the observables without explicit dependence on time remain unchanged in

time. Evolution, in such a case, is described by a time-dependent unitary

transformation applied to the state vector

ψ(t) = U(t,t0)ψ(t0) where U(t,t0) = e−iH(t−t0)

for the case of a system governed by a time-independent Hamiltonian operator

H. Hence, as a function of time, ψ(t) satisfies the differential equation

i
d

dt
ψ(t) = Hψ(t)

known as Schrödinger equation, which specifies the dynamical evolution in

infinitesimal form. This differential equation admits a generalization to the

case that the Hamiltonian is time dependent

i
d

dt
ψ(t) = H(t)ψ(t)

corresponding to time variation of the external forces. We notice that the just

described scheme assigns a time evolution only to states, leaving operators
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constant in time.

Heisenberg picture. This is an equivalent description, where the time evo-

lution of the system is carried by the time evolution of the operators, keeping

states fixed in time, in such a manner that all expectation values are identical

with the expectation values calculated in Schrödinger picture; indeed, we may

also write

〈ψt|A|ψt〉 = 〈Utψ0|A|Utψ0〉 = 〈ψ0|Ut
−1AUt|ψ0〉 = 〈ψ0|At|ψ0〉

Then, in Heisenberg picture, the equation for time evolution is

d

dt
At = i[H,At] +

[∂A

∂t

]
t

The possibility of going from Schrödinger picture to Heisenberg picture is not

generally ensured; we have implicitly used the fact that the dynamics comes

out from a unitary time evolution operator.

1.11 Composite systems

Consider two physical systems, SI and SII , described in the Hilbert spaces

HI and HII respectively. The appropriate Hilbert space in order to represent

the composite system SI + SII is the tensor product space HI ⊗ HII . An

exhaustive treatment of tensor product in Hilbert space is found in [41]; here

we only report some needed properties.

Definition 10. [23] An Hilbert space H is said to be the tensor product of HI

and HII if there exists a bilinear mapping 〈· ⊗ ·〉 from the cartesian product

HI×HII (i.e. the set of all ordered pairs 〈|ϕ〉,|ψ〉 with |ϕ〉 ∈ HI and |ψ〉 ∈ HII)

into H such that:
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- the set {|ϕ〉 ⊗ |ψ〉 : |ϕ〉 ∈ HI ,|ψ〉 ∈ HII} spans H

- the inner product is defined as

〈(〈ϕ1| ⊗ 〈ψ1|)|(|ϕ2〉 ⊗ |ψ2〉)〉H = 〈ϕ1|ϕ2〉HI
〈ψ1|ψ2〉HII

for all |ϕ1〉,|ϕ2〉 ∈ HI and |ψ1〉,|ψ2〉 ∈ HII

The product |ϕ〉⊗|ψ〉, often denoted |ϕ,ψ〉, is known as the Kronecker product.

The Kronecker product between two vectors of two space of dimensions M and

N respectively, is a vector in a space of dimension MN (M and N may be

infinite). The tensor product is unique up to unitary equivalence.

Proposition 4. If {|ϕk〉} and {|ψl〉} are orthonormal bases for HI and HII

respectively, then {|ϕk,ψl〉} is an orthormal basis for HI ⊗HII .

(see [42] for a proof). However, a vector in HI ⊗ HII is not necessary in the

form |ϕ〉⊗|ψ〉 (where |ϕ〉 ∈ HI and |ψ〉 ∈ HII}) but it can always be expanded

as a linear combination of vectors of this form.

Let AI a self-adjoint operator of HI associated with an observable AI of SI

and, similarly, BII of HII the self-adjoint operator associated with an observ-

able BII of SII . We can also define a Kronecker product between operators,

by the relation

(AI ⊗BII)|ϕ,ψ〉 = (AI |ϕ〉)⊗ (BII |ψ〉). (1.4)

AI (observable of HI), when considered as an obsevable of the composite sys-

tem, is represented by the operator A = AI ⊗ 1II , where 1II is the identity

operator of HII ; we notice that AI and A represent the same physical quantity,

the only difference is that AI refers to the physical system SI itself, whereas A
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refers to the physical system SI as making part of a composite system. Sim-

ilarly an observable BII of SII is represented in the tensor product space as

B = 1I ⊗BII , where 1I is the identity operator of HII .

If AI , CI are operators of HI and BII , DII operators of HII , relation

(AI ⊗BII)(CI ⊗DII) = AICI ⊗BIIDII

immediately follows from (1.4); as a special case of this result

(AI ⊗ 1II)(1⊗BII) = AI ⊗BII .

We note also that, for self-adjoint operators AI , BII , relations

f(AI ⊗ 1II) = f(AI)⊗ 1II

g(1⊗BII) = 1⊗ (BII)

hold, for every pair of functions f and g ([43]).

Physical quantities represented as operators of the form AI ⊗BII are char-

acterized by the following property about expectation values:

Ev(AI ⊗BII ,|ϕ〉 ⊗ |ψ〉) = Ev(AI ,|ϕ〉)Ev(BII ,|ψ〉)

However there are physical quantities that are not represented by operator in

the tensor product form (i.e. the total energy) and in such a case expectation

values are not multiplicative [23].

Until now we have considered the composite system SI + SII arising from

two different systems, SI and SII ; however, these properties hold for any op-

erator that represents independent degrees of freedom, even if they are related

to the same physical system; an example, for a particle with spin, are position

and spin.
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Chapter 2

Double-slit experiments

2.1 Introduction

In chapter 1, a formulation of Quantum Theory has been given, which makes

evident that certain properties cannot be measured together on a same system,

or, even, they are complementary. Now we “examine a phenomenon which is

impossible, absolutely impossible to explain in any classical way, and which

has in it the heart of quantum mechanics” [44]; here, Feynman refers to the

duality between corpuscular and wave-like behaviours of physical entities. The

most effective example in describing such a phenomenon is the double slit ex-

periment (p. 3); in describing it, by Which Slit (WS) property we mean the

property of localization of the particle when it crosses the support of the slits.

WS cannot be measured by means of a localization measurement together with

the final impact point on the final screen, since the corresponding observables

are complementary. Then, several devices have been conceived over the years

in order to attain indirect information about WS property; in Einstein’s re-

coiling slit this is done by means of the recoil of the first plate suspended to
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a spring [45, 46]; in Feynman’s light microscope, the same purpose is achieved

by the scattering of photons [44]. A different experiment has been conceived

by Scully, Englert and Walther (ESW) [4]; it makes possible to obtain which-

slit information by exploiting recent advances in quantum optics (micro-maser

cavities and laser cooling). All these experiments work by measuring a prop-

erty, different from which-slit one, compatible with the measurement of the

final impact point and correlated with WS property in such a manner that

inferences about WS can be made by means of the outcome of T .

In section 2 we analyze a toy-model of the double-slit experiment, where

the quantum description predicts the appearance of interference fringes, in

agreement with empirical results.

In section 3 we show that in the general case a direct measurement of the

position of a particle at different times in such kind of experiments is not

possible, since the corresponding observables are complementary.

In section 4 another kind of double-slit experiment, proposed by ESW, is

analyzed; for each particle, it makes possible to ascertain indirectly the (not

directly measured) property of the passage through the slits, by means of the

outcome of a suitable supplementary property; in so doing, no interference

appears. A different arrangement of ESW experiment makes possible to as-

certain a property, incompatible with WS property, by means of a second

supplementary property; the particles which possesses this last property give

rise to interference, however, information about which slit it passed through is

lost.

40



2 – Double-slit experiments

2.2 A typical double-slit experiment

In this section a quantum description of the double-slit experiment is presented.

In so doing we restrict ourselves to a “toy-model”, which effectively shows the

quantum features of the involved physical phenomena, without a cumbersome

formalism.

The physical system considered in the following sub-sections is an “elemen-

tary” particle, (i.e. its internal structure and its size are not relevant in order

to describe its motion). In our toy-model, we consider only one spatial dimen-

sion, corresponding to the position of the particle along the screen supporting

the slits (see fig. 2.1). The Hilbert space for quantum description of such a

x

0

P

slits

second screen

first screen

Figure 2.1. Double-slit experimental set-up

particle is L2(IR); position and momentum operators defined in section 1.6 can

be adopted here, with the only remark that ψ ∈ L2(IR) rather than L2(IR
3),

so that the index i can be omitted.

The expectation value for Q is

〈Q〉 = 〈ψ|Qψ〉 =

∫
ψ(x)xψ(x)dx =

∫
x|ψ(x)|2dx

where |ψ(x)|2 is interpreted as the probability density of position, i.e. if ψ

represents the wave function, |ψ(x)|2dx represents the probability that the
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position has a value in the interval [x,x + dx]. A similar interpretation in the

case of the momentum operator P is not immediate:

〈P 〉 = 〈ψ|Pψ〉 = −i

∫
ψ(x)

dψ(x)

dx
dx =?

but we can recover it by means of the Fourier transform.

The following theorem states a condition of existence and furthermore a

property of the Fourier transform:

Theorem 9 (PLANCHEREL). If ϕ(x) ∈ L2(IR), then the function defined by

g(k) = (Fϕ)(k) = lima→∞
1√
2π

∫ a

−a

f(x)e−ikxdx,

known as Fourier transform of ϕ(x), exists for every k ∈ IR and belongs to

L2(IR). Furthermore,
∫ ∞

−∞
|g(k)|2dk =

∫ ∞

−∞
|ϕ(x)|2dx (2.1)

and

f(x) = limb→∞
1√
2π

∫ b

−b

g(k)eikxdk, a.e. on IR .

For a proof see [47] (the operator of Fourier-Plancherel, introduced in section

1.8, is the operator F : L2(IR) → L2(IR) that ϕ 7→ Fϕ). Hence, the expecta-

tion value for P is

〈P 〉 = 〈ψ|Pψ〉 = 〈Fψ|F(Pψ)〉;

defining
∧
ψ= Fψ and taking into account that the Fourier transform

∧
P of the

derivation operator P = −i ∂
∂x

is the multiplication operator, then

〈P 〉 = 〈
∧
ψ | ∧P

∧
ψ〉 =

∫
k|

∧
ψ (k)|2dk

in such a manner that
∧
ρ (k) = |

∧
ψ (k)|2 represents the probability density for

the wave number k = p/m, where p is the momentum along the direction x:
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|
∧
ψ (k)|2dk is the probability that a measurement of the momentum provides

an outcome in the interval [k,(k + dk)].

Equipped with this formalism, we shall study the toy-model of double slit

experiment.

2.2.1 A one-slit experiment

Let us consider the passage of an ensemble of free particles (similarly prepared),

one at once, through a screen endowed with one slit; suppose that the motion is

in the direction perpendicular to the screen supporting the slit, with constant

velocity v; a second screen which can detect the arrival of the particles (for

example, a photographic plate) is placed in front of the first screen. These

particles determine on the final screen a statistical distribution and actually

performed experiments make evident a diffraction pattern (see fig. 2.2). We

x

0

Figure 2.2. Diffraction experimental set-up

shall see that a quantum description of the experiment is in agreement with

observed result.
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Let the origin of the frame of reference be the center of the slit and take

the x-direction on the screen; the position of the particle is described by the

L2-function

ψ(x) =





0 if |x| > a/2

c if |x| ≤ a/2;

Coherently with the fact that the particle is somewhere, by imposing that

||ψ|| = 1, the value of the constant c can be determined; it turns out c = 1/
√

a.

Taking into account theorem 9, the spatial distribution of the particles on

the final screen can be analyzed by calculating the momentum probability

distribution.

The momentum distribution is provided by the Fourier transform of ψ(x),

∧
ψ (k) =

1

k

√
2π

a
sin

(
ak

2

)
.

Theoretical description of the phenomenon (fig. 2.3.c), agrees with the dif-

0 x x x
(a) (b)  (c)

2

Figure 2.3. Diffraction: graphs of ψ(x) (a),
∧
ψ (k) (b) and |

∧
ψ (k)|2 (c)

fraction pattern (fig. 2.2) actually observed in experiments.

2.2.2 A double-slit experiment

Let us consider now a similar example where, instead of one slit, are present

two slits (see fig. 2.4) of width a, at a distance d >> a. We are interested with
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x

0

Figure 2.4. Interference experimental set-up

the final distribution of the particles. Position is described by the L2-function

ψ(x) =





c if x ∈ [−d
2
− a

2
,− d

2
+ a

2

] ∪ [
d
2
− a

2
,d
2

+ a
2

]

0 elsewhere;

where c = 1/
√

2a (by imposing that ||ψ|| = 1). Momentum distribution is

described by its Fourier transform

∧
ψ (k) =

1

k

√
4

aπ
sin

(
ak

2

)
cos

(
dk

2

)
.

0 x

 (a) (b) (c)

x x

2

Figure 2.5. Interference: graphs of ψ(x) (a),
∧
ψ (k) (b)and |

∧
ψ (k)|2 (c)
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Once more, theoretical results (fig. 2.5.c) are in agreement with the interfer-

ence pattern actually observed (fig.2.4).

2.3 Complementary observables in double-slit

experiment

At the time t1, when the particle crosses the slits support, let E and E ′ =

1 − E be the mutually orthogonal projection operators corresponding to the

events “the particle is localized in slit 1” and the “particle is localized in

slit 2” respectively; for any interval ∆ on the final screen, let F (∆,t1) be

the projection operator corresponding to the event “the particle is localized

in a point within ∆” and F ′(∆,t1) = 1 − F (∆,t1) its negation. Since E, E ′,

F (∆,t1) and F ′(∆,t1) are projection operators relative to t1, they are mutually

commutative (according to the fact that, if the particle is located in one of the

slits, certainly it is not on the final screen).

Let t2 be the time of the impact on the final screen and F (∆) = F (∆,t2);

quantum theory prescribes that the point of impact on the final screen can

be measured together with the property of the passage through slit 1 or 2

if and only if the respective operators, relative to t2, would commute, i.e.

[F (∆),E] = 0; we will see that this is not the case. Taking into account the

time evolution of the operators, we have

F (∆) = U−1
t F (∆,t1)Ut = eiH(t2−t1)F (∆,t1)e

−iH(t2−t1)

Hence, the measurement of the point of impact on the final screen, F (∆),

together with WS property E, corresponds to the measurement of position ob-

servales Qt1 and Qt2 . Since in the passage of the particle from the first screen
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to the second one, the assumption that the particle is free holds, its Hamil-

tonian operator is given by H = P 2/2m, hence U t = e−i P2t
2m ; as a consequence

Heisenberg equation gets

d

dt
Qt = i[H,Qt] =

i

2m
[P 2,Qt] =

P

m

Then Qt2 = Qt1 + i P
m

(t2 − t1), which implies

[Qt1 ,Qt2 ] = −i
t2 − t1

m
.

We notice that both E (E ′) and F (∆) are projection operators involving

bounded Borel-sets (both the slits and the interval ∆ are bounded). Moreover,

by means of Stone- Von Neumann theorem ([20], a simple proof is in [48]), Qt1

and Qt2 are unitary equivalent to P and Q respectively; then, according to the

operational approach of Bush and Lahti presented in section (1.8), position

observables at different times, Qt1 and Qt2 , are complementary observables.

Hence, it is not generally possible to measure WS property together with the

final impact point.

2.3.1 Interference excludes WS property

Theoretical results are in agreement with the interference pattern actually ob-

served but not with classical reasoning: if only one of the slits is open, then

the momentum distribution is described by a diffraction pattern (see fig. 2.2);

hence, classically, we expect that if both slits are open then the final pattern

is the sum of two such patterns (see fig. 2.6.b) rather than the interference

pattern (see fig. 2.6.c) actually observed. This is a consequence of an erro-

neous application of “classical” probability theory in Quantum Mechanics: at

time t1, corresponding to the passage of the particle through the support of
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0

 (a)  (b)  (c)

Figure 2.6. Misleading reasoning: (a) screen, (b) expected pattern, (c) ob-
served pattern

the slits, according to quantum theory, p(E) = 〈Ψ |EΨ〉 and p(E ′) = 〈Ψ |E ′Ψ〉
are the probabilities for the passage through slit 1 or 2 respectively. Moreover,

since E and E ′ are mutually orthogonal projections, E ⊥ E ′, the following

assumption would seem natural:

(C) At a time t > t1 the particle possesses either the property “at time t1 the

particle passed through slit 1” or the property “at time t1 the particle passed

through slit 2”, with probability p(E) and p(E ′) respectively.

However, the acceptance of (C ) has some consequences, contradicting the re-

sults of a quantum treatment, as we shall see below.

Condition (C ) should entails that a conditional probability of every event

F given E, p(F |E), should exist also in the case [F,E] 6= 0. Taking into

account [23, 49], such a generalized conditional probability, that maintains
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all the characterizing features of a conditional probability, exists in the non-

commutative case and it is unique. Namely, if for every projection operator F

there should be a conditional probabilities p(F |E) such that

(i.) if F =
∑

i Fi, where Fi ⊥ Fj for i 6= j, then p(F |E) =
∑

i p(Fi|E)

(ii.) F ≤ E implies p(F |E) = 〈Ψ |FΨ〉.

then, according to a theorem proved by Cassinelli and Zangh̀ı [49],

p(F |E) =
〈Ψ |EFEΨ〉
〈Ψ |EΨ〉 = 〈 Ψ1

‖Ψ1‖|F
Ψ1

‖Ψ1‖〉 (2.2)

where Ψ1 = EΨ .

In the case under consideration F = F (∆) and

p(F |E) =
〈Ψ |EFEΨ〉
〈Ψ |EΨ〉 = 〈 Ψ1

‖Ψ1‖|F
Ψ1

‖Ψ1‖〉, Ψ1 = EΨ

p(F |E ′) =
〈Ψ |E ′FE ′Ψ〉
〈Ψ |E ′Ψ〉 = 〈 Ψ2

‖Ψ2‖|F
Ψ2

‖Ψ2‖〉, Ψ2 = E ′Ψ

where Ψi

‖Ψi‖ , i = 1,2, is the state vector representing the particle coming from

slit i. Then, assumption (C ) implies that the probability that the particle hits

the final screen in a point within ∆ should be

pC(F ) = p(E)〈 Ψ1

‖Ψ1‖ |F Ψ1

‖Ψ1‖〉+ p(E)〈 Ψ2

‖Ψ2‖ |F Ψ2

‖Ψ2‖〉
= 〈Ψ1|FΨ1〉+ 〈Ψ2|FΨ2〉

(2.3)

However, the correct quantum prediction for this probability is

p(F ) = 〈Ψ |FΨ〉 = 〈Ψ1|FΨ1〉+ 〈Ψ2|FΨ2〉+ 2Re(〈Ψ1|FΨ2〉) (2.4)

The final interference term is responsible for the fact that the probability of

finding the particle within ∆ is not the sum of the probabilities that one would

have for each particle separately, as implied by assumption (C ): a contradiction
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arises between the quantum prediction (2.4) and prediction (2.3) implied by

assumption (C ). Hence, interference denies the possibility of assigning the

property of the passage through either slit 1 or 2 to the particle.

We have to stress that no contradiction follows from these facts: in Heisen-

berg interpretation of Quantum Mechanics some properties do not make sense

for a system; in presence of the interference pattern the property of the passage

through which slit does not make sense.

2.4 ESW double-slit experiments

We have seen in the previous section that WS property and the measurement

of the position of the impact on the final screen cannot be measured together

by means of a localization measurement, because the corresponding observ-

ables are complementary. Here we analyze an experiment allowing indirect

knowledge of WS property: instead of it, a different property T is measured,

compatible with the measurement of the final impact point, and correlated

with WS property. We are in presence of an apparatus allowing the knowl-

edge of WS property, hence, coherently with what we said at the end of last

section, no interference can appear. Similarly, a different set-up of the same

experiment makes possible to ascertain a property L, incompatible with E;

particles possessing such a property give rise to interference, but nothing can

be said about WS property for them.

In the rest of this section we describe the experiment proposed by En-

glert, Scully and Walther and formalize it in mathematical terms; the notion

of detector is introduced and then the presence of interference in both the

arrangements of the experiment is investigated.
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2.4.1 The experimental set-up

The physical system is an atom in a long-lived Rydberg state, i.e. Rubidium in

state 63p3/2, prepared to travel towards the two slits but not elsewhere. Before

entering the slits the atom travels through one of two resonant cavities, placed

in front to each slit, and tuned to a micro-wave frequency able to provoke decay

of the atom and hence the emission of a photon. Further suitable devices make

possible to ascertain which cavity the photon is in and so through which slit

the atom passes before hitting the final screen, where no interference pattern

appears.

A different set-up of the same experiment is arranged, with the two micro-

maser cavities separated by two shutters; in such a manner radiation will be

constrained to remain either in the upper or in the lower cavity, when the

shutters are closed; whereas radiation is allowed to interact with a particular

photo-detector wall, when shutters are open and, in this way, it is absorbed.

As a consequence, which-slit information is “erased” but interference pattern

is regained for the detected particles.

Let us introduce the formalism for describing these two different double-slit

experiments. The system is a localizable particle, let HI be the Hilbert space

describing the centre-of-mass motion of the particle, and HII the Hilbert space

for the further degrees of freedom, concerning the two cavities, labeled as
∧
1

and
∧
2; the complete Hilbert space is H = HI ⊗ HII . In general, we denote

a linear operator acting on Hilbert space HI (HII), hence representing an

observable A of HI (HII), by index I (II), as AI (AII); the same observable,

when considered on the whole Hilbert space H = HI ⊗HII , is represented by

the operator A = AI ⊗ 1II (A = 1I ⊗ AII).

For the first arrangement, we introduce the events “a photon is revealed in
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cavity
∧
1” and “a photon is revealed in cavity

∧
2”, at time t0 when the particle

passes through the cavities, which are represented respectively by projection

operators TII = |1〉〈1| and T ′
II = |2〉〈2| of HII , where |1〉 and |2〉 are state

vectors of HII such that TII |1〉 = |1〉 and TII |2〉 = |2〉; since we have supposed

that the particles are prepared to travel towards the two slits but not elsewhere,

we may assume that T ′
II = 1II − TII without losing generality. Let EI (E ′

I)

be the projection operator representing the event “the particle is localized

in slit 1 (2) at time t1, when the particle passes through the first screen”;

given any interval ∆ on the final screen, let FI(∆) be the projection operator

representing the event “the particle is localized in a point within ∆ at the time

t2 of the impact on the final screen” and F ′
I(∆) its negation. Let ψ1 and ψ2

be state vectors of HI respectively localized in slit 1 and 2 at the time of the

passage through the slits, hence such that EIψ1 = ψ1 and EIψ2 = 0; moreover,

we require to ψi, i = 1,2, that Re(〈ψ1|Fψ2〉) 6= 0 (this can be done because

[E,F (∆)] 6= 0, as we saw in section 2.3). The complete state vector of the

particle is Ψ = 1√
2
(ψ1 ⊗ |1〉+ ψ2 ⊗ |2〉).

Let us describe now the second arrangement. At time t0, when the particle

passes through the cavities, the events “ the photon is detected by the photo-

detector wall” and its negation are represented by projection operators V =

1 ⊗ |+〉〈+| and V ′ = 1 ⊗ |−〉〈−|, where |+〉 = 1√
2
(|1〉 + |2〉) (resp. |−〉 =

1√
2
(|1〉 − |2〉)) is the state of the photon when a (resp. no) photocount is

observed in the detector wall. Let ψ+ and ψ− be state vectors of HI defined

as ψ+ = 1√
2
(ψ1 + ψ2) and ψ− = 1√

2
(ψ1 − ψ2), and L, L′ the corresponding

properties L = |ψ+〉〈ψ+| ⊗ 1II , L′ = |ψ−〉〈ψ−| ⊗ 1II .
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2 – Double-slit experiments

2.4.2 Indirect knowledge by detectors

Equation [E,F (∆)] 6= 0 denies the possibility of measuring both WS property

and the point of impact on the final screen. However, we shall see that in

some situations indirect knowledge about them can be obtained by means of

suitable devices called detectors.

In ESW experimental situation, it is easily shown that, in correspondence

with the state vector Ψ describing the system, projection operators T and E

satisfy equations [T,E] = 0 and TΨ = EΨ ; as a consequence, for conditional

probabilities, equations

p(T |E) =
〈Ψ |TEΨ〉
〈Ψ |EΨ〉 = 1 =

〈Ψ |ETΨ〉
〈Ψ |TΨ〉 = p(E|T )

hold, so that outcome 1 (2) for T allows us to infer the passage through slit 1

(2). We have to notice that the Hamiltonian of the system would be depen-

dent on TII , because the emission of a photon causes a change in momentum;

however, it has been shown [50] that such a dependence can be neglected; con-

dition [T,F (∆)] = 0 follows from the fact that the Hamiltonian acts only on

Hilbert space HI (see sect. 3.3); therefore, the measurement of T provides WS

knowledge and moreover it can be performed together with the measurement

of the final impact point: T can be called a WS detector.

By means of the operator V , another sorting of the particles is performed:

if the photon is found in state |+〉 (resp. |−〉) then the particle is in state

ψ+ (resp. ψ−). The projector operator V plays with respect to L the same

role of T with respect to E. Equations [V,L] = 0 and V Ψ = LΨ hold, hence

V (performed measurement) provides inferences about the outcome of L (not

performed measurement); moreover [V,F (∆)] = 0, so that it is possible to

measure V together with the final impact point. So we may conclude that also
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2 – Double-slit experiments

V is a detector, for the property represented by L.

A general definition of detector for a property of the kind R can be given

[51]:

Definition 11. A projection operator S of H is called a detector of property

R with respect to a state Ψ if

(i) [S,F (∆)] = 0,

(ii) [S,R] = 0 and SΨ = RΨ .

Condition (i) ensures that S can be measured together with F (∆); condi-

tion (ii) allows us to infer the outcome of R (though not measured) from the

outcome of S.

2.4.3 Interference in ESW experiments

In this section interference is investigated, in presence either of WS detection,

by T , or of detection of L, by V .

If with respect to the state vector Ψ describing the particle, a which-slit

detector is measured, then it is possible to ascertain which slit each particle

passes through before hitting the final screen; in this case, indeed, the inter-

ference term in (2.4) disappears:

〈Ψ1|F (∆)Ψ2〉 = 〈EΨ |F (∆)E ′Ψ〉 = 〈TΨ |F (∆)T ′Ψ〉 =

= 〈Ψ |TF (∆)T ′Ψ〉 = 〈Ψ |F (∆)TT ′Ψ〉 = 0.
(2.5)

and assumption (C) holds.

Now we are interested in the distribution of only the particles detected

by a detector of the kind Z = 1 ⊗ ZI . Since [Z,F (∆)] = 0, the probability
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2 – Double-slit experiments

p(Z ∧ F (∆)) that a particle hits the final screen in a point within ∆, once

detected by Z, is given by

p(Z ∧ F (∆)) = 〈Ψ |ZF (∆)Ψ〉 = 〈(E + E ′)Ψ |ZF (∆)(E + E ′)Ψ〉 =

= 〈Ψ1 + Ψ2|ZF (∆)(Ψ1 + Ψ2)〉 =

= 〈Ψ1|ZF (∆)Ψ1〉+ 〈Ψ2|ZF (∆)Ψ2〉+ 2Re(〈Ψ1|ZF (∆)Ψ2〉).

where Ψ1 = EΨ and Ψ2 = E ′Ψ . Interference pattern appears if and only if the

last term is not vanishing.

If we select on the final screen only the particles detected by which-slit

detector T = 1I ⊗ |1〉〈1|, then Re(〈Ψ1|ZF (∆)Ψ2〉) is 0; indeed, taking into

account that Z = T , F (∆) = FI(∆)⊗ 1II (see sect. 3.3),

Ψ1 = EΨ =
1√
2
(|ψ1〉〈ψ1| ⊗ 1II)(|ψ1〉 ⊗ |1〉+ |ψ2〉 ⊗ |2〉 =

1√
2
|ψ1〉 ⊗ |1〉

and, similarly,

Ψ2 = E ′Ψ =
1√
2
|ψ2〉 ⊗ |2〉,

we have

〈Ψ1|TF (∆)Ψ2〉 = 1
2

〈
Ψ1

∣∣TF (∆)(|ψ2〉 ⊗ |2〉)
〉

= 1
2

〈
Ψ1

∣∣T (FI(∆)|ψ2〉 ⊗ |2〉)
〉

=

= 1
2

〈
Ψ1

∣∣FI(∆)|ψ2〉 ⊗ |1〉〈1|2〉
〉

= 0.

On the contrary, the existence of a detector V = 1I ⊗ |+〉〈+| implies that

〈Ψ1|TF (∆)Ψ2〉 = 1
2

〈
Ψ1

∣∣TF (∆)(|ψ2〉 ⊗ |2〉)
〉

= 1
2

〈
Ψ1

∣∣T (FI(∆)|ψ2〉 ⊗ |2〉)
〉

=

= 1
2
〈Ψ1

∣∣FI(∆)|ψ2〉 ⊗ |+〉〈+|2〉
〉

=

= 1
4
〈〈ψ1| ⊗ 〈1|

∣∣FI(∆)|ψ2〉 ⊗ (|1〉+ |2〉)(〈1|+ 〈1|)|2〉)〉 =

= 1
4
〈ψ1|FI(∆)ψ2〉.

Hence, if we select on the final screen only those particles detected by V , we

may conclude that they give rise to the interference pattern.
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2 – Double-slit experiments

We have to notice, here, that the absence of the interference pattern for

all the particles hitting the final screen does not implies the absence for those

selected by the detector V . What happens is that particles selected by V give

rise to an interference pattern (see the continuous line in fig. 2.7.b); particles

not selected by V give rise to an “anti”-interference pattern (see the dashed

line in fig. 2.7.b), so that, when we consider all particles, the sum of the two

patterns does not exhibit interference (see fig. 2.7.a).

cavity 1

cavity 2

shutters

detector wall

Experimental set-up  (a) (b)

Figure 2.7. ESW experiment: (a) pattern for all particles, (b) patterns for
selected (continuous line) and non-selected (dashed line) particles
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Chapter 3

Detection of more incompatible

properties

3.1 Introduction

In the previous chapter a typical double-slit experiment has been analyzed;

according to the analysis in section 2.3, standard quantum theory denies the

possibility of a simultaneous measurements of both WS property and the final

impact point, since the corresponding projection operators do not commute.

This notwithstanding, several devices have been conceived providing knowl-

edge of WS property E by measuring a suitable property T , compatible with

the measurement of the final impact point, and whose outcome infers the

outcome of E.

In this chapter we face the question of ascertaining together more incompat-

ible properties, in the framework of the double-slit experiment, by exploiting

the notion of WS detector. Such a problem has been put and investigated in

[7], on a theoretical ground, in the case of three incompatible properties (WS
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3 – Detection of more incompatible properties

property, an incompatible one and the measurement of the final impact point);

it is shown that properties, incompatible with WS property, can be detected

together with the knowledge of which slit each particle passes through and

together with the measurement of the point of impact on the final screen.

This kind of detection is made possible by the fact that besides the position

of the centre-of-mass, our system possesses further degrees of freedom. As a

consequence, the Hilbert space describing the entire system can be decomposed

as HI ⊗ HII , where HI is the Hilbert space used to represent the observable

position, and HII is the Hilbert space used to represent the observable aris-

ing from the further degrees of freedom. The detection of WS property E is

obtained by measuring an observable represented by a particular projection

operator T acting on HII , which is correlated, in the particular quantum state

of the system, with WS property, so that this last can be inferred from the

outcome of T . This kind of detection was studied from a mathematical point

of view in [5] and [6], where the interpretative questions were analyzed. The

possibility of detecting an incompatible property G is provided by the exis-

tence of an observable represented by another projection operator Y acting on

HII , but which can be measured together with T . A systematic investigation

[7] establishes that the existence of such an observable (projection operator)

depends on the dimension of space HI .

Section 2 shows an ideal experiment where a property incompatible with

WS property is detected together with the measurement of the final impact

point, without erasing WS knowledge provided by a WS detector, contrary

to what happens in ESW experiment. However, in this (theoretically) similar

experiment, the detections of E and L turn out to be completely correlated

[51].
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3 – Detection of more incompatible properties

Section 3 is devoted to a systematic investigation of the problem of as-

certaining together three incompatible properties: Which slit property, an

incompatible one and the final impact point. An exhaustive treatment of the

case dim(HI) = 4 is carried out: all solutions turn out to be correlated [7], as

it happens in example presented in sect. 3.2. Therefore, non-correlated solu-

tions can exist if and only if dim(HI) > 4. A wide family of non-correlated

solutions is provided for dim(HI) = 6, and an ideal experiment which realizes

the detection at issue is designed [8].

We notice that our approach to the problem of inferring the outcomes

of more incompatible properties is not the only one. In [9] a procedure is

described allowing to make inferences about the three cartesian components of

a spin-1
2

particle. In section 4 we deal with the differences between our method

and that proposed by Vaidman, Aharonov and Albert (VAA). Moreover, VAA

claim that, according to their method, it is not possible to produce inferences

(such that described in [9]) for more than three observables. Since our method

runs in a quite different manner, maybe it shall admit solutions. Hence, in

section 5 we treat the question whether two incompatible properties, G and

L, can be detected together with the further incompatible property E (WS

property) and together with measurement of the final impact point, in the same

kind of ideal experiment. In particular, we show that such a question has an

affirmative answer; as in the previous case, the existence of solutions depends

on the dimension of space HI ; we find a particular solution for dim(H1) = 10;

nevertheless, in such a case the properties L and G turn out to be correlated

[8]. In section 6 the detailed derivation of solutions is carried out.
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3.2 Detection in ESW experiment

In section 2.4 ESW experiment has been analyzed: in that case the two prop-

erties E and L do not commute; though they cannot be measured together,

detectors T and V exist providing indirect knowledge about E and L respec-

tively. However, measurement of both T and V is not possible on the same

system because [T,V ] 6= 0. Therefore, a mutually exclusive choice must be

done between either T or V .

Now we face the following question: Are there situations in which the si-

multaneous knowledge of which slit passage and an incompatible property is

possible for each particle hitting the final screen, together with the measure-

ment of the final impact point? We present an example showing that the

answer is yes, where the two properties are directly correlated.

The system consists of a spin 1
2
-particle, so that we can take HII = IC2,

where |1〉 and | − 1〉 are the eigenkets corresponding to the eigenvalues 1
2

and

−1
2

of the spin along a fixed direction
→
n. Let dim(HI) = 4 and M1, M2, M3,

M4 be four mutually orthogonal subspaces of HI , with respective projections

P1, P2, P3, P4, such that EI = P1 + P2, 1−EI = P3 + P4. Let the state of

the particle be described by

Ψ = (1/2){(ψ1 + ψ2)|1〉+ (ψ3 + ψ4)|2〉},

where ψk ∈ Mk and ‖ψk‖ = 1, k = 1,2,3,4. Therefore, the projection T =

1I ⊗|1〉〈1| measures whether the spin is up (1
2
) or down (−1

2
). Since equations

[T,E] = 0 and TΨ = EΨ continue to hold and, moreover [T,F (∆)] = 0,

projection T above is a which-slit detector.

Now we consider the projection L = LI ⊗ 1II , where LI = A + B + C + D,
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3 – Detection of more incompatible properties

with

A = |ψ1〉[(3/4)〈ψ1|+ (1/4)〈ψ2| − (1/4)〈ψ3|+ (1/4)〈ψ4|],
B = |ψ2〉[(1/4)〈ψ1|+ (3/4)〈ψ2|+ (1/4)〈ψ3| − (1/4)〈ψ4|],
C = |ψ3〉[−(1/4)〈ψ1|+ (1/4)〈ψ2|+ (1/4)〈ψ3| − (1/4)〈ψ4|],
D = |ψ4〉[(1/4)〈ψ1| − (1/4)〈ψ2| − (1/4)〈ψ3|+ (1/4)〈ψ4|].

(3.1)

To grasp the physical meaning of L the choice of ψ1,ψ2,ψ3,ψ4 must be specified,

of course. However, rule [L,E] 6= 0 holds for any choice; therefore projection

L represents a property incompatible with E. Now, equality TΨ = LΨ holds:

T is a detector also for L, which is incompatible with E. Furthermore, since

EΨ = TΨ = LΨ , when the particles are prepared in the state Ψ , there is an

entanglement between the two incompatible properties E and L.

Figure 3.1. Ideal apparatus for detecting both E and L

Outcome 1 (0) for which slit detector T implies that both E and L have

outcome 1 (0), E and L being incompatible with each other.
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3 – Detection of more incompatible properties

3.3 Detection of three incompatible proper-

ties

In this section we systematically face the question of ascertaining two mutually

incompatible properties together with the measurement of a third property

incompatible with both, in the framework of the double-slit experiment; in

particular, we formalize the problem in precise mathematical terms and then

a systematic investigation to find concrete solutions is performed.

The formalism introduced in section 2.3 is a valid base; let us suppose that,

besides the position of the centre-of-mass, the system possesses further degrees

of freedom, described in a different Hilbert space HII . As a consequence, the

Hilbert space describing the entire system can be decomposed asHI⊗HII . Let

us suppose that the Hamiltonian operator H of the entire system is essentially

independent of the degrees of freedom described byHII , so that we may assume

the ideal case H = HI ⊗1II . Let E = EI ⊗1II (E ′ = 1−E) be the projection

operator corresponding to the event “the particle is localized in slit 1 (resp. 2)

at the time t1, i.e. when the particle passes through the slits”; for any interval

∆ on the final screen, let F (∆) be the projection operator corresponding to the

event “the particle is localized in a point within ∆ at the time t2 of the impact

on the final screen ” and F ′(∆) = 1 − F (∆) its negation. Quantum theory

does not permit to measure the point of impact on the final screen together

with WS property; indeed, in section 2.3, analyzing the time evolution of

the system, we have seen that the corresponding operators do not commute,

[E,F (∆)] 6= 0. Taking into account the notion of detector introduced in sub-

section 2.4.2, one can make inferences about WS property E by means of

measurements of an observable represented by a projection operator T , acting
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onHII , whose outcome is correlated with the outcome of E. The independence

of the Hamiltonian from the further degrees of freedom implies that equation

[T,F (∆)] = 0 holds; indeed, the projection operator F (∆,t1) corresponding

the localization in the interval ∆ of the final screen at time t1 must have the

form F (∆,t1) = FI(∆)⊗ 1II , since it is a localization operator at time t1, like

E; then

F (∆) = eiH(t2−t1)F (∆,t1)e
−iH(t2−t1) =

= ei(HI⊗1II)(t2−t1)(FI(∆)⊗ 1II)e
−i(HI⊗1II)(t2−t1) =

=
(
eiHI(t2−t1) ⊗ 1II

)
(FI(∆)⊗ 1II)

(
e−iHI(t2−t1) ⊗ 1II

)
=

=
(
eiHI(t2−t1)FI(∆)e−iHI(t2−t1)

)⊗ 1II =

= FI(∆,t2)⊗ 1II

so that F (∆) commutes with any operator acting only on HII . Let G be

another property, represented by a projection operator acting on HI , G =

GI⊗1II , incompatible with WS property; let us suppose that G can be detected

by means of an operator Y acting on HII ; similarly, equation [Y,F (∆)] = 0 is

satisfied.

The possibility of detecting G and E, together with F (∆), would be ensured

by detectors T of E and and Y of G, of the form T = 1I⊗TII and Y = 1I⊗YII ,

satisfying [T,Y ] = 0 in such a way that T and Y can be measured together

giving simultaneous information about E and G. Indeed, equations [T,F (∆)] =

0 and [Y,F (∆)] = 0 are automatically satisfied; moreover, if a detector T of

E exists, then equations [T,E] = 0 and TΨ = EΨ hold; equation [T,E] = 0

expresses the compatibility between the properties represented by T and E,

so that simultaneous knowledge about them is allowed; furthermore, equation

TΨ = EΨ entails an entanglement between T and E, since it is mathematically
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equivalent to state that conditional probabilities satisfy

p(T | E) =
〈Ψ | TEΨ〉
〈Ψ | EΨ〉 = 1 =

〈Ψ | TEΨ〉
〈Ψ | TΨ〉 = p(E | T ),

in other words, outcome 1 (0) for T reveals the passage of the particle through

slit 1 (2). Similarly, the existence of a detector Y of G ensures that [Y,G] = 0

and Y Ψ = GΨ so that, the outcome of Y reveals the occurrence of the property

G.

The problem at issue can be set out as follows:

Problem (P). Given the property E = EI ⊗ 1II we want to find a projection

operator GI of HI , two projection operators TII and YII of HII , and a state

vector Ψ ∈ HI ⊗HII such that the following conditions are satisfied:

(C.1) [E,G] 6= 0 i.e [EI ,GI ] 6= 0

(C.2) [T,E] = 0 and TΨ = EΨ

(C.3) [Y,G] = 0 and Y Ψ = GΨ

(C.4) [T,Y ] = 0

(C.5) Ψ 6= EΨ 6= 0 and Ψ 6= GΨ 6= 0

(C.6) [T,F (∆)] = [Y,F (∆)] = 0

Condition (C.5) is added to exclude solutions corresponding to the unin-

teresting case that Ψ is an eigenvector of E or G.

3.3.1 General constraints

Conditions (C.1)-(C.6) can be expressed in a more useful form if the following

matrix representation is adopted.
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Let (e1,e2,e3, . . . ; r1,r2,r3, . . .) be an orthonormal basis of HI , formed by

eigenvectors of EI , such that EIek = ek and EIrj = 0 for all k and j. Therefore,

every vector Ψ ∈ HI ⊗HII can be uniquely decomposed as

Ψ =
∑

j

ej ⊗ xj +
∑

k

rk ⊗ yk,

where xj,yk ∈ HII . Now, condition (C.4) [T,Y ] = 0 implies that four projec-

tion operators, Ai (i = 1, . . . ,4), of HII exist such that
∑4

1 Ai = 1, TII = A1 +

A2 and YII = A1 +A3. Thereby, we choose to represent vectors xj,yk ∈ HII as

column vectors xj = (aj,bj,cj,dj)
t and yk = (αk,βk,γk,δk)

t, where aj = A1xj,

bj = A2xj, cj = A3xj, dj = A4xj and αj = A1yj, βj = A2yj, γj = A3yj,

δj = A4yj. Then Ψ ∈ H shall be represented as a column vector

Ψ = (x1,x2, . . . ,xj, . . . ;y1,y2, . . . ,yk, . . .)
t . (3.2)

Once introduced suitable matrices P = (pij), U = (uij), V = (vij) and Q =

(qij), we can write a linear operator GI of HI in the form GI =


 P U

V Q


;

let XII be a linear operator of HII , then, according to such a representation,

for any factorized linear operator GI ⊗XII we have

(GI ⊗XII)Ψ =




∑
j p1jXIIxj +

∑
k u1kXIIyk

∑
j p2jXIIxj +

∑
k u2kXIIyk

·
∑

j v1jXIIxj +
∑

k q1kXIIyk

∑
j v2jXIIxj +

∑
k q2kXIIyk

·




(3.3)

where pij = 〈ei | GI | ej〉, uik = 〈ei | GI | rk〉, vkj = 〈rk | GI | ej〉 and

qlk = 〈rl | GI | rk〉. Then, in our representation GI ⊗ XII will be identified
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with the “four blocks” matrix

GI ⊗XII =




p11XII p12XII · u11XII u12XII ·
p21XII p22XII · u21XII u22XII ·
· · · · · ·

v11XII v12XII · q11XII q12XII ·
v21XII v22XII · q21XII q22XII ·
· · · · · ·




,

so that (GI ⊗XII)Ψ in (3.3) turns out to be the usual matrix product of this

matrix with the column vector (3.2). In particular we have

E =




1II 0II . 0II 0II .

0II 1II . 0II 0II .

. . . . . .

0II 0II . 0II 0II .

0II 0II . 0II 0II .

. . . . . .




, G =




p111II p121II . u111II u121II .

p211II p221II . u211II u221II .

. . . . . .

v111II v121II . q111II q121II .

v211II v221II . q211II q221II .

. . . . . .




,

T =




TII 0II . 0II 0II .

0II TII . 0II 0II .

. . . . . .

0II 0II . TII 0II .

0II 0II . 0II TII .

. . . . . .




, Y =




YII 0II . 0II 0II .

0II YII . 0II 0II .

. . . . . .

0II 0II . YII 0II .

0II 0II . 0II YII .

. . . . . .




,

where U = (uij) 6= 0 is required by condition (C.1), and G = G∗ = G2. From

condition (C.2) TΨ = EΨ , we obtain xi =t (ai,bi,0,0) and yj =t
(
0,0,γj,δj

)
,

i.e.

Ψ = (a1,b1,0,0︸ ︷︷ ︸
xt

1

, a2,b2,0,0︸ ︷︷ ︸
xt

2

, · ,·; 0,0,γ1,δ1︸ ︷︷ ︸
yt

1

,0,0,γ2,δ2︸ ︷︷ ︸
yt

2

, · ,·)t. (3.4)

66



3 – Detection of more incompatible properties

Hence, condition (C.3) Y Ψ = GΨ is equivalent to

(i− A)





∑
i pjiai = aj

∑
i pjibi = 0

(ii−B)





∑
l ujlγ l = 0

∑
l ujlδl = 0

(iii− C)





∑
i vkiai = 0

∑
i vkibi = 0

(iv −D)





∑
l qklγ l = γk∑
l qklδl = 0.

(3.5)

Conditions (3.4) and (3.5) are general constraints to be satisfied in order that

Ψ and G give rise to a solution of (P). The following conditions (3.6) and (3.7)

are straightforward consequences:

Eψ = TΨ = (a1,b1,0,0, a2,b2,0,0, · · · ; 0,0,0,0,0,0,0,0, · · · )t; (3.6)

GΨ = Y Ψ = (a1,0,0,0, a2,0,0,0, · · · ; 0,0,γ1,0,0,0,γ2,0, · · · )t. (3.7)

So far we have established general constraints to be satisfied by every solution

of the problem, independently of the ranks of E, G and Ai, with i = 1, . . . ,4,

and therefore of dimensions of the spaces HI and HII .

3.3.2 Correlated solutions of problem (P)

We shall restrict ourselves to the case that the two slits are symmetrical:

this leads to exclude odd dimension of HI and, moreover, to assume that

rank(E) = rank(1)− E = dim(HI)/2.

We begin our searching for solutions of (P) by establishing that no solu-

tion exists if dim(HI) = 2. Indeed, in this case G =


p1II u1II

v1II q1II


, where

p,u,v,q are complex numbers, with u = v̄ 6= 0 to satisfy [G,E] 6= 0, and

Ψ = (a,b,0,0;0,0,γ,δ)t. Then (ii-B) and (iii-C) respectively imply γ = δ = 0

and a = b = 0, i.e. Ψ = 0.
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In the previous section 3.2 we have presented an example of solution of

(P) with dim(HII) = 2 and dim(HI) = 4. However, for this solution the

outcomes of the two detections of E and G always coincide. Now we prove

that this trivial character is shared by every solution of (P), if dim(HI) = 4,

independently of the dimension of HII . In this case, the representation of the

projection operators E, G, T and Y in a solution of (P) is made of 4 × 4

matrices, whereas Ψ in (3.4) is

Ψ = (a1,b1,0,0,a2,b2,0,0;0,0,γ1,δ1,0,0,γ2,δ2)
t.

As a consequence, conditions (3.5) become (j = 1,2)

(i− A)





pj1a1 + pj2a2 = aj

pj1b1 + pj2b2 = 0,
(ii−B)





uj1γ1 + uj2γ2 = 0

uj1δ1 + uj2δ2 = 0;

(iii− C)





vj1a1 + vj2a2 = 0

vj1b1 + vj2b2 = 0,
(iv −D)





qj1γ1 + qj2γ2 = γj

qj1δ2 + qj2δ2 = 0.

(3.8)

In order that [G,E] 6= 0, at least one of the entries uij must be different from

0. This implies that the vectors y1 and y2 must be linearly dependent. Let us

suppose that γ2 = λγ1 and δ2 = λδ1. By using these relations in equations

(iv-D) of (3.8) we get




q11γ1 + q12γ2 = γ1 = (q11 + λq12)γ1

q21γ1 + q22γ2 = γ2 = (q21 + λq22)γ1

q11δ1 + q12δ2 = 0 = (q11 + λq12)δ1

q21δ1 + q22δ2 = 0 = (q21 + λq22)δ1 .

If δ1 6= 0 then (q11 + λq12) = (q21 + λq22) = 0, which implies γ1 = γ2 = 0. On

the other hand, if δ1 = 0 then δ2 = λδ1 = 0, while γ1, γ2 can be non-vanishing
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with γ2 = λγ1. Similarly, we can show that if b1 6= 0 then a1 = a2 = 0; if

b1 = 0 then b2 = 0 and a2 = µa1. Hence, the following statements are implied

by (3.8):

a) if b1 = 0 and δ1 = 0, then

Ψ = (a1,0,0,0, µa1,0,0,0; 0,0,γ1,0,0,0,λγ1,0)t,

b) if b1 = 0 and δ1 6= 0, then

Ψ = (a1,0,0,0, µa1,0,0,0; 0,0,0,δ1,0,0,0,λδ1)
t,

c) if b1 6= 0 and δ1 = 0, then

Ψ = (0,b1,0,0,0,µb1,0,0; 0,0,γ1,0,0,0,λγ1,0)t,

d) if b1 6= 0 and δ1 6= 0, then

Ψ = (0,b1,0,0,0,µb1,0,0; 0,0,0,δ1,0,0,0,λδ1)
t.

Cases (a) and (d) violate (C.5) because they respectively yield GΨ = Ψ and

GΨ = 0. Therefore, a state vector in a solution of (P) must have one of the

forms in (b), (c).

If case (b) (resp., case (c)) for Ψ is realized then, taking into account (3.6)

and (3.7), we get TΨ = Y Ψ (resp., T ′Ψ = Y Ψ). This is equivalent to state

that conditional probability P (T | Y ) (resp., P (T | Y ′)) is equal to 1. As a

consequence, we can conclude that property G is detected by Y on a particle

(i.e. the outcome for Y is 1) if and only if T detects the passage of that particle

through slit 1 (resp., slit 2). Thus we have perfect correlation.

Now we face the problem of singling out solutions G of (3.5) in the case

of interest (b), where δ1 6= 0 and b1 = 0. At first, we find the solutions

corresponding to µ = 0 (or λ = 0), then solutions for µ 6= 0 6= λ are singled

out.
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Case (c) can be treated in a similar way, giving rise to quite symmetrical

results.

The case µ = 0 or λ = 0

If µ = 0 then Ψ = (a1,0,0,0,0,0,0,0; 0,0,0,δ1,0,0,0,λδ1)
t. Since a1 = 0

implies TΨ = 0, and δ1 = 0 implies TΨ = Ψ , which violate (C.5), we have to

consider only the case that both a1 and δ1 are non-vanishing. Therefore,

- (i-A) in (3.5) implies p11 = 1, p21 = 0 = p12,

- (iii-C) in (3.5) implies v11 = v21 = 0, and u11 = u12 = 0 by self-

adjointness,

- (ii-B) in (3.5) implies u21 = −λu22

- (iv-D) in (3.5) implies q21 = −λq22, q11 = −λq12 = −λq21 = |λ|2q22.

Then matrix G must have the form

G =




1 0 0 0

0 p −λu u

0 −λu |λ|2q −λq

0 u −λq q




, (3.9)

where q ≡ q22 and u ≡ u22. Now we find the solutions such that rank(G) =

1 + p + |λ|2 + q = 2. Imposing idempotence to elements p and q we have

that given any λ, matrix G in (3.9) is a solution if and only if u = eiθ
√

p−p2

1+|λ|2 ,

q = 1
1+|λ|2 and 0 < p < 1.

The case λ = 0 can be treated along the same logical lines, and lead to

quite symmetrical results.

The case µ 6= 0 6= λ
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Now we consider the remaining case µ 6= 0 6= λ. Self-adjointness together

with (3.5) leads to

G =




1− |µ|2(1− p) µ̄(1− p) −λu u

µ(1− p) p λ
µ̄
u − 1

µ̄
u

−λ̄ū λ̄
µ
ū |λ|2q −λ̄q

ū − 1
µ
ū −λq q




. (3.10)

Now, matrix G in (3.10) is a solution if numbers p, q, u 6= 0 can be chosen in

such a way that G turns out to be idempotent.

The set of solutions is not empty. We show the solutions for the case

λ = µ = 1 and rank(G) = 2, so that (3.10) becomes

G =




p 1− p −u u

1− p p u −u

−ū ū q −q

ū −ū −q q




.

Idempotence imposes 0 < q < 1/2, p = 1 − q and u = eiθ
√

(1
2
− q)q, where θ

is any real number. Therefore, for every q ∈ (0,1/2) and every θ ∈ IR we have

a solution

G =




1− q q −eiθ
√

(1
2
− q)q eiθ

√
(1

2
− q)q

q 1− q eiθ
√

(1
2
− q)q −eiθ

√
(1

2
− q)q

−e−iθ
√

(1
2
− q)q e−iθ

√
(1

2
− q)q q −q

e−iθ
√

(1
2
− q)q −e−iθ

√
(1

2
− q)q −q q




.

In [51] is presented the particular solution corresponding to θ = 0 and q = 1/4.
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3.3.3 Non-correlated solutions

Now we answer the question whether, by allowing the dimension of HI to be

at least 6, solutions of (P) exist, without correlations between the detections

of G and E, always present in the (even) cases dim(HI) < 6. We assume that

rank(EI) = rank(1I − EI) = 3, so that Ψ = (x1,x2,x3; y1,y2,y3)
t and in (3.5)

indexes i,j,k,l take values in {1,2,3}. No constraint is imposed to the ranks of

Ai, with i = 1,2,3,4, and hence to the dimension of HII . If dim(HI) = 6, then

Ψ = (x1,x2,x3;y1,y2,y3)
t, so that P , U , V and Q are 3 × 3 matrices. Now

we show that in order to have non-correlated solutions everyone of the triples

{δ1,δ2,δ3}, {γ1,γ2,γ3}, {a1,a2,a3} and {b1,b2,b3}, must be generated by just

one vector.

The detailed analysis of the derivation of such solutions is a rather technical

matter; so, it is displaced in section 3.3.5; here we only sketch the idea, by

investigating the linear dependencies in the triples {δ1,δ2,δ3} and {b1,b2,b3}.
Since at least one of the entries uij must be non-zero to satisfy [G,E] 6= 0,

general constraint (ii−B) implies that one of the three vectors y1,y2,y3 - say

y1 - is a linear combination of the remaining two:





δ1 = λ2δ2 + λ3δ3

γ1 = λ2γ2 + λ3γ3.

Using these equations in (iv-D) we get





(qj2 + λ2qj1)δ2 + (qj3 + λ3qj1)δ3 = 0

(qj2 + λ2qj1)γ2 + (qj3 + λ3qj1)γ3 = γj,

j = 1,2,3. (3.11)

If vectors δ2, δ3 are linearly independent, then the first equation in (3.11)

implies (qj2 + λ2qj1) = (qj3 + λ3qj1) = 0, so that second equation in (3.11)
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yields γj = 0 for all j. Hence

(a.i) δ2, δ3 linearly independent ⇒ yj = (0,0,0,δj)
t, ∀j.

In a similar way we can prove that

(a.ii) b2,b3 linearly independent ⇒ xj = (0,bj,0,0)t, ∀j.

Now we derive the consequences of (a.i-ii) relative to our problem (P). Given

a state vector Ψ satisfying general constraint (3.4), a possibility is that δ2, δ3

are linearly independent and also b2, b3 are linearly independent.

In this case xj = (0,bj,0,0)t and yj = (0,0,0,δj)
t. If a solution of (P) exists,

then GΨ = Y Ψ = 0 would follow from (3.7), and condition (C.5) would be

violated. If we consider the other cases, then we obtain the following implica-

tions.

b) δ2, δ3 linearly independent and b2, b3 linearly dependent imply

xj = (aj,bj,0,0)t and yj = (0,0,0,δj)
t.

c) δ2, δ3 linearly dependent and b2, b3 linearly independent imply

xj = (0,bj,0,0)t and yj = (0,0,γk,δk)
t.

d) δ2, δ3 linearly dependent and b1, b2 linearly dependent imply

xj = (aj,bj,0,0)t and yj = (0,0,γj,δj)
t.

Now we can see only case (d) leads to non correlated solutions. In case (b), if

a solution of (P) exists such that δ2, δ3 are linearly independent and b2, b3

are linearly dependent, then (3.6), (3.7) imply that Y TΨ = Y Ψ holds, which

is equivalent to say that conditional probability

p(T | Y ) =
〈Ψ | TY Ψ〉
〈Ψ | Y Ψ〉
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is equal to 1; this means that each time a particle is measured to have T = 1

then it certainly has Y = 1. In case (c) TY Ψ = TΨ holds, so that each time

a particle is sorted by Y , then it is certainly sorted by T . Therefore, for all

eventual solutions corresponding to cases (b) and (c), property G must be

correlated with WS property E.

Hence, to concretely find non-correlated solutions, we have to take state

vectors Ψ such that vectors δ2 and δ3 are linearly dependent, say δ3 = λδ2

and, similarly, vectors b2 and b3 are linearly dependent, say b3 = µb2, where

λ and µ are complex numbers.

A similar reasoning for equations (i-A) and (iv-D) (see section 3.3.5), leads

to conclude that also the triples {γ1,γ2,γ3} and {a1,a2,a3} are generated by

just one vector. As a consequence, we also attain the form Q and U have to do

in order to satisfy (ii-B) and (iv-D); nevertheless, self-adjointness of Q yields

to rather difficult calculation; hence we prefer making easier the search with

the choice γ2 = 0.

Among general solutions of (3.5) with γ2 = 0, we select only those which

satisfy GI
∗ = GI ; we get

P =




p −µ2

(
p− |µ3|2

1+|µ3|2
)

µ3(1− p)

−µ2

(
p− |µ3|2

1+|µ3|2
)

|µ2|2
(
p− |µ3|2

1+|µ3|2
)

µ3µ2

(
p− |µ3|2

1+|µ3|2
)

µ3(1− p) µ3µ2

(
p− |µ3|2

1+|µ3|2
)

1− |µ3|2(1− p)




,

Q =




q −λ2

(
q − |λ3|2

1+|λ3|2
)

λ3(1− q)

−λ2

(
q − |λ3|2

1+|λ3|2
)

|λ2|2
(
q − |λ3|2

1+|λ3|2
)

λ3λ2

(
q − |λ3|2

1+|λ3|2
)

λ3(1− q) λ3λ2

(
q − |λ3|2

1+|λ3|2
)

1− |λ3|2(1− q)




,
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U =




u −λ2u −λ3u

−µ2u λ2µ2u λ3µ2u

−µ3u λ2µ3u λ3µ3u




,

Ψ = (x1,x2,x3;y1,y2,y3)
t,

where

x1 = (µ3a3,
µ2

|µ3|2+1
b2,0,0)t y1 = (0,0,λ3γ3,

λ2

|λ3|2+1
δ2,0)

t

x2 = (0,b2,0,0)t y2 = (0,0,0,δ2)
t

x3 = (a3,− µ2µ3

|µ3|2+1
b2,0,0)

t
y3 = (0,0,γ3,− λ2λ3

|λ3|2+1
δ2)

t

Self-adjointness of GI implies that V = U
t
, moreover λ = − λ2λ3

1+|λ3|2 and

µ = − µ2µ3

1+|µ3|2 .

Such a solution completely solves the problem if numbers p,u,q 6= 0 can be

chosen in such a manner that G turns out to be idempotent. It is easily shown

that idempotence implies

1. |µ3|2
1+|µ3|2 < p < |µ3|2

1+|µ3|2 + 1
1+|µ2|2+|µ3|2 ,

2. u = eiθ

√�
p− |µ3|2

1+|µ3|2

�
−(1+|µ2|2+|µ3|2)

�
p− |µ3|2

1+|µ3|2

�2

1+|λ2|2+|λ3|2 , where θ is a real number,

3. q =
1−(1+|µ2|2+|µ3|2)

�
p− |µ3|2

1+|µ3|2

�
1+|λ2|2+|λ3|2 .

Therefore for every real number |µ3|2
1+|µ3|2 < p < |µ3|2

1+|µ3|2 + 1
1+|µ2|2+|µ3|2 , every θ ∈ IR

and every µ2,µ3,λ2,λ3 ∈ IC we have a solution of (P).

No constraint is imposed to rank(GI), i.e. to the trace of the projection

operator G, hence these parameters are not all independent.
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For every choice we attain a solution, GI
1,GI

2, . . .; then we can state there

are several properties G1,G2, . . . incompatible with WS property E but de-

tectable together with it. However, we notice that, taking into account (C.3),

every Gi transforms Ψ in Y Ψ .

Our solutions form a rather wide family; however, it is not exhaustive,

because of the choice γ2 = 0; if the case γ2 6= 0 is taken into account, the

problem would be completely solved. The family singled out in [7] is just a sub-

family of the present one, corresponding to the particular choice µ3 = λ3 = 0

and λ2 = µ2 = 1.

In next sub-section an ideal experiment, not concretely performable, that

realizes the detection at issue, is proposed.

3.3.4 Ideal experiment

Until now the treatment has been carried out on a theoretical ground only. Now

we describe an ideal apparatus following the results of the previous sections.

The experimental set-up corresponds to the particular solution with para-

meters µ2 = λ2 =
√

3 and µ3 = λ3 = 1.

The system consists of an electrically neutral particle of spin 3
2
; the position

of its centre-of-mass is described in space HI . The further degrees of freedom,

described in HII , concerns the spin of the particle.

Let us suppose that, after crossing the screen with the slits, each particle

passes through a non-uniform magnetic field, with gradient along the direction

z (fig. 3.2). The beam splits into four beams and the deflection of each particle

depends on the component of the spin in the direction of the magnetic field

gradient. Hence the measurement of the amount of deflection of the particle

indicates the value of its spin component.
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Figure 3.2. Experimental set-up for detecting E and G

Let A be the projection operator representing the event “the spin com-

ponent in the z-direction is 3
2
”. Similarly we define operators B, C and D

associated to the spin components 1
2
, −1

2
and −3

2
, respectively. We denote

their respective eigenvectors relative to the eigenvalue 1 by | 3
2
〉, | 1

2
〉, | −1

2
〉

and | −3
2
〉. By ψi, i = 1, . . . ,6 we denote orthonormal eigenfunctions of HI

such that ψ1, ψ2, ψ3 lie in EIHI and ψ4, ψ5, ψ6 lie in (I − EI)HI . Let the

state vector of the entire system be

ψ =
1

3

{
(ψ1 + ψ2) | 3

2
〉+

(√
3

2
ψ1 + ψ2 −

√
3

2
ψ3

)
| 1

2
〉
}

+

+
1

3

{
(ψ4 + ψ6) | −1

2
〉+

(√
3

2
ψ4 + ψ5 −

√
3

2
ψ6

)
| −3

2
〉
}

,

which, within our representation, coincides with

Ψ =
1

3

(
1,

√
3

2
,0,0,1,1,0,0,0,−

√
3

2
,0,0; 0,0,1,

√
3

2
,0,0,0,1,0,0,1,−

√
3

2

)t

.

According to the results of previous section, with respect to this state vector

there exists a Which-Slit detector T = I ⊗ (A + B) and a detector Y =

I⊗ (A+C) of a property G = GI⊗ I, incompatible with property E; GI , with
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the particular choice, is the projection operator

GI =
1

30




20 −5
√

3 10
√

5 −√15 −√5

−5
√

3 15 5
√

3 −√15 3
√

5
√

15

10 5
√

3 20 −√5
√

15
√

5
√

5 −√15 −√5 16 −√3 14

−√15 3
√

5
√

15 −√3 3
√

3

−√5
√

15
√

5 14
√

3 16




.

Therefore, the ideal experiment just described allows to make inferences about

three non-commuting observables: the position of the final impact point is

inferred from a direct measurement of F (∆); WS property E is inferred from

the outcome of detector T and property G is inferred from the outcome of

detector Y .

We stress the ideal character of the experiment just described. In order to

make it meaningful, we would be able to identify the observable represented by

G by a physical point of view. Nevertheless, practical difficulties of creating

the initial entangled state Ψ are the real obstacles in realizing the designed

experiment. Hence, even if a real experiment for simultaneous detection of WS

property, an incompatible one and the final impact point is not yet performed,

a wide family of solutions is a contribution to increase the possibility of a

concrete realization.

3.3.5 Derivation of a family of solutions

This section is devoted to find a detailed derivation of the family of solutions

presented in previous section.

We are seeking for solutions such that the rank of L is 3, so that i, j, k,

l take values in {1,2,3}. The detailed analysis at the beginning of section 3.3

78



3 – Detection of more incompatible properties

shows that, in order to attain non-correlated solutions, the triples {δ1,δ2,δ3}
and {b1,b2,b3} must be generated by just one vector; thus, we have also

supposed that δ3 = λδ2 and similarly b3 = µb2. Thereby, in (ii-B) we get





(uj1λ2 + uj2)γ2 + (uj1λ3 + uj3)γ3 = 0

[(uj1λ2 + uj2) + λ(uj1λ3 + uj3)]δ2 = 0.
(3.12)

If δ2 = 0 then second equation in (3.12) is satisfied and δj = 0 for all j, so

that yj =t (0,0,γj,0). In a similar way, b2 = 0 implies bj = 0 for all j, so

that xj =t (aj,0,0,0). Given a state Ψ , we obtain the following implications:

1. b2 = 0 and δ2 = 0 imply xj =t (aj,0,0,0) and yj =t (0,0,γj,0); in this

case if a solution exists, then GΨ = Ψ . Therefore meaningful solutions

cannot exist;

2. b2 6= 0 and δ2 = 0 imply xj =t (aj,bj,0,0) and yj =t (0,0,γj,0); if a

solution exists, then T ′Ψ = T ′Y ′Ψ , that is to say property G must be

correlated with WS property E;

3. b2 = 0 and δ2 6= 0 imply xj =t (aj,0,0,0) and yj =t (0,0,γj,δj); if a

solution exists, then TY Ψ = TΨ . As in previous case property G must

be correlated with WS property E;

4. b2 6= 0 and δ2 6= 0 imply xj =t (aj,bj,0,0) and yj =t (0,0,γj,δj); this is

the only case that can lead to solution without correlation.

Hence, we are interested only in case (4).

Since δ2 6= 0, second equation in (3.12) is satisfied if and only if

(uj1λ2 + uj2) = −λ(uj1λ3 + uj3) (3.13)

79



3 – Detection of more incompatible properties

so that first equation in (3.12) becomes

(uj1λ3 + uj3)(γ3 − λγ2) = 0. (3.14)

If we suppose γ3 = λγ2 then in (3.11) we get




[(qj1λ2 + qj2) + λ(qj1λ3 + qj3)]γ2 = γj

[(qj1λ2 + qj2) + λ(qj1λ3 + qj3)]δ2 = 0

but δ2 6= 0 implies that (qj1λ2 + qj2) = −λ(qj1λ3 + qj3), hence γj = 0 for all

j. Therefore for all eventual solutions corresponding to both cases, property

G must be correlated with WS property E. Since we are interested in non-

correlated solutions, (3.14) yields

(uj1λ3 + uj3) = 0. (3.15)

If we consider all possibilities for γ1 and γ2, we get:

a. γ3 = λγ2,

b. γ2 and γ3 linearly independent,

c. γ3 = λ4γ2,

d. γ2 = 0 and γ3 6= 0.

Now we draw the consequences of (b), (c) and (d), since in case (a) eventual

solutions lead to correlated properties.

Case (b).

If vectors γ2 and γ3 are linear independent, then (3.11) becomes




(qj1λ2 + qj2)γ2 + (qj1λ3 + qj3)γ3 = γj

[(qj1λ2 + qj2) + λ(qj1λ3 + qj3)]δ2 = 0.
(3.16)
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Since δ2 6= 0, then second equation in (3.16) implies (qj1λ2+qj2) = −λ(qj1λ3+

qj3), so that first equation in (3.16) yields (qj1λ3 + qj3)(γ3− λγ2) = γj. Using

this relation we get



(q11λ3 + q13)(γ3 − λγ2) = λ2γ2 + λ3γ3

(q21λ3 + q23)(γ3 − λγ2) = γ2

(q31λ3 + q33)(γ3 − λγ2) = γ3.

(3.17)

Second equation in (3.17) implies



(q21λ3 + q23) = 0

−λ(q21λ3 + q23) = 1.
(3.18)

Then system (3.18) is impossible.

Case (c).

If vectors γ2 and γ3 are linearly independent no solution exists. Hence we

may suppose that vectors γ2 and γ3 are linearly dependent. Nevertheless, if

γ3 = λγ2 we proved that eventual solutions lead to correlated properties, so we

may suppose the existence of a complex number λ4 6= λ, such that γ3 = λ4γ2.

As a consequence (iv-D) becomes



[(qj1λ2 + qj2) + λ4(qj1λ3 + qj3)]γ2 = γj

[(qj1λ2 + qj2) + λ(qj1λ3 + qj3)]δ2 = 0.
(3.19)

Since δ2 6= 0, second equation in (3.19) implies (qj1λ2 + qj2) = −λ(qj1λ3 +qj3),

so that first equation in (3.19) yields (qj1λ3 + qj3)(λ4 − λ)γ2 = γj.

Straightforward calculations lead to a matrix Q of the form

Q =




q11 −λ(λ2+λ3λ4)
λ4−λ

− q11λ2
λ2+λ3λ4

λ4−λ
− q11λ3

q21 − λ
λ4−λ

− q21λ2
1

λ4−λ
− q21λ3

q31 − λλ4

λ4−λ
− q31λ2

λ4

λ4−λ
− q31λ3




.
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Nevertheless, self-adjointness of Q yields to rather difficult calculation.

Case (d).

Now we suppose γ2 = 0 and γ3 6= 0 in order to make easier the search of

solutions. Equations in (iv-D) become





(qj1λ3 + qj3)γ3 = γj

[(qj1λ2 + qj2) + λ(qj1λ3 + qj3)]δ2 = 0.
(3.20)

Thus, first equation of (3.20) gets





(q11λ3 + q13)γ3 = λ3γ3

(q21λ3 + q23)γ3 = 0

(q31λ3 + q33)γ3 = γ3

and, since γ3 6= 0, this is equivalent to say





q13 = λ3(1− q11)

q23 = −λ3q21

q33 = 1− λ3q31

Similarly, second equation in (3.20) implies

(qj1λ2 + qj2) = −λ(qj1λ3 + qj3),

then 



q12 = −λλ3 − λ2q11

q22 = −λ2q21

q32 = −λ− λ2q31

By imposing self-adjointness, we find that q11 = q is a real number, λ =
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− λ3λ3

|λ3|2+1
and

Q =




q −λ2

(
q − |λ3|2

1+|λ3|2
)

λ3 (1− q)

−λ2

(
q − |λ3|2

1+|λ3|2
)

|λ2|2
(
q − |λ3|2

1+|λ3|2
)

λ3λ2

(
q − |λ3|2

1+|λ3|2
)

λ3 (1− q) λ3λ2

(
q − |λ3|2

1+|λ3|2
)

1− |λ3|2 (1− q)




.

Taking into account (3.13) and (3.15), matrix U has the form

U =




u11 −u11λ2 −u11λ3

u21 −u21λ2 −u21λ3

u11 −u31λ2 −u31λ3


 .

Analogous reasonings, for systems (i-A) and (iii-C), provides matrices P and

V of a similar form; however, self-adjointness of G implies that V = U
t
, in

such a manner that we attain the solution presented in section (3.3.3).

3.4 Comparison with the VAA method

In section 3.3 we have presented an approach to the problem of inferring si-

multaneously the outcomes of more incompatible properties; however it is not

the only one. In [9] a procedure is described allowing to make inferences about

the three cartesian spin-components of a spin-1
2

particle. The ideal experiment

proposed by VAA works as follows: one of the three non-commuting observ-

ables, σx, σy or σz, is measured, on a system suitably prepared, by means

of an apparatus which leaves the entire system in an eigenstate of the mea-

sured observable; after such a spin measurement, a suitable observable A is

measured, having the property that the outcome of the measured spin can be
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inferred from the outcome of A, without knowing which spin component had

been previously measured; this method yields inferences such as: if σx has been

measured the outcome is +1
2
, if σy has been measured the outcome is −1

2
and

if σz has been measured the outcome is 1
2
. Hence, the inference of each run of

the experiment actually concerns with the value of just one observable among

the three non-commuting involved observables. For this reason, this kind of

inferences are of a quite different nature with respect to the detections we are

dealing with in the present work. According to VAA, from the outcome of

A, the outcome of the performed spin-component measurement can be retro-

dicted; while the remaining inferences cannot be considered as detections in

the sense of our definition; furthermore inferences can be drawn only under

the hypothesis that the spin measurement actually performed leaves the sys-

tem in an eigenstate of the measured observable. Our ideal experiment of the

previous section allows to make inferences about all the three non-commuting

observables: the position of the final impact point is inferred from a direct mea-

surement of F (∆); WS property E is inferred from the outcome of detector T

and property G is inferred from the outcome of detector Y .

Moreover, VAA claim that, according to their method, it is not possible to

produce inferences (like those described in [9]) for more than three observable.

Since our method runs in a quite different matter, maybe it shall admit solu-

tions. In next section we face this question; in particular, we show that such

a problem has an affirmative answer.
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3.5 Detection of four incompatible properties

In this section we deal with the question whether two incompatible properties,

G and L, can be detected together with the further incompatible property E

(WS property) and together with the measurement of the final impact point,

in the same kind of ideal experiment.

More precisely, we seek for a concrete Hilbert space H = HI ⊗ HII for

describing a double- slit experiment, where WS property is represented by a

projection operator E acting on HI , such that a concrete state Ψ , and concrete

projection operators G and L representing properties incompatible with each

other and with E can be found in such a manner that:

- property E can be detected by means of a detector T , acting on HII ;

- property G can be detected by means of a detector Y , acting on HII ;

- property L can be detected by means of a detector W , acting on HII ;

- the three detections can be carried out together, i.e. [T,Y ] = 0, [T,W ] =

0, [Y,W ] = 0.

Again, we suppose that the Hamiltonian is independent of the further degrees

of freedom, so that H = HI ⊗ 1II .

In the rest of this section we formulate the question in formal way as prob-

lem (P ′); as before, we adopt a matrix representation and in this framework

we establish the constraints to be satisfied in order that solutions exist. Then

we present a concrete solution.

The systematic research of solution is presented in section 3.6. We set out

such a research in order to answer the question whether non-correlated solu-

tions exist or not. Then we fix the dimension of Hilbert space HI , dim(HI) =
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10; a detailed analysis shows that solutions exist, however, with our assump-

tions, the properties L and G turn out to be always correlated.

3.5.1 Mathematical Formalism

Let G = GI ⊗ 1II and L = LI ⊗ 1II be properties incompatible with WS

property E. Detection of both G, L and WS property E is possible if, with

respect to the same state vector Ψ , there exist a which-slit detector T =

1I ⊗ TII of E, a detector Y = 1I ⊗ YII of G and a detector W = 1I ⊗ WII

of L. Let the detectors satisfy the condition [T,Y ] = [T,W ] = [Y,W ] = 0

in such a manner that T , Y and W can be measured together; hence they

provide simultaneous information about E, G and L. We notice that equations

[T,F (∆)] = [Y,F (∆)] = [W,F (∆)] = 0 are automatically satisfied.

We formalize the problem into the following mathematical terms.

Problem (P ′). Given the property E = EI ⊗ 1II we have to find

- two projection operators GI and LI of HI ,

- three projection operators TII , YII and WII of HII ,

- a state vector Ψ ∈ HI ⊗HII ,

such that the following conditions are satisfied:

(C.1) [E,G] 6= 0 i.e [EI ,GI ] 6= 0,

(C.2) [E,L] 6= 0 i.e [EI ,LI ] 6= 0,

(C.3) [L,G] 6= 0 i.e [LI ,GI ] 6= 0,

(C.4) [T,E] = 0 and TΨ = EΨ ,
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(C.5) [Y,G] = 0 and Y Ψ = GΨ ,

(C.6) [W,L] = 0 and WΨ = LΨ ,

(C.7) [T,Y ] = 0,

(C.8) [T,W ] = 0,

(C.9) [Y,W ] = 0,

(C.10) Ψ 6= EΨ 6= 0, Ψ 6= GΨ 6= 0 and Ψ 6= LΨ 6= 0.

Conditions (C.1)-(C.3) are equivalent to state that properties represented by

projection operators E, G and L are mutually non-compatible. In the re-

maining items, the requirements that the commutators are zero ensures the

compatibility (hence simultaneous measurability) of the properties represented

by the involved projection operators. Moreover, for a given state Ψ , if equa-

tions TΨ = EΨ in (C.4), Y Ψ = GΨ in (C.5) and WΨ = LΨ in (C.6) hold, then

it is also possible to detect which slit each particle passes through, to detect

G and to detect L altogether, by means of a simultaneous measurement of T ,

Y and W ; indeed, for instance, equation TΨ = EΨ implies the following one

p(T | E) =
〈Ψ | TEΨ〉
〈Ψ | EΨ〉 = 1 =

〈Ψ | TEΨ〉
〈Ψ | TΨ〉 = p(E | T )

for the conditional probabilities, allowing us to infer the passage of particle

1 through slit 1 from the occurrence of outcome 1 for T : in this sense E

and T are correlated properties; this argument can be repeated for (C.5) and

(C.6). Condition (C.10) is added to exclude solutions corresponding to the

uninteresting cases.

We introduce a suitable matrix representation, to make easier our task.
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3.5.2 Matrix Representation

The matrix representation of HI described in section 3.3 depends only upon

WS property E, so that it is inherited here without modifications. The projec-

tion operators EI ,GI and LI in (C.1)-(C.10) have the following representations:

EI =


 1 0

0 0


, GI =


 P U

V Q


, LI =


 M Z

W N


 , (3.21)

where U 6= 0 and Z 6= 0; GI = GI
∗ = GI

2 and LI = LI
∗ = LI

2. Constraints

U 6= 0 and Z 6= 0 above are equivalent to [EI ,GI ] 6= 0 and [EI ,LI ] 6= 0 required

by (C.1) and (C.2).

Following the same argument of the previous section for the representation

of HII , this time eight projection operators Ai (i = 1, . . . ,8) of HII must exist,

such that
∑8

1 Ai = 1, TII = A1 + A2 + A3 + A5, YII = A1 + A2 + A4 + A6,

WII = A1 + A3 + A4 + A7 (fig. 3.3). Then we choose to represent every

A5

A2

A1

A3

A4

A6

A7

A8

Figure 3.3. Representation for HII

vector x ∈ HII as a column vector x = (a,b,c,d,e,f ,g,h)t where a = A1x,b =

A2x, . . . ,h = A8x. As a consequence, the projection operators TII , YII , WII
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in (C.1)-(C.10) must satisfy the following constraints

TII =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, YII =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




and

WII =




1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0




. (3.22)

The representation of H = HI ⊗HII described in section 3.3 can be adopted

here taking into account that every vector Ψ in the product space HI ⊗ HII

shall be represented as a column vector

Ψ = (x1,x2, . . . ,xi, . . . ;y1,y2, . . . ,yj, . . .)
t

where xi = (ai,bi,ci,di,ei,fi,gi,hi)
t, yj =

(
αj,βj,γj,δj,εj,ζj,ηj,θj

)t
and ai =

A1xi,bi = A2xi, . . . ,hi = A8xi,αj = A1yj,βj = A2yj, . . . ,θj = A8yj. As a

consequence, in our representation E = EI ⊗ 1 and T = 1I ⊗ TII will be
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identified with matrices

E =




1II 0II . 0II 0II .

0II 1II . 0II 0II .

. . . . . .

0II 0II . 0II 0II .

0II 0II . 0II 0II .

. . . . . .




, T =




TII 0II . 0II 0II .

0II TII . 0II 0II .

. . . . . .

0II 0II . TII 0II .

0II 0II . 0II TII .

. . . . . .




.

From condition (C.4) TΨ = EΨ we obtain that di = fi = gi = hi = 0

and αj = βj = γj = εj = 0, so that xi = (ai,bi,ci,0,ei,0,0,0)t and yj =
(
0,0,0,δj,0,ζj,ηj,θj

)
, i.e.

Ψ = (·, ai,bi,ci,0,ei,0,0,0︸ ︷︷ ︸
xt

i

, · ,·; ·0,0,0,δj,0,ζj,ηj,θj︸ ︷︷ ︸
yt

j

, · ,·)t. (3.23)

Further constraints are imposed by condition (C.5) Y Ψ = GΨ , where pro-

jection operators G and Y are represented as

G = GI ⊗ 1II =




p111II p121II . u111II u121II .

p211II p221II . u211II u221II .

. . . . . .

v111II v121II . q111II q121II .

v211II v221II . q211II q221II .

. . . . . .




,

Y = 1I ⊗ YII =




YII 0II . 0II 0II .

0II YII . 0II 0II .

. . . . . .

0II 0II . YII 0II .

0II 0II . 0II YII .

. . . . . .




, (3.24)
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so that

Y Ψ = (· · · ,ai,bi,0,0,0,0,0,0;0,0,0,δj,0,ζj,0,0, · · · )t,

GΨ = (z1,z2, · · · ,zi, · · · ;w1,w2, · · · ,wj, · · · )t,
(3.25)

where

zi =




∑
k pikak

∑
k pikbk

∑
k pikck

∑
k uikδk

∑
k pikek

∑
k uikζk∑
k uikηk∑
k uikθk




and wj =




∑
k vjkak

∑
k vjkbk

∑
k vjkck

∑
k qjkδk

∑
k vjkek

∑
k qjkζk∑
k qjkηk∑
k qjkθk




, (3.26)

so that, taking into account (3.24) and (3.26), condition (C.5) Y Ψ = GΨ can

be expressed as

(i− A)





∑
k pikak = ai

∑
k pikbk = bi

∑
k pikck = 0

∑
k pikek = 0

(ii−B)





∑
k uikδk = 0

∑
k uikζk = 0

∑
k uikηk = 0

∑
k uikθk = 0

(iii− C)





∑
k vikak = 0

∑
k vikbk = 0

∑
k vikck = 0

∑
k vikek = 0

(iv −D)





∑
k qikδk = δi

∑
k qikζk = ζi∑
k qikηk = 0

∑
k qikθk = 0.

(3.27)

Further constraints are imposed by condition (C.6) WΨ = LΨ . Projection
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operators L and W are represented as

L = LI ⊗ 1II =




m111II m121II . z111II z121II .

m211II m221II . z211II z221II .

. . . . . .

w111II w121II . n111II n121II .

w211II w221II . n211II n221II .

. . . . . .




,

W = 1I ⊗WII =




WII 0II . 0II 0II .

0II WII . 0II 0II .

. . . . . .

0II 0II . WII 0II .

0II 0II . 0II WII .

. . . . . .




, (3.28)

so that

WΨ = (· · · ,ai,0,ci,0,0,0,0,0;0,0,0,δj,0,0,ηj,0, · · · )t,

LΨ = (s1,s2, · · · ,si, · · · ; t1,t2, · · · ,tj, · · · )t,
(3.29)

where

si =




∑
k mikak

∑
k mikbk

∑
k mikck

∑
k zikδk

∑
k mikek

∑
k zikζk∑
k zikηk∑
k zikθk




and tj =




∑
k wjkak

∑
k wjkbk

∑
k wjkck

∑
k njkδk

∑
k wjkek

∑
k njkζk∑
k njkηk∑
k njkθk




. (3.30)
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Then condition (C.6) WΨ = LΨ , can be written as

(i− A′)





∑
k mikak = ai

∑
k mikbk = 0

∑
k mikck = ci

∑
k mikek = 0

(ii−B′)





∑
k zikδk = 0

∑
k zikζk = 0

∑
k zikηk = 0

∑
k zikθk = 0

(iii− C ′)





∑
k wikak = 0

∑
k wikbk = 0

∑
k wikck = 0

∑
k wikek = 0

(iv −D′)





∑
k nikδk = δi

∑
k nikζk = 0

∑
k nikηk = ηj∑
k nikθk = 0.

(3.31)

3.5.3 A family of solutions

Until now we have established general constraints to be satisfied by any solution

of the problem, independently of the ranks of matrices, and then of dimensions

of the spaces HI and HII . Here we present a concrete solution of the problem,

whose rather technical derivation is displaced in the next section; our research

is not at all exhaustive: we analyze a particular situation and, according to it,

the detections of L and G turn out to be always correlated.

We notice that if in correspondence with a given state Ψ satisfying (3.23),

matrices G and L satisfying (3.27) and (3.31) exist such that [E,G], [G,L] and

[L,E] are non-zero, G = G∗ = G2 and L = L∗ = L2, then, all (C-4)-(C-9) are

automatically satisfied.

As in previous case, we restrict our research to the case that the two slits

are symmetrical.

We shall proceed as follows: at the beginning, no constraint is imposed
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about the dimension of HI . We restrict our search by working with the equa-

tions in (ii-B), (iv-D) of (3.27) and (ii-B’), (iv-D’) of (3.31), rather than with

all of them. Since (i-A), (iii-C) in (3.27) are formally identical to (ii-B), (iv-D)

of (3.27) and (i-A’), (iii-C’) in (3.31) are formally identical to (ii-B’), (iv-D’)

of (3.31), we can extend to them the results found for (ii-B), (iv-D), (ii-B’),

(iv-D’).

We analyze the equations with respect to the linear dependence or inde-

pendence of the involved vectors, according to a method described in the next

section. Our task would be more meaningful if we attain non-correlated solu-

tions of (P ′). However, the hypothesis introduced to restrict the kind of solu-

tions, with the aim of simplifying the problem, lead us to correlated solutions.

Our task is made easier by fixing the dimension of HI , dim(HI) = 10, and

searching solutions corresponding to a particular state vector Ψ (see (3.47)).

Taking into account self-adjointness of GI and LI , we get

Q =




q −α2

(
q − 1

Γ

) −α3q −β4
α2
Γ −β5

α2
Γ

−α2

(
q − 1

Γ

)
Λ3 + | α2 |2

(
q − 1

Γ

)
α3α2

(
q − 1

Γ

) −β4Λ3 −β5Λ3

−α3q −α3α2

(
q − 1

Γ

) | α3 |2q α3β4
α2
Γ α3β5

α2
Γ

−β4
α2
Γ −β4Λ3 β4α3

α2
Γ | β4 |2Λ β4β5Λ

−β5
α2
Γ −β5Λ3 β5α3

α2
Γ β5β4Λ | β5 |2Λ




,

where

- Γ =
(
1 + | α3 |2

)
+

(| β4 |2 + | β5 |2
) (

1 + | α2 |2 + | α3 |2
)
,

- Λ2 = |α2|2
Γ

, Λ3 = 1+|α3|2
Γ

and Λ = Λ2 + Λ3;
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N =

0BBBBBBBBBBBBBBBBB@

n −α2

�
n− 1

Γ

� −α3

�
n− 1

∆

� −β4
α2
Γ
− λ4

α3
∆

−β5
α2
Γ
− λ5

α3
∆

−α2

�
n− 1

Γ

�
∆3 + | α2 |2

�
n− 1

Γ

�
α3α2

�
n− 1

Γ
− 1

∆

� −β4∆3 + λ4α2
α3
∆

−β5∆3 + λ5α2
α3
∆

−α3

�
n− 1

∆

�
α2α3

�
n− 1

Γ
− 1

∆

�
Σ2 + | α3 |2

�
n− 1

∆

�
α3β4

α2
Γ
− λ4Σ2 α3β5

α2
Γ
− λ5Σ2

−β4
α2
Γ
− λ4

α3
∆

−β4∆3 + α2λ4
α3
∆

β4α3
α2
Γ
− λ4Σ2 | β4 |2∆ + | λ4 |2Σ β4β5∆ + λ4λ5Σ

−β5
α2
Γ
− β4

α3
∆

−β5∆3 + α2β4
α3
∆

β5α3
α2
Γ
− λ5Σ2 β5β4∆ + λ5λ4Σ | β5 |2∆ + | λ5 |2Σ

1CCCCCCCCCCCCCCCCCA
,

where

- λ4 = α2α3

β4(1+|α2|2+|α3|2)
− λ5

β5

β4
,

- ∆ =
(
1 + | α2 |2

)
+

(| λ4 |2 + | λ5 |2
) (

1 + | α2 |2 + | α3 |2
)
,

- Σ2 = 1+|α2|2
∆

, Σ3 = |α3|2
∆

and Σ = Σ2 + Σ3;

and

U =




u −α2u −α3u 0 0

−a2u a2α2u a2α3u 0 0

−a3u a3α2u a3α3u 0 0

0 0 0 0 0

0 0 0 0 0




.

Matrices P , M and Z have the same form of Q, N and U respectively, with

p, m, z, ai and bj in place of q, n, u, αi and βj, where i = 2,3 and j = 4,5; Ai,

Bi, C, D take the place of Λi, Σi, Γ , ∆ and are defined in analogous manner;

moreover, V = U
t
and W = Z

t
. We notice that ai,bj,lj,αi,βj,λj, with i = 2,3

and j = 4,5, are constant complex numbers arising from the linear dependence

among the vector-components of xi and yj, where i,j = 1, . . . ,5, as we shall

see in the next section.

In order to solve the problem, such solution must be idempotent. By

imposing idempotence we find that
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1. A2

1+|a2|2+|a3|2 < p < A2+1
1+|a2|2+|a3|2

2. A2+B3

1+|a2|2+|a3|2 < m < A2+B3+1
1+|a2|2+|a3|2

3. u = eiθ1

√
(p− 1

C )(1−2A3)−(p− 1
C )

2
(1+|a2|2+|a3|2)+A3

|β4|2+|β5|2
C

1+|α2|2+|α3|2

4. z = eiθ2

√
(m− 1

C )(1−2(A3−B3))−(m− 1
C )

2
(1+|a2|2+|a3|2)− (B3−A3)2+(B3−A3)

1+|a2|2+|a3|2
1+|α2|2+|α3|2

5. q =
1+Λ2+A2−p(1+|a2|2+|a3|2)

1+|α2|2+|α3|2

6. n =
1+A2+B3+Λ2+Σ3−m(1+|a2|2+|a3|2)

1+|α2|2+|α3|2

where θ1 and θ2 are real numbers. Our family of solutions completely solves

the problem if it satisfies [G,L] 6= 0.

Therefore, for every real number A2

1+|a2|2+|a3|2 < p < A2+1
1+|a2|2+|a3|2 , every real

number A2+B3

1+|a2|2+|a3|2 < m < A2+B3+1
1+|a2|2+|a3|2 , every a2,a3,b4,b5,l5,α2,α3,β4,β5,λ5 ∈ C,

such that [G,L] 6= 0, we have a solution of (P ′). Since GI and LI are projection

operators and no constraint is imposed to their traces, i.e. to Rank(GI) and

Rank(LI), these parameters are not all independent.

For instance, the following solution of (P ′) is obtained in correspondence

with the particular choice a2 = a3 = α2 = α3 = 1, b4 = b5 = β4 = β5 = 1,
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λ5 = l5 = 1 θ1 = θ2 = 0, p = 11
72

and m = 67
456

:

GI =
1
72




11 −2 −11 −22 −9 8
√

2 −8
√

2 −8
√

2 0 0

−2 20 2 −18 −18 −8
√

2 8
√

2 8
√

2 0 0

−11 2 11 9 9 −8
√

2 8
√

2 8
√

2 0 0

−9 −18 9 27 27 0 0 0 0 0

−9 −18 9 27 27 0 0 0 0 0

8
√

2 −8
√

2 −8
√

2 0 0 19 −10 −19 −9 −9

−8
√

2 8
√

2 8
√

2 0 0 −10 28 10 −18 −18

−8
√

2 8
√

2 8
√

2 0 0 −19 10 19 9 9

0 0 0 0 0 −9 −18 9 27 27

0 0 0 0 0 −9 −18 9 27 27




,

LI =
1

456




67 −10 5 −9 −129 32
√

3 −32
√

3 −32
√

3 0 0

−10 124 −62 −162 −42 −32
√

3 32
√

3 32
√

3 0 0

5 −62 139 153 −87 −32
√

3 32
√

3 32
√

3 0 0

−9 −162 153 267 27 0 0 0 0 0

−129 −42 −87 27 387 0 0 0 0 0

32
√

3 32
√

3 −32
√

3 0 0 171 −114 −99 −9 −129

−32
√

3 32
√

3 32
√

3 0 0 −114 228 42 −162 −42

−32
√

3 32
√

3 32
√

3 0 0 −99 42 243 153 −87

0 0 0 0 0 −9 −162 153 267 27

0 0 0 0 0 −129 −42 −87 27 387




,

Ψ = (x1,x2,x3,x4,x5;y1,y2,y3,y4,y5)
t,
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where

x1 =
(−1

3
a5,0,− 1

3
c5,0,1

3
e4 + 2e5,0,0,0,

)t

x2 =
(−2

3
a5,0,1

3
c5,0,e4 + e5,0,0,0,

)t

x3 =
(

1
3
a5,0,− 2

3
c5,0,− 2

3
e4 + e5,0,0,0,

)t

x4 =
(
a5,0,− 2

3
c5,0,e4,0,0,0,

)t

x5 = (a5,0,c5,0,e5,0,0,0,)t

y1 =
(
0,0,0,− 1

3
δ5,0,0,− 1

3
η5,

1
3
θ4 + 2θ5

)t

y2 =
(
0,0,0,− 2

3
δ5,0,0,1

3
η5,θ4 + θ5

)t

y3 =
(
0,0,0,1

3
δ5,0,0,− 2

3
η5,− 2

3
θ4 + θ5

)t

y4 =
(
0,0,0,δ5,0,0,− 2

3
η5,θ4

)t

y5 = (0,0,0,δ5,0,0,η5,θ5)
t.

We stress that our family of solutions is a particular one, obtained by mak-

ing particular assumptions and corresponding to correlated detections. The

question whether non-correlated solutions do exist or not, if dim(HI) = 10,

remains open.

3.6 Derivation of a family of solutions

In this section we carry out the detailed derivation of the family of solutions

of problem (P ′) presented in section 3.5.3. Our treatment is not at all exhaus-

tive. Indeed, we shall consider solutions characterized by particular conditions

of linear independence between some of their components. We prove that these
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particular solutions are correlated. The solutions concretely singled out cor-

respond to the case dim(HI) = 10. Since we consider only particular classes

of solutions, the question whether non-correlated solutions exist or not, for

dim(HI) ≥ 10, remains open.

In our derivation we analyze the equations involving vectors yi, i.e. (ii-B),

(iv-D) in (3.27) and (ii-B’), (iv-D’) in (3.31); in order to solve them, we make

some assumptions (e.g. vectors


 η3

θ3


, . . .,


 ηn

θn


 are supposed linearly

independent, as well as θ4, . . . ,θn; furthermore, ζj = 0 for all j = 1, . . . ,n,)

which lead to particular forms for vectors yi and for matrices Q, U , N , Z.

Analogous results are token also for (i-A), (iii-C) in (3.27) and (i-A’), (iii-C’)

in (3.31), which have the same form of the previous ones. We fix the dimension

ofHI , dim(HI) = 10, then we obtain a particular family of solutions of problem

(P ′), which show a correlation between L and G.

3.6.1 General constraints

Equations in (ii-B) imply uj1y1 + · · · + ujnyn = 0. Therefore, since U 6= 0,

vectors y1, . . . ,yn must be linearly dependent. Let us suppose y1 = α2y2 +

· · ·+ αnyn. By using this relation in (iv-D) we get





Qj2δ2 + · · ·+ Qjnδn = δj

Qj2ζ2 + · · ·+ Qjnζn = ζj

Qj2


 η2

θ2


 + · · ·+ Qjn


 ηn

θn


 =


 0

0


 .

(3.32)

where Qjk = qjk + αkqj1, for all k = 2, . . . ,n.
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In the second equation of (3.32), if we suppose that


 η2

θ2


 , . . . ,


 ηn

θn




are linearly independent then Qj2 = . . . = Qj2 = 0, which implies δj =

ζj = 0, for all j = 1, . . . ,n, in the first equation of (3.32). A similar rea-

soning for (i-A) leads to aj = bj = 0, for all j = 1, . . . ,n; as a consequence

xj = (0,0,cj,0,ej,0,0,0)t and yj = (0,0,0,0,0,0,ηj,θj)
t so that, if a solution

exists, then Y Ψ = 0, i.e. it would be correspond to the uninteresting case

excluded by (C.10). If we consider all cases, also that of linear dependence of
 η2

θ2


 , . . . ,


 ηn

θn


, we obtain the following implications:

a.) aj = bj = 0 and δj = ζj = 0, for all j = 1, . . . ,n imply that xj =

(0,0,cj,0,ej,0,0,0)t and yj = (0,0,0,0,0,0,ηj,θj)
t so that, if a solution

exists, then Y Ψ = 0; hence, condition (C.10) is violated;

b.) aj = bj = 0 and δj 6= 0 6= ζj, for all j = 1, . . . ,n imply that xj =

(0,0,cj,0,ej,0,0,0)t and yj = (0,0,0,δj,0,ζj,ηj,θj)
t so that, if a solution

exists, then TWΨ = 0, i.e. each time a particle is sorted by W than it

is certainly not sorted by T ; therefore, for all eventual solutions corre-

sponding to this case, property L must be correlated with WS property

E;

c.) aj 6= 0 6= bj and δj = ζj = 0, for all j = 1, . . . ,n imply that xj =

(aj,bj,cj,0,ej,0,0,0)t and yj = (0,0,0,0,0,0,ηj,θj)
t so that, if a solution

exists, then T ′W ′Y Ψ = 0; this last equation expresses the impossibility

that two probabilities are zero and the remaining is 1, for the occurrence

of T ′, W ′ and Y ;

d.) aj 6= 0 6= bj and δj 6= 0 6= ζj, for all j = 1, . . . ,n imply that xj =
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(aj,bj,cj,0,ej,0,0,0)t and yj = (0,0,0,δj,0,ζj,ηj,θj)
t so that no corre-

lated or meaningless solution immediately follows.

Now we investigate case (d.). Let β3, . . . ,βn be complex numbers such that


 η2

θ2


 = β3


 η3

θ3


 + . . . + βn


 ηn

θn


 . (3.33)

Hence, (ii-B) and (iv-D) yield





Uj2


 δ2

ζ2


 + . . . + Ujn


 δn

ζn


 =


 0

0




(Uj2β3 + Uj3)


 η3

θ3


 + . . . + (Uj2βn + Ujn)


 ηn

θn


 =


 0

0




(3.34)

where Ujk = ujk + αkuj1, for all k = 2, . . . ,n, and





Qj2


 δ2

ζ2


 + . . . + βn


 δn

ζn


 =


 δj

ζj




(Qj2β3 + Qj3)


 η3

θ3


 + . . . + (Qj2βn + Qjn)


 ηn

θn


 =


 0

0




.

(3.35)

Let us suppose that the vectors in the second equation of (3.34) and (3.35)

are linearly independent and, from now on, we draw the consequences of this

hypothesis. From the second equation of (3.34) and (3.35), we get

Uj2β3 + Uj3 = . . . = Uj2βn + Ujn = 0, (3.36)

Qj2β3 + Qj3 = . . . = Qj2βn + Qjn = 0; (3.37)
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respectively. Hence (3.34) and (3.35) become





Uj2





 δ2

ζ2


− β3


 δ3

ζ3


− . . .− βn


 δn

ζn





 =


 0

0




(Uj2β3 + Uj3)


 η3

θ3


 + . . . + (Uj2βn + Ujn)


 ηn

θn


 =


 0

0


 .

(3.38)





Qj2





 δ2

ζ2


− β3


 δ3

ζ3


− . . .− βn


 δn

ζn





 =


 δj

ζj




(Qj2β3 + Qj3)


 η3

θ3


 + . . . + (Qj2βn + Qjn)


 ηn

θn


 =


 0

0


 .

(3.39)

First equation in (3.38) implies either Uj2 = 0 or


 δ2

ζ2


 = β3


 δ3

ζ3


 + . . . + βn


 δn

ζn


 .

On the other hand, in the last hypothesis, (3.39) again implies δj = ζj = 0,

for all j = 1, . . . ,n, which (together with aj = bj = 0, ∀j = 1, . . . ,n) leads to

meaningless or correlated solutions; hence we suppose Uj2 = 0.

In the first equation of (3.39) we can suppose that vectors


 δ2

ζ2


 , . . . ,


 δn

ζn


 are either linearly independent or linearly dependent (with coefficients

different from b3, . . . ,bn). In case they are independent, first equation in (3.39)
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yields 



Qn2 = 0

β3Qn2 = 0
...

βn−1Qn2 = 0

βnQn2 = 1

(3.40)

in correspondence with j = n; hence (3.40) has no solution. So we can suppose

the existence of complex numbers, c3, . . . ,cn such that


 δ2

ζ2


 = c3


 δ3

ζ3


 + . . . + cn


 δn

ζn


 .

Again, with a reasoning similar to the previous one, carried out for j = n and

j = n−1, no solution is found for (3.35). A similar conclusion can be drawn if

just two vectors among


 δ2

ζ2


 , . . . ,


 δn

ζn


 are linearly independent. Hence

complex numbers γ2, . . . ,γn−1 must exist such that


 δ2

ζ2


 = γ2


 δn

ζn


 , . . . ,


 δn−1

ζn−1


 = γn−1


 δn

ζn


 . (3.41)

As a consequence of (3.41) and (3.33), in (iv-D’) we get





(Nj2γ2 + . . . + Njn−1γn−1 + Njn)


 δn

ζn


 =


 δj

0




(Nj2β3 + Nj3)


 η3

θ3


 + . . . + (Nj2βn + Njn)


 ηn

θn


 =


 ηj

0




(3.42)

where Njk = njk + αknj1. First equation in (3.42) implies that either ζj = 0,

for all j, or Nji+1γji+1 + . . . + Njn−1γn−1 + Njn = 0; hence δj = 0, for all j; in
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any case, solutions, if they exist, are correlated. Indeed, since we are taking

symmetrical results for (i-A’), we obtain the following implications:

- if δj = aj = 0 for all j = 1, . . . ,n then WY Ψ = 0, i.e. each time a

particle is sorted by Y than it is certainly not sorted by W ; therefore,

for all eventual solutions corresponding to this case, property L must be

correlated with the incompatible property G;

- if ζj = bj = 0 for all j = 1, . . . ,n then W ′Y Ψ = 0, i.e. each time a

particle is sorted by Y than it is certainly not sorted by W ′; therefore,

for all eventual solutions corresponding to this case, property L must be

correlated with the incompatible property G.

Let us suppose ζj = 0, for all j.

Equations in (3.42) can also be written as




(Nj2γj2 + . . . + Njn−1γn−1 + Njn) δn = δj

Nj3η3 + . . . +Njnηn = ηj

Nj3θ3 + . . . +Njnθn = 0

(3.43)

where Njk = Nj2βk + Njk, for all k = 3, . . . ,n. A reasoning similar to that

carried out for (iv-D) (see equations (3.35)-(3.41)) implies the existence of

coefficients λ4, . . . ,λn and µ3, . . . ,µn−1 such that

θ3 = λ4θ4 + . . . + λnθn

ηk = µkηn ∀k = 3, . . . ,n− 1

(3.44)

where we have supposed θ4, . . . ,θn linearly independent. Such an independence

implies

Nj3 = . . . = Njn = 0, (3.45)
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so that last equation in (3.43) is always true. Hence, (iv-D) and (iv-D’) can

be written as



Qj2 [γ2 − β3γ3 − . . .− βn−1γn−1 − βn] δn = δj

(Nj2γ2 + . . . + Njn−1γn−1 + Njn) δn = δj

Nj3 [µ3 − λ4µ4 − . . .− λn−1µn−1 − λn] ηn = ηj

(3.46)

3.6.2 Concrete solutions

So far we have established some constraints in the hypothesis that vectors
 η3

θ3


, . . .,


 ηn

θn


 are linearly independent, as well as θ4, . . . ,θn; further-

more, ζj = 0 for all j = 1, . . . ,n, independently of the ranks of matrices U , Q,

N and Ai, with i = 1 . . . ,8, and therefore of the dimensions of space HI and

HII .

Now we fix dim(HI) = 10, hence n,j,k ∈ {1, . . . ,5}, and we shall see that

concrete solutions exist. Our task is made easier if we search for solutions

corresponding to a particular state vector Ψ such that

γ3 = λ4γ4 + λ5, α4 = α5 = β3 = 0

c3 = l4c4 + l5, a4 = a5 = b3 = 0.

(3.47)

where the coefficients that appear in the second line are those corresponding

to the vectors xi (i = 1, . . . ,10). Conditions (3.47) and (3.36), together with

Uj2 = 0 (arising from (3.38)), imply that U has the following form

U =




u11 −α2u11 −α3u11 0 0

. . . . .

uj1 −α2uj1 −α3uj1 0 0

. . . . .




; (3.48)
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first equation in (3.46), together with (3.36) and the choice (3.47) imply that

Q = (qij)5×5 where qj3 = −α3qj1, qj4 = −β4(qj1α2 +qj2) and qj5 = −β5(qj1α2 +

qj2). Similarly, independence of θ4, . . . ,θn in (3.43) and the second equation

of (3.46), imply that N = (nij)5×5 where nj2 = qj2 + α2(qj1 − nj1), nj4 =

−λ4α3nj1−β4(qj1α2+qj2)−λ4nj3 and nj5 = −λ5α3nj1−β5(qj1α2+qj2)−λ5nj3.

(ii-B’) has the same form of (ii-B), so that matrix Z can be obtained from U

by means of the substitution uik = zjk. Matrices P , V , N , W have similar

forms. By imposing that GI and LI are self-adjoint matrices we find exactly

matrices U , Q and N in section 3.5.3, and moreover V = U
t
.
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Standard Quantum Theory [16] denies the possibility of measuring simulta-

neously (i.e. on the same individual specimen of the physical system) non-

commuting observables; the best example describing this physical situation is

the double-slit experiment: properties such as “the particle passes through the

first (second) slit” and “the particle hits the final screen in a point within the

interval ∆” cannot be measured together, since they are mathematically repre-

sented by non-commuting projection operators, E and F (∆) respectively. This

notwithstanding, several devices are conceived over the years providing indirect

knowledge of WS property; among them, the experiment presented in [4] pro-

vides WS knowledge by exploiting recent advances in quantum optics: instead

of measuring WS property, a different property T is measured, correlated with

it and compatible with the measurement of the final impact point; this kind

of detection is studied from a mathematical point of view in [5] and [6], where

the interpretative questions are analyzed. In [7] the problem of detecting three

incompatible properties in the framework of double-slit experiment is treated:

in some circumstances, inferences about more incompatible properties can be

done. This kind of detection is possible, for instance, if besides the position of

the centre-of-mass, the system possesses further degrees of freedom; as a con-

sequence, the Hilbert space describing the entire system can be decomposed
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as HI ⊗HII , where HI is the Hilbert space used to represent the position ob-

servable, and HII is the Hilbert space used to represent the observable arising

from the further degrees of freedom. The detection of Which Slit property E

is obtained by measuring an observable represented by a particular projection

operator T acting on HII , which is correlated, in the particular quantum state

of the system, with which-slit property, so that this last can be inferred from

the outcome of T . The possibility of detecting an incompatible property G is

provided by the existence of an observable represented by another projection

operator Y acting on HII , but which can be measured together with T . A

systematic investigation establishes that the existence of such an observable

(projection operator) depends on the dimension of space HI [7]. In this work

we are interested in the research of non-correlated solutions: a wide family of

solutions is provided for dim(HI) = 6 and an ideal experiment realizing such

kind of detection is designed. We have to notice that this approach to the

problem of inferring the outcomes of more incompatible properties is not the

only one. In [9], a procedure is described allowing to make inferences about

the three cartesian components of a spin-1
2

particle. However, this kind of

inferences are of a quite different nature; moreover, coherently with this sec-

ond method, it is not possible to produces inferences about more than three

observables. For this reason, the question whether two mutually incompati-

ble properties, G and L, both incompatible with Which Slit property E, can

be detected, together with the measurement of the final impact point (four

incompatible properties), is investigated. In particular, we show that such a

question has an affirmative answer; as in the previous case, the existence of

solutions depends on dimension of space HI ; we find a particular solution for

dim(HI) = 10, nevertheless, in such a case the properties L and G turn out
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to be correlated.

Riassunto

La Teoria Quantistica standard [16] nega la possibilità di misurare simultane-

amente (cioè sullo stesso campione individuale del sistema fisico) osservabili

che non commutano; l’esempio che meglio descrive questa situazione fisica è

quello della doppia fenditura: proprietà come “la particella passa attraverso

la prima (seconda) fenditura” (proprietà WS) e “la particella impressiona lo

schermo finale in un punto interno all’intervallo ∆” non possono essere misu-

rate insieme, poichè sono rappresentate in termini matematici da operatori,

E ed F (∆) rispettivamente, che non commutano. Nonostante ciò, sono stati

ideati vari dispositivi che forniscono informazione indiretta sulla proprietà WS;

tra questi, l’esperimento presentato in [4] fornisce informazione sulla proprietà

WS sfruttando recenti tecniche dell’ottica quantistica: piuttosto che misurare

la proprietà WS, viene misurata un’altra proprietà T ad essa correlata e com-

patibile con la misurazione del punto d’impatto sullo schermo finale; questo

tipo di rivelabilità è stato studiato da un punto di vista matematico in [5] a [6],

in cui sono state analizzate quastioni interpretative. In [7] è stato trattato il

problema di rivelare tre proprietà incompatibili nel contesto dell’esperimento

della doppia fenditura: in alcuni casi, si possono fare inferenze su proprietà

incompatibili. Questo tipo di rivelabilità è possibile, per esempio, se, oltre

alla posizione del centro di massa, il sistema possiede ulteriori gradi di libertà;

come conseguenza lo spazio di Hilbert che descrive l’intero sistema può essere

descritto come HI ⊗ HII , dove HI è lo spazio di Hilbert usato per rappre-

sentare l’osservabile posizione, e HII è lo spazio di Hilbert usato per rappre-

sentare l’osservabile che deriva dagli ulteriori gradi di libertà. La rivelabilità
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della proprietà E può essere ottenuta misurando un’osservabile rappresentata

da un particolare proiettore T che agisce su HII e che è correlato, nel parti-

colare stato quantistico del sistema, con la proprietà E, cosicché inferenze su

quest’ultima possono essere fatte a partire dal risultato di T. La possibilità di

rivelare una proprietà incompatibile G è data dall’esistenza di un altro proiet-

tore ortogonale Y che agisce su HII , ma che può essere misurato insieme a T.

Uno studio sistematico stabilisce che l’esistenza di una tale osservabile dipende

dalla dimensione dello spazio HI [7]. In questo lavoro siamo interessati alla

ricerca di soluzioni non correlate: è data un’ampia famiglia di soluzioni per

dim(H1) = 6, inoltre viene ideato un esperimento che realizza il tipo di rivela-

bilità in questione. Va notato che questo non è l’unico approccio al problema

di fare inferenze su più proprietà che non commutano. In [9], è descritta una

procedura che consente di fare inferenze sulle tre componenti cartesiane dello

spin di una particella di spin 1/2. Tuttavia, questo tipo di inferenze sono di

natura completamente diversa rispetto a quelle presentate in questo lavoro;

inoltre, coerentemente con questo metodo, non è possibile fare inferenze su

più di tre osservabili che non commutano. Per questo motivo, viene affrontato

il problema di misurare due proprietà mutuamente incompatibili, L e G, en-

trambe incompatibili con la proprietà E, insieme alla misurazione del punto

d’impatto sullo schermo finale (quattro proprietà incompatibili). In partico-

lare, dimostriamo che questo problema ha risposta affermativa; come nel caso

precedente, l’esistenza delle soluzioni dipende dalla dimensione dello spazio

H1; troviamo una soluzione particolare per dim(H1) = 10, tuttavia, in questo

caso le proprietà L e G risultano essere correlate.

110



Aknowledgements

I would like to express my heartfelt gratitude to my supervisor for his inces-

sant help; I have learned a lot from his invaluable advice. Tanks for suggesting

the problem, for discussing with me various aspect of the work and for kindly

reading the entire typescript. Tanks also for his patience and for the encour-

agement in difficult moments.

111



Aknowledgements

112



Bibliography

[1] L. Rosenfeld, Theory of electrons, North- Holland Publishing Co., Ams-

terdam, 1951

[2] M. Born, Atomic Physics, Blakie, Glasgow, 1957

[3] M. Jammer, The Conceptual Development of Quantum Mechanics,

McGraw-Hill Book Company, U.S.A., 1966

[4] M.O. Scully, B.-G. Englert, H. Walther, Quantum optical test of comple-

mentarity, Nature 351, 111 (1991).
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