
Università degli Studi della Calabria

Dipartimento di Matematica

Dottorato di Ricerca in Matematica ed Informatica

XX Ciclo

———————————————————————————————
Settore Disciplinare INF/01 INFORMATICA

Tesi di Dottorato

Efficient Evaluation of
Disjunctive Logic Programs

Gelsomina Catalano

Supervisori Coordinatore

Prof. Nicola Leone Prof. Nicola Leone

Dott.ssa Simona Perri

———————————————————————————————
Anno Accademico 2007 - 2008



Efficient Evaluation of
Disjunctive Logic Programs

Gelsomina Catalano

Dipartimento di Matematica,
Università della Calabria

87036 Rende, Italy

email : catalano@mat.unical.it



Sommario

Agli inizi degli anni ‘80, Jack Minker propose di accrescere la potenza della
programmazione logica consentendo l’utilizzo della disgiunzione nelle teste delle
regole e specificando come l’assunzione di mondo chiuso potesse essere estesa
al linguaggio risultante, chiamato Programmazione Logica Disgiuntiva (DLP)
[Minker, 1982; 1994]. Più tardi, Michael Gelfond e Vladimir Lifschitz fornirono
una semantica per la DLP, detta Answer Set Semantics [Gelfond and Lifschitz,
1991], che ha ricevuto larghi consensi nella comunità scientifica ed è ora gene-
ralmente adottata per la DLP (detta anche Answer Set Programming – ASP). In
accordo a tale semantica un programma logico disgiuntivo può avere più modelli
alternativi (ma anche nessuno) ognuno corrispondente a una possibile visione del
mondo rappresentato dal programma.

Il linguaggio per la rappresentazione della conoscenza DLP è molto espressivo
in un senso matematicamente preciso; la DLP può rappresentare ogni problema
nella classe di complessità ΣP

2 (NPNP ) [Eiter et al., 1997b]. Dunque, sotto assun-
zioni ampiamente accettate, la DLP risulta strettamente più espressiva della pro-
grammazione logica normale (senza disgiunzione), la cui espressività è limitata
alle proprietà decidibili in NP. L’espressività della Programmazione Logica Dis-
giuntiva, ha importanti implicazioni pratiche, poichè esistono problemi che pos-
sono essere rappresentati tramite un programma logico disgiuntivo, ma che non è
possibile esprimere con programmi logici senza disgiunzione, considerata la loro
complessità [Eiter et al., 1997b]. Inoltre, la disgiunzione consente di rappresen-
tare in modo più semplice e naturale problemi di classi di complessità più bassa.
La DLP, con la Answer Set Semantics, è oggi ampiamente riconosciuta come
uno strumento potente per la rappresentazione della conoscenza e il ragionamento
di senso comune [Baral and Gelfond, 1994; Lobo et al., 1992; Wolfinger, 1994;
Eiter et al., 1999; Gelfond and Lifschitz, 1991; Lifschitz, 1996; Minker, 1994;
Baral, 2002].

L’elevata complessità della DLP ha scoraggiato per molti anni la realizzazione
di sistemi che implementassero tutte le caratteristiche di tale linguaggio. Dopo
alcuni anni di ricerca sia teorica che algoritmica, oggi esistono diversi sistemi che
supportano la DLP o parte di essa. Oltre ai sistemi di programmazione logica (non
disgiuntivi) Smodels [Simons et al., 2002] e ASSAT [Lin and Zhao, 2002], sono
disponibili anche alcuni sistemi di programmazione logica (disgiuntiva): DLV
[Leone et al., 2006], GnT [Janhunen et al., 2003], and cmodels-3 [Lierler, 2005].



3

In questa tesi ci concentriamo sul sistema DLV, che è riconosciuto essere lo
stato dell’arte della Programmazione Logica Disgiuntiva. DLV è ampiamente
sfruttato in tutto il mondo sia a scopo di ricerca che didattico. Per esempio, è stato
impiegato al CERN, il Laboratorio Europeo di Fisica delle Particelle di Ginevra,
per un’applicazione di Basi di Dati deduttive che coinvolge la manipolazione di
conoscenza complessa su basi di dati di grandi dimensioni.

La compagnia polacca Rodan Systems S.A. sfrutta DLV in uno strumento
per scoprire le manipolazioni dei prezzi e l’uso non autorizzato di informazioni
confidenziali. Noi crediamo che la forza di DLV – la sua espressività e l’ im-
plementazione solida – lo renda attrattivo per tali applicazioni complesse. Anche
dal punto di vista dell’efficienza, esso è competitivo con i più avanzati sistemi
in quest’area come confermano i recenti confronti e valutazione delle prestazioni
[Leone et al., 2006; Dix et al., 2003; Arieli et al., 2004], e i risultati della Prima
Competizione di Sistemi Answer Set Programming http://asparagus.cs.
uni-potsdam.de/contest/, in cui DLV è risultato vincitore per le cate-
gorie DLP e MGS Competition (detta anche categoria “Royal”).

Lo sviluppo di DLV è iniziato nel 1996 al Politecnico di Vienna, nell’ambito
di un progetto finanziato dalla Austrian Science Funds (FWF); oggi, DLV è oggetto
di una cooperazione internazionale tra l’Università della Calabria e il Politecnico
di Vienna.

Il presente lavoro di tesi è incentrato sullo studio della Programmazione Lo-
gica Disgiuntiva e l’ottimizzazione del sistema DLV, che implementa la DLP.

I nostri studi hanno evidenziato che negli ultimi anni, la disponibilità di sistemi
DLP affidabili, ha indotto a sfruttare la DLP in diverse aree applicative, ma i si-
stemi attuali non sono sufficientemente efficienti per molte di queste applicazioni.

Questo lavoro affronta questo aspetto, proponendosi di superare questa lim-
itazione, migliorando l’efficienza dei sistemi DLP e del sistema DLV tramite il
progetto e l’implementazione di nuove tecniche di ottimizzazione.

I moduli della maggior parte dei sistemi DLP operano su un’istanziazione
ground del programma in input, cioè un programma che non contiene alcuna va-
riabile, ma è semanticamente equivalente all’input originale [Eiter et al., 1997c].
Ogni programma P in input, inizialmente sottoposto alla cosiddetta procedura di
istanziazione (detta anche istanziatore) che calcola, a partire da P , un programma
ground P ′ semanticamente equivalente. Poichè questa fase può essere molto co-
stosa, avere un buon istanziatore è un aspetto cruciale dei sistemi DLP. La ragione
è dovuta al fatto che ogni atomo di ciascuna regola può essere istanziato utiliz-



4

zando ogni costante dell’Universo di Herbrand del programma, con una evidente
esplosione esponenziale. L’istanziatore dovrebbe essere in grado di produrre un
programma ground P ′ avente gli stessi answer set di P e tale che: (i) P ′ sia cal-
colato efficientemente da P , e (ii) P ′ sia il più piccolo possibile, e quindi possa
essere valutato più efficientemente da un solver DLP.

Alcune applicazioni della DLP in aree emergenti come la gestione della cono-
scenza e l’integrazione delle informazioni, in cui devono essere processate grandi
quantità di dati, hanno reso evidente la necessità di migliorare significativamente
gli istanziatori DLP.

La nostra attenzione è stata rivolta al modulo di instanziazione di DLV, in-
vestigando nuove possibili direzioni per aumentarne l’efficienza. In particolare,
in questa tesi, presentiamo due proposte per migliorare la procedura di istanzia-
zione:

• Una nuova tecnica di Backjumping per l’istanziatore di DLV e

• Nuove tecniche di Indicizzazione per l’istanziatore di DLV

Di seguito descriviamo brevemente queste due linee di ricerca.

Backjumping. Proponiamo di sfruttare tecniche di backjumping che riduce la
taglia del programma ground generato e ottimizza il tempo di esecuzione neces-
sario a produrlo. In particolare, data una regola r che deve essere resa ground,
tale algoritmo sfrutta informazioni semantiche e strutturali su r, per calcolare ef-
ficientemente le istanze ground di r, evitando la generazione di regole “inutili”.
Cioè per ogni regola r si calcola solo un sottoinsieme rilevante delle sue istanze
ground, preservandone la semantica.

Implementiamo questo algoritmo in DLV e conduciamo un’attività di spe-
rimentazione su un’ampia collezione di problemi. I risultati sperimentali sono
molto positivi: la nuova tecnica migliora sensibilmente l’efficienza del sistema
DLV su molte classi di problemi.

Indicizzazione. Proponiamo di adoperare tecniche di indicizzazione per miglio-
rare le performance della procedura di istanziazione di DLV, cioè tecniche per
il progetto e l’implementazione di strutture dati che permettano di accedere più
efficientemente a grandi datasets. In particolare, adattiamo al nostro contesto, una
tecnica classica di indicizzazione sul primo argomento e proponiamo una strategia



5

di indicizzazione “on demand” in base alla quale gli indici non sono predetermi-
nati, ma piuttosto vengono calcolati su un argomento qualsiasi durante la valu-
tazione (e solo se sfruttabili). In più definiamo due euristiche che possono essere
usate per stabilire l’argomento più appropriato da indicizzare, quando esistono
diverse possibilità.

Inoltre, implementiamo le tecniche di indicizzazione proposte in DLV e con-
frontiamo sperimentalmente le nostre strategie su una collezione di problemi prove-
nienti da diversi domini comprese anche istanze di problemi reali. Il quadro ge-
nerale risultante dagli esperimenti è molto positivo:

- Tutte le tecniche proposte e testate permettono di ottenere notevoli miglio-
ramenti per l’esecuzione dell’istanziazione.

- Lo schema di indicizzazione on demand dà risultati migliori rispetto al clas-
sico schema sul primo argomento in un numero maggiore di casi e le perfor-
mance migliorano particolarmente quando viene utilizzata una buona euris-
tica.

In definitiva, i metodi proposti migliorano sensibilmente l’efficienza dell’ istan-
ziatore di DLV, consentendo l’utilizzo del sistema anche in applicazioni data-
intensive. Comunque, per verificare ulteriormente la potenza del nuovo istanzia-
tore conduciamo una profonda analisi sperimentale per confrontarlo con gli altri
due più popolari istanziatori, Lparse [Niemelä and Simons, 1997; Syrjänen, 2002]
e GrinGo [Gebser et al., 2007b]. L’analisi conferma che, il nuovo istanziatore ha
performance migliori degli altri su tutti i problemi testati, mentre il vecchio mostra
performance simili agli altri.

I risultati presentati in questa tesi sono rilevanti anche per altri due aspetti: da
una parte, l’istanziatore di DLV può essere sfruttato proficuamente da altri sistemi
che non hanno un istanziatore proprio, per esempio ASSAT [Lin and Zhao, 2002]
e Cmodels [Lierler and Maratea, 2004; Babovich, since 2002]. Infatti, questi si-
stemi possono usare DLV per ottenere il programma ground (lanciando DLV con
l’opzione “-instantiate”), e poi applicare le proprie procedure per la valutazione
del programma ground; d’altra parte, tutti i metodi proposti sono abbastanza ge-
nerali e quindi, possono essere facilmente adattati per essere integrati nella fase di
calcolo di altri istanziatori. In realtà la nostra tecnica di backjumping è stata già
integrata in altri due istanziatori, GrinGo e FO+ [Wittocx et al., 2008], con buoni
risultati. Le buone performance di GrinGo in alcuni degli esperimenti condotti,
infatti, sono dovuti all’utilizzo della nostra tecnica.



6

I principali contributi della tesi possono essere riassunti come segue:

1. Studiamo la DLP, la sua complessità e il suo utilizzo per la rappresentazione
della conoscenza e il ragionamento non monotono.

2. Progettiamo un nuovo metodo, basato su una tecnica di backjumping, che
consente di ridurre sia la taglia dell’istanziazione dei programmi DLP che il
tempo necessario per generarla. Implementiamo il metodo proposto in DLV
e conduciamo un’attività di sperimentazione.

3. Definiamo due nuove strategie di indicizzazione, per ottimizzare il tempo
di istanziazione di DLV. Inoltre, implementiamo il metodo proposto nel
sistema DLV ed effettuiamo un’analisi sperimentale.

4. Confrontiamo l’istanziatore di DLV con altri due istanziatori, Lparse e
GrinGo e discutiamo i risultati.



Contents

Introduction 9
Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Motivation and Main Contribution . . . . . . . . . . . . . . . . . . . . 10
Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Disjunctive Logic Programming 15
1.1 The language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 20
1.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Relevant Classes of Programs . . . . . . . . . . . . . . . 21
1.2.3 Main Problems Considered . . . . . . . . . . . . . . . . . 22
1.2.4 Complexity Results and Discussion . . . . . . . . . . . . 23

1.3 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 The GCO Declarative Programming Methodology . . . . 27
1.3.2 Applications of the GCO Programming Technique . . . . 29

2 The Disjunctive Logic Programming System DLV 41
2.1 The Architecture of DLV: an Overview . . . . . . . . . . . . . . 41
2.2 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . 42
2.3 DLV Computation . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 The DLV Instantiation Module 46
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 General Instantiation Algorithm . . . . . . . . . . . . . . . . . . 46
3.3 Instantiate Component . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Rule Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7



CONTENTS 8

3.5 Instances Simplification and Stratification Handling . . . . . . . . 54

4 A BackJumping Technique for DLP Programs Instantiation 58
4.1 Some Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 The BJ Instantiate Algorithm . . . . . . . . . . . . . . . . . . . . 60
4.3 Experiments and Benchmarks . . . . . . . . . . . . . . . . . . . 66

4.3.1 Benchmark Problems and Data . . . . . . . . . . . . . . . 66
4.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . 70

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 On Demand Indexing for the DLV Instantiator 81
5.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Indexing Techniques for Rule Instantiation . . . . . . . . . . . . . 82

5.2.1 First Argument . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 On Demand Indexing . . . . . . . . . . . . . . . . . . . . 83

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 Benchmark Programs . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Compared Methods . . . . . . . . . . . . . . . . . . . . . 88
5.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . 90

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 DLV Instantiator vs. Other Instantiators 93
6.1 Overview of the Compared Instantiators . . . . . . . . . . . . . . 93

6.1.1 Lparse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.2 GrinGo . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Benchmark Problems and Data . . . . . . . . . . . . . . . . . . . 96
6.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 98

Conclusions and Ongoing Work 105



Introduction

Context

Disjunctive Logic Programming At the beginning of the Eighties, Jack Minker
proposed to empower logic programming by allowing for disjunction in the head
of the rules, and specified how the Closed World Assumption could be extended
to the resulting language, called Disjunctive Logic Programming (DLP) [Minker,
1982; 1994]. Later on, Michael Gelfond and Vladimir Lifschitz provided a se-
mantics for DLP, called Answer Set Semantics [Gelfond and Lifschitz, 1991],
which received a large consensus in the research community, and is now gener-
ally adopted for DLP (which is also called Answer Set Programming – ASP).
According to this semantics, a disjunctive logic program may have several alter-
native models (but possibly none) each corresponding to a possible view of the
world.

The knowledge representation language DLP is very expressive in a precise
mathematical sense; DLP can represent every problem in the complexity class ΣP

2

(NPNP ) [Eiter et al., 1997b]. Thus, under widely believed assumptions, DLP is
strictly more expressive than normal (disjunction-free) logic programming, whose
expressiveness is limited to properties decidable in NP. The expressiveness of Dis-
junctive Logic Programming has practical implications, since relevant practical
problems can be represented by disjunctive logic programs, while they cannot be
expressed by logic programs without disjunction, given current complexity be-
liefs [Eiter et al., 1997b]. In addition, disjunction often allows for representing
problems of lower complexity in a simpler and more natural fashion.

DLP, with Answer Set Semantics, is now widely recognized as a valuable tool
for knowledge representation and commonsense reasoning [Baral and Gelfond,
1994; Lobo et al., 1992; Wolfinger, 1994; Eiter et al., 1999; Gelfond and Lifschitz,
1991; Lifschitz, 1996; Minker, 1994; Baral, 2002].

9



Introduction 10

The DLV System The high complexity of DLP discouraged for many years the
development of systems implementing all the features of this powerful language.
After some years of considerable efforts on both theoretical and algorithmic re-
search, several systems exist which support DLP or part of it. Besides the (non-
disjunctive) logic programming systems like Smodels [Simons et al., 2002], and
ASSAT [Lin and Zhao, 2002], some full (disjunctive) logic programming sys-
tems are available: DLV [Leone et al., 2006], GnT [Janhunen et al., 2003], and
cmodels-3 [Lierler, 2005].

In this thesis we focus on the DLV system which is generally recognized to
be the state-of-the-art implementation of Disjunctive Logic Programming. DLV
is widely exploited all over the world for both research and educational purposes.
For instance, it has been employed at CERN, the European Laboratory for Particle
Physics located near Geneva, for an advanced deductive database application that
involves complex knowledge manipulation on large-sized databases. The Polish
company Rodan Systems S.A. exploits DLV in a tool for the detection of price
manipulations and unauthorized use of confidential information, which is used by
the Polish Securities and Exchange Commission. We believe that the strengths
of DLV – its expressivity and solid implementation – make it attractive for such
hard applications. Also from the viewpoint of efficiency, it is competitive with
the most advanced systems in this area as confirmed by recent comparison and
benchmarks [Leone et al., 2006; Dix et al., 2003; Arieli et al., 2004], and by
the results of the First Answer Set Programming System Competition http://
asparagus.cs.uni-potsdam.de/contest/, where DLV won the both
the DLP and the MGS Competition (also called the “Royal” category).

The development of DLV started in 1996 at the Vienna University of Technol-
ogy, in a research project funded by the Austrian Science Funds (FWF); at present,
DLV is the subject of an international cooperation between the University of Cal-
abria and the Vienna University of Technology.

Motivation and Main Contribution

This thesis concerns the study of Disjunctive Logic Programming and the opti-
mization of the DLV system, which implements the DLP itself.

Our studies pointed out that in the latest years, the availability of reliable DLP
systems induced many people to start exploiting DLP in several application areas,
but the current systems are not efficient enough for many of these applications.



Introduction 11

This work faces this issue, aiming at overcoming this limitation by increasing
the efficiency of the DLP systems, and of the DLV system in particular, through
the design and the implementation of new optimization techniques.

The kernel modules of most DLP systems operate on a ground instantiation of
the input program, i.e., a program that does not contain any variable, but is (se-
mantically) equivalent to the original input [Eiter et al., 1997c]. Indeed, any given
program P first undergoes the so called instantiation process, that computes from
P a semantically equivalent ground program P ′. Since this instantiation phase
may be computationally very expensive, having a good instantiation procedure
(also called instantiator) is a key feature of DLP systems. The instantiator should
be able to produce a ground program P ′ having the same answer sets as P such
that: (i) P ′ is computed efficiently from P , and (ii) P ′ is as small as possible, and
thus can be evaluated efficiently by a DLP solver (recall that, in the worst case,
every DLP solver takes exponential time in the size of P ′ – a polynomial reduction
in the size of P ′, may thus give an exponential gain in the computational time).

Some emerging application areas of DLP, like knowledge management and
information integration,1 where large amount of data are to be processed, make
very evident the need of improving DLP instantiators significantly.

We spent our work on the instantiation module of DLV, investigating new
directions for improving its efficiency. In particular, in this thesis, we present two
proposals for improving the instantiation procedure:

• A new Backjumping technique for the DLV Instantiator, and

• New Indexing techniques for the DLV Instantiator.

In the following, we briefly describe these two research lines.

Backjumping. We propose to exploit backjumping techniques in the rule instan-
tiation process of DLV. We design a new structure-based backjumping algorithm
for rule instantiation, which reduces the size of the generated ground instantiation
and optimizes the execution time which is needed to generate it. In particular,
given a rule r to be grounded, our algorithm exploits both the semantical and the
structural information about r for computing efficiently the ground instances of r,

1The application of DLP in these areas has been investigated also in the EU projects INFOMIX
IST-2001-33570, and ICONS IST-2001-32429, and is profitably exploited by Exeura s.r.l., a spin-
off of University of Calabria having precisely this mission.



Introduction 12

avoiding the generation of “useless” rules. That is, from each general rule r, we
compute only a relevant subset of its ground instances, avoiding the generation of
“useless” instances, while fully preserving the semantic of the program.

We implement this algorithm in DLV and we carry out an experimentation
activity on an ample collection of benchmark problems. The experimental results
are very positive: the new technique improves sensibly the efficiency of the DLV
system on many program classes.

Indexing. We propose to employ main-memory indexing techniques for enhanc-
ing the performance of the instantiation procedure of DLV instantiator, that is
techniques for the design and the implementation of data structures that allow to
efficiently access to large datasets. In particular, we adapt a classical first argu-
ment indexing schema to our context, and propose an more general indexing strat-
egy where anu argument can be indexed and indexes are not pre-established rather
they are computed during the evaluation (and only if exploitable). Moreover, we
define two heuristics which can be used for determining the most appropriate ar-
gument to be indexed, when more than one possibility exists.

Furthermore, we implement the proposed indexing techniques in DLV and
we experimentally compare our strategies on a collection of benchmark problems
taken from different domains including also a number of real-world instances.
The overall picture resulting from the experiments is very positive:

- All tested indexing techniques cause the istantiation stage to achieve notice-
able improvements.

- The on demand indexing schema gives better results w.r.t the classical first
argument schema in a wider range of cases and performance improve no-
tably when a good heuristics is utilized.

Summarizing, the proposed methods sensibly improve the performance of the
DLV Instantiator, allowing for the exploitation of the system also in case of data
intensive applications. However, to further check the strength of the enhanced
instantiator, we also carry out a deep experimental analysis for comparing it w.r.t.
the other two popular instantiators, namely Lparse [Niemelä and Simons, 1997;
Syrjänen, 2002] and GrinGo [Gebser et al., 2007b]. The analysis confirm that,
the new DLV instantiator outperforms them on all the tested problems, while the
old one showed similar performance.



Introduction 13

The results presented in this thesis are relevant also for two other aspects:
on the one hand, the DLV istantiator can profitably be exploited by other sys-
tems, which do not have their own instantiators like, e.g., ASSAT [Lin and Zhao,
2002]and Cmodels [Lierler and Maratea, 2004; Babovich, since 2002]. Indeed,
these systems can use DLV to obtain the ground program (by running DLV with
option “-instantiate”), and then apply their own procedures for the evaluation of
the ground program.2; on the other hand, all the proposed methods are quite gen-
eral and, thus, they can be easily adapted in order to be integrated in the com-
putation phase of other instantiators. Actually, our new backjumping technique
has been already integrated in two other instantiators, namely GrinGo and FO+
[Wittocx et al., 2008], with very good results. The good performance of GrinGo
in some of the conducted experiments are, indeed, due to the use of our technique.

Briefly, the main contribution of the thesis is the following:

1. We study DLP, its complexity and its exploitation for knowledge represen-
tation and reasoning.

2. We design a new structure based backjumping method for reducing both the
size and the time of the instantiation. We implement the proposed method
in DLV and carry out an experimental activity.

3. We define new indexing strategies, for reducing the instantiation time of
DLP programs. We implement the proposed techniques in the grounding
engine of DLV system and perform an experimental analysis.

4. We compare the enhanced DLV instantiator with other two instantiators,
namely Lparse and GrinGo and discuss the results.

Structure of the thesis

The thesis is organized as follows.

- In Chapter 1 we present Disjunctive Logic Programming extended by weak
constraint. In particular, we provide a formal definition of the syntax of this
language and its associated semantics, the Answer Set Semantics. Then, we
describe the computation complexity of this language and we illustrate the
usage of Disjunctive Logic Programming for knowledge representation and
reasoning.

2Recall that DLV instantiator can deal also with normal nondisjunctive programs.



Introduction 14

- In Chapter 2 we introduce the DLV system and give an overview of its
architecture and implementation. The theoretical foundations of the imple-
mentation of DLV are also briefly discussed. The main procedure for the
computation of the answer set semantics is then described.

- In Chapter 3 we provide a short description of the overall instantiation mod-
ule of DLV, the Intelligent Grounding, and focus on the “heart” procedure
of this module which produces the ground instances of a given rule.

- In Chapter 4 we present a new kind of structure-based backjumping algo-
rithm for rule instantiation that can be used in order to improve the effi-
ciency of the instantiation procedure of DLV. In particular, this algorithm
allows to reduce the size of the generated ground instantiation and optimize
the execution time which is needed to generate it.

- In Chapter 5 we propose to employ main-memory indexing techniques for
enhancing the performance of the instantiation procedure of the ASP system
DLV. In particular, we adapt a classical first argument indexing schema to
our context, and propose an on demand indexing strategy where indexes are
computed during the evaluation (and only if exploitable). Moreover, we de-
fine two heuristics which can be used for determining the most appropriate
argument to be indexed, when more than one possibility exists. We discuss
some key issues for its implementation into the DLV system and we then
report the results of our experimentation activity on a number of benchmark
problems.

- In Chapter 6 we compare the enhanced DLV instantiator with Lparse and
GrinGo, other two instantiators and report the results of our experimental
analysis.



Chapter 1

Disjunctive Logic Programming

In this chapter we present Disjunctive Logic Programming1. In particular, we
provide a formal definition of the syntax of this language and its associated se-
mantics, the Answer Set Semantics. This programming framework is also referred
to as Answer Set Programming. (For further background, see [Lobo et al., 1992;
Eiter et al., 1997b; Gelfond and Lifschitz, 1991]). Then, we describe the compu-
tation complexity of this language and we illustrate the usage of Disjunctive Logic
Programming for knowledge representation and reasoning.

1.1 The language

In this section, we illustrate syntax and semantics of Disjunctive logic program-
ming.

1.1.1 Syntax

A term is either a variable or a constant. An atom is an expression p(t1, . . .,tn),
where p is a predicate of arity n and t1,. . . ,tn are terms. A literal is a positive lit-
eral p or a negative literal not p, where p is an atom.

A disjunctive rule (rule, for short) r is a formula

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm. (1.1)

where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The dis-
junction a1 v · · · v an is called head of r, while the conjunction b1, · · · , bk,

1From now on, when talking about DLP we actually refer to a rather recent extension of DLP
itself by weak constraints [Buccafurri et al., 2000] which are a powerful tool to express optimiza-
tion problems.

15



Chapter 1. The Language 16

not bk+1, · · · , not bm is the body of r. We denote by H(r) the set {a1, ..., an}
of the head atoms, and by B(r) the set of the body literals. In particular, B(r) =

B+(r) ∪ B−(r), where B+(r) (the positive body) is {b1,. . . , bk} and B−(r) (the
negative body) is {bk+1, . . . , bm}. A rule having precisely one head literal (i.e.
n = 1) is called a normal rule. If the body is empty (i.e. k = m = 0), it is called
a fact, and we usually omit the “ :- ” sign.

An (integrity) constraint is a rule without head literals (i.e. n = 0)

:- b1, · · · , bk, not bk+1, · · · , not bm. (1.2)

A weak constraint wc is an expression of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l] (1.3)

where for m ≥ k ≥ 0, b1, . . . , bm are atoms, while w (the weight) and l (the level,
or layer) are positive integer constants or variables. For convenience, w and/or l

might be omitted and are set to 1 in this case.
The sets B(wc), B+(wc), and B−(wc) of a weak constraint wc are defined in

the same way as for integrity constraints.
A disjunctive logic program (often simply DLP program) P is a finite set

of rules (possibly including integrity constraints) and weak constraints. WC(P)

denotes the set of weak constraints in P , and Rules(P) denotes the set of rules
(including integrity constraints) in P . A not-free program P (i.e., such that ∀r ∈
P : B−(r) = ∅) is called positive, and a v-free program P (i.e., such that ∀r ∈
P : |H(r)| ≤ 1) is called normal logic program. A program that does not contain
weak constraints (i.e., such that WC(P)=∅) is called regular.

A rule is safe if each variable in that rule also appears in at least one positive
literal in the body of that rule. A program is safe, if each of its rules is safe, and
in the following we will only consider safe programs.

A term (an atom, a rule, a program, etc.) is called ground, if no variable
appears in it. A ground program is also called a propositional program.

1.1.2 Semantics

The semantics provided in this section extends the Answer Set Semantics of regu-
lar disjunctive logic programs, originally defined in [Gelfond and Lifschitz, 1991],
to deal with weak constraints.

Let P be a disjunctive logic program. The Herbrand Universe of P , denoted
as UP , is the set of all constants appearing in P . In case no constant appears in P ,



Chapter 1. The Language 17

an arbitrary constant ψ is added to UP . The Herbrand Base of P , denoted as BP ,
is the set of all ground atoms constructible from the predicate symbols appearing
in P and the constants of UP .

For any rule r, Ground(r) denotes the set of rules obtained by applying all
possible substitutions σ from the variables in r to elements of UP . In a similar
way, given a weak constraint w, Ground(w) denotes the set of weak constraints
obtained by applying all possible substitutions σ from the variables in w to ele-
ments of UP . For any program P , the ground instantiation Ground(P) is the set
GroundRules(P) ∪GroundWC(P), where

GroundRules(P) =
⋃

r∈Rules(P)

Ground(r)

and

GroundWC(P) =
⋃

w∈WC(P)

Ground(w).

Note that for propositional programs, P = Ground(P) holds.

Answer Sets For every program P , we define its answer sets using its ground
instantiation Ground(P) in three steps:

First we define the answer sets of positive regular disjunctive logic programs,
then we give a reduction of disjunctive logic programs containing negation to pos-
itive ones and use it to define answer sets of arbitrary disjunctive logic programs.
Finally, we specify the way how weak constraints affect the semantics, defining
the semantics of general DLP programs.

An interpretation I is a set of ground atoms, i.e. I ⊆ BP w.r.t. a program
P . An interpretation X ⊆ BP is called closed under P (where P is a positive
disjunctive logic program), if, for every r ∈ Ground(P), H(r)∩X 6= ∅whenever
B(r) ⊆ X . An interpretation X ⊆ BP is an answer set for a positive disjunctive
logic program P , if it is minimal (under set inclusion) among all interpretations
that are closed under P .

Example 1.1 The positive program P1 = {a v b v c.} has the answer sets {a},
{b}, and {c}. Its extension P2 = {a v b v c. ; :- a.} has the answer sets {b} and
{c}. Finally, the positive program P3 = {a v b v c. ; :- a. ; b :- c. ; c :- b.} has
the single answer set {b, c}.



Chapter 1. The Language 18

Definition 1.2 [Gelfond and Lifschitz, 1991] The GL-reduct or Gelfond-Lifschitz
transform of a ground program P w.r.t. a set X ⊆ BP is the positive ground
program PX , obtained from P by

• deleting all rules r ∈ P for which B−(r) ∩X 6= ∅ holds;

• deleting the negative body from the remaining rules.

Definition 1.3 An answer set of a program P is a set X ⊆BP such that X is an
answer set of Ground(P)X .

Example 1.4 Given the general program P4 = {a v b :- c. ; b :- not a, not c. ;
a v c :- not b.} and I = {b}, the GL-reduct PI

4 is {a v b :- c. ; b.}. It is easy to
see that I is an answer set of PI

4 , and for this reason it is also an answer set of P4.
Now consider J = {a}. The GL-reduct PJ

4 is {a v b :- c. ; a v c.} and it can
be easily verified that J is an answer set of PJ

4 , so it is also an answer set of P4.
If, on the other hand, we take K = {c}, the GL-reduct PK

4 is equal to PJ
4 ,

but K is not an answer set of PK
4 : for the rule r : a v b :- c, B(r) ⊆ K holds, but

H(r)∩K 6= ∅ does not. Indeed, it can be verified that I and J are the only answer
sets of P4.

Recently, an alternative definition of reduct has been proposed in [Faber et
al., 2004]. This definition is a generalization and simplification of the original
definition of the Gelfond-Lifschitz transform , but is fully equivalent to it for the
definition of answer sets.

Definition 1.5 Given a ground program P and an interpretation I , the FLP-
reduct of P w.r.t. I is the subset PI of P , which is obtained from P by deleting
rules in which a body literal is false w.r.t. I .

Definition 1.6 [Przymusinski, 1991; Gelfond and Lifschitz, 1991] Let I be an
interpretation for a program P . I is an answer set for P if I ∈ MM(PI) (i.e., I

is a minimal model for the program PI). ¤

The main difference between Definitions 1.3 and 1.6 is that the answer sets are
defined directly on top of the notion of models of DLP programs, rather than
transforming them to a positive program.

Theorem 1.7 Given a DLP program P an interpretation I is an answer set of P
according to FLP-reduct iff it is an answer set of P according to the standard
definition via the classic GL- reduct (Definitions 1.2, 1.6).



Chapter 1. The Language 19

Example 1.8 Given the general program P1 = {a v b :- c., b :- not a, not c.,
a v c :- not b.} and I = {b}, the FLP-reduct PI

1 is {b :- not a, not c.}. It is easy
to see that I is a minimal model of PI

1 , and for this reason it is also an answer
set of P1. Now consider J = {a}. The FLP-reduct PJ

1 is {a v c :-not b.} and
it can be easily verified that J is an answer set of P1. If, on the other hand, we
take K = {c}, the FLP-reduct PK

1 is {a v b :- c., a v c :- not b.} and K is not
an answer set of PK

1 : the rule a v b :- c., is not true w.r.t K and hence K is not a
model for PK

1 . Indeed, it can be verified that I and J are the only answer sets of
P1.

Given a ground program P with weak constraints WC(P), we are interested
in the answer sets of Rules(P) which minimize the sum of weights of the violated
(unsatisfied) weak constraints in the highest priority level,2 and among them those
which minimize the sum of weights of the violated weak constraints in the next
lower level, etc. Formally, this is expressed by an objective function HP(A) for P
and an answer set A as follows, using an auxiliary function fP which maps leveled
weights to weights without levels:

fP(1) = 1,
fP(n) = fP(n− 1) · |WC(P)| · wP

max + 1, n > 1,

HP(A) =
∑lPmax

i=1 (fP(i) ·∑w∈NP
i (A) weight(w)),

where wP
max and lPmax denote the maximum weight and maximum level over the

weak constraints inP, respectively; NP
i (A) denotes the set of the weak constraints

in level i that are violated by A, and weight(w) denotes the weight of the weak
constraint w. Note that |WC(P)| ·wP

max + 1 is greater than the sum of all weights
in the program, and therefore guaranteed to be greater than the sum of weights of
any single level.

Intuitively, the function fP handles priority levels. It guarantees that the viola-
tion of a single constraint of priority level i is more “expensive” then the violation
of all weak constraints of the lower levels (i.e., all levels < i).

For a DLP program P (possibly with weak constraints), a set A is an (optimal)
answer set of P if and only if (1) A is an answer set of Rules(P) and (2) HP(A)

is minimal over all the answer sets of Rules(P).

Example 1.9 Consider the following program Pwc, which has three weak con-
straints:

2Higher values for weights and priority levels mark weak constraints of higher importance.
E.g., the most important constraints are those having the highest weight among those with the
highest priority level.



Chapter 1. The Language 20

a v b.

b v c.

d v e :- a, c.

:- d, e.

:∼ b. [1 : 2]

:∼ a, e. [4 : 1]

:∼ c, d. [3 : 1]

Rules(Pwc) admits three answer sets: A1 = {a, c, d}, A2 = {a, c, e}, and
A3 = {b}. We have: HPwc(A1) = 3, HPwc(A2) = 4, HPwc(A3) = 13. Thus, the
unique (optimal) answer set is {a, c, d} with weight 3 in level 1 and weight 0 in
level 2.

1.2 Computational Complexity

n this section, we describe the computational complexity of Disjunctive Logic
Programming. We first provide some preliminaries on complexity theory. Then,
describe relevant syntactic properties of disjunctive logic programs, which allow
us to single out computationally simpler subclasses of the language. Finally, we
define the main computational problems under consideration and illustrate their
precise complexity.

1.2.1 Preliminaries

We assume here that the reader is familiar with the concepts of NP-completeness
and complexity theory and provide only a very short reminder of the complexity
classes of the Polynomial Hierarchy which are relevant to this chapter. For further
details, the reader is referred to [Papadimitriou, 1994].

The classes ΣP
k , ΠP

k , and ∆P
k of the Polynomial Hierarchy (PH, cf. [Johnson,

1990]) are defined as follows:

∆P
0 = ΣP

0 = ΠP
0 = P

and for all k ≥ 1, ∆P
k = PΣP

k−1 , ΣP
k = NPΣP

k−1 , ΠP
k = co-ΣP

k ,

where NPC denotes the class of decision problems that are solvable in polyno-
mial time on a nondeterministic Turing machine with an oracle for any decision
problem π in the class C. In particular, NP = ΣP

1 , co-NP = ΠP
1 , and ∆P

2 = PNP.



Chapter 1. The Language 21

The oracle replies to a query in unit time, and thus, roughly speaking, models
a call to a subroutine for π that is evaluated in unit time.

Observe that for all k ≥ 1,

ΣP
k ⊆ ∆P

k+1 ⊆ ΣP
k+1 ⊆ PSPACE

where each inclusion is widely conjectured to be strict. By the rightmost inclusion
above, all these classes contain only problems that are solvable in polynomial
space. They allow, however, a finer grained distinction among NP-hard problems
that are in PSPACE.

1.2.2 Relevant Classes of Programs

In this section, we introduce syntactic classes of disjunctive logic programs with
interesting properties. First we need the following:

Definition 1.10 Functions || || : BP → {0, 1, . . .} from the Herbrand Base BP to
finite ordinals are called level mappings of P.

Level mappings give us a useful technique for describing various classes of pro-
grams.

Definition 1.11 A disjunctive logic program P is called (locally) stratified [Apt
et al., 1988; Przymusinski, 1988], if there is a level mapping || ||s of P such that,
for every rule r of Ground(P),

1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||s ≤ ||l′||s;

2. For any l ∈ B−(r), and for any l′ ∈ H(r), ||l||s < ||l′||s.

3. For any l, l′ ∈ H(r), ||l||s = ||l′||s.

Example 1.12 Consider the following two programs.

P1 : p(a) v p(c) :- not q(a). P2 : p(a) v p(c) :- not q(b).
p(b) :- not q(b). q(b) :- not p(a).

It is easy to see that program P1 is stratified, while program P2 is not. A suitable
level mapping for P1 is the following:

||p(a)||s = 2 ||p(b)||s = 2 ||p(c)||s = 2
||q(a)||s = 1 ||q(b)||s = 1 ||q(c)||s = 1

As for P2, an admissible level mapping would need to satisfy ||p(a)||s < ||q(b)||s
and ||q(b)||s < ||p(a)||s, which is impossible.



Chapter 1. The Language 22

Another interesting class of problems consists of head-cycle free programs.

Definition 1.13 A program P is called head-cycle free (HCF) [Ben-Eliyahu and
Dechter, 1994], if there is a level mapping || ||h of P such that, for every rule r of
Ground(P),

1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||h ≤ ||l′||h;

2. For any pair l, l′ ∈ H(r) ||l||h 6= ||l′||h.

Example 1.14 Consider the following program P3.

P3 : a v b.
a :- b.

It is easy to see that P3 is head-cycle free; an admissible level mapping for P3 is
given by ||a||h = 2 and ||b||h = 1. Consider now the program

P4 = P3 ∪ {b :- a.}
P4 is not head-cycle free, since a and b should belong to the same level by Condi-
tion (1) of Definition 1.13, while they cannot by Condition (2) of that definition.
Note, however, that P4 is stratified.

1.2.3 Main Problems Considered

Three important decision problems, corresponding to three different reasoning
tasks, arise in the context of Disjunctive Logic Programming:

Brave Reasoning. Given a program P , and a ground atom A, decide
whether A is true in some answer set of P (denoted P |=b A).

Cautious Reasoning. Given a program P , and a ground atom A, decide
whether A is true in all answer sets of P (denoted P |=c A).

Answer Set Checking. Given a program P , and a set M of ground literals
as input, decide whether M is an answer set of P .

We study the complexity of these decision problems for ground (i.e., proposi-
tional) DLP programs; we shall address the case of non-ground programs at the
end of this chapter.

An interesting issue is the impact of syntactic restrictions on the logic program
P . Starting from normal positive programs (without negation and disjunction), we
consider the effect of allowing the (combined) use of the following constructs:



Chapter 1. The Language 23

• stratified negation (nots),

• arbitrary negation (not),

• head-cycle free disjunction ( vh ),

• arbitrary disjunction ( v ),

• weak constraints (w).3

Given a set X of the above syntactic elements (with at most one negation and
at most one disjunction symbol in X), we denote by DLP[X] the fragment of
DLP where the elements in X are allowed. For instance, DLP[vh, nots] denotes
the fragment allowing head-cycle free disjunction and stratified negation, but no
weak constraints.

1.2.4 Complexity Results and Discussion

We report here, with the help of some tables, results proved in [Eiter et al., 1997b;
Gottlob, 1994; Buccafurri et al., 2000; Eiter et al., 1998; Eiter and Gottlob, 1995;
Perri, 2004; Leone et al., 2006].

It is worth that we consider the ground case, i.e., we assume that programs
and, unless stated otherwise, also atoms, literals etc. are ground. Furthermore,
for the sake of the presentations, we disregard integrity constraints in programs.
However, this is not significant since the results in presence of these constructs are
the same (see, e.g., [Buccafurri et al., 2000]). Some remarks on the complexity
and expressiveness of non-ground programs are then provided.

The complexity of Brave Reasoning and Cautious Reasoning from ground
DLP programs are summarized in Table 1.1 and Table 1.2, respectively. In Ta-
ble 1.3, we report the results on the complexity of Answer Set Checking.

The rows of the tables specify the form of disjunction allowed; in particular,
{} = no disjunction, {vh} = head-cycle free disjunction, and {v} = unrestricted
(possibly not head-cycle free) disjunction. The columns specify the support for
negation and weak constraints. For instance, {w, nots} denotes weak constraints
and stratified negation. Each entry of the table provides the complexity of the

3Following [Buccafurri et al., 2000], possible restrictions on the support of negation affect
Rules(P), that is, the rules (including the integrity constraints) of the program, while weak con-
straints, if allowed, can freely contain both positive and negative literals in any fragment of DLP
we consider.



Chapter 1. The Language 24

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P NP ∆P
2

{vh} NP ∆P
2 NP ∆P

2 NP ∆P
2

{v} ΣP
2 ∆P

3 ΣP
2 ∆P

3 ΣP
2 ∆P

3

Table 1.1: The Complexity of Brave Reasoning in fragments of DLP

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P co-NP ∆P
2

{vh} co-NP ∆P
2 co-NP ∆P

2 co-NP ∆P
2

{v} co-NP ∆P
3 ΠP

2 ∆P
3 ΠP

2 ∆P
3

Table 1.2: The Complexity of Cautious Reasoning in fragments of DLP

corresponding fragment of the language, in terms of a completeness result. For
instance, ({vh}, {nots}) is the fragment allowing head-cycle free disjunction and
stratified negation, but no weak constraints. The corresponding entry in Table 1.1,
namely NP, expresses that brave reasoning for this fragment is NP-complete. The
results reported in the tables represent completeness under polynomial time (and
in fact LOGSPACE) reductions. All results have either been proved in [Perri,
2004] or emerge from [Eiter et al., 1997b; Gottlob, 1994; Eiter et al., 1998; Eiter
and Gottlob, 1995; Buccafurri et al., 2000]. Note that the presence of weights
besides priority levels in weak constraints does not increase the complexity of the
language, and thus the complexity results reported in [Buccafurri et al., 2000]
remain valid also for our more general language. Furthermore, not all complexity
results in the quoted papers were explicitly stated for LOGSPACE reductions, but
can be easily seen to hold from (suitably adapted) proofs.

Looking at Table 1.1, we see that limiting the form of disjunction and nega-
tion reduces the respective complexity. For disjunction-free programs, brave rea-
soning is polynomial on stratified negation, while it becomes NP-complete if we
allow unrestricted (nonmonotonic) negation. Brave reasoning is NP-complete on
head-cycle free programs even if no form of negation is allowed. The complex-
ity jumps one level higher in the Polynomial Hierarchy, up to ΣP

2 -complexity, if
full disjunction is allowed. Thus, disjunction seems to be harder than negation,



Chapter 1. The Language 25

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P P co-NP

{vh} P co-NP P co-NP P co-NP

{v} co-NP ΠP
2 co-NP ΠP

2 co-NP ΠP
2

Table 1.3: The Complexity of Answer Set Checking in fragments of DLP

since the full complexity is reached already on positive programs, even without
any kind of negation. Weak constraints are irrelevant, from the complexity view-
point, if the program has at most one answer set (if there is no disjunction and
negation is stratified). On programs with multiple answer sets, weak constraints
increase the complexity of reasoning moderately, from NP and ΣP

2 to ∆P
2 and ∆P

3 ,
respectively.

Table 1.2 contains results for cautious reasoning. One would expect its com-
plexity to be symmetric to the complexity of brave reasoning, that is, whenever
the complexity of a fragment is C under brave reasoning, one expects its com-
plexity to be co-C under cautious reasoning (recall that co-P = P, co-∆P

2 = ∆P
2 ,

co-ΣP
2 = ΠP

2 , and co-∆P
3 = ∆P

3 ).
Surprisingly, there is one exception: while full disjunction raises the complex-

ity of brave reasoning from NP to ΣP
2 , full disjunction alone is not sufficient to

raise the complexity of cautious reasoning from co-NP to ΠP
2 . Cautious reasoning

remains in co-NP if default negation is disallowed. Intuitively, to disprove that
an atom A is a cautious consequence of a program P , it is sufficient to find any
model M of P (which need not be an answer set or a minimal model) which does
not contain A. For not-free programs, the existence of such a model guarantees
the existence of a subset of M which is an answer set of P (and does not contain
A).

The complexity results for Answer Set Checking, reported in Table 1.3, help
us to understand the complexity of reasoning. Whenever Answer Set Checking for
weak constraint-free programs is co-NP-complete for a fragment F , the complex-
ity of brave reasoning jumps up to the second level of the Polynomial Hierarchy
(ΣP

2 ). In contrast, co-NP-completeness for Answer Set Checking involving weak
constraints causes only a modest increase for brave reasoning, which stays within
the same level (∆P

2 ). Indeed, brave reasoning on full DLP programs suffers from
three sources of complexity:



Chapter 1. The Language 26

(s1) the exponential number of answer set “candidates”,

(s2) the difficulty of checking whether a candidate M is an answer set (the min-
imality of M can be disproved by an exponential number of subsets of M ),
and

(s3) the difficulty of determining the optimality of the answer set w.r.t. the vio-
lation of the weak constraints.

Now, disjunction (unrestricted or even head-cycle free) or unrestricted nega-
tion preserve the existence of source (s1), while source (s2) exists only if full
disjunction is allowed (see Table 1.3). Source (s3) depends on the presence of
weak constraints, but it is effective only in case of multiple answer sets (i.e., only
if source (s1) is present), otherwise it is irrelevant. As a consequence, e.g., the
complexity of brave reasoning is the highest (∆P

3 ) on the fragments preserving
all three sources of complexity (where both full disjunction and weak constraints
are allowed). Eliminating weak constraints (source (s3)) from the full language,
decreases the complexity to ΣP

2 . The complexity goes down to the first level of
PH if source (s2) is eliminated, and is in the class ∆P

2 or NP depending on the
presence or absence of weak constraints (source (s3)). Finally, avoiding source
(s1) the complexity falls down to P, as (s2) is automatically eliminated, and (s3)
becomes irrelevant.

We close this section with briefly addressing the complexity and expressive-
ness of non-ground programs. A non-ground program P can be reduced, by naive
instantiation, to a ground instance of the problem. The complexity of this ground
instantiation is as described above. In the general case, where P is given in the
input, the size of the grounding Ground(P) is single exponential in the size
of P . Informally, the complexity of Brave Reasoning and Cautious Reasoning
increases accordingly by one exponential, from P to EXPTIME, NP to NEXP-
TIME, ∆P

2 to EXPTIMENP, ΣP
2 to NEXPTIMENP, etc. For disjunctive programs

and certain fragments of DLP, complexity results in the non-ground case have
been derived e.g. in [Eiter et al., 1997b; 1998]. For the other fragments, the re-
sults can be derived using complexity upgrading techniques [Eiter et al., 1997b;
Gottlob et al., 1999]. Answer Set Checking, however, increases exponentially up
to co-NEXPTIMENP only in the presence of weak constraints, while it stays in PH
if no weak constraints occur. The reason is that in the latter case, the conditions
of an answer set can be checked using small guesses, and no alternative (perhaps
exponentially larger) answer set candidates need to be considered.



Chapter 1. The Language 27

1.3 Knowledge Representation

In this section, we illustrate the usage of Disjunctive Logic Programming for
knowledge representation and reasoning. We first present a new programming
methodology, which allows us to encode search problems in a simple and highly
declarative fashion; even optimization problems of complexity up to ∆P

3 can be
declaratively encoded using this methodology. Then, we illustrate this methodol-
ogy on a number of computationally hard problems.

1.3.1 The GCO Declarative Programming Methodology

Disjunctive Logic Programming can be used to encode problems in a highly
declarative fashion, following a Guess/Check/Optimize (GCO) paradigm, which
is an extension and refinement of the “Guess&Check” methodology in [Eiter et al.,
2000]. In this section, we will first describe the GCO technique and we will then
illustrate how to apply it on a number of examples. Many problems, also problems
of comparatively high computational complexity (ΣP

2 -complete and ∆P
3 -complete

problems), can be solved in a natural manner by using this declarative program-
ming technique. The power of disjunctive rules allows for expressing problems
which are more complex than NP, and the (optional) separation of a fixed, non-
ground program from an input database allows to do so in a uniform way over
varying instances.

Given a set F I of facts that specify an instance I of some problem P, a GCO
program P for P consists of the following three main parts:

Guessing Part The guessing part G ⊆ P of the program defines the search space,
such that answer sets of G ∪ F I represent “solution candidates” for I .

Checking Part The (optional) checking part C ⊆ P of the program filters the
solution candidates in such a way that the answer sets of G∪C∪F I represent
the admissible solutions for the problem instance I .

Optimization Part The (optional) optimization part O ⊆ P of the program al-
lows to express a quantitative cost evaluation of solutions by using weak
constraints. It implicitly defines an objective function f : AS(G∪C∪F I) →
N mapping the answer sets of G ∪ C ∪ F I to natural numbers. The seman-
tics of G ∪C ∪F I ∪O optimizes f by filtering those answer sets having the
minimum value; this way, the optimal (least cost) solutions are computed.



Chapter 1. The Language 28

Without imposing restrictions on which rules G and C may contain, in the ex-
tremal case we might set G to the full program and let C be empty, i.e., checking
is completely integrated into the guessing part such that solution candidates are
always solutions. Also, in general, the generation of the search space may be
guarded by some rules, and such rules might be considered more appropriately
placed in the guessing part than in the checking part. We do not pursue this is-
sue further here, and thus also refrain from giving a formal definition of how to
separate a program into a guessing and a checking part.

In general, both G and C may be arbitrary collections of rules (and, for the opti-
mization part, weak constraints), and it depends on the complexity of the problem
at hand which kinds of rules are needed to realize these parts (in particular, the
checking part).

Problems in NP and ∆P
2 For problems with complexity in NP or, in case of

optimization problems, ∆P
2 , often a natural GCO program can be designed with

the three parts clearly separated into the following simple layered structure:

• The guessing part G consists of disjunctive rules that “guess” a solution
candidate S.

• The checking part C consists of integrity constraints that check the admissi-
bility of S.

• The optimization part O consists of weak constraints.

Each layer may have further auxiliary predicates, defined by normal stratified
rules (see Section 1.2.2 for a definition of stratification), for local computations.

The disjunctive rules define the search space in which rule applications are
branching points, while the integrity constraints prune illegal branches. The weak
constraints in O induce a modular ordering on the answer sets, allowing the user
to specify the best solutions according to an optimization function f .

Problems beyond ∆P
2 For problems which are beyond ∆P

2 , and in particular for
ΣP

2 -complete problems, the layered program schema above no longer applies. If
G has complexity in NP, which is the case if disjunction is just used for making
the guess and the layer is head-cycle free [Ben-Eliyahu and Dechter, 1994], then
an answer set A of G∪F I can be guessed in polynomial time, i.e., nondeterminis-
tically created with a polynomial number of steps. Hence, it can be shown easily



Chapter 1. The Language 29

that computing an answer set of the whole program, G ∪ C ∪ F I ∪ O, is feasible
in polynomial time with an NP oracle. Thus, applicability of the same schema to
ΣP

2 -hard problems would imply ΣP
2 ⊆ ∆P

2 , which is widely believed to be false.
Until now we tacitly assumed an intuitive layering of the program parts, such

that the checking part C has no “influence” or “feedback” on the guessing part G,
in terms of literals which are derived in C and invalidate the application of rules
in G, or make further rules in G applicable (and thus change the guess). This can
be formalized in terms of a “potentially uses” relation [Eiter et al., 1997b] or a
“splitting set” condition [Lifschitz and Turner, 1994]. Complexity-wise, this can
be relaxed to the property that the union of the program parts is head-cycle free.

In summary, if a program solves a ΣP
2 -complete problem and has guessing and

checking parts G and C, respectively, with complexities below ΣP
2 , then C must

either contain disjunctive rules or interfere with G (and in particular head-cycles
must be present in G ∪ C).

We close this section with remarking that the GCO programming methodology
has also positive implications from the Software Engineering viewpoint. Indeed,
the modular program structure in GCO allows for developing programs incremen-
tally, which is helpful to simplify testing and debugging. One can start by writing
the guessing part G and testing that G ∪ F I correctly defines the search space.
Then, one adds the checking part and verifies that the answer sets of G ∪ C ∪ F I

encode the admissible solutions. Finally, one tests that G ∪ C ∪ F I ∪O generates
the optimal solutions of the problem at hand.

1.3.2 Applications of the GCO Programming Technique

In this section, we illustrate the declarative programming methodology described
in Section 1.3.1 by showing its application on a number of concrete examples.

Exams Scheduling Let us start by a simple scheduling problem. Here we have
to schedule the exams for several university courses in three time slots t1, t2, and t3
at the end of the semester. In other words, each course should be assigned exactly
one of these three time slots. Specific instances I of this problem are provided by
sets F I of facts specifying the exams to be scheduled. The predicate exam has
four arguments representing, respectively, the identifier of the exam, the professor
who is responsible for the exam, the curriculum to which the exam belongs, and
the year in which the exam has to be given in the curriculum.



Chapter 1. The Language 30

Several exams can be assigned to the same time slot (the number of avail-
able rooms is sufficiently high), but the scheduling has to respect the following
specifications:

S1 Two exams given by the same professor cannot run in parallel, i.e., in the
same time slot.

S2 Exams of the same curriculum should be assigned to different time slots, if
possible. If S2 is unsatisfiable for all exams of a curriculum C, one should:

(S21) first of all, minimize the overlap between exams of the same year of
C,

(S22) then, minimize the overlap between exams of different years of C.

This problem can be encoded in DLP by the following GCO program Psch:

assign(Id, t1) v assign(Id, t2) v assign(Id, t3) :-
exam(Id, P, C, Y ).

}
Guess

:- assign(Id, T ), assign(Id′, T ),
Id <> Id′, exam(Id, P, C, Y ), exam(Id′, P, C ′, Y ′).

}
Check

:∼ assign(Id, T ), assign(Id′, T )
exam(Id, P, C, Y ), exam(Id′, P ′, C, Y ), Id <> Id′. [: 2]

:∼ assign(Id, T ), assign(Id′, T )
exam(Id, P, C, Y ), exam(Id′, P ′, C, Y ′), Y <> Y ′. [: 1]





Optimize

The guessing part G has a single disjunctive rule defining the search space. It
is evident that the answer sets of G ∪F I are the possible assignments of exams to
time slots.

The checking part C consists of one integrity constraint, discarding the as-
signments of the same time slot to two exams of the same professor. The answer
sets of G ∪ C ∪ F I correspond precisely to the admissible solutions, that is, to all
assignments which satisfy the constraint S1.

Finally, the optimizing part O consists of two weak constraints with different
priorities. Both weak constraints state that exams of the same curriculum should
possibly not be assigned to the same time slot. However, the first one, which has
higher priority (level 2), states this desire for the exams of the curriculum of the
same year, while the second one, which has lower priority (level 1) states it for the
exams of the curriculum of different years. The semantics of weak constraints,
as given in Section 1.1.2, implies that O captures precisely the constraints S2 of



Chapter 1. The Language 31

the scheduling problem specification. Thus, the answer sets of G ∪ C ∪ F I ∪ O
correspond precisely to the desired schedules.

Hamiltonian Path Let us now consider a classical NP-complete problem in
graph theory, namely Hamiltonian Path.

Definition 1.15 (HAMPATH) Given a directed graph G = (V, E) and a node
a ∈ V of this graph, does there exist a path in G starting at a and passing through
each node in V exactly once?

Suppose that the graph G is specified by using facts over predicates node

(unary) and arc (binary), and the starting node a is specified by the predicate start

(unary). Then, the following GCO program Php solves the problem HAMPATH
(no optimization part is needed here):

inPath(X, Y ) v outPath(X, Y ) :- start(X), arc(X,Y ).
inPath(X, Y ) v outPath(X, Y ) :- reached(X), arc(X, Y ).
reached(X) :- inPath(Y,X). (aux.)



 Guess

:- inPath(X,Y ), inPath(X, Y 1), Y <> Y 1.
:- inPath(X,Y ), inPath(X1, Y ), X <> X1.
:-node(X), not reached(X), not start(X).



 Check

The two disjunctive rules guess a subset S of the arcs to be in the path, while the
rest of the program checks whether S constitutes a Hamiltonian Path. Here, an
auxiliary predicate reached is used, which is associated with the guessed predi-
cate inPath using the last rule. Note that reached is completely determined by
the guess for inPath, and no further guessing is needed.

In turn, through the second rule, the predicate reached influences the guess of
inPath, which is made somehow inductively: Initially, a guess on an arc leaving
the starting node is made by the first rule, followed by repeated guesses of arcs
leaving from reached nodes by the second rule, until all reached nodes have been
handled.

In the checking part, the first two constraints ensure that the set of arcs S

selected by inPath meets the following requirements, which any Hamiltonian
Path must satisfy: (i) there must not be two arcs starting at the same node, and (ii)
there must not be two arcs ending in the same node. The third constraint enforces
that all nodes in the graph are reached from the starting node in the subgraph



Chapter 1. The Language 32

induced by S. A less sophisticated encoding can be obtained by replacing the
guessing part with the single rule

inPath(X, Y ) v outPath(X, Y ) :- arc(X, Y ).

that guesses for each arc whether it is in the path and by defining the predicate
reached in the checking part by rules

reached(X) :- start(X).
reached(X) :- reached(Y ), inPath(Y,X).

However, this encoding is less preferable from a computational point of view,
because it leads to a larger search space.

It is easy to see that any set of arcs S which satisfies all three constraints must
contain the arcs of a path v0, v1, . . . , vk in G that starts at node v0 = a, and passes
through distinct nodes until no further node is left, or it arrives at the starting node
a again. In the latter case, this means that the path is in fact a Hamiltonian Cycle
(from which a Hamiltonian path can be immediately computed, by dropping the
last arc).

Thus, given a set of facts F for node, arc, and start, the program Php ∪ F
has an answer set if and only if the corresponding graph has a Hamiltonian Path.
The above program correctly encodes the decision problem of deciding whether a
given graph admits a Hamiltonian Path or not.

This encoding is very flexible, and can be easily adapted to solve the search
problems Hamiltonian Path and Hamiltonian Cycle (where the result has to be a
tour, i.e., a closed path). If we want to be sure that the computed result is an open
path (i.e., it is not a cycle), we can easily impose openness by adding a further
constraint :- start(Y ), inPath( , Y ). to the program (like in Prolog, the symbol
‘ ’ stands for an anonymous variable whose value is of no interest). Then, the set
S of selected arcs in any answer set of Php ∪ F constitutes a Hamiltonian Path
starting at a. If, on the other hand, we want to compute the Hamiltonian cycles,
then we just have to strip off the literal not start(X) from the last constraint of
the program.

Traveling Salesperson The Traveling Salesperson Problem (TSP) is a well-
known optimization problem, widely studied in Operation Research.

Definition 1.16 (TSP) Given a weighted directed graph G = (V, E, C) and a
node a ∈ V of this graph, find a minimum-cost cycle (closed path) in G starting
at a and passing through each node in V exactly once.



Chapter 1. The Language 33

It is well-known that finding an optimal solution to the Traveling Salesperson
Problem (TSP) is intractable. Computing an optimal tour is both NP-hard and
co-NP-hard. In fact, in [Papadimitriou, 1984] it was shown that deciding whether
the cost of an optimal tour is an even number is ∆P

2 -complete.
A DLP encoding for the Traveling Salesperson Problem (TSP) can be easily

obtained from an encoding of Hamiltonian Cycle by adding optimization: each arc
in the graph carries a weight, and a tour with minimum total weight is selected.

Suppose again that the graph G is specified by predicates node (unary) and arc

(ternary), and that the starting node is specified by the predicate start (unary).
We first modify the HAMPATH encoding Php in Section 1.3.2 to compute

Hamiltonian Cycles, by stripping off literal not start(X) from the last constraint
of the program, as explained above. We then add an optimization part consisting
of a single weak constraint

:∼ inPath(X, Y, C). [C : 1]

which states the preference to avoid taking arcs with high cost in the path, and has
the effect of selecting those answer sets for which the total cost of arcs selected
by inPath is the minimum.

The full GCO program Ptsp solving the TSP problem is thus as follows:

inPath(X, Y, C) v outPath(X,Y,C) :- start(X), arc(X, Y, C).
inPath(X, Y, C) v outPath(X,Y,C) :- reached(X), arc(X, Y, C).
reached(X) :- inPath(Y,X,C). (aux.)



 Guess

:- inPath(X,Y, ), inPath(X, Y 1, ), Y <> Y 1.
:- inPath(X,Y, ), inPath(X1, Y, ), X <> X1.
:-node(X), not reached(X).



 Check

:∼ inPath(X, Y, C). [C : 1]
}

Optimize

Given a set of facts F for node, arc, and start which specifies the input instance,
it is easy to see that the (optimal) answer sets of Ptsp ∪ F are in a one-to-one
correspondence with the optimal tours of the input graph.

Winners in Combinatorial Auctions The weak constraints, specifying the Op-
timization module of a GCO program, permit to naturally express optimization
criteria based on minimization. In this example, we show how also maximization
can be expressed in the optimization part, by a suitable use of weak constraints.



Chapter 1. The Language 34

A combinatorial auction has a set O of objects for sale and a set B of bidders.
Bidders may offer bids on a set of items, in terms of a price they are willing to pay
for them. For example, bidder b1 may bid $500 for items a, b, c together and $200
for item a alone. Formally, a bid is a triple of the form (b,X, p) where b ∈ B,
X ⊆ O, and p > 0 is a price. The auctioneer receives a set bids of bids. Without
loss of generality, we may assume that bids does not contain two different triples
(b1, X, p1) and (b2, X, p2) (i.e., with the same set X of items). This is because if
two bids are received for the same set X of objects, the one with the lower price
can be eliminated.4

The task of the auctioneer is to determine which bids to accept. Given bids, a
potential winner is a subset win ⊆ bids such that

(b1, X1, p1), (b2, X2, p2) ∈ win → X1 ∩ X2 = ∅.
Each potential winner set represents a possible scenario, i.e., a possible outcome
of the auction.

Potential winners may be of very different quality according to the auction-
eer’s point of view. Indeed, she clearly wants to maximize her revenue, and thus
to determine a potential winner win maximizing the revenue R(win), that is,
maximizing the following function:

R(win) =
∑

(b,X,p)∈win

p.

The winner determination problem is to find a potential winner win such that
R(win) is maximum.

We construct a GCO program Pbids solving this problem as follows. Suppose
that two input predicates bids and requires encode the input data about the bids
bids received by the auctioneer. In particular, for each bid (b, x, p) ∈ bids, F
contains the fact bids(b, x, p)., and the facts describing the set of items x required
by the bidder b, namely, a fact requires(x, i)., for each item i ∈ x.

The predicate accept encodes the potential winner set of bids chosen by the
auctioneer. The rules of program Pbids are:

accept(B, X) v reject(B,X) :- bids(B, X, P ).
}

Guess

:- accept(B1, X1), accept(B2, X2),
X1 <> X2, requires(X1, I), requires(X2, I).

}
Check

4It is still possible that there are two bids of the form (b1, X, p1), (b2, X, p2) with b1 6= b2 and
p1 = p2. In such a case most auctioneers eliminate one of the two bids using some pre-announced
protocol – e.g. the bid received at a later time may be discarded.



Chapter 1. The Language 35

:∼ reject(B,X), bids(B, X, P ). [P : 1]
}

Optimize

It is easy to see that the answer sets of Rules(Pbids) ∪ F correspond exactly to
the potential winners of the auction. Then, the weak constraint :∼ reject(B, X),

bids(B,X, P ). [P : 1] minimizes the sum of the prices of the rejected bids, and
it therefore maximizes the revenue, since the maximum of R(win) corresponds
precisely to the minimum of

R̂(win) =
( ∑

(b,X,p)∈bids p
)
−R(win).

Thus, the optimal answer sets of Pbids ∪ F correspond precisely to the optimal
potential winners.

Ramsey Numbers In the previous examples, we have seen how a search prob-
lem can be encoded in a DLP program whose answer sets correspond to the prob-
lem solutions. We next see another use of the GCO programming technique. We
build a DLP program whose answer sets witness that a property does not hold,
i.e., the property at hand holds if and only if the DLP program has no answer set.
Such a programming scheme is useful to prove the validity of co-NP or ΠP

2 prop-
erties. We next apply the above programming scheme to a well-known problem
of number and graph theory.

Definition 1.17 (RAMSEY) The Ramsey number R(k,m) is the least integer n

such that, no matter how we color the arcs of the complete undirected graph
(clique) with n nodes using two colors, say red and blue, there is a red clique
with k nodes (a red k-clique) or a blue clique with m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [Radziszowski,
1994]. We next show a program Pramsey that allows us to decide whether a given
integer n is not the Ramsey Number R(3, 4). By varying the input number n, we
can determine R(3, 4), as described below. Let F be the collection of facts for
input predicates node and arc encoding a complete graph with n nodes. Pramsey

is the following GCO program:

blue(X, Y ) v red(X, Y ) :- arc(X,Y ).
}

Guess

:- red(X, Y ), red(X, Z), red(Y, Z).

:- blue(X,Y ), blue(X, Z), blue(Y, Z),
blue(X,W ), blue(Y, W ), blue(Z,W ).



 Check



Chapter 1. The Language 36

Intuitively, the disjunctive rule guesses a color for each edge. The first constraint
eliminates the colorings containing a red clique (i.e., a complete graph) with 3
nodes, and the second constraint eliminates the colorings containing a blue clique
with 4 nodes. The program Pramsey ∪F has an answer set if and only if there is a
coloring of the edges of the complete graph on n nodes containing no red clique of
size 3 and no blue clique of size 4. Thus, if there is an answer set for a particular
n, then n is not R(3, 4), that is, n < R(3, 4). On the other hand, if Pramsey ∪ F
has no answer set, then n ≥ R(3, 4). Thus, the smallest n such that no answer set
is found is the Ramsey number R(3, 4).

The problems considered so far are at the first level of the Polynomial Hierar-
chy. We next show that also problems located at the second level of the Polynomial
Hierarchy can be encoded by the GCO technique.

Quantified Boolean Formulas (2QBF) The first problem at the second level of
the Polynomial Hierarchy which we consider is the canonical ΣP

2 -complete prob-
lem 2QBF [Papadimitriou, 1994]. Here, we have to decide whether a quantified
Boolean formula (QBF) of the shape Φ = ∃X∀Y φ, where X and Y are disjoint
sets of propositional variables and φ = C1 ∨ . . . ∨ Ck is a 3DNF formula over
X ∪ Y , evaluates to true. Moreover, in this case, we may want to have a witness-
ing assignment σ to the variables X , i.e., an assignment σ such that φ[X/σ(X)]

is a tautology, where X/σ(X) denotes the substitution of X by σ(X).5 This nat-
urally leads to a Guess & Check disjunctive logic program, in which the witness
assignment σ is guessed by some rules, and the rest of the program is devoted to
checking whether φ[X/σ(X)] is a tautology.

Our encoding is a variant of the reduction of 2QBF into a propositional DLP in
[Eiter and Gottlob, 1995]. Here, a QBF Φ as above is encoded as a set of facts FΦ,
which is evaluated by a fixed program P2QBF . In detail, FΦ contains the following
facts:

• exists(v), for each existential variable v ∈ X;

• forall(v), for each universal variable v ∈ Y ; and

• term(p1, p2, p3, q1, q2, q3), for each disjunct l1 ∧ l2 ∧ l3 in φ, where (i) if
li is a positive atom vi, then pi = vi, otherwise pi= “true”, and (ii) if li
is a negated atom ¬vi, then qi = vi, otherwise qi=“false”. For example,
term(x1, true, y4, false, y2, false), encodes the term x1 ∧ ¬y2 ∧ y4.

5Note that such a witness does no exist for universally quantified formulas of shape ∀X∃Y φ.



Chapter 1. The Language 37

The program P2QBF is then

t(true). f(false).
t(X) v f(X) :- exists(X).

}
Guess

t(Y ) v f(Y ) :- forall(Y ).
w :- term(X, Y, Z, Na, Nb, Nc),

t(X), t(Y ), t(Z), f(Na), f(Nb), f(Nc).
t(Y ) :- w, forall(Y ).
f(Y ) :- w, forall(Y ).

:- not w.





Check

The guessing part “initializes” the logical constants “true” and “false” and chooses
a witnessing assignment σ to the variables in X , which leads to an answer set MG

for this part. The more tricky checking part then tests whether φ[X/σ(X)] is a
tautology, using a saturation technique [Eiter and Gottlob, 1995]: The constraint
:- not w. enforces that w must be true in any answer set of the program; the pre-
ceding two rules imply that such an answer set M contains both t(y) and f(y)

for every y ∈Y . Hence, M has a unique extension with respect to w and all t(y)

and f(y) where y ∈Y . By the minimality of answer sets, an extension of MG to
the (uniquely determined) answer set M of the whole program exists, if and only
if for each possible assignment µ to the variables in Y , effected by the disjunc-
tive rule in the checking part, the atom w is derived. The latter holds iff there
is some disjunct in φ[X/σ(X), Y/µ(Y )] which is true. Hence, M is an answer
set iff the formula φ[X/σ(X)] is a tautology. In summary, we obtain that Φ is a
Yes-instance, i.e., it evaluates to true, if and only if P2QBF ∪ FΦ has some answer
set. Moreover, the answer sets of P2QBF ∪ FΦ are in one-to-one correspondence
with the witnesses σ for the truth of Φ.

Since 2QBF is ΣP
2 -complete, as discussed in Section 1.3.1 the use of disjunc-

tion in the checking part is not accidental but necessary: the guessing and checking
parts are layered hierarchically (and Splitting Sets [Lifschitz and Turner, 1994] do
exist).

Strategic Companies A problem located at the second level of the Polynomial
Hierarchy is the following, which is known under the name Strategic Companies
[Cadoli et al., 1997].

Definition 1.18 (STRATCOMP) Suppose there is a collection C = {c1, . . . , cm}
of companies ci owned by a holding, a set G = {g1, . . . , gn} of goods, and for each
ci we have a set Gi ⊆ G of goods produced by ci and a set Oi ⊆ C of companies



Chapter 1. The Language 38

controlling (owning) ci. Oi is referred to as the controlling set of ci. This control
can be thought of as a majority in shares; companies not in C, which we do not
model here, might have shares in companies as well. Note that, in general, a com-
pany might have more than one controlling set. Let the holding produce all goods
in G, i.e. G =

⋃
ci∈C Gi.

A subset of the companies C ′ ⊆ C is a production-preserving set if the fol-
lowing conditions hold: (1) The companies in C ′ produce all goods in G, i.e.,⋃

ci∈C′ Gi = G. (2) The companies in C ′ are closed under the controlling rela-
tion, i.e. if Oi ⊆ C ′ for some i = 1, . . . , m then ci ∈ C ′ must hold.

A subset-minimal set C ′, which is production-preserving, is called a strategic
set. A company ci ∈ C is called strategic, if it belongs to some strategic set of C.

This notion is relevant when companies should be sold. Indeed, intuitively,
selling any non-strategic company does not reduce the economic power of the
holding. Computing strategic companies is ΣP

2 -hard in general [Cadoli et al.,
1997]; reformulated as a decision problem (“Given a particular company c in the
input, is c strategic?”), it is ΣP

2 -complete. To our knowledge, it is one of the
rare KR problems from the business domain of this complexity that have been
considered so far.

In the following, we adopt the setting from [Cadoli et al., 1997] where each
product is produced by at most four companies (for each g ∈ G |{ci | g ∈ Gi}| ≤
4) and each company is jointly controlled by at most four other companies, i.e.
|Oi| ≤ 4 for i = 1, . . . , m (in this case, the problem is still ΣP

2 -hard). Assume that
for a given instance of STRATCOMP, F contains the following facts:

• company(c) for each c ∈ C,

• prod by(g, cj, ck, cx, cy), if {ci | g ∈ Gi} = {cj, ck, cx, cy}, where cj , ck, cx,
and cy may possibly coincide,

• contr by(ci, ck, cm, cn, cl), if ci ∈ C and Oi = {ck, cm, cn, cl}, where ck,
cm, cn, and cl are not necessarily distinct.

We next present a program Pstrat, which solves this hard problem elegantly
by only two rules:

rs1 : strat(W ) v strat(X) v strat(Y ) v strat(Z) :- prod by(W,X, Y, Z). } Guess

rs2 :
strat(W ) :- contr by(W,X, Y, Z, T ), strat(X),

strat(Y ), strat(Z), strat(Z).

}
Check



Chapter 1. The Language 39

Here strat(X) means that company X is a strategic company. The guessing part
G of the program consists of the disjunctive rule rs1, and the checking part C con-
sists of the normal rule rs2. The program Pstrat is surprisingly succinct, given that
STRATCOMP is a hard (ΣP

2 -hard) problem. To overcome the difficulty of the en-
coding, coming from the intrinsic high complexity of the STRATCOMP problem,
we next explain this encoding more in-depth, compared with the previous GCO
encodings.

The program Pstrat exploits the minimization which is inherent to the seman-
tics of answer sets for the check whether a candidate set C ′ of companies that
produces all goods and obeys company control is also minimal with respect to
this property.

The guessing rule rs1 intuitively selects one of the companies c1, c2, c3 and c4

that produce some item g, which is described by prod by(g, c1, c2, c3, c4). If there
were no company control information, minimality of answer sets would naturally
ensure that the answer sets of F∪{rs1} correspond to the strategic sets; no further
checking would be needed. However, in case control information is available,
the rule rs2 checks that no company is sold that would be controlled by other
companies in the strategic set, by simply requesting that this company must be
strategic as well. The minimality of the strategic sets is automatically ensured by
the minimality of answer sets.

The answer sets of Pstrat∪F correspond one-to-one to the strategic sets of
the holding described in F; a company c is thus strategic iff strat(c) is in some
answer set of Pstrat ∪F .

An important note here is that the checking “constraint” rs2 interferes with the
guessing rule rs1: applying rs2 may “spoil” the minimal answer set generated by
rs1. For example, suppose the guessing part gives rise to a ground rule rsg1

strat(c1) v strat(c2) v strat(c3) v strat(c4) :- prod by(g, c1, c2, c3, c4).

and the fact prod by(g, c1, c2, c3, c4) is given in F . Now suppose the rule is sat-
isfied in the guessing part by making strat(c1) true. If, however, in the checking
part an instance of rule rs2 is applied which derives strat(c2), then the application
of the rule rsg1 to derive strat(c1) is invalidated, as the minimality of answer sets
implies that strat(c1) cannot be derived from the rule rsg1, if another atom in its
head is true.

By the complexity considerations in Subsection 1.3.1, such interference is
needed to solve STRATCOMP in the above way (without disjunctive rules in
the Check part), since deciding whether a particular company is strategic is ΣP

2 -



Chapter 1. The Language 40

complete. If Pstrat is rewritten to eliminate such interference and layer the parts
hierarchically, then further disjunctive rules must be added. An encoding which
expresses the strategic sets in the generic GCO-paradigm with clearly separated
guessing and checking parts is given in [Eiter et al., 2000].

Note that, the program above cannot be replaced by a simple normal (non-
disjunctive) program. Intuitively, this is due to the fact that disjunction in the head
of rules is not exclusive, while at the same time answer sets are subset-minimal.
Using techniques like the ones in [Eiter et al., 2003a], Pstrat can be extended to
support an arbitrary number of producers per product and controlling companies
per company, respectively.

Preferred Strategic Companies

Let us consider an extension of Strategic Companies which also deals with pref-
erences. Suppose that the president of the holding desires, in case of options
given by multiple strategic sets, to discard those where certain companies are sold
or kept, respectively, by expressing preferences among possible solutions. For
example, the president might give highest preference to discard solutions where
company a is sold; next important to him is to avoid selling company b while
keeping c, and of equal importance to avoid selling company d, and so on.

In presence of such preferences, the STRATCOMP problem becomes slightly
harder, as its complexity increases from ΣP

2 to ∆P
3 . Let us assume that the pres-

ident’s preferences are represented by a single predicate avoid(csell, ckeep, pr),
which intuitively states that selling csell while keeping ckeep should be avoided
with priority pr; in the above example, the preferences would be avoid(a, c>, top),
avoid(b, c, top−1), avoid(d, c>, top−1), . . . , where c> is a dummy company which
belongs to every strategic set, and top is the highest priority number. Then, we
can easily represent this more complicated problem, by adding the following weak
constraint to the original encoding for STRATCOMP:

:∼ avoid(Sell,Keep, Priority), not strat(Sell), strat(Keep). [: Priority]

The (optimal) answer sets of the resulting program then correspond to the solu-
tions of the above problem.



Chapter 2

The Disjunctive Logic Programming
System DLV

In this chapter we introduce the DLV system and give an overview of its archi-
tecture and implementation. The theoretical foundations of the implementation of
DLV are also briefly discussed. The main procedure for the computation of the
answer set semantics is then described.

2.1 The Architecture of DLV: an Overview

The system architecture of DLV is shown in Figure 2.1. The internal system
language is the one described in Chapter 1, i.e. Disjunctive Logic Programming
extended by weak constraints. The DLV Core (the shaded part of the figure) is
an efficient engine for computing answer sets (one, some, or all) of its input. The
DLV core has three layers (see Figure 2.1), each of which is a powerful subsystem
per se: The Intelligent Grounder (IG, also Instantiator) has the power of a deduc-
tive database system; the Model Generator (MG) is as powerful as a Satisfiabil-
ity Checker; and the Model Checker (MC) is capable of solving co-NP-complete
problems. In addition to its kernel language, DLV provides a number of appli-
cation front-ends that show the suitability of our formalism for solving various
problems from the areas of Artificial Intelligence, Knowledge Representation and
(Deductive) Databases. Currently, the DLV system has front-ends for inheritance
reasoning [Buccafurri et al., 2002], model-based diagnosis [Eiter et al., 1997a],
planning [Eiter et al., 2003b], and SQL3 query processing. Each front-end maps
its problem specific input into a DLV program, invokes the DLV kernel, and then
post-processes any answer set returned, extracting from it the desired solution;

41



Chapter 2. The Disjunctive Logic Programming System DLV 42

File
System Relational

Database
Relational
Database

Command−line
Interface

Diagnosis Frontend

Planning Frontend

...

Deduction (polynom.)

O
D

B
C ODBC

Generator
Output
(Filtering)

Model
Checker

Model
Grounding
Intelligent

WCH

Non-monotonic Inferences (NP / ∆P
2 )

Non-monotonic Inferences (full expressive power: ΣP
2 / ∆P

3 )

Figure 2.1: The System Architecture of DLV

furthermore, there is a Graphical User Interface (GUI) that provides convenient
access to some of these front-ends as well as the system itself.

2.2 Theoretical Foundations

The implementation of the DLV system is based on very solid theoretical foun-
dations, and exploits the results on the computational complexity discussed in
section 1.2. Ideally, the performance of a system should reflect the complexity of
the problem at hand, such that “easy” problems (say, those of polynomial com-
plexity) are solved fast, while only harder problems involve methods of higher
run-time cost. Indeed, the DLV system is designed according to this idea, and
thrives to exploit the complexity results reported in Section 1.2.4.

For example, stratified normal programs (which have polynomial complexity,
as reported in Table 1.11) are evaluated solely using techniques from the field of
deductive databases, without employing the more complex techniques which are
needed to evaluate full DLV programs; in fact, such normal stratified programs
are evaluated without generating the program instantiation at all.

The architecture of the DLV Core closely reflects complexity results for var-
ious subsets of our language. As mentioned before, the Intelligent Grounding
(IG) module is able to completely solve some problems which are known to be of
polynomial time complexity (like normal stratified programs); the Model Gener-
ator (together with the Grounding) is capable of solving NP-complete problems.
Adding the Model Checker is needed to solve ΣP

2 -complete problems. The WCH
(Weak Constraints Handler) comes into play only in presence of weak constraints.

1Note that the complexity of propositional DLV programs reported in Tables 1.1–1.3 coincides
with the data complexity of non-ground DLV programs.



Chapter 2. The Disjunctive Logic Programming System DLV 43

More precisely, referring to the notation of Section 1.2.2, we have the following
five disjoint language classes L1 – L5 for evaluation:

• L1 contains the programs included in the class 〈{}, {w, nots}〉, which all
have polynomial complexity. They are completely evaluated by the IG mod-
ule, which runs in polynomial time (referring to propositional complexity).

• L2 contains the programs which are in the subclass corresponding to 〈{ vh },
{not}〉, but not in L1. The complexity of this fragment is NP, and the pro-
grams are evaluated by the MG module (besides the IG) with only a call to
the linear-time part of the MC module. Note that the MG implements a flat
backtracking algorithm and is suitable for solving NP-complete problems.

• L3 contains the DLV programs from 〈{ vh }, {not, w}〉 minus L1 ∪L2. The
complexity of this fragment is ∆P

2 . Here, also the WCH module is em-
ployed, which iteratively invokes the MG. Again, only the linear-time part
of the MC is invoked.

• L4 contains the programs from the subclass corresponding to 〈{ v }, {not}〉
minus L1∪L2∪L3. The complexity of this fragment is ΣP

2 , and the programs
are evaluated by the MG module (besides the IG) with calls to the full MC
module. Note that a flat backtracking algorithm is not sufficient to evaluate
ΣP

2 -complete problems, and such a nested evaluation scheme, with calls to
MC, is needed.

• Finally, L5 contains all other programs, i.e., those in the full class (corre-
sponding to 〈{ v }, {not, w}〉) which are not contained in L1∪L2∪L3∪L4,
where we have the full language complexity of ∆P

3 . The evaluation pro-
ceeds as for L4, but also the WCH module comes into play for handling the
weak constraints.

The three DLV modules, MG, MC, and WCH, thus deal with the three sources
of complexity denoted by (s1), (s2), and (s3) in Section 1.2.4; each of them is fully
activated only if the respective source of complexity is present in the program at
hand.

2.3 DLV Computation

Next we present the evaluation flow of the DLV computation in some more detail.
It is worth noting that we describe the computational engine of the DLV system



Chapter 2. The Disjunctive Logic Programming System DLV 44

[Faber et al., 1999; 2001], but also other systems (like Smodels [Niemelä and
Simons, 1996; Simons, 2000], for instance) employ very similar techniques. Upon
startup, the DLV Core or one of the front-ends parses the input specified by the
user and transforms it into the internal data structures of DLV. In both cases, this
is done efficiently (requiring only linear memory and time). The input is usually
read from text files, but DLV also provides a bridge to relational databases through
an ODBC interface, which allows for retrieving facts stored in relational tables.

Using differential and other advanced database techniques ([Faber et al., 1999;
Leone et al., 2001]) together with suitable data structures, the Intelligent Ground-
ing (IG) module then efficiently generates a ground instantiation Ground(P) of
the input that has the same answer sets as the full program instantiation, but is
much smaller in general. For example, in case of a stratified program, the IG
module already computes the single answer set, and does not produce any instan-
tiation.

The heart of the computation is then performed by the Model Generator and
the Model Checker. Roughly, the former produces some “candidate” answer sets,
the stability of which is subsequently verified by the latter. In presence of weak
constraints, further processing is needed, which is performed under the control of
the WCH module. Since the handling of weak constraints is somehow orthogonal
to the rest of the computation, we first focus on the evaluation of standard disjunc-
tive logic programs, describing the processing of weak constraints later on.

The generation of the answer sets of a program P relies on a monotonic oper-
ator WP [Leone et al., 1997] which extends the well-founded operator of [Gelder
et al., 1991] for normal programs to disjunctive programs. It is defined in terms
of a suitable notion of unfounded set. Intuitively, an unfounded set for a disjunc-
tive program P w.r.t. an interpretation I is a set of positive literals that cannot be
derived from P assuming the facts in I [Leone et al., 1997].

Briefly, the MG works as follows: First, Wω
P(∅) (the fixpoint of WP) is com-

puted, which is contained in every answer set. If Wω
P(∅) is a total model, it is

returned as the (unique) answer set. Otherwise, moving from Wω
P(∅) towards

the answer sets, a literal (called possibly-true literal in [Leone et al., 1997]), the
truth of which allows to infer new atoms, is assumed true. Clearly the choice of
“good” possibly-true literals at each step (i.e., a sequence of possibly-true literals
that quickly leads to an answer set) is crucial for an efficient computation, so we
employ novel heuristics with extensive lookahead and also propagate knowledge
about choices that lead to inconsistency [Faber et al., 2001].

The computation proceeds by alternately selecting a possibly-true literal and



Chapter 2. The Disjunctive Logic Programming System DLV 45

applying the pruning operator, until either a total model of Ground(P) is reached
or two contradictory literals are derived. If a model is found, the Model Checker
is called; otherwise, backtracking is performed.

The Model Checker (MC) verifies whether the model M at hand is an answer
set for the input programP . In particular, the MC disregards weak constraints, and
verifies whether M is an answer set for Rules(P); the optimality of the models
w.r.t. the violation of weak constraints is handled by the WCH module. The task
performed by MC is very hard in general, because checking the stability of a
model is well-known to be co-NP-complete (cf. [Eiter et al., 1997b]). However,
for some relevant and frequently used classes of programs answer-set checking
can be efficiently performed (see Table 1.3 in Section 1.2.4).

The MC implements novel techniques for answer-set checking [Koch and
Leone, 1999], which extend and complement previous results [Ben-Eliyahu and
Dechter, 1994; Ben-Eliyahu and Palopoli, 1994; Leone et al., 1997]. The MC
fully complies with the complexity bounds specified in section 1.2. Indeed, (a)
it terminates in polynomial time on every program where answer-set checking is
tractable according to Table 1.3 (including, e.g., HCF programs); and (b) it always
runs in polynomial space and single exponential time. Moreover, even on general
(non-HCF) programs, the MC limits the inefficient part of the computation to the
subprograms that are not HCF. Note that it may well happen that only a very small
part of the program is not HCF [Koch and Leone, 1999].

Finally, once an answer set has been found, the control is returned to the front-
end in use, which performs post-processing and possibly invokes the MG to look
for further models.

In presence of weak constraints, after the instantiation of the program, the
computation is governed by the WCH and consists of two phases: (i) the first
phase determines the cost of an optimal answer set2, together with one “witness-
ing” optimal answer set and, (ii) the second phase computes all answer sets hav-
ing that optimal cost. It is worthwhile noting that both the IG and the MG also
have built-in support for weak constraints, which is activated (and therefore in-
curs higher computational cost) only if weak constraints are present in the input.
The MC, instead, does not need to provide any support for weak constraints, since
these do not affect answer-set checking at all.

2By cost of an answer set we mean the sum of the weights of the weak constraints violated by
the answer set, weighted according to their priority level – see Section 1.1.2.



Chapter 3

The DLV Instantiation Module

In this chapter, we provide a short description of the overall instantiation module
of DLV, the Intelligent Grounding, and focus on the “heart” procedure of this
module which produces the ground instances of a given rule.

3.1 Architecture

In Figure 3.1 we have depicted the general structure of the instantiator module.
An input program P is first analyzed by the parser, which also builds the ex-

tensional database from the facts in the program, and encodes the rules in the
intensional database in a suitable way. Then, a rewriting procedure (see [Faber et
al., 1999]), optimizes the rules in order to get an equivalent program P ′ that can
be instantiated more efficiently and that can lead to a smaller ground program. At
this point, another module of the instantiator computes the dependency graph of
P ′, its connected components, and a topological ordering of these components.
Finally, P ′ is instantiated one component at a time, starting from the lowest com-
ponents in the topological ordering, i.e., those components that depend on no other
component, according to the dependency graph.

3.2 General Instantiation Algorithm

The aim of the instantiator is mainly twofold: (i) to fully evaluate( v -free) strat-
ified program components, and (ii) to generate the instantiation of disjunctive or
unstratified components (if the input program is disjunctive or unstratified).

In order to evaluate efficiently stratified programs (components), DLV uses an

46



Chapter 3. The DLV Instantiation Module 47

Figure 3.1: Architecture of DLV Instantiator

improved version of the generalized semi-naive technique [Ullman, 1989] imple-
mented for the evaluation of linear and non-linear recursive rules.

If the input program is normal (i.e., v -free) and stratified, the instantiator
evaluates the program completely and no further module is employed after the
grounding; the program has a single answer set, namely the set of the facts and
the atoms derived by the instantiation procedure. If the input program is dis-
junctive or unstratified, the instantiation procedure cannot evaluate the program
completely. However, the optimization techniques mentioned above are useful to
generate efficiently the instantiation of the non-monotonic part of the program.
Two aspects are crucial for the instantiation:

(a) the number of generated ground rules,

(b) the time needed to generate such an instantiation.

The size of the generated instantiation is important because it strongly influences
the computation time of the other modules of the system, running in exponential
time (in the worst case) in the size of the instantiation. A slower instantiation
procedure generating a smaller grounding may be preferable to a faster one gen-
erating a large grounding. However, the time needed by the former cannot be
ignored otherwise we could not really have a gain in the total computation time.

The main reason of large groundings even for small input programs is that
each atom of a rule in P may be instantiated to many atoms in BP , leading to
a combinatorial explosion. However, most of these atoms may not be derivable
whatsoever, and ground instances containing these atoms in the positive bodies are
completely useless, they will not lead to any derivation. The instantiator module



Chapter 3. The DLV Instantiation Module 48

generates ground instances of rules containing only atoms which can possibly be
derived from P . As an example, consider the following program PInst

a(1) :- not a(2). b(2) :- not b(3).
a(2) :- not a(1). b(3) :- not b(2).

r : p(X) :- a(X), b(X).

The full instantiation of PInst contains three ground instances of rule r, namely

r1 : p(1) :- a(1), b(1).
r2 : p(2) :- a(2), b(2).
r3 : p(3) :- a(3), b(3).

However, r1 and r3 are useless, they will never be applicable because their bodies
contain atoms b(1) and a(3), respectively, that are not derivable from PInst (they
do not appear in the head of any rule).

The DLV instantiator, instead, first computes the instantiation of the rules
defining predicates a and b (this is the starting point, because a and b do not
depend on any other predicate). Since these rules are already ground, their in-
stantiation does not add anything new to the four ground rules; but has the only
effect of determining the set of atoms for a and b that are “potentially” derivable,
as they appear in the head of some rule instance. These sets are {a(1), a(2)} and
{b(2), b(3)} in the example, and play the role of actual domains, only elements
from these domains will be taken into consideration for instantiating positive body
occurrences of a and b in other rules. Thus, the instantiation of r is computed by
using only such atoms, and it therefore consists only of the ground rule r2 (r1 and
r3 are not generated at all).

3.3 Instantiate Component

In order to generate a small ground program equivalent to P , the DLV instantiator
takes into account some structural information of the input program, concerning
the dependencies among IDB predicates.

The Dependency Graph of P is now defined, which, intuitively, describes how
predicates depend on each other.

Definition 3.1 Let P be a program. The Dependency Graph of P is a directed
graph GP = 〈N, E〉, where N is a set of nodes and E is a set of arcs. N contains
a node for each IDB predicate of P , and E contains an arc e = (p, q) if there is a



Chapter 3. The DLV Instantiation Module 49

p

st

q

GP

Figure 3.2: Dependency Graph.

rule r in P such that q occurs in the head of r and p occurs in a positive literal of
the body of r. ¤

The graph GP induces a subdivision of P into subprograms (also called mod-
ules) allowing for a modular evaluation. We say that a rule r ∈ P defines a
predicate p if p appears in the head of r. For each strongly connected component
(SCC)1 C of GP , the set of rules defining all the predicates in C is called module
of C and is denoted by Pc.2

More in detail, a rule r occurring in a module Pc (i.e., defining some predicate
q ∈ C) is said to be recursive if there is a predicate p ∈ C occurring in the positive
body of r; otherwise, r is said to be an exit rule.

Example 3.2 Consider the following program P , where a is an EDB predicate:

p(X,Y ) ∨ s(Y ) :- q(X), q(Y ), not t(X, Y ). q(X) :- a(X).
p(X, Y ) :- q(X), t(X, Y ). t(X,Y ) :- p(X, Y ),

s(Y ).

Graph GP is illustrated in Figure 3.2; the strongly connected components of GP
are {s}, {q} and {p, t}. They correspond to the three following modules:

• { p(X,Y ) ∨ s(Y ) :- q(X), q(Y ), not t(X, Y ). }

• { q(X) :- a(X). }

• { p(X, Y ) :- q(X), t(X, Y ). p(X,Y )∨s(Y ) :- q(X), q(Y ), not t(X, Y ).

t(X,Y ) :- p(X, Y ), s(Y ). }
1We briefly recall here that a strongly connected component of a directed graph is a maximal

subset of the vertices, such that every vertex is reachable from every other vertex.
2Note that, since integrity constraints are considered as rules with exactly the same head (which

is a special symbol appearing nowhere in the program), they all belong to the same module.



Chapter 3. The DLV Instantiation Module 50

Moreover, the first and second module do not contain recursive rules, while the
third one contains one exit rule, namely p(X, Y )∨s(Y ) :- q(X), q(Y ), not t(X,Y ),
and two recursive rules. ¤

The dependency graph induces a partial ordering among its SCCs, defined as
follows: for any pair of SCCs A,B of GP , we say that B directly depends on A

(denoted A ≺ B) if there is an arc from a predicate of A to a predicate of B; and,
B depends on A if A≺sB, where ≺s denotes the transitive closure of relation ≺.

Example 3.3 Consider the dependency graph GP shown in Figure 3.2; it is easy
to see that component {p, t} depends on components {s} and {q}, while {s}
depends only on {q}. ¤

This ordering can be exploited to single out an ordered sequence C1, . . . , Cn

of SCCs of GP (which is not unique, in general) such that whenever Cj depends
on Ci, Ci precedes Cj in the sequence (i.e. i < j). Intuitively, this partial ordering
allows the evaluation of the program one module at time, so that all data needed for
the instantiation of a module Ci have been already generated by the instantiation
of the modules preceding Ci.

A description of the instantiation process based on this principle follows.
A given input program P is divided into modules corresponding to the SCCs of
the dependency graph GP . Such modules are evaluated one at a time according to
an ordering induced by the dependency graph.

Then, a strongly connected component C, with no incoming edge, is removed
from GP , and the program module corresponding to C is evaluated. This ensures
that modules are evaluated one at a time so that whenever C1≺sC2, PC1 is eval-
uated before PC2 . Once C has been evaluated, it is removed from GP . This runs
on until all the components of GP have been evaluated.

Example 3.4 Let P be the program of Example 3.2. The unique component of
GP having no incoming edges is {q}. Thus the program module Pq is evaluated
first. Then, once {q} has been removed from GP , {s} becomes the (unique)
component of GP having no incoming edge and is therefore taken. Once {s} has
been evaluated and thus removed from GP ,{p, t} is processed at last, completing
the instantiation process. ¤

The instantiation of each component is performed according to a semi-naı̈ve
evaluation technique [Ullman, 1989]. According to this schema, first of all, exit



Chapter 3. The DLV Instantiation Module 51

rules are considered and instantiate once, while concerning recursive rules, they
are processed several times and at each iteration n, only the significant information
derived during iteration n− 1 has to be used.

Each rule r in the program module of C is processed by calling procedure
Instantiate described in the following Section. It is worth noting that a disjunctive
rule r may appear in the program modules of two different components. In order to
deal with this, before processing r, Instantiate checks whether it has been already
grounded during the instantiation of another component. This ensures that a rule
is actually processed only within one program module.

3.4 Rule Instantiation

In this section, we describe the process of rule instantiation – the “heart” of the
instantiation module – as it is currently implemented in DLV.

The algorithm Instantiate, shown in Figure 3.3, generates the possible instan-
tiations for a rule r of a program P . When this procedure is called, for each pred-
icate q occurring in the body of r we are given its extension, as a set Iq containing
all the ground instances of q that have been already generated (i.e., appearing in
the head of a ground instance that has already been generated; Iq is called actual
domain for q in the above example). We say that a mapping θ : var(r) → UP is a
valid substitution for r if it is valid for every positive literal occurring in its body,
i.e., for every positive literal Q in B(r), θQ ∈ Iq holds. In other words, we discard
a priori any substitution mapping a positive body literal Q to a ground instance of
Q which is not in Iq. Instantiate outputs all such valid substitutions for r.

Note that, since the rule is safe, each variable occurring either in a negative
literal or in the head of the rule appears also in some positive body literal. For
the sake of presentation, we assume that the body is ordered in a way such that
any negative literal always follows the positive atoms containing its variables.
Actually, DLV has a specialized module that computes a clever ordering of the
body [Leone et al., 2001] (e.g., exploiting the quantitative information on the size
of any predicate extension) that satisfies this assumption.

Instantiate first stores the body literals L1, . . . , Ln into an ordered list B =

(null, L1, · · · , Ln, last). Then, it starts the computation of the valid substitutions
for r. To this end, it maintains a variable θ, initially set to ∅, representing, at each
step, a partial substitution for var(r).

Now, the computation proceeds as follows: For each literal Li, we denote by
PreviousVars(Li) the set of variables occurring in any literal that precedes Li in



Chapter 3. The DLV Instantiation Module 52

Algorithm Instantiate
Input R: Rule, I: Set of instances for the predicates occurring in B(R);
Output S: Set of Total Substitutions;
var L: Literal, B: List of Atoms, θ: Substitution, MatchFound: Boolean;
begin

θ = ∅;
(* returns the ordered list of the body literals (null, L1,· · · ,Ln, last) *)
B := BodyToList(R);
L := L1; S := ∅;
while L 6= null

Match(L, θ, MatchFound);
if MatchFound

if(L 6= last) then
L := NextLiteral(L);

else (* θ is a total substitution for the variables of R *)
S := S ∪ θ;
L := PreviousLiteral(L);
(* look for another solution *)
MatchFound := False;
θ := θ |PreviousVars(L);

else
L := PreviousLiteral(L);
θ := θ |PreviousVars(L);

output S;
end;

Figure 3.3: Computing the instantiations of a rule

the list B, and by FreeVars(Li) the set of variables which occur for the first time
in Li, i.e., FreeVars(Li) = var(Li)− PreviousVars(Li).

At each iteration of the while loop, by using function Match, we try to find a
match for a literal Li with respect to θ, in other words, we apply θ to Li and look
for an instantiation of θLi that matches an atom in ILi

. More precisely, we look in
ILi

for a ground instance G which is consistent with the assignments for the vari-
ables in PreviousVars(Li), and then use G in order to extend θ to the variables in
FreeVars(Li); note that, if FreeVars(Li) = ∅, this task simply consists in check-
ing whether θ is a valid substitution for Li. This is accomplished by the procedure
Match (figure 3.4) that, in turns, calls FirstMatch if this is the first attempt to find
a match for Li, or NextMatch if we already have a valid substitution for Li and



Chapter 3. The DLV Instantiation Module 53

Procedure Match (L:Literal, var θ:Substitution, var MatchFound: Boolean)
begin

if MatchFound then (* this is the first try on a new literal *)
FirstMatch(L, θ, MatchFound );

else (* the last match failed, look for another match on a previous literal *)
NextMatch(L, θ, MatchFound);

end;

Procedure FirstMatch (L: Literal, var θ: Substitution, var MatchFound: Boolean)

(* Look in the extension IL for the first tuple of values matching θ, and possibly update θ
accordingly. The boolean variable MatchFound is assigned True if such a matching
tuple has been found; otherwise, it is assigned False. *)

Procedure NextMatch (L: Literal, var θ: Substitution, var MatchFound: Boolean)

(* Similar to FirstMatch, but finds the next matching tuple. *)

Figure 3.4: The matching procedures

we have to look for a further one. If there is no such a substitution (Match returns
MatchFound equal to false), then we backtrack to the previous literal in the list;
else, we consider two cases: if there are further literals to be evaluated, then we
continue with the next literal in the list; otherwise, we have successfully instan-
tiated all positive body literals, θ encodes a (total) valid substitution (because of
the safety condition, the instantiation of the positive literals implies that all rule
variables have been instantiated) and is thus added to the output set S. Even in
this case, we backtrack for finding another solution, since we want to compute all
instantiations of r.

Note that this kind of classical backtracking procedure works well for rules
with a few literals and with a few tuples for each predicate extension. However,
DLV has been designed to work even for manipulating complex knowledge on
large databases, and for such applications the simple algorithm described above is
not satisfactory.

Example 3.5 Suppose we want to compute all ground instantiations of the rule

r1 : a(X,Y ) :- p1(X, Y ), p2(X, Z), p3(Z, H, T ), p4(T,W ),
p5(X,V, Z), p6(X, Y, V ).



Chapter 3. The DLV Instantiation Module 54

and that we have already computed a partial substitution θ for the variables
{X,Y, Z, H, T, W}, but we are not able to find a valid substitution for p5 (i.e.,
we could not find consistent value for V in the extension of p5 in order to extend
θ). In this case, according to the algorithm in Figure 3.3, we should backtrack to
the previous literal p4. However, the failure on atom p5(X,V, Z) is independent
of variables {H, T,W}, and thus, to have a chance of finding a successful match
for p5, we should change the substitution for Z or X . It follows that, intuitively,
we could safely “backjump” directly to atom p2(X,Z), where variable Z has been
instantiated. Thus, jumping over both p3(Z, H, T ) and p4(T, W ), as a new match
for p3 or p4 would not change the assignment of Z and X and would not therefore
chance the situation of p5. It is worthwhile noting that making such a jump can
allow us to save a very large amount of time, especially if the extensions of p3 and
p4 contain many tuples.

In order to overcome such troubles, a number of extensions of the backtracking
technique have been described in the literature—see Section 4.4 on related work.
However, for different reasons, none of these proposals perfectly fits our needs.
E.g., some of them are designed only for binary constraint satisfaction problems,
and for computing any solution for a given problem instance. Rather, we need
a specialized algorithm that should be able to compute efficiently all instantia-
tions of a rule with predicates of arbitrary arity, which corresponds to finding all
solutions of general (non-binary) constraint satisfaction problems.

3.5 Instances Simplification and Stratification Han-
dling

The rule instantiation algorithm, described above, generates total substitutions of
the rule, which allow to compute the rule instances. However, the generated in-
stances can be simplified by eliminating from the body the (positive and negative)
literals which are already known to be true; moreover, since the substitution is
computed looking only at the positive body literals, it may happen that some neg-
ative literal is known to be false and one can delete the rule instance completely
in this case, since it can never be applied.

To this end, the set I of generated extensions is actually partitioned in two
subsets grouping, respectively, the true and the potentially-true instances (denoted
by IT and IPT , respectively). IT is initialized with the facts, and then filled with
the head of the rules becoming facts after that the simplification below is applied;



Chapter 3. The DLV Instantiation Module 55

while the heads of the remaining rules belong to IPT (IPT gets the atoms from
the disjunctive heads and from non-disjunctive heads whose body contains some
atom in IPT also after the simplification). We say that a literal with predicate q is
solved if: (i) q is defined solely by non-disjunctive rules (i.e., all rules with q in
the head are non-disjunctive), and (ii) q does not depend (even transitively) by any
unstratified predicate [Apt et al., 1988] or disjunctive predicate (i.e., a predicate
defined by a disjunctive rule).

In order to exploit possible stratifications and to compute efficiently such ex-
tensions, the DLV instantiator evaluates predicates according to a topological or-
dering of their dependency graph. The instantiation starts by evaluating first the
rules defining predicates P0 that depend on no other predicates (that is, only de-
fined by facts), then the predicates P1 that only depend on predicates in P0, and so
on. Note that this instantiation ordering, together with the simplification below,
guarantees that the extensions of solved predicates belong completely to the IT

component of I . That is, the truth values of all ground literals that are instances
of solved predicates are fully determined by the instantiator. In particular, observe
that, if the input program is non-disjunctive and stratified, all predicates are solved
and the instantiator evaluates the program completely (that is, no further module
is employed after the grounding). In fact, in this case, the program has a single
answer set, coinciding with the set of atoms computed in IT by the instantiation
procedure.

It follows that none of the solved predicates should occur in the rules of the
ground instantiation P ′ produced by the instantiator. All the predicates occurring
in the rules of P ′ should be unsolved, and will be evaluated by the answer set
solver in the second phase of the computation taking the ground instantiation as
the input. Therefore, once a rule instance R is generated, the following actions
are carried out for simplifying the program:

1. If a positive body literal Q is in B(R) and Q ∈ IT , then delete Q from
B(R).

2. If a solved negative body literal notQ is in B(R) and Q /∈ I ,3 then delete
notQ from B(R).

3. If a negative body literal notQ is in B(R) and Q ∈ IT , then remove the
ground instance R.

3Note that a solved literal is also stratified and, actually, condition Q /∈ IT would be equivalent.



Chapter 3. The DLV Instantiation Module 56

As far as the negative literals are concerned, it is worth noting that the safety
condition ensures that each negative literal is made ground by the computed rule
substitutions. Moreover, the component ordering obtained by the dependency
graph ensures that when a rule with a stratified body predicate q is instantiated,
the rules for predicate q have been instantiated previously and its true instances are
already in I . In particular, in the case of disjunction-free and stratified programs,
all generated rule instances are either simplified to facts or deleted.

Example 3.6 Let P be the following disjunction-free stratified program

a(1). a(2). b(1).
r : p(X) :- a(X), not b(X).
s : q(X,X) :- p(X).

Initially, IT contains the facts appearing in P , that is IT = {a(1), a(2), b(1)},
while IPT is empty. Then, the instantiation process starts by evaluating rule r,
which depends only on facts, and the following two ground instances are computed

r1 : p(1) :- a(1), not b(1).
r2 : p(2) :- a(2), not b(2).

However, by applying the simplification described above, r1 is removed because
the negative body literal not b(1) is known to be false (b(1) ∈ IT ), and r2 becomes
a fact p(2) because the body literals a(2) and not b(2) are known to be true and
are therefore eliminated (note that not b(2) is a solved literal and b(2) /∈ I).
At this point, p(2) is added to IT , whence IT = {a(1), a(2), b(1), p(2)}, and
the instantiation continues by evaluating rule s (IPT is still empty). The body
of s contains a literal with predicate p, whose actual domain has been already
computed and consists only of atom p(2). Thus s has only one ground instance,
namely

s1 : q(2, 2) :- p(2).

After the simplification, s1 becomes a fact q(2, 2), which is added to IT . There-
fore, at the end of the instantiation, we have IPT = ∅ and IT = {a(1), a(2), b(1),

p(2), q(2, 2)}, which is in fact the unique answer set of P .
Consider now the program P ′ obtained from P by replacing rule r by

r′ : p(X) v s(X) :- a(X), not b(X).



Chapter 3. The DLV Instantiation Module 57

As for program P , we initially have IT = {a(1), a(2), b(1)} and IPT = ∅. Then,
rule r′ is instantiated and the following two ground instances are computed

r′1 : p(1) v s(1) :- a(1), not b(1).
r′2 : p(2) v s(2) :- a(2), not b(2).

Similarly as before, by applying the simplification, r′1 is removed, and a(2) and
not b(2) are eliminated from the body of r′2. However, we can not add the head of
r′2 to IT , because its body is still not empty. Rather, the head atoms p(2) and s(2)

are added to IPT . Thus, we get IT = {a(1), a(2), b(1)} and IPT = {p(2), s(2)}.
At this point, rule s is instantiated and, as before, the only generated ground
instance is s1 : q(2, 2) :- p(2). However, in this case the body literal p(2) belongs
to IPT , and thus s1 cannot be simplified and its head atom q(2, 2) is added to IPT .
Thus, the instantiation of P ′ consists of the ground rules

p(2) v s(2).
q(2, 2) :- p(2).

Moreover, IT = {a(1), a(2), b(1)} and IPT = {p(2), s(2), q(2, 2)}.



Chapter 4

A BackJumping Technique for DLP
Programs Instantiation

In chapter 3, we have described the instantiation process of DLV and we have
seen that the efficiency of the instantiation procedure can be measured in terms
of the size of its output and the time needed to generate this instantiation. In this
chapter, we present a new kind of structure-based backjumping algorithm for rule
instantiation that can be used in order to improve the efficiency of the instantiation
procedure of DLV. In particular, this algorithm allows to reduce the size of the
generated ground instantiation and optimize the execution time which is needed
to generate it.

4.1 Some Motivations

As observed in chapter 3, the rule instances of a program P may contain many
atoms that are not derivable whatsoever, and hence such instantiations do not ren-
der applicable rules. A good instantiator should generate ground instances of rules
containing only atoms that can potentially be derived from P .

Moreover, as described in the previous chapter, at each step of the instantiation
process, the truth values of the ground instances of solved predicates are already
fully determined by the instantiator (each of these ground literals is already known
to be true or to be false, none is undecided - undefined). We have seen that the
program may be simplified in such a way that all predicates occurring in the rules
of the instantiation are unsolved. However, this process may be expensive for very
large programs. Rather, we would like to have a grounding algorithm that directly
avoids the generation of useless rule instances, as well as the generation of useless

58



Chapter 4. A BackJumping Technique for DLP programs instantiation 59

literals in useful rules—i.e., rules or literals, respectively, to be deleted according
to the simplification procedure.

Example 4.1 Consider the following rule

r2 : a(X,Z) :- q1(X, Z, Y ), q2(W,T, S), q3(V, T, H),
q4(Z, H), q5(T, S, V ).

Suppose we know that predicates q3, q4, and q5 are solved, and consider the
following ground instances for r2:

a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1), q3(v1, t1, h1),
q4(z1, h1), q5(t1, s1, v1).

a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1), q3(v2, t1, h1),
q4(z1, h1), q5(t1, s1, v2).

...

a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1), q3(v99, t1, h100),
q4(z1, h100), q5(t1, s1, v99).

a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1), q3(v100, t1, h100),
q4(z1, h100), q5(t1, s1, v100).

Now, assume that all these instances are applicable, that is, all instances of the
atoms over the solved predicates q3, q4 and q5 are true, and all instances of the
atoms over unsolved predicates (i.e. atoms q1(x1, z1, y1), q2(w1, t1, s1)) could be
true (i.e., they are not provably false, at this point as, for instance, are in some
disjunctive rule head of the instantiation). Then, it is easy to see that all these
10000 rules are semantically equivalent to the single instance

a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1).



Chapter 4. A BackJumping Technique for DLP programs instantiation 60

A key observation here is that we are not interested in finding all the ”con-
sistent” substitutions for all variables of a rule r. Rather, we have to find just
their restrictions to a set of variables that we call relevant variables of r. This set
contains all the variables occurring in literals over unsolved predicates, together
with the variables occurring in the head of r. For instance, for rule r2 in the above
example, the relevant variables are X,Z, Y,W, T , and S.

Thus, we only need all the (applicable) instantiations of literals binding rele-
vant variables, while the remaining ones are just used to validate such instances.
For instance, to get the one—simplified—rule

sr : a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1)

it is sufficient to compute just the one total substitution leading to the first rule

a(x1, z1) :- q1(x1, z1, y1), q2(w1, t1, s1), q3(v1, t1, h1), q4(z1, h1), q5(t1, s1, v1)

because, after the simplification of the solved literals, all other rules would yield
precisely the same ground instance sr. Equivalently, the projection of all the total
substitutions over the relevant variables is always X = x1, Z = z1, Y = y1,
W = w1, T = t1, and S = s1.

Recall that the ground rules corresponding to such substitutions projected onto
the unsolved predicates (as the one shown in the above example) are called rele-
vant instances for r.

4.2 The BJ Instantiate Algorithm

In this section, we describe the Algorithm BJ Instantiate, that given a rule r, a set
I of ground instances for the predicates occurring in the body of r and a set of
relevant variables OutputVars, returns the relevant instances of r with respect to
I . Formally, BJ Instantiate returns the projections on OutputVars of all the valid
substitutions for r, that we call the relevant solutions of our problem.

The basic schema of this algorithm is no more the classical backtracking
paradigm, but rather a structure-based backjumping paradigm, well studied in
the constraint satisfaction area (see., e.g., [Dechter, 1990; Tsang, 1993; Prosser,
1993]). In algorithms of this kind, when a backtrack step is necessary, it is possible
to jump back many elements, rather than just one as in the standard chronological
algorithm. Of course, such jumps should be designed carefully, in order to avoid
that some solution is missed, especially in our case, where we have to compute all
(relevant) solutions.



Chapter 4. A BackJumping Technique for DLP programs instantiation 61

Let r be a rule and B the ordered list of its body literals (null, L1, · · · , Ln, last).
We say that Li (1 ≤ i ≤ n) is a binder for a variable X if there is no literal Lj ,
with 1 ≤ j < i such that X ∈ var(Lj). Moreover, for a set of variables V

and a literal Lk, let ClosestBinder(Lk,V ) denote the greatest literal Li among the
binders of the variables in V . A crucial notion in our algorithm is the Closest
Successful Binder (CSB), which represents, intuitively, the greatest literal that is
a binder of some output variable X whose current assigned value belongs to the
last computed solution. The CSB acts as a barrier for some kind of jumps, as de-
scribed later in this section. Another important concept is a set of variables called
Failure Set. This set is dynamically computed during the instantiation of a rule
and, roughly, it keeps track of the failures of the matchings occurred on the way.
In particular, when a match of a literal fails, its variables are added to the Failure
Set, meaning that the reason of the failure may be the assignment made for one
of these variables. On the other hand, when the match of a literal L succeeds, the
variables occurring for the first time in L (that is FreeVars(L)) are removed from
the set, meaning that the assignments for these variables are changed, and thus
they are no more cause of failure.

Example 4.2 As a running example in this section, consider the following rule

r3 : a(L, S) :- q1(X, H), q2(T, S), q3(H, X, T ), q4(H,L),
q5(Z, X, V ), q6(T, Z,H).

In order to instantiate r3, our algorithm needs the additional information on the
relevant variables and the already known instances for the predicates occurring in
the body. Then, assume that q1 is the only unsolved predicate and thus OutputVars
= {L, S,X,H} (L and S are head variables, and X and H occur in a literal
over an unsolved predicate). Moreover, assume that we are given the following
extensions for the predicates occurring in B(r3):

{q1(x1, h1), q1(x2, h1)}, {q2(t1, s1), q2(t2, s1), q2(t2, s2)},
{q3(h1, x1, t1), q3(h1, x2, t1), q3(h1, x2, t2)}, {q4(h1, l1)},
{q5(z1, x2, v1), q5(z1, x2, v2)}, {q6(t2, z1, h1)}

Figure 4.1 shows the algorithm BJ Instantiate. As for Algorithm Instantiate,
at each iteration of the while loop, the procedure Match tries to find a match for
a literal Li with respect to the current partial substitution θ. If it succeeds and Li

is not the last literal, then we can proceed with the next literal Li+1. Otherwise,



Chapter 4. A BackJumping Technique for DLP programs instantiation 62

we have to backtrack, and thus we have to decide where to jump and, possibly,
update the current CSB. Now, we have a number of different cases to be handled,
depending on the outcome Status of the procedure Match.

1. Success, and θ encodes a total substitution. Since also the match on the
last literal is successful, θ encodes a valid substitution for the variables in
r, and its restriction to OutputVars is therefore added to the set of solu-
tions. Then, in order to look for further solutions, we have to backtrack.
However, in this algorithm, we are not forced to go back to the previous
literal. Rather, we can jump to the closest literal Lj binding a relevant vari-
able, that is, jump to ClosestBinder(last,OutputVars). In this case the CSB
is set to closest literal to Lj binding a relevant variable, that is, CSB =
ClosestBinder(Lj ,OutputVars).

Example 4.3 In our running example, the algorithm is able to find the total
substitution θ(X) = x2, θ(H) = h1, θ(T ) = t2, θ(S) = s1, θ(L) = l1,
θ(Z) = z1, and θ(V ) = v1. That is, we have a match for all the literals in B

and we are at last. Then, the restriction of θ to the set of relevant variables is
added to S. In our case, this solution corresponds to the following instance
of r3:

a(l1, s1) :- q1(x2, h1), q2(t2, s1), q3(h1, x2, t2),
q4(h1, l1), q5(z1, x2, v1), q6(t2, z1, h1).

which is semantically equivalent to the following rule:

a(l1, s1) :- q1(x2, h1).

Now, according to the algorithm, we jump back to q4(H,L) for finding
other solutions. Note that we do not look for further consistent tuples in
the extensions of q5 and q6 because they do not bind any relevant variable.
Indeed, possible solutions coming from other instances of these predicates
(e.g., the solution with θ(V ) = v2) would just lead to useless rules in the
instantiation of the program at hand. Finally, the CSB is set to q2 because it
is the closest literal to q4 binding a relevant variable (in our case S).



Chapter 4. A BackJumping Technique for DLP programs instantiation 63

2. Failure at the first attempt to find a match for a literal Li. We jump back
to the closest literal Lj binding any of the variables in Li, that is, jump to
ClosestBinder(Li,var(Li)). Indeed, in this case, the only way for finding a
match for Li is to change the assignment for some of its bound variables.

Example 4.4 In our running example, the first time that we try to find a
match for q5, we have computed the partial substitution θ(X) = x1, θ(H) =

h1, θ(T ) = t1, θ(S) = s1, and θ(L) = l1. In this case, we are not able to find
any matching instance in the extension of q5. Indeed, none of its instances
has a value x1 for variable X . Then, we have to change the value assigned
to one of the variables occurring in q5, and thus, we can safely jump over q4,
q3, and q2, and try to match again q1(X, H). Indeed, q1 is the closest binder
for var(q5), as it determines the value for variable X .

3. Failure while looking for another match for a literal Li. In this case,
Li is a binder of some set of variables X̄ , and we fail in finding a different
consistent substitution for these variables. Since we were successful on our
first attempt to deal with Li, this means that, for some reason, we jumped
back to Li from some later item, say Lj , of the list B. Now, we have to
decide where to jump after the current failure, and this time the variables
occurring in Li are not the only candidates to be changed. Rather, we have
to look at the Failure Set and, in particular, try to jump back to the closest
literal to Li binding one of the variables of the Failure Set (that is, jump to
ClosestBinder(Li,FailureSet)).

Example 4.5 Assume that, in our running example, we are looking for an-
other match for q5(Z, X, V ) and that the Failure Set is {X,H, T, Z, V }.
According to the algorithm, we have to jump to q2, even if it is not a binder
for any variable occurring in q5. The reason is that q2 is a binder for T ,
which belongs to the Failure Set, and changing its value may lead to some
new solution (possibly comprising values already considered for the vari-
ables occurring in q5).

Another important issue concerns the management of the CSB. Indeed, if
the ClosestBinder(Li,FailureSet) precedes the CSB, we can not jump to it
otherwise we could miss some relevant solutions; rather, we must jump to
the CSB which acts as a barrier. Note that we eventually update the CSB,
by pushing it back to the ClosestBinder(CSB,OutputVars).



Chapter 4. A BackJumping Technique for DLP programs instantiation 64

Example 4.6 Let us continue from the execution step described at point 1
above, where we have found our first solution. Recall that we jumped back
to q4(H,L) and the CSB is set to q2(T, S). Now, assume that the match of
q4 fails and that the current Failure Set is {L,X,H}. In this case, accord-
ing to the Failure Set we could jump to q1, but we are forced to stop our
jumping back to literal q2(T, S), because of the CSB limit. It is worthwhile
noting that, if we go directly to q1(X, H), we miss the solution obtainable
by assigning s2 to variable S and corresponding to the following instance
of r3:

a(l1, s2) :- q1(x2, h1), q2(t2, s2), q3(h1, x2, t2),
q4(h1, l1), q5(z1, x2, v1), q6(t2, z1, h1).

which is semantically equivalent to the rule

a(l1, s2) :- q1(x2, h1).

Theorem 4.7 Algorithm BJ Instantiate is sound and complete. That is, given a
rule r, the set I of the ground instances for the predicates occurring in its body,
and the set of its relevant variables OutputVars, BJ Instantiate computes the set
containing all and only the projections over OutputVars of the valid substitutions
for r w.r.t.I .

Proof. Looking at the management of the set of substitutions S in Figure 4.1,
it is evident that this set contains only the projections over OutputVars of the valid
substitutions for r.

We next show that Algorithm BJ Instantiate computes all such projections.
The only potential source of incompleteness is jumping upon backtracking. We
prove that in all the three cases where this may occur in the algorithm no relevant
solution is missed:

(SuccessfulMatch and L = last.) In this case, we have just found a total substi-
tution θ, and we backtrack looking for another solution. According to our
algorithm, we backtrack to the closest literal Lj binding a variable of inter-
est; that is, we jump to ClosestBinder(last,OutputVars). In general, such a
jump may avoid the generation of some valid substitution θ′. This means
that, to compute θ′, one should rather backtrack to a literal closer than Lj

to last. Let Lk be this literal, with k ≥ j + 1. Then, θ |PreviousVars(Lj+1)

= θ′ |PreviousVars(Lj+1)–possible further jumps before j are covered by the



Chapter 4. A BackJumping Technique for DLP programs instantiation 65

other cases below. Moreover, since Lj is the greatest literal in the body
binding a relevant variable, OutputVars ⊆ PreviousVars(Lj+1). Therefore,
θ |OutputVars = θ′ |OutputVars , and thus the substitution θ′ is equal to θ, as far
as relevant variables are concerned.

(FailureOnFirstMatch.) In this case, we have just failed in finding a first match
for a certain literal Li, 1 < i ≤ n. According to our algorithm, we backtrack
to the closest literal Lj binding some variable of Li. A solution may be lost
only if the change of assignment of a jumped literal (i.e., a literal between
Lj and Li), would solve the conflict on Li. However, this cannot be the
case. Indeed, let Lk, j < k < i, be a jumped literal: whatever change we
perform to the substitutions of the variables in var(Lk), it does not affect
the reason of the failure, because Lk does not bind any variables contained
in var(Li), by the construction of Lj and the fact that k > j.

(FailureOnNextMatch.) In this case, we have just failed in finding another match
for a literal Li, 1 < i ≤ n. Then, according to the algorithm, we determine
the closest literal to Li binding a variable in the Failure Set, say Lj , and
jump back either to it or to the CSB, depending on which is the closest to
Li. We next consider both cases: Lj ≥ CSB and Lj < CSB.

If Lj ≥ CSB, it is easy to see that we cannot miss any solution. The proof
is similar to the previous one: a valid substitution is missed only if there is a
literal Lk, with j < k < i, such that, by changing values to its variables, the
match of some literal L, which previously failed, now succeeds. Therefore,
the variables of L should belong to the Failure Set, and thus Lk should bind
some variables in the Failure Set. However, this contradicts the definition
of Lj .

Let us consider now the case Lj < CSB, where we jump back to the CSB,
according to the algorithm. Assume by contradiction that we miss some
relevant solution, that is, there is a literal Lk > CSB such that, by jumping
back to Lk, we eventually get a relevant solution θ′ that is not generated oth-
erwise. Note that Lk does not bind any variable in the Failure Set, because
Lk > Lj , and Lj is the closest to Li with this property. It follows that Lk

binds some relevant variables X̄ , and hence θ′ can be obtained by keeping
the same assignments of the last computed solution for PreviousVars(Lk),
changing the assignment to X̄ , and continue with the construction of the
substitution, as for the last computed solution. However, this is a contradic-



Chapter 4. A BackJumping Technique for DLP programs instantiation 66

tion with the definition of CSB, which is precisely defined as the last literal
in the body whose assignment to some relevant variable belongs to the last
computed solution.

4.3 Experiments and Benchmarks

In order to check the validity of the proposed method, we have implemented our
technique in the grounding engine of the DLV system, and we have run the en-
hanced system on a collection of benchmark programs taken from different do-
mains. We selected programs where the instantiation process is hard, and it takes
a relevant part of the entire computation. In particular, we evaluated the method
on the following problems:

• Strategic Companies (StratComp)

• 3-Colorability (3-Col)

• Constraint 3-Colorability (Constraint-3-Col)

• Ramsey Numbers (Ramsey)

• Timetabling

- University Timetabling (Timet University)

- School Timetabling (Timet School)

• Grammar Based Information Extraction (GrammarBased IE)

All benchmark instances and encodings as well as the binaries used for our ex-
periments can be retrieved at the Web page http://www.mat.unical.it/
catalano/thesisexperiments.zip.

4.3.1 Benchmark Problems and Data

We next provide a short description of the benchmark problems we considered
for the experiments and, for each problem, we specify the data and the encodings
which we have used.



Chapter 4. A BackJumping Technique for DLP programs instantiation 67

Strategic Companies (StratComp) Suppose there is a collection C = {c1, . . . ,

cm} of companies ci owned by a holding, a set G = {g1, . . . , gn} of goods pro-
duced by the holding, and for each ci we have a set Gi ⊆ G of goods produced by
ci and a set Oi ⊆ C of companies controlling (owning) ci. Each good is produced
by at most four companies and each company is jointly controlled by at most four
other companies.

A subset-minimal set C ′ ⊆ C is called strategic if the following conditions
hold: (1) The companies in C ′ produce all goods in G, i.e.,

⋃
ci∈C′ Gi = G. (2)

The companies in C ′ are closed under the controlling relation, i.e. if Oi ⊆ C ′ for
some i = 1, . . . , m then ci ∈ C ′ must hold. A company ci ∈ C is called strategic,
if it belongs to some strategic set of C.

This notion is relevant when companies should be sold. Indeed, intuitively,
selling any non-strategic company does not reduce the economic power of the
holding. Computing strategic companies is known to be ΣP

2 -hard in general
[Cadoli et al., 1997].
Encoding The encoding considered for this problem is the one described in Sec-
tion 1.3.2.
Data We generated tests with instances for n companies (200 ≤ n ≤ 8000), 3n

products, 10 uniform randomly chosen contr by relations per company, and uni-
form randomly chosen prod by relations. For each problem size we generated 10
random instances.

3-Colorability (3-Col) The 3-Colorability problem consists in the assignment
of three colors to the nodes of a graph in such a way that adjacent nodes have
different colors. This problem is known to be NP-complete.
Encoding Let us suppose that nodes and edges are represented by a set F of facts
with predicates node (unary) and edge (binary), respectively. Then, the following
program allows us to determine the admissible colorings for the given graph.

r1 : color(X, red) ∨ color(X, yellow) ∨ color(X, green) :-node(X)
c1 : :- edge(X, Y ), color(X,C), color(Y,C)

Rule r1 above states that every node is colored red or yellow or green; while
the constraint c1 forbids the assignment of the same color to two adjacent nodes.
The answer sets of F ∪ {r1} are all the possible colorings of the graph. If an
answer set of F ∪ {r1} satisfies the constraint c1, then it represents an admissible
3-coloring for the graph. Thus, there is a one-to-one correspondence between the



Chapter 4. A BackJumping Technique for DLP programs instantiation 68

%solved instances average time
Constraint-3-Col dlv dlvBJ dlv dlvBJ
35 nodes, 35 edges 100% 100% 9.41 0.01
35 nodes, 45 edges 100% 100% 11.99 0.01
40 nodes, 40 edges 100% 100% 36.83 0.01
40 nodes, 50 edges 93% 100% 56.58 0.02
45 nodes, 45 edges 83% 100% 77.76 0.02
45 nodes, 55 edges 63% 100% 72.60 0.02
50 nodes, 50 edges 50% 100% 150.66 0.02
50 nodes, 60 edges 43% 100% 199.87 0.02
55 nodes, 55 edges 17% 100% 143.31 0.01
55 nodes, 65 edges 7% 100% 89.59 0.01
60 nodes, 60 edges 10% 100% 371.50 0.03
60 nodes, 70 edges 0% 100% - 0.02

Table 4.1: Results for Constraint-3-Col (times in seconds)

solutions of the 3-coloring problem and the answer sets of F ∪ {r1} satisfying c1.
The graph is 3-colorable if and only if there exists one of such answer set.
Data We used ladder graphs with n levels, i.e., 2 ∗ n nodes (100 ≤ n ≤ 7500 and
simplex graphs generated with the Stanford GraphBase [Knuth, 1994], using the
function simplex(n, n,−2, 0, 0, 0, 0), 10 ≤ n ≤ 160 (i.e. (n + 1) ∗ (n + 2)/2

nodes).

Constraint 3-Colorability (Constraint-3-Col) In addition to the encoding de-
scribed above, we considered for the 3-Colorability problem an alternative repre-
sentation in a constraint satisfaction style.
Encoding Let us consider the graph G shown below and let F = {edge(g, r),

edge(g, b), edge(r, b), edge(r, g), edge(b, g), edge(b, r)} be the collection of input
facts representing all the possible colorings with 3 colors (green, red and blue)
of adjacent nodes. The following one-rule program P allows us to decide if G is
3-colorable or not.

Intuitively, the body of r encodes the connections between the nodes of the
graph G. P ∪ F has a single answer set; G is 3-colorable if and only if the atom
colorable belongs to the answer set.

It is worthwhile noting that for this problem we do not use a single, uniform
encoding to solve all instances, rather, we have one program for each instance. In



Chapter 4. A BackJumping Technique for DLP programs instantiation 69

particular, the length of the body of r changes with the number of edges of the
graph. More precisely, if m is the number of edges, r will have exactly m literals
in its body.
Data We considered random graphs generated with the Stanford GraphBase, using
the function ramdom graph(#nodes, #edges, 0, 0, 1, 0, 0, 0, 0, seed) for differ-
ent values of #nodes and #edges. For each problem size we generated 30 ran-
dom instances.

Ramsey Numbers (Ramsey) The Ramsey number ramsey(k, m) is the least
integer n such that, no matter how we color the edges of the complete undirected
graph (clique) with n nodes using two colors, say red and blue, there is a red clique
with k nodes (a red k-clique) or a blue clique with m nodes (a blue m-clique).
Ramsey numbers exist for all pairs of positive integers k and m [Radziszowski,
1994].
Encoding The encoding considered for this problem is the one described in Sec-
tion 1.3.2.

Note that, as for the Constraint 3-Colorability problem, we do not have a sin-
gle, uniform encoding to solve all instances, rather we have one program for each
instance. In particular, for checking that n is the Ramsey number ramsey(k, m),
the first constraint contains

(
k
2

)
atoms with predicate red and the second constraint

contains
(

m
2

)
atoms with predicate blue.

Data We considered the problem of deciding, for varying k, m, and n, if n is the
Ramsey number ramsey(k, m).

Timetabling We considered two different versions of the timetabling problem.
The first one (Timet University) consists in determining a timetable for some uni-
versity lectures that have to be given in a week to some groups of students. The
timetable must respect a number of given constraints concerning availability of
rooms, teachers, and other issues related to the overall organization of the lec-
tures. This problem can be made harder by changing the number of students
groups. For our experiments we considered 4, 5, and 7 groups. The second one
is a school timetabling problem (Timet School) where we look for an assignment
of rooms and time-slots to a given set of lessons such that there are no conflicting
assignments for classes, teachers and rooms The encodings of these problems are
quite long and, thus, they are not reported here.



Chapter 4. A BackJumping Technique for DLP programs instantiation 70

Grammar Based Information Extraction (GrammarBased IE) This prob-
lem has been used at the First Answer Set Programming System Competition
http://asparagus.cs.uni-potsdam.de/contest/. It constitutes a
part of a more complex application for recognizing and extracting meaningful in-
formation from unstructured Web documents. In particular, given a context free
grammar, which specifies arithmetic equations, and a string, the problem is to de-
termine whether the input string is an equation belonging to the language defined
by the grammar and whether the equation holds. The encoding of this problem is
quite long and involved, thus we do not report it here. Concerning the data, we
have used three different instances in 008.asp, in 024.asp, in 032.asp. Both the
encoding and the instances can be retrieved from the web page of the competition.

4.3.2 Results and Discussion

We have implemented the Algorithm BJ Instantiate in C++, and we have inte-
grated our implementation in the instantiator module of the DLV system. Then,
we have run a number of experiments by using the above described benchmark
problems, in order to compare the performance of the previous backtracking-
based rule instantiator of DLV with the new method proposed in this paper. All
binaries have been produced by the GNU compiler GCC 4.1.2, and the experi-
ments have been performed on a Intel Pentium M 1.3 GHz with 768 Mbytes of
main memory.

Figure 4.6 shows the results obtained for 3-Col on ladder graphs (top) and
simplex graphs (bottom), while Figure 4.5 displays the results for StratComp. The
results for Ramsey, Timetabling and GrammarBased IE are shown in Tables 4.2,
5.2, and 4.4, respectively. Table 4.1, finally, contains the results for Constraint-
3-Col. In the graphs and the tables, dlv (resp. dlvBJ) denotes the instantiator
obtained using Algorithm Instantiate (resp., Algorithm BJ Instantiate) in the rule
instantiator module of DLV. For every instance, we allowed a maximum running
time of 600 seconds (ten minutes). In the graphs, the line corresponding to an
instantiator stops whenever some problem instance was not solved within the al-
lowed time limit; in the tables, this information is represented by means of the
symbol ’−’.

In general, the experimental results confirm the intuition that the new backjumping-
based procedure outperforms the previous one in many cases, and can be very
useful for improving the efficiency of DLV (and of any other DLP system that
could exploit its instantiator).



Chapter 4. A BackJumping Technique for DLP programs instantiation 71

Ramsey dlv dlvBJ
ramsey(3,7) 6= 21 74.03 49.74
ramsey(3,7) 6= 23 129.98 75.63
ramsey(4,6) 6= 26 81.38 54.98
ramsey(4,6) 6= 31 320.29 208.64
ramsey(4,7) 6= 23 148.46 97.35
ramsey(4,7) 6= 25 429.89 249.54
ramsey(5,6) 6= 27 167.88 125.45
ramsey(5,6) 6= 30 293.59 194.45

Table 4.2: Results for Ramsey (times in seconds)

Timetabling dlv dlvBJ
University, 4 groups 85.95 36.57
University, 5 groups 181.25 73.90
University, 7 groups 472.37 198.67
School 347.53 184.70

Table 4.3: Results for Timetabling (times in seconds)

GrammarBased IE dlv dlvBJ
GrammarBased IE 1 82.82 74.74
GrammarBased IE 2 63.25 56.07
GrammarBased IE 3 46.84 40.11

Table 4.4: Results for GrammarBased IE (times in seconds)



Chapter 4. A BackJumping Technique for DLP programs instantiation 72

Of course, the speed-up is not that high on input programs where rules are
very short or where body literals have many variables in common, as the two
procedures have a similar behavior in these cases. This is witnessed, for instance,
by GrammarBased IE which exhibits however a little performance gain (about
12%).

We observe an impressive speed-up when programs contain some rules with
many literals in their bodies and/or when such rules have a few relevant variables
(i.e., many solved predicates occur in their bodies). For instance, Constraint-3-
Col consists of a single long rule where all predicates are solved. In fact, in this
extreme case, the old instantiator is not able to solve many of the instances within
the allowed time limit, while the new instantiator has solved all the instances al-
most instantaneously. It is worthwhile noting that, even when the old backtracking
procedure is able to compute the instantiation, it generates thousands of redundant
rule instances for this problem. As an example, on a graph with 35 nodes and 35
edges, the instantiation generated by the old procedure, consists of 767829 rules1,
while the new procedure generates an instantiation containing just one rule.

Interestingly, we observe a very nice speed-up even in some cases where all
variables are relevant, like Ramsey, 3-Col, StratComp, and Timetabling. In par-
ticular, the pictures for 3-Col and StratComp, which are similar, show that dlvBJ
clearly outperforms the old instantiator with a gain of about 50%. Furthermore,
for 3-Col, the old DLV instantiator was not able to solve all the instances within
the time limit. More precisely, for ladder graphs, it solved instances up to size
12300 (i.e., graphs with 12300 nodes) and for simplex graphs up to 8385 (i.e,
graphs with 8385 nodes), while the dlvBJ solved all considered instances, that is,
up to 15000 (resp. 13041) nodes for ladder (resp. simplex) graphs. Tables 4.2 and
5.2 show that also in Ramsey and Timetabling the usage of dlvBJ provides a nice
performance gain (about 35% for Ramsey and 57% for Timetabling). In all these
cases, since all variables are relevant, the instantiations generated by the two pro-
cedures are identical, but the dlvBJ is faster since it “jumps” several useless steps
during the computation.

1Actually, DLV does not materialize the duplicated rules, but it does generate them many
times. To check the number of duplicates in the actual execution, one can modify the head to
colorable vnoncolorable and check the size of instantiation.



Chapter 4. A BackJumping Technique for DLP programs instantiation 73

4.4 Related Work

In order to overcome the troubles of traditional backtracking, many extensions
and improvements of this technique have been described in the literature, both in
the logic programming and in the constraint satisfaction communities.

For instance, we recall the intelligent backtracking technique developed in
[Bruynooghe and Pereira, 1984] for evaluating logic programs, and the intelligent
backtracking technique developed in [Shen, 1996] for a parallel implementation
of Prolog. In particular, the latter paper has some similarity with our approach,
as the author defines the notion of groups, which are clusters of atoms that are
independent of other clusters of atoms in a rule. Exploiting groups, it is possible
to jump back in a clever way. However, inside groups, his approach works as the
sequential backtracking, apart for some special features dealing with parallelism
issues, and completely unrelated to our work. Moreover, there is no notion of
relevant variables (according to our meaning of “relevance”). This is a crucial
feature of our algorithm. Indeed, whenever some predicates are solved and not
all variables occur in the rule head (which is often the case), we focus only on a
subset of the substitutions, and we can get rid of a large number of solutions that
we do not generate at all, with a clear computational advantage (witnessed by our
experiments, see the previous section).

Our algorithm is also strongly related to the various backjumping techniques
proposed for solving constraint satisfaction problems (CSPs) [Tsang, 1993; Dechter,
1990; Prosser, 1993]. Indeed, the rule instantiation problem can be viewed also as
a CSP. However, most algorithms for solving CSPs focused on problems with bi-
nary constraints only, and compute only one solution (if any). On the contrary, in
our context, we have to compute efficiently all instantiations of a rule with predi-
cates of arbitrary arity, which corresponds to the problem of finding all solutions
of general (non-binary) constraint satisfaction problems.

In the CSP community, a proposals in this direction is described in [Chen
and van Beek, 2001]. In this paper, the authors provide a revised version of
the conflict-directed backjumping algorithm, with a variation that allows the al-
gorithm to compute all solutions of a CSP, without completely degenerating to
the chronological backtracking. Their approach also works for non-binary CSPs.
However, their algorithm is quite different from ours for the following reasons: (i)
The way variables are made bound is the same as the usual algorithms proposed
for binary CSPs. That is, they consider a variable at a time, while our technique is
based on the instantiation of an atom at a time. In fact, we introduced the notion



Chapter 4. A BackJumping Technique for DLP programs instantiation 74

of closest successful binder (an atom), and we guarantee the completeness of the
algorithm in a different way. (ii) They have no notion of relevant variables, and
thus their algorithm misses one of the distinguishing features of our proposal, as
discussed above.

Concerning other instantiators, to our knowledge, no one exploits backjump-
ing techinique, except the recent istantiator GrinGo [Gebser et al., 2007b]. In
particular, GrinGo already exploits the backjumping technique described in this
chapter with very good results, and performances similar to DLV. For instance,
the instantiation generated by GrinGo for the ground program for the Constraint
3-Colorability problem consists of only one rule, as for DLV.

Interestingly, GrinGo also introduces a little modification to our algorithm, in
order to avoid the re-generation of some solutions that we may obtain in case of
literals binding both relevant and non relevant variables. For instance, consider
the program

c(X) :- a(X,Y ), f(X).
a(1, 1). a(1, 2). f(1).

and assume that f is an unsolved predicate. Here, according to Algorithm
BJ Instantiate, after we found the first solution c(1) :- f(1), we jump back to
a(X,Y ) because it instantiates the relevant variable X , and find a new assignment
for this literal by using the fact a(1, 2). In this way, we explore the substitution
with X = 1 and Y = 2, whose projection on the relevant variables is identical to
the previous one, and thus adds nothing to the result set S.

In order to overcome this, GrinGo introduced the notion of binder splitting:
in our example, the instantiator internally replaces the literal a(X,Y ) with two
literals a(X, ) and a(X,Y ), one binding the relevant variable X and the other
one binding the non relevant variable Y .

We are aware of such cases where we may try some more substitutions that are
unnecessary. Of course, we may avoid them by exploiting a suitable “informed
matching procedure,” which distinguishes between relevant and non relevant vari-
ables. However, we did not implement this variant in the current version for two
reasons: first, in our benchmark programs and our applications, the overhead
for dealing with the informed matching slows down the system; and second—
strongly related to the previous one, many “pathological” cases as the one de-
scribed above do not really occur in DLV, because of its rewriting module (see
Section 3.2). Indeed, rules are automatically rewritten by exploiting well known
database optimization techniques, consisting in “pushing down” projections and



Chapter 4. A BackJumping Technique for DLP programs instantiation 75

selections. For instance, in the program of the previous example, the Rewriter
module replaces the rule c(X) :- a(X, Y ), f(X) by the rules c(X) :- aux(X), f(X),
and aux(X) :- a(X, Y ). In sum, DLV instantiator and GrinGo use very similar
backjumping techniques, but GrinGo requires more severe syntactic restrictions
which limit its effectiveness on data-intensive applications (as deductive databases
and many real-world applications).



Chapter 4. A BackJumping Technique for DLP programs instantiation 76

Algorithm BJ Instantiate
Input R: Rule, I: Set of instances for the predicates occurring in B(R),

OutputVars: Set of Variables;
Output S: Set of Substitutions;
var L: Literal, B: List of Atoms, θ: Substitution, CSB: Literal,

Status: MATCH STATUS, FailureSet: Set of Variables;
begin

θ = ∅;
(* returns the ordered list of the body literals (null, L1, · · · , Ln, last) *)
B := BodyToList(R);
L := L1; Status := SuccessfulMatch;
CSB := null; S := ∅; FailureSet := ∅
while L 6= null

Match(L, θ, Status);
switch (Status)

case SuccessfulMatch
FailureSet := FailureSet - FreeVars(L);
if(L 6= last) then

L := NextLiteral(L);
else (* θ is a total substitution for the variables of R *)

S := S ∪ θ |OutputVars ;
L := BackFromSolutionFound(L, CSB, Status);
θ := θ |PreviousVars(L);

break;
case FailureOnFirstMatch

FailureSet := FailureSet ∪ var(L);
L := BackFromFailureOnFirstMatch(L, CSB);
θ := θ |PreviousVars(L);
break;

case FailureOnNextMatch
FailureSet := FailureSet ∪ var(L);
L := BackFromFailureOnNextMatch(L, FailureSet, CSB);
θ := θ |PreviousVars(L);
break;

output S;
end;

Figure 4.1: The BJ Instantiate algorithm



Chapter 4. A BackJumping Technique for DLP programs instantiation 77

enum MATCH STATUS = { SuccessfulMatch, FailureOnFirstMatch, FailureOn-
NextMatch};

Procedure Match (L:Literal, var θ:Substitution, var Status: MATCH STATUS)
begin

if Status = SuccessfulMatch then
(* the last match was successful, this is the first try on a new literal *)
FirstMatch(L, θ, Status);

else (* the last match failed, look for another match on a previous literal *)
NextMatch(L, θ, Status);

end;

Procedure FirstMatch (L: Literal, var θ: Substitution, var Status: MATCH STATUS)

(* Look in the extension IL for the first tuple of values matching θ, and possibly update
θ accordingly. Status is assigned SuccessfulMatch if such a matching tuple exists;
otherwise, it is assigned FailureOnFirstMatch *)

Procedure NextMatch (L: Literal, var θ: Substitution, var Status: MATCH STATUS)

(* Similar to FirstMatch, but finds the next matching tuple. In case of failure, Status is
set to FailureOnNextMatch *)

Figure 4.2: Matching procedures for BJ Instantiate



Chapter 4. A BackJumping Technique for DLP programs instantiation 78

Function BackFromFailureOnFirstMatch (L: literal, var CSB: Literal): Literal;
begin (* the first match on a new literal failed *)

return ClosestBinder(L, var(L));
end;

Function BackFromFailureOnNextMatch(L: Literal, FailureSet : Set of variables,
var CSB: Literal): Literal;

begin (* failure looking for another match for L *)
L′ := ClosestBinder(L,FailureSet);
L′′ := max<{L′,CSB};
if L′′ = CSB then

CSB := ClosestBinder(L′′,OutputVars);
return L′′;

end;

Function BackFromSolutionFound(L: Literal, var CSB: Literal,
var Status: MATCH STATUS) : Literal;

begin
Status := FailureOnNextMatch; (* look for another solution *)
L′ := ClosestBinder(L,OutputVars);
CSB := ClosestBinder(L′,OutputVars);
return L′;

end;

Figure 4.3: Backjumping procedures for BJ Instantiate

a b c

f d e

a b c

f d e

r : colorable :- edge(A,B), edge(A,F ), edge(B, D),
edge(B,C), edge(B, E), edge(C, E),
edge(C,F ), edge(E,D), edge(D,F ).

Figure 4.4: Encoding for Constraint-3-Col



Chapter 4. A BackJumping Technique for DLP programs instantiation 79

0

100

200

300

400

500

600

200 700 1400 2400 3400 4400 5400 6400 7400

Number of Companies

A
v
e
ra

g
e

E
x
e
c
u

ti
o

n
T

im
e

dlv

dlvBJ

Figure 4.5: Results for Strategic Companies



Chapter 4. A BackJumping Technique for DLP programs instantiation 80

0

100

200

300

400

500

600

200 2200 4200 6200 8200 10200 12200 14200

Number of Nodes

R
u

n
n

in
g

T
im

e

dlv

dlvBJ

0

100

200

300

400

500

600

66 496 1326 2556 4186 6216 8646 11476

Number of Nodes

R
u

n
n

in
g

T
im

e

dlv

dlvBJ

Figure 4.6: Results for 3-Colorability on ladder graphs (top) and simplex graphs
(bottom)



Chapter 5

On Demand Indexing for the DLV
Instantiator

In this chapter we propose to employ main-memory indexing techniques for en-
hancing the performance of the instantiation procedure of the ASP system DLV.
In particular, we adapt a classical first argument indexing schema to our context,
and propose an on demand indexing strategy where indexes are computed during
the evaluation (and only if exploitable). Moreover, we define two heuristics which
can be used for determining the most appropriate argument to be indexed, when
more than one possibility exists. We discuss some key issues for its implemen-
tation into the DLV system and we then report the results of our experimentation
activity on a number of benchmark problems.

5.1 Motivations

In chapter 3 we have seen that in ASP systems, the instantiation phase may be
computationally expensive in some cases. Thus, having a good instantiator is
crucial for the efficiency of the entire ASP system.

Moreover, some emerging application areas of ASP, like knowledge manage-
ment and information integration, 1 where large amount of data are to be pro-
cessed, make very evident the need of improving ASP instantiators significantly.

The DLV instantiator already incorporates a number of optimization tech-
niques [Faber et al., 1999; Leone et al., 2001; Perri et al., 2007] but, since ASP

1The application of ASP in these areas has been investigated also in the EU projects INFOMIX
IST-2001-33570, and ICONS IST-2001-32429, and is profitably exploited by Exeura s.r.l., a spin-
off of University of Calabria having precisely this mission.

81



Chapter 5. On Demand Indexing for the DLV Instantiator 82

applications grow in size, there is the need to efficiently handle larger and larger
amount of data.

A critical issue for the efficiency of the instantiator is the retrieval of ground
instances from the extensions of the predicates. Indeed, rule instantiation is es-
sentially performed by evaluating the relational join of the positive body literals 2,
and, as for join computation, in the absence of techniques for speeding-up the
retrieval, the time spent in identifying candidate instances can dramatically affect
the performances.

In this chapter, we face this issue and we propose the use of indexing tech-
niques, that is techniques for the design and the implementation of suitable data
structures that allow to efficiently access to large datasets.

5.2 Indexing Techniques for Rule Instantiation

A critical issue for the efficiency of the DLV instantiator is the task accomplished
by function Match shown in Figure 3.3. As said in section 3.4, this function takes
as input a literal L, its extension IL and a partial substitution θ and tries to find
a ground instance in IL matching θ. This task, in the absence of techniques for
speeding-up the retrieval of candidate instances, may be very expensive. Indeed,
the size of IL can be very large and thus, a simple approach based on linear search
trough IL leads to a drop in performance of the instantiator (also because Match
is invoked very frequently during the instantiation).

In this Section, we describe two indexing strategies which can be exploited
in order to facilitate the retrieval of instances thus allowing for a more efficient
matching function.

5.2.1 First Argument

In the following we describe how the classical first argument indexing schema
can be adapted to our context. Such indexing allows for efficiently performing the
match of literals L whose first argument is indexable; an argument is said to be
indexable if it is either a constant or a variable X such that X ∈ PreviousVars(L)
(thus, θ already contains a substitution for X).

Suitable hash structures are used for boosting the retrieval of ground instances
according to values of their first term.

2Note that, since rules are safe [Ullman, 1989], the join of the positive body literals allows for
instantiating all rule variables.



Chapter 5. On Demand Indexing for the DLV Instantiator 83

For each predicate p, its extension Ip is implemented by means of a list storing,
according to lexicographical order, the ground instances of p. We associate to each
extension Ip a sparse secondary index implemented by means of an hash map.
More in detail, let C ⊆ UP be the set of all the distinct constants appearing as first
argument of some instance in Ip. An index is an hash map Mp that associates to
each c ∈ C (the key of the map) a pointer pt to an instance in Ip. In particular, pt

identifies the first ground instance in Ip having c as first argument and thus, due to
the lexicographical order of Ip, facilitates the retrieval of all ground instances in
Ip with the same characteristic.

By using these structures, the match of a literal L whose first term is instan-
tiated with a constant c can be performed as follows: first of all, we access to
the index corresponding to L using c as key. Then, we simply follow the pointer
associated to c in order to directly access the instances of Ip having c as first term,
and try to extend θ by using, one after the other, such instances. Note that, since
the index is implemented by means of an hash map, looking up the pointer pt by
its key is efficient. In particular, the average case complexity of this operation is
constant time.

Such indexing schema takes advantage from the lexicographical order of the
predicate extensions for creating indexes whose size is in general smaller than
the corresponding extensions thus limiting the space required to store the index.
However, as the following example shows, it is not general, and it allows the use
of indexes only in a small range of cases.

Example 5.1 Consider the following program

r1 : a(Z) :- p(X, 1, Y ), q(X, Y, Z).
r2 : b(T, V ) :- r(U), q(T, U, V ).

During the instantiation, the first argument indexing schema is exploited only
once. Indeed, for r1, the evaluation proceeds by matching first the literal p(X, 1, Y )

whose first argument is not indexable, since X /∈ PreviousVars(p(X, 1, Y )).
Then, the literal q(X, Y, Z) is matched and the first argument index can be used,
indeed X ∈ PreviousVars(q(X, Y, Z)). For the evaluation of r2, it is easy to see
that indexes can never be exploited.

5.2.2 On Demand Indexing

The first argument indexing schema described above allows for using sparse in-
dexes with the advantage of limiting the memory consumption. However, it has
the disadvantage of being not general and hence exploitable only in few cases.



Chapter 5. On Demand Indexing for the DLV Instantiator 84

In the following the on demand indexing strategy is described which allows
for the efficient match of literals where a generic argument (not only the first one)
is indexable. Such strategy is more general than the first argument indexing but
requires more space for storing indexes, since the lexicographical order of the
extensions can not be exploited and, an index must contain a pointer for each
instance in the extension.

Let p be a predicate, Ip be the extension of p, a an indexable argument and xa

its position in the parameter list of p. Moreover, let C ⊆ UP be the set of all the
distinct constants appearing in some instance of Ip in position xa. An index to Ip

for the argument a is an hash multi map MMp,a that associates with each c ∈ C

(the key of the map) a number of pointers to Ip, one for each instance having c in
position x.

In our on demand indexing strategy, the argument to be indexed is not pre-
determined but is established during the computation. More in detail, during the
evaluation of a rule, when a match of a literal L has to be performed, an argu-
ment a is chosen among all the indexable arguments of L and the index for L

corresponding to a is created (if it does not exist yet).
Thus, indexes are created only if really exploitable and, in two different mo-

ments of the evaluation, a predicate can be associated to two different indexes,
depending on the argument which is more appropriate to be indexed. For instance,
a predicate can appear in the body of two different rules, and the most convenient
index to use could be not the same in the two cases.

Example 5.2 Consider the program of example 5.1. While the first argument in-
dexing schema allows for using of indexes only for the match of literal q(X, Y, Z)

in rule r1, the on demand indexing schema has a better behavior, since indexes
can be exploited in three cases. More in detail, the matches of p(X, 1, Y ) in rule
r1 and of q(T, U, V ) of rule r2 can be performed by using indexes on the second
argument. Moreover, for the match of literal q(X, Y, Z) of rule r1, two indexes
could be associated to q, for the first argument or the second one. The choice of
the more appropriate index to be used can be made according to an heuristic, as
described below.

In the case of a literal L having more than one indexable argument, an heuris-
tic is used in order to choose which is the one to be indexed. In this work, we
experiment with two heuristics. The first one (H1) is very simple and consists in
the selection of the first indexable argument (in a left to right order). The sec-



Chapter 5. On Demand Indexing for the DLV Instantiator 85

ond one (H2) allows for a more refined choice and tries to select the indexable
argument where it is more likely that few candidate instances will be retrieved.

More in detail, such a choice is made by taking into account the selectivity of
each indexable argument a of L, that is the number of distinct constants for a in
IL. The heuristic selects the argument with the greatest selectivity, that is, the one
whose selectivity better approximates the size of IL.

Example 5.3 In the previous example, we have seen that, for the match of literal
q(X, Y, Z) of rule r1, the on demand indexing technique can choose among two
indexes corresponding to two different arguments of q (first and second one). Sup-
pose now that the size of the extensions of p and q are 100 and 600, respectively.
Moreover, assume that the instances in Iq are the following:

q(a, 1, 1), q(a, 2, 2), . . . q(a, 100, 100),
q(b, 1, 101), q(b, 2, 102), . . . q(b, 100, 200),

...
q(f, 1, 501), q(f, 2, 502), . . . q(f, 100, 600)

It is easy to see that the selectivities of the first and the second argument of q

are 6 and 100, respectively. Given these values, heuristic H2 chooses the second
one as argument to be indexed, thus suggesting a different choice w.r.t H1 (which
selects the first one). Importantly, according to such different choices, the cost of
the matching operation of q varies notably. Indeed, using the index on the first
argument (as H1 suggests), we have that, for each instance of p, 100 candidate in-
stances have to be considered for the match of q; thus, to compute the join among
p and q, 10000 possible matchings have to be performed. On the contrary, the
index on the second argument (as suggested by H2) identifies, for each instance
of p, 6 possible candidate instances for the match of q, thus the join among p and
q is computed by considering only 600 possible matchings.

Note that, in order to limit the memory usage, beside avoiding the creation
of useless indexes, a structural analysis of the input program is done to identify
possible indexes previously created but not exploitable in the next steps of the
computation.

More in detail, since the instantiation of the program is performed according
to the dependencies among components given by the dependency graph, for the
evaluation of each single component, only a subset of the predicates occurring
in the program is involved. Thus, if a predicate p is involved in the instantiation
of a component C and it is not necessary for the evaluation of the components



Chapter 5. On Demand Indexing for the DLV Instantiator 86

following C in the topological ordering, the eventual indexes associated with p

can be destroyed as soon as C has been processed. Hence, only indexes which
can be possibly exploited again during the computation are maintained.

5.3 Experimental Results

In order to check the impact of the proposed indexing techniques on the DLV
instantiator, we carried out an experimentation activity on a number of benchmark
problems, taken from different domains. For space limitation, we do not include
the code of benchmark programs; however they can be retrieved, together with the
binaries used for the experiments, from our web page: http://www.mat.unical.
it/catalano/thesisexperiments.zip. Moreover, we give below a very short
description of the problems.

5.3.1 Benchmark Programs

We have considered several problems whose encodings are significantly hard to
instantiate. Some of them are known programs which have been already used
in the evaluation of ASP instantiators ([Leone et al., 2006; Gebser et al., 2007a;
Perri et al., 2007]), some others are programs arising in practical applications of
ASP.

InsuranceWorkflow. The goal is to emulate, by means of an ASP program, the
execution of a workflow, in which each step constitutes a transformation to be ap-
plied to some data (in order to query for and/or extract implicit knowledge). Two
problem instances were provided by the company EXEURA s.r.l. [exe, ], which
have been automatically generated by a software working on several American
insurance data.

Scheduling. A scheduling problem for determining shift rotation of employees,
ensuring appropriate days off for each employee and respecting other given con-
straints on the availability of some workers.

Cristal. Cristal (Cooperative Repositories & Information System for Tracking
Assembly Lifecycle) is a deductive databases application that involves complex
knowledge manipulations. The main purpose is to manage the gathering of pro-
duction data during the ongoing construction of the Electromagnetic Calorimeter



Chapter 5. On Demand Indexing for the DLV Instantiator 87

of the Compact Muon Solenoid, at the European Centre for Nuclear Research
(CERN) [cri, ].

Food. The problem here is to generate plans for repairing faulty workflows.
That is, starting from a faulty workflow instance, the goal is to provide a com-
pletion of the workflow such that the output of the workflow is correct. Work-
flows may comprise many activities. Repair actions are compensation, (re)do and
replacement of activities.

DocClass. The problem is to assign a document to one or more categories, based
on its contents. In particular, the input data represent words or sequence of words
appearing in the document (ngrams) and the document is classified according to
the presence or the absence of given ngrams. The single problem instance was
provided by EXEURA s.r.l. [exe, ].

DataIntegration. A data integration problem. Given some tables containing
discording data, find a repair where some key constraints are satisfied. The single
problem instance used for these tests was originally defined within the EU project
INFOMIX [Leone et al., 2005].

Hilex. The problem consists in recognizing and extracting meaningful informa-
tion from unstructured web documents. This is done by combining both syntactic
and semantic information, through the use of domain ontologies. A preprocessor
transforms the input documents into ASP facts, extraction rules are translated into
ASP, and information extraction amounts to reasoning on an ASP program, which
is executed by DLV. The single problem instance was provided by the company
EXEURA s.r.l. [exe, ].

Timetabling. The problem was considered of determining a timetable for some
university lectures that have to be given in a week to some groups of students. The
timetable must respect a number of given constraints concerning availability of
rooms, teachers, and other issues related to the overall organization of the lectures.
The five instances we considered were provided by the University of Calabria;
they refer to different numbers of student groups.

GrammarBasedIE. This problem has been used at the First Answer Set Pro-
gramming System Competition [Gebser et al., 2007a]. It constitutes a part of a



Chapter 5. On Demand Indexing for the DLV Instantiator 88

more complex application for recognizing and extracting meaningful information
from unstructured Web documents. In particular, given a context free grammar,
which specifies arithmetic equations, and a string, the problem is to determine
whether the input string is an equation belonging to the language defined by the
grammar and whether the equation holds. For the experiments, we used five dif-
ferent instances taken from the web page of the competition.

3-Colorability. This well-known problem asks for an assignment of three colors
to the nodes of a graph, in such a way that adjacent nodes always have different
colors.
Encoding The encoding considered for this problem is the one described in Sec-
tion 4.3.
Data We considered five instances representing ladder graphs with increasing
number of nodes.

Reachability. Given a finite directed graph G = (V, A), we want to compute all
pairs of nodes (a, b) ∈ V × V such that b is reachable from a through a nonempty
sequence of arcs in A. In different terms, the problem amounts to computing the
transitive closure of the relation A.
Encoding The encoding of this problem consists of one exit rule and a recursive
one. We assume that A is represented by the binary relation arc(X, Y ), where a
fact arc(a, b) means that G contains an arc from a to b, i.e., (a, b) ∈ A; the set of
nodes N is not explicitly represented, since the nodes appearing in the transitive
closure are implicitly given by these facts. The following program then computes
a relation reachable(X, Y ) containing all facts reachable(a, b) such that b is reach-
able from a through the arcs of the input graph G:

reachable(X, Y ) :- arc(X,Y ).
reachable(X, Y ) :- arc(X,U), reachable(U, Y ).

Data We considered five different instances which have been used at the First
Answer Set Programming System Competition [Gebser et al., 2007a].

5.3.2 Compared Methods

We implemented the indexing strategies described in the previous Section in the
DLV instantiator and we compared the resulting prototypes by using the above
benchmark problems. In particular, the following instantiators were compared:



Chapter 5. On Demand Indexing for the DLV Instantiator 89

Program noIndexes 1stArg onDemand-H1 onDemand-H2 % gain
InsuranceWorkflow1 21.58 12.96 8.15 0.51 97%
InsuranceWorkflow2 102.47 22.97 10.34 2.61 97%
Scheduling 114.54 114.52 25.65 12.52 89%
Cristal 3.65 0.67 0.45 0.26 93%
Food 135.04 115.43 57.47 49.37 63%
DocClass – 4.48 2.40 2.42 –
DataIntegration 293.68 293.75 3.71 3.72 99%
Hilex 16.54 8.23 3.66 3.52 79%

Table 5.1: Results for real problems (times in seconds)

Timetabling noIndexes 1stArg onDemand-H1 onDemand-H2 % gain
17 groups 187.28 187.75 35.94 14.39 92%
19 groups 287.18 288.46 37.19 15.11 95%
21 groups 319.66 318.98 51.51 16.54 95%
23 groups 334.06 334.02 73.85 18.45 94%
25 groups 431.99 409.61 97.14 20.15 95%

Table 5.2: Results for Timetabling (times in seconds)

- noIndexes: the DLV instantiator without any indexing technique;

- 1stArg: the DLV instantiator enhanced with first argument indexing; 3

- onDemand-H1: the DLV instantiator with on demand indexing where the
first indexable argument is chosen;

- onDemand-H2: the DLV instantiator with on demand indexing where the
indexable argument with greatest selectivity is chosen.

All binaries were produced by using the GNU compiler GCC 4.1.2, and the
experiments were performed on a dual processor Intel Xeon HT (single core)
3.60GHz machine, equipped with 3GB of RAM and running Debian Gnu Linux
2.6.



Chapter 5. On Demand Indexing for the DLV Instantiator 90

GrammarBased IE noIndexes 1stArg onDemand-H1 onDemand-H2 % gain
GrammarBased IE 1 4.49 2.98 0.98 0.98 78%
GrammarBased IE 2 7.57 3.41 0.95 0.96 87%
GrammarBased IE 3 7.89 4.09 1.16 1.15 85%
GrammarBased IE 4 8.84 6.22 1.74 1.74 80%
GrammarBased IE 5 9.50 7.26 2.15 2.14 77%

Table 5.3: Results for GrammarBased IE (times in seconds)

3-Colorability noIndexes 1stArg onDemand-H1 onDemand-H2 % gain
15000 nodes 79.13 0.98 0.97 0.97 98%
20120 nodes 222.84 0.98 0.98 0.99 99%
32300 nodes – 3.29 3.24 3.22 –
39900 nodes – 2.13 2.11 2.12 –
40120 nodes – 2.11 2.08 2.08 –

Table 5.4: Results for 3-Colorability (times in seconds)

5.3.3 Results and Discussion

Tables 5.1– 5.3 shows the results of our experiments. In each table, for each
benchmark program P described in column 1, columns 2 –5 report the times em-
ployed to instantiate P by using the above binaries; column 6 reports the per-
centage gain obtained by onDemand-H2 w.r.t noIndexes. All running times are
expressed in seconds. The symbol ‘−’ means that the instantiator did not termi-
nate within 10 minutes.

The results confirm the intuition that the indexing techniques can be very use-
ful for improving the efficiency of the DLV instantiator. Indeed, it is clear from
the tables that, even a simple strategy, like the one exploited by 1stArg, allows
for outperforming the instantiator noIndexes in many cases. In particular, the first
argument indexing gives very relevant improvements in some benchmarks, as, for
instance, DocClass and three of the instances of 3-Colorability, where noIndexes
does not terminate within ten minutes, while 1stArg takes few seconds. However,
there are also some cases in which the speed-up introduced by 1stArg is not so
considerable, or it is not present at all. Consider for instance, Scheduling and
Data Integration and the instances of Timetabling where noIndexes and 1stArg

3This version of the DLV instantiator coincides with the one of the official release October
11th 2007.



Chapter 5. On Demand Indexing for the DLV Instantiator 91

Reachability noIndexes 1stArg onDemand-H1 onDemand-H2 % gain
Reachability 13 71.83 66.39 0.95 0.98 99%
Reachability 14 367.60 339.63 2.33 2.31 99%
Reachability 15 – – 5.47 5.49 –
Reachability 16 – – 12.61 12.58 –
Reachability 18 – – 68.05 68.68 –

Table 5.5: Results for Reachability (times in seconds)

perform very similarly, or the two solved instances of Reachability where the gain
is about 7%, and Food where the gain is about 15%. The reason of such different
behavior of 1stArg on these problems is that the speed-up reflects how intensively
first argument indexing can be used for a given benchmark. More precisely, the
performance gain is low when the encodings are such that first argument indexing
is exploitable only for the match of few literals.

The situation changes when looking at the results of the on demand index-
ing technique. Indeed, for all the tested benchmarks, the speed-up introduced by
this technique is really impressive. Moreover, it is clear from the tables that the
instantiator exploiting H2 as heuristic behaves quite better than the one exploit-
ing H1. Indeed, OnDemand-H1 allows for notable improvements in many cases
with difference of even 2 orders of magnitude w.r.t. noIndexes (as, for instance,
DataIntegration, Reachability). Moreover, it is able to solve all the problem in-
stances within the allowed time limit. However, these considerations hold also
for OnDemand-H2; indeed, either it exhibits the same behavior of OnDemand-H1

or perform better, as, for instance, in Timetabling, InsuranceWorkflow and other
real problems. This shows that performance improvements strongly depend on the
“quality” of the used index. Intuitively, when to an entry in the index corresponds
an high number of candidate instances (close to the size of the extension), then
indexing may not bring great benefits.

Summarizing, the tested indexing techniques allow to improve performance
of the instantiator but the on demand strategy is applicable in a wider range of
cases w.r.t the first argument one and gives relevant speed-ups especially when
combined with an accurate choice of the argument to be indexed.



Chapter 5. On Demand Indexing for the DLV Instantiator 92

5.4 Related Work

Indexing methods have been originally introduced in the database field for im-
proving the speed of the operations in a table Indeed in this field many structures
have been already proposed. For instance, a common and important kind of index
is the B-tree. However they are designed to be stored in mass-memory, whereas
the DLV instantiator works in main-memory, thus indexing has to be designed
according to more strict memory limits.

Moreover, indexing techniques are now profitably used also in the logic pro-
gramming area [Demoen et al., 1989; Carlsson, 1987]. Indeed, effective indexing
has become an integral component of high performance declarative programming
systems. Almost all the Prolog implementations support indexing on the main
functor symbol of the first argument of predicates. Several systems have gen-
eralized the first argument indexing. For example, BIM Prolog [BIM, 1990] can
index on any argument when given appropriate declarations. SEPIA [SEP, 1990]
incorporates heuristics to decide which predicate arguments are important for de-
terministic selection. Other system, like XSB [Rao et al., 1997], SWI-Prolog
[Wielemaker, 1997 2003], support more sophisticated indexing schemata.

The reason for developing several different indexing techniques is that the
conditions under which data have to be retrieved differ from context to context. In
addition, if on the one hand indexing allows to significantly speedup the retrieval,
on the other hand it could lead to a considerable memory consumption and hence
a compromise between these two factors has to be made. Thus, there is no an
optimal indexing technique for all the applications, rather each application may
require to develop its own specialized technique.



Chapter 6

DLV Instantiator vs. Other
Instantiators

To check the strength of the enhanced DLV instantiator, which includes the meth-
ods described in the previous Chapters, we carried out a deep experimental analy-
sis for comparing it w.r.t. others two popular instantiators, namely Lparse [Niemelä
and Simons, 1997; Syrjänen, 2002] and GrinGo [Gebser et al., 2007b]. In this
Chapter, we first briefly describe the compared instantiators, and then discuss the
results of the experiments.

6.1 Overview of the Compared Instantiators

To assess the effectiveness of all our proposed methods, we have compared the
enhanced DLV instantiator also with Lparse, and GrinGo. These instantiators
accept different classes of input programs, and follow different strategies for the
computation. As a consequence, the size of the respective instantiations, as well
as the time needed for generating them, may differ significantly.

6.1.1 Lparse

The instantiation module of the Smodels system is a separate application called
Lparse, which preprocesses the programs which are then evaluated by Smodels
[Simons et al., 2002]. Lparse accepts logic programs respecting domain restric-
tions. This condition enforces each rule’s variable to occur in a positive body
literal, called domain literal, which (i) is not mutually recursive with the head,
and (ii) is not unstratified nor (transitively) depends on an unstratified literal (see

93



Chapter 6. DLV Instantiator vs. other instantiators 94

[Syrjänen, 2002] for details). For instance, the simple program PInst

a(1) :- not a(2). b(2) :- not b(3).
a(2) :- not a(1). b(3) :- not b(2).

r : p(X) :- a(X), b(X).

is not accepted by Lparse. To instantiate a rule r, Lparse employs a nested loop
that scans the extensions of the domain predicates occurring in the body of r,
and generates its ground instances, accordingly. Thus, it is a simple instantiation
method, and runs very fast, at least for applications where there are few domains
to scan or they have small extensions (like, e.g., 3-Colorability). However, Lparse
may generate several useless rules inasmuch as they may contain non-domain
body literals that are not derivable by the program. Our instantiator, instead, in-
corporates several database optimization techniques, and builds the domains dy-
namically. Consequently, the instantiation generated by DLV is generally a subset
of that generated by Lparse.

Example 6.1 Consider for instance the following program:

f1 : f(1).
f2 : h(1..10).
r1 : a(X) :- not b(X), f(X).
r2 : b(X) :- a(X), h(X).

The istantiation produced by Lparse is:

f(1). h(1). h(2). . . . h(9). h(10).
a(1) :- not b(1).
b(1) :- a(1).
b(2) :- a(2).

...
b(9) :- a(9).
b(10) :- a(10).

The DLV instantiator produces a subset of this, that considerably smaller:

f(1). h(1). h(2). . . . h(9). h(10).
a(1) :- not b(1).
b(1) :- a(1).

Note that for applications with few domains with small extensions the strategy
of Lparse may be computationally less expensive than the instantiation method
adopted by DLV.



Chapter 6. DLV Instantiator vs. other instantiators 95

On the contrary, in case of applications where the size of domains extensions
are very large (for instance, for real world applications like Grammar Based In-
formation Extraction (see Section 4.3), or Reachability (see Section 5.3 and other
Deductive Database Applications), Lparse may take significantly more time and
produce a (uselessly) larger instantiation than DLV.

Notably, the backjumping technique presented in Chapter 4 allows in some
cases to further reduce the size of the instantiation generated by DLV (as well as
the execution time) with respect to that of Lparse. Indeed, even in case of applica-
tions where all the body literals are in fact domain literals (like, e.g., Constraint 3-
Colorability) DLV may generate an instantiation considerably smaller than Lparse
(e.g., only one rule versus thousand of rules for Constraint 3-Colorability) because
the new backjumping algorithm avoids the generation of redundant rules.

6.1.2 GrinGo

The recent instantiator GrinGo combines the instantiation techniques of Lparse
and DLV. Similarly to Lparse, it accepts domain restricted programs. However,
their notion of domain literal is an extension of that of Lparse (see [Gebser et al.,
2007b], for details). In particular, GrinGo can handle all the programs accepted
by Lparse while the vice versa does not hold. For instance, the program

a(X) :- b(X), c(X).
b(X) :- a(X).
c(1). b(1).

is accepted by GrinGo while it is not handled by Lparse. The same holds for the
programPInst in the previous Section. However, the following program, encoding
the reachability on a graph, is not accepted by GrinGo

reachable(X, Y ) :- arc(X,Y ).
reachable(X, Y ) :- arc(X,U), reachable(U, Y ).

The extended definition of domain predicates allows GrinGo to have, in general,
a better behavior than Lparse, but does not solve the above mentioned problems,
related to the use of domains for the instantiation. Indeed, similarly to Lparse,
GrinGo may not behave well in case of real world applications, like Grammar
Based Information Extraction, where many domains are required and their exten-
sions may be huge.

Notably, the rule instantiation procedure of GrinGo already exploits the back-
jumping technique described in Chapter 4 with very good results, and perfor-



Chapter 6. DLV Instantiator vs. other instantiators 96

mances similar to DLV. The good performance of GrinGo in some of the con-
ducted experiments are, indeed, due to the use of our technique.

6.2 Benchmark Problems and Data

We have selected programs where the instantiation process is hard, and it takes a
relevant part of the entire computation. In particular, we evaluated the systems on
the following problems:

• Ramsey Numbers (Ramsey)

• Reachability (Reachability)

• 3-Colorability (3-Col)

• Grammar Based Information Extraction (GrammarBased IE)

• Constraint 3-Colorability (Constraint-3-Col)

We next provide a short description of the problems and the data used for
the experiments. All benchmark instances and encodings as well as the DLV
binaries used for our experiments are available at the Web page http://www.

mat.unical.it/catalano/thesisexperiments.zip.
Note that, since the considered grounders take different input languages, it is

not possible to compare their performance using the same encodings. The encod-
ings are similar i.e., as far as possible, they are straightforward translations of each
other, except that domain atoms are added for Lparse and GrinGo, when needed.

Ramsey Numbers (Ramsey) The Ramsey number ramsey(k, m) is the least
integer n such that, no matter how we color the edges of the complete undirected
graph (clique) with n nodes using two colors, say red and blue, there is a red clique
with k nodes (a red k-clique) or a blue clique with m nodes (a blue m-clique).
Ramsey numbers exist for all pairs of positive integers k and m [Radziszowski,
1994].
Encoding The encoding considered for this problem is the one described in Sec-
tion 1.3.2.
Data We considered the problem of deciding, for varying k, m, and n, if n is the
Ramsey number ramsey(k, m).



Chapter 6. DLV Instantiator vs. other instantiators 97

Reachability. Given a finite directed graph G = (V, A), we want to compute all
pairs of nodes (a, b) ∈ V × V such that b is reachable from a through a nonempty
sequence of arcs in A. In different terms, the problem amounts to computing the
transitive closure of the relation A.
Encoding The encoding considered for this problem is the one described in Sec-
tion 5.3.
Data The input graphs for Reachability were generated by means of the Stan-
ford GraphBase [Knuth, 1994], using the function random graph(#nodes, #arcs,
0,0,0,0,0,0,0,0) with a ratio of 3:1 between #arcs and #nodes (nodes (50 ≤ n ≤
12000).

3-Colorability (3-Col) The 3-Colorability problem consists in the assignment
of three colors to the nodes of a graph in such a way that adjacent nodes have
different colors. This problem is known to be NP-complete.
Encoding The encoding considered for this problem is the one described in Sec-
tion 4.3.
Data We used ladder graphs with n levels, i.e., 2 ∗ n nodes (100 ≤ n ≤ 30000)
and simplex graphs generated with the Stanford GraphBase [Knuth, 1994], using
the function simplex(n, n,−2, 0, 0, 0, 0), 10 ≤ n ≤ 400 (i.e. (n + 1) ∗ (n + 2)/2

nodes).

Grammar Based Information Extraction (GrammarBased IE) This problem
has been used at the First Answer Set Programming System Competition http:
//asparagus.cs.uni-potsdam.de/contest/. It constitutes a part of a
more complex application for recognizing and extracting meaningful information
from unstructured Web documents. In particular, given a context free grammar,
which specifies arithmetic equations, and a string, the problem is to determine
whether the input string is an equation belonging to the language defined by the
grammar and whether the equation holds. The encoding of this problem is quite
long and involved, thus we do not report it here. Concerning the data, we have
used three different instances in 001.asp, in 020.asp, in 047.asp, in 071.asp,
and in 082.asp. Both the encoding and the instances can be retrieved from the
web page of the competition.

Constraint 3-Colorability (Constraint-3-Col) In addition to the encoding de-
scribed above, we considered for the 3-Colorability problem an alternative repre-
sentation in a constraint satisfaction style.



Chapter 6. DLV Instantiator vs. other instantiators 98

Encoding The encoding considered for this problem is the one described in Sec-
tion 4.3.

Data We considered random graphs generated with the Stanford GraphBase, us-
ing the function ramdom graph(#nodes, #edges, 0, 0, 1, 0, 0, 0, 0, seed) for dif-
ferent values of #nodes and #edges.

6.3 Results and Discussions

The experimental analysis was performed by comparing the following instantia-
tors:

- dlvOld

- dlvNew

- Lparse

- GrinGo.

dlvOld is the DLV instantiator without the techniques described in this thesis
while dlvNew is the DLV instantiator which integrates the backjumping algorithm
and the on demand indexing technique described in Chapters 4 and 5, respectively.
Both the binaries, dlvOld and dlvNew, were produced by using the GNU compiler
GCC 4.1.2, and the experiments were performed on a dual processor Intel Xeon
HT (single core) 3.60GHz machine, equipped with 3GB of RAM and running
Debian Gnu Linux 2.6. For the other instantiators we use in our tests, their current
versions at the time of this writing, Lparse 1.0.1 and GrinGo 1.0.0.

The results of the experimental activities on the benchmark problems pre-
sented above are summarized in Figures 6.1, 6.2 and 6.3 and in Tables 6.1, 6.2
and 6.3. The tables report in seconds the instantiation times of the four tested
instantiators. For every instance, we allowed a maximum running (real-)time of
600 seconds. In the figures, the line corresponding to an instantiator stops when-
ever a problem instance was not solved within the allowed time limit or when a
system is not able to solve it because of errors during the execution; in the tables
the information is represented by means of the symbol ’-’.

On the overall, the results show that the performance of the old DLV instantia-
tor are in some cases comparable to those of Lparse and GrinGo and in some cases
even worst. On the contrary, the enhanced instantiator dlvNew outperforms dlvOld
in all considered programs and, in addition, behaves much better than Lparse and



Chapter 6. DLV Instantiator vs. other instantiators 99

Ramsey dlvOld dlvNew Lparse GrinGo
ramsey(3,3)6= 5 0,00 0,00 0,00 0,00
ramsey(3,3)6= 6 0,00 0,00 0,00 0,00
ramsey(3,4)6=8 0,00 0,00 0,05 0,00
ramsey(3,4)6=9 0,00 0,00 0,08 0,00
ramsey(3,5)6=12 0,07 0,02 4,12 0,04
ramsey(3,5)6=13 0,13 0,04 6,29 0,06
ramsey(3,5)6=14 0,19 0,06 9,17 0,10
ramsey(3,6)6=16 1,06 0,37 - 0,63
ramsey(3,6)6=17 2,72 0,57 - 0,97
ramsey(3,6)6=18 4,51 0,80 - 1,44
ramsey(3,7)6=15 2,91 0,53 - 0,65
ramsey(3,7)6=16 3,43 0,86 - 1,15
ramsey(3,7)6=17 6,36 1,41 - 1,92
ramsey(3,7)6=18 12,21 1,88 - 3,20
ramsey(3,7)6=19 19,68 2,93 - 5,03
ramsey(3,7)6=20 27,34 5,32 - 7,52
ramsey(3,7)6=21 50,68 6,56 - 11,54
ramsey(3,7)6=22 67,86 10,45 - 16,81
ramsey(3,7)6=/23 164,68 17,00 - 24,11
ramsey(4,4)6=13 0,08 0,02 0,62 0,04
ramsey(4,4)6=14 0,12 0,03 0,83 0,06
ramsey(4,4)6=15 0,18 0,05 1,11 0,08
ramsey(4,4)6=16 0,29 0,06 1,40 0,11
ramsey(4,4)6=17 0,40 0,08 1,80 0,14
ramsey(4,4)6=18 0,48 0,09 2,30 0,18
ramsey(4,5)6=17 1,13 0,24 25,58 0,36
ramsey(4,5)6=18 1,15 0,28 33,64 0,50
ramsey(4,5)6=19 1,65 0,37 44,17 0,67
ramsey(4,5)6=20 3,05 0,56 57,54 0,88
ramsey(4,5)6=21 3,28 0,64 73,20 1,14
ramsey(4,5)6=22 6,67 0,92 92,86 1,47
ramsey(4,5)6=23 6,89 1,08 114,17 1,86
ramsey(4,5)6=24 9,59 1,38 139,86 2,45

Table 6.1: Results for Ramsey (times in seconds)



Chapter 6. DLV Instantiator vs. other instantiators 100

0

100

200

300

400

500

600

700

50 300 700 1700 3400 6000 11000

Number of Nodes

E
x
e
c
u

ti
o

n
T

im
e

(i
n

s
e
c
o

n
d

s
)

dlv

lparse

gringo

dlvold

Figure 6.1: Results for Reachability

GrinGo. More detailed considerations follow for each tested programs.

Ramsey Numbers (Table 6.1). In this problem, the instantiator with the worst
behaviour is Lparse which takes more time of dlvOld and in many cases cannot
solve the instance at hand because of some memory problem. The instantiator
GrinGo instead exhibits good performance on all the instances, outperforming the
old DLV instantiator. However, the proposed techniques in this thesis allow to
dlvNew for showing the best performance, with very low execution times even for
the hardest instances (Ramsey 3,7).

Reachability (Figure 6.1). The results of Reachability show similar performance
for Lparse, GrinGo and dlvOld, but dlvOld is able to solve more instances (up to
graphs with 5500 nodes) than the other two systems which stop to graphs with



Chapter 6. DLV Instantiator vs. other instantiators 101

GrammarBased IE dlvOld dlvNew Lparse GrinGo
GrammarBased IE 1 36,77 2,35 – –
GrammarBased IE 2 16,82 1,09 – –
GrammarBased IE 3 35,09 2,01 – –
GrammarBased IE 4 36,13 1,15 – –
GrammarBased IE 5 35,2 1,33 – –

Table 6.2: Results for GrammarBased IE (times in seconds)

Constraint-3-Col dlvOld dlvNew Lparse GrinGo
35 nodes, 35 edges 0,01 0,01 – 0.02
35 nodes, 45 edges 0,01 0,01 449,54 0.03
40 nodes, 40 edges 0,02 0,02 319,4 0.01
40 nodes, 50 edges 0,01 0,01 – 0.01
45 nodes, 45 edges 0,01 0,01 – 0.01
45 nodes, 55 edges 0,02 0,02 – 0.02
50 nodes, 50 edges 0,01 0,01 – 0.01
50 nodes, 60 edges 0,01 0,01 – 0.16
60 nodes, 60 edges 0,02 0,02 – 0.01
60 nodes, 70 edges 0,01 0,01 – 0.02

Table 6.3: Results for Constraint-3-Col (times in seconds)

2600 and 4200 nodes, respectively. The negative performances of Lparse and
GrinGo are due to the domain predicates that have to be added to the encoding of
this problem. dlvNew, even in this case, gives the best performance, allowing for
solving all the considered instances with execution times smaller than 10 seconds.

Constraint 3-Colorability (Table 6.3). This problem highlights the power of the
backjumping technique we introduced. Indeed, while dlvOld and Lparse are not
able to solve all the instances within the allowed time limit, dlvNew and GrinGo
solve all the instances in less than 1 second. The reason is that, for this problem,
dlvOld and Lparse generate an instantiation consisting of thousands of useless
rules while, the other two instantiators which both exploits our backjumping tech-
nique, generate only one ground rule.

Grammar Based Information Extraction (Table 6.2). For this real problem, in-
volving an huge input, predicates domain have a tremendous impact on the per-



Chapter 6. DLV Instantiator vs. other instantiators 102

formance of Lparse and GrinGo that are not able to solve any instances. On the
contrary both dlvOld and dlvNew solve all instances and dlvNew shows a very nice
speed-up. Thus, the DLV instantiator seems to be the most appropriate to handle
real-world applications and techniques we proposed make it even more competi-
tive.

3-Colorability (Tables 6.2 and 6.3). The results of the experiments on this prob-
lem (both for ladder and simplex graphs) are reported in two pictures, one com-
paring dlvOld w.r.t. dlvNew and one comparing dlvNew w.r.t. Lparse and GrinGo.
This is because, dlvOld shows performance much worst than the other three sys-
tems, while the enhanced DLV instantiator, behave significantly better than it.
Moreover, dlvNew and Lparse exhibit better performance than GrinGo on both
ladder and simplex graphs. However, pictures 6.2 and 6.3 show that the line of
Lparse stops before that of the other systems; the reason is that it gives a segmen-
tation fault on the unsolved instances.

In summary, the performance of the DLV instantiator have been notably im-
proved by the introduction of our techniques, which make it much more competi-
tive than the other instantiators both on classical and real-world problems.



Chapter 6. DLV Instantiator vs. other instantiators 103

0

100

200

300

400

500

600

700

100 3100 6100 9100 12100 15100 18100 21100 24100 27100

Number Of Nodes

E
x
e
c
u

ti
o

n
T

im
e
s

(i
n

s
e
c
o

n
d

s
)

dlv

dlvold

0

1

2

3

4

5

6

100 3100 6100 9100 12100 15100 18100 21100 24100 27100

Number Of Nodes

E
x
e
c
u

ti
o

n
T

im
e
s

(i
n

s
e
c
o

n
d

s
)

dlv

lparse

gringo

Figure 6.2: Results for 3-Colorability on ladder graphs. dlvNew vs. dlvOld (top)
and dlvNew vs. Lparse and GrinGo (bottom)



Chapter 6. DLV Instantiator vs. other instantiators 104

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 250 300 350 400

Number of Nodes

E
x
e
c
u

ti
o

n
T

im
e
s

(i
n

s
e
c
o

n
d

s
)

dlv

dlvold

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 250 300 350 400

Number of Nodes

E
x
e
c
u

ti
o

n
T

im
e
s

(i
n

s
e
c
o

n
d

s
)

dlv

lparse

gringo

Figure 6.3: Results for 3-Colorability on simplex graphs. (dlvNew vs. dlvOld
(top) and dlvNew vs. Lparse and GrinGo (bottom)



Conclusions and Ongoing Work

Disjunctive Logic Programming, (first proposed by Jack Minker at the beginning
of the Eighties), is nowadays widely recognized as a valuable tool for knowledge
representation and commonsense reasoning. Moreover, the recent availability of
some efficient implementations, allowed for the application of DLP to real-world
problems in emerging areas like knowledge management and information extrac-
tion/integration. The application of DLP to real-world problems, where large
amount of input data have often to be processed, has evidenced the strong need to
improve DLP instantiators.

In this thesis, we have presented methods for improving the performance of
the instantiator of DLV – the state-of-the-art DLP system. In particular, we have
designed a structure-based backjumping algorithm for rule instantiation which
reduces the instantiation time, and avoids the generation of many superfluous in-
stances (thus reducing also the size of the generated instantiation), while fully
preserving the semantics of the program. We have implemented the proposed
method in DLV and we have carried out an experimental activity on an ample
collection of benchmark programs, which has fully confirmed the effectiveness of
our method.

Moreover, we have investigated the use of indexes for optimizing the rule in-
stantiation process of DLV. In particular, we have experimented with a classical
first argument indexing schema adapted to our context and proposed an on demand
indexing strategy where indexes are computed during the evaluation and the ar-
gument to be indexed is chosen according to a heuristic.We define two heuristics
which can be used for determining the most appropriate argument to be indexed,
when more than one possibility exists.

We have implemented such strategies in the instantiator of DLV and we per-
formed a deep experimental analysis. The results of the experiments are very pos-
itive and confirm that the use of indexes causes the instantiation stage to achieve

105



Conclusions 106

noticeable improvements. Moreover, the on demand indexing schema gives bet-
ter results w.r.t the classical first argument schema in a wider range of cases and
performance improve notably when a good choice of the argument to be indexed
is made.

Currently, we are investigating the relations among the body ordering criterion
exploited in DLV and the use of indexes. Indeed, it is easy to see that, the body
ordering may have a strong impact on the use of indexes; each of the techniques
described above chooses for a literal L the argument to be indexed among a set of
indexable arguments, and such set depends on the position that L has in the body
and, thus, by the ordering algorithm used. Hence, a different ordering criterion
may lead to make different choices and, so, to considerably influence the execu-
tion times. Hence, the ordering criterion could be modified in order to take into
account indexes availability. However, it is well known that the instantiation time
of a rule strongly depends on the order of evaluation of literals [Leone et al., 2001;
Garcia-Molina et al., 2000], thus a naive ordering could have a negative impact on
the instantiator performance, also overshadowing the gains brought by the indexes
usage. Therefore, a clever ordering has to be conceived which allows a better use
of indexes but without ignoring the principles which the current method is based
on and whose effectiveness has already been assessed[Leone et al., 2001]. The
design of the new ordering criterion is the subject of a future work.

Part of the work presented in this thesis is already included in the current DLV
distribution, and can be retrieved from DLV homepage www.dlvsystem.com.
Part of results presented in this thesis has been published in [Perri et al., 2007;
Catalano et al., 2008; 2006].



Bibliography

[Apt et al., 1988] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. To-
wards a Theory of Declarative Knowledge. In Jack Minker, editor, Founda-
tions of Deductive Databases and Logic Programming, pages 89–148. Morgan
Kaufmann Publishers, Inc., Washington DC, 1988.

[Arieli et al., 2004] Ofer Arieli, Marc Denecker, Bert Van Nuffelen, and Mau-
rice Bruynooghe. Database repair by signed formulae. In Dietmar Seipel and
Jose Maria Turull Torres, editors, Foundations of Information and Knowledge
Systems, Third International Symposium (FoIKS 2004), volume 2942 of LNCS,
pages 14–30. Springer, February 2004.

[Babovich, since 2002] Yulia Babovich. Cmodels homepage, since 2002. http:
//www.cs.utexas.edu/users/tag/cmodels.html.

[Baral and Gelfond, 1994] Chitta Baral and Michael Gelfond. Logic Program-
ming and Knowledge Representation. Journal of Logic Programming,
19/20:73–148, 1994.

[Baral, 2002] Chitta Baral. Knowledge Representation, Reasoning and Declara-
tive Problem Solving. Cambridge University Press, 2002.

[Ben-Eliyahu and Dechter, 1994] Rachel Ben-Eliyahu and Rina Dechter. Propo-
sitional Semantics for Disjunctive Logic Programs. Annals of Mathematics and
Artificial Intelligence, 12:53–87, 1994.

[Ben-Eliyahu and Palopoli, 1994] Rachel Ben-Eliyahu and Luigi Palopoli. Rea-
soning with Minimal Models: Efficient Algorithms and Applications. In Pro-
ceedings Fourth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-94), pages 39–50, 1994.

[BIM, 1990] BIM Prolog Version 2.5, 1990. BIM, Everberg Belgium.

107



BIBLIOGRAPHY 108

[Bruynooghe and Pereira, 1984] Maurice Bruynooghe and Luis Moniz Pereira.
Deduction revision by intelligent backtracking. In J. Campbell, editor, Imple-
mentations of Prolog, pages 194–215. Ellis Horwood, 1984.

[Buccafurri et al., 2000] Francesco Buccafurri, Nicola Leone, and Pasquale
Rullo. Enhancing Disjunctive Datalog by Constraints. IEEE Transactions on
Knowledge and Data Engineering, 12(5):845–860, 2000.

[Buccafurri et al., 2002] Francesco Buccafurri, Wolfgang Faber, and Nicola
Leone. Disjunctive Logic Programs with Inheritance. Journal of the Theory
and Practice of Logic Programming, 2(3), May 2002.

[Cadoli et al., 1997] Marco Cadoli, Thomas Eiter, and Georg Gottlob. Default
Logic as a Query Language. IEEE Transactions on Knowledge and Data En-
gineering, 9(3):448–463, May/June 1997.

[Carlsson, 1987] M. Carlsson. Freeze, Indexing, and other implementation issues
in the WAM. In Proceedings of the Fourth International Conference on Logic
Programming, pages 40–58. MIT Press, 1987.

[Catalano et al., 2006] Gelsomina Catalano, Nicola Leone, and Simona Perri. In-
dexing techniques for the dlv instantiator. In Proceedings of the 22th Convegno
Italiano di Logica Computazionale (CILC ’07), Messina, Italy, 2006.

[Catalano et al., 2008] Gelsomina Catalano, Nicola Leone, and Simona Perri. On
demand indexing techniques for the dlv instantiator. In To appear, editor, Pro-
ceedings of the Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’08), Udine, Italy, 2008.

[Chen and van Beek, 2001] Xinguang Chen and Peter van Beek. Conflict-
Directed Backjumping Revisited. Journal of Artificial Intelligence Research,
14:53–81, 2001.

[cri, ] CRISTAL project, homepage http://proj-cristal.web.cern.
ch/.

[Dechter, 1990] Rina Dechter. Enhancement schemes fo constraint process-
ing:backjumping, learning and cutset decomposition. Artificial Intelligence,
41, 1990.



BIBLIOGRAPHY 109

[Demoen et al., 1989] B. Demoen, A. Mariën, and A. Callebaut. Indexing in Pro-
log. In Proceedings of the North American Conference on Logic Programming,
pages 1001–1012. MIT Press, 1989.

[Dix et al., 2003] Jürgen Dix, Thomas Eiter, Michael Fink, Axel Polleres, and
Yingqian Zhang. Monitoring Agents using Declarative Planning. In Pro-
ceedings of the 26th German Conference on Artificial Intelligence (KI2003),
number 2821 in Lecture Notes in Computer Science, pages 646–660. Springer,
September 2003.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob. On the Computa-
tional Cost of Disjunctive Logic Programming: Propositional Case. Annals of
Mathematics and Artificial Intelligence, 15(3/4):289–323, 1995.

[Eiter et al., 1997a] Thomas Eiter, Georg Gottlob, and Nicola Leone. Abduction
from Logic Programs: Semantics and Complexity. Theoretical Computer Sci-
ence, 189(1–2):129–177, December 1997.

[Eiter et al., 1997b] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Dis-
junctive Datalog. ACM Transactions on Database Systems, 22(3):364–418,
September 1997.

[Eiter et al., 1997c] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald
Pfeifer, and Francesco Scarcello. A Deductive System for Nonmonotonic Rea-
soning. In Jürgen Dix and Ulrich Furbach and Anil Nerode, editor, Proceedings
of the 4th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97), number 1265 in Lecture Notes in AI (LNAI), pages
363–374, Dagstuhl, Germany, July 1997. Springer.

[Eiter et al., 1998] Thomas Eiter, Nicola Leone, and Domenico Saccá. Ex-
pressive Power and Complexity of Partial Models for Disjunctive Deductive
Databases. Theoretical Computer Science, 206(1–2):181–218, October 1998.

[Eiter et al., 1999] Thomas Eiter, Wolfgang Faber, Georg Gottlob, Christoph
Koch, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and F. Scarcello. The
DLV System. In Jack Minker, editor, Workshop on Logic-Based Artificial In-
telligence, Washington, DC, College Park, Maryland, June 1999. Computer
Science Department, University of Maryland. Workshop Notes.

[Eiter et al., 2000] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald
Pfeifer. Declarative Problem-Solving Using the DLV System. In Jack Minker,



BIBLIOGRAPHY 110

editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic
Publishers, 2000.

[Eiter et al., 2003a] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald
Pfeifer. Computing Preferred Answer Sets by Meta-Interpretation in Answer
Set Programming. Journal of the Theory and Practice of Logic Programming,
3:463–498, July/September 2003.

[Eiter et al., 2003b] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald
Pfeifer, and Axel Polleres. A Logic Programming Approach to Knowledge-
State Planning, II: the DLVK System. Artificial Intelligence, 144(1–2):157–211,
March 2003.

[exe, ] Exeura s.r.l., Homepage http://www.exeura.it/.

[Faber et al., 1999] Wolfgang Faber, Nicola Leone, Cristinel Mateis, and Gerald
Pfeifer. Using Database Optimization Techniques for Nonmonotonic Reason-
ing. In INAP Organizing Committee, editor, Proceedings of the 7th Interna-
tional Workshop on Deductive Databases and Logic Programming (DDLP’99),
pages 135–139. Prolog Association of Japan, September 1999.

[Faber et al., 2001] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Experi-
menting with Heuristics for Answer Set Programming. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI)
2001, pages 635–640, Seattle, WA, USA, August 2001. Morgan Kaufmann
Publishers.

[Faber et al., 2004] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recur-
sive aggregates in disjunctive logic programs: Semantics and complexity. In
José Júlio Alferes and João Leite, editors, Proceedings of the 9th European
Conference on Artificial Intelligence (JELIA 2004), number 3229 in Lecture
Notes in AI (LNAI), pages 200–212. Springer Verlag, September 2004.

[Garcia-Molina et al., 2000] Hector Garcia-Molina, Jeffrey D. Ullman, and Jen-
nifer D. Widom. Database System Implementation. Prentice Hall, 2000.

[Gebser et al., 2007a] Martin Gebser, Lengning Liu, Gayathri Namasivayam,
André Neumann, Torsten Schaub, and Mirosław Truszczyński. The first an-
swer set programming system competition. In Chitta Baral, Gerhard Brewka,
and John Schlipf, editors, Logic Programming and Nonmonotonic Reasoning



BIBLIOGRAPHY 111

— 9th International Conference, LPNMR’07, volume 4483 of Lecture Notes in
Computer Science, pages 3–17, Tempe, Arizona, May 2007. Springer Verlag.

[Gebser et al., 2007b] Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo :
A new grounder for answer set programming. In Chitta Baral, Gerhard Brewka,
and John S. Schlipf, editors, Proceedings of the 9th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR ’07), volume
4483, pages 266–271, Tempe, AZ, USA, 2007.

[Gelder et al., 1991] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf.
The Well-Founded Semantics for General Logic Programs. Journal of the
ACM, 38(3):620–650, 1991.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classi-
cal Negation in Logic Programs and Disjunctive Databases. New Generation
Computing, 9:365–385, 1991.

[Gottlob et al., 1999] Georg Gottlob, Nicola Leone, and Helmut Veith. Succinct-
ness as a Source of Expression Complexity. Annals of Pure and Applied Logic,
97(1–3):231–260, 1999.

[Gottlob, 1994] Georg Gottlob. Complexity and Expressive Power of Disjunc-
tive Logic Programming. In M. Bruynooghe, editor, Proceedings of the Inter-
national Logic Programming Symposium (ILPS ’94), pages 23–42, Ithaca NY,
1994. MIT Press.

[Janhunen et al., 2003] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Si-
mons, and Jia-Huai You. Unfolding Partiality and Disjunctions in Stable Model
Semantics. Technical Report cs.AI/0303009, arXiv.org, March 2003.

[Johnson, 1990] David S. Johnson. A Catalog of Complexity Classes. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, chap-
ter 2. Elsevier Science Pub., 1990.

[Knuth, 1994] Donald E. Knuth. The Stanford GraphBase : A Platform for Com-
binatorial Computing. ACM Press, New York, 1994.

[Koch and Leone, 1999] Christoph Koch and Nicola Leone. Stable Model
Checking Made Easy. In Thomas Dean, editor, Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI) 1999, pages
70–75, Stockholm, Sweden, August 1999. Morgan Kaufmann Publishers.



BIBLIOGRAPHY 112

[Leone et al., 1997] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Dis-
junctive Stable Models: Unfounded Sets, Fixpoint Semantics and Computa-
tion. Information and Computation, 135(2):69–112, June 1997.

[Leone et al., 2001] Nicola Leone, Simona Perri, and Francesco Scarcello. Im-
proving ASP Instantiators by Join-Ordering Methods. In Thomas Eiter, Wolf-
gang Faber, and Mirosław Truszczyński, editors, Logic Programming and Non-
monotonic Reasoning — 6th International Conference, LPNMR’01, Vienna,
Austria, September 2001, Proceedings, number 2173 in Lecture Notes in AI
(LNAI). Springer Verlag, September 2001.

[Leone et al., 2005] Nicola Leone, Georg Gottlob, Riccardo Rosati, Thomas
Eiter, Wolfgang Faber, Michael Fink, Gianluigi Greco, Giovambattista Ianni,
Edyta Kałka, Domenico Lembo, Maurizio Lenzerini, Vincenzino Lio, Bartosz
Nowicki, Marco Ruzzi, Witold Staniszkis, and Giorgio Terracina. The IN-
FOMIX System for Advanced Integration of Incomplete and Inconsistent Data.
In Proceedings of the 24th ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2005), pages 915–917, Baltimore, Maryland, USA,
June 2005. ACM Press.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas
Eiter, Georg Gottlob, Simona Perri, and Francesco Scarcello. The DLV System
for Knowledge Representation and Reasoning. ACM Transactions on Compu-
tational Logic, 7(3):499–562, July 2006.

[Lierler and Maratea, 2004] Yuliya Lierler and Marco Maratea. Cmodels-2: SAT-
based Answer Set Solver Enhanced to Non-tight Programs. In Vladimir Lif-
schitz and Ilkka Niemelä, editors, Proceedings of the 7th International Con-
ference on Logic Programming and Non-Monotonic Reasoning (LPNMR-7),
volume 2923 of LNAI, pages 346–350. Springer, January 2004.

[Lierler, 2005] Yuliya Lierler. Disjunctive Answer Set Programming via Satis-
fiability. In Chitta Baral, Gianluigi Greco, Nicola Leone, and Giorgio Ter-
racina, editors, Logic Programming and Nonmonotonic Reasoning — 8th In-
ternational Conference, LPNMR’05, Diamante, Italy, September 2005, Pro-
ceedings, volume 3662 of Lecture Notes in Computer Science, pages 447–451.
Springer Verlag, September 2005.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson Turner. Splitting a
Logic Program. In Pascal Van Hentenryck, editor, Proceedings of the 11th In-



BIBLIOGRAPHY 113

ternational Conference on Logic Programming (ICLP’94), pages 23–37, Santa
Margherita Ligure, Italy, June 1994. MIT Press.

[Lifschitz, 1996] Vladimir Lifschitz. Foundations of Logic Programming. In
G. Brewka, editor, Principles of Knowledge Representation, pages 69–127.
CSLI Publications, Stanford, 1996.

[Lin and Zhao, 2002] Fangzhen Lin and Yuting Zhao. ASSAT: Computing An-
swer Sets of a Logic Program by SAT Solvers. In Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence (AAAI-2002), Edmonton,
Alberta, Canada, 2002. AAAI Press / MIT Press.

[Lobo et al., 1992] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Founda-
tions of Disjunctive Logic Programming. The MIT Press, Cambridge, Mas-
sachusetts, 1992.

[Minker, 1982] Jack Minker. On Indefinite Data Bases and the Closed World
Assumption. In D.W. Loveland, editor, Proceedings 6th Conference on Au-
tomated Deduction (CADE ’82), number 138 in Lecture Notes in Computer
Science, pages 292–308, New York, 1982. Springer.

[Minker, 1994] Jack Minker. Overview of Disjunctive Logic Programming. An-
nals of Mathematics and Artificial Intelligence, 12:1–24, 1994.

[Niemelä and Simons, 1996] Ilkka Niemelä and Patrik Simons. Efficient Imple-
mentation of the Well-founded and Stable Model Semantics. In Michael J. Ma-
her, editor, Proceedings of the 1996 Joint International Conference and Sym-
posium on Logic Programming (ICLP’96), pages 289–303, Bonn, Germany,
September 1996. MIT Press.

[Niemelä and Simons, 1997] Ilkka Niemelä and Patrik Simons. Smodels – An
Implementation of the Stable Model and Well-founded Semantics for Normal
Logic Programs. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors,
Proceedings of the 4th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’97), volume 1265 of Lecture Notes in AI
(LNAI), pages 420–429, Dagstuhl, Germany, July 1997. Springer Verlag.

[Papadimitriou, 1984] Christos H. Papadimitriou. The Complexity of Unique So-
lutions. Journal of the ACM, 31:492–500, 1984.



BIBLIOGRAPHY 114

[Papadimitriou, 1994] Christos H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[Perri et al., 2007] Simona Perri, Francesco Scarcello, Gelsomina Catalano, and
Nicola Leone. Enhancing DLV instantiator by backjumping techniques. Annals
of Mathematics and Artificial Intelligence, 51(2–4):195–228, 2007.

[Perri, 2004] Simona Perri. Disjunctive Logic Programming: Efficient Evalua-
tion and Language Extensions. PhD thesis, University of Calabria, 2004.

[Prosser, 1993] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfac-
tion Problem. Computational Intelligence, 9(3):268–299, 1993.

[Przymusinski, 1988] Theodor C. Przymusinski. On the Declarative Semantics
of Deductive Databases and Logic Programs. In Jack Minker, editor, Founda-
tions of Deductive Databases and Logic Programming, pages 193–216. Mor-
gan Kaufmann Publishers, Inc., 1988.

[Przymusinski, 1991] Theodor C. Przymusinski. Stable Semantics for Disjunc-
tive Programs. New Generation Computing, 9:401–424, 1991.

[Radziszowski, 1994] Stanislaw P. Radziszowski. Small Ramsey Numbers. The
Electronic Journal of Combinatorics, 1, 1994. Revision 9: July 15, 2002.

[Rao et al., 1997] Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, David S.
Warren, and Juliana Freire. XSB: A System for Efficiently Computing Well-
Founded Semantics. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors,
Proceedings of the 4th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR’97), number 1265 in Lecture Notes in AI
(LNAI), pages 2–17, Dagstuhl, Germany, July 1997. Springer Verlag.

[SEP, 1990] SEPIA, Standard ECRC Prolog Integrating Advanced Features) Ver-
sion 3.0, 1990. ECRC (European Computer-Industry Research Centre), Mu-
nich Germany, http://www.clps.de/.

[Shen, 1996] Kish Shen. Overview of DASWAM: Exploitation of Dependent
And-parallelism. Journal of Logic Programming, 29(1–3):245–293, 1996.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Ex-
tending and Implementing the Stable Model Semantics. Artificial Intelligence,
138(1–2):181–234, June 2002.



BIBLIOGRAPHY 115

[Simons, 2000] Patrik Simons. Extending and Implementing the Stable Model
Semantics. PhD thesis, Helsinki University of Technology, Finland, 2000.

[Syrjänen, 2002] Tommi Syrjänen. Lparse 1.0 User’s Manual, 2002. http:

//www.tcs.hut.fi/Software/smodels/lparse.ps.gz.

[Tsang, 1993] Edward P.K. Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993.

[Ullman, 1989] Jeffrey D. Ullman. Principles of Database and Knowledge Base
Systems. Computer Science Press, 1989.

[Wielemaker, 1997 2003] J. Wielemaker. SWI-Prolog 5.1: Reference Manual.
University of Amsterdam, 1997-2003.

[Wittocx et al., 2008] J. Wittocx, M. Mariën, and M. Denecker. Indexing in Pro-
log. In Proceedings of the Twelfth International Workshop on Non-Monotonic
Reasoning, pages 189–198, 2008.

[Wolfinger, 1994] B. Wolfinger, editor. Workshop: Disjunctive Logic Program-
ming and Disjunctive Databases, Berlin, August 1994. German Society for
Computer Science (GI), Springer. 13th IFIP World Computer Congress, Ham-
burg, Germany.


