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Sommario

In molti scenari scientifici e di business vengono generate e memorizzate a velocità crescenti
grandi quantità di dati su database centralizzati o distribuiti. Ogni giorno, in tutto il mondo, ven-
gono eseguiti innumerevoli esperimenti scientifici che generaro petabyte di dati, ed un numero
crescente di applicazioni di e-commerce e di e-business memorizzano e gestiscono enormi da-
tabase relativi a prodotti, clienti e transazioni. Questa crescita esplosiva dei dati ha evidenziato
l’urgenza di sviluppare nuove tecniche e strumenti per estrarre nuova conoscenza e informazioni
utili da questa enorme mole di dati in modo intelligente e automatico.

In questo contesto, la Programmazione Logica Disgiuntica (DLP) con semantica dei mo-
delli stabili, indicata anche con il termine Answer Set Programming (ASP), ha ricevuto grande
interesse negli ultimi anni perchè rappresenta un potente metodo dichiarativo per i processi di
Knowledge Representation and Reasoning (KRR) ed è fondamentale per eseguire un’analisi effi-
ciente dei dati. Il successo di questa tecnica è dimostrato dall’ampio numero di applicazioni reali
che la utilizzano, le quali includono, tra le altre, integrazione di informazioni, fraud detection,
diagnostica e planning, motivando l’implementazione di numerosi sistemi che supportano DLP.

Il linguaggio DLP è molto espressivo e permette di modellare problemi complessi. Tuttavia,
nonostante l’elevata espressività di questo linguaggio, gli attuali sistemi DLP non supportano
in modo adeguato alcuni scenari reali. In particolare, le limitazioni degli attuali sistemi DLP
possono essere riassunte in quattro problemi principali [62]: (i) i sistemi non sono in grado di
gestire applicazioni data intensive, in quanto lavorano esclusivamente in memoria centrale; (ii)
forniscono una limitata interoperabilità con i DBMS esterni; (iii) non sono idonei a modellare
problemi intrinsecamente procedurali; (iv) non possono effettuare reasoning su strutture dati
ricorsive come i documenti XML/HTML.

Il sistema DLVDB [41] è stato ideato e sviluppato per superare le limitazioni sopra elencate,
incrementando la cooperazione tra i sistemi ASP e i database. DLVDB garantisce miglioramenti
sostanziali sia nella valutazione dei programmi logici, sia nella gestione di dati di input ed output
distribuiti su diversi database. Inoltre, DLVDB presenta funzionalità avanzate che garantiscono la
sua efficienza e usabilità in applicazioni reali. Tali funzionalità includono:

• Pieno supporto per il datalog disgiuntivo con negazione non stratificata e funzioni aggre-
gate.

• Una strategia di valutazione che esegue la maggior parte delle attività di reasoning in
memoria secondaria, permettendo in tal modo di eseguire reasoning in applicazioni data
intensive senza degradare le prestazioni del sistema.

• Primitive per integrare i dati provenienti da database distribuiti, permettendo di specificare
facilmente quali dati devono essere considerati di input e quali di output per il programma.
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Nella sua implementazione iniziale, DLVDB non supportava predicati esterni, liste, e sim-
boli di funzione, che sono di fondamentale importanza per potenziare le capacità di KRR dei
linguaggi DLP. In particolare, i simboli di funzione e le liste permettono l’aggregazione di dati
atomici, la manipolazione di strutture dati complesse e la generazione di nuovi simboli, mentre i
predicati esterni permettono di isolare porzioni procedurali di codice per invocarle all’interno di
programmi logici dichiarativi. Il principale obiettivo di questa tesi è estendere il sistema DLVDB

in modo che supporti i costrutti del linguaggio sopra menzionati, al fine di incrementare il suo
potere espressivo e la sua efficienza. Fornendo supporto a predicati esterni, liste e simboli di
funzione, DLVDB permette di effettuare reasoning direttamente su strutture dati ricorsive, come
i documenti semi-strutturati. Questa è una caratteristica molto importante, sia per applicazioni
standard, sia per applicazioni emergenti come quelle per la manipolazione di documenti XML.

In sintesi, i contributi di questo lavoro di tesi possono essere riassunti come segue:

• Il sistema DLVDB è stato esteso per fornire pieno supporto ai predicati esterni. Poichè
DLVDB trasforma i programmi logici in istruzioni SQL per abilitare la loro elaborazione
su database, abbiamo implementato i predicati esterni attraverso chiamate a stored function
di database. Questa caratteristica migliora significativamente le capacità di elaborazione di
DLVDB quando il programma include sotto-task intrinsecamente procedurali che sarebbe
inefficiente risolvere in modo dichiarativo.

• Un’altra estensione di DLVDB è stata realizzata al fine di supportare i termini lista. Questi
sono stati gestiti attraverso una riscrittura delle regole logiche usando opportuni predicati
esterni. In particolare, i programmi contenenti termini lista sono automaticamente riscritti
in modo che contengano soltanto termini atomici e predicati esterni. La possibilità di usare
liste permette ai programmi di effettuare un reasoning efficiente su strutture dati ricorsive,
caratteristica che è richiesta da molte applicazioni reali.

• Una terza estensione al sistema DLVDB è stata realizzata per supportare programmi con
simboli di funzione. In modo simile ai termini lista, le regole sono riscritte sostituendo
ogni definizione di termine di funzione con chiamate a predicati esterni. Il supporto ai
termini di funzione rappresenta un importante valore aggiunto al sistema, in quanto questi
costituiscono un modo conveniente per generare domini e oggetti, permettendo una più
naturale rappresentazione di problemi in questi domini.

• E’ stata realizzata un’ampia libreria di stored function di database per la manipolazione
di liste, in modo da facilitare l’uso dei termini lista in DLVDB attraverso l’uso di funzioni
esterne. Ogni funzione è stata implementata per ciascuno dei DBMS attualmente usati
come possibili database di lavoro per DLVDB , ovvero SQLServer, PostgreSQL, MySQL e
Oracle.

• Infine, è stato eseguito un ampio insieme di esperimenti per valutare le estensioni svilup-
pate nel sistema DLVDB . Tutte e tre le estensioni migliorano in modo significativo l’espres-
sività del linguaggio supportato. I risultati sperimentali mostrano inoltre che tali estensioni
riducono in modo significativo i tempi di esecuzione rispetto a programmi DLVDB equiva-
lenti che non le sfruttano.

La presente tesi è organizzata come segue. Il Capitolo 2 presenta l’ASP basata su un linguag-
gio DLP esteso con aggregati, predicati esterni, termini di funzione e termini lista. Il capitolo
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definisce prima la sintassi di tale linguaggio e la semantica ad esso associata; successivamente,
esso illustra l’uso di ASP come formalismo per il KRR.

Il Capitolo 3 descrive il sistema DLVDB . Il capitolo introduce dapprima gli obiettivi e
l’architettura del sistema, quindi si concentra sulle direttive ausiliarie che l’utente può specifi-
care per permettere l’interazione fra DLVDB e i database esterni. Infine, descrive la strategia di
valutazione delle regole DLP e la loro traduzione in istruzioni SQL.

Il Capitolo 4 analizza e confronta i più recenti sistemi ASP che supportano negazione non
stratificata e altri costrutti avanzati come la disgiunzione e varie forme di constraint. I sistemi
ASP sono comparati sulla base di due aspetti principali: l’espressività del linguaggio supportato
e l’efficienza nel rispondere ad una query.

Il Capitolo 5 descrive le estensioni che sono state implementate per supportare i predicati
esterni, i termini lista e i termini di funzione in DLVDB . Il capitolo fornisce dapprima le nozioni
di base delle stored function che sono usate nel nostro approccio per implementare i predicati
esterni in DLVDB . Successivamente, vengono descritte in dettaglio le strategie di valutazione
usate per supportare i predicati esterni, le liste, e i termini di funzione.

Il Capitolo 6 presenta una valutazione sperimentale delle estensioni sviluppate. Il capitolo
fornisce un insieme di test case per valutare i benefici, in termini di prestazioni ed espressività,
derivanti dall’uso di tali estensioni (supporto a predicati esterni, liste e termini di funzione) in
DLVDB .

Infine, il Capitolo 7 conclude la tesi riassumendo i principali risultati ottenuti e delineando
possibili sviluppi futuri, mentre l’Appendice A include il codice sorgente della libreria imple-
mentata per la manipolazione di liste.
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Chapter 1

Introduction

In many scientific and business scenarios, large amounts of data are generated and stored at
increasing speed in local or distributed databases. Scientific experiments generating petabytes
of data are daily performed in many laboratories all around the world. A growing number of e-
commerce and e-business applications store and manage huge databases about products, clients
and transactions. This explosive growth of data has raised an urgent need for new techniques and
tools to intelligently and automatically infer useful information and knowledge from available
data.

In this context, Disjunctive Logic Programming (DLP) under the answer set semantics, often
referred to as Answer Set Programming (ASP), has gained lot of interest during the last few years,
since it represents a powerful method for declarative Knowledge Representation and Reasoning
(KRR) tasks, which are critical to perform effective data analysis. The success of this method is
demonstrated by the wide number of real-word applications that include, among others, informa-
tion integration, frauds detection, diagnostics and planning, also motivating the implementation
of several systems supporting DLP.

The DLP language is very expressive and allows for modeling complex problems. However,
despite the high expressiveness of this language, current DLP systems do not cope well with real
world scenarios. In particular, the main limitations of current DLP systems can be summarized in
four main issues [62]: (i) they are not capable of handling data intensive applications, since they
work in main memory only; (ii) they provide a limited interoperability with external DBMSs;
(iii) they are not well suited for modelling inherently procedural problems; (iv) they cannot
reason about recursive data structures such as XML/HTML documents.

The DLVDB system [41] has been conceived to overcome the above-mentioned limitations,
by increasing the cooperation between ASP systems and databases. DLVDB allows substantial
improvements in both the evaluation of logic programs and the management of input and output
data distributed on several databases. Moreover, DLVDB presents enhanced features to improve
its efficiency and usability for an effective exploitation of DLP in real-world scenarios. These
features include:

• Full support to disjunctive datalog with unstratified negation, and aggregate functions.

• An evaluation strategy devoted to carry out as much as possible of the reasoning tasks
in mass memory, thus enabling complex reasonings in data intensive applications without
degrading performances.
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Chapter 1. Introduction

• Primitives to integrate data from different databases, in order to easily specify which data
are to be considered as input or as output for the program.

In its early implementation, DLVDB did not support external predicates, list terms, and func-
tion symbols, which are of fundamental importance to enhance knowledge representation and
reasoning capabilities of a DLP language. In particular, function symbols and lists terms allow
the aggregation of atomic data, the manipulation of complex data structures and the generation
of new symbols, while external predicates allow the isolation of procedural code units for calling
them within declarative logic programs. The main goal of this thesis is to extend the DLVDB sys-
tem to let it support the above mentioned language constructs, in order to improve its knowledge
modelling power. By providing support to external predicates, list terms, and functional symbols,
DLVDB allows to directly reason about recursive data structures, such as lists, semi-structured
documents, and so on. This is a very important feature, both for standard knowledge-based tasks
and for emerging applications, such as those manipulating XML documents.

The main results of this thesis can be summarized as follows:

• The DLVDB system has been extended to provide full support to external predicates. Since
DLVDB transforms logic programs into SQL statements to enable database-oriented pro-
cessing, we implemented external predicates by calls to database stored functions. This
feature significantly improves the processing capabilities of DLVDB when the program in-
cludes inherently procedural subtasks that would be inefficiently solved in a declarative
way.

• Another extension to DLVDB has been designed and implemented to support list terms.
We handle list terms through a rewriting of the rules using suitable external predicates. In
particular, programs containing list terms are automatically rewritten to contain only terms
and external predicates. The possibility to use lists allows programs to efficiently reason
about recursive data structures, a feature that is required by many real-world applications.

• A third extension to the DLVDB system has been realized to support programs with func-
tional symbols. Similarly to list terms, rules are rewritten by replacing each functional
term definition with calls to external predicates. Support to functional terms represents an
important added value to DLVDB , since they are a very convenient means for generating
domains and objects, allowing a more natural representation of problems in such domains.

• A rich library of database stored functions for lists manipulation has been realized to facil-
itate the use of list terms in DLVDB through the use of external functions. Each function
has been implemented for the DBMSs used as working databases for DLVDB , namely
SQLServer, PostgreSQL, MySQL and Oracle.

• Finally, a wide set of experiments has been performed to evaluate our extensions to the
DLVDB system. All three extensions significantly improve the expressiveness of the sup-
ported language. The experimental results show that such extensions also significantly
reduce the execution times as compared to DLVDB programs that do not support them.

The remainder of this chapter is organized as follows. Chapter 2 discusses the Answer Set
Programming (ASP) framework based on a DLP language extended with aggregates, external
predicates, functional terms and list terms. The chapter first defines the syntax of this language
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Chapter 1. Introduction

and its associated semantics, i.e., the answer set semantics. Then, it illustrates the usage of ASP
as a formalism for knowledge representation and reasoning.

Chapter 3 describes the DLVDB system. The chapter starts by introducing objectives and the
architecture of DLVDB . Then, it focuses on the auxiliary directives the user can specify to let
DLVDB interact with external databases. Finally, the chapter describes the evaluation strategy of
DLP rules and their translation into SQL statements.

Chapter 4 analyzes and compares the most recent ASP systems that support unstratified nega-
tion and other advanced constructs like disjunction, and various forms of constraints. The ASP
systems are compared on the basis of two main aspects: the expressiveness of the supported lan-
guage (e.g., its ability to express views, recursive rules, etc.), and the efficiency to answer a query
(i.e., the quantity of data to be analyzed for answering a query, and the intrinsic complexity of
the query itself).

Chapter 5 describes the extensions that have been implemented to support external predicates,
list terms, and functional terms in DLVDB . The chapter starts by providing the basic notions of
database stored functions, which are used in our approach to implement the external predicates
in DLVDB . Then, the evaluation strategies used for supporting external predicates, lists, and
functional terms are described in detail.

Chapter 6 presents an experimental evaluation of our extensions to the DLVDB system. The
chapter provides a set of test cases to evaluate the benefits, in terms of performance and ex-
pressiveness, deriving from the use of our extensions (support to external predicates, lists, and
functional terms) in DLVDB .

Finally, Chapter 7 concludes the thesis by summarizing the main results achieved and by
outlining future work, while Appendix A includes the source code of the implemented library for
lists manipulations.
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Chapter 2

Disjunctive Datalog

Disjunctive Logic Programming (DLP) under the answer set semantics has gained lot of interest
during the last years, since it represents a powerful and effective method for declarative knowl-
edge representation and reasoning. The success of this method is demonstrated by the wide
number of real-word applications that include, among others, information integration, frauds
detection, and software configuration, also motivating the implementation of several systems
supporting DLP.

This chapter presents the Answer Set Programming (ASP) framework based on a DLP lan-
guage extended with aggregates, external predicates, functional terms and list terms. We assume
that the language introduced here will be used to write finite-domain programs, since in this way
termination is a priori guaranteed [8].

In the remainder of this chapter, we first define the syntax of this language and its associated
semantics, i.e., the answer set semantics. Then, we illustrate the usage of ASP as a formalism for
knowledge representation and reasoning.

2.1 Syntax

In this section we define the syntax of the extended DLP language following the Prolog’s conven-
tions. Based on such conventions, strings starting with uppercase letters denote variables, while
those starting with lower case letters denote constants.

A term is either a simple term or a complex term. A simple term is either a constant or a
variable. A complex term is either a functional term or a list term. If t1, . . . , tn are terms, then
complex terms are defined as follows.

• A functional term is defined as f(t1, . . . , tn), where f is a function symbol (also called
functor) of arity n.

• A list term can be defined using one of following forms:

– [t1, . . . , tn] where t1, . . . , tn are terms;

– [h|t] where h (the head of the list) is a term, and t (the tail of the list) is a list term.

If t1, . . . , tn are terms, then p(t1, . . . , tn) is an atom. An atom can be defined as: an ordinary
atom, an aggregate atom or an external atom. An ordinary atom is an expression p(t1, . . .,tn),
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where p is a predicate of arity n and t1, . . . , tn are terms; external and aggregate atom names
are conventionally preceded by “#”. Names of external atoms are often referred to as external
predicates. External predicates introduce function calls in the program; we assume, by conven-
tion, that only the last variable O of an external predicate #f(X1, . . . , Xn, O) is considered as
an output parameter, while all the other variables must be intended as input for f . An example
of external predicate could be #concat(X, Y, Z), which takes two strings X and Y as input and
returns a string Z corresponding to the concatenation of X and Y. The following special external
predicates are reserved to list manipulation:

• #head(L,H), which receives a list L and returns its head H;

• #tail(L,T), which receives a list L and returns its tail T .

• #last(L,E), which receives a list L and returns its last element E;

• #memberNth(L,N,E), which receives a list L and a index N and returns the element E at
the specified position N .

The language also supports a set of built-in predicates such as the comparative predicates
equality, less-than, and greater-than (=, <, >), as well as arithmetic predicates (like addition or
multiplication). For details, refer to [23].

A set term is either a symbolic set or a ground set. A symbolic set is a pair {Vars :Conj},
where Vars is a list of variables and Conj is a conjunction of standard atoms.1 A ground set is
a set of pairs of the form ⟨t :Conj ⟩, where t is a list of constants and Conj is a ground (variable
free) conjunction of standard atoms.

An aggregate function is of the form f(S), where S is a set term, and f is an aggregate func-
tion symbol. Intuitively, an aggregate function can be thought of as a (possibly partial) function
mapping multisets of constants to a constant.

An aggregate atom is f(S) ≺ T , where f(S) is an aggregate function, ≺∈ {=, <, ≤, >,≥}
is a predefined comparison operator, and T is a term (variable or constant) referred to as guard.

Example 2.1.1 The following are aggregate atoms, where the latter contains a ground set and
could be a ground instance of the former:

#max{Z : r(Z), a(Z, V )} > Y
#max{⟨2 : r(2), a(2, k)⟩, ⟨2 : r(2), a(2, c)⟩} > 1

A literal l is of the form p or ¬p where p is an atom; in the first case l is a positive literal and
in the second case l is a negative literal.

A negation as failure (NAF) literal ℓ is of the form l or not l, where l is a literal; in the former
case ℓ is positive, and in the latter case negative. Note that an external atom can be negated with
negation as failure, and, in this case, its variables must be safe in ordinary way.

Given a literal l, its complementary literal ¬l is defined as ¬p if l = p and p if l = ¬p. A
set L of literals is said to be consistent if, for every literal l ∈ L, its complementary literal is not
contained in L.

Rules accepted by the language are disjunctive rules. A disjunctive rule r is a formula
1Intuitively, a symbolic set {X:a(X,Y ), p(Y )} stands for the set of X-values making a(X,Y ), p(Y ) true, i.e.,

{X |∃Y s.t . a(X,Y ), p(Y ) is true}.
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a1 ∨ · · · ∨ an :- b1, · · · , bk, not bk+1, · · · , not bm. (2.1)

where a1, . . . , an are standard atoms, b1, · · · , bm are (ordinary, aggregate or external) atoms,
n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨ · · · ∨ an is called the head of r, while the conjunction
b1, ..., bk, not bk+1, ..., not bm is called the body of r. A rule without head literals (i.e. n = 0)
is usually referred to as an integrity constraint. A rule having exactly one head literal (i.e. n = 1)
is called a normal rule. If the body is empty (i.e. k = m = 0), it is called a fact, and the “:- ”
sign is usually omitted.

If r is a rule of form (2.1), then H(r) = {a1, . . ., an} is the set of the literals in the head
and B(r) = B+(r) ∪ B−(r) is the set of the body literals, where B+(r) (the positive body) is
{b1,. . . , bk} and B−(r) (the negative body) is {bk+1, . . . , bm}.

A disjunctive datalog program (alternatively, disjunctive logic program, disjunctive deductive
database) P is a finite set of rules. A not-free program P (i.e., such that ∀r ∈ P : B−(r) = ∅)
is called positive,2 and a v-free program P (i.e., such that ∀r ∈ P : |H(r)| ≤ 1) is called datalog
program (or normal logic program, deductive database).

A term (an atom, a rule, a program, etc.) is called ground, if it does not contain variables. A
ground program is also called a propositional program.

A global variable of a rule r is a variable appearing in a standard or external atom of r; all
other variables are local variables.

A rule r is safe if the following conditions hold: (i) each global variable of r appears in a
positive standard literal in the body of r or as output variable of an positive external atom; (ii)
each local variable of r appearing in a symbolic set {Vars : Conj} appears in an atom of Conj ;
(iii) each guard of an aggregate atom of r is a constant or a global variable. For instance, the
following rules are safe:

p(X, f(Y, Z)):- q(Y ), t(X), z(Z), not s(X).
H(S):-number(N),#sqr(N,S).
H(S1):-number(N),#fatt(N,S),#sqr(S, S1).

The following are, vice versa, unsafe:

p(X, f(Y, Z)):- q(Y ), not s(X).
H(S):-number(S),#sqr(N,S).
H(S1):-number(N), not #fatt(N,S),#sqr(S, S1).

A program P is safe if all r ∈ P are safe. In the following we assume that DLP programs are
safe.

Let the level mapping of a program P be a function || || from the predicates in P to finite
ordinals. A DLP program P is called stratifiednot [3, 56], if there is a level mapping || ||s of P
such that, for every rule r:

1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||s ≤ ||l′||s;

2. For any l ∈ B−(r), and for any l′ ∈ H(r), ||l||s < ||l′||s;

3. For any l, l′ ∈ H(r), ||l||s = ||l′||s.

2In positive programs negation as failure (not) does not occur, while strong negation (¬) may be present.
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A DLP program P is called stratifiedaggr [15], if there is a level mapping || ||a of P such
that, for every rule r:

1. If l appears in the head of r, and l′ appears in an aggregate atom in the body of r, then
||l′||a < ||l||a; and

2. If l appears in the head of r, and l′ occurs in a standard atom in the body of r, then
||l′||a ≤ ||l||a.

3. If both l and l′ appear in the head of r, then ||l′||a = ||l||a.

Example 2.1.2 Consider the program consisting of a set of facts for predicates a and b, plus the
following two rules:

q(X):- p(X),#count{Y : a(Y,X), b(X)} ≤ 2.
p(X):- q(X), b(X).

The program is stratifiedaggr, as the level mapping ||a|| = ||b|| = 1, ||p|| = ||q|| = 2 satisfies
the required conditions. If we add the rule b(X):- p(X), then no level-mapping exists and the
program becomes not stratifiedaggr.

Intuitively, the property stratifiedaggr forbids recursion through aggregates.

2.2 Semantics

The most widely accepted semantics for DLP programs is based on the notions of answer-set,
proposed in [30] as a generalization of the stable model concept [29]. Given a DLP program P ,
let:

1. UP denote the set of constants appearing in P(Herbrand Universe);

2. BP denote the set of standard atoms constructible from the (standard) predicates of P with
constants in UP (Herbrand Literal Base).

Given a set X , let 2X denote the set of all multisets over elements from X . Without loss of
generality, we assume that aggregate functions map to I (the set of integers).

A substitution is a mapping from a set of variables V to UP : σ : V → UP . Let distinguish
two types of substitution:

1. global substitution for a rule r is a substitution from the set of global variables of r to UP ;

2. local substitution for a symbolic set S is a substitution from the set of local variables of S
to UP .

Example 2.2.1 Let σ = [X/a, Y/b, Z/c] be a substitution that replaces every instance of vari-
ables X, Y, Z with constants a, b, c, respectively. By applying σ to the following rule:

r : p(X,Y ) : .q(Y,Z), t(X).

the following global substitution is obtained:

σ(r) : p(a, b) : .q(b, c), t(a).

7
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Given a symbolic set without global variables S = {Vars : Conj}, the instantiation of S is
the following ground set of pairs inst(S): {⟨γ(Vars) : γ(Conj )⟩ | γ is a local substitution for
S}.

A ground instance of a rule r is obtained in two steps: (i) a global substitution σ for r is first
applied over r; (ii) every symbolic set S in σ(r) is replaced by its instantiation inst(S). The
instantiation Ground(P) of a program P is the set of all possible instances of the rules of P .

Example 2.2.2 Consider the following program P1:

q(1) ∨ p(2, 2).
q(2) ∨ p(2, 1).
t(X):- q(X),#sum{Y : p(X,Y )} > 1.
l([Z,Z]):- q(Z).
f(g(W )):- q(W ).

The instantiation Ground(P1) is the following:

q(1) ∨ p(2, 2).
t(1):- q(1),#sum{⟨1:p(1, 1)⟩, ⟨2:p(1, 2)⟩}>1.
l([1, 1]):- q(1).
f(g(1)):- q(1).
q(2) ∨ p(2, 1).
t(2):- q(2),#sum{⟨1:p(2, 1)⟩, ⟨2:p(2, 2)⟩}>1.
l([2, 2]):- q(2).
f(g(2)):- q(2).

An interpretation I for a DLP program P is a consistent set of standard ground atoms, that
is I ⊆ BP . A positive literal A is true w.r.t. I if A ∈ I , it is false otherwise. A negative literal
not A is true w.r.t. I , if A ̸∈ I , it is false otherwise. An interpretation also provides a meaning
for aggregate literals.

Given an interpretation I , a standard ground conjunction is true (resp. false) w.r.t I if all its
literals are true. The meaning of a set, an aggregate function, and an aggregate atom under an
interpretation, is a multiset, a value, and a truth-value, respectively. Given an aggregate function
f(S), the valuation I(S) of S w.r.t. I is the multiset of the first constant of the elements in S
whose conjunction is true w.r.t. I .

More precisely, let I(S) denote the multiset [t1 | ⟨t1, ..., tn :Conj ⟩ ∈S∧ Conj is true w.r.t.
I ]. The valuation I(f(S)) of an aggregate function f(S) w.r.t. I is the result of the application
of f on I(S). If the multiset I(S) is not in the domain of f , I(f(S)) = ⊥ (where ⊥ is a fixed
symbol not occurring in P).

An instantiated aggregate atom A = f(S) ≺ k is true w.r.t. I if: (i) I(f(S)) ̸= ⊥, and, (ii)
I(f(S)) ≺ k holds; otherwise, A is false. An instantiated aggregate literal notA = notf(S) ≺ k
is true w.r.t. I if: (i) I(f(S)) ̸= ⊥, and, (ii) I(f(S)) ≺ k does not hold; otherwise, A is false.

Given an interpretation I , a rule r is satisfied w.r.t. I if some head atom is true w.r.t. I when-
ever all body literals are true w.r.t. I . An interpretation M is a model of a DLP program P if all
r ∈ Ground(P) are satisfied w.r.t. M . A model M for P is (subset) minimal if no model N for
P exists such that N ⊂ M .

In the following, a generalization of the Gelfond-Lifschitz transformation to programs with
aggregates is provided, as it is defined in [22].
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Definition 2.2.3 [22] Given a ground DLP program P and a total interpretation I , let PI denote
the transformed program obtained from P by deleting all rules in which a body literal is false
w.r.t. I . I is an answer set of a program P if it is a minimal model of Ground(P)I .

The set of all answer sets for P is denoted by AS(P)

Example 2.2.4 Consider the following two programs:

P1 : {p(a):-#count{X : p(X)} > 0.}
P2 : {p(a):-#count{X : p(X)} < 1.}

Ground(P1) = {p(a):-#count{⟨a : p(a)⟩} > 0.} and Ground(P2) = {p(a):-#count{⟨a :
p(a)⟩} < 1.}; consider also interpretations I1 = {p(a)} and I2 = ∅. Then, Ground(P1)

I1 =
Ground(P1), Ground(P1)

I2 = ∅, and Ground(P2)
I1 = ∅, Ground(P2)

I2 = Ground(P2)
hold.

I2 is the only answer set of P1 (because I1 is not a minimal model of Ground(P1)
I1), whereas

P2 admits no answer set (I1 is not a minimal model of Ground(P2)
I1 , and I2 is not a model of

Ground(P2) = Ground(P2)
I2).

Note that any answer set A of P is also a model of P because Ground(P)A ⊆ Ground(P),
and rules in Ground(P)−Ground(P)A are satisfied w.r.t. A.

List terms are managed by using a set of function calls. Such functions are used to rewrite
programs containing list terms, in order to let them contain only terms and function calls. For
example, the rule q(H):- dom(H), list(T), list([H|T]). is translated into q(H):-dom(H), list(T),
list(L), #head(L,H), #tail(L,T).

As mentioned in Section 2.1, given an external atom #f(X1, . . . , Xn, O) used in a rule r,
only the last variable O is used as an output parameter, while all the other variables are intended
as input for f ; this corresponds to the function call f(X1, . . . , Xn) = O.

The handling of external atoms is carried out during the generation of the Ground(P)
through the function calls introduced above. To illustrate this process, let us consider the fol-
lowing program:

person(id1, ”John”, ”Smith”).
mergedNames(ID,N):- person(ID, FN,LN),#concat(FN,LN,N).

The corresponding ground program is:

person(id1, ”John”, ”Smith”).
mergedNames(id1, ”JohnSmith”):- person(id1, ”John”, ”Smith”).

where the second term of predicate mergedNames has been produced by calling function
#concat.

In the example above, the function call introduces new constant values (i.e., ”John Smith”)
in the program, which can generate an infinite domain. To avoid the generation of infinite-sized
answer sets, the programs must be value-invention restricted (cfr. [7]), in other words, new values
possibly introduced by external atoms must not propagate through recursion.

9



Chapter 2. Disjunctive Datalog

2.3 Knowledge representation and reasoning

Answer Set Programming has been proved to be a very effective formalism for Knowledge Rep-
resentation and Reasoning (KRR). It can be used to encode problems in a highly declarative
fashion, following the Guess/Check/Optimize (“Guess and Check”) methodology presented in
[17]. In this section, we first describe the Guess/Check/Optimize technique and we then illustrate
how to apply it on a number of examples. Finally, we show how the modelling capability of ASP
is significatively enhanced by supporting function symbols.

2.3.1 The guess and check programming methodology

Several problems, including problems of comparatively high computational complexity (ΣP
2 -

complete and ∆P
3 -complete problems), can be solved in a natural way by using this declarative

programming technique. The power of disjunctive rules allows for expressing problems which
are more complex than NP, and the (optional) separation of a fixed, non-ground program from an
input database allows to do so in a uniform way over varying instances.

Given a set FI of facts that specify an instance I of some problem P, a Guess/Check/Optimize
program Pfor P consists of the following two main parts:

Guessing Part The guessing part G ⊆ P of the program defines the search space, such that
answer sets of G ∪ FI represent “solution candidates” for I .

Checking Part The (optional) checking part C ⊆ P of the program filters the solution candidates
in such a way that the answer sets of G ∪ C ∪FI represent the admissible solutions for the
problem instance I .

Without imposing restrictions on which rules G and C may contain, in the extremal case we
might set G to the full program and let C be empty, i.e., checking is completely integrated into the
guessing part such that solution candidates are always solutions. Also, in general, the generation
of the search space may be guarded by some rules, and such rules might be considered more
appropriately placed in the guessing part than in the checking part. We do not pursue this issue
further here, and thus also refrain from giving a formal definition of how to separate a program
into a guessing and a checking part.

In general, both G and C may be arbitrary collections of rules, and it depends on the complex-
ity of the problem at hand which kinds of rules are needed to realize these parts (in particular, the
checking part).

For problems with complexity in NP, often a natural Guess/Check/Optimize program can be
designed with the two parts clearly separated into the following simple layered structure:

• The guessing part G consists of disjunctive rules that “guess” a solution candidate S.

• The checking part C consists of integrity constraints that check the admissibility of S.

Each layer may have further auxiliary predicates, for local computations.
The disjunctive rules define the search space in which rule applications are branching points,

while the integrity constraints prune illegal branches.
It is worth remarking that the Guess/Check/Optimize programming methodology has also

positive implications from the Software Engineering viewpoint. Indeed, the modular program
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structure in Guess/Check/Optimize allows for developing programs incrementally, which is help-
ful to simplify testing and debugging. One can start by writing the guessing part G and testing
that G ∪FI correctly defines the search space. Then, one adds the checking part and verifies that
the answer sets of G ∪ C ∪ FI encode the admissible solutions.

2.3.2 Applications of the guess and check technique

In this section, we illustrate the declarative programming methodology described in Section 2.3.1
by showing its application on a number of concrete examples.

Let us consider a classical NP-complete problem in graph theory, namely Hamiltonian Path.

Definition 2.3.1 [HAMPATH] Given a directed graph G = (V,E) and a node a ∈ V of this
graph, does there exist a path in G starting at a and passing through each node in V exactly
once?

Suppose that the graph G is specified by using facts over predicates node (unary) and arc
(binary), and the starting node a is specified by the predicate start (unary). Then, the following
Guess/Check/Optimize program Php solves the problem HAMPATH:

inPath(X,Y ) ∨ outPath(X,Y ):- start(X), arc(X,Y ).
inPath(X,Y ) ∨ outPath(X,Y ):- reached(X), arc(X,Y ).
reached(X):- inPath(Y,X). (aux.)

 Guess

:- inPath(X,Y ), inPath(X,Y 1), Y <> Y 1.
:- inPath(X,Y ), inPath(X1, Y ), X <> X1.
:-node(X),not reached(X),not start(X).

 Check

The two disjunctive rules guess a subset S of the arcs to be in the path, while the rest of the
program checks whether S constitutes a Hamiltonian Path. Here, an auxiliary predicate reached
is used, which is associated with the guessed predicate inPath using the last rule. Note that
reached is completely determined by the guess for inPath, and no further guessing is needed.

In turn, through the second rule, the predicate reached influences the guess of inPath, which
is made somehow inductively. Initially, a guess on an arc leaving the starting node is made by the
first rule, followed by repeated guesses of arcs leaving from reached nodes by the second rule,
until all reached nodes have been handled.

In the checking part, the first two constraints ensure that the set of arcs S selected by inPath
meets the following requirements, which any Hamiltonian Path must satisfy: (i) there must not
be two arcs starting at the same node, and (ii) there must not be two arcs ending in the same node.
The third constraint enforces that all nodes in the graph are reached from the starting node in the
subgraph induced by S.

A less sophisticated encoding can be obtained by replacing the guessing part with the single
rule

inPath(X,Y ) ∨ outPath(X,Y ):- arc(X,Y ).

that guesses for each arc whether it is in the path and by defining the predicate reached in the
checking part by rules

reached(X):- start(X).
reached(X):- reached(Y ), inPath(Y,X).

11
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However, this encoding is less preferable from a computational point of view, because it leads to
a larger search space.

It is easy to see that any set of arcs S which satisfies all three constraints must contain the
arcs of a path v0, v1, . . . , vk in G that starts at node v0 = a, and passes through distinct nodes
until no further node is left, or it arrives at the starting node a again. In the latter case, this means
that the path is in fact a Hamiltonian Cycle (from which a Hamiltonian path can be immediately
computed, by dropping the last arc).

Thus, given a set of facts F for node, arc, and start, the program Php ∪ F has an answer
set if and only if the corresponding graph has a Hamiltonian Path. The above program correctly
encodes the decision problem of deciding whether a given graph admits a Hamiltonian Path or
not.

This encoding is very flexible, and can be easily adapted to solve the search problems Hamil-
tonian Path and Hamiltonian Cycle (where the result has to be a tour, i.e., a closed path). If we
want to be sure that the computed result is an open path (i.e., it is not a cycle), we can easily
impose openness by adding a further constraint :- start(Y ), inPath( , Y ). to the program (like
in Prolog, the symbol ‘ ’ stands for an anonymous variable whose value is of no interest). Then,
the set S of selected arcs in any answer set of Php ∪ F constitutes a Hamiltonian Path starting at
a. If, on the other hand, we want to compute the Hamiltonian cycles, then we just have to strip
off the literal not start(X) from the last constraint of the program.

In the previous examples, we have seen how a search problem can be encoded in a DLP
program whose answer sets correspond to the problem solutions. We next see another use of the
Guess/Check/Optimize programming technique. We build a DLP program whose answer sets
witness that a property does not hold, i.e., the property at hand holds if and only if the DLP
program has no answer set. Such a programming scheme is useful to prove the validity of co-NP
or ΠP

2 properties. We next apply the above programming scheme to a well-known problem of
number and graph theory.

Definition 2.3.2 [RAMSEY] The Ramsey number R(k,m) is the least integer n such that, no
matter how we color the arcs of the complete undirected graph (clique) with n nodes using two
colors, say red and blue, there is a red clique with k nodes (a red k-clique) or a blue clique with
m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [57]. We next show a program
Pramsey that allows us to decide whether a given integer n is not the Ramsey Number R(3, 4).
By varying the input number n, we can determine R(3, 4), as described below. Let F be the
collection of facts for input predicates node and arc encoding a complete graph with n nodes.
Pramsey is the following Guess/Check/Optimize program:

blue(X,Y ) ∨ red(X,Y ):- arc(X,Y ).
}

Guess

:- red(X,Y ), red(X,Z), red(Y, Z).

:- blue(X,Y ), blue(X,Z), blue(Y, Z),
blue(X,W ), blue(Y,W ), blue(Z,W ).

 Check

Intuitively, the disjunctive rule guesses a color for each edge. The first constraint eliminates the
colorings containing a red clique (i.e., a complete graph) with 3 nodes, and the second constraint
eliminates the colorings containing a blue clique with 4 nodes. The program Pramsey ∪ F has
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an answer set if and only if there is a coloring of the edges of the complete graph on n nodes
containing no red clique of size 3 and no blue clique of size 4. Thus, if there is an answer set
for a particular n, then n is not R(3, 4), that is, n < R(3, 4). On the other hand, if Pramsey ∪ F
has no answer set, then n ≥ R(3, 4). Thus, the smallest n such that no answer set is found is the
Ramsey number R(3, 4).

2.3.3 KRR capabilities enhanced by external atoms, lists and function symbols

This section describes, through a set of examples, how knowledge representation and reasoning
(KRR) capabilities of a DLP language are enhanced by introducing lists, external atoms, and
function symbols. In particular we show how function symbols and lists terms allow to aggregate
atomic data, manipulate complex data structures and generate new symbols, and external atoms
allow to isolate units of a procedural program and call them from declarative logic programs.

For example the term notify(delete(F )) in the atom request(S, I, notify(delete(F )), T1)
is a functional term. Other functional terms are father(X) and mother(X) in the atom family
(X, father(X),mother(X)) or f(g(X)) in p(f(g(X))). Lists can be be profitably exploited
in order to explicitly model collections of objects where position matters, and repetitions are
allowed. For example the term [b, o, b] in the atom noun([b, o, b]) is a list term. Other examples
are [red, green, blue] or [Sun | [Mon, Tue,Wed, Fri, Sat, Sun]].

Example 2.3.3 A list can be used to model a string of characters, as shown by the following facts:

noun([b, o, b]).
noun([t, h, o,m, a, s]).
noun([n, a, t, a, n]).

Given the facts above, the following rule:

palindromicNoun(X):-noun(X),#reverse(X,X).

allows to easily deduce nouns that are palindromic by using the external atom #reverse that
receives in input a list and returns another list that contains the same elements in reverse order.
The program consisting of the rule above generates the following answer set:

{palindromicNoun([b, o, b]), palindromicNoun([n, a, t, a, n])}

Example 2.3.4 Suppose that a system administrator wants to model the following security policy
about file deletion: ’a certain subject S is permitted to delete a file F if at time T0 he sends a
request to target institution I, notifying the intention of delating F, and there is no explicit request
from I to S to retain F in the next ten time units’. The following rule can be used to naturally
express this policy thanks to proper functional terms.

permitted(S, delete(F ), T1):- request(S, I, notify(delete(F )), T0),
notrequestInBetween(I, S, retain(F ), T0, T1), T1 = T0 + 10.

Example 2.3.5 Given a directed graph, a simple path is a sequence of nodes, each one appearing
exactly once, such that from each one (but the last) there is an edge to the next in the sequence.
The following program derives all simple paths for a directed graph, starting from a given edge
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relation:

path([X,Y ]):- edge(X,Y ).
path([X|[Y |W ]]):- edge(X,Y ), L == [Y |W ], path(L),#member(X,L, false).

The first rule builds a simple path as a list of two nodes directly connected by an edge. The
second rule constructs a new path adding an element to the list representing an existing path. The
new element will be added only if there is an edge connecting it to the head of an already existing
path. The external predicate #member allows to avoid the insertion of an element that is already
included in the list; without this check, the construction would never terminate in the presence of
circular paths.

Example 2.3.6 Let us consider the famous ”Towers of Hanoi” puzzle. Assume that a possible
move is represented by a predicate possibleMove, featuring seven attributes: the first one repre-
sents the move number; the second, third, and fourth attributes represent the states of the three
pegs before applying the current move; the fifth, sixth, and seventh attributes represent the last
state of the three pegs after the move has been applied. We can encode a possible move from the
first peg to the second peg by means of the following rule:

possibleMove(I1, [X|S1], S2, S3, S1, [X|S2], S3):- possibleState(I, [X|S1], S2, S3),
legalMoveNumber(I),#succ(I, I1), legalStack([X|S2])

Roughly, the top element of the first peg can be moved on top of the second peg if: (i) the
current peg is admissible, i.e. this state can be reached after applying a sequence of ”I” moves
(possibleState(I, [X|S1], S2, S3)); (ii) the number ”I” is in the range of allowed move number
(legalMoveNumber(I)); (ii) the new resulting configuration for the second stack is legal, i.e.
there is no larger disc on top of the smaller one (legalStack([X|S2])).
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The DLVDB System

The DLP language is very expressive and allows for modeling complex combinatorial problems.
However, despite the high expressiveness of this language, the success of DLP systems is still
dimmed when the applications of interest become data intensive, since they work only in main
memory.

The DLVDB system, described in this chapter, is an extension of the DLV system [42] allow-
ing both the instantiation of logic programs directly on databases, and the handling of input and
output data distributed on several databases in order to combine the expressive power of DLP
with the efficient data management features of DBMSs.

This chapter is organized as follows. First, we introduce objectives and the architecture of the
DLVDB system. Then, we focus on the auxiliary directives the user can specify to let DLVDB

interact with external databases. Finally, we describe the evaluation strategy of DLP rules and
their translation into SQL statements.

3.1 System objectives

The main limitations of current DLP systems in real world scenarios can be summarized in four
main issues [62]: (i) they are not capable of handling data intensive applications, since they
work in main memory only; (ii) they provide a limited interoperability with external DBMSs;
(iii) they are not well suited for modelling inherently procedural problems; (iv) they cannot
reason about recursive data structures and infinite domains, such as XML/HTML documents.

DLVDB has been conceived to increase the cooperation between ASP systems and databases.
It allows substantial improvements in both the evaluation of logic programs and the management
of input and output data distributed on several databases. Moreover, DLVDB presents enhanced
features to improve its efficiency and usability in the contexts outlined above, for an effective
exploitation of DLP in real world scenarios. These features include:

• Full support to disjunctive datalog with unstratified negation, and aggregate functions.

• An evaluation strategy devoted to carry out as much as possible of the reasoning tasks
in mass memory, thus enabling complex reasonings in data intensive applications without
degrading performances.

• Primitives to integrate data from different databases, in order to easily specify which data
is to be considered as input or as output for the program.
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In order to make the above features possible, various challenges had to be faced:

• Data intensive applications usually must access, and modify, data stored in autonomous
enterprise databases and these should be accessed also by other applications.

• Evaluating the stable models of an ASP program directly in mass-memory data-structures,
could be highly inefficient.

• Using the main memory to accommodate both the input data (hereafter, EDB) and the
inferred data is usually impossible for data intensive applications due to the limited amount
of available main memory.

In order to face the first challenge, DLVDB is interfaced with external databases via ODBC.
ODBC allows a very straightforward way to access and manipulate data over, possibly dis-
tributed, databases. Moreover, in order to properly carry out the evaluation of a program, it
is necessary to specify the mappings between input and output data and program predicates, as
well as to specify wether the temporary relations possibly needed for the mass-memory evalu-
ation should be maintained or deleted at the end of the execution. These can be specified by
some Auxiliary Directives, more details on these directives are discussed in Section 3.3. Note
that the first challenge makes the adoption of deductive systems integrating proprietary DBMSs
not effective.

To face with the second challenge, a mixed strategy is adopted, as outlined in Section 3.4.
In brief, the evaluation is divided in two distinct phases: grounding and model generation. The
grounding is completely performed in the database, while the model generation is carried out in
main memory; this allows also to address the third challenge. In fact, in several cases, only a
small portion of the ground program is actually needed for the model generation phase, since
most of the inferred data is “stable”, i.e. it belongs to every stable model, and is already derived
during the grounding phase.

3.2 System architecture

In this section we present the general architecture of the DLVDB system [41]. It has been de-
signed as an extension of the DLV system [42], and combines the expressive power of DLV (and
the optimization strategies implemented in it) with the efficient data management features of
DBMSs [25]. Figure 3.1 illustrates the architecture of the DLVDB system. In the figure, the
boxes marked with the DLV label represent the components already present in DLV.

An input program P is first analyzed by the Parser which encodes the rules in the intensional
database (IDB) in a suitable way and builds an extensional database (EDB) in main-memory data
structures from the facts specified directly in the program (if any). As for facts already stored
in database relations, no EDB is produced in main-memory. After this, the Optimizer applies
a rewriting procedure in order to get a program P ′, equivalent to P , that can be instantiated
more efficiently and that can lead to a smaller ground program. The Dependency Graph Builder
computes the dependency graph of P ′, its connected components and a topological ordering
of these components. Finally, the DB Instantiator module, the core of the DLVDB system,
is activated. The DB Instantiator module receives: (i) the IDB and the EDB (if not empty)
generated by the parser; (ii) the Dependency Graph (DG) generated by the dependency graph
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Figure 3.1: Architecture of DLVDB .

builder; (iii) the auxiliary directives specifying the needed interactions between DLVDB and the
databases.

Within the DB Instantiator, each DLV rule is translated into SQL statement by the DLV to
SQL Translator; then the SQL statements are executed on the Working Database by the DB-
Grounder. The Input Data Handler receives the auxiliary directives defined by the user and
performs all mappings and settings needed for a correct translation and execution of the SQL
statements produced by the DLV to SQL Translator. Finally, the Ground Rule Generator extracts
data from the database, creates ground rules (if any) and loads them to the Model Generator.
The Model Generator produces some “candidate” answer sets (models), the stability of which
are verified by the Model Checker; then each stable model is printed on output. Note that, if no
ground rule is generated after grounding, it means that all the program has been solved by the
grounder, then the Ground Rule Generator prints directly on output the (unique) stable model
found.

Note that all the instantiation steps are performed directly on the working database through
the execution of SQL statements and no data is loaded in main-memory from the databases in
any phase of the grounding process. Communication with databases is performed via ODBC.
This allows DLVDB both to be independent from a particular DBMS and to handle databases
distributed over the Internet.

3.3 Auxiliary directives

Auxiliary directives are the way DLVDB allows the interaction between the system and a set
of possibly distributed databases. Such directives must be expressed following the grammar
represented in Figure 3.2.

As shown in the figure, the auxiliary directives can be subdivided in four sections, namely
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Auxiliary-Directives ::=
Init-section
[Table-definition]+
[Query-section]?
[Final-section]*

Init-section ::=
USEDB DatabaseName:UserName:Password [System-Like]?.

Table-definition ::=
[USE TableName [( AttrName [, AttrName]* )]?
[AS ( SQL-Statement )]?
[FROM DatabaseName:UserName:Password]?
[MAPTO PredName [( SqlType [, SqlType]* )]? ]?.
|
CREATE [VIEW]? TableName [( AttrName [, AttrName]* )]?
[MAPTO PredName [( SqlType [, SqlType]* )]? ]?
[KEEP_AFTER_EXECUTION]?.]

Query-section ::= QUERY TableName.

Final-section ::=
[DBOUTPUT DatabaseName:UserName:Password.
|
OUTPUT [APPEND | OVERWRITE]? PredName [AS AliasName]?
[IN DatabaseName:UserName:Password.]

System-Like ::=
LIKE [POSTGRES | ORACLE | DB2 | SQLSERVER | MYSQL]

Figure 3.2: Grammar of the auxiliary directives.

the init section, the table definition section, the query section and the final section.
The init section defines the working database on which the instantiation process will be car-

ried out. This database, like all the other ones, is accessed via an ODBC connection that must
be previously set up and, consequently, username and password for the connection must be pro-
vided here. The System-Like option can be used here to specify the DBMS that implements
the working database, in order to exploit the corresponding SQL dialect. If this option is omitted,
a generic DBMS supporting standard SQL is assumed.

The table definition section specifies the mappings between logic program predicates and
database tables (or SQL views). The user can specify two options in this phase, namely the USE
and the CREATE option.

The USE option must be specified if the table TableName already exists and the data it
contains must be taken as input (facts) for the instantiation process. Note that this data might
reside on a database different from the working database (this situation can be specified with
the option [FROM DatabaseName]). If the data is available, but it is not in a single ta-
ble, TableName can be filled with the result of the SQL query specified in the option [AS
(SQL-Statement)].
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The CREATE option must be used when the table must be created in the working database
from the output computed by the program; if a table with the same name is present in the database
it is first removed and then redefined. If the user specifies the option KEEP AFTER EXECUTION,
the table is kept in the working database at the end of the instantiation process; otherwise it is
removed.

The VIEW option of the CREATE statement can be used to specify that tables associated with
intermediate predicates (i.e. corresponding to neither input nor output data) should be maintained
virtual. This possibility ensure both space saving and performance improvement, especially for
those programs that have a hierarchical structure. Note that the VIEW option cannot be used with
predicates that are both recursive and unsolved (a definition of unsolved predicate is given in
Section 3.4).

The MAPTO option can be used to link a table to a predicate. The number of attributes of the
table must be equal to the arity of the associated predicate. In a table definition, attribute type
declarations are needed only if the program contains built-in predicates or aggregate functions,
in order to ensure their correct management.

If a predicate is not explicitly mapped into a table, two cases are possible: i there is a table
in the working database with the same name of the predicate and compatible attributes; ii no
corresponding table exists in the working database. In the first case, the system automatically
creates a USE mapping between the predicate and its matching table, whereas in the second case,
a CREATE mapping is automatically generated.

The query section can be used to specify the database table devoted to store the results of the
query possibly present in the program.

The final section allows to copy either the entire output of the instantiation or only some of the
tables on a database that is different from the working database. If the user does not specify any
table name, the entire output is copied; otherwise, only the specified tables are copied. In the latter
situation, the user can choose to append the data created during the instantiation to those already
present in the target table (through the option APPEND) or to overwrite the (possibly existing)
data in the target table (using the option OVERWRITE); if no option is specified, OVERWRITE is
the default. The definition of the target table is the same as the source one except for the name
which can be changed to AliasName. The output procedures can be carried out only if the
system is forced to produce one model only.

Example 3.3.1 Assume that a travel agency asks to derive all the destinations reachable by an
airline company either by using its vectors or by exploiting code-share agreements. Suppose that
the direct flights of each company are stored in a relation flight rel(Id, From, To,
Company) of the database dbAirports, whereas the code-share agreements between com-
panies are stored in a relation codeshare rel (Company1, Company2, FlightId)
of an external database dbCommercial; if a code-share agreement holds between the com-
pany c1 and the company c2 for flightId, it means that the flight flightId is actually provided
by a vector of c1 but can be considered also carried out by c2. Finally, assume that, for secu-
rity reasons, it is not allowed to travel agencies to directly access the databases dbAirports
and dbCommercial, and, consequently, it is necessary to store the output result in a relation
composedCompanyRoutes of a separate database dbTravelAgency supposed to support
travel agencies. The program that can derive all the connections is:
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(1) destinations(From, To,Comp) :- flight(Id, From, To,Comp).
(2) destinations(From, To,Comp) :- flight(Id, From, To,C2),

codeshare(C2, Comp, Id).
(3) destinations(From, To,Comp) :- destinations(From, T2, Comp),

destinations(T2, T o, Comp).

In order to exploit data residing in the above mentioned databases, we should map the pred-
icate flight with the relation flight rel of dbAirports and the predicate codeshare
with the relation codeshare rel of dbCommercial. Finally, we have to map the predi-
cate destinations with the relation composedCompanyRoutes of dbTravelAgency.

Now suppose that, due to a huge size of input data, we need to perform the program execution
in mass-memory (on a DBMS). In order to carry out this task, the auxiliary directives shown in
Figure 3.3 should be used. They allow to specify the mappings between the program predicates
and the database relations introduced previously.

USEDB dlvdb:myname:mypasswd.

USE flight_rel (Id, From, To, Company)
FROM dbAirports:airportUser:airportPasswd
MAPTO flight (integer, varchar(255), varchar(255), varchar(255)).

USE codeshare_rel (Company1, Company2, FlightId)
FROM dbCommercial:commUser:commPasswd
MAPTO codeshare (varchar(255), varchar(255), integer).

CREATE destinations_rel (From, To, Company)
MAPTO destinations (varchar(255), varchar(255), varchar(255))
KEEP_AFTER_EXECUTION.

OUTPUT destinations AS composedCompanyRoutes
IN dbTravelAgency:agencyName:agencyPasswd.

Figure 3.3: Auxiliary directives for Example 3.3.1.

3.4 Evaluation strategy

DLVDB instantiates DLP programs directly on a database. The instantiation process basically
consists of two steps: (i) the translation of DLP rules in SQL statements, (ii) the definition of an
efficient query plan based on a Semi-Naive evaluation.

The evaluation strategy is based on a sharp distinction existing between the grounding of the
DLP program and the generation of its stable models. Then, two distinct approaches can be
adopted whether the input program is non disjunctive and stratified (in this case everything can
be evaluated on the DBMS) or not. In the following we describe how the evaluation is performed
in the two cases.
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3.4.1 Evaluation of non disjunctive stratified programs

It is well known that if a program is non disjunctive and stratified, it has a unique stable model
corresponding exactly to its ground instantiation. The evaluation of these kinds of program con-
sists in the translation of each rule into a corresponding SQL statement and in the composition
of a suitable query plan on the DBMS; the evaluation of recursive rules is carried out using a
semi-naı̈ve approach.

Before starting the evaluation of a (possibly optimized) program P , its connected components
and their topological order (i.e., the Dependency Graph of P) are computed. Then, the program
is evaluated one component at a time, starting from the lowest ones in the topological order. This
process is iterated until no new ground instance can be derived from the component rules.

At each iteration, the instantiation of a rule consists of the execution of the SQL statement
associated with it. One of the main objectives in the implementation of DLVDB has been that
of associating one single (non recursive) SQL statement with each rule of the program (either
recursive or not), without the support of main-memory data structures for the instantiation. This
allows DLVDB to fully exploit optimization mechanisms implemented in the DBMSs and to
minimize the “out of memory” problems caused by limited main-memory dimensions.

The translation of DLP to SQL will be addressed more in detail in Section 3.5.

3.4.2 Evaluation of disjunctive programs with unstratified negation

In presence of disjunctive rules or unstratified negation in a program P , the ground instantia-
tion of P is not sufficient to compute its stable models. Then, grounding and model generation
phases must both be carried out. Also in this case, the evaluation strategy adopted carries out
the grounding completely in the database, through the execution of suitable SQL queries. This
phase generates two kinds of data: ground atoms (facts) valid in every stable model (and thus
not requiring further elaboration in the model generation phase) and ground rules, summarizing
possible values for a predicate and the conditions under which these values can be inferred.

Facts compose the so called solved part of the program, whereas ground rules form the resid-
ual program, not completely solved by the grounding. As pointed out earlier, one of the main
challenges in DLVDB is to load the smallest amount of information as possible in main memory;
therefore, the residual program generated by the system should be as small as possible.

Model generation is then carried out in main memory with the technique described in [42].

Definition 3.4.1 Let p be a predicate of a program P , p is said to be unsolved if at least one of
the following holds: (i) it is in the head of a disjunctive rule; (ii) it is the head of at least one rule
involved in unstratified negation; (iii) the body of a rule having p as head contains at least one
unsolved predicate. p is said to be solved otherwise.

In the evaluation strategy, a ground predicate is associated with facts only in the ground
program and, thus, with certainly-true values, i.e. values true in every stable model. On the
contrary, an unsolved predicate p may be defined by both facts (certainly-true values) and ground
rules; the latter identify possibly-true values for p, i.e. the domain of values p may assume in
stable models.

Given an unsolved predicate p we indicate the set of its certainly-true values as ps and the set
of its possibly-true values as pu.
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Example 3.4.2 Consider the following program:

q(1, 2).
p(3).
p(X) ∨ p(Y ):- q(X,Y ).

Here q is a solved predicate, whereas p is an unsolved predicate; in particular, q(1, 2) is a
certainly-true value for q, p(3) is a certainly-true value for p, whereas p(1) and p(2) are possibly-
true values of p. Then, ps = {3}, whereas pu = {1, 2}.

As previously pointed out, rules having an unsolved predicate may generate ground rules in
the instantiation. Since the goal is to generate the smallest residual program as possible, ground
rules are “epurated” of certainly-true values.

Definition 3.4.3 A simplified ground rule (g-rule in the following) of a program P is a ground
rule not involving any certainly-true values of P .

Example 3.4.4 From the previous example, the (only) ground rule that can be generated is
p(1) ∨ p(2) :- q(1, 2). However this is not a simplified rule since it involves q(1, 2) which is a
certainly-true value. Then, the corresponding g-rule is simply p(1) ∨ p(2).

It is now possible to illustrate the evaluation strategy implemented in the DLVDB system.
Consider a program P composed of non ground rules of the form:

α1 ∨ · · · ∨ αk :-β1, . . . , βn,notβn+1, . . . ,notβm, γ1, . . . , γp,not γp+1, . . . ,not γq. (3.1)

where βi (resp. γj) are solved (resp. unsolved) predicates. The evaluation is carried out in five
steps:

Step 1. Translate P in an equivalent program P ′;

Step 2. Translate each rule of P ′ in a corresponding SQL statement;

Step 3. Compose and execute the query plan of statements generated in Step 2 on the
DBMS;

Step 4. Generate the residual program and load it in the Model Generator of DLV;

Step 5. Execute the residual program in main memory and show the results.

Step 1. The objective of this step is to “prepare” rules of P to be translated in SQL almost
straightforwardly, in order to generate a residual programs as small as possible. In more detail,
for each rule r in P three kinds of rule are generated:

A. If the head of r has one atom only (k = 1), a rule (hereafter denoted as A-rule) is created
for deriving only certainly-true values of r’s head; note that if k > 1 no certainly-true
values can be derived from r.
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B. A set of rules (hereafter, B-rules) supporting the generation of the g-rules of r. The heads
of these rules contain both the variables of unsolved predicates in the body of r and the
variables in the head of r. Ground values obtained for these variables with B-rules are then
used to instantiate r with possibly-true values only.

C. A set of rules (hereafter, C-rules) for generating the set of possibly-true values of unsolved
predicates as projections on B-rules obtained previously.

Given a generic rule defined as (3.1), the corresponding A-rule has the form:

αs
1 :-β1, .., βn,notβn+1, ..,notβm, γs1, .., γ

s
p,not γ

s
p+1,not γ

u
p+1, ..,not γ

s
q ,not γ

u
q . (3.2)

where for positive unsolved predicates only certainly-true values (γs1, . . . , γ
s
p) are considered,

whereas for negated unsolved predicates both certainly-true and possibly-true values (γsp+1, . . . , γ
s
q ,

γup+1, . . . , γ
u
q ) must be taken into account.

Example 3.4.5 Consider the following program, which will be exploited as a running example
throughout the rest of the section:

r1 : q(1, 2).
r2 : p(Y,X) ∨ t(X):- q(X,Y ).
r3 : q(X,Y ):- p(X,Y ), not t(X).

Here both p, q, and t are unsolved. The A-rules derived for this program are:

r1.A : qs(1, 2).
r3.A : qs(X,Y ):- ps(X,Y ), not ts(X), not tu(X).

where rule r2 does not contribute since it is disjunctive and cannot generate certainly-true values.

B-rules play a key role, since they allow the generation of the residual program. In particular,
their role is to identify the set of values for variables in unsolved predicates of the body of r,
generating possibly-true values of the head of r. Then, r is seen as a template for generating its
g-rules, and ground values derived by the corresponding B-rules are used to instantiate r.

Note that in order to generate a possibly true value for a normal rule, at least one possibly
true value must be involved in its body, whereas disjunctive rules always generate possibly-true
values. Moreover, in order to properly generate g-rules (i.e. ground rules involving possibly-true
values only) the system must be able to track, for each truth value of a B-rule, which predicates
of r contributed with a certainly-true value and which ones with a possibly-true value.

This issue is addressed by first labeling each unsolved predicate γj of r alternatively with a 0
or with a 1, where a 0 indicates to take its γsj , whereas a 1 indicates to consider its γuj . Then, each
binary number between 1 and 2q-1 for normal rules and between 0 and 2q-1 for disjunctive rules1

corresponds to a labeling stating the combination of values to be considered. For each labeling, a
corresponding B-rule is generated starting from the definition of r and substituting each unsolved
predicate γj with γsj (resp., γuj ) if the corresponding label is 0 (resp., 1).

The only exception is caused by negated unsolved predicates. In fact, if γj is negated and
labeled with a 1, it must be put in the B-rule without negation. In fact, negated certainly-true

1 Recall that q is the number of unsolved predicates in the body of r.

23



Chapter 3. The DLVDB System

values surely invalidate the satisfiability of the g-rule, whereas negated possibly-true values may
invalidate the rule only if the model generator sets them to true.

It is worth noticing that this labeling approach makes significantly easier the generation of
simplified ground rules; in fact, it is sufficient to consider only the values of predicates labeled
with 1 and not derived to be certainly-true by other rules.

Finally, in order to allow a proper reconstruction of g-rules from B-rules, a mapping between
the variables of the B-rules and the variables of r is maintained.

Example 3.4.6 From rules r2 and r3 introduced in the previous example, the following B-rules
are derived. Original rules are re-proposed in parenthesis for the sake of comprehension; labels
are reported in rule names. Variable mapping is trivial and not reported.

(r2 : p(Y,X) ∨ t(X):- q(X,Y ).)
r2.B(0) : B-rule r2(X,Y ):- qs(X,Y ).
r2.B(1) : B-rule r2(X,Y ):- qu(X,Y ).

(r3 : q(X,Y ):- p(X,Y ), not t(X).)
r3.B(01) : B-rule r3(X,Y ):- ps(X,Y ), tu(X).
r3.B(10) : B-rule r3(X,Y ):- pu(X,Y ), not ts(X).
r3.B(11) : B-rule r3(X,Y ):- pu(X,Y ), tu(X).

Finally, C-rules are simple projections on the B-rule heads over the attributes of the corre-
sponding predicate.

Example 3.4.7 From rules r2 and r3 introduced previously and from the corresponding B-rules
the system generates:

r2.C p : pu(Y,X):- B-rule r2(X,Y ).
r2.C t : tu(X):- B-rule r2(X,Y ).
r3.C q : qu(X,Y ):- B-rule r3(X,Y ).

Note that in the example above, the same B-rule predicate (B-rule r2) is used to generate possibly-
true values of two predicates (pu and tu); this follows directly from the fact that r2 is a disjunctive
rule involving p and t.

Step 2. Translation of the rules obtained in Step 1 into SQL is carried out with the technique
already presented in Section 3.5 and used also for non disjunctive and stratified programs. As an
example, rule r3.A introduced above is translated into2:

INSERT INTO qs (SELECT ps.att1, ps.att2, FROM ps

WHERE ps.att1 NOT IN (SELECT * FROM ts)
AND ps.att1 NOT IN (SELECT * FROM tu))

Step 3. In order to compile the query plan, the dependency graph D associated with P is consid-
ered [43]. In particular, D allows the identification of a partially ordered set {Compi} of program
components where lower components must be evaluated first.

2Here and in the following we use the notation x.atti to indicate the i-th attribute of the table x. Actual attribute
names are determined at runtime.
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Then, given a component Comp and a rule r in Comp, if r is not recursive, then the corre-
sponding portion of query plan is as follows3: (1) evaluate (if present) the A-rule associated with
r; (2) evaluate each B-rule obtained from r; (3) for each predicate in the head of r evaluate the
corresponding C-rule.

If r is recursive, the portion of query plan above must be included in a fix-point semi-naı̈ve
evaluation, as described in [65].
Step 4 and 5. The generation of the residual program requires the analysis of values derived by
B-rules only. Then, for each rule r and each corresponding B-rule (say, r.B(L)), first predicates
having label 0 in L are purged from r, then r is instantiated with values of r.B(L). During this
phase a further check is carried out to verify if some predicate value has been derived as certainly-
true by other rules. In this case the predicate is removed from the g-rule for that instance. The
residual program is then loaded in main memory for the generation of stable models. Note
that each answer set found on this residual program shall be enriched with certainly-true values
determined during the grounding.

Example 3.4.8 The residual program generated for our running example is:

p(2, 1) ∨ t(1).
p(1, 2) ∨ t(2):- q(2, 1).
q(2, 1):- p(2, 1), not t(2).

Note that the first g-rule does not involve q since it derives from r2.B(0), having q(1, 2) as
certainly-true value.

3.5 Translation from DLP to SQL

As pointed out in the previous section, the evaluation strategy in DLVDB is based on the trans-
lation of each DLP rule (recursive or not) into a single non recursive SQL statement. It is worth
recalling that the system maps each predicate of the input program into a database table. This
section describes the functions used to perform the translations. The functions are presented in
pseudocode and, for the sake of presentation clarity, they omit some details; moreover, since
there is a one-to-one correspondence between the predicates in the logic program and the tables
in the database, in the following, when this is not confusing, we use the terms predicate and table
interchangeably.

In order to provide examples for the presented functions, we use the following reference
schema:

employee(Ename,Salary ,Dep,Boss)
department(Code,Director)

storing information about the employees of the departments of a given company. Specifically,
each employee has associated a Boss who is, in her turn, an employee.

3.5.1 Translating non-recursive rules

The translation of non-recursive rules is performed by the TranslateNonRecursiveRule function,
which is shown in Figure 3.4.

3Here, for the sake of simplicity, we refer to rules, indicating that the corresponding SQL statements must be
evaluated in the database.
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Function TranslateNonRecursiveRule(r: DLPA rule): SQL statement
begin

SQL:=””;
if (hasAggregate(r)) then

SQL:=SQL+TranslateAggregateRule(r);
SQL:=SQL+”INSERT INTO ” + head(r) + ”(”;
if (isPositive(r)) then

SQL:=SQL+TranslatePositiveRule(r);
else if (hasNegation(r)) then

SQL:=SQL+TranslateRuleWithNegation(r);
else if (hasBuilt-In(r)) then

SQL:=SQL+TranslateRuleWithBuilt-In(r);
else if (hasNegationAndBuilt-In(r)) then

SQL:=SQL+TranslateRuleWithNegationAndBuilt-In(r);
SQL:=SQL+”)”;
return SQL;

end.

Figure 3.4: Function TranslateNonRecursiveRule

Function TranslatePositiveRule(r: DLPA rule): SQL statement
begin

SQL:=”SELECT ” + head attr(r) +
”FROM ” + body+(r) +
”WHERE ” + joinConditions(r) +

”AND ” + bodyConstantConditions(r) +
”EXCEPT (SELECT * FROM ” + head(r) + ”)”;

return SQL;
end.

Figure 3.5: Function TranslatePositiveRule

The function receives a rule r as input and returns the corresponding SQL statement, depend-
ing on the rule typology. Function head receives the rule r and returns the table associated with
the atom in its head; this task is carried out by considering the mappings specified in the auxiliary
directives. Function isPositive(r) (resp., hasNegation(r), hasBuilt-In(r), hasNegationAndBuilt-
In(r), hasAggregate(r)) receives a rule r and returns true if r is a positive rule (resp., contains
negated atoms, contains built-in functions, contains both negated atoms and built-in functions,
contains aggregate functions), false otherwise. In the following we describe in detail the transla-
tion functions used in function TranslateNonRecursiveRule 4.

Translating Positive Rules

The translation of a positive rule into an SQL statement is performed by function TranslatePosi-
tiveRule, as shown in Figure 3.5. The SELECT part of the statement is determined by the variable
bindings between the head and the body of the rule. The FROM part is determined by the pred-
icates composing the body of the rule. Variable bindings between body atoms and constants
determine the WHERE conditions of the statement. Finally, an EXCEPT part is added in order
to eliminate tuple duplications.

4TranslateRuleWithNegationAndBuilt-In will be not described since it is a straightforward fusion of Trans-
lateRuleWithNegation and TranslateRuleWithBuilt-In.
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Function TranslateRuleWithNegation(r: DLPA rule): SQL statement
begin

SQL:=”SELECT ” + head attr(r) +
”FROM ” + body+(r) +
”WHERE ” + joinConditions(r) +

”AND ” + bodyConstantConditions(r);
for each p in body−(r)

SQL:=SQL + ”AND ” + negativeAttr(r,p) +
”NOT IN (SELECT * FROM ” + p + ”)”;

SQL:=SQL + ”EXCEPT (SELECT * FROM ” + head(r) + ”)”;
return SQL;

end.

Figure 3.6: Function TranslateRuleWithNegation

Function head attr(r) returns the list of attributes of the atoms (associated to tables) in the
body of r specified also in the head of r. The function returns this list in the proper order and also
handles possible constant values specified in the rule head. Function body+(r) returns the list of
tables corresponding to the (positive) atoms present in the body of r. Function joinConditions(r)
derives the join conditions to be specified among the involved tables from the positions and the
names of the variables specified in the body of r, whereas function bodyConstantConditions(r)
handles possible constants specified in the body of r.

Example 3.5.1 Consider the following query:

q0 (Ename) :- employee(Ename, 100 .000 ,Dep,Boss), department(Dep, rossi).

which returns all the employees working at the department whose chief is rossi and having a
yearly salary of 100 .000 euros. The corresponding SQL statement is the following, where the
notation t.atti is used to indicate the ith attribute of table t:

INSERT INTO q0 (
SELECT employee.att1
FROM employee, department
WHERE employee.att3 = department.att1

AND department.att2=’rossi’
AND employee.att2=100.000

EXCEPT
(SELECT * FROM q0))

Translating rules with negated atoms

Rules with negated atoms are translated into an SQL statement by function TranslateRuleWith-
Negation, which is shown in Figure 3.6.

The construction of the SQL statement is carried out as follows: the positive part of the
rule is handled in the same way as function TranslatePositiveRule; then, each negated atom is
handled by a corresponding NOT IN part in the statement. Function body−(r) returns the tables
corresponding to the negated atoms in the body of r, while function negativeAttr(r,p) singles out
those attributes of positive atoms in r bound to attributes of the negated atom p.
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Example 3.5.2 The following program computes (using the goal topEmployee) the employees
who have no other boss than the director.

topEmployee(Ename) :- employee(Ename,Salary ,Dep,Boss),
department(Dep,Boss),
not otherBoss(Ename,Boss).

otherBoss(Ename,Boss) :- employee(Ename,Salary ,Dep,Boss),
employee(Boss,Salary ,Dep,Boss1 ).

The first rule above is translated into the following SQL statement:

INSERT INTO topEmployee (
SELECT employee.att1
FROM employee, department
WHERE (employee.att3=department.att1)

AND (employee.att4=department.att2)
AND (employee.att1, employee.att4)
NOT IN (SELECT otherBoss.att1, otherBoss.att2 FROM otherBoss )

EXCEPT
(SELECT * FROM topEmployee))

Translating rules with built-in predicates

The language defined in Section 2.1 defines some built-in predicates, such as comparative and
arithmetic predicates. When running a program containing built-in predicates, the range of admis-
sible integer values must be fixed. We fulfill this requirement in the working database by adding
a restriction based on the maximum value allowed for integer variables (referred to as #maxint).
Moreover, in order to allow mathematical operations among attributes, DLVDB requires the types
of attributes to be properly defined in the database.

The function for translating rules containing built-in predicates is a trivial variation of the
function for translating positive rules and, consequently, it will not be shown here. As a matter of
facts, the presence of a built-in predicate in the rule implies just to add a corresponding condition
in the WHERE part of the SQL statement.

Example 3.5.3 The program:

q1(Ename) : −employee(Ename, Salary,Dep,Boss), Salary > 100.000

is translated into the following SQL statement:

INSERT INTO q1 (
SELECT employee.att1
FROM employee
WHERE employee.att2 > 100.000 )

If the variables specified in the built-in atoms are not bound to any other variable of the atoms
in the body, a #maxint value is used to bind that variable to its admissible range of values.
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Translating rules with aggregate atoms

As shown in Section 2.1, specific safety conditions must hold for each rule containing aggregate
atoms, in order to guarantee the computability of the corresponding rule. As an example, aggre-
gate atoms can not contain predicates mutually recursive with the head of the rule they are placed
in. This implies that the truth values of each aggregate function can be computed once and for all
before evaluating the corresponding rule, which can be, in its turn, recursive.

The optimization process that rewrites input programs before their execution, automatically
rewrites each rule containing some aggregate atom in such a way that it follows a standard format.
Specifically, given a generic rule of the form:

head :- body, f({V ars : Conj}) ≺ Rg.

where Conj is a generic conjunction and Rg is a guard, the system automatically translates this
rule into a pair of rules of the form

auxAtom :- Conj,BindingAtoms.
head :- body, f({V ars : auxAtom}) ≺ Rg.

where auxAtom is a standard rule containing both Conj and the atoms (BindingAtoms) nec-
essary for the bindings of Conj with body and/or head. Note that auxAtom contains only those
attributes of Conj that are strictly necessary for the computation of f and, consequently, it may
have far less (and can not have more) attributes than those present in Conj.

We rely on this standardization to translate this kind of rules into SQL. Clearly only the sec-
ond rule, containing the aggregate function, is handled by the function presented in the following;
in fact, the first rule is automatically translated by one of the functions presented previously.

The objective of the translation is to create an SQL view auxAtom supp from auxAtom
which contains all the attributes necessary to bind auxAtom with the other atoms of the original
rule, and a column storing the results of the computation of f over auxAtom. The original
aggregate atom is then replaced by this view, and guard conditions are suitably translated by logic
conditions between variables. At this point, the resulting rule is a standard rule not containing
aggregate functions and can be then translated by one of the functions previously presented. The
translation function, TranslateAggregateRule, is shown in Figure 3.7.

Function aggr atom(r) returns the aggregate atoms present in r; aux atom(a) returns the aux-
iliary atom corresponding to Conj of a and automatically generated by the optimizer. Function
bound attr(a) yields in output the attributes of the atom a bound with attributes of the other atoms
in the rule, while aggr attr(a) returns the attribute which the aggregation must be carried out onto
(the first variable in V ars). aggr func(a) returns the SQL aggregation statement corresponding
to the aggregate function of a. Function removeFromBody(r,a) (resp., addToBody(r,a)) removes
(resp., adds) the atom a from (resp., to) the rule r. Finally, aux atom supp(a) yields in output the
name of the atom corresponding to the just created auxiliary view, whereas guards(a) converts
the guard of a in a logic statement between attributes in the rule.

Example 3.5.4 Consider the following rule computing the departments which spend for the
salaries of their employees, an amount greater than a certain threshold, say 100000:

costlyDep(Dep):- department(Dep, ),

#sum{Salary ,Ename : employee(Ename,Salary ,Dep, )} >
100000.
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Function TranslateAggregateRule(VAR r: DLPA rule): SQL statement
begin

for each a in aggr atom(r) do begin
aux:=aux atom(a);
SQL:=”CREATE VIEW ” + aux +” supp” +

”AS (SELECT ”+ bound attr(a) + ”, ” +
aggr func(a) + ”(” + aggr attr(a) + ”) ” +

”FROM ” + aux
”GROUP BY ” + bound attr(a) + ”)”;

removeFromBody(r, a);
addToBody(r, aux atom supp(a));
addToBody(r, guards(a));

end;
return SQL;

end.

Figure 3.7: Function TranslateAggregateRule

The optimizer automatically rewrites this rule as follows:

aux emp(Salary ,Ename,Dep):- department(Dep, ),

employee(Ename,Salary ,Dep, ).

costlyDep(Dep):- department(Dep, ),

#sum{Salary ,Ename : aux emp(Salary ,Ename,Dep)} > 100000.

The first rule is treated as a standard positive rule and is translated into:

INSERT INTO aux emp (
SELECT employee.att2, employee.att1, department.att1
FROM department, employee
WHERE department.att1 = employee.att3
EXCEPT

(SELECT * FROM aux emp))

The second rule is translated into:

CREATE VIEW aux emp supp AS (
SELECT aux emp.att3, SUM (aux emp.att1)
FROM aux emp
GROUP BY aux emp.att3)

INSERT INTO costlyDep (
SELECT department.att1
FROM department, aux emp supp
WHERE department.att1 = aux emp supp.att1

AND aux emp supp.att2 > 100000
EXCEPT

(SELECT * FROM costlyDep))
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Function TranslateRecursiveRule(r: DLPA rule ): SQL statement
begin

SQL:=””;
if(hasAggregate(r)) then

SQL:=TranslateAggregateRule(r);
n:=2RecursivePredicates(r)

SQL:=SQL+”INSERT INTO ” + ∆head(r) + ”(”;
for i:=1 to n do begin

Let r′ be a rule;
setHead(r′, ∆head(r));
for each non recursive predicate qj in body(r) do

addToBody(r′, qj);
for each recursive predicate pj in body(r) do

if (bit(j,i)=0) then addToBody(r′, pk−2
j );

else addToBody(r′, ∆pk−1
j );

if (i ̸= 1) SQL:=SQL+”UNION ”;
SQL:=SQL + TranslateNonRecursiveRule(r′);

end;
SQL:=SQL + ”)”;
return SQL;

end.

Figure 3.8: Function TranslateRecursiveRule

3.5.2 Translating recursive rules

Recursive rules are translated into non recursive SQL statements operating alternatively on stan-
dard and differential versions of the tables associated with recursive predicates. Each time one of
such statements is executed by the algorithm, it must compute just the new values for the pred-
icate in the head that can be obtained from the values computed in the last two iterations of the
fixpoint.

The translation algorithm TranslateRecursiveRule, shown in Figure 3.8, first selects the
proper combinations of standard and differential relations from the rule r under consideration;
then, for each of these combinations, rewrites r into a corresponding rule r′. Each r′ is non recur-
sive and, consequently, it can be handled by Function TranslateNonRecursiveRule defined
above.

Functions hasAggregate, TranslateAggregateRule and TranslateNonRecursiveRule have been
introduced previously. Function RecursivePredicates(r) returns the number of occurrences of
recursive predicates in the body of r; ∆head(r) returns the differential version of the relation
corresponding to the head of r. Function setHead(r′, p) sets the head of the rule r′ to the predicate
p; analogously, function addToBody(r′, p) adds to the body of r′ a conjunction with the predicate
p. Finally, function bit(j,i) returns the j-th bit of the binary representation of i.

Example 3.5.5 Consider the situation in which we need to know whether the employee e1 is the
boss of the employee en either directly or by means of a number of employees e2, .., en such that
e1 is the boss of e2, e2 is the boss of e3, etc. Then, we have to evaluate the program:

q2(E1, E2) :- employee(E1 ,Salary ,Dep,E2 ).
q2(E1, E3) :- q2(E1, E2), q2(E2, E3).

containing a recursive rule. This program cannot be evaluated in one single iteration of the
Semi-Naive computation. In fact, the SQL statement corresponding to the recursive rule must be
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executed until no new values can be derived for q2. The SQL statement obtained by Function
TranslateRecursiveRule for the second rule of this example is:

INSERT INTO ∆qk2 (
SELECT qk−2

2 .att1, ∆qk−1
2 .att2

FROM qk−2
2 ,∆qk−1

2

WHERE (qk−1
2 .att2=∆qk−1

2 .att1)
EXCEPT (SELECT * FROM ∆qk2 )
UNION
SELECT ∆qk−1

2 .att1, qk−2
2 .att2

FROM ∆qk−1
2 , qk−2

2

WHERE (∆qk−1
2 .att2=qk−1

2 .att1)
EXCEPT (SELECT * FROM ∆qk2 )
UNION
SELECT ∆qk−1

2 .att1, ∆qk−1
2 1.att2

FROM ∆qk−1
2 , ∆qk−1

2 AS ∆qk−1
2 1

WHERE (∆qk−1
2 .att2=∆qk−1

2 1.att1)
EXCEPT (SELECT * FROM ∆qk2 ))

Actually, the real implementation of this function adds, for performance reasons, also the follow-
ing parts to the statement above:

EXCEPT (SELECT * FROM ∆qk−1)

EXCEPT (SELECT * FROM qk−2)
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Related Work

This chapter analyzes and compares the most recent ASP systems [44, 17] that support unstrat-
ified negation and other advanced constructs like disjunction, and various forms of constraints.
Such systems are often referred to as declarative computational logic systems, since they support
a fully declarative programming style, in contrast to Prolog in which the result depends on the
ordering of the rules in the program, and also on the ordering of the goals in the bodies of the
rules.

The ASP systems analyzed in this chapter are compared on the basis of two main aspects:
(i) expressiveness of the supported language, and (ii) efficiency to answer a query. The first
aspect concerns the kinds of features supported by the language, such as the ability to express
views, recursive rules, integrity constraints, and nonmonotonic queries. The second aspects can
be characterized on the basis of two main parameters: (i) the quantity of data to be analyzed for
answering a query, and (ii) the intrinsic complexity of the query itself.

4.1 Relevant features of ASP systems

This section introduces the main features of ASP systems that will be used for the analysis and
comparison presented in Section 4.2.

Since one of the main features of DLVDB is answering queries involving several data sources
rather than one single database, this is one of the aspects we focused our analysis upon. As an
example, the set of information of interest for a user might be distributed over a network. It is
necessary to bring data distributed over a network to a user’s machine so that the data may be
manipulated to answer user queries. In a distributed environment, it is likely that one will want to
save answers to queries in the local machine’s cached database for answers, rather than to have
to access data over the network to answer the query. In this situation the resources are the cached
relations (i.e. views on the source data) and the use of these resources is an important aspect of
query answering.

In some systems the database relations are views themselves (either virtual or materialized)
on other resources; thus, it is necessary to follow chains of views in order to reach the original
source data. In this context, the expressiveness of the language supported by the ASP system
plays a central role.

Another important feature of an ASP system is the availability of constructs in the query
language allowing to express complex queries. Indeed, the possibility to express computationally
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hard queries is a crucial property that ASP systems should provide in order to deal with complex
scenarios. We recall that the ASP language (function-free disjunctive logic programming) is
very expressive, and allows to represent even problems of high complexity (every problem in the
complexity class ΣP

2 = NPNP [18]). However, some ASP systems do not allow to represent
problems belonging to this complexity class, while other systems allow to represent even more
complex problems. Therefore, this is one of the features that will be considered to compare the
ASP systems analyzed in the remainder of this chapter.

Finally, we point out that answering queries is often a hard task. Hardness may arise either
because of the huge amounts of data to be analyzed or because of the complexity of the queries
to be processed. The efficiency of the ASP system in answering queries is an important measure
for its characterization.

Therefore, the ASP systems will be analyzed and compared on the basis of two main aspects:
(i) language expressiveness and (ii) optimizations in the evaluation. In the remainder of this
section, we specify in more detail the features that will be considered for each of the above
aspects.

4.1.1 Language expressiveness

To characterize the expressiveness of logic languages of ASP systems, we consider the following
properties that a logic language should provide:

• Ability to express views. As outlined above, views play a relevant role because in some
systems the database relations are views themselves on other resources.

• Ability to express recursive queries. Recursion allows to model easily even complex prob-
lems. Therefore, the ability to express recursive queries is a fundamental property to assess
the expressiveness of a logic language.

• Ability to express integrity constraints. When querying data from different sources, differ-
ences and inconsistencies of the data must be taken into account. The ability to express
integrity constraints allows to avoid most cases of data inconsistencies.

• Ability to express nonmonotonic queries. This property is necessary in order to define
appropriate methods dealing with complex scenarios involving incomplete or inconsistent
data sources, or in presence of dynamic knowledge.

• Ability to deal with computationally hard queries. As stated above, the possibility to ex-
press computationally hard queries is a crucial property that ASP systems should provide
in order to deal with complex scenarios.

4.1.2 Optimizations

The efficiency of an ASP system can be measured by analyzing its optimization strategies in
query answering. In order to analyze the optimization strategies adopted by the considered sys-
tems, we consider their behavior in answering two particular classes of queries:

• simple queries (i.e., queries that can be answered in polynomial time);

• complex queries (i.e., whose complexity goes beyond polynomial-time).
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Table 4.1 summarizes the expressiveness and optimization features described above. The
table will be used as a template for the analysis of the systems that will be described in the
remainder of the chapter.

Language expressiveness
Ability to express views
Ability to express recursive queries
Ability to express integrity constraints
Ability to express nonmonotonic queries
Ability to deal with computationally hard queries
Other
Optimization
Optimizations in simple but data intensive queries
Optimizations in computationally hard queries

Table 4.1: Template table for describing systems’ features

4.2 ASP systems: analysis and comparison

ASP is a declarative approach to programming, alternative to SAT-based programming, which is
successful and widely used in the area of Artificial Intelligence [37]. In SAT-based programming,
a given computational problem P is encoded as a propositional CNF formula whose models
correspond to solutions of P . A SAT solver is then used to find such models (and thus solutions
of P ). In ASP, on the contrary, a problem P is represented by a program whose answer sets
correspond to solutions; an ASP system is then used to find such solutions [44].

The main advantage of ASP over SAT-based programming is its higher language expressive-
ness, which enjoys the knowledge modeling power of logic programming features like variables,
negation as failure, and disjunction. Indeed, the knowledge representation language of ASP con-
sists of function-free logic programs with classical negation where disjunction is allowed in the
heads and negation as failure may occur in the bodies of the rules.

As mentioned earlier, the ASP language supports the representation of problems of high
computational complexity (specifically, all problems in the complexity class ΣP

2 = NPNP). Fur-
thermore, the ASP encoding of a large variety of problems is often very concise, simple, and
elegant [17].

In the remainder of this section we analyzed several ASP systems: DLV, SMODELS, Cmod-
els, ASSAT, noMoRe, SLG, DeReS, XSB and claspD.

4.2.1 DLV

The development of the DLV system (datalog plus vel, i.e., disjunction) [6, 12, 14] has started
as a research project funded by FWF (the Austrian Science Funds) in 1996, and has evolved into
an international collaboration over the years. Currently, the University of Calabria and TU Wien
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participate in the project, supported by a scientific-technological collaboration between Italy and
Austria.

The system is based on disjunctive logic programming without function symbols under the
consistent answer set semantics [30] and has the following important features:

Advanced Knowledge Modeling Capabilities. DLV provides support for declarative problem
solving in several respects:

• High expressiveness in a formally precise sense (ΣP
2 ), so any such problem can be uni-

formly solved by a fixed program over varying input.

• Declarative problem solving following a “Guess/Check/Optimize ” paradigm where a so-
lution to a problem is guessed by one part of a program and then verified through another
part of the program.

• Capability to express hard and weak constraints.

• A number of front-ends for dealing with specific AI applications.

Solid Implementation. Much effort has been spent on sophisticated algorithms and techniques
for improving the performance, including

• database optimization techniques [14, 19], and

• non-monotonic reasoning optimization techniques.

Database Interfaces. The DLV system provides an experimental interface to an object-oriented
database management system (Objectivity), by means of a special query tool, which is useful for
the integration of specific problem solvers developed in DLV into more complex systems.

The architecture of DLV is illustrated in Figure 4.1. The general flow in this picture is top-
down. The principal User Interface is command-line oriented, but also a Graphical User Interface
(GUI) for the core systems and most front-ends is available. Subsequently, front-end transfor-
mations might be performed. Input data can be supplied by regular files, and also by Objectivity
databases. The DLV kernel (the shaded part in the figure) then produces answer sets one at a time,
and each time an answer set is found, “Filtering” is invoked, which performs post-processing (de-
pendent on the active front-ends) and controls continuation or abortion of the computation.

The DLV kernel consists of three major components: the “Intelligent Grounding,” “Model
Generator,” and “Model Checker” modules share a principal data structure, the “Ground Pro-
gram”. It is created by the Intelligent Grounding using differential (and other advanced) database
techniques together with suitable data structures, and used by the Model Generator and the Model
Checker. The Ground Program is guaranteed to have exactly the same answer sets as the origi-
nal program. For some syntactically restricted classes of programs (e.g. stratified programs), the
Intelligent Grounding module already computes the corresponding answer sets.

For harder problems, most of the computation is performed by the Model Generator and the
Model Checker. Roughly, the former produces some “candidate” answer sets (models) [20, 21],
the stability of which are subsequently verified by the latter.
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Figure 4.1: The System Architecture of DLV

The Model Checker (MC) verifies whether the model at hand is an answer set. This task is
very hard in general, because checking the stability of a model is known to be co-NP-complete.
However, MC exploits the fact that minimal model checking — the hardest part — can be effi-
ciently performed for the relevant class of head-cycle-free (HCF) programs.

In Table 4.2 we summarize the features of the DLV system w.r.t. the properties we have
pointed out in Section 4.1.

4.2.2 SMODELS

The SMODELS system [54, 53] implements the answer set semantics for normal logic programs
extended by built-in functions as well as cardinality and weight constraints for domain-restricted
programs.

As input, the SMODELS system takes logic program rules basically in Prolog style syntax.
However, in order to support efficient implementation techniques and extensions the programs
are required to be domain-restricted where the idea is the following. The predicate symbols in
the program are divided into two classes, domain predicates and non-domain predicates. Domain
predicates are predicates that are defined non-recursively.

The main intuition of domain predicates is that they are used to define the set of terms over
which the variable range in each rule of a program P . All rules of P have to be domain -
restricted in the sense that every variable in a rule must appear in a domain predicate which
appears positively in the rule body.
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DLV

Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes, both hard and weak

constraints (desiderata) are ex-
pressible

Ability to express nonmonotonic queries Yes, supports unstratified
negation and disjunction

Ability to deal with computationally hard
queries

Expresses very hard queries,

up to ∆P
3

Other
Optimization
Optimizations in simple but data intensive
queries

Some database optimization

techniques are incorporated, but
magic sets are not implemented

Optimizations in computationally hard
queries

Heuristics and optimization

techniques from the field of SAT
programming have been
implemented

Table 4.2: Features of DLV

In addition to normal logic program rules, SMODELS supports rules with cardinality and
weight constraints. The idea is that, e.g., a cardinality constraint

1 {a,b,not c} 2

holds in an answer set if at least 1 but at most 2 of the literals in the constraint are satisfied in the
model and a weight constraint

10 [ a=10,b=10,not c=10 ] 20

holds if the sum of weights of the literals satisfied in the model is between 10 and 20 (inclu-
sive).With built-in functions for integer arithmetic (included in the system), these kind of rules
allow compact and fairly straightforward encodings of many interesting problems.

Answer sets of a domain-restricted logic program with variables are computed in three stages:

• First the program is transformed into a ground program without variables.

• Second, the rules of the ground program are translated into primitive rules,
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• Third, an answer set is computed using a Davis-Putnam like procedure [60].

The first two stages have been implemented in a program called lparse, which functions as a
front end to smodels which in turn implements the third stage.

In the first stage lparse automatically determines the domain predicates and then using
database techniques evaluates the domain predicates and creates a ground program which has
exactly the same answer sets as the original program with variables. Then the rules are compiled
into primitive rules.

The smodels procedure is a Davis-Putnam like backtracking search procedure that finds
the answer sets of a set of primitive rules by assigning truth values to the atoms of the program.
Moreover it uses the properties of the answer set semantics to infer and propagate additional truth
values. Since the procedure is in effect traversing a binary search tree, the number of nodes in
the search space is in the worst case on the order of 2n, where n can be taken from the number
of atoms that appear in a constraint in a head of a rule or that appear as a negative literal in a
recursive loop of the program.

Hence, in order to compute answer sets, one uses the two programs lparse, which translates
logic programs into an internal format, and smodels, which computes the models.

It is worthwhile noting that, even if SMODELS kernel does not support disjunction, this fea-
ture has been implemented on top of SMODELS by a suitable rewriting technique. The resulting
system is called GnT [35]. Such a rewriting-based implementation of disjunction, however, can
obviously not provide the same performance than a built-in implementation. And indeed, GnT
turns out to be sensibly slower than DLV on ΣP

2 -hard problems.
In Table 4.3 we summarize the features of SMODELS w.r.t. the properties relevant to data

integration we have pointed out in Section 4.1.

4.2.3 Cmodels

Cmodels is a system that computes answer sets for either disjunctive logic programs or logic
programs containing choice rules. Answer set solver Cmodels uses SAT solvers as a search
engine for enumerating models of the logic program – possible solutions, in case of disjunctive
programs SAT solver zChaff is also used for verifying the minimality of found models.

The system Cmodels is based on the relation between two semantics: the answer set and the
completion semantics for logic programs. For big class of programs called tight, the answer set
semantics is equivalent to the completion semantics, so that the answer sets for such a program
can be enumerated by a SAT solver.

On the other hand for nontight programs [46], and [38] introduced the concept of the loop
formulas, and showed that models of completion extended by all the loop formulas of the program
are equivalent to the answer sets of the program. Unfortunetly number of loop formulas might be
large, therefore computing all of them may become computationally expensive. This led to the
adoption of the algorithm that computes loop formulas “as needed” for finding answer sets of a
program.

Cmodels is similar to Smodels or GnT in that its input is a grounded logic program that
can be generated by the front-end called Lparse. The input of Cmodels may contain weight
constraints, but optimize statements are not allowed. The representation of weight constraints by
propositional formulas used in Cmodels is based on [24].

Table 4.4 summarizes the features of Cmodels relevant to data integration tasks.
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SMODELS
Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Yes, supports unstratified nega-

tion
Ability to deal with computationally hard
queries

Up to NP thanks to unstratified

negation and “choice” rules
ΣP
2 problems can be solved

through a disjunctive extension
(GnT)
implemented by a rewriting
technique

Other Supports cardinality and weight
constraints; handles only
domain-restricted programs

Optimization
Optimizations in simple but data intensive
queries

Inefficiency caused by the
domain-
restriction requirement on
program variables. No database
optimization technique has been
implemented

Optimizations in computationally hard
queries

Heuristics and optimization

techniques from the field of SAT
programming have been
implemented

Table 4.3: Features of SMODELS

4.2.4 ASSAT

ASSAT (Answer Sets by SAT solvers) [45] is a recently developed system for computing answer
sets of a logic program by using SAT solvers. Given a ground logic program P and a SAT solver
X , ASSAT(X) works as follows:

• Computes the completion of P and converts it into a set C of clauses.

• Repeats the following steps

– Calls X on C to get a model M (terminates with failure if no such M exists).

– Returns M if M is an answer set.
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Cmodels
Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes

Ability to express nonmonotonic queries Yes, supports unstratified
negation and disjunction

Ability to deal with computationally hard
queries

Up to ΣP
2

Other
Optimization
Optimizations in simple but data intensive
queries

No database optimization

technique has been implemented
Optimizations in computationally hard
queries

Heuristics and optimization

techniques from the field of SAT
programming have been
implemented

Table 4.4: Features of Cmodels

– Otherwise, finds some loops in P whose loop formulas are not satisfied by M and
adds their corresponding clauses to C.

As shown in [45], this procedure is sound and complete, assuming that X is a sound and
complete SAT solver.

ASSAT exploits lparse, the grounding system of SMODELS, to instantiate a given pro-
gram. Then, for each loop in the program which is found during the computation, a correspond-
ing loop formula is added to the program’s completion. In this way, a one-to-one correspondence
between the answer sets of the program and the models of the resulting propositional theory
is obtained. In the worst case, this process requires computing an exponential number of loop
formulas.

In Table 4.5 we summarize the features of ASSAT w.r.t. the properties relevant to data inte-
gration we have pointed out in Section 4.1.

4.2.5 noMoRe

The non-monotonic reasoning system noMoRe [2] implements answer set semantics for normal
logic programs. It realizes a novel, rule-based paradigm to obtain answer sets by computing non-
standard graph colorings of the block graph associated with a given logic program (see [47, 48]
for details). These non-standard graph colorings are called a-colorings or application-colorings
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ASSAT
Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Yes, supports unstratified nega-

tion
Ability to deal with computationally hard
queries

Up to NP thanks to unstratified

negation
Other
Optimization
Optimizations in simple but data intensive
queries

No database optimization

technique has been implemented
Optimizations in computationally hard
queries

By the use of well-assessed

SAT solvers

Table 4.5: Features of ASSAT

since they reflect the set of generating rules (applied rules) for an answer set. Hence noMoRe
is rule-based and not atom -based like most of the other known systems. It handles backward
propagation of partial a-colorings and exploit a technique called jumping in order to ensure full
(backward) propagation [48]. Both techniques improve the search space pruning of noMoRe .

The noMoRe -system is implemented in the programming language Prolog; it has been devel-
oped under the ECLiPSe Constraint Logic Programming System [1] and it was also successfully
tested with SWI -Prolog [66].

NoMoRe uses a compilation technique to compute answer sets of a logic program P in three
steps. At first, the block graph ΓP is computed. Secondly, ΓP is compiled into Prolog code in
order to obtain an efficient coloring procedure. Users may choose between two different kinds
of compilation, one which is fast but which gives a lot of compiled code and another one which
is a little bit slower but which produces less compiled code than the other. The second way of
compiling has to be used with large logic programs, depending on the memory management of
the underlying Prolog system. The compiled Prolog code (together with the example-independent
code) is then used to actually compute the answer sets. To read logic programs it is used a parser
(eventually after running a grounder, e.g. lparse or dlv) and there is a separate part for
interpretation of a-colorings into answer sets. Additionally, noMoRe comes with an interface
to the graph drawing tool DaVinci [52] for visualization of block graphs. This allows for a
structural analysis of programs.

The noMoRe system is used for purposes of research on the underlying paradigm. But even
in this early state, usability for anybody familiar with the logic programming paradigm is given.
The syntax accepted by noMoRe is Prolog-like, like that of DLV and smodels . Furthermore,
noMoRe is able to deal with integrity constraints as well as weight and cardinality constraints.
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In Table 4.6 we summarize the features of noMoRe w.r.t. the properties relevant to data
integration we have pointed out in Section 4.1.

noMoRe

Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Unstratified negation is sup-

ported
Ability to deal with computationally hard
queries

Up to NP through unstratified

negation
Other
Optimization
Optimizations in simple but data intensive
queries

No database technique has been

implemented
Optimizations in computationally hard
queries

It is a research prototype

implemented in Prolog, which
needs some engineering to be-
come
efficient

Table 4.6: Features of noMoRe

4.2.6 SLG

The SLG system [10] is a research-oriented system for deductive databases and nonmonotonic
reasoning. It is built as a meta interpreter on top of existing Prolog systems. In addition to all the
functionalities of Prolog, SLG contains several features not usually found in logic programming
systems, including:

• Query evaluation under the well-founded semantics using SLG resolution.

• Query evaluation of deductive databases whose rules may have explicit universal quanti-
fiers in the body.

• Query answering under stable models.

• Abductive reasoning with integrity constraints.

• Skeptical reasoning with respect to the intersection of stable models.
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The SLG meta interpreter employs an efficient algorithm for incremental maintenance of depen-
dencies among subgoals so that subgoals that are completely evaluated or are possibly involved in
recursion through negation can be detected by inspecting the dependency information of a single
subgoal.

The SLG-∀ meta interpreter augments the SLG meta interpreter with the handling of universal
rules. Traditionally universal quantification is eliminated by conversion into the negation of an
existential quantification. This, however, may introduce extra recursion through negation, and
does not preserve the alternating fixpoint semantics of general logic programs. SLG-∀ computes
the alternating fixpoint semantics by processing universal rules directly.

A profiling of the SLG-∀ meta interpreter shows that two major factors of overhead are meta
interpretation and the lack of destructive assignment for managing tables of subgoals and their
answers.

In Table 4.7 we summarize the features of SLG w.r.t. the properties relevant to data integra-
tion we have pointed out in Section 4.1.

SLG
Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Yes
Ability to deal with computationally hard
queries

Up to NP

Other
Optimization
Optimizations in simple but data intensive
queries

No

Optimizations in computationally hard
queries

It is a research prototype

which needs some engineering
to become efficient

Table 4.7: Features of SLG

4.2.7 DeReS

The system DeReS [11] supports basic automated reasoning tasks for default logic and for logic
programming under the answer set semantics. It is shown that a normal logic program P can
be represented by a suitable default theory D, such that the answer sets of P correspond to the
so-called extensions of D. DeReS uses relaxed stratification as a primary mechanism for pruning
the search-space. A default theory D is partitioned into several smaller subtheories, called strata
and the extensions of D are constructed from the extensions of its strata. The approach taken
by DeReS is somehow orthogonal to the one taken by SMODELS, and it is argued in [11] that
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next generation implementations of nonmonotonic systems must combine techniques developed
in both projects in order to be effective in a large range of different applications.

The features of the system DeReS are summarized in Table 4.8.

DeReS
Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Unstratified negation is

supported
Ability to deal with computationally hard
queries

Up to NP in Datalog, up to

ΣP
2 in Default Logic

Other Also Default Logic is supported
Optimization
Optimizations in simple but data intensive
queries

No database optimization

technique is implemented
Optimizations in computationally hard
queries

An engineering phase is needed

Table 4.8: Features of DeReS

4.2.8 XSB

The XSB system is an inmemory deductive database engine based on a Prolog/SLD resolution
strategy. Clearly, the traditional Prolog systems are known to have serious deficiencies when used
as database systems. Indeed, the SLD computational mechanism, which well serves the needs of a
programming language, is clearly inadequate as a database computation strategy. Its most serious
drawback is that it does not terminate for the datalog language. Datalog is a decidable language
(one reason that makes it a reasonable candidate for a database language) but SLD refutation is
not finite on it. The deductive database community has adopted datalog as a leading database
query language, identified these problems, and rectified them. Rewriting techniques have been
developed to introduce goaldirectedness into a bottomup, setatatime evaluation strategy. These
techniques solve SLD’s problems of lack of finiteness and redundant computation. XSB offers an
alternative approach to creating a deductive database system. Rather than depending on rewriting
techniques, it extends Prolog’s SLD resolution in two ways: 1) adding tabling to make evaluations
finite and nonredundant on datalog, and 2) adding a scheduling strategy and delay mechanisms
to treat general negation efficiently. The resulting strategy is called SLG resolution, which is
complete and finite for nonfloundering programs with finite models, whether they are stratified
or not.

The system XSB [58] can compute most cases of the well-founded semantics for normal logic
programs with functions symbols. The inference engine, which is called the SLG-WAM, consists
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of an efficient tabling engine for definite logic programs, which is extended by mechanisms for
handling cycles through negation. These mechanisms are negative loop detection, delay and
simplification. They serve for detecting, breaking and resolving cycles through negation. It is
worth pointing out that XSB can work only in main memory and, consequently, it could not
evaluate programs working on huge amounts of data.

Table 4.9 summarizes the features of XSB relevant to data integration tasks.

XSB
Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints No
Ability to express nonmonotonic queries Only “well-founded” queries
Ability to deal with computationally hard
queries

Only polynomial-time

queries
Other
Optimization
Optimizations in simple but data intensive
queries

The system is at an advanced

engineering state. However,
the “tuple-oriented”, top-down
computational model limits
the efficiency on database
queries

Optimizations in computationally hard
queries

Not applicable

Table 4.9: Features of XSB

4.2.9 claspD

claspD is an answer set programming (ASP) solver for (extended) normal and disjunctive
logic programs. It is able to deal with problems at the second level of the polynomial hierar-
chy. claspD deploys a generate and test approach, both tasks implemented by way of clasp’s
core technology [26]; consequently, it combines the high-level modeling capacities of Answer
Set Programming with state-of-the-art techniques from the area of Boolean constraint solving.

Unlike existing ASP solvers, claspD is originally designed and optimized for conflict-driven
ASP solving [28, 27], centered around the concept of a nogood from the area of constraint pro-
cessing (CSP). Rather than applying a SAT(isfiability checking) solver to a CNF conversion,
clasp directly incorporates suitable data structures, particularly fitting backjumping and learning.

Such techniques include:

• conflict analysis via the First-UIP scheme;
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• nogood recording and deletion;

• backjumping;

• restarts;

• conflict-driven decision heuristics;

• unit propagation via watched literals;

• dedicated propagation of binary and ternary nogoods;

However, claspD is a genuine ASP solver. Its basic propagation engine includes advanced
unfounded set checking based on source pointers. In fact, claspD is the first disjunctive ASP
solver whose propagation engine is able (but not guaranteed) to detect non-singleton unfounded
sets within non-head-cycle-free strongly connected components of a program’s (positive) atom
dependency graph. Furthermore, non-polynomial unfounded set checks are only applied if nec-
essary, that is, when an exhaustive test of a non-head-cycle-free strongly connected component
is needed.

Table 4.10 summarizes the features of claspD relevant to data integration tasks.

claspD
Language expressiveness
Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes

Ability to express nonmonotonic queries Yes, supports unstratified
negation and disjunction

Ability to deal with computationally hard
queries

Up to ΣP
2

Other
Optimization
Optimizations in simple but data intensive
queries

No database optimization

technique has been implemented
Optimizations in computationally hard
queries

Heuristics and optimization

techniques from the field of SAT
programming have been
implemented

Table 4.10: Features of claspD
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4.2.10 Other systems

Among other ASP systems we cite the system near Horn [49, 51] which has been implemented
in PROLOG; in [59] the system DisLog is described, which incorporates different disjunctive
theories and strategies including the semantics introduced in [50]; DisLog tries to eliminate re-
dundant computations by using a breadth-first approach. The system DisLoP [4, 5] which aims at
extending the restart model elimination and hyper tableau calculi, for disjunctive logic program-
ming under the D-WFS and stable semantics. The aspps system is an answer-set programming
system based on the extended logic of propositional schemes [16], which allows variables but
not function symbols in the language. The GnT system is an implementation of the stable model
semantics for disjunctive logic programs constructs on top of Smodels system; this implementa-
tion is based on an architecture consisting of two interacting Smodels solvers for non-disjunctive
programs, one of the them is responsible for generating as good as possible model candidates
while the other checks for minimality, as required from disjuctive stable models.
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DLVDB Extensions

The DLVDB system, described in Chapter 3, is a database-oriented variant of DLV that carries
out all of its tasks in mass memory to enable data intensive applications. In its early implemen-
tation, DLVDB did not support external predicates, list terms, and function symbols, which are
of fundamental importance to enhance knowledge representation and reasoning capabilities of a
DLP language. In particular, as highlighted earlier in this thesis, function symbols and lists terms
allow the aggregation of atomic data, the manipulation of complex data structures and the gen-
eration of new symbols. Finally, external predicates allow the isolation of units of a procedural
program for calling them within declarative logic programs.

The goal of this work is to extend the DLVDB system to let it support the above mentioned
language constructs, in order to improve its knowledge modelling power. The remainder of this
chapter is organized as follows. First, we recall the basic notions of database stored functions,
which are used in our approach to implement the external predicates in DLVDB . Then, we
describe the evaluation strategies used for supporting external predicates, lists, and functional
terms.

Part of the material presented in this chapter appeared in [61, 62].

5.1 Database stored functions

Most ASP systems implement external predicates by means of calls to external functions defined
with procedural languages, such as C or C++. For example, DLV-EX [9] extends DLV by external
predicates with the aim of enabling ASP to deal with external sources of computation. This
feature is obtained by the introduction of parametric external predicates, that are not specified by
means of a logic program but implicitly computed through external code provided in a dynamic
library.

Since DLVDB transforms logical programs into SQL statements to enable database-oriented
processing, we implement external predicates by exploiting database-oriented solutions. In par-
ticular, we implement external predicates by calls to database stored functions.

A stored function is a general mechanism used in database systems to provide procedural
capabilities within declarative SQL statements. The use of stored functions in an SQL statement
allows to execute some parts of the application directly within the database system process space.

For the sake of completeness we mention that, according to the SQL specifications, two
alternative mechanisms may be used to introduce procedural capabilities in SQL:
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• SQL-invoke-procedures, also referred to as stored procedures;

• SQL-invoke-functions, or simply stored functions.

A stored procedure receives a set of parameters, where each parameter may be of input or of
output type, but does not return any result. A stored function can receive only input parameters,
and returns a single result in a functional way.

Once defined, a stored procedure is invoked, outside of an SQL statement, as follows:

CALL procedure name(value,...,value)

Conversely, a stored function can be directly invoked within an SQL statement, either in the
SELECT or in the WHERE part, as in the following example:

SELECT table.field FROM table WHERE function name(field)=value;

Given the possibility to invoke stored functions directly in SQL, in DLVDB we use stored
functions instead of stored procedures to implement external predicates.

Stored functions are defined by the SQL/PSM specification1 introduced with SQL:1999.
However, with the exception of few database systems (e.g., Informix, RDBMS), most DBMSs
use proprietary languages to define stored functions that exceed the SQL/PSM specifications.
Table 5.1 lists the languages used by some database systems to implement stored functions.

Table 5.1: Languages used by some database systems to implement stored functions
Database Stored function languages
Microsoft SQL Server Transact-SQL; various .NET Framework languages
Oracle PL/SQL; Java
DB2 SQL/PL; Java
Postgres PL/pgSQL; pl/perl; pl/php
MySQL language close to SQL:2003 standard
Firebird PSQL

The following example shows a stored function factorial that returns the factorial of a num-
ber which is created in MySQL:

CREATE FUNCTION ‘factorial‘ (n int) RETURNS INT
BEGIN

DECLARE res int;
DECLARE i int;
SET i=2;
SET res=1;
WHILE (i<=n) do

SET res=res*i;
SET i=i+1;

END WHILE;
RETURN res;

END
1PSM stands for Persistent Stored Module
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To define a mapping between a stored function, created as above, and an external predicate
name to be used in a DLP program, we have introduced an auxiliary directive named USEFUNC-
TION, in addition to the other auxiliary directives already introduced in Section 3.3.

The syntax of USEFUNCTION is as follows:

USEFUNCTION FunctionName MAPTO ExternalPredName.

For example, assuming the existence of the factorial stored function, the following directive
should be used to map that function onto an external predicate fact:

USEFUNCTION factorial MAPTO fact.

5.2 Evaluation of external predicates

Recall that, by convention, given an external atom #f(X1, . . . , Xn, O) used in a rule r, only
the last variable O can be considered as an output parameter, while all the other variables must
be intended as input for f . This corresponds to the stored function call f(X1, . . . , Xn) = O on
the DLVDB working database. Moreover, O can be: (i) bound to other variables in r’s body, (ii)
bound to a constant, (iii) bound to a variable of r’s head, (iv) bound to an input parameter of
another external function.

To cope with the four cases listed above, different rules are followed to derive the SQL state-
ment corresponding to r. The translation rules have been implemented by extending the DLV to
SQL Translator module represented in Figure 3.1. In particular, the TranslateNonRecursive-
Rule function, already introduced in the previous chapter, has been extended as shown in Figure
5.1.

Function TranslateNonRecursiveRule(r: DLPA rule): SQL statement
begin

SQL:=””;
if (hasAggregate(r)) then

SQL:=SQL+TranslateAggregateRule(r);
SQL:=SQL+”INSERT INTO ” + head(r) + ”(”;
if (isPositive(r)) then

SQL:=SQL+TranslatePositiveRule(r);
else if (hasNegation(r)) then

SQL:=SQL+TranslateRuleWithNegation(r);
else if (hasBuilt-In(r)) then

SQL:=SQL+TranslateRuleWithBuilt(r);
else if (hasExternalPredicate(r)) then

SQL:=SQL+TranslateRuleWithExternalPredicates(r);
else if (hasBuilt-InAndExternalPredicates(r)) then

SQL:=SQL+TranslateRuleWithBuilt-InAndExternalPredicates(r);
else if (hasNegationAndBuilt-In(r)) then

SQL:=SQL+TranslateRuleWithNegationAndBuilt-In(r);
else if (hasNegationAndBuilt-InAndExternalPredicates(r)) then

SQL:=SQL+TranslateRuleWithNegationAndBuilt-InAndExternalPredicates(r);
SQL:=SQL+”)”;
return SQL;

end.

Figure 5.1: Extended version of the TranslateNonRecursiveRule function
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The new version of TranslateNonRecursiveRule, differently from the previous version,
checks whether the rule includes external predicates by the call of hasExternalPredicates
function; if so, it calls the TranslateRuleWithExternalPredicates function shown in Figure
5.2.

Function TranslateRuleWithExternalPredicates(r: DLPA rule): SQL statement
begin

SELECT :String:=”SELECT ” + head attr(r);
FROM :String:=”FROM ” + body+(r);
WHERE:String:=”WHERE ” + joinConditions(r) + ”AND ” + bodyConstantConditions(r);
for each a in external atom(r) do begin

if (extAtomBoundInHead(a,r)) then begin
SELECT :=SELECT+”, ”+ getExtFunctionDef(a);

end.
if (extAtomBoundInBody(a,r)) then begin

if (isNegative(a)) then begin
WHERE:=WHERE+ ”AND (”
+ getExtFunctionDef(a) + ”<>” + getVarBoundToExtAtom(a,r);
WHERE:=WHERE+ ”OR” + getExtFunctionDef(a) + ” IS NULL)”;

end
else begin

WHERE:=WHERE+ ”AND ”
+ getExtFunctionDef(a) + ”” + getVarBoundToExtAtom(a,r);
WHERE:=WHERE+ ”AND” + getExtFunctionDef(a) + ” IS NOT NULL”;

end.
end.
if (extAtomBoundToConstant(a,r)) then begin

if (isNegative(a)) then begin
WHERE:=WHERE+ ”AND (”
+ getExtFunctionDef(a) + ”¡¿” + getConstantBoundToExtAtom(a,r);
WHERE:=WHERE+ ”OR” + getExtFunctionDef(a) + ” IS NULL)”;

end.
else begin

WHERE:=WHERE+ ”AND”
+ getExtFunctionDef(a) + ”=” + getConstantBoundToExtAtom(a,r);
WHERE:=WHERE+ ”AND” + getExtFunctionDef(a) + ” IS NOT NULL”;

end.
end.
if (extAtomBoundInputOtherExtAtom(a,r)) then begin

var:String:=getVarBoundToExtAtom(a,r);
extFunDef:String:=getExtFunctionDef(a);
replaceVarWithExtFunctionDef(SELECT , var, extFunDef);
replaceVarWithExtFunctionDef(WHERE, var, extFunDef);
WHERE:=WHERE+ ”AND” + getExtFunctionDef(a) + ” IS NOT NULL”;

end.
SQL:=SELECT + FROM + WHERE + ”EXCEPT (SELECT * FROM ” + head(r) + ”)”;
return SQL;

end.

Figure 5.2: Function TranslateRuleWithExternalPredicates

TranslateRuleWithExternalPredicates receives a rule r as input and returns the cor-
responding SQL statement. Basically, it first initializes the SQL statement in the same way as
function TranslatePositiveRule in Figure 3.5; then for each external atom, it creates an ap-
propriate SELECT or WHERE part, based on whether the output variable of the external atom is
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bound (i) to other variables in the rule’s body, (ii) to a constant, (iii) to a variable of the rules’s
head, or (iv) to an input parameter of another external function, as already mentioned above.
This check is performed by function extAtomBoundInHead (resp., extAtomBoundInBody,
extAtomBoundToConstant, extAtomBoundInputOtherExtAtom) which receives a rule
r and an external atom a and returns true if a is bound to other variables in r’s body (resp., to
a constant, to a variable of r’ head, to an input parameter of another external function), false
otherwise. In the following we describe, with the help of some examples, how the four cases are
managed by TranslateRuleWithExternalPredicates.

5.2.1 Output variable bound to other variables in the rule’s body

Given a rule containing an external atom having its output variable bound to other variables in
the rule’s body, the corresponding SQL statement is obtained by introducing a stored function
call (associated with the external predicate) in the WHERE part. The WHERE clause includes
a condition dictating that the stored function output is equal to the database mapping of the
predicate variable to which the output variable is bound.

As an example, let us consider the following rule:

nounStartsWithV owel(N):-noun(N), vowel(V ),#characterAt(N, 1, V ).

The rule includes an external predicate, #characterAt, which takes in input a string N and
the position of a character (1, in this case), and returns in V the character at that position. The
output variable V is bound to the variable of the vowel atom; therefore, by applying the strategy
described above, the rule is translated into the following SQL statement:

INSERT INTO nounStartsWithVowel
(SELECT noun.n FROM noun, vowel WHERE characterAt(noun.n,1)=vowel.v AND
characterAt(noun.n,1) is NOT NULL);

As shown in the SQL statement above, a stored function characterAt is used to perform the
operation associated with the external predicate #characterAt. The stored function is introduced
into the WHERE part, with the condition that its output is equal to vowel.v and not NULL. A
stored function returns NULL when it is not applicable to the provided input parameters2

Note that, since the grounding phase instantiates all the variables, there is no need to invoke
again the functions associated with external predicates after the grounding (this is true even for
disjunctive or non stratified programs). As a consequence, the handling of external predicates can
be carried out completely during the grounding and, hence, within the SQL statements generated
from the logic rules.

We consider now a variant of the example above containing a negated predicate:

nounDoesNotStartWithV owel(N):-noun(N), vowel(V ), not #characterAt(N, 1, V ).

The rule is translated into the following SQL statement:

INSERT INTO nounDoesNotStartWithVowel
(SELECT noun.n FROM noun, vowel WHERE characterAt(noun.n,1)<>vowel.v) OR
characterAt(noun.n,1) is NULL;

2Indeed, it is mandatory that a stored function returns NULL if the input parameters cannot be processed due to
incompatible types or out-of-range values.
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In this example the WHERE clause includes a condition dictating that the output of the stored
function, characterAt, is not equal to the database mapping of the predicate variable, vowel.v,
or it is NULL. For the sake of clarity, in the following examples we omit to explicitly check
whether the output of the stored function is (or is not) NULL.

5.2.2 Output variable bound to a constant

If the rule contains an external function having its output variable bound to a constant, the cor-
responding SQL statement is constructed by introducing a stored function call in the WHERE
part, with the condition that its output is equal to the constant value. This can be considered as a
special case of the scenario described in the previous subsection, in which the output variable is
bound to other variables in the rule’s body.

As an example, let us consider the following rule:

multiple(X,Y ):-number(X), number(Y ),#remainder(X,Y, 0).

The external predicate #remainder receives two numbers X and Y and returns the integer
remainder of a division between them. The output is bound to the constant 0 to check whether
the first number is a multiple of the second one. According to the translation strategy described
above, the following SQL statement is derived:

INSERT INTO multiple
(SELECT n1.n, n2.n FROM number as n1, number as n2 WHERE remainder(n1.n,
n2.n)=0);

As shown above, the stored function remainder is introduced into the WHERE part, with
the condition that its output is equal to the constant value 0.

The following rule is obtained by negating the remainder predicate used in the previous
rule:

notMultiple(X,Y ):-number(X), number(Y ), not #remainder(X,Y, 0).

The rule is translated into the following SQL statement, in which the condition is that the stored
function output is not equal to the constant value 0:

INSERT INTO multiple
(SELECT n1.n, n2.n FROM number as n1, number as n2 WHERE remainder(n1.n,
n2.n)<>0);

5.2.3 Output variable bound to a variable in the rule’s head

This case comprises those rules having an external predicate with the output variable bound to a
head variable. The translation is performed by introducing a stored function call into the SELECT
part of the SQL statement.

As an example, consider the following rule:

factorial(X,Y ):-number(X),#fact(X,Y ).

The rule includes an external predicate, #fact, which receives a number X and returns its fac-
torial Y . The output variable Y is bound to a variable of the head. Therefore, according to the
strategy above, the rule is translated into the following SQL statement:
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INSERT INTO factorial
(SELECT number.n, fact(number.n) FROM number);

The SQL statement shows that, differently from the previous two scenarios, in this case the
stored function fact is introduced into the SELECT part. In more detail, this statement feeds
the extensional database with new facts, having predicate factorial, which store the factorial for
each number in the number table.

Note that a rule that contains the output variable of a negated external atom bound to a variable
in the rule’s head is unsafe. For instance, the following rule is unsafe:

notFactorial(X,Y ):-number(X), not #fact(X,Y ).

5.2.4 Output variable bound to an input parameter of another external predicate

We conclude this section with the case in which a rule contains a non negative external predicate
ep1 having the output variable O bound to an input parameter I of another external predicate ep2.
In this case, the SQL statement is obtained by substituting the variable I with a call to the stored
function associated with ep1. This is independent from the fact that ep2 has its variable bound
to other variables in the rule’s body (which requires a stored function in the WHERE part), or
bound to a variable in the rule’s head (which requires a stored function in the SELECT part).

As an example, we consider the rule:

palindromic(Z):-word(X),#reverse(X,Y ),#concat(X,Y, Z).

The rule includes two external predicates: #reverse that receives a string X and returns its
reversed version Y , and #concat that receives two strings, X and Y , and returns their concate-
nation Z. The output variable of the first external predicate is bound to an input parameter of the
second external predicate; therefore, the rule is translated into the following SQL statement:

INSERT INTO palindromic
(SELECT concat(word.w, reverse(word.w)) FROM word);

The stored function concat is included into the SELECT part because the output variable of
the corresponding external function is bound to an input parameter of the rule’s head. Moreover,
as the second input parameter of concat, we use the output of the stored function reverse,
according to the translation strategy described above.

Note that a rule that contains the output variable of a negated atom bound to an input param-
eter of another external atom is unsafe. For instance, the following rule is unsafe:

notPalindromic(Z):-word(X), not #reverse(X,Y ),#concat(X,Y, Z).

5.3 Evaluation of list terms

List terms are handled through a rewriting of the rule using suitable external predicates. In
particular, programs containing list terms are automatically rewritten to contain only terms and
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external predicates. Three basic operations can be singled out to handle lists: (i) initialization,
(ii) packing of list terms, (iii) unpacking of list terms.

Lists are internally handled as strings, starting (resp., ending) with a ‘[’ (resp., ‘]’) where
terms are separated by a ‘,’. Initialization is then implicitly implemented by the transformation
of the list into a string.

Packing and unpacking are the core operations to handle list terms. We implemented an
additional software module in DLVDB to manage such operations. The new module, called LFT
Rewriter (Lists and Functional Terms Rewriter), is located between the Parser and the Optimizer
modules represented in Figure 3.1. Moreover, for each supported DBMS, we provide a set of
stored functions associated with the external predicates used to handle list terms. The source
code of such functions is included in Appendix A.

Recall, from Section 2.1, that a list term can be defined using one of following forms:

1. [H|T ] where H (the head of the list) is a term, and T (the tail of the list) is a list term.

2. [T1, . . . , Tn] where T1, . . . , Tn are terms;

We use the term closed lists to indicate lists defined using the first form, and open lists to
indicate lists of the second form. We assume that lists contain homogeneous data, i.e., we manage
lists of integers or list of strings, but not lists containing both integers and strings.

Figure 5.3 shows the RewriteRuleWithListTerms function that, given a rule with list
terms, returns that rule rewritten by replacing each list definition with calls to external predicates.
In particular, for each list term that appear in the rule head, the function checks, using a func-
tion isOpenListTerm (resp. isClosedListTerm), if that list term is in open (resp., closed)
list form. If a list term is in open list form, it is replaced with a set of pack external atoms; oth-
erwise, it is replaced with a set of cat external atoms. Similarly, for each list term that appear
in the body, the function uses isOpenListTerm (resp. isClosedListTerm) to check whether
it is in open (resp., closed) list form. If so, it is replaced with a set of unpack external atoms;
otherwise, it is replaced with a set of memberNth external atoms.

In the following we describe through some examples how the packing and unpacking oper-
ations are performed by the RewriteRuleWithListTerms function, based on which form is
used to define a list term.

5.3.1 Packing operation

Packing is the operation that builds a list starting from its basic elements. Note that the packing
is needed only if the list term is located into the head of the rule. Here we show how the packing
is performed, based on which form (closed or open) the list belongs to.

Closed lists

The packing of a closed list is carried out by an external predicate #pack that receives a term H
and a list T and returns the list L = [H|T ].

For example, the rule:
p([H|T ]):- dom(H), list(T ).

is translated into the following rule:

p(L):- dom(H), list(T ),#pack(H,T, L).
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Function RewriteRuleWithListTerms(r: DLPA rule): DLPA rule
begin

newRule:DLPA rule:=r;
for each list term in head(r) do begin

if (isOpenListTerm(list term)) then begin
packAtom:DLPA atom ARRAY:=buildPackExtAtoms(list term);
addAtomToRuleBody(newRule,packAtom);
replaceListTermInHead(newRule,list term,packAtom);

end.
elseif (isClosedListTerm(list term)) then begin

catAtoms:DLPA atom ARRAY:=buildCatExtAtoms(list term);
addAtomToRuleBody(newRule,catAtoms);
replaceFunctTermInHead(newRule,list term,catAtoms[catAtoms.length()-1]);

end.
end.
for each list term in body(r) do begin

if (isOpenListTerm(list term)) then begin
unpackAtoms:DLPA atom ARRAY:=buildUnpackExtAtoms(a);
addAtomToRuleBody(newRule,unpackAtoms);
replaceListTermInBody(newRule,list term,unpackAtoms[0]);

else if (isClosedListTerm(list term)) then begin
memberNthAtoms:DLPA atom ARRAY:=buildMemberNthExtAtoms(a);
addAtomToRuleBody(newRule,memberNthAtoms);
replaceListTermInBody(newRule,list term,memberNthAtoms[0]);

end.
end.
return newRule;

end.

Figure 5.3: Function RewriteRuleWithListTerms

The corresponding SQL statement, according to the rules described in Section 5.2, is the follow-
ing:

INSERT INTO p
(SELECT pack(dom.h, list.t) FROM q, list);

As another example, consider the following rule:

p([H2|[H1|T ]]):- s(H1), q(H2), list(T ).

In this case, the tail of the list is in turn composed by another closed list. The packing is
performed by building a list L0 = [H1|T ] first; then a list corresponding to [H2|L0] is derived.
Therefore, the final rule is as follows:

p(L):- s(H1), q(H), list(T ),#pack(H1, T, L0),#pack(H,L0, L).

Open lists

The packing of an open list is based on the use of an external predicate #cat that concatenates
two strings.

As mentioned earlier, lists are handled as strings, starting with a ‘[’, ending with a ‘]’, and
with terms separated by a ‘,’. In brief, the packing algorithm iterates on the string that represents
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the list (from the starting parenthesis to the ending parenthesis), and introduces a set of external
predicates #cat to build different portions of the list.

To illustrate the process, consider the rule:

l([A,B, c]):- p(A), q(B).

The list includes three terms: two variables (A and B) and a constant (c). A first external
predicate #cat builds a first portion of the list (L1) by concatenating the starting parenthesis with
the first variable (A). A second predicate #cat builds another portion of the list (L2) that is
obtained by concatenating the first portion (L1) with a ‘,’. Again, a third #cat builds a portion L3
that concatenates L2 with variable B. Finally, the last external predicate #cat builds the overall
list L by concatenating L3 with string ‘,c]’. Note that, the last #cat takes both a ‘,’ and and ’c]’,
because c is a constant. Overall, the rule above is translated into the following rule:

l(L):- p(A), q(B),#cat(′[′, A, L1),#cat(L1,′ ,′ , L2),#cat(L2, B, L3),#cat(L3,′ , c]′, L).

Finally, the corresponding SQL statement is derived by applying the translation rules described
earlier in this chapter:

INSERT INTO l
(SELECT cat(cat(cat(cat(’[’, p.a), ’,’), q.b), ’,c]’) FROM p , q)

5.3.2 Unpacking operation

Unpacking is the operation that returns the basic elements of a list. The unpacking operation
must be performed only if the list term is located into the body of the rule. As for the packing
operation, the unpacking is performed differently if the list term is defined in closed or open form.
In the following we describe both procedures with the help of some examples. Additionally, we
describe how rules with negated atoms containing list terms are rewritten.

Closed lists

The unpacking of a closed list would require a function that returns two values (the head and
the tail). However, database stored functions can return one value only and cannot have side
effects on existing tables. Our solution is to perform the unpacking by using two different calls to
external predicates #head and #tail that, given a string representing a list, return its head element
and its tail, respectively. Since a list can be empty and this cannot be unpacked, we use a third
external predicate, #unpack, which returns true only if the input string represents a non-empty
list.

As an example, the rule:
p(T ):- q(H), list([H|T ]).

is translated into the following rule:

p(T ):- q(H), list(L),#head(L,H),#tail(L, T ),#unpack(L, true).

The corresponding SQL statement is:

INSERT INTO p
(SELECT tail(list.l) FROM q, list WHERE (q.h = head(list.l))
AND (’true’ = unpack(list.l))) .
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Note that availability of external predicates #head and #tail allows also the manipulation of
nested lists, similarly to the example shown for the packing of closed lists.

Open lists

The unpacking of an open list is based on the use of two external predicates: #memberNth that
receives a list L and an index I and returns the list element at position I; #length that receives a
list and returns the number of its elements. Given a list containing n terms, we use n instances
of #memberNth, each one to extract one of the list terms. Moreover, we use one instance of
#length to check whether the length of the list is n.

For example, the rule:
q(B):- l([A,B, c]), p(A).

is translated into the following rule:

q(B):- l(L), p(A),#memberNth(L, 1, A),#memberNth(L, 2, B),
#memberNth(L, 3,′ c′),#length(L, 3).

Note that the first instance of #memberNth takes the first element of L and binds it to
variable A. In the same way, the second #memberNth takes the second element of L (bound to
variable B), and another #memberNth takes the last element of L (bound to constant c). Finally,
external predicate #length checks that the length of the list is 3.

The corresponding SQL statement is then obtained as follows:

INSERT INTO q
(SELECT memberNth(l.a1, 2) FROM l, p WHERE (p.a1 = memberNth(l.a1, 1)) AND
(’c’ = memberNth(l.a1, 3)) AND (3 = length(l.a1))).

Lists in negated atoms

Finally, we consider the case of negated atoms containing list terms. The unpacking in this case
is performed in two phases: first, an auxiliary rule is derived; then, another rule is derived from
the original one, by substituting the negated atom containing the list with the predicate generated
from the auxiliary rule. The auxiliary rule contains in the head all the list terms (variables and
constants); in the body it contains the predicate containing the list term (without negation), and
the unpacking of the list term itself, which in turn depends on its type (closed or open).

Let us consider the following example:

p(H):-not q([H|T ]), a(H), b(T ).

Here, the closed list [H|T ] appears in a negated atom (not q). According to the procedure defined
above, the unpacking generates the following rules:

aux(H,T ):- q(L),#head(L,H),#tail(L, T ),#unpack(L, true).
p(H):- a(H), b(T ), not aux(H,T ).

The auxiliary rule generates an atom aux(H,T ). The second rule is obtained from the original
one by replacing q with aux.

The SQL statement corresponding to the auxiliary rule is obtained following the general
procedure defined for the external predicates, as defined in Section 5.2. For the second rule, the
corresponding SQL statement is generated following the procedure described in Section 3.5.
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5.4 Evaluation of functional terms

Functional terms are handled similarly to open lists. Hence, the rewriting includes a packing op-
eration and an unpacking operation. The packing is performed when the functional term appears
in one of the atoms of the rule’s head, while the unpacking is needed when it appears in one of
the atoms of the rule’s body.

As for the lists, also functional terms are handled as strings. Such strings start with a func-
tor (e.g., f ), followed by an opening parenthesis ‘(’, a set of terms separated by a ‘,’, and are
terminated by a closing parenthesis ‘)’.

Packing and unpacking are managed by the LFT Rewriter module, as mentioned in Section
5.3. To this end, we defined the RewriteRuleWithFunctionalTerms function shown in Fig-
ure 5.4 that, given a rule with functional terms, returns that rule rewritten by replacing each
functional term definition with calls to external predicates. In particular, each funct term that
appears in the rule head is replaced with a set of cat external atoms, whereas each funct term
that appears in the rule body is replaced with a set of memberNthFunct external atoms.

Function RewriteRuleWithFunctionalTerms(r: DLPA rule): DLPA rule
begin

newRule : DLPA rule:=r;
for each funct term in head(r) do begin

catAtoms:DLPA atom ARRAY:=buildCatFunctExtAtoms(funct term);
addAtomToRuleBody(r,catAtoms);
replaceFunctTermInHead(r,funct term,catAtoms[catAtoms.length()-1]);

end.
for each funct term in body(r) do begin

memberNthFunctAtoms:DLPA atom ARRAY:=buildMemberNthFunctExtAtoms(func term);
addAtomToRuleBody(r,memberNthFunctAtoms);
replaceListTermInBody(r,funct term,memberNthFunctAtoms[0]);

end.
return newRule;

end.

Figure 5.4: Function RewriteRuleWithFunctionalTerms

In the following we describe, with the help of some examples, how the packing and unpacking
operations are performed by the RewriteRuleWithFunctionalTerms function.

5.4.1 Packing operation

The packing operation builds a functional term starting from its basic elements, which include
functor, parentheses, terms, and separation commas. As for the open lists, the external predicate
#cat is used.

For example, the following rule:

p(f(A)):- a(A).

is translated into the following one:

p(F ):- a(A),#cat(′f(′, A, F1),#cat(F1,′ )′, F ).

The first #cat generates a portion F1 of the functional term that is obtained as the concatenation
of ‘f(’ with variable A. Then, F1 is concatenated with the closing parenthesis to derive F . The
corresponding SQL statement is then obtained as follows:
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INSERT INTO p
(SELECT cat(cat(’f(’, a.a1), ’)’) FROM a );

5.4.2 Unpacking operation

The unpacking operation returns the basic elements of a functional term. We use three external
predicates to perform this operation:

• #getFunctionName that receives a functional term and returns its functor;

• #memberNthFun that receives a functional term F and an index i, and returns the ith

term of F

• #lengthFun that returns the number of terms in a functional term received as input.

As an example, the following rule:

q(A):- p(f(A,B)), a(A), b(B).

is translated into:

q(A):- p(F ), a(A), b(B),#getFunctionName(F, f),#memberNthFun(F, 1, A),
#memberNthFun(F, 2, B),#lengthFun(F, 2).

Note that #memberNthFun is used twice, because the functional term includes two terms A
and B. The corresponding SQL statement is then obtained as follows:

INSERT INTO p
(SELECT a.a1 FROM p, a, b WHERE (’f’ = getFunctionName(p.a1)) AND (a.a1 =
memberNthFun(p.a1, 1)) AND b.a1 = memberNthFun(p.a1, 2)) AND (2 = lengthFun(p.a1))
);
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Evaluation

This chapter presents an evaluation of our extensions to the DLVDB system. We recall that
three main extensions have been implemented: i) support to external predicates, ii) support to
list terms, and iii) support to functional terms. All three extensions significantly improve the
expressiveness of the supported language, since the possibility to use external predicates, list
terms, and functional terms greatly simplify the writing of logical programs. Moreover, we will
show that such extensions also significantly reduce the execution times as compared to DLVDB

programs that do not support them.
The following approach will be followed in this chapter: for each extension (i.e., external

predicates, list terms, functional terms) a set of test cases is presented; each test case represents
a logic program that is solved both with and without the use of the extension under evaluation;
then, the two versions of each program (with and without extensions) are compared in terms of
execution time to assess their relative merits. Besides performance considerations, we will show
that, in many cases, the solutions that make use of our extensions are easier to write and more
flexible than those that do not use extensions.

6.1 External predicates

We tested the capability to improve usability and efficiency of DLVDB via external predicates
for two real-world problems: number conversion and string similarity computation. All tests
presented in the remainder of the chapter have been carried out on a 64-bit Intel Core 2 Duo
processor with 4 GB of RAM. The working database of DLVDB was defined on Microsoft SQL
Server 2005.

6.1.1 Number conversion

As a first test case, we considered the problem of transforming integer numbers into their binary
representation (Integer to Binary). We solve this problem by writing two alternative versions of
Integer to Binary in DLVDB: one with and one without external predicates. In both versions,
Integer to Binary transforms integers stored in an input table to binaries.

The version without external predicates is the following:

#maxint=31.
digit(0).

62



Chapter 6. Evaluation

digit(1).
binary(V,DT4,DT3,DT2,DT1,DT0) :- digit(DT4), digit(DT3), digit(DT2), digit(DT1), digit(DT0),

N = DT4*16, O = DT3*8, P = DT2*4,
Q = DT1*2, R = DT0*1, V = N+PART3,
PART3 = PART2+PART1, PART2 = O+P, PART1 = Q+R.

int2bin(V,DT4,DT3,DT2,DT1,DT0) :- integer(V), binary(V,DT4,DT3,DT2,DT1,DT0).

The version shown above converts numbers with 5 bits only. To convert numbers with a
greater number of bits, a different (yet similar) version must be implemented, as we did to perform
the tests discussed later in this section.

The version with external predicates is as follows:

int2bin(GR,BI) :- integer(GR), #IntToBin(GR, 5, BI).

In this case, the number of bits is specified as a input parameter of a stored function IntToBin.
Therefore, no program rewriting is needed when the number of bits changes. The code of the
stored function IntToBin implemented on the SqlServer database set as working database for
DLVDB is shown below:

SET ANSI NULLS ON

SET QUOTED IDENTIFIER ON

GO

CREATE FUNCTION [dbo].[IntToBin]

(

@dec INT,

@nbit INT

)

RETURNS VARCHAR (20)

AS

BEGIN

DECLARE @result VARCHAR (20)

DECLARE @tmp VARCHAR (1)

DECLARE @quotient INT

DECLARE @base INT

DECLARE @remainder INT

DECLARE @count INT

SET @quotient=@dec;

SET @base=2;

SET @remainder=0;

SET @count=0;

SET @result=‘’;

WHILE @quotient <> 0 AND @count < @nbit

BEGIN

SET @remainder=@quotient%@base

SET @quotient=@quotient/@base

SET @tmp=CAST(@remainder AS VARCHAR(1))
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SET @result=@tmp+@result

SET @count=@count+1

END;

IF @count < @nbit

BEGIN

WHILE @nbit-@count <> 0

BEGIN

SET @result=‘0’+@result

SET @count=@count+1

END;

END;

RETURN @result;

END;

In order to measure the scalability of DLVDB in this test, we considered output binary num-
bers having from 5 to 16 bits. The obtained results are shown in Figure 6.1, where the x axis
indicates the number of bits and the y axis represents the execution times expressed in seconds.
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Figure 6.1: Comparison of the execution times of the Integer to Binary program with and without
external predicates

The graph clearly shows the significant advantage of using external predicates in this context.
In fact, the execution time of Integer to Binary with external predicates is almost constant because
it requires a fixed number of function calls (one for each mark to convert), independently of the
number of bits. To the contrary, the version without external predicates must generate all the
binary numbers in the admissible range; this explains the exponential growth of the response
time.
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6.1.2 String similarity computation

String similarity computation is an important task in several application areas. In particular,
in bioinformatics, it is essential for measuring several parameters between portions of DNA or
proteins and to identify frequently repeated patterns. ASP (with some extensions) has already
been exploited also in this context, see for example [55].

In this test, we considered the computation of the Hamming distance between pairs of strings,
which is at the basis of several similarity measures. It is defined as the number of positions in
which the corresponding symbols of two strings of the same length are different. This problem is
inherently procedural and, even if a declarative solution for it is possible, this is quite unnatural.

In particular, we considered the following problem, referred to as Hamming Distances in the
following: given a set of strings, compute the Hamming distance between each string pair. Note
that, in classical ASP, in order to properly compute the Hamming distance, each string must be
represented as a set of pairs (CHAR, POS); to the contrary, a solution based on external predicates
can directly handle the whole string.

We designed two encodings for the problem, one using external predicates and one not;
specifically, in the former case input strings are represented as string(ID,S), while in the
latter case strings are expressed as string(ID,CHAR,POS). Note that we did not count the
time for converting the strings from one format to the other in our tests. In both cases, the output
has the form hd(ID1,ID2,H).

The version without external predicates is the following:

hd(ID1,ID2,H) :- string(ID1,C1,P1), string(ID2,C2,P2), ID1 < ID2,
#count{POS : string(ID1,CHAR1,POS), string(ID2,CHAR2,POS),
CHAR1 ! = CHAR2} = H.

The version with external predicates is as follows:

hd(ID1,ID2,H) :- string(ID1,S1), string(ID2,S2), ID1 < ID2,
#hamming(S1,S2,H).

The code of the stored function hamming implemented on the SqlServer database set as
working DB for DLVDB is reported below:

SET ANSI NULLS ON

SET QUOTED IDENTIFIER ON

GO

CREATE FUNCTION [dbo].[hamming]

(

@s1 VARCHAR (250),

@s2 VARCHAR (250)

)

RETURNS INT

AS

BEGIN

DECLARE @count INT,
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DECLARE @index INT,

DECLARE @len INT,

DECLARE @s1 sub VARCHAR (250),

DECLARE @s2 sub VARCHAR (250)

IF DATALENGTH(@s1) = DATALENGTH(@s2)

BEGIN

SET @len=DATALENGTH(@s1)

SET @index=1

SET @count=0

WHILE @index <= @len

BEGIN

SET @s1 sub=SUBSTRING(@s1,@index, @index)

SET @s2 sub=SUBSTRING(@s2,@index, @index)

SET @index=@index+1

IF ASCII(@s1 sub) ! = ASCII(@s2 sub)

BEGIN

SET @count=@count+1

END

END

END

ELSE

BEGIN

SET @count=-1

END

RETURN @count

END

The experimental results are shown in Figure 6.2 for increasing numbers of input strings. The
gain provided by the program that uses external predicates is similar to that we have observed in
the integer-to-binary conversion problem, thus confirming the advantage of providing access to
stored functions to solve procedural sub-tasks.

As mentioned above, the Hamming distance is at the basis of several similarity measures and
is used for the identification of periodic structures in words, which is a fundamental algorithmic
task in many practical applications such as DNA sequence analysis [36]. In the following we
provide an example focusing on K-repetitions, a common type of periodic structures that could
be identified in a word.

Let h(·, ·) denote the Hamming distance between two words of equal length. A word r[1..n]
is called a K-repetition of period p, p ≤ n/2, iff h(r[1..n− p], r[p+1..n]) ≤ K. In other terms,
a word r[1..n] is a K-repetition of period p, if the number of mismatches, i.e. the number of i
such that r[i] ̸= r[i+ p], is at most K. For example, ataaattacttact is a 2-repetition of period 4.

A solution that uses external predicates is the following:

substrings(P,W,S1,S2) :- word(W), #substring(W,1,F,S1), L=F+P,
#substring(W,I,L,S2), I=P+1, #stringLength(W,L), period(P).

repetition(W,H,P) :- substrings(P,W,S1,S2), #hamming(S1,S2,H), k(K), H <= K.
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Figure 6.2: Comparison of the execution times of the Hamming Distances program with and
without external predicates

The first rule derives the two substrings S1=r[1..n-p] and S2=r[p+1..n]; the second rule
calculates the Hamming distance between S1 and S2, to check whether it is lower than or equal
to K.

Without external predicates we cannot extract the two substrings of the word. Therefore, we
assume to provide them as input, using a representation similar to that used for the Hamming Dis-
tances problem. In particular, a predicate string(W,P,ID,POS,CHAR) is used for each character of
each substring of word W of period P . We assume to provide a complete set of string predicates
as input, since it is impossible to generate such a set without relying on external predicates.

The solution to the K-repetition problem, without external predicates, can therefore be writ-
ten as follows:

repetition(W,H,P) :- string(W,P,ID1,P1,C1), string(W,P,ID2,P2,C2),
ID1 < ID2, #count{POS : string(W,P,ID1,POS,CHAR1),
string(W,P,ID2,POS,CHAR2), CHAR1 != CHAR2} = H, k(K),
H <= K.

Figure 6.3 compares the execution times of the two versions. As expected, the result is similar
to that shown in Figure 6.2, because the execution times of the two programs depend almost
entirely on the computation of the Hamming distance, which is faster using external predicates.

Besides the better performance that can be achieved using external predicates, in this last
example is even more important the advantage deriving from the possibility to generate the input
by program (using the substring predicates) rather than requiring the user to provide it manually.
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Figure 6.3: Comparison of the execution times of the K-Repetitions program with and without
external predicates

6.2 List terms

In this section we focus on some classical problems (the Towers of Hanoi puzzle, and the graph
reachability problem) to show how the use of list terms greatly simplify the writing of logical
programs in DLVDB . Moreover, we will show that the use of list terms allows in many cases to
reduce the execution times in a significant way.

6.2.1 Towers of Hanoi

The Tower of Hanoi (ToH) problem is a famous puzzle, already introduced in Section 2.3.3. In
the ToH problem there are three stacks (or pegs) and n disks. Initially, all n disks are on the
left-most stack. The goal is to move all n disks to the right-most stack with the help of the middle
stack, by respecting the following rules:

1. it is possible to move one disk at a time;

2. only the top disk on a stack can be moved;

3. a larger disk cannot be placed on top of a smaller one.

It is well known that, for a classic ToH problem with n disks, the plan of moving all n disks
from the left-most stack to the right-most stack consists of 2n−1 moves.

We solve the ToH problem by writing two alternative logical programs in DLVDB: one with
lists and one without lists. The goal is twofold: showing that lists allow to write a more intuitive
solution and demonstrating that the version with lists is faster than the one without lists.

We start with the list-based solution. The input of the program is of the form:
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largest disc(4).
number of moves(15).
initial state([4,3,2,1],[],[]).
goal([],[],[4,3,2,1]).

As shown above, the input includes: the identifier of the largest disc (this corresponds to
n since disks are numbered starting from 1); the number of moves needed to reach the goal (as
stated above, its value is given by 2n−1); the initial state of stacks (three lists, each one containing
the identifiers of the disks that are placed on a given stack); the goal (i.e., the final state of stacks).

The list-based version of the program is the following:

% —— all discs involved ——
disc(X) :- largest disc(X).
disc(X) :- disc(Y), #succ(X,Y), X != 0.

% —— legal stacks ——
legalStack([]).
legalStack([T]) :- disc(T).
legalStack([T | L]) :- legalStack(L), #head(L,T1), disc(T), T > T1.

% —— possible moves ——
possible state(0,S1,S2,S3) :- initial state(S1,S2,S3).
possible state(I,S1,S2,S3) :- possible move(I, , , ,S1,S2,S3), legalStack(S1), legalStack(S2), legalStack(S3).

% From stack one to stack two.
possible move(I1,[X | S1],S2,S3,S1,[X | S2],S3) :- possible state(I,[X | S1],S2,S3),

legalMoveNumber(I), #succ(I,I1),
legalStack([X | S2]).

% From stack one to stack three.
possible move(I1,[X | S1],S2,S3,S1,S2,[X | S3]) :- possible state(I,[X | S1],S2,S3),

legalMoveNumber(I),#succ(I,I1),
legalStack([X | S3]).

% From stack two to stack one.
possible move(I1,S1,[X | S2],S3,[X | S1],S2,S3) :- possible state(I,S1,[X | S2],S3),

legalMoveNumber(I), #succ(I,I1),
legalStack([X | S1]).

% From stack two to stack three.
possible move(I1,S1,[X | S2],S3,S1,S2,[X | S3]) :- possible state(I,S1,[X | S2],S3),

legalMoveNumber(I), #succ(I,I1),
legalStack([X | S3]).

% From stack three to stack one.
possible move(I1,S1,S2,[X | S3],[X | S1],S2,S3) :- possible state(I,S1,S2,[X | S3]),
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legalMoveNumber(I), #succ(I,I1),
legalStack([X | S1]).

% From stack three to stack two.
possible move(I1,S1,S2,[X | S3],S1,[X | S2],S3) :- possible state(I,S1,S2,[X | S3]),

legalMoveNumber(I), #succ(I,I1),
legalStack([X | S2]).

%—— actual moves ——

% Choose from the possible moves.
move(I,S1,S2,S3) :- goal(S1,S2,S3), possible state(I,S1,S2,S3).
move(I,S1,S2,S3) ∨ nomove(I,S1,S2,S3) :-

move(I1,A1,A2,A3), #succ(I,I1),
possible move(I1,S1,S2,S3,A1,A2,A3).

%—— precisely one move at each step ——
moveStepI(I) :- move(I, , , ).
:- legalMoveNumber(I), not moveStepI(I).
:- legalMoveNumber(I), move(I,T1,T2,T3), move(I,TT1,TT2,TT3), T1 != TT1.
:- legalMoveNumber(I), move(I,T1,T2,T3), move(I,TT1,TT2,TT3), T2 != TT2.
:- legalMoveNumber(I), move(I,T1,T2,T3), move(I,TT1,TT2,TT3), T3 != TT3.
legalMoveNumber(0).
legalMoveNumber(I1) :- legalMoveNumber(I), #succ(I,I1), number of moves(J), I < J.

As shown above, a possible move is represented by a predicate possible move, featuring
seven attributes: the first one represents the move number; the second, third, and fourth attributes
represent the states of the three stacks before applying the current move; the fifth, sixth, and
seventh attributes represent the last state of the three stacks after the move has been applied.
Hence, this predicate is used in the program to model a possible move between any couple of
stacks (from stack one to stack two, from stack one to stack three, and so on).

For example, a possible move from the first stack to the second stack is encoded by means of
the following rule:

possible move(I1,[X | S1],S2,S3,S1,[X | S2],S3) :- possible state(I,[X | S1],S2,S3),
legalMoveNumber(I), #succ(I,I1),
legalStack([X | S2]).

Roughly, the top element of the first stack can be moved on top of the second stack if: (i)
the current stack is admissible, i.e. this state can be reached after applying a sequence of ”I”
moves (possible state(I, [X | S1], S2, S3)); (ii) the number ”I” is in the range of allowed
move numbers (legalMoveNumber(I)); (iii) the new resulting configuration for the second
stack is legal, i.e. there is no larger disc on top of the smaller one (legalStack([X | S2])).

A solution exists if and only if there is a possible move leading to the goal. In this case,
starting from the goal, the program proceeds backward to the initial state to single out the full set
of moves.
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The version without lists is similar, but the status of each stack is not modeled with a list but
using an integer. For example, the status [1,2,3,4] is represented with number 1234. This requires
to implement some manipulations to access the single cyphers of an integer.

According to the integer representation of stack states, the input of the program without lists
is of the form:

largest disc(4).
number of moves(15).
initial state(4321,0,0).
goal(0,0,4321).

The program without lists is as follows:

% —— all discs involved ——
disc(X) :- largest disc(X).
disc(X) :- disc(Y), #succ(X,Y), X != 0.

% – legal non-empty stacks, their top element and the rest stack ——
legalstack top rest(D,D,0) :- disc(D).
legalstack top rest(S,T,B) :- legalstack top rest(B,T1,R1), disc(T), T < T1,

AUX = B * 10, S = AUX + T.

% —— possible moves ——

% From stack one to stack two.
possible move(I1,S1,S2,L3) :- move(I,L1,L2,L3),

number of moves(J), I < J, #succ(I,I1),
legalstack top rest(L1,X,S1),
legalstack top rest(S2,X,L2).

% From stack one to stack three.
possible move(I1,S1,L2,S3) :- move(I,L1,L2,L3),

number of moves(J), I < J, #succ(I,I1),
legalstack top rest(L1,X,S1),
legalstack top rest(S3,X,L3).

% From stack two to stack one.
possible move(I1,S1,S2,L3) :- move(I,L1,L2,L3),

number of moves(J), I < J, #succ(I,I1),
legalstack top rest(L2,X,S2),
legalstack top rest(S1,X,L1).

% From stack two to stack three.
possible move(I1,L1,S2,S3) :- move(I,L1,L2,L3),

number of moves(J), I < J, #succ(I,I1),
legalstack top rest(L2,X,S2),
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legalstack top rest(S3,X,L3).

% From stack three to stack one.
possible move(I1,S1,L2,S3) :- move(I,L1,L2,L3),

number of moves(J), I < J, #succ(I,I1),
legalstack top rest(L3,X,S3),
legalstack top rest(S1,X,L1).

% From stack three to stack two.
possible move(I1,L1,S2,S3) :- move(I,L1,L2,L3),

number of moves(J), I < J, #succ(I,I1),
legalstack top rest(L3,X,S3),
legalstack top rest(S2,X,L2).

%—— actual moves ——

% Choose from the possible moves.
move(I,A1,A2,A3) v nomove(I,A1,A2,A3) :- possible move(I,A1,A2,A3).

%—— one configuration at each step ——
:- move(I,L1,L2,L3), move(I,M1,M2,M3), L1 != M1.
:- move(I,L1,L2,L3), move(I,M1,M2,M3), L2 != M2.
:- move(I,L1,L2,L3), move(I,M1,M2,M3), L3 != M3.

We compared the execution times of the two versions of the program by varying the number
of disks from 3 to 6. Figure 6.4 reports the results of such comparison, where the x axis indicates
the number of disks, and the y axis indicates the execution times expressed in seconds.

The graph shows that the execution time of the version with lists is always lower than that
without lists. In particular, with 3 disks the execution time passes from about 19 seconds with
lists, to about 36 seconds without lists; with 4 disks the execution time with lists is 29 seconds,
without lists is 53; with 5 disks the execution time passes from 140 to 227 seconds; finally, with
6 disks the execution time of the list-based version is 2240 seconds, while the version without
lists failed to complete the execution due to out of memory.

The results above demonstrate that the list-based version is more efficient compared to the
version without lists. This is due to the fact that in the version without lists the status of each stack
is modeled using an integer, which requires to perform several manipulations each time we need
to access the single parts (integer cyphers) of a stack status. Besides performance considerations,
it is worth noticing that the list-based version is more intuitive, as it allows programmers to
express the solution without relying on tricky representations of stack states.

6.2.2 Graph reachability

Graph reachability is a classic problem in computer science with many applications in a lot of
relevant real world applications, ranging from databases to product configurations and networks.
Given a directed graph G = (V,E), a couple of vertices i and j of V belongs to the Reachability
relation, also called the transitive closure relation, if there is a non-empty sequence of edges in E
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Figure 6.4: Comparison of the execution times of the Towers of Hanoi program with list and
without lists, by varying the number of disks from 3 to 6; the execution time for 6 disks is shown
only for the version with lists because the version without lists failed to complete due to out of
memory

that forms a path from i to j. We consider here the problem of determining all pairs of reachable
nodes in G. Such problem is solved first using DLVDB without lists, and then using DLVDB with
lists.

The code of the reachability program without lists is as follows:

reaches(X,Y) :- edge(X,Y).
reaches(X,Y) :- reaches(X,Z), edge(Z,Y).

The program solves the problem recursively. The first rule states that a vertex Y is reachable
from a vertex X if there is an edge from X to Y . The second rule, states that Y is reachable
from X if there is a vertex Z that is reachable from X , and there is an edge from Z to Y . The
input graph is represented by the set of its edges. The predicate used to define edges is a binary
predicate edge where edge(i, j) means that there is a directed edge going from i to j, as in the
following example:

edge(1,3). edge(3,4). edge(3,5). edge(4,2). edge(2,5).

The output of the program is an atom reaches(i, j) for each vertex j that is reachable from a
vertex i. Given the set of edge facts of the example above, the output of the program is:

{reaches(1,2), reaches(1,3), reaches(1,4), reaches(1,5), reaches(2,5), reaches(3,2), reaches(3,4),
reaches(3,5), reaches(4,2), reaches(4,5)}

The same problem can be solved using lists as follows:
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path([X,Z]) :- edge(X,Z).
path([X | L]) :- edge(X,Y), path(L), #head(L,Y), #member(X,L,false).
reaches(X,Y) :- path(L), #head(L,X), #last(L,Y).

Also this version solves the problem recursively. The first rule builds a simple path as a list
of two vertices directly connected by an edge. The second rule constructs a new path adding an
element to the list representing an existing path. The new element will be added only if there is
an edge connecting it to the head of an already existing path. The external predicate #member
allows to avoid the insertion of an element that is already included in the list; without this check,
the construction would never terminate in the presence of circular paths. The third rule selects
the head and the tail of a path, where the tail represents a node reachable from the head. It is easy
to check that the output of this program is the same of the program that does not use lists.

Clearly, in general the number of paths in a graph grows exponentially with the number of
vertices. Here we are just interested in assessing the overhead (if any) of using lists for solving
a problem. In fact, we use only graphs having a particular structure: each vertex has exactly one
outgoing edge which points to the next vertex in clockwise direction; in other terms, the graph
is a circle having n vertices and n − 1 directed edges. We use this particular graph structure for
two reasons: (i) we can obtain a uniform measurement with increasing input size; (ii) the circle
structure implies that there are long paths (the maximum length being n− 1) and thus long lists
to represent them, which is useful to stress the system.

We then compared the execution times of the two versions of the program by varying the
number of vertices of the input graph from 10 to 70. The results are reported in Figure 6.5, where
the x axis indicates the number of vertices, and the y axis indicates the execution times.
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Figure 6.5: Comparison of the execution times of the Graph Reachability program with list and
without lists, by varying the number of vertices of the input graph from 10 to 70

The graph shows that the execution time of the two versions are about the same for every
number of vertices in the input graph, ranging from about 9 seconds for 10 vertices to about 32
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seconds for 70 vertices. In this case the list-based version of the program does not produce over-
head in execution time, but allows to obtain additional results compared to the non-list version.
Indeed, the list-version permits to calculate not only the reachability, but also the path (exactly
one for the considered graphs) that links a vertex with one another. Given the same input as in the
example above, we obtain the following reachability paths by filtering the answer set generated
by the program using the path predicate:

{path([1,3,4,2,5]), path([1,3,4,2]), path([1,3,4]), path([1,3,5]), path([1,3]), path([2,5]), path([3,4]),
path([3,4,2]), path([3,4,2,5]), path([3,5]), path([4,2,5]), path([4,2])}

Under the strict assumption that all vertices are named using non-zero integers having the
same number of cyphers (e.g., vertices are named from 1 to 9, or from 10 to 99), it is possible
to write a non-list-based version of the reachability program that also calculates the path linking
a vertex with one another (Path Calculator). The approach is similar to that used to implement
the non-list-based version of the Towers of Hanoi problem: we represent each path as an integer
like 1234, to indicate the presence of a path formed by vertices 1, 2, 3 and 4. As for the Towers
of Hanoi problem, this requires to implement some manipulations to access the single cyphers of
an integer.

Assuming that vertices are named from 1 to 9, the code of the path calculator program with-
out lists is as follows:

path(S,X,Y) :- edge(X,Y), AUX = X * 10, S = AUX + Y.
path(S,X,Y) :- path(B,X,Z), edge(Z,Y), AUX = B * 10, S = AUX + Y.

We compared the execution times of the non-list-based version of the path calculator with the
list-based one, which is shown below for the reader convenience:

path([X,Z]) :- edge(X,Z).
path([X | L]) :- edge(X,Y), path(L), #head(L,Y), #member(X,L,false).

This time comparison has been done for input graphs having a number of vertices varying
from 3 to 9. Input graphs have been randomly generated and do not contain cycles. The results
are shown in Figure 6.6.

The results above demonstrate that the list-based version is more efficient compared to the
version without lists. As for the Towers of Hanoi problem, this is due to the fact that the version
without lists performs some arithmetic operations that are not required by the list-based one.
We finally remind that the list-based version works with any input, while the non-list-based one
works only under the strict assumptions discussed above.

6.3 Functional terms

Support to functional terms represents an important added value to DLVDB , since they are a very
convenient means for generating domains and objects, allowing a more natural representation of
problems in such domains. Moreover, functional terms allow logical programs to significantly
reduce execution times as compared to DLVDB programs that do not use them. We focus on the
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Figure 6.6: Comparison of the execution times of the Path Calculator program with list and
without lists, by varying the number of vertices of the input graph from 3 to 9

performance aspect by discussing a test program written in the context of database repair.

6.3.1 Database repair

In the relational data model, an inclusion dependency R1(X) ⊆ R2(Y ) is a dependency between
an attribute set X in a relation schema R1 and an attribute set Y in a relation schema R2. In
other words, an inclusion dependency is a statement saying that some columns of a relation are
contained in other columns. A foreign key constraint is an example of inclusion dependency.

If an inclusion dependency is violated, a Database Repair operation must be performed. For
example, let’s assume to have two relations d(X) and p(X,Y ), and that there is a foreign key
constraint between the attributes X of d and p. The constraint is violated whenever there is a
instance d(a) but there is not a instance p(a, ). If this violation occurs, the repair is performed
by generating an instance p(a, f(a)), where f(a) is a new value uniquely associated to a, that is,
a value that is not already present in the domain of attribute Y .

Functional terms can be used to generate the new values that are needed for the repair, by
writing a rule like the following one:

p(X,f(X)) :- d(X).

Without functional terms the creation of a new value is more expensive because, after guess-
ing it, we must also ensure that it is unique in the attribute’s domain:

p(X,Y) ∨ np(X,Y) :- d(X), u(Y).
:- u(Y), #count{X: p(X,Y)} > 1.
:- u(Y), #count{X: p(X,Y)} < 1.
:- p(X,Y1), p(X1,Y), X==X1, Y!=Y1.
:- p(X,Y1), p(X1,Y), X!=X1, Y==Y1.
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Figure 6.7: Comparison of the execution times of the Database Repair test with functional terms
and without functional terms, by varying the cardinality of the input from 10 to 50

We have compared the execution times of the first version, which uses functional terms, with
those of the second version, which does not use functional terms. The comparison, whose results
are shown in Figure 6.7, has been done by varying the cardinality of the input, i.e., the number of
instances of relation d, from 10 to 50.

As shown in the figure, the execution times of the program with functional terms are inde-
pendent from the input size, hovering around 9 seconds in all cases. The execution times of
the program without functional terms exponentially increase with the input size, going from 10
seconds when the input size is equal to 50, to 57 seconds when the size of the input is 100.
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Conclusions

This thesis focused on DLVDB , an ASP system allowing the instantiation of logic programs
directly on databases to combine the expressive power of DLP with the efficient data management
features of DBMSs. In its early implementation, DLVDB did not support external predicates,
list terms, and function symbols, which are of fundamental importance to enhance knowledge
representation and reasoning capabilities of a DLP language. Thus, the main goal of this thesis
was to extend the DLVDB system to let it support the above mentioned language constructs, in
order to improve its knowledge modelling power.

In particular, the main results of this thesis can be summarized as follows:

• The DLVDB system has been extended to provide full support to external predicates. Since
DLVDB transforms logical programs into SQL statements to enable database-oriented pro-
cessing, we implemented external predicates by calls to database stored functions.

• DLVDB has been extended to support programs with list terms. This has been obtained
through a rewriting of the rules using suitable external predicates, i.e., programs containing
list terms are automatically rewritten to contain only terms and external predicates.

• DLVDB has been extended to support programs with functional symbols. Similarly to list
terms, rules are rewritten by replacing each functional term definition with calls to external
predicates.

• A library of database stored functions for lists manipulation has been realized to facilitate
the use of list terms in DLVDB through the use of external functions.

• Some experiments have been performed to evaluate our extensions to the DLVDB system.
The experimental results show that such extensions significantly reduce the execution times
as compared to DLVDB programs that do not exploit them.

As for future work, we plan to:

• provide support to additional language constructs, such a sets, whose evaluation strategy
could be similar to that used for lists;

• introduce data typing features to allow the handling of complex domains and to enable the
manipulation of objects;

• investigate strategies to allow not-finite domain rules.

78



Appendix A

List and Functional Terms Manipulation Library

This appendix provides the code of the database stored functions implemented for list and func-
tional terms manipulation, whose use has been introduced in Chapter 5. We provide a detailed
description only for SQLServer functions. Those implemented for the other DBMSs are similar
and their description is avoided.

HEAD

This function receives a list and returns its head.

CREATE FUNCTION [dbo].[head]
( @list varchar(max) )
RETURNS varchar(max)
AS
BEGIN

DECLARE @tmpList varchar(max), @pos int, @bracketsOpen int,
@bracketsClosed int, @length int, @found int

IF(SUBSTRING(@list, 1, 1)=’[’
AND SUBSTRING(@list, LEN(@list), 1)=’]’)

SET @list=SUBSTRING(@list, 2, LEN(@list)-2)
ELSE

RETURN NULL
SET @length=LEN(@list)
SET @bracketsOpen=0
SET @bracketsClosed=0
SET @pos=1
SET @found=0
WHILE (@pos<=@length AND @found=0)
BEGIN

IF SUBSTRING(@list,@pos,1)=’[’
BEGIN

SET set @bracketsOpen=@bracketsOpen+1
SET @pos=@pos+1

END
ELSE

IF SUBSTRING(@list,@pos,1)=’]’
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BEGIN
SET @bracketsClosed=@bracketsClosed+1
SET @pos=@pos+1

END
ELSE

IF((SUBSTRING(@list,@pos,1)=’,’)
AND (@bracketsOpen-@bracketsClosed=0))

BEGIN
SET @found=1
SET @pos=@pos-1

END
ELSE

SET @pos=@pos+1
END
IF (@bracketsOpen-@bracketsClosed<>0) RETURN NULL
IF (LEN(SUBSTRING ( @list, @pos+1, @lung-@pos+1))<>0)
BEGIN

SET @tmpList=’[’+SUBSTRING ( @list, @pos+2, @lung-@pos+2)+’]’
IF (dbo.[isList](@tmpList)=0)

RETURN NULL
END
SET @list = SUBSTRING ( @list, 1 , @pos)
RETURN @list

END

TAIL

This function receives a list and returns its tail.

CREATE FUNCTION [dbo].[tail]
( @list varchar(max) )
RETURNS varchar(max)
AS
BEGIN

DECLARE @pos int, @bracketsOpen int, @bracketsClosed int,
@length int, @found int

IF(SUBSTRING(@list,1,1)=’[’ AND SUBSTRING(@list,LEN(@list),1)=’]’)
SET @list=SUBSTRING (@list,2,LEN(@list)-2)

ELSE RETURN NULL
SET @length=LEN(@list)
SET @bracketsOpen=0
SET @bracketsClosed=0
SET @pos=1
SET @found=0
WHILE (@pos<=@length AND @found=0)
BEGIN

IF SUBSTRING(@list,@pos,1)=’[’
BEGIN

IF (@bracketsOpen-@bracketsClosed=0)
SET @bracketsOpen=@bracketsOpen+1
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ELSE RETURN NULL;
SET @pos=@pos+1

END
ELSE

IF SUBSTRING(@list,@pos,1)=’]’
BEGIN

SET @bracketsClosed=@bracketsClosed+1
SET @pos=@pos+1

END
ELSE

IF ((SUBSTRING(@list,@pos,1)=’,’)
AND (@bracketsOpen-@bracketsClosed=0))

BEGIN
SET @found=1
SET @pos=@pos+1

END
ELSE SET @pos=@pos+1

END
SET @length=@length-@pos+1
IF (@length>0)

SET @list= ’[’+SUBSTRING(@list,@pos,@length)+’]’
ELSE SET @list=’[]’
IF (dbo.[isList](@list)=0)

RETURN NULL
RETURN @list

END

LAST

This function receives a list and returns its last element.

CREATE FUNCTION [dbo].[last]
( @list varchar(max) )
RETURNS varchar(max)
AS
BEGIN

DECLARE @pos int, @brackets int, @length int, @found int
IF(SUBSTRING(@list, 1, 1)=’[’

AND SUBSTRING(@list, LEN(@list), 1)=’]’)
SET @list=SUBSTRING(@list, 2, LEN(@list)-2)

ELSE
RETURN NULL

SET @length=LEN(@list)
SET @brackets=0
SET @pos=@length
SET @found=0
WHILE (@pos>=1 AND @found=0)
BEGIN

IF SUBSTRING(@list,@pos,1)=’[’
BEGIN
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SET @brackets=@brackets-1
SET @pos=@pos-1

END
ELSE

IF(SUBSTRING(@list,@pos,1)=’]’)
BEGIN

SET @brackets=@brackets+1
SET @pos=@pos-1

END
ELSE

IF((SUBSTRING(@list,@pos,1)=’,’) AND (@brackets=0))
BEGIN

SET @found=1
SET @pos=@pos+1

END
ELSE SET @pos=@pos-1

END
IF (@brackets<>0) RETURN NULL
SET @list=SUBSTRING(@list,@pos,@length-@pos+1)
RETURN @list

END

MEMBER

This function receives a list L and an element E, and checks whether L contains E.

CREATE FUNCTION [dbo].[member]
(

@element varchar(max),
@list varchar(max)

)
RETURNS varchar(5)
AS
BEGIN

DECLARE @pos int,@startPos int, @bracketsOpen int,
@bracketsClosed int, @length int

IF(SUBSTRING(@list,1,1)=’[’ AND SUBSTRING(@list,LEN(@list),1)=’]’)
SET @list=SUBSTRING(@list,2,LEN(@list)-2)

ELSE RETURN NULL
SET @startPos=1
SET @length=LEN(@list)
SET @bracketsOpen=0
SET @bracketsClosed=0
SET @pos=1
WHILE (@pos<=@length)
BEGIN

IF SUBSTRING(@list,@pos,1)=’[’
BEGIN

IF (@bracketsOpen-@bracketsClosed=0)
SET @bracketsOpen=@bracketsOpen+1
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ELSE RETURN NULL;
END
ELSE

IF SUBSTRING(@list,@pos,1)=’]’
SET @bracketsClosed=@bracketsClosed+1

ELSE
IF((SUBSTRING(@list,@pos,1)=’,’)

AND (@bracketsOpen-@bracketsClosed=0))
BEGIN

IF(SUBSTRING(@list,@startPos,
@pos-@startPos)=@element)
RETURN ’true’

SET @startPos=@pos+1
END

SET @pos=@pos+1
END
IF (@bracketsOpen-@bracketsClosed<>0) RETURN NULL
IF(SUBSTRING(@list,@startPos,@pos-@startPos)=@element)

RETURN ’true’
RETURN ’false’

END

MEMBERNTH

This function receives a list L and an index I , and returns the Ith element of L.

CREATE FUNCTION [dbo].[memberNth]
(

@list varchar(max),
@index int

)
RETURNS varchar(max)
AS
BEGIN

DECLARE @element varchar(255), @car varchar(255), @nTok int,
@brackets int, @length int, @inConstant int,
@inTok int, @sPos int, @ePos int, @pos int,

IF([dbo].[isList]( @list)=1)
SET @list=SUBSTRING ( @list, 2 , LEN(@list)-2)

ELSE RETURN NULL;
set @length=LEN(@list)
IF (@length=0) RETURN @list
SET @nTok=1
SET @sPos=@lung+1
SET @ePos=@lung
SET @pos=1
SET @brackets=0
SET @inConstant=0
WHILE(@nTok <= @index)
BEGIN
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SET @inTok=1
IF (@nTok=@index) SET @sPos=@pos
WHILE (@inTok=1 AND @pos<=@length)
BEGIN

SET @car=substring(@list,@pos,1)
IF (@car=’"’) SET @inConstant= (@inConstant+1)
ELSE IF(@car=’[’ AND @inConstant=0)

SET @brackets=@brackets+1
ELSE IF(@car=’]’ AND @inConstant=0)

SET @brackets=@brackets-1
ELSE IF (@car=’,’ AND @brackets=0 AND @inConstant=0)

BEGIN
IF (@nTok=@index) SET @ePos=@pos-1
SET @inTok=0
SET @nTok=@nTok+1

END
SET @pos=@pos+1

END
IF (@pos=@length+1) SET @nTok=@nTok+1

END
SET @element=rtrim(ltrim(substring(@list, @sPos, @ePos-@sPos+1)))
RETURN @element

END

LENGTH

This function receives a list and returns its length.

CREATE FUNCTION [dbo].[length]
( @list varchar(max) )
RETURNS int
AS
BEGIN

DECLARE @pos int, @bracketsOpen int, @bracketsClosed int,
@length int, @count int

SET @count=0
IF(SUBSTRING(@list,1,1)=’[’ AND SUBSTRING(@list,LEN(@list),1)=’]’)

SET @list=SUBSTRING (@list,2,LEN(@list)-2)
ELSE RETURN NULL
SET @length=LEN(@list)
IF(@length<>0)

SET @count=1
SET @bracketsOpen=0
SET @bracketsClosed=0
SET @pos=1
WHILE (@pos<=@length)
BEGIN

IF SUBSTRING(@list,@pos,1)=’[’
BEGIN

IF (@bracketsOpen-@bracketsClosed=0)
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SET @bracketsOpen=@bracketsOpen+1
ELSE RETURN NULL;

END
ELSE

IF SUBSTRING(@list,@pos,1)=’]’
BEGIN

SET @bracketsClosed=@bracketsClosed+1
END
ELSE

IF ((SUBSTRING(@list,@pos,1)=’,’)
AND (@bracketsOpen-@bracketsClosed=0))

BEGIN
SET @count=@count+1

END
SET @pos=@pos+1

END
IF (@bracketsOpen-@bracketsClosed<>0) RETURN NULL
RETURN @count

END

PACK

This function receives a term H and a list L, and returns the list [H|L].

CREATE FUNCTION [dbo].[pack]
(

@h varchar(max), @list varchar(max)
)
RETURNS varchar(max)
AS
BEGIN

DECLARE @start varchar(max), @end varchar(max),
@separator varchar(2)

SET @start=SUBSTRING(@h, 1, 1)
SET @end=SUBSTRING(@h, LEN(@h), 1)
IF (isList(@list)=1)
BEGIN

SET @list=SUBSTRING(@list, 2, LEN(@list)-2)
SET @separator=’,’
IF (@h=’[]’) SET @h=’’
IF ((len(@h)=0) OR (len(@list)=0)) SET @separator=’’

RETURN ’[’+@h+@separator+@list+’]’
END

RETURN NULL
END
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UNPACK

This function receives a list and returns true if it is non-empty.

CREATE FUNCTION [dbo].[unpack]
(
@list varchar(max)

)
RETURNS varchar(6)
AS
BEGIN

IF (dbo.[isList](@list)=1)
IF(@list=’[]’)

RETURN ’false’
ELSE RETURN ’true’

ELSE RETURN NULL
END

ISLIST

This function receives a string and checks whether it represents a list.

CREATE FUNCTION [dbo].[isList]
(

@list varchar(max)
)
RETURNS int
AS
BEGIN

DECLARE @pos int, @bracketsOpen int, @bracketsClosed int,
@length int

IF(SUBSTRING(@list,1,1)=’[’ AND SUBSTRING(@list,LEN(@list),1)=’]’)
SET @list=SUBSTRING(@list, 2, LEN(@list)-2)

ELSE RETURN 0
SET @length=LEN(@list)
SET @bracketsOpen=0
SET @bracketsClosed=0
SET @pos=1
WHILE (@pos<=@length)
BEGIN

IF SUBSTRING(@list,@pos,1)=’[’
BEGIN

IF (@bracketsOpen-@bracketsClosed=0)
SET @bracketsOpen=@bracketsOpen+1

ELSE RETURN 0;
END
ELSE IF SUBSTRING(@list,@pos,1)=’]’
BEGIN

SET @bracketsClosed=@bracketsClosed+1
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END
SET @pos=@pos+1

END
IF (@bracketsOpen-@bracketsClosed<>0) RETURN 0
RETURN 1
END

CAT

This function receives two strings and returns their concatenation.

CREATE FUNCTION [dbo].[cat]
(

@args0 varchar(max),
@args1 varchar(max)

)
RETURNS varchar(max)
AS
BEGIN

RETURN @args0+@args1
END

GETFUNCTIONNAME

This function receives a functional term and returns its functor.

CREATE FUNCTION [dbo].[getFunctionName]
(
@args0 varchar(max),

)
RETURNS varchar(max)
AS
BEGIN

DECLARE @startPos int
SET @startPos = CHARINDEX(’(’, @args0, 1)
IF(@startPos!=0)
IF(SUBSTRING(@args0, @startPos, 1)=’(’

AND SUBSTRING(@list, LEN(@args0), 1)=’)’ )
RETURN SUBSTRING(@args0, 1, @startPos-1)

RETURN NULL
END

LENGTHFUN

This function returns the number of terms in a functional term received as input.
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CREATE FUNCTION [dbo].[lengthFun]
(
@args0 varchar(max),

)
RETURNS varchar(max)
AS
BEGIN

DECLARE @pos int, @brackets int, @length int,
@n int, @startPos int

SET @n=0
SET @startPos = CHARINDEX(’(’, @list, 1)
IF(@startPos!=0)

IF(SUBSTRING(@list, @startPos, 1)=’(’
AND SUBSTRING(@list, LEN(@list), 1)=’)’)

SET @list=SUBSTRING ( @list, 2 , LEN(@list)-2)
ELSE

RETURN NULL
ELSE RETURN NULL
SET @length=LEN(@list)
IF (@length<>0)
BEGIN

SET @n=1
SET @brackets=0
SET @pos=@startPos
WHILE (@pos<=@length)
BEGIN

IF(SUBSTRING(@list,@pos,1)=’(’)
BEGIN

SET @brackets=@brackets+1
END
ELSE IF(SUBSTRING(@list,@pos,1)=’)’)
BEGIN

SET @brackets=@brackets-1
END
ELSE IF((SUBSTRING(@list,@pos,1)=’,’) AND (@brackets=0))

SET @n=@n+1
SET @pos=@pos+1

END
END
RETURN @n

END
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