
Università degli Studi della Calabria
Dipartimento di Matematica

Dottorato di Ricerca in Matematica ed Informatica
XX Ciclo

———————————————————————————————
Settore Disciplinare INF/01 INFORMATICA

Tesi di Dottorato

Answer Set Programming
with Functions

Susanna Cozza

Supervisore Coordinatore
Prof. Nicola Leone Prof. Nicola Leone

———————————————————————————————
Anno Accademico 2007 - 2008

Answer Set Programming
with Functions

Susanna Cozza

Dipartimento di Matematica,

Università della Calabria

87036 Rende, Italy

email : cozza@mat.unical.it

2

Sommario
L’Answer Set Programming (ASP) [Gelfond and Lifschitz, 1988; 1991] è un

formalismo che si è affermato, in questi ultimi anni, come potente strumento di
programmazione dichiarativa per la rappresentazione della conoscenza e per il
ragionamento non monotono. La semantica su cui è basato (denominata seman-
tica answer set) estende la semantica dei modelli stabili (usata per i programmi
logici ‘normali’) all’ambito della Programmazione Logica Disgiuntiva (PLD), in
cui oltre alla negazione non monotona è consentito anche l’uso della disgiunzione
nella testa delle regole.

Nell’ambito dell’ASP, un determinato problema computazionale viene rappre-
sentato tramite un programma PLD che può avere zero o più modelli alternativi
chiamati answer sets, ognuno dei quali corrisponde ad una possibile visione del
dominio modellato.

I linguaggi ASP consentono di rappresentare, in maniera semplice e natu-
rale [Eiter et al., 2000], varie forme di ragionamento non monotono, planning,
problemi diagnostici e, più in generale, problemi di elevata complessità com-
putazionale [Baral and Gelfond, 1994; Lobo et al., 1992; Wolfinger, 1994; Minker,
1994; Lifschitz, 1996; Eiter et al., 1999; Baral, 2003].

Dopo i primi sistemi sperimentali sul calcolo dei modelli stabili [Bell et al.,
1994; Subrahmanian et al., 1995], attualmente sono disponibili un buon numero
di sistemi che supportano in maniera efficiente l’ASP [Gebser et al., 2007a; Leone
et al., 2006; Janhunen et al., 2006; Lierler, 2005; Lin and Zhao, 2004; Simons et
al., 2002; Anger et al., 2001; East and Truszczyński, 2001; Egly et al., 2000]. Tra
questi, quelli di maggiore successo sono: DLV [Leone et al., 2006], GnT [Jan-
hunen et al., 2006] (estensione PLD del più conosciuto Smodels [Simons et al.,
2002]), e più di recente clasp [Gebser et al., 2007a]. Tutto ciò, se da un lato ha
consentito l’impiego dell’ASP in contesti reali, dall’altro ha messo in evidenza le
limitazioni dei sistemi attualmente disponibili.

Uno dei principali limiti è dato dall’inadeguato supporto a termini complessi
quali funzioni, liste, set ed in generale costrutti che consentano, in maniera diretta,
il ragionamento su strutture dati ricorsive e domini infiniti. Infatti, anche se la se-
mantica answer set è stata definita per linguaggi del primo ordine ‘generali’ quindi
con anche termini funzionali, i sistemi ASP esistenti, sono essenzialmente basati
su linguaggi senza funzioni. L’esigenza di estendere la PLD con un adeguato
supporto ai termini funzionali è percepita fortemente dalla comunità scientifica
ASP, come testimoniato dai numerosi contributi pubblicati recentemente su questo
tema [Lin and Wang, 2008; Simkus and Eiter, 2007; Baselice et al., 2007; Bonatti,

3

2004; Syrjänen, 2001]. Tuttavia, non è stato ancora proposto un linguaggio suf-
ficientemente soddisfacente dal punto di vista linguistico (che abbia espressività
elevata) ed anche adatto ad essere integrato nei sistemi ASP esistenti. Infatti, at-
tualmente nessun sistema ASP consente un uso effettivo di termini funzionali. I
simboli di funzione o sono del tutto banditi dal linguaggio oppure sono soggetti a
forti vincoli sintattici che non ne consentono l’uso in ambito ricorsivo.

Obiettivo di questo lavoro di tesi è il superamento di tali limitazioni. Il con-
tributo del lavoro è sia teorico che pratico ed ha portato all’implementazione di un
sistema ASP che supporta adeguatamente i termini complessi: funzioni ma anche
liste ed insiemi.

Il principale contributo teorico riguarda la definizione formale di una nuova
classe di programmi PLD: i programmi finitamente ground (FG). Tale classe sup-
porta in maniera completa i simboli di funzione (essi sono ammessi anche in caso
di regole ricorsive) e gode di alcune rilevanti proprietà computazionali. Viene in-
fatti dimostrato che, per tutti i programmi appartenenti alla classe, la valutazione
secondo un approccio bottom-up, consente il calcolo effettivo degli answer set
e di conseguenza, sia le query ground che le query non ground sono decidibili,
qualsiasi sia la forma di ragionamento scelto (coraggioso o scettico). Un ulteriore
risultato riguarda l’espressività di questa classe: viene dimostrato che, qualsiasi
funzione calcolabile può essere espressa tramite un programmaFG. Chiaramente,
questo implica che il problema di riconoscere se un programma appartiene o meno
alla classe, risulta essere indecidibile (in particolare, semidecidibile). Poiché per
alcuni utenti/applicazioni è necessario avere una garanzia ‘‘a priori’’ della ter-
minazione del programma, si è ritenuto utile identificare una sottoclasse dei pro-
grammi FG, per la quale anche il problema del riconoscimento sia decidibile.
Alcune condizioni sintattiche sono quindi state individuate come caratterizzanti
per la nuova classe: i programmi a dominio finito (FD).

La classe dei programmi FG è, per alcuni aspetti, complementare alla classe
dei programmi finitari [Bonatti, 2004]. La prima segue un approccio bottom-up,
mentre la seconda top-down. Le due classi risultano essere incomparabili, nel
senso che esistono dei programmi che appartengono alla prima ma non alla sec-
onda e viceversa. Al fine di rendere valutabili secondo l’approccio bottom-up i
programmi finitari, ampliando cosı̀ la classe dei programmi FG, si è fatto ricorso
alla tecnica dei Magic Sets. Tale tecnica, nata nell’ambito delle Basi di Dati De-
duttive a scopo di ottimizzazione, consiste in un metodo di riscrittura che simula
la valutazione top-down di una query, modificando il programma originale e ag-

4

giungendo nuove regole che limitano la computazione ai dati rilevanti ai fini della
query. Un opportuno adeguamento dell’algoritmo di riscrittura Magic Sets è stato
definito per le query finitamente ricorsive (le query il cui programma ‘rilevante’ è
finitario ed è positivo). Dato un programma P ed una query ground finitamente ri-
corsiva Q, i seguenti risultati sono stati dimostrati riguardo il programma riscritto
RW (Q,P): la sua dimensione è lineare rispetto alla dimensione dell’input; risulta
essere del tutto equivalente a quello originario ai fini della risposta alla query e
soprattutto, tale programma è FG, quindi può essere valutato bottom-up (contra-
riamente al programma originale).

Oltre ai contributi teorici sinora descritti, questa tesi presenta anche i risultati
di un’attività più pratica, di tipo implementativo e di sperimentazione. Tale attività
è stata svolta utilizzando DLV come sistema ASP di riferimento ed ha avuto come
obiettivo l’estensione del linguaggio con simboli di funzione e più in generale
termini complessi quali liste e set.

Un primo passo in questa direzione è stata la realizzazione del supporto a
funzioni esterne (plug-in). L’utente del sistema può definire dei propri parti-
colari predicati esterni (identificati tramite il prefisso ‘#’), implementati come
funzioni C++ ed utilizzabili all’interno di un programma DLV. Ad ogni predi-
cato esterno #p di arità n deve essere associata almeno una funzione C++ p′,
detta ‘oracolo’. Tale funzione, della cui definizione è responsabile l’utente, deve
restituire un valore booleano e deve avere esattamente n argomenti. Un atomo
ground #p(a1, . . . , an) sarà vero se e solo se il valore restituito dalla funzione
p′(a1, . . . , an) è vero. Gli argomenti di una funzione oracolo possono essere sia
di input che di output: ad argomenti di input corrispondono termini costanti o a
cui è già stato assegnato un valore (termini ‘bound’) nel relativo predicato esterno,
ad argomenti di output corrispondono termini variabili non legati ad alcun valore
(termini ‘unbound’).

L’introduzione delle funzioni esterne nel sistema DLV ha come conseguenza
la possibilità di introdurre nuove costanti simboliche nel programma logico (Value
Invention) e quindi rendere eventualmente infinito l’universo di Herbrand. Di
conseguenza, per i programmi con Value Invention, non è più garantita la termi-
nazione. Sono state quindi individuate un insieme di condizioni sintattiche tali
da garantire la proprietà di ‘istanziazione finita’ e quindi la terminazione, per un
programma logico con funzioni esterne. Un riconoscitore di programmi logici che
rispettano tali condizioni è stato inoltre implementato ed integrato in DLV.

Sfruttando le possibilità offerte dai predicati esterni, è stato realizzato il sup-

5

porto a termini complessi di tipo funzionale. In pratica, in presenza di termini fun-
zionali, una regola DLV viene ‘riscritta’ in maniera tale da tradurre la presenza del
simbolo di funzione, nell’invocazione di un opportuno predicato esterno; questo si
occupa poi della costruzione del termine complesso o, viceversa, dell’estrazione
degli argomenti da esso. Il risultato ottenuto è che i programmi FG, descritti in
precedenza, sono pienamente supportati dal sistema. Un riconoscitore sintattico
per i programmi a dominio finito consente di individuare ‘‘a priori’’ quei pro-
grammi la cui terminazione non è garantita. A discrezione dell’utente, è possibile
disabilitare tale riconoscitore e sfruttare in pieno l’espressività dei programmiFG,
rinunciando però alla garanzia di terminazione. Il linguaggio effettivamente sup-
portato dal sistema, oltre ai termini funzionali, prevede anche altre due tipologie
di termini complessi: liste e set. Realizzati sfruttando lo stesso framework usato
per le funzioni, liste e set sono stati corredati da una ricca libreria di funzioni di
manipolazione che rendono ll loro uso molto agevole. Grazie a tali estensioni, il
linguaggio di DLV è diventato sempre più adatto alla codifica immediata e com-
patta di problemi di rappresentazione della conoscenza.

In sintesi, i contributi principali di questo lavoro di tesi sono:

– la definizione formale della classe dei programmi finitamente ground; cioè
una nuova classe di programmi logici disgiuntivi che consente l’uso dei sim-
boli di funzione (eventualmente con ricorsione) e che gode di rilevanti pro-
prietà computazionali quali: l’elevata espressività, la computabilità bottom-
up degli answer set e quindi la decidibilità del ragionamento, anche in caso
di query non ground;

– l’utilizzo della tecnica dei Magic Sets per la riscrittura di programmi finitari
positivi che non risultano appartenere alla classe dei programmi finitamente
ground, ma sui quali è comunque possibile valutare bottom-up delle query
ground, grazie ad un’opportuna trasformazione del programma stesso;

– la realizzazione di un sistema il cui linguaggio, oltre a supportare pien-
amente la classe dei programmi finitamente ground, consente l’integrazione
nel programma logico di sorgenti computazionali esterne e l’utilizzo age-
vole di termini complessi quali liste e set;

– la comparazione del nostro lavoro, in particolar modo con i programmi fini-
tari, ma anche con altri approcci proposti in letteratura per l’estensione dei
sistemi ASP con simboli di funzione.

Contents

Introduction 9
Context and Motivations . 9
Main Contributions . 11
Structure of the Thesis . 14

1 Answer Set Programming with Functions 16
1.1 Syntax . 17
1.2 Semantics . 18
1.3 Knowledge Representation and Reasoning 20

1.3.1 The Guess and Check Programming Methodology 20
1.3.2 Applications of the Guess and Check Technique 21
1.3.3 Enhanced KRR Capabilities by Function Symbols 24

1.4 Decidability and Complexity Issues 25
1.4.1 Hierarchies of Complexity Classes 26
1.4.2 Complexity Results for Function-Free ASP 29
1.4.3 Decidability and Complexity for Logic Programming with

Functions . 32

2 A Top-Down Computable Class: Finitary Programs 34
2.1 Top-Down Programs Evaluation 35
2.2 Notation . 36
2.3 Finitely-Recursive Programs . 37
2.4 Finitary Programs . 39
2.5 Properties of Finitary Programs 41

3 A Bottom-Up Computable Class: Finitely Ground Programs 42
3.1 Bottom-Up Programs Evaluation 43
3.2 Notation . 44

6

CONTENTS 7

3.3 Finitely-Ground Programs . 47
3.4 Properties of Finitely-Ground Programs 51
3.5 A Recognizable Subclass: Finite-Domain Programs 53

4 Bottom-Up Evaluation of Finitely-Recursive Queries via Magic Sets 56
4.1 Magic Sets . 57
4.2 Magic Sets and Finitely-Recursive Programs 59

4.2.1 Finitely-Recursive Queries 60
4.2.2 Rewriting Algorithm . 62
4.2.3 Examples of Finitely-Recursive Queries Rewriting 63

4.3 Properties of Rewritten Programs 65

5 Extending ASP with External Functions 69
5.1 Value Invention in ASP Programs 71

5.1.1 External Predicates: Syntax and Semantics 72
5.2 Properties of VI Programs . 73
5.3 Dealing with Value Invention . 76
5.4 A Computable Class with External Functions: VI-restricted Pro-

grams . 80
5.5 Recognizing VI-restricted Programs 84

6 An ASP System with Functions Lists and Sets 86
6.1 System Language . 87
6.2 Implementation . 89
6.3 Experiments and Applications 90

7 Related Works 92
7.1 Finitary Programs . 93
7.2 ω-restricted Programs . 94
7.3 FDNC Programs . 95
7.4 Other Works . 95

Conclusions 97

A Further Examples of Finitely Ground Programs 109
A.1 A Finitely Ground Program Simulating a Turing Machine 109
A.2 Towers of Hanoi Example . 111

CONTENTS 8

B VI-restrictedness Recognizing Algorithm 113
B.1 The Recognizer Algorithm . 113
B.2 The IsBlocked Algorithm . 114

C Lists and Sets Manipulation Library 116
C.1 List Functions . 116
C.2 Set Functions . 117
C.3 List Predicates . 118
C.4 Set Predicates . 118

Introduction

Context and Motivations

Answer Set Programming (ASP) [Gelfond and Lifschitz, 1988; 1991], evolved
significantly during the last decade, and has been recognized as a convenient
and powerful paradigm for declarative knowledge representation and reasoning.
This formalism is based on methods to compute models of a given logic program.
The underlying semantics (the so called answer set semantics) is inherently non-
monotonic, i.e., the set of logical consequences does, in general, not necessarily
grow monotonically with increasing information, due to the use of disjunction and
negation-as-failure.

The answer set semantics extends the stable model semantics in that the for-
mer is defined on a syntactically richer class of programs than the latter. More
specifically, the answer set semantics is defined for Disjunctive Logic Program-
ming (DLP), in which not only negation-as-failure may occur in the program rules,
but also strong negation (often referred to as classical negation) and disjunction.
On the other hand, the stable model semantics is associated with normal logic
programs, in which only negation-as-failure occurs as negation operator.

In ASP, a given computational problem is represented by a DLP program that
may have several alternative models (but possibly none), called answer sets, each
corresponding to a possible view of the world.

ASP languages support the representation of problems of high computational
complexity, and, importantly, the ASP encoding of a large variety of problems
is often very concise, simple, and elegant [Eiter et al., 2000]. Such encodings
are now widely recognized as a valuable tool for knowledge representation and
commonsense reasoning [Wolfinger, 1994; Minker, 1994; Lifschitz, 1996; Eiter et
al., 1999; Baral, 2003]. For instance, one of the attractions of ASP is its capability
of allowing the natural modeling of incomplete knowledge [Baral and Gelfond,
1994; Lobo et al., 1992].

9

Introduction 10

Several efforts have been made in the direction of implementing efficient ASP
systems. After some pioneering work on stable models computation [Bell et
al., 1994; Subrahmanian et al., 1995], a number of modern ASP systems are
now available [Gebser et al., 2007a; Leone et al., 2006; Janhunen et al., 2006;
Lierler, 2005; Lin and Zhao, 2004; Simons et al., 2002; Anger et al., 2001;
East and Truszczyński, 2001; Egly et al., 2000]. Among them, the most suc-
cessful have been DLV [Leone et al., 2006], Smodels [Simons et al., 2002], and
recently also clasp [Gebser et al., 2007a]. Indeed, Smodels allows for the com-
putation of answer sets for normal logic programs, however, there is an extended
prototype version for the evaluation of disjunctive logic programs as well, called
GnT [Janhunen et al., 2006].

The availability of such efficient ASP solvers have encouraged a number of
applications in many real-world contexts ranging, e.g., from information integra-
tion, to frauds detection, to software configuration, and many others. On the one
hand, the above mentioned applications have confirmed the viability of the ex-
ploitation of ASP for advanced knowledge-based tasks. On the other hand, they
have evidenced some limitations of ASP languages and systems, that should be
overcome to make ASP better suited for real-world applications even in industry.

One of the most noticeable limitations is the fact that complex terms like
functions, sets and lists, are not adequately supported by current ASP langua-
ges/systems. Indeed, while answer set semantics was defined in the setting of a
general first order language, current ASP frameworks and implementations, are
based in essence on function-free languages. Therefore, even by using state-of-
the-art systems, one cannot directly reason about recursive data structures and
infinite domains, such as XML/HTML documents, lists, time, etc. This is a strong
limitation, both for standard knowledge-based tasks and for emerging applica-
tions, such as those manipulating XML documents.

The strong need of extending DLP by functions is clearly perceived in the
ASP community, and many relevant contributions have been recently done in this
direction [Lin and Wang, 2008; Simkus and Eiter, 2007; Baselice et al., 2007;
Bonatti, 2004; Syrjänen, 2001]. However, we still miss a proposal which is fully
satisfactory from a linguistic viewpoint (high expressiveness) and suited to be in-
corporated in the existing ASP systems. Indeed, at present no ASP system allows
for a reasonably unrestricted usage of function terms. Functions are either re-
quired to be non recursive or subject to severe syntactic limitations, if allowed at
all in ASP systems.

Introduction 11

Main Contributions

This thesis aims at overcoming the above mentioned limitations, towards a pow-
erful enhancement of ASP systems by functions. The contribution is both theo-
retical and practical, and leads to the implementation of a powerful ASP system
supporting (recursive) functions, sets, and lists, along with libraries for their ma-
nipulations.

The theoretical contributions of the work, listed next, mainly concern the pro-
posed class of finitely-ground (FG) programs and fragments thereof. This new
class follows the bottom-up evaluation approach and allows for (possibly recur-
sive) function symbols, disjunction and negation.

Since the set of ground instances of a rule might be infinite (because of the
presence of function symbols in the Herbrand universe), it is crucial to try to
identify those that really matter in order to compute answer sets. Supposing that a
given set S contains all atoms that are potentially true, we first define an operator
that helps selecting, among all ground instances, those somehow ‘supported’ by
S. The presence of negation allows for identifying some further rules which do
not matter for the computation of answer sets, and for simplifying the bodies of
some others. We then provide the definition of an operator Φ that acts on a module
of a program P in order to:

(i) select only those ground rules whose positive body is contained in a set of
ground atoms consisting of the heads of a given set of rules;

(ii) perform a further simplification among these rules exploiting the presence
of negation in the body.

By properly composing consecutive applications of Φ∞ to components of a
program, we can obtain an ‘intelligent’ instantiation which drops many useless
rules w.r.t. answer sets computation.

We demonstrate that FG programs enjoy many relevant computational prop-
erties:

- both brave and cautious reasoning are computable, even for non-ground
queries;

- answer sets are computable;

- each computable function can be expressed by a FG program.

Introduction 12

Since FG programs express any computable function, membership in this
class is obviously not decidable (we prove that actually it is semi-decidable). For
users/applications where termination needs to be “a priori” guaranteed, we define
the class of finite-domain (FD) programs:

- both reasoning and answer set generation are computable for FD programs
(they are a subclass of FG programs), and, in addition,

- recognizing whether a program is an FD program is decidable.

The class of FG programs can be seen as a “dual” notion of the class of fini-
tary programs. The former allows for a bottom-up computation, while the latter
is suitable for a top-down evaluation. However, when comparing the computa-
tional properties of the two classes, many points in favor of FG programs arise.
With respect to programs inclusion, the two classes are incomparable, in the sense
that there exist FG programs that are not finitary and viceversa. In order to make
all positive finitary programs bottom-up computable, and then enlarge the class
of FG programs, the Magic Sets technique is exploited. This method originated
in the context of Deductive Databases for optimizing query answering, and con-
sists in a strategy for simulating the top-down evaluation of a query by properly
modifying the original program. The modified version of the program narrows
the computation to what is relevant for answering the query at hand. A proper
adaptation of the Magic Sets rewriting algorithm is defined for finitely-recursive
queries (i.e. queries whose ‘relevant’ program is finitary and positive). Given a
program P and a ground queryQ (for which the subset of P relevant for the query
Q is finitary and positive), the following results have been proved about the output
program RW (Q,P) of our algorithm:

- its size is linear w.r.t. the original program size,

- it is equivalent to the original program w.r.t. the query answer,

- it is finitely-ground.

The last result is of particular relevance, since, although a program P might not
be finitely-ground, there can be more than one query Q for which RW (Q,P)

is finitely-ground, thus enabling finite computation by means of the bottom-up
approach.

The practical contribution of this thesis has been realized extending the DLV
system in order to support the class of FG programs.

Introduction 13

A first step in this direction is the definition of a formal framework, named
VI-programs (Value Invention programs), for accommodating external functions
in the context of ASP. Thanks to this extension, users of the system can define
their own external predicates (identified by the ’#’ prefix) implemented as C++
functions and use it in their DLV programs. To each external predicate p having
arity n, at least one C++ function p′(named ‘oracle’) should be associated. Such
function must have exactly n arguments and return a boolean value. A ground
atom #p(a1, . . . , an) is true if p′(a1, . . . , an) is true. Oracle functions can have
both input and output arguments: input arguments in case of constants or bound
terms, output arguments in case of unbound terms in the corresponding external
predicate. External functions gives the explicit possibility of invention of new
values from external sources of computation. Since this setting could lead to non-
termination of any conceivable evaluation algorithm, we identify some syntactical
conditions ensuring decidability preservation. A recognizer for checking these
conditions has also been defined and integrated in the DLV system.

By exploiting the VI-programs framework, the DLV language has been ex-
tended with support for functional terms. Actually, functions are managed through
a couple of (built-in) external functions that properly ‘pack’ and ‘unpack’ a func-
tional term. Furthermore, in a similar manner, we extend the language with list
and set terms, along with a rich library of built-in functions for lists and sets ma-
nipulations. All these extensions yield a very powerful system where the user can
exploit the full expressiveness of FG programs (able to encode any computable
function), or require the finite-domain check, getting the guarantee of termination.
The system is available for downloading [Calimeri et al., since 2008]; it is already
in use in many universities and research centers throughout the world.

Briefly, the main contributions of this work are:

– the formal definition of finitely-ground programs, i.e. a new class of dis-
junctive logic programs admitting (possibly recursive) functions and en-
joying some relevant computational properties like: high expressiveness,
bottom-up computability of answer sets and decidability of reasoning even
for non ground queries;

– exploiting of the Magic Sets technique, in order to allow bottom-up com-
putability for queries, whose relevant program is both positive and finitary
but does not belong to the class of finitely-ground programs;

– implementation of proposed extensions in DLV, obtaining a very powerful
system where the user can exploit the full expressiveness of finitely-ground

Introduction 14

programs (able to encode any computable function), or require the finite-
domain check, getting the guarantee of termination;

– in depth comparison of our work with the finitary programs and other ap-
proach to extend ASP with functions.

Structure of the Thesis

The thesis is organized as follows.

– Chapter 1 introduces the Answer Set Programming framework. Syntax and
semantics of the underlying disjunctive logic language with functions, are
reported. Then, a methodology and many examples illustrating how ASP
can be used for knowledge representation and reasoning tasks are given.
Finally, some decidability and complexity issues are discussed.

– Chapter 2 is devoted to finitary programs, a class of normal logic programs
supporting function symbols and such that reasoning is decidable in case
of ground queries. We first recall some main aspects of the top-down eval-
uation approach and the needed preliminary definitions. Then, we report
the main definitions about finitely-recursive and finitary programs. Finally,
computational properties enjoyed by this class of programs are illustrated.

– In Chapter 3 we introduce a bottom-up computable class of disjunctive logic
programs supporting function symbols:finitely-ground programs. We first
recall some main aspects of the bottom-up evaluation approach and intro-
duce some needed preliminary definitions. Then, the formal definition of
the class is given and some computational properties are proved. Finally,
we single out a recognizable subclass: finite-domain programs.

– In Chapter 4, after describing the standard Magic Sets technique, we il-
lustrate the motivations inducing to the use of this sort of program trans-
formation in the context of ASP with functions and then we present the
adapted rewriting algorithm and many examples of applications. Some rel-
evant computational results are then proved.

– Chapter 5 introduces a formal framework for accommodating external source
of computation in the context of ASP. VI programs, i.e. logic programs en-
riched with external predicates are defined. We prove that, the consistency

Introduction 15

check of VI programs is, in general, undecidable and address this problem
identifying a safety condition for granting decidability. Finally, a recogniz-
ing algorithm checking such conditions is presented.

– In Chapter 6 we illustrate the implementation of an ASP system support-
ing finitely-ground programs. Such system actually features an even richer
language, that, besides functions, explicitly supports also complex terms
such as lists and sets, and provides a large library of built-in predicates for
facilitating their manipulation.

– In Chapter 7 we survey the main proposals for introducing functional terms
in ASP, and we briefly discuss the related work done in other research com-
munities.

Chapter 1

Answer Set Programming with
Functions

In this chapter we present the Answer Set Programming (ASP) framework, that
has been recognized as a convenient and powerful method for declarative knowl-
edge representation and reasoning. In particular, we first define the syntax of the
underlying disjunctive logic language in which function symbols are supported.
The associated answer set semantics is also described. Then, we illustrate the us-
age of ASP for knowledge representation and reasoning and finally analyze some
decidability and complexity issues.

The chapter is organized as follows:

• Sections 1.1 and 1.2 provide a formal definition of the syntax and the seman-
tics of a disjunctive logic programming language with function symbols.

• In Section 1.3 we first illustrate the usage of DLP languages for knowledge
representation and reasoning, then we show the added modelling capability
offered by function symbols.

• Finally, in Section 1.4, we report the main results about the computational
complexity of disjunctive logic programs and discuss the decisional issues
arising in the context of ASP with functions.

16

Chapter 1. Answer Set Programming with Functions 17

1.1 Syntax

A term is either a simple term or a functional term. A simple term is either a
constant or a variable. If t1 . . . tn are terms and f is a function symbol (functor)
of arity n, then: f(t1, . . . , tn) is a functional term.

Each ti, 1 ≤ i ≤ n, is a subterm of f(t1, . . . , tn). The subterm relation is
reflexive and transitive, that is:

- each term is also a subterm of itself;

- if t1 is a subterm of t2 and t2 is subterm of t3 then t1 is also a subterm of t3.

Each predicate p has a fixed arity k ≥ 0; by p[i] we denote its i-th argument.
If t1, . . . , tk are terms and p is a predicate of arity k, then p(t1, . . . , tk) is an atom.
Let A be a set of atoms and p be a predicate. With small abuse of notation we say
that p ∈ A if there is some atom in A with predicate name p. An atom having p

as predicate name is usually referred as ap. A literal l is of the form a or not a,
where a is an atom; in the former case l is positive, and in the latter case negative.1

A disjunctive rule r is of the form:

α1 v · · · v αk :- β1, · · · , βn, not βn+1, · · · , not βm. (1.1)

where m ≥ 0, k ≥ 0; α1, . . . , αk and β1, . . . , βm are atoms.
The disjunction α1 v · · · v αk is called head of r, while the conjunction

β1, · · · , βn, not βn+1, · · · , not βm is the body of r. We denote by H(r) the set
{α1, . . . , αk} of the head atoms, and by B(r) the set of body literals. In particular,
B(r) = B+(r) ∪ B−(r), where B+(r) (the positive body) is {β1, · · · , βn} and
B−(r) (the negative body) is {not βn+1, · · · , not βm}.

A rule having precisely one head literal (i.e. k = 1 and then |H(r)| = 1) is
called a normal rule. If r is a normal rule and its body is empty (i.e. n = m = 0

and then B(r) = ∅) then r is referred to as a fact, and we usually omit the “ :- ”
sign.

An (integrity) constraint is a rule without head literals (i.e. k = 0)

:- β1, · · · , βn not βn+1, · · · , not βm. (1.2)

Under Answer Set Semantics, a constraint: :-B(r) can be simulated through
the introduction of a standard rule: fail :-B(r), not fail, where fail is a fresh

1Strong negation can be dealt with even if not explicitly supported: a constraint :- a,¬a. for
each strongly negated atom ¬a is added to the program, where a also occurs in the program.

Chapter 1. Answer Set Programming with Functions 18

predicate not occurring elsewhere in the program. So, from a semantics point of
view, we can assume that there are no constraints.

A rule is safe if each variable in that rule also appears in at least one positive
literal in the body of that rule. For instance, the rule

p(X, f(Y, Z)) :- q(Y), not s(X). (1.3)

is not safe, because of both X and Z. From now on we assume that all rules are
safe.

A DLP program P is a finite set of rules. A program is safe, if each of its
rules is safe. A not-free program P (i.e., such that ∀r ∈ P : B−(r) = ∅) is
called positive. A v-free program P (i.e., such that ∀r ∈ P : |H(r)| = 1)
is called normal logic program. Positive normal logic programs are also called
Horn programs. Positive normal logic programs where functional terms are not
allowed are generally called Datalog programs.

Given a predicate p, a defining rule for p is a rule r such that the predicate
p occurs in the set of head atoms H(r). If all defining rules of a predicate p are
facts, then p is an EDB predicate; otherwise p is an IDB predicate. 2 The set of
all facts of P is denoted by Facts(P); the set of instances of all EDB predicates
is denoted by EDB(P) (note that EDB(P) ⊆ Facts(P)). The set of all head
atoms in P is denoted by Heads(P) =

⋃
r∈P H(r).

A query Q is an IDB atom.3

A program (a rule, a literal, a term, a query) is said to be ground if it contains
no variables.

1.2 Semantics

The most widely accepted semantics for DLP programs is based on the notion of
answer set, proposed in [Gelfond and Lifschitz, 1991] as a generalization of the
concept of stable model [Gelfond and Lifschitz, 1988].

Let P be a disjunctive logic program, the Herbrand universe of P , denoted
by UP , consists of all (ground) terms that can be built combining constants and
functors appearing in P .

The Herbrand base of P , denoted by BP , is the set of all ground atoms ob-
tainable from the atoms of P by replacing variables with elements from UP .

2EDB and IDB stand for Extensional Database and Intensional Database, respectively.
3Note that this definition of a query is not as restrictive as it may seem, as one can include

appropriate rules in the program for expressing unions of conjunctive queries (and more).

Chapter 1. Answer Set Programming with Functions 19

A substitution for a rule r ∈ P is a mapping from the set of variables of r to
the set UP of ground terms. A ground instance of a rule r is obtained applying a
substitution to r. Given a program P the instantiation (grounding) Ground(P)

of P is defined as the set of all ground instances of its rules.
Given a ground program P , an interpretation I for P is a subset of BP . A

positive literal l = a (resp., a negative literal l = not a) is true w.r.t. I if a ∈ I

(resp., a /∈ I); it is false otherwise. Given a ground rule r, we say that r is satisfied
w.r.t. I if some atom appearing in H(r) is true w.r.t. I or some literal appearing
in B(r)is false w.r.t. I .

Given a ground program P , we say that I is a model of P , if and only if all
rules in Ground(P) are satisfied w.r.t. I . A model M is minimal if there is no
model N for P such that N ⊂ M .

Example 1.1 The positive program P1 = {a v b v c.} has the minimal models
{a}, {b}, and {c}. Its extension P2 = {a v b v c. ; b :- c. ; c :- b.} has two
minimal models {a} and {b, c}.

The Gelfond-Lifschitz reduct [Gelfond and Lifschitz, 1991] of a ground pro-
gram P , w.r.t. an interpretation I , is the positive ground program PI obtained
from Ground(P) by:

- deleting all rules having a negative literal false w.r.t. I;

- deleting all negative literals from the remaining rules.

I ⊆ BP is an answer set for a program P if and only if I is a minimal model for
PI . The set of all answer sets for P is denoted by AS(P). Note that, in case of a
positive program P , AS(P) coincides with the set of all minimal models for P .

Example 1.2 Given the program P3 = { a v b :- c. ; b :- not a, not c. ;

a v c :- not b.} and I = {b}, the reduct PI
3 is { a v b :- c. ; b. }. It is easy to see

that I is a minimal model for PI
3 , and for this reason it is also an answer set for

P3.
Now consider J = {a}. The reduct PJ

3 is {a v b :- c. ; a v c.} and it can be
easily verified that J is a minimal model for PJ

3 , so it is also an answer set for P3.
If, on the other hand, we take K = {c}, the reduct PK

3 is equal to PJ
3 , but K

is not an answer set for PK
3 . Indeed, the rule r : a v b :- c, is not satisfied w.r.t.

K since neither some atom appearing in H(r) is true w.r.t. K nor some literal
appearing in B(r)is false w.r.t. K. Indeed, it can be verified that I and J are the
only answer sets of P3.

Chapter 1. Answer Set Programming with Functions 20

Given a program P , a query Q and an interpretation I for P , ϑ(Q, I) denotes the
set containing all substitutions φ for the variables in Q such that φ(Q) is true in
I . The answer to a query Q over P , denoted by Ans(Q,P), is the set ϑ(Q, I),
such that I ∈ AS(P). A program P bravely (resp. cautiously) entails a ground
query Q, denoted P |=b Q (resp. P |=c Q) if Q ∈ A for some (resp. each)
A ∈ AS(P). In case P has a unique answer set A, we say that P entails a ground
query Q denoted P |= Q if Q ∈ A.

1.3 Knowledge Representation and Reasoning

Answer Set Programming has been proved to be a very effective formalism for
Knowledge Representation and Reasoning (KRR). It can be used to encode prob-
lems in a highly declarative fashion, following the “Guess&Check”(G&C) method-
ology presented in [Eiter et al., 2000]. In this section, we first describe the G&C
technique and we then illustrate how to apply it on a number of examples. Fi-
nally, we show how the modelling capability of ASP is significatively enhanced
by supporting function symbols.

1.3.1 The Guess and Check Programming Methodology

Many problems, also problems of comparatively high computational complexity
(ΣP

2 -complete and ∆P
3 -complete problems), can be solved in a natural manner by

using this declarative programming technique. The power of disjunctive rules al-
lows for expressing problems which are more complex than NP, and the (optional)
separation of a fixed, non-ground program from an input database allows to do so
in a uniform way over varying instances.

Given a set F I of facts that specify an instance I of some problem P, a G&C
program P for P consists of the following two main parts:

Guessing Part The guessing part G ⊆ P of the program defines the search space,
such that answer sets of G ∪ F I represent “solution candidates” for I .

Checking Part The (optional) checking part C ⊆ P of the program filters the
solution candidates in such a way that the answer sets of G∪C∪F I represent
the admissible solutions for the problem instance I .

Without imposing restrictions on which rules G and C may contain, in the ex-
tremal case we might set G to the full program and let C be empty, i.e., checking

Chapter 1. Answer Set Programming with Functions 21

is completely integrated into the guessing part such that solution candidates are
always solutions. Also, in general, the generation of the search space may be
guarded by some rules, and such rules might be considered more appropriately
placed in the guessing part than in the checking part. We do not pursue this is-
sue further here, and thus also refrain from giving a formal definition of how to
separate a program into a guessing and a checking part.

In general, both G and C may be arbitrary collections of rules, and it depends
on the complexity of the problem at hand which kinds of rules are needed to
realize these parts (in particular, the checking part).

For problems with complexity in NP, often a natural G&C program can be
designed with the two parts clearly separated into the following simple layered
structure:

• The guessing part G consists of disjunctive rules that “guess” a solution
candidate S.

• The checking part C consists of integrity constraints that check the admissi-
bility of S.

Each layer may have further auxiliary predicates, for local computations.
The disjunctive rules define the search space in which rule applications are

branching points, while the integrity constraints prune illegal branches.
It is worth remarking that the G&C programming methodology has also posi-

tive implications from the Software Engineering viewpoint. Indeed, the modular
program structure in G&C allows for developing programs incrementally, which
is helpful to simplify testing and debugging. One can start by writing the guess-
ing part G and testing that G ∪ F I correctly defines the search space. Then, one
adds the checking part and verifies that the answer sets of G ∪ C ∪ F I encode the
admissible solutions.

1.3.2 Applications of the Guess and Check Technique

In this section, we illustrate the declarative programming methodology described
in Section 1.3.1 by showing its application on a number of concrete examples.

Let us consider a classical NP-complete problem in graph theory, namely
Hamiltonian Path.

Definition 1.3 (HAMPATH) Given a directed graph G = (V, E) and a node a ∈
V of this graph, does there exist a path in G starting at a and passing through each
node in V exactly once?

Chapter 1. Answer Set Programming with Functions 22

Suppose that the graph G is specified by using facts over predicates node

(unary) and arc (binary), and the starting node a is specified by the predicate start

(unary). Then, the following G&C program Php solves the problem HAMPATH:

inPath(X, Y) v outPath(X, Y) :- start(X), arc(X, Y).
inPath(X, Y) v outPath(X, Y) :- reached(X), arc(X,Y).
reached(X) :- inPath(Y, X). (aux.)



 Guess

:- inPath(X,Y), inPath(X,Y 1), Y <> Y 1.
:- inPath(X,Y), inPath(X1, Y), X <> X1.
:- node(X), not reached(X), not start(X).



 Check

The two disjunctive rules guess a subset S of the arcs to be in the path, while
the rest of the program checks whether S constitutes a Hamiltonian Path. Here,
an auxiliary predicate reached is used, which is associated with the guessed pred-
icate inPath using the last rule. Note that reached is completely determined by
the guess for inPath, and no further guessing is needed.

In turn, through the second rule, the predicate reached influences the guess of
inPath, which is made somehow inductively. Initially, a guess on an arc leaving
the starting node is made by the first rule, followed by repeated guesses of arcs
leaving from reached nodes by the second rule, until all reached nodes have been
handled.

In the checking part, the first two constraints ensure that the set of arcs S

selected by inPath meets the following requirements, which any Hamiltonian
Path must satisfy: (i) there must not be two arcs starting at the same node, and (ii)
there must not be two arcs ending in the same node. The third constraint enforces
that all nodes in the graph are reached from the starting node in the subgraph
induced by S.

A less sophisticated encoding can be obtained by replacing the guessing part
with the single rule

inPath(X, Y) v outPath(X,Y) :- arc(X, Y).

that guesses for each arc whether it is in the path and by defining the predicate
reached in the checking part by rules

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y, X).

However, this encoding is less preferable from a computational point of view,
because it leads to a larger search space.

Chapter 1. Answer Set Programming with Functions 23

It is easy to see that any set of arcs S which satisfies all three constraints must
contain the arcs of a path v0, v1, . . . , vk in G that starts at node v0 = a, and passes
through distinct nodes until no further node is left, or it arrives at the starting node
a again. In the latter case, this means that the path is in fact a Hamiltonian Cycle
(from which a Hamiltonian path can be immediately computed, by dropping the
last arc).

Thus, given a set of facts F for node, arc, and start, the program Php ∪ F
has an answer set if and only if the corresponding graph has a Hamiltonian Path.
The above program correctly encodes the decision problem of deciding whether a
given graph admits a Hamiltonian Path or not.

This encoding is very flexible, and can be easily adapted to solve the search
problems Hamiltonian Path and Hamiltonian Cycle (where the result has to be a
tour, i.e., a closed path). If we want to be sure that the computed result is an open
path (i.e., it is not a cycle), we can easily impose openness by adding a further
constraint :- start(Y), inPath(, Y). to the program (like in Prolog, the symbol
‘ ’ stands for an anonymous variable whose value is of no interest). Then, the set
S of selected arcs in any answer set of Php ∪ F constitutes a Hamiltonian Path
starting at a. If, on the other hand, we want to compute the Hamiltonian cycles,
then we just have to strip off the literal not start(X) from the last constraint of
the program.

In the previous examples, we have seen how a search problem can be encoded
in a DLP program whose answer sets correspond to the problem solutions. We
next see another use of the G&C programming technique. We build a DLP pro-
gram whose answer sets witness that a property does not hold, i.e., the property
at hand holds if and only if the DLP program has no answer set. Such a program-
ming scheme is useful to prove the validity of co-NP or ΠP

2 properties. We next
apply the above programming scheme to a well-known problem of number and
graph theory.

Definition 1.4 (RAMSEY) The Ramsey number R(k, m) is the least integer n

such that, no matter how we color the arcs of the complete undirected graph
(clique) with n nodes using two colors, say red and blue, there is a red clique
with k nodes (a red k-clique) or a blue clique with m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [Radziszowski,
1994]. We next show a program Pramsey that allows us to decide whether a given
integer n is not the Ramsey Number R(3, 4). By varying the input number n, we
can determine R(3, 4), as described below. Let F be the collection of facts for

Chapter 1. Answer Set Programming with Functions 24

input predicates node and arc encoding a complete graph with n nodes. Pramsey

is the following G&C program:

blue(X, Y) v red(X,Y) :- arc(X, Y).
}

Guess

:- red(X,Y), red(X, Z), red(Y, Z).

:- blue(X,Y), blue(X, Z), blue(Y, Z),
blue(X,W), blue(Y,W), blue(Z,W).



 Check

Intuitively, the disjunctive rule guesses a color for each edge. The first constraint
eliminates the colorings containing a red clique (i.e., a complete graph) with 3
nodes, and the second constraint eliminates the colorings containing a blue clique
with 4 nodes. The program Pramsey ∪F has an answer set if and only if there is a
coloring of the edges of the complete graph on n nodes containing no red clique of
size 3 and no blue clique of size 4. Thus, if there is an answer set for a particular
n, then n is not R(3, 4), that is, n < R(3, 4). On the other hand, if Pramsey ∪ F
has no answer set, then n ≥ R(3, 4). Thus, the smallest n such that no answer set
is found is the Ramsey number R(3, 4).

1.3.3 Enhanced KRR Capabilities by Function Symbols

As shown by the previous examples, ASP is particularly well-suited for mod-
elling and solving problems that involve common-sense reasoning as well as for
advanced knowledge-based tasks. As a matter of fact, this paradigm has been
successfully applied to a range of applications including information integration,
software configuration, reasoning about actions and change, etc.

These applications have evidenced some limitations of ASP languages and
systems, that should be overcome to make ASP better suited for real-world appli-
cations even in industry. While answer set semantics, which underlies ASP, was
defined in the setting of a general first order language, current ASP frameworks
and implementations, like DLV [Leone et al., 2006], Smodels [Simons et al.,
2002], clasp [Gebser et al., 2007a] and other efficient solvers, are based in essence
on function-free languages and resort to Datalog with negation and its extensions.
Therefore, even by using state-of-the-art systems, one cannot directly reason about
recursive data structures and infinite domains, such as XML/HTML documents,
lists, time, etc. This is a strong limitation, both for standard knowledge-based
tasks and for emerging applications, such as those manipulating XML documents.

Since one is forced to work with finite domains, potentially infinite processes
cannot be represented naturally in ASP. Additional tools to simulate unbounded

Chapter 1. Answer Set Programming with Functions 25

domains must be used. A notable example is the DLVK [Eiter et al., 2003] front-
end of the DLV system which implements the action language K [Eiter et al.,
2004]. Constants are used to instantiate a sufficiently large domain (estimated by
the user) for solving the problem; this may incur high space requirements, and
does not scale to large instances. Another example is given by recursive data
structures like lists that can be simulated only through unnatural encodings.

Function symbols, in turn, are a very convenient means for generating infinite
domains and objects, and allow for a more natural representation of problems in
such domains. Recursive data structures can be immediately represented, without
resorting to indirect encodings. Besides, there is no need to use constants to bound
variables whose maximum value is a priori unknown like, for instance, variables
representing a time or a plan length.

However, the reason why function symbols have been banned in ASP is that,
allowing them, leads to undecidability of the reasoning, also for rather simple pro-
grams (see next section). This has raised the challenge to identify classes of pro-
grams retaining the decidability of the standard reasoning tasks, even in presence
of functions. Different results have been achieved according to the followed eval-
uation strategy (top-down/bottom-up). Many examples of logic programs exploit-
ing the expressive power offered by function symbols may be found throughout
the next chapters. In particular, we will first show program examples belonging to
a top-down computable class: ‘finitary programs’ (see Chapter 2) and then exam-
ples belonging to a bottom-up computable class: ‘finitely ground programs’ (see
Chapter 3).

1.4 Decidability and Complexity Issues

In this chapter, we discuss the most relevant issues about decidability and com-
plexity of Answer Set Programming. We first provide some preliminaries both on
complexity theory and on some syntactic properties which allow us to single out
computationally simpler subclasses of disjunctive logic programming languages.
Then, we define the main computational problems under consideration and report
the complexity results on different forms of function-free disjunctive logic pro-
gramming. Finally, we analyze the decidability questions arising when function
symbols are allowed.

Chapter 1. Answer Set Programming with Functions 26

1.4.1 Hierarchies of Complexity Classes
Polynomial Hierarchy

We assume here that the reader is familiar with the concepts of NP-completeness
and complexity theory and provide only a very short reminder of the complexity
classes of the polynomial hierarchy which are relevant to this chapter. For further
details, the reader is referred to [Papadimitriou, 1994].

The classes ΣP
k , ΠP

k , and ∆P
k of the polynomial hierarchy ([Johnson, 1990])

are defined as follows:
∆P

0 = ΣP
0 = ΠP

0 = P

and for all k ≥ 1, ∆P
k = PΣP

k−1 , ΣP
k = NPΣP

k−1 , ΠP
k = co-ΣP

k ,

where NPC denotes the class of decision problems that are solvable in polyno-
mial time on a nondeterministic Turing machine with an oracle for any decision
problem π in the class C. In particular, NP = ΣP

1 , co-NP = ΠP
1 , and ∆P

2 = PNP.
The oracle replies to a query in unit time, and thus, roughly speaking, models

a call to a subroutine for π that is evaluated in unit time.
Observe that for all k ≥ 1,

ΣP
k ⊆ ∆P

k+1 ⊆ ΣP
k+1 ⊆ PSPACE

where each inclusion is widely conjectured to be strict. By the rightmost inclusion
above, all these classes contain only problems that are solvable in polynomial
space. They allow, however, a finer grained distinction among NP-hard problems
that are in PSPACE.

Arithmetical and Analytical Hierarchies

To characterize the complexity of logic programming with functions we also need
a classification going beyond the polynomial hierarchy: the arithmetical and ana-
lytical hierarchies. We recall here just the basic definitions, referring to [Japaridze,
1994] and [Hartley Rogers, 1987] for further details.

The arithmetical hierarchy is a hierarchy of either (depending on the context)
relations or formulas in the language of first-order arithmetic. The relations of a
particular level of the hierarchy are exactly the relations defined by the formulas
of that level, so the two uses are essentially the same.

The first level consists of formulas with only bounded quantifiers and is as-
signed the classifications Σ0

0 and Π0
0.

Chapter 1. Answer Set Programming with Functions 27

The classifications Σ0
n and Π0

n are defined inductively for every natural number
n using the following rules:

- If a formula φ is logically equivalent to a formula of the form ∃n1 · · · ∃nkψ,
where ψ is Π0

n, then φ is assigned the classification Σ0
n+1.

- If a formula φ is logically equivalent to a formula of the form ∀n1 · · · ∀nkψ,
where ψ is Σ0

n, then φ is assigned the classification Π0
n+1.

The subscript n in the symbols Σ0
n and Π0

n indicates the number of alternations of
blocks of universal and existential number quantifiers that are used in a formula.
Moreover, the outermost block is existential in Σ0

n formulas and universal in Π0
n

formulas. The superscript 0 in the symbols Σ0
n and Π0

n indicates the type of the
objects being quantified over. Type 0 objects are natural numbers, and objects of
type i+1 are functions that map the set of objects of type i to the natural numbers.
For example, the Σ0

1 sets of numbers are those definable by a formula of the form
∃n1 · · · ∃nkψ(n1, · · · , nk, m) where ψ has only bounded quantifiers. These are
exactly the recursively enumerable (r.e.) sets.

Quantification over higher type objects is described by a superscript greater
than 0, as in the analytical hierarchy. The superscript 1 would indicate quan-
tification over functions from natural numbers to natural numbers. The notation
Σ1

0 = Π1
0 indicates the class of formulas in the language of second-order arithmetic

with no set quantifiers. As for the arithmetical hierarchy, an inductive definition
can be provided for every subscript natural number n. A formula in the language
of second-order arithmetic is defined to be Σ1

n+1 if it is logically equivalent to a
formula of the form ∃n1 · · · ∃nkψ where ψ is Π1

n. A formula is defined to be Π1
n+1

if it is logically equivalent to a formula of the form ∀n1 · · · ∀nkψ, where ψ is Σ1
n.

Relevant Classes of Programs

Let us now report some definitions needed to identify syntactic classes of disjunc-
tive logic programs with interesting properties.

Definition 1.5 Functions || || : BP → {0, 1, . . .} from the Herbrand base BP to
finite ordinals are called level mappings of P.

Level mappings give us a useful technique for describing various classes of pro-
grams.

Chapter 1. Answer Set Programming with Functions 28

Definition 1.6 A disjunctive logic program P is called (locally) stratified [Apt et
al., 1988; Przymusinski, 1988], if there is a level mapping || ||s of P such that, for
every rule r of Ground(P),

1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||s ≤ ||l′||s;

2. For any l ∈ B−(r), and for any l′ ∈ H(r), ||l||s < ||l′||s.

3. For any l, l′ ∈ H(r), ||l||s = ||l′||s.

Example 1.7 Consider the following two programs.

P1 : p(a) v p(c) :- not q(a). P2 : p(a) v p(c) :- not q(b).
p(b) :- not q(b). q(b) :- not p(a).

It is easy to see that program P1 is stratified, while program P2 is not. A suitable
level mapping for P1 is the following:

||p(a)||s = 2 ||p(b)||s = 2 ||p(c)||s = 2
||q(a)||s = 1 ||q(b)||s = 1 ||q(c)||s = 1

As for P2, an admissible level mapping would need to satisfy ||p(a)||s < ||q(b)||s
and ||q(b)||s < ||p(a)||s, which is impossible.

Another interesting class of problems consists of head-cycle free programs.

Definition 1.8 A program P is called head-cycle free (HCF) [Ben-Eliyahu and
Dechter, 1994], if there is a level mapping || ||h of P such that, for every rule r of
Ground(P),

1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||h ≤ ||l′||h;

2. For any pair l, l′ ∈ H(r) ||l||h 6= ||l′||h.

Example 1.9 Consider the following program P3.

P3 : a v b.
a :- b.

It is easy to see that P3 is head-cycle free; an admissible level mapping for P3 is
given by ||a||h = 2 and ||b||h = 1. Consider now the program

P4 = P3 ∪ {b :- a.}
P4 is not head-cycle free, since a and b should belong to the same level by Con-
dition (1) of Definition 1.8, while they cannot by Condition (2) of that definition.
Note, however, that P4 is stratified.

Chapter 1. Answer Set Programming with Functions 29

1.4.2 Complexity Results for Function-Free ASP

Three important decision problems, corresponding to three different reasoning
tasks, arise in the context of Disjunctive Logic Programming:

Brave Reasoning4. Given a program P , and a ground atom A, decide
whether A is true in some answer set of P (denoted P |=b A).

Cautious Reasoning5. Given a program P , and a ground atom A, decide
whether A is true in all answer sets of P (denoted P |=c A).

Answer Set Checking. Given a program P , and a set M of ground literals
as input, decide whether M is an answer set of P .

We report here the complexity results of the first three decision problems re-
called in the previous subsection. These results are given for ground (i.e., proposi-
tional) DLP programs without function symbols (some remarks on the complexity
of non-ground programs are provided at the end of this subsection).

An interesting issue is the impact of further syntactic restrictions on the logic
program P . Starting from normal positive programs (without negation and dis-
junction), we consider the effect of allowing the (combined) use of the following
constructs:

• stratified negation (nots),

• arbitrary negation (not),

• head-cycle free disjunction (vh),

• arbitrary disjunction (v).

Given a set X of the above syntactic elements, we denote by DLP[X] the frag-
ment of DLP where the elements in X are allowed. For instance, DLP[vh, nots]
denotes the fragment allowing head-cycle free disjunction and stratified negation.

We report here, with the help of some tables, results proved in [Gottlob, 1994;
Eiter and Gottlob, 1995; Eiter et al., 1998; Buccafurri et al., 2000; Dantsin et al.,
2001; Leone et al., 2006].

The complexity of Brave Reasoning and Cautious Reasoning from ground
DLP programs are summarized in Table 1.1 and Table 1.2, respectively.

4The synonym ‘credulous’ is sometimes used instead of brave
5The synonym ‘skeptical’ is sometimes used instead of cautious

Chapter 1. Answer Set Programming with Functions 30

{} {nots} {not}

{} P P NP

{vh} NP NP NP

{v} ΣP
2 ΣP

2 ΣP
2

Table 1.1: The Complexity of Brave Reasoning in fragments of DLP

{} {nots} {not}

{} P P co-NP

{vh} co-NP co-NP co-NP

{v} co-NP ΠP
2 ΠP

2

Table 1.2: The Complexity of Cautious Reasoning in fragments of DLP

In Table 1.3, we report the results on the complexity of Answer Set Checking.
The rows of the tables specify the form of disjunction allowed; in particular,

{} = no disjunction, {vh} = head-cycle free disjunction, and {v} = unrestricted
(possibly not head-cycle free) disjunction. The columns specify the support for
negation. For instance, {nots} denotes that only stratified negation is supported.
Each entry of the table provides the complexity of the corresponding fragment
of the language, in terms of a completeness result. For instance, ({vh}, {nots})
is the fragment allowing head-cycle free disjunction and stratified negation. The
corresponding entry in Table 1.1, namely NP, expresses that brave reasoning for
this fragment is NP-complete. The results reported in the tables represent com-
pleteness under polynomial time (and in fact LOGSPACE) reductions.

Looking at Table 1.1, we see that limiting the form of disjunction and negation
reduces the respective complexity. For disjunction-free programs, brave reasoning
is polynomial on stratified negation, while it becomes NP-complete if we allow
unrestricted (nonmonotonic) negation. Brave reasoning is NP-complete on head-
cycle free programs even if no form of negation is allowed. The complexity jumps
one level higher in the Polynomial Hierarchy, up to ΣP

2 -complexity, if full disjunc-
tion is allowed. Thus, disjunction seems to be harder than negation, since the full
complexity is reached already on positive programs, even without any kind of
negation.

Chapter 1. Answer Set Programming with Functions 31

{} {nots} {not}

{} P P P

{vh} P P P

{v} co-NP co-NP co-NP

Table 1.3: The Complexity of Answer Set Checking in fragments of DLP

Table 1.2 contains results for cautious reasoning. One would expect its com-
plexity to be symmetric to the complexity of brave reasoning, that is, whenever
the complexity of a fragment is C under brave reasoning, one expects its com-
plexity to be co-C under cautious reasoning (recall that co-P = P, co-∆P

2 = ∆P
2 ,

co-ΣP
2 = ΠP

2 , and co-∆P
3 = ∆P

3).
Surprisingly, there is one exception: while full disjunction raises the complex-

ity of brave reasoning from NP to ΣP
2 , full disjunction alone is not sufficient to

raise the complexity of cautious reasoning from co-NP to ΠP
2 . Cautious reasoning

remains in co-NP if default negation is disallowed. Intuitively, to disprove that
an atom A is a cautious consequence of a program P , it is sufficient to find any
model M of P (which need not be an answer set or a minimal model) which does
not contain A. For not-free programs, the existence of such a model guarantees
the existence of a subset of M which is an answer set of P (and does not contain
A).

The complexity results for Answer Set Checking, reported in Table 1.3, help
us to understand the complexity of reasoning. Whenever Answer Set Checking is
co-NP-complete for a fragment F , the complexity of brave reasoning jumps up to
the second level of the Polynomial Hierarchy (ΣP

2).
We close this section with briefly addressing the complexity and expressive-

ness of non-ground programs. A non-ground program P can be reduced, by naive
instantiation, to a ground instance of the problem. The complexity of this ground
instantiation is as described above. In the general case, where P is given in the
input, the size of the grounding Ground(P) is single exponential in the size
of P . Informally, the complexity of Brave Reasoning and Cautious Reasoning
increases accordingly by one exponential, from P to EXPTIME, NP to NEXP-
TIME, ∆P

2 to EXPTIMENP, ΣP
2 to NEXPTIMENP, etc. For disjunctive programs

and certain fragments of DLP, complexity results in the non-ground case have
been derived e.g. in [Eiter et al., 1997; 1998]. For the other fragments, the re-

Chapter 1. Answer Set Programming with Functions 32

sults can be derived using complexity upgrading techniques [Eiter et al., 1997;
Gottlob et al., 1999].

1.4.3 Decidability and Complexity for Logic Programming with
Functions

Besides the three decision problems reported in the previous section, here we
will consider a further interesting decision problem related to the consistence of a
program:

Consistency Checking. Given a program P , decide whether P admits at
least one answer set.

If function symbols are allowed in a logic program, then all these decision
problems are, in general, no longer decidable.

The first result in this direction regards recursive Horn programs. A proof of
the non decidability of entailment of an atom can be found e.g. in [Dantsin et
al., 2001] where the reduction of query answering to the Hilbert’s Tenth Problem
is used at this aim. Undecidability is then deduced from the undecidability of
diophantine equations [Matiyasevich, 1970]. In particular, theorems in [Tärnlund,
1977] state that logic programming using binary Horn clauses with one function
symbol is r.e.-complete. This statement may be proved by simulating a universal
Turing machine by logic programming (where terms fn(c), n ≥ 0 are used for
representing cell positions and time instants).

Let us now consider logic programming with negation. In particular we are in-
terested to negation-as-failure under the stable model semantics. For an important
subclass of normal logic programs, i.e. stratified programs, the complexity was
determined in [Apt and Blair, 1991], where it is showed that, in this case, strati-
fied negation yields the arithmetical hierarchy, in particular: logic programming
with n levels of stratified negation is Σ0

n+1-complete. For a general program P ,
the problem of determining whether or not there exists a stable model of P is Σ1

1-
complete. This result was showed in [Marek et al., 1992] where this problem has
been proved to be equivalent to finding a path through an infinite branching recur-
sive tree. In [Schlipf, 1995] is also proved that reasoning in logic programming
with negation under stable model semantics is Π1

1-complete. Finally, as proved in
[Eiter and Gottlob, 1995] adding disjunction in the rule heads, in case of infinite
Herbrand universe, does not change the complexity of the reasoning that remains
Π1

1-complete.

Chapter 1. Answer Set Programming with Functions 33

If we consider some syntactic restrictions, decidability of inference can be
preserved. A natural decidable fragment of logic programming with functions
are normal positive nonrecursive programs (in which, intuitively, no predicate de-
pends syntactically on itself). Their complexity is characterized in [Dantsin and
Voronkov, 1997] where was proved to be NEXPTIME-complete.

Computational complexity for the problem of deciding the existence of a sta-
ble model (consistency checking) for a non ground program, has been studied for
the class of ω-restricted programs (see Section 7.2). In the general case, it results
to be 2-NEXP-complete.

For the FDNC class of programs (see Section 7.3) the following computa-
tional complexity results has been established: both consistency checking for non
ground programs and brave reasoning (for both ground and non ground queries)
are EXPTIME-complete, while cautious reasoning is EXPSPACE-complete.

Chapter 2

A Top-Down Computable Class:
Finitary Programs

This chapter is devoted to a class of programs adopting a top-down evaluation
approach and being computable despite the presence of function symbols. In par-
ticular, we describe finitary programs that is a class of normal logic programs sup-
porting function symbols and such that reasoning is decidable in case of ground
queries. We first recall some main aspects of the top-down evaluation approach
and the needed preliminary definitions. Then, we report the main definitions about
finitely-recursive and finitary programs. Finally, computational properties enjoyed
by this class of programs are illustrated.

The chapter is organized as follows:

• Section 2.1 describes the top-down evaluation approach, recalling how it
works for some classes of logic programs.

• In Section 2.2 some preliminary definitions peculiar to the class of programs
described in this chapter are reported.

• Section 2.3 reports the definition of finitely-recursive programs, that is a
superclass of finitary programs characterized by a ‘restricted’ form of re-
cursion.

• In Section 2.4 finitary programs are introduced.

• Finally, in Section 2.5, the most relevant properties enjoyed by finitary pro-
grams are reported

34

Chapter 2. Top-Down Computable Class: Finitary Programs 35

2.1 Top-Down Programs Evaluation

In Section 1.2 we presented the stable model semantics as the most widely ac-
cepted semantics to give meaning to disjunctive logic programming. This seman-
tics is based on the notion of answer sets and is purely declarative in the sense that
it does not describe at all, how an answer set is to be constructed.

One possible approach that can be followed to evaluate a logic program is
based on proof-theoretic notions and is generally denoted as top-down evaluation
method.

In mathematical logic and automated theorem proving, resolution is a rule
of inference leading to a refutation theorem-proving technique for sentences in
propositional logic and first-order logic. SLD-resolution (Selected literal Linear
resolution strategy over Definite clauses) is a special case of a refinement of the
resolution method introduced in [Kowalski and Kuehner, 1971] and known as
SL-resolution. It applies to special kinds of Horn clauses called definite clauses
(Horn clauses with exactly one positive literal) and is the basic inference rule used
in logic programming. In essence, SLD-resolution works as follows: it starts with
a list of query predicates, called the goal list and finds a rule whose head unifies
with a goal in the goal list, say g. The unifying substitution is then applied to
the rule and to the goals in the goal list; the goal g is removed from the goal
list and the body of the unifying rule is added to the goal list (this is why the
literals in the body of a rule are sometimes referred to as subgoals). This process
is repeated until either the goal list becomes empty (in which case we have a
successful deduction) or no new unifying rules can be found (in which case we
have a failure). Note that, this kind of evaluation procedure has to make two
choices: one in choosing the next goal from the goal list and another in choosing
the rule whose head unifies with the selected goal. The different choices that can
be made by the top-down proof process implicitly define a tree, called SLD-tree.

SLD-resolution is the computation procedure used in Prolog [Kowalski, 1974].
Interpreters of such a language usually choose goals in a left-to-right order and
rules in a sequential order that corresponds to a depth-first search of the SLD-tree,
with backtracking when failure occurs. Pure Prolog was originally restricted to
Horn clauses of the form: H : −B1, , Bn. but it was soon extended to include
negation-as-failure, in which negative conditions of the form not(Bi) are shown
by trying and failing to solve the corresponding positive conditions Bi.

A skeptical resolution calculus for the stable model semantics has been pre-
sented in [Bonatti, 2001b]. Differently from the approach generally used for this

Chapter 2. Top-Down Computable Class: Finitary Programs 36

semantics, it is not based on the construction of entire stable models. This feature
makes it possible to obtain concise derivations, which often involve only a strict
subset of the program rules. In many cases (including all the programs whose
dependency graph contains no cycles with an odd number of negative edges) the
derivations may proceed in a thoroughly goal-directed way. This resolution cal-
culus was proved sound for all programs and complete w.r.t. function-free ones.
The completeness result has been extended to all finitary programs in [Bonatti,
2004]. More recently, a credulous resolution calculus for ASP has been proposed
in [Bonatti et al., 2008]. The approach followed in this work allows a top-down
and goal directed resolution, in the same spirit as traditional SLD-resolution. The
proposed credulous resolution can be used in query-answering with non ground
queries and with non ground, and possibly infinite, programs. Soundness and
completeness results for the resolution procedure are proved for large classes of
logic programs.

Top-down evaluation implies a notion of safety different from that introduced
in Section 1.1. Indeed a rule could be safely evaluated even if there are variables
appearing only in the head of the rule, provided that the query to be answered
supplies appropriate binding to those variables. On the other hand, a rule having
variables appearing only in the body of the rule, can not be safely evaluated in
case of an infinite Herbrand universe.

Another noticeable aspect of top-down evaluations is that of relevant rules.
Given a set of rules R then the rule r ∈ R is relevant with respect to a query Q
if r is used in the top-down proof of Q. This means that a query can be correctly
answered by reasoning with a portion of the given program, i.e. the subprogram
made by all the rules relevant w.r.t. the query.

2.2 Notation

In this section we report some preliminary definitions extracted from [Bonatti,
2004] and peculiar to the class described in this chapter. In particular, the defi-
nition of a dependency graph is exploited to introduce the notion of dependency
among atoms and the concept of odd-cycle. Finally, notions of kernel atoms and
relevant universe and subprogram are introduced.

Given a normal logic (disjunction-free) program P , a labelled dependency
graph LDG(P) is associated to Ground(P). The set of vertices consists of the
(infinite) set of atoms in BP . The set of edges is defined as follows:

Chapter 2. Top-Down Computable Class: Finitary Programs 37

- there exists an edge labelled ‘+’ (called positive edge) from A1 to A2 if and
only if for some rule r ∈ Ground(P), A1 ∈ H(r) and A2 ∈ B+(r);

- there exists an edge labelled ‘-’ (called negative edge) from A1 to A2 if and
only if for some rule r ∈ Ground(P), A1 ∈ H(r) and notA2 ∈ B−(r);

An atom A1 depends positively (respectively negatively) on A2 if there is a
directed path from A1 to A2 in the dependency graph with an even (respectively
odd) number of negative edges. Moreover, each atom depends positively on itself.
If A1 depends positively (respectively negatively) on A2 we write A1 ≥+ A2

(respectively A1 ≥− A2). We write A1 ≥ A2 if either A1 ≥+ A2 or A1 ≥− A2. If
both A1 ≥+ A2 and A1 ≥− A2 hold then we write A1 ≥± A2.

By odd-cycle we mean a cycle in the dependency graph with an odd number
of negative edges. A ground atom is odd-cyclic if it occurs in an odd-cycle.

A kernel atom for a normal program P and a ground queryQ is either an odd-
cyclic atom or an atom occurring in Q. The set of kernel atoms for P and Q is
denoted by K(P,Q).

The relevant universe for P and Q, denoted by U(P,Q) is the set of all ground
atoms B such that some kernel atom for P and Q depends on B. In symbols:
U(P,Q) = {B| for some A ∈ K(P,Q), A ≥ B}.

The relevant subprogram of P for a ground query Q, denoted by R(P,Q), is
the set of all rules in Ground(P) whose heads belongs to U(P,Q). In symbols:
R(P,Q) = {r| r ∈ Ground(P) and H(r) ∈ U(P,Q)}.

2.3 Finitely-Recursive Programs

In this section we report the definition of a class of normal logic programs allow-
ing function symbols and characterized by a ‘restricted’ form of recursion. This
class was firstly introduced in [Bonatti, 2001a] and [Bonatti, 2004] as a superclass
of the finitary class of programs shown in the next section. Then it was studied in
depth in [Baselice et al., 2007].

Definition 2.1 [Bonatti, 2004] A normal program P is finitely-recursive if and
only if each atom A ∈ Ground(P) depends on finitely many ground atoms. In
other words, the cardinality of the set of ground atoms {B|A ≥ B} must be finite
for all atoms A included in Ground(P).

Positive finitely-recursive programs enjoy all properties shown in Section 2.5.
Indeed, being positive they trivially fulfill the further condition required to be

Chapter 2. Top-Down Computable Class: Finitary Programs 38

member(X, [X|L]).
member(X, [Y |L]) :- member(X, L).

append([], L, L).
append([X|T1], L, [X|T2]) :- append(T1, L, T2).

reverse(L,R) :- sup reverse(L, [], R).
sup reverse([], R, R).
sup reverse([X|T1], L, R) :- sup reverse(T1, [X|L], R).

Figure 2.1: Examples of positive finitely-recursive programs.

finitary (see next section). For example, most classical programs on recursive
data structures such as lists and trees (e.g., predicates member, append, reverse in
Fig. 2.1 are finitely-recursive positive programs). Typically, these programs are
finitely-recursive because the terms occurring in the body of a rule occur also in
the head, often as strict subterms of the heads arguments.

As proved in [Baselice et al., 2007], finitely-recursive programs in any case
share with finitary programs these nice properties:

- compactness;

- r.e.- completeness of consistency checking and cautious inference;

- completeness of the resolution calculus for skeptical stable model semantics
(see [Bonatti, 2001b]).

For compactness here is intended a property similar to that enjoyed by the
classical first-order logic, that is: an infinite set of formulas is inconsistent if and
only if it has an inconsistent finite subset. The analogues of inconsistent finite
subset of a theory are the so called unstable kernels. An unstable kernel for a
program P is a set K ⊆ Ground(P) with the following properties:

- K is downward closed, that is, for each atom A occurring in rules of K, the
set K contains all the rules r ∈ Ground(P) such that H(r) = A;

- K has no stable models;

Chapter 2. Top-Down Computable Class: Finitary Programs 39

A finitely-recursive program P has no stable model if and only if it has a finite
unstable kernel. It is worth noting that this property in general is not enjoyed by
nonmonotonic logics.

As already remarked in Section 2.1, a rule having variables appearing only in
the body of the rule, can not be top-down safely evaluated in case of an infinite
Herbrand universe. So, a program with function symbols, having a so called local
variable, is not finitely-recursive. Indeed, in case of an infinite Herbrand domain,
the possible substitutions for local variables are infinite.

Example 2.2 The following simple program P is not finitely-recursive:

g(0, 0).
p(f(X)) :- g(X,Y).

in fact its ground version contains infinite rules deriving from the infinite possible
substitution (0, f(0), f(f(0)), f(f(f(0)))... and so on) for the local variable Y .
This means that the associated dependency graph LDG(P) has at least one node
(e.g., p(f(0)) depending on an infinite set of other nodes. This definitely violates
the condition required for a program to be finitely-recursive.

2.4 Finitary Programs

In this section we report the definition of finitary programs, a class of normal logic
programs admitting unbounded (possibly infinite) domains and cyclic definitions,
and such that inference is r.e.-complete.

In Section 1.4.3 we remarked as admitting function symbols, makes the in-
ferences of normal logic programs highly undecidable. In [Bonatti, 2004] two
determining factors have been identified and then proper restrictions have been
enforced.

The first factor is unrestricted recursion, that makes positive programs Turing
equivalent. Consequently, the answer to a negative goal notA is not semidecid-
able, in general.

The second factor is the role that odd-cycles play in query answering. For
example, consider program P1 = {p. ; q :- notq }, that has no stable models
because of rule q :- notq (note that it makes q odd-cyclic). Then, in order to
decide whether this program has a stable model containing p, we have to consider
also q :- notq, even if this rule has no explicit syntactic relationship with p (i.e.,
there is no path between p and q in the dependency graph LDG(P1)). In other

Chapter 2. Top-Down Computable Class: Finitary Programs 40

words, a rule involved in an odd-cycle can never be ignored because it may cause
the program to be inconsistent.

To keep complexity under control the definition of finitary programs imposes
constraints on both these factors. Indeed, recursion is restricted and the number
of possible sources of inconsistency is required to be finite.

Definition 2.3 [Bonatti, 2004] A normal program P is finitary if the following
conditions hold:

• P is finitely-recursive.

• There are finitely many odd-cyclic atoms in the dependency graph LDG(P).

Clearly, all finitely-recursive programs that are either positive or locally strati-
fied are finitary, because their dependency graph has no negative cycles. A simple
example is the following program P2, defining even and odd numbers:

even(0).
even(X) :- not odd(X).
odd(s(X)) :- not odd(X).

As another example of finitary program we report the following encoding P3

of the SAT problem:

s(and(X, Y)) :- s(X), s(Y). s(A) :- member(A, [p, q, r]), not ns(A).
s(or(X, Y)) :- s(X). ns(A) :- member(A, [p, q, r]), not s(A).
s(or(X, Y)) :- s(Y). member(A, [A|L]).
s(not(X)) :- not s(X). member(A, [B|L]) :- member(A,L).

A ground goal s(t) is bravely entailed by the program P3 if and only if t encodes a
satisfiable formula. Actually, this program handles only the propositional formu-
las freely generated by atoms p, q, r, but it can be easily generalized to unbounded
formulas.

Many programs for reasoning about action and planning are finitary. In this
kind of programs time can be represented explicitly via a number, rather than the
history of previous actions. A function symbol is used to represent the successive
time instant. Note that in other cases where function symbols are not allowed,
time is represented with constants, so the number of time points must be specified
a priori.

Chapter 2. Top-Down Computable Class: Finitary Programs 41

2.5 Properties of Finitary Programs

In this section the most relevant properties enjoyed by finitary programs are re-
ported.

The compactness property has been proved for a larger set of programs, i.e.
all those that are finitely-recursive, and has been already illustrated in Section 2.3.

All others nice properties are based on the two following preliminary results:

- If P is a finitary program then, for all ground queryQ, the relevant universe
U(P,Q) and the relevant subprogram R(P,Q) (see Section 2.2) of P w.r.t. Q
are finite.

- For all finitely-recursive programs P and all ground queries Q, P bravely
(resp. cautiously) entails Q if and only if R(P,Q) bravely (resp. cautiously)
entails Q.

First of all, decidability of the inference for all ground queries derives. More
precisely, the following main theorem has been proved:

Theorem 2.4 [Bonatti, 2004] For all finitary programs P and ground queries Q,
both the problem of deciding whether Q is a brave consequence of P and the
problem of deciding whether Q is a cautious consequence of P are decidable.

Actually, as remarked by the author in [Bonatti, 2008], a further condition is
needed to obtain decidability: “a priori” knowledge of what is the set of atoms
involved in odd-cycles.

A related theorem ([Bonatti, 2004], Theorem 17) has been proved about non
ground queries, but in this case the inference results to be semidecidable.

Regarding the expressive power, the class of finitary programs has been proved
to be computationally complete by showing how any Turing machine M can be
simulated by a suitable finitary program that returns the output of M ([Bonatti,
2004], Theorem 22).

The problem of recognizing if a program is finitary is undecidable. In particu-
lar, recognizing the validity of the first condition of Definition 2.3 has been proven
to be not decidable ([Bonatti, 2004], Theorem 26), while recognizing the second
condition (finite odd cycles) has been proven to be not semi-decidable ([Bonatti,
2004], Theorem 27).

Chapter 3

A Bottom-Up Computable Class:
Finitely Ground Programs

In this chapter a class of programs adopting a bottom-up evaluation approach
and being computable despite the presence of function symbols is defined. In
particular, we introduce the class of finitely-ground programs, that is a class of
disjunctive logic programs supporting function symbols and enjoying many rele-
vant computational properties. We first recall some main aspects of the bottom-up
evaluation approach and introduce some needed preliminary definitions. Then,
the class of finitely-ground programs is defined and some computational proper-
ties are proved. Finally, we single out a recognizable subclass of finitely-ground
programs.

The chapter is organized as follows:

• Section 3.1 describes the bottom-up evaluation approach, recalling how it
works for some classes of logic programs.

• In Section 3.2 some preliminary definitions peculiar to the class of programs
described in this chapter are reported.

• Section 3.3 defines the class of finitely-ground programs exploiting the no-
tion of intelligent instantiation.

• In Section 3.4 this class of programs is characterized by identifying some
key properties.

• Finally, Section 3.5, identifies a subclass, called finite-domain programs,
which, besides sharing the nice decidability properties of finitely-ground
programs, ensures the decidability of recognizing membership in the class.

42

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 43

3.1 Bottom-Up Programs Evaluation

Bottom-up semantics follows a complementary approach w.r.t. top-down pro-
grams evaluation. In this case there is not a goal-directed inference, but a process
of model construction starting from the set of facts of the program.

The first effort to give a formal definition of such a kind of semantics was
made in [Van Emden and Kowalski, 1976]. It is based on fixpoints of operators
and regards a restricted class of logic programs i.e. Horn programs. The unique
minimal model of a program is obtained as the least fixpoint of the so called
immediate consequence operator TP . This operator maps interpretations to inter-
pretations and is defined as follows:
TP(I) = {a | ∃r ∈ P s.t. a ∈ H(r) ∧B(r) ⊆ I}.
TP(I) derives an atom a from a rule r, if the body of r is true w.r.t. I . Intuitively,
given an interpretation I , TP derives a set of atoms that are strictly needed to ex-
tend I to a model. In [Apt and van Emden, 1982] has been proved that TP(∅)∞
always gives a set that is the unique minimal Herbrand model of the program.

The quest for finding a suitable semantics in the spirit of minimal models for
programs containing negation turned out to be far from straightforward. One mile-
stone has been the definition of what later became known uniformly as perfect
model semantics for programs that can be stratified on negation [Apt et al., 1988],
[Van Gelder, 1988].

One of the approach followed for non-stratified programs, was giving up the
classical setting of models that assign two truth values and introducing a third
value, intuitively representing unknown. This approach required a somewhat dif-
ferent definition, because in the two-valued approach, one would give a definition
only for positive values, implicitly stating that all other constructs are considered
to be negative. For instance, for minimal models, one minimizes the true ele-
ments, implicitly stating that all elements not contained in the minimal model will
be false. With three truth values, this strategy is no longer applicable, as elements
that are not true can be either false or undefined. For resolving this, Allen Van
Gelder, Kenneth Ross, and John Schlipf introduced the notion of unfounded sets
in [Van Gelder et al., 1988], in order to define which elements of the program
should be definitely false. Combining existing techniques for defining the min-
imal model with unfounded sets, they introduced the notion of a well-founded
model, defined as the least fixpoint of the well-founded operator WP . In this way,
any program would still be guaranteed to have a single model, just like there is
a unique minimal model for positive programs and a unique perfect model for

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 44

GA(P) G(P) GC(P)

Figure 3.1: Argument, Dependency and Component Graphs of the program in
Example 3.4.

stratified programs. Well-founded and stable models are closely related; for in-
stance, the well-founded model of a program is contained in each stable model
[Van Gelder et al., 1991]. Moreover, both approaches coincide with perfect mod-
els on stratified programs.

The notion of unfounded set and the definition of the well-founded operator
WP have been extended to the disjunctive case in [Leone et al., 1997]. Two
declarative characterizations of stable models in terms of unfounded sets are also
provided. One shows that the set of stable models coincides with the family of
unfounded-free models (i.e., a model is stable if and only if it contains no un-
founded atoms). The other proves that stable models can be defined equivalently
by a property of their false literals, as a model is stable if and only if the set of
its false literals coincides with its greatest unfounded set. Moreover, a fixpoint
semantics for disjunctive stable models and an algorithm for computing the stable
models of programs have been given.

3.2 Notation

In this section we introduce some preliminary definitions needed for what pre-
sented in this chapter. In particular, we next define three different graphs that
point out dependencies among arguments, predicates, and components of a pro-
gram.

Definition 3.1 The Argument Graph GA(P) of a program P is a directed graph
containing a node for each argument p[i] of an IDB predicate p of P; there is an
edge (q[j], p[i]) if and only if there is a rule r ∈ P such that:

(i) an atom p(t) appears in the head of r;

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 45

(ii) an atom q(v) appears in B+(r);

(iii) p(t) and q(v) share the same variable within the i-th and j-th term, respec-
tively.

Given a program P , an argument p[i] is said to be recursive with q[j] if there
exists a cycle in GA(P) involving both p[i] and q[j]. Roughly speaking, this graph
keeps track of (body-head) dependencies between the arguments of predicates
sharing some variable. It is actually a more detailed version of the commonly
used (predicate) dependency graph, defined below.

Definition 3.2 The Dependency Graph G(P) of P is a directed graph whose
nodes are the IDB predicates appearing in P . There is an edge (p2, p1) in G(P)

if and only if there is some rule r with p2 appearing in B+(r)and p1 in H(r),
respectively.

The graph G(P) suggests to split the set of all predicates of P into a number
of sets (called components), one for each strongly connected component (SCC)1

of the graph itself. Given a predicate p, we denote its component by comp(p);
with a small abuse of notation, we define also comp(l) and comp(a), where l is a
literal and a is an atom, accordingly.

In order to single out dependencies among components, a proper graph is de-
fined next.

Definition 3.3 Given a program P and its Dependency Graph G(P), the Compo-
nent Graph of P , denoted GC(P), is a directed labelled graph having a node for
each strongly connected component of G(P) and:

(i) an edge (B, A), labelled “+”, if there is a rule r in P such that there is a
predicate q ∈ A occurring in the head of r and a predicate p ∈ B occurring
in the positive body of r;

(ii) an edge (B,A), labelled “-”, if there is a rule r in P such that there is a
predicate q ∈ A occurring in the head of r and a predicate p ∈ B occurring
in the negative body of r, and there is no edge (B, A), with label “+”;

Self-cycles are not considered.

1We recall here that a strongly connected component of a directed graph is a maximal subset
S of the vertices, such that each vertex in S is reachable from all other vertices in S.

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 46

Example 3.4 Consider the following program P , where a is an EDB predicate:

q(g(3)). s(X) v t(f(X)) :- a(X), not q(X).
p(X, Y) :- q(g(X)), t(f(Y)). q(X) :- s(X), p(Y,X).

Graphs GA(P), G(P) and GC(P) are respectively depicted in Figure 3.1. There
are three SCC in G(P): C{s} = {s}, C{t} = {t} and C{p,q} = {p, q} which are
the three nodes of GC(P).

An ordering among the rules, respecting dependencies pointed out by GC(P),
is defined next.

Definition 3.5 A path in GC(P) is strong if all its edges are labelled with “+”.
If, on the contrary, there is at least an edge in the path labelled with “-”, the
path is weak. A component ordering for a given program P is a total ordering
〈C1, . . . , Cn〉 of all components of P s.t., for any Ci, Cj with i < j, both the
following conditions hold:

(i) there are no strong paths from Cj to Ci;

(ii) if there is a weak path from Cj to Ci, then there must be a weak path also
from Ci to Cj .2

Example 3.6 Consider the graph GC(P) of previous example. Both C{s} and C{t}
are connected to C{p,q} through a strong path, while a weak path connects: C{s} to
C{t}, C{t} to C{s}, C{p,q} to C{s} and C{p,q} to C{t}. Both γ1 = 〈C{s}, C{t}, C{p,q}〉
and γ2 = 〈C{t}, C{s}, C{p,q}〉 constitute component orderings for the program P .

By means of the graphs defined above, it is possible to identify a set of subpro-
grams (also called modules) of P , allowing for a modular bottom-up evaluation.
We say that a rule r ∈ P defines a predicate P if p appears in H(r). Once a com-
ponent ordering γ = 〈C1, . . . , Cn〉 is given, for each component Ci we define the
module of Ci, denoted by P(Ci), as the set of all rules r defining some predicate
p ∈ Ci excepting those that define also some other predicate belonging to a lower
component (i.e., certain Cj with j < i in γ). A rule r occurring in a module P(Ci)
defining some predicate q ∈ Ci is said to be recursive if there is some predicate
p ∈ Ci occurring in the positive body of r; otherwise, r is said to be an exit rule.

2Note that, given the component ordering γ, Ci stands for the i-th component in γ, and Ci < Cj

means that Ci precedes Cj in γ (i.e., i < j).

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 47

Example 3.7 Consider the program P of Example 3.4. If we consider the com-
ponent ordering γ1, the corresponding modules are:

P (C{s}) = { s(X) v t(f(X)) :- a(X), not q(X). };
P (C{t}) = ∅;
P (C{p,q}) = { p(X, Y) :- q(g(X)), t(f(Y)). ; q(X) :- s(X), p(Y, X). ;

q(g(3)). }.

The modules of P are defined, according to a component ordering γ, with
the aim of properly instantiating all rules. It is worth remembering that we deal
only with safe rules, i.e., all variables appear in the positive body; it is therefore
enough to instantiate the positive body. Furthermore, any component ordering γ

guarantees that, when r ∈ P (Ci) is instantiated, each nonrecursive predicate p

appearing in B+(r), excepting other predicates (if some) belonging to Ci, is de-
fined in a lower component (i.e., in some Cj with j < i in γ). It is also worth
remembering that, according to how the modules of P are defined, if r is a dis-
junctive rule, then it is associated only to a unique module P (Ci), chosen in such
a way that, among all components Cj such that comp(a) = Cj for some a ∈ H(r),
it always holds i ≤ j in γ (that is, the disjunctive rule is associated only to the
(unique) module corresponding to the lowest component among those “covering”
all predicates featuring some instance in the head of r). This implies that the set
of the modules of P constitute an exact partition for it.

3.3 Finitely-Ground Programs

In this section we introduce a subclass of DLP programs, namely finitely-ground
(FG) programs, having some nice computational properties.

Since the set of ground instances of a rule might be infinite (because of the
presence of function symbols), it is crucial to try to identify those that really matter
in order to compute answer sets. Supposing that S contains all atoms that are
potentially true, next definition singles out the relevant instances of a rule.

Definition 3.8 Given a rule r and a set S of ground atoms, an S-restricted instance
of r is a ground instance r′ of r such that B+(r′) ⊆ S. The set of all S-restricted
instances of a program P is denoted as InstP(S).

Note that, for any S ⊆ BP , InstP(S) ⊆ Ground(P). Intuitively, this helps
selecting, among all ground instances, those somehow supported by a given set S.

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 48

Example 3.9 Consider the following program P:

t(f(1)). t(f(f(1))). p(1).
p(f(X)) :- p(X), t(f(X))).

The set InstP(S) of all S-restricted instances of P , w.r.t. S = Facts(P) is:

t(f(1)). t(f(f(1))). p(1).
p(f(1)) :- p(1), t(f(1)).

The presence of negation allows for identifying some further rules which do
not matter for the computation of answer sets, and for simplifying the bodies of
some others. This can be properly done by exploiting a modular evaluation of the
program that relies on a component ordering.

Definition 3.10 Given a program P , a component ordering 〈C1, . . . , Cn〉, a set
Si of ground rules for Ci, and a set of ground rules R for the components preceding
Ci, the simplification Simpl(Si, R) of Si w.r.t. R is obtained from Si by:

1. deleting each rule whose body contains some negative body literal not a s.t.
a ∈ Facts(R), or whose head contains some atom a ∈ Facts(R);

2. eliminating from the remaining rules each literal l s.t.:

- l = a is a positive body literal and a ∈ Facts(R), or

- l = not a is a negative body literal, comp(a) = Cj with j < i, and
a /∈ Heads(R).

Assuming that R contains all instances of the modules preceding Ci, the sim-
plification Simpl(Si, R) deletes from Si all rules whose body is certainly false or
whose head is certainly already true w.r.t. R, and simplifies the remaining rules
by removing from the bodies all literals that are true w.r.t. R.

Example 3.11 Consider the following program P:

t(1). s(1). s(2).
q(X) :- t(X). p(X) :- s(X), not q(X).

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 49

It is easy to see that 〈C1 = {q}, C2 = {p}〉 is the only component ordering
for P . If we consider R = EDB(P) = { t(1). ; s(1). ; s(2). } and
S1 = {q(1) :- t(1).}, then Simpl(S1, R) = {q(1).} (i.e., t(1) is eliminated from
body).
Considering then R = {t(1). ; s(1). ; s(2). ; q(1).} and S2 = { p(1) :- s(1),

not q(1). ; p(2) :- s(2), not q(2). }, after applying the simplification we have
Simpl(S2, R) = {p(2).}. Indeed, s(2) is eliminated as it belongs to Facts(R)

and not q(2) is eliminated because comp(q(2)) = C1 precedes C2 in the compo-
nent ordering and the atom q(2) /∈ Heads(R); in addition, the rule p(1) :- s(1),

not q(1). is deleted, since q(1) ∈ Facts(R).

We are now ready to define an operator Φ that acts on a module of a program
P in order to:

(i) select only those ground rules whose positive body is contained in a set of
ground atoms consisting of the heads of a given set of rules;

(ii) perform a further simplification among these rules by means of the Simpl

operator.

Definition 3.12 Given a program P , a component ordering 〈C1, . . . , Cn〉, a
component Ci, the module M = P (Ci), a set X of ground rules of M , and
a set R of ground rules belonging only to EDB(P) or to modules of compo-
nents Cj with j < i, let ΦM,R(X) be the transformation defined as follows:
ΦM,R(X) = Simpl(InstM(Heads(R ∪X)), R).

Example 3.13 Let P be the program of Example 3.4 where the extension of EDB
predicate a is {a(1)}. Considering the component C1 = {s}, the module M = P
(C1), and the sets X = ∅ and R = {a(1)}, we have:

ΦM,R(X) = Simpl(InstM(Heads(R ∪X)), R) =
= Simpl(InstM({a(1)}), {a(1).}) =
= Simpl({s(1) v t(f(1)) :- a(1), not q(1).}, {a(1).}) =
= {s(1) v t(f(1)) :- not q(1).}.

The operator defined above has the following important property.

Proposition 3.14 ΦM,R always admits a least fixpoint Φ∞
M,R(∅).

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 50

Proof. The statement follows from Tarski’s theorem [Tarski, 1955]), noting that
ΦM,R is a monotonic operator and that a set of rules forms a meet semilattice
under set containment. ¤

By properly composing consecutive applications of Φ∞ to a component order-
ing, we can obtain an instantiation which drops many useless rules w.r.t. answer
sets computation.

Definition 3.15 Given a programP and a component ordering γ = 〈C1, . . . , Cn〉
for P , the intelligent instantiation Pγ of P for γ is the last element Sn of the
sequence s.t. S0 = EDB(P), Si = Si−1 ∪ Φ∞

Mi,Si−1
(∅), where Mi is the program

module P (Ci).

Example 3.16 Let P be the program of Example 3.4 where the extension of EDB
predicate a is {a(1)}; considering the component ordering γ = 〈C1 = {s}, C2 =

{t}, C3 = {p, q}〉 we have:

- S0 = {a(1).}
- S1 = S0 ∪ Φ∞

M1,S0
(∅) = {a(1). ; s(1) v t(f(1)) :- not q(1).}

- S2 = S1 ∪ Φ∞
M2,S1

(∅) = {a(1). ; s(1) v t(f(1)) :- not q(1).}
- S3 = S2 ∪ Φ∞

M3,S2
(∅) = {a(1). ; s(1) v t(f(1)) :- not q(1). ;

q(g(3)). ; p(3, 1) :- q(g(3)), t(f(1)). ;
q(1) :- s(1), p(3, 1).}.

Thus, the resulting intelligent instantiation Pγ of P for γ is:

a(1). q(g(3)). s(1) v t(f(1)) :- not q(1).
p(3, 1) :- q(g(3)), t(f(1)). q(1) :- s(1), p(3, 1).

We are now ready to define the class of FG programs.

Definition 3.17 A program P is finitely-ground (FG) if Pγ is finite, for every
component ordering γ for P .

Example 3.18 The program of Example 3.4 is FG: Pγ is finite both when γ =

〈C{s}, C{t}, C{p,q}〉 and when γ = 〈C{t}, C{s}, C{p,q}〉 (i.e., for the both of two
component orderings for P).

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 51

3.4 Properties of Finitely-Ground Programs

In this section the class of FG programs is characterized by identifying some key
properties.

The next theorem shows that we can compute the answer sets of an FG pro-
gram by considering intelligent instantiations, instead of the theoretical (possibly
infinite) ground program.

Theorem 3.19 Let P be an FG program and Pγ be the intelligent instantiation
of P w.r.t. a component ordering γ for P . Then, AS(P) = AS(Pγ) (i.e., P and
Pγ have the same answer sets).

Proof. Given γ = 〈C1, . . . , Cn〉, let denote, as usual, by Mi the program mod-
ule P(Ci), and consider the sets S0, . . . , Sn as defined in Definition 3.15. Since
P =

⋃n
i=0 Mi the theorem can be proven by showing that:

AS(Sk) = AS(
⋃k

i=0 Mi) for 1 ≤ k ≤ n

where M0 denotes EDB(P). The equation clearly holds for k = 0. Assuming
that it holds for all k ≤ j, we can show that it holds for k = j + 1. The equation
above can be rewritten as:

AS(Sk−1 ∪ Φ∞
Mk,Sk−1

(∅)) = AS(
⋃k−1

i=0 Mi ∪Mk)) for 1 ≤ k ≤ n

The induction hypothesis allows us to assume that the equivalence AS(Sk−1) =

AS(
⋃k−1

i=0 Mi) holds. A careful analysis is needed of the impact that the addition
of Mk to

⋃k−1
i=0 Mi has on answer sets of Sk; in order to prove the theorem, it is

enough to show that the set Φ∞
Mk,Sk−1

(∅) does not drop any “meaningful” rule w.r.t.
Mk.

If we disregard the application of the Simpl operator, i.e. we consider the
operator Φ performing only InstMk

(Heads(Sk−1∪∅)), then Φ∞
Mk,Sk−1

(∅) clearly
generates all rules having a chance to have a true body in any answer set; omitted
rules have a false body in every answer set, and are therefore irrelevant.

The application of Simpl does not change the scenario: it relies only on previ-
ously derived facts, and on the absence of atoms from heads of previously derived
ground rules.3 If a fact q has been derived in a previous component, then any rule

3Note that, due to the elimination of true literals performed by the simplification operator
Simpl, the intelligent instantiation of a rule with a non empty body may generate some facts.

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 52

featuring q in the head or not q in the body is deleted, as it is already satisfied
and cannot contribute to any answer set. The simplification operator also drops,
from the bodies, positive atoms of lower components appearing as facts, as well
as negative atoms belonging to lower components which do not appear in the head
of any already generated ground rule. The presence of facts in the bodies is ob-
viously irrelevant, and the deleted negative atoms are irrelevant as well. Indeed,
by construction of the component dependency graph, while instantiating a mod-
ule, all rules defining atoms of lower components have been already instantiated.
Thus, atoms of lower components not appearing in the head of any generated rule,
have no chances to be true in any answer set. ¤

Corollary 3.20 An FG program has finitely many answer sets, and each of them
is finite.

Theorem 3.21 Given an FG program P , AS(P) is computable.

Proof. Note that by Theorem 3.19, answer sets ofP can be obtained by computing
the answer sets of Pγ for a component ordering γ of choice, which can be easily
computed. Then, Pγ can be obtained by computing the sequence of fixpoints of Φ

specified in Definition 3.15. Each fixpoint is guaranteed to be finitely computable,
since the program is finitely-ground. ¤

From this property, the main result below immediately follows.

Theorem 3.22 Cautious and brave reasoning over FG programs are computable.
Computability holds even for non-ground queries.

As the next theorem shows, the class of FG programs allows for the encoding
of any computable function.

Theorem 3.23 Given a recursive function f , there exists a DLP program Pf such
that, for any input x for f , Pf∪θ(x) is finitely-ground and AS(Pf∪θ(x)) encodes
f(x), for θ a simple function encoding x by a set of facts.

Proof. We can build a positive program Pf , which encodes the Turing machine
Mf corresponding to f (see Appendix A.1). For any input x to Mf , (Pf ∪ θ(x))γ

is finite for any component ordering γ, and AS(Pf∪θ(x)) contains an appropriate
encoding of f(x). ¤

Note that recognizing FG programs is semi-decidable, yet not decidable:

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 53

Theorem 3.24 Recognizing whether P is an FG program is r.e.-complete.

Proof. Semi-decidability is shown by implementing an algorithm evaluating the
sequence given in Definition 3.15, and answering ‘yes’ if the sequence converges
in finite time.

On the other hand, given a Turing machine M and an input tape x, it is possible
to write a corresponding program PM and a set θ(x) of facts encoding x, such that
M halts on input x if and only if PM ∪ θ(x) is finitely-ground. The program PM

is the same as in the proof of Theorem 3.23 and reported in Appendix A.1. ¤

3.5 A Recognizable Subclass: Finite-Domain Pro-
grams

In this section we single out a subclass of FG programs, called finite-domain
(FD) programs, which, besides sharing the nice decidability properties of FG
programs, ensures the decidability of recognizing membership in the class.

We first provide the notion of finite-domain (FD) arguments.

Definition 3.25 Given a program P , the set of finite-domain arguments (FD ar-
guments) of P is the maximal (w.r.t. inclusion) set FD(P) of arguments of P such
that, for each argument q[k] ∈ FD(P), every rule r with head predicate q satisfies
the following condition. Let t be the term corresponding to argument q[k] in the
head of r. Then,

- either t is variable-free, or

- t is a subterm4 of (the term of) some FD argument of a positive body pred-
icate, or

- every variable appearing in t also appears in (the term of) a FD argument
of a positive body predicate which is not recursive with q[k].

If all arguments of the predicates of P are FD, then P is said to be an FD
program.

4The condition can be made less strict considering other notions, as, e.g., the norm of a
term [Bossi et al., 1994; Bruynooghe et al., 2007; Schreye and Decorte, 1994].

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 54

Intuitively, FD arguments can range only on a finite set of different ground
values. Observe that FD(P) is well-defined; indeed, it is easy to see that there
always exists, and it is unique, a maximal set satisfying Definition 3.25 (trivially,
given two sets A1 and A2 of FD arguments for a program P , the set A1 ∪ A2 is
also a set of FD arguments for P).

Example 3.26 The following is an example of FD program:

q(f(0)). q(X) :- q(f(X)).

Indeed q[1] is the only argument in the program and it is an FD argument, since
the two occurrences of q[1] in a rule head satisfy first and second condition of
Definition 3.25, respectively.

Example 3.27 The following is not an FD program:

q(f(0)). q(X) :- q(f(X)).
s(f(X)) :- s(X). v(X) :- q(X), s(X).

We have that all arguments belong to FD(P), except for s[1]. Indeed, s[1] appears
as head argument in the third rule with term f(X), and:(i) f(X) is not variable-
free; (ii) f(X) is not a subterm of some term appearing in a positive body FD
argument; (iii) there is no positive body predicate which is not recursive with s

and contains X .

By the following theorems we now point out two key properties of FD pro-
grams.

Theorem 3.28 Recognizing whether P is an FD program is decidable.

Proof. An algorithm deciding whether P is FD or not can be defined as follows.
Arguments of predicates in P are all supposed to be FD at first. If at least one
rule is found, such that for an argument of an head predicate none of the three
conditions of Definition 3.25 holds, then P is recognized as not being an FD
program. If no such rule is found, the answer is positive. ¤

Theorem 3.29 Every FD program is an FG program.

Chapter 3. Bottom-Up Computable Class: Finitely Ground Programs 55

Proof. Given an FD program P , it is possible to find a priori an upper bound
for the maximum nesting level5 of the terms appearing in Pγ , for any component
ordering γ for P . This is given by max nl = (n + 1) ∗ m, where m is the
maximum nesting level of the terms in P , and n is the number of components in
γ. Indeed, given that P is an FD program, it is easy to see that the maximum
nesting level cannot increase because of recursive rules, since, in this case, the
second condition of Definition 3.25 forces a sub-term relationships between head
and body predicates. Hence, the maximum nesting level can increase only because
of body-head dependencies among predicates of different components. We can
now compute the set of all possible ground terms t obtained by combining all
constants and function symbols appearing in P , such that the nesting level of t is
less or equal to max nl. This is a finite set, and clearly a superset of the ground
terms appearing in Pγ . Thus, Pγ is necessarily finite. ¤

The results above allow us to state the following properties for FD programs.

Corollary 3.30 Let P be an FD program, then:

1. P has finitely many answer sets, and each of them is finite.

2. AS(P) is computable;

3. skeptical and credulous reasoning over P are computable. Computability
holds even if the query at hand is not ground.

5The nesting level of a ground term is defined inductively as follows: (i) a constant term has
nesting level zero; (ii) a functional term f(t1, . . . , tn) has nesting level equal to the maximum
nesting level among t1, . . . , tn plus one.

Chapter 4

Bottom-Up Evaluation of
Finitely-Recursive Queries via
Magic Sets

In this chapter the Magic Sets technique is described and, a suitable adaptation of
the rewriting algorithm underlying this technique is presented. The Magic Sets
transformation originate as an optimization technique in the context of deductive
database. Here, we use it in order to allow a safe bottom-up evaluation of finitely
ground queries. After describing the standard technique, we illustrate the motiva-
tions inducing to the use of this sort of program transformation in the context of
ASP with functions and then we present the adapted rewriting algorithm and many
examples of applications. Some relevant computational results are then proved.

The chapter is organized as follows:

• Section 4.1 describes the standard Magic Sets technique.

• In Section 4.2 we first motivate the use of this technique in the context of
ASP with functions and then present an adaptation of the standard rewriting
algorithm, supplying also several examples of rewritten programs.

• Finally, in Section 4.3 some key properties about the program outputted by
the presented rewriting algorithm are proved.

56

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 57

4.1 Magic Sets

The Magic Sets method is a strategy for simulating the top-down evaluation of
a query by modifying the original program by means of additional rules, which
narrow the computation to what is relevant for answering the query. Intuitively,
the goal of the Magic Sets method is to use the constants appearing in the query
to reduce the size of the instantiation by eliminating ‘a priori’ a number of ground
instances of the rules which cannot contribute to the derivation of the query goal.

This method has originally been defined in [Bancilhon et al., 1986] for non-
disjunctive Datalog (i.e. with no function symbols) queries only. Afterwards,
many generalizations have been proposed. In the context of ASP, the generaliza-
tion to the disjunctive case [Cumbo et al., 2004] and to Datalog with (possibly
unstratified) negation [Faber et al., 2007] are worth remembering.

We next provide a brief and informal description of the Magic Sets rewriting
technique. The reader is referred to [Ullman, 1989] for a detailed presentation.
The method is structured in four main phases which are informally illustrated
below by example, considering the query path(1, 5) on the following program:

path(X, Y) :- edge(X,Y).
path(X, Y) :- edge(X,Z), path(Z, Y).

1. Adornment Step: The key idea is to materialize, by suitable adornments,
binding information for IDB predicates which would be propagated during a top-
down computation. Adornments are strings of the letters b and f, denoting ‘bound’
and ‘free’ respectively, for each argument of an IDB predicate. First, adornments
are created for query predicates so that an argument occurring in the query is
adorned with the letter b if it is a constant, or with the letter f if it is a variable.
The query adornments are then used to propagate their information into the body
of the rules defining it, simulating a top-down evaluation. It is worth noting that
adorning a rule may generate new adorned predicates. Thus, the adornment step
is repeated until all adorned predicates have been processed, yielding the adorned
program.

For simplicity of the presentation, we next adopt the ‘basic’ Magic Sets method
as defined in [Bancilhon et al., 1986], in which binding information within a rule
comes only from the adornment of the head predicate, from EDB predicates in
the (positive) rule body, and from constants. In other words, an adornment of type
b is induced by a constant, or by a variable occurring either as an argument in a po-
sition of type b in the head predicate or in an EDB predicate. On the contrary, in

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 58

the so-called ‘‘generalized’’ Magic Sets method [Beeri and Ramakrishnan, 1987],
bindings may also be generated by IDB predicates in rule bodies. In particular,
an appropriate strategy for Sideways Information Passing (SIP) has to be specified
for each rule, fixing the body ordering and the way in which bindings are gener-
ated. In this respect, the ‘basic’ method uses a particular, predetermined SIP for
all rules.

Example 4.1 Adorning the query path(1, 5) generates the adorned predicate pathbb

since both arguments are bound, and the adorned program is:

pathbb(X, Y) :- edge(X,Y).
pathbb(X, Y) :- edge(X,Z), pathbb(Z, Y).

2. Generation Step: The adorned program is used to generate magic rules,
which simulate the top-down evaluation scheme and single out the atoms which
are relevant for deriving the input query. Let the magic version magic(pα(t̄)) for
an adorned atom pα(t̄) be defined as the atom magic pα(t̄′), where t̄′ is obtained
from t̄ by eliminating all arguments corresponding to an f label in α, and where
magic pα is a new predicate symbol obtained by attaching the prefix ‘magic ’
to the predicate symbol pα. Then, for each adorned atom A in the body of an
adorned rule ra, a magic rule rm is generated such that (i) the head of rm consists
of magic(A), and (ii) the body of rm consists of the magic version of the head atom
of ra, followed by all the (EDB) atoms of ra which can propagate the binding on
A.

3. Modification Step: The adorned rules are subsequently modified by in-
cluding magic atoms generated in Step 2 in the rule bodies, which limit the range
of the head variables avoiding the inference of facts which cannot contribute to de-
riving the query. The resulting rules are called modified rules. Each adorned rule
ra is modified as follows. Let H be the head atom of ra. Then, atom magic(H)

is inserted in the body of the rule, and the adornments of all other predicates are
stripped off. We would like to point out that stripping off the adornments serves
mainly for facilitating the equivalence proofs; one may also leave the adornments
(also in the query) intact, as it was done in the original definition of Magic Sets.

4. Processing of the Query: Let the query goal be the adorned IDB atom
gα, the magic seed or query rule magic(gα). (a fact) is produced. For instance, in
our example we generate magic pathbb(1, 5).

The complete rewritten program consists of the magic, modified, and query
rules.

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 59

Example 4.2 The complete rewriting of our example program is:

magic pathbb(1, 5).
magic pathbb(Z, Y) :- magic pathbb(X, Y), edge(X, Z).
path(X, Y) :- magic pathbb(X, Y), edge(X, Y).
path(X, Y) :- magic pathbb(X, Y), edge(X, Z), path(Z, Y).

Note that the adorned rule pathbb(X, Y) :- edge(X, Y). does not produce any
magic rule, since it does not contain any adorned predicate in its body. Hence, we
only generate magic pathbb(Z, Y) :- magic pathbb(X, Y), edge(X,Z). More-
over, the last two rules above are those resulting from the modification of the
adorned program in Example 4.1.

In this rewriting, magic pathbb(X, Y) represents the start- and end-nodes of
all potential sub-paths of paths from 1 to 5. Therefore, when answering the query,
only these sub-paths will be actually considered in bottom-up computations.

4.2 Magic Sets and Finitely-Recursive Programs

As remarked in Section 2.3, positive finitely-recursive programs are the simplest
finitary programs. Being finitary, they enjoy all nice properties of this class of
programs. In particular, consistency checking is decidable as well as reasoning if
ground queries are considered (reasoning is semi-decidable in case of non ground
queries). Unfortunately, even if a program P is finitely-recursive, it is not suited
for the bottom-up evaluation for two main reasons:

1. A bottom-up evaluation of a finitely-recursive program would generate some
new terms at each iteration, thus iterating for ever.

Example 4.3 Consider the following program defining the natural num-
bers:

nat(0).
nat(s(X)) :- nat(X).

The program is positive and finitely-recursive, so every ground query (such
as for instance nat(s(s(s(0))))?) can be answered in a top-down fashion;
but its bottom-up evaluation would iterate for ever, as, for any positive inte-
ger n, the n-th iteration would derive the new atom nat(sn(0)).

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 60

2. Finitely-recursive programs do not enforce the range of an head variable to
be restricted by a body occurrence (i.e., bottom-up safety is not required).
A bottom-up evaluation of these unsafe rules would cause the derivation of
non-ground facts which is not admissible.

Example 4.4 Consider the following program, defining the reachability among
vertices of a graph:

reachable(X, X).
reachable(X, Y) :- reachable(X,Z), arc(Z, Y).

The program is positive and finitely-recursive, so any ground query can be com-
puted top-down; but its bottom-up evaluation is unfeasible, since the first iteration
would generate {reachable(X, X)} representing an infinite set of atoms. In this
case, node(X) could be added to the body of the first rule, rendering safe the vari-
able X and then making possible the program bottom-up evaluation. But, this is
not always the case, as shown in the next example.

Example 4.5 Interpreting the function symbol s as the successor of a natural
number, the following program defines the comparison operator ‘less than’ be-
tween two natural numbers:

lessThan(X, s(X)).
lessThan(X, s(Y)) :- lessThan(X,Y).

The program is positive and finitely-recursive, thus any ground query can be eas-
ily answered top-down. For instance, the query lessThan(s(0), s(s(0)))? results
true, whereas the query lessThan(s(s(0)), s(s(0)))? is false. Bottom-up evalua-
tion of this program is unfeasible, since the first iteration would generate the set
consisting of an infinite number of atoms having the form {lessThan(X, s(X))}.

4.2.1 Finitely-Recursive Queries

A finitely-recursive program is such that every ground query on it, depends only
on a finite set of other ground atoms. There are programs that can not be classified
as being finitely-recursive but, there exists a subset of all possible ground queries,
for which the above mentioned property holds.

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 61

Example 4.6 Consider the following program:

lessThan(X, s(X)).
lessThan(X, s(Y)) :- lessThan(X,Y).
q(f(f(0))).
q(X) :- q(f(X)).
r(X) :- lessThan(X, Y), q(X).

If the whole program is considered, we note that it is surely not finitely-recursive.
In fact, considering a whatsoever constant value c, we have that both atoms likes
q(c) and atoms likes r(c), depend on an infinite number of other atoms. In the
former case, because of a never terminating recursion, in the latter, because of:
both the local variable Y and the dependence on q atoms. Nevertheless, if we
consider query atoms having as predicate lessThan, these continue to depend
only on a finite set of other atoms.

Here and throughout the next section, we restrict our attention to the case of
a ground query on a logic program, such that the subprogram ‘relevant’ in order
to answer the query is positive and finitely-recursive. Exploiting the notion of
dependency among atoms and dependency graph of a program (LDG(P)) defined
in Section 2.2, this kind of queries can be defined as follows:

Definition 4.7 Given a program P and a ground query Q over P we say that Q
is finitely-recursive if and only if:

- Q depends only on a finite set A of other ground atoms in Ground(P), i.e
starting from the node in LDG(P) corresponding to the atom of Q, only a
finite set A of nodes is reachable;

- called RQ(P) be the set of rule r ∈ Ground(P) such that H(r) ∈ A, Rq(P)

is a positive program.

In other words, we can say that a ground query Q on a program P is finitely-
recursive if and only if the relevant subprogram of P for Q (R(P,Q)) is positive
and finitely-recursive.

For instance, if we consider the program of Example 4.6, we have that all
atoms likes lessThan(c1, c2), where c1 and c2 are constant values, are examples
of finitely-recursive queries on that program.

In the next subsection we design a suitable adaptation of the Magic Sets rewrit-
ing technique for logic programs with functions, that allows for a bottom-up eval-
uation of finitely-recursive queries.

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 62

4.2.2 Rewriting Algorithm

If we restrict our attention to finitely-recursive queries, some steps of the Magic
Sets technique reported in Section 4.1 can be significantly simplified. In particu-
lar, the adornment phase is no longer needed since all the IDB predicates involved
in the query evaluation would have a completely bound adornment. In fact:

- the query is ground, so it would have a completely bound adornment;

- all rules involved in a top-down evaluation of the query can not have local
variables (i.e. variables appearing only in the body of the rule) since the
relevant subprogram is supposed to be finitely-recursive (see Section 2.3).
So, starting from a ground query, a complete bound adornment from the
head to all the IDB predicates of the body would be propagated.

In the generation step, it is not necessary to include any other atom, different
from the magic version of the head atom, in the body of the generated magic rule.
Again, this is due to the absence of local variables, so that all the needed bindings
are provided through the magic version of the head atom.

The algorithm MSFR in Figure 4.1 implements the Magic Sets method for
finitely-recursive queries. Its input is a positive finitely-recursive program P and
a ground queryQ. The algorithm MSFR outputs a program RW (Q,P) consisting
of a set of modified and magic rules (denoted by modifiedRules and magicRules ,
respectively). The algorithm generates modified and magic rules on a rule-by-
rule basis. To this end, it exploits a stack S for storing all predicates that are still
to be used for propagating the query binding. At first, the set of magic rules is
initialized with the magic version of the query and the query atom is pushed on
S. At each step, an element u is removed from S. If the predicate u has not been
already considered (the auxiliary variable Done is used to check about this), all
the rules defining u are processed one-at-a-time. For each of such rules, if its
body is not empty or there is at least a variable in the rule, then a modified rule
is created and a set of magic rules are generated (one for each IDB atom in the
body). Moreover, every IDB predicate appearing in the body is pushed on the
stack S. In case the rule is a fact, i.e. the body is empty and the are no variables, it
is added to the modifiedRules set as it is. Finally, after all the predicates involved
in the query evaluation have been processed, the algorithm outputs the program
RW (Q,P) obtained as the union of all modified rules and generated magic rules.

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 63

Input: a program P and a finitely-recursive query Q = g(c̄)? on P
Output: the rewritten program RW (Q,P).
Main Vars: S: stack of predicates to rewrite;

modifiedRules(Q,P),magicRules(Q,P): set of rules;
Done: set of predicates;

begin
1. modifiedRules(Q,P) := ∅; Done := ∅
2. magicRules(Q,P) := {magic g(c̄).};
3. S.push(g);
4. while S 6= ∅ do
5. u := S.pop();
6. if u /∈ Done then
7. Done := Done ∪ {u};
8. for each r ∈ P : r is a defining rule for u do
9. if B(r) 6= ∅ or V ars(r) 6= ∅ then

// let r be u(t) :- v1(t1), ..., vn(tn).
10. modifiedRules(Q,P) := modifiedRules(Q,P) ∪

{u(t) :- magic u(t), v1(t1), ..., vn(tn).};
11. for each vi : vi ∈ B(r) and vi ∈ IDB(P) do
12. magicRules(Q,P) := magicRules(Q,P) ∪

{magic vi(ti) :- magic u(t).};
13. S.push(vi);
14. end for
15. else
16. modifiedRules(Q,P) := modifiedRules(Q,P) ∪ r
17. end if
18. end for
19. end if
20. end while
21. RW (Q,P):=magicRules(Q,P) ∪ modifiedRules(Q,P);
22. return RW (Q,P);

end.

Figure 4.1: Magic Sets rewriting algorithm for finitely-recursive queries

4.2.3 Examples of Finitely-Recursive Queries Rewriting

At first, we will consider the finitely-recursive query Q = nat(s(s(0)))? on the
program P of Example 4.3. For this example, we will depict, step by step, the
execution performed by the MSFR algorithm.

Example 4.8 After initialization of variables, the algorithm (lines 1−2) generates
the first magic rule deriving from the query:

magic nat(s(s(0))).

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 64

After, the predicate nat is pushed onto the stack S (line 3) and the first iteration
of the cycle (line 4) starts. The predicate nat is extracted from the stack and is
marked as already done (lines 5 − 7). In this case, this is the only predicate to
be considered. All defining rules for nat are then processed (lines 8 − 18). The
first rule defining nat is a fact (nat(0).): both conditions of line 9 are false (here
V ars(r) is used to denote the set of variables occurring in the rule r), so the rule
is added to the ModifiedRules set (line 16) unchanged. The second rule defining
nat is a recursive rule. First of all, the modified rule:

nat(s(X)) :- magic nat(s(X)), nat(X).

is added to the ModifiedRules set (line 10). Then, the following magic rule for
the nat atom occurring in the body is generated, and the nat predicate is pushed
onto the stack S (lines 11− 14):

magic nat(X) :- magic nat(s(X)).

Then, the second iteration starts but it immediately ends, as the predicate ex-
tracted from the stack S is the already considered predicate nat. Finally, being
S empty, there are no further iterations and the algorithm outputs the following
complete rewritten program RW (Q,P):

magic nat(s(s(0))).
magic nat(X) :- magic nat(s(X)).
nat(0).
nat(s(X)) :- magic nat(s(X)), nat(X).

Example 4.9 Applying the algorithm to the program P of Example 4.5 w.r.t. the
query Q = lessThan(s(s(0)), s(0))? we obtain the following rewritten program
RW (Q,P):

magic lessThan(s(s(0)), s(0)).
magic lessThan(X, Y) :- magic lessThan(X, s(Y)).
lessThan(X, s(X)) :- magic lessThan(X, s(X)).
lessThan(X, s(Y)) :- magic lessThan(X, s(Y)), lessThan(X, Y).

All queries on the programs for manipulating lists, reported in Section 2.3, are
finitely-recursive and then can be rewritten using the MSFR algorithm.

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 65

Example 4.10 Let us consider the query: Q = reverse([a, b, c, d], [d, c, b, a])? on
the following program P:

reverse(L,R) :- sup reverse(L, [], R).
sup reverse([], R, R).
sup reverse([X|T1], L, R) :- sup reverse(T1, [X|L], R).

The output rewritten program RW (Q,P) is:

magic reverse([a, b, c, d], [d, c, b, a]).
magic sup reverse(L, [], R) :- magic reverse(L,R).
magic sup reverse(T1, [X|L], R) :- magic sup reverse([X|T1], L,R).
reverse(L,R) :- magic reverse(L,R), sup reverse(L, [], R).
sup reverse([], R, R) :- magic sup reverse([], R, R).
sup reverse([X|T1], L, R) :-magic sup reverse([X|T1], L,R),

sup reverse(T1, [X|L], R)

4.3 Properties of Rewritten Programs

Let RW (Q,P) denote the output of the MSFR algorithm, having as input a pro-
gram P and a finitely-recursive query Q. Next, we are going to prove some rel-
evant results about the RW (Q,P) program. First of all we give a query equiva-
lence property.

Theorem 4.11 Given a ground queryQ on a program P , ifQ is finitely-recursive
on P , then P |= Q if and only if RW (Q,P) |= Q.

Proof. Query equivalence has already been proved for the ‘standard’ Magic Sets
technique (see e.g. [Ullman, 1989]). The algorithm presented in section 4.2 differs
from the standard one for some aspects but all of them have no consequences on
the correctness of the transformation. We next recall the differences against the
standard Magic Sets technique, and illustrate why the introduced changes do not
affect the query equivalence result:

1. Adornment is not performed because the structure of finitely-recursive queries
implies that only a completely bound adornment would be derived (see Sec-
tion 4.2.2). Anyway, all the IDB predicates involved in the top-down query
evaluation are correctly identified and processed, likewise the standard al-
gorithm does. Both rules modification and magic rules generation are per-
formed considering all processed IDB predicate as having an implicit com-
pletely bound adornment.

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 66

2. Only the magic version of the head atom is included in the body of each
generated magic rule. According to the standard technique, all EDB atoms
which can propagate the binding on variables occurring in the currently
processed atom, should be added to the body. In case of a finitely-recursive
query, all variables occurring in the body of a rule, necessarily occurs also
in its head (no local variables are admitted). So, we know ‘a priori’ that no
further atom is needed.

3. The MSFR algorithm acts on a rule-by-rule basis, instead of performing
the different phases on the entire program. This approach, adopted also
in [Cumbo et al., 2004] and [Faber et al., 2007], allows to improve effi-
ciency, as each rule of the original program is processed just once. The
resulting rewritten program is not affected by this change.

¤

Next, we are going to prove a result about the efficiency of the rewriting algo-
rithm. At this aim, we need to introduce the definition of what we mean for size
of a program.

Definition 4.12 Let P be a (non ground) logic program. The size of P , denoted
by ‖P‖, is the number of atoms occurring in P . It is worth noting that, if the same
atom occurs in two different rules of P it is counted twice.

For instance, the program P in Example 4.10 has size ‖P‖ = 5.

Theorem 4.13 Given a finitely-recursive query Q on a program P , the size of
RW (Q,P) is linear in the size of the inputP andQ, in symbols: ‖RW (Q,P)‖ =

O(‖P‖).

Proof. RW (Q,P) is obtained as the union of two set of rules: modifiedRules(Q,P)

and magicRules(Q,P).
In the worst case, the number of atoms in the first set is given by the number

of atoms in P plus as many atoms as the number of rules in P (at most one magic
atom is added for each rule in P). So, ‖modifiedRules(Q,P)‖ is definitely
equal to O(‖P‖).

Let us consider now the magicRules(Q,P) program. For each IDB atom
occurring in the body of a rule inP , at most one magic rule with exactly two atoms
is generated. Then, in the worst case, the number of atoms in magicRules(Q,P)

is not greater than 2 · ‖P‖.

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 67

From considerations done for these two sets, immediately follows the state-
ment ‖RW (Q,P)‖ = O(‖P‖). ¤

The next theorem points out a relationship between finitely-recursive queries
and finitely-ground programs.

Theorem 4.14 Given a ground queryQ on a program P , ifQ is finitely-recursive
on P , then RW (Q,P) is finitely-ground.

Proof. Let Pmagic be the set of predicates defined by rules in magicRules(Q,P)

and let Pmod be the set of predicates defined by modifiedRules(Q,P). We ob-
serve that Pmagic ∩ Pmod = ∅ and all component ordering γ for RW (Q,P)

(see Definition 3.5) will be such that: if p ∈ Pmagic and Ci = comp(p) then
Ci will precede every component Cj = comp(q) with q ∈ Pmod. This means
that, in the modular bottom-up evaluation performed by the intelligent instanti-
ation (see Definition 3.15), all rules in magicRules(Q,P) will precede rules in
modifiedRules(Q,P).

We know thatQ is finitely-recursive, i.e. it depends only on a finite set of other
ground atoms in Ground(P). But rules in magicRules(Q,P) are appositely built
in order to exclusively derive atoms on which the query Q depends. So, starting
from the ground query atomQ, each element of the sequence Si in Definition 3.15
is necessarily finite for modules of magicRules(Q,P). But, magic atoms give
binding to all variables occurring in the head of rules in modifiedRules(Q,P),
restricting their domain of possible values, so elements Si will be finite also for
all modules of modifiedRules(Q,P). This is enough to prove that RW (Q,P) is
finitely-ground. ¤

This last result is relevant because it implies that all nice properties of finitely-
ground programs hold for rewritten finitely-recursive queries too. In particular,
bottom-up computability of the answer set and then decidability of reasoning.

Example 4.15 If we consider the program RW (Q,P) of Example 4.8 we can
observe that it is safe (according to the bottom-up safety notion) and its resulting

Chapter 4. Bottom-Up Evaluation of Fin. Recurs. Queries via Magic Sets 68

intelligent instantiation is finite:

magic nat(s(s(0))).
magic nat(s(0)) :- magic nat(s(s(0))).
magic nat(0) :- magic nat(s(0)).
nat(0).
nat(s(s(0))) :- magic nat(s(s(0))), nat(s(0)).
nat(s(0)) :- magic nat(s(0)), nat(0).

The above ground program has the following unique finite answer set:
{magic nat(s(s(0))),magic nat(s(0)),magic nat(0), nat(0), nat(s(0)),

nat(s(s(0)))}. The answer to the query Q is then ’yes’.

Example 4.16 Let us now consider the program RW (Q,P) of Example 4.9.
Also this program, differently from the originating P program, can be safely
bottom-up evaluated. Its intelligent instantiation is finite and results to be:

magic lessThan(s(s(0)), s(0)).
magic lessThan(s(s(0)), 0) :- magic lessThan(s(s(0)), s(0)).

The above ground program has the following unique finite answer set:
{magic lessThan(s(s(0)), s(0)),magic lessThan(s(s(0)), 0)}. So, the answer
to the query Q is ’no’.

Chapter 5

Extending ASP with External
Functions

This chapter introduces a formal framework for accommodating external source
of computation in the context of Answer Set Programming. In this framework,
the notion of VI programs (where VI stands for Value Invention) is introduced.
In practice, VI programs are logic programs enriched with the notion of external
predicates. External predicates model the mechanism of value invention by taking
input from a given set of values and returning (possibly newly invented) values.
These are computed by means of an associated evaluation function (called oracle).
We prove that, although assuming as decidable the external functions defining ora-
cles, the consistency check of VI programs is, in general, undecidable. Therefore,
it is important to investigate on (nontrivial) sub-classes of decidable programs.
We address this problem identifying a safety condition for granting decidability
of VI programs.

The chapter is organized as follows:

• Section 5.1 surveys the usage of value invention in logic programming and
introduce the syntax and semantics of elements we added to the standard
disjunctive language in order to support value invention.

• In Section 5.2 we investigate the consequences of allowing value invention,
in terms of undecidability of consistency checking for VI programs.

• In Section 5.3 we show how to cope with value invention, providing a char-
acterization of those programs that can be computed even if external sources
of computation are exploited.

69

Chapter 5. Extending ASP with External Functions 70

• Section 5.4 introduces a safety condition defining the class of ltop-restricted
programs. This class enjoys the ‘finite grounding property’ characterizing
those programs that can be computed with a finite ground program. Decid-
ability of consistency checking is thus ensured.

• Finally, in Section 5.5 we show that VI-restrictedness can be checked in
polynomial time in the size of the non-ground program.

Chapter 5. Extending ASP with External Functions 71

5.1 Value Invention in ASP Programs

The notion of ‘value invention’ has been formerly adopted in the database field
(see e.g. [Abiteboul and Vianu, 1991; Cabibbo, 1996]) for denoting mechanisms
aimed at allowing the introduction of new domain elements in a logic based query
language. Indeed, applications of logic programming often need to deal with a
universe of symbols which is not known a priori. We can divide these demands in
two main categories:

(i) ‘Constructivist’ demands: the majority of logic programming languages has
the inherent capability to build new symbols from pre-existing ones, e.g. by
means of traditional constructs like functional terms. Furthermore, manipu-
lating and creating complex data structures other than simple constant sym-
bols, such as sets, or lists, is a source of value invention. Also, controlled
value invention constructs have been proposed in order to deal with the cre-
ation of new object identifiers in object oriented deductive databases [Hull
and Yoshikawa, 1990].

(ii) ‘Externalist’ demands: in this setting, non-predictable external sources of
knowledge have to be dealt with. For instance, in the Semantic Web area,
rule based languages must explicitly embrace the case where ontologies and
the universe of individuals is external and not known a priori [Eiter et al.,
2005], or is explicitly assumed to be open [Heymans et al., 2005].

Whatever popular semantics is chosen for a rule based logic program (well-
founded, answer sets, first order, etc.), both of the above settings are sources of
undecidability that are difficult to cope with.

Top-down solvers (such as SLD solvers) do not usually address this issue:
the programmer is requested to carry the burden of ensuring termination. In or-
der to achieve this, she has to have a good knowledge of the evaluation strategy
implemented in her specific adopted system, since termination is often algorithm-
dependent.

On the other hand, bottom-up solvers (such as DLV or Smodels for the An-
swer Set Semantics [Leone et al., 2006; Simons et al., 2002]), and in general,
languages derived from Datalog, are instead conceived for ensuring algorithm in-
dependent decidability and full declarativity. To this aim, the implementation of
such languages relies on the explicit choice of computing a ground version of a
given program. Unfortunately, in a context where value invention is explicitly al-

Chapter 5. Extending ASP with External Functions 72

lowed, grounding a program against an infinite set of symbols leads to an infinite
ground program, which obviously cannot be built in practice.

Although we take Answer Set as the reference semantics, our framework relies
on the traditional notion of ground program. Thus, results about VI-restricted
programs can be be adapted to semantics other than Answer Set Programming,
such as the Well-Founded Semantics [Ross, 1989], or else.

Next, we show how syntax and semantics described in Section 1.1 and 1.2 are
affected by the addition of elements needed to support value invention.

5.1.1 External Predicates: Syntax and Semantics

External predicate names follow the same syntax of ordinary predicate names, but
they are prefixed with the character ‘ # ’. Likewise, an atom is called external if its
predicate name is external otherwise we call it ordinary. For instance, node(X),
and #succ(X,Y) are atoms; the first is ordinary, whereas the second is external.

Atoms appearing in the head of a rule must be ordinary, while atoms appearing
in the body can be both ordinary and external.

We call a rule r ordinary, if it contains only ordinary atoms.
A VI program is a finite set P of rules that can, in case, include also non

ordinary rules; it is ordinary if all rules are ordinary.

Example 5.1 The following is an example of a short VI program:

mustChangePasswd(Usr) :- passwd(Usr, Pass),
#strlen(Pass, Len), #<(Len, 8).

The Herbrand base BP of a VI program P , will also include all possible
ground versions of external atoms occurring in P . An interpretation I for P is a
pair 〈S, F 〉 where:

- S ⊆ BP is a consistent set of ordinary atoms; we say that I (or by small
abuse of notation, S) is a model of an ordinary atom a ∈ BP , denoted I |= a

(S |= a), if a ∈ S.

- F is a mapping associating with every external predicate name #e, a de-
cidable n-ary function (which we call oracle) F (#e) assigning each tuple
(x1, . . . , xn) either 0 or 1, where n is the fixed arity of #e, and xi ∈ UP .
I (or, by small abuse of notation, F) is a model of a ground external atom
a = #e(x1, . . . , xn), denoted I |= a (F |= a), if F (#e)(x1, . . . , xn) = 1.

Chapter 5. Extending ASP with External Functions 73

Example 5.2 We give an interpretation I = 〈S, F 〉 such that the external predi-
cate #strlen is associated to the oracle F (#strlen), and F (# <) to # <. Intu-
itively these oracles are defined according to the expected semantics for a function
computing the length of a string and for the ‘less than’ comparison operator, re-
spectively. So that, for example, #strlen(pat4dat, 7) and #< (7, 8) are satisfied
by I , whereas #strlen(pat4dat, 8) and #<(10, 8) are not.

The following is a ground version of the program in Example 5.1:

mustChangePasswd(frank) :- passwd(frank, pat4dat),
#strlen(pat4dat, 7), #<(7, 8).

The semantics of a program P is then defined as in Section 1.2 but, for a fixed
F , a model M = 〈S, F 〉 is minimal if there is no model N = 〈T, F 〉 such that
S ⊂ T . We call P F-satisfiable if it has some answer set for a fixed function
mapping F , i.e. if there is some interpretation 〈S, F 〉 which is an answer set. We
will assume in the following to deal with a fixed set F of functions mappings for
external predicates.

5.2 Properties of VI Programs

If the domain of constants UP for a program P is infinite, the Herbrand base BP
of P is then infinite too. This is the case of programs with function symbols and,
in general it is the case of programs allowing value invention.

It is of interest to tailor cases where a finite portion of UP is enough to eval-
uate the semantics of a given program. In the following we reformulate some
results regarding splitting sets. The notion of splitting set has been introduced in
[Lifschitz and Turner, 1994] in order to provide a technique for decomposing a
given ground program P , so that its answer sets can be computed from the answer
sets of two separate programs. This technique is commonly adopted for enabling
modular computation of the answer sets. Here, splitting sets are exploited as a tool
for decomposing P into a finite part P ′ and an infinite part P ′′. Then, we identify
classes of programs for which P ′′ is provable to be always consistent, since it has
a single, empty, answer set. Thus, computing the answer sets of P can be reduced
to computing the answer sets of P ′.

Definition 5.3 Let P be a VI program. A splitting set is a set of atoms A ∈ BP
such that for each atom a ∈ A, if a ∈ H(r) for some r ∈ Ground(P), then all
the atoms occurring in B(r) and in H(r) belongs also to A. The bottom bA(P)

Chapter 5. Extending ASP with External Functions 74

is the set of rules {r | r ∈ Ground(P) and H(r) ⊆ A}. A literal whose atom
belongs to A is said A-literal. Given an interpretation I , the residual rA(P , I) is a
program obtained from Ground(P) by deleting all the rules whose body contains
an A-literal not satisfied by I , and removing from the remaining rules all the A-
literals.

Example 5.4 Consider the following program P:

r :- p.
r :- q.
p :- #e(a, b), not q.
q :- not p.

A = {p, q, #e(a, b)} is a splitting set for P . The bottom bA(P) is the set con-
taining the last two rules of P . Consider the interpretation I = 〈{p, r}, F 〉, where
the oracle F (#e), associated to the external predicate #e, is defined such that
#e(a, b) is satisfied by I . The residual rA(P \bA(P), I) is the program consisting
of the single rule:

r.

We reformulate here the splitting theorem as given in [Bonatti, 2004].

Theorem 5.5 (Splitting theorem [Lifschitz and Turner, 1994]) LetP be a program
and A be a splitting set. Then, M ∈ AS(P) if and only if M can be split in two
disjoint sets I and J , such that I ∈ AS(bA(P)) and J ∈ AS(rA(P) \ bA(P)), I).

We consider now an interesting subclass of VI programs, namely vi-safe pro-
grams; we will exploit the above theorem in order to prove that each vi-safe pro-
gram can be evaluated simply taking into account only the constants originally
appearing in the program itself.

Definition 5.6 Let r be a rule. A variable X is vi-safe in r if it appears in some
ordinary atom a ∈ B+(r). A rule r is vi-safe if each variable X appearing in r is
vi-safe. A program P is vi-safe if each rule r ∈ P is vi-safe.

Note that the notion of vi-safety makes distinction between ordinary and ex-
ternal atoms, while safety as defined in Section 1.1, does not. That is, for making
a variable safe, it is necessary its appearance in a positive literal, while vi-safety

Chapter 5. Extending ASP with External Functions 75

requires a variable to appear explicitly in an ordinary (non-external) atom. Both
conditions are syntactic. As an important semantic consequence, vi-safety pre-
vents completely the appearance of new symbols in a given program, as next the-
orem shows.

Theorem 5.7 Let P be a vi-safe VI program. Let U be the set of constants ap-
pearing in P and let ASU(P) be the set of answer sets obtained restricting the
universe of constants UP to U . Then ASU(P) = AS(P).

Proof. Let’s denote with GroundU(P) the ground program obtained by replacing
variables with elements of U and with A the set of ground atoms appearing in
GroundU(P). Assuming P as vi-safe, it is easy to see that A is a finite splitting
set for P . Furthermore, GroundU(P) = bA(P). For each M ∈ ASU(P), we
have that rA(Ground(P)) \ bA(P),M) is consistent and its only answer set is
the empty set (indeed, no rule can be ever satisfied unless the variables are bound
to constants appearing in U). Thus M ∪ ∅ ∈ AS(P) (Theorem 5.5). Viceversa,
assuming an answer set M ∈ AS(P) is given, same arguments easily lead to
conclude that M ∈ ASU(P). ¤

In case a vi-safe program is given, the above theorem allows to consider as the
set of ‘relevant’ constants only those values explicitly appearing in the program
at hand. The semantics of a vi-safe program P can be evaluated by means of the
following algorithm:

1. compute GroundU(P), where U is defined as in Theorem 5.7;

2. remove from GroundU(P) all the rules containing at least one external lit-
eral e such that F 6|= e, and remove from each rule all the remaining external
literals, obtaining a reduced ground program that we will call GroundU(P).

3. evaluate the answer sets of GroundU(P) by means of a standard Answer
Set solver.

It is worth pointing out that, assuming the complexity of computing oracles is
polynomial in the size of their arguments, this algorithm has the same complexity
as computing GroundU(P)1.

1Assuming rules can have unbounded length, grounding a disjunctive logic program is in the
worst case exponential in the size of the Herbrand base (see e.g. [Leone et al., 2001]).

Chapter 5. Extending ASP with External Functions 76

Example 5.8 Consider the program in Example 5.1 and the following two facts:

passwd(jack, short).
passwd(bill, longpasswd).

If we consider a set U including constants appearing in the program plus a fi-
nite subset of natural numbers, the resulting ground program after step 1 contains,
among the others, the rules:

mustChangePasswd(jack) :- passwd(jack, short),
#strlen(short, 5), #<(5, 8).

mustChangePasswd(bill) :- passwd(bill, longpasswd),
#strlen(longpasswd, 10), #<(10, 8).

Step 2 is such that only one of the two above rules is kept (after modification):

mustChangePasswd(jack) :- passwd(jack, short).

that no longer contains external atoms.

5.3 Dealing with Value Invention

Although 2-valued oracles are important for clarifying the given semantics, we
aim at introducing the possibility to specify functional oracles, keeping anyway
the simple reference semantics given previously.

Example 5.9 For instance, assume that UP contains encoded values that can be
interpreted as natural numbers and that the external predicate #sqr is defined
such that the atom #sqr(X, Y) is satisfied whenever Y encodes a natural number
representing the square of the natural number X; we want to extract a series of
squared values from this predicate; consider the short program

number(2).
square(Y) :- number(X), #sqr(X,Y).

In the presence of unsafe rules as in the above example, Theorem 5.7 ceases to
hold: it is indeed unclear whether there is a finite set of constants which the pro-
gram can be grounded on. In the above example, we can intuitively conclude that
the set of meaningful constants is {2, 4}. Nonetheless, it is in general undecidable,
given a computable oracle f , to establish whether a given set S contains all and
only those tuples t such that f(t) = 1.

Chapter 5. Extending ASP with External Functions 77

In the new setting we are going to introduce, it is also very important that an
external atom brings knowledge from external sources of computation, in terms
of new symbols added to a given program. We extend our framework with the
possibility of explicitly computing missing values on demand. Although restric-
tive, this setting is not far from a realistic scenario where external predicates are
defined by means of generic partial functions.

Definition 5.10 Let #p be an external predicate name of arity n, and let F (#p)

be its oracle function. A pattern is a list of i’s and o’s, where a i represents a
placeholder for a constant (or a bounded variable), and an o is a placeholder for
a variable. Given a list of terms, the corresponding pattern is given by replacing
each constant with a i, and each variable with a o. Positions where o appears are
called output positions whereas those denoted with i are called input positions.
For instance, the pattern related to the list of terms (X, a, Y) is (o, i, o).

Let pat be a pattern of length n having k placeholders i (input positions), and
n − k placeholders of o type (output positions). A functional oracle F (#p)[pat]

for the pattern pat, associated with the external predicate #p, is a partial function
taking k constant arguments and returning a finite relation of arity n−k, and such
that d1, . . . , dn−k ∈ F (#p)[pat](c1, . . . , ck) if and only if F (#p)(h1, . . . , hn) = 1,
where for each l(1 ≤ l ≤ n), hl = cj if the j-th i value occurs in position l in
pat, otherwise hl = dj if the j-th o value occurs in position l in pat. Let pat[j]

be the j-th element of a pattern pat. Let outputpat(X) be the sub-list of X such
that pat[j] = o for each Xj ∈ X , and inputpat(X) be the sub-list of X such that
pat[j] = i for each Xj ∈ X .

An external predicate #p might be associated to one or more functional or-
acles ‘consistent’ with the originating 2-valued one. For instance, consider the
#sqr external predicate, defined as mentioned above. We can have two func-
tional oracles, F (#sqr)[i, o] and F (#sqr)[o, i]. The two functional oracles are
such that, e.g. F (#sqr)[i, o](3) = 9 and F (#sqr)[o, i](16) = 4, consistently with
the fact that F (#sqr)(3, 9) = F (#sqr)(4, 16) = 1, whereas F (#sqr)[o, i](5) is
set as undefined since F (#sqr)(X, 5) = 0 for any natural number X .

For the sake of simplicity, in the sequel, given an external predicate #e, we
will assume that it comes equipped with its oracle F (#e) (called also base oracle)
and exactly one functional oracle F (#e)[pat#e], having pattern pat#e. It is worth
noting that this does not cause any loss of generality: indeed, having an external
predicate with two (or more) different functional oracles is equivalent to having

Chapter 5. Extending ASP with External Functions 78

two (or more) different external predicates with one functional oracle each, and
using the proper one every time a particular oracle is desired.

Once functional oracles are given, it is important to investigate which are the
cases where they can be used for computing the actual set of ground instances of
a given rule.

To this end, we introduce the notions of weakly safe variable and weakly safe
rule. Intuitively, a variable is weakly safe if its domain, although not explicitly
bound to the domain of an ordinary atom, can be computed indirectly through a
functional oracle.

For instance, the second rule of Program 5.9 is not vi-safe (since Y is not
vi-safe), but is such that, intuitively, the domain of Y can be computed once the
domain of X is known, provided a proper oracle F (#sqr)[i, o] is given for #sqr.
The following definition captures this intuition.

Definition 5.11 Let r be a rule. A variable X is weakly safe in r if either

• X is vi-safe (i.e. it appears in some ordinary atom of B+(r)); or

• X appears in some external atom #e(T), the functional oracle of #e is
F (#e)[pat], X appears in output position with respect to pat and each vari-
able Y appearing in input position in the same atom is weakly safe.

A weakly safe variable X is free if it appears in B+(r) only in output position of
some external atom. A rule r is weakly safe if each variable X appearing in some
atom a ∈ B(r) is weakly safe. A program P is weakly safe if each rule r ∈ P is
weakly safe.

Example 5.12 Assume that #sqr is associated to the functional oracle F (#sqr)

[i, o] defined above. The second rule of Program 5.9 is weakly safe (X is vi-safe,
while Y appears in output position in the atom #sqr(X,Y)). The same rule is
not weakly safe if we consider the functional oracle F (#sqr)[o, i].

Proposition 5.13 Given a VI program P , it can be checked in polynomial time
whether P is weakly safe.

Proof. Simply observe that for each rule r ∈ P it can be checked in time linear in
the number of atoms of r whether the patterns of the functional oracle associated
to each external atom occurring in P make the rule vi-safe or not. ¤

Weakly safe rules can be grounded with respect to functional oracles as fol-
lows.

Chapter 5. Extending ASP with External Functions 79

Definition 5.14 Let I = 〈S, F 〉 be an interpretation. We call ins(r, I) the set of
ground instances rθ of r for which I |= B+(rθ), and such that I is a model for the
set of external atoms in rθ.

Proposition 5.15 Let I be a finite interpretation, and r be a weakly safe rule.
ins(r, I) is finite.

Proof. Indeed, given the set of functional oracles associated to each external atom,
any ground rule r′ which is member of ins(r, I) can be generated by the following
algorithm:

1. replace positive literals of r with a consistent nondeterministic choice of
matching ground atoms from I; let θ the resulting variable substitution;

2. until θ instantiates all the variables of r:

- pick from rθ an external atom #e(X)θ such that θ instantiates all the
variables X ∈ inputpat(X).

- choose nondeterministically a tuple 〈a1, . . . , ak〉 ∈ F (inputpat(Xθ)),
then update θ by assigning a1, . . . , ak to outputpat(Xθ);

3. return r′ = rθ.

¤

Weakly safe rules have the important property of producing a finite set of
relevant ground instances provided that we know a priori the domain of positive
ordinary body atoms. Although desirable, weak safety is intuitively not sufficient
in order to guarantee finiteness of answer sets and decidability. For instance, it is
easy to see that the program:

square(2).
square(Y) :- square(X), #sqr(X, Y).

has the infinite set of atoms {square(2), square(4), . . .} as answer set.

Chapter 5. Extending ASP with External Functions 80

5.4 A Computable Class with External Functions:
VI-restricted Programs

The introduction of new symbols in a logic program by means of external atoms is
a clear source of undecidability, nonetheless it is desirable in a variety of contexts.

Our approach investigates which programs, allowing value invention, can be
solved by means of a finite ground program having a finite set of models of finite
size.

Definition 5.16 A class of VI programs V has the finite grounding property if, for
each P ∈ V there exists a finite set U ⊂ UP such that ASU(P) = AS(P), where
ASU(P) is the set of answer sets obtained restricting the universe of constants to
U .

This class of programs (having the finite grounding property) is unluckily not
recognizable in finite time.

Theorem 5.17 Recognizing the class of all the VI programs having the finite
grounding property is undecidable.

Proof. Given a Turing machine T and an input string x we can build a suitable
VI program PT ,x encoding T and x. T (x) terminates if and only if PT ,x has
the finite grounding property. Indeed, if T (x) terminates, the content of a finite
set of symbols U , such that Definition 5.16 is applicable, can be inferred from
the finite number of transitions of T (x). Viceversa, if U is given, the evolution
of T (x) until its termination can be mimicked by looking at the answer sets of
GroundU(PT ,x). Hence the result follows. ¤

Note that the above theorem holds under the assumption that functional ora-
cles might have an infinite co-domain, although functional oracles are supposed
to associate, to each fixed combination of input values, a finite number of combi-
nation of values in output. Also, it is assumed to deal with weakly safe programs.

The intuition leading to our definition of VI-restrictedness, is based on the idea
of controlled propagation of new values throughout a given program. Assume the
following VI program is given (#b has a functional oracle with pattern [i, o]):

a(k, c).
p(X, Y) :- a(X, Y).
p(X, Y) :- s(X, Y), a(Z, Y).
s(X, Y) :- p(Z, X), #b(X,Y).

Chapter 5. Extending ASP with External Functions 81

The last rule of the program generates new symbols by means of the Y vari-
able, which appears in the second attribute of s(X, Y) and in output position of
#b(X, Y). This situation is per se not a problem, but we observe that values of
s[2] are propagated to p[2] by means of the last but one rule, and p[2] feeds input
values to #b(X, Y) in the last rule. This occurs by means of the binding given by
the X variable. The number of ground instances to be considered for the above
program is thus in principle infinite, due to the presence of this kind of cycles
between attributes.

We introduce the notion of dangerous rule for those rules that propagate new
values in recursive cycles, and of dangerous attributes for those attributes (e.g.
s[2]) that carry new information in a cycle.

Actually, the above program can be reconducted to an equivalent finite ground
program: we can observe that p[2] takes values from the second and third rule
above. In both cases, values are given by bindings to a[2] which has, clearly, a
finite domain. So, the number of input values to #b(X, Y) is bounded as well. In
some sense, the ‘poisoning’ effect of the last (dangerous) rule, is canceled by the
fact that p[2] limits the number of symbols that can be created.

In order to formalize this type of scenarios we introduce the notion of savior
and blocked attributes. p[2] is savior since all the rules where p appears in the head
can be proven to bring values to p[2] from blocked attributes, or from constant
values, or from other savior attributes. Also, s[2] is dangerous but blocked with
respect to the last rule, because of the indirect binding with p[2], which is savior.
Note that an attribute is considered blocked with respect to a given rule. Indeed,
s[2] might not be blocked in other rules where s appears in the head.

We define now an attribute dependency graph useful to track how new sym-
bols propagate from an attribute to another by means of bindings of equal vari-
ables. Note that, this dependency graph is different from the one introduced in
Section 3.2: both graphs have attributes as vertices but, in the graph defined next,
external predicates are also considered.

Definition 5.18 The attribute dependency graph AG(P) associated to a VI pro-
gram P is defined as follows. For each predicate p ∈ P of arity n, there is a node
for each predicate attribute p[i](1 ≤ i ≤ n), and, looking at each rule r ∈ P , there
are the following edges:

• (q[j], p[i]), if p appears in some atom ap ∈ H(r), q in some ordinary atom
aq ∈ B+(r) and q[j] and p[i] share the same variable in aq and ap respec-
tively.

Chapter 5. Extending ASP with External Functions 82

• (q[j], #p[i]), if q appears in some ordinary atom aq ∈ B+(r), #p in some
external atom a#p, q[j] and #p[i] share the same variable in aq and a#p

respectively, and i is an input position for the functional oracle of #p;

• (#q[j], #p[i]), if #q appears in some external atom a#q, #p in some ex-
ternal atom a#p, #q[j] and #p[i] share the same variable in a#q and a#p

respectively, j is an output position for the functional oracle of #q, i is an
input position for the functional oracle of #p;

• (#p[j], #p[i]), if #p appears in some external atom a#p, #p[j] and #p[i]

both have a variable in a#q and a#p respectively, j is an input position for
the functional oracle of #p, and i is an output position for the functional
oracle of #p;

• (#q[j], p[i]), if p appears in some atom ap ∈ H(r), #q in some external
atom a#q, #q[j] and p[i] share the same variable in a#q and ap respectively,
and j is an output position for the functional oracle of #q;

Example 5.19 The VI attribute dependency graph induced by the first three rules
of the following VI program is depicted in Figure 5.1:

trusted(X, U) :- #rdf(‘‘myurl′′, X, ‘‘trusts′′, U).
url(X, U) :- #rdf(‘‘myurl′′, X, ‘‘seealso′′, U), trusted(X, U).
url(X, U) :- url(, U1), #rdf(U1, X, ‘‘seealso′′, U), trusted(X, U).
connected(X,Y) :- url(X, U), #rdf(U,X, ‘‘knows′′, Y).
connected(X,Y) :- connected(X, Z), url(Z,U), #rdf(U,Z, ‘‘knows′′, Y).

Definition 5.20 Let P be a weakly safe program. Then2:

• A rule r poisons an attribute p[i] if some atom ap ∈ H(r) has a free variable
X in position i. p[i] is said to be poisoned by r. For instance, connected[2]

is poisoned by the last rule.

• A rule r is dangerous if it poisons an attribute p[i] (p ∈ H(r)) appearing in
a cycle in AG(P). Also, we say that p[i] is dangerous. For instance, the last
rule is dangerous since connected[2] is poisoned and appears in a cycle.

2All examples in this definition refer to program of Example 5.19. Also, we assume that #rdf
has functional oracle with pattern [i, o, o, o]

Chapter 5. Extending ASP with External Functions 83

Figure 5.1: VI Attributes Dependency Graph (Predicate names shortened to the first letter).

• Let r be a dangerous rule. A dangerous attribute p[i] (bounded in H(r)

to a variable name X), is blocked in r if for each external atom a#e ∈
B(r) where X appears in output position, each variable Y appearing in
input position in the same atom is savior. Y is savior if it appears in some
predicate q ∈ B+(r) in position i, and q[i] is savior.

• An attribute p[i] is savior if at least one of the following conditions holds
for each rule r ∈ P where p ∈ H(r).

– p[i] is bound to a ground value in H(r);

– there is some savior attribute q[j], q ∈ B+(r) and p[i] and q[j] are
bound to the same variable in r;

– p[i] is blocked in r.

For instance, the dangerous attribute connected[2] of the last rule is blocked
since the input variables U and Z are savior (indeed they appear in url[2]

and url[1]).

• A rule is VI-restricted if all its dangerous attributes are blocked. P is said
to be VI-restricted if all its dangerous rules are VI-restricted.

Theorem 5.21 VI-restricted programs have the finite grounding property.

Proof. LetP be a VI-restricted program. We show how to compute a finite ground
program grP such that AS(P) = ASU(grP), where U is the set of constants
appearing in grP .

Let’s call GA the set of active ground atoms, initially containing all atoms ap-
pearing in some fact of P . The program grP can be constructed by an algorithm
A that repeatedly updates grP (initially empty) with the output of ins(r, I) (Defi-
nition 5.14) for each rule r ∈ P , where I = 〈GA,F 〉; all atoms belonging to the
head of some rule appearing in grP are then added to GA. The iterative process
stops when GA is not updated anymore. That is, grP is the least fixed point of the
operator

Chapter 5. Extending ASP with External Functions 84

TP(X) = {⋃r∈P ins(r, I) | I = 〈GA,F 〉, and GA = atoms(X)}

where X is a set of ground rules and atoms(X) is the set of ordinary atoms
appearing in X . T∞

P (∅) is finite in case P is VI-restricted. Indeed, grP might not
cease to grow only in case an infinite number of new constants is generated by the
presence of external atoms. This may happen only because of some dangerous
rule having some poisoned attributes. However, in a VI-restricted program all
poisoned attributes are blocked in dangerous rules where they appear, i.e. they
depend from savior attributes. Now, for a given savior attribute p[i], the number
of symbols that appear in position i in an atom ap such that ap ∈ T∞

P (∅) is finite.
This means that only a finite number of calls to functional oracles is made by A,
each one producing a finite output.

Because of the way it has been constructed, it is easy to see that GA =

atoms(grP) is a splitting set [Lifschitz and Turner, 1994], for Ground(P). Based
on this, it is possible to observe that no atom a 6∈ GA can be in any answer set,
and to conclude that ASU(P) = AS(P), where U is the set of constants appearing
in GA. ¤

5.5 Recognizing VI-restricted Programs

An algorithm recognizing VI-restricted programs is reported in Appendix B.1.
The idea is to iterate through all dangerous rules trying to prove that all of them
are VI-restricted. In order to prove VI-restriction for rules, we incrementally build
the set of all savior attributes; this set is initially filled with all attributes which
can be proven to be savior (i.e. they do not depend from any dangerous attribute).
This set is updated with a further attribute p[i] as soon as it is proved that each
dangerous attribute which p[i] depends on is blocked. The set RTBC of rules to
be checked initially consists of all dangerous rules, then the rules which are proven
to be VI-restricted are gradually removed from RTBC. If an iteration ends and
nothing new can be proven the algorithm stops. The program is VI-restricted if
RTBC is empty at the last iteration.

The algorithm consumes polynomial time in the size of a program P: let m

be the total number of rules in P , n the number of different predicates, k the
maximum number of attributes over all predicates, and l the maximum number of
atoms in a single rule. O(n ∗ k) is an upper bound to the total number of different
attributes, while O(l ∗ k) is an upper bound to the number of variables in a rule.

Chapter 5. Extending ASP with External Functions 85

A naive version of the isBlocked function (see Appendix B.2) has complexity
O(n ∗ l ∗ k2). The recognizer function iterates O(n ∗ k) times over an inner
cycle which performs at most O(m ∗ k ∗ l) steps (when all attributes are initially
in NSA and only one attributes can be stated as savior at each step); each inner
step iterates over all rules in RTBC, which are at most m; and for each rule all
free variables must be checked (this requires O(k ∗ l) checks, in the worst case).

Chapter 6

An ASP System with Functions Lists
and Sets

In this chapter we illustrate the implementation of an ASP system supporting the
class of DLP programs presented in Chapter 3. Such system actually features
an even richer language, that, besides functions, explicitly supports also complex
terms such as lists and sets, and provides a large library of built-in predicates for
facilitating their manipulation. Thanks to such extensions, the resulting language
becomes even more suitable for easy and compact knowledge representation tasks.

The chapter is organized as follows:

• Section 6.1 introduces the peculiar features of the fully extended language,
with the help of some sample programs.

• In Section 6.2 we explain how function symbols and, in general, complex
terms have been implemented exploiting the value invention framework on
top of the DLV system.

• Finally, in Section 6.3 results about some preliminary tests are reported and
applications already exploiting the implemented system are mentioned.

86

Chapter 6. An ASP System with Functions Lists and Sets 87

6.1 System Language

We next informally point out the peculiar features of the fully extended language,
with the help of some sample programs.

In addition to simple and functional terms, there might be also list and set
terms; a term which is not simple is said to be complex.

A list term can be of two different forms:

- [t1, . . . , tn], where t1, . . . , tn are terms;

- [h|t], where h (the head of the list) is a term, and t (the tail of the list) is a
list term.

Examples for list terms are: [jan, feb,mar, apr,may, jun], [jan | [feb,mar,

apr, may, jun]], [[jan, 31] | [[feb, 28], [mar, 31], [apr, 30], [may, 31], [jun, 30]]].
Set terms are used to model collections of data having the usual properties

associated with the mathematical notion of set. They satisfy idempotence (i.e.,
sets have no duplicate elements) and commutativity (i.e., two collections having
the same elements but with a different order represent the same set) properties.

A set term is of the form: {t1, . . . , tn}, where t1, . . . , tn are ground terms.
Examples for set terms are: {red, green, blue}, {[red, 5], [blue, 3], [green, 4]},

{{red, green}, {red, blue}, {green, blue}}. Note that duplicated elements are
ignored, thus the sets: {red, green, blue} and {green, red, blue, green} are ac-
tually considered as the same.

As already mentioned, in order to easily handle list and set terms, a rich set
of built-in functions and predicates is provided. Functional terms prefixed by a
symbol are built-in functions. Such kind of functional terms are supposed to
be substituted by the values resulting from the application of a functor to its argu-
ments, according to some predefined semantics. For this reason, built-in functions
are also referred to as interpreted functions. Atoms prefixed by # are, instead, in-
stances of built-in predicates. Such kind of atoms are evaluated as true or false by
means of operations performed on their arguments, according to some predefined
semantics1. Some simple built-in predicates are also available, such as the com-
parative predicates equality, less-than, and greater-than (=, <,>) and arithmetic
predicates like successor, addition or multiplication, whose meaning is straight-
forward. A pair of simple examples about complex terms and proper manipulation

1The specification of the entire library for lists and sets manipulation is available at [Calimeri
et al., since 2008].

Chapter 6. An ASP System with Functions Lists and Sets 88

functions follows. Another interesting example, i.e., the Hanoi Tower problem, is
reported in Appendix A.2.

Example 6.1 Given a directed graph, a simple path is a sequence of nodes, each
one appearing exactly once, such that from each one (but the last) there is an edge
to the next in the sequence. The following program derives all simple paths for a
directed graph, starting from a given edge relation:

path([X,Y]) :- edge(X,Y).
path([X|[Y |W]]) :- edge(X, Y), path([Y |W]), not #member(X, [Y |W]).

The first rule builds a simple path as a list of two nodes directly connected by
an edge. The second rule constructs a new path adding an element to the list
representing an existing path. The new element will be added only if there is an
edge connecting it to the head of an already existing path. The external predicate
#member (which is part of the above mentioned library for lists and sets manip-
ulation) allows to avoid the insertion of an element that is already included in the
list; without this check, the construction would never terminate in the presence of
circular paths. Even if not an FD program, it is easy to see that this is an FG
program; thus, the system is able to effectively compute the (in this case, unique)
answer set.

Example 6.2 Let us imagine that the administrator of a social network wants to
increase the connections between users. In order to do that, (s)he decides to pro-
pose a connection to pairs of users that result, from their personal profile, to share
more than two interests. If the data about users are given by means of EDB atoms
of the form user(id, {interest1, . . . , interestn}), the following rule would com-
pute the set of common interests between all pairs of users:

sharedInterests(U1, U2, #intersection(S1, S2)) :-
user(U1, S1), user(U2, S2), U1 6= U2.

where the interpreted function #intersection takes as input two sets and returns
their intersection. Then, the predicate selecting all pairs of users sharing more
than two interests could be defined as follows:

proposeConnection(pair(U1, U2)) :-
sharedInterests(U1, U2, S), #card(S) > 2.

Here, the interpreted function #card returns the cardinality of a given set, which
is compared to the constant 2 by means of the built-in predicate “>”.

Chapter 6. An ASP System with Functions Lists and Sets 89

6.2 Implementation

The presented language has been implemented on top of the state-of-the-art ASP
system DLV [Leone et al., 2006]. Complex terms have been implemented by us-
ing a couple of built-in predicates for packing and unpacking them (see below).
These functions, along with the library for lists and sets manipulation reported in
Appendix C, have been incorporated in DLV by exploiting the framework intro-
duced in Chapter 5.

In particular, support for complex terms is actually achieved by suitably rewrit-
ing the rules they appear in. The resulting rewritten program does not contain
complex terms any more, but a number of instances of proper built-in predicates.
We briefly illustrate in the following how the rewriting is performed in case of
functional terms; the cases of list and set terms are treated analogously. Firstly,
any functional term t = f(X1, . . . , Xn), appearing in some rule r of a program
P , is replaced by a fresh variable Ft and then, one of the following atom is added
to B(r):

- #function pack(Ft, f, X1, . . . , Xn) if t appears in H(r);

- #function unpack(Ft, f,X1, . . . , Xn) if t appears in B(r).

This transformation is applied to the rule r until no functional terms appear in
it. The role of an atom #function pack is to build a functional term starting from
a functor and its arguments; while an atom #function unpack acts unfolding
a functional term to give values to its arguments. So, the former binds the Ft

variable, provided that all other terms are already bound, the latter binds (checks
values, in case they are already bound) the X1, . . . , Xn variables according to
the binding for the Ft variable (the whole functional term). More precisely, the
arguments of the #function pack/unpack built-ins are:

1. the fresh variable Ft representing the whole functional term;

2. the function symbol f ;

3. all of the arguments: X1, . . . , Xn for the original functional term.

Example 6.3 The rule: p(f(f(X))) :- q(X, g(X,Y)). will be rewritten as fol-
low:

p(Ft1) :- #function pack(Ft1, f, F t2), #function pack(Ft2, f, X),
q(X, Ft3), #function unpack(Ft3, g, X, Y).

Chapter 6. An ASP System with Functions Lists and Sets 90

Note that rewriting the nested functional term f(f(X)) requires two #function

pack atoms in the body: (i) for the inner f function having X as argument and (ii)
for the outer f function having as argument the fresh variable Ft2, representing
the inner functional term.

The resulting ASP system is indeed very powerful: the user can exploit the full
expressiveness ofFG programs (plus the ease given by the availability of complex
terms), at the price of giving the guarantee of termination up. In this respect, it is
worth stating that the system grounder fully complies with the definition of intel-
ligent instantiation introduced in this work (see Section 3.3 and Definition 3.15).
This implies, among other things, that the system is guaranteed to terminate and
correctly compute all answer sets for any program resulting as finitely-ground.
Nevertheless, the system features a syntactic FD programs recognizer, based on
the algorithm sketched in Theorem 3.28. This kind of finite-domain check, which
is active by default, ensures a priori computability for all accepted programs, with-
out the need for knowing the membership to FG programs class.

The system prototype, called DLV-complex, is available at [Calimeri et al.,
since 2008]; the above mentioned library for list and set terms manipulation is
available for free download as well, together with a reference guide and a number
of examples.

6.3 Experiments and Applications

Some preliminary tests have been carried out in order to measure how much the
new features cost in terms of performances. These experiments have been done
on a Double-Intel-Xeon-HT (single core) 3.60GHZ-3GBRAM.

In particular, we evaluated costs of the following three steps of a computation:

(1) Rewriting. We have considered a program with this set of rules:
p1(f(X)) :- a(X).
...
p10000(f(X)) :- a(X).

that after rewriting becomes:

p1(F) :- a(X), #function pack(F, f, X)).
...
p10000(F) :- a(X), #function pack(F, f,X))..

Chapter 6. An ASP System with Functions Lists and Sets 91

Rewriting ten thousand rules with functions, took only 0.252750. Each
rewriting took only 0.000025275 seconds on average. Considering that the
rewriting is usually done mostly on the non-ground rules, rewriting-time
seems to be negligible.

(2) Instantiation. Each call to #function pack(F, f,X) takes less than 10−5

seconds, and corresponds approximately to 1.5 of the time taken by a call to
a comparison built-in (like X < ”c”), much less than matching a standard
predicate. The time taken by a call to #function unpack is basically the
same.

(3) Answer-Sets Computation. We compared a program including, besides some
facts for a, the disjunctive rule:
p(f(X)) ∨ q(f(X)) :- a(X).

with the analogous program without function symbols:
p(X) ∨ q(X) :- a(X).

The residual instantiation has precisely the same size, and the times for the
computation of the answer sets is identical.

In sum, from the preliminary experiments it seems that: (i) rewriting times are
negligible; (ii) the cost of evaluating function terms (pack/unpack functions) is
low (about 1.5 times a comparison built-in as ’<’); (iii) there is no overhead
at all on answer-sets computation. Therefore, the system can profitably deal
with real-world problems. For instance, in the area of self-healing Web Services
DLV-complex is already exploited for the computation of minimum cardinality
diagnoses [Friedrich and Ivanchenko, 2008], and functional terms are here em-
ployed to replace existential quantification. In summary, the introduction of func-
tions brings only a little overhead, while it offers a significant gain in terms of
knowledge-modeling power and program clarity. In some cases, the better prob-
lem encoding obtained through functions can bring also a significant computa-
tional gain.2 (We expect that this happens also when, thanks to functions, we can
better enforce arguments ”types” cutting down the search space significantly.)

2For instance, the encoding for Tower of Hanoi reported in [Calimeri et al., since 2008] against
the classical guess-and-check encoding (a disjunctive version of the Smodels program exploited
for the First ASP competition [Gebser et al., 2007b]) allows one to enjoy nice speedups and to
scale much better while increasing the number of disks.

Chapter 7

Related Works

Functional terms are widely used in logic formalisms stemming from first order
logic. Introduction and treatment of functional terms (or similar constructs) have
been studied indeed in several fields, such as Logic Programming and Deductive
Databases. In the ASP community, the treatment of functional terms has recently
received quite some attention. In this chapter we focus on the main proposals for
introducing functional terms in ASP, and we briefly discuss the related work done
in other research communities.

The chapter is organized as follows:

• Section 7.1 is about finitary programs, the class of programs described more
in deep in Chapter 2. In this section, relationships with our work are dis-
cussed.

• In Section ?? we compare finetely-ground programs with ω-restricted pro-
grams, a previously existent bottom-up computable class.

• Section 7.3 is about FDNC programs, a recently proposed class of logic
programs allowing for function symbols, disjunction and non-monotonic
negation under answer set semantics.

• Finally, in Section 7.4 we relate our work with some other classes of pro-
grams proposed both in ASP and in other research communities.

92

Chapter 7. Related Works 93

7.1 Finitary Programs

Finitary programs [Bonatti, 2004; Baselice et al., 2007] are a major contribution to
the introduction of recursive functional terms (and thus infinite domains) in logic
programming under answer set semantics. For this reason, we reported definitions
and properties about this class of programs, more widely in Chapter 2. Here we
discuss how finitary programs are related to our work.

The class of finitary programs can be seen as a “dual” notion of the class of
finitely-ground programs. The former is suitable for a top-down evaluation, while
the latter allows for a bottom-up computation. Comparing the computational prop-
erties of the two classes, we observe:

- Both finitary programs and finitely-ground programs can express any com-
putable function.

- Ground queries are decidable for both finitary and finitely-ground programs;
however, for finitary programs, to obtain decidability one needs to addition-
ally know (“a priori”) what is the set of atoms involved in odd-cycles [Bon-
atti, 2008].

- Answer sets on finitely-ground programs are computable, while they are not
computable on finitary programs. The same holds for nonground queries.

- Recognizing if a program is finitely-ground is semi-decidable; while recog-
nizing if a program is finitary is undecidable (see Section 2.5).

Finitary and FG programs are not comparable: there are finitary programs
that are not finitely-ground, and finitely-ground programs that are not finitary.
The syntactic restrictions imposed by the two notions somehow come from the
underlying computational approaches (top-down vs bottom-up).

Finitary programs impose that all rule variables must occur in the head; while
finitely-ground programs require that all rule variables occur in the positive body.
Therefore, p(X,Y) :- q(X). is safe for finitary programs, while it is not for
finitely-ground programs (as Y is not range-restricted).

On the contrary, p(X, Y) :- q(X, V), r(V, Y) is safe for finitely-ground pro-
grams, while it is not admissible for finitary programs (because of the “local”
variable V).

Similarly, for the nesting level of the functions: it cannot increase head-to-
body for finitary programs, while it cannot increase body-to-head for finitely-

Chapter 7. Related Works 94

ground programs. For instance, a program with the rule: p(X) :- p(f(X)). is not
finitary, while a program with the rule: p(f(X)) :- p(X). is not finitely-ground.

Importantly, finitary programs are or-free; while finitely-ground programs al-
low for disjunctive rules. The class of finitary programs has been extended to the
disjunctive case in [Bonatti, 2002]. To this end, a third condition on the disjunc-
tive heads is added to the definition of finitary programs, in order to guarantee the
decidability of ground querying.

Concluding, we observe that the bottom-up nature of the notion of FG pro-
grams allows for an immediate implementation of this class in ASP systems (as
ASP instantiators are based on a bottom-up computational model). Indeed, we
were able to enhance DLV to deal with finitely-ground by small changes in its in-
stantiator, keeping the database optimization techniques which rely on the bottom-
up model and significantly improve the efficiency of the instantiation. While an
ASP instantiator should be replaced by a top-down grounder to deal with finitary
programs.

7.2 ω-restricted Programs

The class of ω-restricted programs [Syrjänen, 2001] allows for function symbols
under answer set semantics. They have been effectively implemented into Smod-
els [Simons et al., 2002] - a very popular ASP system.

The notion of ω-restricted program relies on the concept of ω-stratification. An
ω-stratification corresponds, essentially, to a traditional stratification w.r.t. nega-
tion (see Section 1.4.1), extended by the (uppermost) ω-stratum, which contains
all predicates depending negatively on each other (basically, this stratum contains
entirely the unstratified part of the program).

In order to avoid infiniteness/undecidability, programs must fulfill some syn-
tactic conditions w.r.t. an ω-stratification. In particular, each variable appearing
in a rule must also occur in a positive body literal belonging to a strictly lower
stratum than the head.

The above restrictions are strong enough to guarantee the computability of
answer sets, yet losing recursive completeness. Thus, ω-restricted programs are
strictly less expressive than both finitary and FG programs (which can express all
computable functions).

From a merely syntactic viewpoint, the class of ω-restricted programs is un-
comparable with that of finitary programs, while it is strictly contained in the
class of FD programs (and thus, of FG programs). Indeed, if a program P

Chapter 7. Related Works 95

is ω-restricted, then each variable appearing in a rule head fulfills Condition 3
of Definition 3.25 (thus, P is FD). On the contrary, there are FD programs
that are not ω-restricted: for instance, the FD program made of the single rule
p(X) :- p(f(X)) is FD but it is not ω-restricted.

7.3 FDNC Programs

The class FDNC of logic programs [Simkus and Eiter, 2007] allows for function
symbols, disjunction and non-monotonic negation under answer set semantics.

In order to retain the decidability of the standard reasoning tasks, the structure
of any rule must be chosen among one out of seven predefined forms. These
syntactic restrictions ensure that programs have a forest-shaped model property.

Answer sets of FDNC programs are in general infinite, but have a finite rep-
resentation which can be exploited for knowledge compilation and fast query an-
swering. The class of FDNC programs is less expressive than both finitary and
finitely-ground programs.

From a syntactic viewpoint, FDNC programs are uncomparable with both
finitary and finitely-ground programs. Notably, FDNC programs are finitely-
recursive, but not necessarily finitary.

7.4 Other Works

Recently, in [Lin and Wang, 2008], functions have been proposed as a tool for
obtaining a more direct and compact representation of problems, and for improv-
ing the performance of ASP computation by reducing the size of resulting ground
programs. The class of programs which is considered is strictly contained in ω-
restricted programs: indeed, predicates as well as functions must range over finite
domains, which must be explicitly (and extensively) provided.

The idea ofFG programs is also related to termination studies of SLD-resolution
for Prolog programs (see e.g. [Schreye and Decorte, 1994; Bossi et al., 1994;
Bruynooghe et al., 2007]). In this context, several notion of norm for complex
terms were introduced.

Intuitively, proving that norms of sub-goals are non-increasing during top-
down evaluation ensures decidability of a given program. Note that such tech-
niques can not be applied in a straightforward way to our setting, for a series of
technical differences. First, propagation of norm information should be studied

Chapter 7. Related Works 96

from rules bodies to heads while traditional termination analysis works the other
way around. Also, top-down termination analysis often integrates right recursion
avoidance techniques, which are not required in the context of ASP.

As for the deductive database field, we recall that one of the first comprehen-
sive proposals has been LDL [Naqvi and Tsur, 1989], a declarative language fea-
turing a non-disjunctive logic programming paradigm based on bottom-up model
query evaluation. LDL provides a rich data model including the possibility to
manage complex objects, lists and sets. The language allows for a stratified form
of negation, while functional terms are managed by means of “infinite” base rela-
tions computed by external procedures; proper restrictions (called constraints) and
checks based on structural properties of the program (interdependencies between
arguments) ensure that a finite number of tuples are generated for each relation.

With respect to the enriched language presented in Chapter 6, it is worth re-
membering that the book [Baral, 2003] showed examples of how certain kinds of
reasoning about sets and lists could be captured by propositional ASPs, thus giv-
ing examples of programs with function symbols that can be rewritten as proposi-
tional ASPs.

Conclusions

This thesis regards Answer Set Programming, a very powerful and expressive
formalism which is quite popular in the areas of non-monotonic reasoning and
logic programming.

Although many efficient ASP solvers have been developed in the last years,
encouraging a number of applications in many real-world contexts, some ASP
limitations still hold. Indeed, while answer set semantics was defined in the set-
ting of a general first order language, current ASP frameworks and implementa-
tions, are based in essence on function-free languages. Therefore, even by using
state-of-the-art systems, one cannot directly reason about recursive data structures
and infinite domains, such as XML/HTML documents, lists, time, etc. Several
contributions published recently, witness as ASP community clearly perceives the
need of supporting functions in order to make ASP better suited for real-world
applications. However, we still miss a proposal which is fully satisfactory from
a linguistic viewpoint (high expressiveness) and suited to be incorporated in the
existing ASP systems. Indeed, at present no ASP system allows for a reasonably
unrestricted usage of function terms. Functions are either required not to be re-
cursive or subject to severe syntactic limitations, if allowed at all in ASP systems.

In this thesis we focus on the definition of a new class of logic programs al-
lowing for (possibly recursive) function symbols, disjunction and negation. We
demonstrate that this class of programs, called finitely-ground programs, is highly
expressive and enjoys many relevant computational properties. In particular, an-
swer sets are bottom-up computable and then both brave and cautious reason-
ing are decidable, even for non-ground queries. Some syntactic conditions have
been identified to tailor a subclass of finitely-ground programs (finite-domain pro-
grams), in order to guarantee “a priori” termination when needed. Furthermore,
the Magic Sets technique is exploited, in order to make all positive finitary pro-
grams bottom-up computable, and then enlarge the class of finitely-ground pro-
grams.

97

Bibliography 98

This theoretical work has had practical application in the extension of the DLV
system, one of the most famous system implementing the ASP formalism. First,
external functions have been integrated in the context of ASP through the possi-
bility of defining external predicates. Then, a couple of (built-in) external func-
tions have been implemented to manage functional terms. Furthermore, other two
different types of complex terms such as lists and sets have enriched the DLV
supported language. All these extensions yield a very powerful system where the
user can exploit the full expressiveness of finitely-ground programs (able to en-
code any computable function), or require the finite-domain check, getting the
guarantee of termination. The system prototype, examples and manual are avail-
able for downloading [Calimeri et al., since 2008].

Future work will focus on extending the rewriting algorithm based on Magic
Sets, in order to consider also partially ground queries and programs with nega-
tion.

Bibliography

[Abiteboul and Vianu, 1991] Serge Abiteboul and Victor Vianu. Datalog Exten-
sions for Database Queries and Updates. Journal of Computer and System
Sciences, 43(1):62–124, 1991.

[Anger et al., 2001] Christian Anger, Kathrin Konczak, and Thomas Linke.
NoMoRe: A System for Non-Monotonic Reasoning. In Thomas Eiter, Wolf-
gang Faber, and Mirosław Truszczyński, editors, Logic Programming and Non-
monotonic Reasoning — 6th International Conference, LPNMR’01, Vienna,
Austria, September 2001, Proceedings, volume 2173 of Lecture Notes in AI
(LNAI), pages 406–410. Springer Verlag, September 2001.

[Apt and Blair, 1991] Krzysztof R. Apt and Howard A. Blair. Arithmetic classi-
fication of perfect models of stratified programs. Fundamenta Informaticae,
14(3):339–343, 1991.

[Apt and van Emden, 1982] Krzysztof R. Apt and M. H. van Emden. Contribu-
tions to the theory of logic programming. J. ACM, 29(3):841–862, 1982.

[Apt et al., 1988] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. To-
wards a Theory of Declarative Knowledge. In Minker [1988], pages 89–148.

[Bancilhon et al., 1986] Francois Bancilhon, David Maier, Yehoshua Sagiv, and
Jeffrey D Ullman. Magic sets and other strange ways to implement logic
programs (extended abstract). In PODS ’86: Proceedings of the fifth ACM
SIGACT-SIGMOD symposium on Principles of database systems, pages 1–15,
New York, NY, USA, 1986. ACM.

[Baral and Gelfond, 1994] Chitta Baral and Michael Gelfond. Logic Program-
ming and Knowledge Representation. Journal of Logic Programming,
19/20:73–148, 1994.

99

BIBLIOGRAPHY 100

[Baral, 2003] Chitta Baral. Knowledge Representation, Reasoning and Declara-
tive Problem Solving. Cambridge University Press, 2003.

[Baselice et al., 2007] Sabrina Baselice, Piero A. Bonatti, and Giovanni
Criscuolo. On Finitely Recursive Programs. In 23rd International Conference
on Logic Programming (ICLP-2007), volume 4670 of LNCS, pages 89–103.
Springer, 2007.

[Beeri and Ramakrishnan, 1987] C. Beeri and R. Ramakrishnan. On the power
of magic. In PODS ’87: Proceedings of the sixth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 269–284, New
York, NY, USA, 1987. ACM.

[Bell et al., 1994] Colin Bell, Anil Nerode, Raymond T. Ng, and V.S. Subrah-
manian. Mixed Integer Programming Methods for Computing Nonmonotonic
Deductive Databases. Journal of the ACM, 41:1178–1215, 1994.

[Ben-Eliyahu and Dechter, 1994] Rachel Ben-Eliyahu and Rina Dechter. Propo-
sitional Semantics for Disjunctive Logic Programs. Annals of Mathematics and
Artificial Intelligence, 12:53–87, 1994.

[Bonatti et al., 2008] Piero A. Bonatti, Enrico Pontelli, and Tran Cao Son. Credu-
lous resolution for answer set programming. In Dieter Fox and Carla P. Gomes,
editors, Proceedings of the Twenty-Third AAAI Conference on Artificial Intel-
ligence, pages 418–423, Chicago, Illinois, USA, July 2008. AAAI Press.

[Bonatti, 2001a] Piero A. Bonatti. Reasoning with Infinite Stable Models. In
Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI) 2001, pages 603–610, Seattle, WA, USA, August 2001.
Morgan Kaufmann Publishers.

[Bonatti, 2001b] Piero A. Bonatti. Resolution for Skeptical Stable Model Seman-
tics. Journal of Automated Reasoning, 27(4):391–421, 2001.

[Bonatti, 2002] Piero A. Bonatti. Reasoning with infinite stable models II: Dis-
junctive programs. In Proceedings of the 18th International Conference on
Logic Programming (ICLP 2002), volume 2401 of LNCS, pages 333–346.
Springer, 2002.

[Bonatti, 2004] Piero A. Bonatti. Reasoning with infinite stable models. Artificial
Intelligence, 156(1):75–111, 2004.

BIBLIOGRAPHY 101

[Bonatti, 2008] Piero A. Bonatti. Erratum to: Reasoning with infinite stable
models [artificial intelligence 156 (1) (2004) 75-111]. Artificial Intelligence,
172(15):1833–1835, 2008.

[Bossi et al., 1994] Annalisa Bossi, Nicoletta Cocco, and Massimo Fabris.
Norms on Terms and their use in Proving Universal Termination of a Logic
Program. Theoretical Computer Science, 124(2):297–328, 1994.

[Bruynooghe et al., 2007] Maurice Bruynooghe, Michael Codish, John P. Gal-
lagher, Samir Genaim, and Wim Vanhoof. Termination analysis of logic pro-
grams through combination of type-based norms. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 29(2):10, 2007.

[Buccafurri et al., 2000] Francesco Buccafurri, Nicola Leone, and Pasquale
Rullo. Enhancing Disjunctive Datalog by Constraints. IEEE Transactions on
Knowledge and Data Engineering, 12(5):845–860, 2000.

[Cabibbo, 1996] Luca Cabibbo. Expressiveness of Semipositive Logic Programs
with Value Invention. In Logic in Databases, pages 457–474, 1996.

[Calimeri et al., since 2008] Francesco Calimeri, Susanna Cozza, Giovambattista
Ianni, and Nicola Leone. DLV-Complex homepage, since 2008. http:

//www.mat.unical.it/dlv-complex.

[Cumbo et al., 2004] Chiara Cumbo, Wolfgang Faber, and Gianluigi Greco. En-
hancing the magic-set method for disjunctive datalog programs. In Proceedings
of the the 20th International Conference on Logic Programming – ICLP’04,
volume 3132 of Lecture Notes in Computer Science, pages 371–385, 2004.

[Dantsin and Voronkov, 1997] Evgeny Dantsin and Andrei Voronkov. Complex-
ity of Query Answering in Logic Databases with Complex Values. In Sergei I.
Adian and Anil Nerode, editors, Proceedings of Logical Foundations of Com-
puter Science, 4th International Symposium, LFCS’97, volume 1234 of Lec-
ture Notes in Computer Science, pages 56–66, Yaroslavl, Russia, July 1997.
Springer.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and Expressive Power of Logic Programming. ACM
Computing Surveys, 33(3):374–425, 2001.

BIBLIOGRAPHY 102

[East and Truszczyński, 2001] Deborah East and Mirosłaq Truszczyński. Propo-
sitional Satisfiability in Answer-set Programming. In Proceedings of Joint Ger-
man/Austrian Conference on Artificial Intelligence, KI’2001, volume 2174 of
Lecture Notes in AI (LNAI), pages 138–153. Springer Verlag, 2001.

[Egly et al., 2000] Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran.
Solving Advanced Reasoning Tasks using Quantified Boolean Formulas. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence
(AAAI’00), Austin, TX, USA, pages 417–422. AAAI Press / MIT Press, July 30
– August 3 2000.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob. On the Computa-
tional Cost of Disjunctive Logic Programming: Propositional Case. Annals of
Mathematics and Artificial Intelligence, 15(3/4):289–323, 1995.

[Eiter et al., 1997] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Dis-
junctive Datalog. ACM Transactions on Database Systems, 22(3):364–418,
September 1997.

[Eiter et al., 1998] Thomas Eiter, Nicola Leone, and Domenico Saccá. Ex-
pressive Power and Complexity of Partial Models for Disjunctive Deductive
Databases. Theoretical Computer Science, 206(1–2):181–218, October 1998.

[Eiter et al., 1999] Thomas Eiter, Wolfgang Faber, Georg Gottlob, Christoph
Koch, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello.
The DLV System. In Jack Minker, editor, Workshop on Logic-Based Artificial
Intelligence, Washington, DC, College Park, Maryland, June 1999. Computer
Science Department, University of Maryland. Workshop Notes.

[Eiter et al., 2000] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald
Pfeifer. Declarative Problem-Solving Using the DLV System. In Jack Minker,
editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic
Publishers, 2000.

[Eiter et al., 2003] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer,
and Axel Polleres. A Logic Programming Approach to Knowledge-State Plan-
ning, II: the DLVK System. Artificial Intelligence, 144(1–2):157–211, March
2003.

BIBLIOGRAPHY 103

[Eiter et al., 2004] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer,
and Axel Polleres. A Logic Programming Approach to Knowledge-State Plan-
ning: Semantics and Complexity. ACM Transactions on Computational Logic,
5(2):206–263, April 2004.

[Eiter et al., 2005] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and
Hans Tompits. A Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming. In International Joint Conference
on Artificial Intelligence (IJCAI) 2005, pages 90–96, Edinburgh, UK, August
2005.

[Faber et al., 2007] Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic
Sets and their Application to Data Integration. Journal of Computer and System
Sciences, 73(4):584–609, 2007.

[Friedrich and Ivanchenko, 2008] G. Friedrich and V. Ivanchenko. Diag-
nosis from first principles for workflow executions. Technical re-
port, Alpen Adria University, Applied Informatics, Klagenfurt, Aus-
tria, 2008. http://proserver3-iwas.uni-klu.ac.at/download area/Technical-
Reports/technical report 2008 02.pdf.

[Gebser et al., 2007a] Martin Gebser, Benjamin Kaufmann, André Neumann,
and Torsten Schaub. Conflict-driven answer set solving. In Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-07), pages 386–392.
Morgan Kaufmann Publishers, January 2007.

[Gebser et al., 2007b] Martin Gebser, Lengning Liu, Gayathri Namasivayam,
André Neumann, Torsten Schaub, and Mirosław Truszczyński. The first an-
swer set programming system competition. In Chitta Baral, Gerhard Brewka,
and John Schlipf, editors, Logic Programming and Nonmonotonic Reasoning
— 9th International Conference, LPNMR’07, volume 4483 of Lecture Notes in
Computer Science, pages 3–17, Tempe, Arizona, May 2007. Springer Verlag.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The Sta-
ble Model Semantics for Logic Programming. In Logic Programming: Pro-
ceedings Fifth Intl Conference and Symposium, pages 1070–1080, Cambridge,
Mass., 1988. MIT Press.

BIBLIOGRAPHY 104

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classi-
cal Negation in Logic Programs and Disjunctive Databases. New Generation
Computing, 9:365–385, 1991.

[Gottlob et al., 1999] Georg Gottlob, Nicola Leone, and Helmut Veith. Succinct-
ness as a Source of Expression Complexity. Annals of Pure and Applied Logic,
97(1–3):231–260, 1999.

[Gottlob, 1994] Georg Gottlob. Complexity and Expressive Power of Disjunctive
Logic Programming. In Maurice Bruynooghe, editor, Proceedings of the Inter-
national Logic Programming Symposium (ILPS ’94), pages 23–42, Ithaca NY,
1994. MIT Press.

[Hartley Rogers, 1987] Jr. Hartley Rogers. Theory of recursive functions and ef-
fective computability. MIT Press, Cambridge, MA, USA, 1987.

[Heymans et al., 2005] Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Ver-
meir. Nonmonotonic ontological and rule-based reasoning with extended con-
ceptual logic programs. In Proceedings of the Second European Semantic Web
Conference, ESWC 2005, volume 3532 of Lecture Notes in Computer Science,
pages 392–407, 2005.

[Hull and Yoshikawa, 1990] Richard Hull and Masatoshi Yoshikawa. ILOG:
Declarative Creation and Manipulation of Object Identifiers. In Dennis
McLeod, Ron Sacks-Davis, and Hans-Jörg Schek, editors, 16th International
Conference on Very Large Data Bases, Brisbane, Queensland, Australia, pages
455–468. Morgan Kaufmann, August 1990.

[Janhunen et al., 2006] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Si-
mons, and Jia-Huai You. Unfolding Partiality and Disjunctions in Stable Model
Semantics. ACM Transactions on Computational Logic, 7(1):1–37, January
2006.

[Japaridze, 1994] Giorgi Japaridze. The logic of the arithmetical hierarchy. An-
nals of Pure and Applied Logic, 66(2):89–112, 1994.

[Johnson, 1990] David S. Johnson. A Catalog of Complexity Classes. In Jan
van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A,
chapter 2. Elsevier Science Pub., 1990.

BIBLIOGRAPHY 105

[Kowalski and Kuehner, 1971] Robert A. Kowalski and Donald Kuehner. Linear
resolution with selection function. Artif. Intell., 2(3/4):227–260, 1971.

[Kowalski, 1974] Robert A. Kowalski. Predicate Logic as Programming Lan-
guage. In IFIP Congress, pages 569–574, 1974.

[Leone et al., 1997] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Dis-
junctive Stable Models: Unfounded Sets, Fixpoint Semantics and Computa-
tion. Information and Computation, 135(2):69–112, June 1997.

[Leone et al., 2001] Nicola Leone, Simona Perri, and Francesco Scarcello. Im-
proving ASP Instantiators by Join-Ordering Methods. In Thomas Eiter, Wolf-
gang Faber, and Mirosław Truszczyński, editors, Logic Programming and Non-
monotonic Reasoning — 6th International Conference, LPNMR’01, Vienna,
Austria, volume 2173 of Lecture Notes in AI (LNAI), pages 280–294. Springer
Verlag, September 2001.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas
Eiter, Georg Gottlob, Simona Perri, and Francesco Scarcello. The DLV System
for Knowledge Representation and Reasoning. ACM Transactions on Compu-
tational Logic, 7(3):499–562, July 2006.

[Lierler, 2005] Yuliya Lierler. Disjunctive Answer Set Programming via Satis-
fiability. In Chitta Baral, Gianluigi Greco, Nicola Leone, and Giorgio Ter-
racina, editors, Logic Programming and Nonmonotonic Reasoning — 8th In-
ternational Conference, LPNMR’05, Diamante, Italy, September 2005, Pro-
ceedings, volume 3662 of Lecture Notes in Computer Science, pages 447–451.
Springer Verlag, September 2005.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson Turner. Splitting a
Logic Program. In Pascal Van Hentenryck, editor, Proceedings of the 11th In-
ternational Conference on Logic Programming (ICLP’94), pages 23–37, Santa
Margherita Ligure, Italy, June 1994. MIT Press.

[Lifschitz, 1996] Vladimir Lifschitz. Foundations of Logic Programming. In
Gerhard Brewka, editor, Principles of Knowledge Representation, pages 69–
127. CSLI Publications, Stanford, 1996.

[Lin and Wang, 2008] Fangzhen Lin and Yisong Wang. Answer Set Program-
ming with Functions. In Proceedings of Eleventh International Conference on

BIBLIOGRAPHY 106

Principles of Knowledge Representation and Reasoning (KR2008), 2008. To
appear.

[Lin and Zhao, 2004] Fangzhen Lin and Yuting Zhao. ASSAT: computing answer
sets of a logic program by SAT solvers. Artificial Intelligence, 157(1–2):115–
137, 2004.

[Lobo et al., 1992] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Founda-
tions of Disjunctive Logic Programming. The MIT Press, Cambridge, Mas-
sachusetts, 1992.

[Marek et al., 1992] V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmel. How
complicated is the set of stable models of a recursive logic program? Annals
of Pure and Applied Logic, 56(1-3):119–135, 1992.

[Matiyasevich, 1970] Yuri Matiyasevich. Enumerable sets are diophantine. Dok-
lady Akademii Nauk SSSR, 191:279–282, 1970. In Russian. English Translation
in: Soviet Mathematical Doklady 11, 354-357.

[Minker, 1988] Jack Minker, editor. Foundations of Deductive Databases and
Logic Programming. Morgan Kaufmann Publishers, Inc., Washington DC,
1988.

[Minker, 1994] Jack Minker. Overview of Disjunctive Logic Programming. An-
nals of Mathematics and Artificial Intelligence, 12:1–24, 1994.

[Naqvi and Tsur, 1989] Shamim Naqvi and Shalom Tsur. A logical language for
data and knowledge bases. Computer Science Press, Inc., New York, NY, USA,
1989.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[Przymusinski, 1988] Teodor C. Przymusinski. On the Declarative Semantics of
Deductive Databases and Logic Programs. In Jack Minker, editor, Founda-
tions of Deductive Databases and Logic Programming, pages 193–216. Mor-
gan Kaufmann Publishers, Inc., 1988.

[Radziszowski, 1994] Stanislaw P. Radziszowski. Small Ramsey Numbers. The
Electronic Journal of Combinatorics, 1, 1994. Revision 9: July 15, 2002.

BIBLIOGRAPHY 107

[Ross, 1989] Kenneth A. Ross. The Well-Founded Semantics for Disjunctive
Logic Programs. In Won Kim, Jean-Marie Nicolas, and Shojiro Nishio, ed-
itors, Deductive and Object-Oriented Databases, pages 385–402. Elsevier Sci-
ence Publishers B. V., 1989.

[Schlipf, 1995] John S. Schlipf. The Expressive Powers of Logic Programming
Semantics. Journal of Computer and System Sciences, 51(1):64–86, 1995.
Abstract in Proc. PODS 90, pp. 196–204.

[Schreye and Decorte, 1994] Danny De Schreye and Stefaan Decorte. Termina-
tion of Logic Programs: The Never-Ending Story. Journal of Logic Program-
ming, 19/20:199–260, 1994.

[Simkus and Eiter, 2007] Mantas Simkus and Thomas Eiter. FDNC: Decidable
Non-monotonic Disjunctive Logic Programs with Function Symbols. In Pro-
ceedings of the 14th International Conference on Logic for Programming, Arti-
ficial Intelligence, and Reasoning (LPAR2007), volume 4790 of Lecture Notes
in Computer Science, pages 514–530. Springer, 2007.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Ex-
tending and Implementing the Stable Model Semantics. Artificial Intelligence,
138:181–234, June 2002.

[Subrahmanian et al., 1995] V.S. Subrahmanian, Dana Nau, and Carlo Vago.
WFS + Branch and Bound = Stable Models. IEEE Transactions on Knowl-
edge and Data Engineering, 7(3):362–377, June 1995.

[Syrjänen, 2001] Tommi Syrjänen. Omega-restricted logic programs. In Pro-
ceedings of the 6th International Conference on Logic Programming and Non-
monotonic Reasoning, Vienna, Austria, September 2001. Springer-Verlag.

[Tärnlund, 1977] Sten-Åke Tärnlund. Horn Clause Computability. BIT Numeri-
cal Mathematics, 17(2):215–226, 1977.

[Tarski, 1955] Alfred Tarski. A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific J. Math, 5:285–309, 1955.

[Ullman, 1989] Jeffrey D. Ullman. Principles of Database and Knowledge Base
Systems, volume 2. Computer Science Press, 1989.

BIBLIOGRAPHY 108

[Van Emden and Kowalski, 1976] Maarten H. Van Emden and Robert A. Kowal-
ski. The Semantics of Predicate Logic as a Programming Language. Journal
of the ACM, 23(4):733–742, 1976.

[Van Gelder et al., 1988] Allen Van Gelder, Kenneth A. Ross, and John S.
Schlipf. Unfounded Sets and Well-Founded Semantics for General Logic Pro-
grams. In Proceedings of the Seventh Symposium on Principles of Database
Systems (PODS’88), pages 221–230, 1988.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth A. Ross, and John S.
Schlipf. The Well-Founded Semantics for General Logic Programs. Journal of
the ACM, 38(3):620–650, 1991.

[Van Gelder, 1988] Allen Van Gelder. Negation as Failure Using Tight Deriva-
tions for General Logic Programs. In Minker [1988], pages 1149–1176.

[Wolfinger, 1994] Bernd Wolfinger, editor. Workshop: Disjunctive Logic Pro-
gramming and Disjunctive Databases, Berlin, August 1994. German Society
for Computer Science (GI), Springer. 13th IFIP World Computer Congress,
Hamburg, Germany.

Appendix A

Further Examples of Finitely
Ground Programs

A.1 A Finitely Ground Program Simulating a Tur-
ing Machine

We next show how a Turing Machine can be encoded by a suitable DLP program
simulating its computation. It is worth noting that this encoding is actually exe-
cutable; it is available for download at [Calimeri et al., since 2008], together with
the system prototype.

Let M be a Turing Machine given by the 4-uple 〈K, Σ, δ, s0〉([Papadimitriou,
1994]), where K is a finite set of states, s0 ∈ K is the initial state, Σ is a finite
set of symbols constituting the alphabet (with t /∈ Σ standing for the blank sym-
bol), and δ : K × Σ → K × Σ × {l, r, λ} is the transition function describing
the behavior of the machine. Given the current state and the current symbol, δ

specifies the next state, the symbol to be overwritten on the current one, and the
direction in which the cursor will move on the tape (l, r, λ standing for left, right,
stay, respectively). Besides the initial state, there is another special state, which
is called final state; the machine halts if the machine reaches this state at some
point. Each configuration of M can be encoded in a program PM by means of the
following predicates.

• tape(P, Sym, T): the tape position P stores the symbol Sym at time step T .
For each time step, there is an instance of such predicate for every actually
used position of the tape.

• position(P, T): the head of M reads the position P on tape at time step T .

109

Appendix A. Further Examples of Finitely Ground Programs 110

position has a single true ground instance for each time step.

• state(St, T): at time step T M is in the state St. state has a single true
ground instance for each time step.

PM encodes the transition function δ in the following way: For each Stc, Symc,
Stn, Symn, D, such that δ(Stc, Symc) = (Stn, Symn, D) we add to PM a fact
of the form delta(Stc, Symc, Stn, Symn, D). The initial input is encoded by a
proper set of facts describing all tape positions at the first time step (facts of the
form tape(P, Sym, 0)), a fact of the form state(s0, 0), and a fact of the form
position(P, 0) where P is the initial position of the head. The rules defining
the evolution of the machine configurations are reported next. For the sake of
readability, we exploit some comparison built-ins, that could be easily simulated
by means of suitable predicates.

(r1) position(P, s(T)) :- position(s(P), T), state(St, T),

tape(s(P), Sym, T), delta(St, Sym, , , l).

(r2) position(s(P), s(T)) :- position(P, T), state(St, T),

tape(P, Sym, T), delta(St, Sym, , , r).

(r3) position(P, s(T)) :- position(P, T), state(St, T),

tape(P, Sym, T), delta(St, Sym, , , λ).

(r4) state(St1, s(T)) :- position(P, T), state(St, T),

tape(P, Sym, T), delta(St, Sym, St1, ,).

(r5) tape(P, Sym1, s(T)) :- position(P, T), state(St, T),

tape(P, Sym, T), delta(St, Sym, , Sym1,).

(r6) tape(P, Sym, s(T)) :- position(P1, T), tape(P, Sym, T), P 6= P1.

(r7) tape(P,t, T) :- position(P, T), lastUsedPos(L, T), P > L.

(r8) lastUsedPos(L, s(T)) :- lastUsedPos(L, T), position(P, T), P ≤ L.

(r9) lastUsedPos(P, s(T)) :- lastUsedPos(L, T), position(P, T), P > L.

First three rules encode how the tape position changes according to the tran-
sition function; the fourth updates the state. Rule r5 updates, for each time step,
the current tape position with the new symbol to be stored, with rule r6 stating
that all other positions remain unchanged. Rules r7, r8, r9 allow to manage the
semi-infinite tape. Indeed, the whole tape is not explicitly encoded; rather, each
tape position is initialized with a blank symbol when reached for the first time
(moving right, the tape being limited at left).

Given a valid tape x encoded by means of a set X of facts having the form
tape(p, s, 0), one can show that the computation of (PM ∪ X)γ follows in one-
to-one correspondence the computation of M on the tape x. γ is unique and

Appendix A. Further Examples of Finitely Ground Programs 111

contains a single component C having a corresponding module M . We have that
S0 = EDB(PM), and S1 = S0 ∪ Φ∞

M,S0
(∅). Let Φ(t) = Φt

M,S0
(∅). Then, the

value of Φ(t) directly corresponds to the step t of M . It is easy to note that, at step
t + 1, Φ(t + 1) can be larger than Φ(t) only if, at step t, Φ(t) contains an atom
state(st, t) for st not a final state. In such a case by means of rules r1 through r5,
new atoms of form position(p, sym, t + 1), state(st, t + 1), tape(p, sym, t + 1)

are added to Φ(t + 1).

A.2 Towers of Hanoi Example

We report next an FG program encoding the famous Towers of Hanoi puzzle.
This program, as well as other examples, is available online at [Calimeri et al.,
since 2008].

% ——————————————- begin of logic program ——————————————-

#include 〈ListAndSet〉

%—— initial settings ——
number of moves(15).
largest disc(4).
initial state(towers([4, 3, 2, 1], [], [])).
goal(towers([], [], [4, 3, 2, 1])).
disc(X) :- largest disc(X).
disc(X) :- disc(#succ(X)), X! = 0.
legalStack([]).
legalStack([T]) :- disc(T).
legalStack([T |[T1|S]]) :- legalStack([T1|S]), disc(T), T > T1.

% —— possible states ——
possible state(0, towers(S1, S2, S3)) :- initial state(towers(S1, S2, S3)).
possible state(I, towers(S1, S2, S3)) :- possible move(I, , towers(S1, S2, S3)),

legalStack(S1), legalStack(S2), legalStack(S3).

% —— possible moves ——
% from stack one to stack two.
possible move(#succ(I), towers([X|S1], S2, S3), towers(S1, [X|S2], S3)) :-

possible state(I, towers([X|S1], S2, S3)),
legalMoveNumber(I), legalStack([X|S2]).

% from stack one to stack three.
possible move(#succ(I), towers([X|S1], S2, S3), towers(S1, S2, [X|S3])) :-

possible state(I, towers([X|S1], S2, S3)),
legalMoveNumber(I), legalStack([X|S3]).

% from stack two to stack one.
possible move(#succ(I), towers(S1, [X|S2], S3), towers([X|S1], S2, S3)) :-

Appendix A. Further Examples of Finitely Ground Programs 112

possible state(I, towers(S1, [X|S2], S3)),
legalMoveNumber(I), legalStack([X|S1]).

% from stack two to stack three.
possible move(#succ(I), towers(S1, [X|S2], S3), towers(S1, S2, [X|S3])) :-

possible state(I, towers(S1, [X|S2], S3)),
legalMoveNumber(I), legalStack([X|S3]).

% from stack three to stack one.
possible move(#succ(I), towers(S1, S2, [X|S3]), towers([X|S1], S2, S3)) :-

possible state(I, towers(S1, S2, [X|S3])),
legalMoveNumber(I), legalStack([X|S1]).

% from stack three to stack two.
possible move(#succ(I), towers(S1, S2, [X|S3]), towers(S1, [X|S2], S3)) :-

possible state(I, towers(S1, S2, [X|S3])),
legalMoveNumber(I), legalStack([X|S2]).

%—— actual moves ——
% a solution exists if and only if there is a ‘possible move′ leading to the goal.
% in this case, starting from the goal, we proceed backward to the initial state to single out the full
% set of moves.
move(I, towers(S1, S2, S3)) :- goal(towers(S1, S2, S3)),

possible state(I, towers(S1, S2, S3)).
move(I, towers(S1, S2, S3)) ∨ nomove(I, towers(S1, S2, S3)) :-

move(#succ(I), towers(A1, A2, A3)),
possible move(#succ(I), towers(S1, S2, S3), towers(A1, A2, A3)).

%—— precisely one move at each step ——
moveStepI(I) :- move(I,).
:- legalMoveNumber(I), not moveStepI(I).
:- legalMoveNumber(I), move(I, T1), move(I, T2), T1! = T2.
legalMoveNumber(0).
legalMoveNumber(#succ(I)) :- legalMoveNumber(I), number of moves(J), I < J.

% ——————————————— end of logic program ———————————————

By invoking the system at the command line as follows:

$ 〈DLV ∗ executable〉 〈programfilename〉 −fdnocheck −N = 15 −filter = move

the next (unique) answer set is output:

{ move(15, towers([], [], [4, 3, 2, 1])),move(14, towers([], [4], [3, 2, 1])),
move(13, towers([3], [4], [2, 1])),move(12, towers([4, 3], [], [2, 1])),
move(11, towers([4, 3], [2], [1])),move(10, towers([3], [2], [4, 1])),
move(9, towers([], [3, 2], [4, 1])), move(8, towers([], [4, 3, 2], [1])),
move(7, towers([1], [4, 3, 2], [])), move(6, towers([4, 1], [3, 2], [])),
move(5, towers([4, 1], [2], [3])),move(4, towers([1], [2], [4, 3])),
move(3, towers([2, 1], [], [4, 3])), move(2, towers([2, 1], [4], [3])),
move(1, towers([3, 2, 1], [4], [])), move(0, towers([4, 3, 2, 1], [], [])) }

Appendix B

VI-restrictedness Recognizing
Algorithm

B.1 The Recognizer Algorithm

We next show an algorithm for recognizing if a program admitting external pred-
icate is VI-restricted. Several comment lines (i.e. text preceded by the ‘%’ sign)
are inserted in the pseudo code implementing the algorithm, in order to explain
both variables usage and crucial steps performed. The algorithm exploits some
auxiliary functions having a quite evident meaning and whose implementation
is straightforward. Conversely, a very relevant role is played by the ‘isBlocked’
function, explained in more details in Appendix B.2.

Bool Function recognizer (var SA: Set{ Attr };
% SA is initialized with provable savior attributes
% (i.e. attributes that do not depend from
% dangerous attributes.

var NSA: Set{ pair〈 Attr, Set{ Attr } 〉 };
% NSA is initialized with attributes which cannot be
% proven to be savior, each of which is associated with the
% set of dangerous attributes that prevent them to be savior.

var RTBC : Set{ Rule }) % Set of dangerous rules to check.
Bool NSA Updated = true;
While (NSA Updated) do % Try to prove VI-restriction when some change occurs.

NSA Updated = false;
For each Rule r ∈ RTBC do % free(r) = free variables appearing in the rule r.

Set{Var} varsTBC = free(r);
Bool allBlocked = true;
For each Var v ∈ varsTBC do

% isBlocked tells if v is blocked in r by means of attributes
% currently in SA.
If (isBlocked(v, r, SA)) then

113

Appendix B. An Algorithm Recognizing VI-restricted Programs 114

% headAttr returns reference to the head attribute of r
% containing v.
Attr p[i] = headAttr(v, r);
% update processes the NSA set, deleting p[i] from each set S.
% such that p[i] ∈ S and 〈q[j], S〉 ∈ NSA.
% Then each attribute q[j] such that 〈q[j], S〉 ∈ NSA
% and S = ∅ is moved from NSA to SA.
update(NSA, SA, p[i]);
% A change occurred, so we have to continue cycling.
NSA Updated = true;

Else % At least one free variable can’t be proved as blocked.
allBlocked = false;

EndIf
EndFor
If (allBlocked) then

RTBC.delete(r); % r is VI-restricted: can be deleted from RTBC.
EndIf

EndFor
EndWhile
If (RTBC == ∅) then

Return true
Else % Display the set of rules that can’t be proved as VI-restricted.

printINSAne(RTBC)
Return false

EndIf
EndFunction

B.2 The IsBlocked Algorithm

Briefly, recalling Definition 5.20, it is enough to find at least an external atom in
the body of the given rule such that the variable appears in output position and all
the variables in input position are blocked.

Bool Function isBlocked (v: Var; % The variable to be checked as blocked.
r: Rule; % Current rule.
SA: Set{ Attr }) % Savior attributes.

% The set of all external predicate atoms in the positive body,
% including the free variable v.
Set{External Atom} EAS = externalAtomsWithFreeVar(r, v);
Bool isB = false;
External Atom #b = EAS.first();
% At least one external predicate must have all of its input variables blocked.
While (!isB && #b 6= EAS.end()) do

% The set of input variables for the current external predicate.
Set{ Var } inputV arsTBC = inputPatternVars(#b);
Bool allV arsBlocked = true;
Var currInputV ar = inputV arsTBC.first();

Appendix B. An Algorithm Recognizing VI-restricted Programs 115

% Check savior property for all variables included in inputV arsTBC.
While (allV arsBlocked && currInputV ar 6= inputV arsTBC.end()) do

% All the attributes of standard positive atom in the rule,
% having as variable currInputV ar.
Set{ Attr } potentiallySavior =

attrsWithVar(currInputV ar, r);
Bool saviorAttrFound = false;
Attr currAttr = potentiallySavior.first();
% One savior attribute is sufficient.
While (!saviorAttrFound &&

currAttr 6= potentiallySavior.end()) do
If (currAttr ∈ SA) then

saviorAttrFound = true;
Else

currAttr = potentiallySavior.next();
EndIf

EndWhile
If (saviorAttrFound) then

% Check the next input variable.
currInputV ar = inputV arsTBC.next();

Else
% This input variable is currently not blocked.
allV arsBlocked = false;

EndIf
EndWhile
If (allV arsBlocked) then

% An external predicate atom having
% all its input variables blocked has been found.
isB = true;

Else
% Try the next external atom including the free variable v.
#b = EAS.next();

EndIf
EndWhile
return isB;

EndFunction

Appendix C

Lists and Sets Manipulation Library

C.1 List Functions

#append
Meaning: return the list resulting from the concatenation of the elements of two
lists
Example: #append([a,b,c],[f,m]) results to [a,b,c,f,m]

#delete
Meaning: return the list obtained deleting all occurrences of an element in a list
Example: #delete(b,[a,b,c,b,e]) results to [a,c,e]

#delNth
Meaning: return the list obtained deleting an element in a specified position in a
list
Example: #delNth([a,b,c,b,e],3) results to [a,b,b,e]

#head
Meaning: return the first element in a list
Example: #head([a,b,c,b,e]) results to a

#insLast
Meaning: return the list obtained inserting an element as last in a list
Example: #insLast([a,b,c,b,e],3) results to [a,b,b,e]

#insNth

116

Appendix C. Lists and Sets Manipulation Library 117

Meaning: return the list obtained inserting an element in a specified position in
a list
Example: #insNth([a,b,c,h,e],s,2) results to [a,s,b,c,h,e]

#last
Meaning: return the last element of a list
Example: #last([a,b,c]) results to c

#length
Meaning: return the number of elements of a list
Example: #length([a,b,c]) results to 3

#memberNth
Meaning: return the element in the specified position in a list
Example: #memberNth([a,b,c,h,e],3) results to c

#reverse
Meaning: return the list obtained reversing the order of the elements in a lists
Example: #reverse([a,b,c,h,e]) results to [e,h,c,b,a]

#select
Meaning: return the list obtained after selection of the first occurrence of an ele-
ment in a list
Example: #select(b,[a,b,c,b,e]) results to [a,c,b,e]

#tail
Meaning: return the list obtained after deletion of its first element
Example: #tail([a,b,c,h,e]) results to [b,c,h,e]

C.2 Set Functions

#card
Meaning: return the number of elements of a set
Example: #card({a,b,c}) results to 3

#delete

Appendix C. Lists and Sets Manipulation Library 118

Meaning: return the set obtained deleting an element from a set
Example: #delete({a,r,t},r) results to {a,t}

#difference
Meaning: return the set resulting from the difference between two sets
Example: #difference({a,r,t},{f,r,s}) results to {a,t}

#insert
Meaning: return the set obtained inserting an element into a set
Example: #insert({a,b,c,e,h},d) results to {a,b,c,d,e,h}

#intersection
Meaning: return the set resulting from the intersection of two sets
Example: #intersection({a,r,t},{f,r,s}) results to {r}

#union
Meaning: return the set resulting from the union of two sets
Example: #union({a,r,t},{f,r,s}) results to {a,f,r,s,t}

C.3 List Predicates

#member
Meaning: is true if the first argument is a member of the list given as second
argument
Example: #member(c,[a,b,c]) is valuated as true

#sublist
Meaning: is true if the first argument is a sublist of the second argument
Example: #sublist([c,b],[a,b,c,b,e]) is valuated as true

C.4 Set Predicates

#isEmpty
Meaning: is true if the argument is an empty set

Appendix C. Lists and Sets Manipulation Library 119

Example: #isEmpty({}) is valuated as true

#member
Meaning: is true if the first argument is a member of the set given as second
argument
Example: #member(c,{a,b,c}) is valuated as true

#subset
Meaning: is true if the first argument is a subset of the second argument
Example: #subset({a,c},{a,b,c,b,e}) is valuated as true

