
Università degli Studi della Calabria

Dipartimento di Matematica

Dottorato di Ricerca in Matematica ed Informatica

XX Ciclo

———————————————————————————————
Settore Disciplinare INF/01 INFORMATICA

Tesi di Dottorato

DLVDB

An ASP System for Data Intensive Applications

Claudio Panetta

Supervisori Coordinatore

Prof. Nicola Leone Prof. Nicola Leone

Dott. Giorgio Terracina

———————————————————————————————
Anno Accademico 2007 - 2008

DLVDB

An ASP System for Data Intensive Applications

Ph.D. Thesis

Claudio Panetta

Sommario

La rapida crescita di sistemi informatici derivanti dalle diverse applicazioni cui Internet si presta,
ha rapidamente aumentato la quantità di dati e di informazioni disponibili per l’elaborazione. In
particolare, l’affermarsi del commercio elettronico, il diffondersi di sistemi per l’e-government
delle pubbliche amministrazioni, l’ormai avviato processo di digitalizzazioni degli archivi e dei
documenti in essi contenuti, la disponibilità di database medici sempre più completi e ricchi di
informazioni e, più in generale, il sempre maggiore utilizzo dei sistemi informatici per la gestione
strutturata di grandi quantità di dati hanno evidenziato l’urgenza di sviluppare nuove tecnologie
che consentano di elaborare automaticamente ed efficientemente la quantità di dati derivante da
questi settori emergenti.

Uno degli utilizzi principali dei sistemi di basi di dati (DBMS) consiste nella memorizzazione
e nel recupero efficiente di grandi quantità di dati. L’elaborazione di tali informazioni, special-
mente quella finalizzata all’estrazione di nuova conoscenza, è ormai riconosciuta come una te-
matica di ricerca di fondamentale importanza sia nell’ambito delle basi di dati, sia nell’ambito
della ricerca industriale, in quanto offre grandi opportunità di sviluppo. In tale scenario, appli-
cazioni come “Data Mining”, “Data Werehousing” e “Online Analytical Processing (OLAP)”
hanno ulteriormente evidenziato la necessità di sviluppare sistemi di basi di dati che supportino
linguaggi maggiormente espressivi, in grado di consentire elaborazioni sempre più raffinate delle
informazioni contenute nei Database. Il complesso di tali esigenze ha portato alla definizione
di diverse estensioni per i modelli di rappresentazione dei dati (Modelli Relazionali basati sul
concetto degli Oggetti), nonché alla definizione di nuovi costrutti sintattici (ricorsione e costrutti
OLAP), ed all’estenzione dei DBMS (DataBase Management Systems) con linguaggi di pro-
grammazione di alto livello, basati su UDF (User Defined Functions).

Purtroppo, però anche i migliori sistemi di basi di dati attualmente in commercio non sono
sufficientemente potenti e generali da poter essere efficacemente utilizzati per risolvere molte
delle emergenti applicazioni. In generale, gli attuali DBMS non contengono i meccanismi di
ragionamento necessari per estrarre conoscenza complessa dai dati disponibili. Tali meccanismi,
dovrebbero essere in grado sia di gestire grandi quantità di informazioni, sia di realizzare sofisti-
cati processi di inferenza sui dati per trarne nuove conclusioni.

Le capacità di ragionamento necessarie a tale scopo possono essere fornite dai sistemi basati
su linguaggi logici. La Programmazione Logica Disgiuntiva (DLP) è un formalismo che consente
di rappresentare, in maniera semplice e naturale, forme di ragionamento non monotono, planning,
problemi diagnostici e, più in generale, problemi di elevata complessità computazionale. In DLP,
un programma è una collezione di regole logiche in cui è consentito l’uso della disgiunzione nella
testa delle regole e la negazione nel corpo. Una delle possibili semantiche per tali programmi è
basata sulla nozione di modello stabile (answer set). Ad ogni programma viene associato un
insieme di answer set, ognuno corrispondente ad una possibile visione del dominio modellato.

i

La DLP sotto tale semantica viene comunemente riferita con il termine di Answer Set Program-
ming (ASP). Il recente sviluppo di efficienti sistemi basati sulla programmazione logica come
DLV [80], Smodels [101], XSB [114], ASSAT [84, 86], Cmodels [62, 61], CLASP [56], etc., ha
rinnovato l’interesse nei campi del ragionamento non-monotono e della programmazione logica
dichiarativa per la risoluzione di molti problemi in differenti aree applicative. Conseguentemente,
tali sistemi possono fornire le funzionalità di inferenza e ragionamento richieste dalle nuove aree
di applicazione che interessano i sistemi di basi di dati.

Tuttavia, i sistemi basati sulla programmazione logica presentano notevoli limitazioni nella
gestione di grandi quantità di dati non essendo dotati dell’opportuna tecnologia per rendere effi-
ciente la loro gestione poiché eseguono le loro elaborazioni facendo uso di strutture dati gestite
direttamente in memoria centrale. Inoltre, la maggior parte delle applicazioni di interesse comune
coinvolge grandi moli di dati su cui applicare complessi algoritmi di inferenza logica difficilmente
elaborabili sia dai sistemi di programmazione logica, sia dai tradizionali database.

Queste considerazioni mettono in evidenza la necessità di tecniche efficienti ed efficaci che
combinino le qualità dei sistemi di inferenza logica con quelle dei sistemi di gestione delle basi
di dati. In letteratura, le proposte di soluzione a tale problema sono culminate nei Sistemi di Basi
di Dati Deduttive (DDS) [25, 52, 23, 63], che combinano le due realtà dei sistemi logici e dei
DBMS. In pratica, i DDS sono il risultato di una serie di tentativi di adattare i sistemi logici,
che hanno una visione del mondo basata su pochi dati, ad applicazioni su grandi moli di dati
attraverso interazioni intelligenti con le basi di dati. In particolare, i DDS sono forme avanzate
di DBMS i cui linguaggi di interrogazione, basati sulla logica, sono molto espressivi. I DDS
non memorizzano solo le informazioni esplicite in un database relazionale, ma memorizzano
anche regole che consentono inferenze deduttive sui dati memorizzati. L’uso congiunto di tec-
niche sviluppate nell’ambito delle basi di dati relazionali con quelle della programmazione logica
dichiarativa, consente in linea di principio ai DDS di realizzare ragionamenti complessi su grandi
quantità di dati.

Tuttavia, nonostante le loro potenzialità lo sviluppo di sistemi DDS a livello industriale non
ha ricevuto molta attenzione. Ciò principalmente è stato dovuto al fatto che è estremamente com-
plesso ottenere sistemi particolarmente efficienti ed efficaci; infatti, le attuali implementazioni di
DDS sono basate su due approcci estremi: uno basato sul miglioramento dell’elaborazione dei
dati da parte dei sistemi logici, l’altro basato sull’aggiunta di capacità di ragionamento ai DBMS
(ad esempio tramite l’uso di SQL99, o di funzioni esterne). Entrambi tali approcci presentano
limitazioni importanti. In particolare, i DDS basati sulla logica possono gestire una quantità limi-
tata di dati, dal momento che, gli attuali sistemi logici eseguono i loro ragionamenti direttamente
in memoria centrale; inoltre, essi forniscono interoperabilità limitate con DBMS esterni. Al con-
trario, i DDS basati sui database offrono funzionalità avanzate di gestione dei dati, ma scarse
capacità di ragionamento (sia a causa della poca espressività dei linguaggi di interrogazione, sia
a causa di problemi di efficienza).

Riassumendo, possiamo affermare che:

• Gli attuali sistemi di basi di dati implementano moduli sufficientemente robusti e flessibili
capaci di gestire grandi quantità di dati, ma non possiedono un linguaggio sufficientemente
espressivo da consentire ragionamenti complessi su questi dati.

• I sistemi basati sulla programmazione logica, possiedono elevate capacità di ragionamento
e sono in grado di modellare e risolvere con facilità problemi di elevata complessità ma
presentano notevoli limitazioni nella gestione di grandi quantità di dati poiché eseguono le
loro elaborazioni facendo uso di strutture dati gestite direttamente in memoria centrale.

ii

• I sistemi di basi di dati deduttive consentono di gestire i dati memorizzati su DBMS, ma,
dal momento che, eseguono i loro ragionamenti direttamente in memoria centrale, possono
gestire una quantità limitata di dati;

Dalle precedenti osservazioni, si evidenzia la necessità di realizzare applicazioni che combinino
il potere espressivo dei sistemi di programmazione logica con l’efficiente gestione dei dati tipica
dei database.

Il contributo di questa tesi si colloca nell’area della ricerca sulle basi di dati deduttive con
l’obiettivo di colmare il divario esistente tra sistemi logici e DBMS. In questa tesi viene descritto
un nuovo sistema, DLVDB, che ha la caratteristica di possedere le capacità di elaborazione dati
desiderabili da un DDS ma di supportare anche le funzionalità di ragionamento più avanzate dei
sistemi basati sulla programmazione logica disgiuntiva.

DLVDB è stato progettato come estensione del sistema DLV e combina l’esperienza matu-
rata nell’ambito del progetto DLV nell’ottimizzare programmi logici con le avanzate capacità di
gestione dei dati implementate nei DBMS esistenti. Ciò consente di applicare tale sistema in
ambiti che necessitano sia di valutare programmi complessi, sia di lavorare su grandi quantità di
dati. DLVDB è in grado di fornire, cosı̀ sostanziali miglioramenti sia nelle prestazioni relative
alla valutazione dei programmi logici, sia nella facilità di gestione dei dati di input e di output
possibilmente distribuiti su più database. L’interazione con le basi di dati è realizzata per mezzo
di connessioni ODBC che consentono di gestire in modo piuttosto semplice dati distribuiti su vari
database in rete. DLVDB consente di applicare diverse tecniche di ottimizzazione sviluppate sia
nell’ambito dei sistemi logici, come ad esempio i magic set, sia nell’ambito della gestione delle
basi di dati, come ad esempio tecniche di join ordering, inoltre sono stati integrati nel sistema
i predicati per l’aggregazione di DLV (count, min, max, avg, sum) che avvicinano il linguaggio
alle potenzialità di SQL, ma anche la possibilità di integrare nel programma logico, per natura
dichiarativo, chiamate a funzioni esterne sviluppate con tecniche procedurali; ciò rende possibile
integrare aspetti dichiarativi ed aspetti procedurali di un problema in un’unica framework. In-
fine, per consentire la gestione di tipi di dati con strutture ricorsive (es. XML) si è introdotta la
possibilità di gestire liste di elementi, eventualmente innestate, nel programma logico.

Inoltre in questa tesi viene presentata l’attività di analisi di tipo sperimentale effettuata al fine
di valutare le prestazioni di DLVDB, soprattutto in riferimento a velocità di esecuzione di query e
quantità di dati gestibili. Questi test hanno dimostrato come il sistema apporta numerosi vantaggi
rispetto ai sistemi esistenti, sia in termini di tempi di esecuzione delle query, sia in termini di
quantità di dati che esso riesce a gestire contemporaneamente.

In sintesi, i contributi di questo lavoro possono essere riassunti come segue:

• Sviluppo di un sistema in grado di fondere il potere espressivo dei sistemi ASP con l’efficiente
gestione dei dati offerta dagli attuali Database;

• Sviluppo di una strategia di valutazione dei programmi logici in grado di minimizzare
l’utilizzo della memoria centrale massimizzando l’utilizzo delle tecnologie implementate
dai DBMS;

• Estensione del linguaggio DLP mediante l’introduzione di chiamate a funzioni esterne e il
supporto a tipi di dati con strutture ricorsive come le liste;

• Realizzazione di un’analisi comparativa tra le prestazioni offerte da DLVDB e le prestazioni
dei sistemi esistenti.

iii

Contents

1 Introduction 1
1.1 Objectives and contributions . 3
1.2 Plan of the work . 4

2 Disjunctive Datalog 5
2.1 Syntax . 5
2.2 Answer Set Semantics . 7
2.3 Knowledge Representation and Reasoning . 9

2.3.1 The Guess and Check Programming Methodology 10
2.3.2 Applications of the Guess and Check Technique 11
2.3.3 Enhanced KRR Capabilities by Function Symbols 13

3 Comparisons to other Systems 14
3.1 Declarative computational logic systems . 14

3.1.1 Relevant features of computational logic systems 16
3.1.2 Language expressiveness . 17
3.1.3 Efficiency issues . 17

3.2 Deductive database systems . 18
3.2.1 LDL++ . 18
3.2.2 NAIL! . 19
3.2.3 POSTGRES . 21

3.3 Answer set programming systems . 21
3.3.1 DLV . 22
3.3.2 SMODELS . 24
3.3.3 Cmodels . 26
3.3.4 ASSAT . 27
3.3.5 noMoRe . 27
3.3.6 SLG . 28
3.3.7 DeReS . 29
3.3.8 XSB . 29
3.3.9 claspD . 30
3.3.10 Other systems . 30

4 DLVDB - Main Features 37
4.1 Introduction . 37
4.2 Auxiliary directives . 39

iv

Contents

5 DLVDB - Implementation Principles 43
5.1 System Architecture . 43
5.2 Evaluation Strategy . 45

5.2.1 Evaluation of non disjunctive stratified programs 45
5.2.2 Evaluation of disjunctive programs with unstratified negation 45

5.3 Enhanced Semi-Naive method for evaluating recursive rules 50
5.4 From DLP to SQL . 53

6 Applications 62
6.1 Application to deductive databases . 62
6.2 Application to data integration . 64
6.3 Application to RDF(S) ontology querying . 65

7 Benchmarks 69
7.1 Testing on normal stratified programs with recursion 69

7.1.1 Overview of Compared Systems . 69
7.1.2 Benchmark Problems . 72
7.1.3 Benchmark Data Sets . 73
7.1.4 Results and Discussion . 73

7.2 Testing on a real data integration setting . 82
7.2.1 Overview of compared systems . 82
7.2.2 Tested queries . 82
7.2.3 Results and discussion . 83

7.3 Testing on querying of RDF(S) ontologies . 83
7.3.1 Compared Systems . 83
7.3.2 Benchmark Data Set . 85
7.3.3 Tested Queries . 86
7.3.4 Results and Discussion . 88

7.4 Testing on a combinatorial problem . 91
7.5 Testing on data transformation problems . 91
7.6 Testing on string similarity computation . 91

8 Conclusions 100

A Encodings 102
A.1 Testing on normal stratified programs with recursion 102

A.1.1 Encodings of Reachability . 102
A.1.2 Encodings of Same Generation . 104

A.2 Testing on a real data integration setting . 105
A.2.1 Encodings for query IQ1 . 105
A.2.2 Encodings for query IQ2 . 108
A.2.3 Encodings for query IQ3 . 111
A.2.4 Encodings for query IQ4 . 116

A.3 Testing on querying of DBLP ontology . 123
A.3.1 Encodings for query OQ1 . 123
A.3.2 Encodings for query OQ2 . 124

v

Contents

A.3.3 Encodings for query OQ3 . 125
A.3.4 Encodings for query OQ4 . 126
A.3.5 Encodings for query OQ5 . 126

A.4 Testing on querying of LUBM ontology . 127
A.4.1 Encodings for query OQ6 (LUBM-Query1) 127
A.4.2 Encodings for query OQ7 (LUBM-Query2) 128
A.4.3 Encodings for query OQ8 (LUBM-Query3) 129
A.4.4 Encodings for query OQ9 (LUBM-Query4) 130
A.4.5 Encodings for query OQ10 (LUBM-Query5) 131
A.4.6 Encodings for query OQ11 (LUBM-Query6) 132
A.4.7 Encodings for query OQ12 (LUBM-Query7) 132
A.4.8 Encodings for query OQ13 (LUBM-Query8) 134
A.4.9 Encodings for query OQ14 (LUBM-Query9) 135
A.4.10 Encodings for query OQ15 (LUBM-Query14) 136
A.4.11 Encodings for query OQ16 . 137
A.4.12 Encodings for query OQ17 . 138

A.5 Testing on a combinatorial problem . 138
A.5.1 Encodings for query FastFoods . 138

A.6 Testing on data transformation problems . 139
A.6.1 Encodings for query Int2Bin . 139

A.7 Testing on string similarity computation . 140
A.7.1 Encodings for query HammingDistances 140

Bibliography 142

vi

Chapter 1

Introduction

Current capabilities of generating and collecting data are increasing rapidly. The wide-spread use
of internet applications for most commercial activities, the computerization of many business and
government transactions, and the advances in data collection tools have provided us with huge
amounts of data. This explosive growth in data and databases has generated an urgent need for
new techniques and tools that can intelligently and automatically infer useful information and
knowledge from available data.

One of the most fundamental uses of a Database is to store and retrieve information, particu-
larly when there is a large amount of data to be stored. Mining information and knowledge from
large databases has been recognized by many researchers as a key research topic in database sys-
tems and machine learning fields, and by many industrial companies as an important area with
an opportunity of major revenues.

In this scenario, a mounting wave of data intensive and knowledge based applications, such as
Data Mining, Data Warehousing and Online Analytical Processing (OLAP) have created a strong
demand for more powerful database languages and systems. This led to the definition of both
several data model extensions (e.g., the Object Relational model), and new language constructs
(e.g., recursion and OLAP constructs), and various database extenders (based, e.g., on user de-
fined functions), to enhance the current Database Management Systems (DBMSs). A great effort
in this direction has been carried out with the introduction of a new standard for SQL, namely
SQL99 [126] which provides, among other features, support to object oriented databases and
recursive queries. However, the adoption of SQL99 is still far from being a “standard”; in fact
almost all current DBMSs do not fully support it and, in some cases, they adopt proprietary (non
standard) language constructs and functions to implement parts of it. Moreover, the efficiency
of current implementations of SQL99 constructs and their expressiveness are still not sufficient
for performing complex reasoning tasks on huge amounts of data. On the other hand, the explo-
sive growth of new database applications has, in several cases, outpaced the progress made by
database technology.

Knowledge representation and reasoning capabilities required in these contexts could be pro-
vided also by a powerful rule-based formalism like disjunctive logic programming (DLP). Dis-
junctive logic programming under answer set semantics (DLP, ASP) is a powerful rule-based
formalism for knowledge representation and reasoning. The language of DLP is very expressive,
and allows to model also advanced knowledge-based tasks arising in modern application-areas
like, e.g., information integration and knowledge management. The recent development of effi-
cient logic-based systems like DLV [80], Smodels [101], XSB [114], ASSAT [84, 86], Cmodels

1

Chapter 1. Introduction

[62, 61], CLASP [56], etc., has renewed the interest in the area of non-monotonic reasoning and
declarative logic programming for solving real world problems in a number of application areas.
As a consequence, they can provide the powerful reasoning capabilities needed to solve novel
complex database problems. However, as previously pointed out, many of the interesting prob-
lems are “data intensive” and can not be handled in a typical logic programming system working
in main-memory.

Examples of applications that can not be handled neither by traditional databases, due to the
complex reasonings they require, nor by main-memory logic systems, due to the great amount of
involved data, are: the automatic correction of census data [48]; the integration of inconsistent
and incomplete data [79]; the elaboration on Scientific Databases in order to detect molecular
features (e.g., gene functions [103]) or to analyze the medical histories in order to verify the
possible causes of diseases (e.g., radioactivity or genome malformation).

The considerations above put into evidence that efficient and effective data management tech-
niques combining Logic Inference Systems with Database Management Systems, are mandatory.
In particular, there is the need of combining the expressive power of logic-based systems with
the efficient data management features of DBMSs. Indeed, logic-based systems provide an ex-
pressive power that goes far beyond that of SQL99, whereas good DBMSs provide very efficient
query optimization mechanisms allowing to handle massive amounts of data.

In the literature Deductive Database Systems (DDS) have been proposed to combine these
two realities [25, 52, 23, 63]; basically, they are an attempt to adapt typical Datalog systems,
which have a “smalldata” view of the world, to a “largedata” view of the world via intelligent
interactions with some DBMSs. In more detail, DDSs are advanced forms of database man-
agement systems, whose query languages, based on logics, are very expressive. DDSs not only
store explicit information in the manner of a relational database, but they also store rules that
enable deductive inferences based on the stored data. Using techniques developed for relational
systems in conjunction with declarative logic programming, deductive databases are capable of
performing reasoning based on that information.

After an initial enthusiastic period of fervent research on DDSs, motivated by their great
potential, the successive phase of development of practical systems did not receive the expected
attention, mainly because of the high difficulties encountered to obtain efficient and effective
implementations. This led to a period in which deductive databases have been considered “out of
fashion” for many years.

The main limitations of currently existing deductive databases reside both in the fact that
reasoning is still carried out in main-memory – this limits the amount of data that can be handled –
and in the limited interoperability with generic, external, DBMSs they provide. In fact, generally,
these systems are tailored on a specific (either commercial or ad-hoc) DBMS.

However, recently emerging application contexts such as the ones raising from the natural
recursion across nodes in the Internet, or from the success of intrinsically recursive languages
such as XML [141], renewed the interest of the scientific community in the development of
efficient and flexible deductive databases systems [1, 91].

Summarizing:

• Database systems are nowadays robust and flexible enough to efficiently handle large
amounts of data, possibly distributed; however, their query languages are not sufficiently
expressive to support reasoning tasks on such data.

2

Chapter 1. Introduction

• Logic-based systems are endowed with highly expressive languages, allowing them to sup-
port complex reasoning tasks, but they work in main-memory and, hence, can handle lim-
ited amounts of data.

• Deductive database systems allow to access and manage data stored in DBMSs, however
they perform their computations mainly in main-memory and provide limited interoper-
ability with external (and possibly distributed) DBMSs.

1.1 Objectives and contributions

This thesis provides a contribution in the setting outlined above, bridging the gap between logic-
based systems and DBMSs. It presents a new system, named DLVDB, having all the features
of a DDS but supporting also all the features of state-of-the art logic systems. DLVDB allows
substantial improvements in both the evaluation of logic programs and the management, within
an existing logic system, of input and output data distributed on several databases.

DLVDB has been developed as an extension of the well known Answer Set Programming
(ASP) system DLV and combines the experience in optimizing logic programs gained within the
DLV project with the well assessed data management capabilities of existing DBMSs. This makes
it well suited to be applied on both complex and data intensive applications.

The DLVDB system provides a well established infrastructure for the interoperation with
databases and allows the application of several optimization techniques already developed or
under development in the DLV project (such as magic sets [12, 16, 98, 116, 118]). Interoperation
with databases is provided by ODBC connections; these allow to handle, in a quite simple way,
data residing on various databases over the network.

Moreover, the DLVDB system presents an evaluation strategy devoted to carry out as much
as possible of the reasoning tasks in mass memory without degrading performances, thus allow-
ing to deal with data-intensive applications; it exemplifies the usage of DLP for those problems
characterized by both declarative and procedural components, via the usage of external func-
tion calls yet improving efficiency; it extends the expressiveness of DLP for supporting also the
management of recursive data structures (e.g., lists).

We carried out a thorough experimental analysis for comparing the performance of the DLVDB

system, with those of state-of-the-art systems (both logic-based and databases); the analysis is
based on the application of the considered systems in three different contexts:

• Classical deductive problems (see [14, 64]) which, basically, require the execution of re-
cursive queries on different kinds of data sets.

• Querying inconsistent and incomplete data; we exploited a data integration framework
developed in the INFOMIX project (IST-2001-33570) [40] which integrates real data from
a university context.

• Querying RDF(S) ontologies with answer set programming.

These experiments show that DLVDB may provide both important speed ups (in some cases in
order of magnitudes) in the running time and the capability to handle the largest amounts of data.

Summarizing, the overall contributions of this work are the following:

3

Chapter 1. Introduction

• The development of a fully fledged system enhancing in different ways the interactions
between logic-based systems and DBMSs.

• The development of an efficient database-oriented, evaluation strategy for logic programs
allowing to minimize the usage of main-memory and to maximize the advantages of opti-
mization techniques implemented in existing DBMSs.

• Full support to disjunctive datalog with unstratified negation, and aggregate functions.

• Extension of DLP with external function calls, particularly suited for solving inherently
procedural sub-tasks but also for improving knowledge-modelling power.

• Extension of DLP for supporting the management of recursive data structures.

• Primitives to integrate data from different databases.

• The execution of a thorough experimental comparative analysis of the performance of state-
of-the-art systems and DLVDB.

1.2 Plan of the work

The work are organized as follows: in Chapter 2 we recall some background notion which will
be useful throughout the rest of the thesis. In Chapter 3 we present an overview of Declarative
Computational Logic Systems, whereas in Chapter 4 we introduce the main features developed in
DLVDB. In Chapter 5 we describe system architectures and the evaluation strategie implemented
in DLVDB; in Chapter 6 we present three different data-intensive applications, whereas experi-
mental results on these applications are presented in Chapter 7. Finally, in Chapter 8 we draw
some conclusions.

4

Chapter 2

Disjunctive Datalog

Disjunctive Logic Programming (DLP) under the answer set semantics, evolved significantly
during the last decade, and has been recognized as a convenient and powerful method for declar-
ative knowledge representation and reasoning. Several systems supporting DLP have been im-
plemented so far, thereby encouraging a number of applications in several real-world contexts
ranging, e.g., from information integration, to frauds detection, to software configuration, and
many others.

In this chapter we present the Answer Set Programming (ASP) framework based on a Disjunc-
tive Logic Programming (DLP) language extended with aggregates and functions. In particular,
we first define the syntax of this language and its associated semantics, i.e. the Answer Set Se-
mantics. Then, we illustrate the usage of Answer Set Programming as a formalism for knowledge
representation and reasoning.

2.1 Syntax

Following Prolog’s convention, strings starting with uppercase letters denote variables, while
those starting with lower case letters denote constants. In addition, DLVDB also supports positive
integer constants and arbitrary string constants, which are embedded in double quotes. A term is
either a simple term or a list term. A simple term is either a avariable or a constant. A list term
can be defined using the following two forms:

• [t1, . . . , tn] where t1, . . . , tn are terms;

• [h|t] where h (the head of the list) is a term, and t (the tail of the list) is a list term.

An atom is either an ordinary atom, an aggregate atom or an external atom. An ordinary atom is
an expression p(t1, . . .,tn), where p is a predicate of arity n and t1,. . . ,tn are terms; external and
aggregate atom predicate names are conventionally preceded by “#”. External atoms introduce
function call in the program; we assume, by convention, that only the last variable O of an
external atom #f(X1, . . . ,Xn, O) is considered as an output parameter, while all the other
variables must be intended as input for f .

Two special external atoms are reserved for lists manipulation, namely #head(L,H), which
receives a list L and returns its head H , and #tail(L,T), which returns the tali T of L. Actually,
our current implementation imposes some restrictions on the generic definition of list terms. In

5

Chapter 2. Disjunctive Datalog

particular, in [t1, . . . , tn] only (possibly nested lists of) constants are allowed, whereas in [h|t], h
can be either a constant or a variable and t can be only a variable. Note that these restrictions,
coupled with the availability of #head and #tail do not limit language expressiveness.

A set term is either a symbolic set or a ground set. A symbolic set is a pair {Vars : Conj},
where Vars is a list of variables and Conj is a conjunction of standard atoms.1 A ground set is
a set of pairs of the form 〈t :Conj 〉, where t is a list of constants and Conj is a ground (variable
free) conjunction of standard atoms.

An aggregate function is of the form f(S), where S is a set term, and f is an aggregate func-
tion symbol. Intuitively, an aggregate function can be thought of as a (possibly partial) function
mapping multisets of constants to a constant.

An aggregate atom is f(S) ≺ T , where f(S) is an aggregate function, ≺∈ {=, <, ≤, >,≥}
is a predefined comparison operator, and T is a term (variable or constant) referred to as guard.

Example 2.1.1 The following are aggregate atoms, where the latter contains a ground set and
could be a ground instance of the former:

#max{Z : r(Z), a(Z, V)} > Y
#max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

A classical literal l is either an atom p (in this case, it is positive), or a negated atom ¬p (in
this case, it is negative); a negation as failure (NAF) literal � is of the form l or not l, where l is a
classical literal; in the former case � is positive, and in the latter case negative. Given a classical
literal l, its complementary literal ¬l is defined as ¬p if l = p and p if l = ¬p. A set L of literals
is said to be consistent if, for every literal l ∈ L, its complementary literal is not contained in L.

Moreover, DLVDB provides built-in predicates such as the comparative predicates equality,
less-than, and greater-than (=, <, >) and arithmetic predicates like addition or multiplication.
For details, we refer to [45].

A disjunctive rule (rule, for short) r is a formula

a1 ∨ · · · ∨ an :- b1, · · · , bk, not bk+1, · · · , not bm. (2.1)

where a1, . . . , an are standard atoms, b1, · · · , bm are (ordinary, aggregate or external) atoms,
n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨ · · · ∨ an is the head of r, while the conjunction
b1, ..., bk , not bk+1, ..., not bm is the body of r. A rule without head literals (i.e. n = 0) is
usually referred to as an integrity constraint. A rule having precisely one head literal (i.e. n = 1)
is called a normal rule. If the body is empty (i.e. k = m = 0), it is called a fact, and we usually
omit the “:- ” sign.

If r is a rule of form (2.1), then H(r) = {a1, . . ., an} is the set of the literals in the head
and B(r) = B+(r) ∪ B−(r) is the set of the body literals, where B+(r) (the positive body) is
{b1,. . . , bk} and B−(r) (the negative body) is {bk+1, . . . , bm}.

A disjunctive datalog program (alternatively, disjunctive logic program, disjunctive deductive
database) P is a finite set of rules. A not-free program P (i.e., such that ∀r ∈ P : B−(r) = ∅)
is called positive,2 and a v-free program P (i.e., such that ∀r ∈ P : |H(r)| ≤ 1) is called datalog
program (or normal logic program, deductive database).

1Intuitively, a symbolic set {X:a(X, Y), p(Y)} stands for the set of X-values making a(X, Y), p(Y) true, i.e.,
{X |∃Y s.t . a(X,Y), p(Y) is true}.

2In positive programs negation as failure (not) does not occur, while strong negation (¬) may be present.

6

Chapter 2. Disjunctive Datalog

As usual, a term (an atom, a rule, a program, etc.) is called ground, if no variable appears in
it. A ground program is also called a propositional program.

A global variable of a rule r is a variable appearing in a standard atom of r; all other variables
are local variables. A rule r is safe if the following conditions hold: (i) each global variable of r
appears in a positive standard literal in the body of r; (ii) each local variable of r appearing in a
symbolic set {Vars : Conj} appears in an atom of Conj ; (iii) each guard of an aggregate atom
of r is a constant or a global variable. A program P is safe if all r ∈ P are safe. In the following
we assume that DLP programs are safe.

Let the level mapping of a program P be a function || || from the predicates in P to finite
ordinals.

A DLP program P is called stratifiednot [5, 109], if there is a level mapping || ||s of P such
that, for every rule r,

1. For any l ∈ B+(r), and for any l′ ∈ H(r), ||l||s ≤ ||l′||s;

2. For any l ∈ B−(r), and for any l′ ∈ H(r), ||l||s < ||l′||s;

3. For any l, l′ ∈ H(r), ||l||s = ||l′||s.

A DLP program P is called stratifiedaggr [32], if there is a level mapping || ||a of P such
that, for every rule r,

1. If l appears in the head of r, and l′ appears in an aggregate atom in the body of r, then
||l′||a < ||l||a; and

2. If l appears in the head of r, and l′ occurs in a standard atom in the body of r, then
||l′||a ≤ ||l||a.

3. If both l and l′ appear in the head of r, then ||l′||a = ||l||a.

Example 2.1.2 Consider the program consisting of a set of facts for predicates a and b, plus the
following two rules:

q(X):- p(X),#count{Y : a(Y,X), b(X)} ≤ 2.
p(X):- q(X), b(X).

The program is stratifiedaggr , as the level mapping ||a|| = ||b|| = 1, ||p|| = ||q|| = 2 satisfies
the required conditions. If we add the rule b(X) :- p(X), then no level-mapping exists and the
program becomes not stratifiedaggr .

Intuitively, the property stratifiedaggr forbids recursion through aggregates.

2.2 Answer Set Semantics

Given a DLP program P, let UP denote the set of constants appearing in P, and BP be the set
of standard atoms constructible from the (standard) predicates of P with constants in UP . Given
a set X, let 2X denote the set of all multisets over elements from X. Without loss of generality,
we assume that aggregate functions map to I (the set of integers).

7

Chapter 2. Disjunctive Datalog

A substitution is a mapping from a set of variables to UP . A substitution from the set of
global variables of a rule r (to UP) is a global substitution for r; a substitution from the set of
local variables of a symbolic set S (to UP) is a local substitution for S. Given a symbolic set
without global variables S = {Vars : Conj }, the instantiation of S is the following ground set
of pairs inst(S): {〈γ(Vars) : γ(Conj)〉 | γ is a local substitution for S}.3
A ground instance of a rule r is obtained in two steps: (1) a global substitution σ for r is first
applied over r; (2) every symbolic set S in σ(r) is replaced by its instantiation inst(S). The
instantiation Ground(P) of a program P is the set of all possible instances of the rules of P.

Example 2.2.1 Consider the following program P1:

q(1) ∨ p(2, 2).
q(2) ∨ p(2, 1).
t(X):- q(X),#sum{Y : p(X,Y)} > 1.

The instantiation Ground(P1) is the following:

q(1) ∨ p(2, 2).
t(1):- q(1),#sum{〈1:p(1, 1)〉, 〈2:p(1, 2)〉}>1.
q(2) ∨ p(2, 1).
t(2):- q(2),#sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉}>1.

An interpretation for a DLP program P is a consistent set of standard ground atoms, that is
I ⊆ BP . A positive literal A is true w.r.t. I if A ∈ I , is false otherwise. A negative literal not A
is true w.r.t. I , if A ∈ I , it is false otherwise.

An interpretation also provides a meaning for aggregate literals.
Let I be an interpretation. A standard ground conjunction is true (resp. false) w.r.t I if

all its literals are true. The meaning of a set, an aggregate function, and an aggregate atom
under an interpretation, is a multiset, a value, and a truth-value, respectively. Let f(S) be a an
aggregate function. The valuation I(S) of S w.r.t. I is the multiset of the first constant of the
elements in S whose conjunction is true w.r.t. I . More precisely, let I(S) denote the multiset
[t1 | 〈t1, ..., tn : Conj 〉 ∈ S∧ Conj is true w.r.t. I]. The valuation I(f(S)) of an aggregate
function f(S) w.r.t. I is the result of the application of f on I(S). If the multiset I(S) is not in
the domain of f , I(f(S)) = ⊥ (where ⊥ is a fixed symbol not occurring in P).

An instantiated aggregate atom A = f(S) ≺ k is true w.r.t. I if: (i) I(f(S)) = ⊥, and, (ii)
I(f(S)) ≺ k holds; otherwise, A is false. An instantiated aggregate literal notA = notf(S) ≺ k
is true w.r.t. I if: (i) I(f(S)) = ⊥, and, (ii) I(f(S)) ≺ k does not hold; otherwise, A is false.

Given an interpretation I , a rule r is satisfied w.r.t. I if some head atom is true w.r.t. I when-
ever all body literals are true w.r.t. I . An interpretation M is a model of a DLP program P if all
r ∈ Ground(P) are satisfied w.r.t. M . A model M for P is (subset) minimal if no model N for
P exists such that N ⊂M .

We now recall the generalization of the Gelfond-Lifschitz transformation to programs with
aggregates from [44].

3Given a substitution σ and a DLP object Obj (rule, set, etc.), we denote by σ(Obj) the object obtained by
replacing each variable X in Obj by σ(X).

8

Chapter 2. Disjunctive Datalog

Definition 2.2.2 [44] Given a ground DLP program P and a total interpretation I , let PI denote
the transformed program obtained from P by deleting all rules in which a body literal is false
w.r.t. I . I is an answer set of a program P if it is a minimal model of Ground(P)I .

Example 2.2.3 Consider the following two programs:

P1 : {p(a):-#count{X : p(X)} > 0.}
P2 : {p(a):-#count{X : p(X)} < 1.}

Ground(P1) = {p(a):-#count{〈a : p(a)〉} > 0.} and Ground(P2) = {p(a):-#count{〈a :
p(a)〉} < 1.}; consider also interpretations I1 = {p(a)} and I2 = ∅. Then, Ground(P1)I1 =
Ground(P1), Ground(P1)I2 = ∅, and Ground(P2)I1 = ∅, Ground(P2)I2 = Ground(P2)
hold.

I2 is the only answer set of P1 (because I1 is not a minimal model of Ground(P1)I1), whereas
P2 admits no answer set (I1 is not a minimal model of Ground(P2)I1 , and I2 is not a model of
Ground(P2) = Ground(P2)I2).

Note that any answer set A of P is also a model of P because Ground(P)A ⊆ Ground(P),
and rules in Ground(P) −Ground(P)A are satisfied w.r.t. A.

List terms are handled by suitable function calls; in particular, programs containing list terms
are automatically rewritten to contain only terms and function calls.

As an example, the rule q(H):- dom(H), list(T), list([H|T]). is translated into q(H):-dom(H),
list(T), list(L), #head(L,H), #tail(L,T).

Recall that, given an external atom #f(X1, . . . ,Xn, O) used in a rule r, only the last variable
O can be considered as an output parameter, while all the other variables must be intended as
input for f ; this corresponds to the function call f(X1, . . . ,Xn) = O.

As an example, consider the program:

person(id1, ”John”, ”Smith”).
mergedNames(ID,N) :- person(ID,FN,LN),#concat(FN,LN,N).

Ground program is:

person(id1, ”John”, ”Smith”).
mergedNames(id1, ”JohnSmith”) :- person(id1, ”John”, ”Smith”).

Note that, since the grounding phase instantiates all the variables, there is no need to invoke
again the functions associated with external atoms after the grounding. As a consequence, the
handling of external atoms can be carried out completely during the grounding.

Function call introduce in the program new constant values (e.g., ”John Smith”), this can
generate infinite domain. In order to avoid the generation of infinite-sized answer sets programs
must be value-invention restricted (cfr. [22]), i.e. new values possibly introduced by external
atoms must not propagate through recursion.

2.3 Knowledge Representation and Reasoning

Answer Set Programming has been proved to be a very effective formalism for Knowledge Rep-
resentation and Reasoning (KRR). It can be used to encode problems in a highly declarative

9

Chapter 2. Disjunctive Datalog

fashion, following the “Guess&Check”(Guess/Check/Optimize) methodology presented in [36].
In this section, we first describe the Guess/Check/Optimize technique and we then illustrate how
to apply it on a number of examples. Finally, we show how the modelling capability of ASP is
significatively enhanced by supporting function symbols.

2.3.1 The Guess and Check Programming Methodology

Many problems, also problems of comparatively high computational complexity (ΣP
2 -complete

and ΔP
3 -complete problems), can be solved in a natural manner by using this declarative pro-

gramming technique. The power of disjunctive rules allows for expressing problems which are
more complex than NP, and the (optional) separation of a fixed, non-ground program from an
input database allows to do so in a uniform way over varying instances.

Given a setFI of facts that specify an instance I of some problem P, a Guess/Check/Optimize
program Pfor P consists of the following two main parts:

Guessing Part The guessing part G ⊆ P of the program defines the search space, such that
answer sets of G ∪ FI represent “solution candidates” for I .

Checking Part The (optional) checking part C ⊆ P of the program filters the solution candidates
in such a way that the answer sets of G ∪ C ∪ FI represent the admissible solutions for the
problem instance I .

Without imposing restrictions on which rules G and C may contain, in the extremal case we
might set G to the full program and let C be empty, i.e., checking is completely integrated into the
guessing part such that solution candidates are always solutions. Also, in general, the generation
of the search space may be guarded by some rules, and such rules might be considered more
appropriately placed in the guessing part than in the checking part. We do not pursue this issue
further here, and thus also refrain from giving a formal definition of how to separate a program
into a guessing and a checking part.

In general, both G and C may be arbitrary collections of rules, and it depends on the complex-
ity of the problem at hand which kinds of rules are needed to realize these parts (in particular, the
checking part).

For problems with complexity in NP, often a natural Guess/Check/Optimize program can be
designed with the two parts clearly separated into the following simple layered structure:

• The guessing part G consists of disjunctive rules that “guess” a solution candidate S.

• The checking part C consists of integrity constraints that check the admissibility of S.

Each layer may have further auxiliary predicates, for local computations.
The disjunctive rules define the search space in which rule applications are branching points,

while the integrity constraints prune illegal branches.
It is worth remarking that the Guess/Check/Optimize programming methodology has also

positive implications from the Software Engineering viewpoint. Indeed, the modular program
structure in Guess/Check/Optimize allows for developing programs incrementally, which is help-
ful to simplify testing and debugging. One can start by writing the guessing part G and testing
that G ∪FI correctly defines the search space. Then, one adds the checking part and verifies that
the answer sets of G ∪ C ∪ FI encode the admissible solutions.

10

Chapter 2. Disjunctive Datalog

2.3.2 Applications of the Guess and Check Technique

In this section, we illustrate the declarative programming methodology described in Section2.3.1
by showing its application on a number of concrete examples.

Let us consider a classical NP-complete problem in graph theory, namely Hamiltonian Path.

Definition 2.3.1 [HAMPATH] Given a directed graph G = (V,E) and a node a ∈ V of this
graph, does there exist a path in G starting at a and passing through each node in V exactly
once?

Suppose that the graph G is specified by using facts over predicates node (unary) and arc
(binary), and the starting node a is specified by the predicate start (unary). Then, the following
Guess/Check/Optimize program Php solves the problem HAMPATH:

inPath(X,Y) ∨ outPath(X,Y):- start(X), arc(X,Y).
inPath(X,Y) ∨ outPath(X,Y):- reached(X), arc(X,Y).
reached(X) :- inPath(Y,X). (aux.)

⎫⎬
⎭ Guess

:- inPath(X,Y), inPath(X,Y 1), Y <> Y 1.
:- inPath(X,Y), inPath(X1, Y),X <> X1.
:-node(X),not reached(X),not start(X).

⎫⎬
⎭ Check

The two disjunctive rules guess a subset S of the arcs to be in the path, while the rest of the
program checks whether S constitutes a Hamiltonian Path. Here, an auxiliary predicate reached
is used, which is associated with the guessed predicate inPath using the last rule. Note that
reached is completely determined by the guess for inPath, and no further guessing is needed.

In turn, through the second rule, the predicate reached influences the guess of inPath, which
is made somehow inductively. Initially, a guess on an arc leaving the starting node is made by the
first rule, followed by repeated guesses of arcs leaving from reached nodes by the second rule,
until all reached nodes have been handled.

In the checking part, the first two constraints ensure that the set of arcs S selected by inPath
meets the following requirements, which any Hamiltonian Path must satisfy: (i) there must not
be two arcs starting at the same node, and (ii) there must not be two arcs ending in the same node.
The third constraint enforces that all nodes in the graph are reached from the starting node in the
subgraph induced by S.

A less sophisticated encoding can be obtained by replacing the guessing part with the single
rule

inPath(X,Y) ∨ outPath(X,Y):- arc(X,Y).

that guesses for each arc whether it is in the path and by defining the predicate reached in the
checking part by rules

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

However, this encoding is less preferable from a computational point of view, because it leads to
a larger search space.

It is easy to see that any set of arcs S which satisfies all three constraints must contain the
arcs of a path v0, v1, . . . , vk in G that starts at node v0 = a, and passes through distinct nodes

11

Chapter 2. Disjunctive Datalog

until no further node is left, or it arrives at the starting node a again. In the latter case, this means
that the path is in fact a Hamiltonian Cycle (from which a Hamiltonian path can be immediately
computed, by dropping the last arc).

Thus, given a set of facts F for node, arc, and start, the program Php ∪ F has an answer
set if and only if the corresponding graph has a Hamiltonian Path. The above program correctly
encodes the decision problem of deciding whether a given graph admits a Hamiltonian Path or
not.

This encoding is very flexible, and can be easily adapted to solve the search problems Hamil-
tonian Path and Hamiltonian Cycle (where the result has to be a tour, i.e., a closed path). If we
want to be sure that the computed result is an open path (i.e., it is not a cycle), we can easily
impose openness by adding a further constraint :- start(Y), inPath(, Y). to the program (like
in Prolog, the symbol ‘ ’ stands for an anonymous variable whose value is of no interest). Then,
the set S of selected arcs in any answer set of Php ∪ F constitutes a Hamiltonian Path starting at
a. If, on the other hand, we want to compute the Hamiltonian cycles, then we just have to strip
off the literal not start(X) from the last constraint of the program.

In the previous examples, we have seen how a search problem can be encoded in a DLP
program whose answer sets correspond to the problem solutions. We next see another use of the
Guess/Check/Optimize programming technique. We build a DLP program whose answer sets
witness that a property does not hold, i.e., the property at hand holds if and only if the DLP
program has no answer set. Such a programming scheme is useful to prove the validity of co-NP
or ΠP

2 properties. We next apply the above programming scheme to a well-known problem of
number and graph theory.

Definition 2.3.2 [RAMSEY] The Ramsey number R(k,m) is the least integer n such that, no
matter how we color the arcs of the complete undirected graph (clique) with n nodes using two
colors, say red and blue, there is a red clique with k nodes (a red k-clique) or a blue clique with
m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [110]. We next show a
program Pramsey that allows us to decide whether a given integer n is not the Ramsey Number
R(3, 4). By varying the input number n, we can determine R(3, 4), as described below. Let F be
the collection of facts for input predicates node and arc encoding a complete graph with n nodes.
Pramsey is the following Guess/Check/Optimize program:

blue(X,Y) ∨ red(X,Y):- arc(X,Y).
}

Guess

:- red(X,Y), red(X,Z), red(Y,Z).

:- blue(X,Y), blue(X,Z), blue(Y,Z),
blue(X,W), blue(Y,W), blue(Z,W).

⎫⎬
⎭ Check

Intuitively, the disjunctive rule guesses a color for each edge. The first constraint eliminates the
colorings containing a red clique (i.e., a complete graph) with 3 nodes, and the second constraint
eliminates the colorings containing a blue clique with 4 nodes. The program Pramsey ∪ F has
an answer set if and only if there is a coloring of the edges of the complete graph on n nodes
containing no red clique of size 3 and no blue clique of size 4. Thus, if there is an answer set
for a particular n, then n is not R(3, 4), that is, n < R(3, 4). On the other hand, if Pramsey ∪ F
has no answer set, then n ≥ R(3, 4). Thus, the smallest n such that no answer set is found is the
Ramsey number R(3, 4).

12

Chapter 2. Disjunctive Datalog

2.3.3 Enhanced KRR Capabilities by Function Symbols

As shown by the previous examples, ASP is particularly well-suited for modelling and solving
problems that involve common-sense reasoning as well as for advanced knowledge-based tasks.
As a matter of fact, this paradigm has been successfully applied to a range of applications includ-
ing information integration, software configuration, reasoning about actions and change, etc.

These applications have evidenced some limitations of ASP languages and systems, that
should be overcome to make ASP better suited for real-world applications even in industry. While
Answer Set Semantics, which underlies ASP, was defined in the setting of a general first order lan-
guage, current ASP frameworks and implementations, like DLV [80], Smodels [124], clasp [56]
and other efficient solvers, are based in essence on function-free languages and resort to Datalog
with negation and its extensions. Therefore, even by using state-of-the-art systems, one cannot
directly reason about recursive data structures and infinite domains, such as XML/HTML docu-
ments, lists, time, etc. This is a strong limitation, both for standard knowledge-based tasks and
for emerging applications, such as those manipulating XML documents.

Since one is forced to work with finite domains, potentially infinite processes cannot be rep-
resented naturally in ASP. Additional tools to simulate unbounded domains must be used. A
notable example is the DLVK [37] front-end of the DLV system which implements the action
language K [38]. Constants are used to instantiate a sufficiently large domain (estimated by the
user) for solving the problem; this may incur high space requirements, and does not scale to large
instances. Another example is given by recursive data structures like lists that can be simulated
only through unnatural encodings.

Function symbols, in turn, are a very convenient means for generating infinite domains and
objects, and allow for a more natural representation of problems in such domains. Recursive
data structures can be immediately represented, without resorting to indirect encodings. Besides,
there is no need to use constants to bound variables whose maximum value is a priori unknown
like, for instance, variables representing a time or a plan length.

13

Chapter 3

Comparisons to other Systems

This chapter is devoted to give a review of computational logic systems and to point out the
applicability of them to data intensive application. In particular, in section3.1 we focus on de-
ductive database systems [52, 23, 63] which, essentially, extend relational database systems [95]
by recursion and stratified negation. Then, in section 3.3 we analyze the more recent answer set
programming systems [83, 36] which go beyond deductive databases, supporting also unstrati-
fied negation and other advanced constructs like disjunction, and various forms of constraints.
The above class of computational logic systems (including both deductive database systems and
answer set programming systems) is often referred to as the class of declarative computational
logic systems, since these systems support a fully declarative programming style (while in Prolog
the result depends on the ordering of the rules in the program, and also on the ordering of the
goals in the bodies of the rules). This chapter provides a comparative analysis of such systems.
However, given the wide range of contexts possibly benefiting of their application, it is difficult
to perform an objective comparison between them without fixing a context. We have chosen to
characterize the presented systems when applied to the information integration problem. This
because such a context has been the main test bed for our work.

3.1 Declarative computational logic systems

Database and logic programming are two independently developed areas in computer science.
Database technology has evolved in order to effectively, efficiently and reliably organize, man-
age and maintain large volumes of increasingly complex data in various memory devices. Logic
programming is a direct outgrowth of earlier work in automatic theorem proving and artificial
intelligence. It is based on mathematical logic, which is the study of the relations between asser-
tions and deductions and is formalized in terms of proof and model theories.

Important studies on the relations between logic programming and relational databases have
been conducted for about two decades, mostly from a theoretical point of view [51, 50, 67, 130,
94]. Relational databases and logic programming have been found quite similar in their rep-
resentation of data at the language level. They have also been found complementary in many
aspects. Relational database systems are superior to the standard implementations of logic pro-
gramming systems with respect to data independence, secondary storage access, concurrency,
recovery, security and integrity [129]. The control over the execution of query languages is up to
the system, which uses query optimization and compilation techniques to ensure efficient perfor-

14

Chapter 3. Comparisons to other Systems

mance over a wide range of storage structures. However, the expressive power and functionality
of relational database query languages are limited when compared to logic programming lan-
guages. Relational languages do not have built-in reasoning capabilities. Moreover, relational
query languages are often powerless to express complete applications, and are thus embedded in
traditional programming languages.

The integration of logic programming and relational database techniques has led to the active
research area of deductive databases [52, 23, 63]. This combines the benefits of the two ap-
proaches such as representational and operational uniformity, reasoning capabilities, recursion,
declarative querying, efficient secondary storage access, etc.

A restricted form of Prolog without function symbols called Datalog (with negation), has
been widely accepted as deductive database language. It has a well-defined declarative semantic
based on the work in logic programming [132, 23].

In the past few years, various set-oriented evaluation strategies specific for deductive databases
have been the main focus of extensive research [12, 13, 16, 23, 66, 70, 98, 118, 132, 131] and a
number of deductive database systems or prototypes based on Datalog have been reported. These
include Nail [97], LOLA [49], Glue-Nail [33], XSB [120], CORAL [112], Aditi [133], Log-
icBase [65], Declare/SDS [72], EKS(-V1) [138] etc. See [113] for a survey of these deductive
database systems.

Many organizations spent some efforts in the field of deductive database systems. As an
example, efforts at ECRC led to the study of query evaluation methods (QSD/LSD and others)
[134, 135, 136, 75], integrity checking (Soundcheck) [29], the deductive database system EKS(-
V1) [138], hypothetical reasoning and integrity constraints checking [137]. The EKS system
used a top-down evaluation method.

Efforts at MCC emphasized bottom-up evaluation methods [129] and query evaluation using
methods such as seminaive evaluation, magic sets and counting [12, 16, 117, 119], semantics
for stratified negation and set-grouping [15], investigation of safety, the finiteness of answer sets
and joint order optimization. These studies led to LDL, the first operational deductive database
system that was widely available.

Implementation at Stanford started on a system called NAIL! (Not Another Implementation
of Logic) [33]. The results of this work led to the first paper on recursion using the Magic Sets
method [12], done in collaboration with the group at MCC. Other contributions were aggregation
in logical rules, and theoretical contributions to negation: stratified negation [58], well founded
negation [59] and modularly stratified negation [116]. A language, called GLUE [105, 96] was
developed. GLUE is a language for logical rules that has the power of SQL statements, together
with conventional language that permits the construction of loops, procedures and modules.

The University of Wisconsin spent its efforts to the development of CORAL [112]. Bottom-
up and magic set methods were implemented. The system is extensible and provides aggrega-
tion modularly stratified databases. CORAL supports a declarative language and an interface to
C++ which allows for a combination of declarative and imperative programming. The declar-
ative query language supports general Horn clauses augmented with complex terms, set group-
ing, aggregation, negation and relations with tuples that contain universally quantified variables.
CORAL supports a wide range of evaluation strategies and automatically chooses an efficient
evaluation strategy.

Deductive database systems have been used in a variety of application domains including
scientific modeling, financial analysis, decision support, language analysis, parsing and various
applications of transitive closure such as bill-of-materials and path problems [111]. They pro-

15

Chapter 3. Comparisons to other Systems

vide declarativeness and ability to express both views and recursive queries. However they have,
generally, limited capabilities to express integrity constraints and are not able to deal with com-
putationally hard queries. As far as efficiency is concerned, they are able to efficiently answer
simple but data intensive queries; efficiency on recursive queries is achieved through sophisti-
cated rewriting techniques based on Magic Sets [12, 16].

3.1.1 Relevant features of computational logic systems

As outlined in the previous sections, deductive database systems have been used in a variety of
application domains. This wide range of possible applications makes it difficult to perform an
objective comparison between different systems without fixing the context in which the systems
are to be compared.

In this section we single out some of the features that, in our opinion, are relevant to charac-
terize computational logic systems when applied to the context of information integration. The
choice is also motivated by the fact that information integration has been the main real-word
benchmark applications of the work developed in this thesis.

An important aspect of the data integration field consists in answering queries involving sev-
eral data sources rather than one single database. As an example, the set of information of
interest for a user might be distributed over a network. It is necessary to bring data distributed
over a network to a user’s machine so that the data may be manipulated to answer user queries.
In a distributed environment, it is likely that one will want to save answers to queries in the local
machine’s cached database for answers, rather than to have to access data over the network to
answer the query. In this situation the resources are the cached relations (i.e. views on the source
data) and the use of these resources is an important aspect of query answering.

In some data integration systems the database relations are views themselves (either virtual
or materialized) on other resources; thus, it is necessary to follow chains of views in order to
reach the original source data. In this context, the expressiveness of the language supported by
the computational logic system plays a central role.

One of the main problems that must be faced in data integration activities concerns the pos-
sible presence of data inconsistencies and incompleteness [20, 77, 76]. Indeed, when the data
stored in autonomous and heterogeneous sources are considered as a whole and put together in
a global scheme they might result inconsistent due to the presence of integrity constraints ex-
pressed over the global scheme. Generally speaking, when data are considered locally, they must
satisfy only the integrity constraints specified for the source which they belong to, but they are
not required to satisfy the integrity constraints expressed in the global scheme. Hence, given a
set of data sources as part of an integration system, and a set of global requirements which the
integrated data must satisfy, inconsistencies may arise, and these have to be properly taken into
account during query processing.

This line of reasoning puts into evidence that, due to the presence of inconsistent or in-
complete data, the availability of constructs in the query language allowing to express queries
whose complexity might go beyond polynomial time complexity (generally NP/CONP queries),
is mandatory. Thus, the possibility to express computationally hard queries is a crucial property
that computational logic systems have to provide in order to deal with such complex scenarios.

In general, answering queries in data integration systems is a complex task. Difficulties arise
either because of the huge amounts of data to analyze or because the queries to analyze are
complex. The efficiency of the computational logic system in answering queries is an important

16

Chapter 3. Comparisons to other Systems

measure for characterizing it in data integration activities.
Thus, the systems’ features to be considered to evaluate the suitability of a computational

logic system for data integration tasks fall in two classes: (i) language expressiveness and (ii)
efficiency. In the sequel of this section we specify more precisely the features to be considered in
each of the above classes.

3.1.2 Language expressiveness

In order to characterize the expressiveness of logic languages in data integration contexts we con-
sider the following properties that a logic language should have to provide the tools for properly
solve usual data integration problems:

• Ability to express views. As we have outlined above, views play a relevant role in data
integration activities; indeed the integrated scheme and/or the source schemes might be
represented as views.

• Ability to express recursive queries. Since queries are usually defined on views and since
views can be obtained from other (either virtual or materialized) views, it is necessary to be
able to specify recursive queries on views in order to retrieve all the interesting information.

• Ability to express integrity constraints. When integrating data from different sources, dif-
ferences and inconsistencies of the data present in the available resources must be taken
into account. One way to guarantee the consistency of the integrated data and to guide the
integration task is to impose integrity constraints on the scheme describing the integrated
database. The ability to express integrity constraints makes the system powerful enough to
avoid some classes of data inconsistencies.

• Ability to express nonmonotonic queries. This property is necessary in order to define
appropriate methods dealing with complex scenarios involving incomplete or inconsistent
data sources to be integrated.

• Ability to deal with computationally hard queries. In order to handle inconsistencies of data
present in the resources, it is necessary to allow users of being aware of such inconsisten-
cies and to provide them with tools for the manipulation of such inconsistent data. In this
context, simple queries (i.e., queries of polynomial time complexity) do not serve the pur-
pose. Indeed, the availability of constructs allowing to express queries having complexity
in NP/CONP or higher is necessary .

3.1.3 Efficiency issues

The efficiency of a computational logic system applied to data integration can be measured by
analyzing its behaviour in query answering. In this setting, there are basically two parameters
which efficiency depends on: (i) the quantity of data to be analyzed for answering the query and
(ii) the intrinsic complexity of the query. In order to analyze the efficiency of the considered
computational logic systems, we consider their behaviour in answering two particular classes of
queries:

• simple queries (i.e., queries that can be answered in polynomial time) over large amounts
of data;

17

Chapter 3. Comparisons to other Systems

Language expressiveness

Ability to express views
Ability to express recursive queries
Ability to express integrity constraints
Ability to express nonmonotonic queries
Ability to deal with computationally hard queries
Other

Efficiency

Efficiency with simple but data intensive queries
Efficiency with computationally hard queries

Table 3.1: Template table for describing systems’ features

• complex queries (i.e., whose complexity goes beyond polynomial-time) over medium-
sized data.

3.2 Deductive database systems

In the sequel of the chapter, we give an overview of the most important computational logic
systems proposed in the literature and, for each of them, we analyze the features outlined in the
previous section. In particular, we summarize these features in a table as shown in Table3.1 and
describe, for each of them, the characteristics of the system.

3.2.1 LDL++

The LDL project [25] is directed towards two significant goals. The first one is the design of Log-
ical Data Language (LDL), a declarative language for data-intensive applications which extends
pure Datalog with sets, negation and updates. The second goal is the development of a system
supporting LDL, which integrates rule-based programming with efficient secondary memory ac-
cess, transaction management recovery and integrity control. The LDL system belongs properly
to the class of integrated systems; the underlying database engine is based on relational algebra
and was developed specifically within the LDL project.

The LDL language supports complex terms within facts and rules and stratified negation.
Programs which incorporate negation but are not stratified are regarded as inadmissible programs.
Moreover, LDL supports updates through special rules. The body of an update rule incorporates
two parts, a query part and a procedure part. The former part identifies the tuples to be updated,
and should executed first; as an effect of the query part, all variables of the procedure part should
get bound. Then, the procedure part is applied to the underlying database; the procedure part
contains insert operations and delete operations. The order of execution of the procedure is left-
to-right, unless the system detects that the procedure has the Church-Rosser property (namely the
procedure produces the same answer for every permutation of its components); in this case, the
most efficient order of execution is decided by the system.

18

Chapter 3. Comparisons to other Systems

The LDL compiler uses the notion of dynamic adornments, by knowing which places will be
bound to constant values at goal execution; these places will have a deferred constant. This is
quite similar to the optimization of parametric queries which takes place in conventional database
systems. With nonrecursive rules the main problem considered by the optimizer is determining
the order and method for each join. With recursive rules, the compiler tries to push selection
constants. This entails searching for recursive rules equivalent to the original ones; the search
considers some special, simple changes of the rule structure, thus producing programs which are
semantically equivalent to the given one. If these methods fail, then the LDL optimizer uses
methods of magic sets and counting for rule rewriting.

Special attention is dedicated to rules containing set terms. Each rule containing a set term is
replaced at compile time by a set of rules, each containing ordinary terms; in this way, matching
is reduced to ordinary matching. However, several ordinary matching patterns are required for
dealing with each set matching. In order to reduce them, elements of sets within facts are stored
in ascending ascii order.

The improved LDL program, produced after the application of various rewriting methods,
is translated into an expression of relational algebra extended by the fixpoint operation; this
expression is given as input to the optimizer. Relational expressions are internally represented
through processing graphs whose nodes correspond either to database relations or to operations;
edges indicate relationships between operations and their operands. A particular transformation,
called contraction, turns processing graphs into trees, by substituting cycles with special nodes
corresponding to fixpoints.

All selections and projections that are directly applicable to database relations are included
in the final processing strategy and not further considered in the optimization. In spite of this
simplifications, there is an extremely high number of processing trees equivalent to the given
one, obtained by permuting the order of evaluation of joins and fixpoints, and by selecting the
appropriate technique for computing joins and fixpoints among various available methods.

The execution environment for LDL is an algebraic machine, which is capable of performing
retrieval and manipulation of complex terms, as well as efficient joins and unions.

In Table 3.2 we summarize the features of the LDL system w.r.t. the properties relevant to
data integration we have pointed out in Section 3.1.1.

3.2.2 NAIL!

The NAIL! (Not Another Implementation of Logic) [33] project at Stanford University aims at
supporting the optimal execution of Datalog goals over a relational database system. The funda-
mental assumption of the project is that no single strategy is appropriate for all logic programs,
hence, much attention is devoted to the development of an extensible architecture, which can be
enhanced through progressive additions of novel strategies.

The language supported by NAIL! is stratified Datalog extended by function symbols, nega-
tion (through the not operator) and sets (through the findall operator); rules must be satisfied with
respect to the not and findall operator.

NAIL! does not support set terms or set unification, as LDL does; the findall predicate really
produces a list, though the language does not control the order of elements within the list. The
findall operator can be used to produce the same effect as the grouping in SQL.

The NAIL! system considers a Datalog program and a user’s goal as input. Each predicate
of each group of mutually recursive predicates is considered separately. From the user’s goal,

19

Chapter 3. Comparisons to other Systems

LDL++

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints To some extent
Ability to express nonmonotonic queries Only stratified negation
Ability to deal with computationally hard
queries

No

Other Supports set terms and unifica-
tion

Efficiency

Efficiency with simple but data intensive
queries

Yes - Magic sets techniques are
also supported

Efficiency with computationally hard queries Not applicable

Table 3.2: Features of LDL

the system generates the adorned goal, a synthetic representation consisting of the name of the
goal predicate with a superscript string; letters b and f in the superscript denote places which
are respectively bound and free. It should be noted that the computation of an adorned goal p
might require the computation of other adorned goals over other predicates q, or even of different
adornments for p.

The NAIL! system uses capture rules as basic strategies. Each capture rule applies to par-
ticular adorned goals, and produces the corresponding result relations. The evaluation of each
capture rule involves a pair of algorithms; the first one concerns the applicability of a capture
rule, the second one concerns the substantiation of the capture rule, namely the evaluation of
the result relation. A capture rule is applicable to an adorned goal if the rule can evaluate the
result relation with a finite number of iterations; thus, applicability algorithms express sufficient
conditions for convergence of substantiation algorithms. Applicability is based on the adorned
goal only, while substantiation requires the notion of the particular goal constraint.

There are basically four kinds of substantiation rules:

• basic rules, to be used to “capture” nodes which represent nonrecursive predicates;

• sideways rules, which use sideways information passing to transmit bindings among goals;

• top-down rules, which use resolution;

• bottom-up rules, which use forward chaining.

This classification includes a variety of evaluation methods; capture rules can be considered
a flexible and extensible control mechanism for the execution of logic goals.

In Table 3.3 we summarize the features of the NAIL! system w.r.t. the properties relevant to
data integration we have pointed out in Section 3.1.1.

20

Chapter 3. Comparisons to other Systems

NAIL!

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints To some extent
Ability to express nonmonotonic queries Only stratified negation
Ability to deal with computationally hard
queries

No

Other Aggregation in logical rules,
supports sets

Efficiency

Efficiency with simple but data intensive
queries

Yes - Magic sets techniques

are also supported
Efficiency with computationally hard queries Not applicable

Table 3.3: Features of NAIL!

3.2.3 POSTGRES

POSTGRES [108] is a large project for developing a new generation database system, extending
relational technology to support complex objects, data types, rules, versions, historic data, and
new storage media.

POSTGRES is the successor of the INGRES project and, in particular, it provides extensions
to the QUEL query language of INGRES. New POSTQUEL commands are used for specifying
iterative execution of queries, alerts, triggers and rules. “Iterative” queries support transitive clo-
sures; linguistically, this is achieved by appending an asterisk to each command that should be
iteratively executed. Alerts and triggers are commands which are active indefinitely and may be
“awakened” as a consequence of database changes. The system supports their efficient monitor-
ing.

The implementation of alerts and triggers is done through special locks, which are placed
on the data. Whenever a transaction writes a data object which is locked, the corresponding
“dormant” commands are activated. The lock manager maintains information about dormant
commands stored within the tables of the system.

In Table 3.4 we summarize the features of POSTGRES w.r.t. the properties relevant to data
integration we have pointed out in Section 3.1.1.

3.3 Answer set programming systems

Answer set programming (ASP) is a declarative approach to programming, which has been re-
cently proposed in the area of nonmonotonic reasoning and logic programming. Answer set
programming1 (ASP) is a logic programming alternative to SAT-based programming, which is

1Name coined by Vladimir Lifschitz in the invited talk at ICLP’99.

21

Chapter 3. Comparisons to other Systems

POSTGRES

Language expressiveness

Ability to express views Yes
Ability to express recursive queries No
Ability to express integrity constraints To some extent, SQL99 con-

straints
are supported

Ability to express nonmonotonic queries No
Ability to deal with computationally hard
queries

No

Other Supports Triggers and Alerts

Efficiency

Efficiency with simple but data intensive
queries

Yes

Efficiency with computationally hard queries Not applicable

Table 3.4: Features of POSTGRES

successful and widely used in the area of Artificial Intelligence [71]. In SAT-based programming,
a given computational problem P is encoded as a propositional CNF formula whose models cor-
respond to solutions of P ; a SAT solver is then used to find such models (and thus solution of P).
In answer set programming, instead, a given computational problem P is represented by an ASP
program whose answer sets2 correspond to solutions; an ASP system is then used to find such
solutions of P [83].

The main advantage of answer set programming over SAT-based programming is the higher
expressiveness of its language, which enjoys the knowledge modelling power of logic program-
ming features like variables, negation as failure, and disjunction. Indeed, the knowledge repre-
sentation language of ASP consists of function-free logic programs with classical negation where
disjunction is allowed in the heads and negation as failure may occur in the bodies of the rules.

The ASP language supports the representation of problems of high computational complexity
(specifically, all problems in the complexity class ΣP

2 = NPNP [39]). Importantly, the ASP
encoding of a large variety of problems is often very concise, simple, and elegant [36].

The most widely used ASP systems are DLV and SMODELS. In the sequel of this section we
provide an overview of ASP systems focusing more in depth on the most popular systems DLV
and SMODELS.

3.3.1 DLV

The development of the DLV system (datalog plus vel, i.e., disjunction) [18, 27, 30] has started as
a research project financed by FWF (the Austrian Science Funds) in 1996, and has evolved into
an international collaboration over the years. Currently, the University of Calabria and TU Wien
participate in the project, supported by a scientific-technological collaboration between Italy and

2An answer set is a preferred model of an ASP program.

22

Chapter 3. Comparisons to other Systems

Austria.
The system is based on disjunctive logic programming without function symbols under the

consistent answer set semantics [60] and has the following important features:

Advanced Knowledge Modeling Capabilities. DLV provides support for declarative problem
solving in several respects:

• High expressiveness in a formally precise sense (ΣP
2), so any such problem can be

uniformly solved by a fixed program over varying input.

• Declarative problem solving following a “Guess/Check/Optimize ” paradigm where
a solution to a problem is guessed by one part of a program and then verified through
another part of the program.

• Capability to express hard and weak constraints.

• A number of front-ends for dealing with specific AI applications.

Solid Implementation. Much effort has been spent on sophisticated algorithms and techniques
for improving the performance, including

• database optimization techniques [30, 41], and

• non-monotonic reasoning optimization techniques.

Database Interfaces. The DLV system provides an experimental interface to an object-oriented
database management system (Objectivity), by means of a special query tool, which is
useful for the integration of specific problem solvers developed in DLV into more complex
systems.

The architecture of DLV is illustrated in Figure 3.1. The general flow in this picture is top-
down. The principal User Interface is command-line oriented, but also a Graphical User Interface
(GUI) for the core systems and most front-ends is available. Subsequently, front-end transfor-
mations might be performed. Input data can be supplied by regular files, and also by Objectivity
databases. The DLV kernel (the shaded part in the figure) then produces answer sets one at a time,
and each time an answer set is found, “Filtering” is invoked, which performs post-processing (de-
pendent on the active front-ends) and controls continuation or abortion of the computation.

The DLV kernel consists of three major components: The “Intelligent Grounding,” “Model
Generator,” and “Model Checker” modules share a principal data structure, the “Ground Pro-
gram”. It is created by the Intelligent Grounding using differential (and other advanced) database
techniques together with suitable data structures, and used by the Model Generator and the Model
Checker. The Ground Program is guaranteed to have exactly the same answer sets as the origi-
nal program. For some syntactically restricted classes of programs (e.g. stratified programs), the
Intelligent Grounding module already computes the corresponding answer sets.

For harder problems, most of the computation is performed by the Model Generator and the
Model Checker. Roughly, the former produces some “candidate” answer sets (models) [42, 43],
the stability of which are subsequently verified by the latter.

The Model Checker (MC) verifies whether the model at hand is an answer set. This task is
very hard in general, because checking the stability of a model is known to be co-NP-complete.

23

Chapter 3. Comparisons to other Systems

Figure 3.1: The System Architecture of DLV

However, MC exploits the fact that minimal model checking — the hardest part — can be effi-
ciently performed for the relevant class of head-cycle-free (HCF) programs.

In Table 3.5 we summarize the features of the DLV system w.r.t. the properties relevant to
data integration we have pointed out in Section 3.1.1.

3.3.2 SMODELS

The SMODELS system [101, 100] implements the answer set semantics for normal logic pro-
grams extended by built-in functions as well as cardinality and weight constraints for domain-
restricted programs.

As input, the SMODELS system takes logic program rules basically in Prolog style syntax.
However, in order to support efficient implementation techniques and extensions the programs
are required to be domain-restricted where the idea is the following. The predicate symbols in
the program are divided into two classes, domain predicates and non-domain predicates. Domain
predicates are predicates that are defined non-recursively.

The main intuition of domain predicates is that they are used to define the set of terms over
which the variable range in each rule of a program P . All rules of P have to be domain -
restricted in the sense that every variable in a rule must appear in a domain predicate which
appears positively in the rule body.

In addition to normal logic program rules, SMODELS supports rules with cardinality and
weight constraints. The idea is that, e.g., a cardinality constraint

24

Chapter 3. Comparisons to other Systems

DLV

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes, both hard and weak

constraints (desiderata) are ex-
pressible

Ability to express nonmonotonic queries Yes, supports unstratified
negation and disjunction

Ability to deal with computationally hard
queries

Expresses very hard queries,

up to ΔP
3

Other

Efficiency

Efficiency with simple but data intensive
queries

Some database optimization

techniques are incorporated, but
magic sets are not implemented

Efficiency with computationally hard queries Heuristics and optimization
techniques from the field of SAT
programming have been
implemented

Table 3.5: Features of DLV

25

Chapter 3. Comparisons to other Systems

1 {a,b,not c} 2

holds in an answer set if at least 1 but at most 2 of the literals in the constraint are satisfied in the
model and a weight constraint

10 [a=10,b=10,not c=10] 20

holds if the sum of weights of the literals satisfied in the model is between 10 and 20 (inclu-
sive).With built-in functions for integer arithmetic (included in the system), these kind of rules
allow compact and fairly straightforward encodings of many interesting problems.

Answer sets of a domain-restricted logic program with variables are computed in three stages:

• First the program is transformed into a ground program without variables.

• Second, the rules of the ground program are translated into primitive rules,

• Third, an answer set is computed using a Davis-Putnam like procedure [123].

The first two stages have been implemented in a program called lparse, which functions as a
front end to smodels which in turn implements the third stage.

In the first stage lparse automatically determines the domain predicates and then using
database techniques evaluates the domain predicates and creates a ground program which has
exactly the same answer sets as the original program with variables. Then the rules are compiled
into primitive rules.

The smodels procedure is a Davis-Putnam like backtracking search procedure that finds
the answer sets of a set of primitive rules by assigning truth values to the atoms of the program.
Moreover it uses the properties of the answer set semantics to infer and propagate additional truth
values. Since the procedure is in effect traversing a binary search tree, the number of nodes in
the search space is in the worst case on the order of 2n, where n can be taken from the number
of atoms that appear in a constraint in a head of a rule or that appear as a negative literal in a
recursive loop of the program.

Hence, in order to compute answer sets, one uses the two programs lparse, which translates
logic programs into an internal format, and smodels, which computes the models.

It is worthwhile noting that, even if SMODELS kernel does not support disjunction, this fea-
ture has been implemented on top of SMODELS by a suitable rewriting technique. The resulting
system is called GnT [69]. Such a rewriting-based implementation of disjunction, however, can
obviously not provide the same performance than a built-in implementation. And indeed, GnT
turns out to be sensibly slower than DLV on ΣP

2 -hard problems.
In Table 3.6 we summarize the features of SMODELS w.r.t. the properties relevant to data

integration we have pointed out in Section 3.1.1.

3.3.3 Cmodels

Cmodels is a system that computes answer sets for either disjunctive logic programs or logic
programs containing choice rules. Answer set solver Cmodels uses SAT solvers as a search
engine for enumerating models of the logic program – possible solutions, in case of disjunctive
programs SAT solver zChaff is also used for verifying the minimality of found models.

26

Chapter 3. Comparisons to other Systems

The system Cmodels is based on the relation between two semantics: the answer set and the
completion semantics for logic programs. For big class of programs called tight, the answer set
semantics is equivalent to the completion semantics, so that the answer sets for such a program
can be enumerated by a SAT solver.

On the other hand for nontight programs [86], and [74] introduced the concept of the loop
formulas, and showed that models of completion extended by all the loop formulas of the program
are equivalent to the answer sets of the program. Unfortunetly number of loop formulas might be
large, therefore computing all of them may become computationally expensive. This led to the
adoption of the algorithm that computes loop formulas “as needed” for finding answer sets of a
program.

Cmodels is similar to Smodels or GnT in that its input is a grounded logic program that
can be generated by the front-end called Lparse. The input of Cmodels may contain weight
constraints, but optimize statements are not allowed. The representation of weight constraints by
propositional formulas used in Cmodels is based on [47].

Table 3.7 summarizes the features of Cmodels relevant to data integration tasks.

3.3.4 ASSAT

ASSAT (Answer Sets by SAT solvers) [85] is a recently developed system for computing answer
sets of a logic program by using SAT solvers. Given a ground logic program P and a SAT solver
X, ASSAT(X) works as follows:

• Computes the completion of P and converts it into a set C of clauses.

• Repeats the following steps

– Calls X on C to get a model M (terminates with failure if no such M exists).

– Returns M if M is an answer set.

– Otherwise, finds some loops in P whose loop formulas are not satisfied by M and
adds their corresponding clauses to C .

As shown in [85], this procedure is sound and complete, assuming that X is a sound and
complete SAT solver.

ASSAT exploits lparse, the grounding system of SMODELS, to instantiate a given pro-
gram. Then, for each loop in the program which is found during the computation, a correspond-
ing loop formula is added to the program’s completion. In this way, a one-to-one correspondence
between the answer sets of the program and the models of the resulting propositional theory
is obtained. In the worst case, this process requires computing an exponential number of loop
formulas.

In Table 3.8 we summarize the features of ASSAT w.r.t. the properties relevant to data inte-
gration we have pointed out in Section 3.1.1.

3.3.5 noMoRe

The non-monotonic reasoning system noMoRe [4] implements answer set semantics for normal
logic programs. It realizes a novel, rule-based paradigm to obtain answer sets by computing non-
standard graph colorings of the block graph associated with a given logic program (see [87, 88]

27

Chapter 3. Comparisons to other Systems

for details). These non-standard graph colorings are called a-colorings or application-colorings
since they reflect the set of generating rules (applied rules) for an answer set. Hence noMoRe
is rule-based and not atom -based like most of the other known systems. It handles backward
propagation of partial a-colorings and exploit a technique called jumping in order to ensure full
(backward) propagation [88]. Both techniques improve the search space pruning of noMoRe .

The noMoRe -system is implemented in the programming language Prolog; it has been devel-
oped under the ECLiPSeConstraint Logic Programming System [3] and it was also successfully
tested with SWI -Prolog [140].

NoMoRe uses a compilation technique to compute answer sets of a logic program P in three
steps. At first, the block graph ΓP is computed. Secondly, ΓP is compiled into Prolog code in
order to obtain an efficient coloring procedure. Users may choose between two different kinds
of compilation, one which is fast but which gives a lot of compiled code and another one which
is a little bit slower but which produces less compiled code than the other. The second way of
compiling has to be used with large logic programs, depending on the memory management of
the underlying Prolog system. The compiled Prolog code (together with the example-independent
code) is then used to actually compute the answer sets. To read logic programs it is used a parser
(eventually after running a grounder, e.g. lparse or dlv) and there is a separate part for
interpretation of a-colorings into answer sets. Additionally, noMoRe comes with an interface
to the graph drawing tool DaVinci [99] for visualization of block graphs. This allows for a
structural analysis of programs.

The noMoRe system is used for purposes of research on the underlying paradigm. But even
in this early state, usability for anybody familiar with the logic programming paradigm is given.
The syntax accepted by noMoRe is Prolog-like, like that of DLV and smodels . Furthermore,
noMoRe is able to deal with integrity constraints as well as weight and cardinality constraints.

In Table 3.9 we summarize the features of noMoRe w.r.t. the properties relevant to data
integration we have pointed out in Section 3.1.1.

3.3.6 SLG

The SLG system [24] is a research-oriented system for deductive databases and nonmonotonic
reasoning. It is built as a meta interpreter on top of existing Prolog systems. In addition to all the
functionalities of Prolog, SLG contains several features not usually found in logic programming
systems, including:

• Query evaluation under the well-founded semantics using SLG resolution.

• Query evaluation of deductive databases whose rules may have explicit universal quanti-
fiers in the body.

• Query answering under stable models.

• Abductive reasoning with integrity constraints.

• Skeptical reasoning with respect to the intersection of stable models.

The SLG meta interpreter employs an efficient algorithm for incremental maintenance of depen-
dencies among subgoals so that subgoals that are completely evaluated or are possibly involved in

28

Chapter 3. Comparisons to other Systems

recursion through negation can be detected by inspecting the dependency information of a single
subgoal.

The SLG-∀meta interpreter augments the SLG meta interpreter with the handling of universal
rules. Traditionally universal quantification is eliminated by conversion into the negation of an
existential quantification. This, however, may introduce extra recursion through negation, and
does not preserve the alternating fixpoint semantics of general logic programs. SLG-∀ computes
the alternating fixpoint semantics by processing universal rules directly.

A profiling of the SLG-∀ meta interpreter shows that two major factors of overhead are meta
interpretation and the lack of destructive assignment for managing tables of subgoals and their
answers.

In Table 3.10 we summarize the features of SLG w.r.t. the properties relevant to data integra-
tion we have pointed out in Section 3.1.1.

3.3.7 DeReS

The system DeReS [26] supports basic automated reasoning tasks for default logic and for logic
programming under the answer set semantics. It is shown that a normal logic program P can
be represented by a suitable default theory D, such that the answer sets of P correspond to the
so-called extensions of D. DeReS uses relaxed stratification as a primary mechanism for pruning
the search-space. A default theory D is partitioned into several smaller subtheories, called strata
and the extensions of D are constructed from the extensions of its strata. The approach taken
by DeReS is somehow orthogonal to the one taken by SMODELS, and it is argued in [26] that
next generation implementations of nonmonotonic systems must combine techniques developed
in both projects in order to be effective in a large range of different applications.

The features of the system DeReS are summarized in Table 3.11.

3.3.8 XSB

The XSB system is an inmemory deductive database engine based on a Prolog/SLD resolution
strategy. Clearly, the traditional Prolog systems are known to have serious deficiencies when used
as database systems. Indeed, the SLD computational mechanism, which well serves the needs of a
programming language, is clearly inadequate as a database computation strategy. Its most serious
drawback is that it does not terminate for the datalog language. Datalog is a decidable language
(one reason that makes it a reasonable candidate for a database language) but SLD refutation is
not finite on it. The deductive database community has adopted datalog as a leading database
query language, identified these problems, and rectified them. Rewriting techniques have been
developed to introduce goaldirectedness into a bottomup, setatatime evaluation strategy. These
techniques solve SLD’s problems of lack of finiteness and redundant computation. XSB offers an
alternative approach to creating a deductive database system. Rather than depending on rewriting
techniques, it extends Prolog’s SLD resolution in two ways: 1) adding tabling to make evaluations
finite and nonredundant on datalog, and 2) adding a scheduling strategy and delay mechanisms
to treat general negation efficiently. The resulting strategy is called SLG resolution, which is
complete and finite for nonfloundering programs with finite models, whether they are stratified
or not.

The system XSB [114] can compute most cases of the well-founded semantics for normal
logic programs with functions symbols. The inference engine, which is called the SLG-WAM,

29

Chapter 3. Comparisons to other Systems

consists of an efficient tabling engine for definite logic programs, which is extended by mecha-
nisms for handling cycles through negation. These mechanisms are negative loop detection, delay
and simplification. They serve for detecting, breaking and resolving cycles through negation. It
is worth pointing out that XSB can work only in main memory and, consequently, it could not
evaluate programs working on huge amounts of data.

Table 3.12 summarizes the features of XSB relevant to data integration tasks.

3.3.9 claspD

claspD is an answer set programming (ASP) solver for (extended) normal and disjunctive
logic programs. It is able to deal with problems at the second level of the polynomial hierar-
chy. claspD deploys a generate and test approach, both tasks implemented by way of clasp’s
core technology [54]; consequently, it combines the high-level modeling capacities of Answer
Set Programming with state-of-the-art techniques from the area of Boolean constraint solving.

Unlike existing ASP solvers, claspD is originally designed and optimized for conflict-driven
ASP solving [56, 55], centered around the concept of a nogood from the area of constraint pro-
cessing (CSP). Rather than applying a SAT(isfiability checking) solver to a CNF conversion, clasp
directly incorporates suitable data structures, particu- larly fitting backjumping and learning.

Such techniques include:

• conflict analysis via the First-UIP scheme;

• nogood recording and deletion;

• backjumping;

• restarts;

• conflict-driven decision heuristics;

• unit propagation via watched literals;

• dedicated propagation of binary and ternary nogoods;

However, claspD is a genuine ASP solver. Its basic propagation engine includes advanced
unfounded set checking based on source pointers. In fact, claspD is the first disjunctive ASP
solver whose propagation engine is able (but not guaranteed) to detect non-singleton unfounded
sets within non-head-cycle-free strongly connected components of a program’s (positive) atom
dependency graph. Furthermore, non-polynomial unfounded set checks are only applied if nec-
essary, that is, when an exhaustive test of a non-head-cycle-free strongly connected component
is needed.

Table 3.13 summarizes the features of claspD relevant to data integration tasks.

3.3.10 Other systems

Among other ASP systems we cite the system near Horn [89, 92] which has been implemented
in PROLOG; in [121] the system DisLog is described, which incorporates different disjunctive
theories and strategies including the semantics introduced in [90]; DisLog tries to eliminate re-
dundant computations by using a breadth-first approach. The system DisLoP [6, 7] which aims at

30

Chapter 3. Comparisons to other Systems

extending the restart model elimination and hyper tableau calculi, for disjunctive logic program-
ming under the D-WFS and stable semantics. The aspps system is an answer-set programming
system based on the extended logic of propositional schemes [35], which allows variables but
not function symbols in the language. The GnT system is an implementation of the stable model
semantics for disjunctive logic programs constructs on top of Smodels system; this implementa-
tion is based on an architecture consisting of two interacting Smodels solvers for non-disjunctive
programs, one of the them is responsible for generating as good as possible model candidates
while the other checks for minimality, as required from disjuctive stable models.

31

Chapter 3. Comparisons to other Systems

SMODELS

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Yes, supports unstratified nega-

tion
Ability to deal with computationally hard
queries

Up to NP thanks to unstratified

negation and “choice” rules
ΣP

2 problems can be solved
through a disjunctive extension
(GnT)
implemented by a rewriting
technique

Other Supports cardinality and weight
constraints; handles only
domain-restricted programs

Efficiency

Efficiency with simple but data intensive
queries

Inefficiency caused by the
domain-
restriction requirement on
program variables. No database
optimization technique has been
implemented

Efficiency with computationally hard queries Heuristics and optimization
techniques from the field of SAT
programming have been
implemented

Table 3.6: Features of SMODELS

32

Chapter 3. Comparisons to other Systems

Cmodels

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes

Ability to express nonmonotonic queries Yes, supports unstratified
negation and disjunction

Ability to deal with computationally hard
queries

Up to ΣP
2

Other

Efficiency

Efficiency with simple but data intensive
queries

No database optimization

technique has been implemented
Efficiency with computationally hard queries Heuristics and optimization

techniques from the field of SAT
programming have been
implemented

Table 3.7: Features of Cmodels

ASSAT

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Yes, supports unstratified nega-

tion
Ability to deal with computationally hard
queries

Up to NP thanks to unstratified

negation
Other

Efficiency

Efficiency with simple but data intensive
queries

No database optimization

technique has been implemented
Efficiency with computationally hard queries By the use of well-assessed

SAT solvers

Table 3.8: Features of ASSAT

33

Chapter 3. Comparisons to other Systems

noMoRe

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Unstratified negation is sup-

ported
Ability to deal with computationally hard
queries

Up to NP through unstratified

negation
Other

Efficiency

Efficiency with simple but data intensive
queries

No database technique has been

implemented
Efficiency with computationally hard queries It is a research prototype

implemented in Prolog, which
needs some engineering to be-
come
efficient

Table 3.9: Features of noMoRe

SLG

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Yes
Ability to deal with computationally hard
queries

Up to NP

Other

Efficiency

Efficiency with simple but data intensive
queries

No

Efficiency with computationally hard queries It is a research prototype
which needs some engineering
to become efficient

Table 3.10: Features of SLG

34

Chapter 3. Comparisons to other Systems

DeReS

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes
Ability to express nonmonotonic queries Unstratified negation is

supported
Ability to deal with computationally hard
queries

Up to NP in Datalog, up to

ΣP
2 in Default Logic

Other Also Default Logic is supported

Efficiency

Efficiency with simple but data intensive
queries

No database optimization

technique is implemented
Efficiency with computationally hard queries An engineering phase is needed

Table 3.11: Features of DeReS

XSB

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints No
Ability to express nonmonotonic queries Only “well-founded” queries
Ability to deal with computationally hard
queries

Only polynomial-time

queries
Other

Efficiency

Efficiency with simple but data intensive
queries

The system is at an advanced

engineering state. However,
the “tuple-oriented”, top-down
computational model limits
the efficiency on database
queries

Efficiency with computationally hard queries Not applicable

Table 3.12: Features of XSB

35

Chapter 3. Comparisons to other Systems

claspD

Language expressiveness

Ability to express views Yes
Ability to express recursive queries Yes
Ability to express integrity constraints Yes

Ability to express nonmonotonic queries Yes, supports unstratified
negation and disjunction

Ability to deal with computationally hard
queries

Up to ΣP
2

Other

Efficiency

Efficiency with simple but data intensive
queries

No database optimization

technique has been implemented
Efficiency with computationally hard queries Heuristics and optimization

techniques from the field of SAT
programming have been
implemented

Table 3.13: Features of claspD

36

Chapter 4

DLVDB - Main Features

Disjunctive logic programming under answer set semantics (DLP, ASP) is a powerful formalism
for knowledge representation and reasoning. The language of DLP is very expressive, and allows
for modelling complex combinatorial problems. However, despite the high expressiveness of this
language, the success of DLP systems is still dimmed when the applications of interest become
data intensive (current DLP systems work only in main memory) or they involve some inherently
procedural sub-tasks or the handling of complex data structures.

DLVDB is conceived as an extension of the DLV system allowing the instantiation of logic
programs directly on databases and to handle input and output data distributed on several databases
in order to combining the expressive power of DLP with the efficient data management features
of DBMSs.

Part of the material presented in this chapther appeared in [147, 151, 148, 149, 152, 150].

4.1 Introduction

The main limitations of current DLP systems in real world scenarios can be summarized in four
main issues : (i) they are not capable of handling data intensive applications (they work in main
memory only), (ii) they provide a limited interoperability with generic, external, DBMSs, (iii)
they are not well suited for modelling inherently procedural problems, and (iv) they can not
reason about recursive data structures and infinite domains, such as XML/HTML documents.

DLVDB has been conceived to increase the cooperation between ASP systems and databases;
it allows substantial improvements in both the evaluation of logic programs and the management
of input and output data distributed on several databases.

Moreover, DLVDB presents enhanced features to improve its efficiency and usability in the
contexts outlined above, for an effective exploitation of DLP in real world scenarios. These
features include:

• Full support to disjunctive datalog with unstratified negation, and aggregate functions;

• Extension of DLP with external function calls, particularly suited for solving inherently
procedural sub-tasks but also for improving knowledge-modelling power;

• Extension of DLP to support list terms;

37

Chapter 4. DLVDB - Main Features

• An evaluation strategy devoted to carry out as much as possible of the reasoning tasks
in mass memory, thus enabling complex reasonings in data intensive applications without
degrading performances.

• Primitives to integrate data from different databases, in order to easily specify which data
is to be considered as input or as output for the program.

In order to make the above features possible, various challenges had to be faced:

1. Data intensive applications usually must access, and modify, data stored in autonomous
enterprise databases and these should be accessed also by other applications.

2. Evaluating the stable models of an ASP program directly in mass-memory data-structures,
could be highly inefficient.

3. Using the main memory to accommodate both the input data (hereafter, EDB) and the
inferred data is usually impossible for data intensive applications due to the limited amount
of available main memory.

4. The introduction of functions and list terms makes the evaluation of programs more com-
plex.

In order to face challenge 1. DLVDB is interfaced with external databases via ODBC. ODBC
allows a very straightforward way to access and manipulate data over, possibly distributed,
databases. Moreover, in order to properly carry out the evaluation of a program, it is neces-
sary to specify the mappings between input and output data and program predicates, as well as to
specify wether the temporary relations possibly needed for the mass-memory evaluation should
be maintained or deleted at the end of the execution. These can be specified by some Auxiliary
Directives, more details on these directives are discussed in Section4.1. Note that challenge 1.
makes the adoption of deductive systems integrating proprietary DBMSs not effective.

As far as challenge 2. is concerned we adopt a mixed strategy, a detailed description of the
evaluation strategies adopted by DLVDB is presented in Section 5.2; intuitively, the evaluation
can be divided in two distinct phases: the grounding and the model generation. Grounding
is completely performed in the database, whereas the model generation is carried out in main
memory; this allows also to address challenge 3. In fact, in several cases, only a small portion of
the ground program is actually needed for the model generation phase, since most of the inferred
data is “stable” and belongs to every stable model (and is already derived during the grounding
phase).

Note that, from points 2. and 3. it comes out that some amount of data must be loaded in
main memory, but this should be as small as possible.

Finally, as for challenge 4. we exploit database stored functions to implement external func-
tion calls; these are also the basis for supporting list terms, which are handled with suitable
manipulation functions. Functions are introduced in the program by estending the supported
language with external atoms, details on the corresponding syntax have beeen presented in Sec-
tion 2.1, whereas, evaluation of programs with functions and list terms is shown in Section5.4.

In the following we focus on the Auxiliary Directives the user can specify to let DLVDB

interact with external databases.

38

Chapter 4. DLVDB - Main Features

4.2 Auxiliary directives

DLVDB allows the user to specify a variety of auxiliary directives for handling the interaction
between the system and a set of (possibly distributed) databases. The grammar in which these
directives must be expressed is shown in Figure4.1.

Auxiliary-Directives ::=
Init-section
[Table-definition]+
[Function-definition]*
[Query-Section]?
[Final-section]*

Init-Section ::=
USEDB DatabaseName:UserName:Password [System-Like]?.

Table-definition ::=
[USE TableName [(AttrName [, AttrName]*)]?
[AS (SQL-Statement)]?
[FROM DatabaseName:UserName:Password]?
[MAPTO PredName [(SqlType [, SqlType]*)]?]?.
|
CREATE [VIEW]? TableName [(AttrName [, AttrName]*)]?
[MAPTO PredName [(SqlType [, SqlType]*)]?]?
[KEEP_AFTER_EXECUTION]?.]

Function-definition ::=
USEFUNCTION FunctionName MAPTO ExternalPredName.

Query-Section ::= QUERY TableName.

Final-section ::=
[DBOUTPUT DatabaseName:UserName:Password.
|
OUTPUT [APPEND | OVERWRITE]? PredName [AS AliasName]?
[IN DatabaseName:UserName:Password.]

System-Like ::=
LIKE [POSTGRES | ORACLE | DB2 | SQLSERVER | MYSQL]

Figure 4.1: Grammar of the auxiliary directives.

The auxiliary directives can be subdivided in five sections, namely the init section, the table
definition section, the function definition section, the query section and the final section.

The init section defines the working database on which the instantiation process will be car-
ried out; this database, like all the other ones, is accessed via an ODBC connection that must be
previously set up and, consequently, username and password for the connection must be provided
here. The System-Like option can be used here to specify the kind of DBMS which imple-
ments the working database, in order to exploit tha corresponding SQL dialect. If this option is
omitted, the working DBMS is assumed to be a generic DBMS supporting standard SQL.

39

Chapter 4. DLVDB - Main Features

The table definition section specifies the mappings between logic program predicates and
database tables (or SQL views). The user can exploit two options in this phase, namely the USE
and the CREATE option.

The USE option must be exploited if the table TableName already exists and the data it
contains must be exploited as input (facts) for the instantiation process. Note that this data might
reside on a database different from the working database (this situation can be specified with
the option [FROM DatabaseName]). If the data is available, but it is not in a single ta-
ble, TableName can be filled with the result of the SQL query specified in the option [AS
(SQL-Statement)].

The CREATE option must be exploited when the table must be created (if a table with the
same name is present in the database it is first removed and then redefined) in the working data-
base from the output computed by the program. If the user specifies the option KEEP AFTER-
EXECUTION, the table is kept in the working database at the end of the instantiation process;

otherwise it is removed.
Of particular interest is the VIEW option of the CREATE statement (not available in the earlier

version of DLVDB); this can be used to specify that tables associated with intermediate predicates
(i.e. corresponding to neither input nor output data) should be maintained virtual. This possibility
may provide both space saving and performance improvements, especially for those programs
having a hierarchical structure. Note that VIEW option cannot be used with both recursive and
unsolved predicates1.

In both cases, the MAPTO option must be exploited to link the table to a predicate. The number
of attributes of the table must be equal to the arity of the associated predicate. In the definition
of tables, attribute type declaration is needed only if the program contains built-in predicates or
aggregate functions for a correct management of them.

If a predicate is not explicitly mapped into a table, but a relation with the same name and
compatible attributes is present in the working database, the system automatically creates a USE
mapping for them. Analogously, if a predicate is not explicitly mapped and no corresponding
table exists in the working database, a CREATE mapping is automatically generated for it. These
functionalities significantly simplify the specification of the auxiliary directives (in the ideal case
– when everything is in the working database and all the input predicates have the corresponding
input table having the same name – only the init section and one of CREATE or OUTPUT options
are actually needed to run a program and check its output).

The function definition section specifies the mappings between logic program external predi-
cates and database stored functions.

The query section can be used to specify the database table devoted to store the results of the
query possibly present in the program.

The final section allows to copy either the entire output of the instantiation or only some of
the tables on a database different from the working database. If the user does not specify any
table name, the entire output is copied; otherwise, only the specified tables are copied. In the
latter situation, the user can choose to append the data created during the instantiation to those
already present in the target table (by the option APPEND) or to overwrite the (possibly existing)
data in the target table (by the option OVERWRITE); if no option is specified, OVERWRITE is the
default. The definition of the target table is the same as the source one except for the name which
can be changed to AliasName. Note that directives specified in the final section must be used

1For a definition of unsolved predicate we refer to Section 5.2.

40

Chapter 4. DLVDB - Main Features

only with option -n=1, this option causes the system to compute one stable model only.
These directives provide DLVDB with high flexibility in source data location and output man-

agement.

Example 4.2.1 Assume that a travel agency asks to derive all the destinations reachable by an
airline company either by using its vectors or by exploiting code-share agreements. Suppose that
the direct flights of each company are stored in a relation flight rel(Id, From, To,
Company) of the database dbAirports, whereas the code-share agreements between com-
panies are stored in a relation codeshare rel (Company1, Company2, FlightId)
of an external database dbCommercial; if a code-share agreement holds between the com-
pany c1 and the company c2 for flightId, it means that the flight flightId is actually provided
by a vector of c1 but can be considered also carried out by c2. Finally, assume that, for secu-
rity reasons, it is not allowed to travel agencies to directly access the databases dbAirports
and dbCommercial, and, consequently, it is necessary to store the output result in a relation
composedCompanyRoutes of a separate database dbTravelAgency supposed to support
travel agencies. The DLPA program that can derive all the connections is:

(1) destinations(From, To,Comp) :- flight(Id, From, To,Comp).
(2) destinations(From, To,Comp) :- flight(Id, From, To,C2),

codeshare(C2, Comp, Id).
(3) destinations(From, To,Comp) :- destinations(From, T2, Comp),

destinations(T2, T o,Comp).

In order to exploit data residing in the above mentioned databases, we should map the pred-
icate flight with the relation flight rel of dbAirports and the predicate codeshare
with the relation codeshare rel of dbCommercial. Finally, we have to map the predi-
cate destinations with the relation composedCompanyRoutes of dbTravelAgency.

Now suppose that, due to a huge size of input data, we need to perform the program execution
in mass-memory (on a DBMS). In order to carry out this task, the auxiliary directives shown in
Figure 4.2 should be used. They allow to specify the mappings between the program predicates
and the database relations introduced previously.

41

Chapter 4. DLVDB - Main Features

USEDB dlvdb:myname:mypasswd.

USE flight_rel (Id, From, To, Company)
FROM dbAirports:airportUser:airportPasswd
MAPTO flight (integer, varchar(255), varchar(255), varchar(255)).

USE codeshare_rel (Company1, Company2, FlightId)
FROM dbCommercial:commUser:commPasswd
MAPTO codeshare (varchar(255), varchar(255), integer).

CREATE destinations_rel (From, To, Company)
MAPTO destinations (varchar(255), varchar(255), varchar(255))
KEEP_AFTER_EXECUTION.

OUTPUT destinations AS composedCompanyRoutes
IN dbTravelAgency:agencyName:agencyPasswd.

Figure 4.2: Auxiliary directives for Example 4.2.1.

42

Chapter 5

DLVDB - Implementation Principles

This chapter provides the description of implementation principles of the DLVDB system. First
we describe the architecture of DLVDB, evidencing the strong relation with the DLV architecture.
Then, we present the evaluation strategy implemented in DLVDB devoted to carry out as much as
possible of the reasoning tasks in mass memory without degrading performances. Moreover, we
present a fixpoint computation technique (Differential Semi-Naive Evaluation) that reduces the
redundancy in the inference process and functions for translating DLP rules into SQL statements.

Part of the material presented in this chapther appeared in [147, 151, 148, 149, 152, 150].

5.1 System Architecture

In this section we present the general architecture of the system. It has been designed as an
extension of the DLV system [80], which allows both instantiating of logic programs directly on
databases and the handling of input and output data distributed on several databases. It combines
the expressive power of DLV (and the optimization strategies implemented in it) with the efficient
data management features of DBMSs [53].

Figure 5.1 illustrates the architecture of the system; in the figure, the boxes marked with DLV
are the ones already developed in the DLV system. An input program P is first analyzed by the
Parser which encodes the rules in the intensional database (IDB) in a suitable way and builds an
extensional database (EDB) in main-memory data structures from the facts specified directly in
the program (if any). As for facts already stored in database relations, no EDB is produced in
main-memory. After this, the Optimizer applies a rewriting procedure in order to get a program
P ′, equivalent to P, that can be instantiated more efficiently and that can lead to a smaller ground
program. The Dependency Graph Builder computes the dependency graph of P′, its connected
components and a topological ordering of these components. Finally, the DB Instantiator module,
the core of the system, is activated. The DB Instantiator module receives:

1. the IDB and the EDB (if not empty) generated by the parser;

2. the Dependency Graph (DG) generated by the dependency graph builder;

3. the auxiliary directives specifying the needed interactions between DLVDB and the databases.

43

Chapter 5. DLVDB - Implementation Principles

Figure 5.1: Architecture of DLVDB.

First, each DLV rule is translated into SQL statement by the DLV to SQL Translator, then these
statements are executed on the Working Database by the DBGrounder. The Input Data Han-
dler receives the auxiliary directives defined by the user and performs all mappings and settings
needed for a correct translation and execution of the SQL statements produced by the DLV to
SQL Translator.

Finally, the Ground Rule Generator extracts data from database, create ground rules (if any)
and load them to Model Generator. The Model Generator produces some “candidate” answer
sets (models), the stability of which are verified by the Model Checker; then each stable model is
printed on output.

Note that, if no ground rule is generated after grounding, it means that all the program
has been solved by the grounder, then the Ground Rule Generator prints directly on output the
(unique) stable model found.

It is worth pointing out that all the instantiation steps are performed directly on the working
database through the execution of SQL statements and no data is loaded in main-memory from
the databases in any phase of the grounding process.

Communication with databases is performed via ODBC. This allows DLVDB both to be in-
dependent from a particular DBMS and to handle databases distributed over the Internet.

It is important to point out that the architecture of DLVDB has been designed in such a way
to fully exploit optimizations both from logic theory and from database theory. In fact, the ac-
tually evaluated program is the one resulting from the Optimizer module which applies program
rewriting techniques aiming at simplifying the evaluation process and reducing the dimension
of the ground program. Then, the execution of the SQL statements in the query plan exploits
data-oriented optimizations implemented in the DBMS. As far as this latter point is concerned,
we have experienced that the typology of the working database associated with DLVDB may sen-
sibly affect system performance; in fact, when DLVDB was coupled with highly sophisticated
DBMSs it generally showed better performance in handling great amounts of data w.r.t. the same

44

Chapter 5. DLVDB - Implementation Principles

executions when coupled with less sophisticated DBMSs.

5.2 Evaluation Strategy

The main innovation of the proposed system resides in the instantiation of DLP programs directly
on a database. The instantiation process basically consists of two steps: (i) the translation of DLP
rules in SQL statements, (ii) the definition of an efficient query plan, which basically consists in
an enhancement of the Semi-Naive evaluation.

The evaluation strategy implemented in our approach puts its basis on the sharp distinction
existing between the grounding of the input datalog program and the generation of its stable mod-
els. Then, two distinct approaches can be adopted whether the input program is non disjunctive
and stratified (in this case everything can be evaluated on the DBMS) or not.

5.2.1 Evaluation of non disjunctive stratified programs

It is well known that if a program is non disjunctive and stratified, it has a unique stable model
corresponding exactly to its ground instantiation. The evaluation of these kinds of program,
intuitively, consists in the translation of each datalog rule in a corresponding SQL statement and
in the composition of a suitable query plan on the DBMS; the evaluation of recursive rules is
carried out with an improved semi-naı̈ve approach.

Before starting the evaluation of a (possibly optimized) program P, its connected components
and their topological order (i.e., the Dependency Graph of P) are computed. Then, the program
is evaluated one component at a time, starting from the lowest ones in the topological order. This
process is iterated until no new ground instance can be derived from the component rules.

At each iteration, the instantiation of a rule consists of the execution of the SQL statement
associated with it. One of the main objectives in the implementation of DLVDB has been that
of associating one single (non recursive) SQL statement with each rule of the program (either
recursive or not), without the support of main-memory data structures for the instantiation. This
allows DLVDB to fully exploit optimization mechanisms implemented in the DBMSs and to
minimize the “out of memory” problems caused by limited main-memory dimensions.

Since the handling of recursive rules and the translation of datalog to SQL are problems
addressed also in the evaluatio of disjunctive programs with unstratified negation we analyze
them later in Secton 5.3 and 5.4.

5.2.2 Evaluation of disjunctive programs with unstratified negation

In presence of disjunctive rules or unstratified negation in a program P, the ground instantiation
of P is not sufficient to compute its stable models. Then, grounding and model generation phases
must both be carried out.

Also in this case, the evaluation strategy we adopt carries out the grounding completely in
the database, by the execution of suitable SQL queries. This phase generates two kinds of data:
ground atoms (facts) valid in every stable model (and thus not requiring further elaboration in the
model generation phase) and ground rules, summarizing possible values for a predicate and the
conditions under which these can be inferred.

Facts compose the so called solved part of the program, whereas ground rules form the resid-
ual program, not completely solved by the grounding. As previously pointed out, one of the main

45

Chapter 5. DLVDB - Implementation Principles

challenges in our work is to load the smallest amount of information as possible in main memory;
consequently, the residual program generated by the system should be as small as possible.

Model generation is then carried out in main memory with the technique described in [80].

Definition 5.2.1 Let p be a predicate of a program P, p is said to be unsolved if at least one of
the following holds: (i) it is in the head of a disjunctive rule; (ii) it is the head of at least one rule
involved in unstratified negation; (iii) the body of a rule having p as head contains at least one
unsolved predicate. p is said to be solved otherwise.

In our evaluation strategy, a ground predicate is associated with facts only in the ground
program and, thus, with certainly-true values, i.e. values true in every stable model. On the
contrary, an unsolved predicate p may be defined by both facts (certainly-true values) and ground
rules; the latter identify possibly-true values for p, i.e. the domain of values p may assume in
stable models.

Given an unsolved predicate p we indicate the set of its certainly-true values as ps and the set
of its possibly-true values as pu.

Example 5.2.2 Consider the simple program:

q(1, 2).
p(3).
p(X) ∨ p(Y):- q(X,Y).

Here q is a solved predicate, whereas p is an unsolved predicate; in particular, q(1, 2) is a
certainly-true value for q, p(3) is a certainly-true value for p, whereas p(1) and p(2) are possibly-
true values of p. Then, ps = {3}, whereas pu = {1, 2}.

As previously pointed out, rules having an unsolved predicate may generate ground rules in
the instantiation. Since we are interested in generating the smallest residual program as possible,
ground rules are “epurated” of certainly-true values.

Definition 5.2.3 A simplified ground rule (g-rule in the following) of a program P is a ground
rule not involving any certainly-true values of P.

Example 5.2.4 From the previous example, the (only) ground rule that can be generated is
p(1) ∨ p(2) :- q(1, 2). However this is not a simplified rule since it involves q(1, 2) which is a
certainly-true value. Then, the corresponding g-rule is simply p(1) ∨ p(2).

It is now possible to illustrate the evaluation strategy implemented in our system. Consider a
program P composed of non ground rules of the form:

α1 ∨ · · · ∨ αk :- β1, . . . , βn,not βn+1, . . . ,not βm, γ1, . . . , γp,not γp+1, . . . ,not γq. (5.1)

where βi (resp. γj) are solved (resp. unsolved) predicates. The evaluation is carried out in five
steps:

Step 1. Translate P in an equivalent program P′;

46

Chapter 5. DLVDB - Implementation Principles

Step 2. Translate each rule of P′ in a corresponding SQL statement;

Step 3. Compose and execute the query plan of statements generated in Step 2 on the
DBMS;

Step 4. Generate the residual program and load it in the Model Generator of DLV;

Step 5. Execute the residual program in main memory and show the results.

Step 1. The objective of this step is to “prepare” rules of P to be translated in SQL almost
straightforwardly, in order to generate a residual programs as small as possible. In more detail,
for each rule r in P three kinds of rule are generated:

A. If the head of r has one atom only (k = 1), a rule (hereafter denoted as A-rule) is created
for deriving only certainly-true values of r’s head; note that if k > 1 no certainly-true
values can be derived from r.

B. A set of rules (hereafter, B-rules) supporting the generation of the g-rules of r. The heads
of these rules contain both the variables of unsolved predicates in the body of r and the
variables in the head of r. Ground values obtained for these variables with B-rules are then
used to instantiate r with possibly-true values only.

C. A set of rules (hereafter, C-rules) for generating the set of possibly-true values of unsolved
predicates as projections on B-rules obtained previously.

Given a generic rule defined as (5.1), the corresponding A-rule have the form:

αs
1 :- β1, .., βn,notβn+1, ..,not βm, γs

1, .., γ
s
p,not γs

p+1,not γu
p+1, ..,not γs

q ,not γu
q . (5.2)

where for positive unsolved predicates only certainly-true values (γs1, . . . , γs
p) are considered,

whereas for negated unsolved predicates both certainly-true and possibly-true values (γsp+1, . . . , γ
s
q ,

γu
p+1, . . . , γ

u
q) must be taken into account.

Example 5.2.5 Consider the following program, which will be exploited as a running example
throughout the rest of the section:

r1 : q(1, 2).
r2 : p(Y,X) ∨ t(X):- q(X,Y).
r3 : q(X,Y):- p(X,Y), not t(X).

Here both p, q, and t are unsolved. The A-rules derived for this program are:

r1.A : qs(1, 2).
r3.A : qs(X,Y):- ps(X,Y), not ts(X), not tu(X).

where rule r2 does not contribute since it is disjunctive and cannot generate certainly-true values.

47

Chapter 5. DLVDB - Implementation Principles

B-rules play a key role in our approach; in fact, they allow the generation of the residual
program. In particular, their role is to identify the set of values for variables in unsolved predicates
of the body of r, generating possibly-true values of the head of r. Then, r is seen as a template
for generating its g-rules, and ground values derived by the corresponding B-rules are used to
instantiate r.

Note that in order to generate a possibly true value for a normal rule, at least one possibly
true value must be involved in its body, whereas disjunctive rules always generate possibly-true
values. Moreover, in order to properly generate g-rules (i.e. ground rules involving possibly-true
values only) the system must be able to track, for each truth value of a B-rule, which predicates
of r contributed with a certainly-true value and which ones with a possibly-true value.

In our approach, this issue is addressed by first labelling each unsolved predicate γj of r
alternatively with a 0 or with a 1, where a 0 indicates to take its γs

j , whereas a 1 indicates to
consider its γu

j . Then, each binary number between 1 and 2q-1 for normal rules and between 0
and 2q-1 for disjunctive rules1 corresponds to a labelling stating the combination of values to be
considered. For each labelling, a corresponding B-rule is generated starting from the definition
of r and substituting each unsolved predicate γj with γs

j (resp., γu
j) if the corresponding label is

0 (resp., 1).
The only exception is caused by negated unsolved predicates. In fact, if γj is negated and

labelled with a 1, it must be put in the B-rule without negation. In fact, negated certainly-true
values surely invalidate the satisfiability of the g-rule, whereas negated possibly-true values may
invalidate the rule only if the model generator sets them to true.

It is worth pointing out that our labelling approach, makes significantly easier the generation
of simplified ground rules; in fact, it is sufficient to consider only the values of predicates labelled
with 1 and not derived to be certainly-true by other rules.

Finally, in order to allow a proper reconstruction of g-rules from B-rules, a mapping between
the variables of the B-rules and the variables of r is maintained.

Example 5.2.6 From rules r2 and r3 introduced in the previous example, the following B-rules
are derived. Original rules are re-proposed in parenthesis to simplify the comprehension; labels
are reported in rule names. Variable mapping is trivial and not reported.

(r2 : p(Y,X) ∨ t(X):- q(X,Y).)
r2.B(0) : B-rule r2(X,Y):- qs(X,Y).
r2.B(1) : B-rule r2(X,Y):- qu(X,Y).

(r3 : q(X,Y):- p(X,Y), not t(X).)
r3.B(01) : B-rule r3(X,Y):- ps(X,Y), tu(X).
r3.B(10) : B-rule r3(X,Y):- pu(X,Y), not ts(X).
r3.B(11) : B-rule r3(X,Y):- pu(X,Y), tu(X).

Finally, C-rules are simple projections on the B-rule heads over the attributes of the corre-
sponding predicate.

Example 5.2.7 From rules r2 and r3 introduced previously and from the corresponding B-rules
the system generates:

1 Recall that q is the number of unsolved predicates in the body of r.

48

Chapter 5. DLVDB - Implementation Principles

r2.C p : pu(Y,X) :- B-rule r2(X,Y).
r2.C t : tu(X) :- B-rule r2(X,Y).
r3.C q : qu(X,Y):- B-rule r3(X,Y).

Note that in the example above, the same B-rule predicate (B-rule r2) is used to generate possibly-
true values of two predicates (pu and tu); this follows directly from the fact that r2 is a disjunctive
rule involving p and t.

Step 2. Translation of the rules obtained in Step 1. into SQL is carried out with the technique
already presented in [152] for non disjunctive and stratified programs. As an example, rule r3.A
introduced above is translated into2:

INSERT INTO qs (SELECT ps.att1, ps.att2, FROM ps

WHERE ps.att1 NOT IN (SELECT * FROM ts)
AND ps.att1 NOT IN (SELECT * FROM tu))

Step 3. In order to compile the query plan, the dependency graph D associated with P is consid-
ered [81]. In particular, D allows the identification of a partially ordered set {Compi} of program
components where lower components must be evaluated first.

Then, given a component Comp and a rule r in Comp, if r is not recursive, then the corre-
sponding portion of query plan is as follows3: (1) evaluate (if present) the A-rule associated with
r; (2) evaluate each B-rule obtained from r; (3) for each predicate in the head of r evaluate the
corresponding C-rule.

If r is recursive, the portion of query plan above must be included in a fix-point semi-naı̈ve
evaluation, as described in Section 5.3.
Step 4 and 5. The generation of the residual program requires the analysis of values derived by
B-rules only. Then, for each rule r and each corresponding B-rule (say, r.B(L)), first predicates
having label 0 in L are purged from r, then r is instantiated with values of r.B(L); during this phase
a further check is carried out to verify if some predicate value has been derived as certainly-true
by other rules. In this case the predicate is removed from the g-rule for that instance. The residual
program is then loaded in main memory for the generation of stable models. Note that each
answer set found on this residual program shall be enriched with certainly-true values determined
during the grounding.

Example 5.2.8 The residual program generated for our running example is:

p(2, 1) ∨ t(1).
p(1, 2) ∨ t(2):- q(2, 1).
q(2, 1) :- p(2, 1), not t(2).

Note that the first g-rule does not involve q since it derives from r2.B(0), having q(1, 2) as
certainly-true value.

2Here and in the following we use the notation x.atti to indicate the i-th attribute of the table x. Actual attribute
names are determined at runtime.

3Here, for simplicity of exposition, we refer to rules, indicating that the corresponding SQL statements must be
evaluated on the database.

49

Chapter 5. DLVDB - Implementation Principles

5.3 Enhanced Semi-Naive method for evaluating recursive rules

In order to describe our approach, we first recall the classical Semi-Naive method; then we show
some of its weaknesses and, finally, describe the improvement.

Given a program P and the associated dependency graph DGP it is possible to single out an
ordered sequence of components 〈PC1 , . . . ,PCh

〉 such that the evaluation of PCg (1 ≤ g ≤ h)
depends only on the evaluation of the components PCf

such that f < g. Then, the Semi-Naive
evaluation strategy considers one component of P at a time following the order specified by
DGP .

The Semi-Naive algorithm applied to each component can be viewed as a two-phase algo-
rithm: the first one deals with non-recursive rules, which can be completely evaluated in one
single step; the second one deals with recursive rules which need an iterative fixpoint computa-
tion for their complete evaluation. At each iteration of the evaluation of a component PCg , there
are a number of predicates whose extensions have been already fully determined (predicates not
belonging to PCg which have been therefore previously evaluated), and a number of recursive
predicates (i.e., belonging to PCg) for which a new set of truth values can be determined from
the available ones. Let pj be one of these recursive predicates, we indicate by Δpkj the set of new
values determined for pj at step k (in the following, we call Δpk

j the differential of pj).
Now, let p :-φ(p1, p2, . . . , pn, q1, q2, . . . , qm). be a recursive rule such that φ is a first order

formula, p1, p2, . . . pn are mutually recursive to p, and q1, q2, . . . qm are base or derived predicates
which are non mutually recursive to p. The Semi-Naive method aims at reducing as much as
possible the number of truth values computed at step k which were already true at step k − 1. In
order to achieve this goal it evaluates, at each iteration of the fixpoint computation, the following
formula:

Δφ(pk
1 ,Δpk

1, . . . , p
k
n,Δpk

n, q1, . . . , qm) =

φ((pk
1 + Δpk

1), (p
k
2 + Δpk

2), . . . , (p
k
n + Δpk

n), q1, . . . , qm)−
φ(pk

1 , p
k
2 , . . . , p

k
n, q1, q2, . . . , qm).

where, with a little abuse of notation, we indicated with pkj the truth values of pj computed until
step k.

Thus, at each iteration, the Semi-Naive method evaluates only the differential of φ instead
of the entire φ. However, as we will show with the next example, the Semi-Naive method still
performs, at each iteration, some operations that can never contribute in computing new truth
values and, as such, avoidable.

Consider the following rule in which g and h are themselves predicates mutually recursive to
f :

f(X,Y):- f(X,Y), g(X,Y), h(X,Y).

In relational algebra, the evaluation of the ground instances of f is equivalent to:

F = F �	 G �	 H.

and, at step k, the standard Semi-Naive algorithm evaluates:

50

Chapter 5. DLVDB - Implementation Principles

ΔF k = ΔF k−1 �	 Gk−1 �	 Hk−1 ∪ (a)
F k−1 �	 ΔGk−1 �	 Hk−1 ∪ (b)
F k−1 �	 Gk−1 �	 ΔHk−1 (c)

It is worth pointing out that the Semi-Naive evaluation strategy exploits three different tables for
every recursive atom; in fact, for a generic relation T , it considers: Tk−1, i.e. the whole set of
truth values computed for T until iteration k − 1; ΔTk−1, i.e. the new truth values computed
for T at iteration k − 1, and ΔTk, i.e. the new values computed at iteration k from Tk−1 and
ΔT k−1. Note that, in the Semi-Naive method, Tk−1 contains also the tuples of ΔTk−1. Clearly,
each T k−1 can be explicitly split in Tk−2 (i.e., the evaluation of T until step k− 2), and ΔTk−1;
formally: Tk−1 = T k−2 ∪ΔT k−1.

This observation allows to rewrite the formula for ΔFk above in:

ΔF k =

(a)

⎡
⎢⎢⎣

ΔF k−1 �	 Gk−2 �	 Hk−2 ∪ (1)
ΔF k−1 �	 Gk−2 �	 ΔHk−1 ∪ (2)
ΔF k−1 �	 ΔGk−1 �	 Hk−2 ∪ (3)
ΔF k−1 �	 ΔGk−1 �	 ΔHk−1 ∪ (4)

(b)

⎡
⎢⎢⎣

F k−2 �	 ΔGk−1 �	 Hk−2 ∪ (5)
F k−2 �	 ΔGk−1 �	 ΔHk−1 ∪ (6)

ΔF k−1 �	 ΔGk−1 �	 Hk−2 ∪ (7)
ΔF k−1 �	 ΔGk−1 �	 ΔHk−1 ∪ (8)

(c)

⎡
⎢⎢⎣

F k−2 �	 Gk−2 �	 ΔHk−1 ∪ (9)
F k−2 �	 ΔGk−1 �	 ΔHk−1 ∪ (10)

ΔF k−1 �	 Gk−2 �	 ΔHk−1 ∪ (11)
ΔF k−1 �	 ΔGk−1 �	 ΔHk−1 . (12)

Now, observe that this new formula singles out some join operations that are computed several
times, namely:

• join number (2) is equal to join number (11);

• join number (3) is equal to join number (7);

• join number (4) is equal to joins number (8) and (12);

• join number (6) is equal to join number (10);

This reasoning puts into evidence that, for the considered example, only 7 joins out of 12 (i.e.,
about 60%) are indeed needed to evaluate ΔFk namely joins (1), (2), (3), (4), (5), (6), (9).

This situation can be generalized to any kind of recursive rule. As a consequence, a significant
amount of avoidable operations, carried out at each step of the Semi-Naive evaluation, can be
spared. Now, consider the following organization of the unavoidable joins above:

F k−2 �	 Gk−2 �	 ΔHk−1 ∪ (9)
F k−2 �	 ΔGk−1 �	 Hk−2 ∪ (5)
F k−2 �	 ΔGk−1 �	 ΔHk−1 ∪ (6)

ΔF k−1 �	 Gk−2 �	 Hk−2 ∪ (1)
ΔF k−1 �	 Gk−2 �	 ΔHk−1 ∪ (2)
ΔF k−1 �	 ΔGk−1 �	 Hk−2 ∪ (3)
ΔF k−1 �	 ΔGk−1 �	 ΔHk−1 ∪ (4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

51

Chapter 5. DLVDB - Implementation Principles

Differential Semi-Naive(Input: R1, . . . , Rl. Output: Q1, . . . , Qm, P1, . . . , Pn)
begin

for i:=1 to m do // Evaluate non recursive predicates
(1) Qi = EV AL(qi, R1, . . . , Rl, Q1, . . . , Qm);

for i:=1 to n do begin // Initialize recursive predicates
(2) P k−2

i = EV AL(pi, R1, . . . , Rl, Q1, . . . , Qm);
(3) ΔP k−1

i = P k−2
i ;

end;
repeat

for i:=1 to n do begin
(4) ΔP k

i = EV AL DIFF (pi, P
k−2
1 , . . . , P k−2

n , ΔP k−1
1 , . . . , ΔP k−1

n , R1, . . . , Rl,
Q1, . . . , Qm);

(5) ΔP k
i = ΔP k

i − P k−2
i − ΔP k−1

i ;
end;
for i:=1 to n do begin

(6) P k−2
i = P k−2

i ∪ ΔP k−1
i ;

(7) ΔP k−1
i = ΔP k

i ;
end;

until ΔP k
i = ∅, ∀i 1 ≤ i ≤ n;

for i:=1 to n do
(8) Pi = P k−2

i ;
end.

Figure 5.2: Algorithm Differential Semi-Naive

if we associate the symbol 1 with a differential table and the symbol 0 with a standard table, it
is possible to obtain the optimized join sequence that avoids the unnecessary operations in an
automatic way. In particular, given a generic rule having r predicates in its body recursive with
head, it is sufficient to suitably tag its standard and differential tables with the symbols 0 and 1 as
shown previously and to follow a binary enumeration between 1 and 2r − 1.

We are now able to formalize the algorithm for a Differential Semi-Naive Evaluation strategy
implemented in our system; it must be executed for each component PCg of the program P;
moreover, it assumes that input DLP rules have been already translated in SQL statements.

Let PCg be one component of a program P depending on predicates r1, . . . , rn solved in
previous components and having q1, . . . , qm as non recursive predicates or facts and p1, . . . , pn

as recursive predicates; let R1, . . . , Rl, (resp., Q1, . . . , Qm and P1, . . . , Pn) be the relations cor-
responding to r1, . . . , rl (resp., q1, . . . , qm and p1, . . . , pn). Let ΔP k

i be the differential relation
storing only the new values computed for Pi at the current iteration k. Let ΔPk−1

i be the dif-
ferential relation storing the new values computed for Pi at iteration k − 1 and let Pk−2

i be the
content of the relation Pi at the end of iteration k − 2. The Differential Semi-Naive Algorithm
evaluates the minimal fixpoint for PCg as shown in Figure 5.2.

Here function EV AL(qi, R1, . . . , Rl, Q1, . . . , Qm) performs the evaluation of the non
recursive rules having qi as head as follows: it first runs each SQL query corresponding to a rule
having qi as head; then, the corresponding results are added to the relation Qi.

Function EV AL DIFF (pi, P
k−2
1 , . . . , P k−2

n , ΔP k−1
1 , . . . ,ΔP k−1

n , R1, . . . , Rl, Q1, . . . , Qm)
implements the optimization to the Semi-Naive method; it computes the new values for the pred-
icate pi at the current iteration k starting from the values computed until iteration k − 2 and the
new values obtained at the previous iteration k − 1. In more detail, the SQL statements cor-
responding to each recursive rule having pi as head are considered; as pointed out previously,
in these statements standard and differential tables are exploited alternatively for the recursive

52

Chapter 5. DLVDB - Implementation Principles

predicates appearing in the body, whereas only standard tables are taken into account for non
recursive predicates and facts. The final result of EV AL DIFF is stored in table ΔPk

i . Clearly,
even if our approach performs less join operations than the Semi-Naive method it cannot be
proved that EV AL DIFF does not recompute some truth values already obtained in previous
iterations. As a consequence, ΔPk

i must be cleaned up from these values after the computation
of EV AL DIFF ; this is exactly what is done by instruction (5) of the algorithm.

Finally, it is worth pointing out that the last for of the algorithm (instruction (8)) is shown
just for clarity of exposition; in fact, in the actual implementation, what we indicated as Pk−2

i is
exactly table Pi.

5.4 From DLP to SQL

As previously pointed out, the evaluation strategy in DLVDB is based on the translation of each
DLP rule (recursive or not) in a single non recursive SQL statement. It is worth recalling that the
system maps each predicate of the input program into a database relation, based on the specifica-
tions in the auxiliary directives and on the automatic mappings the system derives. In this section
we provide the general functions exploited to perform the translations. Functions are presented
in pseudocode and, for the sake of presentation clarity, they omit some details; moreover, since
there is a one-to-one correspondence between the predicates in the logic program and the rela-
tions in the database, in the following, when this is not confusing, we use the terms predicate and
relation interchangeably.

In order to provide examples for the presented functions, we exploit the following reference
schema:

employee(Ename ,Salary ,Dep,Boss)
department (Code ,Director)

storing information about the employees of the departments of a given company. Specifically,
each employee has associated a Boss who is, in his turn, an employee.

Translating Non-recursive Rules.
The function TranslateNonRecursiveRule is shown in Figure5.3; it receives a rule r as input

and returns the corresponding SQL Statement, depending on the rule typology. Here and in the
following we use the operator + to denote the “append” operator between strings. Function head
receives the rule r and returns the relation associated with the atom in its head; this task is carried
out by considering the mappings specified in the auxiliary directives. Function isPositive(r)
(resp., hasNegation(r), hasBuilt-In(r), hasNegationAndBuilt-In(r), hasAggregate(r)) receives a
rule r and returns true if r is a positive rule (resp., contains negated atoms, contains built-in
functions, contains both negated atoms and built-in functions, contains aggregate functions), false
otherwise. In the following we describe in detail the corresponding translation functions4.

Translating Positive Rules.
Intuitively, the SQL statement for positive rules is composed as follows: the SELECT part

is determined by the variable bindings between the head and the body of the rule. The FROM
part of the statement is determined by the predicates composing the body of the rule; variable

4TranslateRuleWithNegationAndBuilt-In will be not described since it is a straightforward fusion of Trans-
lateRuleWithNegation and TranslateRuleWithBuilt-In.

53

Chapter 5. DLVDB - Implementation Principles

Function TranslateNonRecursiveRule(r: DLPA rule): SQL statement
begin

SQL:=””;
if (hasAggregate(r)) then

SQL:=SQL+TranslateAggregateRule(r);
SQL:=SQL+”INSERT INTO ” + head(r) + ”(”;
if (isPositive(r)) then

SQL:=SQL+TranslatePositiveRule(r);
else if (hasNegation(r)) then

SQL:=SQL+TranslateRuleWithNegation(r);
else if (hasBuilt-In(r)) then

SQL:=SQL+TranslateRuleWithBuilt-In(r);
else if (hasNegationAndBuilt-In(r)) then

SQL:=SQL+TranslateRuleWithNegationAndBuilt-In(r);
SQL:=SQL+”)”;
return SQL;

end.

Figure 5.3: Function TranslateNonRecursiveRule

bindings between body atoms and constants determine the WHERE conditions of the statement.
Finally, an EXCEPT part is added in order to eliminate tuple duplications. The function is shown
in Figure 5.4.

Here, function head attr(r) returns the list of attributes of the relations in the body of r spec-
ified also in the head of r; the function returns this list in the proper order and also handles
possible constant values specified in the rule head. Function body+(r) returns the list of rela-
tions corresponding to the (positive) atoms present in the body of r. joinConditions(r) derives
the join conditions to be specified among the involved relations from the positions and the names
of the variables specified in the body of r, whereas bodyConstantConditions(r) handles possible
constants specified in the body of r.

Example 5.4.1 Consider the following query:

q0 (Ename) :- employee(Ename , 100 .000 ,Dep,Boss), department (Dep, rossi).

which returns all the employees working at the department whose chief is rossi and having a
yearly salary of 100 .000 euros. The corresponding SQL statement is the following5:

INSERT INTO q0 (
SELECT employee.att1
FROM employee, department
WHERE employee.att3 = department.att1

AND department.att2=’rossi’
AND employee.att2=100.000

EXCEPT
(SELECT * FROM q0))

5Here and in the following we use the notation t.atti to indicate the i-th attribute of the table t. Actual attribute
names are determined from the auxiliary directives.

54

Chapter 5. DLVDB - Implementation Principles

Function TranslatePositiveRule(r: DLPA rule): SQL statement
begin

SQL:=”SELECT ” + head attr(r) +
”FROM ” + body+(r) +
”WHERE ” + joinConditions(r) +

”AND ” + bodyConstantConditions(r) +
”EXCEPT (SELECT * FROM ” + head(r) + ”)”;

return SQL;
end.

Figure 5.4: Function TranslatePositiveRule

Function TranslateRuleWithNegation(r: DLPA rule): SQL statement
begin

SQL:=”SELECT ” + head attr(r) +
”FROM ” + body+(r) +
”WHERE ” + joinConditions(r) +

”AND ” + bodyConstantConditions(r);
for each p in body−(r)

SQL:=SQL + ”AND ” + negativeAttr(r,p) +
”NOT IN (SELECT * FROM ” + p + ”)”;

SQL:=SQL + ”EXCEPT (SELECT * FROM ” + head(r) + ”)”;
return SQL;

end.

Figure 5.5: Function TranslateRuleWithNegation

Translating rules with negated atoms.
Intuitively, the construction of the SQL statement for this kind of rules is carried out as

follows: the positive part of the rule is handled in a way very similar to what has been shown in
function TranslatePositiveRule; then, each negated atom is handled by a corresponding NOT IN
part in the statement. The function is illustrated in Figure5.5.

Here, head attr, body+(r), joinConditions, bodyConstantConditions and head have been in-
troduced previously. body−(r) returns the relations corresponding to negated atoms in the body
of r; negativeAttr(r,p) singles out those attributes of positive atoms in r bound to attributes of the
negated atom p.

Example 5.4.2 The following program computes (using the goal topEmployee) the employees
which have no other boss than the director.

topEmployee(Ename) :- employee(Ename,Salary ,Dep,Boss),
department (Dep,Boss),
not otherBoss(Ename,Boss).

otherBoss(Ename,Boss) :- employee(Ename,Salary ,Dep,Boss),
employee(Boss ,Salary ,Dep,Boss1).

The first rule above is translated in the following SQL statement:

INSERT INTO topEmployee (
SELECT employee.att1
FROM employee, department
WHERE (employee.att3=department.att1)

55

Chapter 5. DLVDB - Implementation Principles

AND (employee.att4=department.att2)
AND (employee.att1, employee.att4)
NOT IN (SELECT otherBoss.att1, otherBoss.att2 FROM otherBoss)

EXCEPT
(SELECT * FROM topEmployee))

Translating rules with built-in predicates.
As pointed out in Section 2.1, in addition to user-defined predicates some comparative and

arithmetic predicates are provided by the reasoning language. When running a program con-
taining built-in predicates, the range of admissible integer values must be fixed. We map this
necessity in the working database by adding a restriction based on the maximum value allowed
for integer variables. Moreover, in order to allow mathematical operations among attributes,
DLVDB requires the types of attributes to be properly defined in the database.

The function for translating rules containing built-in predicates is a trivial variation of the
function for translating positive rules and, consequently, it will not be shown. As a matter of
facts, the presence of a built-in predicate in the rule implies just to add a corresponding condition
in the WHERE part of the statement.

Example 5.4.3 The program:

q1(Ename) : −employee(Ename, Salary,Dep,Boss), Salary > 100.000

is translated in the SQL statement:

INSERT INTO q1 (
SELECT employee.att1
FROM employee
WHERE employee.att2 > 100.000)

If the variables specified in the built-in are not bound to any other variable of the atoms in the
body, a #maxint value is exploited to bound that variable to its admissible range of values.

Translating rules with aggregate atoms.
In Section 2.1 we introduced the syntax and the semantics of DLP with aggregates. We have

also shown that specific safety conditions must hold for each rule containing aggregate atoms, in
order to guarantee the computability of the corresponding rule. As an example, aggregate atoms
can not contain predicates mutually recursive with the head of the rule they are placed in; from
our point of view, this implies that the truth values of each aggregate function can be computed
once and for all before evaluating the corresponding rule (which can be, in its turn, recursive).

Actually, the optimization process that rewrites input programs before their execution, au-
tomatically rewrites each rule containing some aggregate atom in such a way that it follows a
standard format (see also Section 5.1). Specifically, given a generic rule of the form:

head :- body, f ({V ars : Conj}) ≺ Rg.

where Conj is a generic conjunction and Rg is a guard, the system automatically translates this
rule in a pair of rules of the form

56

Chapter 5. DLVDB - Implementation Principles

Function TranslateAggregateRule(VAR r: DLPA rule): SQL statement
begin

for each a in aggr atom(r) do begin
aux:=aux atom(a);
SQL:=”CREATE VIEW ” + aux +” supp” +

”AS (SELECT ”+ bound attr(a) + ”, ” +
aggr func(a) + ”(” + aggr attr(a) + ”) ” +

”FROM ” + aux
”GROUP BY ” + bound attr(a) + ”)”;

removeFromBody(r, a);
addToBody(r, aux atom supp(a));
addToBody(r, guards(a));

end;
return SQL;

end.

Figure 5.6: Function TranslateAggregateRule

auxAtom :- Conj,BindingAtoms.
head :- body, f ({V ars : auxAtom}) ≺ Rg.

where auxAtom is a standard rule containing both Conj and the atoms (BindingAtoms) nec-
essary for the bindings of Conj with body and/or head. Note that auxAtom contains only those
attributes of Conj that are strictly necessary for the computation of f and, consequently, it may
have far less (and can not have more) attributes than those present in Conj.

In our approach we rely on this standardization to translate this kind of rules in SQL; clearly
only the second rule, containing the aggregate function, is handled by the function we are pre-
senting next; in fact, the first rule is automatically translated by one of the functions presented
previously.

Intuitively, the objective of our translation is to create an SQL view auxAtom supp from
auxAtom which contains all the attributes necessary to bind auxAtom with the other atoms of
the original rule and a column storing the results of the computation of f over auxAtom; the
original aggregate atom is then replaced by this view and guard conditions are suitably translated
by logic conditions between variables. At this point, the resulting rule is a standard rule not con-
taining aggregate functions and can be then translated by one of the functions we have presented
previously. The function is shown in Figure 5.6.

Here function aggr atom(r) returns the aggregate atoms present in r; aux atom(a) returns the
auxiliary atom corresponding to Conj of a and automatically generated by the optimizer. Func-
tion bound attr(a) yields in output the attributes of the atom a bound with attributes of the other
atoms in the rule, whereas aggr attr(a) returns the attribute which the aggregation must be carried
out onto (the first variable in V ars). aggr func(a) returns the SQL aggregation statement corre-
sponding to the aggregate function of a. Function removeFromBody(r,a) (resp., addToBody(r,a))
removes (resp., adds) the atom a from (resp., to) the rule r. Finally, aux atom supp(a) yields in
output the name of the atom corresponding to the just created auxiliary view, whereas guards(a)
converts the guard of a in a logic statement between attributes in the rule.

Example 5.4.4 Consider the following rule computing the departments which spend for the
salaries of their employees, an amount greater than a certain threshold, say 100000:

57

Chapter 5. DLVDB - Implementation Principles

costlyDep(Dep):- department (Dep,),

#sum{Salary ,Ename : employee(Ename,Salary ,Dep,)} >
100000.6

The optimizer automatically rewrites this rule as:

aux emp(Salary ,Ename,Dep):- department (Dep,),

employee(Ename,Salary ,Dep,).

costlyDep(Dep):- department (Dep,),

#sum{Salary ,Ename : aux emp(Salary ,Ename ,Dep)} > 100000.

The first rule is treated as a standard positive rule and is translated in:

INSERT INTO aux emp (
SELECT employee.att2, employee.att1, department.att1
FROM department, employee
WHERE department.att1 = employee.att3
EXCEPT

(SELECT * FROM aux emp))

The second rule is translated in:

CREATE VIEW aux emp supp AS (
SELECT aux emp.att3, SUM (aux emp.att1)
FROM aux emp
GROUP BY aux emp.att3)

INSERT INTO costlyDep (
SELECT department.att1
FROM department, aux emp supp
WHERE department.att1 = aux emp supp.att1

AND aux emp supp.att2 > 100000
EXCEPT

(SELECT * FROM costlyDep))

Translating rules with functions
Functions introduced in the program by external atoms are expected to be defined as scalar

stored functions in the database coupled with DLVDB.
Stored functions in databases can return only one scalar value; as a consequence, DLVDB

adopts the convention that the last variable of the external atom corresponds to the result returned
by the function call, whereas all the other variables are the input for the stored function.

Then, given an external atom #f(X1, . . . ,Xn, O) used in a rule r, only the last variable
O can be considered as an output parameter, while all the other variables must be intended as
input for f . This corresponds to the function call f(X1, . . . ,Xn) = O on the DLVDB working
database. Moreover, O can be: (i) bound to other variables in r’s body, (ii) bound to a constant,

6Note that Ename allows to sum also the salaries of employees earning the same amount (see the discussion on
sets/multisets in [31].

58

Chapter 5. DLVDB - Implementation Principles

(iii) a variable of r’s head. Then, in the SQL statement corresponding to r, a function call
is introduced in the WHERE part to implement cases (i) and (ii) and in the SELECT part to
implement case (iii).

As an example, consider the rule:

mergedNames(ID,N) :- person(ID,FN,LN),#concat(FN,LN,N).

This rule belongs to case (iii) above and is translated into:

INSERT INTO mergedNames
(SELECT person.ID, concat(person.FN,person.LN) FROM person);

Note that since the grounding phase instantiates all the variables, there is no need to invoke again
the functions associated with external atoms after the grounding (this is true even for disjunctive
or non stratified programs). As a consequence, the handling of external atoms can be carried
out completely during the grounding and, hence, within the SQL statements generated from the
datalog rules.

Evaluation of programs with list terms
In our approach, list terms are handled by suitable function calls; in particular, programs

containing list terms are automatically rewritten to contain only terms and function calls. Three
basic operations can be singled out to handle lists: (i) initialization, (ii) packing of a term as head
of a list, (iii) unpacking of a list in the head term and its tail.

Lists are internally handled as strings, starting (resp., ending) with a ‘[’ (resp., ’]’) where
terms are separated by a ‘,’. Initialization is then implicitly implemented by the transformation
of the list in a string (recall that we currently limit lists of the form [t1, . . . , tn] to contain only –
possibly nested – lists of constants).

Packing of a list is carried out by a function #pack which receives a term H and a list T and
returns the list L=[H|T].7 E.g. the rule p([H|T]):-dom(H),list(T) is translated into p(L):-dom(H),
list(T), #pack(H,T,L).

Handling the unpacking is a bit more tricky. In fact, the corresponding function should return
two values (the head and the tail) but database stored functions can output one value only and can
not have side effects on existing tables. Then, unpacking of a list must be carried out through two
different calls to functions #head and #tail introduced in Section2.1.

As an example, a rule of the form q(H):- dom(H), list(T), list([H|T]) is translated into q(H):-
dom(H), list(T), list(L), #head(L,H), #tail(L,T).

The corresponding SQL statement will then be

INSERT INTO q (SELECT dom.H,

FROM dom, list l1, list l2

WHERE head(l1.L)=dom.H AND tail(l1.L)=l2.L).

Note that availability of #head and #tail functions allows also the manipulation of nested lists.
As a final remark, in order to simplify the evaluation process, we currently associate each

occurrence of a list term in the head (resp., body) of a rule with a call to #pack (resp., #head and
#tail). This may be not always the best choice in terms of efficiency, but provides a very easy
way to compose multiple lists in the same rule.

7Here and in the following functions handling lists are supposed to be already loaded on the working database.

59

Chapter 5. DLVDB - Implementation Principles

Function TranslateRecursiveRule(r: DLPA rule): SQL statement
begin

SQL:=””;
if(hasAggregate(r)) then

SQL:=TranslateAggregateRule(r);
n:=2RecursivePredicates(r)

SQL:=SQL+”INSERT INTO ” + Δhead(r) + ”(”;
for i:=1 to n do begin

Let r′ be a rule;
setHead(r′, Δhead(r));
for each non recursive predicate qj in body(r) do

addToBody(r′ , qj);
for each recursive predicate pj in body(r) do

if (bit(j,i)=0) then addToBody(r′ , pk−2
j);

else addToBody(r′ , Δpk−1
j);

if (i �= 1) SQL:=SQL+”UNION ”;
SQL:=SQL + TranslateNonRecursiveRule(r′);

end;
SQL:=SQL + ”)”;
return SQL;

end.

Figure 5.7: Function TranslateRecursiveRule

Translating recursive rules.
As previously pointed out, our program evaluation strategy exploits a refined version of the

Semi-Naive method. This is based on the translation of a recursive rule into a non recursive SQL
statement operating alternatively on standard and differential versions of the relations associated
with recursive predicates. Each time this statement is executed by the algorithm, it must compute
just the new values for the predicate in the head that can be obtained from the values computed
in the last two iterations of the fixpoint.

Intuitively, the translation algorithm must first select the proper combinations of standard and
differential relations from the rule r under consideration; then, for each of these combinations,
it must rewrite r in a corresponding rule r′. Each r′ thus obtained is non recursive and, conse-
quently, it can be handled by Function TranslateNonRecursiveRule. Algorithm TranslateRecur-
siveRule is shown in Figure 5.7.

Here, functions hasAggregate, TranslateAggregateRule and TranslateNonRecursiveRule have
been introduced previously. Function RecursivePredicates(r) returns the number of occurrences
of recursive predicates in the body of r; Δhead(r) returns the differential version of the relation
corresponding to the head of r. Function setHead(r′, p) sets the head of the rule r′ to the predicate
p; analogously, function addToBody(r′, p) adds to the body of r′ a conjunction with the predicate
p. Function bit(j,i) returns the j-th bit of the binary representation of i.

It is worth noticing that the execution of the queries resulting from function TranslateRe-
cursiveRule allows the implementation of function EV AL DIFF , which is the core of our
refinement to the Semi-Naive algorithm (see the algorithm of Figure5.2).

Example 5.4.5 Consider the situation in which we need to know whether the employee e1 is the
boss of the employee en either directly or by means of a number of employees e2, .., en such that

60

Chapter 5. DLVDB - Implementation Principles

e1 is the boss of e2, e2 is the boss of e3, etc. Then, we have to evaluate the program:

q2(E1, E2) :- employee(E1 ,Salary ,Dep,E2).
q2(E1, E3) :- q2(E1, E2), q2(E2, E3).

containing a recursive rule. This program cannot be evaluated in one single iteration of the
Semi-Naive computation. In fact, the SQL statement corresponding to the recursive rule must be
executed until no new values can be derived for q2. The SQL statement obtained by Function
TranslateRecursiveRule for the second rule of this example is:

INSERT INTO Δqk
2 (

SELECT qk−2
2 .att1, Δqk−1

2 .att2
FROM qk−2

2 ,Δqk−1
2

WHERE (qk−1
2 .att2=Δqk−1

2 .att1)
EXCEPT (SELECT * FROM Δqk

2)
UNION
SELECT Δqk−1

2 .att1, qk−2
2 .att2

FROM Δqk−1
2 , qk−2

2

WHERE (Δqk−1
2 .att2=qk−1

2 .att1)
EXCEPT (SELECT * FROM Δqk

2)
UNION
SELECT Δqk−1

2 .att1, Δqk−1
2 1.att2

FROM Δqk−1
2 , Δqk−1

2 AS Δqk−1
2 1

WHERE (Δqk−1
2 .att2=Δqk−1

2 1.att1)
EXCEPT (SELECT * FROM Δqk

2))

Actually, the real implementation of this function adds, for performance reasons, also the follow-
ing parts to the statement above:

EXCEPT (SELECT * FROM Δqk−1)

EXCEPT (SELECT * FROM qk−2)

they allow to evaluate instruction (5) of the algorithm in Figure5.2 along with function EV AL DIFF
in one single SQL statement.

61

Chapter 6

Applications

Coupling the expressive power of logic-based systems with the efficient data management fea-
tures of DBMSs is useful in many application areas, mainly in those contexts where powerful
reasoning capabilities as well as the handling of huge amounts of data are required.

In this chapter three different data-intensive scenarios are presented, including: (i) application
to deductive databases; (ii) application to data-integration; (iii) application to RDF(S) ontology
querying. These contexts compose also the test beds of our experiments presented in Chapter7.

Part of the material presented in this chapther appeared in [142, 143, 144]

6.1 Application to deductive databases

One of the most fundamental uses of a Database is to store and retrieve information, particularly
when there is a large amount of data to be stored. Mining information and knowledge from large
databases has been recognized by many researchers as a key research topic in database systems
and machine learning fields, and by many industrial companies as an important area with an
opportunity of major revenues.

A mounting wave of data intensive and knowledge based applications, such as Data Min-
ing, Data Warehousing and Online Analytical Processing (OLAP) have created a strong demand
for more powerful database languages and systems. This led to the definition of both several
data model extensions (e.g., the Object Relational model), and new language constructs (e.g.,
recursion and OLAP constructs), and various database extenders (based, e.g., on user defined
functions), to enhance the current Database Management Systems (DBMSs). A great effort in
this direction has been carried out with the introduction of a new standard for SQL, namely
SQL99 [126] which provides, among other features, support to object oriented databases and
recursive queries. However, the adoption of SQL99 is still far from being a “standard”; in fact
almost all current DBMSs do not fully support it and, in some cases, they adopt proprietary (non
standard) language constructs and functions to implement parts of it. Moreover, the efficiency
of current implementations of SQL99 constructs and their expressiveness are still not sufficient
for performing complex reasoning tasks on huge amounts of data. On the other hand, the explo-
sive growth of new database applications has, in several cases, outpaced the progress made by
database technology.

A partial solution to these problems would be a mechanism for reasoning about the stored
information. This desirable mechanism should be capable of managing and handling very large

62

Chapter 6. Applications

amounts of information, as well as of performing sophisticated inference tasks, and of drawing
the appropriate conclusions.

The needed reasoning capabilities can be provided by logic-based systems. In fact, declara-
tive logic programming provides a powerful formalism capable of easily modelling and solving
complex problems. While research in this area initially had mainly a theoretical impact, the
recent development of efficient logic-based systems like DLV [80], Smodels [101], XSB [114],
ASSAT [84, 86], Cmodels [62, 61], CLASP [56], etc., has renewed the interest in the area of
non-monotonic reasoning and declarative logic programming for solving real world problems in
a number of application areas. As a consequence, they can provide the powerful reasoning capa-
bilities needed to solve novel complex database problems. However, as previously pointed out,
many of the interesting problems are “data intensive” and can not be handled in a typical logic
programming system working in main-memory.

These considerations put into evidence that efficient and effective data management tech-
niques combining Logic Inference Systems with Database Management Systems, are mandatory.
In particular, there is the need of combining the expressive power of logic-based systems with
the efficient data management features of DBMSs. Indeed, logic-based systems provide an ex-
pressive power that goes far beyond that of SQL99, whereas good DBMSs provide very efficient
query optimization mechanisms allowing to handle massive amounts of data.

In the literature Deductive Database Systems (DDS) have been proposed to combine these
two realities [25, 52, 23, 63]; basically, they are an attempt to adapt typical Datalog systems,
which have a “smalldata” view of the world, to a “largedata” view of the world via intelligent
interactions with some DBMSs. In more detail, DDSs are advanced forms of database man-
agement systems, whose query languages, based on logics, are very expressive. DDSs not only
store explicit information in the manner of a relational database, but they also store rules that
enable deductive inferences based on the stored data. Using techniques developed for relational
systems in conjunction with declarative logic programming, deductive databases are capable of
performing reasoning based on that information.

The main limitations of currently existing deductive databases reside both in the fact that
reasoning is still carried out in main-memory – this limits the amount of data that can be handled –
and in the limited interoperability with generic, external, DBMSs they provide. In fact, generally,
these systems are tailored on a specific (either commercial or ad-hoc) DBMS.

However, recently emerging application contexts such as the ones raising from the natural
recursion across nodes in the Internet, or from the success of intrinsically recursive languages
such as XML [141], renewed the interest of the scientific community in the development of
efficient and flexible deductive databases systems [1, 91].

Summarizing: (i) Database systems are nowadays robust and flexible enough to efficiently
handle large amounts of data, possibly distributed; however, their query languages are not suffi-
ciently expressive to support reasoning tasks on such data. (ii) Logic-based systems are endowed
with highly expressive languages, allowing them to support complex reasoning tasks, but they
work in main-memory and, hence, can only handle limited amounts of data. (iii) Deductive da-
tabase systems allow to access and manage data stored in DBMSs, however they perform their
computations mainly in main-memory and provide limited interoperability with external (and
possibly distributed) DBMSs.

DLVDB provides a contribution in this setting, bridging the gap between logic-based DDSs
and DBMSs. It presents features of an efficient DDS but also extends the capability of handling
data residing in external databases to a disjunctive logic programming system. The experimental

63

Chapter 6. Applications

results, presented in Section 7.1, show that DLVDB significantly outperforms both commercial
DBMSs and other logic-based systems in the evaluation of recursive queries.

6.2 Application to data integration

Data integration systems provide a transparent access to different and possibly distributed sources.
The user is provided with a uniform view of available information by the so-called global schema,
which queries can be posed upon. The integration system is then in charge of accessing the single
sources separately and merging data relevant for the query, guided by mapping rules that specify
relationships holding between the sources and the global schema [8, 78].

The global schema may contain integrity constraints (such as key dependencies, inclusion de-
pendencies, etc.). The main issues in data integration arise when original sources independently
satisfy the integrity constraints but, when they are merged through the mappings, they become
inconsistent. As an example, think to the lists of students of two universities; each student has an
unique ID in his university, but two different students in different universities may have assigned
the same ID. Clearly, when they are loaded in a global database merging students lists, it is likely
that the key constraint on student IDs of the global schema will be violated.

Most of the solutions to these problems are based on database repair approaches. Basically,
a repair is a new database satisfying constraints of the global schema with minimal differences
from the source data. Note that multiple repairs can be singled out for the same database. Then,
answering queries over globally inconsistent sources consists in computing those answers that
are true in every possible repair; these are called consistent answers in the literature.

DLP under ASP is a powerful tool in this context, as demonstrated for example by the ap-
proaches formalized in [8, 21, 40]. In fact, if mappings and constraints on the global schema are
expressed as DLP programs, and the query Q as a union of conjunctions on the global schema,
the database repairs correspond to the stable models of the program, and the consistent answers
to Q correspond to the answers of Q under cautious reasoning.

As an example, the approach proposed in [40] consists in first retrieving as much information
as possible from the sources, and then building the repairs by removing the minimal amount of
inconsistent data and adding the minimal amount of missing data.

Example 6.2.1 To have an intuition on the repair approach proposed in [40] for handling key
constraints, consider two sources s1(SID, StudentName) and s2(SID, StudentName), storing the
students of two universities, and assume that the global schema is designed so as to merge these
lists. The program defining the mappings for the global relation studentG and handling the key
constraint over SID is:

studentD(SID,SName):- s1(SID,SName).
studentD(SID,SName):- s2(SID,SName).
studentG(SID,SName):-studentD(SID,SName), not student(SID,SName).
student(SID,SName1) v student(SID,SName2):- studentD(SID,SName1),

studentD(SID,SName2), SName1=SName2.

Here the first two rules load all possible data from the sources, whereas the third one avoids to
put conflicting tuples in the global relation studentG. Note that the disjunctive rule allows the
generation of the various repairs by singling out the conflicting tuples.

64

Chapter 6. Applications

Now, assume that s1 contains {s1(1234, Jhon), s1(2345, Andrew)} and s2 contains {s2(1234,
David)}. There is globally a conflict between Jhon and David because they have the same ID.
Then, there are two repairs for studentG, namely {studentG(1234,Jhon), studentG(2345, An-
drew)} and {studentG(1234,David), studentG(2345, Andrew)}. If the user poses the query
Q1(SName):-studentG(SID,SName), the only consistent answer is: {Andrew}, but if the user
asks for Q2(SID):- studentG(SID,SName), the consistent answers are: {1234,2345}.

The main goal of this thesis is precisely to improve efficiency and usability of DLP systems in
data-intensive contexts, like data integration, where knowledge representation and reasoning ca-
pabilities are required. In fact, the DLVDB system presents (i) an evaluation strategy devoted to
carry out as much as possible of the reasoning tasks in mass memory without degrading perfor-
mances, thus allowing to deal with data-intensive applications; (ii) extends the expressiveness
of DLP with external function calls, yet improving efficiency (at least for procedural sub-tasks)
and knowledge-modelling power; (iii) extends the expressiveness of DLP for supporting also the
management of recursive data structures (lists).

Test results, reported in Section 7.2, show that DLVDB is well suited for data integration
applications both for time and space requirements.

6.3 Application to RDF(S) ontology querying

The Semantic Web [17, 46] is an extension of the current Web by standards and technologies
that helps machines understand the information on the Web. In this context, machines should
be enabled to support richer discovery, data integration, navigation, and automation of tasks.
Roughly speaking, the main ideas underlying the Semantic Web are oriented to (i) add a machine-
readable meaning to Web pages and Web resources (annotations), (ii) use ontologies for a precise
definition of shared terms in Web resources, (iii) make use of Knowledge Representation and
Reasoning technology for automated reasoning on Web resources, and (iv) apply cooperative
agent technology for processing the information on the Web. The development of the Semantic
Web proceeds in layers of Web technologies and standards, where every layer is built on top of
lower layers.

Research work is continuously ongoing on the three consecutive RDF(S) (Resource Descrip-
tion Framework (Schema)), Ontology and Rule layers (listed from bottom to top). The RDF(S)
layer was initially conceived as a basic framework for defining resources available on the Web
and their connections. RDF (Rich Description Framework), refers to a logical format of infor-
mation, which is based on an encoding of data as a labeled graph (or equivalently, a ternary
relation, commonly called RDF graph). RDF data can be interpreted under plain RDF semantics
or under RDFS semantics. In the aforementioned layered vision, RDF(S) should have little or no
semantics, focusing only on the logical format of information.

The Ontology layer should be built on top of RDF(S) and should provide the necessary infras-
tructure for describing knowledge about resources. An ontology can be written using one of the
three official variants of the Web Ontology Language (hereafter OWL) [104], currently accepted
as a W3C Standard Recommendation. An OWL knowledge base is written in RDF format, where
some of the keywords of the language are enriched with additional meaning.

Having machine readable annotations coupled with Web resources enables a variety of ap-
plications. As a traditional example, consider flight, train, coach and metro carriers, and hotels

65

Chapter 6. Applications

offering their services on the Web. They might, for instance, export timetables and room avail-
abilities in standard RDF/OWL format. An automated Web service could thus easily compose
data coming from different carriers and hotels, and after performing necessary reasoning tasks
(for instance, aligning arrival/departure times and room availabilities, combining “train trips”
with “flight trips” once it is inferred they are specialized subclasses of “trips”), it can propose
overall itinerary solutions to end users. While services offering partial solutions to this task (and
similar ones) exist, it is currently hard to achieve this goal in its entirety, due to the lack of
structure in Web information.

OWL is based on description logics [11]. Description logics has a long tradition as a fam-
ily of formalisms for describing concept terminologies and can feature rich expressiveness, like
some prominent description logics, such as SHOIN (D) (which is the theoretical basis of the
variant OWL-DL of OWL). The payload of this expressiveness is, unfortunately, the high compu-
tational cost associated with many of the reasoning tasks commonly performed over an ontology.
Nonetheless, a variety of Web applications require highly scalable processing of data, more than
expressiveness. This puts the focus back to the lower RDF(S) data layer. In this context, RDF(S)
should play the role of a lightweight ontology language. In fact, RDF(S) has few and simple
descriptive capabilities (mainly, the possibility of describing and reasoning over monotonic tax-
onomies of objects and properties). One can thus expect from RDF(S) query systems the ability
of querying very large datasets with excellent performance, yet allowing limited reasoning capa-
bilities on the same data. In fact, as soon as the RDF(S) format for data was settled, and much
earlier than when RDF(S) ontologies became growingly available1, research has focused on how
RDF(S) can be fruitfully stored, exchanged and queried2.

As a candidate W3C recommendation [34], the SPARQL language is reaching consensus
as query language of election for RDF(S) data. In this scenario, an RDF(S) storage facility
(commonly called triplestore) plays the role of a database. However, an important difference
with respect to traditional relational databases, is that a triplestore (also) represents information
not explicitly stored, and which can be obtained by logical inference. Allowed logical inference
is specified in terms of entailment rules. Different kinds of entailment rules can be exploited,
namely normative (i.e. coming from the RDF(S) semantics specifications [139]), some subset of
the normative ones (such as the so-called ρDF fragment of RDF(S) introduced in [102]) or user
defined entailment rules.

Figure 6.1(a) shows the generic architecture of most current triplestore querying systems. In
particular, the triplestore acts as a database and the query engine (possibly a SPARQL-enabled
one3) manipulates this data. Most of the current query engines (with the notable exception of
ARQ [9]) adopt a pre-materialization approach, where entailment rules are pre-computed and the
initial triplestore is enriched with their consequences before carrying out any querying activity.

Unfortunately, triplestores based on the pre-materialization approach outlined above have
some drawbacks:

• Inferred information is available only after the often long lasting pre-materialization step.
Pre-materialization is unpractical if massive amounts of data are involved in the inferencing
process; in fact, inferred information is usually much bigger in size than the original one.

1 Several datasets are nowadays available in RDF format, such as DBLP [28] and Wikipedia [10]. Also, it is
possible to convert legacy data into RDF by means of ad-hoc services [19].

2The reader may find in [115] a good starting point to the vast applicative and academic research currently under
development for RDF.

3E.g. [9, 2] and [122]. The reader may refer to [125] for a thorough survey.

66

Chapter 6. Applications

Figure 6.1: (a) State-of-the-art architectures for querying RDF(S) triplestores. (b) Our proposal.

As an example, if only the ρDF fragment of RDFS is considered, this growth has been
empirically estimated (in, e.g., [127]) as more than twice the original size of the dataset.
Actually, a materialized dataset can be cubically larger in theory [107]. If the full normative
RDF(S) semantics is considered, then the set of inferred triples is infinite and cannot be
materialized at all.

• Entailment rules are “statically” programmed by coupling a parametric reasoner (designed
“ad-hoc”) with the original triplestore code. This prevents the possibility to dynamically
prototype new inference rules, and to activate/de-activate inference rules depending on the
given application. For instance, one might want to restrict RDF(S) inference only to the
known ρDF fragment, or to enlarge inference with other (normative or not) entailment rules
such as the D-entailment rules introduced in [139].

• The basic reasoning machinery of RDF(S) prescribes a heavy usage of transitive closure
(recursive) constructs. Roughly speaking, given a class taxonomy, an individual belonging
to a leaf class must be inferred to be member of all the ancestor classes, up to the root class.
This prevents a straightforward implementation of RDF(S) over RDBMSs, since RDBMSs
usually feature very primitive, and inefficient, implementations of recursion in their native
query languages.

In [142, 143, 144] we presented a new architecture for querying triplestores, based on Answer
Set Programming (ASP), which overcomes all the drawbacks outlined above and improves both
efficiency and expressiveness of current state-of-the-art systems. The proposed architecture is
shown in Figure 6.1(b). The user is allowed to express queries in both SPARQL and Datalog. A
SPARQL query is first translated into Datalog by a corresponding module, which implements the
approach proposed in [106], whereas a Datalog query is passed unchanged to the next module.
Entailment rules are expected to be expressed in ASP, and different sets of entailment rules can
be “attached” to the triplestore. As an example, in Figure 6.1(b) three sets are shown, namely

67

Chapter 6. Applications

full normative RDFS, ρDF and user-defined entailment rules. The user can choose on the fly, at
query time, which set of entailment rules must be applied on the triplestore, and/or design his
own. Note that, rather than materializing the whole output of the application of entailment rules,
the rules are used as an inference mechanism for properly answering the specific input query at
hand. The query engine is then implemented by means of a database oriented version of an ASP
evaluator, which can both access and modify data in the triplestore.

DLVDB turned out to be particularly effective for reasoning about massive ontologies and
supports a rich query and reasoning language including stratified recursion, true negation, nega-
tion as failure, and all built-in and aggregate functions already introduced in DLV [45]. The
experiments, proposed in Section 7.3, prove that our solution, based on DLVDB, improves both
scalability and expressiveness of several state-of-the-art ontology querying systems. As a conse-
quence, DLVDB is a good candidate also as an ontology querying engine.

68

Chapter 7

Benchmarks

In this chapther we present our experimental framework and the results; in order to asses the
performance of the DLVDB system, we carried out several tests from (i) the context of deduc-
tive databases; (ii) four categories of real world applications: data-integration, combinatorial
problems, data transformation, and string similarity computation; and (iii) querying on RDF(S)
ontologies context.

The chapter is organized as follows: in Sections 7.1 we present results obtained for testing
in the context of deductive databases [14, 64] on several data structures, whereas, in Section 7.2
we present the results obtained in querying inconsistent and incomplete data. In Section7.3
we present the results of our experiments aiming at comparing the performance of DLVDB with
several state-of-the-art ontology querying systems, whereas, in Section7.4 we present results of
testing on a combinatorial problem. Finally, in Section 7.5 and 7.6 we present results of testing
functions capability.

Part of the material presented in this chapther appeared in [147, 151, 142, 143, 148, 149, 144,
152, 150]

7.1 Testing on normal stratified programs with recursion

In this section we present results obtained comparing the performance of DLVDB system with
several state-of-the-art systems on simple problems. Benchmarks have been designed following
the guidelines, problems and data structures proposed in [14] and [64] to assess the performance
of deductive database systems. Roughly speaking, problems used in [14] and [64] basically resort
to the execution of some of recursive queries on a variety of data structures. The main goal of our
experiments was to evaluate the deductive capabilities of tested systems for both query answering
time and amount of manageable data.

7.1.1 Overview of Compared Systems

In order to provide a comparative and comprehensive analysis with state-of-the-art deductive
systems, we compared DLVDB with:

• SQLServer, DB2 and Oracle, because they are among the most efficient database system
engines and they support the execution of recursive queries;

69

Chapter 7. Benchmarks

• LDL++, because it is one of the most robust implementations of deductive database sys-
tems;

• XSB, as an efficient implementation of the Top-Down evaluation strategy;

• Smodels, one of the most widely used Answer Set Programming systems together with
DLV.

Note that other important DBMSs, such as Postgres and MySQL could not be tested; in fact, they
do not support recursive queries, which are the basis for our testing framework. Moreover, as we
pointed out in the Introduction, other logic-based systems such as ASSAT, Cmodels, and CLASP
have not been tested since they use the same grounding layer of Smodels (LParse) and, as it will
be clear in the following, the benchmark programs are completely solved by this layer.

In the following we briefly overview the main characteristics of tested systems, focusing on
their support to the language and technological capabilities addressed in this work. Specifically,
we consider, for each database system, its capability to express recursive queries and, for each
logic-based system, the expressiveness of its language and its capability to interact with exter-
nal DBMSs. As far as database systems are concerned, it is worth pointing out that none of
the considered ones fully adopt the SQL99 standard for the definition of recursive queries, but
proprietary constructs are introduced by each of them.

SQL Server Microsoft SQL Server is a relational database management system produced by
Microsoft. It supports the Microsoft’s version of Structured Query Language (SQL). The code
base for Microsoft SQL Server originated in Sybase SQL Server, and was Microsoft’s entry to
the enterprise-level database market, competing against Oracle, IBM, and Sybase. The current
version of Microsoft SQL Server, the one we used in our tests, is denoted by SQLServer 2005; it
uses a variant of SQL called T-SQL, or Transact-SQL, an implementation of SQL99 with support
to stored procedures.

SQL Server supports the standard recursive functionalities of SQL99 that are needed for
our benchmarks, even if proprietary constructs must be added in some cases to guarantee query
termination.

DB2 Since the 1970s, when IBM Research invented the Relational Model and the Structured
Query Language (SQL), IBM has developed a complete family of RDBMS software. Develop-
ment started on mainframe platforms such as Virtual Machine (VM), Virtual Storage Extended
(VSE), and Multiple Virtual Storage (MVS).

Today, DB2 represents a portfolio of information management products. The latest release
of DB2 database (DB2 UDB Version 8.2), which is the one we used in our tests, is consistent
with the SQL99 Core standard. In particular, DB2 supports the standard recursive functionalities
that are needed for our benchmarks, even if proprietary constructs must be added to the standard
SQL99 statement to guarantee the termination of some kinds of queries.

Oracle The Oracle system extends the core database functionalities with several features such
as complementary software development, decision support tools, portability across platforms,
and connectivity over standard networks. The latest available release of Oracle database (Oracle
10 family) provides a rich set of functions to extend the power of the database; as an example,

70

Chapter 7. Benchmarks

it provides a rich toolset for manipulating data with SQL queries such as math operations, string
operations, analytical functions, and XML processing.

Oracle implements a large subset of SQL99 features and supports recursion; however, as far
as recursive queries are concerned, Oracle exploits proprietary constructs which do not follow the
standard SQL99 notation, and whose expressiveness is lower than that of SQL99; as an example,
it is not possible to express unbound queries within recursive statements (e.g., all the pairs of
nodes linked by at least one path in a graph). In our tests we used Oracle 10.

LDL++ The LDL project [25] is directed towards two significant goals. The first one is the de-
sign of the Logical Data Language (LDL), a declarative language for data-intensive applications
which extends pure Datalog with sets, negation and updates. The second goal is the development
of a system supporting LDL, which integrates rule-based programming with efficient secondary
memory access, transaction management recovery and integrity control. The LDL++ system
belongs properly to the class of integrated systems; the underlying database engine is based on
relational algebra and was developed specifically within the LDL project. The LDL language
supports complex terms within facts and rules and stratified negation. Programs which incor-
porate negation but are not stratified are regarded as inadmissible programs. Moreover, LDL
supports updates through special rules.

In our tests we used version 5.3 of LDL++. Test data have been fed to the system by text files
storing input facts.

XSB The XSB system [114] is an inmemory deductive database engine based on a Prolog/SLD
resolution strategy called SLG. It can compute the well-founded semantics for normal logic pro-
grams. The inference engine, which is called SLG-WAM, consists of an efficient tabling engine
for definite logic programs, which is extended by mechanisms for handling cycles through nega-
tion. These mechanisms are negative loop detection, delay and simplification. They serve for
detecting, breaking and resolving cycles through negation.

XSB allows the exploitation of data residing in external databases, but reasoning on such data
is carried out in main-memory. The version of XSB we used in our tests is 2.2.

SModels The SModels system [101, 100] implements the answer set semantics for normal
logic programs extended by built-in functions as well as cardinality and weight constraints for
domain-restricted programs.

The SModels system takes as input logic program rules in Prolog style syntax. However, in
order to support efficient implementation techniques and extensions, the programs are required
to be domain-restricted where the idea is the following: the predicate symbols in the program are
divided into two classes, domain predicates and non-domain predicates. Domain predicates are
predicates that are defined non-recursively. The main intuition of domain predicates is that they
are used to define the set of terms over which the variable range in each rule of a program P . All
rules of P have to be domain-restricted in the sense that every variable in a rule must appear in a
domain predicate which appears positively in the rule body. In addition to normal logic program
rules, SMODELS supports rules with cardinality and weight constraints, which are similar to
#count and #sum aggregates of DLV.

SModels does not allow to handle data residing in database relations; moreover, all the stages
of the computation are carried out in main-memory. Finally, it does not support optimization

71

Chapter 7. Benchmarks

strategies for bound queries; consequently, the time it needs for executing the same query either
with all parameters unbound or with some parameters bound is exactly the same.

In our tests we used SModels ver. 2.28 with Lparse ver. 1.0.17. Test data have been fed to
the system by text files storing input facts.

7.1.2 Benchmark Problems

To asses the performance of the systems described above, we carried out several tests using clas-
sical benchmark problems from the context of deductive databases [14, 64], namely Reachability
and Same Generation. The former allows the analysis of basic recursion capabilities of the var-
ious systems on several data structures, whereas the latter implements a more complex problem
and, consequently, allows the capability of the considered systems to carry out more refined rea-
soning tasks to be tested.

For each problem, we measured the performance of the various systems in computing three
kinds of queries, namely: unbound queries; queries with one bound parameter; queries with all
bound parameters. Considering these three cases is important because DBMSs and Deductive
Databases generally benefit of query bindings (by “pushing down” selections through relational
algebra optimizations, magic set techniques, or, for XSB, top down evaluation), whereas ASP
systems are generally more effective with unbound queries (since they usually compute the entire
models anyway); as a consequence, it is interesting to test all these systems in both their favorable
and unfavorable contexts. It is worth pointing out that some of the tested systems implement
optimization strategies ‘a la magic set’ [12, 16, 98, 116] (e.g., DLVDB and LDL++), typical
of deductive databases, or other program rewriting techniques; as a consequence, the actually
evaluated programs are the optimized ones automatically derived by these systems, but the cost
of these rewritings has been always considered in the measure of systems’ performance.

In what follows we briefly introduce the two considered problems; the interested reader can
find all details about them in [14].

Reachability

Given a directed graph G = (V,E) the solution to the reachability problem reachable(a, b)
determines wether a node b ∈ V is reachable from a node a ∈ V through a sequence of edges in
E. The input is provided by a relation edge(X,Y) where a fact edge(a, b) states that b is directly
reachable by and edge from a.

In database terms, determining all pairs of reachable nodes in G amounts to computing the
transitive closure of the relation storing the edges.

Same Generation

Given a parent-child relationship (a tree), the Same Generation problem aims at finding pairs of
persons belonging to the same generation. Two persons belong to the same generation either if
they are siblings, or if they are children of two persons of the same generation.

The input is provided by a relation parent(X,Y) where a fact parent(thomas,moritz)
means that thomas is the parent of moritz.

72

Chapter 7. Benchmarks

Figure 7.1: Example of a cylinder graph.

7.1.3 Benchmark Data Sets

For each considered problem we exploited several sets of benchmark data structures. For each
data structure various instances of increasing dimensions have been constructed; the size of each
instance is measured in terms of the number of input facts describing it.

Reachability As for the Reachability problem, we considered: (i) full binary trees, (ii) acyclic
graphs (a-graphs in the following), (iii) cyclic graphs (c-graphs in the following), and (iv) cylin-
ders [14].

The density δ of a graph can be measured as δ = # of arcs in the graph
of possible arcs . We generated

various typologies of graph instances, characterized by values of δ equal to 0.20, 0.50 and 0.75
respectively. Due to space constraints, in this paper we report just the results obtained for δ =
0.20.

Cylinders are particular kinds of acyclic graphs which can be layered; each layer has the
same number of nodes and each node has two incoming and two outgoing arcs. An example of
a cylinder is shown in Figure 7.1. A cylinder can be characterized by a width and a height. The
ratio ρ = width

height can be exploited to characterize a cylinder; we generated various categories

of cylinders characterized by values of ρ equal to 0.5, 1.0 and 1.5 respectively. Due to space
constraints, in this paper we report just the results obtained for ρ = 1.

Graphs have been generated using the Stanford GraphBase [73] library whereas trees and
cylinders have been generated using ad-hoc procedures, since they are characterized by a regular
structure.

Same Generation As far as the Same Generation problem is concerned, we exploited full
binary trees as input data structures.

7.1.4 Results and Discussion

The encodings of the problems we have exploited in our tests are provided in the AppendixA.
Note that, since Oracle does not support the standard SQL99 language, but only a simplified form
of recursion, we have not tested this system along with the other ones. We will discuss encodings
and results obtained for Oracle in a separate section.

Note also that we have used general encodings for the two problems in such a way to test the
considered systems in generic conditions; specifically, we used “uniform” queries, i.e. queries

73

Chapter 7. Benchmarks

whose structure must not be modified depending on the quantity and positions of bound parame-
ters. Several alternative encodings could have been possible for the various problems, depending
also on the underlying data structures; however, since many other problems of practical rele-
vance can be brought back to the ones we considered, we preferred to exploit those encodings
applicable to the widest variety of applications.

In these tests we measured the time required by each system to answer the various queries. We
fixed a maximum running time of 12000 seconds (about 3 hours) for each test. In the following
figures, the line of a system stops whenever some query was not solved within this time limit
(note that graphs have a logarithmic scale on the vertical axis).

In more detail, Figure 7.2 shows results obtained for the Same Generation problem, whereas
Figure 7.3 (resp., 7.4, 7.5, 7.6) presents the results measured for the Reachability problem when
applied on acyclic graphs (resp., cyclic graphs, cylinders, trees).

From the analysis of these figures we can observe that, in several cases, the difference of
performance of DLVDB (the black triangle in the graphs) w.r.t. almost all the other systems is in
orders of magnitude and that DLVDB allows almost always to handle the greatest amount of data;
moreover, there is no system which can be considered the “competitor” of DLVDB in all the tests.

In particular, in some tests, XSB shows a good behaviour (e.g., in Reachability on cyclic
graphs and cylinders) but, even in those positive tests, it “dies” earlier than DLVDB (with the
exception of reachable(b1,Y) on cylinders), probably because it exceeds the main-memory.

LDL++ is competitive with DLVDB only in reachable(b1,Y) on cyclic graphs and cylinders,
whereas in all the other queries the performance difference is of more than one order of magni-
tude.

DB2 performance is near to that of DLVDB only in samegen(X,Y); in all the other cases its
line is near to the vertical axis.

SQLServer showed very good performance only for reachability on trees (see also Table7.1
introduced next). This behaviour could be justified by the presence of optimization mechanisms
implemented in this system which are particularly suited for computing the transitive closure on
simple data structures (like trees), but these are not effective for other (more complex) kinds of
queries/data structures.

Surprisingly enough, DBMSs often have the worst performance (their times are near to the
vertical axis) and they can handle very limited amounts of input data.

Finally, as expected, DLV allows to handle lower amounts of data w.r.t. DLVDB; however, in
several cases it was one of the best three performing systems, especially on bound queries. This
result is mainly due to the magic sets optimization technique it implements.

A rather surprising result is that DLV has almost always higher execution times than DLVDB

even for not very high input data sizes. The motivation for this result can be justified by the
following reasoning. Both DLVDB and DLV benefit of all the program rewriting optimization
techniques developed in the DLV project; moreover, both of them implement a differential Semi-
Naive approach for the evaluation of normal stratified programs. However, while DLV reasons
about its underlying data in a tuple-at-a-time way, DLVDB exploits set-at-a-time strategies (imple-
mented by SQL queries); this, in conjunction with the fact that the underlying working database
implements advanced optimization strategies for executing joins, makes DLVDB more efficient
than DLV even when all the data fits in main-memory.

As pointed out also in [14], another important parameter to measure in this context is the
system’s capability of handling large amounts of input data. In order to carry out this kind of
verification, we considered the time response of each system for the largest input data set we

74

Chapter 7. Benchmarks

samegen(X,Y)

samegen(b1,Y)

samegen(b1,b2)

Figure 7.2: Results for Same Generation on trees

75

Chapter 7. Benchmarks

reachable(X,Y) on a-graphs

reachable(b1,Y) on a-graphs

reachable(b1,b2) on a-graphs

Figure 7.3: Results for Reachability with acyclic graphs

76

Chapter 7. Benchmarks

reachable(X,Y) on c-graphs

reachable(b1,Y) on c-graphs

reachable(b1,b2) on c-graphs

Figure 7.4: Results for Reachability with cyclic graphs

77

Chapter 7. Benchmarks

reachable(X,Y) on cylinders

reachable(b1,Y) on cylinders

reachable(b1,b2) on cylinders

Figure 7.5: Results for Reachability with cylinders

78

Chapter 7. Benchmarks

reachable(X,Y) on trees

reachable(b1,Y) on trees

reachable(b1,b2) on trees

Figure 7.6: Results for Reachability with trees

79

Chapter 7. Benchmarks

have used in each query.
Table 7.1 shows the execution times measured for those systems which have been capable of

solving the query within the fixed time limit of 12000 seconds; the second column of the table
shows, for each query, both the input data size, measured in terms of the number of input facts
(tuples), and the total amount of handled data, measured in Mbytes, given by the size of the
answer set produced by DLVDB in answering that query1.

From the analysis of this table, we may observe that: (i) DLVDB has been always capable
of solving the query on the maximum data size; (ii) in 11 queries out of 15 DLVDB (in one case
along with DLV) has been the only system capable of completing the computation within the
time limit; (iii) DLVDB allowed to handle up to 6.7 Gbytes of data in samegen(X,Y) and 1.6
Gbytes in reachable(X,Y) on trees within the fixed time limit of 12000 seconds and never ended
its computation due to lack of memory, as instead other systems did.

Query / Input Size (tuples) / DB2 DLV DLVDB LDL++ Smodels SQLServer XSB
Data Type Output size (Mbytes) (sec) (sec) (sec) (sec) (sec) (sec) (sec)
samegen(X,Y) 32766 − − 5552 − − − −
tree 6716 Mb
samegen(b1,Y) 4194302 − − 64 − − − −
tree 78 Mb
samegen(b1,b2) 4194302 − − 102 − − − −
tree 78 Mb
reachable(X,Y) 929945 − − 11820 − − − −
a-graph 103 Mb
reachable(b1,Y) 929945 − − 1191 − − − −
a-graph 38 Mb
reachable(b1,b2) 929945 − − 4 − − − −
a-graph 17 Mb
reachable(X,Y) 612150 − − 11936 − − − −
c-graph 68 Mb
reachable(b1,Y) 612150 − − 11933 − − − −
c-graph 68 Mb
reachable(b1,b2) 612150 − 981 8 − − − −
c-graph 11 Mb
reachable(X,Y) 23980 − − 11784 − − − −
cylinder 465 Mb
reachable(b1,Y) 145260 − − 11654 2284 − − 157
cylinder 279 Mb
reachable(b1,b2) 582120 − − 388 − − − −
cylinder 13 Mb
reachable(X,Y) 4194302 − − 11161 − − 7280 −
tree 1634Mb
reachable(b1,Y) 4194302 − − 76 − − 6438 −
tree 79 Mb
reachable(b1,b2) 4194302 − − 60 − − 12 −
tree 78 Mb

Table 7.1: Execution times of the systems capable of solving the query for the maximum consid-
ered size of the input data

Comparison to Oracle

As previously pointed out, Oracle does not support the standard SQL99 encoding for recursive
queries, but it exploits a proprietary language for implementing a simplified form of recursion.

1Note that all facts produced by DLVDB to answer the query are considered

80

Chapter 7. Benchmarks

This language is less expressive than SQL99 for recursion; as an example, unbound recursive
queries cannot be implemented in Oracle; analogously, it does not allow to write recursive views
in a “uniform” way (i.e., independently from the specific bound parameters).

As for the problems addressed in this paper, it was not possible to write the unbound query
neither for Reachability, nor for Same Generation with Oracle. The other queries have encodings
not equivalent to the general version we adopted for the other systems.

As an example, the query reachable(b1,Y) can be expressed in Oracle by the following state-
ment:

SELECT b1, edge.att2
FROM edge
START WITH att1= b1
CONNECT BY PRIOR att2 = att1

which, however, is equivalent to the datalog program:

reached (b1).

reached (X) :- reached (Y), edge(Y ,X).

reachable(b1 ,Y) :- reached (Y).

This is clearly a program that can be evaluated more easily than the general encoding, because
it involves a recursive rule with one single attribute and a unique starting point for the recursion
(the fact reached(b1)); however, this query (and the equivalent program) is less general than the
one introduced in Section A, since its structure must be modified if, for example, we need to
carry out a query with both the parameters bound or if we want to bound the second parameter
instead of the first.

Clearly, testing such encodings against the other, more general, ones would have been un-
fair. Anyway, we carried out some tests involving Oracle, by applying its encodings and the
corresponding datalog programs on the maximum data instances we considered for the various
queries, in order to have a rough idea on the performance. As an example, for the query reach-
able(b1,Y) mentioned above, on a-graphs (resp., c-graphs) of size 929945 (resp., 612150) tuples
we have measured that Oracle takes 22.5 (resp., 15.9) seconds, whereas DLVDB takes 6.4 (resp.,
5.6) seconds. Analogously, for the query samegen(b1,Y), on trees of size 4194302 tuples, Oracle
requires 1329.4 seconds to terminate the computation, whereas DLVDB 500.8 seconds. Oracle
performed better than DLVDB only for Reachability on trees; also in this case, as we have done
for SQLServer, we may conjecture that this behaviour is motivated by the particular optimization
techniques implemented in the system.

These results are representative of the overall performance we have measured for Oracle
in our benchmarks; on one hand they confirm our claim that the encodings solvable by Oracle
are very different, also from a performance point of view, w.r.t. the general ones used in our
benchmarks (as an example, this is proved by the significantly lower timing measured for DLVDB

in reachable(b1,Y) w.r.t. the same query in the standard encoding); on the other hand, they allow
us to conclude that the same reasoning as that drawn in Section7.1.4 about DLVDB performance
is still valid.

81

Chapter 7. Benchmarks

7.2 Testing on a real data integration setting

In this section we present the results obtained in querying inconsistent and incomplete data. We
exploited the data integration framework developed in the INFOMIX project (IST-2001-33570)
[40] which integrates real data from a university context and we already presented in Section6.2.

7.2.1 Overview of compared systems

We compared DLVDB with state-of-the-art ASP systems, namely DLV [80], Gnt2 [68], ClaspD
[54], Smodels [101], and Cmodels [61]. DLVDB and DLV include an internal proprietary grounder,
whereas the other systems require an external grounder; we tested both Lparse [128] and GrinGo
[57] for this purpose; precisely, given a grounder x and a system y, we run x|y so as to direct
the output of x into y; the output of the systems have been directed to null in order to eliminate
printing times from the computation of the overall execution times.

It is worth pointing out that all systems but DLVDB and DLV do not explicitly support non-
ground queries; in order to carry out our tests, we asked these systems to compute all answer sets.
However, since tested queries are all non-ground (see below) answer sets must be all computed
anyway. Note also that Smodels and GrinGo do not support disjunction; since the data integra-
tion framework required some disjunctive rules for handling data inconsistencies, we adopted a
semantic preserving rewriting when using these systems to remove disjunctions2.

7.2.2 Tested queries

We tested four queries, ranging from simple selections to more complicated ones. Two of these
queries have been also used for studying the scalability of tested systems:

• IQ1: select the student IDs and the course descriptions of the examinations they passed
(this query involves possible inconsistencies in student IDs, exam records, and course de-
scriptions).

• IQ2: select the first and second names of the professors stored in the database (this query
involves possible inclusion dependency violations in relationships involving professors,
and possible inconsistencies in exam records).

• IQ3: select pairs of students having at least one common exam (this query involves possi-
ble inconsistencies in student IDs and exam records). We leveraged the complexity of this
query by filtering out different subsets of exam records.

• IQ4: select pairs of students and course codes of passed examinations such that the pro-
fessor’s first name of the corresponding courses is the same (this query involves possible
inconsistencies in student IDs, exam records, and course descriptions). We leveraged the
complexity of this query by filtering out different subsets of exam records.

All tested queries are non-ground. The complete encodings of tested queries are provided in the
Appendix A.

2We used ClaspD also for non disjunctive programs with GrinGo. However, we checked that running times of
Clasp are the same as those of ClaspD in these queries.

82

Chapter 7. Benchmarks

7.2.3 Results and discussion

Test results are shown in Figure 7.7. In the graphs, we used the notation x:y to denote the system
y coupled with the grounder x; moreover, to simplify the notation, we used symbol L (resp. G)
to denote Lparse (resp. GrinGo).

Results of queries IQ1 and IQ2 are shown in Figure 7.7(a). We can observe that the amount
of data involved by these queries is still manageable by all tested systems in main memory.
DLVDB and DLV present comparable performances and they are at least 50% faster than other
systems. In these queries, there is no substantial difference in using Lparse or GrinGo.

The scalability of query IQ3 is illustrated in Figure 7.7(b). Here (and in Figure 7.7(c)) the
line of a system stops when it (or the associated grounder) has not been able to solve the query.
Note that no system but DLVDB has been capable of handling 100% of input data, due to lack
of memory. Specifically, for this query, grounders were able to complete the computation, but
systems not. As for obtained results, it is possible to observe that in this query, when coupled
with GrinGo, systems behave generally better than with Lparse, at least for small inputs. Per-
formances of DLVDB are comparable to those of the other systems with Lparse for small inputs,
but it behaves much better for bigger data sizes. Notably ClaspD with GrinGo presents the best
performance for IQ3 until it is able to handle data in main memory.

Results for query IQ4 are shown in Figure 7.7(c). Here, Lparse has not been able to complete
the grounding in reasonable time even for the smallest data set (we stopped it after 12 hours).
Hence, only results with GrinGo are presented (which has been able to complete the grounding
for plotted data). Here, again, DLVDB allows handling bigger data sizes than the other systems
which, at some point, are subject to memory overflow. Also, the performances of DLVDB in
small data sets are extremely competitive.

Finally, Table 7.2 summarizes the biggest data sets handled by each system for queries IQ3

and IQ4 (the 0% in IQ4 are due to Lparse fault).

Lparse: GrinGo:
DLVDB DLV Gnt2 ClaspD Smodels Cmodels Gnt2 ClaspD Smodels Cmodels

IQ3 100% 90% 46% 57% 70% 57% 57% 90% 84% 57%
IQ4 100% 93% 0% 0% 0% 0% 24% 93% 78% 78%

Table 7.2: Biggest data sets handled by tested systems for IQ3 and IQ4.

7.3 Testing on querying of RDF(S) ontologies

In this section, we present the results of our experiments aiming at comparing the performance
of DLVDB with several state-of-the-art triplestores in the context of ontology querying already
presented in Section 6.3. The main goal of these experiments was to evaluate both the scalability
and the query language expressiveness of tested systems.

7.3.1 Compared Systems

In our tests we compared DLVDB with three state-of-the-art triplestores, namely: Sesame [122],
ARQ [9], and Mulgara [2]. The first two systems allow both in-memory and RDBMS storage
and, consequently, we tested them on both execution modalities. In the following, we refer the

83

Chapter 7. Benchmarks

(a)

(b)

(c)

Figure 7.7: Results for : (a) IQ1 and IQ2; (b) IQ3; (c) IQ4.
84

Chapter 7. Benchmarks

in-memory version of Sesame (resp. ARQ) as Sesame-Mem (resp. ARQ-Mem) and the RDBMS
version as Sesame-DB (resp. ARQ-DB). RDBMS versions of all systems (including DLVDB)
have been tested with Microsoft SQL Server 2005 as underlying database. As it will be clear in
the following, we also tested a version of Sesame which works on files; we refer this version of
Sesame as Sesame-File. For each system we used the latest available stable release at the time of
writing. We next briefly describe them.

Sesame is an open source Java framework with support for storage and querying of RDF(S)
data. It provides developers with a flexible access API and several query languages; however, its
native language (which is the one adopted in our tests) is SeRQL – Sesame RDF Query Language.
Actually, the current official release of Sesame does not support the SPARQL language yet. Some
of the query language’s most important features are: (i) expressive path expression syntax that
match specific paths through an RDF graph, (ii) RDF Schema support, (iii) string matching.
Furthermore, it allows simplified forms of reasoning on RDF and RDFS. In particular, inferences
are performed by pre-materializing the closure R(G) of the input triplestore G.

The latest official release is version 1.2.7. However, during the preparation of this manuscript,
version 2.0 of Sesame became available as Release Candidate and, in order to guarantee fairness
in the comparison, we considered also this version in our tests. In fact, version 2.0 supports the
SPARQL Query Language and features an improved inferencing support, but does not support
RDBMS management yet, allowing only files. In the following, we indicate Sesame 1.2.7 as
Sesame1 and Sesame 2.0 as Sesame2.

ARQ is a query engine for Jena (a framework for building Semantic Web applications, which is
distributed at http://jena.sourceforge.net) that supports the SPARQL Query language.
ARQ includes a rule-based inference engine and performs non materialized inference. As for
Sesame, ARQ can be executed with data loaded both in-memory and on an RDBMS. We executed
SPARQL queries from Java code on the latest available version of ARQ (2.1) using the Jena’s
API in both execution modalities3.

Mulgara is a database system specifically conceived for the storage and retrieval of RDF(S)
(note that it is not a standard relational DBMS). Mulgara is an Open Source active fork of the
Kowari project4. The adopted query language is iTQL (Interactive Tucana Query Language), a
simple SQL-like query language for querying and updating Mulgara databases. A compatibility
support with SPARQL is declared, yet not implemented. The Mulgara Store offers native RDF(S)
support, multiple databases per server, and full text search functionalities. The system has been
tested using its internal storage data structures (XA Triplestore). The latest release available for
Mulgara is mulgara-1.1.1.

7.3.2 Benchmark Data Set

In order to provide an objective and comprehensive set of tests we adopted two different data
sets: one coming from real data, that is, the DBLP database [82] and one coming from synthetic
information, i.e. the LUBM benchmark suite [93].

3Distributed at https://jena.svn.sourceforge.net/svnroot/jena/ARQ/
4http://www.kowari.org/

85

Chapter 7. Benchmarks

DBLP is a real database containing a large number of bibliographic descriptions on major
computer science journals and proceedings; the DBLP server indexes more than half a million
articles and features several thousand links to home pages of computer scientists. Recently, an
OWL ontology has been developed for DBLP data. A corresponding RDF snapshot has been
downloaded at the Web address http://sw.deri.org/∼aharth/2004/07/dblp/. The
main classes represented in this ontology are Author, Citation, Document, and Publisher, where
a Document can be one of: Article, Book, Collection, Inproceedings, Mastersthesis, Phdthesis,
Proceedings, Series, WWW. In order to test the scalability of the various systems we considered
several subsets of the entire database, each containing an increasing number of statements and
constructed in such a way that the greater sets strictly contain the smaller ones. Generated data
sets contain from 70000 to 2 million RDF triples.

The Lehigh University Benchmark (LUBM) has been specifically developed to facilitate the
evaluation of Semantic Web triplestores in a standard and systematic way. In fact, the benchmark
is intended to evaluate the performance of those triplestores with respect to extensional queries
over large data sets that commit to a single realistic ontology. It consists of a university domain
ontology with customizable and repeatable synthetic data. The LUBM ontology schema and its
data generation tool are quite complex and their description is out of the scope of this paper. We
used the Univ-Bench ontology that describes (among others) universities, departments, students,
professors and relationships among them. The interested reader can find all information in [93].
Data generation is carried out by the Univ-Bench data generator tool (UBA) whose main gener-
ation parameter is the number of universities to consider. Also in this case, we generated several
data sets, each containing an increasing number of statements and constructed in such a way that
the greater sets strictly contain the smaller ones. Generated data sets are named as: lubm-5,
corresponding to 5 universities and about 640000 RDF triples, lubm-10 (10 universities, about
1 million triples), lubm-15 (15 universities, about 2 million triples), lubm-30 (30 universities,
about 4 million triples), lubm-45 (45 universities, about 6 million triples).

7.3.3 Tested Queries

As previously pointed out, the expressiveness of the query language varies for each tested system.
In order to compare both scalability and expressiveness, we exploited queries of increasing com-
plexity, ranging from simple selections to queries requiring different forms of inferences over the
data. The encodings of all the tested queries are provided in the AppendixA.

Queries on DBLP We ran the following five queries over DBLP:

• OQ1: Select the names of the Authors and the URI of the corresponding Articles they are
author of.

• OQ2: Select the names of the Authors which published at least one Article in year 2000.

• OQ3: Select the names of the Authors which are creators of at least one document (i.e.
either an Article, or a Book, or a Collection, etc.).

• OQ4: For each author in the database, select the corresponding name and count the number
of Articles he published.

86

Chapter 7. Benchmarks

• OQ5: Given a pair of Authors A1 and A2, compute the “collaborative distance” between
them; the collaborative distance can be computed as the minimum length of a path connect-
ing A1 and A2 in a graph where Authors are the nodes of this graph and an edge between
Ai and Aj indicates that Ai co-authored at least one document with Aj .

Here, queries OQ1 and OQ2 are simple selections; OQ3 requires a simple form of inference; in
fact articles, books, etc. must be abstracted into documents. Query OQ4 requires the capability
to aggregate data. Finally, OQ5 requires to perform a transitive closure over the underlying data
and, consequently, the corresponding query must be recursive.

It is worth observing that queries OQ1, OQ2, and OQ3 can be executed by all the evaluated
systems. As for OQ3, we exploited the Krule engine for Mulgara, the inferencing repository in
Sesame and the inferencing Reasoner in ARQ. Note that Mulgara and Sesame-DB materialize
the possible inferenced data just during the loading of the RDF dataset in the database; however,
in our tests, we measured only the query answering times. Query OQ4 cannot be evaluated
by Sesame because the SeRQL query language does not support aggregate operators. Finally,
query OQ5 can be evaluated only by DLVDB, because it is the only system allowing for recursive
queries.

Queries on LUBM The LUBM benchmark provides 14 test queries. Many of them are slight
variants of one another. Most of the queries basically select subsets of the input data and require,
in some cases, basic inference processes (e.g. class-subclass inferences). Few of them are in-
tended to verify the presence of certain reasoning capabilities (peculiar of OWL ontologies rather
than RDFS) in the tested systems; in fact, they require the management of transitive properties.
However, some important querying capabilities, such as data aggregation and recursion, are not
addressed by the queries in the LUBM benchmark. As a consequence we designed also other
queries over the LUBM data set to test these higher expressive features provided by DLVDB and
some other systems.

Queries taken from the LUBM benchmark are listed below (in parentheses, we give the offi-
cial query number as given by LUBM):

• OQ6 (LUBM Query1): Select Graduate Students attending a given Course. It is assumed
that no hierarchy information or inference exists or is required (that is, no RDFS entailment
is required).

• OQ7 (LUBM Query2): Select the Graduate Students X, Universities Y and Departments
Z such that X graduated in Y and is a member of Z , and Z is a sub-organization of Y . Note
that this query involves three classes and three properties; moreover, there is a triangular
pattern of relationships between the objects involved.

• OQ8 (LUBM Query3): Select the Publications of a given Assistant Professor. Here Publi-
cation has a wide hierarchy of subclasses, subject to RDFS entailment.

• OQ9 (LUBM Query4): Select the Professors working for a specific Department, showing
their names, telephone numbers and email addresses. This query covers multiple properties
of the single class Professor, having many subclasses, and requires a long join pattern.

• OQ10 (LUBM Query5): Select the Persons which are member of a specific Department;
this query assumes a subClassOf relationship between Person and its subclasses and a
subPropertyOf relationship between memberOf and its subproperties.

87

Chapter 7. Benchmarks

• OQ11 (LUBM Query6): Select all instances of the class Student, considering also its sub-
classes Graduate Student and Undergraduate Student.

• OQ12: (LUBM Query7): Select the Students taking some Course held by a specific Asso-
ciate Professor.

• OQ13: (LUBM Query8): Select the Students having an email address, which are member
of a Department that is a sub-organization of a given University.

• OQ14 (LUBM Query9): Select the Students attending some Course held by a teacher who
is also their advisor. This query involves the highest number of classes and properties in
the query set; moreover, there is a triangular pattern of relationships.

• OQ15 (LUBM Query14): Select all the Undergraduate Students. This query is very simple,
yet characterized by a large input and a low selectivity.5

Additional queries that we have tested, not included in the LUBM benchmark, are listed
below.

• OQ16: For each Author in the database count the number of Papers she/he published. This
query requires the capability to aggregate data.

• OQ17: Given a pair of authors A1 and A2, compute the “collaborative distance” between
them (see query OQ5 for the definition of collaborative distance). This query requires the
capability to express recursion.

7.3.4 Results and Discussion

Results on DBLP Figures 7.8 and 7.9 show the results we have obtained for the DBLP queries.
In the figures, the chart of a system is absent whenever it is not able to solve the query due to
some system’s fault or if its response time is (except for OQ5) greater than 3600 seconds (1
hour). Moreover, if a system’s query language is not sufficiently expressive to answer a certain
query, it is not included in the graph. From the analysis of the figures, we can draw the following
observations.

DLVDB shows always the best performance for all the queries, yet it is characterized by the
highest language expressiveness. Mulgara and ARQ have, after DLVDB, the more expressive
query language; however, Mulgara is not able to complete the computation of OQ3 and OQ4

already after 220000 triples and is not able to express OQ5, whereas ARQ always shows higher
time responses than both DLVDB and Mulgara, except for OQ4 where it performs sensibly better
than Mulgara. Sesame turns out to be competitive in version Sesame2-File, especially for the
biggest data sets in OQ1 and OQ3, but scores the worst performance among all the systems for
all queries in version Sesame1-DB. As far as Sesame is concerned, it is particularly interesting
to observe the very different behaviour of its various versions; in particular, as for Sesame1 the
in-memory version works much better than its DB version; vice versa, the file version of Sesame2
performs much better than its in-memory version. In any case, OQ4 and OQ5 could not be tested
with Sesame due to lack of language expressiveness.

88

Chapter 7. Benchmarks

Results on LUBM Figures 7.10, 7.11, 7.12 and 7.13 show the results we have obtained for the
LUBM queries. In the figures, the chart of a system is absent whenever it is not able to solve the
query due to some system’s fault, or if its response time is (except for OQ17) greater than 3600
seconds (1 hour). The maximum allowed size for pre-materialized inference has been set to 4Gb
(note that the greatest considered triple set occupied 1Gb in the database). Finally, if a system’s
query language is not sufficiently expressive to answer a certain query, it is not included in the
graph.

System/Query OQ6 OQ7 OQ8 OQ9 OQ10 OQ11

DLVDB Y Y Y Y Y Y
Mulgara Y Y Y
Sesame1-Mem Y Y Y Y Y Y
Sesame1-DB Y Y Y Y
Sesame2-Mem Y Y Y Y Y Y
Sesame2-File Y Y Y Y Y Y
ARQ-Mem Y Y Y Y
ARQ-DB

OQ12 OQ13 OQ14 OQ15 OQ16 OQ17

DLVDB Y Y Y Y Y Y
Mulgara Y Y
Sesame1-Mem Y Y Y Y
Sesame1-DB Y
Sesame2-Mem Y Y Y Y
Sesame2-File Y Y Y Y
ARQ-Mem Y Y
ARQ-DB

Table 7.3: Summary of the systems capable of computing the results for the data sets in LUBM
queries, under the specified constraints. Y=Yes, blank=No.

Table 7.3 summarizes the observed capability of each system to complete the computation of
query results over all the considered data sets, under the limitations specified above.

From the analysis of Figures 7.10, 7.11, 7.12 and 7.13 and of Table 7.3, we can draw the
following observations. DLVDB is the only system capable of completing the computation of all
the queries under the time and space constraints specified previously. Only Sesame is competitive
with DLVDB on this aspect; on the other hand, queries OQ16 and OQ17 cannot be computed by
this system due to lack of language expressiveness.

DLVDB scores also the best performance over all queries, except query OQ14 where Sesame
has the best time responses. As far as this aspect is concerned, however, it is worth recalling
that Sesame and Mulgara pre-materialize inferences during loading of data into the repository;
as previously pointed out, pre-materialization times are not considered in the graphs, since this
task can be carried out once for each data set6. For the sake of completeness, however, we show
in Table 7.4 the times (in minutes) required by the various systems for loading test data in the
corresponding repositories; for systems pre-materializing inferences, we distinguish between the
loading of data with and without pre-materialization. From this table and Table7.3 we can also

5A more exhaustive description of these queries can be found at http://swat.cse.
lehigh.edu/projects/lubm/query.htm.

6Recall that OQ9-OQ14 are indeed the LUBM queries requiring inference.

89

Chapter 7. Benchmarks

observe that Mulgara is not able to compute inference in a reasonable time (we stopped it after
14 hours) already for lubm-10; this caused it to be unable to compute queries OQ9-OQ14 for
data sets lubm-10, lubm-15, lubm-30, lubm-45.

DLV ARQ Sesame1-DB Mulgara Sesame2-File
Triples inference inference inference

lubm-5 5 10 13 45 5 46 3 12
lubm-10 10 21 28 116 14 ** 5 30
lubm-15 15 108 61 221 30 ** 9 50
lubm-30 31 * 102 869 106 ** 19 138
lubm-45 46 * 161 * 196 ** 31 261

Table 7.4: Loading times (minutes) for each system and data set. Whenever needed we distin-
guish between loading with and without inference pre-materialization. *: DB space exceeded.
**: More than 14 hours.

As for the behaviour of the other systems, it is worth noting that for the LUBM data sets DB
versions of the various systems perform generally better than the corresponding main-memory
versions. This behaviour can be explained by considering that LUBM data sets are quite large
and, consequently, they could not fit in main memory, thus causing swapping of main-memory
systems.

System/Query OQ6 OQ9 OQ11 OQ15

DLVDB 4.88 5.07 5.08 5.03
Mulgara 53.12 - - 74.23
Sesame1-Mem 256.98 318.52 320.11 268.89
Sesame1-DB 23.31 23.64 38.98 37.47
Sesame2-Mem 291.83 368.65 370.73 292.22
Sesame2-File 15.87 16.05 16.00 15.91
ARQ-Mem 309.38 329.92 331.80 312.78
ARQ-DB 17.31 343.14 407.73 154.98

Table 7.5: Memory footprint (Megabytes) of tested systems for some queries

In order to further characterize tested systems, we have measured their main-memory foot-
print for some queries. Table 7.5 shows the results obtained for queries OQ6, OQ9, OQ11, and
OQ15 run on the dataset lubm-15. Recall that OQ9 and Q11 require inference. From the
analysis of this table it clearly emerges that DLVDB is the lightest system in terms of memory
occupation. Moreover, it comes with no surprise that, in general, the systems requiring the lower
amount of main-memory are those implementing a mass-memory based evaluation; the only ex-
ception is made by ARQ-DB in OQ9 and OQ11 (requiring inference). This can be explained
by considering that ARQ applies inference rules at query time and, visibly, this task is carried
out in main memory. These results, coupled with the execution times previously analyzed, make
DLVDB the system requiring overall less time and space among the tested ones.

90

Chapter 7. Benchmarks

7.4 Testing on a combinatorial problem

In this test, we considered a combinatorial problem, we call it FastFoods, which checks whether
a depot allocation has minimal supply costs among all depot allocations of the same cardinality.
Inputs to the problem are a set of restaurants and a set of depots, each characterized by a Name
and a Position (Km). The output is an alternative set of depots, if available. The complete
encoding of this problem can be found in the AppendixA.

Note that we could test only DLV and DLVDB on this problem. In fact, the encoding of
FastFoods is heavily based on aggregate functions, especially assignment aggregates which are
not supported by the other systems.

Results showing response times for increasing numbers of restaurants are illustrated in Figure
7.14(a) 7. It clearly emerges that DLVDB is much more effective than DLV in aggregating data for
increasing input sizes; this can be justified by the fact that DLVDB exploits DBMS aggregation
functions during the grounding.

7.5 Testing on data transformation problems

We tested the capability to improve usability and efficiency of DLVDB via functions for a typical
real world problem, namely data transformation. Data transformation is particularly relevant, e.g.
in data integration, to uniform data formats among different sources.

In particular, we considered the problem of transforming integer numbers in their binary rep-
resentation. This task can be encoded both in pure datalog and in datalog with functions (see the
Appendix A). We then designed a test program, named Int2Bin, aiming simply at transforming
integers stored in an input table to binaries. We defined two variants of Int2Bin, one with and one
without function calls. In order to measure the scalability of DLVDB in this test, we considered
output binary numbers having 5 to 16 bits. Obtained results are shown in Figure7.14(b).

The figure clearly shows the significant advantage of using functions in this context. In
fact, the execution time of Int2Bin with functions is almost constant because it requires a fixed
number of function calls (one for each mark to convert), independently of the number of bits. To
the contrary, the standard datalog version must generate all the binary numbers in the admissible
range; this explains the exponential growth of the response time.

7.6 Testing on string similarity computation

String similarity computation is an important task in several application areas. In particular,
in Bioinformatics, it is essential for measuring several parameters between portions of DNA or
proteins and to identify frequently repeated patterns. ASP (with some extensions) has already
been exploited also in this context, see e.g. [103].

In this test, we considered the computation of the Hamming distance between pairs of strings,
which is at the basis of several similarity measures. It is defined as the number of positions in
which the corresponding symbols of two strings of the same length are different. This problem is
inherently procedural and, even if a declarative solution for it is possible, this is quite unnatural.

We then considered the following problem, referred as HammingDistances in the following:
given a set of strings compute the Hamming distance between each string pair. Note that, in

7We fixed the number of depots to 50.

91

Chapter 7. Benchmarks

classical ASP, in order to properly compute the hamming distance, strings must be represented
as a set of pairs (POS, CHAR); to the contrary, a function-based solution can directly handle the
whole string.

We then designed two encodings for the problem, one using functions and one not; specifi-
cally, in the former case input strings are represented as string(ID,S), whereas in the latter
case, strings are expressed as string(ID,CHAR,POS). Note that we did not count the time
for converting the strings from one format to the other in our tests. In both cases, the output has
the form hd(ID1,ID2,H). The complete encodings can be found in the AppendixA.

Results are shown in Figure 7.14(c) for increasing numbers of input strings. The gain pro-
vided by DLVDB is similar to that we have observed in the previous test, thus confirming the
advantage of using functions to solve procedural sub-tasks.

92

Chapter 7. Benchmarks

OQ1

OQ2

OQ3

Figure 7.8: Results for queries OQ1 - OQ3

93

Chapter 7. Benchmarks

OQ4

OQ5

Figure 7.9: Results for queries OQ4 and OQ5

94

Chapter 7. Benchmarks

OQ6

OQ7

OQ8

Figure 7.10: Results for queries OQ6 - OQ8

95

Chapter 7. Benchmarks

OQ9

OQ10

OQ11

Figure 7.11: Results for queries OQ9 - Q11

96

Chapter 7. Benchmarks

OQ12

OQ13

OQ14

Figure 7.12: Results for queries OQ12 - OQ14

97

Chapter 7. Benchmarks

OQ15

OQ16

OQ17

Figure 7.13: Results for queries OQ15 - Q17

98

Chapter 7. Benchmarks

(a)

(b)

(c)

Figure 7.14: Results for (a) FastFoods; (b) Int2Bin; (c) HammingDistances.

99

Chapter 8

Conclusions

In this thesis we have presented DLVDB, a new deductive system for reasoning on massive
amounts of data. We have pointed out that DLVDB is particularly suited for data intensive ap-
plications; moreover we showed that DLVDB exemplifies the usage of DLP for those problems
characterized by both declarative and procedural components, via the usage of external function
calls.

First we have pointed out innovations and differences of our approach with respect to exist-
ing proposals by a comprehensive survey on logic-based systems and database systems. Then
we have presented the overall characteristics of the proposed system, and its database oriented
evaluation strategy. Finally we have presented some application scenarios possibly benefiting of
DLVDB and adopted for our tests whose results have been encuraging.

The main contributions of this work are the following:

• We have described the architecture of a fully fledged system enhancing in different ways
the interactions between logic-based systems and DBMSs.

• We have introduced a novel evaluation strategy for logic programs allowing to minimize
the usage of main-memory and to maximize the advantages of optimization techniques
implemented in existing DBMSs.

• We have extended the expressiveness of DLP with external function calls, yet improving
efficiency (at least for procedural sub-tasks) and knowledge-modelling power;

• We have extended expressiveness of DLP for supporting also the management of recursive
data structures (lists).

• We have designed a simple and easy to use mechanism, based on ODBC, for the coopera-
tion of the developed system with any existing DBMS.

• We have experimentally shown that DLVDB effectively combines the experience in opti-
mizing ASP programs gained within the DLV project with the well assessed data man-
agement capabilities of existing DBMSs. This allows to enhance performance with data
intensive applications.

• We have experimentally demonstrated that the developed system outperforms existing pro-
posals in several interesting application problems.

100

Chapter 8. Conclusions

• We have shown how (i) the proposed system can be effectively exploited in complex appli-
cation scenarios such as the integration of distributed, possibly inconsistent, and possibly
incomplete data and (ii) the querying of RDF(S) ontologies.

As for future work we plan to:

• Enhance the management of distributed data in order to optimize the interaction beetwen
the system and databases.

• Evaluate the possible parallelization of some tasks in the evaluation process, mainly for the
elaboration of distributed data.

• Introduce data typing features, in order to allow the handling of complex domains and to
pone the way to the manipulation of objects.

101

Appendix A

Encodings

A.1 Testing on normal stratified programs with recursion

A.1.1 Encodings of Reachability

DLVDB and DLVIO :

reachable(X ,Y) :- edge(X ,Y).

reachable(X ,Y) :- edge(X ,Z), reachable(Z ,Y).

DLVDB and DLVIO allow to add the queries directly to the datalog program. Queries used for
DLVDB and DLVIO are: Q0=reachable(X,Y)?,Q1=reachable(b1, Y)? andQ2=reachable(b1, b2)?,
where b1 and b2 represent constant values.

SQLServer and DB2: Both SQLServer and DB2 require two different encodings depending on
the kind of underlying data structure (cyclic or acyclic); in fact, in case of cyclic data structures,
they require explicit mechanisms in the query to avoid infinite loops. Clearly such verifications
can worsen the performance of the computation. As a consequence, in order to guarantee fairness
in our benchmarks, we used the encoding with these verifications only for queries on cyclic data
structure.

SQLServer and DB2 for acyclic data structures:

WITH reachable(att1, att2) AS (
SELECT att1, att2
FROM edge

UNION ALL
SELECT edge.att1, reachable.att2
FROM edge, reachable
WHERE edge.att2 = reachable.att1)

SELECT att1, att2
FROM reachable
ORDER BY att1, att2;

102

Appendix A. Encodings

SQLServer for cyclic data structures: The way to avoid infinite loops on cyclic data structures
consists in limiting the length of the discovered paths; this requires both to compute path lengths
and to limit the maximum number of recursive iterations to be carried out.

WITH reachable(att1, att2, path length) AS (
SELECT att1, att2, 1
FROM edge

UNION ALL
SELECT edge.att1, reachable.att2, reachable.path length + 1
FROM edge, reachable
WHERE edge.att2 = reachable.att1

AND reachable.path length < #node)
SELECT att1, att2, MIN(path length)
FROM reachable
GROUP BY att1, att2
OPTION (MAXRECURSION = #node)

Here, in Bold text style we have highlighted the additional conditions required w.r.t. the basic
case. Moreover, the parameter #node is used to limit the maximum length of derived paths; in
order to guarantee fairness, for each test, we have set #node to the number of nodes actually
present in the exploited graph instance.

DB2 for cyclic data structures: DB2 requires the limitation on the path lengths, but not the one
on the maximum number of recursive iterations.

WITH reachable(att1, att2, path length) AS (
SELECT att1, att2, 1
FROM edge

UNION ALL
SELECT edge.att1, reachable.att2, reachable.path length + 1
FROM edge, reachable
WHERE edge.att2 = reachable.att1

AND reachable.path length < #node)
SELECT att1, att2, MIN(path length)
FROM reachable
GROUP BY att1, att2

All the SQL99 statements above solve the unbound query Q0; customizing them for queries
with one (resp., two) parameter bound amounts just in adding one (resp., two) WHERE condi-
tion in the main selection statement.

LDL++:

reachable(X ,Y) ← edge(X ,Y).

reachable(X ,Y) ← edge(X ,Z), reachable(Z ,Y).

The substantial difference between LDL++ and DLVDB encodings resides in query defini-
tion. In particular, LDL++ exploits query forms (also called export), which are generic queries

103

Appendix A. Encodings

specifying to the compiler which arguments will be given in input and which ones are expected
as output. For instance, if the program file contains the expression: export reachable($X,Y),
then it will be possible to execute queries of the form: reachable(‘Rome’,X). The bindings
given in an export are used by the compiler to optimize data accesses.

Then, LDL++ has been tested with the queries: Q0=export reachable(X,Y),
Q1=export reachable($X,Y) and Q2=export reachable($X, $Y).

XSB: XSB requires memoization in order to ensure that the program terminates; it consists in
declaring some predicates as tabled. The XSB encoding is the following:

: −table reachable/2.

reachable(X ,Y) :- edge(X ,Y).

reachable(X ,Y) :- edge(X ,Z), reachable(Z ,Y).

The used queries are the same as those presented for DLVDB.

Smodels: As for Smodels, we had to slightly modify the standard encoding in order to respect
the domain restriction constraint required by the instantiation module. This module is a separate
application, called lparse, which preprocesses the programs evaluated by Smodels.

The Smodels encoding is the following:

reachable(X ,Y) :- edge(X ,Y).

reachable(X ,Y) :- edge(X ,Z), reachable(Z ,Y), vertex (Y).

where vertex(Y) has been added to restrict the domain of the variable Y . The used queries are
the same as those presented for DLVDB.

A.1.2 Encodings of Same Generation

DLVDB and DLVIO :

samegen(X ,Y) :- parent (P ,X), parent(P ,Y).

samegen(X ,Y) :- parent (P1 ,X), parent (P2 ,Y), samegen(P1 ,P2).

with the queries Q0=samegen(X,Y)?, Q1=samegen(b1, Y)? and Q2=samegen(b1, b2)?.

SQLServer and DB2:

WITH samegen(att1, att2) AS (
SELECT P1.att2, P2.att2
FROM parent P1, parent P2

WHERE P1.att1 = P2.att1
UNION ALL

SELECT P1.att2, P2.att2
FROM parent P1, parent P2, samegen S
WHERE P1.att1 = S.att1 AND P2.att1 = S.att2)

104

Appendix A. Encodings

SELECT att1, att2
FROM samegen
ORDER BY att1, att2;

The statement above solves the unbound query Q0. Customizing it for query Q1 (resp., Q2)
amounts just in adding one (resp., two) WHERE condition in the main selection statement.

LDL++:

samegen(X ,Y) ← parent(P ,X), parent (P ,Y).

samegen(X ,Y) ← parent(P1 ,X), parent(P2 ,Y), samegen(P1 ,P2).

with queriesQ0=export samegen(X,Y),Q1=export samegen($X,Y) andQ2 =export samegen($X, $Y).

XSB:

: −table samegen/2

samegen(X ,Y) :- parent (P ,X), parent(P ,Y).

samegen(X ,Y) :- parent (P1 ,X), parent (P2 ,Y), samegen(P1 ,P2).

with the same queries as the ones shown for DLVDB.

Smodels:

samegen(X ,Y) :- parent (P ,X), parent(P ,Y).

samegen(X ,Y) :- parent (P1 ,X), parent (P2 ,Y), samegen(P1 ,P2).

with the same queries as the ones shown for DLVDB.

A.2 Testing on a real data integration setting

A.2.1 Encodings for query IQ1

The encodings of query IQ1 exploited in our tests are the following.

DLVDB and DLV encoding of query IQ1

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),

105

Appendix A. Encodings

exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2.
exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-

exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2.

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

courseD(EC,ED) :- esame(FC,EC,ED,AC).
courseD(EC,ED) :- esame diploma(EC,ED).

course(EC,ED) :- courseD(EC,ED), not courseC(EC,ED).

q1(ED,RN) :- course(EC,ED), exam record inf(RN,EC,FN,LN,GR,DT,AY).

q1(ED,RN)?

GnT2, ClaspD and Cmodels encoding of query IQ1 with Lparse

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2.

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

courseD(EC,ED) :- esame(FC,EC,ED,AC).
courseD(EC,ED) :- esame diploma(EC,ED).

course(EC,ED) :- courseD(EC,ED), not courseC(EC,ED).

q1(ED,RN) :- course(EC,ED), exam record inf(RN,EC,FN,LN,GR,DT,AY),
exam record infD(RN,EC,FN,LN,GR,DT,AY).

smodels encoding of query IQ1 with Lparse

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN).

106

Appendix A. Encodings

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

courseD(EC,ED) :- esame(FC,EC,ED,AC).
courseD(EC,ED) :- esame diploma(EC,ED).

course(EC,ED) :- courseD(EC,ED), not courseC(EC,ED).

q1(ED,RN) :- course(EC,ED), exam record inf(RN,EC,FN,LN,GR,DT,AY),
exam record infD(RN,EC,FN,LN,GR,DT,AY).

GnT2, ClaspD, Cmodels and smodels encoding of query IQ1 with GrinGo

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

107

Appendix A. Encodings

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

courseD(EC,ED) :- esame(FC,EC,ED,AC).
courseD(EC,ED) :- esame diploma(EC,ED).

course(EC,ED) :- courseD(EC,ED), not courseC(EC,ED).

q1(ED,RN) :- course(EC,ED), exam record inf(RN,EC,FN,LN,GR,DT,AY),
exam record infD(RN,EC,FN,LN,GR,DT,AY).

A.2.2 Encodings for query IQ2

The encodings of query Q2 exploited in our tests are the following.

DLVDB and DLV encoding of query IQ2

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2.

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

teachingD(EC,FN,LN,AY) :- affidamenti ing informatica(EC,PC,AY),
dati professori(PC,FN,LN).

teaching(EC,FN,LN,AY) :- teachingD(EC,FN,LN,AY), not teachingC(EC,FN,LN,AY).

professorD(FN,LN) :- professore(PC,FN,LN,CI).
professorD(FN,LN) :- dati professori(PC,FN,LN).
professorD(FN,LN) :- professorWeb professor(PC,LN,FN,TI,HP,PN,FN,EM,AD).

professor(FN,LN) :- professorD(FN,LN), not professorC(FN,LN).

q2(FN,LN) :- teaching(EC,FN,LN,AY).
q2(FN,LN) :- professor(FN,LN).

108

Appendix A. Encodings

q2(FN,LN) :- exam record inf(RN,EC,FN,LN,GR,DT,AY).

q2(FN,LN)?

GnT2, ClaspD and Cmodels encoding of query IQ2 with Lparse

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2.

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

teachingD(EC,FN,LN,AY) :- affidamenti ing informatica(EC,PC,AY),
dati professori(PC,FN,LN).

teaching(EC,FN,LN,AY) :- teachingD(EC,FN,LN,AY), not teachingC(EC,FN,LN,AY).

professorD(FN,LN) :- professore(PC,FN,LN,CI).
professorD(FN,LN) :- dati professori(PC,FN,LN).
professorD(FN,LN) :- professorWeb professor(PC,LN,FN,TI,HP,PN,FN,EM,AD).

professor(FN,LN) :- professorD(FN,LN), not professorC(FN,LN).

q2(FN,LN) :- teaching(EC,FN,LN,AY).
q2(FN,LN) :- professor(FN,LN).
q2(FN,LN) :- exam record inf(RN,EC,FN,LN,GR,DT,AY),

exam record infD(RN,EC,FN,LN,GR,DT,AY).

smodels encoding of query IQ2 with Lparse

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,

109

Appendix A. Encodings

not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).
exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),

exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

teachingD(EC,FN,LN,AY) :- affidamenti ing informatica(EC,PC,AY),
dati professori(PC,FN,LN).

teaching(EC,FN,LN,AY) :- teachingD(EC,FN,LN,AY), not teachingC(EC,FN,LN,AY).

professorD(FN,LN) :- professore(PC,FN,LN,CI).
professorD(FN,LN) :- dati professori(PC,FN,LN).
professorD(FN,LN) :- professorWeb professor(PC,LN,FN,TI,HP,PN,FN,EM,AD).

professor(FN,LN) :- professorD(FN,LN), not professorC(FN,LN).

q2(FN,LN) :- teaching(EC,FN,LN,AY).
q2(FN,LN) :- professor(FN,LN).
q2(FN,LN) :- exam record inf(RN,EC,FN,LN,GR,DT,AY),

exam record infD(RN,EC,FN,LN,GR,DT,AY).

GnT2, ClaspD, Cmodels and smodels encoding of query IQ2 with GrinGo

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

110

Appendix A. Encodings

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

teachingD(EC,FN,LN,AY) :- affidamenti ing informatica(EC,PC,AY),
dati professori(PC,FN,LN).

teaching(EC,FN,LN,AY) :- teachingD(EC,FN,LN,AY), not teachingC(EC,FN,LN,AY).

professorD(FN,LN) :- professore(PC,FN,LN,CI).
professorD(FN,LN) :- dati professori(PC,FN,LN).
professorD(FN,LN) :- professorWeb professor(PC,LN,FN,TI,HP,PN,FN,EM,AD).

professor(FN,LN) :- professorD(FN,LN), not professorC(FN,LN).

q2(FN,LN) :- teaching(EC,FN,LN,AY).
q2(FN,LN) :- professor(FN,LN).
q2(FN,LN) :- exam record inf(RN,EC,FN,LN,GR,DT,AY).

A.2.3 Encodings for query IQ3

The encodings of query IQ3 exploited in our tests are the following.

DLVDB and DLV encoding of query IQ3

studentD(RN,FN,LN,AC2,AD2,TN1,DE) :- diploma maturita(DG,DE),
studente(RN,LN,FN,BD,BC,BR,AD1,AN1,ZC1,AC1,AR1,TP1,TN1,

AD2,AN2,ZC2,AC2,AR2,TP2,TN2,CF,DG,SD).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2),LN1 != LN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2.

111

Appendix A. Encodings

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2.

student(RN,FN,LN,AC,AD,TN,DE) :- studentD(RN,FN,LN,AC,AD,TN,DE),
not studentC(RN,FN,LN,AC,AD,TN,DE).

exam recordD(RN,EC,GR,DT,PC) :- dati esami(RN,CI,EC,DT,GR,RE,PC), GR > k 1.

exam recordC(RN,EC,GR1,DT1,AY1)∨ exam recordC(RN,EC,GR2,DT2,AY2) :-
exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), GR1 != GR2.

exam recordC(RN,EC,GR1,DT1,AY1)∨ exam recordC(RN,EC,GR2,DT2,AY2) :-
exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), DT1 != DT2.

exam recordC(RN,EC,GR1,DT1,AY1)∨ exam recordC(RN,EC,GR2,DT2,AY2) :-
exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), AY1 != AY2.

exam record(RN,EC,GR,DT,AY) :- exam recordD(RN,EC,GR,DT,AY),
not exam recordC(RN,EC,GR,DT,AY).

pstudent(RN,LN) :- student(RN,FN,LN,AC,AD,TN,DE).

pexam record(RN,EC) :- exam record(RN,EC,GR,DT,AY).

q3(LN1,LN2) :- pstudent(RN1,LN1), pstudent(RN2,LN2), RN1 != RN2,
pexam record(RN1,EC), pexam record(RN2,EC).

q3(LN1,LN2)?

GnT2, ClaspD and Cmodels encoding of query IQ3 with Lparse

studentD(RN,FN,LN,AC2,AD2,TN1,DE) :- diploma maturita(DG,DE),
studente(RN,LN,FN,BD,BC,BR,AD1,AN1,ZC1,AC1,AR1,TP1,TN1,

AD2,AN2,ZC2,AC2,AR2,TP2,TN2,CF,DG,SD).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2.

1Here, the condition GR > k has been introduced to leverage the amount of data accessed by the query, in order to
study the scalability of tested systems. Specifically, k has been varied between 0 and 30; k=0 takes all exams, whereas
k=30 takes only those exams with marks above 30 (corresponding to 10% of the total amount of exams).

112

Appendix A. Encodings

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2.

student(RN,FN,LN,AC,AD,TN,DE) :- studentD(RN,FN,LN,AC,AD,TN,DE),
not studentC(RN,FN,LN,AC,AD,TN,DE).

exam recordD(RN,EC,GR,DT,PC) :- dati esami(RN,CI,EC,DT,GR,RE,PC), GR > k 1.

exam recordC(RN,EC,GR1,DT1,AY1) | exam recordC(RN,EC,GR2,DT2,AY2) :-
exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), GR1 != GR2.

exam recordC(RN,EC,GR1,DT1,AY1) | exam recordC(RN,EC,GR2,DT2,AY2) :-
exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), DT1 != DT2.

exam recordC(RN,EC,GR1,DT1,AY1) | exam recordC(RN,EC,GR2,DT2,AY2) :-
exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), AY1 != AY2.

exam record(RN,EC,GR,DT,AY) :- exam recordD(RN,EC,GR,DT,AY),
not exam recordC(RN,EC,GR,DT,AY).

pstudent(RN,LN) :- student(RN,FN,LN,AC,AD,TN,DE), studentD(RN,FN,LN,AC,AD,TN,DE).

pexam record(RN,EC) :- exam record(RN,EC,GR,DT,AY), exam recordD(RN,EC,GR,DT,AY).

q3(LN1,LN2) :- pstudent(RN1,LN1), studentD(RN1,FN1,LN1,AC1,AD1,TN1,DE1),
pstudent(RN2,LN2), studentD(RN2,FN2,LN2,AC2,AD2,TN2,DE2), RN1 != RN2,
pexam record(RN1,EC), exam recordD(RN1,EC,GR1,DT1,AY1),
pexam record(RN2,EC), exam recordD(RN2,EC,GR2,DT2,AY2).

smodels encoding of query IQ3 with Lparse

studentD(RN,FN,LN,AC2,AD2,TN1,DE) :- diploma maturita(DG,DE),
studente(RN,LN,FN,BD,BC,BR,AD1,AN1,ZC1,AC1,AR1,TP1,TN1,

AD2,AN2,ZC2,AC2,AR2,TP2,TN2,CF,DG,SD).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),

113

Appendix A. Encodings

studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

student(RN,FN,LN,AC,AD,TN,DE) :- studentD(RN,FN,LN,AC,AD,TN,DE),
not studentC(RN,FN,LN,AC,AD,TN,DE).

exam recordD(RN,EC,GR,DT,PC) :- dati esami(RN,CI,EC,DT,GR,RE,PC), GR > k 1.

exam recordC(RN,EC,GR1,DT1,AY1) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), GR1 != GR2,
not exam recordC(RN,EC,GR2,DT2,AY2).

exam recordC(RN,EC,GR2,DT2,AY2) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), GR1 != GR2,
not exam recordC(RN,EC,GR1,DT1,AY1).

exam recordC(RN,EC,GR1,DT1,AY1) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), DT1 != DT2,
not exam recordC(RN,EC,GR2,DT2,AY2).

exam recordC(RN,EC,GR2,DT2,AY2) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), DT1 != DT2,
not exam recordC(RN,EC,GR1,DT1,AY1).

exam recordC(RN,EC,GR1,DT1,AY1) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), AY1 != AY2,
not exam recordC(RN,EC,GR2,DT2,AY2).

exam recordC(RN,EC,GR2,DT2,AY2) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), AY1 != AY2,

114

Appendix A. Encodings

not exam recordC(RN,EC,GR1,DT1,AY1).

exam record(RN,EC,GR,DT,AY) :- exam recordD(RN,EC,GR,DT,AY),
not exam recordC(RN,EC,GR,DT,AY).

pstudent(RN,LN) :- student(RN,FN,LN,AC,AD,TN,DE), studentD(RN,FN,LN,AC,AD,TN,DE).

pexam record(RN,EC) :- exam record(RN,EC,GR,DT,AY), exam recordD(RN,EC,GR,DT,AY).

q3(LN1,LN2) :- pstudent(RN1,LN1), studentD(RN1,FN1,LN1,AC1,AD1,TN1,DE1),
pstudent(RN2,LN2), studentD(RN2,FN2,LN2,AC2,AD2,TN2,DE2), RN1 != RN2,
pexam record(RN1,EC), exam recordD(RN1,EC,GR1,DT1,AY1),
pexam record(RN2,EC), exam recordD(RN2,EC,GR2,DT2,AY2).

GnT2, ClaspD, Cmodels and smodels encoding of query IQ3 with GrinGo

studentD(RN,FN,LN,AC2,AD2,TN1,DE) :- diploma maturita(DG,DE),
studente(RN,LN,FN,BD,BC,BR,AD1,AN1,ZC1,AC1,AR1,TP1,TN1,

AD2,AN2,ZC2,AC2,AR2,TP2,TN2,CF,DG,SD).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

115

Appendix A. Encodings

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

student(RN,FN,LN,AC,AD,TN,DE) :- studentD(RN,FN,LN,AC,AD,TN,DE),
not studentC(RN,FN,LN,AC,AD,TN,DE).

exam recordD(RN,EC,GR,DT,PC) :- dati esami(RN,CI,EC,DT,GR,RE,PC), GR > k 1.

exam recordC(RN,EC,GR1,DT1,AY1) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), GR1 != GR2,
not exam recordC(RN,EC,GR2,DT2,AY2).

exam recordC(RN,EC,GR2,DT2,AY2) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), GR1 != GR2,
not exam recordC(RN,EC,GR1,DT1,AY1).

exam recordC(RN,EC,GR1,DT1,AY1) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), DT1 != DT2,
not exam recordC(RN,EC,GR2,DT2,AY2).

exam recordC(RN,EC,GR2,DT2,AY2) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), DT1 != DT2,
not exam recordC(RN,EC,GR1,DT1,AY1).

exam recordC(RN,EC,GR1,DT1,AY1) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), AY1 != AY2,
not exam recordC(RN,EC,GR2,DT2,AY2).

exam recordC(RN,EC,GR2,DT2,AY2) :- exam recordD(RN,EC,GR1,DT1,AY1),
exam recordD(RN,EC,GR2,DT2,AY2), AY1 != AY2,
not exam recordC(RN,EC,GR1,DT1,AY1).

exam record(RN,EC,GR,DT,AY) :- exam recordD(RN,EC,GR,DT,AY),
not exam recordC(RN,EC,GR,DT,AY).

pstudent(RN,LN) :- student(RN,FN,LN,AC,AD,TN,DE).

pexam record(RN,EC) :- exam record(RN,EC,GR,DT,AY).

q3(LN1,LN2) :- pstudent(RN1,LN1), pstudent(RN2,LN2), RN1 != RN2,
pexam record(RN1,EC), pexam record(RN2,EC).

A.2.4 Encodings for query IQ4

The encodings of query Q4 exploited in our tests are the following.

DLVDB and DLV encoding of query IQ4

studentD(RN,FN,LN,AC2,AD2,TN1,DE) :- diploma maturita(DG,DE),
studente(RN,LN,FN,BD,BC,BR,AD1,AN1,ZC1,AC1,AR1,TP1,TN1,

AD2,AN2,ZC2,AC2,AR2,TP2,TN2,CF,DG,SD).

116

Appendix A. Encodings

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2),LN1 != LN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1)∨ studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2.

student(RN,FN,LN,AC,AD,TN,DE) :- studentD(RN,FN,LN,AC,AD,TN,DE),
not studentC(RN,FN,LN,AC,AD,TN,DE).

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN), GR > k 1.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) ∨ exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2.

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

courseD(EC,ED) :- esame(FC,EC,ED,AC).
courseD(EC,ED) :- esame diploma(EC,ED).

courseC(EC,ED1) ∨ courseC(EC,ED2) :- courseD(EC,ED1), courseD(EC,ED2), ED1 != ED2.

course(EC,ED) :- courseD(EC,ED), not courseC(EC,ED).

teachingD(EC,FN,LN,AY) :- affidamenti ing informatica(EC,PC,AY),
dati professori(PC,FN,LN).

pstudent(RN) :- student(RN,FN,LN,AC,AD,TN,DE).

pexam record inf(RN,EC) :- exam record inf(RN,EC,FN,LN,GR,DT,AY).

117

Appendix A. Encodings

pcourse(EC) :- course(EC,ED).

pteachingD(EC,FN) :- teachingD(EC,FN,LN,AY).

q4(RN1,EC1,RN2,EC2) :- pstudent(RN1), pstudent(RN2), RN1 != RN2,
pexam record inf(RN1,EC1), pexam record inf(RN2,EC2),
pcourse(EC1), pcourse(EC2), EC1 != EC2,
pteachingD(EC1,FN), pteachingD(EC2,FN).

q4(RN1,EC1,RN2,EC2)?

GnT2, ClaspD and Cmodels encoding of query IQ4 with Lparse

studentD(RN,FN,LN,AC2,AD2,TN1,DE) :- diploma maturita(DG,DE),
studente(RN,LN,FN,BD,BC,BR,AD1,AN1,ZC1,AC1,AR1,TP1,TN1,

AD2,AN2,ZC2,AC2,AR2,TP2,TN2,CF,DG,SD).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2),LN1 != LN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2.

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) | studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :-
studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2.

student(RN,FN,LN,AC,AD,TN,DE) :- studentD(RN,FN,LN,AC,AD,TN,DE),
not studentC(RN,FN,LN,AC,AD,TN,DE).

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN), GR > k 1.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-
exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) | exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :-

118

Appendix A. Encodings

exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2.

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

courseD(EC,ED) :- esame(FC,EC,ED,AC).
courseD(EC,ED) :- esame diploma(EC,ED).

courseC(EC,ED1) | courseC(EC,ED2) :- courseD(EC,ED1), courseD(EC,ED2), ED1 != ED2.

course(EC,ED) :- courseD(EC,ED), not courseC(EC,ED).

teachingD(EC,FN,LN,AY) :- affidamenti ing informatica(EC,PC,AY),
dati professori(PC,FN,LN).

pstudent(RN) :- student(RN,FN,LN,AC,AD,TN,DE), studentD(RN,FN,LN,AC,AD,TN,DE).

pexam record inf(RN,EC) :- exam record inf(RN,EC,FN,LN,GR,DT,AY),
exam record infD(RN,EC,FN,LN,GR,DT,AY).

pcourse(EC) :- course(EC,ED), courseD(EC,ED).

pteachingD(EC,FN) :- teachingD(EC,FN,LN,AY).

q4(RN1,EC1,RN2,EC2) :- pstudent(RN1), pstudent(RN2), RN1 != RN2,
pexam record inf(RN1,EC1), pexam record inf(RN2,EC2),
pcourse(EC1), pcourse(EC2), EC1 != EC2,
pteachingD(EC1,FN), pteachingD(EC2,FN),
exam record infD(RN1,EC3,FN1,LN1,GR1,DT1,AY1),
exam record infD(RN2,EC4,FN2,LN2,GR2,DT2,AY2).

smodels encoding of query IQ4 with Lparse

studentD(RN,FN,LN,AC2,AD2,TN1,DE) :- diploma maturita(DG,DE),
studente(RN,LN,FN,BD,BC,BR,AD1,AN1,ZC1,AC1,AR1,TP1,TN1,

AD2,AN2,ZC2,AC2,AR2,TP2,TN2,CF,DG,SD).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

119

Appendix A. Encodings

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

student(RN,FN,LN,AC,AD,TN,DE) :- studentD(RN,FN,LN,AC,AD,TN,DE),
not studentC(RN,FN,LN,AC,AD,TN,DE).

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN), GR > k 1.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

120

Appendix A. Encodings

courseD(EC,ED) :- esame(FC,EC,ED,AC).
courseD(EC,ED) :- esame diploma(EC,ED).

courseC(EC,ED1) :- courseD(EC,ED1), courseD(EC,ED2), ED1 != ED2, not courseC(EC,ED2).
courseC(EC,ED2) :- courseD(EC,ED1), courseD(EC,ED2), ED1 != ED2, not courseC(EC,ED1).

course(EC,ED) :- courseD(EC,ED), not courseC(EC,ED).

teachingD(EC,FN,LN,AY) :- affidamenti ing informatica(EC,PC,AY),
dati professori(PC,FN,LN).

pstudent(RN) :- student(RN,FN,LN,AC,AD,TN,DE), studentD(RN,FN,LN,AC,AD,TN,DE).

pexam record inf(RN,EC) :- exam record inf(RN,EC,FN,LN,GR,DT,AY),
exam record infD(RN,EC,FN,LN,GR,DT,AY).

pcourse(EC) :- course(EC,ED), courseD(EC,ED).

pteachingD(EC,FN) :- teachingD(EC,FN,LN,AY).

q4(RN1,EC1,RN2,EC2) :- pstudent(RN1), pstudent(RN2), RN1 != RN2,
pexam record inf(RN1,EC1), pexam record inf(RN2,EC2),
pcourse(EC1), pcourse(EC2), EC1 != EC2,
pteachingD(EC1,FN), pteachingD(EC2,FN),
exam record infD(RN1,EC3,FN1,LN1,GR1,DT1,AY1),
exam record infD(RN2,EC4,FN2,LN2,GR2,DT2,AY2).

GnT2, ClaspD, Cmodels and smodels encoding of query IQ4 with GrinGo

studentD(RN,FN,LN,AC2,AD2,TN1,DE) :- diploma maturita(DG,DE),
studente(RN,LN,FN,BD,BC,BR,AD1,AN1,ZC1,AC1,AR1,TP1,TN1,

AD2,AN2,ZC2,AC2,AR2,TP2,TN2,CF,DG,SD).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), FN1 != FN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), LN1 != LN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),

121

Appendix A. Encodings

studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AC1 != AC2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), AD1 != AD2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), TN1 != TN2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2,
not studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2).

studentC(RN,FN2,LN2,AC2,AD2,TN2,DE2) :- studentD(RN,FN1,LN1,AC1,AD1,TN1,DE1),
studentD(RN,FN2,LN2,AC2,AD2,TN2,DE2), DE1 != DE2,
not studentC(RN,FN1,LN1,AC1,AD1,TN1,DE1).

student(RN,FN,LN,AC,AD,TN,DE) :- studentD(RN,FN,LN,AC,AD,TN,DE),
not studentC(RN,FN,LN,AC,AD,TN,DE).

exam record infD(RN,EC,FN,LN,GR,DT,AY) :- affidamenti ing informatica(EC,PC,AY),
dati esami(RN,CI,EC,DT,GR,RE,PC), dati professori(PC,FN,LN), GR > k 1.

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), GR1 != GR2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), DT1 != DT2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record infC(RN,EC,FN,LN,GR1,DT1,AY1) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR2,DT2,AY2).

exam record infC(RN,EC,FN,LN,GR2,DT2,AY2) :- exam record infD(RN,EC,FN,LN,GR1,DT1,AY1),
exam record infD(RN,EC,FN,LN,GR2,DT2,AY2), AY1 != AY2,
not exam record infC(RN,EC,FN,LN,GR1,DT1,AY1).

exam record inf(RN,EC,FN,LN,GR,DT,AY) :- exam record infD(RN,EC,FN,LN,GR,DT,AY),
not exam record infC(RN,EC,FN,LN,GR,DT,AY).

courseD(EC,ED) :- esame(FC,EC,ED,AC).
courseD(EC,ED) :- esame diploma(EC,ED).

122

Appendix A. Encodings

courseC(EC,ED1) :- courseD(EC,ED1), courseD(EC,ED2), ED1 != ED2, not courseC(EC,ED2).
courseC(EC,ED2) :- courseD(EC,ED1), courseD(EC,ED2), ED1 != ED2, not courseC(EC,ED1).

course(EC,ED) :- courseD(EC,ED), not courseC(EC,ED).

teachingD(EC,FN,LN,AY) :- affidamenti ing informatica(EC,PC,AY),
dati professori(PC,FN,LN).

pstudent(RN) :- student(RN,FN,LN,AC,AD,TN,DE).

pexam record inf(RN,EC) :- exam record inf(RN,EC,FN,LN,GR,DT,AY).

pcourse(EC) :- course(EC,ED).

pteachingD(EC,FN) :- teachingD(EC,FN,LN,AY).

q4(RN1,EC1,RN2,EC2) :- pstudent(RN1), pstudent(RN2), RN1 != RN2,
pexam record inf(RN1,EC1), pexam record inf(RN2,EC2),
pcourse(EC1), pcourse(EC2), EC1 != EC2,
pteachingD(EC1,FN), pteachingD(EC2,FN).

A.3 Testing on querying of DBLP ontology

A.3.1 Encodings for query OQ1

The encodings of query OQ1 exploited in our tests are the following.

DLVDB encoding of query OQ1

result1 (Name,Art) :-
triple(Art , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article”),
triple(Pers , “http://xmlns.com/foaf/0.1/name”,Name),
triple(Art , “http://purl.org/dc/elements/1.1/creator”,Pers).

MULGARA encoding of query OQ1

SELECT $Name $Art
FROM <rmi://localhost/server1#dblp>
WHERE $Art <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article>
AND $Art <http://purl.org/dc/elements/1.1/creator> $Pers
AND $Pers <http://xmlns.com/foaf/0.1/name> $Name;

SESAME1 encoding of query OQ1

SELECT DISTINCT Name, Art
FROM {Art} <http://purl.org/dc/elements/1.1/creator> {Pers},
{Art} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type},
{Pers} <http://xmlns.com/foaf/0.1/name> {Name}

WHERE Type = <http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article>

123

Appendix A. Encodings

ARQ encoding of query OQ1

SELECT DISTINCT ?Name ?Art
WHERE {

?Art <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article>.

?Art <http://purl.org/dc/elements/1.1/creator> ?Pers.
?Pers <http://xmlns.com/foaf/0.1/name> ?Name.

}

A.3.2 Encodings for query OQ2

The encodings of query OQ2 exploited in our tests are the following.

DLVDB encoding of query OQ2

result2 (Name) :-
triple(Art , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article”),
triple(Pers , “http://xmlns.com/foaf/0.1/name”,Name),
triple(Art , “http://purl.org/dc/elements/1.1/creator”,Pers),
triple(Art , “http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#year”, “2000”).

MULGARA encoding of query OQ2

SELECT $Name
FROM <rmi://localhost/server1#dblp>
WHERE $Art <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article>
AND $Art <http://purl.org/dc/elements/1.1/creator> $Pers
AND $Pers <http://xmlns.com/foaf/0.1/name> $Name
AND $Art <http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#year> ‘2000’;

SESAME1 encoding of query OQ2

SELECT DISTINCT Name
FROM {Art} <http://purl.org/dc/elements/1.1/creator> {Pers},
{Art} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type},
{Pers} <http://xmlns.com/foaf/0.1/name> {Name},
{Art} <http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#year> {Y ear}

WHERE Type = <http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article>
AND label(Y ear) = “2000”

124

Appendix A. Encodings

ARQ encoding of query OQ2

SELECT DISTINCT ?Name
WHERE {

?Art <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Article>.

?Art <http://purl.org/dc/elements/1.1/creator> ?Pers.
?Pers <http://xmlns.com/foaf/0.1/name> ?Name.
?Art <http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#year> ?Y ear.
FILTER (?Y ear = ‘2000’)

}

A.3.3 Encodings for query OQ3

The encodings of query OQ3 exploited in our tests are the following.

DLVDB encoding of query OQ3

result3 (Name,Doc) :-
triple(Doc, “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Document”),
triple(Doc, “http://purl.org/dc/elements/1.1/creator”,Pers),
triple(Pers , “http://xmlns.com/foaf/0.1/name”,Name).

MULGARA encoding of query OQ3

SELECT $Name $Doc
FROM <rmi://localhost/server1#dblp>
WHERE $Doc <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Document>
AND $Doc <http://purl.org/dc/elements/1.1/creator> $Pers
AND $Pers <http://xmlns.com/foaf/0.1/name> $Name;

SESAME1 encoding of query OQ3

SELECT DISTINCT Name, Doc
FROM {Doc} <http://purl.org/dc/elements/1.1/creator> {Pers},
{Doc} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type},
{Pers} <http://xmlns.com/foaf/0.1/name> {Name}

WHERE Type = <http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Document>

ARQ encoding of query OQ3

SELECT DISTINCT ?Name ?Doc
WHERE {

?Doc <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/˜aharth/2004/07/dblp/dblp.owl#Document>.

?Doc <http://purl.org/dc/elements/1.1/creator> ?Pers.
?Pers <http://xmlns.com/foaf/0.1/name> ?Name.

}

125

Appendix A. Encodings

A.3.4 Encodings for query OQ4

The encodings of query OQ4 exploited in our tests are the following.

DLVDB encoding of query OQ4

result4 (Name,N) :-
triple(Pers , “http://xmlns.com/foaf/0.1/name”,Name),
N = #count{Art : triple(Art , “http://purl.org/dc/elements/1.1/creator”,Pers)},
N > 0.

MULGARA encoding of query OQ4

SELECT $Name
count (SELECT $Art

FROM <rmi://localhost/server1#dblp>
WHERE $Art <http://purl.org/dc/elements/1.1/creator> $Pers)

FROM <rmi://localhost/server1#data5>
WHERE $Pers <http://xmlns.com/foaf/0.1/name> $Name
AND $Art <http://purl.org/dc/elements/1.1/creator> $Pers;

A.3.5 Encodings for query OQ5

The encodings of query OQ5 exploited in our tests are the following.

DLVDB encoding of query OQ5

#maxint = 20.

dist(Aut1 ,Aut2 , 1) :-
triple(Res, “http://purl.org/dc/elements/1.1/creator”,Aut1),
triple(Res, “http://purl.org/dc/elements/1.1/creator”,Aut2),
Aut1 ! = Aut2 .

dist(Aut1 ,Aut2 ,Dist) :- dist(Aut1 ,Aut,Dist1), dist(Aut ,Aut2 , 1),
Aut1 ! = Aut2 ,Aut1 ! = Aut ,Aut! = Aut2 ,Dist = Dist1 + 1.

minDist(Aut1 ,Aut2 ,Dist) :- dist(Aut1 ,Aut2 ,Dist), not haveLessDist(Aut1 ,Aut2 ,Dist).

haveLessDist(Aut1 ,Aut2 ,Dist1) :- dist(Aut1 ,Aut2 ,Dist1), dist(Aut1 ,Aut2 ,Dist2),Dist1 > Dist2 .

minDistName(Name1 ,Name2 ,Dist) :- minDist(Aut1 ,Aut2 ,Dist),
triple(Aut1 , “http://xmlns.com/foaf/0.1/name”,Name1),
triple(Aut2 , “http://xmlns.com/foaf/0.1/name”,Name2).

minDistName(“Georg Gottlob”, “Paolo Liberatore”,Dist)?

126

Appendix A. Encodings

A.4 Testing on querying of LUBM ontology

In the following we provide the encodings exploited for LUBM queries. In order to better identify the origi-
nal LUBM queries described at http://swat.cse.lehigh.edu/projects/lubm/query.htm
we give also their original numbering as LUBM-QueryX.

A.4.1 Encodings for query OQ6 (LUBM-Query1)

The encodings of query OQ6 exploited in our tests are the following.

DLVDB encoding of query OQ6

result1 (Stud) :-
triple(Stud , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#GraduateStudent”),
triple(Stud , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse”,

“http://www.Department0.University0.edu/GraduateCourse0”).

MULGARA encoding of query OQ6

SELECT $Stud
FROM <rmi://localhost/server1#lubm>
WHERE $Stud

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#GraduateStudent>

AND $Stud
<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse>
<http://www.Department0.University0.edu/GraduateCourse0>;

SESAME1 encoding of query OQ6

SELECT DISTINCT Stud
FROM {Stud} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type},
{Stud} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse> {Cour}

WHERE Type = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#GraduateStudent>
AND Cour = <http://www.Department0.University0.edu/GraduateCourse0>

SESAME2 and ARQ encoding of query OQ6

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>
PREFIX pref : <http://www.Department0.University0.edu/>

SELECT ?Stud
WHERE {

?Stud rdf:type ub:GraduateStudent.
?Stud ub:takesCourse pref:GraduateCourse0.

}

127

Appendix A. Encodings

A.4.2 Encodings for query OQ7 (LUBM-Query2)

The encodings of query OQ7 exploited in our tests are the following.

DLVDB encoding of query OQ7

result2 (Stud ,Uni ,Dep) :-
triple(Stud , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/ zhp2/2004/0401/univ-bench.owl#GraduateStudent”),
triple(Uni , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#University”),
triple(Dep, “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Department”),
triple(Stud , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf”,Dep),
triple(Dep, “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#subOrganizationOf”,Uni),
triple(Stud , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#undergraduateDegreeFrom”,Uni).

MULGARA encoding of query OQ7

SELECT $Stud $Uni $Dep
FROM <rmi://localhost/server1#lubm>
WHERE $Stud

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#GraduateStudent>

AND $Uni
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#University>

AND $Dep
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Department>

AND $Stud
<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf> $Dep

AND $Dep
<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#subOrganizationOf> $Uni

AND $Stud
<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#undergraduateDegreeFrom> $Uni;

SESAME1 encoding of query OQ7

SELECT DISTINCT Stud, Uni, Dep
FROM {Stud} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeS},
{Uni} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeU},
{Dep} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeD},
{Stud} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf> {Dep},
{Dep} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#subOrganizationOf> {Uni},
{Stud} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#undergraduateDegreeFrom> {Uni}

WHERE TypeS = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#GraduateStudent>
AND TypeU = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#University>
AND TypeD = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Department>

128

Appendix A. Encodings

SESAME2 and ARQ encoding of query OQ7

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

SELECT ?Stud ?Uni ?Dep
WHERE {

?Stud rdf:type ub:GraduateStudent.
?Uni rdf:type ub:University.
?Dep rdf:type ub:Department.
?Stud ub:memberOf ?Dep.
?Dep ub:subOrganizationOf ?Uni.
?Stud ub:undergraduateDegreeFrom ?Uni.

}

A.4.3 Encodings for query OQ8 (LUBM-Query3)

The encodings of query OQ8 exploited in our tests are the following.

DLVDB encoding of query OQ8

result3 (Pub) :-
triple(Pub, “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Publication”),
triple(Pub, “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#publicationAuthor”,

“http://www.Department0.University0.edu/AssistantProfessor0”).

MULGARA encoding of query OQ8

SELECT $Pub
FROM <rmi://localhost/server1#lubm>
WHERE $Pub <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Publication>
AND $Pub <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#publicationAuthor>

<http://www.Department0.University0.edu/AssistantProfessor0>;

SESAME1 encoding of query OQ8

SELECT DISTINCT Pub
FROM {Pub} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type},
{Pub}<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#publicationAuthor> {Aut}

WHERE Type = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Publication>
AND Aut = <http://www.Department0.University0.edu/AssistantProfessor0>

129

Appendix A. Encodings

SESAME2 and ARQ encoding of query OQ8

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/ zhp2/2004/0401/univ-bench.owl#>
PREFIX pref : <http://www.Department0.University0.edu/>

SELECT ?Pub
WHERE {

?Pub rdf:type ub:Publication.
?Pub ub:publicationAuthor pref:AssistantProfessor0.

}

A.4.4 Encodings for query OQ9 (LUBM-Query4)

The encodings of query OQ9 exploited in our tests are the following.

DLVDB encoding of query OQ9

result4 (Prof ,Name,Mail ,Tel) :-
triple(Prof , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Professor”),
triple(Prof , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#worksFor”,

“http://www.Department0.University0.edu”),
triple(Prof , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#name”,Name),
triple(Prof , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#emailAddress”,Mail),
triple(Prof , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#telephone”,Tel).

MULGARA encoding of query OQ9

SELECT $Prof $Name $Mail $Tel
FROM <rmi://localhost/server1#lubm>
WHERE $Prof <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Professor>
AND $Prof <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#worksFor>

<http://www.Department0.University0.edu>
AND $Prof <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#name> $Name
AND $Prof <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#emailAddress> $Mail
AND $Prof <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#telephone> $Tel;

SESAME1 encoding of query OQ9

SELECT DISTINCT Prof, Name, Mail, T el
FROM {Prof} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type},
{Prof} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#worksFor> {Uni},
{Prof} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#name> {Name},
{Prof} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#emailAddress> {Mail},
{Prof} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#telephone> {Tel}

WHERE Type = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Professor>
AND Uni = <http://www.Department0.University0.edu>

130

Appendix A. Encodings

SESAME2 and ARQ encoding of query OQ9

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>
PREFIX pref : <http://www.Department0.University0.edu>

SELECT ?Prof ?Name ?Mail ?Tel
WHERE {

?Prof rdf:type ub:Professor.
?Prof ub:worksFor pref:.
?Prof ub:name ?Name.
?Prof ub:emailAddress ?Mail.
?Prof ub:telephone ?Tel.

}

A.4.5 Encodings for query OQ10 (LUBM-Query5)

The encodings of query OQ10 exploited in our tests are the following.

DLVDB encoding of query OQ10

result5 (Pers) :-
triple(Pers , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Person”),
triple(Pers , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf”,

“http://www.Department0.University0.edu”).

MULGARA encoding of query OQ10

SELECT $Pers
FROM <rmi://localhost/server1#lubm>
WHERE $Pers <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Person>
AND $Pers <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf>

<http://www.Department0.University0.edu>;

SESAME1 encoding of query OQ10

SELECT DISTINCT Pers
FROM {Pers} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type},
{Pers} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf> {Uni}

WHERE Type = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Person>
AND Uni = <http://www.Department0.University0.edu>

131

Appendix A. Encodings

SESAME2 and ARQ encoding of query OQ10

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>
PREFIX pref : <http://www.Department0.University0.edu>

SELECT ?Pers
WHERE {

?Pers rdf:type ub:Person.
?Pers ub:memberOf pref:.

}

A.4.6 Encodings for query OQ11 (LUBM-Query6)

The encodings of query OQ11 exploited in our tests are the following.

DLVDB encoding of query OQ11

result6 (Stud) :-
triple(Stud , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student”).

MULGARA encoding of query OQ11

SELECT $Stud
FROM <rmi://localhost/server1#lubm>
WHERE $Stud <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student>;

SESAME1 encoding of query OQ11

SELECT DISTINCT Stud
FROM {Stud} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type}
WHERE Type = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student>

SESAME2 and ARQ encoding of query OQ11

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

SELECT ?Stud
WHERE {

?Stud rdf:type ub:Student.
}

A.4.7 Encodings for query OQ12 (LUBM-Query7)

The encodings of query OQ12 exploited in our tests are the following.

132

Appendix A. Encodings

DLVDB encoding of query OQ12

result7 (Stud ,Cour) :-
triple(Stud , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student”),
triple(Cour , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Course”),
triple(“http://www.Department0.University0.edu/AssociateProfessor0”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#teacherOf”,Cour),
triple(Stud , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse”,Cour).

MULGARA encoding of query OQ12

SELECT $Stud $Cour
FROM <rmi://localhost/server1#lubm>
WHERE $Stud <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student>
AND $Cour <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Course>
AND <http://www.Department0.University0.edu/AssociateProfessor0>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#teacherOf> $Cour
AND $Stud <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse> $Cour;

SESAME1 encoding of query OQ12

SELECT DISTINCT Stud, Cour
FROM {Stud} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeS},
{Cour} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeC},
{Prof} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#teacherOf> {Cour},
{Stud} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse> {Cour}

WHERE TypeS = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student>
AND TypeC = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Course>
AND Prof = <http://www.Department0.University0.edu/AssociateProfessor0>

SESAME2 and ARQ encoding of query OQ12

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>
PREFIX pref : <http://www.Department0.University0.edu/>

SELECT ?Stud ?Cour
WHERE {

?Stud rdf:type ub:Student.
?Cour rdf:type ub:Course.
pref:AssociateProfessor0 ub:teacherOf ?Cour.
?Stud ub:takesCourse ?Cour.

}

133

Appendix A. Encodings

A.4.8 Encodings for query OQ13 (LUBM-Query8)

The encodings of query OQ13 exploited in our tests are the following.

DLVDB encoding of query OQ13

result8 (Stud ,Dep,Mail) :-
triple(Stud , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student”),
triple(Dep, “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Department”),
triple(Stud , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf”,Dep),
triple(Dep, “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#subOrganizationOf”,

“http://www.University0.edu”),
triple(Stud , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#emailAddress”,Mail).

MULGARA encoding of query OQ13

SELECT $Stud $Dep $Mail
FROM <rmi://localhost/server1#lubm>
WHERE $Stud <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student>
AND $Stud <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf> $Dep
AND $Dep <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#subOrganizationOf>

<http://www.University0.edu>
AND $Stud <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#emailAddress> $Mail;

SESAME1 encoding of query OQ13

SELECT DISTINCT Stud, Dep, Mail
FROM {Stud} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeS},
{Dep} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeD},
{Stud} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#memberOf> {Dep},
{Dep} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#subOrganizationOf> {Uni},
{Stud} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#emailAddress> {Mail}

WHERE TypeS = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student>
AND TypeD = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Department>
AND Uni = <http://www.University0.edu>

134

Appendix A. Encodings

SESAME2 and ARQ encoding of query OQ13

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>
PREFIX pref : <http://www.Department0.University0.edu/>
PREFIX org : <http://www.University0.edu>

SELECT ?Stud ?Dep ?Mail
WHERE {

?Stud rdf:type ub:Student.
?Dep rdf:type ub:Department.
?Stud ub:memberOf ?Dep.
?Dep ub:subOrganizationOf org:.
?Stud ub:emailAddress ?Mail.

}

A.4.9 Encodings for query OQ14 (LUBM-Query9)

The encodings of query OQ14 exploited in our tests are the following.

DLVDB encoding of query OQ14

result9 (Stud ,Adv ,Cour) :-
triple(Stud , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student”),
triple(Adv , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Faculty”),
triple(Cour , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Course”),
triple(Stud , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#advisor”,Adv),
triple(Stud , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse”,Cour),
triple(Adv , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#teacherOf”,Cour).

MULGARA encoding of query OQ14

SELECT $Stud $Adv $Cour
FROM <rmi://localhost/server1#lubm>
WHERE $Stud <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student>
AND $Adv <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Faculty>
AND $Cour <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Course>
AND $Stud <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse> $Cour
AND $Adv <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#teacherOf> $Cour;

135

Appendix A. Encodings

SESAME1 encoding of query OQ14

SELECT DISTINCT Stud, Adv, Cour
FROM {Stud} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeS},
{Adv} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeF},
{Cour} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {TypeC},
{Stud} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#advisor> {Adv},
{Stud} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#takesCourse> {Cour},
{Adv} <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#teacherOf> {Cour}

WHERE TypeS = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Student>
AND typeF = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Faculty>
AND typeC = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#Course>

SESAME2 and ARQ encoding of query OQ14

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>
PREFIX pref : <http://www.Department0.University0.edu/>

SELECT ?Stud ?Adv ?Cour
WHERE {

?Stud rdf:type ub:Student.
?Adv rdf:type ub:Faculty.
?Cour rdf:type ub:Course.
?Stud ub:advisor ?Adv.
?Stud ub:takesCourse ?Cour.
?Adv ub:teacherOf ?Cour.

}

A.4.10 Encodings for query OQ15 (LUBM-Query14)

The encodings of query OQ15 exploited in our tests are the following.

DLVDB encoding of query OQ15

result14 (Stud) :-
triple(Stud , “http://www.w3.org/1999/02/22-rdf-syntax-ns#type”,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#UndergraduateStudent”).

MULGARA encoding of query OQ15

SELECT $Stud
FROM <rmi://localhost/server1#lubm>
WHERE $Stud <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#UndergraduateStudent>;

136

Appendix A. Encodings

SESAME1 encoding of query OQ15

SELECT DISTINCT Stud
FROM {Stud} <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> {Type}
WHERE Type = <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#UndergraduateStudent>

SESAME2 and ARQ encoding of query OQ15

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>
PREFIX pref : <http://www.Department0.University0.edu/>

SELECT ?Stud
WHERE {

?Stud rdf:type ub:UndergraduateStudent.
}

A.4.11 Encodings for query OQ16

The encodings of query OQ16 exploited in our tests are the following.

DLVDB encoding of query OQ16

result16 (Aut ,N) :-
triple(Aut, “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#name”,Name),
N = #count{Pub : triple(Pub,

“http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#publicationAuthor”,Aut)},
N > 0.

MULGARA encoding of query OQ16

SELECT $Aut
count (SELECT $Pub

FROM <rmi://localhost/server1#lubm>
WHERE $Pub

<http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#publicationAuthor> $Aut)
FROM <rmi://localhost/server1#lubm5>
WHERE $Aut <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#name> $Name
AND $Pub <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#publicationAuthor> $Aut;

ARQ encoding of query OQ16

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub : <http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#>

SELECT ?Aut count(∗)
WHERE {

?Pub ub:publicationAuthor ?Aut.
?Aut ub:name ?Name.

}
GROUP BY ?Aut

137

Appendix A. Encodings

A.4.12 Encodings for query OQ17

The encodings of query OQ17 exploited in our tests are the following.

DLVDB encoding of query OQ17

#maxint = 20.

dist(Aut1 ,Aut2 , 1) :-
triple(Res, “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#publicationAuthor”,Aut1),
triple(Res, “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#publicationAuthor”,Aut2),
Aut1 ! = Aut2 .

dist(Aut1 ,Aut2 ,Dist) :- dist(Aut1 ,Aut,Dist1), dist(Aut ,Aut2 , 1),
Aut1 ! = Aut2 ,Aut1 ! = Aut ,Aut! = Aut2 ,Dist = Dist1 + 1.

minDist(Aut1 ,Aut2 ,Dist) :- dist(Aut1 ,Aut2 ,Dist), not haveLessDist(Aut1 ,Aut2 ,Dist).

haveLessDist(Aut1 ,Aut2 ,Dist1) :- dist(Aut1 ,Aut2 ,Aut1), dist(Aut1 ,Aut2 ,Dist2),Dist1 > Dist2 .

minDistName(Name1 ,Name2 ,Dist) :- distmin(Aut1 ,Aut2 ,Dist),
triple(Aut1 , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#name”,Name1),
triple(Aut2 , “http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#name”,Name2).

distminname(“FullProfessor2”, “FullProfessor3”,Dist)?

A.5 Testing on a combinatorial problem

A.5.1 Encodings for query FastFoods

The encodings of query FastFoods exploited in our tests are the following.

DLVDB and DLV encoding of query FastFoods

prestaurant(K) :- restaurant(R,K).
distance(K1,K2,K3) :- prestaurant(K1), prestaurant(K2), K1 > K2, K1 = K2 + K3.
distance(K1,K2,K3) :- prestaurant(K1), prestaurant(K2), K1 <= K2, K2 = K1 + K3.

p2depot(K) :- depot(R,K).
aggr1(RK,Y) :- p2depot(DK1), distance(DK1,RK,Y).
serves(Rname,Dist) :- restaurant(Rname,RK), p2depot(DK), distance(RK,DK,Dist),

Dist = #min {Y : aggr1(RK,Y) }.

p1depot(R) :- depot(R,K).
altdepot(R,K) ∨ naltdepot(R,K) :- restaurant(R,K), not p1depot(R).

ndepots(N) :- #count {D,K: depot(D,K)}= N, #int(N).

138

Appendix A. Encodings

q(1) :- ndepots(N), #count {D,K: altdepot(D,K)}= N.
:- not q(1).

paltdepot(K) :- altdepot(R,K).
aggr2(RK,Y) :- paltdepot(DK1), distance(DK1,RK,Y).
altserves(Rname,Dist) :- restaurant(Rname,RK), paltdepot(DK), distance(RK,DK,Dist),

Dist = #min {Y : aggr2(RK,Y) }.

cost(C) :- #sum {Dist,R : serves(R,Dist)} = C, #int(C).

p(1) :- cost(Cost), #sum {Dist,R : altserves(R,Dist)} <= Cost.
:- not p(1).

A.6 Testing on data transformation problems

A.6.1 Encodings for query Int2Bin

The encodings of query Int2Bin exploited in our tests are as follows. For simplicity, we show here only
the case for 5 bits. The other encodings have the same structure.

DLVDB encoding of query Int2Bin without functions

#maxint=31.
digit(0).
digit(1).

binary(GR,DT4,DT3,DT2,DT1,DT0) :- digit(DT4), digit(DT3), digit(DT2), digit(DT1), digit(DT0),
N = DT4*16, O = DT3*8, P = DT2*4, Q = DT1*2, R = DT0*1, V = N+PART3,
PART3 = PART2+PART1, PART2 = O+P, PART1 = Q+R.

dati esamiB(RN,CI,EC,DT,DT4,DT3,DT2,DT1,DT0,RE,AY) :-
dati esamiD(RN,CI,EC,DT,GR,RE,AY), binary(GR,DT4,DT3,DT2,DT1,DT0).

DLVDB encoding of query Int2Bin with functions

dati esamiB(RN,CI,EC,DT,BI,RE,AY) :-
dati esamiD(RN,CI,EC,DT,GR,RE,AY), #dbo.IntToBin(GR, 5, BI).

Next we present the code of external function IntT oBin implemented on the SqlServer database set as
working DB for DLVDB .

SET ANSI NULLS ON
SET QUOTED IDENTIFIER ON
GO
CREATE FUNCTION [dbo].[IntToBin]
(

139

Appendix A. Encodings

@dec INT,
@nbit INT

)
RETURNS VARCHAR (20)
AS
BEGIN

DECLARE @result VARCHAR (20)
DECLARE @tmp VARCHAR (1)
DECLARE @quotient INT
DECLARE @base INT
DECLARE @remanider INT
DECLARE @count INT
SET @quotient=@dec;
SET @base=2;
SET @remanider=0;
SET @count=0;
SET @result=‘’;
WHILE @quotient <> 0 AND @count < @nbit
BEGIN

SET @remanider=@quotient%@base
SET @quotient=@quotient/@base
SET @tmp=CAST(@remanider AS VARCHAR(1))
SET @result=@tmp+@result
SET @count=@count+1

END;
IF @count < @nbit
BEGIN

WHILE @nbit-@count <> 0
BEGIN

SET @result=‘0’+@result
SET @count=@count+1

END;
END;
RETURN @result;

END;

A.7 Testing on string similarity computation

A.7.1 Encodings for query HammingDistances

The encodings of query HammingDistances exploited in our tests are as follows.

DLVDB encoding of query HammingDistances without functions

Note that, in this encoding, a string is represented by a set of string(ID, CHAR, POS) predicates.

hd(ID1,ID2,H) :- string(ID1,P1,C1), string(ID2,P2,C2), ID1 < ID2,
#count{POS : string(ID1,CHAR1,POS), string(ID2,CHAR2,POS),

CHAR1 ! = CHAR2} = H.

140

Appendix A. Encodings

DLVDB encoding of query HammingDistances with functions

Note that, in this encoding, a string is represented by a set of string(ID, S) predicates.

hd(ID1,ID2,H) :- string(ID1,S1), string(ID2,S2), ID1 < ID2,
#dbo.hamming(S1,S2,H).

Next we present the code of external function hamming implemented on the SqlServer database set as
working DB for DLVDB .

SET ANSI NULLS ON
SET QUOTED IDENTIFIER ON
GO
CREATE FUNCTION [dbo].[hamming]
(

@s1 VARCHAR (250),
@s2 VARCHAR (250)

)
RETURNS INT
AS
BEGIN

DECLARE @count INT,
DECLARE @index INT,
DECLARE @len INT,
DECLARE @s1 sub VARCHAR (250),
DECLARE @s2 sub VARCHAR (250)
IF DATALENGTH(@s1) = DATALENGTH(@s2)
BEGIN

SET @len=DATALENGTH(@s1)
SET @index=1
SET @count=0
WHILE @index <= @len
BEGIN

SET @s1 sub=SUBSTRING(@s1,@index, @index)
SET @s2 sub=SUBSTRING(@s2,@index, @index)
SET @index=@index+1
IF ASCII(@s1 sub) ! = ASCII(@s2 sub)
BEGIN

SET @count=@count+1
END

END
END
ELSE
BEGIN

SET @count=-1
END
RETURN @count

END

141

Bibliography

General References

[1] S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of asynchronous discrete event systems:
datalog to the rescue! In Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS 2005), pages 358–367, Baltimore, Maryland,
USA, 2005.

[2] T. Adams, G. Noble, P. Gearon, and D. Wood. MULGARA homepage.
http://www.mulgara.org/, since 2006.

[3] A. Aggoun, D. Chan, P. Dufresne, et al. Eclipse user manual release 5.0, 2000.

[4] C. Anger, K. Konczak, and T. Linke. NoMoRe: A system for non-monotonic reasoning under
answer set semantics. In W. F. T. Eiter and M. Truszczyński, editors, Proceedings of the 6th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01), pages
406–410. Springer, 2001.

[5] K. R. Apt, H. A. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 89–148. Morgan Kauf-
mann Publishers, Los Altos, California, 1988.

[6] C. Aravidan, J. Dix, and I. Niemela. Dislop: A research project on disjunctive logic programming.
AICommunications, 10(3/4):151–165, 1997.

[7] C. Aravidan, J. Dix, and I. Niemela. Dislop: Towards a disjunctive logic programming system.
In Proc. of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’97), pages 342–353. Springer, LNAI, 1997.

[8] M. Arenas, L. Bertossi, and J. Chomicki. Specifying and Querying Database Repairs using Logic
Programs with Exceptions. In Proc. of the Fourth International Conference on Flexible Query
Answering Systems (FQAS 2000), pages 27–41, 2000.

[9] ARQ homepage. http://jena.sourceforge.net/ARQ/, since 2004.

[10] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. Dbpedia: A nucleus for
a web of open data. In ISWC/ASWC, pages 722–735, 2007.

[11] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

[12] F. Bancilhon, F. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways to implement
logic programs. In Proc. of the ACM Symposium on Principles of Database Systems (PODS’86),
pages 1–16, Cambridge, Massachusetts, 1986. ACM Press.

[13] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query processing strate-
gies. In Proc. of the Conference on Management of Data (SIGMOD’86), pages 16–52, Washington,
D.C., 1986. ACM Press.

142

http://www.mulgara.org/
http://jena.sourceforge.net/ARQ/

Bibliography

[14] F. Bancilhon and R. Ramakrishnan. Performance evaluation of data intensive logic programs. In
Foundations of Deductive Databases and Logic Programming., pages 439–517. Morgan Kaufmann,
1988.

[15] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set constructors in a logic database language. J. Logic
Programming, 10(3/4), 1991.

[16] C. Beeri and R. Ramakrisnhan. On the power of magic. Journal of Logic Programming, 10(1-
4):255–259, 1991.

[17] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284(5):34–43,
2001.

[18] R. Bihlmeyer, W. Faber, C. Koch, N. Leone, C. Mateis, and G. Pfeifer. dlv – an overview.
In U. Egly and H. Tompits, editors, Proceedings of the 13th Workshop on Logic Programming
(WLP’98), pages 65–67, Vienna, Austria, October 1998.

[19] C. Bizer. D2r map - a database to RDF mapping language. in www (posters), 2003.

[20] A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenzerini. Data integration under integrity con-
straints. In Advanced Information Systems Engineering, 14th International Conference, CAiSE
2002, pages 262–279, Toronto, Canada, 2002. Lecture Notes in Computer Science.

[21] A. Calı̀, D. Lembo, and R. Rosati. Query rewriting and answering under constraints in data integra-
tion systems. In Int. Joint Conference on Artificial Intelligence (IJCAI’03), pages 16–21, 2003.

[22] F. Calimeri, S. Cozza, and G. Ianni. External sources of knowledge and value invention in logic
programming. Annals of Mathematics and Artificial Intelligence, 50:333–361, 2007.

[23] S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases. Springer Verlag, New York,
NY, 1990.

[24] W. Chen and D. S. Warren. Computation of Stable Models and Its Integration with Logical Query
Processing. IEEE Transactions on Knowledge and Data Engineering, 8(5):742–757, 1996.

[25] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The LDL System
Prototype. IEEE Transactions on Knowledge and Data Engineering, 2(1), 1990.

[26] P. Cholewinski, A. Marek, V. Mikitiuk, and M. Truszczynski. Computing with default logic. Jour-
nal of Artificial Intelligence, 112(1/2):105–146, 1999.

[27] S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and F. Scar-
cello. The dlv System: Model Generator and Application Frontends. In F. Bry, B. Freitag, and
D. Seipel, editors, Proceedings of the 12th Workshop on Logic Programming (WLP’97), Research
Report PMS-FB10, pages 128–137, München, Germany, September 1997. LMU München.

[28] D2r server publishing the DBLP bibliography database.
http://www4.wiwiss.fu-berlin.de/dblp/.

[29] H. Decker. Integrity enforcement on deductive databases. In Proc. of 1st Int. Conf. on Expert
Database Systems, 1986.

[30] T. Dell’Armi, W. Faber, G. Ielpa, C. Koch, N. Leone, S. Perri, and G. Pfeifer. System Descrip-
tion: DLV. In T. Eiter, W. Faber, and M. aw Truszczyński, editors, Logic Programming and Non-
monotonic Reasoning — 6th International Conference, LPNMR’01, Vienna, Austria, September
2001, Proceedings, number 2173 in Lecture Notes in AI (LNAI), pages 409–412. Springer Verlag,
September 2001.

[31] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Functions in Disjunctive
Logic Programming: Semantics, Complexity, and Implementation in DLV. In Proc. of the 18th Int.
Joint Conference on Artificial Intelligence (IJCAI) 2003, pages 847–852, Acapulco, Mexico, 2003.

143

http://www4.wiwiss.fu-berlin.de/dblp/

Bibliography

[32] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Functions in DLV.
In M. de Vos and A. Provetti, editors, Proceedings ASP03 - Answer Set Programming: Ad-
vances in Theory and Implementation, pages 274–288, Messina, Italy, Sept. 2003. Online at
http://CEUR-WS.org/Vol-78/.

[33] M. Derr, S. Morishita, and G. Phipps. Design and implementation of the glue-nail database system.
In Proc. of the 1993 ACM SIGMOD International Conference on Management of Data, pages 147–
167, Washington, DC, 1993.

[34] A. S. E. Prud’hommeaux. Sparql query language for rdf. w3c candidate recommendation, 14 june
2007. http://www.w3.org/tr/rdf-sparql-query/.

[35] D. East and M. Truszczyński. Propositional satisfiability in answer-set programming. In Pro-
ceedings of Joint German/Austrian Conference on Artificial Intelligence, KI’2001, pages 138–153.
Springer Verlag, LNAI 2174, 2001.

[36] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using the DLV Sys-
tem. In J. Minker, editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic
Publishers, 2000.

[37] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Programming Approach to
Knowledge-State Planning, II: the DLVK System. Technical Report INFSYS RR-1843-01-12, In-
stitut für Informationssysteme, Technische Universität Wien, Dec. 2001.

[38] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Programming Approach to
Knowledge-State Planning: Semantics and Complexity. Technical Report INFSYS RR-1843-01-
11, Institut für Informationssysteme, Technische Universität Wien, Dec. 2001.

[39] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on Database Systems,
22(3):364–418, September 1997.

[40] N. L. et al. The infomix system for advanced integration of incomplete and inconsistent data. In
Proc. of 24th ACM SIGMOD International Conference on Management of Data (SIGMOD 2005),
pages 915–917, Baltimore, Maryland, USA, 2005. ACM Press.

[41] W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using Database Optimization Techniques for Non-
monotonic Reasoning. In I. O. Committee, editor, Proceedings of the 7th International Workshop
on Deductive Databases and Logic Programming (DDLP’99), pages 135–139. Prolog Association
of Japan, September 1999.

[42] W. Faber, N. Leone, and G. Pfeifer. Pushing Goal Derivation in DLP Computations. In M. Gel-
fond, N. Leone, and G. Pfeifer, editors, Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’99), number 1730 in Lecture Notes in AI
(LNAI), pages 177–191, El Paso, Texas, USA, December 1999. Springer Verlag.

[43] W. Faber, N. Leone, and G. Pfeifer. Experimenting with Heuristics for Answer Set Programming.
In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI)
2001, pages 635–640, Seattle, WA, USA, Aug. 2001. Morgan Kaufmann Publishers.

[44] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: Semantics
and complexity. In In Proc. of JELIA 2004, pages 200–212, 2004.

[45] W. Faber and G. Pfeifer. DLV homepage, since 1996.
http://www.dbai.tuwien.ac.at/proj/dlv/.

[46] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic Web: Bring-
ing the World Wide Web to Its Full Potential. MIT Press, 2002.

[47] P. Ferraris and V. Lifschitz. Weight constraints as nested expressions. TPLP, 5(1-2):45–74, 2005.

144

http://CEUR-WS.org/Vol-78/
http://www.dbai.tuwien.ac.at/proj/dlv/

Bibliography

[48] E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scarcello. Census Data Repair: a Challenging
Application of Disjunctive Logic Programming. In In Proc. of LPAR 2001, pages 561–578, 2001.

[49] B. Freitag, H. Shutz, and G. Specht. LOLA - a logic language for deductive databases and its
implementation. In Proc. of the 2nd International Symposium on Database Systems for Advanced
Applications (DASFAA’91), pages 216–225, Tokyo, Japan, 1991.

[50] H. Gallaire. Impacts of logic on databases. In Proc. of the International Conference on Very Large
Databases, pages 248–259, Cannes, France, 1981. IEEE Computer Society.

[51] H. Gallaire and J. Minker. Logic and Databases. Plenum Press, New York, 1978.

[52] H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: a deductive approach. ACM Computing
Surveys, 16(2):153–186, 1984.

[53] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System Implementation. Prentice Hall,
2000.

[54] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Clasp : A conflict-driven answer set solver.
In Int. Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), Tempe, AZ,
USA, pages 260–265, 2007.

[55] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set enumeration. In
LPNMR, pages 136–148, 2007.

[56] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving. In
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), Jan. 2007. 386–392.

[57] M. Gebser, T. Schaub, and S. Thiele. GrinGo : A new grounder for answer set programming. In
Int. Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), Tempe, AZ, USA,
pages 266–271, 2007.

[58] A. V. Gelder. Negation as failure using tight derivations for general logic programs. Foundation of
Deductive Databases and Logic Programming, pages 149–176, 1988.

[59] A. V. Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic programs.
Journal of The association for Computing Machinery, 38(3):620–650, 1991.

[60] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing, 9:365–385, 1991.

[61] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on propositional satis-
fiability. Jornal of Automated Reasoning, 36(4):345–377, 2006.

[62] E. Giunchiglia, M. Maratea, and Y. Lierler. SAT-based answer set programming. In American
Association for Artificial Intelligence, pages 61–66. AAAI Press, 2004.

[63] J. Grant and J. Minker. The impact of logic programming on databases. Communications of the
ACM, 35(3):66–81, 1992.

[64] S. Greco. Binding Propagation Techniques for the Optimization of Bound Disjunctive Queries.
IEEE Transaction on Knowledge and Data Engineering, 15(2):368–385, 2003.

[65] J. Han, L. Liu, and Z. Xie. Logicbase: a deductive database system prototype. In Proc. of the 3rd
International Conference on Knowledge Management (CIKM ’94), pages 226–233, Gaithersburg,
Maryland, 1994. ACM Press.

[66] Y. Ioannidis and R. Ramakrishnan. Efficient transitive closure algorithms. In Proc. of 14th Inter-
national Conference on Very Large Data Bases, pages 382–394, Los Angeles, CA, 1988. Morgan
Kaufmann.

[67] B. Jacobs. On database logic. J. ACM, 2 (Apr.):310–332, 1982.

145

Bibliography

[68] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J. You. Unfolding partiality and disjunctions in
stable model semantics. TOCL, 7(1):1–37, 2006.

[69] T. Janhunen, I. Niemela, P. Simons, and J.-H. You. Partiality and disjunctions in stable model
semantics. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, Proceedings of the Seventh
International Conference on Principles of Knowledge Representation and Reasoning (KR 2000),
April 12-15, Breckenridge, Colorado, USA, pages 411–419. Morgan Kaufmann Publishers, Inc.,
2000.

[70] B. Jiang. A suitable algorithm for computing partial transitive closures. In Proc. IEEE Sixth In-
ternational Conference on Data Engineering, pages 264–271, Kobe, Japan, 1990. IEEE Computer
Society.

[71] H. Kautz and B. Selman. Planning as Satisfiability. In Proceedings of the 10th European Conference
on Artificial Intelligence (ECAI ’92), pages 359–363, 1992.

[72] W. Kiebling, H. Shmidth, W. Straub, and G. Dunzinger. DECLARE and SDS: Early efforts to
commercialize deductive database technology. VLDB J., 3(2):211–243, 1994.

[73] D. E. Knuth. The Stanford GraphBase : a platform for combinatorial computing. ACM Press, New
York, 1994.

[74] J. Lee and V. Lifschitz. Loop formulas for disjunctive logic programs. In ICLP, pages 451–465,
2003.

[75] A. Lefebvre and L. Vieille. On deductive query evaluation in the dedgin* system. In 1st Interna-
tional Conference on Deductive and Object Oriented Databases, 1989.

[76] D. Lembo, M. Lenzerini, and R. Rosati. Integrating inconsistent and incomplete data sources. In
SEBD-02, pages 299–306, 2002.

[77] D. Lembo, M. Lenzerini, and R. Rosati. Source inconsistency and incompleteness in data integra-
tion. In KRDB-02. CEUR Electronic Workshop Proceedings url: http://ceur-ws.org/Vol-54, 2002.

[78] M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS 2002, pages 233–246,
2002.

[79] N. Leone, G. Greco, G. Ianni, V. Lio, G. Terracina, T. Eiter, W. Faber, M. Fink, G. Gottlob,
R. Rosati, D. Lembo, M. Lenzerini, M. Ruzzi, E. Kalka, B. Nowicki, and W. Staniszkis. The
infomix system for advanced integration of incomplete and inconsistent data. In Proc. of 24th ACM
SIGMOD International Conference on Management of Data (SIGMOD 2005), pages 915–917, Bal-
timore, Maryland, USA, 2005. ACM Press.

[80] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV System for
Knowledge Representation and Reasoning. ACM Trans. Comput. Log., 7(3):499–562, July 2006.

[81] N. Leone, P. Rullo, and F. Scarcello. Disjunctive Stable Models: Unfounded Sets, Fixpoint Seman-
tics and Computation. Information and Computation, 135(2):69–112, 1997.

[82] M. Ley. Digital bibliography and library project http://dblp.uni-trier.de/.

[83] V. Lifschitz. Answer Set Planning. In D. D. Schreye, editor, Proceedings of the 16th International
Conference on Logic Programming (ICLP’99), pages 23–37, Las Cruces, New Mexico, USA, Nov.
1999. The MIT Press.

[84] F. Lin and Y. Zhao. Assat: Computing answer sets of a logic program by sat solvers. In Proceedings
of the Eighteenth National Conference on Artificial Intelligence (AAAI-2002), Edmonton, Alberta,
Canada, 2002. AAAI Press / MIT Press.

[85] F. Lin and Y. Zhao. Assat: Computing answer sets of a logic program by sat solvers. AAAI-02, To
appear, 2002.

146

http://dblp.uni-trier.de/

Bibliography

[86] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT solvers. Artificial
Intelligence, 157(1-2):115–137, 2004.

[87] T. Linke. Graph theoretical characterization and computation of answer sets. In B. Nebel, editor,
International Joint Conference on Artificial Intelligence, pages 641–645, 2001.

[88] T. Linke, C. Anger, and K. Konczak. More on nomore. In G. Ianni and S. Flesca, editors, Eighth
European Workshop on Logics in Artificial Intelligence (JELIA’02), volume 2424, 2002.

[89] J. Lloyd. Foundation of Logic Programming. Springer Verlag, New York, NY, 1987.

[90] J. Lobo, J. Minker, and A. Rajasekar. Foundation of Disjunctive Logic Programming. Mit Press,
1992.

[91] B. Loo, J. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative routing: extensible routing
with declarative queries. In Proceedings of the ACM SIGCOMM 2005 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications, pages 289–300,
Philadelphia, Pennsylvania, USA, 2005.

[92] D. Loveland. Near-horn PROLOG. In 4th International Cpnference on Logic Programming
(ICLP’87), pages 456–459, 1987.

[93] LUBM homepage. http://swat.cse.lehigh.edu/projects/lubm/.

[94] D. Maier. The theory of Relational Databases. Computer Science Press, New York, 1983.

[95] H. Mannila and K. Raiha. The design of relational databases. Addison Wesley Publishing Com-
pany, Reading, Massachusetts, USA, 1991.

[96] S. Morishita, M. Derr, and G. Phipps. Design and implementation of the glue-nail database system.
In Proc. of ACM-SIGMOD’93 Conference, pages 147–167, 1993.

[97] K. Morris, J. Ullman, and A. V. Gelder. Design overview of the nail! system. In Proc. of Third
International Conference on Logic Programming, pages 554–568, London, UK, 1986. Springer
Verlag.

[98] I. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic conditions. ACM Trans.
Database Systems, 21(1):107–155, 1996.

[99] M.Werner. davinci v2.1.x online documentation, 1998.

[100] I. Niemelä and P. Simons. Smodels – an implementation of the stable model and well-founded
semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings
of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’97), volume 1265 of Lecture Notes in AI (LNAI), pages 420–429, Dagstuhl, Germany, July
1997. Springer Verlag.

[101] I. Niemelä, P. Simons, and T. Syrjänen. Smodels: A System for Answer Set Programming. In Proc.
of the 8th Int. Workshop on Non-Monotonic Reasoning (NMR’2000), Colorado, USA, April 2000.

[102] S. M. noz, J. Pérez, and C. Gutiérrez. Minimal deductive systems for RDF. in eswc, pages 53–67,
2007.

[103] L. Palopoli, S. Rombo, and G. Terracina. Flexible pattern discovery with (extended) disjunctive
logic programming. In Proc. of 15th International Symposium on Methodologies for Intelligent
Systems (ISMIS 2005), pages 504–513, Saratoga Springs, New York, USA, 2005. Lecture Notes in
Artificial Intelligence (3488), Springer-Verlag.

[104] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Owl web ontology lan-
guage semantics and abstract syntax. w3c recommendation, 10 february 2004.
http://www.w3.org/tr/owl-semantics/.

147

http://swat.cse.lehigh.edu/projects/lubm/

Bibliography

[105] G. Phipps, M. Derr, and K. Ross. Glue-nail: A deductive database system. In Proc. of ACM-
SIGMOD’91 Conference, 1991.

[106] A. Polleres. From sparql to rules (and back). In In Proceedings of the 16th World Wide Web
Conference (WWW2007), Banff, Canada, 2007. Extended technical report version available at
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf.

[107] A. Polleres. Personal communication, 2007.

[108] S. Potamianos and M. Stonebraker. The postgres rules system. Active Database Systems: Triggers
and Rules For Advanced Database Processing, pages 43–61, 1996.

[109] T. C. Przymusinski. On the Declarative Semantics of Deductive Databases and Logic Programs. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 193–216.
Morgan Kaufmann Publishers, Inc., 1988.

[110] S. P. Radziszowski. Small Ramsey Numbers. The Electronic Journal of Combinatorics, 1, 1994.
Revision 9: July 15, 2002.

[111] R. Ramakrishnan. Application of Logic Databases. Kluwer Accademic Publisher, Hingam, MA,
1994.

[112] R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORAL deductive system.
VLDB J., 3(2):161–210, 1994.

[113] R. Ramakrishnan and J. Ullman. A survey of deductive database systems. J. of Logic Programming,
23(2):125–150, 1995.

[114] P. Rao, K. Sagonas, T. Swift, D. Warren, and J. Friere. XSB: a system for efficiently computing
well-founded semantics. In Proc. of 4th International Conference on Logic Programming and Non
Monotonic Reasoning (LPNMR’97), pages 430–440. Springer, LNAI, 1997.

[115] RDF resource guide. http://planetrdf.com/guide/.

[116] K. Ross. Modular stratification and magic sets for datalog programs with negation. In Proc. of the
ACM Symposium on Principles of Database Systems, 1990.

[117] D. Saccà and C. Zaniolo. On the implementation of a simple class of logic queries. In Proc. of the
ACM Symposium on Pronciples of Database Systems, 1986.

[118] D. Saccà and C. Zaniolo. Magic counting methods. In Proc. of the ACM SIGMOD Annual Con-
ference on Management of Data (SIGMOD ’87), pages 49–59, San Francisco, CA, 1987. ACM
Press.

[119] D. Saccà and C. Zaniolo. The generalized counting method for recursive logic queries. Theoretical
Computer Science, 62, 1988.

[120] K. Sagonas, T. Swift, and D. Warren. XSB as an efficient deductive database engine. In Proc. of
the 1994 ACM SIGMOD International Conference on Management of Data (SIGMOD ’94), pages
442–453, Minneapolis, Minnesota, 1994.

[121] D. Seipel and H. Thöne. DisLog – A System for Reasoning in Disjunctive Deductive Databases.
In A. Olivé, editor, Proceedings International Workshop on the Deductive Approach to Information
Systems and Databases (DAISD’94), pages 325–343. Universitat Politecnica de Catalunya (UPC),
1994.

[122] SESAME homepage. http://www.openrdf.org/, since 2002.

[123] P. Simons. Extending the Stable Model Semantics with More Expressive Rules. In M. Gel-
fond, N. Leone, and G. Pfeifer, editors, Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’99), number 1730 in Lecture Notes in AI
(LNAI), pages 305–316, El Paso, Texas, USA, December 1999. Springer Verlag.

148

http://planetrdf.com/guide/
http://www.openrdf.org/

Bibliography

[124] P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model Semantics.
AI, 138:181–234, June 2002.

[125] Sparql implementations. http://esw.w3.org/topic/sparqlimplementations.

[126] American National Standards Institute: ANSI/ISO/IEC 9075-1999 (SQL: 1999, Parts 1-5), New
York, NY, 1999.

[127] H. Stuckenschmidt and J. Broekstra. Time - space trade-offs in scaling up rdf schema reasoning. in
wise workshops, pages 172–181, 2005.

[128] T. Syrjänen. Lparse 1.0 user’s manual, 2002.
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.

[129] S. Tsur and C. Zaniolo. LDL: a logic bases data-language. In Proc. of the 12th International Con-
ference on Very Large Databases, pages 33–41, Kyoto, Japan, 1986. VLDB Endowment, Berkley,
CA.

[130] J. Ullman. Principles of Database Systems. Computer Science Press, New York, 1982.

[131] J. Ullman. Bottom-up beats top-down for datalog. In Proc. of the eighth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of Database Systems (PODS ’89), pages 140–149, Philadelphia,
PA, 1989. ACM Press.

[132] J. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press, New
York, 1989.

[133] J. Vaghani, K. Ramanohanarao, D. Kemp, Z. Somogyi, P. Stuckey, T. Leask, and J. Harland. The
ADITI deductive database system. VLDB J., 3(2):245–288, 1994.

[134] L. Vieille. Recursive axioms in deductive databases: the query/subquery approach. In Proc. of 1st
International Conference on Expert Database Systems, 1986.

[135] L. Vieille. Database-complete proof procedures based on sld resolutions. In Proc. of 4th Interna-
tional Conference on Logic Programming, 1987.

[136] L. Vieille. Recursive query processing: The power of logic. Theoretical Computer Science, 69,
1989.

[137] L. Vieille, P. Bayer, and V. Kuechenhoff. Integrity checking and materialized view handling by
update propagation in the EKS-V1 system. In “Materialized Views”. Mit Press, Cambridge, MA,
1996.

[138] L. Vieille, P. Bayer, V. Kuechenhoff, and A. Lefebvre. EKS-V1, a short overview. In AAAI’90
Workshop on Knowledge base Management Systems, 1990.

[139] W3C. Rdf semantics. w3c recommendation 10 february 2004, 2006.
http://www.w3.org/TR/rdf-mt/.

[140] J. Wielemaker. Swi-prolog 3.4.3 reference manual, 1990–2000.

[141] M. Winslett. Raghu Ramakrishnan Speaks Out. SIGMOD Record, 35(2):77–85, 2006.

149

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.w3.org/TR/rdf-mt/

Bibliography

Papers Published by the Author of this Thesis

[142] G. Ianni, A. Martello, C. Panetta, and G. Terracina. Faithful and effective querying of RDF on-
tologies using DLVDB . In Proc. of the 4th International Workshop on Answer Set Programming
(ASP’07), Porto, Portugal, 2007.

[143] G. Ianni, A. Martello, C. Panetta, and G. Terracina. Some experiments on the usage of a deduc-
tive database for RDFS querying and reasoning. In Proc. of the 4th Workshop on Semantic Web
Applications and Perspectives (SWAP 2007), Bari, Italy, 2007.

[144] G. Ianni, A. Martello, C. Panetta, and G. Terracina. Efficiently querying RDF(S) ontologies with
Answer Set Programming. Journal of Logic and Computation (Special issue)., To appear.

[145] G. Ianni, C. Panetta, and F. Ricca. Specification of assessment-test criteria through ASP specifica-
tions. In Proc. of Answer Set Programming: Advances in Theory and Implementation (ASP’05),
Bath, UK, 2005.

[146] N. Leone, W. Faber, A. Bria, F. Calimeri, G. Catalano, S. Cozza, T. Dell’Armi, G. Greco, G. Ianni,
G. Ielpa, M. Maratea, C. Panetta, S. Perri, F. Ricca, F. Scarcello, G. Terracina, G. Pfeifer, T. Eiter,
and G. Gottlob. DLV: An Advanced System for Knowledge Representation and Reasoning. In ALP
Newsletter, volume 20, n. 3-4. Editor: E. Pontelli, Area Editor: R. Bagnara, 2007.

[147] N. Leone, V. Lio, C. Panetta, and G. Terracina. DLV DB: a system for the efficient evaluation of
datalog programs directly on databases. Intelligenza Artificiale, 2006. To appear.

[148] G. Terracina, E. D. Francesco, C. Panetta, and N. Leone. Enhancing a DLP System for Advanced
Database Applications. In Proc. of International Conference on Web Reasoning and Rule Sys-
tems (RR 2008), pages 119–134, Karlsruhe, Germany, 2008. Lecture Notes in Computer Science,
Springer.

[149] G. Terracina, E. D. Francesco, C. Panetta, and N. Leone. Experiencing ASP with real world ap-
plications. In Inproc. of 15th Workshop on Knowledge Representation and Automated Reasoning
(RCRA 2008), Udine, Italy, 2008.

[150] G. Terracina, N. Leone, V. Lio, and C. Panetta. Adding Efficient Data Management to Logic
Programming Systems. In Proc. of 16th International Symposium on Methodologies for Intelligent
Systems (ISMIS 2006), pages 524–533, Bari, Italy, 2006. Lecture Notes in Artificial Intelligence
(4203), Springer.

[151] G. Terracina, N. Leone, V. Lio, and C. Panetta. Comparing Logic Programming Systems with
DBMSs on Recursive Queries. In Inproc. of 13th Workshop on Knowledge Representation and
Automated Reasoning (RCRA 2006), Udine, Italy, 2008.

[152] G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive queries in database
and logic programming systems. Theory and Practice of Logic Programming (TPLP), 8(2):129–
165, 2008.

150

	PanettaClaudio-DottoratoXXCiclo-Tesi.pdf
	Introduction
	Objectives and contributions
	Plan of the work

	Disjunctive Datalog
	Syntax
	Answer Set Semantics
	Knowledge Representation and Reasoning
	The Guess and Check Programming Methodology
	Applications of the Guess and Check Technique
	Enhanced KRR Capabilities by Function Symbols

	Comparisons to other Systems
	Declarative computational logic systems
	Relevant features of computational logic systems
	Language expressiveness
	Efficiency issues

	Deductive database systems
	LDL++
	NAIL!
	POSTGRES

	Answer set programming systems
	DLV
	SMODELS
	Cmodels
	ASSAT
	noMoRe
	SLG
	DeReS
	XSB
	claspD
	Other systems

	DLVDB - Main Features
	Introduction
	Auxiliary directives

	DLVDB - Implementation Principles
	System Architecture
	Evaluation Strategy
	Evaluation of non disjunctive stratified programs
	Evaluation of disjunctive programs with unstratified negation

	Enhanced Semi-Naive method for evaluating recursive rules
	From DLP to SQL

	Applications
	Application to deductive databases
	Application to data integration
	Application to RDF(S) ontology querying

	Benchmarks
	Testing on normal stratified programs with recursion
	Overview of Compared Systems
	Benchmark Problems
	Benchmark Data Sets
	Results and Discussion

	Testing on a real data integration setting
	Overview of compared systems
	Tested queries
	Results and discussion

	Testing on querying of RDF(S) ontologies
	Compared Systems
	Benchmark Data Set
	Tested Queries
	Results and Discussion

	Testing on a combinatorial problem
	Testing on data transformation problems
	Testing on string similarity computation

	Conclusions
	Encodings
	Testing on normal stratified programs with recursion
	Encodings of Reachability
	Encodings of Same Generation

	Testing on a real data integration setting
	Encodings for query IQ1
	Encodings for query IQ2
	Encodings for query IQ3
	Encodings for query IQ4

	Testing on querying of DBLP ontology
	Encodings for query OQ1
	Encodings for query OQ2
	Encodings for query OQ3
	Encodings for query OQ4
	Encodings for query OQ5

	Testing on querying of LUBM ontology
	Encodings for query OQ6 (LUBM-Query1)
	Encodings for query OQ7 (LUBM-Query2)
	Encodings for query OQ8 (LUBM-Query3)
	Encodings for query OQ9 (LUBM-Query4)
	Encodings for query OQ10 (LUBM-Query5)
	Encodings for query OQ11 (LUBM-Query6)
	Encodings for query OQ12 (LUBM-Query7)
	Encodings for query OQ13 (LUBM-Query8)
	Encodings for query OQ14 (LUBM-Query9)
	Encodings for query OQ15 (LUBM-Query14)
	Encodings for query OQ16
	Encodings for query OQ17

	Testing on a combinatorial problem
	Encodings for query FastFoods

	Testing on data transformation problems
	Encodings for query Int2Bin

	Testing on string similarity computation
	Encodings for query HammingDistances

	Bibliography

