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S I N T E S I

In questa Tesi sono riportati i diversi studi, condotti nei tre anni di dot-
torato, inerenti al campo della termodinamica quantistica dei sistemi fuori
dall’equilibrio. Indubbiamente, il germe dal quale si è sviluppata gran parte
dei lavori qui illustrati, è stato il paradigma dei teoremi di fluttuazione rel-
ativi al lavoro termodinamico compiuto in processi di non equilibrio. Nella
fattispecie, nei nostri studi sono stati presi in esame dei processi di non equi-
librio in sistemi quantistici chiusi, che vengono generati a causa del controllo
esterno di alcuni parametri del sistema. Un’analisi di questi processi è stata
condotta da un punto di vista teorico, sia considerando un generico processo di
non equilibro, per il quale la non adiabaticità dell’evoluzione è stata messa in
relazione con le proprietà termodinamiche del processo; sia tramite alcuni studi
in specifici sistemi fisici a molti corpi che presentano comportamenti critici. In-
oltre, è stato affrontato il problema dell’estrazione del lavoro da un sistema
quantistico avente il ruolo di batteria, prestando una particolare attenzione al
ruolo svolto dalla coerenza e dalle correlazioni quantistiche in tali processi.

La Tesi è costituita da tre parti.
Nella prima parte, dopo un breve introduzione alla Tesi, nel Cap. 2 al-

cune nozioni, fondamentali ai fini della discussione, sono introdotte alla luce
dell’uguaglianza di Jarzynski e del teorema di Tasaki-Crooks. Inoltre, il ruolo
del lavoro termodinamico nel campo dell’informazione quantistica, è delineato
attraverso alcune relazioni ricavate di recente, che sono state brevemente pre-
sentate.

Nella seconda parte, è presentato uno studio generale dei processi di nos-
tro interesse. Nel Cap. 3, è discussa la termodinamica di non equilibrio, con-
siderando due ipotetici processi di riferimento: una trasformazione reversibile
isoterma e una trasformazione reversibile adiabatica. Quest’ultimo processo
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permette di definire in modo naturale il cosiddetto “attrito quantistico interno”,
per il quale abbiamo ricavato una relazione di fluttuazione di Tasaki. Tale for-
malismo generale, è illustrato anche con l’aiuto di due esempi paradigmatici,
che sono un oscillatore armonico e uno spin 1/2. Nello stesso capitolo, è anche
introdotta una misura entropica di non adiabaticità, che in circostanze par-
ticolari si identifica con l’attrito interno e che viene discussa da un punto di
vista termodinamico, mostrando che essa può essere messa in relazione con il
lavoro termodinamico compiuto nel processo. Il suo comportamento è stato
altres̀ı studiato nel caso in cui il processo tende ad essere adiabatico, trovando
un’interessante relazione che coinvolge una misura della coerenza quantistica
dello stato di un generico sistema, nota come entropia relativa di coerenza. Altre
relazioni che coinvolgono tale misura di coerenza sono state riportate, seppure
il ruolo della coerenza quantistica è ancora oggetto dei nostri studi. Nel Cap. 4,
è condotto uno studio dei processi di estrazione di lavoro da “batterie quantis-
tiche”, con lo scopo di mettere in relazione le correlazioni quantistiche con il
lavoro estratto. Qui, viene proposta e studiata in termini generali una nuova
procedura di estrazione di lavoro, che fa uso delle correlazioni condivise tra il
sistema e un ulteriore sistema ausiliario. In linea di principio, il processo di
estrazione può essere ottimizzato facendo uso dell’informazione sullo stato del
sistema, acquisita per mezzo di misure locali compiute sul sistema ausiliario.
L’esistenza di correlazioni quantistiche tra i due sottosistemi può essere investi-
gata, guardando il cosiddetto guadagno “demoniaco” sul lavoro. Tale procedura
è stata discussa anche prendendo in considerazione un sistema di due qubit.

La terza parte contiene la caratterizzazione di processi di non equilibrio in
specifici sistemi quantistici. Nel Cap. 5 è considerato il modello quantistico di
Ising in campo trasverso, il quale viene bruscamente allontanato dall’equilibrio
per mezzo di una perturbazione localizzata sul bordo del sistema. Il sistema
è studiato grazie ad una rappresentazione fermionica, e la termodinamica di
non equilibrio è stata caratterizzata in termini del lavoro compiuto in questo
processo, che è stato messo in relazione con la transizione di fase quantistica
del sistema. Tale modello è legato alla cosiddetta catena di Kitaev, nella quale
è presente un modo di Majorana ad energia nulla. Per capire a fondo il ruolo
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giocato dal modo di Majorana nella dinamica di fuori equilibrio, è stata studi-
ata la propagazione di una perturbazione locale lungo la catena, valutandola
tramite la magnetizzazione trasversa, la quale presenta forti oscillazioni pro-
prio a causa del coinvolgimento di tale modo ad energia nulla. Nel Cap. 6 è
considerato il modello di Dicke. Questo è un altro modello critico, che descrive
l’accoppiamento di un numero elevato di atomi con un modo normale di un
risonatore elettromagnetico. In tale sistema, è stato considerato il processo di
non equilibrio prodotto da una forzante applicata agli atomi. Dal punto di
vista tecnico, la dinamica è stata descritta in termini dei campi medi e delle
fluttuazioni quantistiche attorno ad essi. In particolare, le circostanze sotto cui
le fluttuazioni diventano illimitate nel tempo sono state discusse in generale,
e caratterizzate nel caso di una forzante periodica facendo uso del teorema
di Floquet. In particolare, si è visto che è possibile provocare una produzione
di fotoni dal vuoto a causa dell’amplificazione parametrica delle fluttuazioni.
Questo meccanismo, che simula l’effetto di Casimir dinamico, è stato messo
in relazione con la termodinamica di non equilibrio, attraverso una caratteriz-
zazione del lavoro termodinamico compiuto dalla forzante e dell’attrito interno
quantistico provocato a causa della non adiabaticità del processo.
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A B S T R AC T

In this Thesis, I would present the work done during my Ph.D. course, in the
last three years. These studies have been focused on non equilibrium processes
in quantum systems, and have led to several different interesting results, which
are undoubtedly rooted in the field of the quantum thermodynamics.

We have performed a general theoretical analysis, allowing to characterize
the thermodynamic irreversibility of this kind of processes [A].This is content
of part of the Thesis, consisting of Chap. 3. Then, we considered some partic-
ular physical systems, among which quantum spin chains [B, C], and a Dicke
model [D]. A new kind of work extraction protocol has been also proposed [E],
in which the presence of quantum correlations plays a crucial role.

v



C O N T E N T S

I Introduction and Background Materials 1

1 introduction 2

2 fluctuation theorems 7
2.1 Work Fluctuation Theorems 7
2.2 Thermodynamics and Information Theory 11
2.3 Summary and Conclusions 13

II General Theoretical Analysis 14

3 quantum thermodynamics processes 15
3.1 Work in Closed Quantum Systems 16
3.2 Irreversible Work and Inner Friction 19

3.2.1 A Quantum Harmonic Oscillator 23
3.2.2 A Landau-Zener Process 25

3.3 Non-Adiabaticity, Work and Quantum Coherence 26
3.4 Summary and Conclusions 28

Appendices 29
3.A Relation between NA and the work 30
3.B A mathematical identity 31
3.C Adiabatic Perturbation Expansion 32

4 work extraction and quantum correlations 34
4.1 Work extraction from finite quantum systems 35
4.2 Daemonic Ergotropy 37

vi



4.2.1 Two Qubits System 41
4.3 Summary and Conclusions 43

Appendices 44
4.A Daemonic Ergotropy: Proofs of the Statements 45

4.A.1 Analysis of the two-qubit case 48

III Applications to Specific Systems 51

5 local disturbance in a quantum ising model 52
5.1 Ising Model in a Transverse Field with Defect 53

5.1.1 Energy Spectrum and Spatial Localization 55
5.2 Thermodynamics 59

5.2.1 Local Quench 60
5.3 Disturbance Propagation 64
5.4 Summary and Conclusions 69

Appendices 70
5.A Quantum Ising Model: Diagonalization in Presence of a Defect

in The Transverse Field 71
5.A.1 Quasi-Continuum Spectrum 74
5.A.2 Discrete Spectrum 76

5.B Transverse Magnetization 78
5.C Quantum Ising Model: Time Evolution after a Local Quench 79

6 the driven dicke model 83
6.1 The Dicke Model 84
6.2 Dynamics of the Driven Dicke Model 86

6.2.1 Limits of Validity and Instability Rate γ∗ 91
6.3 Periodic Driving 94

6.3.1 Photon Generation from the Vacuum and Work Done 96
6.3.2 Characterization of the Fluctuations 98

6.4 Summary and Conclusions 99

vii



Conclusions 100

List of Publications 102

Bibliography 104

viii







Part I.

Introduction and Background
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1 I N T R O D U C T I O N

Out of equilibrium processes, in which a physical system evolves in time
starting from or being brought to a non equilibrium configuration, are ubiqui-
tous in nature. Examples are a fast compression of a gas could produce internal
relative motions, with a subsequent irreversible increase of its internal energy,
or intrinsically irreversible processes, like the mixing of two gases of different
species, or the spontaneous heat transfer from a hot body to a cold one, which
could drive the system through a sequence of non equilibrium states.

In a physical system, an out of equilibrium process could be generated by
changing its external conditions fast enough in time.

In principle, a simple description of such phenomena in terms of few “ther-
modynamic” quantities is often possible, by referring them to ideal quasi-static
processes.

However, as the real process is too far from the ideal one, such a descrip-
tion unavoidably falls down. Anyway, under certain conditions, it is possible to
constrain the thermodynamic quantities to some emergent rules. These rules
need to emerge from the underlying fundamental principles describing the mi-
croscopic costituents of matter. A common example is the second principle
of thermodynamics, but several more restrective constraints could follow, that
are usually referred to as fluctuation theorems. These theorems, introduced and
object of discussion in Chap. 2, are usually expressed in terms of statistical re-
lations, where usually a non equilibrium fluctuating quantity is related to the
equilibrium properties of an ideal reference trasformation.

In the last few years, the technological progress has allowed exceptional exper-
iments in which the quantumness plays a crucial role [1, 2]. They have opened
the way to infer about several interesting theoretical problems [3, 4], among
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which the thermalization problem in closed systems [5], and the production of
defects due to the spontaneous breaking of a symmetry [6, 7].

This has contributed to keep a keen interest in the developing of the paradigm
of the fluctuation theorems and in the study of thermodynamics in the quan-
tum realm. Doubtless, a fundamental quantity in this context is the energy
that the system exchanges with its environment during transformation or non
equilibrium process. In the last three years, our focus has been directed to-
wards those processes in which a high degree of isolation is reached, so that the
system can be manipulated by keeping a unitary time evolution. In these cases,
the process is generated by some driving agent, and some of work is done on
the system.

Being performed on microscopic systems, this work is affected by random fluc-
tuations, which are constrained by statistical relations, as illustred in Chap. 2
and in Chap. 3.

In this scenario, although the process obtained is typically irreversible, the
ideal reversible transformations keep playing a reference role in the description.
In Chap. 3, two reversible transformations, an isothermal and an adiabatic
transformation, are examined, allowing to characterize the amount of “irre-
versible work” produced [A].

There, we also show how the distance from the reversible transformation is
unavoidably linked to the quantum coherence generated in the process [F ].

We also analysed the work extraction processes from a storing center of
energy which are discussed in Chap. 4. The work extracted can have a purely
quantum contribution, due solely to quantum coherence and having no classical
counterpart [F ].

Indeed, the existence of correlations between the storing center, and an aux-
iliary system subject to measurement, can enhance the work extracted if a
local feedback control is used. Furthermore, the gain in work achieved in this
way is intimately related to the quantumness of such correlations [E]. As a
result, this feedback protocol can be used to investigate about the nature of
the correlations between the parts of a quantum system.
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The work should be related also to other non equilibrium properties, depend-
ing on the particular system under consideration.

We have considered mostly spin 1/2 systems. In particular, a system with
Ising interactions is the subject of Chap. 5. Such a system can be brought far
from the equilibrium by a “quench” in the applied magnetic field. In particular,
we considered a quench that is localized at its boundary. The work perfomed
by the driving agent that modifies the field is studied in some limiting circum-
stances, showing a behavior typical of the critical systems. The propagation
along the chain of the disturbance generated after the quench, is also well
characterized in terms of the magnetization of the system.

Another spin system, in which the interactions are mediated by a common
bosonic field, is considered in Chap. 6. Specifically, we study the dynamics
of a driven system of atoms, collectively interacting with a quantum electro-
magnetic mode in an optical cavity (Dicke model). In such a system, under
a periodic perturbation, photons could be generated from the vacuum state
because of a parametric amplification of the quantum fluctuations. Also this
process, mimicking the dynamical Casimir effect, is well characterized in terms
of the work done.

Summarizing, this Thesis is essentially structured in three main parts, and
some appendices, added in order to lighten the discussion in the main parts.

The first part contains an introduction to the dissertation, and some useful
background materials. Substantially, we briefly introduce the framework of the
fluctuation theorems in Chap. 2, mainly with the aim of outlining how our re-
sults are placed in the present-day research scenario. There, the thermodynamic
work is discussed as a statistical quantity, and both the Jarzynski relation and
the Crooks theorem are discussed in general. Some recent relations between
the work and the field of the quantum information theory are also considered.

In the second part, we present a general study of thermodynamic processes
of interest. In Chap. 3, we focus on the non equilibrium thermodynamics in
driven closed quantum systems, mainly presenting the results reported in [A].
There, the real out of equilibrium process is compared to two different hypothet-
ical transformations: a reversible isothermal transformation and a reversible
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adiabatic one. Then, the study is carried on by taking into account the irre-
versible amount of work produced in the process, that should be quantified
in terms of either the inner friction

�
wfric

�
, or the irreversible work �wirr�,

depending on the reversible transformation used as a reference. Furthermore,
we discuss also how the quantum non adiabaticity of the time evolution affects
the thermodynamic work done. There, we derive some interesting relations in-
volving thermodynamic quantities and a measure of quantum coherence. In
Chap. 4 we propose a new link between the field of thermodynamics and of
quantum information theory. We show how the thermodynamics can be related
to the correlations in a bipartite state. Specifically, the presence of quantum
correlations could be inferred by looking the performance of a suitable work
extraction protocol [E].

In the third part, we present a characterization of the non equilibrium
thermodynamics in two different many-body systems. In Chap. 5, we consider
a quantum Ising spin chain in a transverse field, that is suddenly brought out
of equilibrium by a disturbance localized on its boundary. The study of this
process should be relevant, because of the relation between such system and the
Kitaev chain, which allows for the possibility to have two so-called Majorana
zero modes, localized at the edges of the chain. The thermodynamics of the
process is characterized in terms of the work done, its moments and the amount
of irreversible work produced. We demonstrate that these quantities display a
signature of the critical behavior of the system at the quantum phase transition
point.

Furthermore, the propagation of the disturbance in the transverse magneti-
zation of the chain is analysed, underlining the role played by the Majorana
zero mode, that could be involved in the dynamics [C].

In Chap. 6 we consider another physical system, described by a Dicke model.
The out of equilibrium process is generated by considering a general parametric
driving, and the dynamics of the system is studied by using a general frame-
work, that would give an exact description for an infinite number of atoms [D].
The quantum fluctuations could undergo an unbounded time evolution for such
a system in the super-radiant phase, and this effect is carefully characterized in
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the particular case of a periodic driving. A mechanism similar to the dynamical
Casimir effect can arise in this case, permitting the generation of photons from
the quantum vacuum state. This effect is linked to the non equilibrium ther-
modynamics of the process, by studying the work done and the inner friction
produced.
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2 F L U C T U AT I O N T H E O R E M S

In this Chapter, we give a quick overview of the paradigm of the fluctuation
theorems in the context of out of equilibrium processes.

Most of the arguments discussed here are reconsidered again in Chap. 3, in
the case of a closed quantum system.

We briefly discuss the concept of the thermodynamic work in the quantum
regime, and the fluctuation theorem satisfied by its distribution in Sec. 2.1.
Mostly, we focus on the Jarzynski equality [8], that allows us to introduce some
fundamental concepts, like the irreversible work, which is then used many times
in subsequent Chapters.

In the Sec. 2.2 we give a succinct presentation of some recently derived re-
lations between this paradigm and the field of the information theory. Some
works that outline the role of the quantum correlations in a quantum thermo-
dynamic process are also illustrated. This is done with the aim of placing the
results of Chap. 4 in the present-day research context.

2.1 work fluctuation theorems

The description of a physical system in terms of the fundamental microscopic
laws usually tends to be useless with the increase of the degrees of freedom of
the system. Luckily, the microscopic constituents of a physical system typically
are in a permanent state of agitation, so that a statistical study can be car-
ried on; then the physical quantities of interest will be thought as statistical
quantities, affected by random fluctuations [9].

In several cases these fluctuations are weak, and a description in terms of
the mean values is enough.
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Here we focus on the out equilibrium processes, in which a physical system is
driven far of equilibrium by some changes in its external condition or potential.
In this context too, the influence of the fluctuations could play a dominant role
in the statistical description.

Usually a parameter λ of the system, referred to as work parameter, is varied
in a certain time interval [0, τ ], and an amount of work is performed on the
system because of that.

Technically, we consider a process to be defined as the protocol in which the
parameter λ is changed from the initial value λi at the time t = 0, to the final
value λf at the time t = τ , by following a given functional relation

λ : t ∈ [0, τ ] �→ λ(t) (1)

The work turns out to be described by a stochastic quantity w characterized
by a probability distribution p(w), so that its mean value is given by [10]
�w� = �

wp(w)dw.
For instance, in a quasistatic isothermal trasformation, if the system stays

in equilibrium with a heat bath at the temperature T at any time of the
process, the work is the difference of the Helmholtz free energy, ΔF , evaluated
at the final and the initial equilibrium states, that is ΔF = F [λf , T ]− F [λi, T ],
where with F [λ, T ] we indicate the Helmholtz free energy of the equilibrium
state [λ, T ].

In finite time processes, instead as the fluctuations of the work become strong,
higher moments of the work distribution are needed to accurately characterize
the work. They can be calculated from the characteristic function χ, where

χ(u) =
�

eiuwp(w)dw (2)

as �wn� = (−i)nχ(n)(0).
Jarzynski in [8] found that, when the quantum effects can be neglected, the

work fluctuations are constrained by the relation

�
e−βw

�
= e−βΔF (3)
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provided that initially the system is described by a canonical ensemble at the
temperature T = (kBβ)−1, and that, during the process, the system can be
considered thermodynamically isolated, or weakly interacting with an heat bath
at the same temperature T . In the last case, the amount of energy �w� − ΔF ,
which can be associated with the increase of entropy during an irreversible
process, is always non negative, since from Eq. (3) it follows that �w� ≥ ΔF [8].

If the fluctuations can be neglected, the work for the typical trajectories
in the phase space, would be approximated by the average value �w�, and so
�w� ≈ ΔF , by using Eq. (3).

Furthermore, from Eq. (3), the probability P (w < ΔF − ζ) to observe a
value of work smaller than ΔF − ζ, turns out to be bounded as [11]

P (w < ΔF − ζ) < e−βζ (4)

where ζ is an arbitrary positive value with the units of energy.
Then, the left tail of the distribution probability p(w) becomes exponentially

suppressed in the thermodynamically forbidden region w < ΔF , in agreement
with the second law of thermodynamics.

The free energy ΔF can be obtained as a sum of the cumulants ωn of the
work distribution function 1, because Eq. (3) implies the expansion [11]

ΔF =
∞�

n=1
(−β)n−1 ωn

n!
(5)

The Eq. (5) allows to compute the difference ΔF in terms of the cumulants
of the work, and, in the linear response (or Gaussian) regime, the fluctuation
dissipation theorem

�w� − ΔF � β

2
�
�w2� − �w�2

�
(6)

follows as a limiting case of Eq. (5).
A deeper characterization of the work performed can be done by comparing

this “forward” process with the corresponding “backward” one [10].

1 The cumulant ωn can be calculated from the generating function g(u) = ln (χ(u)), as ωn =

(−i)ng(n)(0).
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In principle, the backward process is obtained by time reversing the trajec-
tories in the phase space of the system. However, if the system is time reversal
symmetric, this process could be achieved as the parameter λ retraces its his-
tory in time.

The fluctuations of the work in these two protocols are not statistically in-
dependent, as it is highlighted by the Crooks fluctuation theorem

p(w)e−β(w−ΔF ) = p(−w) (7)

where p(w) is the probability distribution of the work done when the system
is driven in a time-reversed manner [12].

The fluctuation theorem in Eq. (7) is more general than the relation in
Eq. (3). Indeed, Eq. (3) can be derived by integrating both sides of Eq. (7)
with respect to w.

By looking at Eq. (7), it is clear that the trajectories in phase space for which
the work is larger than ΔF , tend to be “exponentially” preferred than their
time reversed trajectories, and so the probability of a violation of the second
principle of thermodynamics is exponentially small.

The distance of the work distribution function p(w) from its time reversed
counterpart p(−w) can be characterized by the relative entropy (also known
as Kullback-Leibler divergence)

DKL(p(w)||p(−w)) =
�

p(w) ln(p(w)/p(−w))dw . (8)

By using Eq. (7), it is found that [13]

DKL(p(w)||p(−w)) = β(�w� − ΔF )

This helps to understand how the thermodynamic arrow of time arises from
an underlying time reversible dynamics, which is an unresolved problem in
physics [14].

In this Thesis, we will refer to the quantity �w� − ΔF as irreversible work,
and we indicate it with �wirr�.

It is not obvious how to formulate the same relationships, if the quantum
effects cannot be neglected. Essentially because, differently from the classical
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regime, the work cannot be measured by continuously monitoring the system,
without a drastic change in the dynamics due to the wave function collapse.

There are several approaches to the formalism of the fluctuation theorems
for quantum systems. For instance, they can formulated thanks a two measure-
ments protocol [15, 10], that essentially finds its bases in the relations discov-
ered by Tasaki in [16], or by using a quantum trajectory formalism [17, 18].
In particular, the Jarzynski equality in Eq. (3) discussed in this Chapter, can
be explicitly derived also if the quantum nature of the system is taken into
account [19].

Fluctuation relations have been formulated also for the exchange of heat
from a hot to a cold bath [20, 21, 22], and for a general heat engine [23].

Several investigations have been done, among which, experiments have been
reported where work is measured by using a two projection method [24], an
interferometric method [25], and a quantum jump method [26].

The characterization of the thermodynamic work in closed quantum systems
is discussed in detail in Chap. 3, where the work is put in relation with other
thermodynamics quantities, like the irreversible work and the inner friction,
and with the non adiabaticity of the out of equilibrium process and the quan-
tum coherence generated during the protocol.

2.2 thermodynamics and information

theory

Doubtless, in understanding the relation between the information theory
and the field of the thermodynamics [27, 28], the experiment proposed by
Szilard [29] plays a key role. It shows how a positive amount of work can be
performed by using only one heat bath, thanks to a Maxwell’s demon that
plays the role of a feedback controller [30, 31].

In this context, typically, the second law of thermodynamics is discussed by
taking into account the erasure process of the memory used by the demon [32,
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33, 34, 35, 27]. Recently, the thermodynamics of a Landauer erasure process
has been studied in [36] by using a fluctuation relation, and a lower bound for
the heat exchange has been found.

For an isothermal process, the second law reads �w� ≥ ΔF , and by using a
feedback control, the work done on the system can be lowered thanks to the
information acquired in the measurement process, as shown by Sagawa and
Ueda in [37].

Specifically, if in order to perform the feedback control, the information on
the state of the system is acquired by using a positive-operator valued mea-
sure [38], the work done will be [31]

�w� ≥ ΔF − kBTIQC (9)

where the quantity IQC is the so called Quantum-Classical mutual infor-
mation [31]. If the measurement process is described by the positive value
operators {Êk = M̂ †

kM̂k}k, and the state of the system at the instant of mea-
surement is ρ̂, so that it collapses onto ρ̂k = M̂kρ̂M̂ †

k/pk with the propability
pk = Tr

�
ρ̂Êk

�
, then the Quantum-Classical mutual information can be ex-

pressed as IQC = S(ρ̂)−�k pkS(ρ̂k), where S(ρ̂) is the Von Neumann entropy

S(ρ̂) = −Tr {ρ̂ ln ρ̂} (10)

Fluctuation theorems are discussed for generalized thermodynamic observ-
ables when the dynamics is described by a completely positive trace preserving
map, with and without feedback control in [39].

The equality in Eq. (9) can also be obtained, as shown by Jacobs in [40],
and so by using a cyclic transformation, it is possible to extract the amount of
work kBTIQC from a heat bath at temperature T .

The role played by the non local nature of the quantum correlations [41, 42]
in the work extraction from a thermal bath has received a certain attention [43,
44, 28]. In particular, in [43] it is shown that the amount of work extracted
by considering a bipartite state shared by two parties is less than the amount
of work extractable when one part is in possession of the entire state. The
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resulting work deficit is discussed as a measure of the quantum correlations in
the global state.

The quantum correlations, characterized by the quantum discord [45, 46, 42],
can be also related to the thermodynamics of a work extraction protocol, as
shown in Chap. 4.

2.3 summary and conclusions

In this Chapter, we have illustrated the paradigm of the fluctuation theorems,
by introducing some fundamental relations, such as the Jarzynski equality, and
the Crooks theorem. The importance of these relations has been clarified, by
considering the different physical implications arising from them. We have also
briefly described how these relations can be related to information theory, and
to quantum correlations.
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Part II.

General Theoretical Analysis
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3 Q U A N T U M T H E R M O DY N A M I C S P R O -
C E S S E S

In this Chapter we discuss the thermodynamics of out of equilibrium pro-
cesses in closed quantum systems.

In particular, Sec. 3.1 is about the concept of thermodynamic work in closed
quantum systems. Specifically, it is shown how its statistics can be obtained in
a two measurement protocol.

In Sec. 3.2 we focus on the case in which the system is prepared in a thermal
Gibbs state. Here, a key quantity, the so called inner friction, is introduced,
discussed and compared with the irreversible work [A]. Both the two quantities
are related with the heat exchange with a heat bath in specific thermalization
processes. The inner friction is also related to the entropy produced, and can
be recast in terms of a quantum relative entropy. This framework is applied to
two paradigmatic processes: a harmonic oscillator with a parametrically driven
frequency in Sec. 3.2.1, and a Landau-Zener process in Sec. 3.2.2.

In Sec. 3.3, we focus on the use of the ideal adiabatic evolution as a reference
transformation for the actual out of equilibrium process. Then, we show how
the work done depends on the non adiabaticity of the process.

The role played by the coherence generated during the process is also studied
and investigated in terms of some thermodynamic quantities.

Some of the concepts introduced here will be useful for the characterization
of driving processes in two specific physical systems: the quantum Ising model
in Chap. 5 and the Dicke model in Chap. 6.

In the following sections, some results are stated without a full derivation,
which has rather been included in the technical appendices at the end of the
Chapter.
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3.1 work in closed quantum systems

A system, whose time evolution is described by the time-dependent Schrödinger
equation, is referred to as closed (or isolated) quantum system.

In a real physical system, this kind of evolution can be achieved for times
shorter than the dissipation and decoherence times [47].

Then, if a quantum system can be considered as closed, its average energy
can vary only if some parameter of the Hamiltonian is changed in time. Since
there is no energy dissipation during the process, an increase in the average
energy of the system can be interpreted as work done �w� on the system by
manipulating that parameter.

As in the classical case of the previous Chapter, we consider the case in which
a parameter λ of the Hamiltonian is controlled in the time interval [0, τ ], which
changes from λi into λf by following the protocol in Eq. (1). The time evolution
of the system’s state is described by the unitary operator Ût,0[λ] generated by
the time dependent Hamiltonian Ĥ(λ(t)), and obtained as the solution of the
Schrödinger equation 1

i
∂

∂t
Ût,0[λ] = Ĥ(λ(t))Ût,0[λ] (11)

with the initial condition Û0,0[λ] = 1.
If we indicate with ρ̂i the initial density matrix of the system, the work done

can be defined as

W = Tr
�
Ĥf ρ̂τ

�
− Tr

�
Ĥiρ̂i

�
(12)

where the final state ρ̂τ is ρ̂τ = Ûτ ,0[λ]ρ̂iÛ
†
τ ,0[λ], and we have defined Ĥi =

Ĥ(λi) and Ĥf = Ĥ(λf ).
Unlike a state function, the work characterizes a process, rather than a state

of the system, and in general it cannot be represented by a Hermitian operator
whose eigenvalues can be determined in a single projective measurement.

1 In this Thesis the energy units are always choosed so that h̄ = 1.
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A way to define the work w as a random variable with probability distribution
p(w) is that of performing projective energy measurements at the beginning
and at the end of the process [48, 10] and obtaining w as the difference.

In this framework, a first projective measurement of the energy is done at the
initial time t = 0. Then, the parameter λ is varied in the time interval (0, τ ),
and afterwards a second projective measurement of the energy is performed at
the time t = τ .

If we indicate with
�����
(i,f )
n

�
the eigen-state of Hi,f with eigenvalue �

(i,f )
n , the

probability distribution of work can be defined as

p(w) =
�

n

�

m
P (i)

m Pm→n(τ )δ
�
w − �(f )n + �(i)m

�
(13)

where P
(i)
n is the initial population of the state

�����
(i)
n

�
, and Pm→n(τ ) is the

transition probability Pm→n(τ ) =
����
�

�
(f )
n

���� Ûτ ,0[λ]
�����
(i)
m

�����
2
.

The stochasticity of the work is due to the (classical) fluctuations coming
from the initial state ρ̂i, that have a thermal nature if the state is prepared by
using a heat bath, and also to the quantum fluctuations if the time evolution
is non adiabatic, so that each post-measurement time evolved state does not
coincide with a unique energy eigenstate.

The statistics of the work done is fully encoded in the characteristic function
χ(u), that has the form of a two-time quantum correlation function [48]

χ(u) =
�
Û †

τ ,0[λ]e
iuĤf Ûτ ,0[λ]e

−iuĤi
�

i
(14)

where the average is calculated as �· · · �i = Tr
�
· · · Δ̂(i)(ρ̂i)

�
, where Δ̂(i) is

the dephasing operator defined by

Δ̂(i)(ρ̂i) =
�

m
Π̂(i)

m ρ̂iΠ̂(i)
m , (15)

with Π̂(i) =
�����
(i)
m

��
�
(i)
m

����. By using the time ordering operator T̂>, the char-
acteristic function can be expressed as

χ(u) =
�

T̂>eiu
� τ

0 ∂tĤ
(H)(λ(t))dt

�

i
(16)

17



where Ĥ(H)(λ(t)) = Û †
t,0[λ]Ĥ(λ(t))Ût,0[λ]. The probability distribution

p(w) in Eq. (13) is related to the characteristic function χ(u) in Eq. (14)
by a Fourier transform.

The statistics of the work can be measured also by performing a generalized
quantum measurement at a single time, instead of two projective measurements,
as proposed in [49].

The average value �w� obtained from χ(w) reads

�w� =
�

n

�
Pn(τ )�

(f )
n − P (i)

n �(i)n

�
(17)

where Pn(τ ) is given by Pn(τ ) =
�

m P
(i)
m Pm→n(τ ).

The average work �w� in Eq. (17) can be different from the work in Eq. (12),
if the initial state ρ̂i does not commute with the initial Hamiltonian Ĥi. Es-
sentially, the contributions to the work due to the coherences of ρ̂i are lost in
performing the projective measurements of the energy at the time t = 0.

From Eq. (16), the moments of the work distribution can be written as [50]

�wn� =
n�

k=0
(−1)k n!

k!(n − k)!

�
Ĥ

(H)
f

n−kĤk
i

�

i
(18)

where Ĥ
(H)
f = Ĥ(H)(λ(τ )) = Û †

τ ,0[λ]Ĥf Ûτ ,0[λ]. The first moment is equal
to the average work given in Eq. (17), and the next two moments are

�w2� =
�
(Ĥ

(H)
f − Ĥi)

2
�

i
(19)

�w3� =
�
(Ĥ

(H)
f − Ĥi)

3
�

i
+
�
[Ĥ

(H)
f , Ĥi](Ĥ

(H)
f − Ĥi)

�

i

from which we see that the non commutativity of the energy at different
times starts to manifest it sell from the third moment of the work.

The rate of change of the work parameter λ plays a crucial role, and we can
distinguish the two limiting cases in which τ is very small (sudden change) and
very large (adiabatic change).

For a sudden change, the time evolution operator can be approximated with
the identity, and the characteristic function reads
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χ(u) =
�
eiuĤf e−iuĤi

�
i

(20)

In this particular case, when the initial state is an eigen-state of Ĥi, the
modulus square of χ(u) can be formally related to the so-called Loschmidt
echo [51], which quantifies the revival occurring when an “imperfect” time-
reversal procedure is applied to a complex quantum system.

3.2 irreversible work and inner fric-

tion

In order to characterize the process in terms of the fluctuation relations
discussed in Chap. 2, we consider the case in which the initial state is a thermal
Gibbs state ρ̂i = ρ̂G[λi, Ti], where

ρ̂G[λ, T ] =
e−βĤ(λ)

Z[λ, T ]
(21)

Here Z[λ, T ] = Tr
�
e−βĤ(λ)

�
is the canonical partition function, and the

Helmholtz free energy F [λ, T ] can be calculated as F [λ, T ] = − ln(Z[λ, T ])/β 2.
Then, the initial populations are given by P

(i)
n = e−βi�

(i)
n /Z[λi, Ti], and

indeed the Jarzynski relation in Eq. (3) holds [48], allowing us to define the
irreversible work �wirr� = �w� − ΔF as a non negative quantity.

Typically, the reversible transformations, in which the system is driven from
an equilibrium configuration to another one very slowly, can be used as a
reference in order to characterize the performances of real processes.

However, if the system is pushed faster than the thermalization time, the
transformation is irreversible, and can lead outside the manifold of equilibrium
states.

2 The thermodynamic entropy can be calculated as S [λ, T ] = kBS(ρ̂G[λ, T ]), where S(ρ̂) is
the Von Neumann entropy defined in Eq. (10), and the relation F [λ, T ] = TS[λ, T ]− U [λ, T ]

is fulfilled, where U [λ, T ] is the internal energy.
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In this context, the irreversible work �wirr�, is a measure of how far is the out
of equilibrium process from a hypothetical isothermal reversible transformation,
which would lead the system to the equilibrium state ρ̂B = ρ̂G[λf , TB = Ti].

This is made evident by expressing the irreversible work as [52]

�wirr� = β−1
B D(ρ̂τ ||ρ̂B) (22)

where

D(ρ̂1||ρ̂2) = Tr {ρ̂1 (ln ρ̂1 − ln ρ̂2)} (23)

is the quantum relative entropy (or quantum Kullback-Leibler divergence)
of ρ̂1 with respect to ρ̂2.

In an isothermal process, the state ρ̂τ usually does not lay on the manifold of
equilibrium states because of a lag of the evolved state behind the instantaneous
Gibbs state, as τ is too short compared with the relaxation times [47].

This is our case, since the system is assumed to be closed during the pro-
cess. Anyway, starting from ρ̂τ , the system can be lead to the equilibrium
state ρ̂B by a thermalization process (i.e. by keeping it in contact with a heat
bath at the temperature Ti), in which the system takes the energy �Qth

τ→B� =
Tr
�
Ĥf (ρ̂B − ρ̂τ )

�
, and the irreversible work can be expressed as

�wirr� = Ti(SB − Si) − �Qth
τ→B� (24)

where SB and Si are the thermodynamic entropies of the equilibrium states
ρ̂B and ρ̂i respectively, and so Ti(SB − Si) is the heat exchanged in the ideal
reversible isothermal transformation.

If the coherence times are sufficiently long, and if the hypothesis for which
the adiabatic theorem holds are satisfied [53], then it is also possible to achieve
an adiabatic time evolution, that leads the system to the final state

ρ̂A = ÛAρ̂iÛ
†
A =

�

n
P (A)

n Π̂(f )
n (25)

with P
(A)
n = P

(i)
n and Π̂(f )

n =
�����
(f )
n

��
�
(f )
n

����.
It is then natural to introduce the so called inner friction �wfric� defined by
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�wfric� = �w� − �wi→A� (26)

where �wi→A� is the work done on the system in the ideal adiabatic process.
These adiabatic transformations enter the Carnot and the Otto cycles and have
been, therefore, largely studied and discussed so far, in particular the role of
the inner friction in an Otto cycle has been recently discussed in [54].

Figure 3.2.1.: The diagram summarizes the processes in the main text. The isother-
mal reversible transformation is represented by the blue dashed line,
while the unitary processes are represented by solid lines. In particu-
lar the real process Uτ ,0[λ] is indicated with the black line, and the
two ideal adiabatic processes, described by UA and ŨA, by the red
and the green line, respectively.

In principle, the adiabatic process is realized by changing the parameter λ

in a sufficiently slow way, so that the transitions between instantaneous eigen-
states of the energy are inhibited. Then at any moment during the transfor-
mation the system is in a stationary state, that does not have necessarily the
form of a Gibbs state given in Eq. (21).

An adiabatic process for which the state of the system stays in the manifold
of thermal Gibbs states, and the state ρ̂A is ρ̂A = ρ̂G[λf , TA] for a certain
temperature TA, is possible if and only if there exists a TA such that the
condition Ti(�

(f )
n − �

(f )
m ) = TA(�

(i)
n − �

(i)
m ) is satisfied for every n and m [55].
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Let assume that a temperature TA exists such that ρ̂A = ρ̂G[λf , TA] (we
will consider the more general case later). Similarly to the irreversible work
�wirr�, the inner friction can then be expressed in terms of the quantum relative
entropy of the state ρ̂τ with respect to the state ρ̂A by

�wfric� = β−1
A D(ρ̂τ ||ρ̂A) (27)

If we think in terms of heat transfer, the inner friction is the amount of work
lost if the end state ρ̂τ is not the equilibrium state ρ̂A. If the system is kept in
contact with a heat bath at the temperature TA after it reaches the state ρ̂τ ,
it will take from the bath the heat �Qth

τ→A� = −�wfric� in order to go to the
equilibrium thermal state ρ̂A.

The inner friction and the irreversible work can be related by the equation

�wirr� − �wfric� = UA − UB − Ti(SA − SB) (28)

where UA and UB are the internal energies of the equilibrium states ρ̂A and
ρ̂B respectively. From the Eq. (28), we see that the two quantities are equal
�wfric� = �wirr�, for a cyclic process or in the limit of zero temperatures3 .

From a thermodynamic point of view, the out of equilibrium process differs
from the reversible adiabatic process, because of a production of entropy due
to the non adiabatic transitions occurring in the irreversible transformation.
There are different suggestions to characterize the thermodynamic entropy of
a generic quantum state [56, 57].

By following [16], we introduce the stochastic variable s

s = βA�(f )n − βi�
(i)
m (29)

having the probability distribution

p(s) =
�

n,m
P (i)

m Pm→n(τ )δ
�
s − βA�(f )n + βi�

(i)
m

�
(30)

3 In the limiting case of zero temperatures, these two reversible transformations of reference
coincide. Instead for a cyclic process, the two final equilibrium states coincide ρA = ρB .
Then, in both cases �wfric� = �wirr�.
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The fluctuations of s are constrained by the Tasaki fluctuation theorem

�e−s� =
�

n,m
P (i)

m Pm→n(τ )e
βA�

(f )
n −βi�

(i)
m =

ZA

Zi
(31)

The free energies at the two thermal equilibrium states ρ̂A and ρ̂i are re-
lated to the partition functions by FA = − ln(ZA)/βA and Fi = − ln(Zi)/βi

respectively. The entropies can be expressed as SA = βAUA − βAFA and
Si = βiUi − βiFi, then the quantity

�Σ� = �s� − βAFA + βiFi (32)

= βA(Tr
�
Ĥf ρ̂τ

�
− FA) − βi(Ui − Fi) (33)

can be interpreted as the entropy produced in the process, and Σ satisfies
the fluctuation theorem

�e−Σ� = 1 (34)

from which, for instance, it follows that �Σ� ≥ 0.
If the process is reversible, then �Σ� is zero because SA = Si. The entropy

�Σ� is related to the inner friction by

�Σ� = βA�wfric� (35)

We observe that Σ is invariant under a shift of the energy reference point,
and so it is independent of the choice of the gauge [10]. If it is possible to choose
the ground state energies as the energy reference point, that is �

(f )
1 = �

(i)
1 = 0,

we have that βA = βi�
(i)
n /�

(f )
n [55] and so βAFA = βiFi and s = Σ.

The concepts discussed above are briefly illustrated in two simple physi-
cal systems: a quantum harmonic oscillator in Sec. 3.2.1 and a spin 1/2 in
Sec. 3.2.2.

3.2.1 A Quantum Harmonic Oscillator

We consider a quantum harmonic oscillator having frequency ω.
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The out of equilibrium process is generated by changing the frequency from
the initial value ωi at the time t = 0, to the final value ωf at the time t = τ ,
so that ω(t) is its value at the time t. The work stastics of this process was
studied in [58], and in [59], the irreversible work was connected with the degree
of squeezing of the state.

Here we compare the actual process to the ideal adiabatic one, in which the
system will reach the final equilibrium state at the temperature TA = Tiωf /ωi.

The inner friction �wfric� can be written as �wfric� = �δn�ωf , where �δn� is
the average number of the non adiabatic excitations generated in the process.
It reads

�δn� = Q∗ − 1
2 coth

�
βiωi

2

�
(36)

where Q∗ is the parameter introduced in [60], and recently discussed in [58].
This parameter is intimately related to the adiabaticity of the evolution, in
particular in the adiabatic limit it is Q∗ = 1.

No excitations are generated in the adiabatic limit, and so Pm→n(τ ) = δm,n.
Including the first non-zero correction in the time-adiabatic perturbation

expansion [53], we find the non zero transition probabilities

Pm→m±2(τ ) � 1
4





(m + 1)(m + 2)
m(m − 1)





������

� τ

0

ei2
� t

0 ω(t�)dt�

2ω(t)

dω(t)

dt
dt

������

2

(37)

that depend on how slow the frequency ω(t) is changed by its logarithmic
derivative.

In this approximation, the propability of permanence in each m-state is
Pm→m(τ ) � 1 − Pm→m+2(τ ) − Pm→m−2(τ ).

By using the expressions in Eq. (37), we find

�δn� � coth
�

βiωi

2

� ������

� τ

0

ei2
� t

0 ω(t�)dt�

2ω(t)

dω(t)

dt
dt

������

2

(38)

For a non adiabatic time-evolution, the transition probabilities Pm→n(τ ) can
be calculated from the generating function given in [60].
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3.2.2 A Landau-Zener Process

Another fundamental system to which we can easily apply the general the-
oretical considerations developed above, is a spin 1/2 particle in presence
of a time-dependent magnetic field. The spin is described by the operators
Ŝ = (Ŝx, Ŝy, Ŝz), satisfying the commutation relations

�
Ŝα, Ŝβ

�
= i

�

γ
EαβγŜγ

where Eαβγ is the Levi-Civita symbol. The spin operators are expressed in
terms of the Pauli matrices σ̂ = (σ̂x, σ̂y, σ̂z) by Ŝ = 1

2σ̂.
We assume to reverse the direction of the magnetic field by changing its

intensity linearly in time. The crossing in the energy levels is avoid by taking
into account a little perturbation in the Hamiltonian, so that the system is
described by the Landau-Zener Hamiltonian [61, 62]

Ĥ(B) = −Bσ̂z + �σ̂x (39)

where the parameter B is changed from the initial value Bi = −B0 to
Bf = B0, in the time interval [−τ , τ ], following the protocol B(t) = vt, so
that B0 = vτ > 0. It is assumed that � � B0, so that a spin flip can occur
only as t ∼ 0.

We consider the case in which the field is initially strong enough, so that the
initial state of the spin is the ground state |↓�. Then if the initial temperature
is Ti, we require that B0 � kBTi.

If the parameter is changed adiabatically, i.e. in the limit v → 0, the spin
adiabatically follows the direction of the magnetic field, reaching the final state
|↑�, and the work done in this reversible process is zero.

For a finite speed v, we have an increase of internal energy by a production
of irreversible work �wirr� = �wfric� = �w� .

In the limit B0 → ∞, the asymptotic limit of the irreversible work can be
calculated as in [63], obtaining

�wirr� ∼ 2B0e− π�2
v (40)
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Then, as the process tends to be slow, the irreversible work done goes expo-
nentially to zero.

3.3 non-adiabaticity, work and quan-

tum coherence

The existence of a unitary process for which the state ρ̂A is a thermal Gibbs
state ρ̂G[λf , TA], plays a relevant role in thermodynamics, but it is also a tight
requirement [55]. It can be achieved in paradigmatic quantum systems such as
a two level system or a harmonic oscillator, but not in all quantum systems.

So, in general the inner friction �wfric� is not related to the quantum relative
entropy D(ρ̂τ ||ρ̂A) by the Eq. (27). Anyway, the “entropic measure”

NA = D(ρ̂τ ||ρ̂A) (41)

can still be used to quantify the non adiabaticity of the evolution. It is related
to the work done �w� by the equality

NA = βi (�w� + �w̃ad�) (42)

where �w̃ad� is the work done in an ideal process in which we try to come back
to the initial state ρ̂i, starting from the final state ρ̂τ , by using an adiabatic
time reversed process.

If the microreversibility principle holds [10], the wanted time reversed process
is achieved when the parameter λ adiabatically retraces its history in time.
Otherwise, it is obtained by the time reversed evolution Û †

A (see App. 3.A).
During the change of the parameter λ, the state of the system is typically

unable to follow perfectly the equilibrium state, as signaled by a non zero NA.
This inability is a consequence of both the creation of non zero coherences,

and the change of the populations, with respect to the reference basis of the
instantaneous eigenstates of the Hamiltonian. These two contributions can be
isolated in NA
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NA = C(ρ̂τ ) + D(Δ̂(ρ̂τ )||ρ̂A) (43)

where C(ρ̂τ ) is the relative entropy of coherence [64, 65], defined by

C(ρ̂τ ) = D(ρ̂τ ||Δ̂(ρ̂τ )) (44)

and so the contribution coming from the change in populations is given by
D(Δ̂(ρ̂τ )||ρ̂A). The dephasing operator Δ̂ is defined by Eq. (15) by choosing
the reference basis {

�����
(f )
n

�
}n.

Eq. (43) can be obtained by using the mathematical identity 4

D(ρ̂||σ̂) = C(ρ̂) + D(Δ̂(ρ̂)||σ̂) (45)

where ρ̂ is an arbitrary density matrix, and the density matrix σ̂ is such that
Δ̂(σ̂) = σ̂.

If is possible to consider an adiabatic perturbation expansion of Ûτ ,0[λ] in
the adiabatic parameter τ−1, then at the second order in τ−1 it follows 5

NA � C(ρ̂τ ) (46)

If ρ̂A is the thermal equilibrium state ρ̂G[λf , TA], the measure NA can be
recognized as the entropy produced �Σ�. This means that as we start to go
away from the reversible adiabatic process, the production of entropy �Σ� starts
because of the generation of coherences in the state ρ̂τ .

A relation analogous to the Eq. (43) is obtained for the irreversible work as
well

�wirr� = β−1
i

�
C(ρ̂τ ) + D(Δ̂(ρ̂τ )||ρ̂B)

�
(47)

and by using �wirr� = �w� − ΔF , it follows that

C(ρ̂τ ) = βi�wirr� + βi (�w̃ad� + ΔF ) − D(Δ̂(ρ̂τ )||ρ̂A) (48)

In a cyclic process, the final Hamiltonian is equal to the initial one Ĥf = Ĥi,
and so

4 See App. 3.B for a proof.
5 See App. 3.C for a proof.
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�w� = β−1
i

�
C(ρ̂τ ) + D(Δ̂(ρ̂τ )||ρ̂i)

�
(49)

3.4 summary and conclusions

We have discussed the thermodynamic work done in out of equilibrium pro-
cesses, assuming that the system can be considered closed during the driving.
The discussion is carried on by taking into account the irreversible amount
of work produced in the process, which can be quantified in terms of either
the inner friction

�
wfric

�
or the irreversible work �wirr�, depending on the re-

versible transformation that is taken as a reference. These two figures of merit
are linked to the quantum relative entropy and to the heat that is exchanged
in a thermalization process. Furthermore, the thermodynamic work has been
related to the distance of the real process from an ideal quantum adiabatic one.
This is obtained by considering an “entropic” measure of the non adiabaticity
of the process, investigating also the case of a quasi-adiabatic approximation
for the process. The role played by the quantum coherence, generated in the
process, is also briefly discussed.
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3.a relation between NA and the work

In this Appendix we describe the time reverse process discussed in Sec. 3.3,
proving the relation in Eq. (42) of Sec. 3.3, that connects the work to the
non adiabaticity of the out of equilibrium process quantified by the entropic
measure NA defined in Eq. (41).

The out of equilibrium process ρ̂i �→ ρ̂τ is described by the time evolution
Ût,0[λ], and its time-reversed evolution from τ to t, is described by Û †

τ ,t[λ],
generated by the time-reversed Hamiltonian. Under the assumption that at any
time t the Hamiltonian is invariant under the time-reversal operation Θ̂, that is
Θ̂Ĥ(λ(t)) = Ĥ(λ(t))Θ̂, we can consider a time-reversed process having time
evolution operator Ût,0[λ̃] =

ˆ̃Ut,0[λ], where λ̃(t) = λ(τ − t), since the principle
of microreversibility, expressed as

Ûτ−t,0[λ̃]Θ̂ = Θ̂Ût,τ [λ] = Θ̂Û †
τ ,t[λ] (50)

holds, as shown in [10].
Indeed, if the energy spectrum is non degenerate, from the Eq. (50) it follows

that

���
�
�(i)m

��� Ûτ ,0[λ̃]
����(f )n

���� =
���
�
�(i)m

��� Û †
τ ,0[λ]

����(f )n

���� (51)

The operator ˆ̃UA is defined as the adiabatic limit of the operator Ûτ ,0[λ̃],
and analogously to the operator ÛA, the state ˆ̃UA

�����
(f )
n

�
differs from

�����
(i)
n

�
only

by a global phase.
Then the work done in the adiabatic time-reversed process is by definition

�w̃ad� = Tr
�
Ĥi

ˆ̃UAρ̂τ
ˆ̃U †
A

�
− Tr

�
Ĥf ρ̂τ

�
(52)

from which

�w̃ad� =
�

n
�(i)n

�
�(i)n

��� ˆ̃UAρ̂τ
ˆ̃U †
A

����(i)n

�
− �(f )n Pn(τ ) (53)

Since ˆ̃UA

�����
(f )
n

�
differs from

�����
(i)
n

�
only by a global phase, it is easy to show

that
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�w̃ad� =
�

n
Pn(τ )

�
�(i)n − �(f )n

�
(54)

If time reversal symmetry does not hold, we have to use Û †
A instead of ˆ̃UA,

but the expression obtained for �w̃ad� remains unchanged.
By using the definition of �w�, we have

βi (�w� + �w̃ad�) =
�

n
(Pn(τ ) − P (i)

n )βi�
(i)
n

=
�

n
(P (i)

n − Pn(τ )) ln P (i)
n

=
�

n
P (i)

n ln P (i)
n −

�

n
Pn(τ ) ln P (A)

n

= −S(ρ̂i) − Tr {ρ̂τ ln ρ̂A}

= −S(ρ̂τ ) − Tr {ρ̂τ ln ρ̂A}

= D(ρ̂τ ||ρ̂A)

that is the Eq. (42) of Sec. 3.3.

3.b a mathematical identity

In this Appendix we show the mathematical identity in Eq. (45) of Sec. 3.3,
that has been used to prove Eq. (43) and Eq. (47). Given an arbitrary state ρ̂

and a state σ̂ that is diagonal in the basis of reference that defines the dephasing
operator Δ̂, the quantum relative entropy D(ρ̂1||ρ̂2) defined in Eq. (23), can
be decomposed as the sum of two contributions. The first one is due to the
coherences in ρ̂, the second to the population difference between Δ̂(ρ̂) and σ̂.
Explicitly

D(ρ̂||σ̂) = −S(ρ̂) − Tr {ρ̂ ln σ̂}

= −S(ρ̂) + S(Δ̂(ρ̂)) − S(Δ̂(ρ̂)) − Tr {ρ̂ ln σ̂}

= C(ρ̂) − S(Δ̂(ρ̂)) − Tr {ρ̂ ln σ̂}

Explicitly the dephasing operator can be expanded as Δ̂ρ̂ =
�

n ��n| ρ̂ |�n� |�n� ��n|.
The operator σ̂ is diagonal in the basis {|�n�}n which defines the dephasing,
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hence only the diagonal part of the density matrix ρ counts for the trace, and
so

D(ρ̂||σ̂) = C(ρ̂) − S(Δ̂(ρ̂)) − Tr
�

Δ̂(ρ̂) ln σ̂
�

= C(ρ̂) + D(Δ̂(ρ̂)||σ̂)

where C(ρ̂) is the quantum coherence measure defined in (44), that is found
to be equal to C(ρ̂) = S(Δ̂(ρ̂)) − S(ρ̂) [65].

3.c adiabatic perturbation expansion

In this Appendix, we prove the relation in Eq. (46) of the Sec. 3.3, that shows
how the quantum non adiabaticity of a process, quantified by NA, is related
to the quantum coherence, as the process becomes “quasi-adiabatic”.

In the adiabatic approximation, the transition probability is Pm→n(τ ) →
δm n.

If non-adiabatic transitions are taken into account by performing an adi-
abatic perturbation expansion [53], there can be a corrections, so that the
transition probability is

Pm→n(τ ) � δm n + P (2)
m→n(τ ) (55)

Let us focus on the entropy S(Δ̂(ρ̂τ )). By using this approximation we have
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S(Δ̂(ρ̂τ )) = −
�

n
Pn(τ ) ln Pn(τ )

� −
�

n
Pn(τ ) ln

�
P (i)

n +
�

m
P (i)

m P (2)
m→n(τ )

�

� −
�

n
Pn(τ ) ln P (i)

n −

�

n
Pn(τ ) ln


1 +

�

m

P
(i)
m

P
(i)
n

P (2)
m→n(τ )




� −
�

n
Pn(τ ) ln P (i)

n −
�

n

�

m
P (i)

m P (2)
m→n(τ )

The second order transition probabilities P
(2)
m→n(τ ) are such that�n P

(2)
m→n(τ ) =

0, because �n Pm→n(τ ) = 1. Then

S(Δ̂(ρ̂τ )) � −
�

n
Pn(τ ) ln P (i)

n

= −
�

n
Pn(τ ) ln P (A)

n

= −Tr {ρ̂τ ln ρ̂A}

and so

NA = −S(ρ̂τ ) − Tr {ρ̂τ ln ρ̂A}

= −S(ρ̂i) − Tr {ρ̂τ ln ρ̂A}

� −S(ρ̂i) + S(Δ̂(ρ̂τ ))

= C(ρ̂τ )
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4 WO R K E X T R AC T I O N A N D Q U A N T U M
C O R R E L AT I O N S

In this Chapter, we examine the possibility to infer about the existence of
quantum correlations, by looking at the thermodynamics of an out of equilib-
rium process [E]. This study is carried out for a general finite dimensional
quantum system, by considering a suitable work extraction protocol.

The conventional process of work extraction from a storing center that is
a closed quantum system, is discussed in Sec. 4.1 in terms of the quantum
ergotropy [66]. The ergotropy is defined as the maximum amount of work ex-
tractable from the system, by means of a unitary cycle, and plays a key role in
charging the storing center [67, 68]. There, it is also shown how the contribu-
tion given to the ergotropy by the quantum coherence, can be easily identified
when the system is first prepared in some special states.

In Sec. 4.2 we consider a bipartite quantum system, and we show how it is
possible to optimize the process of work extraction, by using a suitable feed-
back protocol. The protocol enhances the work extraction procedure, by taking
advantage of the initial correlations between the two parts of the system. The
maximum daemonic gain achieved is strictly related to the quantum nature of
the correlations. In general, it behaves as a witness for quantum correlation,
and defines a thermodynamic criterion for separability, that is necessary and
sufficient for bipartite pure states. Furthermore, an explicit example with a
simple system of two qubits is considered in Sec. 4.2.1, where the daemonic
gain is related to the quantum correlations between the two qubits. Explicitly,
we give a characterization of the states which, for a given value of gain, maxi-
mize the quantum correlations. We take into account both the correlations as
measured by the discord, and those quantified by the concurrence.
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4.1 work extraction from finite quan-

tum systems

The possibility to realize small heat engines, has recently received a great
deal of attention from the scientific community. In this scenario, a quantum
system S can play the role of a storing center (a so-called quantum battery) [69],
i.e. it can be used to temporarily store energy that will be later extracted in
order to perform some useful work (for instance, the driving of a small heat
engines [70]).

When the work is extracted from the system S by permorming a cyclic
process during which the system is thermally isolated from its environment, the
ergotropy [66], defined as the maximum amount of work extractable from the
system by using an unitary cycle, becomes a key quantity. Ideally, the system
S is characterized by its initial state ρ̂ and its Hamiltonian Ĥ, and the cyclic
process is realized by manipulating some external fields (work parameters) that
are switched on only in the time interval [0, τ ] [69], so that the time evolution
Ût,0 in this interval is generated by the Hamiltonian Ĥ(t) = Ĥ + V̂ (t) where
V̂ (t) is such that V̂ (0) = V̂ (τ ) = 0.

Since the system is closed, it will reach the final state ρ̂τ = Ûτ ,0ρ̂Û †
τ ,0 at

time t = τ , and the amount of work extracted Wex will be equal to its average
energy decrease

Wex = Tr
�
Ĥ ρ̂
�

− Tr
�
Ĥ ρ̂τ

�

There are states, called passive states, from which no work can be extracted,
that is Wex = 0 for every time function V̂ (t) that satisfies the conditions
V̂ (0) = V̂ (τ ) = 0. An example of a passive state is a thermal Gibbs state (21).
A non passive state can be achieved by considering a bipartite system S, with
the two parts prepared in thermal equilibrium states at different temperatures.

The work extracted Wex cannot be larger than Wth = Tr
�
Ĥ(ρ̂ − ρ̂th)

�
,

where the passive state ρ̂th is the thermal Gibbs state at the temperature T

defined by the equation S(ρ̂th) = S(ρ̂) [66, 69].
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For a two level system, it is always possible to perform a unitary and to reach
the final state ρ̂th (the unitary is the one that diagonalizes the initial density
matrix ρ̂), but this is not true in general. For this reasons, the concept of
ergotropy W has been introduced as the maximum amount of work (optimized
over all the possible cyclic processes defined above) that can be extracted from
the system S having Hamiltonian Ĥ and prepared in the initial state ρ̂. The
ergotropy can be expressed as [66]

W =
�

k

�

j

rk�j

�
|��j | rk�|2 − δj k

�
(56)

where we have considered

Ĥ =
�

k

�k |�k� ��k| , ρ̂ =
�

k

rk |rk� �rk| (57)

with the eigen-energies �k and the populations rk ordered such that �k ≤ �k+1

and rk ≥ rk+1. The ergotropy W is a non negative quantity, and we have W = 0
if and only if the initial state ρ̂ is a passive state [69]. The work extracted Wex

is equal to W if and only if the final state reached thanks to the unitary Ûτ ,0

is a passive state. Of course, if there are degeneracies in the energy spectrum,
there is not a unique passive state unitarily connected to ρ̂.

Clearly, the ergotropy cannot be greater than Wth [66]. In general, the limit
Wth is asymptotically achievable by considering an infinite number of copies
of the system S [69].

When the state ρ is unitarily connected to a passive thermal Gibbs state
σ̂β = e−βĤ/Z, then the ergotropy is equal to Wth, and it is given by W =

Tr
�
Ĥ(ρ̂ − σ̂β)

�
. In this case, from the Eq. (49), it follows that

W = β−1
�
C(ρ̂) + D(Δ̂(ρ̂)||σ̂β)

�
(58)

where Δ̂ is the dephasing operator with respect to the basis of the eigen-
states of Ĥ. In Eq. (58), the quantum contribution given by the coherences,
characterized by the coherence measure C(ρ̂), is separated from the “classical”
contribution to the ergotropy W , given by D(Δ̂(ρ̂)||σ̂β), which is due to the
population differences.
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Those states ρ̂ for which Δ̂(ρ̂) = σ̂β give the ergotropy W = β−1C(ρ̂).

4.2 daemonic ergotropy

In order to connect the ergotropy with the theory of quantum correlations,
we extend this maximal work extraction framework by introducing a non-
interacting ancilla A and assume that the system S, playing the role of storing
center, and the ancilla A are initially prepared in the joint state ρ̂SA. The in-
tuition behind the protocol, that will be discussed below, is that should ρ̂SA

bring about correlations between S and A, a measurement performed on the
ancilla would give us information about the state of S, which could then be
used to enhance the amount of work that can be extracted from its state.

The correlations between the system and the ancilla can be generated with-
out changing the average energy of the storing center S. For instance, the state
ρSA can be achieved starting from a global state with no correlations, by engi-
neering an interaction between S and A of the kind V̂SA(t) =

�
k |�k� ��k|S ⊗

Âk(t). The states |�k�S are the eigenstates of the Hamiltonian of S, and the
operators Âk(t) act on the Hilbert space of the ancilla A, and change in time
so that at the end of such protocol the two systems do not interact with each
other anymore.

For our purposes, we focus on the case in which the work is extracted by
local unitary cycles on the part S: i.e. we assume that S and A do not interact
with each other, and control the parameters of the system S, so that at the
end its Hamiltonian is equal to the initial one, that we indicate with ĤS

ĤS =
�

k

�k |�k� ��k|S , �k ≤ �k+1

We assume to be able to perform a Von Neumann measurement on the
state of the ancilla A. This kind of measurement can be described by a set of
orthogonal projectors of rank one {Π̂A

a = |a� �a|A}a. Specifically the state of
the system S collapses into the density matrix ρ̂S|a = TrA

�
1̂S ⊗ Π̂A

a ρ̂SA

�
/pa,
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with the probability pa = Tr
�

Π̂A
a ρ̂SA

�
. The post measurement density matrix

can be written as

ρ̂S|a =
�

k

ra
k |ra

k� �ra
k|S , ra

k ≥ ra
k+1

The time evolution of state ρ̂S|a then follows a cyclic unitary process Ûa

conditioned on the outcome of the measurement. By averaging over all of the
possible measurement outcomes, the work extracted from the state of S reads

W{ΠA
a } = Tr

�
ρ̂SĤS

�
−
�

a
paTr

�
Ûaρ̂S|aÛ †

aĤS

�

Since Tr
�
ρ̂SĤS

�
=
�

a paTr
�
ρ̂S|aĤS

�
, and Tr

�
ρ̂S|aĤS

�
−Tr

�
Ûaρ̂S|aÛ †

aĤS

�

is smaller than the ergotropy of the state ρ̂S|a calculated with respect to the
Hamiltonian ĤS , which is given by Tr

�
ĤS ρ̂S|a

�
−�

k ra
k�k, we have that the

work W{Π̂A
a } cannot be larger than the quantity

W{Π̂A
a } = Tr{ρ̂SĤS} −

�

a
pa

�

k

ra
k�k (59)

This quantity is obtained by a maximization of the work W{Π̂A
a } over all

the possible ways to control the system S, and we call it Daemonic Ergotropy,
because it depends by the amount of information about S extracted from A.

If we do not use the information obtained upon measuring the ancilla, and
thus control the system S in the same way, independently of the measurement
outcomes , so that Ûa = Û for every a, the maximum extractable work would be
given by the ergotropy W associated with state ρ̂S = TrA{ρ̂SA} =

�
a paρ̂S|a.

If

ρ̂S =
�

k

rk |rk� �rk| , rk ≥ rk+1

then the ergotropy reads

W = Tr{ρ̂SĤS} −
�

k

rk�k (60)
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In App. 4.A, we show that the information acquired through the measure-
ments allows to extract more work than in the absence of them, that is W{Π̂A

a } ≥
W and that it provides an upperbound on the ergotropy.

The characterization of the efficiency of this work extraction scheme, though,
should take into account the energetic cost of the measurements ΔEmeas, whose
quantification depends on several factors. However, it cannot be smaller than
the average variation in the energy of A, so that a lower value can be established
as ΔEmeas ≥ �

a paTr
�

Π̂A
a ĤA

�
− Tr

�
ĤAρ̂A

�
with ĤA the Hamiltonian of the

ancilla and ρ̂A = TrS{ρ̂SA} its reduced state.
For our purposes, the main object of our attention will be the difference

W{Π̂A
a } − W, since we expect it to be related to the correlations between S and

A. For instance, if S and A are initially statistically independent, i.e. ρ̂SA =

ρ̂S ⊗ ρ̂A, then the measurements on the ancilla would not bring about any
information on the state of S, as we would have ρ̂S|a = ρ̂S for any set {Π̂A

a }
and outcome a.

Consequently, W{Π̂A
a } = W , and there would be no gain in work extraction.

Then, it is natural to ask what happens when it is not possible to have a
gain. In order to answer to this question, we consider the maximum gain

δW = max{Π̂A
a }W{Π̂A

a } − W , (61)

and we refer to it as daemonic gain. Clearly, δW ≥ 0 because of the consid-
erations above and the optimization entailed in Eq. (59).

Our aim is to connect δW to quantum correlations.
To this end, we notice that δW is invariant under local unitary transforma-

tions of the form ÛS ⊗ ÛA. Indeed, any unitary transformation on S can be
incorporated into the transformations used for the extraction of work, while
the action of any unitary on A is equivalent to a change of the measurement
basis.

We show below that δW is intimately related to the quantum correlations
shared by S and A, quantified by the quantum discord [45, 46].
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For projective measurements performed on the system S, discord is defined
as

−→D SA = ISA − max
{Π̂S

a }

−→J SA, (62)

where ISA is the mutual information between S and A, and −→J SA is the one-
way classical information associated with an orthogonal measurement set {Π̂S

a }
performed on the system [45] (see App. 4.A for details and for the explicit
definitions of ISA and −→J SA).

It is possible to infer about the quantum correlations in the state ρSA by
looking at the gain in the work extraction, because of the following theorem

Theorem 4.2.1 For any system S and ancilla A prepared in a state ρ̂SA, we
have

δW = 0 ⇒ −→D SA = 0 (63)

with δW and −→D SA as defined in Eq. (61) and in Eq. (62), respectively.

The asymmetry of the daemonic gain is well reflected into the impossibility
of linking δW to the discord associated with measurements performed on the
ancilla. That is

δW = 0 � ←−D SA = 0. (64)

The proof of both Theorem 4.2.1 and the corollary statement in Eq. (64)
are presented fully in App. 4.A. It is important to observe that, in general, the
converse of Theorem 4.2.1 does not hold, i.e. ←−D SA = 0 or −→D SA = 0 � δW = 0
as there can well be classically correlated states associated with a non-null
daemonic gain.

Instead, if ρ̂SA is a pure state, its correlations can only be in the form of
entanglement, and so from Theorem 4.2.1, δW = 0 if and only if the state ρ̂SA

is separable. Specifically

Theorem 4.2.2 For any system S and ancilla A prepared in a pure state
ρ̂SA = |ψ� �ψ|SA we have

δW = 0 ⇔ |ψ�SA is separable, (65)
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and δW =
�

k rk�k − �1, where rk are the Schmidt coefficients of |ψ�SA and �k

are the eigenvalues of ĤS, ordered such that rk ≥ rk+1 and �k ≤ �k+1.

Theorem 4.2.2 is a thermodynamically motivated separability criterion for pure
bipartite states in arbitrary dimensions and it gives an explicit quantitative link
between the theory of entanglement and the thermodynamics of information.

4.2.1 Two Qubits System

The statements in Theorems 4.2.1 and 4.2.2 are completely general, and inde-
pendent of the nature of either S or A, which could in principle live in Hilbert
spaces of different dimensions. However, in order to illustrate their implications
and gather further insight into the relation between the introduced daemonic
gain and both discord and entanglement, here we focus on the smallest non-
trivial situation, which is embodied by a two-qubit system.

We start with the implications of Theorem 4.2.1 and compare δW with
discord −→D SA. Since both these quantities are invariant under local unitary
transformations on ρ̂SA, without loss of generality we can consider the system
Hamiltonian ĤS = −σ̂z.

An extensive numerical analysis reveals that, for any state ρ̂SA with a gain
δW , the discord −→D SA, cannot be larger than

Dmax(δW) = h

�
1 − δW

2

�
(66)

where h(x) = −x log2(x)− (1−x) log2(1−x), as it can be seen in Fig. 4.2.1(Left
Panel).

This means also that we need at least a certain amount of quantum correla-
tions in the state ρ̂SA, quantified by −→D SA, in order to be sure to have a gain δW
not smaller than δWmin, where δWmin is the solution of Dmax(δWmin) =

−→D SA.
The monotonicity of h(x) implies that growing values of quantum corre-

lations are associated with a monotonically increasing daemonic gain: for the
states lying on such lower bound, quantum correlations form a genuine resource
for the catalysis of thermodynamic work extraction. Moreover, as limx→1 h(x) =
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Figure 4.2.1.: (Color online): Distribution of two-qubit states in the daemonic gain-
vs-discord plane (Left Panel) and in the daemonic gain-vs-concurrence
plane (Right Panel). We have generated 3 × 103 general random states
of system and ancilla, evaluating the daemonic gain δW and the dis-
cord −→D SA (blue dots), and the concurrence C (red dots) for each of
them. The curves enclosing the distributions correspond to the bound-
aries discussed in the main text. Notice that states with no quantum
correlations may correspond to arbitrarily large values of the dae-
monic gain δW.

0, a two-qubit system with −→D SA = 0 (i.e. a classically correlated state) can
achieve, in principle, any value of daemonic gain up to the maximum that, for
this case, is δW = 1. On the other hand, the daemonic ergotropy is maximized
by taking pure two-qubit states with growing degree of entanglement.

We can now address Theorem 4.2.2 and its consequences for two-qubit states.
Similarly to what was done above, we have studied the distribution of random
two-qubit states in the daemonic ergotropy-versus-entanglement plane, choos-
ing quantum concurrence C as a measure for the latter [71]. The results are
illustrated in Fig. 4.2.1(Right Panel). As before, a lower bound to the amount
of daemonic ergotropy at set value of concurrence can be identified. We have
that, for any state ρ̂SA with concurrence C

δW ≥ δWmin(C) = 1 −
�

1 − C2, (67)

a lower bound that is achieved by Bell-diagonal states that are fully char-
acterized in App. 4.A.1. The upper bound, on the other hand, is achieved
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by maximally ergotropic (in our daemonic sense) states ρ̂SA = [|00� �00|SA +

|11� �11|SA + C(|00� �11|SA + h.c.)]/2.

4.3 summary and conclusions

We have illustrated an ancilla-assisted protocol for work extraction that
takes advantage of the sharing of quantum correlations between a system and
an ancilla that is subjected to suitably chosen projective measurements. Our
approach allowed us the introduce of a new form of information-enhanced er-
gotropy, which we have dubbed daemonic, which acts aptly as a witness for
quantum correlations in general, and serves as a necessary and sufficient crite-
rion for separability of bipartite pure states. We have characterised fully the
distribution of quantum correlated two-qubit states with respect to the figure
of merit set by the daemonic ergotropy, finding that quantum correlations em-
body a proper resource for the work-extraction performances at least for the
states that minimize δW . We are also taking into consideration the possibility
to perform a similar analysis with respect to classical and total correlations.
Our work opens up interesting avenues for the thermodynamic interpretation
of quantum correlations, clarifies their resource-role in ancilla-assisted infor-
mation thermodynamics and opens up possibilites to understand the role of
correlations in the charging power of quantum batteries [67, 68].
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4.a daemonic ergotropy: proofs of the

statements

We recall the definition of quantum discord ←−D SA associated with orthogonal
measurements {Π̂A

a } performed over the ancilla

←−D SA = ISA − max{Π̂A
a }

←−J SA, (68)

where ISA is the mutual information ISA = S(ρ̂A) + S(ρ̂S)− S(ρ̂SA),
←−J SA =

S(ρ̂S)−�a paS(ρ̂S|a) is the so-called one-way classical information and S(ρ̂) =

−Tr {ρ̂ log2 ρ̂} is the von Neumann entropy of the general state ρ̂. The maxi-
mization inherent in Eq. (68) is over all the possible orthogonal measurements
on the state of A. Similarly we define the discord −→D SA associated with mea-
surements performed over the state of the system S as Eq. (68) with the role
of S and A being swapped.

Lemma 4.A.1 For any set of orthogonal projective measurements {Π̂A
a } per-

formed over an ancilla A prepared with a system S in a state ρ̂SA, we have
W{ΠA

a } ≥ W

Proof In order to show this statement, we observe that

ρ̂S =
�

k

rk |rk� �rk| =
�

a
TrA[Π̂A

a ρ̂SA]

=
�

a
paρ̂S|a =

�

a
pa

�

k

ra
k |ra

k� �ra
k| .

(69)

Eq. (69) implies that rk =
�

a pa
�

j ra
j |�rk| ra

j

�
|2.

As W{Π̂A
a } − W =

�
k �k (rk −�a para

k), we have that

W{Π̂A
a } − W =

�

a
pa

�

k,j
ra

j �k

�
|�rk| ra

j

�
|2 − δkj

�
≥ 0 (70)

due to the fact that �k,j ra
j �k

�
|�rk| ra

j

�
|2 − δk j

�
≥ 0, as this is the ergotropy

of ρ̂S|a relative to the Hamiltonian �k �k |rk� �rk|.
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Theorem 4.2.1 For any system S and ancilla A prepared in a state ρ̂SA, we
have

δW = 0 ⇒ −→D SA = 0 (71)

with δW and −→D SA as defined in Eq. (61) and (62), respectively.

Proof In light of Lemma 4.A.1, we have that W{Π̂A
a } − W = 0 ⇔ δW = 0

for any set {Π̂A
a }. Then, in order to proof the statement of the Theorem, it is

enough to show that, regardless of the choice of projector set {Π̂A
a }, W{Π̂A

a } −
W = 0 ⇒ −→D SA = 0. Let assume that −→D SA �= 0. Then, there is at least a set
{Π̂A

a } such that W{Π̂A
a } − W �= 0. Two cases are then possible:

(i) There is a measurement outcome ā such that ρ̂S|ā �= �
k rā

k |rk� �rk| with
rā

k ≥ rā
k+1. Then

W{ΠA
a } − W ≥ pā

�

k,j
rā

j �k

�
|�rk| rā

j

�
|2 − δkj

�
> 0, (72)

given that �k,j rā
j �k

�
|�rk| rā

j

�
|2 − δkj

�
is the ergotropy of ρ̂S|ā relative

to the Hamiltonian �
k �k |rk� �rk|, and is zero if and only if ρ̂S|ā =

�
k rā

k |rk� �rk|.

(ii) For every a ρS|a =
�

k ra
k |rk� �rk| with ra

k ≥ ra
k+1. In this case W{ΠA

a } −
W = 0. However, as ρ̂SA is such that −→D SA �= 0, it is always possible to
identify another set {Π̂�A

a } such that W{Π�A
a } − W > 0. In order to show

how this is possible, we note that ρ̂SA can be written as

ρ̂SA =
�

a,a�

�

k,k�
Caa�

kk� |rk� �rk� |S ⊗ |a�
�
a�
���
A

with the condition paCaa
kk� = ra

kδkk� . As −→D SA �= 0, there are two mea-
surement outcomes ā and ā� such that C āā�

kk� �= C āā�
k δkk� . Should this be

not true, we would have −→D SA = 0, and thus a contradiction. Therefore,
as −→D SA �= 0, the matrix A �ā| ρ̂SA |ā��A cannot be diagonal in the basis
{|rk�S} (here |āA� is the eigenstate of Π̂A

a with eigenvalues ā). If ā = ā�,
case (ii) cannot occur.

However, if ā �= ā�, we can define the new set of projectors {Π̂�A
a }

with elements Π̂�A
ā = (|ā� + |ā��)(�ā| + �ā�|)/2, Π̂�A

ā� = (|ā� − |ā��)(�ā| −

46



�ā�|)/2 and Π̂�A
a = Π̂A

a for a �= ā, ā�. Then, the density matrix ρ̂�
S|ā =

TrA{Π̂�A
ā ρ̂SA}/p�

ā reads

ρ̂�
S|ā =

1
2p�̄

a

��

k

(pārā
k + pā�rā�

k ) |rk� �rk|S

+
�

A�ā| ρ̂SA

���ā��
A
+A

�
ā�
��� ρ̂SA |ā�A

� �
,

(73)

which shows that ρ̂�
S|ā is not diagonal in the basis {|rk�S}. Therefore

ρ�
S|ā �= �

k r�ā
k |rk� �rk|S with r�ā

k ≥ r�ā
k+1. So, proceeding in a similar way

as for case (i), we conclude that

W{Π�A
a } − W > 0. (74)

If A�ā| ρ̂SA |ā��A +A�ā�| ρ̂SA |ā�A = 0, it is enough to consider ρ̂�
S|ā� instead

of ρ̂�
S|ā.

Having proven Theorem 4.2.1, we can provide a justification of two important
Corollaries

Corollary 4.A.2 Under the premises of Theorem 4.2.1, δW = 0 � ←−D SA =

0.

Proof It is enough to consider the state

ρ̂SA =
�

k,a
qak |rk� �rk|S ⊗ |φa� �φa|A , (75)

where {|φa�A} is a non orthogonal set of states, such that we have ←−D SA �= 0.
If we choose qak such that qak ≥ qak+1, we have W{Π̂A

a } − W = 0 for any set
{Π̂A

a }, as ρ̂S|a =
�

k ra
k |rk� �rk|S with ra

k =
�

a� qa� k |�φa� | aA�|2 /pa ≥ ra
k+1).

Corollary 4.A.3 Under the premises of Theorem 4.2.1, we have that ←−D SA =

0 or −→D SA = 0 � δW = 0.

Proof We consider the state ρ̂SA =
�

k rkΠ̂S
k ⊗ Π̂A

k , where Π̂A
k and Π̂S

k are
orthogonal projectors of rank one. Although such state has zero discord, the
quantity W{ΠA

k } − W is positive since

W{ΠA
k } − W =

�

k

rk�k − �1 > 0. (76)

Therefore, δW > 0.
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We can now provide a proof of Theorem 4.2.2, which we state again for
easiness of consultation.
Theorem 4.2.2 For any system S and ancilla A prepared in a pure state
ρ̂SA = |ψ� �ψ|SA we have

δW = 0 ⇔ |ψ�SA is separable, (77)

and δW =
�

k rk�k − �1, where rk are the Schmidt coefficients of |ψ�SA and �k

are the eigenvalues of ĤS, ordered such that rk ≥ rk+1 and �k ≤ �k+1.

Proof We consider the pure state ρ̂SA = |ψSA� �ψSA| having the Schmidt de-
composition |ψSA� = �

k
√

rk |rk�S ⊗ |φk�A, with rk ≥ rk+1. Then, we observe
that choosing Π̂A

a = |φa� �φa|A the work W{Π̂A
a } is the biggest possible, since

the final state of the protocol is always the ground state with energy �1. That
implies the Eq. δW =

�
k rk�k − �1.

4.a.1 Analysis of the two-qubit case

We provide additional details on the analysis performed on the two-qubit
case illustrated in the Chapter.

In what follows, with no loss of generality, we choose the system Hamiltonian
ĤS = −σ̂z. We choose concurrence as the entanglement measure to be used in
our analysis. For a bipartite qubit state, concurrence is defined as [71]

C = max[0, λ1 −
�

j>1
λj ], (78)

where λk are the square roots of the eigenvalues of ρ̂ ˆ̃ρ with ˆ̃ρ = (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗
σ̂y), ordered so that λk ≥ λk+1. Above, we have proven that the ergotropic
gain of any state ρ̂SA with concurrence C is larger than, or equal to

δWmin(C) = 1 −
�

1 − C2. (79)

The states locally equivalent to

ρ̂SA =




0 0 0 0
0 x C/2 0
0 C/2 1 − x 0
0 0 0 0




(80)
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with x = (1 ±
√

1 − C2)/2, which have concurrence C, are such that δW =

δWmin(C). These states belong to the class parametrized as p
���φη

+

� �
φη
+

��� +
1−p

2 (|01� �01| + |10� �10|) where
���φη

+

�
=

√
η |01� + √

1 − η |10�. On the other
hand, the states locally equivalent to

ρ̂SA =




1/2 0 0 C/2
0 0 0 0
0 0 0 0

C/2 0 0 1/2




, (81)

which also have concurrence C, are such that δW = 1, and thus embody the
upper bound to the daemonic ergotropy at set value of concurrence.

In order to show this, we parameterize the projectors Π̂A
1 and Π̂A

2 that are
needed to calculate the daemonic ergotropy in terms of the angles θ ∈ [0, π]

and φ ∈ [0, 2π) such that

ΠA
1 =




cos2 (θ/2) e−iφsin(θ/2)
eiφsin(θ/2) sin2 (θ/2)




and ΠA
2 = 1− ΠA

1 . An extensive numerical analysis of the distribution itself
has shown that the states lying on the lower boundary belong to the class of
so-called x-states of the form

ρSA =




a 0 0 z

0 b w 0
0 w c 0
z 0 0 d




, (82)

where a, b, c, d, w, z are positive numbers such that bc ≥ w2, ad ≥ z2. This class
plays a key role in the characterisation of the states that maximize quantum
correlations at set values of the purity of a given bipartite qubit state [72, 73, 74].
The ergotropy W for such class of states is

W =





0 for a + b ≥ 1
2 ,

2 − 4(a + b) otherwise.
(83)

49



On the other hand, we have W{ΠA
a } = 1 − 2(a + b) + (X+ + X−)/2 with

X± =
�
[2(a + b) − 1 ± (1 − 2b − 2c) cos θ]

2

+4
�
we−iφ + zeiφ

���
2

sin2 θ
� 1

2
.

(84)

The associated concurrence is C = 2max{0, z −
√

bc, w −
√

ad}. We make the
ansatz that a state as in Eq. (80) with x real and positive, minimizes δW at a
fixed value of C. Then, from the positivity of the density matrix, x must satisfy
the condition C ≤ 2

�
x(1 − x) with x ∈ [0, 1].

For such state, we have δW = 2 − 2x − max{0, 2 − 4x}. If we consider x ≥
1/2, then δW = 2 − 2x, which is minimum when x is maximum, i.e. for x =

(1+
√

1 − C2)/2. For x ≤ 1/2 we have δW = 2x, which is minimum when x is
minimum, i.e. for x = (1 −

√
1 − C2)/2. In both cases, δW takes the expression

in Eq. (79).
In order to show that the class in Eq. (81) is such that δW = 1, it is enough

to observe that, for such state, W = 0. In fact, we trivially have ρS = 1/2 and,
by choosing for instance Π̂A

1 = |0� �0|A, we get pure post-measurement states,
and thus W{Π̂A

a } = 1. Therefore δW = 1 regardless of the value taken by C.
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Part III.

Applications to Specific Systems
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5 L O C A L D I S T U R B A N C E I N A Q U A N T U M
I S I N G M O D E L

In this Chapter, we study the out of equilibrium properties of a many-body
system, with a particular emphasis on the thermodynamic work, when it is
brought far from the equilibrium by a disturbance localized at its boundary.

We consider an exactly solvable system, namely, the Ising open chain in a
transverse homogeneous field. The role of the disturbance is played by a defect
in the field.

This model is a paradigmatic example in the field of the quantum phase
transitions (QPT) [75], and a particular attention has been already paid to the
study of the statistics of the work in this system [76, 77].

Furthermore, the model is formally equivalent to a Kitaev chain [78], which
exhibits the existence of two Majorana zero modes in its non trivial topological
phase. These modes are localized at the edges of the systems, which clarifies
the importance of an analysis when the system is boundary-driven far from the
equilibrium.

In Sec. 5.1 the model is introduced, and its static properties are discussed in
terms of a fermionic representation. A spectral analysis is carried out in terms
of fermionic modes. Among the delocalized modes, spatially localized modes
can arise, and the condition and the nature of this effect are discussed in detail.

In Sec. 5.2, a study of the non equilibrium thermodynamics of the system is
carried out. The effects of the local disturbance are studied in the out of equi-
librium process generated by an abrupt change of the defect (sudden quench).
We present a study of the statistics of the work, similar to those done in [76, 77].
We show how the thermodynamic quantities characterizing the process display
a non analytic behavior at the absolute zero temperature.
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In Sec. 5.3, the propagation of disturbances along the chain following the
sudden quench, is characterized in terms of the transverse magnetization [C],
and we show how the existence of the Majorana zero mode strongly influences
the transient regime in the time evolution of the magnetization.

5.1 ising model in a transverse field

with defect

A class of many body systems that is widely studied in condensed matter
physics is the one composed by spins systems. Among these systems, the one
dimensional chains formed by spin 1

2 , play a relevant role, also because their
theorical study is relatively easy [79, 80]. From the technologic point of view,
such systems could be adopted as channel for short distance quantum commu-
nications [81].

In that broad set of systems, when the mutual interactions have a short
range, a reference model is given by the Hamiltonian

Ĥss =
�

i

�
JxŜx

i Ŝx
i+1 + JyŜy

i Ŝy
i+1 + JzŜz

i Ŝz
i+1
�

(85)

Here, the spin at the ith site of the chain is described by the operator Ŝi.
Physically, this kind of interaction can have a magnetic origin or can derive
from an exchange interaction [82], and recently such models have been realized
and studied in laboratory [83, 84]. For a closed chain Ŝ1 = ŜN+1, the sum in
Eq. (85) goes from 1 to the total number of sites N , while for a open chain
with free ends, the same sum goes from 1 to N − 1.

From the Hamiltonian in Eq. (85) several models can be derived [85, 80, 79,
86], in particular the XY model originally studied by Lieb, Schultz and Mattis
in [79], is obtained from Eq. (85) by putting Jz = 0.

The Ising Model (IM) [85] that we are going to consider, belongs to the
same universality class of XY systems, and when a transverse homogeneous
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magnetic field is included, the IM becomes a paradigmatic example in the field
of the quantum phase transitions (QPT) [75].

The IM in transverse field can be described by the Hamiltonian

ĤIs = J
�

i

�
σ̂x

i σ̂x
i+1 − hσ̂z

i

�
,

which is invariant under the “parity” transformation Π̂ = ei π
2
�N

i=1(1−σ̂z
i )

(the system has a Z2 spin reflection symmetry [75]).
In the thermodynamic limit (N → ∞), two quantum phases can be distin-

guished [75] depending on the value of the parameter h, here considered non
negative.

If the field is strong enough h � 1, the spins tend to get the orientation
imposed by the field, and the system is in a Paramagnetic Phase (PP) charac-
terized by a non-degenerate ground state. As the field gets weak, and the critical
value hc = 1 is reached, the system becomes gapless (the energy gap between
the continuum part of the spectrum and the ground state is closed), and a sec-
ond order QPT takes place [75]. For values of h below hc, the ground state is
two-fold degenerate and the system displays long range order, as seen from the
spin correlation functions [87, 88], and so there is a non zero spontanous mag-
netization (along x). In this Ordered Phase (OP), the two degenerate ground
states have different parities, and a spontaneous breaking of the Z2 symmetry
can occur. Technically, one or the other of the two states will be chosen the
actual ground state by some infinitesimal external perturbation.

At the critical point h = hc, the correlation length diverges as |h − hc|−ν ,
and the excitation gap vanishes like |h − hc|zν , where the universal critical
exponents are z = ν = 1.

The out of equilibrium dynamics of the IM generated by a time dependent
field h, was originally studied by Barouch, MacCoy et al. (for a XY model) [89,
90, 88, 91], and most recently by Calabrese et al. [92, 93, 94, 95]

For free ends boundary conditions, thanks to a Jordan-Wigner transforma-
tion [96], the spin system can be mapped into a non interacting fermionic gas,
which can be identified with a Kitaev chain [78].
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The phase diagram of this latter model has been studied in detail [97], and
it is known to display a topologically non-trivial phase, and a trivial one, that
are mapped into the PP and the OP of the IM, respectively [98].

Because of this relation with the Kitaev chain, we focus on a Ising open
chain subject to an external disturbance localized on one of the two edges of
the chain.

We consider a defect in the transverse field h, so that the system is described
by the Hamiltonian

Ĥµ = −µhσ̂z
1 − h

N�

n=2
σ̂z

n +
N−1�

n=1
σ̂x

nσ̂x
n+1 (86)

where µ is used to parameterize the field defect, and we have taken the ex-
change constant J as our energy unit, J = 1.

Figure 5.1.1.: The picture summarizes the model described by the Hamiltonian in
Eq. (86). The one-dimensional chain of N spins 1/2 with nearest-
neighbor “Ising” interactions, is subject to a homogeneous transverse
magnetic field. This field can be manipulated locally at one edge of
the chain.

5.1.1 Energy Spectrum and Spatial Localization

The system with Hamiltonian given in Eq. (86) is studied in the Jordan-
Wigner representation [96].
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As shown in the App. 5.A, the fermionic Hamiltonian can be recast in the
form

Ĥµ =
�

k

Λk

�
η̂†

kη̂k − 1
2

�
(87)

=
�

κ∈K
Λκ

�
η̂†

κη̂κ − 1
2

�
+
�

i=1,2
χiΛ(i)

�
η̂†
(i)η̂(i) − 1

2

�

where the η operators satisfy the canonical anticommutation relations {η̂k, η̂q} =

0, {η̂†
k, η̂q} = δkq.

In this representation, the energy eigen-states are identified by the set of the
occupation numbers {nk}k of the quasi-particles η [99], and the eigen-energies
are E({nk}) = �

k

�
nk − 1

2
�

Λk. All the frequencies Λk are non-negative, and
so the energy of the ground state is given by EGS = −�k Λk/2.

In Eq. (87), the index κ does not refer to linear momentum because the
system is not translationally invariant, but it runs over a quasi-continuous band
of delocalized modes having energy Λκ = Λ(θκ) = 2

�
1 + h2 − 2h cos(θκ).

Two discrete localized modes can appear depending on the value of the field h

and of the defect parameter µ.
These two modes, labeled with (1) and (2), in the thermodynamic limit have

frequencies Λ(1) = 0 and Λ(2) = 2 |µ|
�

1+(µ2−1)h2

µ2−1 , and exist if (h, µ) ∈ R1

and if (h, µ) ∈ R2, respectively (see Fig. (5.1.2)). The regions R1,2 are defined
in Eq. (120).

If µ = 0, the system is symmetric with respect to an arbitrary rotation of
the first spin around the x axis, generated by σ̂x

1 . Then, given an eigenstate of
Ĥ0, the state of the first spin is factorized from the rest of the chain, and it is
one of the two eigenstates of σ̂x

1 .
In this special case, the two modes (1) and (2) have frequencies equal to

zero, Λ(1) = Λ(2) = 0, also for finite N (as discussed in App. 5.A).
If all the single particle energies are positive, the ground state |GS� of the

system is non degenerate, and it is represented by the vacuum state defined by
η̂k |0̃� = 0 for every k.

If µ = 0, or if h < 1 (in the thermodynamic limit), the ground state is
two-fold degenerate because there is a localized mode having zero frequency.
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Figure 5.1.2.: Phase diagram showing the presence of the localized modes Λ(i)

(i = 1, 2) in the h, µ plane. The red region (vertical lines), R1, features
the presence of the mode with frequency Λ(1). The yellow region (hor-
izontal lines) R2, instead, features the presence of mode (2), either
below or above the band in the two subregions with µ smaller or larger
than µ = 1, respectively. Both of the localized modes are present in
the orange region (oblique lines), corresponding to the intersection of
R1 and R2. Finally, only delocalized modes are present in the white
region.

Explicitly, for N → ∞, the mode (1) has a topological origin. If the trans-
verse field is homogeneous µ = 1, then the mode (1) can be identified with
the Majorana zero mode discussed by Kitaev in [78]. It is topologically pro-
tected [78] and so it survives during a continuous change of the Hamiltonian
until the system stays gapped. Since the gap is closed at h = hc, the Majorana
zero mode of H1 survives for every inhomogeneity µ if h < 1, and the “wave”
functions ψ

(1)
n and φ

(1)
n given in Eq. (129), stay localized on the last and the

first site of the chain, respectively.
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Conversely the mode (2) is generated by the inhomogeneity, that heuristi-
cally speaking tends to decouple the first spin from the rest of the chain. This
mode stays localized near the first site, as it is shown by the wave functions
ψ
(2)
n and φ

(2)
n given in Eq. (131). The frequency Λ(2) is zero only at µ = 0,

and since Λ(2) is non negative, it needs to be a non analytic function of the
parameters h and µ on the line defined by µ = 0.

This non regular behaviour can be observed in some physical properties of
the system.

An illustrative example is given by the transverse magnetization on the first
site �Ŝz

1� calculated with respect to the ground state |GS�. For a finite N , it is

lim
µ→0±

�Ŝz
1� = ± 1

2h

�
h2 − 1

1 − h−2N
(88)

and in the themodynamic limit

lim
µ→0±

�Ŝz
1� = ±

√
h2 − 1
2h

Θ(h − 1) (89)

where Θ(x) is the step function, defined to be one if x > 0, or zero elsewhere.

Μ�0.5
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Μ�0.001
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0.4

h

�S 1�

Figure 5.1.3.: Transverse magnetization of the defect spin as a function of the mag-
netic field for various defect’s strength µ, for N = 1000.

The longitudinal magnetization �Ŝx
1 � could be non zero only if the ground

state is degenerate. In the thermodynamic limit this occurs in the ordered
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phase (h < 1), and if µ �= 0, we have [100] mx
1 =

����Ŝx
1 �
��� = 1

2Θ(1 − h)φ
(1)
1 , and

so

mx
1 =

1
2

√
1 − h2

�
1 + (µ2 − 1)h2

Θ(1 − h) (90)

One can understand qualitatively this behaviour, by thinking that when the
parameters µ and h cross the line µ = 0, the magnetic field in the first site
reverses its direction. Then, though the first spin is in an eigen-state of Ŝx

1

when µ is exactly equal to zero, such state is “unstable”, even because a little
perturbation on the defect could generate a non zero transverse magnetization
mx

1 , given by Eq. (89). The fact that this happens only for h > 1 means that the
dominant spin-spin interaction for h < 1 tends to forbid a non zero transverse
magnetization in this region, and it could be attributed to the “topological
properties” of the ordered phase.

5.2 thermodynamics

The thermodynamics of the model at thermal equilibrium in the Gibbs state
ρG can be characterized by the Helmholtz free energy F = −kBT /lnZ where
Z is the partition function

Z = 2N
N�

k=1
cosh

�
βΛk

2

�

In the fermionic representation, the transverse field plays the role of a chem-
ical potential, and the state is described by a grand canonical ensemble.

For large N , the Helmholtz free energy reads

F = − 1
β

�

κ∈K
ln
�
2 cosh

�
βΛ(θ0

κ)

2

��
− 2h

�

κ∈K
tanh

�
βΛ(θ0

κ)

2

�
sin(θ0

κ)

Λ(θ0
κ)

(θκ − θ0
κ)

− 1
β

�

i

χi ln
�
2 cosh

�
βΛ(i)

2

��
+ O(1/N) (91)
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where θ0
κ is a point in the interval Iκ = [(κ−1)π

N , κπ
N ], and θκ are given in

Eq. (118). The contribution of order N to the free energy is

F = − 1
β

N

π

� π

0
ln
�

2 cosh
�

βΛ(θ)

2

��
dθ + O(1)

and so at a macroscopic level, the thermodynamics is substantially the same
as for the Ising model in a homogenous transverse field studied in [87, 75]. As
T → 0, the free energy F tends to the ground state energy EGS , and the system
undergoes a QPT at h = 1 since

lim
N→∞

EGS

N
= −2(1 + h)

π
E

�
π

2 , 4h

(1 + h)2

�
(92)

where E(φ, x) is the elliptic integral of the second kind, and it is non analytic
at h = 1.

So the effects of the local disturbance on the thermodynamic behavior tend
to be covered at a macroscopic level. They can be studied by considering the
out of equilibrium thermodynamics of a local change of the Hamiltonian, that
is referred to as local quench [76].

5.2.1 Local Quench

We assume that the system is initially prepared in the thermal Gibbs state
ρ̂G[µ, T ], and we perform a local sudden quench on one edge of the system,
achieved by the instantaneous change of the defect parameter from µ to µ+Δµ,
so that Ĥi = Ĥµ and Ĥf = Ĥµ+Δµ.

Though the disturbance is local, so that Ĥf − Ĥi = −Δµhσ̂z
1 , the final and

the initial Hamiltonian are non-compatible osservables, and [Ĥf , Ĥi] is a non
local operator. Then, the statistics of the work cannot be obtained only from
the local properties of the system, as it is evident from Eq. (19).

Anyway, the characteristic function of the work can be determined by using
a local probe made by a two level system. Initially the state of the probe is
assumed to be uncorrelated with that of the spin chain, so that total state
of the two systems is ρ̂tot(0) = ρ̂pr(0) ⊗ ρ̂G[µ, T ]. The free evolution of the
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probe will be generated by the Hamiltonian Ĥpr = ωe |e� �e|, where |e� is
its excited state, and the energy of the ground state is chosen as the energy
reference point. Then, if the interaction between the two systems is described
by Ĥint = −� |e� �e| ⊗ σ̂z

1 , and if the evolution of the total system is unitary,
the spin chain induces a pure dephasing on the state of the probe [101], and
the coherence of the probe can be recast in form

�e| ρ̂pr(t) |g� = e−iωetχ∗(t) (93)

where χ(u) is the work characteristic function when Δµ = �/h.
The difference of free energy ΔF can be written as ΔF = F1(µ + Δµ) −

F1(µ), where F1(µ) is the contribution of order one to the free energy, up to a
constant that does not depend on µ. In the thermodynamic limit, we have

F1(µ) = −2h

π

� π

0
tanh

�
βΛ(θ)

2

�
sin(θ)
Λ(θ)

(arctan F(θ) + n(θ)π) dθ

+
1
β
(χ1 + χ2a) ln [2 cosh (β |h − 1|)] + 1

β
χ2b ln [2 cosh (β(1 + h))]

− 1
β

�

i

χi ln
�
2 cosh

�
βΛ(i)

2

��

where F(θ) is defined in Eq. (116), and n(θ) is

n(θ) = −χ1(1 − χ2b) − χ2a − Θ(θ − θ)χ1χ2 − Θ(θ − θ)(1 − χ1)(1 − χ2)

The average work is related to the magnetization on the first site by

�w� = −Δµh �σ̂z
1�i

and it can be also expressed in terms of the variation of the free energy as

�w� = Δµ
∂F (µ)

∂µ

In the thermodynamic limit
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Figure 5.2.1.: (Color online): Work and irreversible work for the local quench
Hµ → H1. In the top panels we focus on the case of the absolute
zero temperature limit. As µ → 0, the two quantities become non
derivable at the point h = 1. In the bottom panels we put µ = 10−3,
and we show how the quantities approach to the black line in the top
panels, by lowering the temperature.

∂F (µ)

∂µ
= −4µh2

π

� π

0

sin2(θ)

(1 + h2(µ2 − 1)2 + 2h(µ2 − 1) cos(θ))Λ(θ)
(94)

× tanh
�

βΛ(θ)

2

�
dθ + 2χ2µ

1 − h2(µ2 − 1)2

(µ2 − 1)2Λ(2)
tanh

�
βΛ(2)

2

�

and so only the mode (2) gives a substantial contribution, since the edge
mode (1) has zero frequency.

The second moment of the work is �w2� = (Δµh)2, and the third moment is
�w3� = (Δµh)2 (�w� − 2 �σx

1 σx
2 �i).

It is interesting to consider the limit T → 0. For a fixed µ > 0, the work �w�
and the difference in free energy ΔF are non analytic at h = 11, and so is the

1 The third derivative with respect to h is non continuous in h at h = 1
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irreversible work �wirr�. We note that �wirr� shows at least one maximum in
the interval [0, ∞), because it is zero at the boundary of this interval.

As µ → 0, the derivative of the work with respect to h tends to be non
continuous at h = 1, as can be seen from the magnetization expression in
Eq. (89). In the limit µ → 0±, the work is zero if h < 1, and, as h → 1+, it
goes to zero like �w� ∼ ∓Δµ

√
2
√

h − 1 .
The difference of free energy ΔF , and also the irreversible work �wirr�, have

a non trivial dependence on Δµ. In particular, if we turn off the defect by
performing the quench Δµ = 1 − µ, we have

lim
µ→0+

�wirr� = 2h

π

� π

0

sin(θ)
Λ(θ)

arctan
�

h sin(θ)
1 − h cos(θ)

�
dθ (95)

and the irreversible work has a maximum point at h = 1, as can be seen
from Fig. 5.2.1 (top panels).

In the limit µ → 0±, as h → 1, we have ΔF ∼ (−2 + (h − 1) ln |h − 1|)/π

and

�wirr� ∼ 2
π
+





1
π (1 − h) ln(1 − h) if h → 1−

∓
√

2
√

h − 1 if h → 1+
(96)

For finite N , the characteristic function of the work can be calculated by
using a representation in terms of fermionic coherent states [102], and it reads

χ(u) = det
�
(UT + V T )(U + eiuΛ(f )

V )
�

e
iu
�

E
(f )
GS−E

(i)
GS

�
(97)

where the matrices U and V are given in Eq. (138), and Λ(f ) is the diago-
nal matrix having diagonal elements Λ(f )

k . From Eq. (97), it follows that the
expression for the irreversible work is given by

�wirr� = E
(i)
GS − E

(f )
GS − iχ(1)(0) = Tr

�
(UT + V T )Λ(f )V

�
(98)

In going out from the limit T → 0, we need to pay a particular attention,
because of the thermal fluctuations. We focus on the limiting case |µ| � 1. The
work performed is
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�w� = ΔµΘ(h − 1) tanh
�

βΛ(2)
2

�
(1 − h2)

2µ

Λ(2)
+ O(µ)

At high temperatures (β|µ| � 1), the work is a O(µ) function, since tanh(x) =
O(x) as x → 0.

Instead, if the temperature is low enough (β|µ| � 1) so that tanh
�

βΛ(2)
2

�
�

1 − 2e−βΛ(2) , we have

�w� � − µ

|µ|ΔµΘ(h − 1)
�
1 − 2e−βΛ(2)

��
h2 − 1 + O(µ)

Then, up to terms that go to zero as O(µ) when µ → 0, in the paramag-
netic region, the system responds as a single 1/2 spin with Larmor precession
frequency Λ(2).

The behaviors of the work and of the irreversible work approaching to the
limit T → 0 are shown in the Fig. 5.2.1 (bottom panels).

5.3 disturbance propagation

In a short range interacting many body systems, it is expected that a fi-
nite maximum speed exists for the propagation of information within the sys-
tem [103].

In particular, a recent work by Smacchia and Silva [104] discusses the prop-
agation of magnetization after a local time dependent quench in the quantum
Ising model.

The quench can be seen as a source of quasi-particles, that can carry mag-
netization and correlations [92, 104].

We study the dynamics following the sudden removal of the defect at the
boundary, in a chain of finite size. The aim is to discuss how a local perturbation
propagates in the system and, in particular, how the dynamics is affected by
the localized mode (1), that is identified with the Majorana zero mode in the
thermodynamic limit.
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To this end, we assume the system to be initially prepared in the ground
state |GS�0 of Ĥ0 (with µ = 0).

At t = 0 the defect is suddenly removed (µ = 1 for t ≥ 0), so that the sys-
tem’s subsequent evolution is generated by the homogeneous Ising Hamiltonian
Ĥ1, whose ground state we denote |GS�1.

The spatial structure of the initial state |GS�0 differs from that of |GS�1 near
the first site only, as found in the magnetization contrast δmi = �Ŝz

i �GS1 −
�Ŝz

i �GS0 .
The magnetization contrast δmi quantifies how much the magnetization of

the ground state |GS�1 (the one of the Hamiltonian Ĥ1 that rules the dynamics)
is perturbated by the local defect in the field, and it decays exponentially
with the distance from the defect, δmi = δm1 exp(−(i − 1)/ξ), with a short
localization length ξ, see App. 5.C.

Once the defect is removed, the local magnetization peak travels through
the chain, starting near site i = 1 at t = 0.

Two different scenarios occur, depending on the value of the transverse field
h. For h > 1, after the quench the system only supports delocalized fermion
eigen-modes (white region in Fig. 5.1.2). These will be shown to give rise to a
purely ballistic propagation of the magnetization peak. In the ordered phase
0 < h < 1, on the other hand, H1 enjoys the localized mode with energy
Λ1, residing on the edge of the system, and substantially overlapping with
the initial localized state |GS�0. A pinning of the excitation near the first site
occurs in this case, due to the interplay of the otherwise ballistic propagation
with the localized nature of the Majorana mode, and giving rise to temporal
oscillations of the local magnetization.

In order to characterize the propagation of the magnetic perturbation along
the chain, we consider the mean square magnetization center and its velocity,
defined as

R2(t) =
N�

i=1
δmi(t)(i − 1)2 (99)

v(t) =
d

dt

�
|R2(t) − R2(0)|. (100)
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where δmi(t) = �Ŝz
i �GS1 − �Ŝz

i (t)�GS0 is the time-dependent version of the mag-
netization contrast introduced above. Analogous variables have been adopted
and experimentally measured in Ref. [105].

Using the diagonal form of H1, one can show that

R2(t) =
�

k1,k2

Ak1 k2 cos ((Λk1 − Λk2)t)

+
�

k1,k2

Bk1 k2 cos ((Λk1 + Λk2)t)

where the summations are performed over the eigenmodes of the final Hamil-
tonian H1, including both the delocalized fermion modes κ, and, if h < 1, the
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Figure 5.3.1.: (Color online): Detachment of the magnetization center from its initial
position, δR(t) =

�
|R2(t) − R2(0)|, for (top left to bottom right)

h = 0.4, 0.6, 1.2, 1.6, with N = 100. Solid blue lines are drawn by
using the full expression for R(t), whereas dashed red lines contain the
rotating (A) contributions only. The dashed green lines are obtained
from the blue ones by artificially excluding the contribution of the
Majorana zero mode, in order to better highlight its role.
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localized edge mode (1). The explicit form of the matrices A and B are given
in App. 5.C; what is important here is that they give two different types of
contribution to the propagating magnetization center: a rotating term, (A),
and a counter-rotating one, (B).

Figure 5.3.2.: (Color online): Elements of the matrices A (left panels) and B (right
ones) for h = 0.4 (top) and h = 1.4 (bottom). The plots are made for
N = 100.

In the thermodynamic limit, the asymptotic behavior of R(t) is determined
by the rotating terms with lower frequencies, as the B-contribution becomes
negligible at long times due to their fast oscillations.

This is clearly seen in Fig. 5.3.1, where we show δR(t) =
�

|R2(t) − R2(0)|
for different values of the magnetic field h. In the plots, the solid blue curves
giving δR(t) are compared to the behaviors obtained by artificially keeping the
A-contribution only.

This is done to better emphasize that B-terms only contribute to the tran-
sient oscillations, after which the propagation tends to be ballistic, and com-
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Figure 5.3.3.: (Color online): Left: Average asymptotic speed v̄, taken in the long
time limit (but before the occurrence of finite size revivals) as a mean
over residual long time oscillations, for N = 800. Right: Scaling with
the system size N and with the external field h of the amplitude
of the long time oscillations displayed by the propagation speed v(t)

around the average v̄. In the white region the limiting speed is not
well defined because of the persistence of its oscillations

pletely accounted for by the lower frequencies terms, and the long-time speed
is v̄ ≈

��
κ

Aκ κ+1
2 (Λκ − Λκ+1)

2 .
Furthermore, by analyzing the matrix A as displayed in Fig. 5.3.2, we see

that the main contribution comes from the entries close to the diagonal, so
that this gives a very good approximation for the average propagation velocity
in the disordered region, while it fails near the critical point h = 1, since the
correlation length tends to be of the order of the size of the system, and δR(t)

and v(t) keep oscillating even at long times, see Fig. 5.3.3. It also fails in the
ordered region, because of the presence of the Majorana mode, coming into
play via the counter rotating terms, see the matrix B in Fig. 5.3.2: the B

contributions are basically irrelevant for h > 1, while their presence induces
strong transient oscillations if h < 1, whose amplitude increases as h → 1−,
see top panels in Fig. 5.3.1.
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5.4 summary and conclusions

In this Chapter, we have studied a quantum Ising chain in a transverse
homogeneous field, which is a paradigmatic example in the QPT field. The
model is also intimaly related to the Kitaev chain, which shows Majorana zero
modes localized at its boundary. For this reason, we consider the possibility to
have an additional field, localized at one edge of the chain, producing a local
defect in the transverse field. The defect strenght can be varied, generating
a process that brings the system out of the equilibrium. The non equilibrium
thermodynamics of this process is characterized in terms of the work done,
investigating the role played by the QPT. Specifically, the work, the free energy
difference and the irreversible work are studied when the system is initially
prepared in a Gibbs state at a finite temperature, and in the limit of the
absolute zero. In such limit, these thermodynamic quantities display a non
analytical behavior at the critical point. The behavior of the work and the
irreversible work changes substantially as the initial defect is such that the
field at the edge is zero. The analysis has been carried on, considering the
propagation of local magnetic excitation occurring when the defect is switched
off. We have found that, though the propagation is ballistic, the magnetization
could display some oscillations because of an involvement of the Majorana zero
mode.
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5.a quantum ising model: diagonaliza-

tion in presence of a defect in

the transverse field

The Ising model in a homogeneous transverse field, with a field inhomogene-
ity at one edge is characterized by the Hamiltonian

Ĥµ = −µhσ̂z
1 − h

N�

n=2
σ̂z

n +
N−1�

n=1
σ̂x

nσ̂x
n+1 (101)

The operators σ̂α
n (α = x, y, z) are the usual Pauli spin operator on site n,

and h > 0.
In order to diagonalize the Hamiltonian in eq. 101, we work in the represen-

tation defined by the non-local Jordan-Wigner (J-W) transformation

ĉ†
n =




n−1�

j=1
σ̂z

j


 σ̂−

n (102)

where σ̂±
j =(σ̂x

j ± iσ̂y
j )/2 are the raising and lowering spin operator, and

the operators c act on a Fock space, and they satisfie the canonical anticom-
mutation relations {cn, c†

m} = δn,m and {cn, cm} = 0. The transformation in
Eq. (102) fermionizes Eq. 101 into

Ĥ =
�

i j

�
ĉ†

iAi j ĉj +
1
2
�
ĉ†

iBi j ĉ
†
j + h.c.

��
− Nh − (µ − 1)h (103)

where A and B are tridiagonal symmetric and anti-symmetric matrices re-
spectively, whose elements are given by Ai j=2h(1 + δi1(µ − 1))δij + δi j+1 +

δi+1 j and Bi j = −δi j+1+δi+1 j . Since the Hamiltonian in Eq. 103 is a quadratic
form in the creation and annihilation operators, it can be diagonalized by means
of a Bogoliubov transformation:

ĉi =
�

k

uikη̂k + vikη̂†
k (104)
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with the conditions �
k

uikujk + vikvjk = δij and �
k

uikvjk + vikujk = 0 to
ensure that the transformation is canonical and preserves the anti-commutation
relations. The inverse transformation is

η̂k =
�

i

uik ĉi + vik ĉ†
i (105)

From the equations of motion for the operators ĉi (or equivalently for ĉ†
i ),

the Bogoliubov transformation in Eq.104 and imposing the time dependence
ηk(t) = ηke−iΛkt for the normal modes, we obtain the following equations for
the element of the transformation matrices u and v:





�
j

Aijujk + Bijvjk = Λkuik

�
j

Bijujk + Aijvjk = −Λkvik

(106)

The Hamiltonian rewritten in terms of the normal modes reads Ĥ =
�
k

Λkη̂†
kη̂k −

1
2
�
k

Λk.

We introduce the new matrices φ = uT + vT and ψ = uT − vT whose column
vectors satisfy the equations:





(A + B) �φk=Λk
�ψk

(A − B) �ψk=Λk
�φk

(107)

They are real and such that φT φ = 1 and ψT ψ = 1. If Λk �= 0, it is enough
to solve the eigenvalue problem

M �ψk = Λ2
k

�ψk (108)
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where the matrix M=(A+B)(A − B) is positive, tridiagonal, and symmet-
ric, and reads

M =




b − α a 0 · · · 0
a b a · · · 0
0 a b · · · · · ·

· · · · · · · · · · · · · · ·
0 · · · a b a

0 · · · 0 a b − β




, (109)

with b = 4 + 4h2, a = −4h, α = 4h2(1 − µ2), β = 4, and so the spectrum of
Hµ does not depend by the sign of µ.

By using the method in [106, 107], we see that the energies Λk can be written
as

Λk = Λ(θk) =
�

b + 2a cos(θk) = 2
�

1 + h2 − 2h cos(θk) (110)

where θk needs to satisfy the equation f (θk) = 0 where f (θ) is the function

f(θ) = a(α + β) sin(Nθ) + a2 sin [(N + 1)θ] + αβ sin [(N − 1)θ] (111)

Then the matrix ψ has elements

ψkn = ψn(θk) = N (θk) (α sin[(n − 1)θk] + a sin(nθk)) (112)

where N (θk) is a normalization constant defined by �n(ψn(θk))
2 = 1 (the

sign can be arbitrarily chosen).
The same results could be achieved from [108].
We note that the substitution θk → −θk returns the same eigenvalues Λk

and the same matrix ψ.
If Λk �= 0, then the matrix φ is obtained from

�φk =
1

Λk
(A − B)�ψk (113)

If Λk = 0, the correspondent vectors �φk and �φk can be calculated from
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



(A + B) �φk = 0

(A − B) �ψk = 0
(114)

and the relative phase between �φk and �ψk can be chosen arbitrarily.
The determinant of A +B (and also of A − B) is (2h)N µ, then for finite N ,

Eq. (114) admit solutions only if µ = 0. The only solution is





ψ
(s)
n =

�
h2−1

1−h−2N h−n

φ
(s)
n = δn,1

(115)

so that ψn is localized near the first site if h < 1 or near the last site if h > 1.
If N → ∞ a solution exists if h < 1, also for µ �= 0, and it is calculated in the
next subsection.

Since cos θk needs to be real, we have to look only for the solutions of the
non linear equation f (θ) = 0 in θ, belonging to one of the three classes:

1. θ ∈ R

2. θ = 2mπ + iν , ν ∈ R, m ∈ Z

3. θ = (2m + 1)π + iν, ν ∈ R, m ∈ Z

5.a.1 Quasi-Continuum Spectrum

Let consider θ ∈ R.
If the real solution θ is such that a(α + β) + (a2 + αβ) cos(θ) �= 0, then

from Eq. (111) it follows that θ is a solution of tan(Nθ) = F(θ), where the
function F(θ) is

F(θ) =
(αβ − a2) sin(θ)

a(α + β) + (αβ + a2) cos(θ)

=
hµ2 sin(θ)

1 − (µ2 − 1)h2 + h(µ2 − 2) cos(θ) (116)
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The function F(θ) is a periodic function of θ of period 2π, and it is also
an odd function. Trivial solutions are kπ, but they must be excluded because
ψn(kπ) = 0 from (112). Then it is enough to search the solutions θκ inside the
interval (0, π). They are such that

θκ =
1
N

(arctan(F(θκ)) + κπ) (117)

The index κ is an integer number, and so θκ differs from κπ
N by the O(N−1)

function 1
N arctan(F(θκ)). Then, given a function g(θ)

1
N

�

κ
g(θκ) =

1
π

� π

0
g(θ)dθ + O(N−1)

if the limit of the Riemann sum exists and is finite.
All the solutions θκ can be labeled so that θκ ∈ Iκ = [(κ−1)π

N , κπ
N ].

A solution θκ up to terms of the order O(N−2) can be obtained from
Eq. (117), by evaluating the function F in Eq. (117) at a point θ0

κ in the
interval Iκ.

θκ =
1
N

�
arctan(F(θ0

κ)) + nκπ
�
+ O(1/N2) (118)

where nκ is defined by the labeling chosen.
From Eq. (110) we have

Λκ = Λ(θκ) = 2
�

h2 + 1 − 2h cos(θ) (119)

with θκ ∈ S = {θκ : κ ∈ K} and

K =





{2, 3, · · · , N} if (h, µ) ∈ (R1 \ R2b) ∪ R2a

{1, 2, · · · , N − 1} if (h, µ) ∈ R2b

{1, 2, · · · , N} if (h, µ) /∈ R1 ∪ R2

{2, 3, · · · , N − 1} if (h, µ) ∈ R1 ∩ R2

We have defined
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R1 = {(h, µ) : h ≤ 1} (120)

R2a = {(h, µ) : h ≥ 1 ∧ |µ| ≤
�

1 − h−1} (121)

R2b = {(h, µ) : |µ| ≥
�

1 + h−1} (122)

R2 = R2a ∪ R2b (123)

We can define the characteristic function χα of the domain Rα as

χα =





1 if (h, µ) ∈ Rα

0 elsewhere

then nκ can be written as

nκ = κ − χ1(1 − χ2b) − χ2a − Θ(θ − θ0
κ)χ1χ2 − Θ(θ0

κ − θ)(1 − χ1)(1 − χ2)

(124)
where θ = arccos

�
(µ2−1)h2−1
(µ2−2)h

�
.

All the eigenvalues Λκ need to be inside the interval Ib = [2 |1 − h| , 2 |1 + h|],
and at the thermodynamic limit they densely cover Ib.

The corresponding matrix elements ψκn and φκn are obtained from Eq. (112)
and (113) respectively,





ψκn =
�

2
N

sin(nθκ)+(µ2−1)h sin((n−1)θκ)√
1+(µ2−1)2h2+2h(µ2−1) cos θκ

φκn = 2
Λκ

(hψκn + δn,1(µ − 1)hψκn − (1 − δn,1)ψκn−1)
(125)

and if N � 1 we can use θκ as given in Eq. (118).
These modes are manifestly spatially delocalized.

5.a.2 Discrete Spectrum

We consider the possibility to have complex solutions θ of f (θ) = 0. These
solutions lead to some eigenvalues Λ(θ) /∈ Ib.

Let consider θ = 2mπ + iν. We then have
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Λ(θ) =
�

b + 2a cosh(ν) = 2
�

1 + h2 − h (y + y−1) (126)

where y = eν . Since ψn(θ) given in (112), only gets a global phase under the
transformation ν → −ν, we consider ν ≥ 0.

We define y∞ = eν∞ where ν∞ = limN→∞ ν. Then, in the limit N → ∞ the
equation f (θ) = 0 becomes

y2
∞ +

α + β

a
y∞ +

αβ

a2 = 0 (127)

Only the solutions y∞ ≥ 1 are acceptable because ν > 0.
We are considering h > 0, then there is only a solution acceptable if (h, µ) ∈

R1 or if (h, µ) ∈ R2a.
In the region R1 it reads y∞ = 1

h , and from Eq.(126) by using θ∞ = 2mπ +

iν∞, the eigenvalue Λ(1) = Λ(θ∞) is zero at the thermodynamic limit, for
every finite value of µ. Specifically

Λ(1) ≈ 2 |µ| (1 − h2)�
1 + (µ2 − 1)h2

hN (128)

because

y = eν∞ +
µ2h

1 + (µ2 − 1)h2

�
1 − e2ν∞

�
e−2Nν∞

at least to terms of the order O(e−4Nν∞).
Then





ψ
(1)
n = ψn(θ) =

√
1 − h2

�
hN−n − µ2

1+(µ2−1)h2 hN+n
�

φ
(1)
n =

√
1−h2

|µ|
√

1+(µ2−1)h2 (1 + (µ − 1) (δn1 + (1 − δn1)(1 + µ))) hn−1
(129)

Instead, in the region R2a the solution to Eq. (127) reads y∞ = −h
�
µ2 − 1

�
.

From Eq. (126), in the thermodynamic limit the energy is

Λ(2) = Λ(θ∞) = 2 |µ|
����1 + (µ2 − 1)h2

µ2 − 1 (130)
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and from Eq. (112) and (113)





ψ
(2)
n = ψn(θ∞) =

�
(µ2 − 1)2h2 − 1(1 − µ2)−nh−n

φ
(2)
n = 2

Λ(2)

�
hψ

(2)
n + δn,1(µ − 1)hψ

(2)
n − (1 − δn,1)ψ

(2)
n−1

� (131)

If µ = 0 the energy Λ(2) is zero, and φ
(2)
n = δn 1 , ψ

(2)
n = h−n

√
h2 − 1 where

the relative sign between �ψ(2) and �φ
(2)
n can be chosen arbitrarily.

Let consider θ = (2m + 1)π + iν. We can proceed in a similar way to the
previous case. We have

Λ(θ) = 2
�

1 + h2 + h (y + y−1) (132)

where y = eν .
We put ν ≥ 0, then from f (θ) = 0, in the limit N → ∞ we have

y2
∞ − α + β

a
y∞ +

αβ

a2 = 0 (133)

By the condition y∞ ≥ 1, there is only a solution acceptable if (h, µ) ∈ R2a,
and it reads y∞ = (µ2 − 1)h.

The energy is Λ(2) given in Eq. (130), and the elements of matrices are given
in Eq. (131).

5.b transverse magnetization

The transverse magnetization is defined by �Ŝz
n� = �σz

n
2 � = 1

2 − �c†
ncn�.

The average, respect the ground state, can be calculated with respect to the
vacuum state |0̃�

�c†
ncn� =

�

k

v2
nk =

1
4
�
21− φT ψ − ψT φ

�
nn

=
1
2 − 1

2
�

k

φknψkn

and so
�Ŝz

n� = 1
2
�

k

φknψkn
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We focus on the case µ → 0 and on the magnetization on the first site �Ŝz
1�.

The contribution from the delocalized modes κ is φ1(θ)ψ1(θ) = O(µ), as can
be seen from Eq. (125).

In the limit N → ∞, if h < 1, the mode Λ(1) exists but its contribution goes
to zero as hN . Instead, if h > 1, the mode Λ(2) is important as it leads to a
non zero contribution so that φ

(2)
1 ψ

(2)
1 ∼

√
h2−1µ
h|µ| then

lim
µ→0±

�Ŝz
1� = ±

√
h2 − 1
2h

Θ(h − 1) (134)

Instead, for a finite N , at µ = 0 the only non zero contribution comes from
the mode with zero frequency in Eq. (115), and we have

lim
µ→0±

�Ŝz
1� = ± 1

2h

�
h2 − 1

1 − h−2N
(135)

If the system is prepared in a thermal Gibbs state ρG at the temperature T ,
the transverse magnetization on the first site can be obtained from F by using

�σ̂z
1� = −1

h

∂F (µ)

∂µ

Where, in the thermodynamic limit,the derivative ∂F (µ)
∂µ is given in Eq. (94).

5.c quantum ising model: time evolu-

tion after a local quench

Specifically, we consider the case for which the time evolution is generated
by the Hamiltonian Hf , and the initial state |ψi� is a non equilibrium state
prepared by performing the sudden quench Hi → Hf , i.e. |ψi� is the ground
state |GSi� of the pre-quench Hamiltonian Hi.

We introduce the fermionic operators ηk and ξk by performing the Bogoliubov
transformations
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ĉi =
�

k

uikη̂k + vikη̂†
k (136)

ĉi =
�

k

wik ξ̂k + zik ξ̂†
k (137)

such that Hi and Hf expressed in terms of the operators {ηk, η†
k}k and

{ξk, ξ†
k}k respectively are in their diagonal forms. We indicate with Λk the

single particle energies of Hf . The new operators are related by the Bogoliubov
transformation

ξ̂k =
�

q
Ukqη̂q + Vkqη̂†

q

where

Ukq =
�

i

wikuiq + zikviq (138)

Vkq =
�

i

zikuiq + wikviq

Then ĉi(t) = eiHf tcie
−iHf t is given by

ĉi(t) =
�

k

uik(t)η̂k + vik(t)η̂
†
k (139)

where

uik(t) =
�

q
wiqe−iΛqtUqk + ziqeiΛqtVqk (140)

vik(t) =
�

q
wiqe−iΛqtVqk + ziqeiΛqtUqk (141)

We focus on the case Hi = H0 and Hf = H1, and we characterize the
propagation of the perturbation by looking how the spatial profile of the trans-
verse magnetization evolves in time. So we consider the difference δmi(t) =

�Ŝz
i �GS1 − �Ŝz

i (t)�GS0 = �n̂i(t)�GS0 − �n̂i�GS1 , where n̂i = ĉ†
i ĉi.

At the initial time t = 0, δmi decays exponentially with the distance from
the defect, δmi = δm1 exp(−(i − 1)/ξ), with a short localization length ξ, see
Fig. 5.C.1.
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Figure 5.C.1.: The graphic shows the behavior of the localization length ξ. We put
N = 100.

Notice, in particular, that the perturbation is always localized within the
first three sites regardless of the value of h. On the other hand, δm1 increases
with h for 0 < h < 1 while it goes to zero for h > 1 away from the critical
point (indeed, in the paramagnetic phase, the magnetization tends to saturate
with increasing h, both with and without the defect).

At the time t, the mean local number of fermions at site i is

�n̂i(t)�GS0 = �n̂i�GS1 +
�

k1,k2

A
(i)
k1k2

cos ((Λk1 − Λk2) t) (142)

+
�

k1,k2

B
(i)
k1k2

cos ((Λk1 + Λk2) t) (143)

where

A
(i)
k1k2

= (wik1wik2 − zik1zik2)
�

l

Vk1lVk2l (144)

B
(i)
k1k2

= 2zik1wik2

�

l

Uk1lVk2l. (145)

In order to characterize the propagation of the perturbation in the mag-
netization profile, we consider the mean square magnetization center and its
velocity defined as
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R2(t) =
�

i

δmi(t)(i − 1)2 (146)

v(t) =
d

dt

�
|R2(t) − R2(0)| (147)

We have that

R2(t) =
�

k1k2

Ak1k2 cos ((Λk1 − Λk2)t) + Bk1k2 cos ((Λk1 + Λk2)t) (148)

where

Ak1k2 =
�

i

A
(i)
k1k2

(i − 1)2 (149)

Bk1k2 =
�

i

B
(i)
k1k2

(i − 1)2 (150)

The Lieb-Robinson bound can be studied by considering the imaginary part
of the time-dependent correlation function ρzz

ij (t) = �σz
i (t)σ

z
j (0)�

Imρzz
ij (t) = 4Im�ni(t)nj(0)� (151)

With respect to the initial state chosen, we have

Im�ni(t)nj(0)� =
�

k1k2

Cij
k1k2

sin ((Λk1 − Λk2) t) + Dij
k1k2

sin ((Λk1 + Λk2) t)

(152)
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6 T H E D R I V E N D I C K E M O D E L

The dynamical behavior of quantum critical systems displays interesting
features concerning defects or excitations production, which occurs when the
system is driven across its critical point.

In this Chapter we outline the study of another critical system, the so-called
Dicke model [109], representing a paradigmatic example in ethis context. The
model describes a system of free atoms that interact with a bosonic mode. It
shows a thermodynamic phase transition if the coupling is large enough. The
system is brought out of the equilibrium by a parametric driving [D]. We study
the dynamics in general, with a particular emphasis on the work performed
because of the driving. The non adiabaticity property, induced by the driving,
is characterized in terms of the inner friction, that has been previously studied
in the Sec. 3.2.

The Dicke model is introduced in Sec. 6.1, where the phase transition is
briefly discussed.

In Sec. 6.2 the dynamics is studied in general, by using a perturbative ap-
proach that tends to be exact at the thermodynamic limit, in which the dy-
namics is described by a Gaussian propagator. The study is done in terms
of classical mean-fields, and quantum fluctuations operators. It is shown how
an instable behavior can arise, as discussed in detail in Sec. 6.2.1, in which
the quantum fluctuations undergo an unbounded amplification. This behav-
ior, as studied for a linear driving, could lead to an exponential generation
of the quantum correlations between the two subsystems, quantified by the
logarithmic negativity. The exponential growth is abruptly interrupted as the
non linear terms become active, leading to a coarse grained saturation in the
quantum correlations.
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We carry on our analysis, by focusing on a periodic driving in Sec. 6.3. For
this particular case, the dynamics is characterized with the help of a stability
diagram, obtained by using the Floquet theorem. Photons could be generated
by a parametric amplification of the vacuum fluctuations, and in Sec. 6.3.1 this
mechanism is linked to the work done on the system. Furthermore, during the
driving, the system is typically unable to follow its instantaneous equilibrium
state. This effect is described by considering the inner friction produced in the
process.

In Sec. 6.3.2, it is shown how the quantum fluctuations can be characterized
by using some figures of merit. In particular, we focus on the Mandel parameter
and the degree of two-mode squeezing.

6.1 the dicke model

The Dicke Model (DM) describes a system of a N two-level atoms interacting
collectively with a single bosonic mode. Originally, the DM was introduced to
describe the coupling of N two-level atoms with an electromagnetic field [109].
The model is defined by the Hamiltonian Ĥ = Ĥ0 + Ĥint with

Ĥ0 = ωaâ†â + ωbĴz , Ĥint = 2g
�
â† + â

�
Ĵx/

√
N . (153)

Here â (â†) is a bosonic annihilation (creation) operator, and Ĵ = (Ĵx, Ĵy, Ĵz)

is the collective spin operator, with Ĵ =
�N

i=1 σ̂i/2 and σ̂i is the vector of Pauli
spin operators.

Since the total spin Ĵ2 is conserved, the states {|j, m�} [110] defined as

Ĵ2 |j, m� = j(j + 1) |j, m�

Ĵz |j, m� = m |j, m�

play a key role in the Dicke theory, and they take the name of super radiant
states [109]. Explicitly, the subspaces of the Hilbert space of the system, with
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a given j are dynamically invariant. The quantum number j is the so-called
cooperation number [109], and it has been shown how coherent radiation can
be emitted when j is large while m is small.

Another important constant of motion is the parity, which, in the subspace
with a given j, reads Π̂ = exp{iπ(â†â+ Ĵz + j)}, where â†â+ Ĵz + j gives the
number of excitations in the state of the whole system [111].

By taking advantage of the parity symmetry, the model with N = 1, taking
the name of Rabi model [112], was recently solved [113, 114] in the Bargmann
representation [115].

Here, we focus on the large N limit. In the thermodynamic limit, if the
atom-photon coupling g is larger than the critical value

gc =
√

ωaωb/2 , (154)

then there exists a critical temperature Tc = (kBβc)−1, given by [116]

tanh
�

βc

2

�
=

ωaωb

4g2 = µ , (155)

at which the DM undergoes a thermodynamic phase transition, generally
referred to as the Super-Radiant (SR) transition.

When the temperature decreases crossing Tc, the system goes from its Nor-
mal (N) phase to the SR phase, that is a macroscopically excited and highly
collective state that possesses the potential to super-radiate [117].

This phase transition was firstly studied by Hepp and Lieb [118] under
the Rotating-Wave Approximation (RWA), with the interaction described by
Ĥ

(RW A)
int = g

�
â†Ĵ− + âĴ+

�
/

√
N . Later, another procedure was provided by

Wang and Hioe [119], that is formally justified in [120], where it is also shown
that the super-radiant transition survives without the RWA.

The SR transition can be inhibited if quadratic terms in â and â† are taken
into account in the Hamiltonian in Eq. (153) as shown in [121]. Specifically,
in the original physical system [109, 118], the SR transition is always prohib-
ited [121], because of the Thomas-Reiche-Kuhn sum rule [122, 123, 124, 125].

This no-go theorem can be bypassed by an engineering of the Hamiltonian
H of the DM. For instance, the phase transition has been observed in a open
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DM simulated thanks to a Bose-Einstein condensate coupled to an optical
cavity [126], or by using ultracold atoms [127].

Recently, the QPT at Tc = 0 and the quantum-chaotic properties of the
DM, have been studied in [111] by using a Holstein-Primakoff (HP) represen-
tation [128] for the atomic system.

Below the coupling gc given in Eq. (154), i.e. if µ > 1, where µ is defined
in Eq. (155), the behavior imposed by the free Hamiltonian Ĥ0 is prevalent,
and essentially there are no excitations in the ground state (N phase). Con-
versely, above gc, the interaction is predominant, and the two subsystems get
macroscopically populated. Their state then is well described by a displaced
coherent state (SR phase) [111], but two equivalent values for the mean field
could be choosen, giving rise to the phenomenon of the spontaneous symmetry
breaking.

Despite being a ground state property, the existence of a phase transition
point can play a crucial rule also in the time evolution of the system. In general,
a dynamical phase transition [129] can occur by driving the system from a static
phase to the other, as it was experimentally observed in the open DM [130].

For the particular case of a monochromatic non-adiabatic modulation of the
atom-field coupling, it is shown that the DM shows a set of nonequilibrium
quantum phase transitions [131].

6.2 dynamics of the driven dicke model

We study the dynamics of the system allowing a time dependence in all
the parameters ωa,b, and g (in order to avoid notational clutter, and unless
otherwise specified, we will avoid writing explicitly any time dependence).

In order to give a simple theoretical description of the DM, we consider only
the totally symmetric subspace, determined by j = N/2. For instance, this
choice is justified if the atoms can be treated as indistinguishable, or if the
initial state of the system belongs to this subspace.
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Each spin operator restricted to the symmetric subspace j = N/2 is mapped
into a bosonic mode thanks to the HP transformation

Ĵz = b̂†b̂ − N/2 , Ĵ+ ≡ Ĵx + iĴy = b̂†
�

N − b̂†b̂. (156)

where b̂ and b̂† are bosonic operator such that [b̂, b̂†] = 1.
In this representation, as N → ∞, the state

���N2 , n − N
2
�

corresponds to the
bosonic number state |n�, and so the state N �N

n=0
αn√

n!

���N2 , n − N
2
�

corresponds
to the coherent bosonic state |α� [132].

The Hamiltonian that rules the free evolution of the two subsystems reads
Ĥ0 = ωaâ†â + ωb

�
b̂†b̂ − N

2
�
, and the interaction Ĥint takes the form

Ĥint = g
�
â† + â

�

b̂†

�

1 − b̂†b̂
N

+

�

1 − b̂†b̂
N

b̂


 . (157)

The atomic medium is described by an effective bosonic mode b non linearly
interacting with the cavity mode, so that solving the dynamics in general is
non trivial.

In the thermodynamic limit, the ground state of Ĥ and the low energy
excitations can be calculated by isolating from b̂ and b̂† macroscopic (∼

√
N)

mean contributions [111] and retaining only the leading terms of a 1/
√

N

expansion of the non linear term in the interaction in Eq. (157). This procedure
implies subtracting a static mean field chosen in order to approximate the
Hamiltonian as accurately as possible at low energies.

Then, if the model is undriven, the time evolution of low energy states can
be determined by finding the energy eigenstates involved.

Instead, for a driven model, this approach is less helpful as the evolution
becomes non adiabatic.

Here, we describe the dynamics in general, by requiring that any macroscopic
contribution is ascribed to time-dependent mean fields.

Under this ansatz, the bosonic operators a and b at a time t reads





â(t) =
√

Nα(t) + ĉ(t)

b̂(t) =
√

Nβ(t) + d̂(t) ,
(158)
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where the rescaled mean fields α and β are defined by





α(t) = limN→∞�â(t)�/
√

N

β(t) = limN→∞�b̂(t)�/
√

N
(159)

and remain O(1) as N → ∞ (as it is the case for a static Ĥ [111]). Then
bosonic operators ĉ and d̂, describing deviations from the macroscopic mean
fields, satisfy the relations [ĉ, ĉ†] = 1, [d̂, d̂†] = 1, and their averages remain
O(1) as well as N → ∞.

With this ansatz, a perturbative study in the parameter 1/
√

N can be per-
formed, and by using the leading terms only, the generator of the time evolution
is described by the quadratic time-dependent Hamiltonian 1

Hα,β = ωac†c +

�
ωb − 2g

αrβr√
Γ

�
2 + |β|2

2Γ

��
d†d + g

√
Γ(c† + c) ×

��
1 − β∗βr

Γ

�
d + h.c.

�
− g

αr√
Γ

�
β∗
�

1 + β∗βr

2Γ

�
d2 + h.c.

�
+

√
N

��
ωaα + 2g

√
Γβr

�
c† +

�
ωbβ + 2g

√
Γαr

�
1 − ββr

Γ

��
d† +

h.c.
�
+ ΛN (160)

up to terms of the order of 1/
√

N , where Γ = 1 − |β|2 is assumed to stay
positive during the time evolution [111], while ΛN is the c-number

ΛN = N
�

ωa|α|2 + ωb

�
|β|2 − 1

2

�
+ 4g

√
Γαrβr

�
− gαrβr

|β|2
2
√

Γ
(161)

The rescaled mean fields α and β in Eq. (160) are obtained as solutions of
the equations 2





iα̇ = ωaα + 2g
√

Γβr

iβ̇ = ωbβ + 2g
√

Γαr (1 − ββr/Γ)
(162)

1 Here sr = Re(s) and si = Im(s) with s = α, β.
2 In order to derive the values for α and β, we require that the time evolution generated by

Hα,β leaves the operators c and d of order O(1) as N → ∞, at any finite time t.
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with initial conditions determined by the initial mean values of a and b.
For instance, for the initial state with no photons in cavity and all the atoms
excited, we have α(0) = 0 and β(0) = 1.

If we regard αr and βr as the generalized coordinates, and αi and βi as their
conjugate momenta, Eq. (162) can be derived from the effective Hamiltonian
function

H(α, β) =
ωa

2 |α|2 + ωb

2 |β|2 + 2g
√

Γβrαr

In the strict thermodynamic limit, thus, the Hamiltonian becomes quadratic,
so that the time evolution can be described by a Gaussian propagator.

The Heisenberg equations for c and d are best displayed in terms of the
quadrature vector Q̂ = (q̂c, q̂d, p̂c, p̂d) with q̂k = (k̂ + k̂†)/

√
2, p̂k = i(k̂† −

k̂)/
√

2 (k = c, d). In the limit N → ∞, we have

˙̂Q = Mα, β Q̂ , (163)

where matrix Mα, β is a non-linear function of the instantaneous mean field
values α and β, and it is given by

Mα,β =




0 0 ωa 0
−2gβrβi√

Γ
−2gαrβi√

Γ

�
1 + β2

r
Γ

�
0 ωb − 2gαrβr√

Γ

�
1 + β2

i
Γ

�

−ωa −2g
√

Γ
�

1 − β2
r

Γ

�
0 2g βrβi√

Γ

−2g
√

Γ
�

1 − β2
r

Γ

�
−ωb +

2gαrβr√
Γ

�
3 + β2

r
Γ

�
0 2gαrβi√

Γ

�
1 + β2

r
Γ

�




(164)
In general, Eq. (163) are formally solved as Q̂(t) = Φ(t)Q̂(0), where matrix

Φ is the solution of the differential equation Φ̇ = Mα, βΦ with the initial
condition Φ(0) = 1.

Then the dynamics of the quantum fluctuations around the mean values �a�
and �b� depends on the time evolution of mean fields α and β.

The Eq. (162) are manifestly nonlinear. However, by starting from low-energy
conditions with respect to the free Hamiltonian H0, the dynamics can be well
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approximated by linear equations of motion up until the time tlin, within which
|α|, |β| � 1. In such linear transient, we have

d

dt




αr

βr

αi

βi




� M0




αr

βr

αi

βi




, M0 =




0 0 ωa 0
0 0 0 ωb

−ωa −2g 0 0
−2g −ωb 0 0




(165)

and Q̇ � M0Q, so that the quantum fluctuations and the mean fields have
the same dynamics, as it is evident from Eq. (165).

When the mean fields acquire macroscopic values, their dynamics becomes
fully non linear and the whole of Eq. (162) should be retained. For a constant
Hamiltonian and any value of µ, Eq. (162) have the stationary solution α(n) =

β(n) = 0, corresponding to the mean fields of the N phase [111]. In the SR-
phase, with µ < 1, two other stationary points appear, corresponding to states
with broken (parity) symmetry [111],





α
(sr)
± = ± g

ωa

�
1 − µ2

β
(sr)
± = ∓

�
1−µ

2

(166)

For a driven system, µ depends on time and so do α(sr) and β(sr) in Eq. (166),
while the normal point (α(n), β(n)) is instead stationary. As a result, if the
initial state has null mean values �a(0)� = �b(0)� = 0, the condition α = β = 0
will hold at all times and the dynamics will never exit the linear transient.

However, if the system is instantaneously brought into the SR region, such
normal stationary point becomes unstable.

Then, when the system is initially prepared in its N phase, small perturba-
tions in the mean fields stay bounded and of the same order in time; but, if the
system is instantaneously brought into the SR region, even a small perturbation
gets an exponential amplification.

This behavior can be linked to the Kibble-Zurek mechanism [6, 7], that
depicts the scenario of defects generation, when the system is drived towards
a final phase characterized by a spontaneous symmetry breaking.
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As discussed in [7], during the crossing of the phase transition point the
state of the system tends to be “freezed”, because the relaxation times tend
to diverge at this point (impulsive regime). We expect that the time tlin could
play the role of freeze-out time of the Kibble-Zurek theory [7].

As an example of such a behavior, we consider a linear driving.
The system is driven towards the SR region, by changing the coupling as

g(t) = gc

�
1 + t

τ

�
, in the time interval [−τ , τ ].

Initially the radiation field has been taken in the coherent state |
√

N�� with
� � 1, and all of the atoms in their ground states.

For this case, we have characterized the entanglement generation between
the atomic system and the electromagnetic mode, described by the logarithmic
negativity EN [133, 134].

As the system enters in the SR region, there is an exponential growth of the
entanglement, until a time t∗ when it starts to decrease, and the non linear
terms become active. As � goes to zero, t∗ goes to infinity.

After this time, the logarithmic negativity EN fluctuates, yet remaining of
the same order. This behaviour is illustred in Fig. 6.2.1 (left panel). The time
t∗ shows non analytic points as a function of the driving time τ , at regular
intervals as shown in Fig. 6.2.1 (right panel).

6.2.1 Limits of Validity and Instability Rate γ∗

Our description of the dynamics becomes exact for every finite time t in the
limit N → ∞. Anyway, it’s crucial to understand what the limits of applicabil-
ity of our approach are for finite N .

For finite N , one should consider further terms in the expansion in Eq. (160),
in order to achieve a more accurate description.

We have seen that during the time evolution, the fluctuations can become
very large and even unbounded in time.

For finite but large N our description stays accurate until the nth moment
of Q becomes of order Nn/2.
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Figure 6.2.1.: (Color online): Left: Logarithmic negativity EN as a function of time.
As the system is driven towards the SR region, by changing the cou-
pling as g(t) = gc

�
1 + t

τ

�
, in the time interval [−τ , τ ]. We consider

an initial state
���
√

N�
�

|N/2, −N/2�, with � = 10−2. There is an ex-
ponential growth, that ends near the time t∗, when the entanglement
reaches the first maximum (red point), and then it stays of the same
order. Here we have chosen ωa = ωb = ω and τ = 66ω.
Right: The time t∗ as a function of τ .

To ensure that this is not the case, it is enough to require that all of the
elements of the matrix Φ are small compared to

√
N . Therefore, our description

of the dynamics is accurate until a time tmax, defined as the first instant for
which

maxi j {Φij(tmax)} ≈
√

N (167)

In the limit N → ∞, we expect tmax → ∞, since the dynamics of Q is
independent of N (see Eq. (164)).

In order to characterize and estimate tmax, we need to consider the initial
conditions for the mean fields, α(0) = α0 and β(0) = β0. In particular, if we
take δ = max {|α0|, |β0|} � 1, the first part of the dynamics is included in the
linear transient. This implies that, for 0 ≤ t < tlin, the time evolution of both
the fluctuations and the mean-fields is determined by the linearized matrix M0.

In the absence of driving and in the linear transient, the dynamics would
be characterized by the eigenvalues of the matrix M0. Two of them are always
purely imaginary, i.e. ±iλ1. The other two are ±iλ2, where λ2 is real if µ > 1,
it is equal to λ1 if µ = 1 and it is purely imaginary if µ < 1. This means that
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if µ > 1 the fluctuations and the mean fields stay always of the same order,
i.e tlin → ∞ and tmax → ∞. At the transition point, µ = 1, fluctuations and
mean-fields grow linearly in time; while in the super-radiant phase µ < 1, the
fluctuations and the mean fields can experience an exponential growth, with
an instability rate given by γ∗ = |λ2|. This is true until t � tlin. After tlin,
the nonlinear terms cannot be neglected anymore and one has to consider the
full non-linear equations. Thus, within the linear regime, we can define the
characteristic time τ ∗ as the inverse of the instability rate, i.e.

τ∗−1 = γ∗ =

�����

����
�

ω2
a − ω2

b

2

�2
+ 4ωaωbg2 − ω2

a + ω2
b

2

If δ = 0, then tlin → ∞ and the time of validity tmax is given by the condition
eγ∗tmax ≈

√
N , and so tmax ≈ τ∗

2 ln(N).
If δ �= 0, we can estimate tlin as the time for which one of the mean fields

(either α or β) becomes of the order of one,

tlin ≈ τ∗ ln
�
δ−1

�
(168)

Since δ � 1, we expect tlin to be much larger than τ ∗.
The crucial point, however, is wether or not all of the linear transient is

contained within our limit of validity. Indeed, for this description to be valid
for times of the order of tlin, we have to require that eγ∗tlin �

√
N , from which

it follows that tlin � τ∗
2 ln(N), and by using Eq. (168), δ � 1√

N
.

This condition is always fulfilled, because the contributions at the averages
�a� and �b� of the order 1√

N
are taken in account with �c� and �d�. Then tlin �

tmax, and our description makes full sense even outside the linear transient,
and can be used even when the mean fields take values of the order of

√
N .

Anyway, it is not possible to give a simple expression for tmax, as it depends
on the non-linear terms appearing in the time evolution, and the only way to
check the validity of our approach is to check the condition (167).

These estimates and reasoning can be adapted also to the case of a driven
system, since they are simply a consequence of the fact that the dynamics of
the mean fields and that of the fluctuations are the same in the linear transient.
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For instance, for a periodically driven Hamiltonian, we can use the largest
positive Floquet exponent of the linearized matrix M0 in order to estimate τ ∗;
and then use again the equations above to estimate tlin and tmax. Specifically,
if M0 is periodic in time, with period T , then the monodromy matrix (in the
Floquet description [135]) is given by M = Φ(T ). The eigenvalues of M
are the Floquet multipliers {ρi}4

i=1. From these, we can calculate the Floquet
exponents, that are the complex numbers νi = ln(ρi)

T . So we can define the
instability rate γ∗ as the maximum among zero and the real parts of the Floquet
exponents, i.e.

γ∗ = max
�
0, {Re{νi}}4

i=1
�

(169)

As a result, the arguments above can be applied in this case too, even if, in
a strict sense, the stability of the dynamics cannot be fully characterized by
the instantaneous eigenvalues of the matrix M0.

6.3 periodic driving

In the following, we focus on a periodically driven system, leading to a para-
metric amplification of the vacuum fluctuations [136], mimicking the dynam-
ical Casimir effect [137, 138]. Specifically, the atomic frequency is assumed
to be sinusoidally perturbed, ωb/ωa = λ0 + λ sin(ηt), implying an harmonic
time dependence for µ(t), which oscillates between µmin = µ0(1 − λ/λ0) and
µmax = µ0(1 + λ/λ0), with amplitude µ0 = λ0ω2

a/4g2 and frequency η.
For such a periodic driving, we make use of Floquet theory [135, 47] to study

the dynamics of the system in the linear transient. In particular, the stability
of the solutions of Eq. (162) can be characterized by an instability rate γ∗ de-
fined as the largest positive Floquet exponent of the linearized equations [135],
which embodies the growing rate of the mean fields in the linear regime. While
the details of this analysis are given in the previous section and the result
is reported in Fig. 6.3.1, where we see that γ∗ > 0 if µ(t) < 1 at all times
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(above the black line in Fig. 6.3.1), while driving-induced instabilities appear
even when µ(t) > 1 at all times (below the green line in Fig. 6.3.1). For small
couplings, this occurs near the parametric resonance points ηk = ωa(1+ λ0)/k

���

���

��� ���

���
���

���

Figure 6.3.1.: (Color online) (a) Stability diagram in the driving frequency vs.
coupling plane, signalling in white the regions with positive insta-
bility rate, γ∗ > 0. The plot is drawn at the static resonance,
ωa = ωb(0) = ω, with λ = 1

2 . The red line signals the static criti-
cal coupling µ0 = 1, and for a sufficiently fast driving, γ∗ < 0 below
this line. Instead, the black line corresponds to µmax = 1, so that, for
a point over the black line µ(t) < 1∀t and γ∗ > 0. Finally, the green
one is µmin = 1, so that, for a point under the green line µ(t) > 1∀t,
inside of which the white zones open for ηk = 2ω/k, k ∈ Z, as g → 0.
The inset shows the stability diagram for larger values of the driving
frequency. (b)-(d) Trajectories of the mean field α corresponding to
the three points in panel (a). We have assumed a slow periodic driv-
ing (ωa = 11η) and evaluated α(t) up to t = 60η−1 by numerically
solving Eqs. (162) for the parameters indicated by the black dots in
the central panel, with 2g/η = 9, 12.5, 14. Initially, the radiation field
has been taken in the coherent state |

√
N�� with � = 10−2, with all

of the atoms in their ground states.
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(k ∈ Z). These are the so called Arnold instability tongues, discussed in [131],
and studied there as g → 0 by using a perturbative approach.

Although the dynamics can exit the linear regime when the mean fields ac-
quire large values (which can occur quite quickly, e.g., for initial coherent states
with very small amplitudes), the diagram in Fig. 6.3.1 still helps classifying the
dynamical behavior of the mean fields, identifying those values of frequency and
coupling for which α and β grow exponentially in time, from those for which
they stay bounded.

Clearly, the same diagram will help also in the study of quantum fluctuations.
In particular, for a parameter set in the white region, the dynamics of the
fluctuations becomes chaotic, since the matrix Mα, β depends on the mean
fields.

If initially there are not excitations, i.e. the electromagnetic mode is in the
vacuum state |0� and all the atoms are in their ground states, then the time
evolution will be generated by the operator H0,0 given in Eq. (160).

However, for parameters inside the white regions, the stationary point α =

β = 0 is unstable, and small perturbations in the mean fields are exponentially
amplified in time.

If the mean fields have acquired macroscopic values, then, for a slow driving
η � ωa, ωb, the trajectories lag behind one of the two broken symmetry points
(α

(sr)
± , β

(sr)
± ) as µ get values smaller than one, as seen from the trajectories of

the photon mean field α in Fig. 6.3.1 (b)-(d), (β(t) follows similar trajectories).

6.3.1 Photon Generation from the Vacuum and Work Done

The dynamic mean fields are not sufficient to obtain the average value of a
generic observable.

In general, both the mean fields and the quantum fluctuations contribute to
the evolution of the physical observable, and a complete quantum description
requires the knowledge of the (operator) fluctuations around the mean fields.

The first moments of the quadratures are �Q̂(t)�, while the second mo-
ments form the covariance matrix W with elements Wi j = �{Q̂i, Q̂j}�/2 −
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�Q̂i��Q̂j� [139, 140, 134]. The covariance matrix at the time t is then given by
W (t) = Φ(t)W (0)Φ(t)T .

An interesting example being given by the average photon number na =

�â†â�, which reads

na = N |α|2 +
√

2N (αr�Q1� + αi�Q3�) + (W11 + W33 − 1) /2. (170)

If initially the system is prepared in the state with no excitations, then α =

β = 0 ∀t, so that photons are generated only by the exponential amplification
of the initial fluctuations, due to the instability of the system under sinusoidal
perturbation signalled by a positive instability rate γ∗.

For a very fast perturbation, η � ωa, ωaλ0, this requires µ0 < 1, i.e. initially
the system is in the SR region. On the other hand, if µ0 > 1, fluctuations
are bounded in time. Differently, as the perturbation becomes slow, photon
production can occur also if µ0 > 1, thanks to the Arnold instability tongues.

Photon generation from the vacuum is related to the work done on the system
by the driving agent, that is

Wdone = ωana(t) + Nωb(0)/2 + 2gW12(t)

+ωb(t) [W22(t) + W44(t) − (N + 1)] /2 (171)

and depends not only on the local energies of the two fluctuation modes
involved, but also on their correlations through the W12 term.

Eq. (171) shows that not all of the energy pumped into the system is used
for photon production: part of such energy goes to the atoms and part is stored
as interaction energy.

The non-adiabaticity of the driving process can be quantitatively studied
using the inner friction [A], discussed in Sec. 3.2.

In our case, assuming the coupling to be switched on at t = 0, it reads
�wfric� = �w� − Et

GS + E0
GS , where Et

GS is the energy of the instantaneous
ground state of the system, which becomes non-analytic for µ = 1.
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The inner friction could get macroscopic values as the evolved state becomes
macroscopically different from the instantaneous ground state. Altogether, the
inner friction per atom in the thermodynamic limit is

lim
N→∞

�wfric�/N =





0 for µ(t) ≥ 1,

ωb(t)[1 − 1/µ(t)]2/4 for µ(t) < 1.
(172)

6.3.2 Characterization of the Fluctuations

Besides the mean photon number, we can characterize the photons generated
by the variance σ2

a = �(a†a)2� − n2
a, that reads

σ2
a = 2N

�
α2

rW11 + α2
i W33 + 2αrαiW13

�
+ O(

√
N) (173)

and, in the regime in which the mean fields dominate with respect to quan-
tum fluctuations, we expect that the terms O(

√
N) can be neglected for very

large N .
A useful quantity characterizing the statistics of the photons is the Mandel

parameter, that can be defined as ρ = σ2
a

na
. It signals a sub- or super-Poissonian

statistics if ρ is less than or greater than one, respectively, with ρ = 1 for a
coherent state, and ρ = 0 for photon number states.

For non zero mean fields, as N → ∞, the Mandel parameter becomes

ρ∞ = 2(α2
rW11 + α2

i W33 + 2αrαiW13)/|α|2 (174)

In general terms, the time behavior of the quantum fluctuations is very dif-
ferent depending on wether µ is larger or smaller than 1. This is reflected in the
covariance matrix and witnessed by the parameter ρ∞ (see Fig. 6.3.2). Roughly,
this is an oscillating function of time, which oscillates faster as the mean fields
get larger, with an amplitude that suddenly increases whenever µ crosses one
to enter in the SR region.

While na and ρ describe the reduced photon-state only, we can also charac-
terize global state correlations by evaluating the degree of two-mode squeezing.
With this aim, we consider the parameter ropt(t) optimizing the fidelity [141]
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Figure 6.3.2.: (Color online): We show the driving cycle [panel (a)], the mean field
trajectory (b), the photon number fluctuations ρ∞ (c), and the two-
mode squeezing parameter r∗ (d). In panels (b)-(d), segments of a
given color refer to the corresponding part of the driving cycle [panel
(a)]. We set η = 0.1ωa and λ = 0.5, with λ0 = 1, and g = 0.55ωa.
Initial conditions are α(0) = α(sr)(0) and β(0) = β(sr)(0).

between |ψ, t� and the two-mode squeezed coherent state [134]
���ψα, β(r, t)

�
hav-

ing coherent amplitudes given by the mean fields and (real) squeezing degree
r, i.e. |ψα,β(r, t)� = er(c†d†−cd) |α(t)�a |β(t)�b. Regardless of t, we numerically
find a value ropt(t) for which the fidelity is ≥ 0.9999. Therefore, ropt itself can
be thought as a good (although approximate) descriptor of the photon-atom
entanglement, [142, 133]. During time evolution, it turns out that ropt can ei-
ther grow exponentially at short times (if γ∗ > 0), or remain very close to its
initial value (for γ∗ = 0). An example of the behavior of ropt is reported in Fig.
(6.3.2), for the various stages of the driving induced dynamics.

6.4 summary and conclusions

In this Chapter, we have considered an out of equilibrium process generated
by parametrically driving the Dicke model. The study has been done for an
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arbitrary driving, and the system has been described in terms of two classical
mean fields, by taking into account also the quantum fluctuations around them.
Depending on the driving, the quantum fluctuations (and also the mean fields)
could experience an unbounded amplification in time, that should be attributed
to a quantum dynamical phase transition.

The analysis is carried on by mainly focusing on a periodic driving, that
could generate a parametric amplification of the vacuum fluctuations. This
mechanism, mimicking the Dynamical Casimir effect, is linked to the thermo-
dynamic work done in the process. Furthermore, the non adiabaticity of the
evolution is characterized in terms of the inner friction. The quantum fluc-
tuations, described by the covariance matrix, are also characterized in terms
of some figures of merit, which are the Mandel parameter and the degree of
two-modes squeezing.
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C O N C L U S I O N S

In this Thesis we have reported the doctoral studies performed in the last
three years. These studies are rooted in the field of the quantum thermodynam-
ics, and the paradigm of the work fuctuations theorems, discussed in Chap. 2,
has been like a germ, from which the most part of the results presented here
have developed. In this scenario, a physical system is driven far from an initial
equilibrium state by changing some Hamiltonian parameters. We have car-
ried out a general theoretical analysis, described in Chap. 3, by considering
two hypothetical reference processes, an isothermal and an adiabatic reversible
transformation. The latter has permitted to define the so-called quantum inner
friction, that has been linked to a Tasaki fluctuation relation.

Such general formalism has been briefly illustred with the help of two paradig-
matic examples, which are a harmonic oscillator and a spin 1/2.

An entropic measure of non adiabaticity, that in special circumstances could
be identified with the inner friction, is also introduced and discussed from a
thermodynamic point of view.

Specifically, it has been related to the work done in the process, and studied
as the process tends to be adiabatic, finding an interesting relation involving
the relative entropy of coherence. The role of the quantum coherence is still
object of our investigations, however some general relations, employing such
coherence measure, have beem reported in Chap. 3.

The tools underlying this general framework have been used in the character-
ization of out of equilibrium processes in specific many-body systems. We have
considered a quantum Ising spin (open) chain in a transverse field, abruptly
brought out of equilibrium because of a sudden quench, localized on its bound-
ary (Chap. 5). The system has been studied thanks to a fermionic represen-
tation, and the non-equilibrium thermodynamics has been characterized, by
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looking on the statistics of the work done in this process, which shows a signa-
ture of the quantum phase transition of the system. The system is linked to a
Kitaev chain, and in order to fully understand the role played by the Majorana
zero mode, we have also examined the out of equilibrium dynamics generated
by the quench. This has been characterized by focusing on the propagation of
the magnetization disturbance along the chain, finding strong oscillations in
the transient regime as the Majorana zero mode is involved.

Another critical model is considered in Chap. 6, namely the Dicke model. The
out of equilibrium process is discussed for an arbitrary driving. Technically, our
analysis has been mostly focused on the thermodynamic limit, and has been
based on two macroscopic mean fields and the quantum fluctuations around
them. In particular, the circumstances under which the quantum fluctuations
become unbounded in time have been discussed in general, and characterized in
the case of a periodic driving. A generation of photons from the vacuum state
could occur because of a parametric amplification of the quantum fluctuations.
This mechanism, mimicking the Dynamical Casimir effect, has been linked to
the non equilibrium thermodynamics, by characterizing the work done.

The problem of work extraction in finite quantum systems has been also
considered in general in Chap. 4. There, a new procedure of work extraction,
employing the quantum correlations between the system and an ancilla, has
been introduced and deeply studied. The amount of work extracted can be
enhanced, thanks to the information on the state of the system acquired from
measurements on the state of the ancilla. The maximum gain in work (daemonic
gain) acts as witness for the quantum correlations embodied by the quantum
discord, and as a necessary and sufficient criterion of separability of bipartite
pure states. Our analysis has been carried out by considering an illustrative
example of two qubits, for which we have fully characterized the distribution
of quantum correlated states with respect to the figure of merit set by the dae-
monic ergotropy, finding that quantum correlations embody a proper resource
for the work-extraction performances of the states that minimize the daemonic
gain.

102





L I S T O F P U B L I C AT I O N S

[A] F. Plastina, A. Alecce, T. J. G. Apollaro, G. Falcone, G. Francica, F.
Galve, N. Lo Gullo, and R. Zambrini. Irreversible Work and Inner Friction
in Quantum Thermodynamic Processes. Phys. Rev. Lett., 113:260601,
2014.

[B] T. J. G. Apollaro, G. Francica, M. Paternostro, M. Campisi. Work statis-
tics, irreversible heat and correlations build-up in joining two spin chains.
Physica Scripta, 2015:014023, 2015.

[C] G. Francica, T. J. G. Apollaro, N. Lo Gullo, and F. Plastina. Local
quench, Majorana zero modes, and disturbance propagation in the Ising
chain. Phys. Rev. B, 94:245103, 2016.

[D] G. Francica, S. Montangero, M. Paternostro and F. Plastina. The driven
Dicke Model: time-dependent mean field and quantum fluctuations in a
non-equilibrium quantum many-body system. arXiv:1608.05049v1, 2016.

[E] G. Francica, J. Goold, M. Paternostro and F. Plastina. Daemonic Er-
gotropy: Enhanced Work Extraction from Quantum Correlations.
arXiv:1608.00124v1 (accepted for publication by Nature NPJ Quantum
Information), 2016.

[F ] G. Francica, J. Goold, and F. Plastina, Coherence generation, irreversible
Entropy production and Non-adiabaticity in quantum processes, in prepa-
ration.

103



B I B L I O G R A P H Y

[1] Markus Greiner, Olaf Mandel, Theodor W. Hansch, and Immanuel Bloch.
Collapse and revival of the matter wave field of a bose-einstein condensate.
Nature, 419:51–54, 2016.

[2] Toshiya Kinoshita, Trevor Wenger, and David S. Weiss. A quantum
newton’s cradle. Nature, 440:900–903, 2006.

[3] M. Friesdorf J. Eisert and C. Gogolin. Quantum many-body systems out
of equilibrium. Nature Physics, 11:124, 2015.

[4] Anatoli Polkovnikov, Krishnendu Sengupta, Alessandro Silva, and
Mukund Vengalattore. Colloquium : Nonequilibrium dynamics of closed
interacting quantum systems. Rev. Mod. Phys., 83:863–883, Aug 2011.

[5] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii. Thermalization and
its mechanism for generic isolated quantum systems. Nature, 452:854,
2008.

[6] T W B Kibble. Topology of cosmic domains and strings. Journal of
Physics A: Mathematical and General, 9(8):1387, 1976.

[7] W. H. Zurek. Cosmological experiments in superfluid helium? Nature
(London), 317:505, 1985.

[8] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys.
Rev. Lett., 78:2690–2693, Apr 1997.

[9] L. D. Landau and E. M. Lifshitz. Course of Theoretical Physics, Statis-
tical Physics, Part 1, Volume 5. 1991.

104



[10] Michele Campisi, Peter Hänggi, and Peter Talkner. Colloquium : Quan-
tum fluctuation relations: Foundations and applications. Rev. Mod. Phys.,
83:771–791, Jul 2011.

[11] Christopher Jarzynski. Equalities and inequalities: Irreversibility and
the second law of thermodynamics at the nanoscale. Annual Review of
Condensed Matter Physics, 2(1):329–351, 2011.

[12] Gavin E. Crooks. Entropy production fluctuation theorem and the
nonequilibrium work relation for free energy differences. Phys. Rev. E,
60:2721–2726, Sep 1999.

[13] Christopher Jarzynski. Rare events and the convergence of exponentially
averaged work values. Phys. Rev. E, 73:046105, Apr 2006.

[14] Edward H. Feng and Gavin E. Crooks. Length of time’s arrow. Phys.
Rev. Lett., 101:090602, Aug 2008.

[15] Massimiliano Esposito, Upendra Harbola, and Shaul Mukamel. Nonequi-
librium fluctuations, fluctuation theorems, and counting statistics in
quantum systems. Rev. Mod. Phys., 81:1665–1702, Dec 2009.

[16] Hal Tasaki. Jarzynski relations for quantum systems and some applica-
tions. arXiv:cond-mat/0009244v2, 1999.

[17] Jordan M. Horowitz. Quantum-trajectory approach to the stochastic
thermodynamics of a forced harmonic oscillator. Phys. Rev. E, 85:031110,
Mar 2012.

[18] Jordan M Horowitz and Juan M R Parrondo. Entropy production along
nonequilibrium quantum jump trajectories. New Journal of Physics,
15(8):085028, 2013.

[19] Michele Campisi, Peter Talkner, and Peter Hänggi. Fluctuation theorem
for arbitrary open quantum systems. Phys. Rev. Lett., 102:210401, May
2009.

105



[20] Christopher Jarzynski and Daniel K. Wójcik. Classical and quantum
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