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Chapter 1

Measures of bipartite entanglement

The aim of this �rst chapter is to review the meaning and de�nitions of some measures

of entanglement, quantities able to quantify the entanglement encoded in a quantum

state, that will be considered and employed in our research work reported in the

following chapters.

The most important features of quantum entanglement, in particular, the non-

local feature of strong correlation between the parts of a quantum system which is

an intrinsically quantum e�ect and cannot be explained by classical theory [1, 2] are

reviewed.

In sec. (1.1.1), we will see that the entanglement is well characterized and quan-

ti�ed if thought as a characteristic of the system which cannot be created by local

operations (i.e., operations that act on parts separately distinguished), nor by oper-

ations coordinated through classical communications.

In sec.(1.2), we will illustrate an extension of the entropy of entanglement to

mixed states, known as the entanglement of formation EF . In general, in order to

calculate the entanglement of formation one needs to perform a di�cult minimization

procedure. For qubits, this procedure can be carried out explicitly, and in sec.(1.3),

3
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we discuss we show the result expressed in terms of the so-called concurrence, which

, by itself, is a useful quanti�er of entanglement for a two-qubit systems.

1.1 Measures of entanglement

The relevance of entanglement quanti�cation stems from both a fundamental point

of view and for potentially practical reasons. Indeed, we may treat entanglement

as a resource, just as energy and information, needed to perform certain tasks, and

therefore its measure becomes essential.

There are in principle two ways to quantify the entanglement in a state:

1. Operational measures are based on how well a certain task can be performed,

usually compared to Bell states;

2. Abstract measures are based on the search of a set of natural axioms we believe

an entanglement measure should satisfy.

The axiomatic approach in quantifying entanglement has been quite successful

and measures have been de�ned that quantify certain aspects of entanglement. So

far, there is no uniquely accepted list of axioms, however, the only absolute require-

ment has always been that entanglement, irrespective of how we quantify it, should

not increase under local operations and classical communication (LOCC), i.e. it is

monotonic under LOCC [3, 4, 5, 6].

In the following, we review this leading idea for quantifying entanglement, that is

called monotonicity condition.
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1.1.1 Entanglement monotones

The entanglement is a non-local quantum correlation between the parties of a com-

posite system that doesn't have analogs in the classical physics [7].

Its importance not only resides in philosophical considerations about the nature

of quantum theory, but also in the applications; in fact recently it has emerged that

non-locality is the key resource both in quantum computation and communication,

and it plays an important role in the cryptography

In e�ects, the presence of entanglement automatically provides an element of

non-locality that often allows to overcome the classical limits of computation and

communication.

In a bipartite system AB described by the space of Hilbert HAB, if the states ρA

e ρB describes the single subsystems, then the most general separable state is given

by the convex sum following

ρ =
∑

i

piρ
(i)
A ⊗ ρ

(i)
B (1.1)

where convexity implies positive coe�cients pi that sum up to unity,
∑

i pi = 1. Such

a state can contain global classical correlations (that is, it can have a non-local char-

acter), due to incomplete knowledge about the system state. These are characterized

completely by the classical probabilities pi. Then, the quantum correlations are cer-

tainly absent in such state, since it is only a statistic mixture of the states with weight

pi.

The typical example of entangled state is the spin singlet state, commonly known
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as �EPR state�, proposed by Bohm [8]

|Ψ〉AB =
1√
2

(|01〉 − |10〉) (1.2)

In such case, as shown by Bell [2], the state shows non-local quantum correlations,

stronger than those allowed by any local hidden variable model. Moreover the �GHZ

state�

|Ψ〉ABC =
1√
2

(|000〉+ |111〉)

is a canonical example of state of a tripartite entangled system, for which non-local

quantum correlations, that cannot classically be described, are shown in direct way,

by a single realization and not only through statistic averages (as it happens for the

singlet state).

These aspects of the quantum mechanics are reported as quantum non-locality,

and they form an important part of the study of its foundations.

Both the classical and the quantum correlations can be non-local; nevertheless,

they exhibit deeply di�erent features. The classical correlations can easily to be pro-

duced by local operations coordinated through the exchange of classical information

(LOOC).

Indeed, the local operations are the most general actions performed on a subsys-

tem independently from the others; whereas the classical communications allow to

correlate (classically) these local operations.

In a sentence, the classical communication is admitted because it allows to create

mixed states which are classically correlated but don't exhibit quantum correlations.
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On the other hand, the entanglement (non-local quantum correlations) is a non-

local feature in a stronger sense: observers A and B having access to di�erent parties

of a bipartite system in a �locally well de�ned� state (product state) cannot create an

entangled state with only LOOC operations.

Finally, in order to create entanglement an interaction between the parties of the

composite system is needed.

If two subsystems are interacting with each other, their evolution will in general not

derive from purely local operations. Any operation that is not local is called global.

Under this type of operations all kinds of correlations can increase, as well as de-

crease. Therefore, entangled states can be created from initially separable states and

vice-versa. The most prominent and natural way of creating entangled states is a

global unitary evolution due to an interaction between subsystems.

Since a classical communication between the parties cannot increase the quantum

correlation, we expect that any quantitative measure of entanglement should not

be increase under LOOC. Further, such a measure must remain invariant under the

action of all reversible LOCC protocols, one speci�c subclass of which is the set of

local unitary transformations. This observation yields the intuitive result that the

entanglement in a system is independent of the choice of local bases used to describe

the subsystems. Finally, from the above discussion a result emerges that we can

consider as: Fundamental principle of the entanglement theory

Entanglement cannot be created neither be increased under a set of local

operations and classical communication (LOOC).

The basic idea for a quantitative treatment is to classify all kinds of operations that
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in principle can be applied to quantum systems and that can create or increase only

classical correlations, but not that of quantum nature. Any quantity that is sup-

posed to quantify entanglement needs to be monotonously decreasing under such

operations[6, 3].

Any scalar valued functionM(ρ) that satis�es this criterion is called an entangle-

ment monotone.

Entanglement monotones that satisfy some additional axioms are called entan-

glement measures E(ρ), scalar quantities that quantify quantum correlations, and

distinguish them from classical ones. In the following we present a list of potential

axioms that an entanglement measure should satisfy[6, 3]:

A1 E(ρ) ≥ 0

A2 EX(ρ) = 0 if ρ is separable

A3 (Normalisation): E
(
|Ψ+〉〈Ψ+|

)
= 1 where |Ψ+〉 = 1√

2
(|00〉+ |11〉)

M1 (LOCC monotonicity): for all density operators ρ and local operations Λi,k per-

formed by an observer k,

M(ρ) ≥
∑

i

piM(ρi) (1.3)

where

pi = tr[Λi,k(ρ)] ρi =
Λi,k(ρ)

pi

M2 (Convexity - LOCC monotonicity under loss of information): for all ensemble

decompositions {pi, ρi}
∑

i

piM(ρi) ≥M(ρ) (1.4)
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where

ρ =
∑

i

piρi

Thus, entanglement monotones are speci�cally designed to detect and quantify only

the quantum mechanical correlations in a composite system. In this context, the

condition M1 from Eq(1.3) ensures monotonicity, on average, for any individual local

operation, and hence for a general LOCC protocol. The second condition M2, Eq.

(1.4), states that M(ρ) is a convex function which ensures that monotonicity is also

preserved under mixing, i.e., when some of the information about the results of local

operations is forgotten or is not communicated to the other party. Mixing of states

does not increase entanglement.

For pure bipartite states it is rather simple to �nd some entanglement monotones

due to the fact that there are no classical correlations contained in pure states. For

mixed states the situation is much more involved, because there are both classical and

quantum correlations that have to be discriminated against each other by an entan-

glement monotone. However, realistic states observed in experiments are mixed, since

there is no system that could be decoupled perfectly from environmental in�uences,

and mixing is thus unavoidable. Thus, an intensive research has been devoted to �nd

a proper quanti�cation also of mixed states entanglement.

Only for the simple case of two-qubit systems an explicit expression to quantify

entanglement is obtainable, leading to the quanti�er known as concurrence. This was

originally introduced as an auxiliary quantity, used to calculate the entanglement of

formation of two-qubit systems. However, concurrence can also be considered as an

independent entanglement measure [9], which will be hereafter chosen for treating the

entanglement dynamics.
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1.2 Entanglement of formation

The entanglement of formation was historically the �rst entanglement measure to be

proposed [3], and it results to be a straightforward generalization of the entropy of

entanglement to mixed states.

Indeed, for a mixed state of a bipartite system, the von Neumann entropy of a

subsystem is no longer a good measure of entanglement, because each subsystem can

now have nonzero entropy on its own even if there is no entanglement in the original

bipartite state. The entanglement of formation is designed to individuate the irre-

ducible entanglement of the mixed state.

In general, as we will see, in order to calculate the entanglement of formation one

needs to perform a di�cult minimization procedure. Nevertheless, a connection to a

related quantity particularly simple to evaluate, the concurrence, was established by

Wootters [9]. Further, more important is that through this connection between the

two measures of entanglement, the concurrence for mixtures, which arises as a purely

mathematical generalization of that for pure states, can be interpreted operationally

as a physically reasonable measure of entanglement for mixed states as well.

We imagine that the two observers Alice and Bob possessing the two parts of the

bipartite system whose entanglement we are investigating, want to create n copies

of a particular mixed state ρ to be shared between them. They initially share many

singlet states 1 and are allowed no quantum communication.

1Initial entangled states are needed because the LOOC operations, that constitute the protocol
of formation, cannot create entanglement.
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Extending the results obtained in the case of pure state to an arbitrary bipartite

mixed state ρ, with the pure state decomposition

ρ =
∑

i

pi|Ψi〉〈Ψi| (1.5)

one �nds that the number of singlets needed to create this particular decomposition

of ρ is given by

m = n
∑

i

piES(Ψi)

that depends on the particular decomposition of ρ that was chosen.

Indeed, for each value of i = 1, . . . , N , they create n pi copies of the pure state |Ψi〉 by
using n pi ES(Ψi) singlet pairs, where ES(Ψi) is the pure state entanglement. They

will then have created a large ensemble of n pairs, discarding any possible record that

would tell them which value of the index i to associate with each physical pair. At

this point, then, each pair could be in any of the states |Ψi〉 with probability pi; that

is, each pair is now in the mixed state ρ.

Thus, for a given ensemble of pure states E = {pi, |Ψi〉} the entanglement of

formation could be de�ned as the average value of the entanglement of pure states of

the ensemble

EF (E) ≡
∑

i

piES(Ψi) (1.6)

However, a mixed state can be realized by many ensemble of pure states E = {pi, |Ψi〉},
with di�erent entanglement of formation.

For instance, if ρ is the state of a two spin-1
2
particles

ρ =
1

2
(|00〉〈00|+ |11〉〈11|)

it can be regarded either as an equal mixture of the pure states |00〉 and |11〉, or
as an equal mixture of the pure Bell states |Φ+〉 = 1√

2
(|00〉+ |11〉) and |Φ−〉 =
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1√
2
(|00〉 − |11〉) 2. To create an ensemble based on the former decomposition requires

no singlets at all, since neither |00〉 nor |11〉 is entangled, while the second decompo-

sition would require one singlet state for each copy of ρ.

In order to obtain a measure of the minimum number of singlet states utilized to

create the state ρ, it is necessary to �nd the decomposition of ρ that minimizes the

quantity of Eq(1.6).

These reasons motivate the de�nition of entanglement of formation of a mixed

state [7, 3, 10] as the minimum value of the average entanglement of pure states of

the ensemble if one considers all the possible ensemble decompositions of ρ, that is:

EF (ρ) ≡ inf
{pi,|Ψi〉}

∑
i

piES(|Ψi〉) (1.7)

where the in�mum is taken over all pure-state decompositions of ρ and ES(|Ψi〉) is

the entanglement of the pure states.

Thus, the entanglement of formation has the physical meaning of quanti�cation

of the resources needed to create a given entangled state [3]. If one thus prepares the

state ρ as a statistical mixture, then at least the entanglement of formation must be

produced on the average.

The generalization of the entropy of entanglement, de�ned only for pure states,

to the entanglement of formation, which is de�ned for both pure and mixed states,

is a speci�c example of a convex-roof extension [11, 12, 13]. The method extends

a measure valid on some sub-set (here, the pure states) to the convex hull3 (here

mixed states), where it is the largest function that is convex and compatible with the
2ρ = 1

2 (|Φ+〉〈Φ+|+ |Φ−〉〈Φ−|) = 1
2 (|00〉〈00|+ |11〉〈11|)

3The convex hull of a set is the set of all elements that can be written as a convex combination
of the original set. For instance, the convex hull of two points is the line connecting them.
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measure on the original set. More generally, any pure state entanglement monotone

E(Ψ) can be extended to mixed states by �nding the minimum average value of the

measure over all pure state ensemble decompositions of ρ [6]

E(ρ) ≡ inf
{pi,|Ψi〉}

∑
i

piE(|Ψi〉) (1.8)

where the resulting function E(ρ) is the largest convex function of ρ that agrees with

E(Ψ) on all pure states. Vidal [6] demonstrated that any such function automatically

satis�es conditions (1.3) and (1.4) of the entanglement monotone.

Unfortunately the above minimization procedure is notoriously di�cult. Accord-

ingly, closed forms for the entanglement of formation exist in only a very limited

number of cases [9, 14, 15].

1.3 Concurrence

A concept related to the entanglement of formation is the concurrence [16, 9]. It is

de�ned for a system of two qubits, and it has appeared useful to deduce analytical

expressions that quantify entanglement in some classes of bipartite systems. We note

that there exists no clear resource-based interpretation for the concurrence such as

we have for the entanglement of formation. In this section we describe in detail such

measure.

As a preparation for the generalization to mixed states, the de�nition of concur-

rence can be based on a speci�c transformation on the density operators, the spin-�ip

operation. To be more precise, we consider a pure state |Ψ〉. The spin-�ip operation
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applied to this state produces

|Ψ̃〉 = σy ⊗ σy(|Ψ〉)∗ (1.9)

where σy is the usual Pauli operator which exchanges the states of the computational

basis and inserts the relative phase ±i, and ∗ denotes complex conjugation, both

taken in the computational basis. The operation in Eq (1.9) is clearly an antilinear

operator4.

For a pure state of two qubits, the concurrence is given by

C(Ψ) ≡
∣∣∣〈Ψ|Ψ̃〉

∣∣∣ (1.10)

The spin-�ip operation maps the state of each qubit to its corresponding orthogonal

state, i.e., the state diametrically opposite on the Bloch sphere. Thus, the concurrence

of any product state is equal to zero as expected. Conversely, performing the spin-�ip

operation on a maximally entangled state, such as the singlet state |Ψ−〉, leaves the
state invariant (up to an overall phase), demonstrating that the concurrence achieves

its maximum value, that results to be equal to one, for the maximally entangled

states.

We also write the concurrence of a pure state as a function of the associated

density operator ρ = |Ψ〉〈Ψ| :

C(Ψ)2 =
∣∣∣〈Ψ|Ψ̃〉

∣∣∣
2

= 〈Ψ|Ψ̃〉〈Ψ̃|Ψ〉

= tr
[
|Ψ〉〈Ψ|Ψ̃〉〈Ψ̃|

]

= tr [ ρ ρ̃ ] (1.11)
4An antilinear operator θ is an operator that satis�es the relationship

θ(c1|φ1〉+ c2|φ2〉) = c∗1θ|φ1〉+ c∗2θ|φ2〉.
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where the operator ρ ρ̃ is obtained from

ρ̃ ≡ ( σy ⊗ σy ) ρ∗ ( σy ⊗ σy )

and the tilde again denotes the spin-�ip of the quantum state.

The importance of this representation is that it suggests an initially formal gen-

eralization of the concurrence to mixed states.

More generally, the following relationship holds between the concurrence and the

entropy of entanglement [17], which for pure states represents the natural measure of

entanglement,

ES(Ψ) = E(C(Ψ))

where the function E is de�ned by

E(C) ≡ h

(
1 +

√
1− C2

2

)
(1.12)

and

h(x) ≡ −x log2 x− (1− x) log2(1− x)

is the binary entropy of the parameter x.

The connection between concurrence and entanglement is particularly clear if we

express the state in the computational basis:

|Ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉

It is easy to verify that |Ψ〉 is separable if and only if ad = bc, so that we can take

the di�erence between ad e bc as a measure of entanglement. Indeed, the concurrence

turns out to be

C(Ψ) = 2 |ad− bc|
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That the concurrence satis�es the requirements for being an entanglement mono-

tone follows immediately from the observation that E(C) is a monotonically increasing

function of C and vice-versa.

The concurrence is monotonic under LOCC, and can thus be used as an entanglement

measure for two qubits. The great advantage is that it is easily computable. But more

important is that it is directly related to the entanglement of formation, providing an

explicit formula for the entanglement of formation in the case of two qubits.

The generalization of the concurrence to a mixed state of two qubits proceeds by

taking the convex-roof extension according to Eq(1.8). In this way, for a mixed state

ρ =
∑

i pi|Ψi〉〈Ψi| follows

C(ρ) ≡ inf
{pi,|Ψi〉}

∑
i

piC(Ψi) = inf
{pi,|Ψi〉}

∑
i

pi

∣∣∣〈Ψi|Ψ̃i〉
∣∣∣ (1.13)

that is the average concurrence of the pure states of the decomposition, minimized

over all the possible decompositions of ρ.

We observe that the function E(C) of Eq(1.12) is monotonously increasing and

also convex. Then, the following relationship

E(C(ρ)) = inf E
(∑

i

piC(Ψi)

)
≤ inf

∑
i

piE(C(Ψ)) = EF (ρ) (1.14)

establishes that E(C(Ψ)) is an inferior limit of EF (ρ).

We introduce, now, two important features of the concurrence. First, the analytic

solution to this minimization procedure involves �nding the eigenvalues of the non-

Hermitian operator ρρ̃ introduced in Eq(1.11). Speci�cally, the closed form solution

for the concurrence of a mixed state of two qubits is given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (1.15)
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where the λi's are the square roots of the eigenvalues of ρρ̃ and are ordered in de-

creasing order [9].

Further, since there always exists an optimal decomposition of ρ for a pair of

qubits in which all of the pure states comprising the decomposition have the same

entanglement, Wootters was able to show that we can consider the Eq(1.14) as an

equality getting a closed-form for the entanglement of formation

EF (ρ) = E(C(ρ))

1.4 Conclusive remarks

In this chapter we have de�ned the entanglement in a direct way as a non-local

quantum correlation. So that, it cannot be created locally (but only globally) acting

on the parties of a composed system. This is also true when the local operators are

coordinated between each other (LOOC monotonicity).

We have assumed therefore that the entanglement describes those features of a

quantum state which cannot be gotten separately by analyzing its parties. In other

words, we will say that the entanglement is that part of the 'information' encoded in

a quantum state not available locally, but obtainable only by analyzing the non-local

(global) correlations.

Finally, we have introduced and discussed two measures of entanglement, and one

of these, the concurrence, will be the one we will consider in the our research work

reported in the following chapters.



Chapter 2

Decoherence

In this chapter we review the fundamental concept of environment induced decoher-

ence in its various aspects, and brie�y outline its crucial role in the dynamics of open

entangled systems.

Firstly, we give a general overview to point out the relevance of decoherence, in-

evitably appearing whenever a given quantum system is coupled to its environment.

In this framework, the basic ideas and formalism of decoherence are introduced, fo-

cusing the attention on the loss of quantumness as an e�ect of the surrounding envi-

ronment that tends to destroy dynamically the quantum coherences.

In sec. (2.2), density operator formalism is introduced as key tool to formally

describe the decoherence. Subsequently, in sec. (2.3) we show how the system-

environment interaction leading to quantum decoherence may be expressed in the

form of a standard von Neumann measurement scheme. Other basic concepts such

as dynamical selection of a preferred basis, the decoherence function and time, and

the possible emergence of decoherence-free subspace are described in sec.(2.4).

18
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Finally, in sec.(2.5), we discuss extensively a particular pathway of two-body de-

coherence called Entanglement Sudden Death and review recent progress to under-

standing this surprising phenomenon.

2.1 Overview

In the last decade, emergent quantum technologies allowed for the experimental

veri�cation of essentially quantum e�ects like entanglement in mesoscopic system.

Therefore, an understanding of the mechanism causing decoherence, particularly at

mesoscopic scale, has become a crucial point not only in the realm of fundamental

Quantum Mechanics, but also for technological purposes.

In quantum physics, decoherence is a process that implies the degradation of the

purity of a quantum state, which rapidly evolves towards the corresponding classical

mixture by losing the interference features. Quantum coherence, and so the capability

of interference due to phase relations between the superposition-state components of

a quantum system, are at the origin of various types of nonclassical properties that

may be manifested in both single- and multi-partite system. In particular, quantum

coherence can give rise to strong correlations between the parts of a multipartite

system, called entanglement, which is an intrinsically quantum e�ect that cannot be

explained by classical theory [1, 2].

In the �rst paper that introduced the main concepts of decoherence [18], Zeh

pointed out that realistic quantum systems are immersed in the surrounding environ-

ment and interact inevitably with it, so that the coupling prevents the system from

being isolated. The evolution of such system, called open quantum system, presents

non-unitary features like decoherence and dissipation [19], thus quantum coherence
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becomes degraded with time. Quantum decoherence, in particular, is a purely quan-

tum e�ect understandable as a result of the creation of quantum correlations between

the system and the its environment due to their interaction. At the same time, quan-

tum coherence, a measure for the �quantumness� of the system, is delocalized into the

entangled system-environment state. Since the state of the environment is generally

inaccessible to the observer, the accompanying delocalization of phases then locally

destroys superpositions between macroscopically di�erent states, so that the reduced

system appears to be in one or another of those states corresponding to its �classical�

properties. This process is usually irreversible due to the large number degrees of

freedom of the environment and constitutes a key component in explaining how the

classical world emerges from the quantum domain.

Therefore, the decoherence properties of entangled states play a central role to ex-

plain one of the greatest foundational problems of quantum mechanics the so-called

quantum-to-classical transition [20]. This issue is at the heart of the Schrödinger's cat

paradox [21], which is based on entanglement between a microscopic and a macro-

scopic system in terms (a cat put in a quantum superposition of alive and dead

states correlated with the state of a decaying atom). But it was considered a mere

Gedankenexperiment,i.e., a thought experiment, that would play no signi�cant role

in the macroscopic world, until the 1980s when it was proposed [22, 23, 24, 25] that

a macroscopic system could manifest quantum behavior, provided the coupling with

the environment be weak enough.

From this point of view, the decoherence changes the nature of the quantum

system itself, and the system-environment interactions in the quantum physics are not

only viewed as a kind of disturbance that perturbs the system of interest that ought
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to be minimized in order to properly describe the physics of this system. Instead,

the coupling to the environment now de�nes the observable physical properties of the

system. Only very special cases of typically microscopic phenomena (in the atomic

realm) are described to a good degree by the isolated-system approximation so that

coherent superposition of distinct physical states as predicted by quantum mechanics

can actually be observed.

The �rst works that recognize the crucial importance of system-environment in-

teractions and entanglement to the appearance of decoherence were in the 1970s and

1980s [18, 26, 27, 28, 29, 30]. Zurek's work has given several important contribu-

tions to the understanding of decoherence. Among these he developed the concept

of environment-induced superselection and �pointer states� [29, 30] and derived a

quite general and simple expression from which typical decoherence timescale could

be evaluated [31]. It turned out that this process can be extremely fast, especially

at macroscopic scales. In general, the e�ect of decoherence increases with the size

of the system (from microscopic to macroscopic scales), so that, larger systems lose

coherence more quickly. However, in some cases the decohering in�uence of the en-

vironment can be su�ciently shielded to lead to mesoscopic and even macroscopic

superpositions. For example, superpositions of macroscopic currents become observ-

able in superconducting quantum interference devices (SQUIDs) [32, 33].

Interest for decoherence was originally concerned with the consequences for quan-

tum measurement and the quantum-classical transition. More recently, decoherence

has been intended as the obstacles to circumvent to realize quantum information

processing and communication schemes. This is especially the case for entangled sys-

tems. In other words, due to decoherence the system loses its ability to maintain and
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exploit entanglement, and thus it becomes useless for all the applications relying on

it, such as quantum cryptography and quantum computation. [34]. From this point

of view, the decoherence appears as a key obstacle to next-generation technologies,

such as quantum computer. Due to this practical importance, decoherence dynam-

ics of entangled quantum systems (due to the interaction with internal or external

noise sources) have been studied in di�erent contexts involving atoms, ions, photons,

quantum dots, Josephson junctions, and so on.

In particular, the most fundamental aspects of quantum coherence and decoher-

ence can be deeply investigated in cavity QED experiments, which present the great

advantage that can be described by elementary models, being at the same time rich

enough to reveal intriguing subtleties of the interplay of coherent dynamics with exter-

nal coupling. Cavity QED provides therefore a unique paradigm for matching theory

with experiment in the study of quantum coherence, entanglement properties and

monitoring of the decoherence dynamics. In this area, the experiments realized by

Haroche's group [35, 36] have investigated the rapid decay of coherence of a quantum

superposition of coherent states, by monitoring the decoherence dynamics.

The dominant source of decoherence in cavity QED systems is simply related to the

escape of photons, due to the non-perfect re�ectivity of the cavity mirrors. This can be

described through a linear coupling of the cavity �eld to the external electromagnetic

modes, constituting a reservoir of harmonic oscillators. Further, a detailed analytical

description of the competition between atom-�eld and �eld environment couplings

can be given in terms of an open Jaynes-Cummings model.
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Decoherence of bipartite systems

The decoherence of entangled systems has started to be investigated only very re-

cently. For such a case, one is interested in following the time evolution of the entan-

glement, which is lost because of the interaction of the subsystems with their (local,

or common) environments. Even for the simplest entangled systems, composed of

just two qubits, for which the entanglement can be e�ciently evaluated using the

concurrence [9], it has been shown that entanglement decoherence shows amazing

dynamical features [37, 38, 39], which don't occur for the decoherence dynamics of

a single system. It has been demonstrated that decoherence degrades the nonlocal

(bipartite) entanglement in a very di�erent way compared to the usual (one-body) lo-

cal quantum coherence measured by the decay of o�-diagonal elements of the density

matrix of either qubit separately.

In particular, Yu and Eberly showed [38, 40] that an entangled system of two

qubits interacting with independent environments loses entanglement abruptly after

a �nite time, while quantum coherences decay smoothly to zero in an in�nite time.

The experiment of Almeida et al. [37] gives the �rst con�rmation of the existence of

such an e�ect that is called entanglement sudden death (ESD).

Finally, we emphasize that decoherence dynamics of two independent qubits each

coupled to its own environment presents new amazing features among known relax-

ation e�ects because it has no lifetime in any usual sense, that is, entanglement ter-

minates completely after a �nite interval, without a smoothly diminishing long-time

tail.

As the entanglement is a key resource of quantum information, the �nite time

disentanglement is clearly an unwanted e�ect. It is known that some two-qubit states
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are more robust against evolution to sudden death than others [41]. It is thus impor-

tant to study the decoherence of entanglement in order to �nd ways of circumventing

it.

Further, considerable e�ort has been devoted to designing strategies able to coun-

teract the e�ects of environmental couplings in open-system evolutions. In particular,

the e�ects of decoherence can adequately be controlled through sophisticated methods

such as quantum error correction, decoherence-free subspaces, quantum Zeno e�ect,

and environment engineering.

2.2 Basic concepts about decoherence in terms of

density operator

We start now a more formal description of decoherence, by noticing that it derives

from the possibility to divide the universe into �system� and �environment�, where

the term environment is usually understood as the �remainder� of the system, whose

degrees of freedom are typically not controlled.

In this picture the reduced density operator is a key tool to formally describe the

decoherence. The main reason for this is that the environment get rapidly entangled

with the system, thus preventing the description of the latter by a pure state (indeed,

it is impossible to assign an individual quantum state vector to the two sub-systems:

this is the heart of the key concept of quantum non-separability). A density operator

is needed, then, obtained by tracing out the unobserved degrees of freedom of the en-

vironment, and providing an elegant method to represent the measurement statistics

for the system.
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We can introduce a mixed-state density operator that completely encodes all sta-

tistical properties of the system. This density matrix is given by

ρm =
∑

j

pj|φj〉〈φj| (2.1)

with pj ≥ 0 and
∑

j pj = 1, that can be viewed as a classical probability distribution

of pure-state density operator ρj = |ψj〉〈ψj|.
A mixed state expresses insu�cient information about the state of the system, in

the sense that the system is (before the measurement) in one of the pure states |φj〉
but the observer simply does not know in which one. Therefore we can only ascribe

probabilities pj ≥ 0 to each of the states |φj〉. Such a situation typically arises if the

physical procedure used to prepare a quantum state contains a probabilistic element.

We emphasize that the states |φj〉 involved in ρ need not for a basis nor be or-

thogonal, and furthermore, even if they were a basis, a mixed state must be clearly

distinguished from a pure-state superposition of the form

|ψ〉 =
∑

j

√
pj|φj〉 (2.2)

Here all component states |φj〉 are simultaneously present due to encoded maximum

knowledge about the system, thus there is no a priori probabilistic element contained

in this superposition. The density operator for such a state would correspond to the

superposition (2.2) is

ρp = |ψ〉〈ψ| =
∑

j,k

√
pjpk|φj〉〈φk|

= ρm +
∑

j 6=k

√
pjpk|φj〉〈φk| (2.3)
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The o�-diagonal terms in Eq(2.3), contain de�nite phase relations between the di�er-

ent superposition components of Eq(2.2), and de�ne the quantum coherences associ-

ated with the quantum state |ψ〉 and clearly make the physical distinction between

this pure-state density operator and the mixed-state density operator of Eq(2.1).

Usually, an observer will perform measurements only on the system of interest

described by a reduced density matrix that is necessarily non-pure due to the pres-

ence of system-environment entanglement. As a result, the quantum coherence turns

out to be extremely fragile, and can be strongly suppressed as time goes on, so that

the quantum superpositions are continuously reduced to classical probability distri-

butions.

2.3 Environment-induced decoherence

We introduce the basic formalism of decoherence, by regarding decoherence as a

consequence of a von Neumann-type measurement interaction [42] between the system

and its environment. Here, the environment plays the role of the quantum probe.

Such interactions induce quantum correlations between system and its environ-

ment and allow us to immediately infer certain states as the preferred states of the

system that are most robust under the in�uence of the environment. For the reduced

density matrix in a speci�c basis representation, the quantum coherences result to be

damped on an extremely short time scale.

The hamiltonian for the total system may be decomposed into the three relevant

parts

H = HS + HE + Hint (2.4)
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where HS and HE describe the intrinsic dynamics of the system and environment,

respectively, and Hint is the system-environment interaction Hamiltonian.

The interaction Hamiltonian is taken be of the von Neumann form

Hint =
∑

n

Sn ⊗ En (2.5)

where En are arbitrary operator acting only in the Hilbert space of the environment,

the projector Sn = |n〉〈n| represents the physical quantity that is directly monitored

by the environment and selects a speci�c set of orthonormal basis vectors |n〉 of the
system.

We assume that such basis states |n〉 are not a�ected by the coupled dynamics due

to negligible feedback of the environment on them. We may also equivalently express

such condition in terms of system observables, which are simply linear combinations

of the projectors |n〉〈n|,
OS =

∑
n

on|n〉〈n| (2.6)

Thus, if the basis states |n〉 are eigenstates of Hint, it follows that |n〉〈n| and therefore

also OS commutes with Hint

[OS, Hint] = 0 (2.7)

This important condition, called stability criterion, was �rst introduced by Zurek

[29, 30] and as we will see it allows to determine an preferred set of states.

Furthermore, if the projector Sn = |n〉〈n| commutes with the system Hamiltonian

Hs, then the mean energy of the system is constant in time.

Now, we consider what happens if the system is in an initial superposition of these

basis states
∑

n cn|n〉.
In this case, the linearity of the Schrödinger equation implies that, when the initial



28

state of the total system is written as

|Ψ(0)〉 =
∑

n

cn|n〉 ⊗ |φ〉 (2.8)

where |φ〉 is an arbitrary reservoir state (it can always be chosen as a pure state, by

eventually enlarging the environmental Hilbert space), it evolves into

|Ψ(t)〉 =
∑

n

cn|n〉 ⊗ |φn(t)〉 (2.9)

where

|φn(t)〉 = T←e−i
∫ t
0 dsEn(s)|φ〉 ≡ Vn(t)|φ〉 (2.10)

This dynamical system-environment evolution represents the ideal von Neumann

quantum-measurement scheme and constitutes the basic formal representation of the

decoherence process, and we shall now discuss its consequences.

Note that Eq. (2.9) shows that the system-environment interaction has established

a one-to-one quantum correlation between the various system state |n〉 and corre-

sponding environment states |φn(t)〉. Thus, the �nal state of the system-environment

combination is in general described by an entangled state given by a superposition of

the states |n〉 ⊗ |φn(t)〉, which has been created dynamically.

The superposition initially con�ned to the system state has now spread to the

larger system-environment state, in the sense that the �nal superposition involves

both the system and the environment.

Correspondingly, coherence is no longer a property of the system alone, but it

has become a shared property of the global system-environment state, in a sentence:

coherence has been �delocalized into the larger system�, which now includes the en-

vironment.
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Note that Eq (2.9) also implies that the environment carries information on the

system state due to the measurement-type interaction in which the environment be-

haves as a probe. In this way, an irreversible �ow of information occurs from the

system into the environment.

However, provided that the environment has not recorded su�cient information

we cannot assume that the basis vectors |φn(t)〉 of the environment are mutually

orthogonal, so that the coherences will be still present in the reduced density matrix

of the system for the state (2.9) which is given by

ρS(t) = trE [|Ψ(t)〉〈Ψ(t)|] =
∑
n,m

cnc
∗
m|n〉〈m|〈φm(t)|φn(t)〉 (2.11)

obtained by tracing out the unobserved degrees of the environment.

It follows from unitarity that 〈φn(t)|φn(t)〉 = 1, so that, the populations don't

decay. While, in general, the coherences, that describe the interference between

the superposition-state components |n〉 of the system, are often found to be rapidly

decaying.

The time dependence of the matrix element 〈n|ρS(t)|m〉 is expressed in terms of

the corresponding environment states as follow

|〈φn(t)|φm(t)〉| = eΓnm , Γnm ≤ 0 (2.12)

where Γnm, for n 6= m, describes the behavior of the o�-diagonal elements of ρS(t)

and is called decoherence function.

Note that the time dependence of the decoherence function Γnm is determined

by the time evolution of the environmental states, so that it depends on the speci�c

modelling of system-environment interactions.
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Typically, for many system-environment models, the irreversible dynamics induced

by the system-environment interaction leads to an exponential decay of the overlap

of the di�erent relative environment states |φn(t)〉 as follows

|〈φn(t)|φm(t)〉| ∝ e−t/τD , for n 6= m (2.13)

where τD denotes the characteristic decoherence time scale, which is the delay required

for the relative environment states |φn(t)〉 to becomes orthogonal.

Many explicit physical models for the interaction of a system with the environ-

ment, however, have shown that due to the large number of freedom degrees of the

environment, the environment states |ψn(t)〉 rapidly approach orthogonality,

〈φn(t)|φm(t)〉 → δnm , for t À τD. (2.14)

Detailed models, in which the environment is typically represented by a reservoir of

harmonic oscillators [43, 44, 45, 46, 47, 48], have shown that the damping occurs

on extremely short decoherence time scales τD, which are typically many orders of

magnitude shorter than the thermal relaxation.

Thus, the reduced density matrix ρS(t) becomes diagonal in the preferred basis

{|n〉}, that is,
ρS(t) →

∑
n

|cn|2 |n〉〈n| , for t À τD (2.15)

Note that these basis states are selected by the form of the system-environment in-

teraction (2.5) and by the behavior of the decoherence function embodied in (2.14),

so that can be viewed as a consequence of the decoherence process.

The preferred states of the system emerge dynamically as those states that survive

the environment selection being the most robust to the interaction with the environ-

ment, in the sense that they become least entangled with the environment in the
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course of the evolution and are thus most immune to decoherence. W. Zurek has

compared this process of decoherence to a Darwinian process ensuring the �survival

of the �ttest� [47].

Moreover, the interference terms of the density matrix have vanished in this basis

due to system-environment interaction. In other words, the pure state of the reduced

system S becomes a mixture, so that the phase relation between the components

in the superposition of the pure state, and so the coherence, i.e., the capability of

interference, are lost for S.

This practically irreversible environment-induced delocalization of phase relations

into the composite system-environment state expressed by (2.15) constitutes the pro-

cess of decoherence.

Only measurements that include both the system and the environment could reveal

the coherence between the components in the superposition state (2.9). However, in

practice, it is impossible to include in our observation all the many environmental

degrees of freedom that have interacted with the system and in which the quantum

coherence is distributed. That is, the interference terms remain present at the global

level of the system-environment superposition (2.9) but have become unobservable at

the local level of the system as described by the reduced density matrix (2.15).

Finally, we can state that all physical systems are open quantum systems that

interact with their environment, so that the environment continuously acquires in-

formation about the system, leading to a constant 'leakage' of coherence from the

system into the environment.

The decoherence process described here is a purely quantum e�ect, related to

entanglement with the environment. Nevertheless, a quantum system can lose its
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quantum coherence in a purely classical way related to random disturbances of the

relative phases of a quantum state due to �uctuations of classical quantities. More-

over, there is no energy exchange between the system and its environment.

Most generally, the system can be in the state

|ψ〉 =
∑

j

αje
iφj(t)|ψj〉

where φj(t) are classical random functions of t, called phase noise, due to �classical

environment noise� which a�ects the system and its evolution, without involving

entanglement with the environment. This classical process of quantum phase di�usion

is called �noise induced dephasing� to distinguish it from the quantum decoherence.

Restoring the coherence is much more complicated in the case of a quantum en-

vironment because, contrary to a classical noise source, it is entangled to the system

and its di�erent parts are strongly entangled with each other. Thus the decoher-

ence process is inherently irreversible, whereas classical noise is inherently reversible

(although, in practise, not easily reverted).

2.4 Decoherence-free subspace

It is known that entangled states evolve di�erently under di�erent environmental

in�uences if special symmetries exist, so that there may exist decoherence-free sub-

spaces in which the entangled states are well protected against interaction with the

environment.

In the previous section we have seen that a preferred set of states of the system

exists, which are most robust under the in�uence of the environment and are also the

eigenstates of the interaction Hamiltonian.
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Let us consider again an interaction of the form (2.5), that, if Sn are Hermitian,

describes the simultaneous environment monitoring of di�erent observables Sn on the

system. Now, we show as the condition (2.7) for stability criterion can be extended

to select certain subspaces in which the coherences are observable locally. These are

called decoherence-free subspaces, and were �rst introduced by Zurek in 1982 [30] and

recently further explored with the purpose to protect the entanglement [49, 50, 51, 52].

In particular, the preferred states |nj〉 de�ned by the requirement (2.7) must form

an orthonormal basis {|nj〉} of the subspace, and all |nj〉 must be simultaneous

degenerate eigenstates of each Sn.

In this way, we can de�ne the operator Sn as follows

Sn =
dn∑
j

|nj〉〈nj| (2.16)

which singles out an orthogonal decomposition of the system's state space HS into

linear subspace SnHS of dimensions dn.

Then the time evolution of the initial state written as

|Ψ(0)〉 =
∑
n,j

cnj|nj〉 ⊗ |φ〉 (2.17)

yields the reduced density matrix

ρS(t) = trE [|Ψ(t)〉〈Ψ(t)|] =
∑
n,m

∑

jj′
cnjc

∗
mj′|nj〉〈mj′|〈φm(t)|φn(t)〉. (2.18)

Under the condition of complete decoherence expressed by (2.14) this becomes

ρS(t) →
∑

n

∑

jj′
cnjc

∗
nj′ |nj〉〈nj′| , for t À τD (2.19)

One can see that o�-diagonal elements of the density matrix are not suppressed;

thus the coherences, and so the capability of interference, are still present between
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the basis states |nj〉 for di�erent j and �xed n, which span a subspace SnHS immune

to decoherence.

Then the Hilbert space of the system can be orthogonally decomposed into coher-

ent subspaces SnHS as follow

HS =
∑

n

SnHS (2.20)

so that any state of one subspace can be expressed as a superposition of the basis

states |nj〉, spanning such subspace, and the coherence between the superposition-

state components survive to decoherence because this state does not become entangled

with the environment. Whereas the coherence between di�erent subspaces are locally

suppressed.

Moreover, we notice that one needs to ensure that the subspace remains decoherence-

free over time under the action of HS. That is, we will need to demand that none

of the basis states |nj〉 of the coherent subspace will drift out of the subspace under

the evolution generated by HS. Otherwise an initially decoherence-free state would

in general be a�ected by decoherence. In other words, HS must not project any of

the basis states |nj〉 into a Hilbert subspace outside of the subspace spanned by the

basis {|nj〉}.
In this case, if the system starts out in a state within a coherent subspace and if it

has no correlations with the environment, the system-environment state will remain

in a separable state at all times. Indeed, the system does not get entangled with its

environment, and thus no decoherence occurs.

We must notice that, although the stability criterion (2.7) is a conceptually in-

tuitive methods for determining the most robust states when quantum-measurement

limit holds, it is often not adequate in more complex situations.
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Therefore more general methods were developed by Zurek [53, 54] and Zurek,

Habib, and Paz [48] under the name of the predictability-sieve strategy. The basic

idea consists of using a suitable measure for the amount of decoherence introduced

into the system, such as the purity or the von Neumann entropy of the reduced

density matrix. The states most immune to decoherence will be those which lead to

the smallest decrease in purity or the smallest increase in von Neumann entropy.

2.5 Entanglement sudden death - ESD

It is well known that the loss of entanglement cannot be restored by local operations

and classical communications (LOOC), therefore it becomes an important subject

to study entanglement dynamics of systems subject to decoherence and to conceive

methods to protect the entanglement.

In the previous sections we have seen that the local coherence (one-body) decays

asymptotically to zero after an in�nite time due to environment-induced decoherence,

and this behavior leads to the identi�cation of the coherence lifetime.

Recently, it has been shown that entanglement of two independent qubits each

coupled to its own environment is lost in a very di�erent way. The presence of either

pure vacuum noise or even classical noise can cause entanglement to decay abruptly

to zero in a �nite time [38, 40, 55], an e�ect that is called entanglement sudden death

(ESD).

An example of the ESD phenomenon is provided by the weakly dissipative process

of spontaneous emission, and we consider a class of bipartite mixed states, called X

states, and their time evolution in the presence of common pure vacuum noise.

This X mixed state arises naturally in a wide variety of physical situations [56, 57,
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58]. We particularly note that it includes pure Bell states as well as the well-known

Werner mixed state [59] as special cases.

In order to describe the dynamic evolution of quantum entanglement, the con-

currence C(t) [9]is used evaluated starting from the two-qubit state at time t. In

particular, for an initial state of the form |Φ〉 = α|00〉 + β|11〉, the concurrence is

given by

C(t) = max
{
0, 2e−γt |β| [|α| − (

1− e−γt
) |β|]}

where γ is the vacuum emission rate of the excited atomic state. Moreover, one can

see that the entanglement behavior depends on the relation between |α| and |β| [55],
and for |β| ≤ |α| entanglement asymptotically decays to zero. Whereas for |β| > |α|,
entanglement disappears at �nite time

t̄ = −1

γ
ln

(
1− |α|

|β|
)

Di�erently, two-qubit states of the form |Ψ〉 = α|01〉+ β|10〉 exhibit disentanglement

only asymptotically in time.

Thus, the appearance of ESD depends on the amount of the initial probability for

the two qubits to be in the doubly excited state |11〉
This �nite-time decoherence is a new form of decay induced by classical as well

as quantum noises that a�ects only two-qubit entanglement [60, 40], and unknown

among dissipation e�ects of other physical correlations. Further, ESD can be provided

by the weakly dissipative process of spontaneous emission, that obeys the half-life rule

rigorously for individual atoms, whereas, in counterintuitive way, two-qubit entangle-

ment does not follow the same decay rule.

Entanglement sudden death has already been experimentally proved in two dif-

ferent contexts. The experiment of Almeida et al. [37] gives the �rst con�rmation to
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the existence of a such e�ect by using an all optical setup with polarization entangled

photons, whereas the experimental setup of Laurat et al. [61] exploited two separate

caesium atomic ensembles in a magneto-optical trap.

Decoherence may arise in many di�erent situations whenever the system of inter-

est is not completely isolated from its environments. In particular, di�erent types of

environmental noise can have di�erent e�ects on two-body entanglement [60], as it

has been veri�ed from Almeida et al. that have examined a two-qubit system cou-

pled to external sources of phase-damping and amplitude-damping noises. Typically,

amplitude decoherence, caused by spontaneous emissions of atoms, is in a sense more

destructive than phase decay, caused by random disturbances of the relative phases

of a quantum state, because the former causes diagonal and o�-diagonal relaxation

and the latter o�-diagonal relaxation alone.

These di�erent behaviors of entanglement decay can be seen by examining the

entanglement evolution for X-states with void probability that both qubits are in

their ground states. When amplitude and phase noises are applied separately ESD

occurs only for some X-states a�ected by amplitude noise, so that in�nitely long

smooth decay of entanglement is allowed. Whereas, the combined e�ect of the two

noises causes always ESD.

Another crucial result to understanding the two-body decoherence emerges in an

idealized double Jaynes-Cummings model similar to previous scenario manifesting

ESD but in which the cavities are lossless. Indeed, the qubits A and B, being non-

interacting and non-communicating, can abruptly lose their entanglement while they

interact with their own cavity �elds. Thus, in this case, ESD occurs also without the

�traditional� decoherence (lossless cavities are as far from being standard decoherence



38

reservoirs as possible).

Further, given the lossless nature of the evolution, one can expect that the entan-

glement can be suddenly re-generated, a process called entanglement sudden birth

[62, 63]. Indeed, the original entanglement value is found to reappear in a periodic

way following each sudden death event.

Finally, we note that the disappearance of two-qubit entanglement is due to a

leakage of information about the qubit system towards the cavity modes. On the other

hand, the lost information will come back to the qubit systems in �nite times due

to a memory e�ect of the cavities. Thus, this idealized model provides a convenient

framework to analyze entanglement in a simpli�ed framework with many qubits.

However, there is still no deep understanding of sudden death dynamics, and so

far there is no known way to avoid ESD. This e�ect is so rapid and complete that the

decay cannot be reversed using the error-correction schemes that have been proposed

to increase the lifetimes of entangled qubits with a gradual nature of the decay. Fur-

ther, for this two-qubit model the environment in�uences each qubit independently,

so there are no decoherence-free subspaces and there is no such protection from ESD

available. It could be possible to avoid sudden death only by using appropriate local

initial preparations.



Chapter 3

Quantum entanglement and its
dynamics in a lossy cavity

3.1 Introduction

Quantum entanglement is the powerful resource lying at the root of a new class

of technologies based on the laws of quantum theory. The coherent manipulation

of quantum systems involves very delicate procedures since the inevitable interaction

with their surroundings leads to a loss of information that causes both the transforma-

tion of quantum superposition into statistical mixtures, a process called decoherence,

and the disappearance of quantum entanglement in composite systems.

Recently, it has been shown that entanglement can be lost completely in a �nite

time despite the fact that complete decoherence only occurs asymptotically. This

phenomenon, named entanglement sudden death, has been theoretically predicted by

Yu and Eberly [38, 60, 64], and experimentally observed for entangled photon pairs

[37] and atomic ensembles [61]. Typically, entanglement sudden death occurs when

the two qubits interact with two independent environments as for the case, e.g., of

two entangled qubits placed inside two di�erent cavities. For such a con�guration, a

39
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class of states has been identi�ed which do not experience a complete entanglement

loss despite the interaction with local vacuum environments [65]. However, for �nite

temperature environments the sudden death occurs almost independently of the ini-

tial state of the qubit pair [66], although with details that can depend on the amount

of non-Markovianity of the environments [67, 68]. In this context, a deeper under-

standing of the sudden death process has been gained by looking at the quantum

correlations shared by the environments which show a sudden birth (though with a

quite counterintuitive timing) [69, 63].

A completely di�erent phenomenology emerges when the qubits interact with

the same environment. In this case, indeed, entanglement can be created starting

from a factorized state or it can even revive after a sudden death. This is due

to the e�ective qubit-qubit interaction mediated by the common reservoir [70, 71,

72, 73, 74, 75, 76, ?, 77]. Many theoretical papers have studied reservoir-induced

entanglement in the Markovian regime, that is when the coupling between the qubits

and the environment is weak enough to neglect the feedback of information from the

reservoir into the system (memoryless dynamics). An interesting extension to these

approaches, that goes beyond the Born-Markov approximation, has been presented

in Ref. [78]. Besides, it is well known [49, 79, 80] that the interaction with a common

environment leads to the existence of a highly entangled long-living decoherence-free

(or sub-radiant) state. At the same time, another entangled state exists (orthogonal

to previous one and called super-radiant) that looses its coherence faster.

Here we extend these results to a dissipative coupling with the environment outside

the Markovian regime, both for weak and strong couplings, corresponding to the bad

and good cavity limits. In particular, in the latter regime, the long memory of the
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reservoir induces entanglement revivals and oscillations.

Speci�cally, we address an exactly solvable non-Markovian model describing two

two-level atoms (qubits) resonantly coupled to a common structured environment

(lossy resonator) using an exact approach that does not rely on the Born-Markov

approximation [81].

As we discuss below, this describes, e.g., atoms or ions trapped in an electromag-

netic cavity [82, 83] or circuit-QED setups[84, 85, 86] and our results are directly

veri�able in both systems.

First, we focused on the case in which the qubits were identical and resonant with

the cavity �eld, whose spectrum was modeled as a Lorentzian. We obtain the exact

entanglement dynamics as a function of the environment correlation time and discuss

its stationary value, which turns out to be maximal for a factorized initial state of

the two atoms.

Besides, we extend our analytical approach to describe the more general situation

in which the qubit frequencies are di�erent and non-resonant with the main mode

supported by the cavity.

Our new analytical results allow us to characterize completely and exactly the en-

tanglement dynamics for a generic initial two-qubit state containing one excitation.

We study the time evolution of the entanglement and its dependence on several pa-

rameters, all in principle adjustable in the experiments: the relative coupling between

the atoms and the cavity �eld, the initial amount of entanglement, the frequency of

the qubits, the detuning from the cavity �eld, and the quality factor of the cavity. In

this way we determine the conditions to achieve maximal reservoir-induced entangle-

ment generation for an initial factorized state of the qubits, and to minimize the loss
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of entanglement for an initial entangled state.

Depending on the matching of the qubit frequencies, we will distinguish two sce-

narios displaying di�erent qualitative long time behavior. If the two qubits have the

same transition frequency (ω1 = ω2), a decoherence-free state (subradiant state) ex-

ists [49, 79, 80]. Due to the presence of such a dark state, a non-zero asymptotic

entanglement can be obtained in this case. On the other hand, if the two qubits

have di�erent transition frequencies (ω1 6= ω2), no subradiant state exists, so that the

stationary entanglement always vanishes. For the sake of brevity, we refer to these

two cases as subradiant and non-subradiant scenario, respectively.

One of our main results is the demonstration that high values of reservoir-induced

entanglement can be obtained in the dispersive regime even in the bad cavity limit. In

general, in this regime the dynamics of the concurrence (that we employ to quantify

entanglement [9]) is characterized by a quasi-regular and quasi-periodical pattern

since the cavity photon is only virtually excited and therefore the two-qubit system

is less a�ected by the cavity losses. Finally, in the good cavity limit, we predict the

occurrence of quantum beats of entanglement and explain their physical origin.

The chapter is structured as follows.

In Sec. 3.2 we present the microscopic Hamiltonian model, for which the exact

analytical solution is presented, where we focus on the case in which the spectrum

of the environment is Lorentzian as, e.g., for the electromagnetic �eld inside a lossy

resonator.

In Sec. 3.3 we introduce the entanglement dynamics , in particular, in Sec. 3.4, 3.5

and 3.6 we present and discuss our main results by looking at the entanglement dy-

namics in the resonant regime, and both o�-resonant subradiant and non-subradiant
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scenarios, respectively, for di�erent coupling regimes and di�erent initial states.

Finally, Sec. 3.7 contains summary and conclusions.

3.2 The model

We study an open quantum system consisting of two qubits coupled to a common

zero-temperature bosonic reservoir in the vacuum. The Hamiltonian describing the

total system is given by

H = HS + HR + Hint, (3.1)

where HS is the Hamiltonian of the qubits system coupled, via the interaction Hamil-

tonian Hint, to the common reservoir, whose Hamiltonian is HR.

The Hamiltonian for the total system, in the dipole and the rotating-wave ap-

proximations, can be written as (assuming ~ = 1)

HS = ω1σ
(1)
+ σ

(1)
− + ω2σ

(2)
+ σ

(2)
− , (3.2)

HR =
∑

k

ωkb
†
kbk, (3.3)

Hint =
(
α1σ

(1)
+ + α2σ

(2)
+

) ∑

k

gkbk + h.c., (3.4)

where b†k, bk are the creation and annihilation operators of quanta of the reservoir,

σ
(j)
± and ωj are the inversion operators and transition frequency of the j-th qubit

(j = 1, 2); �nally ωk and αjgk are the frequency of the mode k of the reservoir and

its coupling strength with the j-th qubit.

Here, the α's are dimensionless real coupling constants measuring the interaction

strength of each single qubit with the reservoir. In particular, we assume that these

two constants can be varied independently. In the case of two atoms inside a cavity,
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e.g., this can be achieved by changing the relative position of the atoms in the cavity

�eld standing wave. For the following discussion, it will prove useful to introduce a

collective coupling constant αT = (α2
1 + α2

2)
1/2 and the relative strengths rj = αj/αT

(as r2
1 + r2

2 = 1, we take only r1 as independent). By varying αT , we will explore both

the weak and the strong coupling regimes.

3.2.1 Dynamics of the qubit system

We assume that initially the qubit system and the reservoir are disentangled. We

restrict ourselves to the case in which only one excitation is present in the system

and the reservoir is in the vacuum. In this case the initial state for the whole system

can be written as

|Ψ(0)〉 =
[
c01|1〉1|0〉2 + c02|0〉1|1〉2

] ⊗

k

|0k〉R, (3.5)

where |0〉j and |1〉j (j = 1, 2) are the ground and excited states of the j-th qubit,

respectively, while |0k〉R is the state of the reservoir with zero excitations in the mode

k.

The time evolution of the total system, under the action of this Hamiltonian, is

given by

|Ψ(t)〉 = c1(t)|1〉1|0〉2|0〉R + c2(t)|0〉1|1〉2|0〉R +

+
∑

k

ck(t)|0〉1|0〉2|1k〉R, (3.6)

where |1k〉R is the state of the reservoir with only one excitation in the k-th mode

and |0〉R =
⊗

k |0k〉.
The reduced density matrix describing the two-qubit systems, obtained from the
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density operator |Ψ(t)〉〈Ψ(t)| after tracing over the reservoir degrees of freedom, takes

the form

ρ(t) =




0 0 0 0

0 |c1(t)|2 c1(t)c
∗
2(t) 0

0 c∗1(t)c2(t) |c2(t)|2 0

0 0 0 1− |c1|2 − |c2|2




. (3.7)

The two-qubit dynamics is therefore completely characterized by the amplitudes

c1,2(t).

Introducing the j-qubit detuning from the mode k, δ
(j)
k = ωj − ωk, the equations

for the probability amplitudes take the form

ċj(t) = −iαj

∑

k

gke
iδ

(j)
k tck(t), j = 1, 2 (3.8)

ċk(t) = −ig∗k
[
α1e

−iδ
(1)
k tc1(t) + α2e

−iδ
(2)
k tc2(t)

]
. (3.9)

Formally integrating Eq. (3.9) and inserting its solution into Eqs. (3.8), one obtains

two integro-di�erential equations for c1,2(t),

ċ1(t) = −
∑

k

∫ t

0

dt1

[
α2

1 |gk|2 ei δ
(1)
k (t−t1)c1(t1)

+ α1α2 |gk|2 ei δ
(1)
k te−i δ

(2)
k t1c2(t1)

]
, (3.10)

ċ2(t) = −
∑

k

∫ t

0

dt1

[
α1α2 |gk|2 ei δ

(2)
k te−i δ

(1)
k t1c1(t1)

+ α2
2 |gk|2 ei δ

(2)
k (t−t1)c2(t1)

]
. (3.11)

In the continuum limit for the reservoir spectrum the sum over the modes is

replaced by the integral
∑

k

|gk|2 →
∫

dωJ(ω),
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where J(ω) is the reservoir spectral density. In the following we focus on the case in

which the structured reservoir is the electromagnetic �eld inside a lossy cavity. In this

case, the fundamental mode supported by the cavity displays a Lorentzian broadening

due to the non-perfect re�ectivity of the cavity mirrors. Hence the spectrum of the

�eld inside the cavity can be modeled as

J(ω) =
W 2

π

λ

(ω − ωc)
2 + λ2

, (3.12)

where the weight W is proportional to the vacuum Rabi frequency and λ is the width

of the distribution and therefore describes the cavity losses (photon escape rate).

We now introduce the correlation function f(t− t1), de�ned as the Fourier trans-

form of the reservoir spectral density J(ω),

f(t− t1) =

∫
dωJ(ω)ei(ωc−ω)(t−t1),

where ωc is the fundamental frequency of the cavity.

When the spectrum of the cavity �eld displays a Lorentzian broadening, the cor-

relation function decays exponentially f(τ) = W 2e−λτ , the quantity 1/λ being the

reservoir correlation time. The ideal cavity limit is obtained for λ → 0; in this case

one has

lim
λ→0

J(ω) = W 2δ(ω − ω0), (3.13)

corresponding to a constant correlation function f(τ) = W 2. The system, then,

reduces to a two-atom Jaynes-Cummings model [87] with a vacuum Rabi frequency

R = αT W . On the other hand, for small correlation times (with λ much larger than

any other frequency scale), we obtain the Markovian regime characterized by a decay

rate γ = 2R2/λ. For generic parameter values, the model interpolates between these

two limits.
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In terms of the correlation function Eqs. (3.10)-(3.11) become

ċ1(t) = −
∫ t

0

dt1
[
α2

1 c1(t1) + α1α2 c2(t1)e
−i δ21t1

]

×f(t− t1)e
i δ1(t−t1), (3.14)

ċ2(t) = −
∫ t

0

dt1
[
α1α2 c1(t1)e

i δ21t1 + α2
2 c2(t1)

]

×f(t− t1)e
i δ2(t−t1), (3.15)

where δj = ωj − ωc and δ21 = ω2 − ω1.

Performing the Laplace transform of Eqs. (3.14)-(3.15) yields

s c̃1(s)− c1(0) = − [
α2

1 c̃1(s) + α1α2 c̃2(s + i δ21)
]

×f̃(s− i δ1), (3.16)

s c̃2(s)− c2(0) = − [
α1α2 c̃1(s− i δ21) + α2

2 c̃2(s)
]

×f̃(s− i δ2). (3.17)

From the equations above one can derive the quantities c̃1(s) and c̃2(s). Finally,

inverting the Laplace transform one obtains a formal solution for the amplitudes c1(t)

and c2(t). The main steps for deriving the general solution are outlined in Appendix

A. For speci�c forms of the reservoir spectral density, as the one we consider in this

paper, it is possible to obtain simple analytic expressions for these coe�cients.

Before discussing the general features of the dynamics we notice that, when the two

qubits have the same transition frequency, ω1 = ω2, a subradiant, decoherence-free

state exists, that does not decay in time. The existence of the subradiant state does

not depend on the form of the spectral density and therefore on the resonance/o�-

resonance condition. Such a state takes the form

|ψ−〉 = r2|1〉1|0〉2 − r1|0〉1|1〉2. (3.18)
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When the two qubits have di�erent frequencies, ω1 6= ω2, there is no decoherence-free

state.

This simple consideration enables us to draw general conclusions about the dy-

namics of entanglement for long times. Indeed, one can observe two qualitatively

di�erent behaviors. In the subradiant scenario, occurring for ω1 = ω2, a subradiant

state exists and therefore that part of the initial entanglement stored in |ψ−〉 will be
`trapped' for arbitrary long times. In the non-subradiant scenario, when ω1 6= ω2,

the subradiant state does not exist. Hence all initial entanglement will decay and is

eventually lost for long times.

We now derive the solution for the coe�cients c1(t) and c2(t) and study the en-

tanglement dynamics discussing separately the two cases outlined above.

3.2.2 Subradiant Scenario

For ω1 = ω2 the analytical solution for the amplitudes c1(t) and c2(t) takes a simple

form, with a structure analogous to the solution of the resonant case presented in

Ref. [81],

c1(t) =
[
r2
2 + r2

1 E(t)
]
c1(0)− r1r2 [ 1− E(t) ] c2(0),

(3.19)

c2(t) = −r1r2 [ 1− E(t) ] c1(0) +
[
r2
1 + r2

2 E(t)
]
c2(0),

(3.20)
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with

E(t) = e−(λ− iδ) t/2

[
cosh (Ωt/2) +

λ− iδ

Ω
sinh (Ωt/2)

]
,

(3.21)

where δ1 = δ2 ≡ δ and Ω =
√

λ2 − Ω2
R − i2δλ, with ΩR =

√
4W 2α2

T + δ2 the gener-

alized Rabi frequency and R = WαT the vacuum Rabi frequency.

As in the resonant case, the state |ψ−〉 does not evolve in time and the only

relevant time evolution is the one of its orthogonal superradiant state

|ψ+〉 = r1|1〉1|0〉2 + r2|0〉1|1〉2. (3.22)

The function E(t) is the survival amplitude of the superradiant state 〈ψ+(t)|ψ+(0)〉 =

E(t). If we express the initial state of the qubits as a superposition of |ψ±〉, that is

|ψ(0)〉 = β−|ψ−〉+β+|ψ+〉 with β± = 〈ψ±|ψ(0)〉, we see that, while part of the initial
state will be trapped in the subradiant state |ψ−〉, another part will decay following

Eq. (3.21). Thus the amount of entanglement that survives depends on the speci�c

initial state and on the value of the coe�cients rj.

3.2.3 Non-subradiant Scenario

For ω1 6= ω2 no subradiant or decoherence-free state exists and, as a consequence, the

analytical expression for the amplitudes c1,2(t) becomes more complicated

c1(t) = E11(t; r1)c1(0) + E12(t; r1)c2(0), (3.23)

c2(t) = E21(t; r1)c1(0) + E22(t; r1)c2(0), (3.24)

where the functions Eij(t; r1) depend not only on time but also on the value of r1.
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We emphasize that in both scenarios, the solution of the di�erential equations for

the amplitudes c1,2(t) is exact as we have not performed neither the Born nor the

Markov approximation. The structure of the functions Eij(t; r1) and the main steps

to the solution are brie�y outlined in Appendix A.

3.2.4 Dispersive regime

In this subsection we focus on the system dynamics when the qubits are far o�-

resonant from the main cavity mode, i.e. for δ1, δ2 À R. In this regime, both in the

subradiant and in the non-subradiant scenarios, the main features of the dynamics can

be obtained by looking at the e�ective dispersive Hamiltonian describing the coupling

of the two qubits with a single-mode cavity �eld [88, 89, 90] and remembering that

this behavior must then be corrected taking into account the e�ect of the cavity

losses. In Appendix B we derive the e�ective dispersive Hamiltonian for this system,

assuming that the cavity �eld is initially in the vacuum state,

Heff =
2∑

j=1

R2 r2
j

δj

σ
(j)
+ σ

(j)
− +

R2 r1r2

2 δj

(
σ

(1)
+ σ

(2)
− + σ

(2)
+ σ

(1)
−

)
. (3.25)

The �rst two terms in the Hamiltonian are proportional to σ
(j)
+ σ

(j)
− and describe the

Stark shifts due to the dispersive interaction with the cavity vacuum. The remaining

terms describe an e�ective dipole-dipole coupling between the two atoms induced by

the cavity mode. As we will see in the following these two terms play an essential

role in the entanglement generation process. By looking at Eq. (3.25) we notice that

both the Stark shifts and the e�ective interaction strength between the qubits are

now ∝ R2/δ1,2.

In the dispersive regime the cavity is only virtually excited, thus the photon loss is
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less important and the e�ective decoherence rate due to the cavity decay is strongly

suppressed to the advantage of the generation of entanglement. As we will see in

Sec. 3.5.1 for the subradiant scenario, the e�ective decoherence rate due to the cavity

decay in this case becomes (R2/δ2)λ.

3.3 Entanglement Dynamics

To study the time evolution of the two-qubit entanglement we use the concurrence

C(t) [9]. This is an entanglement measure related to the entanglement of formation,

ranging from one for maximally entangled states to zero for separable ones.

For the system of two qubits described by reduced density matrix of Eq. (3.7) the

concurrence takes a very simple form

C(t) = 2 |c1(t) c∗2(t)| . (3.26)

Such equation shows a relation between the behavior of the concurrence and the time

evolution of the excitation shared by the two qubits. Having in mind the considera-

tions of Sec. 3.2.4 one may understand how, through a suitable choice of the detuning

between the qubits and the cavity, it is possible to improve both the generation of

entanglement and its preservation for long times.

To better discuss the time evolution of the concurrence as a function of the initial

amount of entanglement stored in the system, we consider a general initial states of

the form given by Eq. (3.5) with

c01 =

√
1− s

2
, c02 =

√
1 + s

2
eiφ, with − 1 ≤ s ≤ 1.

Here, the separability parameter s is related to the initial concurrence as s2 = 1 −
C(0)2.
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Before describing in detail the dynamics in the resonant regime (Sec. 3.4) and in

both o�-resonant subradiant scenario (Sec. 3.5) and non-subradiant scenario (Sec.

3.6), it is useful to discuss the steady-state entanglement [81].

3.3.1 Stationary concurrence

We begin by noticing that there exist a non-zero stationary value of C due to the en-

tanglement of the decoherence-free state: Cs = C(t →∞) ≡ C(|ψ−〉) |〈ψ−|ψ(0)〉|2 =

2|r1r2| |β−|2.
Fig. 3.1-(a) displays the stationary concurrence versus r1 and s. Due to the

interaction with the cavity �eld, initial separable states (s = ±1) become entangled.

In fact, for φ = 0, the maximum stationary entanglement Cmax
s ' 0.65 is obtained

for initially factorized states, i.e. s = ±1. While the details depend on the phase

φ, the qualitative picture is generic and essentially independent of φ, apart from the

isolated case of an initial state coinciding with |ψ−〉. In such a situation all of the

entanglement initially encoded in the qubits remains there for long times. For positive

rj, this occurs for φ = π, see Fig. 3.1-(b).

3.4 Resonant Entanglement

We now look at the entanglement dynamics in the good and bad cavity limits, i.e. for

R À 1 and R ¿ 1, respectively, with R = R/λ. In Fig. 3.2 we show the concurrence

as a function of τ = λt in the bad (upper row) and good (lower row) cavity limits.

We compare the dynamics of an initially factorized state (s = 1) with the one of

an initially maximal entangled state (s = 0) for four di�erent values of the coupling
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Figure 3.1: (Color online) Stationary concurrence as a function of the relative coupling
constant r1 and of the initial separability s of the state, for (a) φ = 0, and (b) φ = π.
In the �rst case, the maximum of Cs is achieved for asymmetrical couplings: at
r1 ' 0.87 for s = 1, and at r1 ' 0.5 for s = −1. In the second case the maximum is
achieved in correspondence of |ψ(0)〉 = |ψ−〉.

parameter r1, namely r1 = 0, 1/
√

2, 0.87, 1. The plots for r1 = 0 and r1 = 1 overlap

as they both describe a case in which one of the two atoms is e�ectively decoupled.

The value r1 = 0.87 corresponds to the case of optimal stationary entanglement for

the initial state s = 1 with φ = 0. Finally r1 = 1/
√

2 corresponds to the case of equal

coupling of the two atoms with the reservoir. Other values of r1 show qualitatively

similar behavior.

For weak couplings and/or bad cavity, R = 0.1, and for an initially separable state

(s = 1), the concurrence increases monotonically up to its stationary value; whereas,

for initially entangled states, the concurrence �rst goes to zero before increasing to-

wards Cs. The strong coupling/good cavity case R = 10 is more rich and presents

entanglement oscillations and revival phenomena for all the initial atomic states. One

can prove analytically that for maximally entangled initial states (s = 0) the revivals

have maximum amplitude when only one of the two atoms is e�ectively coupled to
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the cavity �eld, i.e. for r1 = 0, 1. In this case, indeed, the system performs damped

oscillations between the states |ψ+〉 and |ψ−〉 which are equally populated at the be-

ginning. On the other hand, for an initially factorized state, the interaction with the

cavity �eld in the strong coupling regime generates a high degree of entanglement.

Indeed, for R = 10, at τ = τ̄ ' 0.31, C attains the value C(τ̄) ' 0.96, at r1 ' 0.92

(for s = 1) or r1 ' 0.4 (for s = −1).
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Figure 3.2: (Color online) Time evolution of the concurrence in the bad cavity limit
(R = 0.1, top plots) and good cavity limit (R = 10, bottom plots), with (a) s = 1,
and (b) s = 0, both with φ = 0, for the cases of i) maximal stationary value, r1 = 0.87
(solid line), ii) symmetrical coupling r1 = 1/

√
2 (dot-dashed line), and iii) only one

coupled atom r1 = 0, 1 (dotted line). The insets show the initial quadratic behavior
of the concurrence for R = 0.1



55

These entanglement revivals are a truly new result due to the memory depth of

the reservoir. Very small revivals can occur in the Markovian regime [?], and in the

non-Markovian regime with independent reservoirs [67, 91]. In our case, however, the

amount of revived entanglement is huge, being comparable to the previous maximum.

This feature only appears in the strong coupling regime and with a non-zero environ-

mental correlation time. The surprising aspect, here, is that an irreversible process

such as the spontaneous emission is so strongly counteracted by the memory e�ect of

the environment, which not only creates entanglement, but also lets it oscillate quite

a few times before a stationary value is reached.

In the next two sections we are going to study how the time evolution of the

concurrence is modi�ed in presence of detuning.

3.5 O�-resonant Entanglement in the Subradiant Sce-

nario

We begin considering the case ω1 = ω2. Whenever possible, rather than discussing

the exact expression of the concurrence, we will try to derive simpler approximated

expressions which are useful for understanding the physical processes taking place in

the system.

3.5.1 Bad cavity limit - Enhancement of the entanglement

generation

In the bad cavity case, e.g., for R = R/λ = 0.1, and for small values of the detuning

δ < R, the behavior of the concurrence does not change appreciably compared to
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the resonant case. For values of the detuning δ ≈ R, i.e. when approaching the

dispersive regime, the dynamics for an initially factorized state (s = 1) shows a

monotonic increase towards the stationary value of the concurrence as in the resonant

case. However, a signi�cant change occurs in the bad cavity limit when the system

is prepared in an initial entangled state. Indeed one can prove that in this regime,

contrary to the resonant case, a �nite time t̄ such that C(t̄) = 0 [See Fig. 3.3 (b)]

does not exist anymore.

We now focus on the dispersive regime δ À λ ÀR. If the qubit-system is initially

entangled, e.g., for s = 0, the expression for the concurrence can be simpli�ed as

follows

C(t) = |E| ≈ e−
R2

δ2
λt, for r1 = 0, 1; (3.27)

C(t) = |E|2 ≈ e−2R
2

δ2
λt, for r1 = 1/

√
2. (3.28)

The equations above show that the concurrence vanishes with the decay rate (R2/δ2)λ

when only one of the two qubits is coupled to the environment (r1 = 0, 1), and

with 2(R2/δ2)λ when both qubits are identically coupled to the environment (for

r1 = 1/
√

2). Since R/δ ¿ 1 this proves that in the dispersive regime the decay of

entanglement is strongly inhibited compared to the resonant regime since in this case

the two atoms exchange energy only via the virtual excitation of the cavity �eld and

therefore the cavity losses do not a�ect strongly the dynamics.

For large enough detunings the entanglement shows oscillations as a function of

time for all of the initial atomic states for which a �nite stationary concurrence is

obtained, Cs 6= 0. Due to the presence of these oscillations and for an initially

factorized state, the concurrence reaches values greater than the stationary value Cs

even in the bad cavity limit, as shown in Fig. 3.4. For example, for r1 =
√

3/2,
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R = 0.1 and δ = 10λ, at λt ≈ 2 × 103 the concurrence reaches the value C = 0.92.

For an initially factorized state (s = 1) and for r1 = 1/
√

2 we can derive the following

approximated expression for the concurrence

C(t) ≈ 1

2

√
1 + e−4R2

δ2
λt − 2e−2R2

δ2
λt cos

(
2
R2

δ
t

)
. (3.29)

From this equation one sees that C(t) attains its maximum value at t = πδ
2R2 . This

formula also shows that the concurrence undergoes a series of damped oscillations

with frequency 2R2/δ and decay rate 2(R/δ)2λ.

With increasing detuning, the oscillations become more and more regular, quasi-

periodic. The pattern is similar to the oscillations characterizing the strong coupling

regime, but now the period is longer. As we will see in Sec. 3.5.2, the generation
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Figure 3.3: (Color online) Time evolution of the concurrence in the bad cavity limit
(R = 0.1) with s = 0 and φ = 0, for the cases of i) maximal stationary value, when
r1 =

√
3/2 (black solid line), ii) symmetrical coupling r1 = 1/

√
2 (red dot-dashed

line), and iii) only one coupled atom r1 = 0, 1 (green dashed line). For each of such
cases, we describe the entanglement dynamics in two di�erent coupling regime: the
resonant limit (left plot) and for δ1 = δ2 = 0.7λ (right plot).

of a high degree of entanglement in the dispersive regime for initially separable state
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Figure 3.4: (Color online) Time evolution of the concurrence in the bad cavity limit
(R = 0.1) with s = 1, for the cases of i) maximal stationary value, r1 =

√
3/2 (black

solid line), ii) symmetrical coupling r1 = 1/
√

2 (red dot-dashed line), and iii) only one
coupled atom r1 = 0, 1 (green dashed line). All of the plots describe the dispersive
regime with δ1 = δ2 = 10λ.

can be achieved also in the good cavity limit. However it is remarkable that already

in the bad cavity limit, values of concurrence close to one can be generated. Our

approach generalizes the results obtained for the dispersive regime in Ref. [88] in the

ideal cavity limit to the more realistic case of cavity losses.

3.5.2 Good cavity limit - Entanglement quantum beats

In the strong coupling case entanglement oscillations are present for any initial atomic

state. Moreover, for δ ≈ λ ¿R, when both atoms are e�ectively coupled to the cavity

�eld, i.e., r1 6= 0, 1, the dynamics of concurrence is characterized by the occurrence of

quantum beats, as shown in Fig. 3.5. For initially entangled states this phenomenon
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is more evident for φ = π because the value of stationary entanglement in this case

is higher and the behavior of the concurrence is more regular.

In order to better understand the origin of these entanglement beats, we consider

the case s = 1 and r1 = 1/
√

2. For these values of the parameters, and for δ ≈ λ ¿R,

the expression of the concurrence can be written as follows,

C(t) ≈ 1

2

√
1 + e−2λt cos(Rt)4 − 2e−λt cos(Rt)2 cos(δt). (3.30)

The term

cos(Rt)2 cos(δt) =
1

2
cos(δt) [1 + cos(2Rt)]

in Eq. (3.30), describing an oscillation at frequency 2R modulated by a slower one

with frequency δ, is responsible for the occurrence of the quantum beats.

To gain insight in the physical processes characterizing the dynamics, we consider

the energy spectrum of the dressed states in the o�-resonance case but in the ab-

sence of damping, as shown in Fig. 3.6. The diagonalization of the Tavis-Cummings

Hamiltonian [See Eq. (B.1) in Appendix B] yields the dressed states

|φ+〉 =
1√

ω2− +R2
(−R|ψ+〉|0〉R + ω−|00〉|1〉R) ,

(3.31)

|φ−〉 =
1√

ω2
+ +R2

(−R|ψ+〉|0〉R + ω+|00〉|1〉R) ,

(3.32)

|φ0〉 = |ψ−〉|0〉R. (3.33)

The corresponding eigenenergies are given by

ω± =
1

2

(
δ ±

√
4R2 + δ2

)
, (3.34)

ω0 = δ, (3.35)
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where R = gαT is the vacuum Rabi frequency and δ is the qubits-cavity detuning.
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Figure 3.5: (Color online) Time evolution of the concurrence in the good cavity limit
(R = 10) with s = 1, for the cases of i) maximal stationary value r1 =

√
3/2 (black

solid line), ii) symmetrical coupling r1 = 1/
√

2 (red dot-dashed line), and iii) only one
coupled atom r1 = 0, 1 (green dashed line). The curves are drawn for small detuning,
δ1 = δ2 = 0.7λ; thus, outside the dispersive region. The inset shows the entanglement
beat for the case i).

On the other hand, the unperturbed states can be expressed as a superposition of

the |φ±〉,|φ0〉 eigenstates, with probability amplitudes evolving at frequencies ω± and

ω0. The e�ect of the detuning is a shift of the qubits-cavity energy levels, thus the

qubits-�eld coupling gives rise to a reversible energy exchange between unperturbed

state at frequencies 2R, R − δ/2 and R + δ/2. This is clearly seen, e.g., from the
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Figure 3.6: (Color online) Energy spectrum of the dressed qubit-photon states in the
case of small detuning (blue dashed line) and in the resonant coupling case (black
solid line).

time evolution of the populations

|c2(t)|2 = |〈01|〈0|e−iHt|01〉|0〉|2

= r4
1 +

r4
2

2
[1 + cos(2Rt)] + 2r2

1r
2
2 cos (Rt) cos

(
δ

2
t

)
.

The equation above contains a term oscillating at frequency 2R, coming from the

coupling between the dressed states |φ+〉 and |φ−〉, and a term oscillating at frequency

Rmodulated by δ coming from the interference between the oscillations at frequencies

R− δ/2 and R+ δ/2 that couple the states |φ+〉-|φ0〉 and |φ−〉-|φ0〉, respectively.
In the discussion above we have disregarded the cavity losses. When they are

taken into account one sees that the dressed energy splitting is resolved, and therefore
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Figure 3.7: (Color online) Time evolution of the concurrence in the good cavity limit
(R = 10), with s = 0 and φ = 0, for the cases of i) symmetrical coupling r1 = 1/

√
2

(black solid line), and ii) only one coupled atom r1 = 0, 1 (green dashed line). The two
plots describe two di�erent detuning regions: δ1 = δ2 = 0.7λ (left) and δ1 = δ2 = 50λ
(right).

the quantum beats will be visible, if 2R is larger than the decay width λ. This is

achieved in strong coupling regime. Therefore, one does not observe quantum beats

in bad cavity case.

We conclude this section studying how the detuning in�uences the decay of entan-

glement, for an initially maximally entangled state of the system, and the reservoir-

induced entanglement generation, for an initial factorized state.

When only one of the two qubits is e�ectively coupled to the cavity �eld, i.e.

for r1 = 0, 1, for maximally entangled initial states (s = 0) in the resonant regime,

δ = 0, the system performs damped oscillations between the states |ψ+〉 and |ψ−〉,
which are equally populated at the beginning. Hence entanglement revivals with

maximum amplitude are present in the dynamics, as shown in Fig. 3.7 (a). Increasing

the detuning, the amplitude of the oscillations decreases and the revivals disappear,

while the frequency does not change appreciably, [See Fig. 3.7 (a)]. In this case the
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expression of the concurrence for small values of the detuning can be written as

C(t) = |E| ≈ e−λt/2

√
cos(Rt)2 +

δ2 + λ2

4R2
sin(Rt)2 − λ

R sin(Rt) cos(Rt), (3.36)

while for greater values of the detuning, the oscillations completely disappear and

the concurrence decays exponentially

C(t) = |E| ≈ e−
R2

δ2
λt, (3.37)

as shown in Fig. 3.7 (b).

Finally, we note that, similarly to the behavior discussed in the bad cavity limit,

when the qubits are initially in a factorized state, the presence of the detuning en-

hances the generation of entanglement at short times compared to the resonant cou-

pling case, as illustrated in Fig. 3.4. In general, in the strongly dispersive regime,

the qubits do not exchange energy with cavity, which is only virtually excited. Thus

a high degree of reservoir-induced entanglement can be generated both in the good

and in the bad cavity limits.

3.6 O�-resonant Entanglement in the non-subradiant

scenario

In this section, we analyze the more general situation in which the transition fre-

quencies of the qubits are di�erent, ω1 6= ω2, and both qubits are o�-resonant with

the cavity �eld. Due to the absence of a subradiant state, even a small value of the

detunings δ1, δ2 ¿ R contributes to accelerate the decay of entanglement for every
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initial states. For an initially factorized state, in the bad cavity limit, the entangle-

ment initially created via the interaction with the reservoir is rapidly destroyed as

time evolves. In the good cavity limit entanglement oscillations are present and also

quantum beats of entanglement can be observed for δ1, δ2 ≈ λ ¿ R.
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Figure 3.8: (Color online) Time evolution of the concurrence in the bad cavity limit
(R = 0.1), with s = 0 and φ = 0, for the cases of i) maximal stationary value,
corresponding to r1 =

√
3/2 (black solid line), ii) symmetrical coupling r1 = 1/

√
2

(red dot-dashed line), and iii) only one coupled atom r1 = 1 (green dashed line)
and r1 = 0 (blue dotted line). Two di�erent detuning pairs are represented: the
symmetrical detuning with δ1 = −0.7λ, δ2 = 0.7λ (left plot) and the asymmetrical
detuning with δ1 = −0.5λ, δ2 = 0.9λ (right plot).

We now consider in more detail the case in which the two qubits frequencies are

symmetrically detuned from the central peak of the Lorentzian spectrum describing

the �eld inside the cavity. In the dispersive region δ À R, and for initially entangled

states (s = 0), the concurrence vanishes without manifesting a dominant dependence

from r1 and φ. In other words, all the states initially entangled decay following the

same behavior in such regime, as shown in Fig. 3.8 (a). This is in contrast to what

we observed in all other regimes, where a dependence on the value of r1 is present.

We stress once more that this feature seems to occur only for the case of symmetric
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detuning. Indeed, when introducing a small asymmetry in the value of the detunings

the behavior of the concurrence shows again a dependence on the parameter r1, as

illustrated in Fig. 3.8 (b).

In order to understand the peculiar behavior of the concurrence in the dispersive

regime and for symmetric detunings we once more start by neglecting the e�ect of the

cavity losses and use the dispersive Hamiltonian given by Eq. (3.25). For symmetrical

detunings δ1 = −δ2 this equation takes the form

Heff = −R
2r2

1

δ
σ

(1)
+ σ

(1)
− +

R2r2
2

δ
σ

(2)
+ σ

(2)
− , (3.38)

with δ = |δ1| = |δ2|.
Comparing Eq. (3.38) with Eq. (3.25) we notice that the terms describing the

e�ective dipole-dipole coupling induced by the cavity mode are here absent. Therefore

the only remaining e�ect is the entanglement decay induced by the cavity losses. The

decay rate, however, does not depend on the relative coupling parameter r1 but only

on the total coupling strength αT via the vacuum Rabi frequency R. This explains

why, even when the cavity losses are taken into account, the time evolution of the

concurrence for symmetric detunings does not depend on r1. When a small asymmetry

in the detunings is introduced, the dipole-dipole e�ective coupling terms are non-zero

and, due to the presence of r1 and r2 in the e�ective dipole-dipole coupling strength,

the dynamics becomes again dependent on r1.

3.7 Summary and Conclusions

In this chapter we have provided a complete analysis of the exact dynamics of the

entanglement for two qubits interacting with a common zero-temperature reservoir
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in the both resonant and o�-resonant case. We have presented a general analytical

solution for the two-qubit dynamics without performing the Born-Markov approxi-

mation. In the case of a Lorentzian spectrum, describing, e.g., the electromagnetic

�eld inside a single mode lossy cavity, we have obtained explicit expressions for the

reduced density matrix and for the concurrence. The availability of the exact solu-

tion allowed us to look at the entanglement dynamics both in the weak coupling (bad

cavity) and in the strong coupling (good cavity) limits.

We analyzed in detail the stationary entanglement and obtained the entanglement

dynamics both in the weak and strong coupling limits, showing that entanglement

revivals can appear due to the �nite memory of such a complex environment.

If the two qubits are initially disentangled, the interaction with the common reser-

voir generates entanglement. Our results demonstrate that a high degree of entan-

glement can be generated in this way, especially in the dispersive regime, and even in

the bad cavity limit. For initially entangled states, the concurrence decay is slowed

down when the qubits are detuned from the peak of the Lorentzian. In this case,

indeed, the cavity losses a�ect less the atoms dynamics since the e�ective atom-atom

interaction is mediated by virtual photon exchange.

In general, the entanglement dynamics is strongly sensitive to the relative coupling

parameter r1, indicating how strongly each of the two qubit is individually coupled

to the e.m. �eld. Only when the qubits frequencies are symmetrically detuned from

the main cavity frequency, in the dispersive regime, the dependence on the relative

coupling disappears. Finally we have discovered that, in the strong coupling regime,

for intermediate values of the detuning, the dynamics of the concurrence shows the
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occurrence of quantum beats. We have given a physical interpretation of this phe-

nomenon in terms of the quantum interference between the transitions among the

dressed states of the atomic system.

We believe that our results contribute in shedding light on the behavior of quan-

tum entanglement in realistic conditions, that is when the e�ect of the environment

on the quantum system is taken into account. For this reason they have both a fun-

damental and an applicative value and they indicate how rich the dynamics of this

system can be. The model we have studied can be employed to describe both trapped

ions in optical cavities and circuit cavity QED dynamics. In both physical contexts,

the observation of the e�ects we have discussed should be achievable with the current

experimental technologies. In the �rst case, it has already been demonstrated that

both atoms and ions can be con�ned inside high �nesse optical cavities and their

quantum states can be fully controlled [82, 83]. In the second case, quantum commu-

nication between two Josephson qubits has been achieved using a transmission line

as a cavity [84, 85, 86].



Chapter 4

Quantum Zeno and anti-Zeno e�ects
on the entanglement

4.1 Introduction

The description of decoherence for bipartite entangled systems has recently reached

notable theoretical [38, 60] and experimental [37] results due to the introduction of

the concept of entanglement sudden death. This describes the �nite-time destruction

of quantum correlations due to the detrimental action of independent environments

coupled to the two subsystems. On the other hand, it is well known [49, 79, 80]

that the interaction with a common environment leads to the existence of a highly

entangled long-living decoherence-free (or sub-radiant) state. At the same time, an-

other entangled state exists (orthogonal to previous one and called super-radiant)

that looses its coherence faster.

In this chapter, we discuss how to preserve this second entangled state without a�ect-

ing the �rst one by exploiting the quantum Zeno e�ect in order to achieve a complete

entanglement survival.

The e�ects of very frequent measurements on the decay rate of any unstable

68



69

quantum state have been widely discussed in both theoretical [92, 93] and, more

recently, experimental works [94, 95]. It was found that frequent measurements can

reduce or accelerate the decay process: these are the quantum Zeno and anti-Zeno

e�ects, respectively [96, 97, 98].

Here, we investigate the entanglement dynamics of two qubits coupled to a com-

mon reservoir, in presence of measurements. We examine the appearance of quantum

Zeno and anti-Zeno e�ects [99, 96, 97, 98] in the entanglement dynamics of two qubits

coupled to the same lossy cavity when the unitary evolution of the system is inter-

rupted by repeated projective measurements. We describe in detail these quantum

e�ects by comparing the measurement-induced coarse-grained dynamics to the entan-

glement evolution in absence of measurements in several scenarios, as described in the

previous chapter. In particular, we examine the strong and weak coupling regimes,

the role of the relative coupling strengths between the two qubits and the reservoir,

and the e�ect of the detuning from the main cavity frequency. We show that the

anti-Zeno e�ect can occur in the entanglement dynamics when the qubits frequencies

are detuned from the main reservoir frequency. In particular, the quantum Zeno and

anti-Zeno e�ects on entanglement [?, 91, 67] stem from the competing action of the

o�-resonant interaction and of the repeated projective measurements. We �nd that

Zeno and anti-Zeno e�ects can even appear sequentially many times as a function

of the interval between the measurements. Moreover, when the measurement time

interval approaches zero, the quantum Zeno e�ect dominates the dynamics in the far

o�-resonant limit. Whereas, for greater values of the measurement time interval, the

quantum anti-Zeno e�ect can appear reducing the capability of the system to store

entanglement.
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Finally we propose a strategy to �ght against the deterioration of the entanglement

using the quantum Zeno e�ect. Besides, we show that, in the o�-resonant regime, we

can preserve the entanglement using the quantum Zeno e�ect more e�ciently than

in the resonant limit [?], even if, in this case, no sub-radiant state exists.

Furthermore, we describe a measurement induced quantum Zeno e�ect [99, 98,

100] for the entanglement, showing that the quite simple procedure of monitoring

the population of the cavity mode leads to a protection of the entanglement well

beyond its natural decay time. This e�ect too can be tested with slight modi�cations

of already existing experimental set-ups, both in the realm of cavity QED and with

superconducting Josephson circuits.

4.2 Observed Entanglement Dynamics

The entanglement dynamics for a generic initial two-qubit state containing one ex-

citation coupled to a common structured reservoir was investigated in the previous

chapter. We choose again the concurrence C(t) [9], ranging from 0 for separable states

to 1 for maximally entangled states, to quantify the amount of entanglement encoded

into the two-qubit system. The explicit analytic expression of C(t) can be obtained

from the reduced density matrix of Eq. (3.7). It is easy to show that the concurrence

takes a very simple form

C (t) = 2 |c1(t)| |c2(t)| . (4.1)

If we express the initial state of the qubits as a superposition of |ψ±〉, that is

|ψ(0)〉 = β−|ψ−〉+ β+|ψ+〉, we see that, while part of the initial state will be trapped

in the sub-radiant state |ψ−〉, another part will decay following Eq. (3.21). Thus, as
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discussed above, the amount of entanglement that survives depends on the speci�c

state (and on the value of the rj). In the following we present a method which

exploits the quantum Zeno e�ect to preserve the initial entanglement independently

of the state in which it is stored.

Therefore, we analyze the e�ect of repeated nonselective measurements, performed

on the collective qubits system, on the entanglement dynamics in the resonance and

in the o�-resonance regime. In particular we will demonstrate the occurrence of

both quantum Zeno and anti-Zeno e�ects on the entanglement, depending on the

measurement time interval.

We consider the action of a series of nonselective measurements on the collective

atomic system, performed at time intervals T , must have the two following properties:

i) one of the possible measurement outcomes is the projection onto the collective

ground state |ψ0〉 = |0〉1|0〉2, and ii) the measurement cannot distinguish between the

excited-states |ψ1〉 = |1〉1|0〉2 and |ψ2〉 = |0〉1|1〉2.
Such measurements are described by the following two projectors:

Π0 = |ψ0〉〈ψ0| ⊗ IR, (4.2)

Π1 = (|ψ−〉〈ψ−|+ |ψ+〉〈ψ+|)⊗ IR, (4.3)

with IR the reservoir identity matrix. The action of the operators above is to project

the qubits into the subspace S1 spanned by

|ψ−〉 = r2|1〉1|0〉2 − r1|0〉1|1〉2,

|ψ+〉 = r1|1〉1|0〉2 + r2|0〉1|1〉2.

We note that, for ω1 = ω2, the two states above coincide with the subradiant and the

superradiant state, respectively. Projective measurements as those described by the
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operator Π0 can be implemented in both cavity QED [82, 83] and in superconducting

circuits with on-chip qubits and resonator [85, 86].

Recasting the initial state in the form |ψ(0)〉 = β−|ψ−〉 + β+|ψ+〉, we can write

the total state at time t = NT , i.e., after N measurements of the collective qubits

system, as follows

|Ψ(N)(t)〉 = Π1|Ψ(N−1)(t)〉

=
[
β

(N)
− (T )|ψ−〉+ β

(N)
+ (T )|ψ+〉

] ⊗

k

|0k〉R. (4.4)

where T is the time interval between two consecutive measurements and β
(N)
± (T ) are

the survival amplitudes at t = NT in presence of N measurements. The survival

amplitudes can be expressed in terms of the initial amplitudes as follows
(

β
(N)
+ (T )

β
(N)
− (T )

)
= EN

(
β+

β−

)
, (4.5)

with

β+ = r1 c10 + r2 c20 , β− = r2 c10 − r1 c20. (4.6)

We characterize the initial state of the qubits in terms of the initial separability s

de�ned via the equations

c10 =

√
1− s

2
, c20 =

√
1 + s

2
ei φ. (4.7)

It is immediate to see that s = ±1 corresponds to a separable state while s = 0

corresponds to a maximally entangled state.

In general, the explicit analytic expressions of the survivor amplitudes β
(N)
± (T ) is

very complicated and does not provide a simple physical understanding. Nevertheless,

one can always calculate the evolution matrix EN iteratively.
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For ω1 = ω2, a subradiant decoherence-free state |ψ−〉 exists. This state does not

evolve in time so the only relevant time evolution is the one of the superradiant state

|ψ+〉. In this case the explicit expression for the survival amplitudes in presence of

measurements takes the simple form

β
(N)
− (T ) = β− , β

(N)
+ (T ) = EN(T ) β+, (4.8)

with

E(T ) = e−(λ− iδ) T/2

[
cosh

(
ΩT

2

)
+

λ− iδ

Ω
sinh

(
ΩT

2

)]
, (4.9)

where δ1 = δ2 ≡ δ and Ω =
√

λ2 − Ω2
R − i2δλ. We indicate with ΩR =

√
4W 2α2

T + δ2

the generalized Rabi frequency and with R = WαT the vacuum Rabi frequency. The

function E(T ) is the survival amplitude of the superradiant state 〈ψ+(T )|ψ+(0)〉 =

E(T ).

The entanglement of the observed two-qubit system, at time t = NT , can be

evaluate by the concurrence C(N)(t) in presence of N measurements. This quantity

is derived from the reduced density matrix describing the system observed N times,

obtained from |Ψ(N)(t)〉〈Ψ(N)(t)| by tracing over the reservoir degrees of freedom.

C(N)(t), in the subradiant scenario (ω1 = ω2), can be written as

C(N)(t) = 2
∣∣ (

r1β+eiη(T )te−γ(T )t/2 + r2β−
)

× (
r2β

∗
+e−iη(T )te−γ(T )t/2 − r1β

∗
−
) ∣∣∣, (4.10)

where

γ(T ) = − log
[|E(T )|2]

T
, η(T ) =

arg [E(T )]

T
, (4.11)

are the e�ective decay rate and the argument of an oscillatory term, respectively.

We note that the dynamics of the concurrence in presence of measurements can be

expressed in a simple way in terms of the survival amplitudes β
(N)
± (T ) and therefore
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depends on T , on the `position'of the Bohr frequencies of the atoms with respect to

the spectrum, on the relative coupling between the qubits and the reservoir, and on

the quality factor of the cavity.

In the next section we will see that, for su�ciently short measurement time inter-

vals T , such that 〈ψ0|ρ(T )|ψ0〉 ¿ 1, both quantum Zeno and anti-Zeno e�ects on the

entanglement may occur.

4.3 Results

In the previous section we have mentioned that the explicit analytical expression

for the concurrence C(N)(t) at time t = NT , i.e., after performing N measurements,

becomes more complicated in the the o�-resonant case. In this section we compare the

entanglement dynamics in absence and in presence of measurements for two qubits

initially in a maximal entangled state, (s = 0), in both good and bad cavity limits.

We not that, in general, the entanglement dynamics in absence of measurements is

strongly sensitive to the relative coupling parameter r1 [101], while we will see that,

in presence of measurements, such dependence is often inhibited.

4.3.1 Resonant regime : Protecting entanglement via the quan-

tum Zeno e�ect

The measurements described above disentangle the qubits from the reservoir at each

time T . Choosing T such that 〈Ψg|ρ(T )|Ψg〉 ¿ 1, it is straightforward to prove that

the state |ψ−〉 is una�ected and that, at the same time, the decay of |ψ+〉 is slowed

down. Its survival probability P
(N)
+ (t) = 〈ψ+|ρ(t)|ψ+〉 in presence of N measurements
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Figure 4.1: Time evolution of the concurrence, for s = 0 and r = 1/
√

2, in absence
of measurements (solid line) and in presence of measurements performed at intervals
(a) λT = 0.1, 1, 5 (dashed, dotted and dot-dashed lines, respectively) with R = 0.1
(weak coupling) and (b) λT = 0.001, 0.005, 0.01 (dashed, dotted, and dot-dashed
lines, respectively) with R = 10 (strong coupling).

is given by P
(N)
+ (t) = |β+(0)|2 exp [−γz(T )t], where t = NT and with an e�ective

decay rate

γz(T ) = − log [E(T )2]

T
. (4.12)

Notice that, in the limit T → 0 and N → ∞, with a �nite t = NT , γz(T ) → 0 and

the decay is completely suppressed.

Besides a�ecting the probability P+(t), the projective measurements also modify

the time evolution of the entanglement, whose e�ective dynamics now depends on

T . Explicitly, the concurrence at time t = NT , after performing N measurements, is

given by

C(N)(t) = 2
∣∣∣

(
β+r1 e−γzt/2 + β−r2

)×
(
β+r2 e−γzt/2 − β−r1

)∣∣∣. (4.13)

In Fig. 4.1 we compare the dynamics of C(τ) in absence and in presence of measure-

ments performed at various intervals T for an initially maximal entangled state. Both
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in the weak and in the strong coupling regimes (left and right plots, respectively) the

presence of measurements quenches the decay of the concurrence. Thus, we have

achieved a quantum Zeno protection of entanglement from the e�ect of decoherence.

Again, decreasing the interval between the measurements, C(N)(t) remains closer and

closer to its initial value.

4.3.2 Bad-cavity limit: Enhancement of the entanglement pro-

tection

We begin considering the bad-cavity limit, e.g., R = R/λ = 0.1. In the o�-resonant

case here considered, and at short times, the dynamics of all initially entangled states

does not depend strongly on r1 so we consider the case r1 = r2 = 1/
√

2. For small

values of the detuning δ < R the behavior of the concurrence in presence of mea-

surements does not change appreciably compared to the resonant case. Thus, the

observed dynamics shows always the quantum Zeno e�ect for all values of T . We �nd

a similar result in the dispersive regime, i.e., for values of the detuning δ . λ.

In the subradiant scenario, ω1 = ω2, increasing the detuning the anti-Zeno e�ect

appears for values of T larger than a characteristic threshold value T ∗ that depends

on the detuning, as shown in Fig 4.2. In particular, for increasing values of the

detuning, the Zeno region becomes smaller and smaller, occurring only for very short

measurements time interval. A similar behavior occurs when only one of the two

qubits is coupled to the reservoir, that is r1 = 0, 1.

In the non-subradiant scenario, ω1 6= ω2, when the detuning is slightly larger than

the reservoir width δ & λ, the dynamics presents new features. In more detail, for

δ1 = −δ2, one can prove that the concurrence in presence of measurements shows
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Figure 4.2: (Color online) In the subradiant scenario (δ1 = δ2) and bad cavity limit
(R = 0.1), for s = 0, δ = 2 and r1 = 1/

√
2: (a) Contour plot of C(N)(τ) − C(τ) as

a function of τ and T (both measured in unit of 1/λ). Large values correspond to
lighter shades and the red dashed line is the contour to the value zero. (b) Time
evolution of the concurrence in absence of measurements (black solid line) and in
presence of measurements performed at time interval: T = 0.1λ (green dashed line),
T = 1λ (red dot-dashed line), T = 5λ (blue dotted line).

oscillations as a function of the measurements time interval T , thus quantum Zeno

and anti-Zeno e�ects for the entanglement alternatively occur for increasing values

of T, as shown in Fig 4.3. Moreover, for δ ∼ λ, the quantum Zeno e�ect dominates

again the dynamics for time intervals T of the order of the reservoir memory time. In

this regime an interesting phenomenon happens namely the quantum Zeno protection

of entanglement is more e�cient than in the resonant case, also for longer times.
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Figure 4.3: (Color online)In the non-subradiant scenario (δ1 = −δ2) and bad cavity
limit (R = 0.1), for s = 0, δ = 2 and r1 = 1/

√
2: (a) Contour plot of C(N)(τ)− C(τ)

as a function of τ and T (both measured in units of 1/λ). Larger values correspond
to lighter shades and the red dashed line is the contour to the value zero. (b) Time
evolution of the concurrence in absence of measurements (black solid line) and in
presence of measurements performed at time interval: T = 0.1λ (green dashed line),
T = 0.5λ (red dot-dashed line), T = 1λ (blue dotted line), T = 2λ (gray dot-dot-
dashed line).

4.3.3 Good-cavity limit: Monotone entanglement dynamics

In the good cavity limit, e.g., for R = R/λ = 10, the behavior of the concurrence in

absence of measurements shows entanglement oscillations and revival phenomena due

to the non-Markovian memory of the reservoir. Projective measurements performed

on the qubits at time intervals T shorter than the reservoir memory time disentangle

the qubits from the reservoir and destroy the entanglement oscillations and revival

phenomena due to the system-reservoir correlations. In other words, the measure-

ments suppress more and more e�ciently the feedback from the reservoir into the
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qubits the shorter is T .

Thus, unlike the bad cavity case, in this regime the entanglement dynamics in

presence of measurements shows qualitatively similar behaviors for all values of the

detuning as well as for both r1 = r2 = 1/
√

2 and r1 6= r2. However, the Zeno and anti-

Zeno regions still depend on rj because the concurrence in absence of measurements

is strongly sensitive to the relative coupling parameter.

For values of the detuning δ < R, the system presents quantum Zeno e�ect for

all values of T , independently of the relative coupling rj. In the dispersive regime

δ > R, when both qubits are identically coupled to the reservoir
(
r1 = 1/

√
2
)
, the

concurrence in presence of measurements decreases monotonically to zero and the

anti-Zeno e�ect occurs for values of T greater than a characteristic threshold value

T ∗ that depends on the detuning, as shown in Fig 4.4. For increasing values of the

detuning the entanglement dynamics in presence of measurements does not change

appreciably: the amplitude of the oscillations decreases until it reaches the value

obtained in absence of measurements and the value of T ∗ decreases.

For r1 6= 1/
√

2, the entanglement dynamics in presence of measurements start

to decrease approaching zero and then increases again towards its stationary value,

which is zero only in the non-subradiant scenario. Although, the concurrence shows

always a qualitatively similar behavior, the Zeno and anti-Zeno regions depend on the

di�erent detuning con�gurations, as one can understand by looking at the concurrence

behavior in absence of measurements, see Fig 4.5. Finally, we note that, in the good

cavity limit the presence of the detuning enhances the appearance of the quantum

anti-Zeno e�ect on the entanglement.
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Figure 4.4: (Color online) In the subradiant scenario (δ1 = δ2) and good cavity limit
(R = 10), for s = 0, δ = 20 and r1 = 1/

√
2: (a) Contour plot of C(N)(τ) − C(τ)

as a function of τ and T (both measured in unit of 1/λ), where larger values are
shown lighter and the red dashed line is the contour to the value zero. (b) Time
evolution of the concurrence in the absence of measurements (black solid line) and in
the presence of measurements performed at time interval: T = 0.001λ (green dashed
line), T = 0.005λ (red dot-dashed line), T = 0.01λ (blue dotted line).

4.4 Summary and Conclusions

In this chapter we investigated the entanglement dynamics in presence of measure-

ments and looked at the conditions for the occurrence of both the quantum Zeno and

the anti-Zeno e�ects on the entanglement.

We investigated the quantum Zeno e�ect for this system, showing that the entan-

glement can be preserved independently of the state in which it is encoded, with the

help of repeated projective measurements.

We found that the quantum Zeno e�ect always occurs when the measurements
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Figure 4.5: (Color online) Time evolution of the concurrence in the good cavity limit
(R = 10), for s = 0, δ = 20 for r1 = 0.4 in absence of measurements (black solid
line) and in presence of measurements performed at time interval: T = 0.001λ (green
dashed line), T = 0.005λ (red dot-dashed line), T = 0.01λ (blue dotted line). The
two plots describe two di�erent detuning con�gurations: (a) δ1 = δ2 = 20λ and (b)
−δ1 = δ2 = 20λ.

time interval T approaches zero, while for larger values of T , also the quantum anti-

Zeno e�ect may occur. For certain values of the parameters, increasing values of T

correspond to an alternative appearance of the Zeno and anti-Zeno e�ects .

In the bad cavity limit both the behavior of the concurrence in presence of mea-

surements and the Zeno and anti-Zeno regions are essentially independent of rj. Fi-

nally, we note that, when the measurement time interval is of the order of the reservoir

memory time, the presence of the detuning enhances the protection of entanglement

compared to the resonant case, so the entanglement can be more e�ectively protected

for long times. On the contrary, in the good cavity limit the presence of the detuning

enhances the appearance of the quantum anti-Zeno e�ect on the entanglement.



Appendix A

Analytic solution for the probability

amplitudes

In this Appendix we brie�y discuss the structure of the analytical solutions of Eqs. (3.14)-

(3.15) for the probability amplitudes c1,2(t) and how they can be obtained applying

the Laplace transform method. We note that the solutions obtained in this way are

exact since we do not perform any kind of approximation.

The solution of the Laplace transformed amplitudes c̃1,2(s), obtained from Eqs. (3.16)-

(3.17) can be written as the sum of three ratios having denominators (s− si), where

si are the roots of the cubic equation.

s3 + Ajs
2 + Bjs + Cj = 0, (j = 1, 2) (A.1)

where

A1,2 = λ + i (δ2,1 − 2 δ1,2) ,

B1,2 = R2 − δ2
1,2 + δ1 δ2 + i (δ2,1 − δ1,2) λ,

C1,2 = iR2 r2
1,2 (δ2,1 − δ1,2) .
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The amplitudes c1,2(t), obtained by inverse Laplace transform will then be the sum of

three damped oscillating terms having, in general, a complicated structure. Only for

the case ω1 = ω2 a simple analytical expressions for the probability amplitudes can

be obtained, whereas in the general case there is no simple solution. This is because,

when ω1 = ω2 the cubic equation can be written as a product of polynomials of �rst

and second order having always one root coincident with zero. In this case one can

write the amplitudes in the simple form given by Eqs. (3.19)-(3.20).



Appendix B

E�ective dispersive Hamiltonian

The Hamiltonian describing the interaction between two-qubit systems and the quan-

tized cavity mode is given by

H =
2∑

j=1

ωjσ
(j)
+ σ

(j)
− + ωcb

†b

+
[
g

(
α1σ

(1)
+ + α2σ

(2)
+

)
b + h.c.

]
.

To obtain the e�ective Hamiltonian describing the interaction with the cavity in

the dispersive regime, one can apply the canonical transformation de�ned by the

unitary operator [89, 90]

eαS = e
−∑2

j=1

Rrj
δj

(
b σ

(j)
+ −b†σ(j)

−
)

(B.1)

with Rrj = gαj. This procedure is correct to the second order in the coupling to

the cavity, and, limiting ourselves to this approximation, we can write the e�ective

Hamiltonian as follows

Heff = eαSHe−αS ' H + α[S,H] +
α2

2
[S, [S,H]].
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Assuming that the cavity �eld is initially in the vacuum state, Heff takes the form

Heff =
2∑

j=1

R2 r2
j

δj

σ
(j)
+ σ

(j)
− +

R2 r1r2

2 δj

(
σ

(1)
+ σ

(2)
− + σ

(2)
+ σ

(1)
−

)
, (B.2)

where the terms proportional to σ
(j)
+ σ

(j)
− describe the Stark shifts due to the dispersive

interaction, while the last two terms describe the dipole-dipole coupling between the

two atoms induced by the cavity mode through the exchange of virtual cavity photons.



Appendix C

Approximate expressions of the

concurrence

In this Appendix we derive approximate expressions for the amplitudes c1,2(t) in the

case of large (and equal) detuning δ À λ À R.

For this purpose, we expand the term Ω =
√

λ2 − Ω2
R − i2δλ as follows,

Ω ≈ λ

(
1− 2R2

δ2

)
− i

(
δ +

2R2

δ

)
. (C.1)

The temporal evolution described by E(t) can then be written as

E(t) ≈ e−(λ−iδ)t/2

[
cosh

(
Ωt

2

)
+ sinh

(
Ωt

2

)]

≈ e−
R2

δ2
(λ+iδ)t.

For the sake of simplicity we consider here the case s = 1 and r1 = 1/
√

2. However

the time evolution of the concurrence has features in common with all of the other
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cases:

C(t) = 2 |c1(t)| |c2(t)|

=
1

2

√
(1 + |E(t)|2)2 − (2 Re[E(t)])2

≈ 1

2

√
1 + e−4R2

δ2
λt − 2e−2R2

δ2
λt cos

(
2
R2

δ
t

)
.

On other hand, for small detunings of the order of λ, outside the dispersive region

δ ¿R, the approximate form of Ω is given by

Ω ≈ λ δ

2R − i2R, (C.2)

so that the time evolution is described by the function

E(t) ≈ e−(λ−iδ)t/2

[
cosh

(
Ωt

2

)
− δ + iλ

2R sinh

(
Ωt

2

)]

≈ e−(λ−iδ)t/2

[
cos (Rt)− λ

2R sin (Rt) + i
δ

2R sin (Rt)

]
.

Therefore, for the case s = 1 and r1 = 1/
√

2 the time evolution of the concurrence is

given by

C(t) =
1

2

√
(1 + |E(t)|2)2 − (2 Re[E(t)])2

≈ 1

2

√
1 + e−2λt cos(Rt)4 − 2e−λt cos(Rt)2 cos(δt).
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