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Introduction

The theoretical discovery of wave damping without energy dissipation by
collisions [1] is perhaps the most astounding result of plasma physics research.
That is a real effect has been demonstrated in the laboratory. Although a
simple physical explanation for this damping can be given, it is a triumph of
applied mathematics that this unexpected effect was first discovered purely
mathematically in the course of a careful analysis of a dispersion relation.

Landau damping results from resonant energy exchange between waves
and plasma particles and it is a characteristic of collisionless plasmas, but it
may also have applications in other fields. For instance, in the kinetic treat-
ment of galaxy formation, stars can be considered as particles of a plasma
interacting via gravitational rather than electromagnetic forces. Instabilities
of the gas of stars can cause spiral arms to form, but this process is limited
by Landau damping.

The absence of collisions is one of the main characteristics of space plas-
mas, but a great part of laboratory plasmas can be treated as collisionless.
So wave-particle interaction, of which Landau damping is the most typical
manifestation, is ubiquitous in plasma physics. One of its features is that it
exhibits a locality in the velocity space: since all charged particles do not
interact in the same manner with the self-consistent fields, a fluid descrip-
tion would fail to describe it and a kinetic description is required. The usual
description of wave-particle interaction involves the Vlasov-Poisson system
of equations for the electron distribution function and the perturbed field.
Landau’s theory is rigorous for waves of infinitesimal amplitude. For a finite-
amplitude wave, particles which are near resonance, i.e. particles with ve-
locity v ≈ vph, with vph the wave phase velocity, will be trapped by the wave
potential. Indeed, if the kinetic energy of a resonant particle is less than
the potential barrier, the particle is trapped and experiences reflections at
turning points (where the kinetic energy has the same value of the potential),
exchanging energy with the wave. Particle bounce motion significantly limits
the validity of linear Landau damping, that is equivalent to an integration in
unperturbed orbits. The so-called nonlinear Landau damping problem is, in
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general, not analytically tractable, as it requires explicit expressions for all
particle trajectories as a function of initial position and time. Such trajec-
tories cannot be explicitly calculated for a potential of arbitrary shape. In
some cases, an approximate analytic expression for the wave profile shape is
supposed and may be assumed to persist, while the wave amplitude varies.
According to the first nonlinear analysis, done by O’Neil [23], the damping
can be dramatically altered. The nonlinear energy exchanges between a wave
and the resonant particles, trapped in its potential well, drive the wave am-
plitude through a sequence of oscillations, whose magnitude decreases as the
particles become more and more phase mixed and unable to exchange energy
with the electric field in any coherent manner. Thus, in the time-asymptotic
limit the wave amplitude should reach a final nonzero constant value.

In recent years massive computer simulations have been accomplished,
especially after the paper by Isichenko [24], in which the long-time evolu-
tion of generic initial perturbations in a Vlasov plasma is reconsidered, and
an algebraic asymptotic damping is predicted, in spite of the non-linear in-
teraction effects. These conclusions are based on the idea that the motion
of the resonant particles is not simply oscillatory, but there is a significant
number of them that escape from the potential troughs. In this way the
energy balance between wave and particles is not kept. Isichenko’s algebraic
decay is presented as an exact asymptotic result, valid for a general initial
perturbation. This conjecture has been first questioned by Lancellotti and
Dorning [25], and it is not confirmed by numerical simulations. When start-
ing with a sufficiently large initial wave amplitude, these show that in the
final asymptotic state the wave energy displays an oscillatory behaviour and
wave damping is stopped [28, 42]. As shown by Valentini et al. [31], the
particles that get untrapped from the potential well, do not have a purely
ballistic motion, since they can be retrapped later. The presence of a chaotic
zone in proximity of the resonance zone in phase space, and the presence of
particles that are always trapped could explain the observed oscillations.

Landau damping has been studied so far by using the kinetic plasma
theory and only recently [33] it has been realized that the framework of
dynamical systems can be useful to describe nonlinear features of the phe-
nomenon.

In this thesis we study a dynamical model, in the form of a modified
Fermi model [39], in order to investigate the wave-particle interaction. Our
aim is to verify the phenomenology observed in numerical simulations, and
in particular, we attempt to look into the behaviour in the long-time limit,
where simulations cannot be conclusive. A simple model can also be useful
to understand the underlying dynamics of the phenomenon, that cannot be
easily inferred from the not intuitive analytical and numerical calculations.
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The model describes the wave-particle interaction as the net result of a
large number of collisions between an ensemble of particles of unitary mass
moving between two infinitely massive walls with variable length. This varies
following the collision dynamics of classical Newtonian physics. Using Monte
Carlo simulations, it is possible to recover the phenomenology of Landau
damping, with a special regard to the collective behaviour of particles. Lan-
dau damping appear as a threshold phenomenon: for initial amplitudes above
a certain threshold determined from the initial conditions, after an initial
decreasing, wave oscillates around a constant value. The period of this os-
cillations is bound to the initial amplitude as stated by O’Neil [23]. This is
only a transitory phenomenon stemming from the dynamical approach to-
wards equilibrium in the wave-particle conservative system. The equilibrium
is reached via a phase mixing in phase space, where regions characterized by
different density become more and more mixed, till the state of maximum
entropy is reached. Correlations are created between trajectories in phase
space. These facets cannot be investigated with the classic kinetic approach,
since the latter, neglecting collisions between particles, cannot account for
an entropy increase or the appearance of correlations. Moreover it cannot
describe the phase mixing phenomenon, since it misses a characteristic dis-
tance that could be considered as a limiting distance, below which structures
in phase space are no longer resolved.

In the first chapter of this thesis, the theoretical aspects of wave-particle
interaction are outlined, and the numerical simulations of the last years are
briefly discussed. In the second chapter, a general overview of dynamical
systems, with a special regard to the Fermi billiard is proposed. In the third
chapter the modified Fermi model is introduced, along with its principal
results. In the fourth chapter we will see some statistical facts that can be
derived from the model. Finally, in the fifth chapter, a comparison with the
more rigorous (but even more expensive!) PIC code is presented.

The main result of our work is the analysis of how the system reaches the
equilibrium state.
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Chapter 1

Landau Damping

1.1 Introduction

In 1946 Lev Davidovich Landau published a landmark paper on the oscil-
lations of plasma [1]. What Landau found was an impressive result, that
there would be exponential decay of the coherent oscillations. This “Landau
damping” was surprising since Landau’s calculation was done in the collision-
less limit where there is no explicit damping term in the equation. In fact,
due to the subtleties inherent in the equations of motion, earlier treatments
of the problem [2] had entirely missed this effect.

Initially, after Landau published his paper, it was not generally recognized
that this kind of phenomenon could be observed in real system since Landau’s
analysis relied on rather restrictive assumptions. It was not until 1960’s, after
Landau damping had been put on a firm mathematical footing (Van Kampen
[3] showed that the solution of the initial value problem can be represented
as a superposition of a continuous set of singular eigenfunctions), and it had
been observed experimentally [4], that the reality of the phenomenon was
accepted.

Despite the mathematical and experimental confirmations, there has been
some confusion over the physics behind Landau damping. This confusion is
not helped by the complexity of the standard mathematical treatment. One
minor problem in discussing Landau damping is that it manifests itself in
different systems in different ways.

In plasma physics, that is the argument in which we are concerned, Lan-
dau damping causes the decay of coherent oscillations. But the importance
of Landau’s result lies beyond the domain of plasma physics and has been
applied to different fields, as high energy particle beams [5], superfluids [6],
and quarks [7]. Landau damping has even appeared in biological systems
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[8] where it is involved in the question of the synchronization of oscillators.
Such biological systems include flashing of fireflies [9], and the periodic firing
of the pacemaker cells that control the beating of the heart [10]. Within a
system of biological oscillators, Landau damping can be used to explain why
there exists a threshold below which the feedback fails to synchronize any
oscillators and why, below the synchronization threshold (at least within the
framework of one particular mathematical model) the coherent signal can
decay exponentially in time. The presence of Landau damping is due to the
fact that the necessary conditions for the damping itself are easily satisfied:
essentially, any system that can be modeled as a large collection of oscillators
with feedback is a candidate for displaying Landau damping.

1.2 Landau damping in plasmas

The collisionless damping of high frequency vibrations of electronic plasmas
was predicted by Landau [1] for Langmuir oscillations [11]. Since then, its
presence has been identified in essentially all other modes of collective os-
cillations in plasma. Various modifications and refinements associated with
non-Maxwellian particle distributions, background plasma non-uniformities,
magnetic fields, multiple plasma species, nonlinear effects, and so on, have
been made. Landau damping is a concept permeating the whole fabric of
modern plasma physics. During the first 10–15 years after Landau’s dis-
covery, his paper was cited and used in only a few publications because of
the absence of research programs in hot collisionless plasmas. Among these
early publications was the paper by Bohm and Gross [12] where the electron
distribution function was represented as a superposition of monochromatic
beamlets, and that by Bernstein, Greene and Kruskal [13] who constructed
exact nonlinear solutions (so-called BGK modes) in which Landau damping
is absent. Generally, in the early years, a lot of attention was paid to inter-
pretation of the singularities that appear in some versions of the theory, in
particular, in the analysis of perturbations of the distribution function by a
monochromatic wave. In fact, these “singularities” are, to a great extent, fic-
titious, not stemming from the physics of the initial-value problem but rather
appearing in specific types of its mathematical description (see e.g. [14]). A
nice intuitive interpretation of Landau damping and its nonlinear limits was
presented by Dawson in 1961 [15]. First dedicated experiments were carried
out by Malmberg and Wharton [4], which clearly demonstrated the reality
of Landau damping. An explosion of interest occurred in the late 1950’s
early 1960’s, when large-scale fusion research began in several countries and
it was realized that Landau damping may strongly affect the phenomenon
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of anomalous plasma losses from fusion devices. Nowadays Landau damp-
ing is almost ubiquitous in plasma physics: it is implied in supplementary
heating of magnetically confined plasma in fusion devices [16], in the forma-
tion of high-energy tails of particle distribution functions, in fast relaxation
of charged particle beams. It is also important in laser–plasma interactions
[17], in particle acceleration by means of plasma accelerators [18], for the
heating of coronal gas [19] and for that of interstellar medium [20].

1.2.1 Linear Landau damping

Let’s now recall briefly the problem treated in the original paper by Lan-
dau, namely the initial value problem for a localized Langmuir perturbation.
Consider the general Vlasov equation:

∂f

∂t
+ v

∂f

∂r
− eE

m

∂f

∂v
= 0 (1.1)

where, f(x,v, t) is the particle distribution function which gives the den-
sity of particles inside the element of volume dxdv around the coordinates
(x,v) of phase space, m and e mass and charge of electron, and E is the
self-consistent electric field. Let us assume now that the electron plasma is
initially stirred in a volume with a characteristic size L. If the frequency
of vibrations is high enough, the collisions of electrons with ions and with
each other are unessential. The distribution function of ions can be consid-
ered as invariable, whereas that of electron is assumed to be composed of a
equilibrium distribution function f0(v), plus a small perturbation f1(r,v, t),
introduced at t = 0, i.e.:

f(r,v, t = 0) = f0(v) + f1(r,v, t = 0) (1.2)

By linearizing Vlasov equation, one finds:

∂f1

∂t
+ v

∂f1

∂x
− eE

m

∂f0

∂v
= 0 (1.3)

where, from linearized Poisson’s equation,



8 Landau Damping

∂E

∂x
= n0 − 4πe

∫

fdv (1.4)

(n0 is the density of the neutralizing positive background). For an initial
value problem, the equations are simplified by taking their Fourier transforms
with respect to spatial variables and their Laplace transforms in time. This
reduces the differential equations to algebraic equations that can be solved
for the desired transform variable. The problem is then inverting the Fourier
and Laplace transforms.

Consider the case of long-wavelength electron plasma oscillations with
k2λ2

D ≪ 1, where ωpeλD = v2
th, λD is the Debye length, vth is the thermal

velocity and ωpe = (4πn0e
2/me)

1/2 is the plasma frequency. In this condi-
tions, by solving Eqs. (1.3) and (1.4), one get the well known classic result
of Landau for t → ∞:

E(x, t) = E0 exp(γLt) exp[i(kx − ωrt)] (1.5)

where:

ω2
r = ω2

pe(1 + 3k2λ2
D + · · · ) (1.6)

γL =
π

2

ω3
pe

k2

(

df0

dv

)

v=ω/k

. (1.7)

It is easy to see that the damping rate critically depends on the electron
distribution function in vicinity of v = (ω/k) ≡ vφ, the so called resonant
region. In particular, for a Maxwellian equilibrium distribution function
(centered at v = 0):

f0(v) = n0

(

me

2πkBT

)1/2

exp

(

− mev
2

2kBT

)

one gets for γL the expression:

γL = −
(

π

8

)1/2
ωpe

(kλD)3
exp

[

− 1

2(kλD)2
− 3

2

]

. (1.8)
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Since the derivative of the distribution function in v = vφ is negative the
wave is damped in time. If f0(v) is increasing in the resonant region the wave
amplitude will grow exponentially, on the basis of this linear theory.

In Appendix A is presented a nice derivation of Landau damping, in which
the mathematical rigor has been sacrificed in order to convey an intuitive
picture of the phenomenon.

1.2.2 Changes in the distribution function

Once that the evolution of the perturbed electric field is known, it is easy to
follow the time behaviour of the electron distribution function f1. In fact, by
using Eq. (1.3) and Eq. (1.4) it is possible to show (see e.g. Ref. [21]) that
for the Fourier transform of f1 one gets:

fk(t) = f̄b(t) exp(−ik · vt) +
∑

ωk

f̄k exp(−iωkt) (1.9)

where f̄b(t) and f̄k are some amplitudes. The terms in summation give the
reaction of the particles to the waves. This damps in time as E1(t) does. The
additional term f̄b(t) exp(−ik · vt) is called ballistic term or free-streaming.
This appears because a particle, perturbed at t = 0, brings memory of this
perturbation. This memory is cancelled only by collisions, that are not in-
cluded in Vlasov equation. Thus a fluctuation in the point (x,r,t) arises for
two reasons: the first one is the wave, that propagates in space and time and
reaches the point (x,r) at time t; the second one is due to the particles that
arrive in (x,r) at time t, bringing with them memory of the initial pertur-
bation. The ballistic term does not decrease with time (k and v are both
real) but become highly oscillating in velocity space, and it does not give
any contribution to the electric field because in the Poisson’s equation, since
t → ∞ the integral becomes zero for the fast oscillations of the integrand.
It has been shown [22] that the distribution function, properly mediated in
time, forms a plateau asymptotically in time, in the region corresponding to
the resonant trapped electrons.

1.2.3 The “surfer’s picture”

To see what is responsible for Landau damping, we notice that the damping
rate in Eq. (1.7) arises from the particles with velocity v ≈ vφ. Consequently,
the effect is connected with those particles in the distribution that have a
velocity nearly equal to the phase velocity, the resonant particles. These
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particles travel along with the wave, so they are able to exchange energy
with the wave effectively. The easiest way to understand this exchange of
energy is to picture a surfer trying to catch an ocean wave. If the surfboard
is not moving, it merely bobs up and down as the wave goes by and does
not gain any energy on the average. Similarly, a boat propelled much faster
than the wave cannot exchange much energy with the wave. However, if
the surfboard has almost the same velocity as the wave, it can be caught
and pushed along by the wave. This is, after all, the main purpose of the
exercise. In that case, the surfboard gains energy, therefore the wave must
lose energy and is damped. On the other hand, if the surfboard should be
moving slightly faster than the wave, it would push on the wave as it moves
uphill; then the wave could gain energy. In a plasma, there are electrons
both faster and slower than the wave. A Maxwellian distribution, however,
has more slow electrons than faster ones (Fig. 1.1). Consequently, there are
more particles taking energy from the wave than the vice versa, and the wave
is damped. As particles with v ≈ vφ are trapped in the potential well, f(v)
is flattened near the phase velocity. This distortion is f1(v). Obviously, if

Figure 1.1: Representation of the resonant particles.
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f0(v) contained more fast particles than slow particles, a wave can be excited.
Waves with vφ in the region of positive slope will be unstable, gaining energy
at the expense of the particles. This is just a finite–temperature analogy of
the two–stream instability.

1.3 Nonlinear theory: introduction

We have seen that little electrostatic perturbations in a uniform Maxwellian
plasma are damped exponentially even in absence of dissipative terms in the
equations. In this linear theory, the electric field is assumed to be a little
perturbation in an equilibrium field-free situation. Landau’s treatment is
rigorous, but strictly linear, meaning that it is valid for infinitesimal initial
perturbation. Indeed, the linearization holds true until the condition:

∂f1

∂v
≪ ∂f0

∂v
(1.10)

is verified, since the term ∂f1/∂v is neglected in Vlasov equation. The effect
that makes the linear treatment no longer applicable is the trapping of elec-
trons in the potential well of the wave. As simple explanation of this point,
consider the simple case in which the electric field E(x, t) has the form of a
purely sinusoidal travelling wave of infinite spatial extent:

E(x, t) = E0 sin(kx − ωt) (1.11)

where, without loss of generality, E0 > 0 and k > 0. For the moment we
ignore considerations on the self-consistency of E(x, t) and assume E0 =
const. In a frame of reference moving with the wave phase velocity the field
is:

E(x, t) = E0 sin(kx) ≡ E(x). (1.12)

The equation of motion for an electron moving in the electric field is:

mẍ = −eE(x) = e
dφ(x)

dx
(1.13)
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where φ(x) = (E0/k) cos(kx) is the electrostatic potential in the wave frame.
The total energy of the electron is then:

1

2
mẋ2 − eφ(x) = W. (1.14)

Clearly, each electron with energy W < −eφ(x) is trapped and oscillates
back and forth in the potential well (Fig. 1.2). This trapping imposes severe
limitations to validity of linear Landau damping, that is equivalent to an
integration in unperturbed orbits, namely x(t) = x(0) + v(0)t. For strongly
trapped electrons, those with energy near the bottom of the well, we have:

mẍ = −eE0kx = −mω2x (1.15)

from which we see that the electron oscillates with a period:

Figure 1.2: Representation of trapping of particles in a wave, with trajectories
in the phase space (x, v) (top) and corresponding energy diagram (bottom).
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τtr ≈ ω−1
tr =

√

m

eE0k
(1.16)

while for electrons at the top of the trough the oscillation period becomes
infinite. These nonlinear orbits are then associated with the fact that the
wave is not vanishing, so they are not included in the linear theory, whereas
an electron with W > eE0/k is not trapped in the trough, it accelerates and
decelerates as it passes over the potential, but the direction of its motion
is not reversed from the initial sense. This simple harmonic motion in the
potential well is a major perturbation of the particle orbit, and any linear
calculation that depends on the distribution of these trapped particles cannot
be valid on time scale t > τtr. Landau damping depends on the distribution
function of particles that move at nearly the speed of wave. Since these
resonant particles are the first to be trapped Landau damping holds only if:

τL ≪ τtr (1.17)

where τL = γ−1
L , is the typical time in which linear effects take place and

γL is given by Eq. (1.8). In other words the linear treatment is a good
approximation only if the amplitude of the electric field is such that the
wave damps before that electrons have time to perform oscillations in the
potential well of the wave.

1.4 Nonlinear treatment of Vlasov equation

As a further demonstration of the fact that the time scale in Eq. (1.16) marks
the end of validity of linear theory in the case of a single wave, let’s study
the linearized solution of the Vlasov equation for the electron distribution
function f(x, v, t) = f0(v) + f1(x, v, t) in an electric field given by Eq. (1.11)
while for the initial condition on f1 we consider f1(x, v, 0) = f1(v, 0) cos(kx).
This form of f1 is consistent, for small amplitudes, with the functional shape
assumed for the electric field. The linearized Vlasov equation then is:

(

∂

∂t
+ v

∂

∂x

)

f1 =
e

m
E0 sin(kx − ωt)

∂f0

∂v
. (1.18)
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The solution for the above equations may be found, integrating along
the particle trajectories (method of characteristics), in absence of perturbed
field. The quantity in the left hand side of Eq. (1.18) represents the temporal
derivative of f1, evaluated along an unperturbed trajectory in the field-free
equilibrium:

(

∂

∂t
+ v

∂

∂x

)

f1 =
d

dτ
f1. (1.19)

Eq. (1.18) can be written as:

d

dτ
f1[x0(τ), v0(τ), τ ] =

e

m
E0[x0(τ), τ ]

[

∂

∂v
f0(v)

]

v=v0(τ)

(1.20)

where x0 and v0 are the particle orbits in absence of electric field:

d

dτ
x0(τ) = v0(τ) (1.21)

d

dτ
v0(τ) = 0 (1.22)

and x0(τ = t) = x, v0(τ = t) = v. Integrating in time Eq. (1.20) and
Eq. (1.21) we get:

f1(x, v, t) = f1[x0(τ = 0), v0(τ = 0), τ = 0]+

e

m

∫ t

0

E0(x0(τ), τ) ·
[

∂

∂v
f0(v)

]

v=v0(τ)

dτ
(1.23)

and:

∫ t

τ

d

dτ
x0(τ)dτ =

∫ t

τ

v0(τ)dτ (1.24)

from which:

x0(t) − x0(τ) = (t − τ)v0 = (t − τ)v. (1.25)
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Since v0 = const ≡ v we have:

x0(τ) = x + v(τ − t). (1.26)

By substituting the above expression in Eq. (1.23) we get:

f1(x, v, t) = f1(x − vt, v, 0) +
e

m

∂f0(v)

∂v

∫ t

0

E0[x + v(τ − t), τ ]dτ. (1.27)

If we put in this equation the expression of the electric field and that of
the distribution function we have:

f1(x, v, t) = f1(v, 0) cos[k(x − vt)]

+
e

m

∂f0(v)

∂v
E0

∫ t

0

sin[k(x + v(τ − t)) − ωt]dτ.
(1.28)

By solving the integral we obtain:

f1(x, v, t) = f1(v, 0) cos(kx − kvt)

+
e

m
E0

∂f(v)

∂v

[

cos(kx − ωt) − cos(kx − kvt)

ω − kv

]

.
(1.29)

Clearly, the resonant condition v ≈ vφ = ω/k gives rise to a singularity
in the second term of the right-side of the above equation. By taking the
Taylor expansion of the numerator around vφ , we get:

cos(kx − ωt) − cos(kx − kvt) ≈
(

v − ω

k

)

kt sin(kx − ωt)

+
1

2

(

v − ω

k

)2

k2t2 cos(kx − ωt) + · · ·

Using the last equation in Eq. (1.29) the following expression for the
perturbation f1 is finally found:
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f1(x, v, t) = f1(v, 0) cos(kx − kvt)

+
e

m
E0

∂f0(v)

∂v

×
[

t · sin(kx − ωt) +
t2

2
(ω − kv) cos(kx − kvt)

]

.

(1.30)

Taking the velocity derivative of this equation and retaining only the
dominant contribution for large t, we find:

[

∂

∂v
f1(x, v, t)

]

v=ω/k

≈ −∂f0(v)

∂v

(

eE0k

m

)

t2

2
cos(kx − ωt). (1.31)

It is clear from this expression that the condition for the validity of the
linear approximation (|∂f1/∂v| ≪ |∂f0/∂v|) breaks down for

t ≈
√

m

ekE0

≡ τtr. (1.32)

The diverging term in Eq. (1.31) is associated to the fact that unperturbed
orbits, represented by the term x − vt in Eq. (1.30), no longer describes the
real dynamics of the resonant electrons for t > τtr, at least for the case of a
single wave.

1.5 O’Neil nonlinear theory

In 1965 T. O’Neil [23] took in consideration the dynamics of trapped particles
to get a deeper insight into the nonlinear features of the wave-particle inter-
action. In his theory the amplitude of electric field is kept constant during
the calculation, so it is possible to solve the exact Vlasov equation in the res-
onant region. Then the changes in amplitudes are obtained as a consequence
of conservation of energy. In this way O’Neil extended to the nonlinear case
the method used by Dawson [15], who derived the linear damping coefficient
by equating the rate of increase of kinetic energy of particles to the rate of
decrease of wave energy.

For a system with a spatial periodicity 2π/k the conservation of energy
is expressed as:
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d

dt

[
∫ π/k

−π/k

E2(x, t)

8π
dx +

∫ π/k

−π/k

dx

∫ ∞

−∞

mv2

2
f(x, v, t)dv

]

= 0. (1.33)

This is an exact consequence of non-linear Vlasov equation for generic
E(x, t) and f(x, v, t). In the case of a monochromatic wave of the type
E(x, t) = E(t) sin(kx), Eq. (1.33) can be written as:

d

dt

∫ π/k

−π/k

E2(t)

8π
sin2(kx)dx = −

∫ π/k

−π/k

dx

∫ ∞

−∞

m

2

(

v +
ω

k

)2
∂f

∂t
dv (1.34)

where the variables are expressed in the wave frame of reference. The last
relation can be written as:

dE(t)

dt
= −

∫ ∞

−∞

m

2

(

v +
ω

k

)2
∂

∂t
< f(v, t) > dv (1.35)

where < f(v, t) > is the spatially averaged distribution function:

< f(v, t) >=
k

2π

∫ π/k

−π/k

f(x, v, t)dx (1.36)

and E(t) is the spatially averaged energy density of the electric field:

E(t) =
E2(t)

16π
. (1.37)

To evaluate the term ∂f/∂t, O’Neil found the exact nonlinear solution of
Vlasov equation by noting that:

∂f

∂t
+ v

∂f

∂x
− e

m
E0 sin(kx)

∂f

∂v
= 0 (1.38)
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just expresses incompressible flow in phase space. In the wave frame the
solution can be written as:

f(x, v, t) = f [x0(x, v, t), v0(x, v, t), 0] (1.39)

where f(x0, v0, 0) is the initial distribution and (x0, v0) are the initial condi-
tions. The evolution of this point is governed by equation:

mẍ = −eE sin(kx). (1.40)

This equation is exactly solvable in terms of elliptic functions. The final
result (see Ref. [23] for details) is that the electric field energy density E is
described by the equation:

dE(t)

dt
= 2γ(t)E(t) ⇒ E(t) = E(0) exp

[

2

∫ t

0

γ(t)dt

]

. (1.41)

The expression for the parameter γ is:

γ(t) = γL

∞
∑

n=0

64

π

∫ 1

0

dy

{

2nπ2 sin(πnt/yFτtr)

y5F 2(1 + q2n)(1 + q−2n)
+

(2n + 1)π2y sin[(2n + 1)πt/2Fτtr]

F 2(1 + q2n+1)(1 + q−2n−1)

} (1.42)

where F is the elliptic integral of the first kind:

F (β, z) =

∫ β

0

dz′

(1 − β2 sin2 z)1/2
(1.43)

and

q = exp(πF ′/F ), F = F (α, π/2), F ′ = F [(1 − α2)1/2, π/2]. (1.44)
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It is possible to show that the contribution of free-streaming electrons to
γ(t) is contained in the first term in curly brackets of Eq. (1.42), whereas the
second term is associated to trapped particles. For t ≪ τtr the term with
n = 1 for free electron dominates and Eq. (1.42) reduces to γ ≈ γL. For
t ≫ τtr, γ(t) ≈ 0, since the integrals over the sine and cosine terms phase
mix to zero. Moreover it can be shown that:

∫ ∞

0

γ(t)dt ≈ O(γLτtr). (1.45)

Since E(t) = E(0) exp[2
∫ t

0
γ(t)dt], it follows that the relative loss of energy

is of order of τtr/τL.

In conclusion, according to O’Neil theory, for the case γL < 0, the electric
field damps exponentially as depicted in linear theory for t < τtr. When
t ≃ τtr, the nonlinear effects start playing an important role. As a conse-
quence the electric field amplitude exhibits an oscillatory modulation with a
period of order of τtr. For larger times, γ(t) → 0, and the field tends to a
constant value, which is O(τtr/τL) lower than its initial value. The nonlin-
ear energy exchange between wave and trapped particles supports the wave,
preventing the damping (see Fig. 1.3). Obviously the same considerations
can be made in the case γL > 0.

γL

0

γ(
t)

t

τtr

Figure 1.3: Qualitative time behaviour of damping rate γ(t).
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1.5.1 Physical interpretation

We make now some qualitative considerations about the results seen in the
previous section. The physical interpretation may be given in terms of phase
space picture.

Let’s us first consider the linear theory of collisionless damping. Only
those electrons whose velocities are such that kvt . 1 can give a significant
contribution to the rate of change of kinetic energy; so, we may focus our
attention to those electrons between two trajectories such as A and B in
Fig. 1.4. Between these two trajectories, there is a net upward flow along
direction 1 and a net downward flow along direction 2. For the case of
damping, the initial distribution, plotted out of paper in Fig. 1.4, decreases
as a function of velocity. This results in a net increase in the kinetic energy
of the resonant electrons and a consequent damping of the wave.

On a nonlinear time scale, the trapped electrons make complete cycles
with a period of order τtr. These electrons carry along the density from their
original position and thus cause a cyclic variation in the density at any point.
It is this variation in density that causes the oscillatory behaviour of the wave.
The fact that γ(t) phase mixes to zero as t → ∞ is easily explained in term of
ergodic theorem. Consider an initial distribution limited to the small patch
of phase space represented by the shaded area in Fig. 1.5. The electrons with
energy W have a shorter period than those with energy W + ∆W . So, as

Figure 1.4: Particle orbits in phase space.
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times goes by, the shaded area is stretched into a long spiral that fills the
area between the two trajectories, W and W + ∆W . Let f̃ be a coarse grain
distribution obtained by averaging the actual distribution over the phase
elements which are large enough to be traversed by many strands of the
spiral. In Ref. [23] it is shown that the coarse grain distribution becomes
constant along the trajectories, as t → ∞ and the size of mesh used in the
coarse grain distribution goes to zero. Since the coarse grain distribution
becomes constant along any phase trajectory, it also becomes constant in
time. As the size of the mesh decreases, the integral of any smooth function
weighted by the distribution will depend only on the coarse grain distribution.
Consequently, E becomes constant and γ(t) ∝ dE/dt approaches zero as t/τtr

approaches infinity.

Figure 1.5: Schematic phase space representation

1.6 Numerical study of Landau damping

Today, after nearly 60 years after Landau’s discover, the issue of collisionless
damping is far from being solved. A satisfactory general quantitative analysis
is still lacking, since O’Neil study deals only with a limiting case, namely
that in which the trapping effect are so dominant that the amplitude of
an isolated wave is approximately constant. At the opposite extreme, the
standard linear theory is valid when strong initial Landau damping occurs
before the nonlinear effects come into play.

In 1996, Isichenko [24] revisited analytically the nonlinear evolution of
electrostatic perturbations. At variance with O’Neil result, he found that,
even if nonlinear effects are present, the wave is finally completely damped,
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but for long times the decay is algebraic rather than exponential. This con-
clusion is presented as an exact result, valid for a generic initial electric field,
and hence not limited to infinitesimally small perturbations.

The underlying idea of Isichenko theory is that the motion of the resonant
particles near the boundary of the resonant region is not simply oscillatory,
but it is possible to have a certain number of detrapped particles which escape
from the potential well and perform flights in the phase space, which are able,
at least in principle, to dissipate the wave energy. Unfortunately, Isichenko
made a little confusion in calculating the trajectories of the particles and
the electric field, as pointed out from Lancellotti and Dorning [25]. In fact,
crucial to Isichenko’s analysis is his hypothesis that, as E → 0, each single
particle trajectory, which satisfies Newton’s equation

ẍ = E(x, t) (1.46)

tends to a motion with constant velocity x(a, b, t) = U(a, b)t, where (a, b) is
the initial phase-space point for the orbit and U(a, b) is a constant velocity.
But the damping rate resulting from Isichenko’s analysis, namely, E ∼ t−1

as t → ∞, does not justify this affirmation. Integrating Eq. (1.46) once gives
the velocity:

v(a, b, t) = b +

∫ τ

0

E(x(a, b, t), τ)dτ (1.47)

which tends to a constant value U(a, b) as t → ∞ only if E(x(a, b, t), t) is
an integrable function of t. However, if E ∼ t−1 as t → ∞, the function
E(x(a, b, t), t) is, in general, not integrable, so that v(a, b, t) does not tend to
a constant value, and the following analysis is inconsistent.

In 1998 an analytical study by the same authors [26] contributed to the
discussion about the features of the asymptotic evolution of electrostatic per-
turbations. They focused the attention on the existence of a critical initial
amplitude of the wave, below which a complete damping take place. The
electric field E(x, t) is represented as the sum of a transient and an asymp-
totical part E(x, t) = T (x, t) + A(x, t). The Poisson’s equation is split in
the corresponding transient and asymptotical part. The theory of bifurca-
tion is employed and the result is that, given a family of initial condition
f(x, v, t) = F (v) + h(x, v) (where F is the equilibrium solution and h the
perturbation) a set of critical initial state exists, which mark the transition
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between two different scenarios: the Landau scenario, in which the electric
field is definitively damped to zero exponentially in time, as stated in Landau
theory, and the O’Neil scenario, in which the electric field reaches an almost
constant saturation value. A perturbation h0(x, v) is critical if F (v)+h0(x, v)
gives rise to a solution in which A = 0, but arbitrarily close to h0 there exists
another h for which the final result A 6= 0 (see Fig. 1.6 for a qualitative
picture of this situation).

h

0
α

α

A

h

Figure 1.6: Schematic representation of a bifurcation [26]

Wave-particle interaction has been investigated in several kinetic simu-
lations. Oscillations are excited by perturbing the equilibrium distribution
function, then the 1D-1V Vlasov-Poisson system of equations, Eqs. (1.1) and
(1.4), is integrated. This work is accomplished making use of the so called
Vlasov codes, Eulerian codes which solve the Vlasov equation on a uniform
mesh in phase space. Starting from the pioneering studies of Cheng et al.
[27], and thanks to the impressive development of computer power of the last
years, Vlasov codes are extensively used to perform high resolution simula-
tions. The results obtained in this way are characterized by an oscillating
behaviour of the wave amplitude around an approximately constant value.

Among others, we cite here the works by Manfredi [28] and Pegoraro
et al. [29], in which the long-time evolution of nonlinear Landau damping is
analysed by solving the Vlasov-Poisson system numerically. In the first paper
the effects of changing the mesh size and the time steps of the simulations
are discussed. Fig. 1.7 reports the evolution of the electric field for three
different resolution in phase space [28]. In Ref. [29] the value of the parameter
marking the transition between Landau’s and O’Neil’s regimes is determined
and compared with analytical results. It is also shown the ions dynamics is
found not to affect these behaviours significantly. Fig. 1.8 shows the spatial
Fourier component of the electric field for large times and for a different
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Figure 1.7: Evolution of the amplitude of the electric field. Spatial resolution
increases from top to bottom [28].

values of the mesh size. In the figure only the nonlinear part of the evolution
is plotted, namely after the damping has stopped.

Valentini at al [31] faced Landau damping problem from a different point
of view: they studied the Lagrangian trajectories of resonant test-particles
in a self-consistent way. Their analysis is based on the integration of the
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Figure 1.8: Spatial Fourier component of the electric field Ek versus t, for
different resolution in the phase space. Resolution increases from top to
bottom [29].

equation of motion ẋ = v and v̇ = −eE(x, t)/m in the phase space, where
E is the self-consistent field, calculated by solving numerically the Vlasov-
Poisson system. In this way, two kinds of motion have been observed. There
are particles that are always trapped in the potential well of the field. They
exhibits an oscillatory movement of the order of the wave length, and at every
change in the velocity sign they interact with the wave (see top of Fig. 1.9).

The second type of trajectories are relative to particles that are initially
trapped, but, as time goes on, they perform long flights in the phase space (a
flight is defined as the portion of trajectory between two changes of sign of
the velocity in the wave frame) before being retrapped (bottom of Fig. 1.9).
The length of these flights is larger than 6-7 wavelengths. In phase space two
regions are observed (see Fig. 1.10). One in which the behaviour of particles
remain nonergodic and one in which the trajectories diffuse, displaying a
chaotic behaviour. This result is affirmed also by the evaluation of Lyapunov
exponents, which have a maximum in the zone of the separatrix.

A consequence of these facts is that the pure ballistic motion assumed for
detrapped particles in Isichenko’s view [24] is ruled out, since, in his investi-
gation, the possibility of Lagrangian chaos and subsequent diffusion-induced
retrapping is not considered. On the contrary, the set of self-consistent La-
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Figure 1.9: Trajectories in the wave reference frame of a trapped particle
(top) and one at the edge of the resonant region (bottom) [31].

Figure 1.10: Poincaré section in phase space. The continuous line is the
separatrix corresponding to the maximum and minimum values of the electric
field envelope [31].
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grangian equations which describes the motion of the particles is in general
nonintegrable, and displays a chaotic behaviour in the region around the
separatrix.

A different approach is the one by Firpo et al. [33]. In this work the atten-
tion is focused on the localization of chaos in phase space, and the framework
of dynamical systems is used. The dynamics of N identical quasiresonant par-
ticles moving on the interval of length L with periodic boundary conditions,
with unit mass and charge, and, respectively position xr and momentum pr,
interacting with M waves with wave numbers kk = 2πj/L, derives from the
Hamiltonian:

H =
N

∑

l=1

p2
l

2
+

M
∑

j=1

ω0jIj − N−1/2

N
∑

l=1

M
∑

j=1

√

2ηIj × cos(kjxl − θj)

where (Ij, θj) are the action-angles variables and the small parameter η de-
notes the ratio of the tail density over the bulk plasma density.
This system is studied in the reduced case in which two particles interact
with only one wave. In this case the Hamiltonian in the reference frame of
the wave can be written as:

H(p, q) =
p2

1

2
+

p2
2

2
−√

η(P̄ − p1 − p2)
1/2(cos q1 + cos q2). (1.48)

The wave-particle self-consistency manifests itself through a coupling po-
tential whose strength depends, in a mean field way, on all particle veloc-
ities. The self-consistent interaction of two particles and one wave is the
simplest non-integrable situation for the model. Nevertheless, by remem-
bering that η is a small parameter, the system is close to integrability:
H0(p1, p2) = p2

1/2+p2
2/2 is the energy of unperturbed state and the reduction

to one-and-a-half degrees of freedom is used.
This study, as the previous one, shows that the regions of strongest chaos

develop at the borders to the velocity domain swept by the wave resonance.

1.7 Laboratory experiments

As mentioned in section 1.2, for a lot of time people had doubts on the reality
of Landau damping phenomenon. The experiment of Malmberg and Whar-
ton brought clarity on the matter. A more recent experimental analysis is
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the one by Danielson et al. [34], where waves are excited in a pure electron
plasma column. Linear Landau damping and nonlinear wave-particle trap-
ping oscillations are observed with standing plasma waves. For low wave
amplitudes, the mode is seen to decay exponentially, (see Fig. 1.11), and
the measured linear damping rate agrees quantitatively with linear Landau
damping theory. In some case the wave is damped down to thermally excited
levels. At larger amplitudes, as the exciting potential Vexc is increased, the
overall mode decay rate is diminished and oscillations in the amplitude de-
velop, with a frequency that increases as Vexc increases. Then a steady state
is approached, as predicted by O’Neil.

Figure 1.11: Detected amplitude versus time after ten cycle bursts for differ-
ent exciting potentials Vexc [34].



Chapter 2

Dynamical systems

2.1 Introduction: dynamical systems

We have seen in the previous chapter how Landau damping had been in-
vestigated analytically in early times, and more recently by mean of kinetic
simulations. In the last years the framework of dynamical systems has been
successfully employed, especially for investigating chaos in the region where
particles are resonant with the wave.

Dynamical systems became quite fashionable after the pioneering review
of May [35], who demonstrated their usefulness in many applications. There
are two main types of dynamical systems:

1. System of differential equations of the form:

ẋ = f(x,t) (2.1)

where x = (x1, x2, . . . , xN) is a N -dimensional vector, and the dot
denotes derivative with respect to continuous time t.

2. Maps (or mapping) of the form:

xn+1 = f(xn) (2.2)

where xn is a vector of N -dimensions xn = (xn1, xn2, . . . , xnN), and
f is a set of N functions (f1, f2, . . . , fN). Maps can be considered as
describing the time evolution of a vector x at a discrete time t = n
(integer).
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The similarity between maps and systems of differential equations allows
the use of very simple maps to illustrate the properties of generic dynamical
systems that are described by differential equations, since the calculation of
maps is much simpler and faster than the solution of differential equations.
For this reason maps have been used extensively in the last decades, especially
in order to understand chaos.

The study of dynamical systems is by no means complete, nevertheless
in the last 20 years the threads of chaos and nonlinear dynamics have spread
across many scientific disciplines.

Dynamical systems display some features which differentiate them and
according to which they are studied. The usual classification includes inte-
grable systems, ergodic systems, mixing systems, Kolmogorov and Anosov
systems.

There’s a certain number of dynamical systems that are rather popular
and are widely investigated. As a example we mention the Lorentz system,
the logistic map, the double pendulum, the tent map, the Henon and baker’s
maps.

In this context we will not go into more depth in the study of dynamical
systems in general, but rather we will focus our attention on some systems
that are particularly interesting for our purposes.

2.2 The standard map

We consider now the situation of a charged particle moving in an electrostatic
field due to collective oscillations of a plasma, as the Langmuir oscillations of
Landau damping. We will show that this situation is fit to be representable
with a map.

Let’s assume an electrostatic wave field given by E(x, t) = Ex(x, t)x0,
with:

Ex(x, t) =
∑

κ,ω

Ek,ω exp(iκx − iωt). (2.3)

In the special case where there is only one wavenumber, κ = ±k0, the
frequencies ω form a discrete set ω = 2πn/T (where T is the fundamental
period and n = . . . ,−2,−1, 0, 1, 2, . . .), and the amplitudes Eκ,ω are real and
independent of ω and κ, Eκ,ω = E0/2, the above expression for Ex reduces
to:
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Ex(x, t) = E0 cos(k0x)
∑

n

exp(2πint/T )

= E0 cos(k0x)
∑

m

δ(t − mT )
(2.4)

where δ(. . .) denotes the Dirac function. With this expression for the electric
field the Hamiltonian of the system composed by wave plus particle is:

H(x, p, t) =
p2

2m
− eE0

k0

sin(k0x)
∑

m

δ(t − mT ) (2.5)

(e is the elementary charge). The times mT indicate the instant in which the
particle “collides” with the wave. If we take m = 1, k0x = θ and eE0/k0 = K,
the resulting equations of motion are:

dp

dt
= K cos θ

∑

m

δ(t − mT ) (2.6)

dθ

dt
=

p

m
(2.7)

From Eq. (2.6) we see that pθ is constant between the kicks but changes
discontinuously at each kick. In order to obtain the equations of motion in
form of a map of the type in Eq. (2.1), let’s call pn and θn the values of pθ

and θ at times t = nτ + 0+, where 0+ denotes a positive infinitesimal. By
integrating Eq. (2.6) through the δ function from t = nτ to t = (n + 1)τ , we
get:

pn+1 − pn = K cos(θn+1) (2.8)

and from Eq. (2.7):

θn+1 − θn = pnτ/m (2.9)
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Without loss of generality we can take τ/m = 1, to obtain the map:

pn+1 = pn + K cos(θn+1) (2.10)

θn+1 = θn + pn (2.11)

in which we considered τ = 1. This kind of map is known in literature as the
standard (or Chirikov-Taylor) map [36]. It is an area-preserving chaotic map
from a square with side 2π into itself. Its name is due to the fact that it has
become widely used. In the general case, this map describes the motion of the
simple mechanical system called the kicked rotor. This is formed by a bar of
moment of inertia I and length l, which is fastened at one end to a frictionless
pivot. The other end is subjected to a periodic force of impulsive strength
K/l applied at times t = 0, τ, 2τ, . . .. There is no gravity. Using canonically
conjugate variables pθ (the angular momentum) and θ (the angular position
of the rotor), we have the Hamiltonian for this system:

H(θ, pθ, t) =
p2

θ

2I
+ K cos θ

∑

n

δ(t − nτ). (2.12)

With the method described above, and after some simplification, we re-
cover the equation of the map.

Let’s now briefly examine the behaviour of the particle by studying the
map. By picking a set of initial condition for (θ0, p0) one can draw the orbit

in the phase space, the path followed by the system as it evolves with time.
Setting the potential strength to zero, K = 0, the standard map becomes:

θn+1 = (θn + pn) mod 2π (2.13)

pn+1 = pn mod 2π (2.14)

In this case trajectories are just the lines of constant p (Fig. 2.1). This is
true whatever the initial condition. We are reproducing now the case of the
free particle. On each line the orbit is given by θn = (θ0 +np) modulo 2π and
if p0/2π is an irrational number, a single orbit densely fills the line p = p0.
If p0/2π is a rational number, then orbits on the line return to themselves
after a finite number of iterates. Increasing K slightly from zero (these cases
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are represented from Fig. 2.2 to Fig. 2.4) introduces small perturbation to
the orbit, the velocity of the particle is no more constant since now there
is an electric field. In this case, particles differentiate according to the ini-
tial condition. If this is on an invariant torus the trajectory traces out the
closed curve corresponding to the torus, i.e. the particle is trapped. If the
initial condition yields a chaotic orbit, then it will wander throughout an
area densely filling that area.
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Figure 2.1: Plots of (θ, p) modulo 2π for the map in Eq. (2.11) for K = 0.

Figure 2.2: Plots of (θ, p) modulo 2π for the map in Eq. (2.11) for K = 0.5.
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Figure 2.3: Plots of (θ, p) modulo 2π for the map in Eq. (2.11) for K = 2.5.

Figure 2.4: Plots of (θ, p) modulo 2π for the map in Eq. (2.11) for K = 8.
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2.3 The Fermi accelerator model

Another model that deals with the acceleration of particles is the Fermi ac-
celerator model. It belongs to a particular type of dynamical system called
billiards. They appear as natural models in many problems of optics, acous-
tics and classical mechanics. Billiards are Hamiltonian models that make
use of perfectly elastic collisions of an object with either boundary walls or
with other objects. If the confining region is rectangular or circular, then
it turns out that all the orbits are periodic or quasi-periodic. However, if
the boundary is shaped like a stadium (Fig. 2.5), with straight side walls
and semi-circular ends, or if a round obstacle is placed inside a rectangular
boundary (Sinai billiard, Fig. 2.6), then the motion can be chaotic, at least
for some trajectories.

In 1949 Fermi [37] proposed an acceleration mechanism of cosmic ray par-
ticles interacting with a time dependent magnetic fields. It was designed to
answer to the fundamental question if a particle, in a classical system that
gives/takes energy to it, can have unlimited gain of energy. Since its first ap-
pearance, different versions of the problem (simplifications, gravity, external
fields, dissipation, quantum and relativistic effects) have been the subjects
of extensive theoretical and experimental studies, as they are simple to con-
ceive but hard to understand in that their behaviour is quite complex (see
e.g. Ref. [38] and references therein). One of these versions is the well known
Fermi-Ulam model (FUM) [39]. The FUM consists of a particle confined
between two rigid walls, one of them is fixed and the other is moving peri-
odically in time (a representation of this situation is given in Fig. 2.7). The
particle collides elastically with the walls and moves freely between impacts.

To be definite consider a particle of mass m and two parallel walls, one
of them is fixed at the origin (X = 0) and the other is moving periodically
in time. The position of oscillating wall is given by

Figure 2.5: The Bunimovich stadium: it was designed to show that the orbits
beyond the focusing point of a concave region exhibit exponential divergence.
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Figure 2.6: The Sinai billiard: its result is that a gas of two hard balls is
strongly ergodic.

XW (t′) = X0 + ǫ′ cos(ωt′ + φ0) (2.15)

where X0 is the equilibrium position, ǫ′ is the amplitude of oscillation, t′ is
the time, ω is a frequency and φ0 is the initial phase.

We now construct the map. Consider the situation just after a collision
with the moving wall. In order to define the instant of the next collision with
this wall, it is useful to distinguish between two different cases:

1. The particle undergoes a collision with the fixed wall before hitting the
oscillating wall again.

2. The particle has successive impacts with the moving wall.

In the first case, the particle leaves the moving wall at time t0 = 0 from

Figure 2.7: Cartoon of the Fermi-Ulam model.



38 Dynamical systems

the point x(0) = xW (0) = 1 + ǫ cos φ0 with velocity v0 = −v0i (we have
chosen v0 to be positive in the direction of the inner normal of the oscillating
wall). It hits the fixed wall, rebounds with velocity vb = v0i and then hits
again the oscillating wall at time t1 given (implicitly) by:

v0t1 − (1 + ǫ cos φ0) = 1 + ǫ cos(t1 + φ0). (2.16)

The velocity v1 = −v1i of the particle after the new impact with the
oscillating wall can be easily found, performing the calculations in a ref-
erential frame in which the wall is instantaneously at rest. In this frame
the velocity of the particle just before the collision is v′

b = vb − vW (t1),
where vW = −ǫ sin(t1 + φ0)i is the moving wall velocity. After the colli-
sion we have that v′

a = −v′
b. Since va = −v′

b + vW (t1) we obtain that
v1 = 2vW (t1)− vb = −[2ǫ sin(t1 + φ0) + v0]i . In the second case, the time t1
for the second collision with the oscillating wall is determined by:

1 + ǫ cos φ0 − v0t1 = 1 + ǫ cos(t1 + φ0) (2.17)

and the velocity after the impact is given by v1 = 2vW (t1) + v0i. Note that
Eqs. (2.16) and (2.17) can have more than one solution and that t1 is given
by the smallest positive solution. The map that describes the system can be
written as

vn+1 = ±vn + 2ǫ sin φn+1 (2.18)

φn+1 = φn + tn+1 mod 2π (2.19)

where ∆tn+1 = tn+1 − tn is given by the smallest positive solution of

vn∆tn+1 − (1 + ǫ cos φn) = ±(1 + ǫ cos(∆tn+1 + φn)). (2.20)

The plus sign in equations above corresponds to case 1 and the minus
sign to case 2. Note that Eq. (2.20) should be solved numerically.
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A standard simplification widely used in literature is the Simplified Fermi
Ulam model [40] (SFUM), in which the oscillating wall keeps a fixed posi-
tion xW = 1 but, when the particle suffers a collision with it, the particles
exchanges momentum and energy as if the wall were moving. This simplifi-
cation carries the huge advantage of speeding up numerical time-consuming
simulations. The map for the simplified model can be written as:

vn+1 = |vn − 2ǫ sin(φn+1)| (2.21)

φn+1 = φn + 2/vn mod 2π (2.22)

The modulus in the equation of the velocity was introduced artificially in
order to prevent the particle leaving the region between the walls.

Maps of the kind described so far may outline, to some extent, the move-
ment of a particle in a field. Anyway, even though collisions with the wave
are present, with the term δ(t − mT ) in Eq. (2.5) for the standard map and
the collision with the wall in the Fermi model, and the particle changes its
velocity as stated by the equations of motions, there is no feedback on the
wave itself: the forcing term is always the same. Moreover the maps are
written for a single particle at a time. For these reasons these maps may
only represent a starting point for a more complex model, that takes into
account the behaviour of the particles as well as the evolution of the wave.

The map we are going to introduce and study in the continuation of
this work has been formulated on the basis of the simplified Fermi model
described above.

2.4 The Simplified Fermi Ulam model: a first

generalization

A first generalization of the SFUM can be made by thinking walls with
length that changes in time with a given law. So let’s consider the following
situation, illustrated in Fig. 2.8. The billiard is composed by two vertical
rigid walls set at a certain distance L, fixed once and for all. In a Cartesian
frame of reference, without loss of generality, walls are placed at x = −1 and
x = 1, so that L = 2. They have infinite mass. The walls length A(t) changes
in time. To be definite, with reference to the picture in Fig. 2.8, points A
and B are fixed, but point C and D change their position according to the
law:
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Figure 2.8: Cartoon of the billiard used for the map.

A(t) = A0| cos(ωt)|. (2.23)

A particle moves between the walls and suffers elastic collisions with them.
The particle is identified by its random initial position x0 and by a constant
velocity u, which may only change sign. We assume that the y coordinate is
equal to the square velocity:

y = u2. (2.24)

The velocity u of the particle, the amplitude A0, and the frequency ω are
assigned quantities. When a particle arrives to a barrier, since the altitude
of the upper end of the wall changes in time, the particle can undergo to two
different situations:

• yn > A0| cos(ωtn)|;

• yn ≤ A0| cos(ωtn)|;

where with tn we indicate the time t at which the n-th collision happens. In
the first case the particle overtakes the barrier and, if we consider the system
as made by periodic boxes, it enters, with velocity unchanged, the next box.
In the second case the particle simply reflects back.

We want to check the frequency of collisions of the particle with walls
with the variation of u and ω. Obviously we expect to find a correlation
between the altitude of the particle and the possibility of escape from the
trap. The upper part of Fig. 2.9 reports the sign of the velocity as a function
of the number of iterations for a particle with speed u = 0.94 (y = 0.88),
and for four different value of the frequency ω. If we call Ω = 2πu/L the
period of oscillation of a particle in the trap, we see that the dynamics is
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different according to the ratio r = ω/Ω. If r ≪ 1 or r ≫ 1, intermittency
can be noted: the particle switches between two states characterized by long
flights with the same sign of the speed, interrupted by brief intervals of fast
inversions. In the case r ≈ 1 particle and walls are in a kind of resonance,
and the particle gets to the barrier when this has more or less always the
same altitude. In Fig. 2.9 on the bottom, the particle has velocity u = 0.6
(y = 0.36) and the situation is very different. Since this particle lies lower
then the previous one, the probability to get trapped is greater. This is
shown in the frequent inversion in the sign of the velocity. No more long
flights are observed and also the frequency of oscillation of the walls makes
no important differences.

Differently, we can choose the frequency of oscillation ω as fixed and
perform the test with particles with different velocities. In this case we have
the situation sketched on Fig. 2.10. As we can see from the figure, as velocity
increases, the flights of the particle become longer.

2.5 Conclusions

This model describes in a very simplistic way, the interaction between a
particle and a wave which oscillates with frequency ω, the process being
schematized as a sequence of collisions. We have seen that the behaviour of
the particle is not trivial. It can perform more or less long flights, during
which the velocity does not change sign. The spatial extent of these flights
varies according to the ratio between the bounce frequency Ω and the os-
cillation frequency ω. In the situation in which these two frequencies are
comparable, a little perturbation could induce a chaotic behaviour of the
particle. These considerations could be very interesting from the point of
view of the theory of dynamical systems. However they go beyond the scope
of the present work.

In the next chapter we will deal with the discussion of the selfconsistent
model.
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Figure 2.9: Changes in the velocity sign for two particles with velocity
u = 0.94 (top) and u = 0.6 (bottom) and different pulsations indicated in
figure.
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Figure 2.10: Changes in the velocity sign for four different particles trapped
in a time dependent square potential well. Particle velocities are reported on
figure.
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Chapter 3

The modified Fermi model

3.1 Introduction

In the previous chapter we briefly discussed a modification of the Simplified
Fermi Ulam model, in the sense that the length of the walls were considered
as oscillating with a frequency that can be chosen equal to, for example, that
resulting from analytical or numerical calculations. However, such a model,
still doesn’t present any feedback on the wave. Moreover it considers only
a single particle. In order to depict the time evolution of the wave as well
as collective phenomena involving all the particles we introduce a further
generalization of the SFUM. As the latter is a system composed by only one
particle, our modified Fermi model [41] regards many particles and considers
changes in the term representing the potential. The model schematizes the
basic mechanism of Landau damping, that is, the exchange of energy between
wave and particles, by mean of a system in which a certain number of test-
particles, with a defined kinetic energy, moves between two walls, whose
length is proportional to the amplitude of the wave. The exchange of energy
between particles and walls will modify the length of the walls themselves.
Following this dynamics we are able to recover all the phenomenology of
Landau damping.

3.2 The poor man’s Landau damping model

The billiard that we are going to study is still that shown in Fig. 2.8. As
the one described in sec. 2.4, it is composed by two vertical, rigid, infinitely
heavy walls, placed at x = ±1 so that the distance between them is L = 2.
The length of the walls A(t), i.e. the length of the segment AD and BC
in the picture, represents the amplitude of the wave (we will refer to it as



46 The modified Fermi model

the “amplitude” in the following). At variance with the model previously
described, it does not vary with a predefined law, but rather it can change
according to the dynamical state of the particle that, from time to time, hits
the wall. At every instant of time we identify the energy of the wave EW as
proportional to the squared amplitudes of the barriers:

EW (t) = [A(t)]2. (3.1)

Between the walls N particles are placed. These particles move back and
forth in the x-direction. Each particle is identified by an initial position xj(0)
in the range [−1 : 1] and a velocity vj (j = 1, 2, . . . , N). The whole system
travels horizontally with constant speed vp with respect to an inertial frame of
reference, so that the quantities vj are to be referred to the frame of reference
of the barriers. We can identify the quantity vp as the wave phase velocity.
As before, we assume that the position yj is given by the squared velocity,
yj = v2

j . In the frame of reference of the barriers, each elastic collision of a
particle with a wall will reverse the direction of motion of the particle, so we
have:

va = −vb (3.2)

(vb and va are the speeds before and after the collision). In the reference
frame at rest, where the system has velocity vp we have:

vbR = vb + vp (3.3)

vaR = va + vp (3.4)

where the he subscript R indicates the quantities measured in the rest frame.
By substituting Eq. (3.2) in Eq. (3.4) we have:

vaR = −vb + vp. (3.5)

We define the amount of energy gained or lost by the particle in collision
as:
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∆E = v2
aR − v2

bR = (−vb + vp)
2 − (vb + vp)

2 = −4vbvp. (3.6)

For the conservation of energy, ∆E is assigned (with opposite sign) to the
energy, and thus to the amplitude, of the barriers. However, since our aim
is to simulate the interaction of a gas of particles with a wave, the quantity
∆E has to be referred to all particles. In other words, we require that the
energy exchanged by a single particle in collision is proportional to 1/N , so
that the energy exchanged by a single particle is:

∆E =
4vvp

N
(3.7)

and the amplitude, at the time t′ after a collision is

A(t′) = [E(t) + σ(t)|∆E|]1/2 (3.8)

where σ(t) = vvp/|vvp| and t is a time before the collision. According to the
phenomenology of Landau damping, the increase or decrease of the amplitude
at a given time, depends on the relative sign σ(t) between v and vp. Particles
with velocity lower than vp (vj < 0 in the frame of the barriers) cause a
decreasing of the amplitude of the barriers (∆E is negative), and this is
equivalent, in our rough approximation of Landau damping, to taking energy
from the wave. On the contrary, particles with velocity greater than vp

(vj > 0) raise the barriers, thus giving energy to the wave.

3.3 Map and numerical algorithm

We derive now the dynamical map that describes the system.
The velocities vj (j = 1, 2, . . . , N) of the particles are constant in modulus,

consequently the positions xj(t) are easy to calculate:

xj(t) = xj(t0) + vj(t − t0) (3.9)

where t0 is the initial time. It is possible to write a recurrence relation with
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non constant time steps, identified by the index n. For each particle we
consider the time interval ∆t

(n)
j it requires to reach the wall towards which

it is directed, at the step n. We select the minimum of this intervals, say
that of the k-th particle. This means that after a time ∆t

(n)
k = minj{∆t

(n)
j }

the k-th particle will reach the barrier (formally identified by the sign σ
(n)
k of

the velocity of that particle, i.e. xk(t + ∆t
(n)
k ) = σ

(n)
k ). Since the amplitude

of the walls can vary in time, two different situations may occur, namely the
height of the particle can be either below (y

(n)
k < An) or above (y

(n)
k > An)

the current amplitude of the barriers. In the first case a collision will take
place, so:

1. the position of the k-th particle is advanced to the position of the
barrier;

2. the motion of the particle is reversed;

3. the amplitude of the barriers is changed accordingly.

The discrete dynamics of the collision can be written as:

x
(n+1)
k = σ

(n)
k

σ
(n+1)
k = −σ

(n)
k

An+1 =

√

A2
n + ∆E

(n)
k

(3.10)

where ∆E
(n)
k = σ

(n)
k (4|vk|vp/N) is the normalized energy exchanged during

a single collision. A picture of a collision with σ > 0 is reported in Fig. 3.1,
whereas Fig. 3.2 represents the case of collision of a particle with σ < 0.

Figure 3.1: The modified Fermi model: representation of the dynamics in
case of a collision of a particle with positive velocity (faster than the walls in
the frame at rest). After the collision the length of the barriers increases.
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Figure 3.2: The modified Fermi model: representation of the dynamics in
case of a collision of a particle with negative velocity (slower than the walls
in the frame at rest). After the collision the length of the barriers decreases.

In the second case, namely if the height of the particle is above the oscil-
lating extremities of the walls, the particle undisturbed continues its flight,
thus:

1. the particle goes out from the box. But, since periodic boundary condi-
tions are imposed on the numerical domain, this is equivalent to enter
the same box from the opposite wall (in Fig. 3.3 a picture of this sit-
uation is given). In other words, the particle is placed at the position
of the opposite barrier. It is worth noting that this solution preserves
the number of particles;

2. the sign of the velocity of the particle remains unchanged;

3. the amplitude of the barriers remains unchanged.

The map in the case in which no collision takes place is:

Figure 3.3: The modified Fermi model: representation of the dynamics in
case of no collision. The particles enter the next box and the amplitude does
not change.
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x
(n+1)
k = −σ

(n)
k

σ
(n+1)
k = σ

(n)
k

An+1 = An.

(3.11)

As a final step, in either cases, the positions of the remaining N − 1
particles are advanced, viz:

x
(n+1)
j = x

(n)
j + vj∆t

(n)
k (j 6= k). (3.12)

3.4 Monte Carlo simulations

The map shown in the previous section is used to carry out numerical simula-
tions. A particular attention has to be devoted to the distribution of particle
velocities. Since Landau damping just depends on how the particles are dis-
tributed in velocity space, we have to chose an apt initial distribution function
for the v’s. We have seen that the driving process for Landau damping is
the interaction of the electrostatic waves in the plasma with the particles at
nearly resonant velocities. The non-resonant particles (the “bulk” as they
are often called) participate with the dynamics via the small subset of col-
lective Langmuir modes. We need to count in the model only the resonant
region. This can be achieved by considering a Maxwellian distribution func-
tion with 0 mean and width vth = 1, and take into account only the particles
in an interval of size 2∆ around vp, where the curve can be linearized. Then,
in order to handle appropriate variables for a dynamical model we consider
∆ = 1. We refer to this new “normalized” velocities with uj.

For each run, the free parameters have to be chosen. We have seen that
the particles are scattered in the box with random x in [−1 : 1] and y = u2.
Limits on velocity are found by imposing that, almost initially, no particle
lies above the barriers (note that this condition is not necessary, since, as it
can be inferred from the continuation, a particle that lies above the initial
length of the walls will never interact with them). If the initial amplitude of
the walls is A0, velocities are distributed in the interval [−

√
A0 :

√
A0], with

a distribution function of the form:

f(u) = a − bu, b =
up

2π
exp (−u2

p/2) (3.13)
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where b is proportional to the derivative of a Maxwellian, and a given by
the normalization conditions. Given the free parameters of the problem,
namely the initial amplitude of the walls A0 and the “phase velocity” up,
the behaviour of the amplitude as a function of the step n can be obtained.
Clearly, since each step n is determined by the instant of time in which a
particle hits the barrier, this describes the time behaviour of our system.

The typical simulation is accomplished with N = 105 particles. This
number seems to represent the right middle-way between good statistics and
acceptable computational times. 1

Fig. 3.4 reports the time evolution of the amplitude for A0 = 1 and two
values of up, namely up = 1.4 and up = 1.8, while Fig. 3.5 shows the evolution
of the amplitude for N = 800000 and N = 150000 particles. As it can be
seen in the latter picture, there are no important differences between the
two graphs, despite the number of particles being very different. Clearly,
computational times in the second case are shorter.

Looking at the plots, although some parameters are varied, some common
characteristics can be noticed. For short times the amplitude of the barriers
rapidly decreases from its initial value A0 to a minimum value Amin. We
refer to this stage as the linear stage.

Figure 3.4: The behaviour of the amplitude of the wall in function of time
for N = 105, initial amplitude A0 = 1 and for up = 1.4 and up = 1.8.

1For a typical simulation with N = 105 particles and up to t = 200, on a computer with
processor AMD Athlon(tm) 64 3200+, at 2.2 GHz and 1 Gb of memory, the computational
time is less than one hour.



52 The modified Fermi model

Later, in the nonlinear stage, the wave oscillates in a regular way around
a constant saturation value of the amplitude, that we will indicate as Asat. In
the end, for long times, oscillations around Asat change, becoming irregular
and characterized by a lower amplitude. This is the asymptotical stage. We
analyse now in detail these three stages.
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Figure 3.5: The behaviour of the amplitude of the walls in function of time
for N = 800000 and N = 150000 particles, and for A0 = 1 and up = 1.



3.5 Time behaviour of the wave 53

3.5 Time behaviour of the wave

3.5.1 Linear stage

In Fig. 3.4, we see that for t . 2 the amplitude of the barriers rapidly
decreases from its initial value A0 to a minimum value Amin. A temporal
window of the signal of Fig. 3.4 which highlight this stage is reported in
Fig. 3.6. In this regime, the trapping phenomenon is not yet at work, and
the bulk of particles has a single collision. We can say that this stage is the
Landau (or linear) scenario.

An exponential function of the type A0 exp(−γexpt) fits the data in the
time range 0 < t < 2, where γexp means that the rate derives from the
experimental data set for each value of up. This rate can be compared to the
theoretical one. An expression for the theoretical damping rate γth expected
from our model, can be inferred by conjecturing that the time variation of
energy is proportional to the energy exchanged in a single collision divided
by a typical bounce time ∆t = L/|u| and then integrated over the whole of
the particles:

dEw

dt
=

∫

√
A0

−
√

A0

∆E

∆t
f(u)du

=

∫

√
A0

−
√

A0

4uup

L/|u|f(u)du

=

∫

√
A0

−
√

A0

4upu|u|f(u)du

(3.14)
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Figure 3.6: Time evolution of the amplitude for 0 < t < 2 in log-linear scale,
for the case A0 = 1, and the value of up = 1.4 and up = 1.8.
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By substituting Eq. (3.13) we immediately get:

dEw

dt
= −γthEw (3.15)

where the theoretical damping rate is:

γth(up) =
γ0√
2π

u2
p exp(−u2

p/2) (3.16)

(γ0 is a proportionality constant). The above expression is proportional to
the usual Landau damping rate of the linear theory [1] of Eq. 1.7. Fig. 3.7
shows the values of γexp, as a function of up, calculated through the fit of the
curves A(t) obtained for different up, in the range t ≤ 2. Superimposed we
report the curve (3.16) where γ0 ≃ 0.5±0.0001 represents the best-fit on the
data.

As regarding the behaviour of the damping rate with respect to different
initial amplitudes, keeping up fixed, it has been verified that there are no
important changes in γexp in this case.

It is worth noting that in deriving our model we haven’t explicitly required
to it to describe neither the linear non the nonlinear Landau damping. The
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Figure 3.7: Different values of the damping rate γexp, calculated by numerical
simulations with N = 105 and A0 = 1 (black symbols), are plotted as a
function of up. The curve represents the function of Eq. (3.16) with γ0 = 0.5.
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nice agreement of Fig. 3.7 is then a surprise. This means that our model
is able to capture the basic physics of the non collisional damping. We are
confident that also the long-time evolution of our system will describe at best
the nonlinear Landau damping

3.5.2 Bifurcation value

Analytical and numerical works [26, 42] establish the existence of a critical
initial amplitude that marks the transition between a state in which the field
evolves to a nonzero time-asymptotic state from one in which the wave Lan-
dau damps to zero. A bifurcation between these two stages is experimentally
found in our model. For every phase velocity up there exists a threshold
value of A0 above which the damping is stopped. This is due to a bifurca-
tion between two states, namely Asat = 0 for A0 ≤ A

(thr)
0 and Asat 6= 0 for

A0 > A
(thr)
0 . Fig. 3.8 shows the curve that separates the two regions, in the

plane (A0, up), obtained through some integrations of the model. If the initial
parameters A0 and up of a simulation are situated above the curve, after the
initial damping to the minimum value Amin, the amplitude oscillates in the
way we have seen above, while in the opposite case the dominant process is
the damping of the wave.

However it must be said that the curve that represents the transitions
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Figure 3.8: The curve, in the plane (A0, up), that separates the region where
the wave is completely damped, say Asat = 0, from that where Asat 6= 0.
The curve has been built through some different simulations (black points)
at fixed up and A0.
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between Landau and O’Neil scenario is to be taken with care, because of the
finite number of digits in numerical simulations, so it has only an indicative
value. In Fig. 3.9, as a matter of example, we report a case in which a
complete dissipation of the wave takes place.
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Figure 3.9: The time evolution of a wave with initial amplitude A0 = 0.14
and up = 1.3 which Landau damps to zero (solid red line) and the best fit
given by A(t) = 0.14 exp (−0.13t) (dashed green line).

3.5.3 Long-time behaviour: nonlinear stage

As the initial amplitude departs from its threshold value the behaviour of the
wave become more and more regular, displaying high-amplitude oscillations
(represented in detail in Fig. 3.10), observed also in numerical simulations of
the Vlasov-Poisson system [28, 29, 31]. This represents the starting point of
the nonlinear stage of Landau damping.

In this stage the trapping effects described in ch. 1 come into play. The
bulk of particles begin to experience both tail-on collisions and head-on col-
lisions, i.e. energy can be either gained or lost, thus stopping the linear
damping. The saturation value Asat around which the amplitude oscillates
depends on the parameters of the model. In Fig. 3.11 the saturation value
as a function of up and for a fixed initial amplitude is reported. It is easy to
notice that the saturation value has its minimum for up = 1.4, i.e. where the
maximum damping rate is found.

Let’s now check what is the behaviour of the wave when the initial ampli-
tude is varied. Fig. 3.12 shows the time evolution of the amplitude for four
different values of the initial amplitude A0.
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Figure 3.10: Particular of the oscillating part of the wave.

As it can be easily seen, the qualitative features of this evolution are
similar for the cases taken into account. However, apart from the saturation
level, that is increasing with increasing A0, they differ in time scale, with
lower amplitude having slower oscillations.

According to O’Neil [23], the period of oscillations τ should depend upon

the amplitude of the wave as τ ≈ A
−1/2
0 . However O’Neil treated the am-

plitude of the wave as if it were almost constant. Ivanov et al. [42], with
numerical simulations of Vlasov-Poisson system, found a scaling relation be-
tween the period of oscillations and the saturation level of the form:

τ ∝ A−µ
sat (3.17)
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Figure 3.11: The saturation amplitude as a function of the wave phase speed
and for A0 = 1.
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Figure 3.12: Time evolution of the amplitude A(t) for up = 1.4 and for
A0 = 1.4, A0 = 1.1, A0 = 0.8 and A0 = 0.6.

with µ = 0.52 ± 0.02. The previous relation is verified also our model.
Even so, since the saturation amplitude varies with up, we found a little
dependence of the exponent µ on this parameter. In the case up = 1.0 we find
µ = −0.530 ± 0.006, for up = 1.4 and up = 1.8 we have µ ≈ −0.55± 0.01. In
Fig. 3.13 we report the values of τ as a function of Asat for the cases indicated
above, whereas Fig. 3.14 shows in a clearer way, the case up = 1.0 with the
curve representing the best fit on the data. The value of the oscillation period
τ has been obtained by considering mean and standard deviation of the data
set of the measured peak-to-peak distances in the wave, until a cut-off time
t = 70.

But we can say more about the saturation amplitude, the oscillation
period and the way they vary with the phase velocity. In the first chapter we
have seen that the saturation value should be of order of (τtrγL) lower that
the initial value. A check that can performed is then to evaluate the function
Γ given by:

Γ =
A0 − Asat

A0τtr

(3.18)

for a fixed value of up and for different initial amplitudes, and consequently,
different saturation amplitudes and oscillation times. The function Γ should
be proportional to γexp(up). Since we have seen that the damping rate γ(up)
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Figure 3.13: Oscillation time τ of the wave as a function of the saturation
amplitude Asat for the cases up = 1.0, up = 1.4 and up = 1.8.
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Figure 3.14: Oscillation time τ of the wave as a function of the saturation
amplitude Asat for up = 1.0. The dashed curve is the function τ = 4.18∗A0.53

sat .

depends on up but it does not vary with the initial amplitude A0, for a fixed
value of up, the function Γ should be approximately constant. Fig. 3.15
reports the value of Γ as a function of A0 for three different value of up,
i.e. up = 1.0, up = 1.4 and up = 1.8. We observe that the value of Γ is
constant with A0. Not a great difference exists between the three values of
Γ, but the proportionality between them and the values of γexp (see Fig. 3.7)
is preserved.
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C = 0.036 for up = 1.0, C = 0.047 for up = 1.4 and C = 0.037 for up = 1.8.
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3.5.4 Asymptotical behaviour

Beyond the oscillatory regime a new behaviour is observed, namely oscilla-
tions of A(t) around Asat become rather irregular and with a lower amplitude
(detail in Fig. 3.16). The time at which this new stage starts depends on
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Figure 3.16: Particular of the asymptotic part of the wave.

the parameter up, namely the higher up the sooner this steady state appears.
High up means an initial distribution function with a minor slope. This facet
will be discussed in more detail in the next chapter.

Discrete-particle effects in the nonlinear evolution of wave-particle inter-
action have been investigated in the past, but the long-time behaviour, that
resembles the O’Neil scenario [23] for the nonlinear Landau damping, where
the oscillations in the electric envelope disappear in the long time limit, has
never been obtained in numerical simulations, even if oscillations with de-
creasing amplitude have been observed [28, 31, 42].

We have seen that our simple Fermi-like model reproduces in a rather
satisfying way the phenomenology of Landau damping. Therefore, it is pos-
sible to use it in order to delve into the question of Landau damping. In the
next chapter we will discuss how the three stages derive from the collective
dynamics of the particles and we will investigate some statistical features of
the long-time behaviour of our model.
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Chapter 4

Statistical features of

wave-particle interaction

derived from the modified

Fermi model

4.1 Introduction

In the latest chapter some quantitative results of the Fermi-like model have
been shown. We have seen that, although the model is very simple, and works
in a rather basic way, it reproduces all the features of Landau damping. These
results can be considered as a validation of the model.

In the present chapter we focus our attention on other facts. For example,
what are the oscillations caused by? Are oscillations real or they represent
a by-product of numerical calculations as conjectured in Ref. [30]. The next
section is devoted to this question. Moreover we will discuss some statistical
facts, like variations in statistical entropy and the calculation of correlations.

4.2 Oscillations

In Fig. 3.4 we see that the amplitude of the wave displays an abrupt descent
in the beginning, soon after regular oscillations around a fixed amplitude
appear. These oscillations are found also in numerical simulations of Vlasov-
Poisson system. Here the oscillations continue as long as the simulations are
continued, and even if they stop, this can be due the finite resolution of the
numerical mesh. In our simulations, regular oscillations persist until a cer-
tain time, after which they disappear, giving rise to stochastic fluctuations
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characterized by a low amplitude. The presence of oscillations both at inter-
mediate times and in the long-time behaviour of the model is the result of the
complex dynamics of particles. Keeping in mind that the decrease (increase)
of the walls is due to collisions with particles with negative (positive) velocity,
we can mediate collisions in time, to check how collisions with a given barrier
are distributed and see whether they are related with the trend of the wave.
Fig. 4.1 reports the time average of the difference between tail-on collisions
(i.e. with particles with positive velocity) and head-on collisions (particles
with negative velocity), in two time windows, with superimposed the wave in
the same period. The time average of collisions has been scaled by a suitable
amount to comparing it with the wave on the same scale, and the scaling is
the same for the two figures. The pictures concern the nonlinear stage and
the asymptotical stage.

In both cases, it is clear that collisions do not come one after the other
at random, but, in a definite time interval, collisions happen in average all
in the same direction. The number of collisions with a definite sign increases
till it reaches a maximum, and after decreases, till the trend is reversed. It
is easy to notice that, when head-on collisions dominate the wave amplitude
decreases and vice versa. According to our model, oscillations stem from the
dynamics of particles. The interaction between the whole of particles and
the barriers is such that, at a certain time, particles coherently collide with
one barrier, making the amplitude increase or decrease, and this behaviour
is present both in nonlinear and in asymptotical stage. However, in the
steady state the imbalance between tail-on collisions and head-on collisions
become lower, as its easy to see looking at the units on the y-axis. Also
the amplitude of oscillations decreases in the same time. The reasons of
this behaviour can be better understood checking the velocity distribution
function of the particles.

4.3 Changing in velocity distribution func-

tion

According to their heights, particles can be classified in, at least, three type
of “population”. By recalling that particles height is to be compared with
the amplitude of the walls, we can say that first group is composed by parti-
cles with y > Asat, the second group is composed by particles with y ≈ Asat.
Particles with y < Asat belong to a third group. In Fig. 4.2 the sign of the
velocity for particles with different heights are plotted, as a function of time.
Particles which belong to the first group, namely those with y > Asat, can



4.3 Changing in velocity distribution function 65

0.05

0

-0.05

302010

time

wave amplitude
differences

0.010

0

-0.010

125115105

time

wave amplitude
differences

Figure 4.1: Dashed line: time average of the difference between tail-on col-
lisions and head-on collisions for a run with A0 = 1 and up = 1.4 in the
nonlinear stage (top) and in the asymptotical stage (bottom). Solid line:
wave amplitude in the same period. The wave amplitude has been shifted
down by Asat to compare the two graphs on the same scale.

be trapped at the beginning of the simulations, but, when the amplitude
of the wave damps they are detrapped and free-stream unperturbed. The
velocity sign, after a certain number of initial inversions, remains the same,
indefinitely (see top panel of Fig. 4.2). These particles do not interact any-
more with the wave. The second group is composed by the little fraction
of particles that lie around the saturation amplitude Asat. The changing in
their velocity sign is chaotic. Indeed, if we consider two particles with heights
that differ by a small amount, as the case shown in the two central panels
of Fig 4.2, we see that, even if overall behaviour is the qualitatively same,



66 Statistical features of wave-particle interaction

1

0

-1

y=0.8059

1

0

-1

y=0.7932

1

0

-1

y=0.7967

1

0

-1

18016014012010080604020

time

y=0.5181

Figure 4.2: Velocity sign for particles of different height, reported on the
figure, for a run with A0 = 1 and up = 1.4.

inversions in velocity sign is not predictable and do not take place in the
same sequence. This facet will be discussed in more detail in appendix B.
They perform flights of different spatial length before being retrapped.

The third group is the more numerous. It is composed by the bulk of
particles that lie below the saturation amplitude. They are always trapped
and undergo to inversions of velocity sign each time that they reach a wall
(bottom panel of Fig. 4.2). Even if their behaviour is trivial, they play
the most important role in the wave–particle dynamics, since these are the
particles that have the most effective exchange of energy with the wave. In
the last section we discussed about particles that coherently collide with a
definite velocity sign, making the amplitude increase and decrease. Going
back and forth, particles with y < Asat are the particles that synchronize in
colliding on a definite wall, and, in conclusion, they are responsible of the
oscillation of the wave.
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4.4 Distribution function

As result of the complex dynamics the velocity distribution function changes
in time. The particle distribution function can be defined through the usual
coarse graining of a point system in statistical mechanics, say f(u, t)∆u rep-
resents the number of points that, at time t, lie within the box of (narrow
but finite) size ∆u. Fig. 4.3 reports the distribution function at different
times. We see that at the beginning the distribution function is a straight
line, most populated in the negative region of the velocity. When the wave
damps, the shape of the distribution function changes accordingly. Particles
start to cluster and the distribution function display empty and full region
in velocity space. The distribution function remain always antisymmetric.
As time goes on, the spikes become thinner and thinner, and their amplitude
diminishes, till the distribution gets flat [41]. Particles with velocity at the
extremes of the velocity domain are an exception. These are the fastest par-
ticles, with height above the saturation amplitude. Since, after few collisions
at the beginning, they free–stream unperturbed, they are not affected by
the wave, so their distribution in velocities doesn’t change, even when the
distribution becomes flat.

4.5 Phase mixing and the approach to the

equilibrium

The transition to equilibrium can be better clarified by considering the en-
tire phase space (x, u). A plot of the phase space at different times is given
in Fig. 4.4. In this space each particle follows, at its own speed, a closed
path (the “tori-KAM” whose corners are the four points (±1,±uj)). This
generates regions characterized by different density in phase space. These
zones are stripe-shaped. Stripes are thick in the beginning, but, due the the
slightly different velocities of nearby particles, as time goes on, they become
thinner and thinner. As the stripes get narrower, less and less particles col-
lide almost synchronously on a given side of the potential well. Actually this
is the dynamical process that is responsible for the presence of the amplitude
oscillations shown in Fig. 3.4. In fact when the stripes are large enough, the
synchronization of collisions on a given barrier is able to sustain or decrease
the amplitude of the wave around the saturation value. When the filamen-
tation goes on producing narrower velocity stripes, the synchronization of
collisions is felt by a lower number of particles and the oscillations become
less regular up to a complete phase-mixing. This means that, for long times,
the system has reached the equilibrium configuration, and the only fluctua-
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Figure 4.3: Distribution function (averaged on x) at eight different times, for
A0 = 1 and up = 1.4.

tions that one can observe are due to collisions that come one after another
in a stochastic way.

Thus, the approach to equilibrium in the Fermi-like model, is described
by a filamentation of the phase-space. The approach of systems to statistical
equilibrium through a laminar filamentation is analogous to the well known
phenomenon of laminar mixing between two fluids in statistical mechanics
that has been investigated by Gibbs. The Fermi-like dynamical system plays
the role of an area-preserving two-dimensional map, as the well known baker’s



4.5 Phase mixing and the approach to the equilibrium 69

transformation [43]. Baker’s map is described by the equations:

xn+1 = 2xn

yn+1 = yn/2

for 0 ≤ xn ≤ 1/2

xn+1 = 2xn − 1

yn+1 = (yn + 1)/2

for (1/2) < xn ≤ 1.

Figure 4.4: Phase space scatter plot at eight different times reported on
figure, for A0 = 1 and up = 1.4.
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Figure 4.5: Phase space scatter plot for eight iterations of the baker’s map.
The initial distribution function is the same as the one used for the modified
Fermi model.

A representation of the baker’s map with an initial distribution in y anal-
ogous to that used in the Fermi-like model for the v’s is displayed in Fig. 4.5.
Even if the initial stages of the Fermi-like model and the baker’s map differ,
the last states are very similar. In both cases there are stripes that become
smaller and smaller until they are no longer resolved.
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4.6 Inter-particle separation

The phase space filamentation that drives the system towards equilibrium
ends up to a complete mixing when the width of the velocity stripes gets
smaller than the characteristic scale of discreteness of the system, i.e. the
inter-particle separation. When this situation occurs, nothing can happen
in term of oscillation in the wave: the system has reached its steady state,
which we defined the asymptotical stage, that will last indefinitely.

This is one of the differences between the way the Fermi-like model and
Vlasov theory describe the wave-particle interaction. Vlasov equation just
expresses the fact that, in absence of collisions, the phase-space distribution
function is constant along the trajectories of the system. In absence of colli-
sions, as in the case of wave-particle interaction, trajectories in phase space
are continuous lines. Volumes in phase space are conserved, even if they can
be deformed. As a consequence, the filamentation process in Vlasov systems
could keep going on and on producing thinner and thinner filaments in phase
space (see for a representation of this situation, Fig. 4.6), never reaching the
complete mixing stage. This means that Vlasov theory cannot describe a
Gibbs process, because, in Vlasov theory, no characteristic length is present.

Conversely, the inter-particle distance appears as a natural typical dis-
tance in Fermi-like model, that takes into account the intrinsic discreteness
of a plasma system.

Figure 4.6: Contour of the distribution function in a Vlasov simulation [30].
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4.7 Statistical entropy and correlations

We have seen that there exists a group of particles which are always trapped.
These are the particles with height below the saturation amplitude, and
they simply go back and forth between the walls, making the amplitude
oscillate according to the mechanism described in sec. 4.2. In absence of
Coulomb collisions between particles, the trapped region can be thought of
as an isolated system with respect to the free region, where particles do not
exchange energy with the wave (except for a few particles that can escape
from the well and be retrapped after a finite time). It is straightforward to
show that by imposing statistical entropy of the system of trapped particles
S = −

∫

f log fdxdu to be maximum, while conserving the total number of
particles and assuming an infinite energy reservoir (the wave energy), the
distribution function turns out to be flat over the velocity interval. As a
consequence, the system naturally evolves towards the maximum entropy
state, through the laminar mixing process discussed previously. In Fig. 4.7,
we show the time evolution of the entropy variation ∆S = S(t) − S(0), with
three different numbers Nc of numerical cells in phase space. After the initial
growth, ∆S reaches a saturation level. The jump in the entropy of the
system corresponds to the entropy difference ∆Sth between a flat velocity
distribution (see the bottom right plot in Fig. 4.3) and a decreasing function
(see the top left plot in Fig. 4.3).

The quantity ∆Sth is indicated in the figure by a horizontal solid line.
It is worth noting that the jump in ∆S does not depend on the numerical
resolution.

The curves in Fig. 4.7 can be fitted with a function ∆S ∝ 1−exp(−t/τG),
τG being the time when a complete Gibbs mixing is reached. Repeating such
simulations for many different numbers of particles N , gives the scaling law
τG ∝ Nα, where α = 0.55 ± 0.02.

Another consideration can be made by evaluating the correlations be-
tween trajectories in phase space. The normalized two-particle correlation
function is defined as:

C2(i, j) =
|f2(i, j) − f1(i)f1(j)|

f1(i)f1(j)
(4.1)

where f2 and f1 represent the two-particle and the single-particle coarse-
grained distributions, respectively; the integers i and j indicate the i-th and
j-th cells of area ∆ in phase space. The distributions f2 and f1 can be
evaluated dividing each phase space cell of area ∆ in nc subcells of area ∆c.
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Figure 4.7: Time evolution of the entropy variation for three different number
of cells Nc in the phase space. The straight line represents the theoretical
entropy variation.

Using this subgrid in phase space, we define:

f2(i, j) =

∑nc

i′=1 g(i, i′)g(j, i′)

n2
c

(4.2)

and:

f1(i) =

∑nc

i′=1 g(i, i′)

nc

(4.3)

where the integer i refers to the i-th subcell contained in a generic cell in
phase space and g(i, i′) is simply the number of particles in a subcell of area
∆, divided by the total number of particles N (fine grained distribution).
In Fig. 4.8, we show the time evolution of the maximum value of the two-
particle correlation function C2 in phase space. The evolution of max(C2) is
followed up to the time when the first two oscillations occur in the signals
described in Fig. 3.4. In the first trapping period, when the wave starts
trapping the resonant particles, thus creating correlations in their phase space
trajectories, we observe an increasing of the two-particle correlation function,
that finally saturates when regular oscillations occur. This shows that wave-
particle interaction creates correlation in the phase space particle trajectories
[44, 45].
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Figure 4.8: Time evolution of the maximum of the two-particle correlation
function C2.

4.8 Discussion

The fact that both the entropy of the system and the correlation function
increase when trapping comes into play suggests that Vlasov theory, as it is,
does not tell the whole story about wave-particle interaction. The entropy
S(t) is a constant for the exact Vlasov-Poisson system. The entropy of a
statistical system is usually defined as:

S = −
∫

f log fdxdv. (4.4)

For a plasma:

dS

dt
= −

∫

df

dt
(1 + log f)dxdv = 0 (4.5)

since Vlasov equations states that df/dt = 0. This is consistent with the fact
that Vlasov equation neglects the process (binary collisions) which causes
statistical systems to increase their entropy and evolve toward a Maxwell-
Boltzmann distribution.

This problem is closely related to that of irreversibility of Landau damp-
ing. The Vlasov-Poisson system possesses the property of reversibility and,
if inversion of time is made at a certain point, the system will return to the
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initial state. This seems to be in contrast with a dissipative phenomenon
like Landau damping. It was Van Kampen and Felderhof [46] who pointed
out that all forms of collisionless damping, including Landau damping, are
largely due to a phase mixing effect caused by averaging over an essentially
infinite velocity space. A finite number of electrons moving against a uniform
charged background in a closed enclosure from which radiation is not allowed
to leave will not exhibits damping of any kind: the system motion would be
recurrent, as could be easily shown with the Fermi-like model. Also as dis-
cussed in Ref. [47], typically, irreversibility appears to be due to phase mixing
(as in Landau damping) or waves radiating to infinity (radiation damping)
or an incoherent interaction with an environment composed of a very large
number of degrees of freedom in collisional contact with each other or with
a “boundary” (thermodynamic reservoirs). The observed irreversibility of a
dynamical system is not necessarily a property of the system, but may be a
consequence of a certain types of measurements processes involving macro-
averages and the loss of fine-scale information. This loss of information is
often called coarse-graining.

The modified Fermi model plays a pedagogically fundamental role in the
analysis of wave-particle interaction phenomena. Even though the trapping
interaction is described in a very basic manner, the modified Fermi model
catches the fundamental physics of the process, in which the phase mixing
process appears as a straightforward consequence of the interaction. Con-
versely, Vlasov equations cannot describe phase mixing phenomenon, as ob-
served in sec. 4.6. Moreover, the feedback of correlation growth on the dy-
namical evolution of the particle distribution function, which is described by
the collision term, is neglected. The Fermi-like model, by considering the
discreteness of plasma, can account for these effects.

4.9 The modified Fermi model in a case of

instability

The modified Fermi model can be employed in a case of instability. An
instability is the condition in which a small perturbation about a steady
state grows in time. Conditions that may lead to a growing behaviour of the
wave include: beams, in which fluxes of particles move in a plasma at rest,
anisotropic distributions of pinch angles of the particles and non-equilibrium
spatial distributions. Thus, the forcing term can be either in velocity or in
physical space.

We have seen that Landau damping rate depends critically on the electron
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distribution function f0 in vicinity of the wave phase velocity vφ = (ω/k). If
the derivative of the distribution function in v = vφ is negative the wave is
damped in time: the Maxwellian function is a stable distribution. If there
were more particles at higher velocities than at lower ones, the distribution
function would be not stable for waves resonant with these fast particles.
This type of instability is called bump-on-tail instability.

Let’s consider a distribution function of the form reported in Fig. 4.9,
where a certain amount of electrons has been accelerated. It is possible to
show that an analytical analysis [21] would give a result of the type of the
one shown in ch. 1 (Eqs. 1.6 and 1.7), but now the amplitude increases for
waves with phase speed in the velocity range where the particle distribution
function has positive slope.

If we call γG the growing rate of an exponential increasing wave, we can
say that we can use a linear approximation (see ch. 1) only for times shorter
than (1/γG). For longer times the linear mathematical treatment cannot be
used.

The O’Neil theory remains valid in the case of growing waves. The am-
plitude grows in the beginning, then oscillates around a level that is τtr/τL

(we use here the notation of the first chapter) higher than the initial value,
till the distribution function forms a plateau in the region where electrons
become trapped.

With the Fermi–like model it is easy to represent this case of instability.
It suffices to change the sign of the slope of the initial distribution function,
and consider a function of the form f(u) = a + bu instead of the one in
Eq. 3.13.

In Fig. 4.10 the time behaviour of the wave in the case of bump-on-tail

Figure 4.9: Distribution function with region of unstable ω/k.
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Figure 4.10: Wave behaviour in the bump-on-tail instability, for
A0 = 1, up = 1.2.

instability is reported. For short times, a steep increase of the amplitude
appears. Later it oscillates around a constant value. The oscillations are
regular in the beginning, but for long times they become stochastic.

In Fig. 4.11 the phase space and the coarse–grained distribution function
are reported for the run in Fig. 4.10. In this case the phase mixing stops
the increasing of the amplitude, making the wave oscillating around some
constant value.
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Figure 4.11: Bump-on-tail instability: phase space scatter plot (left column)
and coarse-grained distribution function (right column) at four different times
reported on figure, for A0 = 1 and up = 1.2.



Chapter 5

Fermi-like model and PIC code:

a comparison

5.1 Introduction

As mentioned in the first chapter, Vlasov codes are the designed programs
that solve the Vlasov-Poisson system and consequently, they are used to
investigate wave-particle interaction. But Landau damping is a tricky nu-
merical problem, since different time scales are present, and the little physical
effects must be separated from numerical noise. The numerical implemen-
tation of Vlasov codes demands a certain coarse graining of the space and
momentum coordinates. This numerical uncertainty is quite sufficient to
generate genuine dissipation [48], which leads the system to violate the con-
servative constraints of Hamiltonian dynamics and cause the reconnection
(formally forbidden!) of nearby isolines of the distribution function. It is
therefore important to perform a series of checks to rule out spurious nu-
merical effects. These effects can be quantified checking the time evolution
of the system invariants

∫

f idxdv, i ≥ 2. Vlasov equation has the prop-
erty that

∫

G(f)dxdv is a constant for any isolated system in which f obeys
Vlasov equation. In particular, the entropy S(t) is a constant for the exact
Vlasov-Poisson system. However, the entropy increases monotonically for the
discrete numerical model (this is a property of the scheme, and can be proven
rigorously), though the growth is slower for the higher resolution cases. The
invariants

∫

f idxdv give essentially the same result [28].

In sec. 4.6, we have seen that, as time goes on, smaller and smaller struc-
tures develop in phase space. Once the microstructures reach the mesh size,
they are smoothed away by numerical diffusion (essentially due to the inter-
polation technique used in the code), and are therefore lost. Of course, this
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has nothing to do with the phase mixing process discussed above. For these
reasons, in order to test the modified Fermi-model, we consider, instead of
Vlasov simulations, a standard PIC numerical simulations, performed in the
regime of nonlinear Landau damping. Particle In Cell (PIC) code retains the
discreteness of plasma, and therefore could display the same features of the
Fermi-like model.

5.2 PIC codes

Particle in cell codes (PIC) [49, 50] refer to a method in which, individual
particles (or fluid elements) in a Lagrangian frame are tracked in continu-
ous phase space, whereas moments of the distribution such as densities and
currents are computed simultaneously on Eulerian (stationary) mesh points.
Since they make use of particles they seem more suitable to be used to per-
form comparisons with the results of the modified Fermi model. PIC codes
represent historically widely adopted approach to numerical simulations of
plasmas in the framework of the kinetic theory and in the past years they
have been considered the most efficient tool in the description of the plasma
dynamics, especially because such an approach allows to study much of the
physical aspects in the full dimensional case, with a relatively small computa-
tional costs. On the other hand, the numerical study of the Vlasov-Maxwell
system in the fully nonlinear regime and in the six-dimensional phase space,
is still a very hard goal, even for modern parallel computers. However, a
huge scenario of physical processes in plasma physics can be described in a
phase space of lower dimensions and here Vlasov codes are extremely useful,
for example in one spatial and one velocity coordinates phase space, one spa-
tial and two velocity or in the four-dimensional description, with a relatively
good numerical resolution. The main difference between PIC and Vlasov
codes lies in the description of the particle distribution function. In a PIC
code the distribution of particles is described in a statistical way where real
particles are represented by so called super-particles. Each super-particle
represents a given percentage of density and carries a given amount of mo-
mentum. The density and momentum is distributed among super-particles
in such a way that their weighted summation at a given point of the spatial
domain provides a correct value of the given moment of the particle distribu-
tion function with certain accuracy determined by the statistical properties
of the set of super-particles. Moments are usually evaluated at nodes of 1-D,
2-D or 3-D spatial mesh. In Vlasov codes the distribution function of a given
species is described by the set of values of a particle distribution function,
itself evaluated on an uniform or adaptive grid defined on a 6-D phase space.
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Moments needed for the time integration of the Maxwell equations are evalu-
ated by straight numerical integration of the distribution function. The fact
that values of the distribution function are given precisely with the given
accuracy of n-th order implies that its moments are determined precisely
with the same accuracy too. This cancels statistical noise caused by the fact
that super-particles in PIC codes represent values of the distribution function
at randomly selected points of the phase space. But, differently from PIC
codes, where push of particles is not necessarily implemented with a scheme
of some controlled order of precision, Vlasov scheme holds the precision of
the given order at all steps of the algorithm. This has significant dissipative
consequences at all effects of higher order.

5.3 Fermi-like model and PIC code: similar

results

PIC simulations used here [44] follow the electron dynamics in the x-direction,
which is the direction of wave propagation (the ions are considered motion-
less). The equations of motion of a large number of macro-particles (N = 107)
are integrated numerically through a standard second-order leap-frog scheme.
For convenience, we scale time by the inverse plasma frequency ω−1

p , where

ωp =
√

4πne2/m, and n is the electron density. Length is scaled by the De-
bye length λD = vth/ωp. With these choices, velocity is scaled by the electron

thermal velocity λDωp = vth and electric field by
√

4πnmv2
th. The electron

phase space domain for the simulation is D = [0, Lx] × [−vmax, vmax], where
vmax = 5. Periodic boundary conditions in physical space are imposed, then
Poisson’s equation is solved using a standard Fast Fourier Transform (FFT)
routine. The initial distribution function is a Maxwellian in the velocity
space, over which a modulation in the physical space with amplitude A and
wave vector k = 2π/Lx is superposed:

f(x, v, t = 0) =
1√
2π

e−
x
2

2 [1 + A cos(kx)]. (5.1)

The length of the spatial domain is chosen to be Lx = 20, the amplitude
of the perturbation is A = 0.064. The simulations follow the evolution of
electrons for many plasma periods (tmax = 4000). For a PIC simulation with
one spatial dimension and with grid spacing smaller than the Debye length,
the effective collision time (see Ref. [49]) is longer than t = (1/ωp)nλD , where
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n = N/Lx is the 1-D density of particles in the simulation. In scaled units,
the collision time is larger than t = N/Lx ≈ 106 (for Lx = 20λD), which is
much longer than duration of our runs, tmax = 4000. In these conditions, our
simulations can be considered fully collisionless.

The runs for the Fermi-like model are conducted as described in the pre-
vious chapters.

The top plot in Fig. 5.1 shows the numerical results of the PIC code for
the time evolution of the amplitude of the electric-field spectral component
Ek(t), while the bottom plot reports the typical time evolution of the barriers
amplitude resulting from the Fermi-like model. As it can be seen, the plots
are very similar: in both figures, after an initial decay, the amplitude starts
oscillating around a saturation value.

The amplitude of the field initially decreases, then oscillates regularly and
finally, for long times, the dynamics becomes completely stochastic. The time
evolution described in Fig. 5.1 is determined, in both cases, by the interaction
of the particles with the potential well of the wave, that is sinusoidal for
the PIC simulation, and squared for the Fermi-like model. The particle
dynamics is similar: as we have already discussed (sec. 4.3), particles whose
energy is larger than the potential barrier free–stream unperturbed; a few
particles at the border of the trapped region can be trapped and detrapped
periodically, performing more or less long flights [31]; finally, the bulk of
particles with energy well below the potential barrier is ever trapped. The
discussion made in sec. 4.5 about the particle trajectories in the phase space,
is also valid for the PIC model: each of trapped particle follows a closed
path in the phase space (x, u); this path has an elliptical form for the PIC
simulation and a rectangular one for the Fermi–like model. In the left panels
in Fig. 5.2, the phase space (x, u) for the PIC code is reported (in the region
around the wave phase velocity vp = 3.7). This picture is to be compared
with those in Fig. 4.3 and Fig. 4.4. Also in the case of the PIC model,
as time increases, the dynamic of particles generates a filamentation of the
structure in phase space, and stripes become narrower, up to a time where
an apparently complete mixing settles up. In the right panels in Fig. 5.2,
the distribution function f(xM , u, t) is plotted as a function of the velocity u
for a given point in the physical space xM at different times. The point xM

corresponds to the coordinate in the physical space where the velocity width
of the trapped region is maximum. A quick reflection is enough to realize
that, in the PIC code as in the Fermi-like model, the occurrence of velocity
stripes produces a synchronization of collisions on each barrier. As the stripes
get narrower, less and less particles collide almost synchronously on a given
side of the potential well, and this generates the decreasing oscillation of
the field. When the filamentation goes on producing narrower structures in
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phase space, the synchronization of collisions is felt by a lower number of
particles and oscillations become less regular till a complete phase mixing is
reached.
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Figure 5.1: At the top: Time evolution of the electric-field amplitude (PIC
simulation). At the bottom: Time evolution of the barrier amplitude (Fermi-
like model).
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Figure 5.2: PIC simulation: phase space scatter plot at four different times
(left panels); distribution function f(xM , u) as a function of u, at four differ-
ent times (right panels).

5.4 Correlations

Also for the PIC code we compute the correlations between the trajectories
of particles in phase space, in the same way as we did for the Fermi-like
model. As described in sec. 4.7, the phase space has been divided in a series
of cells and subcells in which the correlation function 4.1 has been evaluated.
In Fig. 5.3, we show in logarithmic scale the time evolution of the maximum
value of the two-particle correlation function C2 in phase space.

The trend of max(C2) is followed until the time when the first two os-
cillations take place in the PIC simulation plotted in Fig. 5.1. When the
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Figure 5.3: PIC simulation: time evolution of the maximum of the two-
particle correlation function C2 in the resonant region, in logarithmic scale.

wave starts oscillating and trapping the particles, correlations in phase space
rapidly increase. An analogous behaviour has been observed for the Fermi-
like model (see Fig. 4.8).

We have seen that the simple dynamical model gives results very similar to
that of a PIC code. In both cases, the wave starts with a steep damping, then
oscillates in a well-ordered way around a fixed value, finally it becomes almost
constant. We have seen that this behaviour is the result of the collective
wave-particle interaction. The particles trapped in the potential well of the
wave, going back and forth, make the wave increase or decrease following
the exchange of energy with particles. The oscillating stage run out when a
complete mixing is established between particles. From this moment on, they
are no longer able to exchange energy in a coherent manner. Both in Fermi-
like model and in PIC code, two-particle correlations rise when the trapping
phenomenon begin. The fact that both the entropy of the system and the
correlation function increase when trapping becomes important suggests that
Vlasov description fails in describing wave-particle interaction. In fact, in
Vlasov theory the feedback of correlation growth on the dynamical evolution
of the particle distribution function, which is described by the collision term,
is neglected. Moreover Vlasov equation cannot describe increasing entropy
processes, because as time increases it produces continuous structures at
smaller and smaller scales, missing the intrinsic discreteness of the plasma
system.
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5.5 Conclusions

In this work we have introduced a dynamical model in the form of a modified
Fermi model, that describes the wave-particle interaction in plasma physics.
In a very simplistic and pedagogical way, the interaction is explained as the
result of a large number of collisions between a certain number of particles
and two walls of variable length. The model describes the linear part of Lan-
dau damping, and the trapping phenomenon, which leads to a saturation in
the wave amplitude. A threshold amplitude below which the wave is always
damped is found. Above this threshold, the wave, after an initial damping,
oscillates regularly around a constant value, the period of these oscillations
being correlated to the saturation amplitude of the wave. The particle dis-
tribution function changes in time, displaying regions of velocity space which
are relatively full of particles and regions which are less populated. This
clustering is the underlying phenomenon which generates the oscillations of
the wave, since the energy exchanges between wave and particles, in a given
interval of time, are all in the same direction. As time goes on, this synchro-
nization become weaker and weaker, regular oscillations disappear, giving
way to stochastic fluctuations. This lost of synchronization is due to a phase
mixing between particles.

The phase mixing is produced by the filamentation of the phase space,
a process analogous to the Gibbs laminar mixing, described by the baker’s
map. The Gibbs mixing time τG increases with the number N of particles as
τG ∝ N0.55.

In principle, this laminar mixing process cannot be described within the
Vlasov theory, since in Vlasov theory smaller and smaller structures are cre-
ated in phase space, never reaching the mixing stage. The system of trapped
particles evolves from an unstable state towards the state of maximum en-
tropy, where nothing can happen anymore.

Moreover we have shown that wave-particle interaction creates correla-
tions between trajectories. Vlasov theory cannot describe increasing entropy
phenomena and it cannot account for correlations in phase space, since it
neglects collisions between particles.

Finally we compared the results of the Fermi-like model with those of a
rigorous PIC code. We have seen that the results are very similar. Both this
methods can describe the phase mixing and the rising of correlations. But,
computer simulation of the Fermi model is faster than those of the PIC code,
so only with Fermi-like model it is possible to examine the entropy increase
for an increasing number of particles.



Appendix A

A simple treatment to get

Landau damping

A.1 Introduction

A drawback common to many investigations of Landau damping is that they
tend to be rather lengthy and technical, and although the single steps may
appear not so complicated, the overall impression is that the analysis has
lost the basic physics involved in the Landau damping.

The analysis that we report here is due to Anderson, Fedele, and Lisak
[51] and it represents an effort to provide an intuitive generalization of the
cold plasma wave theory to allow for the interaction between an electrostatic
plasma wave and a continuous distribution of electron beams with differ-
ent velocities co-propagating in a background of neutralizing immobile ions.
The analysis starts by considering high frequency electrostatic plasma waves
within a cold plasma description. Two cases are discussed, one in which the
electron fluid is at rest and another when the electron fluid is moving with
a velocity v0 with respect to the neutralizing stationary ion background. In
the next step it is assumed that the electron fluid consists of two species,
one at rest relative to the stationary ion background, the other moving with
a velocity v0 . The analysis is then generalized by considering a large num-
ber of interstreaming electron fluids, each characterized by its density and
velocity relative to the rest frame. In the final step, the infinite sum over
electron beams is generalized to an integral over an electron velocity distri-
bution and the characteristic dispersion relation containing the kinetic effect
of the Landau damping is derived without going into the details required for
mathematical rigor.
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A.2 Basic equations

In the discussion we assume that a plane high frequency electrostatic electron
plasma wave is propagating in the x direction in a homogeneous plasma. Due
to the high oscillation frequency of the plasma wave, ions can be considered
as a stationary neutralizing background. The relevant equations determining
the interaction between the electron plasma wave and the plasma electrons
are the equations of motion and continuity for the electron fluid together
with Poisson’s equation, which provides the self-consistent coupling between
the electrostatic wave and the electron motion. Since the electron velocity,
the electrostatic electric field as well as the propagation vector all lie in the x
direction, the problem is truly one-dimensional and the governing equations
read:

∂v

∂t
+ v

∂v

∂x
= − e

m
E

∂n

∂t
+

∂

∂x
(nv) = 0

∂E

∂x
= − e

ǫ0

(n − n0)

(A.1)

where v and n denote the velocity and density, respectively, of the electron
fluid and E is the electrostatic electric field. Furthermore, n0 is the constant
density of the neutralizing ion background, e and m are the electron charge
and mass, respectively, and ǫ0 is the dielectric constant in vacuum.

A.3 Plasma oscillations

In order to analyse the characteristic propagation properties of the electron
plasma wave, we consider the evolution of small perturbations of density,
velocity and electric field on a stationary and homogeneous background ac-
cording to:

v = v0 + v1, n = n0 + n1, E = E0 + E1 (A.2)

where index 0 denotes a stationary and homogeneous equilibrium quantity
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and index 1 denotes a small perturbation around the corresponding equilib-
rium quantity.

Let’s consider a situation in which the equilibrium electric field is zero,
E0 = 0, and the electrons are stationary with respect to the background ions,
i.e. v0 = 0. Inserting Eq. (A.2) into Eq. (A.1) and linearizing, we obtain:

∂v1

∂t
= − e

m
E1

∂n1

∂t
+ n0

∂v1

∂x
= 0

∂E1

∂x
= − e

ǫ0

n1

(A.3)

Looking for travelling plane wave solutions proportional to exp[i(kx−ωt)]
and with constant amplitude, where and k and ω are the frequency and wave
number, respectively, of the electron plasma wave, Eq. (A.3) can be written
as:

−iωv1 = − e

m
E1

−iωn1 + in0kv1 = 0

ikE1 = − e

n0

n1

(A.4)

Eliminating v1 and n1 from the two first equations, Poisson’s equation
reduces to:

(

1 −
ω2

p

ω2

)

E1 = 0 (A.5)

where the characteristic plasma frequency ωp is defined as ω2
p = n0e

2/(ǫ0m).
In order to have nontrivial solutions of Eq. (A.5) we must require that
ω = ±ωp, which is the classical result of an electrostatic wave with frequency
equal to plasma frequency.

Consider next a situation when the undisturbed situation corresponds to
an electron fluid streaming through a neutralizing stationary ion background.
In this case the zero order velocity of the electron fluid does not vanish.
Linearizing as before around the background solution, Eqs. (A.3) become:
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∂v1

∂t
+ v0

∂v1

∂x
= − e

m
E1

∂n1

∂t
+ n0

∂v1

∂x
+ v0

∂n1

∂x
= 0

∂E1

∂x
= − e

ǫ0

n1

(A.6)

The transformed equations now read:

−i(ω − kv0)v1 = − e

m
E1

−i(ω − kv0)n1 + in0kv1 = 0

ikE1 = − e

ǫ0

n1

(A.7)

Eliminating n1 and v1 as before and substituting into Poisson’s equation,
we find:

[

1 −
ω2

p

(ω − kv0)2)

]

E1 = 0. (A.8)

The corresponding condition for nontrivial solutions becomes:

ω = ωD ± ωp (A.9)

where we have introduced ωD = kv0. This result represents the character-
istic oscillation frequency of the previous case, now shifted by the Doppler
frequency ωD, due to the streaming electron velocity.

A.4 The two-stream instability

We now take a further generalizing step by combining the two previously
studied cases. We assume that the electron fluid consists of two fluid species,
one at rest relative to the stationary ion background, the other moving with
a velocity v0. The densities of the two fluids are denoted n01 and n02, respec-
tively. The condition of plasma neutrality requires that n0 = n01 + n02.
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The dynamics of an electrostatic wave propagating in such a medium
is determined by separate equations of motion and continuity for the two
electron fluids, in fact Eqs. (A.3a) and (A.3b) and Eqs. (A.4a) and (A.4b) .
However, Poisson’s equation couples the dynamics of the two fluids and the
electrostatic wave field. Now the Poisson’s equation becomes:

ikE1 = − e

m
(n11 + n21) (A.10)

where n11 and n21 denote the perturbations on the two electron densities.
Solving as before for n11 and n21, Poisson’s equation can be written as:

E1 =

[

n01e
2

mǫ0

· 1

ω2
+

n02e
2

mǫ0

· 1

(ω − ωD)2

]

E1 (A.11)

which leads to the dispersion relation

1 =
ω2

p1

ω2
+

ω2
p2

(ω − ωD)2
(A.12)

where ωp1 and ωp2 are the characteristic plasma frequencies of the two electron
fluids. We are not concerned here with the solution of Eq. (A.12). We
simply mention that, under some conditions (essentially the case in which
Eq. (A.12) has complex roots, viz ω = ωre + iωim), the phenomenon of
two-stream instability may appear, namely the electrostatic wave amplitude
has a solution that grows in time during propagation as exp[i(kx − ωret) +
ωimt]. In particular, the instability occurs when the electrostatic wave and
the streaming electron fluid are close to being in resonance, i.e. the phase
velocity vf is close to v0. In this situation, the coupling between the streaming
electrons and the wave becomes very strong and energy is transferred from
the electrons, which are moving with a velocity slightly larger than the phase
velocity, to the wave, which grows.

A.5 Landau damping

We can generalize the dispersion relation given in Eq. (A.12) to a situation
where the electron fluid is composed of a large number of interstreaming
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electron fluids, each characterized by its streaming velocity, vj, its density,
n0j and its plasma frequency ωpj . The density of each electron fluid can be
more conveniently expressed as n0j = fjn0, where n0 is the background ion
density and fj is the fractional density of the fluid j. Note that:

∑

j

fj = 1. (A.13)

With these assumptions, the proper generalization of Eq. (A.12) is:

1 =
∑

j

ω2
pj

(ω − kvj)2
= ω2

p0

∑

j

fj

(ω − kvj)2
(A.14)

where ωp0 is the plasma frequency corresponding to the background density
n0. The last step of generalization can now be taken by assuming that the
electron fluid consists of electrons of all velocities, the corresponding electron
density being determined by a normalized distribution function, f(v), where
n0f(v)dv is the total number of electrons in the infinitesimal velocity range
between v and v+dv. The fractional density fj in Eq. (A.14) is then replaced
by f(v)dv, the sum turns into an integral and the dispersion relation becomes:

1 = ω2
p0

∫ +∞

−∞

f(v)

(ω − kv)2
dv. (A.15)

A partial integration of this integral gives the dispersion relation:

1 = −
ω2

p0

k

∫ +∞

−∞

df/dv

ω − kv
dv (A.16)

where it is assumed that f(±∞) = 0. Eq. (A.16) is exactly the same disper-
sion relation that is obtained from a fully kinetic treatment of the electron
wave interaction based on the collisionless Vlasov equation for plasma elec-
trons.

In the integration, care must be taken with those electrons which have
velocities close to the phase velocity of the wave, i.e., for v = ω/k, where, in
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fact, the integral becomes singular. However, the theory of analytical func-
tions supplies the recipe for evaluating this integral. The result contains two
contributions, the principal value (PV) due to the main body of the distri-
bution and half the residue contribution (Res) due to the resonant electrons
at v = ω/k where the denominator of the integral vanishes. This gives:

1 =
ω2

p0

k2

(
∫ +∞

−∞

df/dv

v − ω/k
dv + iπRes

∫ +∞

−∞

df/dv

v − ω/k
dv

)

. (A.17)

Assuming that the phase velocity of the wave is much larger than the
velocities in the bulk of the distribution, we can expand the denominator
around kv/ω = 0 when evaluating the principal value. This yields:

PV =
k

ω

∫ +∞

−∞

(

1 +
kv

ω
+

k2v2

ω2
+

k3v3

ω3
+ · · ·

)

df

dv
dv. (A.18)

The integrals in the previous equation can be evaluated by partial inte-
gration an by using the properties of f(v):

∫ +∞

−∞
f(v)dv = 1

∫ +∞

−∞
vf(v) = 0

∫ +∞

−∞
v2f(v)dv =

1

2
v2

th

(A.19)

The principal value then becomes:

PV

∫ +∞

−∞

df/dv

ω − kv
dv ≈ −k2

ω2

(

1 +
3k2v2

th

ω2

)

(A.20)

and the residual integral is:

Res

∫ +∞

−∞

df/dv

v − ω/k
dv = f ′(ω/k) (A.21)
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Then the dispersion relation in Eq. (A.17) reads as:

1 =
ω2

p0

ω2

(

1 +
3k2v2

th

ω2

)

+ iπ
ω2

p0

k2
f ′(ω/k). (A.22)

The thermal as well as resonant contributions in Eq. (A.22) are small and
to lowest order the dispersion relation reduces to our previous result from
Sec. II, viz. ω2 ≈ ω2

p0 . Using this approximation perturbatively to simplify
the correction terms we obtain the dispersion relation in the form:

ω2 = ω2
p0 +

3

2
k2v2

th + iπω2
ω2

p0

k2
f ′(ω/k). (A.23)

Separating the real and imaginary parts, ω = ωre + iωim where, |ωim| ≪
|ωre| ≈ ωp0 we obtain the classical result for the propagation of an electro-
static high frequency electron plasma wave in a warm plasma:

ω2
re ≈ ω2

p0 +
3

2
k2v2

th

ωim ≈ π

2

ω3
p0

k2
f ′(ω/k).

(A.24)

In order to interpret this result we note that the two-stream instability
implies that electrons with velocities almost equal to but slightly higher than
the phase velocity of the wave cause an increase of the wave amplitude. The
concomitant increasing energy of the wave must cause a slowing down of
the fast electrons. Conversely, we expect that electrons, which are moving
with velocities almost equal to but slightly slower than the phase velocity of
the wave, will gain energy from the wave, thus increasing their speed at the
expense of the wave energy, which consequently decreases. For an ordinary
(Maxwellian) velocity distribution, the distribution function is a decreasing
function of velocity, the derivative at the resonant velocity, ω/k, is negative,
and the wave experiences Landau damping.

The physical mechanism behind the damping mechanism is intuitively
clear; there are more electrons moving slightly slower than electrons moving
slightly faster than the phase velocity of the wave and the net energy transfer
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must be from the wave and to the electrons. If around the resonant velocity,
there are as many electrons moving faster as there are electrons moving
slower, i.e., the electron distribution function has a plateau with f ′(v) = 0,
no energy transfer will take place between the wave and the electron fluid,
and ωim should be zero, as indeed is predicted by Eq. (A.24).

One more time we point out that this analysis skips some formal mathe-
matical issues in order to concentrate on the physics involved in the process.
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Appendix B

The Shannon entropy

B.1 Introduction

We have seen in sec. 1.6 that a particular attention has been devoted by
some authors to the investigation of chaos in the region of the phase space
where the separation between trapped and free particles occurs. Among oth-
ers, Valentini et al. [31] used a Lagrangian approach to the nonlinear Landau
damping to understand why Isichenko’s idea [24] does not work in the numer-
ical simulations. From an accurate analysis of the Poincaré sections and of
the Lyapunov exponents of the phase space trajectories, they conclude that
in the zone of the separatrix, in correspondence of the maximum and mini-
mum value of the electric field envelope, the particles exhibit an ergodic and
chaotic dynamics. Due to the time oscillation of the wave amplitude, these
particles are able to escape from the well and perform flights, in agreement
with the Isichenko conjecture. However, a statistical study of the spatial
and time length of these flights has shown that they have a limited length,
because after a characteristic re-trapping time, almost all the particles are re-
trapped by the wave. In this situation, in the numerical solution no algebraic
damping is allowed due to the fact that the wave-particle energy balance is
kept on a time scale equal to the retrapping time.

In the case of the modified Fermi model, we have seen that the its dynam-
ics is generated by the particular sequence of collisions that takes place. In
particular, we have seen that, according to the regularity of their motion, par-
ticles can be distinguished in three groups (sec. 4.3): particles that are always
trapped and thus exhibit regular motion, particles that have only an initial
interaction with the wave, and particles that are trapped and detrapped in
a non regular way, and hence show an unpredictable motion.

But is it possible to characterize this irregular motion? Is it completely
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stochastic or there is a kind of memory in it? To address this question we
make use of a statistical tool known in literature as Shannon (or information)
entropy [52, 53]. Shannon introduced this concept in the area of the informa-
tion theory to qualify the sources emitting sequences of discrete symbols (e.g.
binary digit sequences). Originally information theory was introduced in the
practical context of electric communications, nevertheless in a few years it
became an important branch of both pure and applied probability theory
with strong relations with other fields as computer science, cryptography,
biology and physics [54].

The idea to use Shannon entropy has been suggested by the fact that in
the Fermi-like model, the regularity of the motion of a particle can be inferred
by observing the sequence of signs of its velocity in time (see Fig. 4.2), and
these signs, in turn, can be considered as a sequence of binary digits, i.e. 1
and -1.

We will give a brief description of the Shannon entropy.

The regularity of a sequence of N−1 symbols, produced by any source, can
be characterized through the ability in predicting the N -th symbol. Consider
a source that can output a sequence of m different symbols (in our case
m = 2), denote with s(t) the symbol emitted by the source at time t and
with P (Cn) the probability that a given “word” Cn = (s(1), s(2), ..., s(n)) of
length n is emitted. We assume that the source is stationary, so that for the
sequence {s(t)} the time translation invariance holds: P (s(1), . . . , s(n)) =
P (s(t + 1), . . . , s(t + n)). Then, the entropy associated to a generic n-digits
word can be defined as:

Hn = −
∑

{Cn}
P (Cn) log P (Cn) (B.1)

where the sum is computed over all the possible combinations of length n.
The quantity hn = Hn+1 − Hn, indicated as differential entropy, thus rep-
resents the average information provided by the (n + 1)-th digit, once the
previous n digits are known. One can also say that hn is the average uncer-
tainty about the (n + 1)-th symbol, provided the n previous ones are given.
For a stationary source, the limits in the following equation exist, are equal
and define the Shannon entropy hSh:

hsh = lim
n→∞

hn = lim
n→∞

Hn

n
. (B.2)
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This quantity is a measure of the regularity of the sequence. For example,
for a given regular (say periodic) sequence, the information carried by the
next digit after one period is zero, since the full knowledge of the sequence in
contained into the first period. The predictability of such a sequence is then
trivially high, and the signal is completely correlated with long range memory.
On the contrary, if the sequence is chaotic, the information provided by the
knowledge of each digit can be high. For example, for a random realization,
namely if all digits have the same chance to be −1 or 1, any next digit carries
with it the same amount of information of the previous ones. Such a sequence
is completely unpredictable, and neither memory nor correlations are present.
In this case the limit in Eq. (B.2) can be easily shown [53] to be hsh = log 2.
Thus, the quantities defined so far represent a tool to describe the complexity
of the source, through the regularities of the emitted sequences. Note that
although the theoretical Shannon entropy is defined as the limit to infinity
of the word length, in the real experiments the convergence of the limit (B.2)
is normally already obtained for small values n < 8.

B.2 Analysis of the data of the simulation

We have computed the quantities defined above, namely the entropy HN ,
and the Shannon entropy hSh, using words of length up to n = 8 for four
particles in a run of the modified Fermi model. We have considered the case
A0 = 1 and up = 1.4. With these conditions the saturation amplitude is
around Asat = 0.797. Three particles taken into account have an height near
the saturation amplitude, namely one has height y = 0.7999, another one
has height y = 0.7997 and the last one has an altitude y = 0.7965. The
fourth particle is always trapped (y = 0.197), and thus displays a regular
motion. Results are collected in Fig. B.1. For comparison, on the same figure,
is reported, together with the data of the simulation, the results obtained
using an artificial datasets composed by a completely random realization.
All sequences include 446 digits.

Looking at Fig. B.1 (top panel), it is possible to notice that, for the
regular string, there is no increase of information when the number n of
digit of the words increases. This corresponds, as expected, to a vanishing
differential entropy leading to hsh = 0 (see bottom panel of the same figure).
The random case, conversely, displays a constant growth of entropy Hn with
the number of digits, indicating that all of them bring the same amount
of information. This correspond to a constant differential entropy hn. For
the experimental dataset, we have hSh ≈ 0.55 in two cases and hSh ≈ 0.68
in the case of the particle with the minimum height. This indicates that
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Figure B.1: Values of the entropy Hn (top panel) and of the Shannon entropy
hSh (bottom panel) as a function of the words length n. Different colours refer
to the different dataset: in particular: (a) random string, (b) y = 0.7965,
(c) y = 0.7997, (d) y = 0.7999, (e) y = 0.197.

the system is chaotic, but with some degree of regularity. This is evidenced
by the fact that the information entropy Hn grows more slowly than with
respect to the random case (Fig. B.1 top panel). Moreover, for the particle
with the minimum height (curve b) we see that the two-word entropy h2 is
near to the completely random case, but if we consider longer words (n > 2)
the entropy become smaller. This means that the system appears as to
be random if we look at it for short time periods but, for longer intervals
of time, it keeps some kind of memory. It could be conjectured that the
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particles in the saturation region are not subject to a random motion, but
rather their dynamical behaviour has long range correlations. The presence
of correlations, and thus of a memory effect, corresponds to evidence of some
degree of regularities in the signal obtained through this procedure.

A more careful examination of this issue, although interesting, is left to
a future work.
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