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Introduction

A complex system is any system featuring a large number of interacting com-
ponents (agents, processes, elements, etc.) whose aggregate activity is non-
linear (not derivable from the summations of the activity of individual com-
ponents) and typically exhibits hierarchical self–organization processes [1].
There are many definitions of complexity, therefore many natural, artificial
and abstract objects or networks can be considered to be complex systems,
and their study (complexity science) is highly interdisciplinary. Apart for
classical media like fluid flows or continuous physical systems, examples of
complex systems include some different topics in many areas of science and
social systems [2–4].
The complexity in nature can manifests itself through the occurrence of
chaos [5,6], turbulence [7,8] and bursty phenomena [9]. Nonlinear couplings,
self–organization processes and long range interaction can generate several
kind of objects like: vortexes, nonlinear waves, instabilities, solitons and so
on [10]. By the way, the point of view that complex phenomena have a com-
plicate mathematical description is not true, in fact intrinsic nonlinearities
can make complex phenomena be described also by simple equations. In spe-
cific circumstances, for example, they may exhibit low dimensional behavior.
Traditional methods of mathematical modeling are adept at handling systems
with few degrees of freedom that interact strongly, such as the paradigmatic
simple harmonic oscillator, while statistical methods are useful for systems
with very many degrees of freedom all of which interact weakly, such as a
box of gas.
Plasmas in nature and in laboratory are an example of systems where com-
plexity manifests through the occurrence of turbulence, chaos and bursty
phenomena. In particular, turbulence is often defined as the most interest-
ing and yet unsolved phenomenon of classical physics [11]. Being ubiquitous
in nature, turbulent dynamics can be observed everywhere in fluids, for exam-
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6 Introduction

ple in laboratory and atmospheric flows [11,12] as well as in astrophysical [13]
and laboratory plasmas [14]. Of course numerical simulations, supported by
actual multi–processors computers, give a great contribution in understand-
ing and analyzing turbulent flows [15].
In this thesis we investigate some phenomena in plasmas, from astrophysical
to laboratory, seen as a complex system. Modeling the plasma state, we can
get some insight into the nature of the problem and, often, into a physical
explanation of some different processes. The plan of the thesis is as follows.
In Chapter 1 we will describe briefly laboratory and space plasmas, in par-
ticular toroidal fusion reactors, linear devices and the Sun–Earth system.
In Chapter 2 we will study small-scale fluctuations in turbulence. By using
direct numerical simulation of Hall Magnetohydrodynamics equations we in-
vestigate the role of Hall effect in the dynamical behaviour of the turbulent
state of the system. Our results are strongly compatible with observations
of the Cluster satellite in the magnetopause boundary layer.
In Chapter 3 we describe and analyze the bursty behaviour observed both
in toroidal and linear plasma devices. We named this phenomenon “bursty
turbulence”. We numerically investigate dynamics of two–dimensional E×B
turbulence in a polar geometry, similar to a poloidal section of laboratory
plasmas. By using forcing input of charges we generate bursts (or blobs) that
propagate from the core to the boundaries of the simulation domain. Prop-
erties of this kind of turbulence are then analyzed and discussed.
In Chapter 4 is studied the complex picture of the Reversed–Field Pinch
(RFP) turbulence, in which turbulent fields evolve stochastically over a broad
range of modes. Sometimes the spectral structure of the magnetic field is
dominated by few poloidal and toroidal modes. By using a simplified model
of the Reduced Magnetohydrodynamics (RMHD), obtained from a Galerkin
approximation, we will show how the nonlinear dynamic of RMHD turbu-
lence is able to generate states similar to that observed in several RFPs.
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Chapter 1

Laboratory and Space Plasmas

There are three classic states of matter: solid, liquid, and gas; however,
plasma is considered by some scientists to be the fourth state of matter.
Plasmas are gases composed mainly by charged particles and its dynamics
is dominated essentially by electromagnetic forces. Generally speaking, a
plasma is composed of a sufficient number of charged particles so that the
gas, as a whole, exhibits a collective response to external electric and mag-
netic fields. In turn, the particles motion generates its own electromagnetic
fields. This kind of interactions makes plasmas unique and fascinating com-
plex systems.
Much of the impetus for the development of plasma physics over the second
half of the twentieth century came from research into controlled thermonu-
clear fusion on the one hand and space plasma phenomena on the other.
Fusion scientists are interested in plasmas for practical purposes and, in an
effort to harness fusion energy on Earth, they study devices that create very
hot plasmas confined by very strong magnetic fields. Fusion devices or, less
frequently, linear devices, are used also for basic plasma processes investiga-
tions.
The state of plasma largely dominates the matter in space. For example, by
studying processes that occur in the Earth’s magnetosphere (where Earth’s
magnetic field has a greater influence than the Sun’s interplanetary field),
in interplanetary space, in the solar wind, and around other planets, we are
better able to appreciate the important role of plasmas throughout the Uni-
verse.
In this thesis we will study complexities in three different magnetic plasma
configurations: toroidal fusion reactors, linear laboratory plasmas and astro-
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10 Laboratory and Space Plasmas

physical plasmas.

1.1 Space plasmas: the Sun–Earth system

The outer layers of the Sun and stars in general are made up of matter in an
ionized state and from these regions winds blow through the interstellar space
contributing, along with stellar radiation, to the ionized state of the interstel-
lar gas. Thus, much of the matter in the Universe exist in the plasma state.
The external regions of the Sun are characterized by a complex magnetic
structure, composed of both closed (anchored on the photosphere) magnetic
field lines. On the other hand, the strong pressure gradient between the hot
(∼ 106K) solar corona and the cold (∼ 10K) interstellar medium generates
a flux of charged particles from the Sun to the heliosphere. This flux of par-
ticles is the solar wind (SW). For the SW the mean free path is ∼ 1 AU (150
millions of kilometers), thus it is a highly non–collisional plasma. This im-
plies that the solar magnetic field is frozen into the wind and is carried away
from the Sun, thus contributing to the complex magnetic structure described
above. Far away from the Sun that field is usually called the interplanetary
magnetic field (IMF).
The Earth, as other solid objects in the solar system, is an obstacle to the
SW and with its lower atmosphere forms a plasma–free oasis in a plasma uni-
verse. Due to the supersonic velocity of the SW, a standing shock wave, the
bow shock, is formed in front of the Earth. Downstream of the bow shock the
thermalized solar wind is decelerated to subsonic velocities flowing around
the Earth, this region is named magnetosheath (MSH). Since the presence
of the Earth’s magnetic field, the description of the SW–Earth interaction
is very complicated. Due to the frozen–in condition, the interplanetary and
terrestrial magnetic fields cannot mix and a boundary layer called magne-
topause (MP) develops between the two fields. In the anti–sunward direction
the Earth’s magnetic field is confined in a comet–like cavity, the magneto-
sphere (MSP), at which the solar wind is deflected by the geomagnetic field.
The outer boundary of the MSP occurs at about 10 RE, where RE denotes
the Earth’s radius. The geomagnetic field is swept into space in the form of
a huge cylinder, many millions of kilometers in length, known as the magne-
totail. The MP separates cold (∼ 100 eV ) and dense (∼ 30 cm−3) plasmas
embedded in the magnetosheath magnetic field lines from hot (∼ 1 keV )
and tenuous (∼ 1 cm−3) plasmas in the magnetosphere. Fig. 1.1 shows a
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Figure 1.1: A sketch of the solar wind–Earth system (left and right both). The
bow shock separates the supersonic solar wind from the shocked and thermalized
plasma, namely the magnetosheath (MSH). Going toward the Earth, then, the
magnetopause (MP) is the layer that separates MSH from the region dominated
by the Earth magnetic field, namely the magnetosphere (MSP).

cartoon of the SW–Earth interaction. The interaction between the MSP and
the MSH is of great interest for scientific investigations, due to the presence
of a large amount of nonlinear phenomena as: plasma instabilities [16–18],
vortex generation and merging [10], nonlinear waves [14], emergence of co-
herent structures [15], and in general for the occurrence of a wide spectrum
of large–amplitude fluctuations [19, 20].

1.1.1 The turbulent layer of the magnetopause

The MP is a surface whose location and shape are locally prescribed by
the balance between solar wind and magnetospheric pressures. Across the
MP the magnetic field changes orientation and magnitude, thus the MP is
embedded in a current layer. In normal conditions the MP is an impene-
trable boundary due to the frozen–in condition for both the solar and the
magnetospheric plasmas. Though valid, this picture provides only a first or-
der approximation. There is in fact much evidence that solar wind plasma
penetrates through the MP. Also magnetospheric plasma has been observed
outside the magnetopause in the magnetosheath boundary layer. Several
processes have been proposed to explain this transfer of plasma across the
MP [21], but the problem is not yet completely understood.
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Figure 1.2: Artist’s impression of the Cluster spacecraft.

In the last years decisive advances in the magnetospheric physics were ob-
tained from the multi–point Cluster project1 [22]. It is a SW–magnetospheric
mission with four identical spacecrafts in which they move along their orbit in
a tetrahedrical configuration with variable inter–spacecraft separation. Clus-
ter satellite so allows the study of structures such as magnetospheric bound-
aries and was the first satellite that gave informations about currents. The
structure of satellites allow us to obtain several interesting information about
plasma dynamics, and is currently investigating the small–scale structure of
the Earth’s plasma environment, such as those involved in the interaction
between the SW and the magnetospheric plasma [23], in global magnetotail
dynamics [24], in cross–tail currents [25], and in the formation and dynamics
of the neutral line and of plasmoids [26]. In Fig. 1.2 an artistic representa-
tion of the 4–satellites system is shown. A sketch of Cluster orbit is shown
in Fig. 1.3.
The MP is a turbulent “oscillating” boundary layer and when this bound-

1The Cluster mission was first proposed in November 1982 in response to an ESA
Call for Proposals for the next series of science missions. The idea was developed into a
proposal to study the cusp and the magnetotail regions of the Earth’s magnetosphere with
a polar orbiting mission. The Cluster idea developed into a proposal and then a mission.
In 1996, Cluster was ready to be launched.
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Figure 1.3: Cluster orbits in two different period of the year.

ary moves over a spacecraft, its instruments will record abrupt changes in
magnetic field and plasma properties, but as the speed of the boundary mo-
tion is unknown a–priori, one cannot determine its thickness [27]. Using the
timing of the crossings recorded by the four Cluster spacecraft, we can di-
rectly determine the orientation and velocity of the magnetopause, and from
these informations we can calculate its thickness. Together with the known
changes in the magnetic field across the current layer one can also compute
the net electric current flowing within the MP. The MP thickness is highly
variable, it ranges from 200 km in the sub–polar point to 3000 km in the
dusk flank [28–31].
The dusk flank of the MP, as shown in Fig. 1.4, is characterized by the pres-
ence of strong gradients in the magnetic and velocity field, due to the strong
difference between shocked solar wind and the Earth magnetic field region.
Along with this magnetic field variation, due to a total pressure balance, a
density gradient is usually observed at the same location or slightly shifted.
Therefore, on a very short distance (a few Larmor radii), most parameters
undergo discontinuities. All these discontinuities are able to trigger instabil-
ities, and it has been supposed that these instabilities are the explanation
of the increasing level of electromagnetic turbulence that is observed on the
MP. The boundary regions are a fundamental piece of the system, since they
are the gateway for energy and particles, but they are also the most difficult
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Figure 1.4: February 15–16, 1996: dusk side inbound crossing of the MP by
Interball–Tail spacecraft. It’s shown following Interball–Tail data: (a–d) the mag-
netic field magnitude and its GSE (Geocentric Solar Ecliptic reference system)
components, (e–g) the GSE ion velocity components, (h) the ion and electron den-
sities n+ and n−, and (i) the ion and electron temperatures T+ and T−. The MP
crossing (labeled ‘MP’ in the top figure) occurs near 22 : 50UT (Universal Time)
and is identified by large magnetic field changes. This MP crossing is followed by
four distinct transients (labeled A, B, C, and D), interpreted as the signature of
high–amplitude solitary fluctuations [32].
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regions to explore. The MP plays a key role in the exchanges between the
solar wind and the Earth environment, and in this region many nonlinear
phenomena were observed: magnetic field lines reconnection [33], Kelvin–
Helmholtz instability [34–36], shock waves [37], plasma turbulence [38], and
solitary traveling structures [39, 40]. The magnetospheric region is governed
by a complex dynamics, and we will describe these nonlinear phenomena in
Chapter 2.

1.2 Laboratory plasmas

Revived interest in plasma physics in the United States began in 1952 with
the attempts of a program, then classified, known as Project Sherwood [41,42],
to develop a controlled thermonuclear fusion reactor. Similar programs were
started in England, France, and Russian about the same time. Since 1952, the
development of a controlled fusion reactor began one of the more challenging
practical applications of plasma physics. Nowadays several kind of plasma
reactors exist, as for example: Tokamak, Reversed–Field Pinch (RFP), Stel-
larator and some linear devices.
A tokamak is a machine producing a toroidal (“doughnut–shaped”) mag-
netic field for confining a plasma. The term tokamak is a transliteration
of a Russian word TOroidalnya KAmera ee MAgnetnaya Katushka (toroidal
chamber in magnetic coils)2 [43]. The tokamak is characterized by azimuthal
(rotational) symmetry and by the use of the plasma current to generate the
helical component of the magnetic field necessary for a stable equilibrium.
This can be contrasted to another toroidal magnetic confinement device, the
stellarator, which has a discrete rotational symmetry and in which all of the
confining magnetic fields are produced by external coils with a negligible cur-
rent flowing through the plasma. Ions and electrons in a tokamak plasma
are at very high temperatures and, correspondingly, have very significant ve-
locities. Magnetic confinement fusion devices exploit the fact that charged
particles in a magnetic field experience a Lorentz force and fall into spiral
paths along the field lines. In order to produce continuous fusion reactions,
the device must ensure that the hot plasma does not lose its particles from
the core (hotter region). This is the well–known, yet unsolved, confinement
problem.

2It was invented in the 1950s by Igor Yevgenyevich Tamm and Andrei Sakharov (who
were in turn inspired by an original idea of O.A. Lavrent’ev).
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Figure 1.5: An image of the innerpart of the JET tokamak (left and right). On
the left, the structure of the device is shown; on the right is displayed the plasma
during a shot. The visible light–emitting areas are actually the coolest, since the
hotter plasma in the middle of the tube emits X–rays.

In Fig. 1.5 the vacuum chamber of the JET tokamak3 is shown. This is one
of several kind of magnetic confinement devices and, at the present time, the
leading candidate for generating fusion energy.
Generally in tokamaks, via a system of coils, a strong toroidal magnetic field
is obtained, with a small (more or less zero) poloidal component, as shown in
Fig. 1.6. The toroidal field effectively stiffens the plasma against instability.
The most important idea of tokamaks is to obtain a more efficient equilib-
rium of plasmas, but in practice, numerous instabilities occur [44, 45], some
of which are not yet fully understood [14].
Inside an operating fusion reactor, part of the energy generated is used to
maintain a constant plasma temperature as fresh deuterium and tritium (typ-
ical fusion materials) are introduced. However, in the startup of a reactor,
either initially or after a temporary shutdown, the plasma will have to be
heated to its operating temperature greater than 10keV (over 100 million
Celsius degrees). In current magnetic fusion experiments insufficient fusion

3Situated at Culham in the UK, the Joint European Torus (JET) is run as a collabo-
ration between all European fusion organizations and with the participation of scientists
from all the globe.
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Figure 1.6: The tokamak system of coils (top panel), poloidal and toroidal currents
(middle panel) and the resulting magnetic field configuration (bottom panel).
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Figure 1.7: A sketch of the tokamak geometry. The tokamak configuration is
characterized by the presence of a strong toroidal field BT . R0 and a are the
major and the minor radius respectively.

energy is produced to maintain the plasma temperature and instabilities pre-
vent operation. Consequently, the devices operate in short pulses and the
plasma must be heated again in every pulse.
Here it is useful to define some plasma parameters that are frequently used.
An important geometric parameter of tokamak configurations is the aspect
ratio, i. e. the ratio between major radius R0 and minor radius a, as sketched
in Fig. 1.7. Generally, both R0 and a have typical values that range from
0.1 to some meters. Typical aspect ratio values for toroidal plasma devices
are listed in Table 1.1. The plasma parameter β is the ratio between ki-
netic pressure Pkin and magnetic pressure B2/2µ0. In general, in laboratory
plasmas the latter is higher than the former, thus the plasma β is very low,
roughly β ' 10−1. The safety factor

q(r) =
rBT (r)

aBP (r)
(1.1)

where BP and BT are the poloidal and toroidal magnetic field respectively,
measures the number of times a field line goes around a torus, the long way
for each time around the short way.
Reversed–Field Pinches (RFPs) are one of the possible magnetic confine-
ment alternative to the tokamak configuration. The RFP arrangement is
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very similar to the one of tokamaks, but the device uses the electromagnetic
properties of the plasma itself to self–sustain the confining magnetic field.
RFP systems are being studied for possible low magnetic field, high plasma
density confinement designs and to enhance understanding of the physics
of toroidal confinement in operating regions that are outside the range of
standard tokamak devices. The RFP configuration is less developed than
the tokamak one but offers potential advantages. In fact it requires a much
weaker magnetic field, which may result in a significant advantage for fusion
reactors. However, the reduced magnetic field also reduces plasma stability
and confinement and other problems can occur during plasma discharge.
The magnetic configuration is axisymmetric and the plasma is confined by
a combination of a poloidal field, produced by the plasma current flowing
around the torus, and a toroidal field, produced by currents flowing both
in the plasma and in external coils (similar to tokamak’s system shown in
Fig. 1.6). Schematically, the RFP system is similar to a tokamak and consists
of a toroidal vessel, in which the plasma is formed, surrounded by a toroidal
winding that generates the initial toroidal field, and coupled to a coaxial
transformer whose secondary winding is the plasma current. The configura-
tion gets its name from the fact that the toroidal magnetic field in the outer
region is reversed with respect to its direction in the plasma core, as shown
in Fig. 1.8. Due to the inversion of BT near the boundaries of the device,
large amplitude fluctuations in magnetic and velocity fields are present and
strong turbulent processes develop (edge turbulence).
The magnetic configuration of plasma confinement is characterized by the
fact that the poloidal magnetic field BP (or Bθ) is of the same order of
magnitude of the toroidal component BT (or Bφ), that is 〈BT 〉 ' 〈BP 〉. In
Table 1.1 some RFP devices and their aspect ratio parameters are reported.
Linear devices are magnetic configurations in which the plasma is confined by
a linear magnetic field. With respect to tokamak and RFP the confinement
in such devices is very reduced due to the loss of plasma at the boundaries of
the camera. The mean goal of linear devices is to study plasma instabilities
and other complex phenomena, using a simplified geometry with respect to
toroidal magnetic structures. An example of linear device is LAPD4 [46].

4The LArge Plasma Device (LAPD) is part of the Basic Plasma Science Facility
(BaPSF) at the University of California, Los Angeles. The LAPD is a modern, large
plasma device constructed by Walter Gekelman (the director) and his staff of research
scientists and technicians. The first plasma was achieved in July 2001 and the machine is
now in operation.
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Figure 1.8: Representation of the total magnetic field in the RFP configuration.
Toroidal (BT ) and poloidal (BP ) components of the magnetic field are of the same
order, and BT (see inset) changes sign near the conducting shell. The resultant
magnetic surface is helicoidal. This is a solution of a magnetostatic equilibrium [14].

RFP device aspect ratio

MST (USA) R0/a = 2.88
TPE–RX (J) R0/a = 3.82
RFX (EU) R0/a = 4.35

EXTRAP–T2R (EU) R0/a = 6.89

Table 1.1: Some RFP devices and corresponding aspect ratios.
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Figure 1.9: The LAPD device (left) and its internal camera (right).Typical plasma
parameters are ne ∼ 1× 1012cm−3, Te ∼ 5eV , Ti ∼ 1eV , and B <

∼ 2kG. The gases
used in these experiments are helium and neon.

Figure 1.10: A schematic of the LAPD showing the experimental geometry. The
cathode is the source of plasma that is injected in the vacuum chamber, where a
strong magnetic field exists. A floating plate can be closed in order to produce a
density gradient.

Figure 1.9 shows this device. This linear reactor is an 18−m–long, 1−m–
diameter cylindrical vacuum chamber surrounded by 90 magnetic–field coils.
The length of the LAPD plasma column can be changed by closing a hinged,
electrically floating aluminum plate located 10 m from the cathode, as shown
in Fig. 1.10. In experiments the plate is partially closed and used to limit
the plasma column. When the plate is partially closed, there is no parallel
to the magnetic field source of plasma for the region behind the plate and
any observed plasma density must come from cross–field transport.





Chapter 2

Nonlinear Dynamics of Hall
MHD Equations: Magnetosonic
Fluctuations as Observed in
Space Plasmas

Small–scale fluctuations have been commonly observed in a variety of space
plasmas [47,48], for example in the solar wind (SW) [13,49,50], in the Earth
magnetopause (MP) [51, 52], in auroral regions [53, 54], in dense molecular
clouds [55] and in accretion disks [56]. This kind of fluctuations are well
described through Hall–Magnetohydrodynamics (HMHD) equations [57], in
which the effect of ion inertia is taken into account. The model, derived
from the two–fluid MHD description by neglecting the electron inertia, dif-
fers from the traditional Magnetohydrodynamics (MHD) equations for the
introduction of a new characteristic length: λi = c/ωpi (c is the speed of light
and ωpi the ion plasma frequency), namely the ion skin depth (or ion inertial
length).
Among other, an interesting physical application of HMHD model might be
the magnetopause boundary layer (MPBL) where, for typical parameters,
λi is a non–negligible fraction of the boundary layer thickness [28, 29]. The
ion skin depth can range in the MPBL from 30km to 250km [39, 40, 58].
If ∆MP represents the width of the inhomogeneous zone, typically one has:
∆MP/λi ' 2÷20 [28,40]. This is one of the best cases in which the inclusion
of the Hall term in Ohm’s law is a must. In this case one can write the Ohm’s

23
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Figure 2.1: A sketch of the magnetopause boundary layer (MPBL) in the dusk
flank. In the magnetosheath (MSH) the shocked and thermalized solar wind (SW)
flows, adjacent to the MPBL, with supersonic and super–Alvénic speed. In the
magnetosphere (MSP), the region dominated by strong magnetic field and low
density, the plasma is more or less stagnant.

law as:

E = −V ×B +
1

n e
J×B (2.1)

where, as usual, E is the electric field, J is the current density field, V is
the ion bulk velocity, B the magnetic field and n the plasma density. The
Hall correction is represented by the second term in the right–hand side of
Eq. (2.1). A direct consequence of the introduction of this term is that the
magnetic flux is no longer frozen into the ions, but in the electron fluid, which
moves with the velocity Ve = V − J/(n e). By neglecting the term J × B
in Eq. (2.1), one neglects an important nonlinear coupling between density,
velocity and magnetic field [59]. Therefore, this term plays a very important
role in describing small–scales of highly turbulent plasmas. It gives rise to
interesting plasma phenomena as filamentations [60–62], an increase of the
magnetic reconnection rate [63–67], relaxation processes [68–70] and acceler-
ated dynamo action [71, 72].
At the MPBL the Cluster satellite reveals the existence of large–amplitude
fluctuations of density and magnetic field [39, 40]. These structures were
detected in the MSH, after the bow shock going from the Sun toward the
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Earth, under conditions of low–magnetized plasma (β ' 8÷10). Data shows
increases of magnetic field and plasma density 2–5 times the ambient values,
or local decreases (holes) by 50–80 %.
These structures were detected also at the dusk flank of the MSP, where
β ' 0.3. In Fig. 2.1 a typical configuration of the dusk flank is sketched.
The satellite reveals the presence of high magnetic field fluctuations (up
to 85%), accompanied with enhancements of the plasma density, that were
propagating from MP to magnetosphere. In this region magnetic fluctua-
tions are lower and these structures are more rare to observe, in fact, with
respect to magnetosheath observations, they looks like solitary events. Some
authors [39,40] identified these objects as solitons that propagate slowly with
respect to the Alfvén speed and have perpendicular size of the order of few
λi. Stasiewicz et al. [40] provided a theoretical description of these observa-
tions by using a linearized HMHD model [39, 73, 74].
In this Chapter we use direct numerical simulations to investigate the impor-
tance of Hall effect on the nonlinear dynamics of the MPBL. The nonlinear
dynamics of a compressible Hall Magnetohydrodynamic plasma is investi-
gated in a 2 + 1

2
D geometric configuration1. Two main features occur at

small–scales where the Hall effect dominates, namely: i) an increase of the
compressibility of the system and the breakdown of the strong link between
velocity and magnetic field typical of usual MHD; ii) the excitation of small–
scale fluctuations characterized by an anti–correlation between density and
magnetic field intensity. These features evidence the excitation of a quasi–
perpendicular magnetosonic turbulence that can be interpreted as the small
scale signature of the break down of the nonlinear energy cascade due to
Hall effect. Finally, we perform comparison between our model’s results and
Cluster’s data, which turn out to be in very good agreement.

2.1 Kelvin–Helmholtz Instability at the MP

In the MPBL, due to the presence of a strong velocity shear (see data in
Fig. 1.4 and the cartoon in Fig. 2.1), a large scale Kelvin–Helmholtz Instabil-
ity (KHI) [16, 17, 75–77] may develop2. Observations have shown signatures

1Is a configuration in which all quantities depend only on two coordinates but vector
fields still retain three components.

2The KHI can occur when velocity shear is present within a continuous fluid or when
there is sufficient velocity difference across the interface between two fluids. The theory
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Figure 2.2: Detection by Cluster of rolled–up plasma vortices on November, 20th
2001 (20:26–20:42 UT) [34]. Time progresses to the left, and is translated into the
position of the spacecraft as follows. In Earth’s rest frame, the spacecraft motion
is neglected as compared to that of the vortices. −x is in the direction of the
vortex motion in the spacecraft frame. The vortex velocity, Vmean, is computed
by averaging over the above interval the ion bulk velocity vectors measured by
C1, C3 and C4 (see Chapter 1). y is orthogonal to both x and the direction of
the averaged magnetic field, Bmean, and points outward along the MP normal.
Panel a, omni–directional energy spectrogram of ions observed by the Cluster 1
spacecraft (C1); panel b, ion temperature obtained by C1. The blue arrows mark
approximate locations of the MP; panel c, plasma density variations. Red bars
indicate instances when C1 observed higher density than C3 and C4; panel d,
plasma density color–coded, projected along the spacecraft trajectories; panels e,
f , x–y projection of the velocity and magnetic field deviations from Vmean and
Bmean, respectively (C1, black; C2, red; C3, green; and C4, blue). The red dashed
vertical lines mark the approximate center of the vortex; panel g, z component of
the measured magnetic field.
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of this instability quite often in the MP [34, 78]. Typical length scales of
the KHI are very large, that is around 10RE (RE being the Earth’s radius).
These scales correspond, based on the Taylor hypothesis, to frequencies less
than 0.01Hz. As in usual fluid flows, a nonlinear evolution of the instability
drives a turbulent energy cascade towards small–scales, and a consequent for-
mation of a turbulent spectrum. The KHI may occur along the flanks of the
MSP, where the shocked SW is flowing fast relative to the stagnant magne-
tospheric plasma. Multiple and quasi–periodic encounters by spacecraft with
the MP and vortex–like flow perturbations near the MP have been observed,
and are often interpreted as surface waves or vortices excited by the KHI.
Consequently, the KH vortices evolve only along the low–latitude MP and
only low–latitude portions of the magnetospheric and solar–wind field lines
are entrained into the vortices, inducing characteristic field perturbations in
regions off the equatorial plane where the Cluster spacecraft were located.
The profile of density, velocity and magnetic field, observed when a satellite
passes through the center of the KH vortices in a direction parallel to the
MPBL, is a multiple and quasi–periodic signal, as reported in Fig. 2.2 [34].

2.2 Observations of magnetosonic structures

in space plasmas

The Cluster spacecraft detected several slow–mode magnetosonic structures
that were traveling across MPBL. These structures, characterized by a strong
anti–correlation between density and magnetic field, resemble slow mode
that are a linear solution of the MHD theory [14, 41]. They were identified
by some authors [39, 40] as solitons, i. e. solitary structures that travel in a
background medium, in a persistent way, preserving their shape. Solitons are
fluctuations that develop via an equilibrium between nonlinearities and dis-
persive effects [79, 80]. Because the multi–point capabilities of Cluster make
it possible to determine the velocity of the structures, these authors estimate
their propagation angles and velocities. In the MSH there is a large num-
ber of the above structures associated to both weaker and stronger magnetic
field intensities [81]. Moreover, during the bow shock and MSH crossing of 3

can be used to predict the onset of instability and transition to turbulent flow in fluids
of different densities moving at various speeds. Helmholtz studied the dynamics of two
fluids of different densities when a small disturbance such as a wave is introduced at the
boundary connecting the fluids.
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Observation 1 Observation 2

(magnetic field) B0 40 nT 20 nT
(density) n0 1 cm−3 40 cm−3

(Alfvén velocity) VA 800 km/s 60 km/s
(ion skin depth) λi 200 km 40 km

(electron skin depth) λe 5 km 1 km
(pressures ratio) β 0.25 10
satellite position (−4, 17, 5)RE (10, 3.8,−7.6)RE

Table 2.1: Typical plasma parameters near the MPBL. The first column is related
to Cluster observation of Ref. [39], in the dusk flank of the magnetosphere. In the
second column (Observation 2) plasma parameters of the post–bow shock in the
magnetosheath [40] are reported. The position of satellite is expressed in the GSE
system (see note 3).

February 2002, Cluster spacecraft observed other very interesting stochastic
fluctuations, with an anti–correlation between density and magnetic field.
During this event the four Cluster satellites, separated at a distance of 200
km, were traveling at low speed (∼ 2km/s) towards the Earth. They passed
through the foreshock and entered the main shock region at a radial distance
of 13.5RE. The Cluster satellites encountered during this passage hundreds
of large amplitude fluctuations [82]. Fig. 2.3 shows an example of a turbu-
lent signal measured by Cluster in the MSH. The observed plasma parameters
during this event are reported in Tab. 2.1 (Observation 2). The data analysis
shows that the velocities of the structures in the plasma frame are not neg-
ligible (of the order of 0.1÷ 0.3VA) and have directions quasi–perpendicular
to B (with an angle α ' 90o with respect to B). Determination of the
velocity of the structure from the time difference of measurements on the
four spacecrafts gives V = (−40,−110, 0) km/s in the GSE system3. This
means that perturbations move with respect to the plasma at velocity about
10÷ 20 km/s. The propagation direction with respect to the magnetic field
is found to be α ' 84o ± 3o.
These fluctuations were detected by the Cluster spacecraft also at the dusk

3The Geocentric Solar Ecliptic System (GSE) has its X–axis pointing from the Earth
towards the sun and its Y –axis is chosen to be in the ecliptic plane pointing towards dusk
(thus opposing planetary motion). Its Z–axis is parallel to the ecliptic pole.
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Figure 2.3: Cluster measurements of large amplitude magnetosonic structures in
the MSH, shown with total magnetic field (black) and plasma density (red).

flank of the MSP. They look like a pressure balance between strong magnetic
field depressions (up to 85 % ) and enhancement of the plasma density and
temperature [80]. On November–25th, 2001, the satellites were moving near
the MP, in the magnetospheric region. The ambient plasma parameters are
described in Tab. 2.1 (Observation 1). In this period the satellites reveal the
presence of strong perturbations in the magnetic field which propagate with
a speed of about ∼ 250km/s over slowly moving satellites (1.3km/s). The
depression of magnetic field was −85% B0, and propagate along a quasi–
perpendicular direction with respect to B0. In Fig. 2.4 a moving structures,
seen by two spacecraft (C2,C44) with a relative time delay of 6s which corre-
sponds to a velocity 250km/s (deduced from the known separation between
satellites) is shown [80]. The structure have a size of few ion inertial lengths.
Structures are observed inward from the MP with tail–ward boundary layer
flows (negative in the x–GSE direction). The adjacent flow in the MSH is
much higher and reaches 800km/s. This fluctuation in the magnetic field is
accompanied by an increase of the plasma pressure through both the tem-
perature and the number density derived from the satellite potential. The
plasma density is represented in Fig. 2.5. From projections of the velocity
vectors onto the inter–spacecraft position vector, one can estimate the struc-

4Labels C1, C2, C3 and C4 corresponds to 4 Cluster satellites.
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Figure 2.4: A magnetic depression observed by Cluster spacecraft C2 (dashed line)
and C4 (solid line) in the total magnetic field. The structure moves with velocity
u0 ' 250km/s and has a width of ∼ 10λi. The position of Cluster satellites was
(−4, 17, 5) RE in the GSE coordinate system.

Figure 2.5: Density enhancements (s1, s2, s3) that correspond to three deep
magnetic holes similar to that in Fig. 2.4. Peak labeled s3 corresponds to C2 in
Fig. 2.4.
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ture’s speed relative to the medium as 80km/s, that is a small ratio of the
local Alfvén speed, and therefore could correspond, in the linear approxima-
tion of MHD theory, to the slow magnetosonic mode [14, 17, 20].
Stasiewicz et al. conjectured these observations in the frame of nonlinear
waves and solitons in collisionless plasmas [82–84]. They took into account
two–fluid equations of magnetohydrodynamics (Hall MHD). Natural wave
modes at frequencies below the ion gyrofrequency are the Alfvén wave and
two magnetosonic modes (slow and fast) [57]. For propagation at sufficiently
large angles to a uniform magnetic field, it was shown using reductive per-
turbation theory that nonlinear dispersive fast and slow MHD waves obey
to a Schrödinger–like equations. In this case the dispersion of magnetosonic
waves comes from the ion perpendicular inertia caused by the finite frequency
effect (the Hall effect in the generalized MHD description), while nonlinear-
ities arise due to the ion advection and divergence of the nonlinear ion flux,
as well as from the nonlinear Lorentz forces acting on the electron and ion
fluids. Following this interpretation, for quasi–parallel propagation the dy-
namics of modulated Alfvén wave packets is governed by the DNLS5 model.
It is well known that, when the Hall effect is taken into account, the two basic
MHD propagation modes (slow and fast) are modified and a third mode can
propagate [14,41,86], namely the slow mode. The finite frequency effects are
not included in ideal MHD: to take them into account, the ion inertia terms
must be added in the Ohm’s law, thus modifying MHD into Hall–MHD. Of
course using such a model, the calculations are less complicated than in a
fully kinetic model but not all physical effects are included in the model:
spatial effects related to the ion Larmor radius ask for a different treatment
to be accounted for [87]. Nevertheless, the Hall–MHD model is expected
to provide a good description of the problem, as long as we don’t consider
frequencies too close to the multiples of the gyrofrequency.
In addition, when studying MP dynamics, other effects are to be taken into
account simultaneously to get reliable results (as shown in Fig. 1.4): the
magnetopause density gradient, the temperature effects, the magnetic field
inhomogeneity, and the velocity shear must be introduced while remaining
in the framework of ideal MHD.

5The Derivative NonLinear Schrödinger equation (DNLS) was proposed to describe
nonlinear Alfvén waves in plasma [84,85]
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2.3 The compressible Hall Magnetohydrody-

namics

From a theoretical point view, ideal MHD gives a description of the SW/MSP
interaction that is in qualitative agreement with the observations. At the MP,
the β ' 1 and therefore both a cold plasma approximation and the assump-
tion of incompressibility are not fully satisfied. A third assumption has to be
taken off, it is the assumption that the frequency is negligible with respect
to the proton gyrofrequency ωpi. Since the spectrum of the fluctuations ex-
tends up to the lower hybrid frequency [88], it is necessary to include finite
frequency effects in the model and this can be done by introducing the effect
of ion inertial length in MHD equations [89–92].
By combining the density of ions and electrons, fluid equations, whose vari-
ables are the total mass density, center–of–mass velocity and magnetic field,
can be obtained. By using these assumptions one can obtain the following
set of equations:

∂N

∂t
+∇ · (N V) = 0 (2.2)

N mi

[
∂V

∂t
+ (V · ∇)V

]
= J×B−∇ · Ptot (2.3)

where N is the density, V the ion bulk velocity, B the magnetic field, and Ptot
the kinetic pressure tensor. Moreover the Maxwell equation for the magnetic
field is needed:

∂B

∂t
= −∇× E (2.4)

where

E = −V ×B +
1

N e
[J×B−∇Pe] (2.5)

is the Ohm’s law for the electric field. J is the current and Pe the electron
pressure. By using Eq. (2.4) and Eq. (2.5), the following induction equation
is obtained:

∂B

∂t
= ∇×

[
V×B− 1

N e
J×B +

1

N e
∇Pe

]
(2.6)

The “J × B” is the Hall correction, and the term ∇Pe is the first Larmor
radius correction. By the way, as we shall discuss later, if one uses an adi-
abatic closure for the pressure, this last term doesn’t give any dynamical
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information on the system. Equations (2.2), (2.3) and (2.6) are the full set
of the HMHD equations. Together with remaining Maxwell laws, the Ohm’s
law, and an equation of state, they can be used to describe the dynamics of
a plasma in the two–fluid MHD approximation.
The role of the J × B–term is fundamental since its presence means that
there is a coupling between magnetic field, current, and density. In addition
there is no scalar relationship between J and E; there must be a component
of E which is perpendicular to J and B to balance the J×B term. This is
the “Hall effect”. A simple way to investigate the relevance of the Hall effect
is to compare the J×B and the V×B term:

|J×B|
|N eV×B| ∼

(
λi
L0

)(
cs
V0

)(
Te
Ti

)1/2

(2.7)

where cs = (KBTe/mi)
1/2 is the ion acoustic speed, Ti(e) the ion (electron)

temperature, L0 a typical length of the system, V0 is a typical velocity. Since
we assume Te ∼ Ti , we see that in order to neglect the J×B term we must
require (λi/L0) << (V0/cs).

2.3.1 Hall MHD equations in a dimensionless form

Eqs. (2.2), (2.3) and (2.6) can be written in a dimensionless form by intro-
ducing the following relation involving a typical plasma density N0, the large
scale L0 of the system, the Alfvén speed VA related to the mean magnetic
field B0, the Alfvén traveling time τA = L0/VA and a typical mean pressure
P0:

N = N0 n

L = L0l

V = VA v

t = τAt̂

B = B0 b

Pi = P0 pi

Pe = Pe0 pe

E = E0 e = VA B0e

J = J0 j =
B0

µ0L0

j (2.8)
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symbol definition name

VA B0/
√
µ0 N0 mi Alfvén velocity

λi c/ωpi ion inertial length
β 2µ0P0/B

2
0 plasma beta

βe 2µ0Pe0/B
2
0 electron beta

ri λi
√
β ion larmor radius

MA V0/VA Alfvénic Mach number

cs

√
∂P
∂ρ

sound speed

Table 2.2: Some plasma parameters

where n, l, v, t̂, b, pi, pe, e and j are dimensionless quantities. In our numeri-
cal simulations we use the whole set of compressible Hall MHD equations by
using expression (2.1) for the electric field. Assuming an adiabatic closure
for electrons, the term ∇pe does not give contribute to the equation. In fact,
choosing for the electron pressure pe = p = nγ and neglecting constants, it
follows:

1

n
∇(nγ) =

γ

γ − 1
∇
(
nγ−1

)

Now, evaluating ∇ × E for the evolution of the magnetic field, the electron
pressure contribution is vanishing:

∇×EPe = ∇×∇
{

γ

γ − 1
∇
(
nγ−1

)}
= 0

By using plasma parameters in Table 2.2 and (2.8), Eqs. (2.2), (2.3) and
(2.6) read:

∂n

∂t
= −(v · ∇)n− n(∇ · v) (2.9)

∂v

∂t
= −(v · ∇)v +

1

n

[
(∇× b)× b− β0

2
∇ · P

]
+∇ · σ (2.10)

∂b

∂t
= ∇×

[
v× b− λi

L0n
(∇× b)× b− 1

Sµ
∇× b

]
(2.11)

Moreover, to close the set of equations, we assume

Pij = nγδij (2.12)
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The elements of the viscous stress tensor σ in the Eq. (2.10) are

σi j =
1

Sν

[(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3

∂vk
∂xk

]
(2.13)

where Sν = L0VA/ν (ν being the plasma diffusivity) is the Reynolds num-
ber [12]. Of course, magnetic field must be divergenceless:

∇ · b = 0 (2.14)

The quantity Sµ = (4πL0VA)/(c2η) (η being the plasma resistivity) appearing
in Eq. (2.11) is the Lundquist number, namely the analogous of the Reynolds
number for the magnetic field–lines diffusion [14]. As clearly visible from
Eq. (2.11), the Hall term consists of second–order derivatives multiplied by
a small coefficient (λi/L0). The actual value of the dimensionless numbers
Sν and Sµ are large in typical astrophysical situations (106 ÷ 1012). There-
fore, the actual meaning of the coefficients Sν and Sµ, as we will discuss in
the following section, is to represent an artificial viscosity that ensure the
numerical stability of the code.

2.4 The numerical simulation

We integrate Eqs. (2.9)–(2.11) in a cartesian box, as shown in Fig. 2.6. We
study a sheet of plasma on the equatorial plane of the Earth, located at the
flank boundary of the MP, where the solar magnetic field, carried by the
SW, and the magnetic field of the Earth mix together. This region is highly
inhomogeneous, as shown in Fig. 1.4, since the magnetic fields of the Earth
and SW have different intensities and directions. On the other hand, also
the density and the velocity field turn out to be inhomogeneous. Because the
two fluids are in different thermodynamic conditions, the density will change
by going from inside the magnetosphere to the solar wind. Moreover, since
the velocity of the solar wind is much higher than the plasma velocity inside
the magnetosphere, also the velocity field will be sheared in the boundary
layer zone, like the situation sketched in Fig. 2.1.
Basically, we want to describe the dusk flank of the MP. We work in a 2+ 1

2
D

cartesian geometry configuration: vector quantities are represented by three
cartesian components, but only variations along two independent directions
(x and y) are allowed, namely all quantities are considered as constant along
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Figure 2.6: In the upper figure is represented the MP flank along with the geo-
metrical configuration of the simulation. Down is represented our reference frame
with the magnetic field vector.
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Figure 2.7: The density (red) and the magnetic field intensity (black) in the 1–D
tgh–equilibrium.

z. In our model x and y axes have opposite directions with respect to the
GSE system. The y direction is perpendicular to the MPBL. The magnetic
field, due to the presence of the SW flow, is tilted by an angle θ with respect
to the z–axis. Due to normalization (2.8), variables x, y ranges between 0
an 1.
In order to identify these entry processes it is first necessary to build a realistic
equilibrium model of the MP, then to perturb this equilibrium in response to
SW variations. The simplest equilibrium state of the MP is that of a one–
dimensional tangential discontinuity of finite thickness, that qualitatively
simulates spacecraft observations like that reported in Fig. 1.4. Hyperbolic
tangents are the best choice to simulate a jump–like profile in a fluid–like
formalism [93], so we will build a tgh–equilibrium. We use the following
expressions for the equilibrium density n0(y) and velocity field v0(y):

n(x, y, t = 0) = n0(y) =
1

2

[
1 + α− (1− α) · tanh

(
y − 0.5

∆

)]
(2.15)

v(x, y, t = 0) = v0(y) =
Av
2
·
[
1− tanh

(
y − 0.5

∆

)]
ûx (2.16)

where ûx represents the unit vector along the x direction, ∆ is the width of
the inhomogeneous zone, α and AV are parameters that determine the jumps
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Figure 2.8: Magnetic field components in the 1–D tgh–equilibrium.

Figure 2.9: Velocity field components in the 1–D tgh–equilibrium
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in the density and velocity profiles, respectively. Due to the adiabatic ap-
proximation, defining the density means also defining the kinetic pressure. In
order to obtain an ideal equilibrium6, we need to balance the inhomogeneous
kinetic pressure with the magnetic pressure. Thus, we define the equilibrium
magnetic field in the following way:

b(x, y, t) = b0(y) =
√
Cb − βnγ0(y) (cos θûz − sin θûx) (2.17)

where θ is the angle between magnetic field and z axis as seen in Fig. 2.6. Cb
is an arbitrary constant that must be imposed at boundaries from the total
pressure balance

Cb = b2
0(y∗) + βnγ0(y∗)

where y∗ is the value of y at the boundary. The equilibrium profile of the
density and magnetic field strength is reported in Fig. 2.7. As described
by Eq. (2.17), the magnetic field has two components, and the component
normal to the boundary layer is zero. Fig. 2.9 shows the velocity shears
described by Eq. (2.16): only the x–component of v is non vanishing. The
profile defined by Eqs. (2.15)–(2.17) is a stationary solution of Eqs. (2.9)–
(2.11), when neglecting dissipative terms.
The equilibrium configuration specified above is forced, during the simula-
tion, by averaging quantities along the periodic x direction. Then, the mean
values are subtracted from the fields and replaced with expressions described
by Eqs. (2.15)–(2.17). This procedure permits to retain constant in time the
mean profile of n, v and b. This procedure is equivalent to a large scale
forcing. The aim of adding forcing terms to Eqs. (2.9)–(2.11) is to obtain a
statistically stationary state, that is a balance between large–scale injection
and the small–scale artificial dissipation.
We perturbed the equilibrium described by Eq. (2.15), (2.16) and (2.17) with
the following superposition of fluctuations:

vy(x, y, t = 0) = Avy

3∑

mx=1

sin(2πmxx + ψmx) (2.18)

where ψmx are random phases, Avy = 10−4 is the amplitude of the perturba-
tion and mx are wavenumbers in the periodic direction.

6This equilibrium is an exact solution of Hall MHD equations without dissipative terms.
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2.4.1 The numerical technique

The code uses second order finite difference schemes to compute spatial
derivatives. Since the final state of the evolution could be highly turbu-
lent and shock waves will be probably present, one would need to use high
viscosity and resistivity to ensure the numerical stability of the code. How-
ever, because of the presence of the Hall term in the equations, which acts as
a dispersive filter on small–scale, we cannot use high values for the diffusiv-
ity, because the unrealistic diffusion, which allows the code to be numerically
stable, would filter out the contribution of the Hall term in the spectrum.
We reached a good compromise in such a matter through the use of up-
wind derivatives for the advection terms [94–96] and putting the dissipative
terms on wavevectors which are at the limit of the Nyquist frequency in the
spectra [97]. In fact, the upwind scheme alone would not help, since the
Hall term cannot be put in hyperbolic form. Then we must avoid using
Godunov–like [96, 98, 99] and shock capturing schemes [100]7. Thus, we need
anyway some dissipation to prevent numerical instabilities due to whistler
waves [16, 57]. Precisely, we use forward or backward (upwind) differenc-
ing schemes [95], depending on the wave propagation. Moreover we still
retain viscosities to act as a filter on high frequency waves that cannot be
“captured” by the upwind scheme. This scheme is often used to integrate
equations in which a centered finite difference scheme fails, as for example
Burgers equations [95] in which shocks destabilize simulations. Moreover it
can be shown that a non–centered scheme, in which derivative computing
depends by the velocity of propagation, is very stable with respect to the
Courant condition [94]. How the algorithm chooses points that must be used
for spatial derivatives is sketched in Fig. 2.10. We use a second order Runge–
Kutta scheme for time derivatives [97].
As usual with finite difference schemes, one needs some special technique in
order to preserve a divergenceless magnetic field at each time step [102,103].
We use a projection–like method [103]. The Brackbill and Barnes technique
can be explained through five steps as follows:

7This kind of numerical techniques can only be applied to pure hyperbolic equations,
in fact they need a solver (for further details see Roe–type solvers in the Ref. [101]) that
compute the total flux for every finite volume to evaluate derivatives. Compressible Hall
MHD equations are not purely hyperbolic, due to the presence of the dispersive term, so
these schema are inadequate.
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Figure 2.10: A representation of the up–wind technique for advection derivatives
[Vx·∂xdexf(xi)]. Points used to evaluate the spatial derivative of a variable depend
on the advection velocity, i. e. the algorithm uses points that stay up the wave.

0) Assume that b∗ = ∇ × A + ∇φ, where A is the vector potential and
φ a scalar function.
1) Evaluate divergence–affected b∗ by integrating Eqs. (2.9)–(2.11).
2) Evaluate the error function ε = ∇ · b∗.
3) Invert the equation ∇2φ = ε to obtain φ.
4) Obtain the divergenceless magnetic field bnew computing bnew = b∗−∇φ.

Similar results can be obtained by adding an evolution equation for the di-
vergence of the magnetic field containing dissipative terms which make the
non–solenoidal part of the field to diffuse quickly in time [102, 103]. This
ensures the divergenceless condition for the magnetic field at the same order
of the numerical scheme. In this way one can add to Eqs. (2.9)–(2.11) the
diffusion equation

∂φ

∂t
=

1

Sφ
∇2φ−∇ · b (2.19)

and filter out divergence, in a similar way as described before. The parame-
ter Sφ is an arbitrary viscous–like coefficient.
We use periodic boundary conditions along the x direction and zero–gradient
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Figure 2.11: The y–profile of Reynolds number Sν and Lundquist number Sµ.

The expression is Sξ(y) =

{
(ξb − ξ)

[
e−

y2

2σ + e−
(y−1)2

2σ

]
+ ξ

}−1

,with ξ = ν, µ. The

parameter ξb is the viscosity (resistivity) at boundaries, and σ is the width of
gaussians. We choose for this simulation σ ' 8 × 10−2, ξ ' 6.3 × 10−4 and
ξb ' 5.2× 10−3.

boundary conditions in the y direction (∂/∂y = 0) for all quantities, except
for the y component of the magnetic field, which must to fulfill the diver-
genceless condition on the boundaries, as well. In this case, we first calculate
the x component of the magnetic field, then the boundary condition for the
y component is imposed from the relation (2.14). In addition we impose a
decreasing Reynolds (Lundquist) number at the y boundaries to reduce nu-
merical noises due to reflection or unrealistic boundary layers. The profile of
Sν and Sµ is a combination of gaussian functions, as shows Fig. 2.11.
The system of equations (2.9)–(2.11) is integrated on a numerical mesh of
Nx ×Ny = 512× 528 gridpoints, Nx and Ny being the number of gridpoints
along the x and y directions, respectively. The integration domain has ex-
tension: [0, 1]× [0, 1]. The time step used in the simulation is ∆t = 1× 10−6.
This value is very small due to the effects of whistler waves on the CFL con-
dition that becomes ∆t ≤ (Nλi∆x

2)/VA [104]. All the runs are performed
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using parallel computing with MPI directives8. We fixed, for the equilibrium
described by Eqs. (2.15)–(2.17), in all simulations: ∆ = 6 × 10−2, α = 0.7 ,
Av = 1.7, θ = π/4 rad. The arbitrary constant Cb in the Eq. (2.17) is choosed
in order to obtain the value of the magnetic field equal 1 at the boundary
y = 1, that is Cb ' 1.8.
The plasma parameter β(y) = 2β0n

γ(y)/B2(y) represents the effective ratio
between kinetic and magnetic pressure. Due to inhomogeneity of density
and magnetic field, it changes along y directions. Free parameters β0 and α
are chosen in order that the plasma equilibrium parameter β(y) varies in the
range [1.5÷ 7.5] across the y directions. This range overlaps, with good ap-
proximation, Cluster observations between the magnetosheath (β = 4÷ 10)
and magnetosphere β = 0.3÷ 1 [16, 39, 40]. Moreover, in our simulations we
use: L0/λi = 30, namely the integral length scale is 30 times longer than
the ion skip depth. This also means that Hall effect should dominate the
behaviour of the plasma at length scales typically of order: k−1

H ∼ L0/λi.
The ratio between “our” MP thickness and λi is ∼ 3. Of course the choice of
parameters is based on a order of magnitude assessment, however we stress
that MP parameters are highly variable both in time and space, so, a precise
valuation is practically impossible.

2.5 Results of the simulations

2.5.1 The starting point of the energy cascade

The tgh–equilibrium, described by Eqs. (2.15)–(2.17), is unstable with respect
to the KHI [105–107]. To observe the nonlinear evolution of the system we
compute a Fast Fourier Transform (FFT) [97] along the periodic direction x,
and then we integrate the spectrum in the inhomogeneous direction y. For
a generic field f (f = n, v, b), the Fourier decomposition is

f(x, y, t) =
∑

mx

f̂(mx, y, t)e
(2πmxx+φmx) (2.20)

8All these simulation are performed at the High Performance Computing Center of the
University of Calabria, Cosenza (Italy), by using the 22–processors Digital Alpha Server
Galileo.
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Figure 2.12: Total energy En(mx, t) as a function of time (normalized to Alfvén
time τA), for mx = 1 (black), 2 (red), 3 (green), 4 (blue), 5 (azure–blue).

Then we obtain the total energy associated to the field Ef as a function of
the time t and of the wavenumber mx:

Ef (mx, t) =

∫ 1

0

|f̂(mx, y, t)|2dy (2.21)

where f̂ is the Fourier coefficient in Eq. (2.20). In Figs. 2.12–2.14 are shown
respectively En(mx, t), Ev(mx, t) and Eb(mx, t) as a function of time, and for
several wavenumbers. When the equilibrium is perturbed by the transverse
fluctuations as in Eq. (2.18), we observe an exponential growth of the most
unstable mode followed by the growth of modes with increasing wavevectors.
This means that small–scale turbulent fluctuations are excited through a
cascade process, and, after a time of the order of t ' 10τA, the system
reaches a turbulent statistically stationary state.
In the starting point of the cascade a large scale vortex is produced, as
represented in Fig. 2.15. The KHI carries energy from large scale shears
to small–scale, so large scale vortices drive the nonlinear cascade and, as
represented in Figs. 2.12–2.14, secondary modes are then excited. The vortex
is able to mix the two distinct regions, namely the one characterized by high
values of β, and the region where β ' 1.
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Figure 2.13: Total energy Eb(mx, t) as a function of time (normalized to Alfvén
time τA), for mx = 1 (black), 2 (red), 3 (green), 4 (blue), 5 (azure–blue), 6 (fuchsia)

Figure 2.14: Total energy Ev(mx, t) as a function of time (normalized to Alfvén
time τA), for mx = 1 (black), 2 (red), 3 (green), 4 (blue), 5 (azure–blue), 6 (fuchsia)
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Figure 2.15: 2D–contour of a large scale in the density profile. Blue arrows
represent the velocity field in the x–y plane.
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Figure 2.16: 2D contours of density (left) and magnetic field strength (right) at
the initial time (t = 0.0 τA).

Figure 2.17: 2D contours of density (left) and magnetic field strength (right) at
time t = 7.0τA.

2.5.2 Fully developed magnetosonic turbulence

In Figs. 2.16–2.19, contour plots for the density n(x, y, t) and the magnetic
field intensity b(x, y, t) are shown at different times, t = 0, 7, 16, 19 τA. When
the saturation of instability occurs (see Fig. 2.20) the plots evidence two
different regions: i) Region A (lower values of y), where the plasma β(y)
parameter is higher, characterized by the presence of an anti–correlation be-
tween n and b; ii) Region B (higher values of y), where the plasma β(y)
parameter is lower, characterized by the presence of strong gradients. In
Fig. 2.20 differences between Region A and Region B are stressed.
In Fig. 2.21 we report fluctuations of both density and magnetic field with
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Figure 2.18: 2D contours of density (left) and magnetic field strength (right) at
time t = 16 τA.

Figure 2.19: 2D contours of density (left) and magnetic field strength (right) at
time t = 19 τA.
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Figure 2.20: The region is highly turbulent and mixed, nonetheless there is a
strong difference between low–β region (Region B, y > 0.5) and high–β region
(Region A, y < 0.5): anti–correlated structures appears in high–β, while shock–
wave propagate in low–β region.

respect to the equilibrium, namely δn(x∗, y, t) = n(x∗, y, t) − neq(y) and
δb(x∗, y, t) = |B(x∗, y, t)| − |Beq(y)|, obtained by performing a cut along a
value of x, namely x∗ = 0.5 at times t = 5τA (linear stage of simulation) and
t = 18τA (after saturation). When a stationary state is reached, the signal
looks quite similar to that observed by Cluster mission, shown in Fig. 2.3.
In order to investigate the dependence on β we performed a cut for a fixed
value of y in the quantities δn(x, y∗, t) and δb(x, y∗, t), as a function of x.
In Fig. 2.22 we report, for t = 17τA, the two quantities in the Region A
(y∗ = 0.25) and in the Region B (y∗ = 0.75), respectively. Figures underlines
the different magnetosonic turbulence that spontaneously develops in these
two regions: in the high beta region, there is a clear evidence of slow magne-
tosonic, large amplitude fluctuations, while in the Region B, anti–correlated
modes are less frequent, rather shock waves appear. As a further analysis in
Fig. 2.23 we report the values of the correlation coefficient between density
and magnetic field, averaged over the x direction, as a function of y at three
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Figure 2.21: Fluctuations of density (red line) and magnetic field intensity (black
line) at t = 5.0 τA (left panel, before the saturation time) and t = 18 τA (right
panel, after the saturation time) as a function of the inhomogeneous direction
y. When a stationary state is reached, strong anti–correlated fluctuations in the
direction perpendicular to the mean magnetic field appear. These results can be
compared with observations in Fig. 2.3.

different times, defined as:

Cn,b (y, t) =
1∫ 1

0
|δn(x, y, t)δb(x, y, t)|dx

∫ 1

0

δn(x, y, t)δb(x, y, t)dx (2.22)

The anti–correlation in the high–β region develops during the formation of
the energy spectrum (for t < 10τA), and is then maintained during the sat-
uration phase (for t > 10τA). After that a statistically stationary state is
reached, in Region A, Cn,b(y, t) ' −1, while Cn,b(y, t)→ 0 in the Region B.
Note that the correlation is not completely zero in the Region B. This means
that some anti–correlated structures can survive also where the plasma is
more magnetized, as shown in Fig. 2.24.
Anti–correlated structures correspond to small–scale magnetosonic fluctua-
tions that are spontaneously generated during the nonlinear evolution. These
structures can be compared with Cluster observations (cfr. Ref. [39]), where a
general anti–correlation between the density and the magnetic field intensity
profiles appears. We then conjecture that the small–scale structures observed
in space plasma could be generated during the nonlinear evolution of turbu-
lence. In the low–β region, apart for strong gradients, slow magnetosonic
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Figure 2.22: In the panel (a) is reported the density (red line) and magnetic field
profile (black line) as a function of the periodic coordinate for y = 0.225 (Region
A), in the panel (b) for y = 0.75 (Region B). There is a clear difference between
these two regions: going from Region A to Region B anti–correlated structures
evolves in shock waves.
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Figure 2.23: The correlation coefficient Cn,b (y, t) between the density and mag-
netic field intensity, averaged over x, is reported as a function of y for three different
times, namely t = 5τA (dotted blue line), t = 12τA (dashed red line) and t = 20τA
(solid black line).
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Figure 2.24: 2D contour of density (left) and magnetic field strength (right). At
position (x ' 0.17,y =' 0.75) a magnetosonic structure (slow–type) penetrates
the low–β region.

Figure 2.25: The panel a) represents a magnetic structure detected by two Cluster
spacecrafts (C2, C4) with a relative time delay of 6s which corresponds to a velocity
250km/s, deduced from the known separation distance between the satellites. In
panel b), we report a single structure coming from numerical simulation. The solid
line is taken at t = 15.0τA and dotted lines at t = 15.5τA. Red line represents
density and black line the magnetic field.
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Figure 2.26: Shade surfaces of a pressure–balanced structure. Density is shown
in the upper panel and magnetic field intensity in the lower panel.
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structures survive. In Fig. 2.25 the profile of one single structure coming
from our numerical simulations is reported at two different times [panel (b)].
As a comparison, a traveling structure detected in the space plasma by the
Cluster satellites is also reported [panel (a)]. This kind of fluctuations are
quite similar to solitons even if they cannot be considered as solitary waves.
In Fig. 2.26 a 3D reconstruction of this density and magnetic field profile of a
single anti–correlated structure is shown. The anti–correlation within turbu-
lence grows during the excitation of small–scales, namely for times t < 10τA,
and is then maintained statistically stationary during the saturation phase
(t ≥ 10τA).

2.5.3 Comparisons between Hall MHD and MHD

To investigate the difference of compressible MHD from compressible Hall
MHD during the nonlinear energy cascade we calculate the Fourier coeffi-
cients for velocity field fluctuations δv(mx, y, t), magnetic field fluctuations
δb(mx, y, t) and density fluctuations δn(mx, y, t), through a 1D Fourier trans-
form of the fields along the x direction, using a superposition of Eq. (2.20).
In Fig. 2.27 we report, as a function of mx, the squared modulus of Fourier
coefficients of fluctuations, namely

∑
i |δui(mx, y, t)|2,

∑
i |δbi(mx, y, t)|2 and

|δn(mx, y, t)|2, averaged over all times, for two different values of y. The
corresponding MHD results are shown in the insets for comparison. In both
MHD and Hall MHD cases at large scales the compressive part of fluctua-
tions seems to be scarcely relevant, that is density fluctuations are lower than
both velocity and magnetic field fluctuations. Turbulence, at larger scales, is
Alfvénic [108], that is velocity and magnetic fluctuations are correlated up to
a high degree9. A striking difference between MHD and Hall MHD is instead
found at scales smaller than the scale kH where the Hall effect starts to play
a role. In fact, at these scales the coupling between velocity and magnetic
fluctuations breaks down, while both fields seems to play an opposite role
as far as Regions A and B are concerned. In Region B the velocity field is
strongly coupled with density, while a depletion of the magnetic field is ob-
served. On the contrary, in Region A, even if the situation is more confused,
the magnetic field is coupled with density. Both features represent the spec-

9This kind of turbulence resembles linear Alfvén waves. Alfvén waves are transverse
magnetic tension waves which travel along magnetic field lines and can be excited in any
electrically conducting fluid permeated by a magnetic field. Hannes Alfvén deduced their
existence from the equations of electromagnetism and hydrodynamics.
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Figure 2.27: The time averaged wavenumber spectra of square modulus for den-
sity (dashed red lines), magnetic field (full black lines) and velocity field Fourier
coefficients (dotted blue lines), extracted at y = 0.2 (left panel) and y = 0.8 (right
panel). Insets refer to compressible MHD simulation shown for comparison.



2.5 Results of the simulations 57

1 5 10 50 100
mx

-1.0

-0.75

-0.5

-0.25

0.0

0.25

1 5 10 50 100
mx

0.0

0.25

0.5

0.75

1.0

Figure 2.28: The wavenumber spectra of time averaged cross–correlation between
velocity and magnetic fluctuations 〈Cv,b(mx, y

∗)〉t calculated for both MHD (red
dotted line) and Hall MHD (black full line), are reported for y∗ = 0.2 (left) and
y∗ = 0.8 (right).
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Figure 2.29: The wavenumber spectra of time averaged cross–correlation between
the x–component of the velocity fluctuations and density 〈Cvx,n(mx, y

∗)〉t calcu-
lated for both MHD (right) and Hall MHD (left). Curves refer to two different
values of y∗, namely y∗ = 0.8 (red dotted line) and y∗ = 0.2 (black full line).
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tral counterpart of the spontaneous generation of small–scale magnetosonic
mode fluctuations, starting from Alfvénic turbulence. As a further evidence
Region A seems to be completely emptied out of fluctuations at the smallest
scales with respect to Region B. This is a characteristic we found also in
the purely MHD simulation. To better describe the phenomenon of different
correlations, in Figs. 2.28 and 2.29 we report, for two values of y, at a sin-
gle time, the Fourier spectra of the cross–correlations between velocity and
magnetic field fluctuations, (Fig. 2.28) respectively, and between the x com-
ponent of the velocity and density fluctuations (Fig. 2.29). As it can be seen
the strong correlation between δv and δb observed at small wave–vectors de-
cays for higher wave–vectors in both Regions A and B. Alfvénic fluctuations
at the Hall scale k−1

H become dispersive, and the Hall term breaks the strong
link between velocity and magnetic field that is characteristic of MHD [13].
The high correlations between the x component of the velocity and density
which are present in Region B, is lost in Region A, instead.

2.6 Conclusions

To summarize, we numerically investigated the time evolution of forced com-
pressible Hall MHD in a 2.5D configuration. We found that small–scale
structures are spontaneously excited during the nonlinear evolution, these
structures being characterized by a strong anti–correlation between density
and magnetic field intensity at higher β, while, on average, the strong anti–
correlation is destroyed for lower β values. These structures have been ob-
served in space plasma during the numerous crossing of the MPBL by the
Cluster mission. We conjecture that the observed structures are generated
by nonlinear effects, that is they correspond to a magnetosonic–mode turbu-
lence rather than to an ensemble of soliton–like ordered structures [39, 40].
The anti–correlation between density and magnetic field intensity is mainly
efficient at the scale length where the Hall effect takes place. Then this kind
of turbulence is a genuine result of Hall MHD.



Chapter 3

“Bursty Turbulence” in
Laboratory Plasmas

Turbulent plasma fluctuations are commonly observed at the edge of labo-
ratory plasmas [109–112]. These fluctuations can propagate from the hot
plasma core to the region between the plasma edge and the wall of the de-
vice, namely the Scrape–Off Layer (SOL). Bursts in laboratory plasmas are
generally observed as the generation and transport of high density structures
localized both in space and time [46, 113, 114]. Moreover a strong corre-
lation has been found between bursts in the SOL and the density limit in
tokamak [115–117], as well as between electrostatic fluctuations in the edge
plasma of RFP and magnetic relaxation events at the center of the plasma
column [118]. This suggests that enhancement of transport, sudden and lo-
calized (both in space and in time), may be responsible for the disruptive
limit. We named the complex dynamics of bursts in space and in time “bursty
turbulence”. However, despite of a wealth of experimental data, there is little
direct quantitative or even qualitative understanding of these measurements
in terms of the basic theory of edge plasma turbulence, which has advanced
rapidly in the past few years [9, 112, 119]. Investigating bursty turbulence is
then of primary interest not only as a non trivial example of nonlinear dy-
namics, but also for fusion devices, where a suppression of turbulent bursts
might be welcomed [112, 120].
Since the magnetic field is stationary (∂B/∂t ' 0), the edge turbulence
assumes, with a good approximation, an electrostatic nature and develops
essentially in a two-dimensional plane, i. e. the plane perpendicular to B.
Then, the most interesting dynamics lye in the radial–poloidal plane of a

59
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toroidal or linear device. Moreover the radial velocity of bursts corresponds,
to a good approximation, to the E×B drift (E is the electric field) [121,122].
In this Chapter we numerically investigate dynamics of two–dimensional
E × B turbulence in a polar geometry, similar to a section, perpendicular
to the mean magnetic field, of a linear device. The bursty turbulence is gen-
erated and maintained by a random forcing term. No dissipative terms are
artificially introduced into the simple evolution equations, rather bursts (or
blobs) interact and propagate radially before being absorbed by boundaries.
Even if the model is very simple, a good agreement between simulation re-
sults and real data is observed in particular concerning the shape of bursts,
the electrostatic potential and the statistics of the radial flux. Some turbu-
lent statistical properties of the bursty turbulence are then investigated and
discussed.

3.1 Intermittent turbulence in laboratory

plasmas

Intermittency is often referred to the anomalous scaling behaviour of turbu-
lent fluctuations, and this is known in literature as the process of intermit-
tency in fully developed turbulence [12, 123]. A signature of intermittency
in turbulent measurements is a non–gaussian amplitude of Probability Dis-
tribution Function (PDF), i. e. the presence of longer tails caused by the
appearance of large-amplitude events [124]. This kind of intermittency is
ubiquitous in the edge of magnetic confinement laboratory plasmas including
tokamaks [9], RFPs [118], and linear devices [46,125–127]. The intermittency
in these environments is generally attributed to the creation and propagation
of filamentary magnetic field–aligned structures [111].
At least to a rough level, this kind of process is actually different from in-
termittency in fully developed turbulence. However, it is clear that blobs
represent a non–homogeneous process both in space and time, and in this
sense we can call this process as “intermittency”.
The relative density fluctuation levels of plasma, at the edge of devices, are
generally large, typically δn/n > 10%, compared to the relatively small tur-
bulence levels near the core (δn/n ' 1%) [112]. Large amplitude fluctuations
in measurements are therefore due to the transit of high-density structures
through the low-density edge region. The outward propagation of these struc-
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Figure 3.1: 2D images of edge turbulence in the the Alcator C-Mod tokamak [113].
A sequence of images taken with a camera at 4 ms/frame and 250000 frames/s.
The movement of two locally bright “blobs” is tracked over several frames showing
their velocity of up to 1 cm/20 µs. The separatrix delimits the SOL.

tures results in significant particle transport in the edge of magnetic confine-
ment devices. Typical 2D–imaging of a burst in a tokamak device1, detected
at different times by a camera, is shown in Fig. 3.1 [113]. The structure was
moving from the hot core toward the edge of the camera.
In Fig. 3.2 the time trace of the plasma density n (Fig. 3.2–A), the poloidal
electric field Eθ (Fig. 3.2–B) and the radial flux (Fig. 3.2–C)

Γ =
1

BT
〈nEθ〉

are shown. Here, BT is the toroidal magnetic field (data come from measure-
ments near the wall of another tokamak device2 [122]). Each spike (enhance-
ment of plasma density) corresponds to a burst that propagate outward from
the core. Such peaks can be caused by an intermittent formation of objects
in the plasma periphery, like the blob shown in Fig. 3.1.

1The device is the Alcator C-Mod. This project is a compact size and high performance
tokamak located at the Massachusetts Institute of Technology.

2T–10 Tokamak is a device located in the Russian Research Centre Kurachatov Insti-
tute, Institute of Nuclear Fusion, Moscow.
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Figure 3.2: Intermittent signals in the SOL of T–10 Tokamak [122]: A) Time
evolution of the plasma density, B) the poloidal electric field and C) the radial
particle flow Γ. Plasma density exceeds ' 3 times the density of background
plasma. Density and poloidal electric field signals seem to be correlated, this is a
signature that every spike transports poloidal electric field fluctuation.
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Figure 3.3: The radial distributions of radial speed Vr of the plasma objects
and radial electric drift velocity VE×B. Data comes from observation in T–10
Tokamak [122].

Once structures are produced and ejected into the low-density region, they
continue to propagate across the magnetic field lines due to the E×B drift
velocity:

VE×B =
E×B

|B|2 (3.1)

This hypotesis comes from observations of structures that move with high
outward radial speed Vr, comparable with VE×B (see Fig. 3.3) . This can be
assumed as an evidence for the fact that the radial motion of the plasma is
defined by the poloidal electric field fluctuations, and so it is consistent with
the assumption of an electrostatic turbulence [112, 121, 122, 128, 129].
A typical bursty event, taken from T–10 Tokamak [122], is shown in Fig. 3.4.
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Figure 3.4: Conditional averaging results of the saturation current signals Is in
different radial location in the T–10 Tokamak. The Is signal is proportional to the
radial shape of a blob that is moving from the right to the left side of the plot.
The amplitude diminishes with increasing the radius.
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Figure 3.5: Spatial profile of the density in the LAPD experiment(x = 0 at the
limiter edge).

In the plots, conditional averages of the saturation current Is, which is pro-
portional to the shape of the signal, are shown at different radial distances. A
typical steep front and smooth tail is displayed. As it can be seen, the shape
of bursts is more asymmetric near boundaries, and the amplitude decreases
moving away from the core.
In the LAPD experiment (see Fig. 1.10) steep gradients in plasma density
are observed behind the limiter, along with very large amplitude fluctua-
tions. Fig. 3.5 shows a measurement of the radial profile of plasma density
(ne) downstream from the limiter. The observed density gradient is very
steep with a scale length of the order of a few centimeters. In the limiter
shadow, the density profile is quite flat, similar to the profiles observed in
the SOL of tokamaks [130]. The density behind the limiter represents a
significant fraction of the core density, indicative of substantial cross-field
particle transport. Two–dimensional measurements in the LAPD show that
blobs are isolated structures with a dipolar potential, very similar to that
observed in tokamaks. The conditional average of many blob events using
the saturation current signal (Isat) as a function of radial position is shown
in Fig. 3.6–(a) [46, 131]. The conditional average was used by authors [46]
to reconstruct the blob shape. The blob event is asymmetric in time, with
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Figure 3.6: Cross–conditional average of Isat on the linear probe array for a blob:
(a) two-dimensional cross–conditional averages of blob; (c) Isat and (e) the electro-
static potential Vf . All 2D conditional averages are normalized to the maximum
of the absolute value of the average, and the color bar in (c) applies also to (e).
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Figure 3.7: (a) Example of raw Isat signals at three spatial locations (before the
density gradient on the left panel, within the density gradient in the middle panel,
and near the edge on the right panel). (b) PDFs of the signal’s amplitude at the
same three locations [46].

a fast rise and a slow decay. The average shape of blob appears to travel
across the probe array out into the low–density region with a speed of about
103m/sec. Figures 3.6 (c) and (e) show the 2D cross–conditional average of
Isat and Vf [46,132], respectively, for blob events (the fixed probe was located
near the edge). The blob is clearly an isolated, detached structure. The Vf
measurements clearly show a dipolar structure of the potential associated
with the blob. The potential structure is consistent with E×B propagation
almost entirely from the core to the edge.
In Fig. 3.7(a) an example of Isat signals measured at three different radial
locations is shown. On the core side of the gradient region the signal is
dominated by downward–moving events, while on the low–density side of
the gradient region the signal is dominated by upward–moving events. The
upward–moving events in the low–density region are density enhancements
or blobs, similar to those observed in the edge of many magnetic confinement
devices [123, 130, 133].
Several mechanisms have been proposed for the generation of the above struc-
tures [134–140], but the effective mechanism is yet unclear [141–144].
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The following features of an averaged bursty event can be remarked:

1. density enhancements near the boundaries essentially propagating out-
ward;

2. averaged positive signal is asymmetric, showing an abrupt increase and
a smoother decrease. This can be interpreted as a radial movement of
plasma objects with a steep front followed by a long tail;

3. the radial flux displays an intermittent–behaviour;

4. the radial velocity of structures is approximately due to the E×B drift;

5. blobs exhibit a dipolar structure of the electrostatic potential;

6. the amplitude of averaged bursts has a radial dependence.

7. the skewness of PDF of amplitudes depends on the distance from the
core.

3.2 A simple “E×B” model

We built–up a numerical model which tries to reproduce some of the features
just described. The model we used to investigate the generation of electro-
static E×B turbulence is kept as simpler as possible. We consider a column
of plasma of radius a, described by the charge densities for the αth specie ρα.
We use a cylindrical geometry with coordinates (r, θ, t), and we assume that a
constant magnetic field is maintained along the axis of the column B = B0êz.
Dynamics, as sketched in Fig. 3.8, develop on the (r, θ) plane. We assume
that all quantities keep constant along the z coordinate. At the center of the
polar plane we put a source of charges, by assuming that they are contin-
uously generated at a rate Fα. Charge–difference generates an electric field
which can be written in terms of a potential φ(r, θ, t), so that they undergo
to the E×B drift with velocity defined by Eq. (3.1). The dynamic behaviour
of the system can be described by the following dimensionless equations:

∂n

∂t
= − (u · ∇)n+ f (3.2)

∇2φ = n (3.3)
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Figure 3.8: A sketch of the geometric approximation used in the “E×B” model.

where n(r, θ, t) = ne − ni is the charge density difference, and f(r, θ, t) =
Fe − Fi is the forcing rate. By using dimensionless quantities, lengths are
measured in terms of a (namely 0<

− r
<
−1), charges are written in terms of

nα = ρα/ρ0 (being ρ0 a reference charge unit), velocity to u = VE×B/udr,
being udr = ρ0a/ε0B0 the drift speed of a charge unit, the potential to a
characteristic field ρ0a

2/ε0, and times to a/udr. The velocity of fluid is given
by

u(r, θ, t) = −∇φ× êz (3.4)

A perfect absorption for the charge density has been assumed at the boundary
r = 1, so that we avoid the introduction of artificial dissipative terms in the
simple evolution equation Eq. (3.2). At the boundary r = 1 the potential is
assumed to vanish on average, namely 〈φ(1, θ, t)〉θ = 0.
Let us consider Eqs. (3.2)–(3.4) in a periodic two–dimensional domain by
assuming homogeneity, and let us introduce the Fourier decomposition

φ(x, t) =
∑

k

φk(t)eik·x (3.5)
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and
n(x, t) =

∑

k

nk(t)eik·x (3.6)

By using these definitions from equations (3.3) and (3.4) we obtain

φk(t) = −nk(t)

k2
(3.7)

and

uk(t) = ink
k× êz
k2

(3.8)

Finally by using Eqs. (3.5)–(3.8), after some algebra we obtain the evolution
equation for the Fourier coefficients of the density fluctuations

∂nk(t)

∂t
−

∆∑

p+q=k

Mk,p,qnp(t)nq(t) = fk(t) (3.9)

where

Mk,p,q =
1

2

q · p
p2 + q2

Equation (3.9) has the same mathematical aspect of the usual Navier–Stokes
equation for turbulence [11], so we expect that nonlinear interactions will be
responsible for the energy transfer among scales. An equation can be written
for the two–points correlations

Nk(t) = 〈nk(t)n−k(t)〉

thus obtaining from Eq. (3.9):

∂Nk(t)

∂t
−
∑

p+q=k

Mk,p,q〈n−k(t)np(t)nq(t)〉 = 〈n−k(t)fk(t)〉 (3.10)

When we assume a statistically stationary state we see that the third–order
moment for density is related only to the correlations between the forcing
term and the density, but is independent on Nk(t). Of course this is due to
the absence of a classical dissipative term proportional to a power of k, and
this situation makes bursty turbulence very interesting, even from a theo-
retical point of view. The third–order moment, mainly in a inhomogeneous
situation, can be better investigated in the real space, so in the following
section we recover an equation like (3.10) in the inhomogeneous case.
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3.3 The third–order mixed correlations

We can investigate the properties of turbulence by investigating the time
evolution of the average “energy” associated to the charge density. Using
the same procedure as Monin and Yaglom [145], let us consider two points
r and r′ = r + ` separated by a distance `, and let us write the evolution
equations for fields calculated at both points

∂tn + uα∂αn = f

∂tn
′ + u′α∂

′
αn
′ = f ′

the suffix “ ′ ” refers to quantities calculated at r′ (∂′α ≡ ∂/∂r′α). We as-
sume that quantities calculated at one point are independent with respect
to derivatives made with the other point, namely ∂ ′αn = ∂αn

′ = 0. By sub-
tracting the second equation from the first, and by defining the differences
∆n = n′−n and ∆f = f ′−f , using the independence of densities calculated
at two points with respect to derivatives, we get

∂t∆n + u′α∂
′
α∆n + uα∂α∆n = ∆f

Then by adding and subtracting the following quantity uα∂
′
α∆n on the r.h.s

of the equation we obtain

∂t∆n+ ∆uα∂
′
α∆n+ uα (∂α + ∂′α) ∆n = ∆f

The equation for the averaged energy can be derived by multiplying the
equation by 2∆n and averaging, so that

∂t〈∆n2〉+ 〈∂′α∆uα∆n2〉+ 〈uα (∂α + ∂′α) ∆n2〉 = 2〈∆n∆f〉

(we used the incompressibility of the velocity field, say ∂αuα = 0). By
assuming that the system is locally homogeneous3 we can say that, when

3Local homogeneity is different from global homogeneity. Actually systems that are
far from being globally homogeneous can be locally homogeneous. Local homogeneity
means that statistics are very rapidly varying with respect to `, relative to its variation
with respect to X = (r + r′)/2, provided that ` is sufficiently small. On this basis when
derivatives with respect to r and r′ are transformed into derivatives with respect to ` and
X, the differentiation with respect to X is negligible compared to that with respect to `.
The operation calculus of local homogeneity is that derivatives with respect to rα and r′α
within the averaging operation can be commuted to outside the average such that they
become derivatives with respect to `α and −`α.
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applied to difference quantities ∂/∂r′α = ∂/∂`α and ∂/∂α = −∂/∂`α, so that

∂t〈∆n2〉+
∂

∂`α
〈∆uα∆n2〉+ 〈uα (∂α + ∂′α) ∆n2〉 = 2〈∆n∆f〉 (3.11)

Equation (3.11) can be simplified by assuming that the system, for long
times, reaches a statistically stationary state, so that the time derivative is
put to zero, and that the system is isotropic. This last assumption can be
worked out by assuming that quantities depend solely on r and not on θ, so
that using the radial coordinate as α, and r′ = r + `, we get

1

`

∂

∂`

[
`〈∆ur∆n2〉

]
+ 〈uα (∂α + ∂′α) ∆n2〉 = 2〈∆n∆f〉

This equation can be formally integrated, finally obtaining an equation for
the third–order mixed correlation function:

〈∆ur∆n2〉 = −1

`

∫ `

0

dy〈ur
[
∂

∂r
+

∂

∂r′

]
∆n2〉y +

2

`

∫ `

0

dy〈∆n∆f〉y (3.12)

The first term on the r.h.s. is due to large scale non homogeneity of the
charge density, while the second term is due to correlations between the forc-
ing and the charge density. This correlation is assured by the fact that the
charge density is absorbed at the external wall and it is injected through
the forcing term inside the inner annulus. Of course, this means that our
system is intrinsically inhomogeneous, giving rise to inhomogeneous bursty
turbulence. Intermittency, in form of bursts, means that turbulence is inho-
mogeneous, and in some sense this term plays the role of a dissipative term.
It is interesting to compare our equations with the similar equations known as
the Yaglom–Obukov equations for a passive scalar, for example the temper-
ature T , within a turbulence [146]. The equation that describe this physical
system is

∂tT + uα∂αT = κ∂2
αT (3.13)

where κ is the thermal diffusivity and the second term is a dissipative term.
Note that the difference with our case is the fact that the velocity field is
not an independent variable, while in equation (3.13) the velocity field is
derived from the Navier–Stokes equation without the back–reaction of the
temperature (that is, in fact, assumed as a passive scalar). Another difference
is the presence of the dissipation, that is absent in our simulation, and the
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presence of forcing. By using the same technique used in deriving equation
(3.12), it can be obtained [146] the equation for 〈∆T 2〉

∂〈∆T 2〉
∂t

+
∂

∂`α
〈∆uα∆T 2〉 = −4

3

∂

∂`α
(ε`α) + (3.14)

+ 2κ
∂2

∂`2
α

〈∆T 2〉 − 〈uα(∂α + ∂′α)∆T 2〉

where

ε = 3κ〈
(
∂T

∂x‖

)2

〉

is the dissipation rate of temperature field, defined positive. In the inertial
range of turbulence, where the thermal diffusivity is set to zero, and when
the physical system is globally homogeneous, the last two terms on the r.h.s.
of equation (3.15) disappear and we get the famous Yaglom–Obukov 4/3–
law for the third–order mixed correlations of stationary turbulence. Since the
diffusion rate for temperature is definite positive the Yaglom–Obukov relation
gives a negative value for the third–order mixed correlation, that implies the
existence of a cascade of 〈∆T 2〉 towards smaller scales. In this case, the
independence of the temperature from the forcing term is assumed, because
the forcing term is supposed to be active only at the largest scales. In our
case we cannot make this assumption because the forcing term, as showed in
experiments, is spatially localized so that its power spectrum must be defined
over a large number of wave–vectors, namely of possible scales, and any scale
separation can exist in our case.

3.4 Numerical simulation of forced bursty tur-

bulence

We performed numerical simulations of the E × B system, using a second–
order upwind scheme for space, since the continuity equation has an intrinsic
hyperbolic form (see Chap. 2 for more details), and a second–order Runge–
Kutta scheme in time. The results have been obtained through a sequence of
long time runs, in order to achieve a statistically stationary state of bursty
turbulence. For each time step we use a LU–decomposition technique [97] to
invert the Poisson equation (3.3) and obtain the potential field φ(r, θ, t), then
we evaluate u by Eq. (3.4) and compute the field n(r, θ, t+ ∆t) by Eq. (3.2).
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Figure 3.9: We report the value of dQ/dt (black line) and
∮

Γ · r̂dθ (red line) [cfr.
equation (3.15) in the text]. The numerical error (green line), given by the sum of
these two contributions, is 5× 10−4.

The simulation needs long CPU time in order to obtain large statistics, so
we use parallel computing with MPI directives4. The external forcing term
f(r, θ, t) has been constructed as a gaussian profile along the r direction such
that f = 0 for r ≥ 1/3 and a superposition of five Fourier modes in θ, with
random phases. Finally amplitudes of the external forcing are changed every
time to maintain constant the charge difference n within the annulus r ≤ 1/3.
The numerical scheme, in absence of the forcing term in Eq. (3.2), conserves
the total charge density N = ni +ne, namely it satisfies with a good approx-
imation the following equation:

dQ

dt
+

∮
N
(
u · r

r

)
dθ = 0 (3.15)

where

Q =

∫ 1

0

rdr

∫ 2π

0

N(r, θ, t)dθ

4All these simulation are performed at the High Performance Computing Center of
the University of Calabria, Cosenza (Italy), by using the 64–processors HP Alpha Server
Voyager.
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Figure 3.10: 2D–polar contour of the density ni at t = 205.

is the total charge inside the volume, and the second term represents the flux
of charge through the boundary. In Fig. 3.9 we show the quantity dQ/dt,
the charge flux and the sum ∆ of these two. Analytically, ∆ should be
vanishing. Numerically, this is not exactly true, due to the truncation error of
the numerical scheme. However, it is clear that the total charge is numerically
conserved with a numerical error of the order of ∆ ' 5× 10−4.
Figs. 3.10–3.14 show the 2D–polar contour levels of the charge density at
different times of the simulation. It appears the system generates bursts that,
on average, are transported towards the external boundary, where they are
absorbed by the wall. During the nonlinear dynamics, bursts interact among
each other, their shape is distorted and small–scales structures are generated.
Bursts have a dipolar structure, as shown in Fig. 3.15. In Fig. 3.16 we report
the radial profile of two bursts that can be compared with Figs. 3.6–(a) and
Fig. 3.4: also in our case, bursts have a steep front and a long tail.
This is a qualitative picture of the bursty turbulence generated in the system,
that is analogous to what have been recently observed in a linear laboratory
plasma device.
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Figure 3.11: 2D–polar contour of the density ni at t = 358.

Figure 3.12: 2D–polar contour of the density ni at t = 361.
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Figure 3.13: 2D–polar contour of the density ni at t = 405.

Figure 3.14: 2D–polar contour of the density ni at t = 489.
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Figure 3.15: 2D images of a single burst (upper panel) and its electrostatic po-
tential φ (lower panel). In the lower panel solid line–contour indicate φ > 0, while
dotted line–contour for φ < 0. Blobs have a dipolar electrostatic potential as in
observations (compare with Fig. 3.6).

Figure 3.16: The radial profile at t = 1027 for two different bursts (left θ = π/4,
right θ = π/2) that are propagating outward from the central region.
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Figure 3.17: The large–scale profile of density n̂(r) (upper panel), and the stan-
dard deviation σ(r) (lower panel). Note that the n̂(r) profile is similar to the
density profile of the LAPD experiment, reported in Fig. 3.5.

3.5 Statistical properties of the “E × B tur-

bulence”

First of all we calculated the large–scale profile of density n̂(r) = 〈n(r, θ, t)〉
(brackets mean averaging over time and θ) and of the standard deviation
σ(r) = 〈[n(r, θ, t)− n̂(r)]2〉1/2. In figures 3.17 we report both profiles. It is
evident that, beyond the central region where a strong gradient exists, the
radial profile of density is quite smooth, that is the turbulence can be con-
sidered as locally homogeneous. This property can be used in the following
to investigate the third–order mixed correlations.
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Figure 3.18: The radial flux Γ in a fixed value of the domain (r = 0.85, θ = π/3)
in the panel (a). In the panel (b) a typical flux signal in experiments [121, 122].

3.5.1 The radial current

Time evolution of the electrostatic radial ion current is a quantity of primary
interest in the bursty turbulence. This field is defined as

Γ(r, θ, t) = niur = −ni(∇φ)θ (3.16)

A plot of Γ(r, θ, t) as a function of time for r = 0.85 and θ = π/3 is shown in
Fig. 3.18–(a). For comparison we show in the panel (b) of the same figure a
typical flux signal taken near the edge of a tokamak device [121,122]. Strong
radial bursts appear for all values of r and θ. Of course the E×B–direction is
privileged, so that the current flowing towards the wall is statistically favored,
as it can be seen in Fig. 3.19, where we report the PDF of Γ calculated for
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Figure 3.19: PDF of radial flux at three different radial locations.

different r and θ. While the dynamics seems to be statistically independent
on θ, there is a dependence on r, namely the negative part of the current
flux calculated near the center of the cylinder is enhanced with respect to
the flux calculated near the wall.

3.5.2 Statistics of the bursts energy, waiting times and
duration times

We analyzed statistically the sequence of bursts observed, and in particular
we investigate quantities of physical relevance as the total energy associ-
ated to different bursts (bursts energy), the duration of bursts (waiting time)
and the time differences between two consecutive bursts (time duration).
Since statistics does not have an angular dependence, we integrate in the
θ–direction. These quantities are interesting because they can be used as a
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Figure 3.20: PDF of the flux |Γ| at r = 0.39 (a), and r = 0.94 (b) in log–log scale.
This quantity measures the bursts energy.

rough test to discriminate between some different models of the bursty dy-
namic [136, 141].
In Fig. 3.20 the absolute value of radial flux, at two different radial dis-
tances, namely near the forcing region (Fig. 3.20–(a)) and at the boundaries
(Fig. 3.20–(b)), is shown. The analogous for waiting times is reported in
Fig. 3.21. Finally we report time duration statistics in Fig. 3.22. As it can
be seen, there is a clear power law for bursts energy and waiting time both,
with exponents that depend on the radial position. The situation for time
duration statistic is more confused and a clear power law does not seem to
exist. Power laws are very interesting because they are the signature for the
presence of memory among bursts. Of course, this memory is mediated by
non linear interactions. In fact charges are injected without any correlation
at the center of the numerical domain, and nonlinear interactions are able
to build up correlations. Moreover nonlinear interactions act like a kind of
self–organization process, by generating localized bursts through a kind of
“phase–locking” process [141]. This kind of process is typical of turbulence
and also of processes described by Self–Organized Criticality (SOC) [147].
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Figure 3.21: PDF of waiting times at r = 0.39 (a), and r = 0.94 (b), in log–log
scale.

Figure 3.22: PDF of duration times at r = 0.39 (a), and r = 0.94 (b), in log–log
scale.
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3.5.3 The third–order mixed correlations

We calculated the third–order mixed correlations

S3
.
= 〈∆ur∆n2〉

by averaging over θ and time, at some different radial positions. In figure 3.23
we report the scaling evolution of the quantity −S3/`. As we can see, at least
when we are quite far away from the point r = 1/3 above which the forcing
term is set to zero, two main ranges can be recognized, namely a range of
small–scales where the third order correlations behave approximately as

S3 ∼ −B(r)` log `

and a range of large–scales where it behaves as

S3 ∼ −A(r)`

where A(r) and B(r) are two constants that depend on the radial position r.
These two scaling laws are due to both terms in equation (3.12) respectively.
The situation is almost similar to low–Reynolds number turbulence, where a
clear inertial range is hardly observed [148]. Following Ref. [148], equation
(3.12) can be written in the form

S3 = −2

`

∫ `

0

yF (r, y)dy (3.17)

where

F (r, y) =
1

2

〈
ur

[
∂

∂r
+

∂

∂r′

]
∆n2

〉
− 〈∆n∆f〉

represents generalized input rate of turbulence. Assuming the existence of
a local maximum of F (r, y) at y = `m, we can expand it in terms of the
logarithm of the relative distance from `m [148]:

F (r, y) ' F (r, `m)− a1(r)

[
ln

(
y

`m

)]2

+ · · ·+ an−1(r)

[
ln

(
y

`m

)]n
+ . . .

(3.18)
From dimensional considerations, this expression can be rewritten as:

F (r, y) ' 2χ(r)ψ

(
y

`m

)
(3.19)
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Figure 3.23: Third–order mixed correlations at three different radial positions
(symbols) (r = 0.39, r = 0.55, and r = 0.70, as reported on the figure) and
the best fit curves representing the Taylor logarithmic development described in
Eq. (3.20) (curves).
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r χ(r) H2(r) H4(r)

0.39 1.5× 10−3 0.26 3.7× 10−2

0.55 7.6× 10−4 0.17 9.6× 10−4

0.70 4.2× 10−4 0.17 2.5× 10−3

Table 3.1: Parameters of fits reported in Fig. 3.23.

where ψ(y/`m) = ψ(1) within the inertial range. By using Eq. (3.19) in
Eq. (3.17), the main contribution to the integral comes from ψ(1) so that

S3 = −χψ(1)`

and taking into account the Yaglom law [146] for d–dimensional turbulence

S3 = −4

d
χ̃`

where χ̃ is the usual constant energy dissipation rate, we obtain ψ(1) = 2.
When the inertial range has not yet appeared, we can use the logarithmic
expansion, substituting Eq. (3.18) in Eq. (3.17), thus obtaining:

S3 ' −2χ(r)`

{
1−H2(r)

[
ln

(
`

`m

)]2

+H4(r)

[
ln

(
`

`m

)]4
}

(3.20)

Here χ(r) is a fictitious energy “dissipation” rate, that depends on r due to
the large–scale inhomogeneity. Equation 3.20 has been fitted on our numer-
ical results, and the best fit curves are reported in Fig. 3.23. The best–fit
parameters are listed in Table 3.1 for the three radial distances. It is evident
that Eq. (3.20) is able to reproduce numerical results. When we consider a
point far away from r = 1/3 the first correction H2(r) suffices for the best
fit. Near r = 1/3, where the gradient density is sharp, nonlinear interactions
not yet fully developed, so that the correction H4(r) is more important.

3.6 Conclusions

To summarize, we adopted a very simple model, in a 2D–polar geometric
approximation, of electrostatic turbulence in which the only effect taken into
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account is the E×B–drift. We numerically investigate nonlinear dynamics
of a forced bursty turbulence. During the evolution, many blobs are ejected
from the core of the polar domain and propagates radially toward the bound-
aries. Even if the model is derived from strong approximations, this bursty
turbulence has properties similar to that observed in both toroidal and linear
devices, namely:

1. intermittent, positively skewed, radial flux near boundaries (far from
the forcing region), that indicates outward–propagating bursts;

2. blobs exhibit a dipolar electrostatic potential;

3. the typical radial profile of a blob is a steep front followed by a long
tail.

Moreover we investigated turbulence properties by analyzing energy and
waiting time statistics of bursts events. We found power laws for both quan-
tities. The presence of power laws, in a randomly forced turbulence, is a clear
evidence that this kind of phenomenology is strongly related and character-
ized by nonlinear interactions, which produce a kind of self–organization and
give rise to a dynamics similar to one of SOC models.
By analyzing the third–order mixed correlation, we found that the Yaglom–
Obukov law is able to fit our numerical results, identifying the relevance of
every contribution (nonlinear transport, inhomogeneity, inertial range, dissi-
pation).
As a general outlook, we think that this simple model can be implemented
and, by introducing suitable boundary perturbations, the radially–outward
flux of matter can be reduced. Through this, we can suggest a control strat-
egy to increase confinement time inside devices, one of the most important
challenge in the problem of thermonuclear energy production. The work
towards this aim is still in progress.





Chapter 4

Nonlinear Phenomena in RFP
Devices: Multiple–Helicity and
Quasi–Single–Helicity States

In the complex picture of the RFP turbulence, in which turbulent fields
evolve stochastically over a broad range of modes, sometimes happens that
the spectral structure of the magnetic field is dominated by few poloidal
and toroidal modes. These states are known as Quasi–Single–Helicity states
(QSH). At variance to Multiple–Helicity (MH) states, where many m = 1
poloidal modes with different toroidal numbers n have comparable ampli-
tudes, a QSH state is characterized by a single mode (m = 1, n = nD) that
dominates the spectrum [149,150]. Results of a wide range of observations on
different RFPs (cf., e.g., Ref. [151]) shows that sometimes QSH states spon-
taneously emerge from a MH background [152,153] within a RFP discharge,
thus generating a MH→ QSH transition. In general, nD > 1 depends on the
aspect ratio of experiments, namely, the minor over the major radius of the
toroidal device (see Fig. 1.7). This phenomenon is very interesting in order
to understand the problem of the turbulent transport and the disruption of
the magnetic confinement during plasma discharges.
The physical mechanism responsible for the occurrence of QSH states has
not yet been identified. Some authors [154] conjectured that simple dynam-
ical models should be used to describe the intermittent behaviour, that is a
parameterization as a function of dissipative coefficients [154–156].
To describe the appearance of QSH during RFP’s discharge, we consider
a simplified model of MHD theory. The dynamics of low–frequency plas-

89
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mas described by Magnetohydrodynamics (MHD) is interesting because it
represents the first approach to the study of a wide variety of phenomena
in laboratory plasmas [14]. In some fusion devices (the RFP configuration
is an example) or in the solar corona, where the plasma is embedded in a
strong magnetic field B0, the β parameter (that is, the ratio between the
kinetic and magnetic pressure) is low (β ' 10−1 as an order of magnitude
estimate). In this situation, dynamics of turbulence is mainly confined to the
plane perpendicular to B0, while Alfvénic fluctuations propagate along the
field [14,157–159]. Compressible MHD equations are then approximated [157]
by the so–called Reduced Magnetohydrodynamics (RMHD).
With numerical simulation of RMHD equations, using a simplified model
obtained from a Galerkin approximation [160], we will show how the nonlin-
ear dynamic of RMHD turbulence, without dissipation, is able to generate
a process of self–organization similar to an inverse cascade. A single Fourier
mode dominates over the whole energy spectrum. This leads to statistically
stationary states which are similar to QSH [161]. Our results are roughly in
agreement with the emergence of QSH states, both in numerical simulations
and real experiments, in RFP plasmas [161].

4.1 Magnetic turbulence in RFP devices

The strong magnetic turbulence in the RFP configuration causes a deforma-
tion and a destruction of magnetic surfaces. In a toroidal geometry, fluctua-
tions can be represented as a superimposition of Fourier modes

b(r, θ, φ) =
∑

m,n

b̂(r,m, n)ei(mθ+nφ) (4.1)

where r is the radial coordinate, θ and φ are the poloidal and the toroidal
angular coordinates respectively, while integers m and n are the associated
wavenumbers of the Fourier development [162]. In Fig. 4.1 we report a typ-
ical magnetic spectrum, for a fixed value of r and m = 1, in which several
toroidal modes n are present. Generally the radial position in which mea-
surements are taken is located near the boundaries, where typically, in RFP
devices, the magnetic field changes sign (see Fig. 1.8) and a high level of
fluctuations develops. These states are known as Multi–Helicity states (MH),
they produce reconnection of magnetic field lines on the so–called resonant
surfaces [163]. These surfaces are identified by the relation q(r) = m/n,
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Figure 4.1: An example of toroidal magnetic spectrum, for m = 1 at r/a ' 0.85
(a is the minor radius of the device as sketched in Fig. 1.7) in a highly turbulent
case (MH states).

where q(r) is defined by Eq. (1.1). In tokamaks where few modes interact
q > 1. In the RFP, due to high number of resonant surfaces that nest near
the inversion region, q < 1. Nonlinear interactions that develop during MH
states can lead to a consistent loss of energy, but, on the other hand, they
are responsible of the typical magnetic profile of the RFP through a process
named dynamo effect. The most important mechanism for the inversion of
the toroidal magnetic field near the edge is due to the nonlinear evolution
of the poloidal wavenumber m = 1 (tearing instability) [14]. This instability
causes a plasma flux in the poloidal direction converting a fraction of BP

(poloidal component) in BT (toroidal component) in the opposite direction,
producing so the inversion of BT near the edge [164]. This dynamo effect
is laminar and corresponds to a state in which few modes (m = 1, n) are
present [165]. In addition to the laminar dynamo effect, a turbulent dynamo
effect can exist, and it is due to the nonlinear interaction between modes
with m = 0 and m = 1, become resonant near the inversion region. An
electric field E = V ×B, parallel with respect to BP , is associated to these
fluctuations that sustain the typical RFP configuration at the boundaries.
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Figure 4.2: Time traces of (m = 1, n) mode amplitudes normalized to the edge
poloidal magnetic field for four RFP devices, namely: (a) RFX; (b) TPE–RX; (c)
MST; (d) EXTRAP T2R. See Ref. [151] for more details. Magnetic modes are rep-
resented with different colors. During plasma discharge the dominant wavenumber
nD (black line) grows and take energy from secondary modes (green, blue and red
line). The value of nD depends on the device.
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Figure 4.3: Toroidal wave number n spectrum of magnetic fluctuations with the
poloidal wavenumber m = 1: (A) for QSH and (B) for MH.

4.2 Observations of Quasi–Single–Helicity states

A very interesting phenomenon was recently discovered in a RFP plasma
[149–151], that is the spontaneous appearance, during several plasma dis-
charge, of time periods in which the turbulence seems to disappear1. This
means that MH states turn off and give rise to states characterized by few
magnetic modes. These states, due to the presence of few modes with m = 1
and a fixed value of n, are called Quasi–Single–Helicity states (QSH). They
can grow during the discharge in spite of highly turbulent MH states. As
shown in Fig. 4.2, during some periods of the order of some milliseconds, a
single magnetic mode emerges from the turbulent sea and dominates the mag-
netic spectrum. This dominant wavenumber (nD) takes energy from other
modes, but, after a short period, this state can disappear and decays again
in a MH state. In Fig. 4.3 we report a comparison of the toroidal magnetic

1QSH states were first observed in the RFX experiment. Consorzio RFX is a research
organization promoted by CNR, ENEA, Università di Padova and Acciaierie Venete S.p.A.
within the framework of the Euratom – ENEA Association.
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Figure 4.4: Most observed dominant modes {nD} as a function of the aspect
ratio. In every RFP device nD can assume different values, but ranges in a narrow
distribution.

spectrum between a QSH and a MH state. Generally, during a QSH state,
the dominant mode nD has an energy that is more or less 2 ÷ 4 times the
energy of all other modes. This interesting states have been commonly ob-
served in several RFP devices [151, 152, 165, 166].
The number of the most energetic magnetic mode seems to be strongly related
to the aspect ratio. This means that every device has a different dominant
toroidal mode, that, during the plasma discharge, sometimes emerges from
MH states as shown in Fig. 4.2. In Fig. 4.4 we report the most frequent
dominant modes nD observed as a function of R0/a in different RFP devices.
There is a strong dependence on the aspect ratio, i. e. the value of nD in-
creases with R0/a [151, 165, 166].
Generally in every experiment there is more than one nD, so, for every RFP,
a group of {nD} can be identified. The set of {nD} is chosen on the base
of purely observative criteria. By the way, some techniques to identify QSH
states exist. To measure how much the magnetic spectrum is narrow, let us
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Figure 4.5: Time evolution of (a) magnetic m = 1 spectrum and (b) NS during
the appearance of a QSH state. During the period t ∈ [10÷ 15] ms the dominant
mode (m = 1, nD = 6) grows and NS → 1.

introduce the following parameter:

NS(t) =

[∑

n

(
Eb(m = 1, n, t)∑
nEb(m = 1, n, t)

)2
]−1

(4.2)

where Eb(m = 1, n, t) is the magnetic energy of the Fourier expansion in
Eq. (4.1), for a fixed value of r. This parameter represents a measure of the
distribution of the magnetic energy in the total spectrum. If many modes are
excited then NS →∞, while if only a single mode is present (ideal case of a
Single Helicity state) NS → 1. The parameter NS is known as the spectral
spread [153, 167]. To better understand the role of the parameter NS, we
show in Fig. 4.5 the comparison between NS(t) and the magnetic spectrum
as a function of time. During a few modes–state this parameter assumes
lower values.
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4.3 The MHD approach

To describe the appearance of QSH during RFP’s discharges, we consider a
simplified model of the Magnetohydrodynamic theory (MHD). The dynamics
of low–frequency plasmas described by MHD is interesting because it repre-
sents the first approach to the study of a wide variety of phenomena in both
laboratory and astrophysical plasmas [14].
As discussed in Chapter 2, starting from the fluid theory, one can obtain
the set of compressible MHD equations [14]. In the incompressible case, as-
suming for simplicity a constant density, the dimensionless ideal equations
that describe low–frequency (lower than the ion cyclotron frequency) of a
magneto–fluid are:

∂v

∂t
= −(v · ∇)v + (∇× b)× b−∇p (4.3)

∂b

∂t
= ∇× (v × b) (4.4)

∇ · v = 0 (4.5)

where v and b = B/
√

4πρ0 represent the dimensionless velocity and the
Alfvén velocity field respectively, ρ0 is the mass density, p the kinetic pres-
sure. By introducing the vector potential a, the b field, that satisfy ∇·b, can
be obtained through the relation b = ∇×a. Eqs. (4.3)–(4.5) describe the be-
haviour of an incompressible plasma in the ideal (dissipation–free) case. Ideal
MHD has three quadratic constants of motion [14]. Two of them, namely the
total energy E = 〈v2〉+ 〈b2〉 and the cross helicity HC = 〈v ·b〉, are invariant
in each configuration (brackets denote ensemble averages). A third topo-
logical quadratic invariant depends on the geometry: in three–dimensional
MHD configurations the magnetic helicity HM = 〈a · b〉 is conserved, while
the mean–square magnetic potential A = 〈a2〉 is conserved in a 2D context.

4.4 A simple model: inviscid Reduced Mag-

netohydrodynamics

When the plasma is embedded in a strong magnetic field B0, the β param-
eter (that is, the ratio between the kinetic and the magnetic pressure) is
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Figure 4.6: A sketch of the geometric approximation for the RMHD model. The
small–aspect ratio plasma column (a/L << 1) is embedded in a strong axial
magnetic field B0 (β << 1).

much lower than one. In this situation the dynamics of turbulence is con-
fined to the plane perpendicular to B0, while Alfvénic fluctuations propagate
along the field [14,157–159]. Compressible MHD equations are then approxi-
mated [157–159] by the so–called Reduced Magnetohydrodynamics (RMHD).
The simplest model of RMHD approximation deals with a plasma column
of low aspect ratio a/L << 1 (a and L being, respectively, the basis size
and the height of the plasma column), embedded in a strong magnetic field
B0 = B0 ez (B0 is constant and ez is the unit vector along the axis of the
column). In Fig. 4.6 we shown a sketch of the plasma geometry.
We use Fourier transforms in the transverse r = (x, y) plane, say, on a 2D
box of size a, for both velocity

v(r, z, t) =
∑

k

vk(z, t) e(k) exp(ik · r)



98 Nonlinear Phenomena in RFP Devices

and magnetic field

b(r, z, t) =
∑

k

bk(z, t) e(k) exp(ik · r)

fluctuations, where e(k) is a unit vector perpendicular to B0. The wave
vectors are defined as k = (2π/a)m, where m = (mx, my) is a couple of
integers, and satisfy, due to the solenoidal condition of velocity and magnetic
field, k ·e(k) = 0. After some algebra, ideal RMHD equations can be written
in the following dimensionless form:

∂vk

∂t
=

1

R0

∂bk
∂z

+

∆∑

k=p+q

Ck,p,q (p2 − q2) (vpvq − bpbq)

∂bk
∂t

=
1

R0

∂vk

∂z
+

∆∑

k=p+q

Ck,p,q k
2 (bpvq − vpbq) (4.6)

where Ck,p,q = (pxqy − pyqx)/2kpq and R0 represents 2π times the aspect
ratio. Fourier coefficients are normalized to B0/(4πρ0)1/2 (that is, the Alfvén
speed), wave vectors to a−1, and times to a(4πρ0)1/2/B0. The convolution
sum is extended over all the infinite number of wave vectors p and q which
satisfy the triad relation k = p + q.
In Eqs. 4.6, if R0 → ∞ the propagation term along the z–axis disappears
and the RMHD system reduces to the 2D–MHD configuration, namely a
plane perpendicular to the mean magnetic field B0. In the incompressible
2D–MHD, quadratic invariants in the Fourier space are:

E(t) =
∑

k

[|vk|2 + |bk|2] (4.7)

HC(t) =
∑

k

Re[vk b
∗
k] (4.8)

A(t) =
∑

k

|bk|2
k2

(4.9)

The “rugged invariants” [168] [Eqs. (4.7)–(4.9)] play a key role because they
survive for each finite consistent truncation of wave vectors (k,p,q), which
satisfy the triad–interaction relation. In other words E, HC , and A remain
invariant for each individual triad of wave vectors k = p + q among the
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infinite terms of Eq. (4.6) even when the infinite set of values for {k, p, q} is
truncated to a finite set. It can be easily realized that in presence of B0 in the
RMHD approximation the third topological invariant is lost: HM is trivially
zero, and even if the nonlinear operator is formally 2D, since the presence of
the Alfvénic transport the square root of the vector potential cannot survive
as a constant of motion.

4.4.1 The equilibrium ensemble of 2D–MHD

Turbulence is an out–of–equilibrium process, because an energy cascade is
present. However, when the dissipative term is set to zero, the infinite set of
equations for the Fourier modes of the fields evolve in time. In this case an
asymptotic distribution of fields over the infinite range of wavevectors can
be described through a classical equilibrium ensemble of statistical mechan-
ics [169].
Information on spectral properties of 2D–MHD can be obtained in terms
of the moments of a statistical distribution [170, 171]. To get some insight
into this phenomenon, let consider now the equilibrium distribution of a 2D–
MHD fluid in an inviscid case (ν = µ = 0). In the canonical ensemble [14]
the equilibrium distribution is defined by the Gibbs function:

ρ =
1

Z
exp(−αE − εA− γHC) (4.10)

where α, ε and γ are Lagrange multipliers, and Z is a normalization quantity.
It is found that in the 2D–MHD, as we are going to demonstrate, quite in
contrast to the hydrodynamical case, cascade properties do not depend on the
geometry (cf., e.g., Ref. [14] and references therein): energy is even peaked
at large wave vectors, while an inverse cascade2 leads to the formation of
a large–scale magnetic field. Generally, if the distribution function has a
gaussian shape like

ρ(x) =
1

Z
exp

[
−1

2

∑

i, j

Aijxixj

]
(4.11)

2The direct cascade process in turbulence is the transfer of energy by nonlinear interac-
tions from larger to smaller eddies. The inverse process (inverse cascade) is a back–transfer
of energy from smaller to larger scales.
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by using gaussian integral properties, it can shown that 〈xixj〉 = A−1
ij . Thus,

evaluating coefficients of the matrix Aij, one can obtain the equilibrium dis-
tribution of any quadratic function xixj. Now, by building a phase space
with the real and imaginary part of v and b (4–dimensions space), taking
into account Eqs. (4.7)–(4.9) , after some algebra, one obtains [14, 172]:

Ek(k) =
α+ β

k2

α
(
α+ β

k2

)
− γ2

(4.12)

Eb(k) =
α

α
(
α + β

k2

)
− γ2

(4.13)

Hc(k) = −
α
k2

α
(
α+ β

k2

)
− γ2

(4.14)

and

A(k) = −
γ
2

α
(
α + β

k2

)
− γ2

(4.15)

From Eq. (4.15), it is clear that the conservation of A implies concentration
of energy at small k vectors. The effect of addensation of Eb(k) at large
scales is the effect of an inverse cascade of A with respect to the total energy
E. Moreover, by using Eq. (4.13) and (4.12) one can obtain:

Eb(k)− Ek(k) ' β

k2
(4.16)

This last equation means that there is an equipartition of energy at larger k–
vectors. The equipartition of kinetic and magnetic energy at small–scales is
commonly observed in several laboratory and space plasmas [13,173]. What
happens when the third invariant is lost, that is not so clear. Even if in
principle the inverse cascade cannot take place, some numerical results con-
cerning the inviscid equations are needed to explore this situation. Presum-
ably, there should be no dominance of magnetic energy at large scales since
〈v2〉 − 〈b2〉 ∼ ε [14]. An equipartition between kinetic and magnetic energy
should be the result of the dynamics.

4.5 The numerical technique

We consider a particular class of solutions of Eq. (4.6) represented, for each
value of z (mean magnetic field direction), by a finite number of Fourier
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Figure 4.7: A sketch of the numerical technique. On the left the plasma column
of Fig. 4.6 in the m–z space, we divide the z axis in Nz planes. On the right is
represented a single plane zi. In this plane we adopt the Galerkin truncation to
choose only interactions that lie in a Fourier two–dimensional space with −N ≤
mx ≤ N and −N ≤ my ≤ N .
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modes (Galerkin approximation). Without losing generality, we put a = 2π.
Then we retain only the Fourier components of both vk(z, t) and bk(z, t),
for which m lies on a square of size (2N + 1)2; that is, −N ≤ mx ≤ N
and −N ≤ my ≤ N . Eq. (4.6) is filtered out; that is, we drop all nonlinear
interaction terms which involve at least one wave vector outside the above
range. In this way, we restrict the infinite sum on the right–hand side of
Eq. (4.6) to a sum over a finite number of terms. In Fig. 4.7 the numerical
procedure of Galerkin truncation is sketched. This procedure can be used
in two different ways: (i) as a filter for large–eddy simulations [11]; (ii)
as a definition of a class of low–order dynamical models, where nonlinear
interactions are restricted to N modes [15, 168, 174]. In our case, since we
would like to observe phenomena relative to the largest scales of the flow,
we use the filter to investigate the nonlinear evolution of a truncated model.
The model is refined by dividing the z axis into Nz different planes.
Numerical integrations have been carried out using a second–order Runge–
Kutta scheme in time. The transport term is solved through a second order
centered finite difference scheme for ∂/∂z, with periodic boundary conditions.
We use parallel computing with MPI directives3

4.6 The appearance of QSH states in RMHD

Initial values of the real and imaginary parts of the fields are randomly cho-
sen, uniformly distributed in the range (-1, 1), over all Fourier modes and
for all values of z. The time step used in the computation is 5× 10−4 eddy–
turnover times. This assures, as checked “a posteriori”, that the two rugged
invariants are conserved up to eight significant digits. Here we report re-
sults relative to N = 16 and Nz = 512. In Fig. 4.8, the time evolution of
the three invariants is shown. While both E and HC remain constant, the
square of the vector potential is an oscillating quantity. However, from our
simulations we found that these oscillations are relatively narrow, namely,
|A(t)− A(0)|/A(0)<−0.02; that is, A(t) is not exactly conserved, but it looks
to be quasi–invariant.
To see what this means on the rearrangement of energy over different modes
we evaluate the spectral magnetic energy E

(M)
m,n (t) in the poloidal–toroidal

wavenumber plane (m,n). This has been obtained by performing a 1D

3All these simulation are performed at the Dipartimento di Fisica of the University of
Calabria, Cosenza (Italy), by using the 16–processors Digital Alpha Server Telesio.
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Figure 4.8: The time evolution of ∆φ/φ0 is reported. Here φ0 represents the
initial value of a given invariant (say, energy, cross helicity, or the square of the
vector potential). While energy and cross helicity are constant (dotted lines at
∆φ = 0), the square of the vector potential results to be an oscillating quantity,
even if the oscillations have a small relative amplitude, |∆φ/φ0|<− 0.02.

Fourier transform along the z axis on bk(z, t), thus recovering the coefficients
bk,kz(t) (kz = 2πn/L is the wavevector in the parallel z direction). Then

E
(M)
m,n (t) have been obtained as averages of |bk,kz(t)|2 over shells of unitary

amplitude centered on m =
√
m2
x +m2

y. From Fig. 4.9 we see the presence
of a kind of self–organization of RMHD turbulence: at initial time t = 0,
modes are randomly spreaded over the entire plane (m,n), while, as time
goes on (t = 50 in our example), energy is concentrated only over a few
modes at large scales. In particular, the mode (m = 1, n = n0) dominates
over all other modes. In Fig. 4.10 the time behaviour of Eb(m = 1, n, t), for
different wavenumbers n, is shown.
However, the process just described as a redistribution of energy among the
modes is not an inverse cascade process, rather it is more like a kind of self–
organization for RMHD turbulence. Turbulence, strongly influenced by the
2D character of the nonlinear term, self–organizes in the transverse plane to
select the mode m = 1. Moreover, to understand the dominance of a single
n–wavenumber, let us consider the case where both vk,kz(t) and bk,kz(t) are
proportional to

exp [i(k ·CA + kz B0)t]
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Figure 4.9: The magnetic energy spectrum E
(M)
m,n (t) is reported on the plane (m,n)

for two different times, namely, t = 0 (left panel) and t = 50 (right panel), for the
RMHD case when the aspect ratio is R0/2π = 5. The kinetic energy spectrum

E
(K)
m,n(t) displays the same kind of structure.

where CA is the largest–scale Alfvén speed in the transverse plane. Using
this ansatz in Eq. (4.6), we can realize that the nonlinear term is non oscil-
lating, only when the condition |k|CA/B0 ∼ kz/R0 is fulfilled. In fact a reso-
nance process appears when this situation is verified. This means that once
self–organization starts on the transverse plane, i.e., when a mode m = 1
is generated, a single B0 parallel wavevector is selected with wavenumber
n0 > 1 proportional to the aspect ratio, say:

n0 ∼ (R0/2π) · (CA/B0) (4.17)

In Fig. 4.11 we report magnetic spectra of modes with m = 1 for different
values of n, where it is shown that a dominating value n0 (or a narrow band of
values n<

−3) is effectively selected. As we show in the right panel of Fig. 4.11,
the value of n0 depends on the aspect ratio used in the computation. When
the number of modes N is varied, we find no fundamental differences with
the above results. For example, both N = 8 and N = 16 give n0 = 4 for
R0/2π = 5, while n0 = 3 for N = 4. To what extend a single mode is selected
by the nonlinear dynamics can be investigated by defining, in analogous way,
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Figure 4.10: Time traces of Eb(m = 1, n, t), for different n. The black line
represents the most energetic mode, in this case nD = 2.

the spectral spread parameter NS of Eq. (4.2) [153]. As the m = 1 modes
toroidal spectrum becomes poorer, NS decreases. A spectrum with NS = 1
is a pure single helicity spectrum, but this is a condition never realized up
to now in experiments. In Fig. 4.12 we report both the time evolution of
NS and the values of the spectral spread for different values of the aspect
ratio. It can be found that NS decreases with time, which means that a
state with a single dominant mode is reached. Moreover, an asymptotic
NS value increases with the aspect ratio NS ∼ R0/2π. When we vary the
number of modes N , we find a little dependence, namely the larger N is,
the more the QSH states become evident. For example, at time t = 50 for
N = 4, we get NS ' 13.7, while NS ' 12.2 and NS ' 10.8, respectively, for
N = 8 and N = 16. The state (m = 1, n0) selected by the self–organization
is surprisingly similar, even quantitatively, to what has been observed as a
QSH state in the RFP dynamics. In Fig. 4.12 (right panel), we superposed
the values we obtained for n0, with the values of the dominating toroidal
mode observed, within a narrow band of values, both in real experiments
and numerical simulations. The agreement is evident. In the same way, in
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Figure 4.11: In the left panel we report the magnetic energy spectra of modes
with m = 1, as a function of the poloidal wavenumber n for R0/2π = 3 for a single
simulation. In the right panel we report the dominant mode n0, averaged over
some simulations made with different initial values of the fields, as a function of
the aspect ratio R0/2π. Data from our model (black circles) are superimposed to
data of three different experiments, namely, the Madison Symmetric Torus (MST,
squares), reversed field experiment (RFX, up–pointing triangles), and EXTRAP–
T2R (stars) (cf. Refs. [149–152, 166]). The discrepancy between the values of
n0 we found and those found in experiments should be due to geometrical factors
which are absent in our model. By the way, as real experiments, the dominant
wavenumber increase with the aspect ratio.
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Figure 4.12: In the left panel, we report the time evolution of the spectral spread
NS for simulations performed with two different aspect ratios, namely, R0/2π =
5 (dot–dashed line) and R0/2π = 10 (dashed line), for a single simulation. In
the right panel, we report the spectral spread, averaged over some simulations
made with different initial values of the fields, as a function of the aspect ratio
R0/2π. Data from our model are represented as stars. Black dots represent data
from different numerical simulations [151, 166], while the gray triangular band
represents the range of results found in [153]. Typical experimental ranges from
both RFX and MST devices (vertical bars) are also reported (cf. Refs. [151, 152,
166].
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the right panel of Fig. 4.12, we superposed the averaged values of NS as a
function of the aspect ratio, with the values, or the range of values, observed
for NS both in real experiments and numerical simulations. Even in this
case the agreement with RFP experiments [6] and numerical simulations is
evident. The right panels of Figs. 4.11 and 4.12 represent average values
obtained through some different simulations with different initial conditions,
while the left panels of the same figures represent a single realization. We
would also like to report the fact that the spectral kinetic energy E

(K)
m,n(t),

obtained in the same way as described above through averages of |vk,kz(t)|2,
shows exactly the same self–organizing behaviour. The analogous QSH state
has been observed in experiments in RFP devices and reported recently in
the literature [175].

4.7 Conclusions

We conjecture that the process of self–organization we identified should be
one of the basic features which is at the heart of the experimental evidences
of QSH states (m = 1, n0) in RFP turbulent dynamics. In fact, as we showed
above, the statistically stationary states we obtained are analogous to QSH
observed in RFP experiments and numerical simulations. Even if it seems
remarkable that, using a very crude model, we find agreement with real
experiments and more complex numerical simulations, we actually use an
inviscid model, and comparisons with real experiments or numerical simu-
lations must be taken with care. In fact, both numerical simulations and
experiments are intrinsically dissipative. In our case, dissipative terms, typ-
ically proportional to ξk2 (ξ is a dissipative coefficient), can be added to
the Eq. (4.6). This leads to a dissipation of the higher wavevectors. As a re-
sult the self–organization process, which leads to the dominance of the m = 1
mode, appears to be more evident: in presence of dissipative terms, a “clean”
m = 1 mode quickly emerges from our numerical computation. Actually, the
transitions MH → QSH and vice–versa have been interpreted [154] as the
result of a bifurcation in the phase space of the RFP dynamics, having the
Hartman number H ∝ (ην)−1/2 as the control parameter (η and ν being, re-
spectively, the inverse Lundquist number and the inverse magnetic Reynolds
number). A transition region when the parameter H is set equal to a crit-
ical value Hcrit in the range 2000<

∼Hcrit
<
∼3000 has been evidenced in some

numerical simulations [154, 156]. In this region the dynamics of the system
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has been interpreted as a kind of temporal intermittency alternating lami-
nar phases (QSH states) to chaotic phases (MH states). The quantitative
comparison of our inviscid results with both numerical simulations and ex-
periments must be seen simply as evidences for a different point of view, say,
that the occurrence of QSH states should be simply the results of a genuine
nonlinear self–organization process of MHD turbulence. We conjecture that
dissipative effects eventually become necessary in the destruction of the QSH
state, rather than in their birth. In fact, as the growth of the magnetic island
at large scales reaches its final state, it could be destroyed through dissipa-
tive processes related to coalescence of magnetic islands and annihilation at
magnetic X points [14, 176].





Conclusions

We investigated the complex behaviour of plasma in different physical sys-
tems. By modeling turbulence with simplified theories, we performed high
resolution numerical simulations in order to understand nonlinear processes
both in laboratory and space plasmas. The three complex phenomena that
we treated can be summarized as follows:

1. The nonlinear dynamics of a compressible Hall Magnetohydrodynamic
(HMHD) plasma have been investigated in a 2+ 1

2
D geometric configu-

ration, by performing direct numerical simulations. Two main features
occur at small–scales where the Hall effect dominates, namely: i) an
increase of the compressibility of the system and the breakdown of the
strong link between velocity and magnetic field typical of usual MHD;
ii) the excitation of small–scale fluctuations characterized by an anti–
correlation between density and magnetic field intensity. Finally, we
performed comparisons between our model’s results and Cluster satel-
lite data, which turn out to be in very good agreement.

2. We numerically investigated dynamics of two–dimensional E×B tur-
bulence in a polar geometry, similar to a poloidal section of laboratory
devices. The “bursty turbulence” has been generated and maintained
by a random forcing term. Bursts (or blobs) interact and propagate ra-
dially before being absorbed by boundaries. Even if the model is very
simple, a good agreement between simulation results and real data is
observed, in particular concerning the shape of bursts, the electrostatic
potential and the statistics of the radial flux. Some turbulent statis-
tical properties of the “bursty turbulence” have been investigated and
discussed.

3. Using a simplified model of Reduced MHD, obtained from a Galerkin
approximation, we shown how the nonlinear dynamic of RMHD tur-
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bulence, without dissipation, is able to generate a process of self–
organization similar to an inverse cascade. A single Fourier mode
dominates over the whole magnetic energy spectrum. Our results
are roughly in agreement with the emergence of Quasi–single–Helicity
states, commonly observed in several Reversed–Field Pinch experi-
ments.

Being in good agreement with laboratory and space plasmas observations,
results we obtained encourage us to continue, by using other numerical simu-
lations, to investigate and to obtain a more detailed description of the plasma
complexity. In future works we want to study the HMHD system in a 3D
geometric approximation, with high resolution simulation, in order to get
more information about the turbulent cascade process. Moreover we want
to study the effect of the electron pressure gradient in the electric field and
speculate about its influence in other space plasmas observations. By chang-
ing boundary condition in our code, we can also study the role of the Hall
effect into other astrophysical plasmas as the cusp region, the bow shock, and
the solar wind.
Also the work on the “bursty turbulence” is still in progress. We will per-
form longer and high–resolution simulations. Moreover, we will analyze burst
shape by using more sophisticated techniques, as the Proper Orthogonal De-
composition (POD) [177]. As a general outlook, we think that this simple
model can be implemented and, by introducing suitable boundary perturba-
tions, the radially–outward flux of matter can be reduced. Through this, we
can suggest a control strategy to increase confinement time inside devices,
one of the most important challenge in the problem of thermonuclear energy
production.
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