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Abstract

Ontology-Based Query Answering (OBQA) consists in querying data–
bases by taking ontological knowledge into account. We focus on a
logical framework based on existential rules or tuple generating depen-
dencies (TGDs), also known as Datalog±, which collects the basic de-
cidable classes of TGDs, and generalizes several ontology specification
languages.

While there exist lots of different classes in the literature, in most
cases each of them requires the development of a specific solver and,
only rarely, the definition of a new class allows the use of existing
systems. This gap between the number of existent paradigms and the
number of developed tools, prompted us to define a combination of
Shy and Ward (two well-known classes that enjoy good computational
properties) with the aim of exploiting the tool developed for Shy.

Nevertheless, studying how to merge these two classes, we have real-
ized that it would be possible to define, in a more general way, the
combination of existing classes, in order to make the most of existing
systems.

Hence, in this work, starting from the analysis of the two aforemen-
tioned existing classes, we define a more general class, named Dyadic
TGDs, that allows to extend in a uniform and elegant way all the de-
cidable classes, while using the existent related systems. At the same
time, we define also a combination of Shy and Ward, named Ward+,
and we show that it can be seen as a Dyadic set of TGDs.

Finally, to support the theoretical part of the thesis, we implement a
BCQ evaluation algorithm for the class Ward+, that takes advantage
of an existing solver developed for Shy.
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Sommario

L’Ontology-Based Query Answering (OBQA) consiste nell’interrogare
basi di dati tenendo conto delle conoscenze ontologiche. In particolare,
ci focalizziamo su un framework logico basato su regole esistenziali o
tuple generating dependencies (TGD), noto anche come Datalog±, che
include le classi di TGD decidibili.

Nonostante esistano molte classi differenti in letteratura, nella mag-
gior parte dei casi ognuna di esse richiede lo sviluppo di un risolutore
specifico e, solo raramente, la definizione di una nuova classe consente
l’utilizzo di sistemi esistenti. Questo divario tra il numero di paradigmi
esistenti ed il numero di risolutori sviluppati, ci ha spinto a definire una
combinazione di Shy e Ward (due classi ben note che godono di buone
proprietà) con l’obiettivo di sfruttare il sistema sviluppato per Shy.

Tuttavia, studiando come combinare queste due classi, ci siamo resi
conto che sarebbe possibile definire un modo più generale per combinare
classi esistenti, con la possibilità di sfruttare al meglio i sistemi già noti.

Pertanto, in questo lavoro, partendo dall’analisi delle due classi sopra
citate, abbiamo definito una classe più generale, denominata Dyadic
TGDs, che permette di estendere in modo uniforme ed elegante tutte
le classi decidibili, permettendo l’utilizzo dei sistemi esistenti corre-
lati. Parallelamente, abbiamo definito anche una combinazione di Shy
e Ward, chiamata Ward+, e abbiamo dimostrato che può essere vista
come un insieme di Dyadic TGDs.

Infine, a supporto dei risultati teorici ottenuti nella tesi, abbiamo im-
plementato un algoritmo per la valutazione di query su classi Ward+,
che sfrutta il sistema sviluppato per Shy.
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Introduction

The aim of this chapter is to introduce the context and describe the
main motivations that inspired this PhD thesis. In particular, we give a
summary of the main results about Ontology-Based Query Answering,
according to the existing literature. We close with a structural outline
of the thesis.

Context and State-of-the-art

Ontology-Based Query Answering (OBQA) consists in querying data–
bases by taking ontological knowledge into consideration. This is a
very interesting research topic studied in database theory [5, 25, 26,
51], artificial intelligence [10, 16, 34] and in logic [6, 18].

On top of that, OBQA is stringently affiliated to several other im-
portant areas such as data integration [62], data exchange [12], and
consistent query answering [67, 68]. In particular, the goal of OBQA
is to find certain answers to q, i.e., the query has to be true in every
possible model of the theory [7, 57].

A well-known query language based on the logic programming para-
digm and that has been used for over four decades is Datalog, for which
we refer the reader to papers [1, 37]. In short, a basic Datalog program
comprises of a set of universally quantified variables. In the process of
writing a Datalog program, just as it usually is in logic programming,
we take into consideration some sets of rules to be conjunctions, the
use of commas to conjoin atoms, and the assumption of all variables
to be universally quantified, while excluding the universal quantifiers.
The predicate symbols which appear in a program of such sort refer
either to extensional database (EDB) predicates which values are given
through an input database, or to intensional database (IDB) predicates
which have their values computed by the program. EDB predicate
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2 INTRODUCTION

symbols can appear only in rule bodies in standard Datalog. However,
to consider an EDB D and a Datalog ontology Σ, the logical theory
which contains both the rules of Σ and the ground atoms (called facts)
of D is denoted by D∪Σ.

However, for the purpose of ontology querying, an extension has been
added to Datalog which permits the expression of the existence of cer-
tain values, which do not need to be part of the active domain (i.e.,
every value that comes up as argument of EDB facts or are definitely
cited in the Datalog ontology) of the EDB. This extension is achieved
by allowing existentially quantified variables in rule heads [72]. How-
ever, during the years, several other variants of Datalog have been
introduced in the literature. Basically, these variants can be obtained

• permitting characteristics like the equality predicate, existen-
tial quantifiers and the truth constant false to appear in rule
heads;

• limiting the syntactical conditions of the emerging language,
so as to accomplish decidability and in applicable cases, even
tractability.

The family of all such (existing and future) variants is called Datalog±

[30].

This body of work focuses on ontologies which are expressed through
existential rules which are also regarded as tuple generating dependen-
cies (TGDs) or Datalog∃ rules. However, for sets consisting of TGDs
alone, a large number of basic reasoning and query answering problems
have the issue of undecidability. Particularly, provided a database D

and a set Σ of TGDs, verifying if D∪Σ |= q for a ground fact q is un-
decidable [20]. Sadly, undecidability remains even in cases where both
q and Σ are fixed, and just D is given as an input [27]. Because of
this, it is necessary to identify large classes of formalisms for rule sets
Σ that:

• contingent on Datalog, and therefore allow a modular rule-
based style of knowledge representation;
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• are syntactical fragments of first-order logic in such a way that
answering a BCQ q under Σ regarding an input database D is
equivalent to the classical entailment check D∪Σ |= q;

• are sufficiently expressive in such a way that the are useful in
real applications in the aforementioned areas;

• have decidable query answering;

• have good query answering complexity properties especially in
the case where Σ and q are fixed. A complexity of this nature
is known as data complexity, and is an important measure,
because we can assume in a realistic sense that the EDB D is
the sole really large object in the input.

It can be observed that OBQA can be reduced to the problem of an-
swering q over a universal model U , i.e., a model which can be embed-
ded homomorphically into every other model of the logical theory. A
possible method which can be used to compute a universal model is
to apply the so-called chase procedure. It uses a database D and a set
Σ of constraints (for example TGDs which were introduced earlier) as
input and if it terminates, it gives as result a finite instance DΣ such
that it is a universal model of D and Σ. The fundamental feature of
the chase procedure is that it gives rise to a universal model which is
independent of the order and precedence in which the rules are pro-
cessed. Then it follows that for each boolean conjunctive query (BCQ)
q (i.e. an existentially quantified conjunction of atoms),

D∪Σ |= q⇔ chase(D,Σ) |= q.

However, there are cases where the universal model constructed by
the chase is infinite and, as remarked above, there are cases where
the problem of deciding whether a database and a set of TGDs en-
tail a query is undecidable [41, 44]. Nonetheless, even if the chase is
not finite, it remains an efficacious tool for query answering purpose,
since in some cases, it is sufficient to execute the chase up to a finite
level for being able to correctly answer a BCQ [34]. In the literature,
five variants of the chase have been proposed: oblivious [27], skolem
[69], restricted [44], core [41], and parsimonious [63]. Particularly, this



4 INTRODUCTION

body of work concentrates on the parsimonious variant and this is a
procedure which corrects rule violations solely if the (inferred) head
atom cannot be mapped homorphically to any other atom which was
produced previously.

Motivations and objectives

The huge literature regarding OBQA is continuously growing, as new
paradigms are being defined to ensure decidability of query answering
under existential rules.

The above mentioned family of languages Datalog± is divided into the
sublanguages based on the following syntactic properties: weak acyclic-
ity [44], guardedness [27], linearity [29], stickiness [31], and shyness [63].
Thanks to these properties, the basic classes of existential rules have
been defined and they are called: weakly acyclic, (weakly) guarded,

linear, sticky(−join), and shy. Moreover, a lot of variants and combina-
tions of these classes have been determined and studied in [17, 33, 40,
47, 61]. Lastly, decidable abstract classes of Datalog∃ programs exist
called FES, BTS and FUS and these depend on the semantic properties
[16] which include the classes named above. For more details we refer
to Section 2.6.

However, also if several paradigms have been defined, in most cases
each of them requires the development of a solver and, only rarely, the
definition of a new class allows the use of existing systems. This gap
between the number of existing paradigms and the number of devel-
oped tools, prompted us to define a combination of Shy and Ward, two
classes well-know in the literature, with the aim of exploiting the tool
developed for Shy1. In particular, we have chosen to focus on these
two classes since both enjoy good properties, like including Datalog,
have a good compromise between expressivity and complexity and, as
aforementioned, have an implementation.

Studying how to merge these classes, we have realized that it would
be possible to extend our idea (i.e., combine and generalize existing
classes with the possibility to make the most of existing systems), in

1There exists also the solver for warded, Vadalog, but it is not available for
research use.
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a more general way. For that reason, we have defined the class of
Dyadic TGDs, that allows to extend in a uniform and elegant way all
the decidable classes, while using the existent related systems.

At the same time, we have defined also a combination of Shy and Ward,
named Ward+ that can be seen as a Dyadic set of TGDs.

Contributions

The first contribution of this thesis is the definition of this new decid-
able paradigm for ontological query answering, called Dyadic TGDs.
As explained above, thanks to this new class it is possible to extend and
add some expressive power to existing decidable classes. In particular,
for a decidable class C, Dyadic-C is the class of all the sets Σ of TGDs
that admits a dyadic decomposition (ΣHG,ΣC) w.r.t. C (i.e., there ex-
ists a rewriting of Σ in an equivalent set of TGDs given by ΣHG∪ΣC ,
where ΣHG is a set of head-ground rule and ΣC ∈ C). We show that the
class Dyadic-C is decidable, providing a sound and complete algorithm
used to complete the database with all the ground atoms that is possi-
ble to derive from the component ΣHG of the dyadic decomposition, in
order to exploit only the component ΣC for query answering purposes.

The second contribution consists in the definition of a new class of
Datalog∃ program, called Ward+, derived from the combination of two
existing classes: Shy and Ward, since both of them enjoy good prop-
erties, like including Datalog, reaching a good compromise between
expressibility and complexity, and, last but not least, have an imple-
mentation. We are going to prove the complexity of this new fragment
with the support of two different techniques:

(i) exploiting the Dyadic class and proving that Ward+⊂ Dyadic-
Shy;

(ii) taking advantage of the concept of “well-behaved” proof tree
(for more details, refer to [23] or Section 2.3), which enables the
development of a Datalog rewriting for Ward+in the future.

Finally, we implement an algorithm for the class Ward+, based on the
existence of a dyadic decomposition for Ward+ sets of TGDs.
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Structure of the Thesis

This body of work is subdivided in seven chapters:

• In Chapter 1 we provide a formal definition of the syntax and
semantics of Ontology Based Query Answering.

• In Chapter 2 we give the preliminaries for this work of thesis.
In Section 2.1 and in Section 2.2we describe a variant of the
chase procedure, the so-called parsimonious chase (pchase),
that has been introduced by Leone et al. in [63], and present
some results contained in the work of Amendola et al. [8]. In
Section 2.3 we describe the notion of proof tree and in Section
2.4 we recall the class Ward, both introduced in the work of
Berger et al. [23]. Finally, we compare the classes Shy and
Ward in Section 2.5, and we conclude the this chapter with an
overview of other existing decidable classes in Section 2.6.

• In Chapter 3 we present one of the main theoretical contribu-
tion of this thesis. We define a new decidable paradigm for
ontological query answering, called Dyadic TGDs, in order to
provide a way to extend and add some expressive power to
existent decidable classes.

• In Chapter 4 we present the second main result of this thesis:
the new class Ward+. This new fragment of Datalog± has been
inspired from the combination of two existing classes: Shy and
Ward.

• In Chapter 5 we present the architecture of the prototype sys-
tem regarding the class Ward+., followed by the experimental
results.

• In Chapter 6 we present the conclusion of our work.



CHAPTER 1

Ontology Based Query Answering

In this chapter, we give a formal definition of the syntax and semantics
of Ontology Based Query Answering. For further details see [1].

1.1. Basics

In this section we recall some well know notions that will be used in
all the thesis.
Let ∆ = ∆C ∪∆N ∪∆V the domain of the terms, consisting of the
union of the three countably infinite domains of constants, nulls and
variables, respectively. We write φ to denote a null; x a variable; a an
atom, that is an expression of the form P (t), where P = pred(a) is a
predicate, t = t1, . . . , tk is a tuple of terms, k = arity(a) is the arity of a

or P , and a position P [i], where i ∈ {1, . . . ,k}, identifies the i-th term
of a. For brevity we may write [k] for the set {1, . . . ,k}, where k ≥ 0.
Moreover, const(a) (vars(a), resp.) is the set of constants (variables,
resp.) occurring in a. A fact is an atom that contains only constants.
The set of the predicates is denoted by R. A substitution is a total
mapping s : ∆→∆. The restriction of s to a subset T of ∆, denoted
by s|T , is the substitution {t 7→ s(t) | t ∈ T}. Let χ1 and χ2 be two
structures containing atoms. An homomorphism h : χ1→ χ2 is a sub-
stitution such that: (i) if c∈∆C , then h(c) = c; (ii) if p(t1, . . . , tn)∈ χ1,
then h(p(t1, . . . , tn)) = p(h(t1), . . . ,h(tn)) ∈ χ2. We write h(χ1) for the
set of atoms {h(a) | a ∈ χ1}. An isomorphism between two atoms
is a bijective homomorphism, i.e. a one-to-one correspondence between
two atoms.

1.2. Syntax

Relational Databases

A schema S is a finite set of relation symbols (or predicates). The set
of positions of a schema S, denoted pos(S), is defined as {P [i] | P ∈

7



8 1. ONTOLOGY BASED QUERY ANSWERING

S∧arity(P ) = n, with n≥ 1∧ i∈ [n]}. An instance over S is a (possibly
infinite) set of atoms over S that contains constants and nulls, while a
database D over S is a finite set of facts over S. The active domain of
an instance I, denoted dom(I), is the set of all terms occurring in I,
while the Herbrand Base of I, denoted HB(I), is the set of all atoms
that can be formed using the predicate symbols of S and arguments in
dom(I). We observe that this is an extension of the classical notion of
Herbrand Base, which includes ground atoms only.

Conjunctive Queries

A conjunctive query (CQ) over S is a first-order formula of the form

q(x) := ∃y(P1(z1)∧·· ·∧Pn(zn)),

where each Pi(zi), for i ∈ [n], is an atom without nulls over S, each
variables mentioned in the zi’s appears either in x or y, and x are the
output variables of q. For convenience, we adopt the the rule-based
syntax of CQs, i.e., a CQ as the one above will be written as the rule

Q(x)← (P1(z1), . . . ,Pn(zn)),

where Q is a predicate used only in the head of the CQs. A Boolean
conjunctive query (BCQ) is a CQ of arity zero.
Let atoms(q) = {P1(z1), . . . ,Pn(zn)}. The evaluation of q(x) over an
instance I, denoted q(I), is the set of all tuples h(x) of constants, where
h is a homomorphism from atoms(q) to I, such that h(atoms(q))⊆ I.

Tuple-Generating Dependencies

A Tuple Generetic Dependences (TGDs) is a formula of the form

∀xΦ(x)→∃yΨ(x,y)

where x,y are tuples of variables of ∆V , and Φ,Ψ are conjunctions of
atoms without constants and nulls. For brevity, we omit the universal
quantifier (we write σ as Φ(x)→∃yΨ(x,y)).

We refer to Φ and Ψ as the body and head of σ, denoted body(σ) and
head(σ), respectively. If head(σ) contains only one atom, we say that
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σ is a single-head TGD; otherwise σ is a multi-head TGD. Moreover,
given a set Σ of TGDs, hp(Σ) represent the set of all the predicates in
any head of Σ and bp(Σ) the set of all the predicates in any body of Σ.

The frontier of the TGD σ, denoted front(σ), is the set of variables
that appear both in the body and the head of σ. We also write
var∃(σ) for the existentially quantified variables of σ. The schema of
a set Σ of TGDs, denoted sch(Σ), is the set of predicates in Σ, while
arity(Σ) = max

P ∈sch(Σ)
arity(P ). Furthermore, for simplicity of exposition,

we write pos(Σ) instead of pos(sch(Σ)). In the sequel we use the no-
tation const(Σ) (var∃(Σ), respectively) to extend the set above defined
to the whole set Σ.

By abuse of notation, we may treat a tuple of variables as a set of
variables, and a conjunction of atoms as a set of atoms. An instance
I satisfies a TGD σ as the one above, written I |= σ, if the following
holds: whenever there exists a homomorphism h such that h(Φ(x))⊆ I,
then there exists h′ ⊇ h|x such that h′(Ψ(x,y)) ⊆ I. The instance I

satisfies a set Σ of TGDs, written I |= Σ, if I |= σ for each σ ∈ Σ.
Finally, from now on, we assume that for each pair ⟨σ1,σ2⟩ of rules of
Σ, vars(σ1)∩ vars(σ2) = ∅.

1.3. Semantics

Models

The main reasoning task under TGD-based languages is conjunctive
query answering. Given a database D and a set Σ of TGDs, a model of
D and Σ is an instance I such thatI ⊇D and I |= Σ. Let mods(D,Σ)
be the set of all models of D and Σ. The certain answers to a CQ q

w.r.t. D and Σ are defined as the set tuples

cert(q,D,Σ) :=
⋂

I∈mods(D,Σ)
q(I).

Finally, we introduce the notion of universal model, that is related to
the solution of the CQAns problem. A model U of D and Σ is called
universal if, for each M ∈mods(D,Σ), there is a homomorphism from
U to M .
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Query Answering

The answer to a BCQ q w.r.t. D and Σ is positive, denoted D∪Σ |= q,
if ⟨⟩ ∈ cert(q,D,Σ). The problem of computing certain answers for a
CQ w.r.t. a database and a set of TGDs from a certain class C, is called
CQ answering, and it is defined as follows:

PROBLEM: CQAns(C)
INPUT: A database D, a set Σ ∈ C of TGDs, a CQ q(x), and
a tuple c ∈ dom(D)|x|.
QUESTION: Is it the case that c ∈ cert(q,D,Σ)?

In case that q is a BCQ, the above problem is called BCQ answering,
and denoted by BCQAns(C).

Moreover, we recall that problems BCQAns(C) and CQAns(C) are logspa-
ce-equivalent [38], and we will refer to both of them.

Moreover, computing the complexity of these problem, we can refer to:

• the data complexity of the problem, which measures the com-
plexity assuming that the set of TGDs Σ ∈ C and the CQ q

are fixed and, hence, it is calculated taking only the database
D as input;

• the combined complexity of the problem, that is calculated
considering as input also the query q, the set of TGDs Σ and
the database D.

1.4. The Chase and Its Variants

In this section we present one of the main algorithm in database theory:
the chase procedure [42, 58, 65, 66]. It has several important uses, such
as query equivalence and query optimization [1], containment of queries
under constraint [2], computing data exchange solutions [44], checking
logical implication of constraints [19, 65], and query answering under
constraints [27].

This procedure takes as input a database D and a set Σ of constraints
(such as TGDs previously introduced) and, if it terminates, its result
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is a finite instance DΣ such that it is a model of D and Σ, and in par-
ticular, it is a universal model, i.e., it can be homomorphically mapped
to any other model of D and Σ. We denote the result of the chase for
D under Σ with chase(D,Σ). The key property of the chase procedure
is that it produces an universal model independently of the order in
which rules are processed. Then, it follows that, for each BCQ q,

D∪Σ |= q⇔ chase(D∪Σ) |= q.

However, there are cases where the universal model found by the chase
is infinite and also there are cases where the problem of deciding
whether a database and a set of TGDs entail a query is undecidable
[41, 44]. Nevertheless, even if the chase is not finite, it remains an
efficacious tool for query answering purpose, since in some cases, it
is sufficient to execute the chase up to a finite level for being able to
answer a BCQ [34]. Roughly speaking, the chase “repairs” a database
w.r.t a set of dependencies so that the resulted database satisfies the
dependencies. It starts from an instance and exhaustively performs a
sequence of rule applications with respect to a fixed criterion, which
depends on the considered chase variant.
In literature, five variants of the chase have been proposed: oblivious
[27], skolem [69], restricted [44], core [41], and parsimonious [63]. To
understand the differences among these variants, we need to introduce
the notion of firing homomorphism for a rule σ and an instance I.

Definition 1.1 ([64]). A firing homomorphism for the pair ⟨σ,I⟩
is any homomorphism h : body(σ)→ I s.t. h = h|vars(body(σ)). The fire
of σ via h produces the atom fire(σ,h), obtained from h(head(σ)) by
replacing each existential variable of σ with a different fresh null, i.e.,
not already occurring in I. After that, h is said to be spent with
respect to σ. The result of spending σ over I with h is the instance
I ′ = I ∪fire(σ,h). Such a single step is denoted I⟨σ,h⟩I ′.

Depending on the variant of the chase under consideration, the fire of σ

via h may be subject to a specific fire condition. We recall the definition
of the oblivious and restricted chase, useful for our purpose. For the
definition of the parsimonoius variant, we refer the reader to Section
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2.1. Consider any instance I ′⊇ I. In the case of the restricted chase, we
say that the pair ⟨σ,h⟩ satisfies the fire condition with respect to I ′ if
there is no homomorphism h′ ⊇ h from {head(σ)} to I ′. In contrast, in
the case of the oblivious chase (ochase or chase), the pair ⟨σ,h⟩ always
satisfies the fire condition with respect to I ′. We remark that we assume
that nulls introduced at each fire functionally depend on the pair ⟨σ,h⟩
that is involved in the fire. The last assumption has the immediate
consequence that (regardless of the order in which the rules and the
firing homomorphisms are processed) ochase(D∪Σ) can be considered
unique (up to isomorphism) and that rchase(D∪Σ)⊆ ochase(D∪Σ).

Hence, as stated above, the main idea of the chase is, starting from
a database D, to exhaustively apply, in a “fair” way, firing homomor-
phisms for the given set Σ of TGDs on the instance constructed so
far. More formally, a chase sequence for D under Σ is a (possibly in-
finite) sequence (Ii⟨σi,hi⟩Ii+1)i≥0 of chase steps such that: (i) I = I0;
(ii) for each i ≥ 0, σi ∈ Σ; and (iii) ⋃i≥0 Ii |= Σ. We call ⋃i≥0 Ii the
result of this chase sequence, which always exists. Finally, we recall
that chase(D∪Σ) can be decomposed into levels [31]: D has level 0,
and an atom has level γ + 1 if it is obtained, during the chase, due to
atoms with maximum level γ. We refer to the part of the chase up
to level γ as chaseγ(D∪Σ). The limit of chaseγ(D∪Σ) for γ→∞ is
chase(D∪Σ).



CHAPTER 2

State of the Art

In this chapter, we report some background material essential for the
thesis. In Section 2.1 and in Section 2.2 we describe the variant of the
chase named Parsimonious Chase and the class Shy of TGDs intro-
duced in [63]. In Section 2.3 we describe the notion of proof tree that
leads to space-bounded algorithms, and in Section 2.4 we recall the
class Ward, both introduced in the work of Berger et al. [23]. Succes-
sively, we compare the classes Shy and Ward in Section 2.5. Finally, in
Section 2.6, we conclude the chapter with an overview of other existing
decidable classes.

2.1. The Parsimonious Chase Algorithm

In this section we present a variant of the chase procedure, the so-
called parsimonious chase (pchase) [63, 64], that has been introduced
in the last years. This variant allows to define two Datalog∃ classes:
Parsimonious and Shy (for the last one see Section 2.2).

Intuitively, the pchase procedure repairs violations of rules only if the
(inferred) head atom cannot be homomorphically mapped to any atom
previously produced. Moreover, it is sound and complete for some
classes, its termination is always guaranteed, and computational com-
plexity has been studied (see [63, 64]).

2.1.1. Formal Definition. Now, we formally define a variant of
the chase procedure, the parsimonious chase (pchase), and the class of
Datalog∃ programs that derives from it. As discussed in Section 1.4,
the chase of a database D in the presence of a set Σ of TGDs is a
procedure that constructs a universal model for D∪Σ. However, this
procedure does not always terminate. One of the main properties of
the pchase is that it terminates on any Datalog∃ program.

13
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Before defining the pchase procedure, for the reader convenience, we
recall the definition of firing homomorphism given in Section 1.4.

Definition 1.1. Consider a rule σ and an instance I. A firing homo-
morphism for the pair ⟨σ,I⟩ is any homomorphism h : body(σ)→ I

s.t. h = h|vars(body(σ)). The fire of σ via h produces the atom fire(σ,h),
obtained from h(head(σ)) by replacing each existential variable of σ

with a different fresh null, i.e., not already occurring in I. After that,
h is said to be spent with respect to σ .

We know that the fire condition is not unique, since it depends on the
variant of the chase under consideration. As we focus on the pchase,
in the following we give the definition of parsimonious fire condition.
Intuitively, the parsimonious fire condition prevents from producing
atoms that could be homomorphically mapped to any atom previously
produced. More formally, we define the parsimonious fire condition as
follows.

Definition 2.1. Consider a rule σ, an instance I, and a firing ho-
momorphism h for ⟨σ,I⟩. The pair ⟨σ,h⟩ satisfies the parsimonious
fire condition with respect to an instance I ′ ⊇ I if there is no homo-
morphism h′ from {h(head(σ))} to I ′ such that h′(x) = h(x), for each
x ∈ front(σ) such that h(x) ∈∆C .

The parsimonious chase (denoted pchase) is obtained by the follow-
ing procedure.

Algorithm 1 ([64]). The parsimonious chase procedure.

Input: A Datalog∃ set of TGDs Σ, and a database D.
Output: pchase(D∪Σ).

(1) I := D;
(2) foreach σ ∈ Σ do
(3) foreach unspent (w.r.t. σ) firing homomorphism h for the

pair ⟨σ,I⟩ do
(4) if ⟨σ,h⟩ satisfies the parsimonious fire condition w.r.t. D

then
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(5) D = D∪{fire(σ,h)};
(6) if I ̸= D then
(7) goto Step 1;
(8) else return I;

Now we compare, with the aid of the following example, the behavior
of the parsimonious chase with the oblivious one.

Example 2.2. Consider the database D = {P(a)}, and a set Σ con-
sisting of the following rules.

σ1 : P(x1) → ∃ y1 Q(x1,y1)
σ2 : Q(x2,y2) → P(y2)

The fire of rule σ1 via the homomorphism {x1 7→ a, y1 7→ φ1} pro-
duces the atom Q(a,φ1). However, according to Definition 2.1, the
pair ⟨σ2,{x2 7→ a,y2 7→ φ1}⟩ does not satisfies the parsimonious fire
condition, since we would have produced the atom P (φ1), which would
have been homomorphically mapped to P (a). Hence, the parsimonious
chase terminates after a finite number of steps, and

pchase(D∪Σ) = {P (a),Q(a,φ1)}.

On the other hand, considering the oblivious chase (see Section 1.4),
we do not obtain a finite set, but an infinite one, given by:

ochase(D∪Σ) = pchase(D∪Σ)∪{P (φi)}i∈N+ ∪{Q(φi,φi+1)}i∈N+ .

We point out that, differently to ochase(D ∪Σ), the pchase(D ∪Σ)
might not be a model of D ∪Σ. Now we define the class of TGDs
depending on the semantic property called parsimony.

Definition 2.3. (Parsimony) Consider a database D and a set Σ
of TGDs. We say that Σ is parsimonious if, for each atom a of
ochase(D∪Σ), there exists a homomorphism from a to pchase(D∪Σ).

Let Parsimonious denote the class of all parsimonious sets of TGDs.
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Considering Example 2.2, the set Σ is parsimonious. In fact, having in
mind that

pchase(D∪Σ) = {P (a),Q(a,φ1)},and

ochase(D∪Σ) = pchase(D∪Σ)∪{P (φi)}i∈N+ ∪{Q(φi,φi+1)}i∈N+ ,

it is clear that for each atom of the form P (φi) there exists a homo-
morphism

h = {φi 7→ a} such that h(P (φi)) ∈ pchase(D∪Σ),

and for each atom of the form Q(φi,φi+1) there exists a homomorphism

h = {φi 7→ a,φi+1 7→ φ1} such that h(Q(φi,φi+1)) ∈ pchase(D∪Σ).

Moreover, from Example 2.2, we catch sight of one of the main prop-
erties of the parsimonious chase, that is, it always terminates. This
variant of the chase enjoys different good properties, that we group
together in the next section. For more details, see [63, 64].

2.1.2. Main properties. In this section we list some of the prin-
cipal characteristics of the parsimonious chase [63, 64], providing some
new results obtained in [8].

We highlight a main property of the pchase, based on isomorphic atoms,
a crucial notion in several Datalog± classes [28].

Proposition 2.4. Consider a database D and a set Σ of TGDs. Then,
pchase(D∪Σ) does not contain isomorphic atoms.

Proof. Assume towards a contradiction, that there are two iso-
morphic atoms a and a′ in pchase(D∪Σ). Thus, there is a homomor-
phism h from {a} to {a′} s.t. h−1 is a homomorphism from {a′} to
{a}. Without loss of generality, assume that a ∈ I, for some I gener-
ated during the pchase procedure. As a′ ∈ pchase(D∪Σ), then there
is a rule ρ, an instance I ′ ⊇ I, and an unspent firing homomorphism
h′ for ⟨ρ,I ′⟩, s.t. fire(ρ,h′) = a′, against the fact that h−1 ◦σ is a ho-
momorphism from {h′(head(ρ))} to I ′. Indeed, (h−1 ◦σ)(h′(head(ρ)) =
h−1(σ(h′(head(ρ)) = h−1(fire(ρ,h′)) = h−1(a′) = a ∈ I ⊆ I ′. □



2.1. THE PARSIMONIOUS CHASE ALGORITHM 17

As discussed above, the principal property of the pchase is given by
the following result.

Proposition 2.5 ([64]). The parsimonious chase always terminate.

Exploiting the proposition above, it is possible to prove that parsimony
guarantees decidability of Boolean atomic query aswering.

Theorem 2.6 ([64]). The problem BCQAns over parsimonious pro-
grams and atomic queries is decidable.

Nevertheless, parsimony alone is not enough to also guarantee the de-
cidability of Boolean conjunctive query evaluation and, therefore, of
conjunctive query answering. In particular, in [64] has been proved that
checking whether a program is parsimonious is not decidable, and, in
particular, it is coRE-complete. This is stated in the following theorem.

Theorem 2.7 ([64]). The problem BCQAns over parsimonious pro-
grams is undecidable.

To gain decidability also for conjunctive queries, we recall a technique
called parsimonious-chase resumption, which is sound for any Datalog∃

program, and also complete over a class named Shy, that we introduce
next (see Section 2.2). Intuitively, the idea is to “reapply” the parsi-
monious chase a linear number of times in the size of the query. To
better understand the intuition, consider the following example.

Example 2.8. Let D be a database and Σ a set of TGDs. Suppose
that

pchase(D∪Σ) = {P (c,φ),Q(d,e),R(c,e)},

and that
ochase(D∪Σ) = pchase(D∪Σ)∪Q(φ,e).

We point out that, according to Definition 2.1, the atom a = Q(φ,e)
cannot belong to pchase(D∪Σ) due to atom b = Q(d,e), since there
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exist an homomorphism from a to b. Now, consider the Boolean con-
junctive query

q : ∃ x ∃ y ∃ z P (x,y),Q(y,z).

Evidently, pchase(D ∪Σ) does not provide any answer to q even if
D ∪Σ |= q. To solve this issue, the idea presented in [63, 64] is to
“promote” φ to a constant in ∆C and “resume” the parsimonious chase
execution at Step (2) (see Algorithm 1), in the same state in which it
had stopped after returning the set I at Step (6). Now, since φ can
be considered as a constant, then there is no homomorphism from
{Q(φ,e)} to pchase(D∪Σ), and then the atom Q(φ,e) can be inferred
by the algorithm. In this way, pchase(D∪Σ) provides an answer to q.

The process described above of promoting a null from ∆N to an extra
constant not already occurring in ∆C is called freezing. In particular,
we observe that two nulls cannot be promoted to the same constant.
With the following definition, we formalize the notion of parsimonious-
chase resumption.

Definition 2.9. (see Definition 4.8 in [64]) Let D be a database and
Σ a set of TGDs. The output of the parsimonious chase after k ≥ 0
resumptions is defined as follows:

(1) pchase(D∪Σ,0) = D;
(2) pchase(D∪Σ,k) = pchase(⌈pchase(k−1)⌋∪Σ),

where ⌈pchase(k−1)⌋ is the set obtained from pchase(D∪Σ,k−1) after
freezing all of its nulls.

We observe that pchase(D∪Σ,1) = pchase(D∪Σ). Moreover, it holds
that the sequence {pchase(D ∪Σ,k)}k∈N is increasing, and the limit
of this sequence is denoted by pchase(D∪Σ,∞). The next proposition
states that the resumption technique above described is sound w.r.t.
QA, and that its infinite application, over particular sets of TGDs (see
Section 2.5), also ensures completeness.

Proposition 2.10 (see Proposition 4.9 in [64]). Given a database D

and a set Σ of TGDs, it holds that pchase(D∪Σ,∞)⊆ ochase(D∪Σ).
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Our next claim is to understand the nature of the pchase procedure,
but first, we recall the last result useful to our purposes, obtained in
[63, 64].

Theorem 2.11 (see Theorem 6.1 in [64]). Problem BCQAns for atomic
queries over parsimonious programs is in ExpTime in combined com-
plexity and in PTime in data complexity.

In what follows we investigate some aspects of the Parsimonious Chase.
As discussed previously, one of the principal properties of this variant is
that its termination is always guaranteed. However, no precise bound
has been provided so far. To this end, we decide to examine the atoms
generated in the pchase, and we exploit the notion of Bell numbers,
used to count the number of distinct partitions of a finite set, to com-
pute an upper bound for the number of atoms generated by the pchase
procedure. This is one of the results contained in the conference paper
[8].

We aim at recognizing what kind of atoms belong to the pchase, that is
strictly related to count the number of atoms generated by the pchase.
To provide an exact upper bound for the pchase, we exploit the notion
of “equality type” defined in [50] introducing the equivalent concept of
type; then, we show its strictly relation to the form of non-isomorphic
atoms of a given predicate.

Definition 2.12. Let m be a positive integer, S an arbitrary partition
of {1, . . . ,m}, C a set with |C| ≤ |S|, and f : C → S an injective map.
We define the type of S,C and f as the family of sets

T (S,C,f) =
{
s∪f−1(s) | s ∈ S

}
.

The following example is given to better understand the previous defi-
nition.

Example 2.13. Let m = 6, C = {c1, c2}, and let S =
{
{1,2},{3,6},{4},

{5}
}

be a partition of {1, . . . ,6}. Consider the injective map f : C→ S

such that f(c1) = {3,6} and f(c2) = {5}. Then,

T (S,C,f) =
{
{1,2},{3,6, c1},{4},{5, c2}

}
.
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Fixing an integer m, the next step is to count the number of all possible
types that can be generated from any partition of the set {1, . . . ,m},
varying C on a superset D of a fixed size d. In order to do this, we
resort to the Bell number Bn, that is the number of ways to partition
a set of n labeled elements.

Theorem 2.14. Let m ∈ N and D a finite set of size d > 0. The
number of all possible types generated from all the partitions of the set
{1, . . . ,m} and all subsets of D is given by

Υd
m =

m∑
s=1

S(m,s) ·
min{s,d}∑

c=0

(
d

c

)
· s!
(s− c)! ,

where S(m,s) is the Stirling number counting the number of partitions
of size s on m elements.

Proof. To prove the theorem, we first recall that, given two sets
A and B with |A|= α≤ β = |B|, the number of injective maps from A

to B is β!
(β−α)! .

Then, fixing a partition S of {1, ...,m} with |S| = s, the number of
injective maps from any subset C ⊆D to S, with |C|= c≤ s, is s!

(s−c)! ,
while the number of subsets of size c is

(
d
c

)
. Thus, the number of all

possible types for the fixed partition S is
min{s,d}∑

c=0

(
d

c

)
· s!
(s− c)! .

Hence, the number of types generated from all the partitions of the set
{1, . . . ,m} and all subsets of D is given by

m∑
s=1

S(m,s) ·
min{s,d}∑

c=0

(
d

c

)
· s!
(s− c)! ,

where S(m,s) is the Stirling number counting the number of partitions
of size s on m elements. □

Conjecture 1. Let m ∈ N, D a finite set of size d > 0, and Bn the
n-th Bell number and consider

γd
m =

m∑
h=0

(
m

h

)
dhBm−h.
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Then, we claim that
Υd

m = γd
m.

We point out that by experimental evaluation the two formulas coin-
cide. We hope to formally prove this conjecture in future works.

Taking advantage of the notion of type, we can provide a new repre-
sentation of an arbitrary atom.

Definition 2.15. Consider an atom a = p(t) of arity m. The atom
type of a is defined as Ta = T (S,C,f), where:

(1) C = const(a),

(2) S =
{
{n | a[n] = ti} | i = 1, . . . ,m

}
, and

(3) f : C→ S such that f(c) = {n | a[n] = c}.

In plain words, the type of an atom a has the form

Ta = {ϑ(t1), . . . ,ϑ(tm)},

where ϑ is such that

ϑ(ti) =

 {n | n ∈ {1, . . . ,m}∧a[n] = ti}∪{ti}, if ti is a constant,
{n | n ∈ {1, . . . ,m}∧a[n] = ti}, otherwise.

Therefore, the type of an atom is formed by the sets of positions where
a term occurs, highlighting positions where constants occur.

Example 2.16. Consider a = p1(φ1,φ3,φ2,φ1) and b = p2(c,φ1,d,c,φ2,

φ2,φ1). Then, Ta =
{
{1,4},{2},{3}

}
and Tb =

{
{1,4, c}, {2,7}, {3,d},

{5,6}
}
.

Theorem 2.17. Let a = p(t1, . . . , tk) and a′ = p(t′
1, . . . , t′

k) be two atoms.
Then, a and a′ are isomorphic if, and only if, pred(a) = pred(a′) and
Ta = Ta′.

Proof. Let us consider two atoms a and a′. If pred(a) ̸= pred(a′) or
arity(a) ̸= arity(a′), then of course cannot exist an isomorphism between
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them. Hence, we can take for granted that the two atoms have same
predicate and arity.

[⇒] Assume that there is an isomorphism between a and a′, i.e., there
is a homomorphism h : {a} → {a′} s.t. h(ti) = t′

i, i = 1, . . . ,k and s.t.
h−1 : {a′} → {a} is a homomorphism. Let Ta = {ϑ(t1), . . . ,ϑ(tk)} and
Ta′ = {ϑ′(t1), . . . ,ϑ′(tk)}. We claim that ϑ(ti) = ϑ(t′

i), for i = 1, . . . ,k.
Assume that ϑ(ti)⊆ϑ(t′

i), and let n∈ϑ(ti)∩N, so that a[n] = ti. There-
fore, we have that t′

i = h(ti) = h(a[n]) = h(a)[n] = a′[n]. Hence, n ∈
ϑ(t′

i). Moreover, if n = c is a constant, by definition of homomorphism,
we have c ∈ ϑ(ti)⇒ ti = c⇒ t′

i = h(ti) = ti = c⇒ c ∈ ϑ(t′
i). Conversely,

assume that ϑ(ti) ⊇ ϑ(t′
i), and let n ∈ ϑ(t′

i). Hence, a′[n] = t′
i. There-

fore, ti = h−1(t′
i) = h−1(a′[n]) = h−1(a′)[n] = a[n]. Thus, n ∈ ϑ(ti).

[⇐] Let us assume that Ta = Ta′ . Let h : {a} → {a′} be s.t. h(ti) = t′
i.

First, we prove that h is a homomorphism. Let ti = c be a constant.
Suppose that c ∈ ϑ(ti), then by assumption c ∈ ϑ(t′

i), hence t′
i = c.

It remains to be shown that h is also injective. Let t′
i = t′

j . Then,
ϑ(t′

i) = ϑ(t′
j)⇒ ϑ(ti) = ϑ(tj)⇒ ti = tj . □

After exploiting the notion of Bell numbers and counting the number
of distinct partitions of a finite set, we are able to provide an upper
bound for the maximum number of atoms generating by the pchase
procedure.

Theorem 2.18. Consider a database D and a set Σ of TGDs. Let
arity(D∪Σ) = w, |const(D)| = d, and lm the number of predicates in
pred(D∪Σ) of arity m. Then,

|pchase(D∪Σ)| ≤
w∑

m=0
lmΥd

m.

Proof. By Theorem 2.14 and Theorem 2.17, the total number of
non isomorphic atoms over pred(D∪Σ) and const(D)∪∆N is given by

w∑
m=0

lmΥd
m. Moreover, by Theorem 2.4, we know that pchase(D∪Σ)

does not contain isomorphic atoms. Hence, the statement follows. □

From now on, we denote with Γd
w the upper bound in Theorem 2.18.
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To show that this bound is also tight, we introduce an ordering on
types in order to show that there exists a family of ontologies for which
the pchase can produce exactly the upper bound previously computed,
so that it corresponds to the maximal number of atoms effectively
generated by the pchase procedure.

Definition 2.19. Consider the atom types T = T (S,C,f) and T ′ =
T (S′,C ′,f ′). Then, T precedes T ′, if

(1) |C|< |C ′|, or

(2) |C|= |C ′| and |S|> |S′|.

Intuitively, to build an ontology with a sequence of firing homomor-
phisms able to generate a pchase of size exactly Γd

w, there should exists
a rule for each possible atom type, whenever constants are allowed in
the rules. Otherwise, we need a predicate to collect all constants of the
database. To better understand our idea, we give an example of such
a program before to provide the formal result.

Example 2.20. Consider the database D = {t(c1), t(c2)}, and the set
Σ of TGDs consisting of the following rules:

σ1 : → ∃x1,y1, z1 P (x1,y1, z1)
σ2 : → ∃x2,y2 P (x2,x2,y2)
σ3 : → ∃x3,y3 P (x3,y3,x3)
σ4 : → ∃x4,y4 P (x4,y4,y4)
σ5 : → ∃x5 P (x5,x5,x5)
σ6 : T (z6) → ∃x6,y6 P (z6,x6,y6)
σ7 : T (z7) → ∃x7,y7 P (x7, z7,y7)
σ8 : T (z8) → ∃x8,y8 P (x8,y8, z8)
σ9 : T (y9) → ∃x9 P (x9,x9,y9)

σ10 : T (y10) → ∃x10 P (x10,y10,x10)
σ11 : T (y11) → ∃x11 P (y11,x11,x11)
σ12 : T (y12),T (z12) → ∃x12 P (x12,y12, z12)
σ13 : T (y13),T (z13) → ∃x13 P (y13,x13, z13)
σ14 : T (y14),T (z14) → ∃x14 P (y14, z14,x14)
σ15 : T (x15),T (y15),T (z15) → P (x15,y15, z15)
σ16 : → ∃x16 T (x16)
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We build pchase(D∪Σ) starting from rule σ1 to rule σ16. For each rule
σi ∈ Σ in this ordering, we consider all firing homomorphisms h for σi,
i ∈ {1, . . . ,16}. E.g., the rule σ8 in red produces the atoms

{P (φ1,φ2, c1), P (φ3,φ4, c2)}.

Thus, the number of atoms with predicate P generated by the pchase
will be 37 = γ2

3 , and |pchase(D∪Σ)|= 40 = γ2
3 +γ2

1 .

Now we can prove the following result.

Theorem 2.21. Let w be a positive integer, C a set of constants of
size c, and Γc

w as above. Then, there is a database D and an ontology
Σw s.t. |pchase(D∪Σw)|= Γc

w.

Proof. Consider two predicates P of arity w and T of arity 1.
We set the database D = {T (c) | c ∈ C} and define the ontology Σw as
follows. Given a partition Si = {Λ1, . . . ,Λn} of w, where n = |Si|, we
construct a rule ri with an empty body, by adding x1, . . . ,xn existential
variables so that Λj = {k | P [k] = xj , k ∈ [w]}. Now, fix a rule ri with
n > 1 existential variables. We produce n−1 blocks of rules as follows.
We translate j existential variables into universal ones, by adding j

atoms over predicate T in the body. Hence, we construct
(

n
j

)
rules.

Then, we add the rules P (x1, . . . ,xw) = T (x1), . . . ,T (xw), and ∃xT (x).
Finally, we remove all rules having in the head more than one repeated
universal variable. To prove that |pchase(D∪Σw)| = Γd

w, we provide
a sequence of Γd

w − d firing homomorphisms. To each rule r in Σw

we associate uniquely an atom g(head(r)), where g maps existential
variables to fresh nulls, and universal variables to a fixed constant.
The type ordering on the atoms gives an ordering on the rules, and so
to the sequence of firing homomorphisms. □

We observe that the maximal number of distinct atoms that can be
generated by the pchase procedure identified above, γd

m, improves the
bound given in [63], that is (d + m)m. In particular, dm ≤ γd

m ≤
(d+m)m. Since in the OBQA context, normally, d is much bigger than
m, it could seem that the effort to find such a precise upper bound can
be useless for practical purposes. However, this is not the case, since
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the search for a precise upper bound led to identify the fundamental
notions of type and type ordering that highlighted some qualitative
characteristics of the pchase. Moreover, there could be other contexts
where m is much bigger than d (think for example to scenarios where
tuples encode strings over a certain alphabet, as in complexity proofs
based on Turing Machine simulation). In these cases, our bound rep-
resents a concrete improvement.

2.2. The Shy Class

In this section we introduce the class Shy, an easily recognizable class
that enjoys the parsimony property (see Definition 2.3), and that ex-
tends both the class of Datalog (the well-know class of existential-free
rules of the form ∀x∀y(ϕ(x,y) → P (x))), and linear Datalog∃ pro-
grams (i.e., with at most one body atom), while preserving the same
(data and combined) complexity of QA over Datalog, even though it
includes existential quantifiers. Nevertheless, it is incomparable to the
other main classes ensuring decidability. Before to start with the ex-
planation about its syntax, for the reader convenience, we recall the
definitions regarding the classification of variables, stated in the works
of Leone et al. [63, 64].

Definition 2.22. (see Definition 5.1 in [64]) Consider a set Σ of TGDs,
a variable y ∈ var∃(Σ), a predicate R of arity k, and an index i ∈
{1, . . . ,k}. A position R[i] is invaded by y if there is a rule σ ∈Σ such
that head(σ) = R(t1, . . . , tk) and either ti = y, or ti is a ∀-variable which
occurs in the body of σ only in positions that are invaded by y.

Definition 2.23. ([64]) Let Σ be a set of TGDs. Fix a TGD σ ∈ Σ
and a variable x in body(σ):

• x is attacked by a variable y if x occurs in body(σ) only in
positions that are invaded by y;

• x is protected if it is no attacked by no variable.

Now we are able to define the class Shy.
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Definition 2.24. (Shyness, See Definition 4.2 in [63]) A set Σ of TGDs
is shy if, for each TGD σ ∈Σ the following conditions are both satisfied:

(1) if a variable x occurs in more than one body atom, then x is
protected in body(σ);

(2) if two distinct frontier variables are not protected in body(σ)
and occur in two different body atoms, then they are not at-
tacked by the same variable.

The class of shy sets of TGDs is denoted by Shy.

In order to better understand the previous definitions, now we give an
example of a shy set of TGDs.

Example 2.25. Consider the database D = {P (a)}, and the following
set Σ of rules.

σ1 : P (x1) → ∃ y1 Q(x1,y1)
σ2 : Q(x2,y2) → S(y2)
σ3 : P (x3),S(z3) → ∃ y3 R(x3,y3)
σ4 : R(x4,y4) → T (y4)
σ5 : S(x5),Q(x5,y5),T (x5) → V (x5)

According to Definition 2.24, it is easy to see that rules σ1,σ2 and σ4

are shy, since in their bodies there is only one atom. Rule σ3 does not
even violate the shyness condition, because this rule does not contain
joins or attacked variables. However, the body of rule σ5 is composed
by three atoms: S(x5), Q(x5,y5) and T (x5). In particular, we have
that S[1] is invaded by y1, Q[1] is invaded by y1, but T [1] is invaded
by y3. Hence, we have that the variable x5 is protected. Therefore, Σ
is a shy set of TGDs.

Now, let us focus on the following example of a set of rules that does
not belong to Shy.
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Example 2.26. Consider the database D = Q(a),P (a,b), and the fol-
lowing set Σ of rules.

σ1 : Q(x1) → ∃ y1 U(x1,y1)
σ2 : U(x2,y2),P (x2, z2) → V (x2,y2, z2)
σ3 : V (x3,y3, z3) → P (x3,y3)
σ4 : U(x4,y4) → U(y4,x4)

As we have seen in Example 2.25, if the body of a rule contains only
one atom, the conditions of Definition 2.24 are not violated. Hence,
let us focus on rule σ2. Computing the set of the invaded positions of
Σ, we obtain that positions U [1],U [2],V [2] and P [2] are invaded by y1.
Accordingly, variables y2 and z2 are both attacked by y1, and hence
condition (2) of Definition 2.24 is not satisfied.

In plain words, we can say that the key idea behind this class is that
during the execution of the chase over a shy set of rules and a data-
base, nulls propagated body-to-head do not meet each other to join.
Moreover, a null is propagated during a given fire, only from a single
atom. In fact, condition (1) of Definition 2.24 guarantees that each
variable occurring in more than one body atom is always mapped into
a constant.

We refer the reader to Section 2.5 for the computational properties of
this class.

2.3. The Notion of Proof Tree

In this section we describe the notion of proof tree that leads to space-
bounded algorithms. This is a well known resolution-based method,
that we use to show some fundamental results of this thesis. All the
definition and properties that we introduce in the following can be
found in the work of Berger et al. [23]. We point out that the literature
about this topic is quite extensive, and for this reason, we refer the
reader also to the conference papers [35, 37, 39, 51, 52, 59].

It is a popular fact that with a CQ q and a set Σ of TGDs, q can be
unfolded by using the TGDs of Σ into an infinite union of CQs qΣ in
such a way that, for each database D, cert(q,D,Σ) = qΣ(D).
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The intent underlying the proof tree concept is to encode the sequence
of CQs in a tree. This sequence of CQs which is generated during the
unfolding of q with Σ, leads to a certain CQ q′ of qΣ such that every
intermediate CQ, as well as q′, is decomposed cautiously into smaller
subqueries which form the tree nodes, while the root corresponds to q

and leaves to q′.
It is interesting to observe that if we focus on well-behaved classes of
TGDs such as warded (see Section 2.5) sets of TGDs, we can find upper
bounds on the size of those subqueries, and, consequently, develop
space-bounded algorithms for query answering.

The section is organized as follows. In Subsection 2.3.1 we define the
notion of proof tree, and the main building blocks of it: chunk-based
resolution, a query decomposition technique, and the notion of special-
ization for CQs, according to [23]. In Subsection 2.3.2 we recall the
correspondence between proof trees and query answering.

2.3.1. Formal Definition. The goal of this subsection is to give
the formal definition of proof tree. The first step needed to provide
such definition, is to define a chunk-based resolution [23].

Intuitively, let us consider A and B to be two non-empty sets of atoms
that mention only constants and variables. If there exists a substitution
γ, which is the identity on ∆C and such that γ(A) = γ(B), we say that
γ is a unifier for A and B and the sets A and B unify. A most general
unifier which will be denoted with MGU, for A and B is a unifier for A
and B, denoted γA,B, in such a way that for every unifier γ for A and
B, γ = γ′ ◦γA,B for some substitution γ′ [23]. The existence of a MGU,
which is unique up to variable renaming, is guaranteed if two sets of
atoms unify. Given a CQ q(x) and a set of atoms S ⊆ atoms(q), we say
that a variable y ∈ vars(S) is shared, if y ∈ x or y ∈ vars(atoms(q)\S).
Consider a TGD σ that does not share a variable with q and two sets
S1 and S2 such that ∅ ⊂ S1 ⊆ atoms(q), and ∅ ⊂ S2 ⊆ head(σ). Let γ

be a unifier for S1 and S2 such that, for each x ∈ vars(S2)∩ var∃(σ),

(1) γ(x) /∈∆C , i.e., γ(x) is not constant, and
(2) for every variable y different from x, γ(x) = γ(y) implies y

occurs in S1 and is not shared.
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We say that the triple (S1,S2,γ) is a chunk unifier of q with a TGD
σ. Moreover, if γ is MGU for S1 and S2, the triple (S1,S2,γ) is a most
general chunk unifier (MGCU).

Consider the following example for clarifying the notion above.

Example 2.27 ([23]). Consider the conjunctive query

q : Q(x) ← R(x,y),S(y)

and the TGD
σ : P (x′) → ∃ y′ R(x′,y′).

Resolving the atom R(x,y) in q with σ via γ = {x 7→ x′,y 7→ y′} would
be an unsound step due to the fact that the shared variable y is
lost. This is because y′ is unified with the shared variable y. On the
other hand, R(x,y),S(y) can be resolved with the TGD σ′ = P (x′)→
∃y′R(x′,y′),S(y′) using γ; hence, the chunk unifier is

(atoms(q),head(σ′),γ).

Now, we formally define a chunk-based resolution.

Definition 2.28 (see Definition 4.3 in [23]). Let q(x) be a CQ and σ a
TGD. A σ-resolvent of q is a CQ q′(γ(x)) with body(q′) = γ((atoms(q)\
S1)∪body(σ)) for a MGCU (S1,S2,γ) of q with σ.

As mentioned above, it is a known fact that, given a CQ q and a set Σ of
TGDs, q can be unfolded by using the TGDs of Σ into an infinite union
of CQs qΣ such that, for each database D, cert(q,D,Σ) = qΣ(D). The
aim of a proof tree is the encoding a finite branch of the unfolding of a
CQ q with a set Σ of TGDs, which is gotten through the application of
chunk-based resolution. Such a branch is a sequence q0, . . . , qn of CQs,
where q = q0, while, for each i ∈ [n], qi is a σ-resolvent of qi−1 for some
σ ∈ Σ.

Now, we give a simple example that illustrates the notion of unfolding.
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Example 2.29. (see Example 4.4 in [23]) Consider the following set
Σ = σ1,σ2,σ3 of TGDs, that will be used as running example in this
section:

σ1 : R(x) → ∃ y T (x,y)
σ2 : T (x,y),S(y,z) → T (x,z)
σ3 : T (x,y),P (y) → G(),

and the CQ that simply asks whether G() is entailed, i.e., the CQ

Q ← G().

It is noteworthy that unfolding q with Σ should provide the right answer
for each input database. Let us consider the following database. For
some n > 1:

{R(cn−1), S(cn−1, cn−2), . . . , S(c2, c1), P (c1)}.

One branch of the unfolding of q should be q = q0, . . . , qn, where

q0 = Q ← G()︸︷︷︸
↓ resolv q0 using σ3

q1 = Q ← T (x,y1)︸ ︷︷ ︸,P (y1)

↓ resolv q1 using σ2

q2 = Q ← T (x,y2)︸ ︷︷ ︸,S(y2,y1),P (y1)

↓ resolv q2 using σ2

q3 = Q ← T (x,y3)︸ ︷︷ ︸,S(y3,y2),S(y2,y1),P (y1)
... (resolv q3, . . . , qn−2 using σ2)

qn−1 = Q ← T (x,yn−1)︸ ︷︷ ︸,S(yn−1,yn−2), . . . ,S(y2,y1),P (y1)

↓ resolv qn−1 using σ1

qn = Q ← R(yn−1),S(yn−1,yn−2), . . . ,S(y2,y1),P (y1).

It would seem that the proof tree is the finite labeled path v0, . . . ,vn,
where each vi is labeled by qi. However, it is clear from the example
above that by following the naive path encoding, we may get CQs of
unbounded size [23]. The next objective of such a proof tree is to divide
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each resolvent qi, for i > 0, into smaller subqueries q1
i , . . . , qni

i , in order
to be treated independently by resolution. However, the problem in
the process of the decomposition of q in subqueries is that, after its
splitting, we may loose some join among variables, since they can be
disjoined in different subqueries. The answer which was proposed by
Berger et al. in [23] is only to distinguish occurrences of an output
variable since this variable conventionally corresponds to a fixed con-
stant value of ∆C , and consequently it is never renamed by subsequent
resolution steps. This ensure that it is possible to split occurrences of
an output variable in different branch of the proof tree (without losing
the semantic connection between them), while keeping together all the
occurrences of a non-output variable, in order to preserve all the joins.
Formally, a query decomposition is defined below.

Definition 2.30 (see Definition 4.5 in [23]). Given a CQ q(x), a de-
composition of q is a set of CQs

{q1(y1), . . . , qn(yn)},

where n≥ 1 and ∪i∈[n]atoms(qi) = atoms(q), such that, for each i ∈ [n]:

(1) yi is the restriction of x on the variables in qi , and

(2) for every a,b∈ atoms(q), if a∈ atoms(qi) and vars(a)∩vars(b)⊊
x, then b ∈ atoms(qi).

At this point, as shown in Example 2.29, we deal with the problem
of not being able to split the query. In fact, in some cases, there
is no way to understand that a non-output variable coincides with a
fixed constant value, and, hence, that its occurrences could be split
during the decomposition [23]. Indeed, the size of the CQs {qi}i>0

grows inconsistently, while the query decomposition does not have any
effect on them since they are Boolean queries, i.e., queries which do
not have output variables, and therefore, they cannot be divided into
smaller subqueries. For this reason, a specialization step has been
added, between resolution and decomposition. Intuitively, in this step,
the transformation of some non-output variables into output variables
while maintaining their name or bearing the name of an already existent
output variable is done. Formally, this step is defined as follows.
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Definition 2.31 (see Definition 4.6 in [23]). Let q(x) be a CQ with
atoms(q) = {a1, . . . ,an}. A specialization of q is a CQ Q(x,y)←
ρz(a1, . . . ,an), where y,z are (possibly empty) disjoint tuples of non-
output variables of q, and ρz is a substitution from z to x∪y.

Example 2.32 ([23]). Consider the CQ q1 from Example 2.29

Q← T (x,y1),P (y1)

obtained by resolving q = q0 from rule σ3 of Example 2.29.

As we can see, all the occurrences of the variable y1 should be kept
together (since it is a non-output variable), and hence this query cannot
be decomposed into smaller subqueries.

Consider the following specialization of q1

Q(y1)← T (x,y1),P (y1),

which converts y1 into an output variable. Accordingly, the query can
be decomposed into

Q(y1)← T (x,y1), and

Q(y1)← P (y1).

Before we formulate the notion of proof tree, we introduce the following
notational aids:

• given a partition π = {S1, . . . ,Sm} of a set of variables, eqπ

denotes the substitution that maps the variables of Si to the
same variable xi, where xi is a distinguished element of Si;

• given a CQ q and a TGD σ, an IDO σ-resolvent of q is a σ-
resolvent of q such that the underlying MGCU makes use of a
substitution which is the identity on the output variables of q;

• given a TGD σ and a node v, σv indicates the TGD deriving
from the renaming of each variable x in σ into xv.
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Now, we have all the element to define the notion of proof tree, a
resolution-based method of independent interest, that we will use to
prove some complexity results in the thesis.

Definition 2.33 (see Definition 4.7 in [23]). Let q(x) be a CQ with
atoms(q) = {a1, . . . ,an}, and Σ a set of TGDs. A proof tree of q w.r.t.
Σ is a triple P = (T,λ,π), where T = (V,E) is a finite rooted tree, λ a
labeling function that assign a CQ to each node of T , and π a partition
of x, such that, for v ∈ V :

(1) if v is the root node of T , then λ(v) is the CQ Q(eqπ(x)) ↢
eqπ(a1, . . . ,am);

(2) if v has only one child u, λ(u) is an IDO σv-resolvent of λ(v)
for some σ ∈ Σ, or a specialization of λ(v).

(3) if v has the children u1, . . . ,uk for k > 1, then {λ(u1), . . . ,λ(uk)}
is a decomposition of λ(v);

Assuming that v1, . . . ,vm are the leaf nodes of T , the CQ induced by
P is definend as

Q(eqπ(x)) ↢ a1, . . . ,al,

where {a1, . . . ,al}= ∪i∈[m]atoms(λ(vi)).

The aim of the partition π in Definition 2.33 is to show that some
output variables match an equal constant value. This is the reason of
why variables in the same set of π are unified via substitution eqπ; this
unification step is crucial in order to use substitutions that are identity
on the output variables. If we skip this preliminary unification step,
important resolution steps may be lost rendering it incomplete for the
purpose of query answering.

Now, for completeness, we give an example that illustrates the notion
of proof tree just introduced.

Example 2.34 (see Figure 1 in [23]). Proof tree that encodes the
branch Q = q0, . . . , qn of the unfolding of q with Σ from Example 2.29.



34 2. STATE OF THE ART

Q←G()

Q← T (x,y1),P (y1)

Q(y1)← T (x,y1),P (y1)

Q(y1)← T (x,y1)

...

Q(yi−1)← T (x,yi−1)

Q(yi−1)← T (x,yi),S(yi,yi−1)

Q(yi−1,yi)← T (x,yi),S(yi,yi−1)

Q(yi−1)← T (x,yi)

...

Q(yn−2)← T (x,yn−2)

Q(yn−2)← T (x,yn−1),S(yn−1,yn−2)

Q(yn−2,yn−1)← T (x,yn−1),S(yn−1,yn−2)

Q(yn−1)← T (x,yn−1)

Q(yn−1)←R(yn−1)

Q(yn−2,yn−1)← S(yn−1,yn−2)

Q(yi−1,yi)← S(yi,yi−1)

Q(y1)← P (y1)
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Finally we give the following:

Definition 2.35 ([23]). The node-width of a proof tree P is defined as
follows:

nwd(P) := maxv∈V {|λ(v)|}.

2.3.2. Main Properties. In this section we report the main re-
sults obtained in the work of Berger et al. in [23], by denoting, with
abuse of notation, P for the CQ induced by a proof tree P .

The first result useful for our purposes concerns the connection between
proof trees and CQ answering. What we intend to indicate is that
verifying if a tuple c is a certain answer reduces to deciding if there
exists a proof tree P in such a way that c is an answer to the CQ
induced by P over the given database.

Theorem 2.36 (see Theorem 4.8 in [23]). Consider a database D, a set
Σ of TGDs, a CQ q(x), and a tuple c ∈ dom(D)|x|. Then the following
are equivalent:

(1) c ∈ cert(q,D,Σ).

(2) There is a proof tree P of q w.r.t. Σ such that c ∈ P(D).

In general, checking for the existence of such as proof tree is an unde-
cidable problem. For this reason we focus on particular sets of TGDs
and we search for the existence of a “well-behaved” proof trees, which
enjoy certain syntactic properties which allow to design a decision pro-
cedure. We underline that this searching is strictly related to the class
of TGDs under consideration. For this reason we postpone the discus-
sion to Section 2.5 and to Chapter 4.

Then, we recall the auxiliary notion of chase tree; it operates as an in-
termediate structure between proof trees and chase sequences, enabling
the use of the chase as an underlying technical tool. It is important to
note that the notion of node-width can be clearly described for chase
trees.

In order to introduce the notion of chase tree, for the completeness
of the argument, in the sequel we report other needed notions [23].
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Before anything else, we recall the concept of chase graph, and then we
introduce the notion of unraveling of the chase graph, and then lastly,
we introduce the notions of unfolding and decomposition for sets of
atoms in the unraveling of the chase graph.

Definition 2.37 ([23]). Fix a chase sequence δ = (Ii)i≥0 for a database
D under a set Σ of TGDs with Ii⟨σi,hi⟩Ii+1, i.e., Ii+1 is obtained by
applying the firing homomorphism (σi,hi) to Ii. The chase graph for
D and Σ (w.r.t. δ) is a directed edge-labeled graph GD,Σ = (V,E,λ),
with λ being the labeling function, where V = chase(D,Σ), and an
edge (a,b) labeled with (σk,hk) belongs to E iff a ∈ hk(body(σk)) and
b ∈ Ik+1 \ Ik, for some k ≥ 0.

In plain words, a has an edge to b if b is derived using a, and, in
addition, b is new in the sense that it has not been derived before.
Note the fact that GD,Σ does not have directed cycles. It is obvious
that GD,Σ depends on δ, but a fixed sequence δ can be assumed since
each chase sequence leads to the same outcome (up to isomorphism)
as earlier mentioned in Section 1.4.

Now, we report the notion of unraveling of the chase graph. Given a
set Θ∈ V of nodes, the unraveling of GD,Σ around Θ is, informally,
the directed node- and edge-labeled forest GD,Σ

Θ = (VΘ,EΘ,µΘ), that
has a tree for each a ∈ Θ whose branches are backward-paths in GD,Σ

from a to a database atom. The edges between nodes are labeled by
pairs (σ,h) just like in GD,Σ, while the nodes are labeled by atoms and,
importantly, the atoms along the paths in GD,Σ may be duplicated and
labeled nulls are given new names. We write U(GD,Σ,Θ) for the set of
all atoms that appear as labels in GD,Σ

Θ . [23]

Definition 2.38 ([23]). Given a node v ∈GD,Σ
Θ , we denote by succσ,h(v)

the set of labels of all children of v whose edges from v are labeled by
(σ,h).

Definition 2.39 ([23]). Let Γ,Γ′ ⊆ U(GD,Σ,Θ). We say that Γ′ is an
unfolding of Γ if there are a∈ Γ and b1, . . . , bk ∈U(GD,Σ,Θ) such that:
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(1) succσ,h(v) = {b1, . . . , bk}, for some σ ∈Σ and h, and some node
v ∈ GD,Σ

Θ labeled with a;

(2) for each null which occurs in a, either it does not appear in
Γ\{a}, or it appears in {b1, . . . , bk};

(3) Γ′ = (Γ\a)∪{b1, . . . , bk}.

Definition 2.40 ([23]). Let Γ ∈ U(GD,Σ,Θ) be a non-empty set. A
decomposition of Γ is a set Γ1, . . . ,Γn, for n≥ 1, of non-empty subsets
of Γ such that:

(1) Γ = ∪i∈[n]Γi, and

(2) i ̸= j implies that Γi and Γj do not share a labeled null.

Now we are ready to formally define the key notion of chase tree.

Definition 2.41 (see Definition 4.11 in [23]). Let D be a database, Σ
a set of TGDs, Θ⊆ chase(D,Σ) and Γ⊆U(GD,Σ,Θ). A chase tree for
Γ (w.r.t. GD,Σ

Θ ) is a pair C = (T,λ), where T = (V,E) is a finite rooted
tree and λ is a labeling function that assigns a subset of U(GD,Σ,Θ) to
each node of T , such that, for each v ∈ V , the following hold:

(1) if v is the root node of T , then λ(v) = Γ;

(2) if v has only one child v′, then λ(v′) is an unfolding of λ(v);

(3) if v has more than one child v′
1, . . . ,v′

k for k > 1, then {λ(v′
1), . . . ,

λ(v′
k)} is a decomposition of λ(v);

(4) if v is the leaf node, then λ(v)⊆D;

The node-width C is defined as nwd(C) := maxv∈V {|λ(v)|}.

Finally, we exploit the following theorem to connect the chase tree and
the proof tree.

Theorem 2.42 (see Lemma 4.13 in [23]). Consider a database D and
a set Σ of TGDs. Let Θ ⊆ chase(D,Σ), q(x) be a CQ, and c be a
tuple of constants such that h(atoms(q)) ⊆ U(GD,Σ,Θ) and h(x) = c,
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for some homomorphism h. If there is a chase tree C for h(atoms(q))
with nwd(C)≤m, then there is a proof tree P for q w.r.t. Σ such that
nwd(P) ≤ m and c ∈ P(D).

2.4. The Ward Class

In this section we introduce the class Ward, that is a member of the
Datalog± family of knowledge representation languages [35] and forms
a subclass of a highly expressive class of TGDs known in the literature
as weakly-frontier-guarded sets of TGDs [16]. In particular, this rule-
based formalism represents the logical core of the Vadalog system [21,
22, 53, 54]. This fragment captures plain Datalog as well as SPARQL
queries under the entailment regime for OWL 2 QL [45], and it is able
to perform ontological reasoning tasks. In fact, in the TGD literature,
it is well known that an uncontrolled use of dangerous variables can
lead to an high computational complexity of CQ answering [27]. Hence,
we are interested to this class, since it aims at taming the way that nulls
are propagated during the chase.

We observe that the syntactic condition of the class Ward is defined on
the classical notion of affected position reported in the following.

Definition 2.43. ([23]) Consider a set Σ of TGDs. The set of affected
position of sch(Σ), denoted by aff(Σ), is inductively defined as follows:

(1) if there exists σ ∈ Σ and a variable x ∈ var∃(σ) at position π,
then π ∈ aff(Σ), and

(2) if there exists σ ∈Σ and a variable x ∈ front(σ) in the body of
σ only at positions of aff(Σ), and x appears in the head of σ

at position π, then π ∈ aff(Σ).

Let nonaff(Σ) = pos(Σ) \ aff(Σ). We can give a classification of the
variables that appear in the body of a TGDs.

Definition 2.44. ([23]) Consider a set Σ of TGDs. Fix σ ∈ Σ and a
variable x in body(σ):

• x is harmless if at least one occurrence of it appears in body(σ)
at a position of nonaff(Σ);
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• x is harmful if it is not harmless;

• x is dangerous if it is harmful and belongs to front(σ).

Now we can formally define the class as follows.

Definition 2.45. (Wardedness, see Definition 3.1 in [23]) A set Σ of
TGDs is warded if, for each σ ∈Σ, there are no dangerous variables in
body(σ), or there exists an atom a ∈ body(σ), called a ward, such that:

(1) all the dangerous variables in body(σ) occur in a, and

(2) each variable in vars(a) ∩ vars(body(σ)\{a}) is harmless.

We write Ward for the class of all finite warded sets of TGDs.

Example 2.46. Consider the following set Σ of rules:

σ1 : P (x1,y1),S(y1, z1) → ∃ w1 T (y1,x1,w1)
σ2 : T (x2,y2, z2) → ∃ w2 P (w2,x2)
σ3 : T (x3,y3, z3) → S(x3,y3)

We observe that in the first rule the variable y1 is not dangerous, since
it appears in positions P [2] and S[1], that are not affected; hence x1 is
dangerous, while y1 and z1 are harmless. It follows that, since variable
x1 appears only in one body atom, and the join is on an harmless
variable, the wardedness conditions are satisfied. Rules σ2 and σ3 are
trivially warded, since in the body is contained only one atom.

Differently from the class Shy, defined only for single-head TGDs, the
class Ward allows multi-head TGDs. However, from now on, we will fo-
cus only on single-head TGDs, since we can always normalize a warded
set of TGDs into single-head TGDs, preserving the certain answers.
The normalization works as follow [23].

Consider a TGD σ of the form

σ : Φ(x,y,z)→∃ w P1(x1,w1,z1), . . . ,Pn(xn,wn,zn)
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where xi ⊆ x, zi ⊆ z and wi ⊆w, for each i ∈ {1, . . . ,n}.

Let SH(σ) the set of single-head TGDs consisting of

Φ(x,y,z) → ∃ w Auxσ(x,z,w)
Auxσ(x,z,w) → P1(x1,w1,z1)

...
Auxσ(x,z,w) → Pn(x1,w1,z1).

The normalization of Σ into single-head TGDs, is defined as

Nsh(Σ) =
⋃

σ∈Σ
SH(σ).

2.5. Shy vs. Ward

In this section we analyse the key properties and differences between
the classes Shy and Ward, previously presented, since they will be our
starting point for the definition of a new fragment, for which we refer
the reader to Chapter 4. Both languages extend Datalog by existential
quantifiers in rule heads, but restricts, at the same time, their syntax
in order to achieve decidability and data tractability (see e.g. [6, 27,
35, 29, 33]). In this thesis, we choose to focus on these two classes since
both of them offer a good balance between expressivity and complexity,
and are suitable for an efficient implementation.

The first difference that is possible to note, is that the two classes
are incomparable. In fact, it is not possible that one of the two con-
tains the other, since condition (1) of Definition 2.45, that is, all the
dangerous variables occur in the ward, goes againts condition (2) of
Definition 2.24, that allows the occurrence of dangerous variables in
different atoms. Therefore, unless we consider trivial cases, one con-
dition excludes the other. However, the intersection between Shy and
Ward is not empty, since both generalize Datalog as well as the class
of linear TGDs (i.e., with at most one body-atom). Hence, intuitively,
the situation is well described by Figure 1.

In order to explain better the relation between the two classes, as ar-
gued above, we provide some examples:
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Figure 1. Syntactic relation between Shy and Ward.

Example 2.47. The following set of TGDs belongs to Ward, but not
to Shy.

σ1 : S(x1) → ∃ y1 T (x1,y1)
σ2 : T (x2,y2),Q(z2) → ∃ w2 P (y2,w2, z2)
σ3 : P (x3,y3, z3),S(z3),V (u3,w3),K(w3) → R(x3,u3,y3)
σ4 : U(x4) → ∃ y4 V (x4,y4)
σ5 : V (x5,y5) → K(y5)

We observe that rules σ1,σ2,σ5 are linear, hence they are both shy and
warded rules. In rule σ2 the dangerous variable y2 is contained in a
single ward and the same hols for rule σ3. However, rule σ3 violates
condition (1) of Definition 2.24 since variable w3, that occurs in two
body atoms, is not protected.

Example 2.48. The following set of TGDs belongs to Shy, but not to
Ward.

σ1 : P (x1) → ∃ y1 T (y1)
σ2 : Q(x2) → ∃ y2 S(x2,y2)
σ3 : T (x3),S(y3, z3) → R(x3,y3, z3)

We observe that rules σ1 and σ2 are linear, hence they are both shy
and warded rules, but rule σ3 violates the wardedness condition, since
there is no a ward atom that contains both the dangerous variables x3
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and z3. On the other hand, rule σ3 satisfies shyness condition, since
the variable x3 and z3 are, respectively, attacked by y1 and y2.

Example 2.49. The following set of TGDs belongs to Shy and Ward.

σ1 : P (x1,y1),S(y1, z1) → ∃ w1 T (y1,x1,w1)
σ2 : T (x2,y2, z2) → ∃ w2 P (w2, z2)
σ3 : T (x3,y3, z3) → S(x3,y3)

We note that σ2 and σ3 are linear, hence they are both shy and warded
rules, while rule σ1 satisfies both shyness and wardedness conditions.

More formally, we can deduce that it holds the following result:

Proposition 2.50. The classes Shy and Ward are syntactically incom-
parable.

Below, we summarize1 all the strengths of Shy and Ward, each of which
convinced us to consider these classes as a starting point for the defi-
nition of the new fragment that we will present in Chapter 4:

• they offer good expressiveness strictly generalizing Datalog;

• they are QA-decidable;

• they are efficiently computable;

• they aim at taming the way that nulls are propagated during
the chase;

• they are suitable for an efficient implementation.

Now, we conclude this section by reporting the complexity results re-
garding Shy and Ward, obtained, respectively, in [63, 64] and [11, 23,
53].

Theorem 2.51 (see Theorem 5.5 in [63]). Checking whether a set of
TGDs over a database D is Shy is decidable. In particular, this check
is doable in polynomial time.

1For more detail we refer the reader to the conference papers [23] and [63].
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Theorem 2.52 ([64]). Problem CQAns(Shy) is decidable. In particular,

(1) it is PTime–complete in data complexity, and EXPTime-
complete in combined complexity;

(2) given a database D, a shy set of TGDs and a BCQ q, it holds
that

D∪Σ |= q⇔ pchase(D∪Σ, |vars(q)|+1) |= q.

Remark 2.53. It has been shown in [63] that to compute pchase(D∪
Σ,n + 1), the number of steps performed by the parsimonious chase
after n resumptions is at most:

(n+1)(c+α)α2(n+1)
,

where c = const(D), β = max
σ∈Σ
|body(σ)|, w = arity(Σ), α = max{|Σ|,

|sch(Σ)|,w +1,β +2}, and n = |vars(q)|.

Clearly, in data complexity, both n and α are considered fixed. Then,
the number of steps to execute n resumptions is polynomial in c, while
it is double exponential in combined complexity.

We want to stress the statement (2) of the above theorem. To better
understand the idea behind the statement, we propose the following
example.

Example 2.54. Consider the following set Σ of rules:

σ1 : U(x1,y1) → ∃ z1 V (z2)
σ2 : V (x2) → ∃ y2 U(x2,y2)
σ3 : V (x3),P (y3, z3) → P (x3, z3)
σ4 : P (x3,y3),U(z3,w3) → P (x3,w3)

Consider the BCQ q = ∃ x,y P (x,y),U(x,y).

By computing only pchase(D∪Σ), we are not able to find an answer
to q, since we obtain the set:

pchase(D∪Σ) = {V (φ1),P (a,d)}.
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However, by iteratively resuming the pchase a number of times that
depends on the number of distinct variables in the query, it is possible
to deal with joins in the query, and find an answer for q. In particular,
we can see that this ontology Σ over D requires the computation of
pchase(D∪Σ,3) to prove (after two resumptions) that a q containing
two atoms and two variables is true over D∪Σ.

pchase(D∪Σ,0) = D = {P (a,b),U(c,d)}
pchase(D∪Σ,1) = pchase(D∪Σ) = {V (φ1),P (a,d)}
pchase(D∪Σ,2) = {U(φ1,φ2),P (φ1, b)}
pchase(D∪Σ,3) = {P (φ1,φ2)}

The next result, regarding the complexity of the class , has been ex-
plored in the conference papers [11, 53] for the data complexity. Nev-
ertheless, an ExpTime upper bound in combined complexity can be
deduced by the same algorithm, while the lower bounds are inherited
from Datalog since a set of Datalog rules (seen as TGDs) is warded.
Hence, we have the following:

Theorem 2.55 (see Proposition 3.2 in [23]). CQAns(Ward) is ExpTime-
complete in combined complexity, and PTime-complete in data com-
plexity.

More recently in [23], via the use of the proof tree (see Section 2.3), an
alternative way has been provided to establish the complexity of the
class Ward, stated in the following:

Theorem 2.56 (see Theorem 4.8 in [23]). Consider a database D, a
set Σ of warded TGDs, a CQ q(x), and a tuple c ∈ dom(D)|x|. Let
Σ′ =Nsh(Σ). Then the following are equivalent:

(1) c ∈ cert(q,D,Σ).

(2) There exists a proof tree P of q w.r.t. Σ′ with ndw(P) ≤
fWARD(q,Σ′)2 such that c ∈ P(D).

2fWARD(q,Σ′) := 2 ·max{|q|, max
σ∈Σ′
{|body(σ)|}}, for more details see [23].
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Thanks to this result, given a database D, a set Σ ∈ Ward, a CQ q(x)
and a tuple c ∈ dom(D)|x|, the problem reduces to check if there exists
a proof tree P of q w.r.t. Σ with ndw(P)≤ fWARD(q,Σ′). The last can
be checked via a space-bounded algorithm, proposed in [24].

Algorithm 2 ([24]). Alternating algorithm for CQAns(WARD)

Input: A database D, a set of TGDs Σ ∈ Ward, a CQ q(x), and a tuple
c ∈ dom(D)|x|

Output: Accept if c ∈ cert(q,D,Σ); Otherwise, Reject

(1) Σ :=Nsh(Σ);
(2) p := Q← a1, · · · ,an, with atoms(q(c)) = {a1, · · · ,an} ;
(3) repeat
(4) if atoms(p)⊆D then
(5) Accept
(6) guess op ∈ {r,d,s}
(7) if op = r then
(8) guess a TGD σ ∈ Σ
(9) if mgcu(p,σ) = ∅ then

(10) Reject
(11) else
(12) guess U ∈mgcu(p,σ)
(13) if |p[σ,U ]|> fWARD then
(14) Reject
(15) else
(16) P := {p[σ,U ]}
(17) if op = d then
(18) guess a decomposition P of p

(19) if op = s then
(20) guess V ⊆ vars(p) and γ : V → dom(D)
(21) P := {γ(p)}
(22) universally select every CQ p ∈ P

(23) until False;

This alternating algorithm uses polynomial space in general and loga-
rithmic space in data complexity. Hence, we get the ExpTime (resp.,
PTime) upper bound in combined (resp., data) complexity.
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We can summarize the previous results in the following table.

Data Complexity Combined Complexity
Shy PTime-c ExpTime-c

Ward PTime-c ExpTime-c

For any complexity class C, for brevity,
C-c is used as a shorthand for C-complete.

2.6. Other Existing Decidable Classes

As discussed in the previous chapters of the thesis, in the literature
there are different extensions of Datalog. In particular, in 2009 a fam-
ily of Datalog-based languages for tractable query answering over on-
tologies has been proposed, named Datalog±. The aim of this family
is to collect all expressive extensions of Datalog which are based on
TGDs, equality-generating dependencies and negative constraint. In
particular, the “plus” symbol refers to any possible combination of
these extensions, while the “minus” one imposes at least decidability.
In what follows, we give a survey of these existent classes.

Syntactic and Semantic Conditions

In order to classify the several decidable classes in the literature, se-
mantic classes have been defined, based on the behaviour of reasoning
mechanisms [15]. These classes do not come with a syntactic property
that can be checked on rules and, moreover, they are not recogniz-
able, i.e., the problem of determining if a given set of rules satisfies the
abstract properties is not decidable [14].

We can summarize these classes as follows:

• Finite Expansions Sets (FES): sets of TGDs which ensure the
termination of the chase;

• Bounded Treewidth Sets (BTS): sets of TGDs which guarantee
that the (possibly infinite) instance constructed by the chase
has bounded treewidth;
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• Finite Unification Sets (FUS): sets of TGDs which guaran-
tee the termination of (resolution-based) backward chaining
procedures;

• Parsimonious Sets (PS): sets of TGDs under which the chase
can be terminated early.

More precisely, we stress that the notion of FUS is strictly related to
that of rewriting. Given a set of TGDs Σ and a BCQ q, a backward
chaining mechanism is a procedure that constructs a rewriting qΣ of q

relative to Σ, also called Σ-rewriting of q, such that for every database
D, D∪Σ |= q⇔ D |= qΣ. The key operation in backward chaining is
the unification between the set of atoms in the body of q and the head
of some TGD in Σ (see the works of Baget et al. [16] and Mugnier [71]
for more details). Regarding the notion of BTS we remark that a set
Σ is BTS iff for every database D, the chase graph of chase(D,Σ) has
bounded treewidth, i.e., the chase graph is a “tree-like” graph. Finally,
a set of TGDs belongs to FES iff for each set D of ground facts, D∪Σ
admits a finite universal model.

We point out that each of the above conditions has also its syntactic
counterpart: just to name a few, we recall that linear and sticky rules
are FUS [31], weakly-acyclic rules are FES [44], every set of linear,
guarded, and weakly guarded TGDs is a BTS [27], while shy rules are
PS [63].

Syntactic Relationship Among Classes

In this paragraph we survey the syntactic subclasses of the abstract
classes defined above. We first recall some concrete subclasses of BTS.
The first syntactic subclass that we mention is linear, according to which
at most one body atom is allowed in each rule; this class generalise the
known class inclusion dependencies (see the works of Abiteboul et al.
[1] and Johnson et al. [58] for more details); the second one is guarded,
according to which each rule needs at least one body atom that covers
all universal variables; the third one is weakly-guarded, that extends
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both guarded and datalog by allowing unaffected “unguarded” vari-
ables. Then, the class frontier-guarded has been defined, that is a gen-
eralization of guarded, since the syntactic condition has been weakened
by requiring that each rule needs at least one body atom that covers all
frontier variables; furthermore, weakly-frontier-guarded [14] generalizes
both frontier-guarded and weakly-guarded by requiring that each rule
needs at least one body atom that covers all frontier variables classified
as affected.

Among the concrete subclasses of FUS we recall the well-known class
sticky, defined by Cal̀ı et al. [31]. It enjoys very good complexity, but it
does not capture datalog. Intuitively, if a program is sticky, then all of
the atoms that are inferred (by the chase) starting from a given join con-
tain the term of this join. Subsequently, the class sticky-join [32] have
been refined by the same authors, who manage to preserve the same
complexity of sticky, while generalizing linear. Conversely, Gogacz and
Marcinkowski[46] introduced joinless, the subclass of sticky collecting
all and only the programs where each body contains no repeated vari-
ables. Then, we mention also the following classes: multi-linear [29],
where, in each rule, every body atom contains all universal variables,
and weakly-recursive [40] relying on a novel notion of position graph and
generalizing all mentioned concrete FUS classes.

Among concrete subclasses of FES, we recall weakly-acyclic that has
been introduced by Fagin et al. [44]. Roughly speaking, a program is
weakly acyclic if the presence of a null occurring in an inferred atom
at a given position does not trigger the inference of an infinite number
of atoms (with the same relational predicate) containing several nulls
in the same position. A generalization of this class has been defined
with the class jointly-acyclic [61]. A number of extensions, techniques,
and further criteria for checking chase termination have also been pro-
posed in this context [41, 55, 56, 69, 70]. For know more about other
subclasses of FES, we refer the reader to [55] which reviews and com-
pares many previous results on acyclicity notions and introduces model-
faithful-acyclic, the most general concrete FES class currently known.
Moreover, we refer the reader also to the work of Leone et al. [64], for
a formal proof regarding the taxonomy above described.
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We now summarize the computational complexity of the aforemen-
tioned classes.

Main syntactic classes Data Complexity Combined Complexity
weakly (fr) guarded ExpTime-c 2ExpTime-c

(fr) guarded PTime-c 2ExpTime-c
weakly-acyclic PTime-c 2ExpTime-c
jointly-acyclic PTime-c 2ExpTime-c

datalog PTime-c ExpTime-c
shy PTime-c ExpTime-c

ward PTime-c ExpTime-c
ward+ PTime-c ExpTime-c
sticky in AC0 ExpTime-c

sticky-join in AC0 ExpTime-c
linear in AC0 PSpace-c

joinless in AC0 PSpace-c
inclusion-dependencies in AC0 PSpace-c

For any complexity class C, for brevity, C-c is used as a shorthand for C-complete.





CHAPTER 3

Dyadic TGDs

In this chapter we present the main theoretical contribution of this
thesis, that is the definition of a new decidable paradigm for ontological
query answering, called Dyadic TGDs. Our claim is to combine and
generalize existing decidable classes, in order to exploit the systems
already developed. In particular, given a decidable class C, we define a
generalization of it, via the class Dyadic-C.

The chapter is structured as follows. In Section 3.1 we present the class
Dyadic-C and we define what is a dyadic decomposition (ΣHG,ΣC) for
a set Σ of TGDs w.r.t some decidable class C. In Section 3.2 we prove
that the class Dyadic-C is decidable, providing a sound and complete
algorithm used to complete the database with all the ground atoms
that are possible to derive from the component ΣHG of the dyadic
decomposition, in order to exploit only the component ΣC for query
answering purposes.

3.1. Formal Definition

In the same spirit of the invaded position recalled in Definition 2.22, we
generalize the notion of affected position mentioned in Definition 2.43,
proposed to separate the positions in which the chase can introduce
only constants from those where nulls might appear. We remember
that we assume that the same variable does not occur in two different
rules of Σ.

For the reader convenience, we now recall the classical definition of
affected position.

Definition 2.43 ([23]). Consider a set Σ of TGDs. The set of affected
position of sch(Σ), denoted by aff(Σ), is inductively defined as follows:

51
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(1) if there exists σ ∈ Σ and a variable x ∈ var∃(σ) at position π,
then π ∈ aff(Σ), and

(2) if there exists σ ∈Σ and a variable x ∈ front(σ) in the body of
σ only at positions of aff(Σ), and x appears in the head of σ

at position π, then π ∈ aff(Σ).

Having in mind this notion, we give the following generalization.

Definition 3.1. Consider a set Σ of TGDs and a variable z ∈ var∃(Σ).
A position R[i] is z-affected if one between these two properties hold:

(1) there exists σ ∈ Σ such that z appears in the head of σ at
position R[i];

(2) there exist σ ∈Σ and x∈ front(σ) s.t. x occurs both in head(σ)
at position R[i] and in body(σ) at z-affected positions only.

A position π is S-affected, where S ⊆ var∃(Σ), if:

(1) for each x ∈ S, π is x-affected, and

(2) for each x ∈ var∃(Σ), if π is x-affected, then x ∈ S.

Remark 3.2. For every position π there exists a unique set S such
that π is S-affected. We write aff(π) for this set S. Moreover,

aff(Σ) = {π ∈ pos(Σ) | aff(π) ̸= ∅},

and

nonaff(Σ) = pos(Σ)\aff(Σ).

The following example compares the notion of S-affected position (see
Definition 3.1) with the classical one (see Definition 2.43).

Example 3.3. Consider a set Σ of TGDs consisting of the following
rules.
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σ1 : → ∃ x1 P (x1)
σ2 : → ∃ x2 T (x2)
σ3 : P (x3),T (x3) → R(x3)
σ4 : R(x4),R(y4) → S(x4,y4)

The positions P [1] and T [1] are, respectively, x1-affected and x2-affected.
According to Definition 3.1, we have that the position R[1] is not af-
fected by any variable, since

aff(P [1])∩aff(T [1]) = ∅.

Hence, there does not exist x ∈ var∃(Σ) such that R[1] is x-affected,
and

aff(Σ) = {P [1],T [1]}.

Conversely, according to Definition 2.43, we would obtain that

aff(Σ) = {P [1],T [1],T [1],S[1],S[2]}.

Therefore, with this generalization we are able to catch the “really” af-
fected positions, i.e., positions containing variables that could be really
mapped to some null.

We can now categorize the variables in the body of a TGDs.

Definition 3.4. Given a TGD σ ∈ Σ and a variable x in body(σ):

• if x occurs at positions π1, . . . ,πn and ⋂n
i=1 aff(πi) = ∅, then x

is harmless,

• if x is not harmless, placed S = ⋂n
i=1 aff(πi), then it is S-

harmful,

• if x is S-harmful and belongs to front(σ), then x is S-dangerous.

Every variable x that is S-dangerous (resp. S-harmful), for some S ̸= ∅,
is also dangerous (harmful). □

We notice that, given a variable x that is S-dangerous, we write dang(x)
for the set S. Given a rule σ ∈ Σ, we write dang(σ) (harmless(σ),
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harmful(σ), resp.) to denote the dangerous (harmless, harmful) vari-
ables in the rule σ. Similarly, with dang(Σ) (harmless(Σ), harmful(Σ),
resp.) we denote the sets of dangerous (harmless, harmful) variables
over the entire set Σ of TGDs.

Remark 3.5. Using the previous definition, we can rephrase the Shy-
ness conditions (see Definition 2.24) as follows:
(Shyness Conditions) A set Σ of TGDs is shy if, for each TGD σ ∈ Σ
the following conditions are both satisfied:

(1) if a variable x occurs in more than one body atom, then x is
harmless;

(2) for every pair of distinct dangerous variable z and w in different
atoms, dang(z)∩dang(w) = ∅.

In order to define the notion of Dyadic TGDs, we now introduce the
concept of head-ground set of rules, i.e., non-recursive rules in which
nulls are neither created or propagated.

Definition 3.6. Let Σ a set of TGDs. A subset Σ′ of Σ is called
head-ground w.r.t Σ if:

(1) Σ′ contains only Datalog rules,

(2) each head atom of Σ′ contains only harmless variables w.r.t.
Σ,

(3) hp(Σ′)∩bp(Σ′) = ∅,

(4) hp(Σ′)∩hp(Σ\Σ′) = ∅.

The following example is given to better understand the above defini-
tion.

Example 3.7. Consider the following set of rules:
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σ1 : R(x1,y1) → ∃ z1,w1 Q(z1,w1)
σ2 : C(y2),R(x2, z2) → S(y2, z2)
σ3 : D(y3, z3),R(x3,w3) → T (x3,y3)
σ4 : Q(x4,y4) → ∃ z4A(x4, z4)
σ5 : A(x5, z5),D(y5, z5) → Q(x5,y5)

We have that a subset of head ground rule w.r.t. Σ is given by ΣHG =
{σ2,σ3}. In fact, since we have that harmless(Σ) = {x1,y1,y2,x2, z2,x3,

y3, z3,y5, z5}, it is easy to check that the head atoms of σ2 and σ3

contain only harmless variables and the predicates do not occur in any
body of ΣHG, nor in the head of rules σ1,σ4 and σ5. To the contrary,
rules σ1,σ4 and σ5 could not be in ΣHG, since they violate condition
(2) and (3) of Definition 3.6. Hence, we observe that the set ΣHG is
maximal.

We remark that ΣHG can be seen as a set of CQs. This fact will be
useful in the next section. Before to define a dyadic decomposition,
we recall the following definition.

Definition 3.8. Let S be a schema, and Σ1, Σ2 two ontologies. Then,
Σ1 and Σ2 are S-equivalent (in symbols Σ1 ≡S Σ2) if, for each D,q

over S, it holds that D∪Σ1 |= q⇔D∪Σ2 |= q.

Definition 3.9. Consider a class C of TGDs, and a set Σ of TGDs. Let
S = sch(Σ). A pair (ΣHG,ΣC) of TGDs is a dyadic decomposition
of Σ w.r.t. C if:

(1) ΣHG∪ΣC ≡S Σ

(2) ΣC ∈ C

(3) ΣHG is head-ground w.r.t. ΣHG∪ΣC

(4) the head atoms of ΣHG do not occur in Σ.

Dyadic-C is the class of all sets of TGDs that admit a dyadic decompo-
sition w.r.t. C.
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Example 3.10. Let consider the following set Σ of TGDs.

σ1 : P (x1) → ∃ y1 Q(x1,y1)
σ2 : Q(x2,y2) → R(y2)
σ3 : P (x3) → ∃ y3 S(x3,y3)
σ4 : S(x4,y4) → T (y4)
σ5 : R(x5),T (x5) → U(x5)

A dyadic decomposition of Σ with respect to the class Shy is given
by the pair (ΣHG,ΣS), where, in particular, ΣHG = (ρ′

1, . . . ,ρ′
5) and

ΣS = (ρ′′
1, . . . ,ρ′′

5)

ρ′
1 : P (x1) → Aux1(x1)

ρ′
2 : Q(x2,y2) → Aux2(x2)

ρ′
3 : P (x3) → Aux3(x3)

ρ′
4 : S(x4,y4) → Aux4(x4)

ρ′
5 : R(x5),T (x5) → Aux5(x5)

ρ′′
1 : Aux1(x1) → ∃ y1 Q(x1,y1)

ρ′′
2 : Aux2(x2),Q(x2,y2) → R(y2)

ρ′′
3 : Aux3(x3) → ∃ y3 S(x3,y3)

ρ′′
4 : Aux4(x4),S(x4,y4) → T (y4)

ρ′′
5 : Aux5(x5) → U(x5)

According to Definition 3.9, it trivially follows the next statement.

Proposition 3.11. Let Σ ∈ C, for some decidable class C and let
(ΣHG,ΣC) its dyadic decomposition. Then(

D∪Σ
)
|= q⇔

(
D∪ (ΣHG∪ΣC)

)
|= q.

In order to prove the main result of the chapter and highlight the
principal characteristic of our new fragment, we need to consider the
notion of chase bottom defined in [27].

Definition 3.12. Consider a set Σ of TGDs, a database D, and the
Herbrand Base HB(D) as defined in Section 1.2. We define

chase⊥(D,Σ) = chase(D,Σ)∩HB(D),

that is the finite set of all null-free atoms in chase(D,Σ).
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In our context, we want to restrict the chase bottom to a given set of
predicates.

Definition 3.13. Let Σ be a set of TGDs, D a database and X a set
of predicates. We define

chase⊥
X(D,Σ) = {a ∈ chase⊥(D,Σ) : pred(a) ∈X}.

Remark 3.14. Fix d as the number of distinct constants in D, and
µ = max

P ∈X
arity(P ), it follows that

|chase⊥
X(D,Σ)| ≤ |X| ·dµ.

Hence, in data complexity the size of chase bottom restricted to a
set X of predicates is polynomial, while in combined complexity is
exponential.

In plain words, given a set Σ ∈ Dyadic-C, for some decidable class C,
the idea is to consider a dyadic decomposition of Σ w.r.t. C, and
compute all the ground atoms contained in chase⊥

X(D,ΣHG∪ΣC), with
X = hp(ΣHG). In this way, we “complete” the database with all the
possible auxiliary1 ground atoms that we can derive from the rules
of ΣHG, in order to consider only the component ΣC of the dyadic
decomposition for query answering purpose.
Hence, our claim is to prove the following equivalence result.

Lemma 3.15. Consider a set Σ ∈ Dyadic-C for some decidable class C
and a dyadic decomposition (ΣHG,ΣC) of Σ w.r.t. C. Let Σ′ = ΣHG∪ΣC

and X = hp(ΣHG). For each database D and for each BCQ q, it holds
that (

D∪Σ
)
|= q⇔

(
D∪ chase⊥

X(D,Σ′)∪ΣC
)
|= q.

Proof. Let S = sch(Σ). We observe that since (ΣHG,ΣC) is a
dyadic decomposition of Σ, by Definition 3.9 it holds that Σ≡S Σ′. To
prove the statement it is sufficient to prove that ochase(D∪Σ) |= q⇔
ochase

(
D∪ chase⊥

X(D,Σ′)∪ΣC
)
|= q.

1See property (4) of Definition 3.9
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[⇐] Assume that ochase
(
D∪ chase⊥

X(D,Σ′)∪ΣC
)
|= q . We want to

prove that

ochase(D∪ chase⊥
X(D,Σ′)∪ΣC)⊆ ochase(D∪Σ).

To this end, it is sufficient to observe that ΣC ⊆ Σ′ and

chase⊥
X(D,Σ′)⊆ ochase(D∪Σ′).

Hence, since Σ′ = ΣHG∪ΣC , chase⊥
X(D,Σ′)⊆ ochase(D∪Σ) and, then,

the thesis.

[⇒] Assume that ochase(D∪Σ) |= q. We want to prove that

ochase(D∪Σ)⊆ ochase(D∪ chase⊥
X(D,Σ′)∪ΣC).

By our assumptions and Proposition 3.11, we deduce that D∪Σ′ |= q,
hence

ochase(D∪Σ′) |= q.

Since chase⊥
X(D,Σ′)⊆ ochase(D∪Σ′), then ochase(D∪chase⊥

X(D,Σ′)∪
Σ′) |= q. We observe that, due to chase⊥

X(D,Σ′), the component ΣC of
the dyadic decomposition is the only relevant one. Hence, ochase(D∪
chase⊥

X(D,Σ′)∪ΣC) |= q. □

3.2. Decidability

We now have all the tools for showing that the class of Dyadic TGDs
is decidable. To this end, we provide the following algorithm to com-
plete the database with all the auxiliary ground atoms, contained in
chase⊥

X(D,ΣHG∪ΣC), where X = hp(ΣHG).

Algorithm 3. Database completion.

Input: A Dyadic decomposition (ΣHG,ΣC) of Σ w.r.t. C, and a database D

Output: CBX := chase⊥
X(D,ΣHG∪ΣC), where X = hp(ΣHG)

(1) CBX := ∅;
(2) ∆ := ∅ ;
(3) foreach qi ∈ ΣHG do
(4) ∆ := ∆∪ans(D∪CBX,ΣC , qi);
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(5) if (∆ ̸= ∅) then
(6) CBX := CBX∪∆;
(7) goto Step 2
(8) return CBX;

Essentially, Algorithm 3 completes the database, adding to it all the
auxiliary ground atoms that are possible to derive from rules of ΣHG.
Here is a semi-formal description of it. The first two steps are to
initialize CBX, that represents the set chase⊥

X(D,ΣHG ∪ΣC), where
X = hp(ΣHG), and ∆ that is a temporary set that we use to save the
answers of each query qi ∈ΣHG. The rest of the algorithm is an iterative
procedure that, at each step, computes the answers of each query qi of
ΣHG and completes the database until no more auxiliary ground atoms
are produced.

Now we are ready to prove the main result of this section.

Theorem 3.16. Let C be a decidable class of TGDs. Then, Dyadic-C
is decidable.

Proof. Let Σ ∈ Dyadic-C. Hence, by Definition 3.9, Σ admits a
dyadic decomposition (ΣHG,ΣC). Let Σ′ = ΣHG∪ΣC and X = hp(ΣHG).
We claim that Algorithm 3 always terminates and correctly constructs
chase⊥

X(D,Σ′).

Termination. The algorithm clearly terminates because Step (3) is
performed a finite number of times, and Step (7) never falls in a loop
since we know that the size of chase⊥

X(D,Σ′) is bounded (see Remark
3.14). Hence, Algorithm 3 constructs chase⊥

X(D,Σ′) after |ΣHG| · |X| ·dµ

steps, where d is the number of different constants in the database and
µ = max

P ∈X
arity(P ).

Correctness. Let CBX be the output of Algorithm 3. We want to
prove that CBX = chase⊥

X(D,Σ′).
Let us assume, by contradiction, that chase⊥

X(D,Σ′) \CBX ̸= ∅. We
recall that chase(D,Σ) can be decomposed in levels (see Section 1.4).
Let us consider the chase levels

D = chase0(D,Σ′)⊆ chase1(D,Σ′)⊆ chase2(D,Σ′)⊆ ·· · ,
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where each chasei(D,Σ′) is obtained during the chase, due to atoms
with maximum level i−1.
Let j be the minimum step in the sequence such that

(3.1)
(
chase⊥

X(D,Σ′)∩ chasej−1(D,Σ′)
)
⊆ CBX

and

(3.2)
(
chase⊥

X(D,Σ′)∩ chasej(D,Σ′)
)
\CBX ̸= ∅,

and let a ∈ chasej(D,Σ′) be the first atom contained in chase⊥
X(D,Σ′),

but not in CBX, and generated in the chase level j. Hence, there exists
a rule σ ∈ Σ such that head(σ) = a. Considering body(σ) as a query q̃,
we have that a ∈ cert(q̃,chasej−1(D,Σ′),∅). Taking j as above, we note
that

chasej−1(D,Σ′)⊆ chase(D∪CBX,ΣC).

By Lemma 3.15, we know that (D∪Σ′) |= q ⇔ (D∪ chase⊥
X(D,Σ′)∪

ΣC) |= q. Then, we deduce that a ∈ cert(q̃,chase(D∪CBX,ΣC),∅). But

cert(q̃,chase(D∪CBX,ΣC),∅) = cert(q̃,D∪CBX,ΣC).

The last identity gives a contradiction with (3.2), since by our assump-
tion a ̸∈ CBX. Hence a necessary is produced by Algorithm 3.

At this point, the thesis directly follows from Lemma 3.15. □

We observe that the procedure provided in Algorthm 3 does not depend
on the type of chase used, hence we can use it like a “black box”. The
technique used to compute the answers depends on the class C under
consideration. Taking into account that the number of steps executed
by the algorithm is exponential (polynomial, resp.) in combined (data,
resp.) complexity, we derive the last result of this chapter.

Theorem 3.17. Consider a decidable class C of TGDs. If CQAns(C)
is ⊛-complete, for some ⊛ complexity class, then CQAns(Dyadic-C) is
⊛-complete

• in data complexity if ⊛⊇PTime;
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• in combined complexity if ⊛ ⊇ EXPTime and it is PTime-
complete in data complexity;

• in combined complexity if ⊛ ⊇ i-EXPTime and it is (i− 1)-
EXPTime-complete in data complexity for i > 1.

Proof. To prove the membership, it is sufficient to observe that
Algorithm 3 executes a number of steps that is exponential in combined
complexity, and polynomial in data complexity. Hence, we call an
exponential (polynomial, resp.) number of time a procedure that, by
assumption, is at least exponential (polynomial). As a result we obtain
the complexity class ⊛. The hardness trivially follows from the fact
that Dyadic-C includes the class C. □

Finally, as consequence, we obtain the following:

Corollary 3.18. CQAns over Dyadic-Shy and Dyadic-Warded is PTime-
complete in data complexity, and ExpTime-complete in combined com-
plexity.

Proof. The proof follows from Theorem 3.17, 2.52, and 2.55. □





CHAPTER 4

The Ward+ Class

In this chapter we present the second main result of this thesis: the
new class Ward+. This new fragment of Datalog± has been inspired
from the combination of two existing classes: Shy and Ward, presented,
respectively, in Section 2.2 and 2.4. Once we settle down its syntax,
we prove that it reaches a good balance between expressivity and com-
plexity and, moreover, we prove that this class is contained in the class
Dyadic-Shy.

The chapter is structured as follows. The formal definition of the class
Ward+ is presented in Section 4.1, while the differences among the
three classes cited above are outlined in Section 4.2. After that, we
study the decidability and the computational complexity of Ward+ in
Section 4.3 by exploiting different technique for the proofs.

4.1. Formal Definition

In this section we introduce the new class Ward+, derived from the
combination of two existing classes: Shy and Ward. As discussed in
Section 2.5, these two classes enjoy good properties as including Data-
log, reaching a good compromise between expressibility and complexity,
and, last but not least, have an implementation.

For the reader convenience, we recall the definition regarding the clas-
sification of variables, stated in Section 3.1.

Definition 3.1. Consider a set Σ of TGDs and a variable z ∈ var∃(Σ).
A position R[i] is z-affected if one between these two properties hold:

(1) there exists σ ∈ Σ such that z appears in the head of σ at
position R[i]:

63
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(2) there exist σ ∈Σ and x∈ front(σ) s.t. x occurs both in head(σ)
at position R[i] and in body(σ) at z-affected positions only.

A position π is S-affected, where S ⊆ var∃(Σ), if:

(1) for each x ∈ S, π is x-affected, and

(2) for each x ∈ var∃(Σ), if π is x-affected, then x ∈ S.

Definition 3.4. Given a TGD σ ∈ Σ and a variable x in body(σ):

• if x occurs at positions π1, . . . ,πn and ⋂n
i=1 aff(πi) = ∅, then x

is harmless,

• if x is not harmless, placed S = ⋂n
i=1 aff(πi), then it is S-

harmful,

• if x is S-harmful and belongs to front(σ), then x is S-dangerous.

Every variable x that is S-dangerous (resp. S-harmful), for some S ̸= ∅,
is also dangerous (harmful). □

Moreover, we recall that, given a variable x that is S-dangerous, we
write dang(x) for the set S. Given a rule σ ∈ Σ, we write dang(σ)
(resp. harmless(σ), harmful(σ)) to denote the dangerous (harmless,
harmful) variables in the rule σ. Similarly, with dang(Σ) (harmless(Σ),
harmful(Σ)) we denote the sets of dangerous (harmless, harmful) vari-
ables over the entire set Σ of TGDs.

Intuitively, the syntactic condition at the base of the class Ward+, can
be explained as follows. Let σ be a Ward+ rule. Then, body(σ) can be
partitioned into two sets of atoms, B1 and B2, that share only harmless
variables (see Figure 1). Having in mind the notion of wardedness, the
set B1 can be seen as a “multi-ward” that contains all the dangerous
variables and that, at the same time, satisfies the shyness conditions.
The set B2, instead, is any atoms conjunction, that can share with
B1 only harmless variables. More formally, a set of Ward+ TGDs is
defined as follows.
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Figure 1. Structure of a Ward+rule

Definition 4.1. A set Σ of TGDs is Ward+ if, for each TGD σ ∈ Σ,
there are no dangerous variables in body(σ), or there exists a partition
{B1,B2} of body(σ) such that:

(1) B1 contains all the dangerous variables

(2) vars(B1)∩ vars(B2) are harmless variables

(3) for every pair of distinct dangerous variable z and w in different
atoms, dang(z)∩dang(w) = ∅

(4) for every pair of distinct atoms a,b ∈ B1, vars(a)∩ vars(b) are
harmless variables.

We write Ward+ for the class of all finite Ward+ sets of TGDs.

Now we give an example of a set of rules that belongs to Ward+.

Example 4.2. Consider the following set Σ of TGDs.

σ1 : R(x1,y1) → ∃ z1 T (z1)
σ2 : R(x2,y2) → ∃ z2 V (z2)
σ3 : S(x3,y3) → ∃ z3 P (z3)
σ4 : V (x4) → Q(x4)
σ5 : T (x5),P (y5),V (z5),Q(z5) → U(x5,y5)
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It easy to see that rules σ1,σ2,σ3 and σ4 are trivially Ward+ rules
w.r.t. Σ, since they are rules with one single body atom, which can-
not violate any conditions of Definition 4.1. Let us focus on rule σ5.
Since dang(σ5) = {x5,y5}, harmful(σ5) = {z5} and harmless(σ5) = ∅, it
follows that there exists a partition of body(σ5) into two set B1,B2,
that satisfies Definition 4.1, where, B1 = {T (x5),P (y5)} and B2 =
{V (z5),Q(z5)}. Hence, Σ ∈ Ward+.

Instead, now, we provide an example of a set of TGDs that does not
belong to Ward+.

Example 4.3. Consider the database D = {P (a)}, and a set Σ of rules
consisting of the following rules.

σ1 : P (x1) → ∃ y1 S(y1)
σ2 : S(x2) → ∃ y2, z2 R(y2,x2, z2)
σ3 : R(x3,y3, z3),S(y3) → T (x3,y3, z3)

The above set Σ of TGDs does not belong to Ward+. In fact, variable y3

is dangerous since it occurs in positions R[2] and S[1] that are affected
(in particular they are both y1-affected positions). Hence, there is
a join on this dangerous variable, which contradicts condition (4) of
Definition 4.1, according to which all the atoms containing dangerous
variables can share only harmless variables.

4.2. Ward+ vs. Shy and Ward

In this section we present the differences between the new fragment
above described, Ward+, and the classes Shy and Ward.

As explained in the previous section, the class Ward+ is inspired to
the existent classes Shy and Ward, with the aim of incorporating the
benefits of both classes and building a more expressive generalization
of them.

Obviously, we observe that both Shy and Ward are subset of Ward+.
In fact, according to Definition 4.1, the class Ward coincides trivially
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Figure 2. Syntactical relation among classes.

with the class Ward+ if |B1|= 1; hence, it follows that

(4.1) Ward⊆Ward+.

On the other hand, if |B1|> 1 and |B2|= ∅, we have that

(4.2) Shy ⊆Ward+,

since, by Definition 4.1, the “multi-ward” satisfies the shyness condi-
tions. However, we show that relations 4.1 and 4.2 are strictly inclu-
sions, providing an example of a set of TGDs that belongs to Ward+,
but it is not both in Shy and Ward. To this end consider let us consider
the following example.

Example 4.4. Let us consider the following set Σ of TGDs

σ1 : R(x1,y1) → ∃ z1 T (z1)
σ2 : R(x2,y2) → ∃ z2 V (z2)
σ3 : S(x3,y3) → ∃ z3 P (z3)
σ4 : V (x4) → Q(x4)
σ5 : T (x5),P (y5),V (z5),Q(z5) → U(x5,y5)

It is easy to see that rules σ1,σ2,σ3 and σ4 are Shy, Warded and Ward+

rules w.r.t. Σ, since they are rules with one single body atom, which
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cannot violate any condition of the classes under consideration. How-
ever, the rule σ5 is not Ward, since the dangerous variables x5 and y5

are not contained in a single ward, and it does not even belong to Shy,
since there is a join on the variable z5 that is z2-harmful. To show that
the Σ ∈ Ward+, it is sufficient to see Example 4.2. Hence, Σ ∈ Ward+,
but Σ ̸∈ Shy and Σ ̸∈ Ward.

Given the above observations, we can state the following result.

Theorem 4.5. The classes Shy and Ward are strictly contained in the
class Ward+.

Remark 4.6. We observe that the class Ward+ is incomparable with
respect to the class weakly frontier guarded.

4.3. Decidability and Computational Complexity

In this section we provide the decidability of the class Ward+ and its
computational complexity. To this aim, we can exploit two different
techniques:

(1) proving the existence of a dyadic decomposition;

(2) proving the existence of a well-behaved proof tree.

We start with the description of the first technique. For the reader con-
venience we recall the definition of the class Dyadic-C stated in Chapter
3.

Definition 3.9. Consider a class C of TGDs, and a set Σ of TGDs. Let
S = sch(Σ). A pair (ΣHG,ΣC) of TGDs is a dyadic decomposition
of Σ w.r.t. C if:

(1) ΣHG∪ΣC ≡S Σ

(2) ΣC ∈ C

(3) ΣHG is head-ground w.r.t. ΣHG∪ΣC

(4) the head atoms of ΣHG do not occur in Σ.
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Dyadic-C is the class of all sets of TGDs that admit a dyadic decompo-
sition w.r.t. C.

Our aim is to show that Ward+⊂ Dyadic-Shy; hence, we want to prove
the existence of a dyadic decomposition (ΣHG,ΣS) for every set Σ of
Ward+ TGDs.

Intuitively, the construction of a dyadic decomposition for a Ward+ set
of TGDs derives from the definition of a Ward+ rule. In fact, according
to Definition 4.1, a Ward+ rule can be always partitioned into two sets
B1 and B2 of atoms, where B1 is a conjunction of atoms that satisfies
the shyness conditions, while B2 is any atom conjunction. Roughly
speaking, we can use the set of atoms B1 to build the body of a rule in
ΣS , while, for constructing rules of ΣHG we consider both B1 and B2,
but keeping in the head only the harmless variables.

Now we give an example to clarify our idea.

Example 4.7. Consider again the set Σ of Ward+ rules of Example
4.4.

σ1 : R(x1,y1) → ∃ z1 T (z1)
σ2 : R(x2,y2) → ∃ z2 V (z2)
σ3 : S(x3,y3) → ∃ z3 P (z3)
σ4 : V (x4) → Q(x4)
σ5 : T (x5),P (y5),V (z5),Q(z5) → U(x5,y5),

where

harmless(Σ) = {x1,y1,x2,y2,x3,y3},
harmful(Σ) = {x4,x5,y5, z5},

dang(Σ) = {x4,x5,y5}.

A dyadic decomposition of Σ w.r.t. Shy is given by (ΣHG,ΣS), where
ΣHG is:

R(x1,y1) → Aux1(x1,y1)
R(x2,y2) → Aux2(x2,y2)
S(x3,y3) → Aux3(x3,y3)

V (x4) → Aux4()
T (x5),P (y5),V (z5),Q(z5) → Aux5()
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and ΣS is:

Aux1(x1,y1) → ∃ z1 T (z1)
Aux2(x2,y2) → ∃ z2 V (z2)
Aux3(x3,y3) → ∃ z3 P (z1)

V (x4),Aux4() → Q(x4)
V (z5),Q(z5),Aux5() → U(x5,y5)

Now, we formally prove the existence of a dyadic decomposition for a
Ward+ set Σ with respect to Shy.

Theorem 4.8. For every set Σ of Ward+ TGDs, there exists a dyadic
decomposition (ΣHG,ΣS) of Σ with respect to Shy.

Proof. Let us consider a set Σ of Ward+ TGDs. In order to show
our theorem, we provide a procedure to construct a dyadic decompo-
sition (ΣHG,ΣS) of Σ with respect to Shy.

Let us consider a Ward+ rule

σ : Φ(x,y,z),Ψ(z,u)→∃ w Ξ(x,w,z),

where x,y,z,u are pairwise disjoint, Φ(x,y,z), Ψ(z,u) and Ξ(x,w,z)
are conjunctions of atoms such that Φ(x,y,z) = B1 and Ψ(z,u) = B2

(according to Definition 4.1). Moreover, dang(σ) = {x}, harmless(σ) =
{z} and harmful(σ) = {x,u,y}. Let m = |head(σ)|, then we produce
m+2 rules ρ′(σ), ρ′′

0(σ), . . . , ρ′′
m(σ) such that:

ρ′(σ) : Φ(x,y,z),Ψ(z,u) → Aux′
σ(z)

ρ′′
0(σ) : Φ(x,y,z),Aux′

σ(z) → ∃ w Aux′′
σ(x,w,z)

ρ′′
1(σ) : Aux′′

σ(x,w,z) → a1(v1)
...

ρ′′
m(σ) : Aux′′

σ(x,w,z) → am(vm)

where vi ⊆ {x,w,z} for each i ∈ {1, . . . ,m}, {a1(v1), . . . ,am(vm)} =
Ξ(x,w,z) and Aux′

σ, Aux′′
σ are fresh auxiliary predicates.

Now, we prove that (ΣHG,ΣS) is a dyadic decomposition for any Ward+

set of TGDs w.r.t. Shy, where
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ΣHG =
⋃

σ∈Σ
ρ′(σ)

ΣS =
⋃

σ ∈ Σ
0 ≤ j ≤ m

ρ′′
j (σ).

According to Definition 3.9, we have to prove four properties. We
start from condition (4), observing that it is easy to see that the head
predicates of ΣHG do not occur in Σ, since, by construction, Aux′

σ is
a fresh auxiliary predicate introduced for each σ ∈ Σ. Property (3)
states that the set ΣHG is head-ground w.r.t. ΣHG∪ΣS . This is true
since, by construction, we have that: for each σ ∈Σ, ρ′(σ) is a Datalog
rule; hp(ΣHG) = {Aux′

σ : σ ∈ Σ}, where each Aux′
σ is a predicate that

does not occur neither in any body of ΣHG nor in any head of ΣS (i.e.,
hp(Σ′)∩bp(Σ′) = ∅, and hp(Σ′)∩hp(Σ\Σ′) = ∅), and it contains only
harmless variable. Now, we have to prove that property (2) holds, i.e.,
ΣS ∈ Shy. This is ensured by the fact that the rule ρ′′

0(σ) is made by
joining the set B1 of σ (that has to satisfy the shyness conditions by
definition), and the atom Aux′

σ, which contains only harmless variables,
and hence, cannot violate any of the shyness conditions, and each rule
ρ′′

j (σ), for j = 1, . . . ,m, is linear. Finally, property (1), that is ΣHG∪
ΣS ≡sch(Σ) Σ, follows by construction. □

Now, we can state the following.

Theorem 4.9. Ward+⊂ Dyadic-Shy.

Proof. The proof directly follows from Theorem 4.8. □

Corollary 4.10. CQAns over Ward+ is PTime-complete in data com-
plexity, and ExpTime-complete in combined complexity.

Proof. The proof follows from Theorem 4.9 and Corollary 3.18.
□

Now, we continue this section with the description of the second tech-
nique, i.e., by proving the existence of a well-behaved proof tree, in
order to exploit the technique developed in [23].
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Despite the fact that we can deduce the complexity of Ward+ by ex-
ploiting the Dyadic-Shy class, we are interested in this second technique
because, thanks to this alternative methodology, we can take advantage
of the Datalog rewriting algorithm deriving from proof trees. We hope
to develop this idea in future works. About it, we observe that the com-
putational complexity of Shy is ExpTime, but the existing algorithm
developed for this class has complexity 2ExpTime, hence it would be
interesting to investigate a possible Datalog rewriting for Ward+, that
would allow us a comparison with the algorithm for Ward+ that we
have implemented (see Chapter 5), that uses the procedure developed
for Shy.

We remark that, in the following, we will focus on single-head TGDs,
since we can always normalize a set of TGDs (and therefore, in partic-
ular, any Ward+ set) into a single-head TGDs, preserving the certain
answers. The normalization works as the one recalled in Section 2.4.

We are interested in a specific class of proof trees, for which we can
bound the node-width by some polynomial function. In what follows,
we give a very high-level idea about why it is possible to bound the
node-width of a proof tree for a Ward+ set of TGDs. In plain words,
the claim is to keep small the bags of the tree, and, to this aim, we
provide a bound for these bags. This bound derives from the syn-
tactic definition of a Ward+ rule. In fact, as we have explained sev-
eral times in this chapter, a Ward+ rule can be partitioned into two
sets B1 and B2 of atoms which can share only harmless variables. In
particular, the set of atoms B1 satisfies the shyness conditions, while
B2 can be seen as any CQ. Hence, let b = maxσ∈Σ{|body(σ)|}, and
w = maxP ∈sch(Σ){arity(P )}. After resolving an atom of the query, we
replace this atom with the body of some rule σ, whose size is at most
b. Assuming that both B1,B2 ̸= ∅, it is always possible to decompose
this body into at least two different nodes of the chase tree, because
since body(σ) is Ward+, we have that body(σ) = B1 ∪B2. However,
we need to preserve the joins of the query, hence, some atoms from B1

must be kept together the remaining atoms of q. But, from the shyness
conditions, we know that are not allowed joins among nulls in body(σ);
hence, of course it is possible to split in singleton the |B1| atoms. It is
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necessary only to ensure the safety of the starting joins of the query.
About that, exploiting again the fact that a null cannot appear in more
than one atom in a shy body, in the worst case to preserve the joins
explained above, it is necessary to keep together at most w atoms from
B1 with the bag containing the query atoms (while the other |B1|−w

atoms can be split). Repeating this argument, we obtain the bound
|q| ∗w + b.
About the set B2, we have to observe that inside it, there could be
join among harmful variables, hence it is important to preserve these
joins. Intuitively speaking, this node of the chase tree becomes like a
new query, hence we use the same argument presented above.
Finally, we have the following bound ν ·w + b, with ν = max{b, |q|}.

Now we can formally say that we are interested in a specific class of
proof trees for which we can bound the node-width by the following
function

fW+(q,Σ) := ν ·w + b,

where Σ∈Ward+, b = maxσ∈Σ{|body(σ)|}, w = maxP ∈sch(Σ){arity(P )},
q a CQ and ν = max{b, |q|}.

Our aim is to prove the following result.

Theorem 4.11. Consider a database D, a set Σ of Ward+ TGDs, a CQ
q(x) and a tuple c ∈ dom(D)|x|. Let Σ′ =Nsh(Σ). Then the following
are equivalent:

(1) c ∈ cert(q,D,Σ).

(2) There exists a proof tree P of q w.r.t. Σ′ with ndw(P) ≤
fW+(q,Σ′) such that c ∈ P(D).

To this end, we need to recall some auxiliary notions introduced in the
work of Berger et al. [24] and listed below for the reader convenience.

Definition 4.12 (Blocked Application, [24]). Let a ∈ U(GD,Σ,Θ) be
a node, we write b1, . . . , bk ⇒(σ,h) a if there is a node v of GD,Σ

Θ such
that µΘ(v) = a and succσ,h(v) = b1, . . . , bk. Moreover, for a set Γ ∈
U(GD,Σ,Θ), we say that the application of b1, . . . , bk⇒(σ,h) a is blocked
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in Γ if there is labeled null occurring in a that occurs in Γ \ {a}, but
that does not occur in any of b1, . . . , bk.

Definition 4.13 (Depth, [24]). Given a node v ∈ GD,Σ
Θ , the depth of v

denoted by dp(v), is defined inductively as follows:

dp(v) = max{dp(u) | u is a child node of v in GD,Σ
Θ }+1.

For an atom a ∈ U(GD,Σ,Θ), we define the depth of a as

dp(a) = min{dp(v) | µΘ(v) = a}.

Observe that dp(a) = 1 iff a labels only leaf nodes in GD,Σ
Θ . For a set

of atoms Γ ∈ U(GD,Σ,Θ), the depth is defined as

dp(Γ) = max{dp(a) | a ∈ Γ}.

Lemma 4.14 ([24]). Consider a node v of GD,Σ
Θ with succσ,h(v) =

{b1, . . . , bk} for some σ ∈ Σ and h. Then, if some labeled null occurs
in bi, it either occurs also in µΘ(v), or it does not occur in the label of
any node of GD,Σ

Θ that is not a descendant of v.

Now, to prove Theorem 4.11, we need to prove the following lemma.
The proof uses similar arguments proposed in the work of Berger et al.
[24].

Lemma 4.15. Consider a database D and a set Σ ∈ Ward+of single-
head TGDs. Let w = maxP ∈sch(Σ){arity(P )}, Θ⊆ chase(D,Σ) and Γ⊆
U(GD,Σ,Θ). Then there exist a chase tree C for Γ such that

nwd(C)≤ fW+(Γ,Σ).

Proof. Let us consider Γ = {a1, . . . ,ak} for some k > 0. The proof
is performed by induction on dp(Γ).

Base Case. Assume that dp(Γ) = 1. By definition of depth, this
implies that Γ ⊆ D. Hence, a chase tree C for Γ is trivially given by
the tree composed only by the root labeled with Γ. It is easy to see
that in this case nwd(C)≤ fW+(Γ,Σ).
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Induction Step. Now, let us assume that dp(Γ) = n and also that
there exists a chase tree C for Γ with nwd(C)≤ fW+(Γ,Σ). We want to
prove that there exists another chase tree C̄ with bounded node-width
for dp(Γ) = n+1. Assume that there is only one atom in Γ with depth
n + 1. Without loss of generality, we assume that a1 ∈ Γ is such that
dp(a1) = n +1 and arity(a1) = w. Let b1, . . . , bj ∈ U(GD,Σ,Θ) such that
succσ,h(a1) = {b1, . . . , bj} for some σ ∈ Σ and some homomorphism h.
Moreover, since a1 is of maximal depth, it follows that the application
of b1, . . . , bj⇒(σ,h) a1 is not blocked, i.e., one of the following condition
holds:

(i) for every labeled null occurring in a1, either it does not occur
in Γ\{a1}, or it appears necessarily in at least one atom among
b1, . . . , bj (equivalently there are no nulls that are present in a1,
yet not in any of the b1, . . . , bj ),

(ii) a1 does not contain any null.

Since Σ is Ward+ there is a set B1 of atoms such that all the nulls
contained in a1 are also present in B1. In particular, in the worst case,
if all the terms of a1 are nulls, by definition of Ward+, it follows that
these nulls are contained in w different atoms of B1 and that B1 does
not share any other nulls with any atom of body(σ)\B1. In this case
we set

Γ′ = Γ\{a1}∪B1 and Γ′′ = {b1, . . . , bj}\B1.

Otherwise, if a1 does not contain any null, i.e., B1 = ∅, we define

Γ′ = Γ\{a1} and Γ′′ = {b1, . . . , bj}.

By Lemma 4.14, we deduce that the nulls that do not appear in a1 but
that appear in some atom among b1, . . . , bj , are all fresh. Moreover,
since the application b1, . . . , bj⇒(σ,h) a1 is not blocked, we can conclude
that, in both cases, the set {Γ′,Γ′′} is a decomposition of Γ. Now, we
have that dp(Γ′)≤ n and dp(Γ′′)≤ n (since we remove the unique atom
a1 of maximal depth). Hence, by induction hypothesis, there exist two
different chase trees C ′ and C ′′, respectively, one for Γ′ and one for Γ′′.
Now, we can construct a chase tree C̄ for Γ as follows:

(1) the root v0 of C̄ is labeled with Γ;
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(2) v0 has only one child v1, whose label is Γ′∪Γ′′;
(3) v1 has exactly two children, v′ and v′′, that are labeled respec-

tively with Γ′ and Γ′′.

Finally, |Γ′∪Γ′′| ≤ |Γ|+max{|body(σ)| : σ ∈ Σ} ≤ fW+(Γ,Σ). Thus, C̄

is a chase tree for Γ with the desired bound on the node-width.

Now it remains to show that the result holds also when there is more
than one atom in Γ of depth n + 1. This can be shown by applying a
subsidiary induction on this number of atoms. □

At this point we are able to prove Theorem 4.11. We point out that
this proof repeats verbatim the argument used in the proof of Theorem
4.9 in [23].

Proof of Theorem 4.11. First of all we prove the (2)⇒ (1). To
this aim let us assume that there exists a proof tree P of q w.r.t. Σ′

with ndw(P)≤ fW+(q,Σ′) such that c ∈P(D), hence the result follows
by Theorem 2.36.

Now, we prove the converse direction, i.e., (1)⇒ (2). Let us assume
that c ∈ cert(q,D,Σ). We need to show that if Σ ∈ Ward+, then there
exists a proof tree P with respect Σ with ndw(P) ≤ fW+(q,Σ′) such
that c ∈ P(D). By our assumptions there exists a homomorphism h

such that h(atoms(q)) ⊆ chase(D,Σ) and h(x) = c. Let Θq be the set
of atoms h(atoms(q)). Recall that there is a homomorphism hΘq that
maps Θq to U(GD,Σ,Θq). Let homomorphism h′ = hΘq ◦h be such that
h′(atoms(q))⊆ U(GD,Σ,Θq) and h′(x) = c. By Theorem 4.15, there ex-
ists a chase tree C for h′(atoms(q)) with nwd(C)≤ fW+(h′(atoms(q)),Σ).
By Lemma 2.42 there exists a proof tree P of q with respect to Σ with
nwd(P) ≤ fW+(h′(atoms(q)),Σ) ≤ fW+(q,Σ) such that c ∈ P(D) and
the claim follows. □

Now we have another tool for showing that CQ answering under Ward+

set of TGDs is in ExpTime in combined complexity and PTime in data
complexity. Since our problem reduces to check if there exists a proof
tree P of q w.r.t. Σ with nwd(P)≤ fW+(q,Σ) such that c ∈ P(D), this
can be easily checked by a space bounded algorithm that constructs,
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in a level-by-level fashion, the branches of the proof tree in parallel
universal computations, using alternations. To this aim we exploit the
technique used in [23, 24], and discussed in Section 2.5. The lower
bounds are inherited from Datalog, since a set of Datalog rules (seen
as TGDs) is Ward+.





CHAPTER 5

Implementation and Experimental Evaluation

In this chapter we present the architecture of the prototype system
regarding the class Ward+. Specifically, we first present our approach
in Section 5.1, then we describe the system used in Section 5.2 and,
finally, in Section 5.3 we report and discuss some experimental results.

5.1. Algorithms for Ward+

In this section we present the algorithm developed for the class Ward+.
We exploit the result obtained in Theorem 4.9 to use some property of
Shy, including the system developed for it. The main contribution of
this work consists of implementing the following algorithms:

• Null Propagation Marking Procedure (NPMP);

• Creation of the dyadic decomposition for a Ward+ set of TGDs;

• BCQEval over Ward+ set of TGDs.

Null Propagation Marking Procedure (NPMP)

Having in mind Definition 3.1, our first aim is to compute the set aff(Σ),
that is the set containing all the affected position of an ontology Σ.

To this end, we make use of a well-known notion, the so-called critical
database for a set of TGDs (see [69]). In plain words, the critical
database is composed of all the atoms that can be formed using the
predicates and the constants in the set of TGDs under consideration. If
the set of TGDs is constant-free, as in our setting, then we consider an
arbitrary constant c ∈ const(Σ). More formally, the critical database
for a schema S is the database Dc(S) defined as:

Dc(S) = {P (c) | P ∈ S∧ c ∈ const(Σ)}.
79
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The critical database for a set Σ of TGDs is defined as the database
Dc(sch(Σ)). After building the critical database, we construct a new
ontology Σ′ obtained by replacing every existential variable x∈ var∃(Σ)
with a fresh constant cx /∈ const(Σ).
In this way, we obtain a Datalog set of rules that, paired with the
critical database, produces a model containing atoms whose terms can
be only the fixed constant c, or the fresh constant cx, for each x ∈
var∃(Σ). We outline that, since each constant cx strictly depends on
the existential variable x, we are able to collect exactly all the positions
in which cx occurs, that is, to find all the x-affected positions, for each
x ∈ var∃(Σ). This is of fundamental importance for our purpose, since
we need to construct the set of all the dangerous, harmful and harmless
variables of a given ontology Σ. To better understand the idea behind
the algorithm, we give the following example.

Example 5.1. Consider the following set Σ of TGDs:

σ1 : A(x1) → ∃ y1 S(y1)
σ2 : S(x2) → ∃ y2, z2 R(y2,x2, z2)
σ3 : S(y3),R(x3,y3, z3) → T (x3,y3, z3)
σ4 : T (x4,y4, z4) → S(z4)

By replacing each existential variable with a fresh constant, we obtain
the following set Σ′ of rules:

σ1 : A(x1) → S(cy1)
σ2 : S(x2) → R(cy2 ,x2, cz2)
σ3 : S(y3),R(x3,y3, z3) → T (x3,y3, z3)
σ4 : T (x4,y4, z4) → S(z4)

The model obtained from Σ′ and Dc(sch(Σ)) is given by:

{S(1),A(1),R(1,1,1),T (1,1,1),S(cy1),R(cy2 ,1, cz2),R(cy2 , cy1 , cz2),

T (cy2 ,1, cz2),T (cy2 , cy1 , cz2),S(cz2),R(cy2 , cz2 , cz2),T (cy2 , cz2 , cz2)}.

Hence, we obtain that:

aff(Σ) = {S[1],R[1],R[2],R[3],T [1],T [2],T [3]},
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where:

aff(R[1]) = {y2}, aff(R[2]) = {y1, z2}, aff(R[3]) = {z2},
aff(T [1]) = {y2}, aff(T [2]) = {y1, z2}, aff(T [3]) = {z2},

aff(S[1]) = {y1, z2}.

Once we have these information, we can easily compute the sets of
dangerous, harmful and harmless variables, according to Definition 3.4.

Creation of the dyadic decomposition for a Ward+ set of
TGDs

In the following we describe the second step that we perform to con-
struct the prototype system for Ward+ sets of TGDs: given a set of
TGDs Σ ∈ Ward+, we build a dyadic decomposition (ΣHG,ΣS) of Σ
w.r.t. Shy. We can extract such algorithm from the proof of Theorem
4.8.

Algorithm 4. Construction of a dyadic decomposition.

Input: A set Σ ∈ Ward+, the set aff(Σ);
Output: A dyadic decomposition (ΣHG,ΣS) of Σ w.r.t. Shy.

(1) ΣHG = ∅;
(2) ΣS = ∅;
(3) foreach σ ∈ Σ do
(4) i = 0;
(5) HL := harmless(σ);
(6) (B1,B2) := split(body(σ));
(7) bodyHG := body(σ);
(8) headHG := Aux i(t), s.t. t ∈HL|HL|;
(9) bodyS := B1 + headHG;

(10) headS := head(σ);
(11) ρ′(σ) := attach(bodyHG,headHG);
(12) ρ′′(σ) := attach(bodyS,headS);
(13) ΣHG = ΣHG∪ρ′(σ);
(14) ΣS = ΣS ∪ρ′′(σ);
(15) i = i+1;
(16) return (ΣHG,ΣS);
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BCQEval over Ward+ set of TGDs

Finally we present the algorithm for the evaluation of boolean con-
junctive query over a set of warded TGDs. This algorithm is based
on Algorithm 3 that allows us to complete the database with all the
possible ground atoms of chase⊥

X(D,ΣHG∪ΣS), where X = hp(ΣHG).
However, our implementation takes advantage of the system developed
for Shy. In what follows we report the pseudo-code of our approach.

Algorithm 5. BCQ evaluation over Dyadic sets of TGDs.

Input: A dyadic decomposition (ΣHG,ΣS), a database D and a BCQ q.

(1) n = maxbody(σ)∈ΣHG{joinx | x is harmful};
(2) m = maxbody(q){joinx | x ∈ vars(q)};
(3) D′ = pchase(D∪ΣS ,n);
(4) D′′ = pchase(D′∪ΣHG)\D′;
(5) if D′′ ̸= ∅
(6) D = D∪D′′;
(7) goto step (3);
(8) else
(9) if pchase(D∪ΣS ,m) |= q

(10) accept;
(11) else reject;

5.2. System Description

Our algorithm relies on a particular Datalog engine: DLV∃ 1, an An-
swer Set Programming System that extends DLV. It was proposed by
Leone et al. [63] as the first system supporting the standard first-order
semantics for unrestricted CQs with existential variables, over ontolo-
gies with advanced properties. In particular, in the work of Leone et
al. [64], a bottom-up evaluation strategy for shy programs was imple-
mented inside the DLV system, followed by an improvement on the
computation via some optimization techniques.

1https://www.mat.unical.it/dlve/
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The benchmark suite proposed in the thesis belongs to the Stock Ex-
change domain, a real world ontology of the domain of financial insti-
tutions within the European Union, widely used in literature. It has
been derived from a well-established benchmark [64]. In particular, it
consists of 53 Shy (and hence Ward+) axioms, 15% of which contains
existential quantification, and we use five data-sets of increasing size,
downloaded from https://www.mat.unical.it/dlve.

All tests were performed on a machine having one 2.7GHz Intel(R)
Core(TM) processor and 8 GB of RAM.

5.3. Experiments

In this section we present our experiment results. We assessed the ef-
fectiveness of our algorithm via a careful experimental activity. Specif-
ically, we compared the query evaluation of five queries, first on the
original data-set and ontology, and then on the completed database
and the component ΣS of the dyadic decomposition obtained from Al-
gorithm 4. After that, we report the performance analysis of Algorithm
5 in terms of time required to complete the database, and atoms gen-
erated at each step of the completion.

Figures 1-5 show the results of the first experimental activity, i.e., start-
ing from an ontology Σ ∈ Shy, we compute a dyadic decomposition
(ΣHG,ΣS) of Σ, and then we compare the evaluation of five queries
over the starting database and ontology Σ (reported on the left), ver-
sus the evaluation of the queries over the completed database and ΣS

(reported on the right). We point out that (i) although we start from
a shy ontology, it is treated by our algorithm as a true dyadic set of
TGDs, since the dyadic decomposition is constructed, and hence DLV∃

is not performed in a trivial way by our algorithm, but it exploits only
the component ΣS of the dyadic decomposition; (ii) our algorithm pro-
duces the same answers of the standard execution and, hence, it works
correctly. From these experiments, we note that the time required for
query answering by the system executed on the original DB and on the
completed one, are comparable.

https://www.mat.unical.it/dlve
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(a) Original DB

(b) Completed DB

Figure 1. Comparison between the evaluation of q1 on
(a) the original database and ontology, and (b) the com-
pleted database and the component ΣS of the dyadic
decomposition, in terms of time required (in orange) and
atoms generated (in yellow).
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(a) Original DB

(b) Completed DB

Figure 2. Comparison between the evaluation of q2 on
(a) the original database and ontology, and (b) the com-
pleted database and the component ΣS of the dyadic
decomposition, in terms of time required (in orange) and
atoms generated (in yellow).
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(a) Original DB

(b) Completed DB

Figure 3. Comparison between the evaluation of q3 on
(a) the original database and ontology, and (b) the com-
pleted database and the component ΣS of the dyadic
decomposition, in terms of time required (in orange) and
atoms generated (in yellow).
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(a) Original DB

(b) Completed DB

Figure 4. Comparison between the evaluation of q4 on
(a) the original database and ontology, and (b) the com-
pleted database and the component ΣS of the dyadic
decomposition, in terms of time required (in orange) and
atoms generated (in yellow).
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(a) Original DB

(b) Completed DB

Figure 5. Comparison between the evaluation of q5 on
(a) the original database and ontology, and (b) the com-
pleted database and the component ΣS of the dyadic
decomposition, in terms of time required (in orange) and
atoms generated (in yellow).
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(a) Atom generated at each step

(b) Time required for each step

Figure 6. Graphical representation of (a) the number
of atoms generated at each step of the completion of the
database and (b) time necessary to perform each step for
the query q1.
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(a) Atom generated at each step

(b) Time required for each step

Figure 7. Graphical representation of (a) the number
of atoms generated at each step of the completion of the
database and (b) time necessary to perform each step for
the query q2.
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(a) Atom generated at each step

(b) Time required for each step

Figure 8. Graphical representation of (a) the number
of atoms generated at each step of the completion of the
database and (b) time necessary to perform each step for
the query q3.
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(a) Atom generated at each step

(b) Time required for each step

Figure 9. Graphical representation of (a) the number
of atoms generated at each step of the completion of the
database and (b) time necessary to perform each step for
the query q4.
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(a) Atom generated at each step

(b) Time required for each step

Figure 10. Graphical representation of (a) the number
of atoms generated at each step of the completion of the
database and (b) time necessary to perform each step for
the query q5.

Figures 6-10 show the results of the second experimental activity. In
particular, figures on the left show, for each step required to complete
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the database, the number of atoms generated by the algorithm, while
figures on the right describe the time necessary to perform each step.
However, we remark that there is an overhead on the time required for
completing the DB, but in future projects, we aim to better understand
the reason behind this overhead and to improve it with a more efficient
implementation.



CHAPTER 6

Discussion and Conclusion

In recent years, query answering over ontologies (QA) has been gaining
interest and getting more sought after with time especially in the data
and knowledge management field. In particular, a conjunctive query
(CQ) q is evaluated on a database D paired with a logical theory Σ
that contains rules used to infer intentional knowledge from D. It is
thus fundamental that the language with which Σ is specified should
have a mix of expressiveness and complexity.

Contextually, Datalog±, which is a family of languages which are Datalog-
based, proposed for tractable QA, is continuously gathering interesting.
Moreover, it is based on Datalog∃, and extension of Datalog that ad-
mits ∃-quantified variables in rule heads.

Nowadays, we point out that the literature is full of different classes
(e.g. linear, guarded, sticky, weakly-acyclic, etc.), and it is increasingly
expanding since they can be combined in various ways. But, on the
other hand, not all these extensions have an implementation (e.g. tame,
see [49] for more details) or, in most cases, each class requires to develop
a specific solver.

In this work, we first started from the study about the combination
of two existing classes, Shy and Ward, in order to exploit the systems
developed for Shy. Successively, we have defined a more general class,
named Dyadic TGDs, that allows to extend all the decidable classes,
while making the most of the existent related systems. In particular,
fixed a decidable class C, Dyadic-C is the class of all the sets Σ of TGDs
that admit a dyadic decomposition (ΣHG,ΣC) w.r.t. C (i.e., there exists
a rewriting of Σ in an equivalent set of TGDs given by ΣHG∪ΣC , where
ΣHG is a set of head-ground rule and ΣC ∈ C). We proved that the class
Dyadic-C is decidable, as long as C is decidable, providing a sound and
complete algorithm used to complete the database with all the ground

95
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atoms that is possible to derive from the component ΣHG of the dyadic
decomposition, in order to exploit only the component ΣC for query
answering purpose.

Concurrently, we defined a new class of Datalog∃ program, called Ward+,
derived from the combination of Shy and Ward, since both classes en-
joy good properties. We showed the complexity of this new fragment
using two different techniques: we first exploited the Dyadic class and
we proved that Ward+⊂ Dyadic-Shy; then, making use of proof trees,
we confirmed the complexity class expected, getting the possibility of
obtaining a Datalog rewriting for Ward+ in future work.

Moreover, we deepened the pchase properties, and we exploited the
Bell number definition to count the exact maximal number of atoms
generated by the parsimonious chase procedure. Regarding this, we
conjectured the equivalence between two formulas (empirically con-
firmed) that we hope to formally prove in future works.

Finally, to support the results obtained in this thesis, we implemented
an algorithm for the class Ward+, based on the existence of a dyadic
decomposition for Ward+ sets of TGDs, that exploits the existent sys-
tem DLV∃, and that we hope to optimize in terms of time required to
complete the database.
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