
Università della Calabria
Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Matematica e Informatica

XXXI ciclo

Tesi di Dottorato

Tight integration of Artificial
Intelligence in Game Development Tools

Settore Scientifico Disciplinare INF/01 – INFORMATICA

Coordinatore: Ch.mo Prof. Gianluigi Greco

Supervisore: Ch.mo Prof. Giovambattista Ianni

Dottorando: Dott.ssa Denise Angilica

Alla mia famiglia

2

3

Sommario

In questo lavoro di tesi puntiamo a ridurre le lacune che impediscono l’utilizzo
di strumenti dichiarativi all’interno di ambienti in cui lo stato del mondo
cambia molto rapidamente e, in particolare, nel contesto dello sviluppo di
videogiochi. Integrare moduli di ragionamento automatico basati su speci-
fiche dichiarative, durante le varie fasi dello sviluppo di un videogioco, pone
diverse sfide ancora irrisolte, ognuna delle quali richiede soluzioni non banali.
Si devono rispettare requisiti di efficienza; la dualità tra codice procedurale
e specifiche dichiarative rende l’integrazione non semplice; l’esecuzione con-
corrente dei task di ragionamento automatico e di quelli di aggiornamento
del gioco, richiede l’applicazione di strategie idonee al passaggio di infor-
mazioni tra le due parti. In questo contesto, proponiamo un framework
utilizzabile all’interno di Unity, un noto ambiente di sviluppo per video-
giochi. Il framework, chiamato ThinkEngine, consente di integrare moduli
di ragionamento automatico, basati su tecniche di rappresentazione della
conoscenza, all’interno della logica di gioco. ThinkEngine, seguendo la
filosofia di sviluppo di Unity, è integrato sia in fase di progettazione che in
fase di esecuzione del gioco. A dimostrazione delle potenzialità del sistema
proposto, è illustrato un caso d’uso.

Abstract

In this thesis we aim to narrow some of the gaps that prevent the adoption of
declarative tools within highly dynamically changing environments, with a
particular focus to the context of game development. Integrating reasoning
modules, based on declarative specifications, within the commercial game
development life-cycle, poses a number of unsolved challenges, each with
nonobvious solution. It is necessary to cope with strict time performance
requirements; the duality between procedural code and declarative specifica-
tions prevents easy integration; the concurrent execution of reasoning tasks
and game updates requires proper information passing strategies between
the two involved sides. In this context, we propose a framework that can
be deployed within the well-known Unity game development engine. The
so-called ThinkEngine framework allows to embed reasoning modules, based
on knowledge representation techniques, within the game logic. ThinkEngine
respects the Unity development philosophy, and is properly integrated both

4

at design-time and at run-time. A use case is reported about, showing the
potential of the proposed infrastructure.

Contents

Introduction 7

1 Basic concepts and related research 11
1.1 Object Oriented Programming 11
1.2 Game engines: Unity . 12
1.3 Planning Domain Definition Language 15
1.4 Declarative Logic Programming 16

1.4.1 Prolog . 18
1.4.2 Answer Set Programming 18

1.5 Stream reasoning . 20
1.6 Integrating DLP and OOP . 21

1.6.1 General approaches . 21
1.6.2 ASP for OOP . 22

1.7 Artificial Intelligence in videogames 23
1.7.1 Overview . 24
1.7.2 AI in Unity . 27
1.7.3 Planning in video-games 28
1.7.4 ASP for video-games 28

2 Reasoning in real-time systems 31
2.1 Real-time systems . 31
2.2 Looping update environment 33
2.3 The compute step as an automated reasoning task 34

3 Reasoning for game development 39
3.1 Integrating reasoning modules in game engines 40

3.1.1 The ThinkEngine framework architecture 42
3.2 Procedural side of the Information Passing Layer 44

5

6 CONTENTS

3.2.1 Sensors definition . 45
3.2.2 Actuators definition . 47

3.3 Declarative side of the Information Passing Layer 48
3.3.1 Syntax and semantic of Answer Set Programming . . . 48
3.3.2 Sensors on the declarative side 49
3.3.3 Actuators on the declarative side 51
3.3.4 Declarative side semantic 52

3.4 A ThinkEngine implementation: Unity and ASP 53

4 ThinkEngine for Tetris 55
4.1 Sensors and Actuators Configuration 55

4.1.1 Brain Component . 57
4.1.2 ASP Encoding . 58

4.2 A game-play . 61
4.3 Benchmark . 64

Conclusions 67

Acknowledgements 69

Introduction

In Artificial Intelligence, Knowledge Representation (KR in the following)
aims to express information in a transparent, symbolic notation. Knowledge
is expected to be encoded in a way suitable for modelling and perform auto-
mated reasoning on beliefs, intentions, and value judgments of an intelligent
agent. In Logic, knowledge is represented by propositions and it is processed
by applying various laws of logic, including a selection of appropriate rules
of inference.

When comparing rule-based formalisms with imperative languages, one
can notice how it can be much easier to solve a problem using the former
approach rather than the latter one in a variety of settings. When using
an imperative language, in order to produce a solution for a certain prob-
lem statement, developers first have to think to some algorithm to solve
the problem at hand and then they have to implement this algorithm in a
programming language of choice. This “algorithm design phase” is almost
absent when approaching a problem with a declarative language. Indeed, it
is sufficient to write down rules that describe how a problem solution should
look like; then, a KR solver will take care of finding an actual solution.
Moreover, when dealing with a declarative encoding of a problem, it is much
easier to find errors and, once reached a good starting representation of what
is needed, one can increasingly improve his/her knowledge base by means of
subsequent refinement.

However, there are multiple limitations that arise when trying to intro-
duce such formalisms in real world applications based on Object Oriented
Programming (OOP):

• KR solvers still have a performance bottleneck when the problem at
hand has a high complexity, a large input dataset, or both;

• OOP data structures are not available or difficult to model in declara-

7

8 CONTENTS

tive systems;

• it is unclear how to manage the data exchange flow between modules
that use completely different data representation, like when a knowl-
edge representation side and a procedural side are coupled together;

• KR solvers often have limitations on the data types available.

One of the areas that has recently inspired a great interest is the integra-
tion of KR in the videogame development workflow. In general, AI techniques
have (or can have) a role in numerous task applications in the game indus-
try, ranging from programming the behavior of Non Player Characters to
game level and content generation. Especially when considering real-time
videogames, this particular context is really challenging for researchers since
it means to work within an highly reactive environment, requiring really fast
responses from a KR system. Also, for a reasoning module deployed within
a videogame logic, it is crucial to have the possibility of stopping and/or
quickly restarting reasoning tasks, especially if the KR system is not able to
guarantee the required reactivity. This feature happens to be strategic when
the videogame world has changed in a way that invalidates the solution that
the system is trying to produce starting from an old state of the environment.

Besides the performance problem, a second fundamental issue concerns
the technical integration of an external KR module in an object-oriented
environment. The two paradigms offer a world representation on different
abstraction levels: the level of abstraction is usually higher for the KR module
and lower and more operational for the object oriented one. Indeed, reasoning
in terms of a low-level abstraction is not feasible, and an abstraction process
from this to the high-level is needed. For instance, game maps tipically
require a discretization in grid cells, so to avoid to work at the pixel level;
floating point physical simulations are simplified and abstracted; and so on.

Multiple strategies can be used to achieve such an integration [1], each
one with its advantages and disadvantages depending on the context in which
one has to work. Specifically, in a game development engine it is important
to clearly distinguish run-time settings from design-time settings. Also it
must be noted that, at run-time, a main module that we will call the proce-
dural side, takes care of updating the game world: embedding one or more
reasoning modules, which will belong to what we will call the reasoning side,
requires the introduction of multiple concurrent execution flows, in order to
prevent lagging in the screen update.

CONTENTS 9

In fact, to make an embedded reasoning module aware of the state of
the videogame world and to make the main update module capable of ap-
plying decisions provided from the reasoning module, it is needed to devise
a proper information passing strategy. Devising such a strategy is not so
trivial, mainly because of synchronization issues (the world can change while
a reasoner is running), and because of the different data types and represen-
tations used respectively on the reasoning side and on the procedural side.
This latter problem requires the usage of data reflection techniques, allowing
to examine, introspect, and modify data structures and behavior on the pro-
cedural side at run-time, and to map logical propositions to and from object
oriented data structures. It is thus clear that, the usage of KR systems along
with imperative languages, can not be seen as a mere call to an external
tool, rather as a tight integration of reasoning capabilities inside the main
environment.

In this work, we aim to cover the highlighted gaps by proposing an ab-
stract framework infrastructure for the integration of a KR module in a
game engine. An actual implementation for the well-known game develop-
ment engine Unity (ThinkEngine) is presented. Unity is one of the most used
commercial game engines, and offers different facilities for the development
of video games. It comes with different tools, called Assets, available on its
Assets Store (some for free, others on payment), making it easier to man-
age physics, artificial intelligence and other fundamental aspects of a game
project.

The ThinkEngine is a Unity asset that offers an infrastructure to intro-
duce and manage automated reasoning models in a video game. In particular,
we choose Answer Set Programming (ASP) as the reasoning model. ASP is
a formalism based on the stable model semantics of logic programming [2],
featuring a number of desirable advantages. The facilities offered by this
framework regard a tight sharing of data structures between the main pro-
gram, the game, and the ASP reasoner, enhancing reflection techniques for
mapping game data to and from ASP logic assertions. ThinkEngine is based
on concurrent execution to avoid a drop of performances of the game due
to the time consuming reasoning process. Indeed, if a reasoner is executed
within the thread that takes care of the graphical update, the game would
freeze until the solver finds a solution.

This thesis work is structured as follows. In the first chapter we give an
overview of the background context for this thesis, such as the Unity game
engine, Declarative Logic Programming, and the earlier solutions proposed in

10 CONTENTS

the literature integrating KR in OOP. Moreover, we overview the main usages
of AI in videogames. In the second chapter we discuss the problems arising
while integrating a KR module in an object oriented real-time system. The
third chapter contains a description of the general architecture implemented
with the ThinkEngine asset, focusing on the usage of Sensors and Actuators
to share data between the main program and the reasoner solver. In the
fourth chapter, we show the usage of the asset by means of its application on
the very well known Tetris game. Some performance aspects are discussed.

Chapter 1

Basic concepts and related
research

In this chapter we relate our thesis work with existing research efforts and
provide the necessary context. It must be noted that the ThinkEngine which
we present has points of contact with the stream reasoning field, with declar-
ative logic and object-oriented programming as well as planning and with
the broad discipline of artificial intelligence in videogames.

In the following we will overview related literature and introduce some
key concepts used throughout this work.

1.1 Object Oriented Programming

Videogame development is the process of creating a videogame. Videogame
development is usually based on Object-Oriented Programming (OOP), a
well-known programming paradigm based on the concept of “object”. Ob-
jects can contain data, represented in the form of fields, and code, in the
form of procedures. Objects can interact with each other but this interaction
is based on some principles. Main principles of OOP are:

• Encapsulation. Each object keeps its state private within their class
scope. This means that, on the one hand, different objects of the same
class can access fields from each other without limitations. On the
other hand, instances of a different class are allowed only to call a list
of public methods (functions) of the class, some of which expose safely

11

12 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

the object state. This allows to achieve information hiding in a natural
way.

• Abstraction. An object-oriented program is usually maintained by dif-
ferent developers for a long time and, during its development cycle, a
program is subject to a number of modifications. To associate an ab-
stract concept to a class, actually exposing only what it does and not
how it does it, allows easy interaction between objects but also make
developers capable of working on different parts of a program, without
caring about what other people are working on.

• Inheritance. Object classes can be related each other in two ways:
either by means of an is-a relation or an has-a relation. The inheritance
principle is used to express the former, in fact allowing a derived class
to reuse logic (thus code) of super classes.

• Polymorphism. As an immediate consequence of the inheritance prin-
ciple, there is the polymorphism (literally “many shapes” in Greek).
This principle allows to use an object of a derived class as if it was
belonging to one of its super classes, for instance one can invoke on
a given object a method of its superclasses, although the behavior of
such method can be specialized in each subclass.

1.2 Game engines: Unity

Thanks to the advent of online distribution systems, such as Steam and Ori-
gin, as well as the mobile market for Android and IOS devices, the videogame
industry has grown rapidly since the early 2000s. In fact, these systems are
making it easier to publish indie games, i.e. videogames published without
the funding of a publisher. Around this gaming market several platforms are
springing up, known as Game Engines. These are object-oriented software-
development environments designed for people to build video games [3]. They
offer the possibility to easily integrate in a software different things, for ex-
ample:

• physics

• rendering

1.2. GAME ENGINES: UNITY 13

• artificial intelligence.

There are more than 100 solutions on the market, making it more difficult
to choose which one to use when developing a game. Among these solutions,
one of the most used is the Unity game development engine.1

Unity is a cross-platform game engine first announced and released in
2005. Nowadays, the engine has been extended to support over 25 platforms
(Windows, Android, iOS and so on). Unity offers facilities for developing
both 2D and 3D video games. One can use this framework to assemble as-
sets (audio, special effects and so on) and art into environments and scenes,
and concomitantly play, test and edit the game if necessary. Developers can
use a primary scripting API in C# (for both the Unity editor in the form
of plugins, and games themselves) but also visual editing facilities like drag
and drop, property editing etc.. Unity makes available an asset store2 on
which developers can put their solutions (editor plugins, models, SDKs, tem-
plates...) for selling (some assets are proposed for free). Assets are divided
in macro and micro categories offering a rich collection of solutions for dif-
ferent purposes such as, for instance, characters, textures and AI. Within
this engine, Game Objects are the fundamental data structures that repre-
sent characters, props and scenery. Game objects do not accomplish much
in themselves but they act as containers for Components, which implement
the real functionalities. The Game world, or environment, is the set of all
the objects used in a game project. At run-time stage, the game world is
highly dynamically changing, requiring that all the processes executed inside
the game logic (i.e. all the procedures needed to the game execution) must
be fast.

One of the main disadvantages of this game engine is that the adoption of
multithreading in videogame development is a controversial topic. The usage
of threads with this engine, indeed, is not trivial since Unity is not strictly
designed to be thread safe [4]. In order to keep thread safety, the Unity APIs
are accessible only by the main thread. However, there could be heavy tasks
that could slow down the main thread and thus the whole game. These tasks
include the execution of AI algorithms, which are of special interest for our
thesis. When dealing with the execution of such type of CPU-bound code,

1https://unity3d.com/unity
2https://www.assetstore.unity3d.com/

14 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

EDITOR

INPUT EVENTS

INITIALIZATION

SCENE RENDERING

GIZMO RENDERING

GUI RENDERING

END OF FRAME

PAUSING

DECOMMISSIONING

FIXEDUPDATE

INTERNAL ANIMATION UPDATE

INTERNAL PHYSICS UPDATE

 INTERNAL ANIMATION UPDATE

PHYSICS

GAME LOGIC

UPDATE

…

YIELD STARTCOROUTINE

Figure 1.1: Unity workflow

Unity offers the possibility of using Coroutines3 or the Job System 4. This

3https://docs.unity3d.com/Manual/Coroutines.html
4https://docs.unity3d.com/Manual//JobSystem.html

1.3. PLANNING DOMAIN DEFINITION LANGUAGE 15

can avoid dramatic decreases of performance.
Figure 1.1, describes the main run-time execution workflow for a Unity

videogame. This workflow is mostly single-threaded, with the expection of
some parallel code in the physics engine. Game designers can customize
the game behavior by implementing specific user callback functions, which
are executed within the main thread. For instance, the game designer can
provide her/his own code for the FixedUpdate block, or provide her/his
own coroutine. Coroutines constitute a way for implementing asynchronous
cooperative multitasking within a single thread.

The collection of game objects (GOs in the following) constituting the
game world, are subject to continuous updates depending on user input; on
the physics simulation of the game world, and on the game logic enforced by
the game designer. Game objects contain a recursive hierarchy of basic prop-
erties, such as numeric, string and boolean fields, and complex properties,
such as matrices, collections, nested objects, etc.

At design-time, it is possible to work on game objects using the above
property-based philosophy, while the game logic can be edited by attaching
scripted code to specific game events.

1.3 Planning Domain Definition Language

Planning is the branch of Artificial Intelligence (AI) that seeks to automate
reasoning about plans, most importantly the reasoning that goes into for-
mulating a plan to achieve a given goal in a given situation. With at hand
description (or model) of the initial situation, the actions available to change
it, and the goal condition, a planning system outputs a plan composed of
those actions that will accomplish the goal when executed from the initial
situation. In industry, more and more application make use of planning, such
as robots and autonomous systems, cognitive assistants and cyber security.

Planning Domain Definition Language, PDDL, is a standard language
designed to express classic planning tasks [5]. PDDL is used in a variety of
planning system and is mandatory for the International Planning Competi-
tion. Several variants of this language are emerging among which PDDL+
[6] is the one pushing forward the use of planning in real-world domains.
Indeed, PDDL+ is designed to model dynamical system in which there are
both continuous control parameters and discrete logical modes of operation,
so called hybrid systems. A system that can both flow (described by a differ-

16 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

ential equation) and jump (described by a state machine or automaton) is a
simple example of a hybrid dynamical system.

1.4 Declarative Logic Programming

Declarative Programming is a programming paradigm meant to narrow the
gap between humans and machines when the former must command the
latter. In fact, declarative programming is meant to solve problems by de-
scribing what should be a desired solution of a problem at hand, instead of
describing how algorithmically build that solution.

Declarative programming is actually a hypernym for different program-
ming paradigms and in particular for Declarative Logic Programming (DLP
from now on). DLP is fundamentally based on formal logic. With this
paradigm, facts and rules, expressed by sentences in logical form, are used
to write some program to solve a given problem.

To highlight the characteristics of languages based on logic, Robert
Kowalski has defined the equation: Algorithm = Logic + Control. In the
case of logical languages, the task of the programmer is limited to the specifi-
cation of the logical part, while the control of the computation is completely
left to the computer. On the contrary, in the case of procedural languages,
even the flow of control is specified by the programmer.

In declarative programming, a distinction must be made between syntax
and semantics when discussing of a specific language. The syntax describes
the grammar structure of the rules accepted by a language while the semantic
explains the meaning of a program in that specific language by means of
precise mathematical models. Different languages can share the same syntax
but have completely different semantic.

Two of the main dialects belonging to the DLP family are Prolog [7]
and Answer Set Programming [2], [8]. These two languages share a part of
the syntax but their semantics are quite different. Rules written in these
languages express sentences like

H if B1 and ... and Bn.

in the following syntactic form:

H :- B1,..., Bn.

1.4. DECLARATIVE LOGIC PROGRAMMING 17

In the above expression, H is called head of the rule while B1,...,Bn is called
body of the rule. Rules without body are called facts and they can be written
simply as

H.

Both Prolog and ASP are based on the Predicate Logic and, in particular,
on the fragment constituted of Horn Clauses (i.e. a disjunction of literals
of which at most one is positive). Peculiarly, ASP allows also more than
one positive literal in a clause. Some common terminology used in these
languages follows:

• constants are strings (or numbers) starting with lowercase letter, for
example alice or bob. These are the actual individuals of the domain
at hand;

• variables are strings starting with uppercase letter, for example X or
Person. These are generic placeholders for an individual of the domain;

• functional terms are compositions of constants, variables and function
names and address other individuals of the domain referred to the given
composition. For example, the functional term mother(alice) is made of
the functional name mother and the constant alice in fact representing
the “mother of alice” as an individual of the domain;

• predicates, constitute templates of logical assertions and are associated
to a fixed number of attributes called arity. Arity is a value k ≥ 0.
Predicates are written with lowercase starting letter often followed by
their arity (for instance ready/0 represents a predicate with name ready
and arity 0, while isFatherOf/2 is accordingly a predicate of arity 2
named isFatherOf);

• atoms, are instances of predicate assertions of according arity (e.g.
ready or isFatherOf(alice,X)); ground atoms are composed of constant
terms only, like isFatherOf(alice,jack).

• negation as failure, expressed by the word not. Given a predicate p,
not p is true when p can not be derived as true;

• literals are either an atom or a negated one.

18 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

1.4.1 Prolog

Prolog emerged from the collaboration of two computer scientists, Alain
Colmerauer and Robert Kowalski, in the 70s [9], as probably the first logic
programming language. Prolog is still the most known language in this field,
with applications ranging from theorem proving to natural language process-
ing (its original intended application field).

One of the tasks that best exploit the potential of Prolog is searching
databases (especially when using the Prolog fragment called Datalog). In
fact, programs are naturally expressed in terms of relations between objects,
and this is easily mapped on relational database schemes.

However, due to the highly efficient inference algorithm adopted by Pro-
log, the SLD resolution, which is sound but not complete, multiple difficulties
arise. This algorithm, indeed, introduces some limitations on those that are
key features of a declarative approach. For instance, changing the order of
the rules of a program or changing the order of terms in rules body, could
even change query answers or even lead the evaluation to not terminate.

1.4.2 Answer Set Programming

Answer Set Programming (ASP) is a declarative formalism for knowledge
representation and reasoning. The language used for ASP is also called
AnsProlog.

ASP is based on the stable model semantics of logic programming [10].
The idea of ASP is to employ non-monotonic logic (i.e. a form of logic
where the introduction of new axioms can invalidate old theorems) to describe
problems of high difficulty (NP-Hard) whose solutions are called answer sets.

Contrary to what was said for Prolog, ASP results to be much closer to
the idea of a “pure” declarative formalism. In fact the order of the rules
of a program, as well as the order of atoms in the body of the rules, does
not impact on the answer provided by the inference algorithm. Nonetheless,
termination is always guaranteed unless function symbols are involved (in-
deed, the availability of function symbols, combined with recursion allow to
simulate a Turing machine).

An ASP program consists of rules of the type seen in section 1.4. In
addition to facts (rules with empty body), there are also (strong) constraints,
i.e. rules with an empty head which are expressed as

:- B1,...Bn.

1.4. DECLARATIVE LOGIC PROGRAMMING 19

With this kind of rules the body (i.e. the conjunction of the Bi) must be false
in the models of the program.

In addition to basic concepts that ASP shares with Prolog, ASP is char-
acterized by advanced constructs:

• aggregates, i.e. specialized atoms in which the values of aggregate func-
tions, like #max, #min, #sum, #count and #times, can be computed
over a conjunction of literals and compared to given bounds;

• weak constraints, i.e. constraints that, differently from strong ones,
express a desired condition.

In order to give an intuition on the ASP semantic, we will show a practical
example while more details will be given in Section 3.3.1. A very well known
problem for which ASP offers a simple solution is the graph three-coloring
[11].

Figure 1.2: A three-coloring example

The graph coloring is defined as follows: given a graph G=(V,E), one can
assign a color to each node so that two adjacent vertices do not have the

20 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

same color. In the three-coloring problem one can use only three different
colors.

Suppose that the graph G is stored using facts in the form node(n) for
each n ∈ V and edge(e) for each e ∈ E, one can model this problem with an
ASP program:

1. color(N,red) ∨ color(N,blue) ∨ color(N,green) :- node(N).

2. :- color(N,C),color(N1,C),edge(N,N1).

Rule 1 (containing disjunction in the head) expresses the requirement
that every node must be associated with a color. Rule 2, a strong constraint,
asserts that two vertices connected by an edge both being associated to the
same color are not possible.

Note that since an answer set of a problem is a minimal model of a set
of rules, it is not necessary to make explicit a constraint expressing that a
node must be associated with only one color. Indeed, the answer set of the
above program will contain the smallest subset of literals sufficient to satisfy
the program. In this case, Rule 1. is satisfied if and only if, for each node,
at least one of the three literals of the head is picked as true. In this case, it
is sufficient to pick exactly one color for each node to satisfy the rule.

1.5 Stream reasoning

In a world where the Internet became the common thread in almost every
daily action, it is possible to collect really large datasets from which one can
extract useful information. Smart cities with sensors that track road traffic or
environmental pollution, and web traffic revealing customers’ preferences can
be seen as examples of data sources which allow really interesting analysis.
A lot of research can be found in this field, among which Stream reasoning is
gathering great attention in the artificial intelligence community. The main
goal of a stream reasoning system is to be capable of working with datasets
that have specific features such as volume, velocity and incompleteness.

A more detailed overview of stream reasoning literature and basic con-
cepts like the above is given in Section 2.3.

1.6. INTEGRATING DLP AND OOP 21

1.6 Integrating DLP and OOP

As mentioned above, the most common programming paradigm can be iden-
tified in the object-oriented programming. However, there are some problems
that, if solved through OOP, require a considerable effort both in terms of
lines of code and in terms of time needed for the execution of the solving
algorithm. In general using a declarative language makes easier the imple-
mentation of pieces of code that are difficult to be designed using imperative
programming.

When one tries to integrate the two paradigms, however, one has to face
some technical issues, such as the input-output management.

In the following, we will briefly illustrate the earlier proposals for the
integration of these two programming paradigms, first for what it concerns
declarative logic in general and then focusing on ASP in particular.

1.6.1 General approaches

In more than twenty years of research, numerous attempts have been made to
integrate OOP and declarative logic. Even before OOP imposed itself as the
main programming paradigm, there has been several proposal of integration
of imperative and declarative logic programming.

One of the first attempts aiming at the integration of imperative program-
ming with declarative logic can be found in [12]. In this paper authors pre-
sented COP, a language that integrates C++ with Prolog. The authors present
a language that can be seen as C++ having access to the Prolog goals with a
proper compiler capable of detecting several errors deriving from switching
between C++ and Prolog.

In [13], authors present a new imperative language enriched with some
features inspired by logic programming (e.g. logical variables, constraints
and unification). They show how it can be easier to solve some problems, in
particular ones involving research, combining the two paradigms instead of
using exclusively one of them.

Two completely different solutions have been proposed in [14] and [15]:
JSetL, and Tweety, respectively. They both offer libraries that endow
Java with several facilities to support general purpose declarative program-
ming. Tweety already contains over 15 different knowledge representation
formalisms ranging from classical logics, over logic programming and com-
putational models for argumentation, to probabilistic modelling approaches,

22 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

including ASP.

1.6.2 ASP for OOP

Solutions aiming at the integration of ASP in object-oriented environments
have been proposed during the last decade. These solutions can be divided
in two major families:

• API’s approaches;

• hybrid languages.

The first one, basically, consists of creating a library that exposes APIs for the
ASP solver written in a specific object-oriented language. In [16] it has been
presented the DLV Java Wrapper, a first attempt in this direction, creating
in fact a Java library allowing to embed a disjunctive logic program in a Java
program. With this solution, however, a programmer must take care of the
integration of ASP in Java. In particular, one has to spend a lot of time in
developing customized solutions for the execution of an external solver and,
mostly, for converting back and forth from objects’ data structures to logic
representation. Moreover, a solution based on an API approach obliges a
programmer to learn new APIs.

Concerning the second family of solutions, there are different proposals
in the literature. They try to solve problems that arise within the previous
family of solutions. In [17], authors present a framework for the integration
of ASP and Java. JASP is based on an hybrid language that allows ASP
programs to access Java variables and, in the opposite direction, answer sets
are stored in Java objects (even using Object-Relational Mapping tools like
Hibernate).

Clingo4 [18] is a remarkable member of a generation of ASP systems
enriched with the possibility of using it via external applications. This is
allowed by adding some scripting facilities (lua and python languages) that
make available instructions aiming at controlling the execution of the solver.
The main objective of this solution is to make ASP suitable also for dynamic
environments and for problems that can take advantage of incremental rea-
soning.

In [19] the authors have proposed an abstract architecture for a framework
for the integration of ASP in external tools for which authors presented
a Java implementation. The strength of this proposal is that, since it is

1.7. ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 23

an abstract architecture, it can be easily implemented in any programming
language, deployed for multiple platforms and take advantage of different
ASP solvers. The Java implementation of EmbASP proposed here, is based
on the annotations-guided mapping (i.e. java objects are translated via Java
annotation back and forth to the ASP notation), thus solving the problem of
feeding an ASP program. EmbASP has been even proposed in a C# version,
available as an asset for the Unity Engine [20].

Similarly to EmbASP, but quite orthogonal to it is the work presented in
[21]. Indeed, in the same way as EmbASP, this solution exploits annotations
in order to build the mapping for input and output ASP atom. However,
annotations are used in the ASP program instead that on the procedural
side and they are used to specify how to parse the input received and how
to produce the output for the caller. Thus, contrary to EmbASP, an ASP
programmer has to have competence in OOP while an object-oriented pro-
grammer can ignore the existence of the ASP module.

The ActHEX language [?], uses an input language derived from HEX
programs [22] and allows to specify action atoms in rules’ heads. Action
atoms are directly attached to procedural scripts that can be written in
arbitrary languages and are executed depending on the obtained answer sets.
In a sense, ActHEX programs can be seen as ASP programs with an external
procedural side, in the same way in which clingo4 scripts resemble procedural
scripts with an external declarative side.

In [23] it has been proposed a different way of making ASP interesting
for object-oriented programmers. The authors proposed a visual tool based
on model-driven engineering in fact encouraging programmers to use ER
diagrams to describe data models. In this way, they can automatically gen-
erate constraints in the ASP program deriving from the ER diagram and,
also, they offer a graphical interface for data input that can be easily build
starting from the ER itself.

1.7 Artificial Intelligence in videogames

The first valuable results in programming aimed at the development of vir-
tual game players (so called game artificial intelligences), date back to the
50s. In [24], Claude Shannon (considered as the founding father of elec-
tronic communications age) studied the chess game scenario proposing an
interesting approach for a program that could play chess autonomously and

24 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

intelligently. Since then, the application of computer programming to game-
player programs has undergone continuous evolution. Chess has been one
of the most studied games from this point of view. In fact, in the 70s and
80s, this was the main research argument for computer-games scientists. In
that period, approaches were focused on the brute-force technique. After
a setback regarding the development of a high-performance chess player,
computer-game research had a total change of style from the late 80s.

1.7.1 Overview

Start from the 80’s of the past century a series of algorithms capable of
winning several world competitions intended for humans [25] has been pro-
posed. Particular attention has been focused on “player vs player” games.
A famous istance of these winning proposals was Deep Blue [26], the first
computer chess player able to overcome a human player.

Strategies and programming techniques used to implement a game AI
are many. They range from pathfinding to neural-networks, including rule
systems and decision-tree learning [27]. All these approaches can be all re-
ferred as game AI since they can reproduce a behaviour that a human player
expects to observe in his opponent. Nowadays, however, games are no longer
limited to involving two players. In fact, for instance, there are more and
more titles in the world of massive multiplayer online games.5 In this kind
of games, there are multiple interacting systems, element that completely
changes the way of managing the AI of an object of a game.

Moreover, new sectors are emerging in which the usage of AI is consid-
erably simplifying the work of video game developers and designers [28]. In
order to arise in the multitude of titles offered by the gaming industry, a new
game coming on the market must be able to offer dynamism and, possibly, a
wide variety of landscapes or scenarios. Generating ever new environments,
diversified game dynamics with the right balance between difficulty and fun,
requires a lot of imagination, time and resources. In this context, in order to
offer increasingly exciting titles, the use of artificial intelligence is intensify-
ing in many phases of the development of a video game. Actually, one can
identify different AI-based game design patterns currently used [29]. Below
we propose some examples to illustrate how the AI can be used to develop a
video game.

5Multiplayer computer games that can withstand hundreds or thousands of players.

1.7. ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 25

The Sims6

The Sims series7 is a strategic life-simulation video-game developed by Maxis
and published by Electronic Arts in 2000. In this kind of game, a player can
be seen as a God that guides choices of the characters. However, once that the
player tells to a character (a Sim) what it has to do, an artificial intelligence
(improved with every game edition) will act, and make the character perform
actions consistent with the instructions received.

Main aspects that use AI techniques in this game:

• Pathfinding: Sims move autonomously, even if they occasionally get
stuck in front of an obstacle. The player indicates to the character a
point to be reached and the Sim will reach it without further instruc-
tions.

• Decision making: in a gameplay of The Sims, players usually have to
take care of more than one Sim. It is easy to forget about one of them
or not have enough time to control everything. In this case, AI takes
control of that character: it will eat, sleep, work or have fun (possibly
with other Sims) depending on its needs and duties (but also their
personality).

• Social interaction: when two Sims start to interact, they can improve
or worsen their relationship. Depending on the score assigned to the
current state of this relation, the player (or the AI if the player is not
controlling the character) can choose next action for a Sim among a
determined set. Each action will cause an increase or decrease in the
score.

Minecraft8

Minecraft is a sandbox video game created by Swedish game developer
Markus Persson and released by Mojang in 2011. In a 3D procedurally
generated world, players have access to a variety of different blocks to build,
explore, gather resources, craft, and combat with entities called mobs.

In this title, AI is used for two main purposes:

6https://www.ea.com/games/the-sims
7Last edition released is ”The Sims 4”.
8https://www.minecraft.net

26 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

• World Generator: when starting a new game, a map is generated with
a pseudo-random procedure. This allows to offer completely differ-
ent maps simply changing a starting seed chosen at initialization step.
There is no human designer of maps. Humans, at game design-time,
decided only what characteristics must have a map. Then, at game
run-time, maps are auto-generated by an algorithm.

• Mob9 behavior: each mobile entity belongs to a certain category (for
instance peaceful, hostile, tameable, neutral and so on). In the same
way as the player, mobs are subject to the physics of the game and can
be hurt by the same things that are dangerous for a player. Each type
of mob (skeleton, creeper, witch and so on) has a certain AI system
with different behaviors and mechanics. All mobs will try to avoid a
downfall, a danger area and they will move at random until there are
no players in their radar. Some hostile mobs can even attack some
peaceful ones. Many mobs have an advanced pathfinding system that
allows them to traverse complex mazes to get to a desired object or des-
tination. Peaceful and hostile mobs have completely different behavior
when facing a player: the first category completely ignores it, while
the second one immediately attacks it. Neutral mobs can be seen as
intermediate between peaceful and hostile. They ignore a player until
they are not attacked. After being attacked, they start to act like an
hostile mob.

GVGAI

In academic research, AI for video-games is still a hot topic. In the last few
years, in particular, a new competition has been launched: General Video
Game AI Competition [30].

The GVGAI framework, available in many languages, provides an object-
oriented interface for creating agents that can play in any game defined in
Video Game Description Language. VGDL is a language that allows to
describe entities and interactions between them that can take place in a game.
The framework lets the developer to program dynamics of these objects such
as movement and behavior.

The availability of this framework allows multiple challenges10 which have

9https://minecraft.gamepedia.com/Mob
10https://github.com/GAIGResearch/GVGAI/wiki/Tracks-Description

1.7. ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 27

been proposed to researchers, often in the form of a competition:

• Single player planning: given a set of VGDL single player games which
can be played by some AI player, the goal is to create an artificial
intelligence able to play 10 secret test games.

• Level generator: given a VGDL game which can be played by some
AI player, the goal is to construct a generator that builds any required
number of different levels for that game which are enjoyable for humans
to play.

• Rules generator: given a set of game sprites and a level, one has to con-
struct a generator that builds any required number of different games
for these sprites and level which are enjoyable for humans to play.

1.7.2 AI in Unity

After perceiving the potential of artificial intelligence applied to video games,
the Unity developers began to give more importance to this topic [31]. Tools
for Machine Learning are offered and it is encouraged the exchange of ideas
as well as collaboration between developers and researchers on dedicated
forums. A toolkit has been provided, which offers great flexibility and ease-
of-use to the growing groups interested in applying machine learning to de-
veloping intelligent agents.

In addition to this toolkit offered by Unity, various solutions are available
on the unity store for integrating AI within the games.11 Among all the assets
offered in the store, the AI tools occupy only the 0.3% and the principal ones
concern:

• Pathfinding, the most popular but frustrating game AI problem [32];

• Dialogue system;

• Behavioral designers, ranging from personality design to fighting style
design;

• Action planning.

11https://assetstore.unity.com/categories/tools/ai

28 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

The majority of these solutions, basically, offers facilities for characterizing
an object of a game using previously implemented algorithms just by graphic
configuration. This implies almost to avoid code writing but also, unfortu-
nately, to have not so much customization.

1.7.3 Planning in video-games

Planning has been used with interesting results in the video-games field. One
of the first attempts at integrating PDDL in video-games environment has
been presented in [33]. In this work, PDDL has been used a simple arcade
game, Icebox, in order to show the feasibility of using artificial players with
underlying planning techniques. Authors presented a PDDL-based planning
system featuring a problem generator, a planner and a plan execution mod-
ule. The system can play, with some exceptions, a real-time arcade game.
Further tests have been done by the same authors on a commercial video-
game, called Virtual Battle Space 2 [34]. This is a military simulator and
the underlying game engine offers multiple features for simulation steps that
are useful for the integration of planning techniques in such a game. In [35],
authors investigate the usage of STRIPS planning techniques [36] within real-
time strategy games. Authors created a new game domain, Smart Workers,
in the Unity game engine. This is a typical setting of real-time strategy video
games where the user manages various resources, structures, and units with
the aim to eliminate all other kingdoms. Multiple methods have been tested
and it appears that the sophisticated heuristic methods are the only ones
reliable even in small problems.

1.7.4 ASP for video-games

Similarly to the GVGAI competition, there is a competition launched by
AAAI regarding General Game Playing. Differently from what it has been
for GVGAI, competitors of the AAAI competition are faced with rules of
games previously unknown. After a period of time generally ranging from 5
to 20 minutes, the AIs begin to challenge each other having a time limit for
each move. During these matches, developers cannot in any way intervene on
the AI itself. Rules of these games are modeled with the Game Description
Language.12 Since GDL and ASP have a similar syntax and semantics, in

12The language from which VGDL has its origins

1.7. ARTIFICIAL INTELLIGENCE IN VIDEOGAMES 29

[37], authors proposed usage of ASP for the Single player subset of general
game playing competition. They tried to create an AI completely based on
ASP (exploiting the translation from GDL to ASP), obtaining good perfor-
mances with most of the games proposed. Limitations of this paradigm arise
when the complexity of the game increases. Indeed, complexity often affects
the size of the ground program that quickly becomes too large and therefore
untreatable. However, it remains a viable option to outsource a part of a
general single-player game system to an ASP module to drastically increase
performance for a particular scenario. Similarly, ASP has been used in Cen-
turio [38] a General Game Playing system. Authors based their system on
Monte Carlo Tree Search (best-first search method that is based on random-
ized explorations of the search space) for multiplayers games while exploiting
ASP for single-player games using incremental grounding techniques to avoid
excessive dimension of ground programs.

Another task in which ASP has shown its potential is the Procedural
Content Generation, i.e. the auto-generation of the world map of a game.
In [39] it has been proposed a general mapping between PCG problems and
ASP offering a perspective completely different from state of the art PCG
techniques. It has been shown that ASP is a proven method for quickly (in
terms of both running time and designing effort) generating good solutions
for content generation problems. Similarly, in [40] it has been investigated
the usage of partitioning techniques for maze generation via ASP. With the
partitioning approach, a given room is partitioned in two new ones and a
door is placed on the wall that has been just created. Authors propose a
Unity asset and a GVGAI plugin for the generation of multiple purposes
mazes. Results obtained in both [39] and [40] are encouraging on continue
the research on this task.

Interesting results have been presented in [41]. In this case, ASP has been
used to predict unit’s production in real-time strategy games (RTS). Such
games are distinguished from turn-based strategy (TBS), in which all players
take turns when playing. In an RTS, players can position and maneuver units
and structures to secure areas of the map and/or destroy their opponents’ as-
sets. In a typical RTS, it is possible to create additional units and structures
during the course of a game. Authors decided to give ASP a chance in this
type of game since its semantics is well suited for reasoning with uncertainty
and incomplete knowledge. Based on some assumptions (for instance that
unit production requires time and resources, there is a continue supplying of
resources and so on), they built a prediction system that has been test on

30 CHAPTER 1. BASIC CONCEPTS AND RELATED RESEARCH

StarCraft and WarCraft III obtaining really good results for mid and late
game.

Instead of using ASP to design an AI player, in [42] authors presented a
framework in which ASP can be used for application programming. Authors
discussed a show case made on the well-known Tetris game in which human
player input is processed by an ASP module extended with actions. The
actions resulting in a computed answer set are used to update the state of
the game. Above all, the main issue arising is the slowness of ASP while
dealing with real-time applications.

Chapter 2

Reasoning in real-time systems

In the previous chapter we have discussed the main approaches for the inte-
gration of DLP (in particular for ASP) in generic contexts. In the following,
we will focus on the issues arising when the context to work in is a real-time
system.

2.1 Real-time systems

A computation system can be divided in multiple tasks, small pieces of the
system that are executable independently from each other. Tasks of real-
time computation systems [43] are characterized by three major components:
time, reliability and environment.

Time. It is the most important feature of real-time systems. Real-time
tasks must be scheduled to be completed before their deadline. When deal-
ing with this kind of systems, beyond the correctness of the logical results
computation, one of the most important features one has to consider is the
rapidity in providing a response for a certain request. A real-time system
changes its state over time, even if its state is not checked by some compu-
tation algorithm. This means that if the solution computation is not fast
enough the provided solution would be completely useless. Each real-time
system has its own behavior and thus a proper maximum deadline.

Reliability. Potentially, a failure of a task in a real-time system can lead
to an economical disaster or, worse, to loss of human lives. We can think

31

32 CHAPTER 2. REASONING IN REAL-TIME SYSTEMS

for instance to an air traffic control system: if something goes wrong multi-
ple airplanes could get involved in some accidents. For this reason, system
reliability is crucial.

Environment. When a self-driving car is actually driving on a highway
it needs to sense if there are other cars or obstacles nearby. In order to be
capable of cleaning the floor, a vacuum cleaner robot needs to knows where
it is located, which parts of the room it has already cleaned. In general,
each task of a real-time system need to be aware of the environment that
surrounds the system itself.

A real-time application is usually comprised of both periodic and aperiodic
tasks each of which has its own characteristics.

Periodic tasks. Periodic tasks have an important role in real-time systems
since they control the standard flow of an application. This kind of tasks are
invoked or activated at regular intervals and have a deadline by which they
must complete their execution. An example of periodic task is the assisted
brake system that is becoming increasingly popular among new cars. Indeed
such a system checks periodically the distance between a car equipped with
this system and the nearest obstacle on which the vehicle could crash on.
If this distance is lower than a certain threshold the system will signal the
driver with an acoustic alarm and, if the driver does nothing in order to avoid
the crash, it will finally brake by itself.

A feature common to many periodic tasks is that they have severe dead-
lines and that is why they are also referred as time-critical tasks. In the
assisted brake example, if the system fails to signal the driver about the
imminent danger, a serious accident can happen even causing people death.
For this reason, time-critical tasks must have priority over other tasks.

Aperiodic tasks. Along with periodic tasks there exist some other tasks
that are activated only when some event occurs. This kind of tasks are
referred to as aperiodic since they do not arrive on regular intervals. An
example of an aperiodic task is the seat belt reminder system on cars. A
dash indicator light or an alarm goes off when there is a passenger in the
seat but the passenger herself/himself is not buckled in. This example task
is not time-critical and it has not a strict deadline. However it should be

2.2. LOOPING UPDATE ENVIRONMENT 33

executed as soon as possible without compromising other time-critical tasks.

Depending on how strict a deadline is, it can belong to three major cate-
gories: hard, firm and soft. A deadline is classified as hard when catastrophes
occur if the execution is not completed before the deadline is reached. Pe-
riodic tasks often happen to belong to this first category. When no major
problems occur if the deadline is not met then it is classified as firm. Such
kind of deadline represents the moment in which the result produced by the
corresponding task loses its usefulness. In this category we find many aperi-
odic tasks. Finally, soft deadline cover all the tasks that have neither hard
nor firm deadline. In these cases, results produced by the corresponding
tasks after that the deadline expires will lose their usefulness as time passes.

Beside the time constraints, real-time systems have also constraints that
are familiar in non-real-time systems such as resource constraints (I/O de-
vices, files and so on), dependency constraints (a task needs other tasks re-
sults in order to start its computation) and finally performance constraints.

2.2 Looping update environment

Algorithm

(a)

Sense

Compute

Act

(b)

Figure 2.1: In a looping update environment some algorithm is executed in a
loop cycle (2.1a). Such an algorithm usually can be divided in three phases
(2.1b).

The real-time system tasks examples proposed in the previous section,
both the periodic and the aperiodic ones, have a common structure con-
stitued by a sensing phase, followed by a computation one and finally some

34 CHAPTER 2. REASONING IN REAL-TIME SYSTEMS

results/actions are provided. Such a structure suggests to model a real-time
system as a looping update environment (Figure 2.1). In a looping update
environment some algorithm is executed in a loop cycle and there is a strong
connection between the algorithm and the environment in which it runs.
This means, that the environment provides the algorithm with multiple in-
formation (for instance using sensors, I/O devices, files and so on) and, on
the other hand, the algorithm after some computation can apply some ac-
tions on the environment. Therefore, this kind of black box algorithm can
be actually identified by three specific phases: sense, compute and act. Each
of this loop iteration can either be a single task or a collection of multiple
tasks. For instance, consider an air conditioning system. At regular intervals,
sensors collect information about temperature, humidity, position of people
in the room and so on. If the computation algorithm decides that the cur-
rent conditioner configuration is correct for the room climate target, then no
actions are requested and the loop will continue normally. Otherwise, if the
configuration must be changed, a new aperiodic task is executed and actions
deriving from this latter will change accordingly the conditioner configura-
tion. Only when these actions are performed, the loop cycle can skip to the
next iteration.

2.3 The compute step as an automated

reasoning task

As stated in previous sections, hard deadlines can be crucial for a real-time
system. Recalling the sense-compute-act model, since sense and act phases
usually require a short amount of time to complete, to meet a task deadline
basically means that the computation phase should be fast as well as correct.
Moreover, since an hard deadline task can happen right after a loop iteration
that executes either a firm or a soft deadline task, these two latter kinds of
task must have a really fast computing phase. Indeed, if this is not the case
the system might get stuck in the execution of a soft deadline task and thus
an hard one will never start its computation.

Although the quality and the performance of hardware and software com-
ponents has clearly improved compared to previous years, still there are mul-
tiple problems that requires a significant amount of time to be solved (many
practical problems are indeed NP-hard [44]). With this in mind, the loop-

2.3. THE COMPUTE STEP AS AN AUTOMATED REASONING TASK35

Sense

Act

Compute

Figure 2.2: The computation phase is moved outside the loop cycle.

ing update environment shown in Figure 2.1b must be reviewed in order to
allow the execution of time consuming tasks. Figure 2.2 shows a different
model for a looping update environment in which the computation phase
is detached from the main process (i.e. the computation phase is executed
in asynchronous with respect to the sense and act phases). This approach
allows to execute a new task even if the computation phase of a previous
one is not completed yet. In this model there must be some synchronization
points in which the two processes (the one running the sense-act phases and
the one running the computation one) can share information.

In this configuration it is possible to use a declarative paradigm as compu-
tation engine while this is unfeasible with the configuration in Figure 2.1b.

36 CHAPTER 2. REASONING IN REAL-TIME SYSTEMS

Indeed, this kind of paradigm still has a performance bottleneck when ei-
ther complex problems are involved or a huge input dataset is provided.
Moreover, when one actually tries to integrate such formalisms in real-time
object-oriented systems new issues arise.

Validity of a solution: stop and restart computation. Since multiple
computation phases from different tasks are potentially executed at once, the
deadline of some task could change while its own computation is still running.
If it happens that a deadline is reached but the computation is not completed
yet, then it should be necessary to stop or maybe restart the computation
itself. When restarting a reasoning task it can be useful to keep partial
results obtained by its previous execution since maybe only minor changes
have occurred to the system environment. Moreover, if a new execution of a
reasoning program can take advantage from a previous one, the computation
of the former will be faster. This sort of reusage of previously obtained results
in reasoning is known as incremental reasoning [45]. The idea is to store a
knowledge base previously obtained and subsequently tuning it by removing
or adding logical assertions accordingly to the update in a new input dataset.

Data flow: huge dataset management. Besides the complexity of the
problem at hand, the dimension of the input dataset has a huge impact on
how fast a solution is provided. Moreover, in a highly dynamic environment
there exist a lot of incoming data at different moments: which of these data
should the system take into account? In which form? This problem is gain-
ing a great attention from researchers in the field all leading to the stream
reasoning [46] discipline. Stream reasoning goals consists in being capable
of inferring new knowledge in a context that requires a reasoning system to
satisfy multiple features, among which:

• handle volume and variety of data: this means that the system should
be capable of processing input datasets whatever their size and struc-
ture are. Real-time systems have more and more data sources attached,
each one with different data format. All these sources must to be
taken into account when performing inference thus the reasoning sys-
tem should be as flexible as possible;

• handle velocity since the previous mentioned data sources provide in-
formation at really short time intervals;

2.3. THE COMPUTE STEP AS AN AUTOMATED REASONING TASK37

• support incompleteness of information. Indeed, data sources can get
through a break or there could be parts of the environment that are
not tracked down at all. This means that the reasoning system should
consider that there are some blind spots in its knowledge;

• perform a fast computation because of both the velocity of incoming
data and the highly dynamic interactions and changes in the sensed
environment.

In order to meet such requirements, stream reasoning systems introduced a
new operator called the Window operator that manage the access to the data
stream. A window operator partitions the stream in time-dependent finite
blocks, named windows. Such blocks identify data that each reasoning task
needs to perform its computation. There exist several windows operators
that are based on two fundamental concepts:

• Landmark windows. When one aims to decide whether a certain se-
quence of event appears in a stream or not, it is important to look at
the whole data stream, each item that appears in it being labeled with
a timestamp. Thus the window on which the reasoning task must be
performed includes all the events between the first and the last one
occurred.

• Sliding windows. In most cases only most recent portions of the stream
are interesting for the inferring task. The sliding windows operator
creates over time a new window whose width is fixed either in the
amount of events that it can contain or in the amount of time units it
should cover. Moreover it happens that while the content of a window
is important, it is meaningless to take into account the moment in
which each event occurred. The window merge is an operation that
aggregates or filters data contained in a window in fact changing the
focus from a temporal approach to an atemporal one. Similar concepts
can be found in SQL language extensions created in order to query
time-series data [47, 48].

Processes synchronization. Moving the computation phase outside the
main loop, thus going from a single to a multi process model, introduces con-
currency issues. Since processes share data, which need both shared writing
and reading access, there could exist situations leading to inconsistent data.

38 CHAPTER 2. REASONING IN REAL-TIME SYSTEMS

In order to avoid this, it is necessary to synchronize processes, which means
that the shared sources must be managed in a way that limits, or better
avoids, the generation of such inconsistent data. There exist a variety of
synchronization techniques depending on the specific concurrency problem
that one wants to avoid:

• producer consumer problem: in this problem two processes, the pro-
ducer and the consumer, share a common finite buffer to exchange
data. The producer put data in the buffer that are then retrieved by
the consumer. What happen if the producer tries to add data when
the buffer is full? And what are the consequences of the consumer re-
trieving data from an empty buffer? Underestimate this problem could
cause either delays in the execution of certain tasks failing to meet
the deadline or system failures. This problem is relevant as shared
buffers are at the basis of message passing distributed programming
paradigms.

• shared data structures problem: a number of processes share resources.
If the allocation of these resources is not managed carefully, processes
can finally end in a deadlock or a starvation condition: in the former sit-
uation processes get stuck while waiting each other; in the latter, some
of the processes, starvers, keep getting access to the resources mean-
while the others, starving, have to wait not being capable to overcome
the starvers. In both cases, the computation phase of a task would
never end thus causing a failure in the system.

• readers and writers problem: as stated, processes can have access to
the resources with shared reading or writing access. It should never
happen that while one process is reading data, another one modifies
(writes) the same resource otherwise some task would work with not
valid data thus producing meaningless results.

Chapter 3

Reasoning for game
development

As it has been discussed in the previous chapter, tightly coupling of auto-
mated reasoning modules in a real-time system is not so trivial.

Let us assume to work with a modular system in which a procedural side
and a declarative side can be identified. On the one hand, the procedural
side takes care of sensing and acting on the environment surrounding the
system; and, on the other hand the declarative side is used to symbolically
represent the knowledge of the system, which can be used to take decisions
depending on external events and knowledge itself.

The coupling between the two sides involves two different aspects: first,
one has to consider how the two sides combine their computational efforts
and, second, one has to consider how information is exchanged between the
two sides. We will call the two form of coupling computational coupling and
data coupling respectively. Both types of coupling can be said to be either
tight or loose depending on the level of integration between the two sides:

• In tight computational coupling, the two systems share CPU resources
in a synchronous way, i.e. each of the systems waits that the other
one finishes its computation to start its own. This approach avoids
concurrency problems making the two systems interaction as smooth
as possible. On the other hand, in loose computational coupling, i.e.
each module will run independently from the other one, offering a faster
computation at the price of putting much effort on managing concur-
rency issues.

39

40 CHAPTER 3. REASONING FOR GAME DEVELOPMENT

• In tight data coupling, the two systems actually (or virtually) share the
same data structures. This integration allows to skip the information
passing phase between the two modules usually due to a complete differ-
ent modeling of the state of the world (object-oriented data structures
versus logical assertions). In loose data coupling, a message passing or
similar infrastructure allows to pass data only on demand and whenever
necessary.

Depending on what kind of coupling one wants to achieve, one can end up
into four different configurations. The coupling type that one can (or wish) to
obtain between procedural and declarative side can be influenced by multiple
factors depending on which kind of context one has to work in.

From now on, we will focus on videogame development, which is a sig-
nificant example of real world applications based on imperative languages
with strict real-time requirements. In general, AI techniques have (or could
have) a role in numerous task applications in the game industry, ranging
from programming the behavior of non-player characters to game levels and
content generation. Especially when considering real-time videogames, this
particular context is really challenging for researchers since it means to work
within an highly reactive environment, requiring really fast responses from a
KR system.

3.1 Integrating reasoning modules in game

engines

When proposing a new tool, like a declarative reasoning engine, for a partic-
ular game development environment, one has to deal with the game engine
of choice and its runtime execution architecture; the new tool must be per-
formant and easy to use. Making a declarative language module suitable for
game development, indeed, is not so trivial. Even if declarative paradigms
are expected to be easy to use, game developers usually are specialized only in
object-oriented programming. That is why, in addition to the issues exposed
in the previous chapter, new obstacles arise in the integration, like

• providing to the declarative side a good representation of the game
state, and this means passing from an object-oriented representation
to a logical representation;

3.1. INTEGRATING REASONING MODULES IN GAME ENGINES 41

GAME
ENVIRONMENT

CORE

GAME
ENVIRONMENT

CORE

REASONING LAYER

ASP SOLVER

SOLVER
EXECUTOR

GAME
WORLD

M
A

IN
 T

H
R

E
A

D
A

U
X

IL
IA

R
Y T

H
R

E
A

D
(S)

Figure 3.1: Ideal architecture for threads interaction

• returning to the game main program (the procedural side) the results
computed on the reasoning side, thus passing from logical assertions to
object-oriented data structures;

• keeping high performance of the game while reasoning.

Providing a tool where the above problems have been solved, allows de-
velopers to focus on their main goal, i.e. create an high quality AI, instead of
dealing with integration aspects. Since reasoning tasks are time-consuming
and can easily slow down the game workflow if executed within the main
thread of the game, we decided to keep a loose CPU coupling, thus letting
the reasoning module run in a thread that is not the main one. Unfortu-
nately, a common feature of almost all the game engines is that the main
game execution flow is basically thread unsafe. A common consequence of
this fact is that game engines allow the access to (parts of) the game logic
APIs only to the main thread (like in Unreal Engine, Unity, Godot). This
feature has an heavy impact on the data coupling level. Indeed, in the ideal
configuration for a multi-thread scenario, shown in Figure 3.1, the main
thread delegates the execution of a declarative specification to an external
thread. Before starting the execution, the external thread gets the current
state of the world. Once that the needed information is encoded in logical
assertions, the specific solver (i.e. an engine capable of executing declarative
specifications) is run. When the solver completes its execution, the main

42 CHAPTER 3. REASONING FOR GAME DEVELOPMENT

PPPPPPPPPCPU
Data

Loose Tight

Loose X
Tight

Table 3.1: Coupling goal for the ThinkEngine framework.

thread is provided with the results found. The main program can now up-
date the objects of the game according with the solution provided by the
reasoning side. One can then believe that only a form of loose data coupling
is possible.

However, the game logic data structures can be accessed from the declar-
ative side by introducing a transparent information passing layer that allows
to achieve a virtual tight data coupling. To this end, we aim to achieve the
coupling configuration shown in Table 3.1, i.e. we aim to develop a tool
in which we have loose computational coupling, but tight data coupling is
obtained nonetheless.

3.1.1 The ThinkEngine framework architecture

Under the previous assumptions, the architecture in Figure 3.1 should be
reviewed such that an external thread can be aware about what is happening
in the game logic. We thus delegated reasoning tasks to auxiliary threads
and introduced an information passing layer allowing the reasoning side to
access and act on a representation of the game world. This representation
is independent from the game engine APIs and can be accessed separately.
The whole run-time ThinkEngine architecture is shown in Figure 3.2.

In particular the ThinkEngine consists of:

1. A reasoning layer, in which the game world is accessible and encoded
in terms of logical assertions. A reasoning engine can elaborate the
current state of the game and produces decisions encoded in its own
format.

2. An information passing layer which allows to mediate between the rea-
soning layer and the actual game logic. In this layer, sensors store data

3.1. INTEGRATING REASONING MODULES IN GAME ENGINES 43

ENGINE

EXECUTION

CORE

ENGINE

EXECUTION

CORE

REASONING LAYER

SOLVER

SOLVER
EXECUTOR

INFORMATION
PASSING LAYER

SENSORS

MANAGER

ACTUATORS

MANAGER

THINKENGINE

REFLECTION LAYER

SENSORS
DATA

ACTUATORS
DATA

GAME
WORLD E

N
G

IN
E T

H
R

E
A

D
A

U
X

IL
IA

R
Y T

H
R

E
A

D
(S)

E
N

G
IN

E
 T

H
R

E
A

D

B
R

A
IN

(S
)

B
R

A
IN

(S
)

Figure 3.2: General run-time architecture of the ThinkEngine framework

originated from the upper layers. Sensors correspond to parts of the
game world data structures which are visible from the reasoning layer.
On the other hand, actuators collect decisions taken by the reasoning
layer and are used to modify the game state.

3. A reflection layer, in which a Sensors Manager and an Actuators Man-
ager keep the mapping between the game world data structures and
the lower layers. On the one hand, the sensors manager reads selected
game world data which, this way, is made accessible from the reasoning
layer. On the other hand, the actuators manager updates selected parts
of the game world, based on input coming from the reasoning layer.

4. One or more brains that can control the three layers. Each brain can
access his own view of the world (i.e. a selected collection of sensors

44 CHAPTER 3. REASONING FOR GAME DEVELOPMENT

and actuators), and can be used for programming a separate reasoning
activity, like a separate artificial player logic, etc.

A brain interacts with both the sensors manager and the Solver Executor .
The former is activated periodically or when a trigger condition is met. The
sensors manager is responsible of updating all the sensors data mapped to the
current brain. Once that a sensors update is completed or a trigger condition
is met, the brain starts the solver executor. It will generate a representation
W of the world expressed in terms of logical assertions and it will invoke the
solver. The solver is fed in input with W and with a logical knowledge base
KB encoding the AI of the current brain. As soon as the solver provides
decisions, the solver executor populates the actuators associated with the
corresponding brain. The actuators manager monitors the actuators values
and updates accordingly the properties of the game object associated with
each actuator.

In order to better understand how sensors and actuators work, in the
following we will introduce some formal definitions for the main elements of
the framework both for the procedural side and the declarative one. For the
the former we will use a pseudo-object-oriented language while for the latter
we will stick with the ASP notation.

3.2 Procedural side of the

Information Passing Layer

In the following we give some fundamental definitions and then we will for-
mally define both sensors and actuators semantics on the procedural side.

Definition 1. We give the following definitions:

• An object type T is a data structure that can include multiple direct
sub-properties. Each sub-property has a name PT , and an associated
data type DPT

. Property types can be either: a basic type such as
string, integer and boolean; an object type itself; or a homogeneous
collection. A property P of a sub-property object type ST of T is said
to be an indirect property of T and is also denoted, using a dotted
notation, by T.S.P ;

3.2. PROCEDURAL SIDE OF THE INFORMATION PASSING LAYER45

• A collection property models either an array, a list or a vector. The
element type T (C) of a collection of objects C is the type of the ob-
jects contained in the collection itself. A sub-property P of the i-th
element of C is said to be an implicit sub-property of T and denoted
as T.C[i].T (C).P .

• An object instance O of an object type T is a value assignment to all the
sub-properties of T . For a basic type property P , a value assignment
is a value of the given data type; a value assignment for an object
property P ′ of data type T ′ is an object instance of type T ′; a value
assignment for a collection property C is a possibly empty sequence
O1, . . . , On of object instances each of type T (C).

Definition 2. A frame of a video game is a snapshot of the game state
taken at (almost) regular intervals. The frame rate represents the frequency
at which consecutive frames are taken (for instance 60 frames per second).

3.2.1 Sensors definition

Definition 3. It is given an object type T and its properties

P = {P 1
T , . . . , P

i
T , T.S.P

1, . . . , T.S.P j , T.C.T (C).P 1, . . . , T.C.T (C).P k}, i, j, k ≥ 0

A Sensor Configuration SCT for T is a subset of P .

Definition 4. It is given a sensor configuration SCT and an object instance
O of type T ; a sensor reading v(P) of a direct or indirect basic property P
such that P ∈ SCT is the value assignment of P for the object O at a specific
frame of the game.

Definition 5. It is given a sensor configuration SCT and an object instance
O of type T ; a Simple Sensor SS(SCT) is a set of sequences of sensor readings
V = {< v(P1)1, . . . , v(P1)n >, · · · < v(Pm)1, . . . , v(Pm)n >} for each direct
and indirect basic property Pi such that Pi ∈ SCT . Each sensor is associated
with a unique name.

Definition 6. It is given a sensor configuration SCT and an object instance
O of type T ; an Advanced Sensor AS(SCT) is a simple sensor enriched with a
set of n collections of simple sensors {C1, . . . , Cn} where each Ci corresponds
to either a bidimensional array or a list property Pi such that Pi ∈ SCT .

46 CHAPTER 3. REASONING FOR GAME DEVELOPMENT

Each Ci contains a number of simple sensors equal to the number of object
instances contained in the value assignment of Pi for the object instance O.
We denote by Cj

i each simple sensor storing a single sensor reading for each
implicit property T.Pi[j].T (Pi).P .

Example 1. Suppose it is given a game object player with the following
properties:

• name whose type is a string;

• dead whose type is boolean;

• position which is an object with three integer properties: x,y,z;

• neighbors which is a list of player instances.

The four properties name, dead, position and neighbors are direct properties
of player while x,y,z are indirect properties of player by means of the object
referred by the property position. The direct properties of the objects of type
player contained in neighbors are implicit properties of player by means of
the property neighbors. We can create a sensor configuration as

SCplayer = {name, position.x, position.y, position.z, neighbors.player.dead}.

A sensor AS(SCplayer), besides a name sensorName, will include the following
data structures:

Map <String ,List <String >> stringProperties

Map <String ,List <Integer >> integerProperties

Map <String ,List <SimpleSensor >> listsProperties

The map stringProperties will contain only one entry

< name, {playerName1, ..., playerNamen} >

while the integerProperties map will contain three different entries

< position.x, {x1, ..., xn} >

< position.y, {y1, ..., yn} >

< position.z, {z1, ..., zn}} >

3.2. PROCEDURAL SIDE OF THE INFORMATION PASSING LAYER47

where playerNamei, xi, yi, zi are the sensor readings, respectively, of the
properties name, x,y and z at the i-th frame. The map listsProperties

will contain a number of entries equal to the number of objects in the list
neighbors1.

3.2.2 Actuators definition

Definition 7. It is given an object type T and its properties

P = {P 1
T , . . . , P

i
T , T.S.P

1, . . . , T.S.P j}, i, j ≥ 0

an Actuator Configuration ACT for T is a subset of P .

Definition 8. It is given an actuator configuration ACT and an object in-
stance O of type T ; an Actuator A(ACT) consists of a single value for each
property P such that P ∈ ACT . These values are used to update the cor-
responding property of the object instance O. Each actuator is associated
with a unique name.

Example 2. Recalling the game object player of the Example 1, we can
create an actuator configuration as

ACplayer = {dead, position.x, position.y, position.z}.

An actuator A(ACplayer), besides a name actuatorName, will have the fol-
lowing data structures:

Map <String ,Boolean > boolProperties

Map <String ,Integer > integerProperties

The map boolProperties will contain only one entry

< dead, isDead >

while the integerProperties map will contain three different entries:

< position.x, nextX >

< position.y, nextY >

< position.z, nextZ >

where isDead, nextX, nextY, nextZ are the value computed by the reasoning
module and that should be set to the properties dead, x,y and z.

1Note that our current ThinkEngine implementation does not store historical readings
for implicit properties: only one sensor reading at the time is materialized. At each update
the previous reading will be overwritten.

48 CHAPTER 3. REASONING FOR GAME DEVELOPMENT

3.3 Declarative side of the

Information Passing Layer

In order to give a clear idea of what is done in the declarative side of the
ThinkEngine framework, we will first give some details on the ASP semantic
citing [49] and then we will provide some formal definition for both sensors
and actuators on the ASP side .

3.3.1 Syntax and semantic of Answer Set Programming

An ASP program Π is a finite set of rules of the form:

a1 ∨ . . . ∨ an ← b1, . . . , bj, not bj+1, . . . , not bm (3.1)

where a1, . . . , an, b1, . . . , bm are atoms and n ≥ 0, m ≥ j ≥ 0. In particular,
an atom is an expression of the form p(t1, . . . , tk), where p is a predicate
symbol and t1, . . . , tk are terms. Simple terms are alphanumeric strings, and
are distinguished in variables and constants. A term is either a simple term
or a functional term. A functional term is in the form f(t1, . . . , tn), where
t1, . . . , tn are terms. According to the Prolog’s convention, only variables
start with an uppercase letter. A literal is an atom ai (positive) or its nega-
tion not ai (negative), where not denotes the negation as failure. Given a
rule r of the form (3.1), the disjunction a1 ∨ . . . ∨ an is the head of r, while
b1, . . . , bj, not bj+1, . . . , not bm is the body of r, of which b1, . . . , bj is the posi-
tive body, and not bj+1, . . . , not bm is the negative body of r. A rule r of the
form (3.1) is called a fact if m = 0 and a constraint if n = 0. An object
(atom, rule, etc.) is called ground or propositional, if it contains no variables.
Rules and programs are positive if they contain no negative literals, and gen-
eral otherwise. Given a program Π, let the Herbrand Universe UΠ be the set
of all ground terms that can be built using constants and function symbols
appearing in Π and the Herbrand Base BΠ be the set of all possible ground
atoms which can be constructed from the predicate symbols appearing in
Π with the constants of UΠ. Given a rule r, Ground(r) denotes the set of
rules obtained by applying all possible substitutions σ from the variables in
r to elements of UΠ. Similarly, given a program Π, the ground instantiation
Ground(Π) of Π is the set

⋃
r∈Π Ground(r).

For every program Π, its answer sets are defined using its ground instan-
tiation Ground(Π) in two steps: first, answer sets of positive programs are

3.3. DECLARATIVE SIDE OF THE INFORMATION PASSING LAYER49

defined, then a reduction of general programs to positive ones is given, which
is used to define answer sets of general programs.

A set L of ground literals is said to be consistent if, for every literal ` ∈ L,
its negated literal not ` is not contained in L. Given a set of ground literals
L, L|+ ⊆ L denotes the set of positive literals in L. An interpretation I for
Π is a consistent set of ground literals over atoms in BΠ. A ground literal
` is true w.r.t. I if ` ∈ I; ` is false w.r.t. I if its negated literal is in I; ` is
undefined w.r.t. I if it is neither true nor false w.r.t. I. A constraint c is said
to be violated by an interpretation I if all literals in the body of c are true.
An interpretation I is total if, for each atom a in BΠ, either a or not a is in
I (i.e., no atom in BΠ is undefined w.r.t. I). Otherwise, it is partial. A total
interpretation M is a model for Π if, for every r ∈ Ground(Π), at least one
literal in the head of r is true w.r.t. M whenever all literals in the body of r
are true w.r.t. M . A model X is an answer set for a positive program Π if
any other model Y of Π is such that X|+ ⊆ Y|+ .

The reduct or Gelfond-Lifschitz transform of a general ground program Π
w.r.t. an interpretation X is the positive ground program ΠX , obtained from
Π by (i) deleting all rules r ∈ Π whose negative body is false w.r.t. X and
(ii) deleting the negative body from the remaining rules. An answer set of Π
is a model X of Π such that X is an answer set of Ground(Π)X . We denote
by AS(Π) the set of all answer sets of Π, and call Π coherent if AM(Π) 6= ∅,
incoherent otherwise.

3.3.2 Sensors on the declarative side

The ThinkEngine framework offers an ASP representation for each sensor
that has been configured. Taking up the idea of the sliding windows discussed
in the Section 2.3, the translations from object data structures to logical
assertion is preceded by an aggregation phase in which the collection of sensor
readings is replaced by the results of some aggregation function.

Definition 9. A window is a function w#n(l1) = l2 that takes in input a
sequence of values l1 =< e1, ..., em > and returns a new collection l2 where

l2 =

{
< em−n+1, ..., em >, if m > n

l1, if m ≤ n

Definition 10. An aggregate function is a function f(w#n(l1)) = l̄ that

50 CHAPTER 3. REASONING FOR GAME DEVELOPMENT

takes as argument a collection of at most n values w#n(l1) and returns a
single summary value l̄.

Examples of aggregate functions are maximum, minimum, average, mode,
median, first and last.

Definition 11. It is given a simple sensor SS(SCT), an aggregate function
fi for each property Pi such that Pi ∈ SCT and a window function w#n; the
value of Pi with respect to SS(SCT) is defined as V̄i = fi(w

#n(Vi)).

With this approach, each property tracked by an advanced sensor
AS(SCT) will correspond to exactly one ASP atom a. The syntax of a
can be described in an extended Backus–Naur form as follows:

atom = sensorName ,(,gameObjectName ,(, property ,)).

sensorName = lowCaseString

gameObjectName = lowCaseString

property = directBasicProperty|directArrayRank2Property|

directListProperty|indirectProperty

lowCaseString = lowLetter ,{ letter|digit|punctuation}

directBasicProperty = lowCaseString ,(,propertyValue ,)

directArrayRank2Property = lowCaseString ,(,{ digit},

{digit},arrayType ,(, directBasicProperty ,))

directListProperty = lowCaseString ,(,{digit},

listType ,(, directBasicProperty ,))

indirectProperty = lowCaseString ,(,property ,)

propertyValue = ",lowCaseString ,"|lowCaseString|

{digit},[",",{digit}]

letter = lowLetter|upLetter

lowLetter = a-z

upLetter = A-Z

digit = 0-9

punctuation = ","|.|!|?

Definition 12. It is given an advanced sensor AS = AS(SCT), with name
µ, and an object instance O of type T , with name γ; a sensor mapper
MS(AS, Pi) = si is a function that takes as arguments AS and a property Pi

such that Pi ∈ SCT and returns a string si representing a logical assertion
encoding Pi. MS behaves differently based on the property type:

• if Pi is a direct property denoted by PT then si = µ(γ(PT (v(Pi)))).
where v(Pi) is the value of PT with respect to AS;

3.3. DECLARATIVE SIDE OF THE INFORMATION PASSING LAYER51

• if Pi is a indirect property denoted by T.S.P then
si = µ(γ(T (S(P (v(Pi)))))). where v(Pi) is the value of T.S.P with
respect to AS;

• if Pi is a bidimensional array implicit property denoted by
T.C[j][k].T (C).P then si = µ(γ(T (C(j, k, T (C)(P (v(Pi))))))). where
v(Pi) is the value of T.C[j][k].T (C).P with respect to AS;

• if Pi is a list implicit property denoted by T.C[j].T (C).P then
si = µ(γ(T (C(j, T (C)(P (v(Pi))))))). where v(Pi) is the value of
T.C[j].T (C).P with respect to AS.

Remark. In our current implementation, the size of the window function
used by sensors is set to be equal to 200 in order to avoid memory and
performance issues. For matrix and list properties it is not needed to apply
aggregation functions as a default window of size 1 is taken.

3.3.3 Actuators on the declarative side
Values for the properties of each actuator are retrieved from an answer set
resulting from an ASP program execution. The syntax of the atoms mapped
to an actuator A(ACT) can be described in an extended Backus–Naur form
as follows:

atom = "setOnActuator(",actuatorName ,(,gameObjectName ,

(, property ,))).

actuatorName = lowCaseString

gameObjectName = lowCaseString

property = directBasicProperty|indirectProperty

lowCaseString = lowLetter ,{ letter|digit|punctuation}

directBasicProperty = lowCaseString ,(,propertyValue ,)

indirectProperty = lowCaseString ,(,property ,)

propertyValue = lowCaseString |{digit},["," ,{digit }]

letter = lowLetter|upLetter

lowLetter = a-z

upLetter = A-Z

digit = 0-9

punctuation = ","|.|!|?

Definition 13. It is given an actuator A = A(ACT), with name µ, and an
object instance O of type T , with name γ; an actuator mapper MA(A, si) = Pi

52 CHAPTER 3. REASONING FOR GAME DEVELOPMENT

is a function that takes as arguments A and a string si representing a logical
assertion encoding a property Pi such that Pi ∈ ACT and returns a value
assignment for Pi. MA behaves differently based on the property type:

• if Pi is a direct property denoted by PT then si = µ(γ(PT (v(Pi)))).
where v(Pi) is the value to assign to Pi for the property A;

• if Pi is a indirect property denoted by T.S.P then
si = µ(γ(T (S(P (v(Pi)))))). where v(Pi) is the value to assign to Pi for
the property A.

3.3.4 Declarative side semantic

Definition 14. We define a brain B as a triple 〈SC,AC,Π〉, where:

• SC =< SCT1 , . . . , SCTi >=< SC1, . . . , SCi >
is a set of sensor configurations;

• AC =< ACTi+1 , . . . , ACTn >=< ACi+1, . . . , ACn >
is a set of actuator configurations;

• Π is an ASP program.

Definition 15. It is given a brain B and

• a set of advanced sensors
AS =< AS(SC1), . . . , AS(SCTi) >=< AS1, . . . , ASi >;

• a set of actuators
A =< A(ACi+1), . . . , A(ACn) >=< Ai+1, . . . , An >;

• a set of sensor mappings
S = {MS(AS1, P

SC1
1), . . . ,MS(AS1, P

SC1
j), . . . ,MS(ASi, P

SCi
1), . . . ,

MS(ASi, P
SCi
k)};

• a set of actuator mappings
A = {MA(Ai+1, P

ACi+1

1), . . . ,MA(Ai+1, P
ACi+1

l), . . . ,MA(An, P
ACn
1)), . . . ,

MA(An, P
ACn
m)};

Let

• F(Π) be the set of the input facts of Π;

3.4. A THINKENGINE IMPLEMENTATION: UNITY AND ASP 53

• Ans(Π
⋃
F(Π)) be the ordered set of the answer sets of Π

⋃
F(Π);

• Ans(Π
⋃
F(Π))[0] be the first answer set in Ans(Π

⋃
F(Π));

• Ans = Ans(Π
⋃
F(Π))[0] \ S.

then A is a valid decision for B if A ⊂ Ans.

3.4 A ThinkEngine implementation:

Unity and ASP

AbstractConfiguration

.......................................

ActuatorsConfiguration

.......................................

SensorsConfiguration

.......................................

Brain

.......................................

SensorsManager

.......................................

ActuatorsManager

.......................................

AdvancedSensor

.......................................

SimpleActuator

.......................................

SimpleSensor

.......................................

SolverExecutor

.......................................

IMapper

.......................................

ASPMapper

.......................................

ASPAdvancedSensorMapper

.......................................

ASPBoolMapper

.......................................

ASPFloatingPointMapper

.......................................
...

Figure 3.3: The ThinkEngine asset class diagram.

54 CHAPTER 3. REASONING FOR GAME DEVELOPMENT

We provided an actual implementation of the ThinkEngine framework
deployed in the Unity 3D game engine and featuring an answer set solver at
the core of the declarative side. The ThinkEngine has been developed as an
Unity asset using the C# programming language.

Every element discussed in this chapter, except for the ASP solver, has
been implemented as a C# class while the object instances introduced in
Definition 1 are Unity’s game objects. Game developers interact with the
ThinkEngine by means of some graphical editor views at design time. Sen-
sor and actuator configurations have been implemented as classes contain-
ing the names of the properties (either direct, indirect or implicit) of some
GameObject. At run-time an instance of the class Brain instantiates an
AdvancedSensor for each SensorConfiguration attached to it. In the same
way, it instantiates a SimpleActuator for each ActuatorConfiguration.
The SensorsManager keeps a map in which each Brain instance of the
game execution is associated with its own sensors. In the same way, the
ActuatorsManager keeps a map in which each Brain instance is associated
with its own actuators. The Brain instance demands a sensors update to the
SensorManager on a trigger event, or periodically. These trigger events are
implemented by polling within a Unity co-routine some trigger boolean func-
tion. In the same way, another co-routine checks for others boolean functions
in order to demand to a SolverExecutor instance an execution of the ASP
solver. Each SolverExecutor runs in a separated thread that waits to be no-
tified by a brain to start its computation. As soon as the SolverExecutor is
notified to start the execution, it demands to an ASPAdvancedSensorMapper

for the logical assertion representation of all the sensors attached to the Brain
instance. The result is written in a file and the ASP solver is invoked with
both the ASP program and the input facts. Once that the solver terminates
its own execution, the SolverExecutor sends the provided answer set to each
actuator of the Brain. In this way, each SimpleActuator populates its own
data structures. The ASPAdvancedSensorMapper translate the data struc-
tures of an AdvancedSensor by means of other mappers (ASPBoolMapper,
ASPIntegerMapper and so on). Each of these latter take care of translating
properties of a specific type. Finally, the ActuatorsManager periodically
checks if there are action (SimpleActuator) to apply to the game world.
These updates are performed only if some precondition boolean function is
satisfied.

Chapter 4

A showcase for ThinkEngine:
Tetris

In order to give an idea of how AI declarative modules can be integrated
within applications developed in Unity via the ThinkEngine, we developed
a showcase application. We started from a public available open-source
project1, inspired from the original Tetris game, and we modified this project
to obtain an automated player whose artificial intelligence is managed by an
ASP program. Note that we are not proposing a state-of-the-art Tetris player,
rather a demonstration of how an AI can be easily developed by means of
logical rules and then deployed in Unity.

In the following we briefly describe how our framework has been set up
and configured in order to cooperate with the Unity game scene. First, we
will show how we configured the sensors and actuators modules, then how
the brain component were set up. Finally we will describe our ASP encoding
giving some actual game-play example and discussion on performance.

4.1 Sensors and Actuators Configuration

Developers can access a list of the GOs used in the game scene via a custom
Unity window editor2 as in Figure 4.1. It is possible to browse objects and

55

56 CHAPTER 4. THINKENGINE FOR TETRIS

Figure 4.1: Editor window for the sensor configuration

select which properties are mapped on the reasoning side.
We will use next some of the typical terminology used to describe our

infrastructure and the Tetris game, as recalled here:

Arena: as shown in Figure 4.1, the arena is a GO that contains all the
properties relative to the playable game scene (i.e. a matrix of tiles,
the properties maxTileX, maxTileY etc.);

tiles: a matrix of GOs of type ArenaTile. This matrix can be expanded by
the user in order to configure some extra properties;

Tetromino: a geometric shape composed of four squares;

currentTetromino: in the Tetris game it represents the tetromino that is
currently dropping in the Arena;

1https://github.com/MaciejKitowski/Tetris
2I.e. a window similar to the Unity inspector. The inspector displays detailed infor-

mation about the currently selected game object, including all attached components.

https://github.com/MaciejKitowski/Tetris

4.1. SENSORS AND ACTUATORS CONFIGURATION 57

Spawner: a GO that manages the generation of a new tetromino when the
previously created one can not drop further down in the Arena.

We bound to the reasoning side, as sensors, the Arena, the currentTetromino
and the Spawner, and, in a similar way, we configured the actuators. By
means of the Actuator Configuration Window one can select the AI script
that is needed to be mapped within the ASP module. The single selected
actuator, called player, contains the properties: nMove, nLatMove, nRot,
typeLatMove. The meaning of these properties will be explained in subsection
4.1.1.

4.1.1 Brain Component

After configuring the sensors (arenaGrid, tetromino and spawner) and the
actuator (player), we added to the GOs hierarchy a new GO with an attached
component of type Brain and a C# script called AIPlayer. The brain consists
in a standard script belonging to the ThinkEngine asset that will coordinate
sensors, the actuator and the solver executor.

Figure 4.2: Configuration of the brain.

The brain component can be configured via the inspector tab. Sensors,
actuators and some other additional features can be attached to a brain via
the visual interface. In our example, we setup the conditions3 to meet in order
to a) update the sensors every time that a new tetromino is spawned and run

3Conditions are selected from a set of boolean functions customized by the developer.

58 CHAPTER 4. THINKENGINE FOR TETRIS

the ASP Solver as soon as sensors have data available; b) let the actuators
manager apply the actuators actions, if the current tetromino corresponds to
the one that was on the grid when the sensors were updated.

When the game starts, thus at run-time, the brain will start updating
sensors and will also run an external thread that will execute the ASP solver
if sensors have data to share and the solver is not already running. Every
time that it is necessary to invoke the solver, the Sensor Mapper produces a
representation, in the form of logical assertions, of the filtered sensors values
attached to the brain. Then, the ASP solver is invoked by passing it this
sensor representation and a knowledge base KBT expressing the desired brain
AI. After the ASP solver ends its execution, its answer sets will be mapped
to actuators by means of the actuators manager, thus influencing the game
world.

In the setting of the Tetris game, the solver’s output encodes the position
and orientation in which the current tetromino should be dropped. This is
then translated to the corresponding number of rotations and lateral moves
of the tetromino. In turn, a corresponding number of simulated swipes is
commanded via Unity procedural code in the AIPlayer and the tetromino
is eventually dropped.

4.1.2 ASP Encoding

The ASP declarative specification KBT driving the brain decision is based on
the Guess/Check/Optimize paradigm [50]. The idea is to range in the search
space of columns of the Tetris grid and of rotations of the tetromino; to ex-
clude combinations of columns and rotations such that the piece cannot be
geometrically placed; choose the optimal combination among the remaining
candidates. For the sake of simplicity the optimality criterion looks for po-
sitions not leaving holes in the grid, and with lesser priority, lower dropping
positions in the grid are preferred.

The guess phase is expressed in the rule

bestSol(X,Y,C) | notBestSol(X,Y,C):-col(C), availableConfig(X,Y).

where the availableConfig(X,Y) predicate keeps track of all the possible
rotations for the current tetromino. This assertion, combined with the strong
constraints

:- #count{Y,C: bestSol(X,Y,C)} > 1.

:- #count{Y,C: bestSol(X,Y,C)} = 0.

4.1. SENSORS AND ACTUATORS CONFIGURATION 59

assures that each model produced by the solver will contain exactly one
bestSol. The lowest row that the tetromino can reach when positioned with
a given rotation in a chosen column is described as follows.

1. free(R,C,C1):- tile(R,C,true), C1=C+1.

2. free(R,C,C2):- free(R,C,C1), tile(R,C1,true),C2=C1+1.

3. firstEmpty(R):- nCol(C), #max{R1:free(R1 ,0,C)}=R.

4. canPut(R):- bestSol(X,Y,C), free(R,C,C1), firstEmpty(R), confMaxW(X,Y,W),

C1=C+W.

5. canPut(R):- bestSol(X,Y,C), canPut(R1), free(R,C,C1), confMaxW(X,Y,W),

C1=C+W, R=R1+1.

6. freeUpTo(R):- canPut(R), not canPut(R1), R1=R+1.

7. oneMore(R1):- bestSol(X,Y,C), botSpace(X,Y,I,J), freeUpTo(R), R1=R+1,

free(R1 ,C1,C2), C1=C+I, C2=C+J.

8. twoMore(R1):-bestSol(X,Y,C), oneMore(R), extraRow(X,Y), botSpace(X,Y,I,J)

, free(R1,C1 ,C2), R1=R+1, C1=C+I, C2=C+J.

9. bestRow(R):- freeUpTo(R), not oneMore(R2), botSpace(X,Y,0,0), R2=R+1,

bestSol(X,Y,_).

10. bestRow(R1):- freeUpTo(R), not oneMore(R2), not extraRow(X,Y),

bestSol(X,Y,_), not botSpace(X,Y,0,0), R1=R-1, R2=R+1.

11. bestRow(R1):-bestSol(X,Y,_), not oneMore(R2), freeUpTo(R), extraRow(X,Y)

, not botSpace(X,Y,0,0), R1=R-2, R2=R+1.

12. bestRow(R):- oneMore(R), not twoMore(R1), bestSol(X,Y,_), R1=R+1,

not extraRow(X,Y).

13. bestRow(R):- twoMore(R).

14. :-#count{R:bestRow(R)}=0.

The tile4 predicate is used to derive in which rows the tetromino can
be placed. The space occupied by a tetromino is encoded by a number of
assertions, like e.g. confMaxW(x,y,w) which expresses that the maximum
horizontal amount of cells occupied by the tetromino x on which it has been
applied the rotation y is w; other similar assertions are botSpace(x,y,c,c1),
topSpace(x,y,h), leftSpaceWrtSpawn(x,y,l), extraRow(x,y).

Rules 1. and 2. describe, for each row of the arena, all the sequences of
free slots of the matrix (0− 2, 0− 3...0− 10, 1− 2, ..., 1− 10..., note that the
second index is exclusive). Rule 3. derives the highest row in the arena which
is completely empty, thus identifies the first row in which the tetromino can
be placed in whatever column. Starting from this row, rules from 4. to 8.
describe in which row the tetromino, in the chosen rotation configuration,
is allowed to be placed, according also with the current tetromino shape.
Finally, rules from 9. to 13., describe the lowest line that the tetromino will
drop to.

The next set of rules describes the highest row the tetromino will reach

4This assertion maps facts derived from the ArenaGrid sensor mapped by the predicate
arenaGrid(arena(arena(tiles(X,Y,arenaTile(empty(T)))))).

60 CHAPTER 4. THINKENGINE FOR TETRIS

once it is placed (rule 15.) and how many holes will remain in the row im-
mediately below (rules from 16. to 20.).

15. reach(R):- bestSol(X,Y,_), bestRow(R1), topSpace(X,Y,W), R=R1 -W.

16. hole(R,C1):-bestSol(X,Y,C), bestRow(R1), tile(R,C1,true),confMaxW(X,Y,W)

, R=R1+1, C1 >=C, C<W1, W1=C+W.

17. hole(R,C1):- bestSol(X,Y,C), botSpace(X,Y,I,J), tile(R,C1 ,true), L=I+J,

L>0, C1 >=C, C1<C2, C2=C+I, oneMore(R).

18. hole(R,C1):- bestSol(X,Y,C), botSpace(X,Y,I,J), tile(R,C1 ,true), L=I+J,

L>0, C1 >=C2, C2=C+J, C1 <C3, C3=C+W, oneMore(R), confMaxW(X,Y,W)

.

19. hole(R,C1):- bestSol(X,Y,C), botSpace(X,Y,I,J), tile(R,C1 ,true), L=I+J,

L>0, C1 >=C, C1<C2, C2=C+I, twoMore(R).

20. hole(R,C1):- bestSol(X,Y,C), botSpace(X,Y,I,J), tile(R,C1 ,true), L=I+J,

L>0, C1 >=C2, C2=C+J, C1 <C3, C3=C+W, twoMore(R), confMaxW(X,Y,W)

.

The next fragment of declarative code represent optimization criteria,
which are expressed in terms of weak constraints. Roughly speaking, a weak
constraint is a condition that, if met, increases the cost of a possible tetromino
drop configuration. In the presence of weak constraints, the lowest cost
answer set is preferred. Weak constraints can have priority levels.

21. :~ #count{R,C:hole(R,C)}=N, #int(N1),#int(N),N1=3*N. [N1:4]

22. :~ bestRow(R),numOfRows(N),D=N-R. [D:4]

23. :~ reach(R),numOfRows(N),D=N-R. [D:3]

24. :~ bestSol(X,Y,C). [C:2]

25. :~ bestSol(X,Y,C). [Y:1]

Weak constraints 21. and 22. have been assigned to the same priority (4)
since we want, at the same time, to minimize the number of holes and to
maximize the lowest line that the tetromino will drop to. However, since we
want to give a bit more importance to the holes, we decided to assign a triple
weight with respect to the lowest row optimization criterion. At a lower
priority level, we find the minimization of the row reached in height by the
tetromino (23.). The last two constraints, 24. and 25., are used to assure that
no more than one answer set is produced. Indeed, when having two answer
sets with the same costs for respectively the number of holes criterion, for
the lowest line criterion and for the top most row criterion, we will choose
the solution occupying the leftmost column and requiring the lowest number
of rotations.

Note that this artificial player, although not optimal, can be easily mod-
ified by changing the heuristic associated to the weight of constraint in 21.;
introducing new weak constraints expressing other desiderata; changing the

4.2. A GAME-PLAY 61

priority level of the constraints and so on. Finally, actuators’ atoms are
assigned

26. setOnActuator(player(aI(assetsScriptsAIPlayer(numOfLateralMove(N))))):-

bestSol(X,Y,C), spawnCol(S), spaceToSpawn(X,Y,L), N=S-D, D=C+L, D<S.

27. setOnActuator(player(aI(assetsScriptsAIPlayer(numOfLateralMove(N))))):-

bestSol(X,Y,C) ,spawnCol(S), spaceToSpawn(X,Y,L), N=D-S, D=C+L, D>=S.

28. setOnActuator(player(aI(assetsScriptsAIPlayer(numOfRotation(N))))):-

bestSol(_,N,_).

29. setOnActuator(player(aI(assetsScriptsAIPlayer(typeOfLateralMove(l))))):-

bestSol(X,Y,C), spawnCol(S), D=C+L, D<S, spaceToSpawn(X,Y,L).

30. setOnActuator(player(aI(assetsScriptsAIPlayer(typeOfLateralMove(r))))):-

bestSol(X,Y,C), spawnCol(S), D=C+L, D>=S, spaceToSpawn(X,Y,L).

31. setOnActuator(player(aI(assetsScriptsAIPlayer(numOfMove(X))))):-

setOnActuator(player(aI(assetsScriptsAIPlayer(numOfLateralMove(N))))),

setOnActuator(player(aI(assetsScriptsAIPlayer(numOfRotation(N1))))),

X=N+N1.

Rules from 26. to 31. assign the properties’ values to be mapped back to the
game logic. The spawnCol literal represents in which column the tetromino
is spawned while the spaceToSpawn is the number of the tetromino’s squares,
in the configuration proposed as solution, that are on the left of the spawn
column. The number of lateral moves to apply to the tetromino are modeled
in 26. and 27. depending on whether the leftmost square of the tetromino is
on the left or on the right of the spawn column. The number of rotations
to apply to the tetromino are retrieved directly from the bestSol. The type
of lateral move, left (l) or right (r), is inferred by rules 29. and 30. with the
same logic used in 26. and 27.. Finally, the total number of move that should
be performed is derived in 31. as sum of both lateral move and rotations.

The above artificial player, including both the declarative code and
all the procedural code, can be downloaded at https://github.com/

DeMaCS-UNICAL/Tetris-AI4Unity.

4.2 A game-play

In order to better illustrate how Unity and the ASP solver interact via the
ThinkEngine framework, we will examine a game configuration that gen-
erates some input for the solver and reacts at the answer set provided.
Given the Tetris situation in Figure 4.3, the input facts provided by the
ThinkEngine to the ASP solver are the following

https://github.com/DeMaCS-UNICAL/Tetris-AI4Unity
https://github.com/DeMaCS-UNICAL/Tetris-AI4Unity

62 CHAPTER 4. THINKENGINE FOR TETRIS

Figure 4.3: Game configuration with the tetromino “Z” just spawned.

arenaGrid(arena(arena(tiles(0,0, arenaTile(x(0)))))).

arenaGrid(arena(arena(tiles(0,0, arenaTile(y(0)))))).

arenaGrid(arena(arena(tiles(0,0, arenaTile(empty(true))))))..
.
.

arenaGrid(arena(arena(tiles(0,19, arenaTile(empty(false))))))..
.
.

arenaGrid(arena(arena(tiles(1,18, arenaTile(empty(true)))))).

arenaGrid(arena(arena(tiles(1,19, arenaTile(empty(true))))))..
.
.

spawner(tetrominoSpawner(tetrominoSpawner(currentTetromino (5)))).

Note that the x property pointed by the atom arenaGrid value increases
from the left to the right of the grid, while the y increases from the top to
the bottom. The empty property is false if the corresponding (x,y) cell is
occupied by a piece of some tetromino (the (0,19) cell for example). The
tetromino just spawned is the “Z” and it is represented with the number 5.

With this input dataset, the decision taken (i.e. the best answer set

4.2. A GAME-PLAY 63

produced, filtered on the actuators atoms), is

{setOnActuator(player(aI(assetsScriptsAIPlayer(numOfLateralMove (3))))),

setOnActuator(player(aI(assetsScriptsAIPlayer(numOfRotation (1))))),

setOnActuator(player(aI(assetsScriptsAIPlayer(typeOfLateralMove(l))))),

setOnActuator(player(aI(assetsScriptsAIPlayer(numOfMove (4)))))}

and its cost is

Cost ([Weight:Level]): <[1:1] ,[1:2] ,[3:3] ,[1:4] >.

Figure 4.4: Game configuration after that decisions derived from the answer
set have been applied.

This decision will lead to the configuration in figure 4.4 since, according to it,
the AIPlayer script will reproduce 3 left movements followed by 1 rotation.
In fact, this placement results to be exactly the one that we want:

• no holes are left by positioning there the tetromino;

64 CHAPTER 4. THINKENGINE FOR TETRIS

• it is impossible to place the tetromino in a lower place in the grid,
indeed it will hit the bottom of the grid once placed.

4.3 Benchmark

One of the most common measuring indicators used for assessing the perfor-
mance of a videogame is the framerate. i.e. the number of frames that can
be displayed in a second.

The framerate appears to be a good measure even for the evaluation of
the ThinkEngine impact on the game performance. Using the Tetris show-
case, we compared the framerate of the game when played by a human agent
and the framerate obtained using the ThinkEngine asset. The performance
is expected to be higher when a human agent controls the game, since the
thinking phase is absent and substituted by a quick keyboard reading; on
the other hand if the game is controlled by ThinkEngine, some impact on
performance is expected. Videogames are generally designed in order to keep
a constant acceptable framerate, which, in the case of Unity games, is set by
default to a target of 60 frames per second. Figure 4.5 shows how, for our
setting, the framerate is not constant, but it can vary on each frame. The
two curves represent, respectively, the framerate obtained when a human is
playing (the blue one) and when the game is controlled by the ThinkEngine
(the red one). The two curves generally keep the target framerate, although
they present some occasional negative spikes. However, the ThinkEngine
framerate has specific negative spikes that are caused by the overhead intro-
duced by the sensors update phase (red crosses in the figure). These spikes
do not have a visible impact on the graphical update as they are sufficiently
isolated and the moving average (light green curve in figure 4.5) over 25
frames is almost constant. This analysis can be used as an indication for
how often one should update the sensors: the game would stall if this is done
too often. The actuators update step, instead, has no appreciable impact on
the performance of the game (green diamonds in the figure). Obviously, the
sensors update needs more time with respect to actuators since they have to
track down an entire matrix of values on the game board.

Another aspect that is interesting to look at, is the time that the
ThinkEngine needs to auto-generate the input facts for the ASP solver
and how fast is this latter in producing a solution. These two measures

4.3. BENCHMARK 65

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Frames

F
ra
m
e
R
a
te

Normal Mode ThinkEngine Moving Average

Figure 4.5: Frame rate evaluation on Tetris game.

cannot be tracked in the framerate analysis since the two operations are per-
formed in a separate thread and the main one which is in charge of updating
the graphics. However, an intuition of the amount of time elapsed between
a sensors update and a solution generation can be spotted in the figure 4.5.
Indeed, the number of frames between a sensors update and an actuators
update is really low. The table 4.1 shows the time needed on average on a
single Tetris match for both facts and answer set generation: the last row is
the overall average.

Currently, the ThinkEngine asset has been used within other two games:
PacMan and Frogger. In these two games, the obtained performance results
are comparable with the Tetris. However, in the PacMan it is clear that
the system should be further improved in order to deal with really highly
dynamic games. Both Frogger and PacMan Unity projects can be found at
https://github.com/DeMaCS-UNICAL/UnityGames.

Although the integration approach used in the ThinkEngine framework
is improvable, other approaches are almost infeasible. Indeed, recalling what
discussed in section 3.1 there are only few ways of integrating an ASP module
in a game engine. The ThinkEngine framework is based on a computational-
loose and data-tight coupling. In solutions based on a computational-tight
coupling the game logic and the ASP solver should be executed in a unique

https://github.com/DeMaCS-UNICAL/UnityGames

66 CHAPTER 4. THINKENGINE FOR TETRIS

Run Facts (ms) AnswerSets (ms)
1 537.17 628.60
2 548.86 623.00
3 609.00 785.86
4 310.60 444.20
5 228.00 421.00
6 426.20 607.80
7 342.25 544.75
8 493.60 596.25
9 435.80 522.00

AVG 436.83 574.83

Table 4.1: Generation time

thread. This kind of integration will lead to a dramatic decrease of perfor-
mance of a game, in fact the graphical update would be slowed down by the
ASP solver. On the other hand, computational-loose and data-loose cou-
pling won’t help in any way a game developer. Indeed, since game engines
are based on a single-thread philosophy, external threads can not access game
objects thus a developer should waste time in finding a way to share informa-
tion. Moreover, without a data integration strategy, developers should work
both on the input providing and output retrieving tasks in fact having less
focus on designing the underlying artificial intelligence.

Conclusions

The usage of rule-based formalisms within imperative languages, is attract-
ing ever more interest from researchers. Indeed, for some tasks it can be
easier to use declarative formalisms than an imperative one, thanks to the
simplicity of writing a solution, finding errors and, once reached a good start-
ing representation of what it is needed, one can increasingly improve his/her
knowledge base by means of subsequent refinement.

When applied to real-time systems and in particular to game development
applications, a really challenging context due to really fast responses required
from a KR system, different gaps arise: slowness in producing a solution (then
requiring to restart the reasoner when needed), sharing data and mapping
between logical assertions and object-oriented data type and representation.

With this work we proposed an abstract architecture for a framework
that aims to cover the highlighted gaps when coming to the integration of
a declarative formalism in a game engine. We even presented an actual
implementation of the framework, called ThinkEngine, integrating an ASP
solver in the Unity 3D game engine.

A tight sharing of data structures between the procedural side and the
reasoning side, achieved by means of data reflection, make it possible to get
rid of the burden of mapping by hand input and output data and to focus
only on the encoding of the problem in ASP. The ThinkEngine runs mostly
in external threads in order to avoid a drop of performances of the game
(think for instance to the graphical update of the game).

After a deep analysis of the architecture of the asset, with an infrastruc-
ture based on sensors used to pass data from the game to the ASP solver and
on actuators for the inverse process, we have shown how it becomes easy to
write an AI playing by itself to Tetris.

We are still working on improving the our infrastructure by adding dif-
ferent features:

67

68 CHAPTER 4. THINKENGINE FOR TETRIS

• analyzing the formal and technical issues arising when one aims to stop
and restart a reasoning task, if needed;

• introduce sequences of actions (plans), and propose a model in which
plans are executed transparently and can be aborted, restarted, or mod-
ified on-the-fly;

• revise the Actuator model so to better describe actions on the environ-
ment and reduce the coding burden on the procedural side;

• add new data type mappings (collections, arrays and so on) for both
Sensors and Actuators.

Acknowledgements

I have to thank all the professors of the Department of Mathematics and
Computer Science of the University of Calabria. In more than ten years I
have learned so much from so many people that it is impossible to thank
everyone. However, I cannot forget what Professor Giovambattista Ianni has
done and continues to do for me. I could not have finished this path without
him.

I want to thank all the employees of the DLVSystem: everyone has been
really supportive every day I spent with them.

Thanks to all my friends, especially Bernardo who has always been by
my side.

Finally, thanks to Francesco and Lara. In the worst days you were the
motivation that made me not giving up.

69

70 CHAPTER 4. THINKENGINE FOR TETRIS

Bibliography

[1] Esra Erdem, Volkan Patoglu, and Peter Schüller. A systematic analysis
of levels of integration between high-level task planning and low-level
feasibility checks. AI Commun., 29(2):319–349, 2016.

[2] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. An-
swer set programming: A primer. In Reasoning Web. Semantic Tech-
nologies for Information Systems, 5th International Summer School
2009, Brixen-Bressanone, Italy, August 30 - September 4, 2009, Tu-
torial Lectures, pages 40–110, 2009.

[3] Anis Zarrad. Game engine solutions. In Simulation and Gaming. Inte-
chOpen, 2018.

[4] Jordi Bonastre. Why should i use threads instead of corou-
tines? https://support.unity3d.com/hc/en-us/articles/

208707516-Why-should-I-use-Threads-instead-of-Coroutines-.

[5] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian
Muise. An Introduction to the Planning Domain Definition Language.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Mor-
gan & Claypool Publishers, 2019.

[6] Michael Cashmore, Maria Fox, Derek Long, and Daniele Magazzeni.
A compilation of the full PDDL+ language into SMT. In Planning
for Hybrid Systems, Papers from the 2016 AAAI Workshop, Phoenix,
Arizona, USA, February 13, 2016, 2016.

[7] William F Clocksin and Christopher S Mellish. Programming in Prolog:
Using the ISO standard. Springer Science & Business Media, 2012.

71

https://support.unity3d.com/hc/en-us/articles/208707516-Why-should-I-use-Threads-instead-of-Coroutines-
https://support.unity3d.com/hc/en-us/articles/208707516-Why-should-I-use-Threads-instead-of-Coroutines-

72 BIBLIOGRAPHY

[8] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista
Ianni, Roland Kaminski, Thomas Krennwallner, Nicola Leone, Marco
Maratea, Francesco Ricca, and Torsten Schaub. Asp-core-2 input lan-
guage format. CoRR, abs/1911.04326, 2019.

[9] Robert Kowalski. Algorithm = logic + control. Commun. ACM,
22(7):424–436, July 1979.

[10] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, USA,
August 15-19, 1988 (2 Volumes), pages 1070–1080, 1988.

[11] Stefan Boettcher and Allon G Percus. Extremal optimization at the
phase transition of the three-coloring problem. Physical Review E,
69(6):066703, 2004.

[12] C-A Brunet and R Gonzalez Rubio. Cop: A simple way to integrate
imperative programming and declarative programming. In Proceedings
1995 Canadian Conference on Electrical and Computer Engineering,
volume 2, pages 1034–1037. IEEE, 1995.

[13] Krzysztof R. Apt, Jacob Brunekreef, Vincent Partington, and Andrea
Schaerf. Alma-0: An imperative language that supports declarative pro-
gramming. Technical report, Amsterdam, The Netherlands, The Nether-
lands, 1997.

[14] Gianfranco Rossi, E. Panegai, and Elisabetta Poleo. Jsetl: a java library
for supporting declarative programming in java. Softw., Pract. Exper.,
37(2):115–149, 2007.

[15] Matthias Thimm. Tweety: A comprehensive collection of java libraries
for logical aspects of artificial intelligence and knowledge representation.
In Principles of Knowledge Representation and Reasoning: Proceedings
of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20-24, 2014, 2014.

[16] Francesco Ricca. The DLV java wrapper. In 2003 Joint Conference on
Declarative Programming, AGP-2003, Reggio Calabria, Italy, September
3-5, 2003, pages 263–274, 2003.

BIBLIOGRAPHY 73

[17] Onofrio Febbraro, Nicola Leone, Giovanni Grasso, and Francesco Ricca.
JASP: A framework for integrating answer set programming with java.
In Principles of Knowledge Representation and Reasoning: Proceedings
of the Thirteenth International Conference, KR 2012, Rome, Italy, June
10-14, 2012, 2012.

[18] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. Clingo = ASP + control: Preliminary report. CoRR,
abs/1405.3694, 2014.

[19] Francesco Calimeri, Davide Fuscà, Stefano Germano, Simona Perri, and
Jessica Zangari. A framework for easing the development of applications
embedding answer set programming. volume abs/1707.06959, 2017.

[20] Francesco Calimeri, Stefano Germano, Giovambattista Ianni, Francesco
Pacenza, Simona Perri, and Jessica Zangari. Integrating rule-based AI
tools into mainstream game development. In Rules and Reasoning -
Second International Joint Conference, RuleML+RR 2018, Luxembourg,
September 18-21, 2018, Proceedings, pages 310–317, 2018.

[21] Jakob Rath and Christoph Redl. Integrating answer set programming
with object-oriented languages. In Practical Aspects of Declarative Lan-
guages - 19th International Symposium, PADL 2017, Paris, France,
January 16-17, 2017, Proceedings, pages 50–67, 2017.

[22] Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwall-
ner, Christoph Redl, and Peter Schüller. A model building framework for
answer set programming with external computations. TPLP, 16(4):418–
464, 2016.

[23] Johannes Oetsch, Jörg Pührer, Martina Seidl, Hans Tompits, and
Patrick Zwickl. VIDEAS: A development tool for answer-set programs
based on model-driven engineering technology. In Logic Programming
and Nonmonotonic Reasoning - 11th International Conference, LPNMR
2011, Vancouver, Canada, May 16-19, 2011. Proceedings, pages 382–
387, 2011.

[24] Claude E Shannon. Programming a computer for playing chess. In
Computer chess compendium, pages 2–13. Springer, 1988.

74 BIBLIOGRAPHY

[25] Jonathan Schaeffer and H. Jaap van den Herik. Games, computers, and
artificial intelligence. Artif. Intell., 134(1-2):1–7, 2002.

[26] Feng-Hsiung Hsu. Behind Deep Blue: Building the computer that de-
feated the world chess champion. Princeton University Press, 2004.

[27] Michael Mateas. Expressive AI: games and artificial intelligence. In Dig-
ital Games Research Conference 2003, 4-6 November 2003, University
of Utrecht, The Netherlands, 2003.

[28] Georgios N. Yannakakis. Game AI revisited. In Proceedings of the Com-
puting Frontiers Conference, CF’12, Caligari, Italy - May 15 - 17, 2012,
pages 285–292, 2012.

[29] Mike Treanor, Alexander Zook, Mirjam P. Eladhari, Julian Togelius,
Gillian Smith, Michael Cook, Tommy Thompson, Brian Magerko, John
Levine, and Adam M. Smith. Ai-based game design patterns. 2015.

[30] Diego Perez Liebana, Spyridon Samothrakis, Julian Togelius, Tom
Schaul, and Simon M. Lucas. General video game AI: competition, chal-
lenges and opportunities. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, pages 4335–4337, 2016.

[31] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter
Henry, Marwan Mattar, and Danny Lange. Unity: A general platform
for intelligent agents. CoRR, abs/1809.02627, 2018.

[32] Jie Hu, Wang gen Wan, and Xiaoqing Yu. A pathfinding algorithm
in real-time strategy game based on unity3d. In 2012 International
Conference on Audio, Language and Image Processing, pages 1159–1162.
IEEE, 2012.

[33] Olivier Bartheye and Eric Jacopin. A pddl-based planning architecture
to support arcade game playing. In Agents for Games and Simulations,
Trends in Techniques, Concepts and Design [AGS 2009, The First In-
ternational Workshop on Agents for Games and Simulations, May 11,
2009, Budapest, Hungary], pages 170–189, 2009.

BIBLIOGRAPHY 75

[34] Olivier Bartheye and Eric Jacopin. A real-time pddl-based planning
component for video games. In Proceedings of the Fifth Artificial Intel-
ligence and Interactive Digital Entertainment Conference, AIIDE 2009,
October 14-16, 2009, Stanford, California, USA, 2009.

[35] Ioannis Vlachopoulos, Stavros Vassos, and Manolis Koubarakis. Flexi-
ble behavior for worker units in real-time strategy games using STRIPS
planning. In Artificial Intelligence: Methods and Applications - 8th
Hellenic Conference on AI, SETN 2014, Ioannina, Greece, May 15-17,
2014. Proceedings, pages 555–568, 2014.

[36] Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Artif. Intell., 2(3/4):189–
208, 1971.

[37] Michael Thielscher. Answer set programming for single-player games in
general game playing. In Logic Programming, 25th International Confer-
ence, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings,
pages 327–341, 2009.

[38] Maximilian Möller, Marius Thomas Schneider, Martin Wegner, and
Torsten Schaub. Centurio, a general game player: Parallel, java- and
asp-based. KI, 25(1):17–24, 2011.

[39] Adam M. Smith and Michael Mateas. Answer set programming for
procedural content generation: A design space approach. IEEE Trans.
Comput. Intellig. and AI in Games, 3(3):187–200, 2011.

[40] Francesco Calimeri, Stefano Germano, Giovambattista Ianni, Francesco
Pacenza, Armando Pezzimenti, and Andrea Tucci. Answer set program-
ming for declarative content specification: A scalable partitioning-based
approach. In AI*IA 2018 - Advances in Artificial Intelligence - XVIIth
International Conference of the Italian Association for Artificial Intelli-
gence, Trento, Italy, November 20-23, 2018, Proceedings, pages 225–237,
2018.

[41] Marius Stanescu and Michal Certický. Predicting opponent’s production
in real-time strategy games with answer set programming. IEEE Trans.
Comput. Intellig. and AI in Games, 8(1):89–94, 2016.

76 BIBLIOGRAPHY

[42] Peter Schüller and Antonius Weinzierl. Answer set application program-
ming: a case study on tetris. In Proceedings of the Technical Commu-
nications of the 31st International Conference on Logic Programming
(ICLP 2015), Cork, Ireland, August 31 - September 4, 2015, 2015.

[43] Kang G Shin and Parameswaran Ramanathan. Real-time computing:
A new discipline of computer science and engineering. Proceedings of
the IEEE, 82(1):6–24, 1994.

[44] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some sim-
plified np-complete problems. In Proceedings of the 6th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1974, Seattle,
Washington, USA, pages 47–63, 1974.

[45] Raphael Volz, Steffen Staab, and Boris Motik. Incrementally maintain-
ing materializations of ontologies stored in logic databases. volume 2,
pages 1–34. 2005.

[46] Daniele Dell’Aglio, Emanuele Della Valle, Frank van Harmelen, and
Abraham Bernstein. Stream reasoning: A survey and outlook. Data
Sci., 1(1-2):59–83, 2017.

[47] Esteban Zimanyi. Streaming databases & pipelinedb.

[48] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming SPARQL
- extending SPARQL to process data streams. In The Semantic Web:
Research and Applications, 5th European Semantic Web Conference,
ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Pro-
ceedings, pages 448–462, 2008.

[49] Bernardo Cuteri, Carmine Dodaro, Francesco Ricca, and Peter Schüller.
Constraints, lazy constraints, or propagators in ASP solving: An empir-
ical analysis. TPLP, 17(5-6):780–799, 2017.

[50] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong and
weak constraints in disjunctive datalog. In Logic Programming and
Nonmonotonic Reasoning, 4th International Conference, LPNMR’97,
Dagstuhl Castle, Germany, July 28-31, 1997, Proceedings, pages 2–17,
1997.

