

to my family,

for their love...

Contents

1 Introduction . 3
1.1 Argumentation in Artificial Intelligence . 3
1.2 Argumentation Frameworks . 5
1.3 Dynamic Argumentation and Research Questions 8
1.4 Related Work . 9
1.5 Organization . 11

2 Fundamental Concepts for Abstract Argumentation 13
2.1 Abstract Argumentation Frameworks . 13

2.1.1 Labelling and Status of arguments . 15
2.1.2 Skeptical acceptance . 16

2.2 Bipolar Argumentation Frameworks . 16
2.2.1 Extensions . 18
2.2.2 Labelling and status of arguments . 19
2.2.3 Meta-Argumentation Framework . 19

2.3 Second Order Attacks . 20
2.4 Dynamic Argumentation Frameworks . 22

2.4.1 Updates . 22
2.4.2 Updates for BAFs . 25
2.4.3 Second-Order Updates . 25

3 Extensions Enumeration Problem . 27
3.1 Computing Preferred and Semi-Stable Extensions 27
3.2 Enumerating Preferred Extensions . 28

3.2.1 Algorithm . 30
3.2.2 Implementation and Experiments . 32

3.3 Enumerating Semi-Stable Extensions . 35
3.3.1 Algorithm . 37
3.3.2 Implementation and Experiments . 38

3.4 Summary . 40

VIII Contents

4 Efficient Computation of Extensions in Dynamic Argumentation
Frameworks . 43
4.1 Arguments Influenced by an Update . 43
4.2 Incremental Computation of Extensions . 46

4.2.1 Incremental Algorithm . 47
4.3 Implementation and Experiments . 48
4.4 Summary . 50

5 Efficient Computation of Extensions in Dynamic Bipolar
Argumentation Frameworks . 53
5.1 Computing Extensions of Updated BAFs . 54

5.1.1 Checking for Irrelevant Updates . 56
5.1.2 The Meta-Argumentation Framework for Incremental

Computation . 57
5.1.3 Incremental Algorithm . 59

5.2 Dealing with Second Order Attacks . 60
5.2.1 Second-Order Updates and Early-Termination Conditions . . 61
5.2.2 Enabling the Incremental Computation with Second-Order

Attacks and Updates . 62
5.2.3 Incr-EAF: Incremental Algorithm for EAFs. 66

5.3 Empirical Evaluation . 66
5.4 Summary . 68

6 Efficient Computation of Skeptical Preferred Acceptance in
Dynamic Argumentation Frameworks . 73
6.1 Notation for reachability and other useful concepts 73
6.2 Supporting Set . 75
6.3 Context-Based Argumentation Frameworks . 78
6.4 Incremental Computation . 81
6.5 Implementation and Experiments . 82
6.6 Summary . 85

7 Incremental Computation of Warranted Arguments over Dynamic
Defeasible Logic Programs . 87
7.1 The Defeasible Logic Programming Formalism for Structured

Argumentation . 87
7.2 Basics of Defeasible Logic Programming . 89

7.2.1 The Dialectical Process . 91
7.2.2 Updates . 94
7.2.3 Hyper-graphs for DeLP Programs . 95

7.3 Complexity Analysis . 96
7.4 Incremental Computation . 100

7.4.1 Irrelevant Updates . 102
7.4.2 Dealing with Relevant Updates . 105
7.4.3 Incremental Algorithm . 108

Contents IX

7.5 Implementation and Experiments . 110
7.6 Summary . 113

Conclusions and Future Work . 115

References . 119

Preface

Reasoning is usually seen as a means for improving understanding and making bet-
ter choices. However, there is much evidence that reasoning often leads to epistemic
distortions and wrong choices. This indicates that the reasoning process should be
rethought. Philosophers Mercier and Sperber formulated the hypothesis that the func-
tion of reasoning is argumentative. It is to devise and evaluate arguments intended to
persuade [93]. Making the arguments that support own view acceptable directly cor-
responds to persuade others to accept that view, without forcing the argumentation
process but only seducing others to agree on our perspective.

Argumentation is the primary notion of reasoning, and it is flexible as new ar-
guments may added or retracted in order to convince to believe a specific point of
view or a position, as well as to accept some evidence. Arguing means to explicitly
support a conclusion, a claim or a decision, as well as being able to reject other al-
ternatives by defending against a counterargument. Argumentation is the basic way
humans exhibit intelligence since it is native to human reasoning. We all remember
the famous Aristotle’s postulates formulated 2400 years ago in the ancient Greece,
yielding several possible conclusions that can be drawn by arguing. Arguing is then
helpful to develop cognition, since it is a universal form of cognitive inference rea-
soning [85], whose main task is handling conflicts in the real world, which is rich of
uncertainty and incompleteness.

People can make errors in arguing because different knowledge schemes (e.g.,
conclusions) can be constructed when conflicts are resolved. These schemes are dy-
namic as they are based on personal experiences, which, in turn, evolves over the
time because we change our mind several times in our daily life.

Argumentation is then an intelligent process due to its capability to conclude
complicate context-based conclusions, yielding in possible fallacious conclusions.
Nevertheless, this is the price to pay for creating intelligent systems, as it is very
difficult to build intelligent systems that are not fallacious. In this view, trying to find
efficient approaches to figure out how conclusions change in a dynamic argumenta-
tive context is a challenging problem to investigate.

Rende (CS), Italy Gianvincenzo Alfano
2019 University of Calabria

1

Introduction

“The key to artificial intelligence has always been the representation.”

– Jeff Hawkins

1.1 Argumentation in Artificial Intelligence

It’s been a long time (since the time of ancient Greek thinkers and orators) that argu-
mentation experts have looked for conditions that make an argument valid, by some
acceptable level of evidence, by analyzing the errors of reasoning that we produce as
we attempt to use arguments. Logic has always sought both to identify these fallacies
and to manage them. There seemed that neither deductive logic nor obvious formal
structure could usefully be applied to them in order to deal with these fallacies. New
methods going beyond deductive logic for analyzing and evaluating arguments arose
inside a new school of thought called informal logic, as well as a multi-disciplinary
class of students associated with the term ”argumentation” coming from linguistic
fields like speech communication joined with the informal logic group in order to
help develop these pragmatic approaches and to relate them to concrete examples of
argumentation [34].

The research in the thesis deals with both practical and theoretical aspects of
argumentation, namely a model to generally capture the concepts of defeasible rea-
soning. It consists of reasoning using rules of inference that are not (necessarily)
deductively valid. In defeasible reasoning premises provide support for conclusions
but do not guarantee their truth (it may be the case that the premises are true while
the conclusion is false). This means that conclusions obtained by using defeasible
reasoning may have to be retracted when additional information is available. This in-
validates the monotonic property, which states that previously drawn conclusions are
never revoked when further knowledge join the game. In this perspective, defeasible
reasoning is non-monotonic, while classical monotonic reasoning is good for model-
ing formal or mathematical reasoning. Once the validity of a mathematical theorem

4 1 Introduction

Arg 1

Arg 4

Arg 2

Arg 6

Arg 3

Arg 5

Arg 1

Arg 4

Arg 2

Arg 6

Arg 3

Arg 5

Arg 1

Arg 6

Arg 2

Knowledge Base Abstract Model Evaluation Conclusions

Arg 3

Arg 5

Concl.#1 Concl.#n

...

Fig. 1.1: The abstract argumentation process.

is proved, it is not called into question anymore, even if additional knowledge are
taken into account.

Starting in the ’80s, much work was done on defeasible and non-monotonic rea-
soning in the wide area of Artificial Intelligence. This is due to the fact that classical
monotonic logics is not useful for commonsense reasoning because the monotonicity
constraint is mostly violated in common-sense reasoning—it suffices to think about
how many times we make use of assumptions, rules with exception or rules of thumb.
Argumentation is at the root of human reasoning and interaction, it is also about how
decisions are taken and opinions are shaped and how decisions and beliefs are legit-
imized and understood by people. That is why it is a central discipline in the area of
artificial intelligence.

An important question that has deserved the attention of the AI field over the
last twenty years and which leads to the development of a wide research area called
formal argumentation has been the integration of human capacities to convince peo-
ple and draw conclusions within smart and sophisticated systems. In fact, in the last
twenty years argumentation has emerged as a distinct field within Artificial Intelli-
gence by reflecting in philosophy, law and formal logic [25, 29, 102]. As it was said
briefly before, argumentation in AI differs from classical logic. In fact, in logic one
proves statements. If a proof exists then the statement is not refutable (i.e., what is
proven correct once, remains correct). In contrast, the aim of arguments is to per-
suade, not to formally prove statements [25]. Moreover, arguments are defeasible.
Thus, what made an argument convincing, might not be convincing anymore in the
light of new information, and thus retracting conclusions is common when arguing,
yielding argumentation non-monotonic.

Reasoning in an automated way is one of the main objectives towards the de-
velopment of artificial intelligent systems and thus, argumentation provides a par-
ticular challenge because of the complexity related to its non-monotonicity. Never-
theless, argumentation has found its way into a variety of applications, such as in
legal reasoning [24, 26], decision support systems [10], E-Democracy tools [46, 47],
E-Health tools [111], medical applications [76, 76], multi-agent systems [69], and
also in social networks [86] where threads’ conclusions are taken by using concepts
of argumentation theory. All these approaches and systems make use of some sort
of abstraction, which is a cardinal point of the argumentation process, which can be

1.2 Argumentation Frameworks 5

synthesized as a four step process (see Figure 1.1). It starts with the first step by
defining a knowledge base containing conflicting information about a topic of inter-
est. Then, an abstract model consisting in a representation of the arguments inside the
knowledge base as well as conflicts between them is built in the second step. In this
step it is very widespread to abstain the internal structure of the arguments [79, 101],
in fact an argument here is an abstract entity such as a letter, a word, or a phrase of
a discourse, or eventually, a propositional logical formula [31]. Several frameworks
for the abstract representation have been proposed in literature [40]. Third step refers
to evaluate arguments. This is done by calling an algorithm for identifying a set of
acceptable arguments that can stay together without invalidating some semantic con-
straints. According to the applied constraints the semantics may change, yielding
in a possible different set of acceptable arguments. From the latter, conclusions are
drawn for the domain of interest in the last step.

While argumentation is an inherently dynamic activity, the definition of evalua-
tion algorithms and the analysis of the computational complexity taking into account
such dynamic aspects have been mostly neglected, whereas in these situations in-
cremental computation techniques could greatly improve performance. However, a
better understanding of the behavior and applicability of the argumentation theory re-
quires to consider a dynamic perspective. This perspective leads to several questions
related to updating the argumentation framework behind the argumentation process.
Then, the goal of the thesis is to provide efficient algorithms for several problems
of argumentation theory in a dynamic perspective. Before precisely stating the ad-
dressed problems, some preliminary notions will be outlined in the next section.

1.2 Argumentation Frameworks

A milestone in formal argumentation theory is the Dung’s seminal work [61] where
the fundamental concepts of abstract argumentation framework (AF) and argumen-
tation semantics were introduced. An AF consists of a set of arguments and a binary
attack relation over them. Simply put, an argument is a potentially complex sentence
or statement. For instance, we may have an argument a defined as “John is a knight”
and argument b defined as “John is a knave”. However, in Dung’s AFs, the focus
in neither on the internal structure of arguments nor on the way they are obtained
but it is on the relationships between arguments which are expressed by the attack
relation—that is why arguments are said to be abstract. Thus, the role of an argu-
ment is entirely determined by its connections with other arguments. Basically, an
AF can be viewed as a directed graph whose nodes represent the arguments while
the edges represent attacks between arguments. An attack from an argument a to-
ward an argument b intuitively means that if a is accepted to support a point of view
in a discussion then b should be rejected; on the other hand b can be accepted if all
its attacker are not.

Consider the following example, inspired from the famous “Knights and Knaves”
Smullyan’s logic puzzle [105] (also used in [83, 104] to illustrate logic programming
semantics). We are in an island inhabited by knights and knaves. The knaves always

6 1 Introduction

knight

John is a
a :

knave

John is a
b :

knight

Mark is a
c :

knave

Mark is a
d :

Fig. 1.2: An AF for modelling the Smullyan’s puzzle of our example.

lie, while the knights always tell the truth. Coming upon a pair of individuals, John
and Mark, a detective questions them about their nature. Then John answers: “Only
one of us is a knight”. What can the detective infer about Mark?

To answer the detective question, let us model the puzzle throughout an AF. First,
we need to model the conclusions that the detective can reach on the nature of the two
individuals by (abstract) arguments. Hence we use the arguments a and b introduced
earlier plus the arguments c: “Mark is a knight” and d: “Mark is a knave”. These four
arguments and the interaction between them, which we explain below, are shown in
the argumentation graph in Figure 1.2. Arguments a and b, as well as c and d, attack
each other since they represent conflicting information: a and b can not be both true;
similarly for c and d. Moreover, the attack from a to cmodels the fact that, if John is
a knight (i.e., we accept argument a), then Mark cannot be a knight (i.e., we cannot
accept c) because knights always tell the truth and John said that only one of them
is a knight. Finally, argument b attacks c since if John is a knave, and thus he is
lying (i.e., it holds that not only one of them is a knight), then Mark cannot be a
knight; otherwise John was telling the truth, contradicting the behaviour entailed by
his nature.

After having defined the structure of an AF as in our example, to figure out which
sets of arguments, called extensions, collectively represent a plausible conclusion,
we rely on the concept of argumentation semantics. All the semantics for abstract
argumentation frameworks we considered are based on the auxiliary concepts of
conflict-free and admissible sets, which we define next.

We say that a set of arguments is conflict-free iff it does not contain two distinct
arguments a and b such that a attacks b (i.e., there is an edge between a and b in the
argumentation graph). As an example, for the AF in Figure 1.2, we have that both
{a,d} and {b,d} are conflict-free sets.

Let us now generalize the notion of attack from a single argument toward another
argument to the case of a set S attacking an argument: we say that a set S of argu-
ments attacks an argument b if there exists an argument a in S such that a attacks
b. For instance, for the AF in Figure 1.2, we have that {a,b} attacks c. Then, we
say that a set S defends an argument a iff S attacks every argument attacking a. In

1.2 Argumentation Frameworks 7

our example, we have that {a} defends d from the attack coming from c. Also, {a}
defends itself from the attack from b. An admissible set a is conflict-free set that
defends all its arguments. In our example, among others, both {a,d} and {b,d} are
admissible sets (observe that that the empty set is also admissible).

It is worth noting that admissibility does not require to consider all the arguments
that are defended by the set under consideration. For instance, {a} and {b} are ad-
missible sets but both could be enlarged to consider argument d they defend. This
behaviour is avoided by the complete (co) semantics, and by the other argumentation
semantics which are also based on completeness. A complete extension is an admis-
sible set that contains all the arguments that it defends. In our example, the complete
extensions are the empty set, {d}, {a,d}, and {b,d}.

Other argumentation semantics prescribe sets of extensions which are subsets of
the set of complete extensions, thus considering additional constraints over the set
of complete extensions. In particular, a complete extension is said to be: preferred
(pr) iff it is maximal (w.r.t. set inclusion); stable (st) iff it attacks every argument
not included in the extension; ideal (id) iff it is the biggest (w.r.t the set inclusion)
admissible set which is contained in every preferred extension; grounded (gr) iff it
is minimal (w.r.t. set inclusion).

Thus, while grounded semantics captures the most cautious viewpoint across all
the possible complete extensions, the preferred semantics aims to accept as many
arguments as possible. Moreover, a stable extension ensures that every argument
outside the extension is rejected because attacked by the extension. However, a sta-
ble extension may not exists. For instance, if there is a self attacking argument, or
there is a directed triangle in the argumentation graph, the set of stable extensions is
empty. All the other semantics are guaranteed to prescribe at least one extension, and
the grounded and ideal semantics prescribes exactly one extension—they are called
deterministic or unique-status semantics. Finally, the ideal semantics provides the
biggest deterministic set of arguments that can be collectively accepted.

For a given AF the set of conflict-free (cf) sets includes the set of admissible
(ad) sets, which in turns includes the set of complete extensions. The set of stable
extensions is contained in the set of preferred extensions, which is contained in the
set of complete extensions. In addition, it is well-known that, for a given AF, the
grounded extension is included in the ideal extension, which in turns in included in
every preferred extension.

Continuing with our example, for the AF shown in Figure 1.2, different conclu-
sions can be derived under different semantics. In particular, the grounded extension
is empty, while the stable and preferred extensions are {a,d} and {b,d}. Then the
ideal extension is {d}, telling us that the detective can conclude that Mark is a knave,
irrespectively of the nature of John.

Except for the grounded semantics that can be computed by a fix-point polyno-
mial approach, the complexity of computing argumentation semantics is intractable[63,
65, 68, 87]. In this regard, the International Competition on Computational Models

8 1 Introduction

of Argumentation (ICCMA) 1 has been established for nurturing research and devel-
opment of efficient algorithms for computational models of argumentation [108].

1.3 Dynamic Argumentation and Research Questions

Although most research in formal argumentation have focused on static frameworks
(i.e. frameworks whose structure does not change over time), AFs are frequently
used for modelling dynamic systems [19, 20, 57, 71, 89]. This is not surprising since,
as a matter of fact, the argumentation process is inherently dynamic. For instance,
think of how many times we change our mind after knowing something new about a
situation we are reasoning about. There is clear evidence of that in social networks
threads [86], where users frequently post new arguments against or supporting other
posts, often made by the same users that change their mind. In general, an update for
an AF consists in adding or retracting new arguments and/or attacks. As an example,
for the AF shown in Figure 1.2, suppose that a police man arrive on the island and
say that he knows that Mark is not a knave. This means adding a new argument
h: “The police man is sure that Mark is not a knave” which attacks argument d.
Clearly, the set of conclusions (i.e., extensions according to a specific semantics) may
change after performing an update on a given AF. In our example, the updated set of
stable and preferred extensions is {{a,h}, {b,h}}, while the ideal and the grounded
extensions are both equal to {h}. Of course we could add further arguments and
attacks to model for instance the fact that the detective trust or not the police man;
this would entail other changes to the set of extensions for the considered AF after
applying new updates.

Therefore, given an AF, the question is: After performing an update, could we
avoid to compute the updated extensions (prescribed by a given semantics) from
scratch?

The Proposed Approach

In the thesis, we show that we can profitably use the information provided by the
initial extensions to efficiently and incrementally recompute extensions after per-
forming an update (addition or deletion of arguments and/or attacks). This allow us
to substantially reduce the computation effort in many cases, and the improvement is
even more significant for the argumentation semantics which suffer from high com-
putational complexity.

Our proposal relies on identifying a (potentially small) part of the input AF, called
influenced set, that represents the arguments that, intuitively, are involved by a given
update—the influenced set depends on both the update and an input initial extension
for the AF. Then, the computation of extensions is made on a smaller AF, called
reduced AF, which is obtained from the initial AF by the arguments and attacks
induced by the influenced set plus additional arguments and attacks that take into
account the external context needed to perform the computation.
1 http://argumentationcompetition.org

1.4 Related Work 9

The ideas behind the incremental approach proposed is applied to different kinds
of abstract argumentation frameworks [40]. Particularly, it can also be applied to
Bipolar Argumentation Frameworks (BAFs), able to model the notion of supports
between arguments. While attacks in Dung’s original framework represents conflict-
ing information between arguments, the support relation wants to model a positive
relation, that is, an argument is is in favor of other arguments. Thanks to a meta-
argumentation approach, a BAF can be converted into a Dung’s AF by adding meta-
arguments able to model supports by means of Dung’s attacks.

Furthermore, other abstract argumentation frameworks have been considered,
such as Extended Abstract Argumentation Frameworks (EAFs for short) which are
used to model attacks towards an argument or an attack. Similarly to what done
for BAFs, an EAF can be converted into a Dung’s AF by using additional meta-
arguments as well as attacks between them.

1.4 Related Work

Overviews of key concepts in argumentation theory and of formal models of argu-
mentation in the field of Artificial Intelligence can be found in [12, 25, 30, 103].
Further discussion regarding uses of computational argumentation as an Agreement
Technology can be found in [97]. Several computational problems of AFs have been
studied such as skeptical and credulous reasoning, existence of a non-empty exten-
sion, and verifying if a set of arguments is an extension under different argumentation
semantics [63, 65, 67, 68]. The complexity of the problem of computing all exten-
sions according to some semantics for AFs has been recently investigated in [87],
where it was shown that the enumeration problem is intractable under several ar-
gumentation semantics. An approach for dividing the problem of enumerating the
preferred extensions into sub-problems is proposed in [56], where a meta-algorithm
based on SCC-recursiveness [18] is introduced. However, this kind of approaches
provide advantages only if there are many strongly connected components, or in case
of sparse AFs (i.e., average degree less than 2) [92]. A comprehensive introduction to
(static) abstract argumentation frameworks (AFs) can be found in [14]. Although the
idea underlying AFs is simple and intuitive, most of the semantics proposed so far
suffer from a high computational complexity [63, 65, 67, 68, 72, 73, 74, 75]. Com-
plexity bounds and evaluation algorithms for AFs have been deeply studied in the
literature but most of this research focused on static frameworks, whereas, in prac-
tice, AFs are not static systems [19, 20, 57, 71, 89]. [37, 38] have investigated the
principles according to which a grounded extension of a Dung’s abstract argumenta-
tion frameworks does not change when the set of arguments/attacks are changed.

Dung’s abstract argumentation framework has been extended along several di-
mensions (e.g. [15, 96, 113]), and there have been several significant efforts coping
with dynamics aspects of abstract argumentation. [48, 49] have addressed the prob-
lem of revising the set of extensions of an AF, and studied how the extensions can
evolve when a new argument is considered. They focus on adding only one argument
interacting with one initial argument (i.e. an argument which is not attacked by any

10 1 Introduction

other argument). [32] have studied the evolution of the set of extensions after per-
forming a change operation (addition/removal of arguments/interaction). Dynamic
argumentation has been applied to decision-making of an autonomous agent by [11],
where it is studied how the acceptability of arguments evolves when a new argument
is added to the decision system. Other relevant works on dynamic aspects of Dung’s
argumentation frameworks include the following. [20] have proposed an approach
exploiting the concept of splitting of logic programs to deal with dynamic argu-
mentation. The technique considers weak expansions of the initial AF, where added
arguments never attack previous ones. [23] have investigated whether and how it is
possible to modify a given AF so that a desired set of arguments becomes an exten-
sion, whereas [99] have studied equivalence between two AFs when further infor-
mation (another AF) is added to both AFs. [21] have focused on expansions where
new arguments and attacks may be added but the attacks among the old arguments
remain unchanged, while [22] have characterized update and deletion equivalence,
where adding/deleting arguments/attacks is allowed (deletions were not considered
by [21, 99]). Approaches for dividing AFs into subgraphs have been explored also
in the context of dynamic AFs—AFs which are updated by adding/removing (set
of) attacks/arguments— for which the set of extensions evolves. The division-based
method, proposed by [89] and then refined by [19], divides the updated framework
into two parts: affected and unaffected, where only the status of affected arguments
is recomputed after updates. Using the results in [89], [91] investigated the efficient
evaluation of the justification status of a subset of arguments in an AF (instead of
the whole set of arguments), and proposed an approach based on answer-set pro-
gramming for local computation. In [90], an AF is decomposed into a set of strongly
connected components, yielding sub-AFs located in layers, which are then used for
incrementally computing the semantics of the given AF by proceeding layer by layer.
Recently, [114] introduced a matrix representation of argumentation frameworks and
proposed a matrix reduction that, when applied to dynamic argumentation frame-
works, resembles the division-based method in [89].

Bipolarity in argumentation is discussed in [9], where a survey of the use of
bipolarity is given, as well as a formal definition of BAF that extends the Dung’s
concept of argumentation framework by including supports is provided. The notion
of support has been found useful in many application domains, including decision
making [8]. However, as discussed in [58], different interpretations of the concept of
support have been proposed. The acceptability of arguments in the presence of the
support relation was first investigated in [50]. Then, to handle bipolarity in argumen-
tation, [51, 52] proposed an approach based on using the concept of coalition of argu-
ments, where arguments are grouped together, and defeats occur between coalitions.
However, when considering a deductive interpretation of support [36, 113], coali-
tions may lead to counterintuitive results [58], though they are useful in contexts
where support is interpreted differently. Changes in bipolar argumentation frame-
works have been studied in [53], where it is shown how the addition of one argument
together with one support involving it (and without any attack) impacts the exten-
sions of the updated BAF. Although several related work, no one of the these works

1.5 Organization 11

neither tackled the problem of incremental computing argumentation semantics nor
experimentally analyzed.

1.5 Organization

After having retraced the role of argumentation in artificial intelligence, as well as
discussed the motivations behind the research conducted in the thesis, we now de-
scribe the structure of the thesis.

This work is organized in seven chapters that consider results for abstract argu-
mentation (Chapters 3-6) and structured argumentation (Chapter 7). After the intro-
duction given in this Chapter, we will present:

Chapter 2. Preliminary notions for abstract argumentation frameworks are pre-
sented. Additionally, key concepts behind argumentation theory as argumenta-
tion semantics, extensions and labellings are also presented. Chapter 2 ends with
a discussion of different kinds of argumentation frameworks, each of them hav-
ing interesting properties.

Chapter 3. In this chapter, we propose algorithms for efficiently computing both
the set of preferred and semi-stable extensions of a given AF. Our technique relies
on first computing the ideal (resp. grounded) extension for the given AF, and then
using it to prune some arguments so that a smaller AF is obtained.

Chapter 4. We tackle the problem of incrementally computing extensions for
dynamic AFs: given an initial extension and an update (or a set of updates), we
devise a technique for computing an extension of the updated AF under several
well-known semantics. The idea is to identify a reduced (updated) AF sufficient
to compute an extension of the whole AF and use state-of-the-art algorithms to
recompute an extension of the reduced AF only.

Chapter 5. In this chapter we first tackle the problem of efficiently recomputing
sets of accepted arguments over dynamic Bipolar Argumentation Frameworks
(BAFs for short), namely frameworks allowing for both positive and negative in-
teractions between arguments. Focusing on a deductive interpretation of the sup-
port relation, we introduce an incremental approach that, given an initial BAF, an
initial extension for it, and an update, computes an extension of the updated BAF.
This is achieved by introducing a meta-argumentation transformation according
to which an initial BAF, as well as its extension and an update, are transformed
into a plain argumentation framework with a suitable initial extension and update.
Moreover, the proposed approach can be seamlessly applied to a more general
form of BAFs, namely Extended Bipolar Argumentation Frameworks (EAFs),
where defeasible supports and defeats are modelled by means of second-order
attacks (i.e., attacks toward elements of the support or attack relation).

Chapter 6. In this chapter we devise an efficient algorithm for computing the
skeptical preferred acceptance in dynamic AFs. More specifically, we investigate

12 1 Introduction

how the skeptical acceptance of an argument (goal) evolves when the given AF
is updated and propose an efficient algorithm for solving this problem.

Chapter 7. This chapter introduces key concepts behind structured argumen-
tation and presents one of its famous formalism called Defeasible Logic Pro-
gramming (DeLP for short). Then, it presents a technique for the incremental
computation of warranted arguments of dynamic DeLP programs, namely, pro-
grams whose set of rules may contain ”defeasible” rules that may change over
time thought updates.

Finally, conclusions and some directions for future work are drawn at the end of the
thesis.

All the algorithms that will be presented in the thesis were experimentally ana-
lyzed. Particularly, all experiments conducted in Chapters 3-6 were carried out on an
Intel Core i7-3770K CPU 3.5GHz with 12GB RAM running Ubuntu 16.04, while
experiments conducted in Chapter 7 were carried out on an Intel Core i7-3630QM
CPU 2.4GHz with 8GB RAM running Windows 8.1.

2

Fundamental Concepts for Abstract Argumentation

“Don’t raise your voice, improve your argument.”

– Desmond Tutu

We start by presenting in Section 2.1 the seminal Abstract Argumentation Frame-
work (AF) proposed in [61], whose basic concepts were extended in several ways, by
considering for instance other kinds of interaction between arguments. Particularly,
for each section, we present and discuss preliminary concepts behind each abstract
argumentation framework addressed in the thesis. For each of the proposed frame-
works, the notion of argumentation semantics (i.e., ways conclusion can be drawn)
and updates (i.e., adding/removing new/old knowledge in the framework) are pre-
sented.

2.1 Abstract Argumentation Frameworks

We assume the existence of a set Arg of arguments. An (abstract) argumentation
framework [61] (AF) is a pair 〈A,Σ〉, where A ⊆ Arg is a finite set whose elements
are referred to as arguments, and Σ ⊆ A × A is a binary relation over A whose
elements are called attacks. Thus, an AF can be viewed as a directed graph where
nodes correspond to arguments and edges correspond to attacks. Thus, an argument
is an abstract entity whose role is entirely determined by its relationships with other
arguments.

Example 2.1. Let A0 = 〈A0, Σ0〉 be an AF where A0 = {a, b, c, d, e, f, g, h}
andΣ0 = {(a, b), (b, a), (b, c), (c, c), (d, a), (d, e), (e, d), (b, e), (f, e), (g, d), (g, h),
(h, e), (h, f)}. The AF A0 is shown on Figure 2.1. 2

Given an AF 〈A,Σ〉 and arguments a, b ∈ A, we say that a attacks b iff (a, b) ∈ Σ,
and that a set S ⊆ A attacks b iff there is a ∈ S attacking b. We use S+ = {b | ∃a ∈
S : (a, b) ∈ Σ} to denote the set of all arguments that are attacked by S.

Moreover, we say that S ⊆ A defends a iff ∀b ∈ A such that b attacks a, there is
c ∈ S such that c attacks b. A set S ⊆ A of arguments is said to be:

14 2 Fundamental Concepts for Abstract Argumentation

b c

d e f

g h

a

Fig. 2.1: AF A0

st

pr

co

ad

cf

sst

Fig. 2.2: Relations among semantics

• conflict-free, if there are no a, b ∈ S such that a attacks b;
• admissible, if it is conflict-free and it defends all its arguments.

An argumentation semantics specifies the criteria for identifying a set of argu-
ments that can be considered “reasonable” together, called extension.

A complete extension (co) is an admissible set that contains all the arguments
that it defends.

A complete extension S is said to be:

• preferred (pr) iff it is maximal (w.r.t. ⊆);
• stable (st) iff it attacks every argument in A \ S;
• semi-stable (sst) iff S ∪ S+ is maximal (w.r.t. ⊆).
• grounded (gr) iff it is minimal (w.r.t. ⊆);
• ideal (id) iff it is contained in every preferred extension and it is maximal (w.r.t.
⊆).

Given an AF A and a semantics S ∈{co, pr, st, sst, gr, id}, we use ES(A)
to denote the set of S-extensions for A, i.e., the set of extensions for A according to
the given semantics S.

All the above-mentioned semantics except the stable admit at least one extension,
and the grounded and ideal admits exactly one extension [41, 61, 62]. Semantics
gr and id are called deterministic or unique status as |Egr(A)| = |Eid(A)| = 1,
whereas the other above recalled semantics are called nondeterministic or multi-
ple status. It is well-known that, for any AF A, each grounded extension is also
a complete extension (i.e., Egr(A) ⊆ Eco(A)). Moreover, the following relations
among different sets of extensions for each semantics holds: Eid(A) ⊆ Eco(A), and
Est(A) ⊆ Esst(A) ⊆ Epr(A) ⊆ Eco(A).

For a given AF, Figure 2.2 shows the relationship between the sets of extensions
prescribed by each semantics S ∈{co, pr, st, sst, id, gr}. Particularly, the set
of conflict-free (cf) sets (resp. preferred (pr) sets) includes the set of admissible
(ad) sets (resp. semi-stable (sst) sets), which in turn includes the set of complete
(resp. stable (st) extensions (co) extension. Finally, the set of grounded and ideal

2.1 Abstract Argumentation Frameworks 15

extensions are included in the set of complete extensions but they are not shown in
the figure as they may or not be included in the set of preferred extensions.

Example 2.2. The set of admissible sets for the AFA0 shown in Fig. 2.1 is {∅, {b}, {g},
{a, g}, {b, g}, {f, g}, {a, g, f}, {b, g, f}}, and ES(A0) with S ∈{co, pr, st, sst,
id, gr} is as reported in the second column of Table 2.1. 2

S ES(A0) ES(A)
co {{f, g}, {a, f, g}, {b, f, g}}{{g}, {a, g}, {b, f, g}}
pr {{a, f, g}, {b, f, g}} {{a, g}, {b, f, g}}
st {{b, f, g}} {{b, f, g} }
id {{f, g}} {{g}}
gr {{f, g}} {{g}}

Table 2.1: Sets of extensions for A0 and A = +(c, f)(A0).

2.1.1 Labelling and Status of arguments

The argumentation semantics can be also defined in terms of labelling [14]. A la-
belling for an AF A = 〈A,Σ〉 is a total function L : A → {IN, OUT, UNDECIDED}
assigning to each argument a label. L(a) = IN means that argument a is accepted,
L(a) = OUT means that a is rejected, while L(a) = UNDECIDED means that a is
undecided.

Let in(L) = {a | a ∈ A ∧ L(a) = IN}, out(L) = {a | a ∈ A ∧ L(a) = OUT},
and un(L) = {a | a ∈ A ∧ L(a) = UNDECIDED}. In the following, we also use the
triple 〈in(L), out(L), un(L)〉 to represent the labelling L.

Given an AF A = 〈A,Σ〉, a labelling L for A is said to be admissible (or legal)
if ∀a ∈ in(L) ∪ out(L) it holds that

(i) L(a) = OUT iff ∃ b ∈ A such that (b, a) ∈ Σ and L(b) = IN; and
(ii) L(a) = IN iff L(b) = OUT for all b ∈ A such that (b, a) ∈ Σ.

Moreover, L is a complete labelling iff conditions (i) and (ii) hold for all a ∈ A.
Between complete extensions and complete labellings there is a bijective map-

ping defined as follows: for each extension E there is a unique labelling L =
〈E,E+, A \ (E ∪ E+)〉 and for each labelling L there is a unique extension in(L).
We say that L is the labelling corresponding to E.

Example 2.3. Continuing Example 2.2, 〈{a, f, g}, {b, d, e, h}, {c}〉 is the labelling
corresponding to the preferred extension Epr ∈ Epr(A0) = {a, f, g}, as shown in
Figure 2.3. 2

16 2 Fundamental Concepts for Abstract Argumentation

b c

d e f

g h

a b c

d e f

g h

a

Fig. 2.3: Labelling L according to the preferred extensions Epr ∈ Epr(A0) =

〈{a, f, g}, {b, d, e, h}, {c}〉 and E
′

pr ∈ Epr(A0) = 〈{b, f, g}, {a, d, e, h}, {c}〉.
Black (resp., grey and white) nodes x are such that L(x) = IN (resp., OUT and
UNDECIDED).

In the following, we say that the status of an argument a w.r.t. a labelling L (or
its corresponding extension in(L)) is IN (resp., OUT, UNDECIDED) iff L(a) = IN
(resp., L(a) = OUT, L(a) = UNDECIDED). We will avoid to mention explicitly the
labelling (or the extension) whenever it is understood.

2.1.2 Skeptical acceptance

Given an AF A = 〈A,Σ〉 and an argument g ∈ A, and a semantics S, we say that
g is skeptically accepted w.r.t. A under semantics S iff for each S-extension E in
ES(A) it holds that g ∈ E.

Throughout this work, we will focus on the skeptical acceptance of a given argu-
ment under the preferred semantics, and thus we will avoid to explicitly mention the
semantics when referring to skeptical acceptance of an argument.

In the following, we use SAA(g) to denote the skeptical acceptance (i.e. either
true or false) of argument g w.r.t. AF A (under the preferred semantics).

Example 2.4. For AF A0 of Example 2.1, we have that the arguments skeptically
accepted are f , and g as they belong to the preferred extensions shown in Table 2.1.
Thus, SAA0(f) is true, and so is for SAA0(g), while for any other argument x,
SAA0

(x) =false as shown in Figure 2.4. 2

2.2 Bipolar Argumentation Frameworks

Bipolar argumentation frameworks (BAFs) extend Dung’s argumentation frame-
works to explicitly represent the notion of support between arguments, in addition to
that of attack. BAFs can be profitably used to model disputes between two or more
agents, with the aim of deciding the sets of arguments that should be accepted to
support a point of view in a discussion.

2.2 Bipolar Argumentation Frameworks 17

b c

d e f

g h

a

Fig. 2.4: Black (resp. white) arguments are
(resp. are not) skeptically accepted under
the preferred semantics (i.e., SAA0

(f) =
SAA0

(g) = true).

ba

d e

f

c

Fig. 2.5: BAFs B0 of Example 2.5.

We assume again the existence of a set Arg of arguments. An abstract bipolar
argumentation framework (BAF for short) [9] is a triple 〈A,Σ,Π〉, where (i) A ⊆
Arg, (ii) Σ ⊆ A × A, (iii) Π ⊆ A × A is a binary relation over A whose elements
are called supports, and (iv) Σ ∩Π = ∅. Thus, a Dung’s argumentation framework
(AF) [61] is a BAF of the form 〈A,Σ, ∅〉.

A BAF can be viewed as a directed graph where each node corresponds to an
argument and each edge in the graph corresponds to either an attacks or a support.
Given a BAF B, the bipolar interaction graph for B (denoted as GB) has two kinds of
edges: one for the attack relation (→) and another one for the support relation (⇒),
as shown in the following example.

Example 2.5. Consider a BAF B0 = 〈A0, Σ0, Π0〉 where:

• A0 = {a, b, c, d, e, f} is the set of arguments;
• Σ0 = {(a, c), (c, b), (b, d), (d, e), (e, d), (e, e),

(e, f)} is the set of attacks;
• Π0 = {(a, b)} is the set of supports;

The bipolar interaction graph GB0
is shown in Fig. 2.5.

2

Several interpretations of the notion of support have been proposed in the liter-
ature [58]. We focus on deductive support [36] which is intended to capture the fol-
lowing intuition: if argument a supports argument b then the acceptance of a implies
the acceptance of b, and thus the non-acceptance of b implies the non-acceptance
of a. Given this interpretation of support, the coexistence of the support and attack
relations in BAFs entails that new kinds of “implicit” attacks should be considered,
as explained in what follows.

Given a BAF 〈A,Σ,Π〉, a supported attack for an argument b ∈ A by argument
a1 ∈ A is a sequence a1Πa2Π . . .ΠanΣ b with n ≥ 1. Note that a direct attack
a1Σ b is a supported attack. Thus a supported attack is a (possibly empty) chain of
supports followed by an attack. Moreover, we say that there is a mediated attack for

18 2 Fundamental Concepts for Abstract Argumentation

a b c a b c

Supported attack Mediated attack

Fig. 2.6: Supported and mediated attacks.

argument a1 by argument b if there is an attack bΣan and a sequence of supports
a1Πa2Π . . .Πan with n ≥ 1. Thus, for a mediated attack the chain of supports
ends in an which is attacked by b. Supported and mediated attacks are illustrated in
Figure 2.6, where a chain consisting of only one support is considered. It is easy to
see that the BAF of Example 2.5 contains a supported attack from argument a to d,
and a mediated attack from argument c to a.1

2.2.1 Extensions

Given a BAF 〈A,Σ,Π 〉, we say that a set S ⊆ A set-attacks an argument b ∈ A iff
there exists a supported or mediated attack for b by an argument a ∈ S. We use S+

to denote the set of arguments set-attacked by S. Moreover, we say that a set S ⊆ A
defends an argument a ∈ A iff for each b ∈ A such that {b} set-attacks a, it is the
case that S set-attacks b (i.e., b ∈ S+).

Given a BAF 〈A,Σ,Π 〉, a set S ⊆ A is conflict-free iff there are no arguments
a, b ∈ S such that {a} set-attacks b. Moreover, a conflict-free set S ⊆ A is said to be
admissible iff it defends all of its arguments.

Example 2.6. Continuing with Example 2.5, for the BAF B0 it is easy to see that
{a} defends argument b (as {a} set-attacks c and {c} set-attacks b). The set {a, b}
is conflict-free as neither {a} set-attacks b nor {b} set-attacks a, while {a, d} is not
conflict-free as {a} set-attacks d (by means of the supported attack (a, d)). More-
over, S = {c, d, f} is an admissible set as it is conflict-free and S defends all of
its arguments: {c} defends itself from a by the mediated attack from c to a; {d}
is defended by c, and f is defended by d. The set of admissible sets for B0 is
{{∅}, {a}, {c}, {a, b}, {c, d}, {c, d, f}}. 2

Given a BAF 〈A,Σ,Π 〉, a preferred extension (pr) for it is an admissible set
which is a maximal (w.r.t ⊆). Furthermore, a conflict-free set S ⊆ A is a stable
extension (st), if and only if it set-attacks all the arguments in A \ S. (Note that this
implies that S is admissible).
1 Another kind of implicit attack which we do not consider because of the deductive inter-

pretation of support is the secondary attack [52], which occurs when in a BAF there is a
sequence bΣa1Πa2Π . . .Πan with n ≥ 1. Considering supported and secondary attacks
leads to an alternative interpretation of support [52]. However, when considering a deduc-
tive interpretation of support, secondary attacks may lead to counterintuitive results [58],
though they are useful in contexts where support is interpreted differently.

2.2 Bipolar Argumentation Frameworks 19

Given a BAF B and a semantics S ∈{pr, st}, we use ES(B) to denote the set
of extensions for B according to S. For the BAF B0 of Example 2.5, we have that the
set of the stable extensions is Est(B0) = {{c, d, f}}, while the set of the preferred
extensions is Epr(B0) = {{a, b}, {c, d, f}}. 2

2.2.2 Labelling and status of arguments

Following the approach of [14], where argumentation semantics have been charac-
terized in terms of labelling, we define a labelling function for BAFs. A labelling
for a BAF B = 〈A,Σ,Π〉 is a total function L : A → {IN, OUT, UNDECIDED}
assigning to each argument a label: L(a) = IN means that argument a is accepted,
L(a) = OUT means that a is rejected, while L(a) = UNDECIDED means that a is
undecided.

As for the case of AFs, we denote as in(L) = {a | a ∈ A∧L(a) = IN}, out(L) =
{a | a ∈ A∧L(a) = OUT}, and un(L) = {a | a ∈ A∧L(a) = UNDECIDED}. In the
following, we also use the triple 〈in(L), out(L), un(L)〉 to represent the labelling L.

Given a BAF B = 〈A,Σ,Π〉, a labelling L for B is said to be admissible (or
legal) if ∀a ∈ in(L) ∪ out(L) it holds that (i) L(a) = OUT iff ∃ b ∈ A such that
a ∈ {b}+ and L(b) = IN; and (ii) L(a) = IN iff L(b) = OUT for all b ∈ A such that
a ∈ {b}+. Moreover, L is a complete labelling iff conditions (i) and (ii) hold for all
a ∈ A.

Between complete extensions and complete labellings there is a bijective map-
ping defined as follows: for each extension E there is a unique labelling L =
〈E,E+, A\(E∪E+)〉 and for each labellingL there is a unique extension in(L). We
say that L is the labelling corresponding to E. For instance, considering the BAF B0
of Example 2.5, the labelling corresponding to the preferred extension E = {a, b} is
L = 〈{a, b}, {c, d}, {e, f}〉.

2.2.3 Meta-Argumentation Framework

The semantics of BAFs can be also given in terms of meta-argumentation frame-
works (i.e., Dung’s AFs) where additional (meta-)arguments and attacks are consid-
ered to model deductive support. The following construction, introduced in [36], will
be used as the basis for defining the meta-argumentation framework of our incremen-
tal approach.

Definition 2.7 (Meta-AF [36]). Given a BAF B = 〈A,Σ, Π〉, the meta-AF for B is
M = 〈Am, Σm〉 where:

i) Am = A ∪ {Xa,b, Ya,b | (a, b) ∈ Σ} ∪ {Za,b | (a, b) ∈ Π}
ii) Σm = {(a,Xa,b), (Xa,b, Ya,b), (Ya,b, b) | (a, b) ∈ Σ} ∪{(b, Za,b), (Za,b, a) |

(a, b) ∈ Π}

The meaning of meta-arguments Xa,b, Ya,b and Za,b is as follows. Xa,b represents
the fact that the corresponding attack (a, b) is “not active” in B—it belongs to an
extension for M iff a does not belong to an extension for B. On the other hand,

20 2 Fundamental Concepts for Abstract Argumentation

a
f

Xe,e

Za,b

d

Xb,d

Yb,d

b

Xe,f

Xa,c

Ya,c

Xd,e Yd,e e

Ye,d Xe,d

Ye,f

Ye,e

c

Xc,b

Yc,b

Fig. 2.7: Meta-AFM0 for the BAF B0 of Figure 2.5.

Ya,b represents the fact that (a, b) is “active” in B, and it belongs to an extension for
M iff argument b does not. Finally, meta-argument Za,b represents a support relation
between a and b: it does not belong to an extension forM iff the supported argument
b is accepted in the deductive model of support. As an example, the (interaction graph
of the) meta-AFM0 for the BAF B0 of Example 2.5 is shown in Figure 2.7.

The following proposition characterizes the relationship between the extensions
of a given BAF and the extensions of the corresponding meta-AF.

Proposition 2.8 ([5]). Let B = 〈A,Σ,Π〉 be a BAF, M the meta-AF for B0, and
S ∈ {pr,st} a semantics. For each extension E ∈ ES(B), there is an extension
Em ∈ ES(M) such that E = Em ∩A, and vice versa.

Example 2.9. For the meta-AFM0 of the BAF B0 in Example 2.5, we have the fol-
lowing preferred extensions (which are also stable extensions): (i) {a, b, Ya,c, Xc,b,
Yb,d, Xd,e}, which corresponds to the extension {a, b} for BAF B0 of Example 2.5,
and (ii) {c, d, f,Xa,c, Yc,b, Xb,d, Yd,e, Xe,d, Xe,e, Xe,f , Za,b}, which corresponds to
the extension {c, d, f} for B0. 2

2.3 Second Order Attacks

Second-order attacks [36] for BAFs are, (i) attacks from an argument to another
attack, and (ii) attacks from an argument to a support. This allows the representation
of both attacks towards the attack relation [15, 95] and a kind of defeasible support
where the support itself can be attacked.2

In the following, after presenting the formal definition of BAFs extended with
second-order attacks, as well as the formalization of updates for the extended frame-
work, we build on the definition of meta-AF introduced in [36] for encoding second-
order attacks.

As discussed before, an argument a deductively support the argument b if the
acceptance of a implies the acceptance of b. In this section we extend our technique

2 The technique can be further extended to consider (second-order) attacks from an attack to
another attack [36].

2.3 Second Order Attacks 21

ba

d e

f

c

Fig. 2.8: EAF EB0 of Example 2.10.

by considering also defeasible support, which means that the implication holds only
by default and it can be attacked.

An Extended Bipolar Argumentation Framework (EAF for short) [36] is a
quadruple 〈A,Σ,Π,∆〉, where 〈A,Σ,Π〉 is a BAF and ∆ is a binary relation over
A× (Σ ∪Π) whose elements are called second-order attacks.

In the following, a second-order attack from an argument a to an attack (b, c)
will be denoted as (a � (b → c)), while an attack from an argument a to a support
(b, c) will be denoted as (a� (b⇒ c)).

Example 2.10. EB0 = 〈A0, Σ0, Π0, ∆0〉 is an EAF where ∆0 = {(a, (b, d))} is the
set of second-order attacks. Its graph is shown in Fig. 2.8, where second-order attacks
are drawn using double-headed arrows. 2

The semantics of an EAF can be given by means of the following meta-AF, which
extends that in Definition 2.7 by taking into account second order attacks.

Definition 2.11 (Meta-AF with Second-Order Attacks [36]). The meta-AF for
EB = 〈A,Σ,Π,∆〉 isM = 〈Am, Σm〉 where:

Am = A ∪ {Xa,b, Ya,b | (a, b) ∈ Σ} ∪ {Za,b | (a, b) ∈ Π} ∪
{Xa,(b,c), Ya,(b,c) |(a, (b, c))∈ ∆, (b, c) ∈ Σ}

Σm = {(a,Xa,b), (Xa,b, Ya,b), (Ya,b, b) |(a, b) ∈ Σ} ∪
{(b, Za,b), (Za,b, a) | (a, b) ∈ Π} ∪
{(a,Xa,(b,c)), (Xa,(b,c), Ya,(b,c)), (Ya,(b,c), Yb,c) |

(a, (b, c)) ∈ ∆, (b, c) ∈ Σ} ∪
{(a,Xa,(b,c)), (Xa,(b,c), Ya,(b,c)), (Ya,(b,c), Zb,c)|(a, (b, c))∈∆, (b, c)∈ Π}

Thus, an attack of the form (a � (b → c)) is encoded as an attack towards the
meta-argument Yb,c (that represents the fact that (b, c) is “active”), while an attack
of the form (a � (b ⇒ c)) is encoded as an attack toward the meta-argument Zb,c.
The meta-AF for the EAF of Example 2.10 is shown in Fig. 2.9.

Analogously to what stated in Proposition 2.8, extensions for an EAF EB are
obtained from extensions for its meta-AF: E is an S-extension for EB iff Em ∈
ES(M) and E = Em ∩ A. Using this relationship, the notion of labelling can be
extended to EAFs as well.

Example 2.12. For the meta-AF M of Fig. 2.9, we have the following preferred
extensions (which are also stable extensions): (i) {a, b, d, f, Ya,c, Xc,b, Yd,e,

22 2 Fundamental Concepts for Abstract Argumentation

a
f

Xe,e

Za,b

d

Xb,d

Yb,d

b

Xe,f

Xa,c

Ya,c

Xd,e Yd,e e

Ye,d Xe,d

Ye,f

Ye,e

c

Xc,b

Yc,b

Xa,(b,d) Ya,(b,d)

Fig. 2.9: Meta-AF for the the EAF of Example 2.10.

Ya,(b,d), Xe,e, Xe,d, Xe,f , }, which corresponds to the extension {a, b, d, f} of the
EAF of Example 2.10, and (ii) {c, d, f, Xa,c, Yc,b, Za,b, Xb,d, Yd,e Xe,e, Xe,d,
Xe,f , Xa,(b,d)}, which corresponds to the extension {c, d, f} for the EAF of Ex-
ample 2.10. 2

2.4 Dynamic Argumentation Frameworks

Although most research in argumentation focused on static frameworks (i.e., frame-
works not changing over the time), argumentation frameworks are often used to
model dynamic systems [19, 20, 57, 71, 89]. In fact, usually an AF represents a tem-
porary situation, and new arguments, attacks, and supports can be added/retracted to
take into account new available knowledge. For instance, for disputes among users
of online social networks [6, 86], arguments, attacks, and supports are continuously
added/retracted by users to express their point of view in response to the last move
made by the adversaries (often disclosing as few arguments/attacks as possible).

2.4.1 Updates

Performing an update on an AF A0 means modifying it into an AF A by adding or
removing arguments or attacks.

We use +(a, b), with a, b ∈ A0 and (a, b) 6∈ Σ0, (resp.−(a, b), with (a, b) ∈ Σ0)
to denote the addition (resp. deletion) of an attack (a, b), and u(A0) to denote the
application of update u = ±(a, b) to AFA0 (where ± means either + or −). Apply-
ing an update u to an AF implies that its semantics (set of extensions or labellings)
changes, as shown by Table 2.1 which reports the sets of extensions for the AFs of
Figure 2.1 and Figure 2.10 before and after performing the update +(c, f).

Concerning the addition (resp. deletion) of a set of isolated arguments, it is easy
to see that if A is obtained from A0 through the addition (resp. deletion) of a set
S of isolated argument, then, let E0 be an extension for A0, E = E0 ∪ S (resp.
E = E0 \ S) is an extension for A that can be trivially computed. Of course, if
arguments in S are not isolated, for addition we can first add isolated arguments and

2.4 Dynamic Argumentation Frameworks 23

b c

d e f

g h

a

Fig. 2.10: AF A = +(c, f)(A0)

then add attacks involving these arguments, while for deletion we can first delete all
attacks involving arguments in S. Thus we do not consider these kinds of update in
the following.

Multiple Updates

Performing a set of updates U = {+(a1, b1), . . . ,+(an, bn), −(a′1, b′1), . . . , −(a′m,
b′m)} on A0 can be reduced to performing a single update +(v, w) on an AF whose
definition depends on both the set of updates U and the initial S-extension E0, as
detailed in what follows.

Given a set U of updates for an AF A0, and an S-extension E0 for A0, we use
U∗ to denote the subset of (relevant updates) U that does not contain those updates
such that the initial extension (under a given semantics) is still an extension for the
updated AF. We will see it more in detail on Proposition 4.1.

The AF AUE0
for applying a set U∗ of relevant updates E0 is obtained from A0

by (i) adding arguments xi, yi and the chain of attacks between ai and bi as shown
in Figure 2.11, for each update +(ai, bi) ∈ U∗; (ii) replacing each attack (a′j , b

′
j)

in A0 with the chain of attacks between a′j and b′j as shown in Figure 2.11, for each
update −(aj , bj) ∈ U∗; and (iii) adding the new arguments v, w,w′ and the attacks
involving them as shown in Figure 2.11. The following definition considers a general
set of updates which includes also irrelevant updates.

Definition 2.13 (AF for applying a set of updates). Let A0 = 〈A0, Σ0〉 be an AF,
and E0 an S-extension for A. Let Σ+ ⊆ (A0 × A0) \ Σ0, and Σ− ⊆ Σ0 such
that Σ+ ∩ Σ− = ∅ be two sets of attacks. Let U = {+(ai, bi) |(ai, bi) ∈ Σ+} ∪
{−(aj , bj) |(aj , bj) ∈ Σ−} be a set of updates, and U∗ ⊆ U be the set of relevant
updates w.r.t. E0 and S. Then, AUE0

= 〈AU , ΣU 〉 denotes the AF obtained from A
as follows:

• AU = A0 ∪ {xi, yi | +(ai, bi) ∈ U∗} ∪{x′j , y′j | −(aj , bj) ∈ U∗} ∪{v, w,w′},
where all xi, yi, x′j , y

′
j , w, w′, and v are new arguments not occurring in A, and

24 2 Fundamental Concepts for Abstract Argumentation

w
+(v, w)

w′

a′m x′m y′m b′m

a′1 x′1 y′1 b′1a1 x1 y1 b1

an xn yn bn

v

Fig. 2.11: Simulating multiple updates by a single one.

• ΣU = (Σ0 \Σ−) ∪ {(ai, bi) |+ (ai, bi) ∈ (U \ U∗)}∪
{(ai, xi), (xi, yi), (yi, bi) | + (ai, bi) ∈ U∗} ∪
{(aj , x′j), (x′j , y′j), (y′j , bj) | − (aj , bj) ∈ U∗} ∪
{(w, yi) | + (ai, bi) ∈ U∗} ∪
{(w′, y′j) | − (aj , bj) ∈ U∗} ∪ {(w,w′)}.

The following theorem states that every extension of the AF obtained by performing
on A0 all the updates in U corresponds to an extension of +(v, w)(AUE0

), where
+(v, w) is a single attack update.

Theorem 2.14. Let A0 = 〈A0, Σ0〉 be an AF, E0 be an S-extension of A0 with
S ∈ {co,pr,st,gr}, and U a set of updates. Let A be the AF obtained from A0

by performing all updates in U on it. Then, for any semantics in S, E ∈ ES(A) iff
there is EU ∈ ES(+(v, w)(AUE0

)) such that EU ∩A0 = E.

Proof. Given E ∈ ES(A), let EU be as follows.
EU = E ∪ {v, w′} ∪ {xi|xi ∈ AU0 ∧ (ai, xi) ∈ ΣU

0 ∧ ai ∈ E+} ∪
{x′i|x′i ∈ AU0 ∧ (a′i, x

′
i) ∈ ΣU

0 ∧ a′i ∈ E+} ∪
{yi|yi ∈ AU0 ∧ (ai, xi), (xi, yi) ∈ ΣU

0 ∧ ai ∈ E}.
Let L and LU be the labelling corresponding to E andEU , respectively. Observe

that i) LU (yi) = LU (ai) since yi is attacked only by argument w whose status is
OUT and argument xi whose status is IN (resp., OUT, UNDECIDED) if the status of ai
is OUT (resp., IN, UNDECIDED); ii) LU (y′i) = OUT. Condition i) means that the pres-
ence of attack (ai, bi) in A can be simulated by attack (yi, bi) in AF +(u, v)(AU0);
Condition ii) means that the absence of attack (a′i, b

′
i) inA can be simulated by attack

(y′i, b
′
i), with y′i being OUT, in the AF +(u, v)(AU0). Therefore (a) LU (ai) = L(ai)

since the attackers of ai in +(u, v)(AU0) are either already present inA or replaced in
(resp. deleted from) +(u, v)(AU0) by means of arguments yi whose status is the same
as that of the attackers in A (resp. y′i whose status is OUT); essentially, the status of
the other attackers of ai is equivalent w.r.t. the two labellings; similarly, we have that
(b) LU (a′i) = L(a′i); (c) LU (bi) = L(bi) since LU (yi) = LU (ai) = L(ai); (d)
LU (b′i) = L(b′i) since LU (y′i) = OUT. Given this, it is easy to check that EU is an
extension for +(u, v)(AU0) iff EU ∩A0 is an extension for A. 2

2.4 Dynamic Argumentation Frameworks 25

2.4.2 Updates for BAFs

An update u for a BAF B0 allows us to change B0 into a BAF B by adding or
removing an argument, an attack, or a support. The addition (resp., deletion) of an
argument a will be denoted as +a (resp. −a), whereas the addition (resp., deletion)
of an attack from a to b will be denoted as +(a → b) (resp., −(a → b)). Moreover,
the addition (resp., deletion) of a support from a to b will be denoted as +(a ⇒ b)
(resp., −(a⇒ b)).

We will use u(B0) to denote the BAF resulting from the application of update u
to the initial BAF B0. For instance, for the BAF B0 = 〈A0, Σ0, Π0〉 of Example 2.5,
if u = +(f ⇒ b), we have that u(B0) = +(f ⇒ b)(B0) = 〈A0, Σ0, Π0 ∪{(f, b)}〉;
on the other hand, if u = −(b→ d), we have that u(B0) = 〈A0, Σ0 \ {(b, d)}, Π0〉.

Applying an update u to a BAF implies that its semantics (set of extensions
or labellings) may change. For the BAF B0 of Example 2.5 and the update u =
+(f ⇒ b), we have that the set of the stable extensions for the updated BAF B =
+(f ⇒ b)(B0) is Est(B) = {{c, d}}, while the set of the preferred extensions is
Epr(B) = {{a, b}, {c, d}}. In fact, the addition of the support between f and b entails
that additional implicit attacks must be considered: a supported attack between f and
d, and a mediated one between c and f .

In the following, for the sake of the presentation, we consider only feasible up-
dates which are defined as follows. Adding an argument as well as removing an
attack/support are feasible updates. The deletion of an argument is feasible only
if a is isolated, that is there is no argument b attacking/supporting a or being at-
tacked/supported by a, where a is not necessarily distinct from b. The addition of an
attack (resp., support) between a and b is feasible only if a and b are arguments of
the initial BAF B0 and there is no already a support (resp. attack) between a and b in
B0.

Clearly, general updates can be simulated by a sequence of feasible updates.
For instance, a non isolated argument a can be deleted after deleting all attacks and
supports involving a (by performing a sequence of feasible updates). Analogously,
adding an attack (resp., a support) between an argument a in B0 and a fresh argument
b 6∈ B0 can be simulated as a sequence of updates of the form +b,+(a → b) (resp.,
+b,+(a⇒ b)).

Finally, observe that if a BAF B is obtained from B0 through the addition (resp.
deletion) of a set S of isolated argument, then, let E0 be an extension for B0, it is the
case that E = E0 ∪ S (resp. E = E0 \ S) is an extension for B that can be easily
computed. Thus, in the following we do not discuss further updates of the form +a
or −a. That is, we will focus on updates of the forms ±(c → d) and ±(e ⇒ f),
where ± means either + or −.

2.4.3 Second-Order Updates

In addition to the kinds of updates introduced in Section 2.4.2, for EAFs we also
consider additions and deletions of second-order attacks. Specifically, the addition
(resp., deletion) of a second-order attack from an argument a to an attack (b, c) will

26 2 Fundamental Concepts for Abstract Argumentation

be denoted as +(a � (b → c)) (resp., −(a � (b → c))). Similarly, if (b, c) is a
support, then the update will be denoted as +(a � (b ⇒ c)) (resp., −(a � (b ⇒
c))).

3

Extensions Enumeration Problem

“Time spent arguing is, oddly enough, almost never wasted.”

– Christopher Hitchens

Enumerating the sets of arguments (i.e., extensions) prescribed by an argumenta-
tion semantics is arguably one of the most challenging problems for AFs, and this is
particularly the case for the well-known preferred and semi-stable semantics.

In this chapter, we propose an algorithm for efficiently computing the set of pre-
ferred and semi-stable extensions of a given AF. The proposed technique relies on
first computing the ideal (resp. grounded) extension for the given AF, and then using
it to prune some arguments so that a smaller AF is obtained. Finally, we use state-
of-the-art solvers for enumerating the preferred (resp. semi-stable) extensions of the
pruned AF, and then return the extensions of the input AF after obtaining them from
those of the pruned AF.

We experimentally compared the technique with the solvers of the International
Competition on Computational Models of Argumentation, and found that the pro-
posed approach is orders of magnitude faster than the computation from scratch.

3.1 Computing Preferred and Semi-Stable Extensions

Although the idea underlying AFs is very simple and intuitive, most of the argu-
mentation semantics proposed so far suffer from a high computational complex-
ity [63, 65, 68, 73, 74]. In particular, the enumeration problem of AFs (i.e., the
problem of computing all extensions according to some semantics) is intractable for
several argumentation semantics [64, 87], including the well-known preferred and
semi-stable semantics [39, 43].

Complexity bounds and evaluation algorithms for AFs have been deeply inves-
tigated in the literature, and the International Competition on Computational Mod-
els of Argumentation (ICCMA) 1 has been established for promoting research and
1 http://argumentationcompetition.org

28 3 Extensions Enumeration Problem

development of efficient algorithms for computational models of AFs. Challenging
computational tasks of ICCMA are EE-pr and EE-sst, that is, enumerating all the
extensions of a given AF under the preferred and semi-stable semantics, respectively.

In this chapter, we propose an approach for scaling up the computation of the EE-
pr and EE-sst problems. The approach enables us to make improvements over the
performance of the solvers for EE-pr and EE-sst.

The main contributions of the chapter are as follows:

• We define the concept of pruned AF (resp. cut-AF) that allows us to compute all
the preferred (resp. semi-stable) extensions by focusing only on a smaller AF. In
particular, the pruned (resp. cut-) AF is built by removing from the whole AF the
arguments (as well as their relationships) belonging to the ideal (resp. grounded)
extension, which is an appropriate set of arguments contained in every preferred
(resp. semi-stable) extensions [63].

• We introduce an efficient algorithm for computing all the preferred (resp. semi-
stable) extensions. The algorithm enables the computation of the preferred (resp.
semi-stable) extensions by focusing only on the pruned (resp. cut-) AFs and using
state-of-the-art AF solvers.

• We perform a thorough experimental analysis showing the effectiveness of the
proposed approach. We compare the technique with the solver that participated
at the ICCMA’17 competition for the computational task EE-pr (resp. -sst),
and show that the technique is on average two orders of magnitude faster than
the computation from scratch.

3.2 Enumerating Preferred Extensions

In this section, we provide an approach for efficiently enumerating all the preferred
extensions of a given AF. As example consider the following AF.

Example 3.1. The pair A0 = 〈A0, Σ0〉 where A0 = 〈{a, b, c, d, e, f, g} and Σ0 =
{(a, b), (b, a), (b, b), (a, c), (a, e), (d, c), (d, e), (f, c), (f, e), (f, g), (g, f)}〉 is an
AF, and the corresponding graph is shown in Figure 3.1(a). Moreover, we have that
the grounded extension ofA0 is Egr = {d} (i.e., Egr(A0) = {{d}}), while the ideal
extension is Eid = {a, d} (i.e., Eid(A0) = {{a, d}}). Moreover, the set of preferred
extensions is Epr(A0) = {{a, d, f}, {a, d, g}}. 2

It is well-known that, for any AFA and semantics S ∈{pr,gr,id}, it is the case
that ES(A) ⊆ Eco(A), and let Egr and Eid be the grounded and ideal extensions,
for every E ∈ Epr(A), it holds that Egr ⊆ Eid ⊆ E. Indeed, in the example above,
we have that Egr = {d} ⊆ Eid = {a, d} ⊆ {a, d, f} and Egr = {d} ⊆ Eid =
{a, d} ⊆ {a, d, g}.

The approach we propose relies on first computing the ideal extension and then
using it to define a smaller AF, called pruned AF, to be used as the starting point for
enumerating the preferred extensions.

3.2 Enumerating Preferred Extensions 29

gf

dc

ba

e

gf

(a) (b)

Fig. 3.1: (a) AF A0, (b) AF Pruned(A0).

Definition 3.2 (Pruned AF). Let A = 〈A,Σ〉 be an AF, and Eid the ideal extension
for A. The pruned AF for A is Pruned(A) = 〈Ap, Σp〉 where:

• Ap = A \ (Eid ∪ E+
id);

• Σp = Σ \ {(a, b) | a ∈ (Eid ∪ E+
id) or b ∈ (Eid ∪ E+

id)}.
Thus, the pruned AF is obtained by removing from the initial AF all the argu-

ments belonging to the ideal extension as well as the arguments attacked by some
argument in the ideal extension. Consistently with this, all the attacks towards or
from the arguments removed are deleted as well.

Example 3.3. Continuing with Example 3.1, since Eid = {a, d}, we have that
Pruned(A0) = 〈Ap, Σp〉 where:

• Ap = A0 \ ({a, d} ∪ {b, c, e}) = {f, g}, and
• Σp = Σ0 \ {(a, b), (b, a), (b, b), (a, c), (a, e), (d, c), (d, e), (f, c), (f, e)} =
{(f, g), (g, f)}.

The graph corresponding to the pruned AF is shown in Figure 3.1(b).
2

Observe that computing the pruned AF can be accomplished in polynomial time
w.r.t. the size (i.e., number of arguments/attacks) of the initial AF.

The following theorem states that every preferred extension E of an AF A one-
to-one corresponds to a preferred extension of the AF Pruned(A), and we can obtain
a preferred extension of the whole AF by joining a preferred extension of the pruned
AF with the ideal extension of A.

Theorem 3.4 (Pruned-AF). Let A = 〈A,Σ〉 be an AF, Eid the ideal extension for
A, and Pruned(A) = 〈Ap, Σp〉 the pruned AF for A. Then, E ∈ Epr(A) iff E =
Eid ∪ Ep where Ep ∈ Epr(Pruned(A)).

30 3 Extensions Enumeration Problem

Proof. (Sketch) The result follows from the facts that (i) the ideal extension Eid
of an AF A is contained in every preferred extension E for A, that is Eid ⊆⋂
E∈Epr(A)E, and (ii) removing attacks of the form (a, b) such that b ∈ Eid (for

which it holds that a 6∈ Eid and a 6∈ E) preserves any preferred extension E. Let
A′ = 〈A,Σ \ {(a, b) | b ∈ Eid}〉. It can be checked that Epr(A) = Epr(A′). Indeed,
Eid is contained in every preferred extension E′ for A′, every argument in E+

id does
not belong to E′, and E+

id does not influence the acceptance status of other argu-
ments. Every preferred extension of A′ consists of Eid union a preferred extension
of Pruned(A), which is the part ofA′ (or, equivalently, ofA) consisting of the argu-
ments whose acceptance status is not entailed by Eid. Finally, the statement follows
by observing that Epr(A) = Epr(A′). 2

Example 3.5. Continuing from Example 3.3, set of preferred extensions of the pruned
AF is Epr(Pruned(A)) = {{f}, {g}}. Using the result of Theorem 3.4, we obtain
that Epr(A) = {{f} ∪ Eid, {g} ∪ Eid}, where Eid = {a, d}. Thus, we obtain the
preferred extensions {a, d, f} and {a, d, g}. 2

It is worth noting that if the ideal extension is empty, then the pruned AF coin-
cides with the whole AF, and the result of Theorem 3.4 becomes trivial. We discuss
how to deal with this case in the next section.

3.2.1 Algorithm

The pseudo-code of the algorithm for computing the set of preferred extensions of
an AF is shown in Algorithm 1. It takes as input an AF A, and a percentage value k
that is a parameter used for deciding when the computation should be carried out by
using the pruned AF or not. In fact, in some cases, such as when the ideal extension
of the input AF is empty, the overhead of computing the ideal extension of the input
AF may not pay off because (i) computing the ideal extension is costly [63] and
(ii) computing the preferred extensions over the pruned AF would cost the same
as computing the extension on the initial AF (as discussed earlier, the pruned AF
coincides with the whole AF if the ideal extension is empty).

Thus, we use parameter k to decide when computing or not the ideal extension
and the pruned AF. In particular, if the grounded extension of the given AF is larger
than k% of the number of arguments in the AF, then the ideal extension (and the
pruned AF) is computed; otherwise, the preferred extensions are directly computed
on the whole AF from scratch. Here, the grounded extension plays a role for two rea-
sons: first, since the ideal extension is a superset of the grounded extension, the fact
that the grounded extension is large enough implies that the ideal extension is large
too; second, computing the grounded extension is polynomial-time (while comput-
ing the ideal extension is hard), and this suggests that the overhead of computing the
grounded extension of the input AF is likely to pay off—in Section 3.2.2 we thor-
oughly discuss the results of experiments where different values of k are considered,
including k = 0% which means forcing the algorithm to compute the ideal extension
and the pruned AF in any case.

3.2 Enumerating Preferred Extensions 31

Algorithm 1 ScaleEE(A, k)
Input: AF A = 〈A,Σ〉,

A percentage value k.
Output: Set Epr(A) of preferred extensions of A.
begin
1: Egr =GR-Solver(A)
2: if |Egr| ≥ k · |A| then
3: Eid = ID-Solver(A)
4: Ap = Pruned(A)
5: Epr(Ap) =PR-Solver(Ap)
6: Epr(A) = {E | E = Eid ∪ Ep, where Ep ∈ Epr(Ap)}
7: else
8: Epr(A) =PR-Solver(A)
9: return Epr(A)

end.

Algorithm 1 works as follows. It first computes the grounded extension of the
given AF A (Line 1), and then it checks if the size of the grounded extension is
bigger than or equal to k% of the number of the arguments of A (Line 2). If this
holds, the algorithm proceeds by computing the ideal extension ofA (Line 3), which
is then used to compute the pruned AF (Line 4). Next, an external AF-solver PR-
Solver is called for enumerating the set of extensions of the pruned AF (Line 5),
from which the extensions of the whole AF are finally computed at Line 6 using the
result of Theorem 3.4. However, if at Line 2 the size of the grounded extension is
smaller than k% of the number of the arguments of A, then the set of extensions
of A is computed from scratch by calling the external solver PR-Solver with input
the whole AF (Line 8). Finally, the set of extensions Epr(A) computed by using the
pruned AF (Lines 3–6) or not (Line 8) is returned.

Example 3.6. Continuing with Example 3.5, if k = 0% then the condition at Line
2 trivially holds since |Egr| ≥ 0 for every AF. Therefore, the ideal extension
Eid = {a, d} is computed at Line 3, and the pruned AF Ap = Pruned(A) =
〈{f, g}, {(f, g), (g, f)}〉 is computed at Line 4. Next, the set of all preferred ex-
tensions Epr(Ap) = {{f}, {g}} of the pruned AF is computed (Line 5), and the
set of preferred extensions of the whole AF is computed at Line 6 by combin-
ing the arguments in the ideal extension with those in the preferred extensions
of the pruned AF. Therefore, the output of the algorithm is obtained as follows:
Epr(A) = {{{a, d} ∪ {f}}, {{a, d} ∪ {g}}} = {{a, d, f}, {a, d, g}}.

Considering now the case that k = 5%, we have again that |Egr| ≥ k · |A| (since
1 ≥ 0.05 · 7 = 0.35), and thus the execution of Algorithm 1 is again as above.

Finally, consider the case that k = 20% for which we have that |Egr| 6≥ k ·
|A| (since 1 6≥ 0.2 · 7 = 1.4). Thus Algorithm 1 directly computes the set Epr(A)
of preferred extensions by calling the solver PR-Solver with input the whole AF
(Line 8). 2

32 3 Extensions Enumeration Problem

Dataset
A1 A2 A3

Number of AFs 23 25 43
Min number of arguments 12 61 40
Max number of arguments 528 1.200 5.700
Min number of attacks 18 97 72
Max number of attacks 3.300 184.000 690.000
Average degree 4 21 22
Average density 0.04 0.05 0.04

Table 3.1: Datasets’ properties.

The following theorems states that Algorithm 1 is sound and complete, provided
that the external solvers return the correct results.

Theorem 3.7. Given an AF A, if GR-Solver, ID-Solver, and PR-Solver are sound
and complete, then Algorithm 1 computes the set Epr(A) of preferred extensions of
A.

Proof. (Sketch) If |Egr| < k · |A| then the algorithm returns the set of preferred ex-
tensions by calling PR-Solver(A) (Line 8), which is a sound and complete strategy.
Otherwise, |Egr| ≥ k · |A| and the algorithm returns the set of preferred extensions
by using result of Theorem 3.4, from which the statement follows. 2

3.2.2 Implementation and Experiments

We implemented a C++ prototype and compared Algorithm 1 with ArgSemSAT [55],
the solver that won the ICCMA’17 competition for the task EE-pr which consists in
determining all the preferred extensions of a given AF.

Datasets. We used benchmark AFs from the EE-pr track of ICCMA’17. Specifi-
cally, we used the AFs in the datasets named A1, A2, and A3 having more than one
preferred extension. Table 3.1 reports the number of AFs in each dataset, the range
of the number of arguments/attacks in the AFs, as well as the average degree (num-
ber of attacks per argument) and average density (number of actual attacks over the
number of the attacks in the complete AF).

Methodology. For every AF A in each dataset, we first computed the set of all
the preferred extensions of A by calling Algorithm 1, where the following external
solvers were used:

• GR-Solver: CoQuiAAS [88], the winner of ICCMA’17 track for computing the
grounded extension;

• ID-Solver: pyglaf [7], the winner of ICCMA’17 track for computing the ideal
extension;

3.2 Enumerating Preferred Extensions 33

Dataset
Percentage k A1 A2 A3
0% 13.43 299 637.28
5% 13.51 286 637.35
10% 13.57 281 572
20% 13.52 205 384

Table 3.2: Average improvement for different values of parameter k over the three
datasets.

• PR-Solver: ArgSemSAT, the winner of ICCMA’17 track for computing all pre-
ferred extensions.

Then, the amount of time required by Algorithm 1 was compared with that required
by ArgSemSAT to compute all preferred extension over the given AFA from scratch.

Results. Figure 3.2 reports the average improvement (log scale) obtained by Algo-
rithm 1 over the computation from scratch for the AFs in the datasets A1 (left-hand
side), A2 (middle), and A3 (right-hand side), and for k = 0% (first row), k = 5%
(second row), k = 10% (third row), and k = 20% (fourth row).

Specifically, given an AFA and a percentage value k, we measured the improve-
ment as follows:

improvement(A, k) = running time of ArgSemSAT with input A
running time of ScaleEE(A, k) (3.1)

In Figure 3.2, triangular-shaped data points (coloured green) correspond to AFs hav-
ing a grounded extension larger than or equal to k% of the number of the arguments.
In these cases, the ideal extension and then the pruned AF is computed by executing
Lines 3–6 of Algorithm 1. Squared-shaped data points (coloured red) represent AFs
having a grounded extension smaller than k% of the number of the arguments, and
thus the pruned AF is not computed as Line 8 of Algorithm 1 is executed.

For each diagram in Figure 3.2, a solid black line representing the average im-
provement obtained for the considered dataset and value of k is reported. More-
over, to easy readability, we also report a dashed grey line corresponding to average
improvement equal to 1. Clearly, an improvement strict less than 1 means that the
overall overhead of computing the grounded extension, and eventually the ideal ex-
tension, does not pay off. However, when the improvement is close to 1, the overhead
is negligible.

From the results in Figure 3.2, we can draw the following conclusions:

• Algorithm 1 significantly outperforms the competitor that computes the preferred
extensions from scratch. In fact, the average improvement (see the solid black
line in the diagrams in Figure 3.2 and the detailed values in Table 3.2) is greater
than 10, 200, and 380 over the datasets A1, A2, and A3, respectively, mean-

34 3 Extensions Enumeration Problem

Dataset A1 Dataset A2 Dataset A3

k = 0%

10−1

100

101

102

103

104

10 100 600
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning

10−1

100

101

102

103

104

60 100 500 1000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning

10−1

100

101

102

103

104

40 100 1000 6000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning

k = 5%

10−1

100

101

102

103

104

10 100 600
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

60 100 500 1000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

40 100 1000 6000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

k = 10%

10−1

100

101

102

103

104

10 100 600
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

60 100 500 1000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

40 100 1000 6000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

k = 20%

10−1

100

101

102

103

104

10 100 600
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

60 100 500 1000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

10−1

100

101

102

103

104

40 100 1000 6000
N. of Arguments

ArgSemSAT/ScaleEE w/ pruning
ArgSemSAT/ScaleEE w/o pruning

Fig. 3.2: Improvement (i.e. the running time of ArgSemSAT over the running time
of Algorithm 1) for k = 0% (first row), k = 5% (second row), k = 10% (third
row), and k = 20% (fourth row), over the datasets A1 (left-hand side), A2 (middle),
and A3 (right-hand side). Triangular-shaped data points (coloured green) represent
AFs having a grounded extension larger than or equal to k% of the number of the
arguments, and thus the pruned AF is computed by executing Lines 3–6 of Algo-
rithm 1. Squared-shaped data points (coloured red) represent AFs having a grounded
extension smaller than k% of the number of arguments, and thus the pruned AF is
not computed (Line 8 of Algorithm 1 is executed).

3.3 Enumerating Semi-Stable Extensions 35

ing that Algorithm 1 is on average at least 10, 200, and 380 times faster than
ArgSemSAT.

• The larger the average degree of the AFs (see Table 3.1), the bigger the (average)
improvement obtained. In particular, for the datasets A2 and A3, this implies
that the amount of time required decreases from dozens of minutes (computation
from scratch) to a few seconds (Algorithm 1).

• The average improvement remains high for k = 0%, that is, when computing
both the ideal extension and the pruned AF irrespectively of the size of the
grounded extension. However, the number of AFs for which the improvement
is too lower than 1 decreases if k > 0%. In particular, for the datasets A2 and
A3, using k = 5% is enough for avoiding all the cases for which the improve-
ment is significantly lower than 1, while using k = 10% avoids many undesirable
cases for the datasets A1. Thus, using k greater than zero allows us to reduce the
overhead due to the computation of the ideal extension and the pruned AF.

• Although increasing the value of k avoids cases where the proposed approach
may work worse than the computation from scratch, using too high values of k
deteriorates performances on average because the pruned AF is not built even
when it would be helpful. In fact, for the datasets A2 and A3, using k = 10% (or
k = 20%) entails that the pruned AF is not built in vain for the AFs whose im-
provements are shown as green data points in Figure 3.2 for k = 5% and become
coloured red when passing to k = 10% (since increasing k entails that pruned
AF is no longer computed). A similar behavior can be observed in Figure 3.2
when increasing k from 10% to 20% for the dataset A1.

• All in all, the best trade-off between paying the cost of computing the ideal ex-
tension along with the pruned AF and risking to have the overhead of the com-
putation of the ideal extension seems to be choosing k greater than zero but no
more than 10%.

3.3 Enumerating Semi-Stable Extensions

In this section, we tackle the problem of efficiently enumerating all the semi-stable
extensions of a given AF. Analogously to what done for the case of the preferred
semantics, where ideal extension was exploited to build the Pruned AF, the approach
for semi-stable semantics relies on first computing the grounded extension and then
using it to define a smaller AF, called cut-AF, to be used as the starting point for
enumerating the semi-stable extensions. As running example of this section, we will
refer to the following AF.

Example 3.8. The pair A0 = 〈A0, Σ0〉 where A0 = 〈{a, b, c, d, e, f, g, h} and
Σ0 = {(a, b), (b, c), (c, d), (d, a), (f, e), (g, h), (e, a), (h, a)}〉 is an AF, and the
corresponding graph is shown in Figure 3.3(a). 2

36 3 Extensions Enumeration Problem

f e

g h

a

b

d

c a

b

d

c

(a) (b)

Fig. 3.3: (a) AF A0, (b) AF Cut(A0).

Example 3.9. Continuing with Example 3.8, we have that the grounded extension of
A0 is Egr = {f, g} (i.e., Egr(A0) = {{f, g}}). Moreover, the set of semi-stable
extensions is Esst(A0) = {{a, c, f, g}, {b, d, f, g}}. 2

It is well-known that, for any AF A and semantics S ∈ {gr,sst}, it is the
case that ES(A) ⊆ Eco(A), and let Egr and Esst be the grounded and semi-stable
extensions, for every E ∈ Esst(A), it holds that Egr ⊆ E. Indeed, in the example
above, we have that Egr = {f, g} ⊆ Esst = {a, c, f, g} ⊆ Eco = {a, c, f, g} and
Egr = {f, g} ⊆ Esst = {b, d, f, g} ⊆ Eco = {b, d, f, g}
Definition 3.10. Let A = 〈A,Σ〉 be an AF, and Egr the grounded extension for A.
The cut-AF for A is Cut(A) = 〈Acut, Σcut〉 where:

• Acut = A \ (Egr ∪ E+
gr);

• Σcut = Σ \ {(a, b) | a ∈ (Egr ∪ E+
gr) or b ∈ (Egr ∪ E+

gr)}.
Thus, the cut-AF is obtained by removing from the initial AF all the arguments

belonging to the grounded extension as well as the arguments attacked by some ar-
gument in the grounded extension. Consistently with this, all the attacks towards or
from the arguments removed are deleted as well.

Example 3.11. Continuing with Example 3.9, since Egr = {f, g}, we have that
Cut(A0) = 〈Acut, Σcut〉 where:

• Acut = A0 \ ({f, g} ∪ {h, e}) = {a, b, c, d}, and
• Σcut = Σ0 \ {(f, e), (e, a), (g, h), (h, a), } = {(a, b), (b, c), (c, d), (d, a) }.
The graph corresponding to the cut-AF is shown in Figure 3.3(b). 2

Observe that computing the cut-AF can be accomplished in polynomial time
w.r.t. the size (i.e., number of arguments/attacks) of the initial AF.

The following theorem states that every semi-stable extensionE of an AFA one-
to-one corresponds to a semi-stable extension of the AF Cut(A), and we can obtain
a semi-stable extension of the whole AF by joining a semi-stable extension of the
cut-AF with the grounded extension of A.

Theorem 3.12. Let A = 〈A,Σ〉 be an AF, Egr the grounded extension for A, and
Cut(A) = 〈Acut, Σcut〉 the cut-AF for A. Then, E ∈ Esst(A) iff E = Egr ∪ Ecut
where Ecut ∈ Esst(Cut(A)).

3.3 Enumerating Semi-Stable Extensions 37

Example 3.13. Continuing from Example 3.11, the set of semi-stable extensions of
the cut-AF is Esst(Cut(A)) = {{a, c}, {b, d}}. Using the result of Theorem 3.12,
we obtain that Esst(A) = {{a, c} ∪Egr, {b, d} ∪Egr}, where Egr = {f, g}. Thus,
we obtain the semi-stable extensions {f, g, a, c} and {f, g, b, d} (c.f. Example 3.9).
2

3.3.1 Algorithm

The pseudo-code of the algorithm for computing the set of semi-stable extensions of
an AF is shown in Algorithm 2.

Similarly to the case of Algorithm 1, Algorithm 2 takes as input an AF A, and
a percentage value k that is a parameter used for deciding when the computation
should be carried out by using the cut-AF or not. In fact, in some cases, such as when
the grounded extension of the input AF is empty, the overhead of computing the cut-
AF does not pay off because it will correspond to be the whole initial framework,
and so, computing the semi-stable extensions over the cut-AF would cost the same
as computing the extension on the initial AF plus the overhead of computing the
cut-AF.

Thus, we use parameter k to decide when computing or not the cut-AF. In par-
ticular, if the grounded extension of the given AF is larger than k% of the number
of arguments in the AF, then the cut-AF is computed; otherwise, the semi-stable ex-
tensions are directly computed w.r.t the whole AF from scratch. Here, computing the
grounded extension is polynomial-time (while computing the semi-stable extension
is hard), and this suggests that the overhead of computing the grounded extension of
the input AF is likely to pay off—in Section 3.3.2 we discuss the results of experi-
ments where different values of k are considered, including k = 0% which means
forcing the algorithm to compute the cut-AF in any case.

The main difference between Alorithm 1 and Algorithm 2 is that for the case of
semi-stable semantics we do not exploit the concept of ideal and grounded semantics
as for the case of Algorithm 1. We have seen that for the preferred semantics, com-
puting the ideal extension pays off in many cases. However, as for the semi-stable
semantics the number of extensions to be enumerated is generally smaller than that
for the preferred semantics, cutting the arguments contained in the grounded exten-
sion is enough to obtain good results (computing the ideal extension, which is costly,
may not pay off if it is then used to compute only a few semi-stable extensions).

Example 3.14. Continuing with Example 3.13, if k = 0% then the condition at
Line 2 trivially holds since |Egr| ≥ 0 for every AF. Therefore, the cut-AF Acut =
Cut(A) = 〈{a, b, c, d}, {(a, b), (b, c), (c, d), (d, a)}〉 is computed at Line 3. Next,
the set of all semi-stable extensions Esst(Acut) = {{a, c}, {b, d}} of the cut-AF
is computed (Line 4), and the set of semi-stable extensions of the whole AF is
computed at Line 5 by combining the arguments in the grounded extension with
those in the semi-stable extensions of the cut-AF. Therefore, the output of the algo-
rithm is obtained as follows: Esst(A) = {{{f, g} ∪ {a, c}}, {{f, g} ∪ {b, d}}} =
{{f, g, a, c}, {f, g, b, d}}.

38 3 Extensions Enumeration Problem

Algorithm 2 CutSST(A, k)

Input: AF A = 〈A,Σ〉,
A percentage value p.

Output: Set Esst(A) of semi-stable extensions of A.
begin
1: Egr =GR-Solver(A)
2: if |Egr| ≥ p · |A| then
3: Acut = Cut(A)
4: Esst(Acut) =SST-Solver(Acut)
5: Esst(A) = {E | E = Egr ∪ Ecut, where Ecut ∈ Esst(Acut)}
6: else
7: Esst(A) =SST-Solver(A)
8: return Esst(A)

Considering now the case that k = 5%, we have again that |Egr| ≥ k · |A| (since
2 ≥ 0.05 · 8 = 0.4), and thus the execution of Algorithm 2 is again as above.

Finally, consider the case that k = 30% for which we have that |Egr| 6≥ k ·
|A| (since 2 6≥ 0.3 · 8 = 2.4). Thus Algorithm 2 directly computes the set Esst(A)
of semi-stable extensions by calling the solver SST-Solver with input the whole AF
(Line 7). 2

The following theorems states that Algorithm 2 is sound and complete, provided
that the external solvers return the correct results.

Theorem 3.15. Given an AF A, if GR-Solver and SST-Solver are sound and com-
plete, then Algorithm 2 returns the set Esst(A) of semi-stable extensions of A.

3.3.2 Implementation and Experiments

We implemented a C++ prototype and tested the technique using the same method-
ology and external solvers for the case of Algorithm 1 over benchmark AFs taken
from the EE-sst track of ICCMA17, which consists in determining all the semi-
stable extensions of a given AF. Specifically, we used the AFs in the datasets named
E2 and E3 having more than one semi-stable extension. Particularly, dataset E2
(resp. E3) consists of 19 (resp. 41) AFs, and a number of arguments contained in
AFs of dataset E2 (resp. E3) that varies from a minimum value of 61 (resp. 40) to
a maximum of 1.2K (resp. 1.9K). Furthermore, the range of the number of attacks
in the AFs of dataset E2 (resp. E3) varies from a minimum of 97 (resp. 72) to a
maximum of 10.3K (resp. 218K).

Here we directly report and discuss experimental results.
Figure 3.4 reports (in log scale) the average improvement (obtained by substi-

tuting ScaleEE with CutSST in equation (3.1)) of Algorithm 2 over the computation
from scratch for the AFs in the datasets E2 (first row), and E3 (second row), and for
k = 0% (first column), k = 5% (second column), k = 10% (third column).

3.3 Enumerating Semi-Stable Extensions 39

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

10−1

100

101

102

103

104

61 610 1207
N. of Arguments

● ArgSemSAT/CutSST w/ cut

(a) k = 0%

●

●
●

●
●

●

●

●

●

●

●

●

●
●

10−1

100

101

102

103

104

61 610 1207
N. of Arguments

●● ArgSemSAT/CutSST w/ cut
ArgSemSAT/CutSST w/o cut

(b) k = 5%

●

●
●

●
●

●

●

●

●

●

●

●
●

10−1

100

101

102

103

104

61 610 1207
N. of Arguments

●● ArgSemSAT/CutSST w/ cut
ArgSemSAT/CutSST w/o cut

(c) k = 10%

●

●

●●●
●●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●● ●

●
●●

●

10−1

100

101

102

103

104

40 400 1992
N. of Arguments

● ArgSemSAT/CutSST w/ cut

(d) k = 0%

●

●●●
●●

●
●●

● ●

●

●

●

●

●●
●●

●

●

● ●
●

10−1

100

101

102

103

104

40 400 1992
N. of Arguments

●● ArgSemSAT/CutSST w/ cut
ArgSemSAT/CutSST w/o cut

(e) k = 5%

●

●●●
●●

●
●●

● ●
●

●

●●
●

●

●

● ●
●

10−1

100

101

102

103

104

40 400 1992
N. of Arguments

●● ArgSemSAT/CutSST w/ cut
ArgSemSAT/CutSST w/o cut

(f) k = 10%

Fig. 3.4: Improvement (i.e. the running time of ArgSemSAT over the running time
of Algorithm 2) for k = 0% (Fig. 3.4a and Fig. 3.4d), k = 5% (Fig. 3.4b and
Fig. 3.4e), and k = 10% (Fig. 3.4c and Fig. 3.4f), over the datasetsE2 (first row) and
E3 (second row). Circle-shaped data points (coloured blue) represent AFs having
a grounded extension larger than or equal to k% of the number of the arguments,
and thus the cut-AF is computed by executing Lines 3–5 of Algorithm 2. Diamond-
shaped data points (coloured red) represent AFs having a grounded extension smaller
than k% of the number of arguments, and thus the cut-AF is not computed (Line 7
of Algorithm 2 is executed).

In Figure 3.4, circle-shaped data points (colored blue) correspond to AFs having
a grounded extension larger than or equal to k% of the number of the arguments.
In these cases, the cut-AF is computed by executing Lines 3–5 of Algorithm 2.
Diamond-shaped data points (colored red) represent AFs having a grounded exten-
sion smaller than k% of the number of the arguments, and in this case, cut-AF is not
computed and Line 7 of Algorithm 2 is executed.

For each plot in Figure 3.4, a solid black line representing the average improve-
ment obtained for the considered dataset and value of k is reported. Moreover, to easy
readability, we also report a dashed grey line corresponding to average improvement
equal to 1. Clearly, an improvement strict less than 1 means that the overall overhead

40 3 Extensions Enumeration Problem

of computing the grounded extension, and eventually the cut-AF, does not pay off.
However, when the improvement is close to 1, the overhead is negligible.

From the results in Figure 3.4, we can draw the following conclusions:

• Algorithm 2 significantly outperforms the competitor that computes the semi-
stable extensions from scratch. In fact, the average improvement is greater than
410 and 2100 over the datasets E2 and E3, respectively, meaning that Algo-
rithm 2 is on average at least 410 and 2100 times faster than ArgSemSAT.

• The smaller the number of arguments of the AFs, the bigger the (average) im-
provement obtained. In particular, for the datasets E2 and E3, this implies that
the amount of time required decreases from dozens of minutes (computation from
scratch) to a few seconds (Algorithm 2).

• The average improvement remains high for k = 0%, that is, when computing
the grounded extension and the cut-AF irrespectively of the size of the grounded
extension. However, the number of AFs for which the improvement is too lower
than 1 decreases if k > 0%. In particular, for the datasets E2 and E3, using
k = 5% is enough for avoiding all the cases for which the improvement is sig-
nificantly lower than 1. Thus, using k greater than zero allows us to reduce the
overhead due to the computation of the grounded extension plus the cut-AF.

• Although increasing the value of k avoids cases where the proposed approach
may work worse than the computation from scratch, using too high values of k
deteriorates performances on average because the cut-AF is not built even when
it would be helpful. In fact, for the datasets E2 and E3, using k = 10% entails
that the cut-AF is not built in vain for the AFs whose improvements are shown as
blue data points in Figure 3.4 for k = 5% and become colored red when passing
to k = 10% (since increasing k entails that cut-AF is no longer computed).

• All in all, the best trade-off between paying the cost of computing the grounded
extension along with the cut-AF and risking to have the overhead of the compu-
tation of the cut-AF seems to be choosing k greater than zero but no more than
10%.

3.4 Summary

Several computational problems of AFs have been studied such as skeptical and
credulous reasoning, existence of a non-empty extension, and verifying if a set of
arguments is an extension under different argumentation semantics [63, 65, 67, 68].
The complexity of the problem of computing all extensions according to some se-
mantics for AFs has been recently investigated in [87], where it was shown that the
enumeration problem is intractable under the preferred and semi-stable semantics,
and, in particular, they are not in OutputP (“output-polynomial time”, also known
as TotalP “total polynomial time” [84]) even for bipartite AFs. An approach for di-
viding the problem of enumerating the preferred extensions into sub-problems is
proposed in [56], where a meta-algorithm based on SCC-recursiveness [18] is intro-
duced. However, this kind of approaches provide advantages only if there are many

3.4 Summary 41

strongly connected components, or in case of sparse AFs (i.e., average degree less
than 2) [92].

This is not case of the proposed technique which seems not taking advantages
neither from low average degree (the improvement obtained for preferred semantics
over the datasets A2 and A3 having average degree greater than 20 is even better
than that obtained over A1 having average degree equal to 4), nor from the number
of strongly connected components (we checked that there is no correlation between
the improvements obtained and the number of SCCs in the AFs).

An approach to deal with the problem of enumerating the semi-stable extensions
is proposed in [35], where a new algorithm for computing semi-stable semantics us-
ing dynamic programming on tree decompositions that runs in linear time on AFs
of bounded treewidth is presented. However, this kind of approaches provide advan-
tages only in case of bounded treewidth.

To conclude, we introduced a technique for efficiently enumerating the set of pre-
ferred and semi-stable extensions of abstract argumentation frameworks. It is mod-
ular with respect to the solvers used for computing the grounded (resp. ideal) exten-
sions, as well as the solver used for the enumeration of semi-stable (resp. preferred)
extensions on the cut-AF (pruned-AF)—any solver addressing one of these tasks
could be plugged-in and exploited for addressing the enumeration problem under the
semi-stable (resp. preferred) semantics.

We have experimentally investigated the behavior of the technique, and analyzed
the conditions under which building the pruned-AF (resp. cut-AF) and computing
the ideal (resp. grounded) extension are convenient for computing the set of pre-
ferred (resp. semi-stable). It turned out that it is worth paying the cost of building
the cut-AF after looking at the size of the grounded extension as the computation of
the semi-stable extensions over the cut-AF yields significant improvements over the
computation from scratch. Analogously, for the preferred semantics, it turned out that
it is worth paying the cost of computing the ideal extension if is not empty—this can
be easily checked by looking at the size of the grounded extension—as the computa-
tion of the preferred extensions over the pruned AF yields significant improvements
over the computation from scratch.

Future work will be devoted to extending the proposed technique to the enumer-
ation problem in the presence of other argumentation semantics, such as the stable
semantics [61]. In fact, a stable extension is a complete extension which attacks all
the arguments outside the extension, and the set of stable extensions are a subset of
the set of preferred and semi-stable extensions; thus, similarly to the preferred and
semi-stable semantics, the grounded and ideal extension are contained in every stable
extension. For instance, in the proposed examples the set of stable extensions coin-
cides with that of the preferred and semi-stable extensions considering the pruned-
AF (resp. cut-AF) and the whole initial one. However, extending the technique to
deal with the stable semantics requires to face up with the fact that a stable extension
may not exists for an AF, and checking this is computationally hard [65].

4

Efficient Computation of Extensions in Dynamic
Argumentation Frameworks

“Logic, it is often said, is the study of valid arguments. It is a systematic
attempt to distinguish valid arguments from invalid arguments.”

– William H. Newton-Smith

Abstract argumentation frameworks (AFs) are a well-known formalism for mod-
elling and deciding many argumentation problems. Computational issues and evalu-
ation algorithms have been deeply investigated for static AFs, whose structure does
not change over the time. However, AFs are often dynamic as a consequence of the
fact that argumentation is inherently dynamic.

In this chapter, we tackle the problem of incrementally computing extensions for
dynamic AFs: given an initial extension and an update (or a set of updates), we devise
a technique for computing an extension of the updated AF under four well-known
semantics (i.e., complete, preferred, stable, and grounded). The idea is to identify a
reduced (updated) AF sufficient to compute an extension of the whole AF and use
state-of-the-art algorithms to recompute an extension of the reduced AF only.

The experiments reveal that, for all semantics considered and using different
solvers, the incremental technique is on average two orders of magnitude faster than
computing the semantics from scratch.

4.1 Arguments Influenced by an Update

In this chapter, as running example, we will refer to the AFA0 presented in Chapter 2
and reported on Figure 2.1, whose set of admissible sets is {∅, {b}, {g}, {a, g},
{b, g}, {f, g}, {a, g, f}, {b, g, f}}, and ES(A0) with S ∈ {co, pr, st, gr} is as
reported in the second column of Table 4.1.

Applying an update u to an AF implies that its semantics (set of extensions or
labellings) changes, as shown by Table 4.1 which reports the sets of extensions for
the AFs of Figure 4.1 before and after performing the update +(c, f). The updated
AF A = +(c, f)(A0) is shown on Figure 4.1

44 4 Efficient Computation of Extensions in Dynamic Argumentation Frameworks

b c

d e f

g h

a

+(c, f)

Fig. 4.1: AFs A0 and A = +(c, f)(A0)

S ES(A0) ES(A))

co {{f, g}, {a, f, g}, {b, f, g}}{{g}, {a, g}, {b, f, g}}
pr {{a, f, g}, {b, f, g}} {{a, g}, {b, f, g}}
st {{b, f, g}} {{b, f, g} }
gr {{f, g}} {{g}}

Table 4.1: Sets of extensions for A0 and A = +(c, f)(A0).

In this section, we first provide some sufficient conditions ensuring that a given
S-extension for an AF A continues to be an S-extension for the updated AF u(A).
Then, we introduce the influenced set which intuitively consists of the set of argu-
ments whose status may change after performing an update.
Updates preserving a given initial extension. Given an update±(a, b) and an initial
extension E0 corresponding to L0, for each pair of initial statuses L0(a) and L0(b)
of the arguments involved in the update, Tables 4.2 and 4.3 tell us the semantics for
which E0 is still an extension after the update.

Proposition 4.1. Let A0 be an AF, S a semantics, E0 ∈ ES(A0) an extension of
A0 under semantics S, L0 the labelling corresponding to E0, and u an update. If S
is in the cell 〈L0(a), L0(b)〉 of Table 4.2 and u = +(a, b) (resp., of Table 4.3 and
u = −(a, b)), then E0 ∈ ES(u(A0)).

The results in Tables 4.2 and 4.3 concerning gr follow from those in [37, 38],
where the principles according to which the grounded extension does not change
when attacks are added/removed have been studied.

In the following, given an AF A0 and an S-extension E0 for it, we say that an
update u is irrelevant w.r.t. E0 and S iff the conditions of Proposition 4.1 hold.
Otherwise, u is relevant.

Example 4.2. Consider A0 of Figure 4.1 and its sets of extensions listed in the sec-
ond column of Table 4.1. E0 = {b, f, g} is an extension according to semantics
S ∈ {co,pr,st}. Thus, L0(c) = OUT and L0(f) = IN, and using Proposition 4.1 it
follows that for update u = +(c, f)E0 is still an extension of u(A0) (see the last col-
umn of Table 4.1). Thus +(c, f) is irrelevant w.r.t.E0 and S. However, +(c, f) is rel-
evant w.r.t. E0 = {a, f, g} and all the semantics (in this case L0(c) = UNDECIDED

4.1 Arguments Influenced by an Update 45

update L0(b)
+(a, b) IN UNDECIDED OUT

L0(a)
IN co, pr, st, gr

UNDECIDED co, gr co, pr, gr
OUT co, pr, st co, gr co, pr, st, gr

Table 4.2: Cases for which E0 ∈ ES(u(A0)) for u = +(a, b).

update L0(b)
−(a, b) IN UNDECIDED OUT

L0(a)

IN NA NA
UNDECIDED NA co, pr, gr

OUT co, pr, st, gr co, pr, gr co, pr, st, gr

Table 4.3: Cases for which E0 ∈ ES(u(A0)) for u = −(a, b).

and L0(f) = IN, and no semantics is listed in the cell 〈UNDECIDED, IN〉 of Ta-
ble 4.2). 2

It is important to note that Tables 4.2 and 4.3 are not meant to be exhaustive, as
more conditions can be found for which an S-extension is preserved after an update.
For instance, for the grounded semantics, the initial extension is preserved also if
L0(a) = OUT and L0(b) = IN and argument a of updated +(a, b) is not reachable
from b. Here we provided a simple set of conditions that can be easily checked by just
looking at the initial labelling L0. The proposed technique can be trivially extended
by considering a more general set of such conditions.
Influenced set. For irrelevant updates, the influenced set will be empty (in this case,
the initial extension will be immediately returned as an extension of the updated AF
by Algorithm 3). If none of the conditions of Proposition 4.1 holds (i.e., the update
is relevant), then the influenced set may turn out to be not empty. In such case, the
influenced set will be used to delineate a portion of the argumentation framework,
called reduced AF, that we will use to recompute (a portion of) an extension for the
updated AF.

Given an AF A = 〈A,Σ〉 and an argument b ∈ A, we use ReachA(b) to denote
the set of arguments that are reachable from b in the graph A.

Definition 4.3 (Influenced set). Let A = 〈A,Σ〉 be an AF, u = ±(a, b), E an
extension of A under semantics S, and let

– I0(u,A, E)=

∅ if u is irrelevant w.r.t. E and S or
∃(z, b) ∈ Σ s.t. z 6= a ∧ z ∈ E ∧
z 6∈ ReachA(b);

{b} otherwise;
– Ii+1(u,A, E) = Ii(u,A, E)∪{y | ∃(x, y) ∈ Σ s.t. x ∈ Ii(u,A, E) ∧@(z, y) ∈
Σ s.t. z ∈ E ∧ z 6∈ ReachA(b)}.

The influenced set of u w.r.t. A and E is I(u,A, E) = In(u,A, E) such that
In(u,A, E) = In+1(u,A, E). 2

46 4 Efficient Computation of Extensions in Dynamic Argumentation Frameworks

Example 4.4. Consider the the AF A0 = 〈A0, Σ0〉 of Figure 4.1 and the update
u = +(c, f). We have that ReachA0

(f) = A0 \ {g , h}. The influenced set depends
on the initial extension chosen. For the extension {b, f, g} of Example 4.2, we have
that the influenced set is empty as u is irrelevant. For the extension E0 = {a, f, g},
the influenced set is I(u,A0, E0) = {f, e}. Indeed, d 6∈ I(u,A0, E0) since it is
attacked by g ∈ E0 which is not reachable from f . Thus the arguments that can be
reached from d do not belong to I(u,A0, E0). If we consider the initial grounded
extension {f, g}, then {f, e} turns out to be the influenced set again. 2

4.2 Incremental Computation of Extensions

Given the influenced set, we define a subgraph, called reduced AF, that will be used
to compute the status of the influenced arguments, thus providing an extension that
will be combined with that of initial AF to obtain an extension of the updated AF,
for every semantics S ∈{co, pr, st, gr}.

For any AFA = 〈A,Σ〉 and set S ⊆ A of arguments, we denote withΠ(S,A) =
〈S,Σ∩S×S〉 the subgraph ofA induced by the nodes in S. Moreover, given two AFs
A1 = 〈A1, Σ1〉 and A2 = 〈A2, Σ2〉, we denote as A1 t A2 = 〈A1 ∪A1, Σ1 ∪Σ2〉
the union of the two AFs.

Definition 4.5 (Reduced AF). Let A0 = 〈A0, Σ0〉 be an AF, E0 ∈ ES(A0) an
extension for A0 under a semantics S ∈ {co, pr, st, gr}, and u = ±(a, b) an
update. Let u(A0) = 〈A,Σ〉 be the AF updated using u. The reduced AF for A0

w.r.t. E0 and u (denoted asR(u,A0, E0)) is as follows.
– R(u,A0, E0) is empty if I(u,A0, E0) is empty.
– R(u,A0, E0) = Π(I(u,A0, E0), u(A0)) t A1 t A2 where:

i) A1 is the union of the AFs 〈{a, b}, {(a, b)}〉 s.t. (a, b) ∈ Σ, a 6∈ I(u,A0, E0),
a ∈ E0, and b ∈ I(u,A0, E0);

ii) A2 is the union of the AFs 〈{c}, {(c, c)}〉 s.t. there is (e, c) ∈ Σ, e 6∈
I(u,A0, E0), e 6∈ (E0 ∪ E+

0), and c ∈ I(u,A0, E0).

Hence, AFR(u,A0, E0) contains, in addition to the subgraph of u(A0) induced
by I(u,A0, E0), additional nodes and edges containing needed information on the
“external context”, i.e. information about the status of arguments which are attacking
some argument in I(u,A0, E0). Using fake arguments/attacks to represent external
contexts has been exploited in [13] where decomposability properties of argumenta-
tion semantics are investigated.

Example 4.6. For our running example, if E0 = {a, f, g} and u = +(c, f), the
reduced AFR(+(c, f),A0, E0) consists of the subgraph induced by I(u,A0, E0) =
{f, e} plus the edge (f, f) as there is the attack (c, f) in the updated AF from an
uninfluenced argument c labelled as UNDECIDED toward the influenced argument f .
Hence,R(+(c, f),A0, E0) = 〈{e, f}, {(f, f), (f, e)}〉. 2

4.2 Incremental Computation of Extensions 47

Theorem 4.7. LetA0 be an AF, andA = u(A0) be the AF resulting from performing
update u = ±(a, b) on A0. Let E0 ∈ ES(A0) be an extension for A0 under a
semantics S ∈ {co, pr, st, gr}. Then, if ES(R(u,A0, E0)) is not empty, then
there is an extension E ∈ ES(A) for the updated AF A such that E = (E0 \
I(u,A0, E0)) ∪ Ed where Ed is an S-extension for reduced AFR(u,A0, E0) .

Example 4.8. Continuing our example, for the preferred semantics, letE0 = {a, f, g}
and u = +(c, f), we have that I(u,A0, E0) = {f, e}, and R(+(c, f),A0, E0) =
〈{e, f}, {(f, f), (f, e)}〉. Thus, using the theorem, there is an extension E of the
updated AF such that E = ({a, f, g} \ {f, e}) ∪ Ed where Ed = ∅ is a preferred
extension of the reduced AF. In fact, E = {a, g} ∈ Epr(u(A0)). 2

It is worth noting that the set of extensions of an AF can be empty only for
the stable semantics. Thus, in the case that this happens for the reduced AF (i.e.,
ES(R(u,A0, E0)) = ∅), the theorem does not give a method to determine an exten-
sion of the updated AF, as shown in the following example.

Example 4.9. Let A0 = 〈{a, b, c, d, e}, {(a, b), (b, c), (b, d), (c, d), (c, e), (e, c)}〉.
Its stable extensions are {a, c} and {a, d, e}. For update u = +(d, d), depending
on the initial extension, the influenced set is either I(u,A, {a, c}) = ∅ (as u is
irrelevant w.r.t. {a, c} and st) or I(u,A, {a, d, e}) = {d}. Thus, starting from
the extension {a, c} we directly know {a, c} is a stable extension of the updated
AF. However, starting from {a, d, e}, the reduced AF will be R(u,A0, {a, d, e}) =
〈{d}, {(d, d)}〉, which has no stable extension. In this case, the theorem does not
provide a stable extension of the updated AF, thought a stable extension exists: that
obtained by starting from the initial extension {a, c}.

It is worth noting that, if we consider the preferred semantics, for which the
starting extensions are again {a, c} and {a, d, e}, a preferred extension of the updated
AF can be obtained no matter what starting extension is chosen. In particular, as the
preferred extension for reduced AF 〈{d}, {(d, d)}〉 is the empty set, it follows that
({a, d, e} \ {d}) ∪ ∅ = {a, e} is a preferred extension of the updated AF. 2

4.2.1 Incremental Algorithm

Algorithm 3 computes an extension of an updated AF. Besides taking as input
an initial AF A0, an update u, a semantics S ∈{co, pr, st, gr}, and an extension
E0 ∈ ES(A0), it also takes as input a function that computes an S-extension for an
AF, if any. In particular, function SolverS (A) will be used to compute an extension of
the reduced AF, which will be then combined with the portion of the initial extension
that does not change in order to obtain an extension for the updated AF (as stated in
Theorem 4.7).

More in detail, Algorithm 3 works as follows. First, the influenced set of A0

w.r.t. update u and the given initial extension E0 is computed (Line 1). If it is empty,
thenE0 will be still an extension of the updated AF under the given semantics S, and
thus it is returned (Line 3). Otherwise, the reduced AFAd is computed at Line 4, and
function SolverS is invoked to compute an S-extension ofAd, if any. If S ∈{co, pr,

48 4 Efficient Computation of Extensions in Dynamic Argumentation Frameworks

Algorithm 3 Incr-Alg(A0, u,S, E0, SolverS)

Input: AF A0 = 〈A0, Σ0〉, update u = ±(a, b),
semantics S ∈{co, pr, st, gr}, extension E0 ∈ ES(A0),
function SolverS (A) returning an S-extension for AF A if it exists, ⊥ otherwise;

Output: An S-extension E ∈ ES(u(A0)) if it exists, ⊥ otherwise;
1: S = I(u,A0, E0);
2: if (S = ∅) then
3: return E0;
4: Ad = R(u,A0, E0);
5: Let Ed = SolverS (Ad);
6: if (Ed 6= ⊥) then
7: return E = (E0 \ S) ∪ Ed;
8: else
9: return SolverS (u(A0));

gr}, thenAd will have an extension Ed, which is combined with E0 \S at Line 7 to
get an extension for the updated AF. For the stable semantics, if Est(R(u,A0, E0))
is not empty, then the algorithm proceeds as for the other semantics (Line 7). Other-
wise, function SolverS is invoked to compute a stable extension of the whole updated
AF u(A0), if any.

Theorem 4.10. Let A0 be an AF, u = ±(a, b), and E0 ∈ ES(A0) an extension for
A0 under S ∈{co, pr, st, gr}. If SolverS is sound and complete then Algorithm 3
computes E ∈ ES(u(A0)) if ES(u(A0)) 6= ∅, otherwise it returns ⊥.

The proposed approach extends to the case of multiple updates, as initially dis-
cussed in Section 2.4. In fact, performing a set of updates can be reduced to perform-
ing a single update (see Definition 2.13).

We would also remark that the presented approach does not apply for the case
of recomputing the whole set of extensions. As an example, when considering the
AF A = 〈{a, b}, {(a, b)}〉, Algorithm 3, having as input the update +(b, a), and
the only (initial) preferred extension {a}, is not able to build the (updated) preferred
extension {b} for the updated AF +(b, a)(A), as it only returns {a} that is a preferred
extension for +(b, a)(A).

4.3 Implementation and Experiments

We implemented a C++ prototype and, for each semantics S, compared the perfor-
mance of the proposed technique with that of the solver that won the ICCMA’15
competition for the computational task S-SE: Given an AF, determine some S-
extension.
Datasets. We used the ICCMA’15 benchmarks. The benchmark AFs have three dif-
ferent AFs’ structures: (i) TestSetGr consists of AFs with a very large grounded
extension and many arguments in general; (ii) TestSetSt consists of AFs with

4.3 Implementation and Experiments 49

many complete/preferred/stable extensions; and (iii) TestSetSCC consists of AFs
with a rich structure of strongly connected components. In particular, for each of
these test sets, three classes of AFs of different sizes were defined: Small, Medium,
and Large. However, TestSetStLarge was removed from the competition as
the majority of the solvers could not solve any of those AFs. For the sake of brevity,
we presents the results obtained for TestSetGrSmall and TestSetGrLarge,
and TestSetStSmall and TestSetStMedium but similar results were ob-
tained also for the other datasets.
Methodology. For each semantics S , for each AF A0 = 〈A0, Σ0〉 in each dataset,
we considered every S-extension E0 of A0 as an initial extension. Then, when con-
sidering single updates, we randomly selected an update of the form ±(a, b), while
for multiple updates we randomly generated a set U of single updates. Next, we com-
puted an S-extension E for the updated AF u(A0) by calling Algorithm 3, where,
for each semantics S, we used as SolverS the solver that won the ICCMA’15 com-
petition for the task S-SE: CoQuiAAS [88] for S = co and S = gr, Cegartix [66]
for S=pr, and ASPARTIX-D [77] for S=st. Then, the average run time of Algo-
rithm 3 to compute an S-extension was compared with the average run time of the
best ICCMA solver to compute an S-extension for u(A0) from scratch.
Results. Figure 7.3 reports the average run times (log scale) of the competitors and
Incr-Alg for different semantics and datasets. In particular, the graphs also report
the run times of Incr-Alg for recomputing the extensions after performing sets S
of updates simultaneously, with |S| being a percentage of the number of attacks in
the initial AFs. The run times of the competitors for these cases were almost equal
to their run times for single updates, and are not shown for the sake of readabil-
ity of the graphs. Besides the data points, for each series, Figure 7.3 also shows
the (solid) lines obtained by linear regression. However, some datasets consist of
clusters of AFs that differ substantially on the number of arguments/attacks, and
thus in these cases the linear regression line would just connect the centroids of the
clusters, becoming not useful. For this reason, we only show the largest cluster for
TestSetStSmall (the other one consists of only 3 data points), and the two clus-
ters of TestSetStMedium separately (the former for S = pr and the latter for
S = st).

Moreover, the results obtained for the complete semantics are not shown as they
were analogous to those obtained for the grounded semantics. Also, considering up-
dates consisting of adding/removing arguments does not affect the efficiency.

The experiments also showed that, on average, the size of the reduced AF w.r.t.
that of the input AF is about 9% for single updates and 52% for multiple updates
with about 1% of the attacks updated. Moreover, considering also addition/removal
of arguments does not affect the efficiency.

From these results, we can draw the following conclusions:
– Algorithm 3 significantly outperforms the competitors that compute the exten-
sions from scratch for single updates. In fact, on average, the proposed technique
is two orders of magnitude faster than them. Moreover, the harder the computation

50 4 Efficient Computation of Extensions in Dynamic Argumentation Frameworks

from scratch is, the larger the improvements are. That is, the results show that the
improvements obtained for S ∈ {st, pr} go beyond those for S ∈ {gr, co}.

– Algorithm 3 remains faster than the competitors even when recomputing an ex-
tension after performing a quite large number of updates simultaneously. In par-
ticular, in the graphs we show the threshold percentages of updated attacks up to
which the incremental approach for multiple updates is faster than the computation
from scratch. Although the initial extension is never preserved by modifying the
framework as in Theorem 2.14 due to the presence of additional arguments in the
obtained AF AUE0

(e.g., arguments u and w), only relevant updates are taken into
account in the construction of AUE0

—arguments not involved in such updates are
not influenced.

– Finally, our experiments have also shown that for sets of updates regarding a rel-
evant portion of the input AF (on average at least 1% of the attacks for S ∈ {st,
pr} and 0, 1% of the attacks for S ∈ {gr, co}) recomputing extensions after
applying them simultaneously is faster than recomputing extensions after apply-
ing them sequentially. Indeed, the green lines in the graphs are mostly below the
(dashed) orange lines representing the run times of recomputing extensions after
applying the updates sequentially.

4.4 Summary

We introduced a technique enabling any non-incremental algorithm to be used as
an incremental one for computing some extension of dynamic AFs. The work pro-
posed in this chapter advanced existing approaches for computing extensions of dy-
namic AFs from two standpoints: (i) we considered general forms of updates (i.e.,
not limited forms of updates such as for instance weak expansions [20]) and (ii) we
identified a tighter portion of the updated AF to be examined for recomputing the
semantics. For instance, the reduced AF is significantly smaller than the conditioned
AF (CAF) in [89]. Additional experiments showed that the size of CAF is 91% of
the size of the initial AF, while the size of the reduced AF is only 9%. Also, us-
ing the reduced AF is more efficient than using CAF: the run time of the technique
presented in the chapter turned out to be only 1% of the run time of using ICCMA
solvers taking as input CAFs, that is, still two orders of magnitude faster.

Future work will be devoted to (i) applying this technique to other argumentation
semantics and (ii) extending it to cope with other computational problems, such as
enumerating all the extensions and deciding credulous acceptance; the problem of
incrementally deciding skeptical acceptance will be treated in Chapter 6.

4.4 Summary 51

14843 86636 172890
10−1

100

101

102

103

N. of Attacks

S = gr, TestSetGrSmall

CoQuiAAS 1 update

Incr-Alg 1 update

Incr-Alg 0.2% updates

236573 600780 897131

100

101

102

103

104

N. of Attacks

S = gr, TestSetGrLarge

CoQuiAAS 1 update

Incr-Alg 1 update

Incr-Alg 0.1% updates

2184 3337 4164

10−1

100

101

102

103

104

105

106

107

N. of Attacks

S = pr, TestSetStSmall

Cegartix 1 update

Incr-Alg 1 update

Incr-Alg 2% updates

2184 3337 4164

10−2

10−1

100

101

102

103

N. of Attacks

S = st, TestSetStSmall

ASPARTIX-D 1 update

Incr-Alg 1 update

Incr-Alg 2% updates

3747 3799 3840

100

101

102

103

104

105

106

N. of Attacks

S = pr, TestSetStMedium

Cegartix 1 update

Incr-Alg 1 update

Incr-Alg 1% updates

5395 5592 5756
101

102

103

104

N. of Attacks

S = st, TestSetStMedium

ASPARTIX-D 1 update

Incr-Alg 1 update

Incr-Alg 1% updates

Fig. 4.2: Run times (ms) of ICCMA solvers and Incr-Alg for different semantics
S over different datasets (showed on the top of each graph) versus the number of
attacks.

5

Efficient Computation of Extensions in Dynamic
Bipolar Argumentation Frameworks

“Everything in nature is bipolar, or has a positive and a negative pole.”

– Ralph Waldo Emerson

Bipolar argumentation frameworks (BAFs) extend Dung’s argumentation frame-
works to explicitly represent the notion of support between arguments, in addition to
that of attack. BAFs can be profitably used to model disputes between two or more
agents, with the aim of deciding the sets of arguments that should be accepted to
support a point of view in a discussion. However, since new arguments, attacks, and
supports are often introduced to take into account new available knowledge, BAFs
as well as the set of accepted arguments (under a given semantics) change over the
time.

In this chapter we first tackle the problem of efficiently recomputing sets of ac-
cepted arguments of dynamic BAFs (under the preferred and stable semantics). Fo-
cusing on a deductive interpretation of the support relation, we introduce an incre-
mental approach that, given an initial BAF, an initial extension for it, and an update,
computes an extension of the updated BAF. This is achieved by introducing a meta-
argumentation transformation according to which an initial BAF, as well as its exten-
sion and an update, are transformed into a plain argumentation framework (AF) with
a suitable initial extension and update. Thanks to the use of the meta-argumentation
intermediate level, the proposed approach is able to incorporate existing AF-solvers
and an incremental technique for plain AFs in order to compute an extension of
the updated BAF. Moreover, the proposed approach can be seamlessly applied to a
more general form of BAFs, namely Extended Bipolar Argumentation Frameworks
(EAFs), where defeasible supports and defeats are modelled by means of second-
order attacks (i.e., attacks toward elements of the support or attack relation).

We experimentally validated the approach on both BAFs and EAFs. The exper-
iments showed that, on average, the technique is almost 100 times faster than com-
puting extensions of updated BAFs or EAFs from scratch.

54 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

5.1 Computing Extensions of Updated BAFs

In this section, given a BAF B0, a preferred/stable extensionE0 for B0, and an update
u, we address the problem of recomputing a preferred/stable extension E of the
updated BAF u(B0).

ba

d e

f

c

Fig. 5.1: BAFs B0 of Example 2.5.

Figure 5.1 reports the bipolar interaction graph of BAF B0 presented in Exam-
ple 2.5 that will be used as running example of the chapter. We start by presenting a
baseline approach and then introduce the incremental technique.

Baseline approach. A first approach to compute an extension of an updated BAF is
that of computing it from scratch, without using the information provided by the up-
date and the initial status of arguments. Specifically, a baseline approach to compute
an extension E for an updated BAF B consists of the following steps:

(i) build the meta-AFM for B of Definition 2.7;
(ii) compute an extension Em for M by using one of the available solvers for

AFs [108, 109]; and
(iii) obtain an extension E for B0 by using the result of Proposition 2.8.

This procedure can be made more efficient by using the following compact meta-
AF, which is obtained from that of Definition 2.7 by avoiding to introduce meta-
arguments Xa,b and Ya,b. However, these arguments will turn out to be useful for
dealing with second-order attacks in Section 5.2.

Definition 5.1 (Compact Meta-AF). Given a BAF B = 〈A,Σ,Π〉, the compact
meta-AF for B isM = 〈Am, Σm〉 where:

i) Am = A ∪ {Za,b | (a, b) ∈ Π}
ii) Σm = Σ ∪ {(b, Za,b), (Za,b, a) | (a, b) ∈ Π}

The following proposition straightforwardly follows from Proposition 2.8.

Proposition 5.2. Let B = 〈A,Σ,Π〉 be a BAF, M the compact meta-AF for B0,
and S ∈ {pr,st} a semantics. For each E ∈ ES(B), there is an extension Em ∈
ES(M) such that E = Em ∩A, and vice versa.

5.1 Computing Extensions of Updated BAFs 55

a fZa,b

d

b

ec

Fig. 5.2: Compact Meta-AF for the BAF of Example 2.5.

Example 5.3. The compact meta-AF for the BAF of Example 2.5 is reported in Fig-
ure 5.2. {a, b} is the preferred extension for the compact meta-AF, as well as for the
BAF, corresponding to the preferred extension given in Example 2.9. The stable ex-
tension for the compact meta-AF is {c, d, f, Za,b}, which corresponds to the stable
extension {c, d, f} of Example 2.9. 2

Incremental approach. The baseline approach does not make use of the initial ex-
tension E0 for B0 and of the update u to be performed. On the contrary, the incre-
mental approach we present relies on profitably using this kind of information to
improve efficiency and avoid wasted effort during the computation.

The approach to recompute a preferred/stable extension E of an updated BAF
u(B0) consists of the following three main steps.

1. Checking for irrelevant updates. We identify conditions ensuring that a given
extension E0 for the initial BAF B0 (under the preferred or stable semantic) is
still an extension for the updated BAF u(B0). In such case, the update u does
not invalidate the initial extensionE0, and it will be immediately returned by the
algorithm.

2. Build a suitable (compact) meta-AF. Given a triple 〈B0, E0, u〉 consisting
of an initial BAF, an extension, and an update, we transform it into a triple
〈M0, E

m
0 , u

m〉 consisting of a (compact) meta-AFM0, an extension Em0 , and
an update um for M0. The transformation we propose is based on the meta-
argumentation approach proposed in [36] (cfr. Definitions 2.7 and 5.1), though
in this case we need to take into account the initial extension E0 and the update
u.

3. Incremental computation on the meta-AF. Given the AF M0, its extension
Em0 , and the update um forM0, we use the incremental technique proposed in
Chapter 4 for computing an extension Em of the updated AF um(M0) w.r.t.
Em0 . The technique identifies a reduced AF sufficient to compute an extension
of the whole AF and use state-of-the-art algorithms to recompute an extension
of the reduced AF only. Then from extension Em of the updated AF um(M0),
we derive an extension E of an updated BAF u(B0).
In the next sections we describe in detail these three steps.

56 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

Table 5.1: Cases for which E0 ∈ ES(u(B0)) for u = +(a→ b).

update L0(b)

+(a→ b) IN UNDECIDED OUT

L0(a)
IN pr, st

UNDECIDED pr
OUT pr,st pr,st

Table 5.2: Cases for which E0 ∈ ES(u(B0)) for u = +(a⇒ b).

update L0(b)

+(a⇒ b) IN UNDECIDED OUT

L0(a)
IN pr,st

UNDECIDED

OUT pr,st pr pr,st

Table 5.3: Cases for which E0 ∈ ES(u(B0)) for u = −(a→ b).

update L0(b)

−(a→ b) IN UNDECIDED OUT

L0(a)
IN NA NA

UNDECIDED NA pr
OUT pr,st pr pr,st

5.1.1 Checking for Irrelevant Updates

Given a BAF B0, an initial extensionE0 whose corresponding labelling is L0, and an
update u, for each pair of initial statuses L0(a) and L0(b) of the arguments involved
in the update, Tables 5.1 – 5.4 tell us if E0 is still an extension after performing the
update (under the preferred or stable semantics).

Proposition 5.4 (Extension preservation). Let B0 be a BAF, S ∈ {pr,st} a se-
mantics, E0 ∈ ES(B0) an extension of B0 under semantics S, L0 the labelling cor-
responding to E0, and u an update.
If S is in the cell 〈L0(a), L0(b)〉 of

a) Table 5.1 and u = +(a→ b);
b) Table 5.2 and u = +(a⇒ b);
c) Table 5.3 and u = −(a→ b);
d) Table 5.4 and u = −(a⇒ b);

then E0 ∈ ES(u(B0)), where u is the update specified above.

Thus, if some of the conditions of Proposition 5.4 hold, then the given initial ex-
tension of the initial BAF is still an extension of the updated one, and thus Step

5.1 Computing Extensions of Updated BAFs 57

Table 5.4: Cases for which E0 ∈ ES(u(B0)) for u = −(a⇒ b) .

update L0(b)

−(a⇒ b) IN UNDECIDED OUT

L0(a)
IN pr,st NA NA

UNDECIDED pr NA
OUT pr,st pr

2) and Step 3) of the incremental approach can be skipped — the algorithm just
returns the initial extension which is also an extension for the updated BAF. For in-
stance, considering the BAF B0 of Example 2.5, the update u = −(b → d), and
preferred extension E0 = {c, d, f}, since L0(b) = OUT and L0(d) = IN, Table 5.3
says that E0 = {c, d, f} is still an extension of the BAF u(B0). Similarly, con-
sidering u = +(c ⇒ f), and again the preferred extension E0 = {c, d, f}, since
L0(c) = L0(f) = IN, Table 5.2 tell us that E0 is still an extension of the updated
BAF.

Conditions similar to those of Proposition 5.4 were identified in Chapter 4 for
updates for Dung’s AFs, that is, AFs where the support relation is not considered.
However, those conditions could be used only at Step 3) when applying the technique
of Chapter 4 to the meta-AFM0, that is, after performing the transformation of Step
2). Therefore, to avoid to uselessly perform Step 2) and to immediately discover
irrelevant updates, we provided Proposition 5.4 that extends the results of Chapter 4
to updates for BAFs and allows us to directly check at Step 1) for cases for which
initial extensions for BAFs are preserved.

The results of Proposition 5.4 follow from their counterparts for updates of
Dung’s AFs given in Chapter 4. In fact, since using Step 2—whose details are given
in Section 5.1.2— an update u for BAF B0 with initial extension E0 corresponds to
an update um for a meta-AFM0 with extension Em0 , the results of Proposition 5.4
can be easily obtained by checking whether um is irrelevant forM0 with respect to
Em0 .

5.1.2 The Meta-Argumentation Framework for Incremental Computation

Given the initial BAF B0 and an updated u for it, we define the corresponding meta-
argumentation framework as follows.

Definition 5.5 ((Compact) Meta-AF for Updates). Let B = 〈A,Σ,Π〉 be a BAF,
and u an update for B of the form u = ±(c → d) or u = ±(e ⇒ f). Then, the
meta-AF for B w.r.t. u is CM(B, u) = 〈Am, Σm〉 where:

i) Am = A ∪ {Za,b | (a, b) ∈ Π} ∪
{Ze,f | u = +(e⇒ f)}

ii) Σm = Σ ∪ {(b, Za,b), (Za,b, a) | (a, b) ∈ Π} ∪
{(f, Ze,f) | u = +(e⇒ f)}

58 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

a fZa,b

d

b

ec

Zf,b

Fig. 5.3: CM(B0,+(f ⇒ b)): compact meta-AF for the BAF B0 of Figure 5.1 w.r.t.
update u = +(f ⇒ b).

For instance, the meta-AF CM(B0,+(f ⇒ b)) for the BAF B0 of Figure 5.1 w.r.t
the update u = +(f ⇒ b) is shown in Figure 5.3 where attack (b, Zf,b) is added.
It is worth noting that the meta-AF for negative updates (e.g., CM(B0,−(a → c)))
coincides with the compact meta-AF of Figure 5.2.

We have defined a meta-argumentation framework that builds on (the compact
version of) that proposed in [36] and considers additional meta-arguments (e.g., Zf,b
in Figure 5.3) and attacks (e.g., (b, Zf,b) in Figure 5.3) that will allow us to simulate
addition updates to be performed on BAF B0 by means of updates performed on the
corresponding the meta-AF CM(B0, u), as follows.

Definition 5.6 (Updates for the (Compact) Meta-AF). Let B = 〈A,Σ,Π〉 be a
BAF, and u an update for B of the form u = ±(c → d) or u = ±(e ⇒ f). The
corresponding update um for CM(B, u) is as follows:

um =

+(Ze,f → e) if u = +(e⇒ f)

−(Ze,f → e) if u = −(e⇒ f))

+(c→ d) if u = +(c→ d)

−(c→ d)) if u = −(c→ d))

Basically, support updates for the given bipolar framework are translated in attacks
updates on the corresponding meta-AF of Definition 5.1, while attacks updates can
be directly performed on the meta-AF. For instance, given the BAF B0 of Example
2.5 and u = +(f ⇒ b), the update for CM(B0,+(f ⇒ b)) is um = +(Zf,b, f) (see
Figure 5.3), while update u = −(a → c) for B0 simply corresponds to the update
um = −(a→ c) for CM(B0,−(a→ c)).

The last ingredient we need before being ready to apply the incremental tech-
nique of Chapter 4 is the initial extension Em0 for CM(B0, u). We obtain it from that
of initial BAF B0 by propagating the labels of the arguments in B0 as follows.

Definition 5.7 (Initial Labelling for the Meta-AF). Given a BAF B0 = 〈A,Σ,Π〉
and its initial labelling L0, the corresponding initial labelling Lm0 for the meta-AF
CM(B0, u) = 〈Am, Σm〉 is as follows:

• ∀a ∈ A ∩Am : Lm0 (a) = L0(a);
• ∀Za,b ∈ Am:

Lm0 (Za,b) = IN ifL0(b) = OUT,
Lm0 (Za,b) = OUT ifL0(b) = IN,
Lm0 (Za,b) = UNDECIDED ifL0(b) = UNDECIDED.

5.1 Computing Extensions of Updated BAFs 59

Algorithm 4 Incr-BAF(B0, u, E0,S, SolverS)

Input: BAF B0 = 〈A0, Σ0Π0〉,
update u of the form u = ±(a⇒ b) or u = ±(a→ b),
an initial S-extension E0 for B0,
semantics S ∈ {pr,st},
function SolverS (A) returning an S-extension for AFA if it exists,⊥ otherwise;

Output: An S-extension E for u(B0) if it exists, ⊥ otherwise;
1: if checkProp(B0, u, E0,S) then
2: return E0;
3: LetM0 = CM(B0, u) be the meta-AF for B0 w.r.t. u (cf. Definition 5.5);
4: Let um be the update forM0 corresponding to u (cf. Definition 5.6);
5: Let Em0 be the initial S-extension for M0 corresponding to E0 (cf. Defini-

tion 5.7);
6: Let Em = Incr-Alg(M0, u

m,S, Em0 , SolverS);
7: if (Em 6= ⊥) then
8: return E = (Em ∩A0);
9: else

10: return ⊥;

For instance, with reference to Figure 5.3, and the preferred extension E0 =
{c, d, f} for the BAF B0 of Example 2.5, we have that the labelling corresponding
to E0 is L0 = 〈{c, d, f}, {a, b, e}, ∅〉, and thus Lm0 (Zf,b) = IN since Lm0 (b) =
L0(b) = OUT. Similarly, Lm0 (Za,b) = IN since Lm0 (b) = OUT. In turn, we have that,
Em0 = {c, d, Za,b, Zf,b, f}.

The following proposition characterizes the relationship between extensions of
updated BAFs and extensions of updated meta-AFs.

Proposition 5.8. Let B0 = 〈A,Σ,Π〉 be a BAF, S ∈ {pr,st} a semantics, and
E0 ∈ ES(B0) an extension of B0 under S.
Let M0 = CM(B0, u) be meta-AF for B0 w.r.t. u, Em0 the initial S-extension for
M0 corresponding to E0, and um the update forM0 corresponding to u.
Then, there is E ∈ ES(u(B0)) iff there is Em ∈ ES(um(M0)) such that E =
Em ∩A.

5.1.3 Incremental Algorithm

Given a BAF B0, a semantics S ∈ {pr, st}, an extension E0 ∈ ES(B0), and an
update u of the form u = ±(a ⇒ b) or u = ±(a → b), we define an incremental
algorithm (Algorithm 4) for computing an extension E of the updated BAF u(B0),
if it exists. 1

1 Observe that for the stable semantics, the set of extensions Est(u(B0)) of the updated BAF
may be empty; in this case, the algorithm returns ⊥.

60 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

Algorithm 4 works as follows. It first checks if the initial extension E0 is still
an extension of the updated BAF at Line 1, where checkProp(B0, u, E0,S) is a
function returning true iff some of the conditions of Proposition 5.4 hold. If this is the
case, it immediately returns the initial extension. Otherwise, it computes the (meta)
AF M0 (Line 3), the update um for M0 (Line 4), and the initial S-extension Em0
forM0 (Line 5). Next, it invokes function Incr-Alg which encodes the incremental
algorithm proposed in Chapter 4 for Dung’s AFs. As shown in Chapter 4 Incr-Alg
(Algorithm 3) takes as input the parameters M0, u

m,S, Em0 , and SolverS , where
SolverS is an external solver that can compute an S-extension for the input AF.
Finally, the extension of the updated BAF (if any) is obtained by projecting out the
extension Em returned by Incr-Alg over the set of arguments A0 of the initial BAF
(Line 10).

In the next section, we introduce a variant of Algorithm 4 taking as input an
extended BAF where second-order attacks are considered.

5.2 Dealing with Second Order Attacks

In this section, we show how to extend the technique to consider second-order at-
tacks [36] for BAFs, that is, (i) attacks from an argument to another attack, and (ii)
attacks from an argument to a support. This allows the representation of both at-
tacks towards the attack relation [15, 95] and a kind of defeasible support where the
support itself can be attacked.2

In the following, after presenting the formal definition of BAFs extended with
second-order attacks, as well as the formalization of updates for the extended frame-
work, analogously to what done in Section 5.1.2 we first identify (additional) early
termination conditions for checking whether a second-order update is irrelevant.
Then, we build on the definition of meta-AF introduced in [36] for encoding second-
order attacks, extend it to deal with updates for such kind of BAFs, and finally dis-
cuss how to modify Algorithm 4 to enable the computation of extensions of extended
BAFs.

An Extended Bipolar Argumentation Framework (EAF for short) [36] is a
quadruple 〈A,Σ,Π,∆〉, where 〈A,Σ,Π〉 is a BAF and ∆ is a binary relation over
A× (Σ ∪Π) whose elements are called second-order attacks.

In the following, a second-order attack from an argument a to an attack (b, c)
will be denoted as (a � (b → c)), while an attack from an argument a to a support
(b, c) will be denoted as (a� (b⇒ c)).

Example 5.9. EB0 = 〈A0, Σ0, Π0, ∆0〉 is an EAF where ∆0 = {(a, (b, d))} is the
set of second-order attacks. Its graph is shown in Fig.5.4, where second-order attacks
are drawn using double-headed arrows. 2

The semantics of an EAF can be given by means of the following meta-AF, which
extends that in Definition 2.7 by taking into account second order attacks.
2 The technique can be further extended to consider (second-order) attacks from an attack to

another attack [36].

5.2 Dealing with Second Order Attacks 61

ba

d e

f

c

Fig. 5.4: EAF EB0 of Example 5.9.

Definition 5.10 (Meta-AF with Second-Order Attacks [36]). The meta-AF for
EB = 〈A,Σ,Π,∆〉 isM = 〈Am, Σm〉 where:
Am = A ∪ {Xa,b, Ya,b | (a, b) ∈ Σ} ∪

{Za,b | (a, b) ∈ Π} ∪
{Xa,(b,c), Ya,(b,c) |(a, (b, c))∈ ∆, (b, c) ∈ Σ}

Σm = {(a,Xa,b), (Xa,b, Ya,b), (Ya,b, b) |(a, b) ∈ Σ} ∪
{(b, Za,b), (Za,b, a) | (a, b) ∈ Π} ∪
{(a,Xa,(b,c)), (Xa,(b,c), Ya,(b,c)), (Ya,(b,c), Yb,c) |

(a, (b, c)) ∈ ∆, (b, c) ∈ Σ} ∪
{(a,Xa,(b,c)), (Xa,(b,c), Ya,(b,c)), (Ya,(b,c), Zb,c) |

(a, (b, c)) ∈ ∆, (b, c) ∈ Π} .

Thus, an attack of the form (a � (b → c)) is encoded as an attack towards the
meta-argument Yb,c (that represents the fact that (b, c) is “active”), while an attack
of the form (a � (b ⇒ c)) is encoded as an attack toward the meta-argument Zb,c.
The meta-AF for the EAF of Example 5.9 is shown in Fig. 5.5.

Analogously to what stated in Proposition 2.8, extensions for an EAF EB are
obtained from extensions for its meta-AF: E is an S-extension for EB iff Em ∈
ES(M) and E = Em ∩ A. Using this relationship, the notion of labelling can be
extended to EAFs as well.

Example 5.11. For the meta-AFM of Fig.5.5, we have the following preferred ex-
tension: {a, b, d, f, Ya,c, Xc,b, Yd,e, Ya,(b,d), Xe,e, Xe,d, Xe,f , }, which corresponds
to the extension {a, b, d, f} of the EAF of Example 5.9.

A stable extension for the meta-AF is {c, d, f, Xa,c, Yc,b, Za,b, Xb,d, Yd,e Xe,e,
Xe,d, Xe,f , Xa,(b,d)}. It corresponds to the extension {c, d, f} for the EAF. 2

5.2.1 Second-Order Updates and Early-Termination Conditions

In addition to the kinds of updates introduced in Section 2.4.2, for EAFs we also
consider additions and deletions of second-order attacks. Specifically, the addition
(resp., deletion) of a second-order attack from an argument a to an attack (b, c) will
be denoted as +(a � (b → c)) (resp., −(a � (b → c))). Similarly, if (b, c) is a
support, then the update will be denoted as +(a � (b ⇒ c)) (resp., −(a � (b ⇒
c))).

62 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

a
f

Xe,e

Za,b

d

Xb,d

Yb,d

b

Xe,f

Xa,c

Ya,c

Xd,e Yd,e e

Ye,d Xe,d

Ye,f

Ye,e

c

Xc,b

Yc,b

Xa,(b,d) Ya,(b,d)

Fig. 5.5: Meta-AF for the EAF of Example 5.9.

We use u(EB0) to denote the EAF resulting from the application of update u to
an initial EAF EB0. For instance, given the EAF EB0 of Example 5.9 and the update
u = −(a� (b→ d)), we have that u(EB0) is the EAF of Example 2.5.

The following proposition identifies cases for which a given initial extension of
an EAF is preserved after performing an update. It is worth noting that conditions
a)–d) identified in Proposition 5.4 for BAFs still hold for EAFs. The other conditions
e)–h) are added to deal with irrelevant second-order updates.

Proposition 5.12. Let EB0 be an EAF, S ∈ {pr,st} a semantics, E0 ∈ ES(EB0) an
extension of EB0 under semantics S, L0 the labelling corresponding to E0, and u an
update.
If S is in the cell 〈L0(a), L0(b)〉 of

a) Table 5.1 and u = +(a→ b);
b) Table 5.2 and u = +(a⇒ b);
c) Table 5.3 and u = −(a→ b);
d) Table 5.4 and u = −(a⇒ b);
e) Table 5.5 and u = +(a� (b→ c));
f) Table 5.6 and u = +(a� (b⇒ c));
g) Table 5.7 and u = −(a� (b→ c));
h) Table 5.8 and u = −(a� (b⇒ c));

then E0 ∈ ES(u(EB0)), where u is the update specified above.

As done in Algorithm 4 for BAFs, the conditions of Proposition 5.12 can be used
to recognize that an initial extension for an EAF EB0 is still valid for the updated
EAF u(EB0).

5.2.2 Enabling the Incremental Computation with Second-Order Attacks and
Updates

To deal with second-order updates we need to extend the meta-AF of Definition 5.5,
as well as the notions of update and initial labelling for the meta-AF of Defini-
tions 5.6 and 5.7, respectively.

5.2 Dealing with Second Order Attacks 63

Table 5.5: Cases for which E0 ∈ ES(u(B0)) for u = +(a� (b→ c)).

update L0(b)

+(a� (b→ c)) IN UNDECIDED OUT

L0(a)
IN pr, st

UNDECIDED pr
OUT pr,st pr,st

Table 5.6: Cases for which E0 ∈ ES(u(B0)) for u = +(a� (b⇒ c)).

update L0(c)

+(a� (b⇒ c)) IN UNDECIDED OUT

L0(a)
IN pr,st

UNDECIDED pr
OUT pr,st pr,st

We start by introducing the (compact) meta-AF for dealing with updates in
EAFs—it will be used in the variant of Algorithm 4 at Line 3, in place of the meta-AF
of Definition 5.5.

Definition 5.13 (Meta-AF for Second-Order Updates). Let EB = 〈A,Σ,Π,∆〉 be
an EAF, and u an update of one of the following forms:

• u = ±(e→ f)
• u = ±(e⇒ f)
• u = ±(e� (g → h))
• u = ±(e� (g ⇒ h)).

Then, the (compact) meta-AF for EB w.r.t. u is
CM(EB, u) = 〈Am, Σm〉 where:
Am = A ∪ {Za,b | (a, b) ∈ Π} ∪

{Xc,d, Yc,d | (e, (c, d)) ∈ ∆, (c, d) ∈ Σ}
{Ze,f | u = +(e⇒ f)} ∪
{Xg,h, Yg,h | u = +(e� (g → h))}

Σm = Σ \ {(g, h) | u = +(e� (g → h))} ∪
{(g,Xg,h), (Xg,h, Yg,h), (Yg,h, h) | u = +(e� (g → h))} ∪
{(b, Za,b), (Za,b, a) | (a, b) ∈ Π} ∪
{(e, Za,b) | (e, (a, b))∈ ∆, (a, b)∈ Π} ∪
{(c,Xc,d), (Xc,d, Yc,d), (Yc,d, d), (e, Yc,d) | (e, (c, d))∈ ∆, (c, d)∈ Σ} ∪
{(f, Ze,f) | u = +(e⇒ f)}.

Besides the meta-arguments Za,b of Definition 5.5, and the attacks involving
those arguments, the above meta-AF contains meta-arguments Xc,d, Yc,d for en-
coding second order attacks in ∆ toward attacks (c, d) ∈ Σ. In fact, an attack
e� (a⇒ b) in∆ toward a support is encoded as an attack from e toward Za,b in the
meta-AF, while e� (c→ d) in ∆ is encoded as an attack from e toward Yc,d in the

64 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

Table 5.7: Cases for which E0 ∈ ES(u(B0)) for u = −(a� (b→ c)).

update L0(b)

−(a� (b→ c)) IN UNDECIDED OUT

L0(a)
IN NA NA

UNDECIDED NA pr
OUT pr,st pr pr,st

Table 5.8: Cases for which E0 ∈ ES(u(B0)) for u = −(a� (b⇒ c)) .

update L0(c)

−(a� (b⇒ c)) IN UNDECIDED OUT

L0(a)
IN NA NA

UNDECIDED NA
OUT pr,st pr pr,st

a

f

Za,b

d

Xb,d

Yb,d

b

ec

Xc,b

Yc,b

Fig. 5.6: Compact Meta-AF for the EAF EB0 of Figure 5.4 w.r.t. the update u =
+(d� (c→ b)).

meta-AF (which contains also the attacks (c,Xc,d), (Xc,d, Yc,d), (Yc,d, d)). More-
over, meta-arguments Ze,f and Xg,h, Yg,h, are added to the meta-AF for encoding,
respectively, the addition of a second order attack toward a support (e, f) ∈ Π or
toward an attack (g, h) ∈ Σ. In the latter case, meta-arguments Xg,h and Yg,h along
with the set of attacks {(g,Xg,h), (Xg,h, Yg,h), (Yg,h, h)} are used to simulate the at-
tack g → h which is attacked by e in the EAF. This enables the definition of simple
attacks updates (cf. Definition 5.15) to simulate second-order attacks updates.

Example 5.14. The meta-AF for the EAF EB0 of Figure 5.4 w.r.t. the update u =
+(d � (c → b)) is shown in Figure 5.6. Herein, the attacks involving the meta-
arguments Xb,d and Yb,d allow us to simulate the second order attack a � (b →
d). Moreover, the attacks involving the meta-arguments Xc,b and Yc,b are added to
enable the simulation of the second-order update u by a single attack update on the
meta-AF. 2

The following definition extends Definitions 5.6 to the case of EAFs and second
order updates.

5.2 Dealing with Second Order Attacks 65

Definition 5.15 (Updates for the Meta-AF). Let EB = 〈A,Σ,Π,∆〉 be an EAF,
and u an update for EB. Update um for the meta-AF CM(EB, u) = 〈Am, Σm〉 is as
follows:

um =

+(Ze,f → e) if u = +(e⇒ f)

−(Ze,f → e) if u = −(e⇒ f))

+(c→ d) if u = +(c→ d)

−(c→ d)) if u = −(c→ d))

+(e→ Yg,h) if u = +(e� (g → h))

−(e→ Yg,h) if u = −(e� (g → h))

+(e→ Za,b) if u = +(e� (a⇒ b))

−(e→ Za,b) if u = −(e� (a⇒ b))

For instance, continuing with Example 5.14, given the EAF EB0 of Figure 5.4 and the
update u = +(d� (c→ b)), we have that update um for the meta-AF CM(EB0, u)
shown in Figure 5.6 is um = +(d→ Yc,b).

Finally, given an initial extension for an EAF and an update, we define the initial
labelling for the corresponding meta-AF as follows.

Definition 5.16 (Initial Labelling for the Meta-AF). Given an EAF EB0 = 〈A,Σ,Π,∆〉
and a initial labelling L0, the corresponding initial labelling Lm0 for the meta-AF
CM(EB0, u) = 〈Am, Σm〉 is as follows:

• ∀a ∈ A ∩Am : Lm0 (a) = L0(a);
• ∀ Xa,b ∈ Am:

- Lm0 (Xa,b) = IN ifL0(a) = OUT
- Lm0 (Xa,b) = OUT ifL0(a) = IN
- Lm0 (Xa,b) = UNDECIDED ifL0(a) = UNDECIDED

• ∀ Ya,b ∈ Am:
- Lm0 (Ya,b) = IN if (i) Lm0 (Xa,b) = OUT and (ii) ∀c ∈ A s.t. (c, (a, b)) ∈

∆, L0(c) = OUT
- Lm0 (Ya,b) = OUT if (i) Lm0 (Xa,b) = IN or (ii) ∃ c ∈ A | (c, (a, b)) ∈

∆ and L0(c) = IN
- Lm0 (Ya,b) = UNDECIDED, otherwise.

• ∀Za,b ∈ Am:
- Lm0 (Za,b) = IN if (i) L0(b) = OUT and (ii) ∀ c ∈ A s.t. (c, (a, b)) ∈

∆, L0(c) = OUT
- Lm0 (Za,b) = OUT if (i) L0(b) = IN or (ii) ∃ c ∈ A | (c, (a, b)) ∈

∆ and L0(c) = IN
- Lm0 (Za,b) = UNDECIDED, otherwise.

For instance, given the initial preferred extension E0 = {a, b, d, f} for the EAF EB0
of Example 5.9, the initial labelling for the meta-AF CM(EB0,+(d → Yc,b)) of
Figure 5.6 is such that Lm0 (a) = L0(a) = IN, Lm0 (c) = L0(c) = OUT, Lm0 (Xc,b) =
IN, and Lm0 (Yc,b) = OUT. Also, we have that Lm0 (b) = L0(b) = IN, Lm0 (Xb,d) =
OUT, Lm0 (Yb,d) = OUT since Lm0 (a) = L0(a) = IN, and Lm0 (d) = L0(d) = IN.

66 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

5.2.3 Incr-EAF: Incremental Algorithm for EAFs.

We are now ready to define the incremental algorithm for EAFs that we call Incr-
EAF. In fact, we just need to slightly modify Algorithm 4 as follows.

Incr-EAF takes as input an EAF EB0, a semantics S ∈ {pr, st}, an extension
E0 ∈ ES(EB0), and an update u of the form u = ±(a ⇒ b), u = ±(a → b),
u = ±(e � (c ⇒ d)), or u = ±(e � (c → d)). To incrementally compute an
extension E of the updated EAF u(EB0), it suffices to

i) use Proposition 5.12 instead of Proposition 5.4 at Line 1 of Algorithm 4 where
function checkProp is called.

ii) compute the (meta) AFM0, the update um forM0, and the initial S-extension
Em0 for M0 using the new Definitions 5.13, 5.15, and 5.16 for EAFs, respec-
tively, at Lines 3, 4, and 5.

It is worth noting that if the input EAF of Incr-EAF is a BAF, and the update
does not concern second-order attacks, then Incr-EAF coincides with Incr-BAF given
in Algorithm 4. In fact, in this case, Proposition 5.12 collapses to Proposition 5.4
as no second order updates are considered, and the meta-AF of Definition 5.13, as
well as update um of Definition 5.15 and the initial labelling of Definition 5.16,
coincide with their counterparts for BAFs introduced in Definitions 5.5, 5.6, and 5.7,
respectively.

5.3 Empirical Evaluation

We implemented a C++ prototype and, for each semantics S ∈ {pr, st}, we com-
pared the performance of the incremental algorithm proposed with that of the best
ICCMA’17 solver for the computational task S-SE, that is the task of determining
some S-extension. More in detail, given an EAF EB0, a semantics S ∈{pr, st}, an
extension E0 ∈ ES(EB0), and an update u for the EAF, we compared the following
two strategies for computing an extension E ∈ ES(u(EB0)) of the updated EAF:

• Incremental computation, that is, algorithm Incr-EAF with input EB0, u, E0,S,
and SolverS ;

• Computation from scratch, where an extension E of the updated EAF u(EB0)
is computed by running SolverS over the updated (compact) meta-AF.

where SolverS is ArgSemSAT [55] for S = pr and goDIAMOND [107] for
S = st— these solvers are the winners of the ICCMA’17 competition for the com-
putational task S-SE.

Dataset.

We generated a set of BAFs and a set of EAFs by starting from AFs used as bench-
marks at ICCMA’17 [1] for the tracks SE-pr and SE-st. Specifically, we used the
datasets named B1 and B2, both consisting of 50 AFs whose size is as follows:

5.3 Empirical Evaluation 67

- B1 consists of AFs with a number of arguments |A| ∈ [2, 50K] and a number of
attacks |Σ| ∈ [1, 1.6M].

- B2 consists of AFs with |A| ∈ [35, 200K] and |Σ| ∈ [73, 4M].

Given the AFs in these datasets, we generated BAFs and EAFs by transforming at-
tacks into supports and then adding second-order attacks as follows.

Given a percentage p of supports, and a percentage s ≤ p of second order at-
tacks (i.e., attacks to attacks and attacks to supports), for each AF A = 〈A,Σ〉
in the ICCMA’17 dataset, we generated EAFs EB0 = 〈A,Σ′, Π,∆〉 (or BAFs
B0 = 〈A,Σ′, Π〉 if ∆ = ∅) as follows. First, we selected p × |Σ| attacks in Σ
in a random way, and converted them into supports. That is, let Σr ⊆ Σ be the set of
the chosen p× |Σ| attacks in Σ, for each (a, b) ∈ Σr, we added a support randomly
chosen in {(a, b), (b, a)} to Π , and then set Σ′ = Σ \Σr. Next, we selected s× |Σ|
supports inΠ and s×|Σ| attacks inΣ′ in a random way, and for each support/attack
(x, y) selected, we added in ∆ a second-order attack from a randomly selected argu-
ment in A to (x, y). As an example, if |Σ| = 100 and p = 20% and s = 10%, then
we have that |Σ′| = 80 and |Π| = 20, |∆| = 20 as there will be 10 second-order
attacks toward a support in Π plus 10 second-order attacks toward attack in Σ′.

In the following, we use B1(p, s) and B2(p, s) to refer to the datasets consisting
of EAFs obtained by starting from AFs in B1 and B2, respectively, and having a
percentage p of supports and a percentage s of second order attacks.

Methodology.

For each semantics S ∈ {pr, st} and EAF EB0 = 〈A0, Σ0, Π0, ∆0〉 (BAF when
∆0 = ∅) in the dataset, we considered every S-extension E0 of EB0 as an initial ex-
tension. Then, we randomly selected an update u of the following form (only updates
of the types 1)–4) were considered for BAFs):

1) +(a→ b), with a, b ∈ A0 and (a, b) 6∈ Σ0;
2) +(a⇒ b), with a, b ∈ A0 and (a, b) 6∈ Π0;
3) −(a→ b), with (a, b) ∈ Σ0;
4) −(a⇒ b), with (a, b) ∈ Π0;
5) +(a� (b→ c)), with a ∈ A0, (b, c) ∈ Σ0, and (a, (b, c)) 6∈ ∆0;
6) +(a� (b⇒ c)), with a ∈ A0, (b, c) ∈ Π0, and (a, (b, c)) 6∈ ∆0;
7) −(a� (b→ c)), with (a, (b, c)) ∈ ∆0;
8) −(a� (b⇒ c)), with (a, (b, c)) ∈ ∆0.

Next, we computed an S-extension E for the updated EAF u(EB0) by call-
ing the incremental algorithm Incr-EAF. Finally, the average run time of Incr-EAF
to compute an S-extension was compared with the average run time of ArgSem-
SAT if S = pr, or goDIAMOND if S = st, to compute an S-extension for
um(CM(EB0, u)) from scratch.

Results.

Figure 5.7 and 5.8 report the average run times (log scale) of the incremental com-
putation (Incr-EAF) and the computation from scratch over the datasets B1(p, s)

68 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

and B2(p, s), respectively, for the preferred semantics (left-hand side) and the sta-
ble semantics (right-hand side) and percentages p ∈ {10%, 20%} of supports and
s ∈ {0%, 10%} of second-order attacks. Each data point reported in the figures is
an average run time over 20 runs. For the sake of readability, in the figures we also
showed the lines obtained by LOESS local regression.

From these results, we can draw the following conclusions:

• The incremental algorithm outperforms the competitors that compute extensions
from scratch. In fact, on average, the proposed technique is two orders of magni-
tude faster then the computation from scratch. In particular, the time saved by the
incremental computation is higher for the dataset B2(p, s), where the computa-
tion from scratch takes much more time due to the complexer structures of the
AFs in B2 which are reflected into the generated EAFs. Also, the improvements
obtained for the stable semantics are larger than that obtained for the preferred
one— this is due to the different external solvers used.

• The improvements obtained for BAFs slightly decrease when increasing the per-
centage p of supports (see Figures 5.7-5.8 (a-b) and (c-d)). This is due to the fact
that the size of the reduced-AF identified by Incr-Alg presented in Section4.2,
as well as that of the meta-AF, increases when the number of supports increases.
The same behaviour happens when the percentage s of second-order attacks in
EAFs increases (see Figures 5.7-5.8 (c-d) and (e-f)). However, worsening in the
performance is not dramatic—the incremental technique remains much faster
than the computation from scratch in all cases.

5.4 Summary

We introduced a technique for the incremental computation of extensions of dy-
namic EAFs, i.e., BAFs (possibly) incorporating second-order attacks. Following
the meta-argumentation approach [58], according to which EAFs are translated into
semantically equivalent AFs, we introduced a translation where updates and initial
extensions of EAFs are taken into account. Then, we exploited the incremental al-
gorithm proposed in Section 4.2 and computed extensions of the meta-AFs, from
which the updated extensions of EAFs are obtained. Experiments showed that the
incremental technique outperforms the computation from scratch by two orders of
magnitude, on average.

Although in this chapter we focused on updates consisting of adding/removing
one attack/support, the technique can be extended to deal with sets of updates per-
formed simultaneously. Indeed, the construction described in Section 2.4 for reduc-
ing the application of a set of updates to the application of a single attack update can
be easily extended to deal with multiple updates for EAFs. The implementation of
such kind of updates for EAFs is left for future work.

Finally, we envisage the use of the incremental approach in the context of the
so called Argumentation Framework with Recursive Attacks [16], where also second
(and more) order-attacks can be attacked, as well as generalize the algorithm to also

5.4 Summary 69

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

10−2

100

102

104

101 102 103 104

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

ArgSemSAT
Incr−BAF

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

10−2

100

102

104

101 102 103 104

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

goDIAMOND
Incr−BAF

(a) S = pr, p = 10%, s = 0%. (b) S = st, p = 10%, s = 0%.

●

●●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

● ●

●

●

10−2

100

102

104

101 102 103 104

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

ArgSemSAT
Incr−BAF

●

●●● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

10−2

100

102

104

101 102 103 104

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

goDIAMOND
Incr−BAF

(c) S = pr, p = 20%, s = 0%. (d) S = st, p = 20%, s = 0%.

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

● ●
●
●

●

10−2

100

102

104

101 102 103 104

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

ArgSemSAT
Incr−EAF

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●●

●
●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
●
●●

●

10−2

100

102

104

101 102 103 104

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

goDIAMOND
Incr−EAF

(e) S = pr, p = 20%, s = 10%. (f) S = st, p = 20%, s = 10%.

Fig. 5.7: Run times (ms) of ICCMA’17 solvers and Incr-EAF over dataset B1(p, s)
versus the number of arguments in the input EAF, for the preferred semantics (left-
hand side) and stable semantics (right-hand side). The percentage p ∈ {10%, 20%}
of supports and the percentage s ∈ {0%, 10%} of second-order attacks are shown at
the bottom of each graph.

70 5 Efficient Computation of Extensions in Dynamic Bipolar AFs

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

● ●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●
●
●

●

●

●

●
●

●

●

●

●

10−2

100

102

104

106

102 103 104 105

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

ArgSemSAT
Incr−BAF

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

10−2

100

102

104

106

102 103 104 105

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

goDIAMOND
Incr−BAF

(a) S = pr, p = 10%, s = 0%. (b) S = st, p = 10%, s = 0%.

●
●

●

●

●

●●

●●

●

●

●

●

●
●●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●
●

10−2

100

102

104

106

102 103 104 105

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

ArgSemSAT
Incr−BAF

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

10−2

100

102

104

106

102 103 104 105

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

goDIAMOND
Incr−BAF

(c) S = pr, p = 20%, s = 0%. (d) S = st, p = 20%, s = 0%.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●●

●● ●

10−2

100

102

104

106

102 103 104 105

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

ArgSemSAT
Incr−EAF

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

● ●

●●

●

●

●

●●

●●
●

10−2

100

102

104

106

102 103 104 105

N. of Arguments

R
un

ni
ng

 ti
m

e(
m

s)

●

●

goDIAMOND
Incr−EAF

(e) S = pr, p = 20%, s = 10%. (f) S = st, p = 20%, s = 10%.

Fig. 5.8: Run times (ms) of ICCMA’17 solvers and Incr-EAF over dataset B2(p, s)
versus the number of arguments in the input EAF, for the preferred semantics (left-
hand side) and stable semantics (right-hand side). The percentage p ∈ {10%, 20%}
of supports and the percentage s ∈ {0%, 10%} of second-order attacks are shown at
the bottom of each graph.

5.4 Summary 71

deal with structured argumentation [12, 97, 102]. A first step in this direction will be
discussed in Chapter 7 where the analysis of the part of DeLP-programs [79]—from
which structured arguments are derived—that changes after an update is performed
by exploiting the notion of reachability for (hyper-)graphs representing the programs.

6

Efficient Computation of Skeptical Preferred
Acceptance in Dynamic Argumentation Frameworks

“The justifications of men who kill should always be heard with
skepticism, said the monster.”

– Patrick Ness

In this chapter we devise an efficient algorithm for computing the skeptical pre-
ferred acceptance in dynamic AFs. More specifically, we investigate how the skep-
tical acceptance of an argument (goal) evolves when the given AF is updated and
propose an efficient algorithm for solving this problem.

The algorithm we propose, called SPA, relies on two main ideas: i) computing
a small portion of the input AF, called “context-based” AF, which is sufficient to
determine the status of the goal in the updated AF, and ii) incrementally computing
the ideal extension to further restrict the context-based AF.

We experimentally show that SPA significantly outperforms the computation
from scratch, and that the overhead of incrementally maintaining the ideal extension
pays off as it speeds up the computation.

6.1 Notation for reachability and other useful concepts

We will use as running example of the chapter the AF AF0 = 〈A0, Σ0〉 whose graph
is shown on Figure 6.1(a), where A0 = 〈{a, b, c, . . . , l} and Σ0 includes, among
others, attacks (a, b), (b, a), and (c, d).

Given an AF 〈A,Σ〉 and arguments a, b ∈ A, we say that a attacks b iff (a, b) ∈
Σ, and that a set S ⊆ A attacks b iff there is a ∈ S attacking b. We use S+ =
{b | ∃a ∈ S : (a, b) ∈ Σ} to denote the set of arguments attacked by S.

Recalling some preliminaries, it is well-known that every AF admits exactly
one ideal extension which is contained in the intersection of the preferred exten-
sions, which are at least one [62]. The preferred extensions of AF0 are Epr =
{a, d, f, h, j, l} and E′pr = {b, d, f, h, k}, while the ideal extension of AF0 is
Eid = {d, f, h}.

74 6 Efficient Computation of Skeptical Preferred Acceptance in Dynamic AFs

b

c d

a

f e

g h i

j

k

l

b

c d

a

h
+(h, d)

b

c d

a

+(d, b)

(a) (b) (c)

Fig. 6.1: (a) AF AF0, (b) context-based AF R(+(h, d), AF0, Eid, c), (c) context-
based AFR(+(d, b), AF0, Eid, c).

Although the ideal extension of AF0 coincides with the intersection of the pre-
ferred extensions, this is not true in general. For instance, the ideal extension of AF1
obtained from AF0 by removing the attack (d, c) is {f, h} which is strictly contained
in the intersection of preferred extensions of AF1, which are the same as the preferred
extensions of AF0.

Given an AF A = 〈A,Σ〉 and an argument g ∈ A, we say that g is skeptically
accepted w.r.t. A under the preferred semantics iff for each preferred extension E
of A it holds that g ∈ E. In the following, we use SAA(g) to denote the skeptical
acceptance (either true or false) of g w.r.t. AF A.

Example 6.1. For AF AF0 of our running example, we have that the arguments skep-
tically accepted are d, f, and h. Thus, SAAF0(d) is true, and so is for SAAF0(f) and
SAAF0(h), while for any other argument x, SAAF0(x) =false. 2

Since every preferred extension contains the ideal extension, the following fact
follows.

Fact 1 LetA be an AF,E the ideal extension ofA, and g an argument ofA. If g ∈ E
then SAA(g) =true. On the other hand, if g ∈ E+ then SAA(g) =false.

As done in previous chapters, we use +(a, b), with a, b ∈ A0 and (a, b) 6∈ Σ0,
(resp. −(a, b), with (a, b) ∈ Σ0) to denote the addition (resp. deletion) of an attack
(a, b), and u(A0) to denote the application of update u = ±(a, b) to AFA0 (where±
means either + or−). Applying an update u to an AFA0 implies that the extensions
prescribed by a given semantics, as well as set of arguments that are skeptically
accepted, may change.

Example 6.2. Continuing with our running example, let u = +(h, d). The ideal ex-
tension of u(AF0) is {f, h}, while the preferred extensions are {a, f, h, j, l} and
{b, f, h, k}. Thus, only f and h are skeptically accepted w.r.t. u(AF0). 2

As for the addition (resp. deletion) of a set of isolated arguments (i.e., arguments
not adjacent to any other argument in the graph), it is easy to see that ifA is obtained
from A0 through the addition (resp. deletion) of a set S of isolated argument, then

6.2 Supporting Set 75

every argument in S is trivially skeptically accepted (resp., not accepted) w.r.t. A.
Indeed, if E0 is an extension for A0, then E = E0 ∪ S (resp. E = E0 \ S) is an
extension forA containing every (resp., none) argument in S. Of course, if arguments
in S are not isolated, for addition we can first add isolated arguments and then add
attacks involving these arguments, while for deletion we can first delete all attacks
involving arguments in S. Thus we do not consider these kinds of updates in the
following, and focus on the addition and deletions of attacks.

Given an AF A = 〈A,Σ〉 and an argument x, we use ReachA(x) to denote
the set of arguments that are reachable from x in the graph A. Moreover, we use
Reach−1A (x) to denote the set of arguments from which x is reachable in A. For
instance, for the AF AF0 = 〈A0, Σ0〉 of our running example (see Figure 6.1(a)), we
have that ReachAF0 (d) = {d, c, g, h, i}, and Reach−1AF0

(h) = A0 \ {i, j, k, l}. We
write ReachA(x) = ∅ and Reach−1A (x) = ∅ if x is not in A.

We use H(A, u) to denote the larger AF between A and u(A), that is, H(A, u)
is (i) the updated AF u(A) if u is an addition update (it includes the attack added
through u), (ii) the original AFA if u is a deletion (the removed attack is still consid-
ered in H(A, u)). For instance, if u = +(h, d) then H(AF0, u) = 〈A0, Σ0∪{(h, d)}〉,
while H(AF0, u) = AF0 for any deletion update u.

We useΠ(S,A) to denote the restriction of AFA = 〈A,Σ〉 to a subset S ⊆ A of
its arguments [18], that is Π(S,A) = 〈S, Σ ∩ (S×S)〉. For instance, if S = {c, d}
then Π(S, AF0) = 〈{c, d}, {(c, d), (d, c)}〉.

Finally, given A1 = 〈A1, Σ1〉 and A2 = 〈A2, Σ2〉, we denote as A1 t A2 =
〈A1 ∪A2, Σ1 ∪Σ2〉 the union of the two AFs.

6.2 Supporting Set

In this section, we introduce the novel concept of supporting set which intuitively
consists of the set of arguments that needs to be taken into account in order to deter-
mine the skeptical acceptance of an argument of interest after performing an update.
We provide a parametric definition of supporting set that will enable the characteri-
zation of different portions of a given AF, called context-based AFs, that will be used
for two different purposes: (i) recompute the skeptical acceptance of a goal w.r.t. the
updated AF, and (ii) recompute the ideal extension of the updated AF.

Before defining the supporting set, we introduce the auxiliary notion of steadi-
ness of an argument. Given an AF A = 〈A,Σ〉, the ideal extension E of A, and an
update u = ±(a, b), we first define E(u) as the subset of E consisting of the argu-
ments which are not reachable from b inA, i.e.,E(u) = {z | z ∈ E, z 6∈ ReachA(b)}.
Intuitively, the acceptance status of the arguments inE(u) is not affected by u as they
are not reachable from it. Then, the set of steady arguments for u = ±(a, b) w.r.t.
A is defined as StdA(u) = (E(u))+ \ {b}, i.e., the arguments attacked by E(u)
in A and that will be still attacked by E(u) in u(A). Argument b is not included in
StdA(u) as it may be no longer attacked by a ∈ E(u) after performing u = −(a, b);
however, it will be considered for positive updates in Definition 6.3. For the AF AF0

76 6 Efficient Computation of Skeptical Preferred Acceptance in Dynamic AFs

of our running example, where Eid = {d, f, h}, if u = +(h, d) then Eid(u) = {f}
and StdAF0(u) = {e, g} ⊆ E+

id = {c, e, g, i}.
Thus, if an argument is steady for update u w.r.t. AFA then its acceptance status

does not depend on u, even in the case that it is reachable from an argument of u.
Steady arguments limit the portion of the AF to be examined to define the supporting
set.

Definition 6.3 (Supporting set). Let A = 〈A,Σ〉 be an AF, u = ±(a, b) an update,
E the ideal extension of A, and g an argument in A. Let

– Sup0(u,A, E, g) =

∅ if u = +(a, b) ∧ b ∈ (E(u))+;

∅ if b 6∈ Reach−1H (A,u)(g);

{b} otherwise.
– Supi+1(u,A, E, g)=Supi(u,A, E, g) ∪ {y | ∃(x, y) ∈ Σ s.t.

x ∈ Supi(u,A, E, g) ∧ y ∈ Reach−1H (A,u)(g) ∧ y 6∈ StdA(u)}.
Let n be the natural number such that Supn(u,A, E, g) = Supn+1(u,A, E, g). The
supporting set Sup(u,A, E, g) is:

Sup(u,A, E, g) = Supn(u,A, E, g) ∩ Reach−1G (g) (6.1)

whereG = Π(Supn(u,A, E, g), H(A, u)) is the restriction ofH(A, u) to Supn(u,
A, E, g).

Finally, when g is not specified, the supporting set, denoted as Sup(u,A, E, ?),
is defined as Sup(u,A, E, g) except that all the checks concerning Reach−1 are
omitted.

Intuitively, Sup(u,A, E, g) consists of the arguments whose status may change
after performing an update u and such that their change can imply a change of the
status of g.

The supporting set is iteratively defined by n + 1 steps (n ≤ |A|), each of them
consisting of the addition of at least a non-steady argument attacked by the set built
at the previous step and allowing to reach the goal g (if specified). More in detail,
Sup(u,A, E, g) for u = ±(a, b) and g consists of the arguments that (i) can be
reached from b without using any steady argument y; and (ii) allow to reach g in
H(A, u) by using only the arguments in Supn(u,A, E, g). In fact, Equation (6.1)
entails that an argument of Supn(u,A, E, g) will be in Sup(u,A, E, g) only if it
can reach g in the restriction of H(A, u) to Supn(u,A, E, g)—the other arguments
in Supn(u,A, E, g) are not needed to determine the acceptance status of g, and thus
they are pruned by Equation (6.1).

When no argument g is specified, the set Sup(u,A, E, ?) is built by ignoring
condition (ii) above. It is easy to see that, for any argument g, Sup(u,A, E, g) ⊆
Sup(u,A, E, ?) ⊆ ReachA(b), where b is the argument in the update u = ±(a, b).
Moreover, as shown in the following example, Sup(u,A, E, g) may be empty even
if g ∈ ReachA(b). Finally, if Sup(u,A, E, g) 6= ∅ then the arguments of at least one
path from b to g belong to Sup(u,A, E, g).

6.2 Supporting Set 77

Example 6.4 (Supporting set for u = +(h, d)). For the goal c, we have that Sup0(u,
AF0, Eid, c) = {d}, Sup1(u, AF0, Eid, c) = {c, d}, and Sup2(u, AF0, Eid, c) =
{c, d} (the latter does not contain g since g ∈ StdAF0(u)). Thus, Sup(u, AF0, Eid, c) =
{c, d} as both c and d allow to reach c in the restriction of the updated AF to {c, d}.
Reasoning analogously, we have that Sup(u, AF0, Eid, ?) = {c, d}.

Consider now what happen for the goal h. Again Sup0(u, AF0, Eid, h) = {d},
and Sup1(u, AF0, Eid, h) = Sup2(u, AF0, Eid, h) = {c, d}. However, Sup(u, AF0,
Eid, h) = ∅ as {c, d} ∩ Reach−1G (h) = ∅, where G = Π({c, d}, u(AF0)).

Also for the goal a, we have that Sup(u, AF0, Eid, a) = ∅. 2

Example 6.5 (Supporting set for u′ = +(d, b)). For the goal c, if u′ = +(d, b)
then Sup0(u

′, AF0, Eid, c) = {b}, Sup1(u′, AF0, Eid, c) = {a, b, c}, Sup2(u′, AF0,
Eid, c) = {a, b, c, d} = Sup3(u

′, AF0, Eid, c) (the latter does not contain j since
j 6∈ Reach−1H (AF0 ,u′)

(c)). Thus, Sup(u′, AF0, Eid, c) = {a, b, c, d}, while Sup(u′,
AF0, Eid, ?) = A0 \ {f, e, g, h}. 2

As stated next, the skeptical acceptance of an argument does not change if the
supporting set for it is empty.

Theorem 6.6. Let A0 = 〈A0, Σ0〉 be an AF, E0 the ideal extension of A0, u =
±(a, b) an update,A = u(A0) the updated AF, and x an argument in A0. Therefore,
if Sup(u,A0, E0, x) = ∅ then SAA(x) = SAA0(x).

Proof. We consider the cases for which Sup(u,A0, E0, x) turns out to be empty.
Sup(u,A0, E0, x) = ∅ if either (i) Sup0(u,A0, E0, x) = ∅ or (ii) Supn(u,A0, E0, x)
∩Reach−1G (x) = ∅, where G = Π(Supn(u,A0, E0, x), H(A0, u)).

In particular, case (i) can occur if either (i.1) b ∈ StdA(u) or (i.2) b 6∈
Reach−1H (A,u)(x).

We separately deal with each the aforementioned cases.
(i.1) If b ∈ StdA(u) then there is an argument z ∈ A0 such that z 6= a, z ∈ E0,

(z, b) ∈ Σ0, and z is not reachable from b in A. This implies that z is IN in every
preferred extension ofA0 as well as in every preferred extension of u(A0). Thus b is
OUT in every preferred extension of A0 and in every preferred extension of u(A0).
Therefore, update u does not change the status of b, and consequently it does not
change the status of every other argument, as they are reachable from b only using
b. It follows that x is skeptically accepted w.r.t. A iff it is skeptically accepted w.r.t.
A0.

(i.2) If b 6∈ Reach−1H (A,u)(x) then the status of x w.r.t. any preferred extension of
u(A0) does not depend on the status of b, from which the statement follows.

(ii) If Supn(u,A0, E0, x)∩Reach−1G (x) = ∅, then there is no path in the updated
AF from argument b to x using the arguments in Supn(u,A0, E0, x), which are all
the arguments y such that if the status of y changes then the status of the goal x may
change. The latter follows by induction on the steps i of the construction of Supi
(with i ∈ [0..n]) and using for the base case i = 0 and the inductive step what is said
above for (i). Thus, x is not reachable by any argument y which can change status
after the update, which implies that the status of x does not change as well, from
which the statement follows. 2

78 6 Efficient Computation of Skeptical Preferred Acceptance in Dynamic AFs

Example 6.7. Continuing with Example 6.4, since Sup(u, AF0, Eid, h) = ∅ we can
conclude that SAu(AF0)(h) = SAAF0(h) =true. Similarly, since Sup(u, AF0, Eid, a)
= ∅ then SAu(AF0)(a) = SAAF0(a) =false. 2

In the next section we address the problem of computing the skeptical acceptance
of arguments whose supporting set is not empty, such as argument c of our running
example.

6.3 Context-Based Argumentation Frameworks

The supporting set has been used so far to determine whether the status of the goal
does not need to be recomputed. In this section, starting from the supporting set, we
define a restriction of the AF which will be used to compute the status of the goal
after an update. More specifically, given the supporting set Sup(u,A, E, g) (resp.
Sup(u,A, E, ?)), we define the context-based AFR(u,A, E, g) (resp.R(u,A, E, ?)).
Moreover, while CBAF(u,A, E, ?) will be used to incrementally compute the ideal
extension of the updated AF (with the aim of checking if one of the conditions of
Fact 1 holds), CBAF(u,A, E, g) will be used to compute the skeptical acceptance
SAu(A)(g) w.r.t. the updated AF.

Given an AF A = 〈A,Σ〉, its ideal extension E, and a set S ⊆ A, we use
Nodes(A, S, E) to denote the set of the nodes x ∈ A such that there are a node
y ∈ S and a path from x to y in A such that all nodes except y do not belong to
E∪E+ (i.e., they are undecided, using the labelling terminology [14]). Analogously,
Edges(A, S, E) is the set of edges (x, z) ∈ Σ such that there are y ∈ S and a path
from x to y in A containing (x, z) such that all nodes except y do not belong to
E ∪ E+. Essentially, if S is the supporting set, to determine the status of nodes in
S we must also consider all nodes and attacks occurring in paths (of any length)
ending in S whose nodes outside S are undecided. The motivation to also consider
“undecided” paths is that some of the undecided arguments occurring in such paths
could belong to (or be attacked by) some preferred extension and, therefore, together
they could determine a change in the status of nodes in S.

Definition 6.8 (Context-Based AF). Let A = 〈A,Σ〉 be an AF, u = ±(a, b), E
the ideal extension of A, and x either an argument in A or the symbol ?. Let S =
Sup(u,A, E, x). The context-based AF of A w.r.t. u and x is CBAF(u,A, E, x) =
Π(Sup(u,A, E, x), u(A)) t T1 t T2 where:

• T1 is the union of the AFs 〈{c, d}, {(c, d)}〉 s.t. (c, d) is an attack of u(A) and
c 6∈ Sup(u,A, E, x), c ∈ E, and d ∈ Sup(u,A, E, x);

• T2 = 〈Nodes(u(A), S, E), Edges(u(A), S, E)〉.

Example 6.9. For AF0, where Eid = {d, f, h}, and u = +(h, d), we have seen
in Example 6.4 that Sup(u, AF0, Eid, c) = {c, d}. Thus CBAF(u, AF0, Eid, c) =
〈{c, d}, {(c, d), (d, c)}〉 t T1 t T2 where: T1 = 〈{h, d}, {(h, d)}〉 since h ∈
Eid does not belong to Sup(u, AF0, Eid, c) while d ∈ Sup(u, AF0, Eid, c); and

6.3 Context-Based Argumentation Frameworks 79

T2 = 〈{a, b, c}, {(a, b), (b, a), (a, c), (b, c)}〉 since there are paths starting from
the undecided arguments a and b ({a, b} 6⊆ (Eid ∪ E+

id)) and ending in c ∈
Sup(u, AF0, Eid, c). Thus, CBAF(u, AF0, Eid, c) is the AF shown in Figure 6.1(b).

Also, CBAF(u, AF0, Eid, ?) = CBAF(u, AF0, Eid, c). 2

In general, CBAF(u,A, E, g) is a subgraph of CBAF(u,A, E, ?) since Sup(u,
A, E, g) ⊆ Sup(u,A, E, ?).
Example 6.10. For AF0, update u′ = +(d, b) of Example 6.5, and goal c, CBAF(u′,
AF0, Eid, c) is as shown in Figure 6.1(c), since Sup(u′, AF0, Eid, c) = {a, b, c, d}
and both T1 and T2 are empty. However, CBAF(u′, AF0, Eid, ?) is bigger, as it is
the restriction of the updated AF to Sup(u′, AF0, Eid, ?) = A0 \ {f, e, g, h} union
T1 = 〈{h, i}, {(h, i)}〉 (T2 is empty). 2

The following theorem states a result which is complementary to that of Theorem 6.6
as it considers the skeptical acceptance of arguments that belong to the supporting
set.

Theorem 6.11. Let A0 = 〈A0, Σ0〉 be an AF, E0 the ideal extension of A0, u =
±(a, b) an update, A = u(A0) the updated AF, and x an argument in A0. Thus,
if Sup(u,A0, E0, x) 6= ∅ then x is skeptically accepted w.r.t. A iff it is skeptically
accepted w.r.t. the context-based AF CBAF(u,A0, E0, x).

Proof. The statement follows from the fact that the set of preferred extensions
of the context-based AF CBAF(u,A0, E0, x) coincides with the restriction of the
set of the preferred extension Epr(A) for the updated AF A to the arguments in
CBAF(u,A0, E0, x). That is, let Ac = 〈Ac, Σc〉 = CBAF(u,A0, E0, x), it is the
case that Epr(Ac) = {E ∩Ac | E ∈ Epr(A)}, which is proved in what follow.

Let L0 and L be the labelling corresponding to E0 and E, respectively, where E
is a preferred extension of the updated AF. Moreover, let Lc be a preferred labelling
for the context-based AF Ac.

Let F be the set of arguments belonging to A but not to Ac and attacking
one argument in Ac. That is, let A = 〈A,Σ〉, F = {y | y ∈ A, y 6∈ Ac,∃z ∈
Ac s.t.(y, z) ∈ Σ}.

Then, the way the context-based AF is defined entails that the status of every
argument in F is OUT w.r.t. the ideal extension E0, that is, ∀z ∈ F,L0(z) = OUT.
Indeed, if one of such arguments z was in E0 (i.e., L0(z) = IN) it would belong to
the component T1 of the definition of context-based AF. On the other hand, if it was
UNDECIDED then it would belong to T2, as well as all the UNDECIDED arguments
on paths (of any length) ending in that argument. Moreover, the status of every ar-
gument in F does not depend on the update, that is ∀z ∈ F,L(z) = L0(z) = OUT;
otherwise, z would be in Sup(u,A0, E0, x) since x can be reached by any argu-
ment in F , and the arguments from which x can be reached does not belong to
Sup(u,A0, E0, x) only if they are not reachable from b or they can be reached from
b only using steady arguments.

Therefore, for each argument z in F+ w.r.t. A, one of the following cases holds.
1) z− ⊆ F (i.e., all the attackers of z are in F) andL0(z) = IN. Thus, z ∈ E0 and

it is attacked only by arguments in F which are OUT and whose status cannot change

80 6 Efficient Computation of Skeptical Preferred Acceptance in Dynamic AFs

after the update, meaning that z ∈ E, that is L(z) = L0(z) = IN. By definition of
context-based AF, z belongs to the component T1 of Ac, it is not attacked by any
argument in Ac, and its status will be IN for any preferred labelling Lc of Ac.

2) z− ⊆ F and L0(z) = UNDECIDED. Thus z is UNDECIDED w.r.t. L0 and it
is attacked only by arguments in F which are OUT and whose status cannot change
after the update, meaning that L(z) may be different from L0(z) but it does not
depend on F . By definition of context-based AF, z belongs to the component T2 of
Ac, and its status w.r.t. L and Lc depends only on the status of other arguments in
Ac.

3) if z− ⊆ F ∪ Ac (i.e., the attacks to z comes from both F and the arguments
of Ac) then the status of z w.r.t. L depends only on the arguments in Ac. Indeed,
if L(z) = OUT then there must be an attacker in w ∈ z− such that L(w) = IN
(w cannot belong to F which contains only arguments which are OUT). Similarly, if
L(z) = IN then the status is determined by all the attackers in w ∈ z− ∩ Ac that
must be such that L(w) = OUT. Finally, if L(z) = UNDECIDED then there must be
an attacker in w ∈ z− ∩Ac such that L(w) = UNDECIDED.

Therefore, for any extension E ∈ Epr(A), the status of arguments in Ac w.r.t. E
either can be decided to be IN (Case 1 above) or it does not depend on the status of
arguments in A \ Ac (Cases 2 and 3 above). This in turns implies that Epr(Ac) =
{E ∩ Ac | E ∈ Epr(A)}, from which it follows that the skeptical acceptance of
x ∈ Ac w.r.t. A is as the skeptical acceptance of x w.r.t. Ac. 2

Example 6.12. Continuing from Example 6.9, we can conclude that argument c is
not skeptically accepted w.r.t. the updated AF u(AF0) because it is not skeptically
accepted w.r.t. the context-based AF CBAF(u, AF0, Eid, c) of Figure 6.1(b) whose
preferred extensions are {a, h} and {b, h} (only h is skeptically accepted w.r.t. the
context-based AF). 2

Finally, the ideal extension of the updated AF can be obtained as the union of
the ideal extension of the context-based AF and the projection of the initial ideal
extension on the complement of the supporting set.

Theorem 6.13. Let A0 = 〈A0, Σ0〉 be an AF, E0 the ideal extension of A0, u =
±(a, b) an update, and A = u(A0) the updated AF. Then, the ideal extension E of
A is such that E = (E0 \ Sup(u,A0, E0, ?)) ∪ E′, where E′ is the ideal extension
of the context-based AF CBAF(u,A0, E0, ?).

Proof. Let L0 and L be the labelling corresponding to E0 and E, respectively.
We first show that for each argument x ∈ A0 \ Sup(u,A0, E0, ?) it holds that

L0(x) = L(x).
Reasoning by contradiction, assume that the status L(x) of argument x ∈ A0 \

Sup(u,A0, E0, ?) is different from its original status L0(x) in A0. We have the
following two cases: (i) x 6∈ ReachA0

(b), which implies that L0(x) = L(x); (ii)
x ∈ ReachA0

(b) and thus x 6∈ Sup(u,A0, E0, ?) since x is reachable from b only
by paths of the form q1, . . . , qn, y1, . . . , yk where yk = x and such that exists z ∈
E0(u) such that (z, y1) ∈ Σ0 (the subpath q1, . . . , qn may be empty, meaning that

6.4 Incremental Computation 81

y1 = b). Since L0(z) = IN and z 6∈ ReachA0
(b), then L(z) = L0(z) which in

turn means that L(y1) = L0(y1) = OUT and L(yi) = L0(yi) with i ∈ [2..k] (note
that each yi is reachable only by path having the above-stated property, otherwise
the property would not hold for x either). Therefore, for each argument x ∈ A0 \
Sup(u,A0, E0, ?), we have that L0(x) = L(x), which in turn implies that all the
arguments in E0 \ Sup(u,A0, E0, ?) belongs to E, i.e., their status does not change
after the update.

Reasoning as in the proof of Theorem 6.11, it can be shown that the set of pre-
ferred extensions of the context-based AF CBAF(u,A0, E0, ?) coincides with the
restriction of the set of the preferred extension Epr(A) for the updated AFA to the ar-
guments in CBAF(u,A0, E0, ?). That is, letAc = 〈Ac, Σc〉 = CBAF(u,A0, E0, ?),
it is the case that Epr(Ac) = {Ep∩Ac | Ep ∈ Epr(A)}. Moreover, all the arguments
of A attacking those in the context-base AF are OUT w.r.t. the initial ideal labelling
L0, as well as w.r.t. any preferred labelling Lp (i.e., those argument are OUT also
w.r.t. the ideal labelling L of the updated AF). That is, the context-based AF contains
in the component T2 all the arguments whose status could change when considering
two different preferred labellings. This is sufficient to locally compute the ideal ex-
tension E′ of CBAF(u,A0, E0, ?), which is then equal to the restriction of the ideal
extension E of the updated AF A to the arguments in CBAF(u,A0, E0, ?). 2

Example 6.14. Continuing from Example 6.9, the ideal extension {f, h} of u(AF0) is
equal to ({d, f, h} \ {c, d})∪{h} where {h} is the ideal extension of CBAF(u, AF0,
Eid, ?). 2

6.4 Incremental Computation

The results of Theorems 6.6 and 6.11, along with those of Theorem 6.13 and Fact 1,
allow us to define SPA (see Algorithm 5) to decide the skeptical acceptance of a goal
g w.r.t. an AF A0 updated by u = ±(a, b). Given the initial skeptical acceptance
SAA0(g) of g and the ideal extension E0 of A0, both SAu(A0)(g) and the ideal
extension E of the updated AF u(A0) are incrementally computed, thus enabling
consecutive invocations of the algorithm to perform sequences of updates.

Algorithm SPA works as follows. First, the supporting set S? = Sup (u,A0, E0, ?)
is computed at Line 1, and using Theorem 6.13 the ideal extension E of the up-
dated AF is computed by invoking an external solver ID-Solver(Aid), computing
the ideal extension of the context-based AF CBAF(u,A0, E0, ?) (Line 3). Then, us-
ing Fact 1, if g belongs to E, then g is skeptically accepted and the algorithm returns
true along with the ideal extension of the updated AF (Line 5). Similarly, if g be-
longs to the set of arguments attacked by an argument in E, then g is not skeptically
accepted and the algorithm returns false along with E (Line 7). Otherwise, the set
Sg = Sup(u,A0, E0, g) is built (it can be efficiently done by starting from S?), and
it is checked if it is empty. If this is the case, using Theorem 6.6, we can conclude that
the acceptance status of g does not change after the update (Line 10). Otherwise, the
context-based AF is built at Line 11 and, using Theorem 6.11, the skeptical accep-
tance of g is recomputed by invoking an external solver SA-Solver(Asa, g) which

82 6 Efficient Computation of Skeptical Preferred Acceptance in Dynamic AFs

tells us if g is skeptically accepted w.r.t. the context-based AF CBAF(u,A0, E0, g)
(Line 12).

As stated next, Algorithm 5 is sound and complete.

Theorem 6.15. If ID-Solver and SA-Solver are sound and complete, for any goal g
Algorithm 5 computes SAu(A0)(g) w.r.t. the updated AF u(A0) and the ideal exten-
sion of u(A0).

Proof. If for any AF A and argument g ID-Solver(A) and SA-Solver(A, g)
correctly return the ideal extension of A and the skeptical acceptance of g w.r.t. A,
respectively, the soundness of Algorithm 5 follows from the fact that pair retuned
〈SAu(A0)(g), E〉, where E is the ideal extension of the updated AF, is correct in all
of the four cases. Indeed, the pair returned at either Line 5 or Line 7 is correct due
to Fact 1 and Theorem 6.13. Moreover, the pair returned at Line 10 is correct due to
Theorem 6.6, while that returned at Line 12 is correct due to Theorem 6.11.

As for completeness, assuming that ID-Solver and SA-Solver are complete w.r.t.
the function each of them computes, the completeness of Algorithm 5 follows by
observing that the skeptical acceptance SAu(A0)(g) of g w.r.t. u(A0) and ideal ex-
tension E of u(A0) is computed whatever is the AF A0, the goal g and its skeptical
acceptance SAA0

(g), the update u, and the ideal extension E0 of A0 taken as input.
2

SPA-base: A version of SPA not using the ideal extension.

SPA-base is obtained from SPA by skipping lines 1–7 of Algorithm 5 and assum-
ing E0 = ∅ at lines 8 and 11 to compute Sg and Asa respectively. Also, no ideal
extension is returned (i.e., E = ⊥). Notice that, similarly to SPA-base, SPA does
not use the information provided by the initial ideal extension when E0 = ∅, though
SPA always incrementally computes the ideal extension of the updated AF.

The proposed technique is extended to deal with the case of multiple updates
performed simultaneously as follows.

As said before in Section 2.4 the application of a set U of updates can be reduced
to performing a single attack, and this holds also for the case of skeptical preferred
acceptance.

Proposition 6.16. Let A0 = 〈A0, Σ0〉 be an AF, and U a set of updates. Let A be
the AF obtained from A0 by performing all updates in U on it. Then,

• E = EU ∩ A0 is the ideal extension of A iff EU is the ideal extension of
+(v, w)(AU).

• Given an argument g of A0, SAA(g) = SA+(v,w)(AU)(g).

6.5 Implementation and Experiments

We have implemented a C++ prototype and compared our incremental technique
with ArgSemSAT [55], the solver that won the ICCMA’17 competition for the task
DS-pr of determining the skeptical preferred acceptance.

6.5 Implementation and Experiments 83

Algorithm 5 SPA(A0, g, SAA0
(g), u, E0)

Input: AF A0 = 〈A0, Σ0〉, argument g ∈ A0,
skeptical acceptance SAA0(g) of g w.r.t. A0,
update u = ±(a, b), ideal extension E0 of A0.

Output: skeptical acceptance SAu(A0)(g) of g w.r.t. u(A0),
ideal extension E of u(A0).

1: Let S? = Sup(u,A0, E0, ?)
2: Let Aid = CBAF(u,A0, E0, ?)
3: Let E = (E0 \ S?)∪ ID-Solver(Aid)
4: if g ∈ E then
5: return 〈true, E〉
6: if g ∈ E+ then
7: return 〈false, E〉
8: Let Sg = Sup(u,A0, E0, g)
9: if Sg is empty then

10: return 〈SAA0(g), E〉
11: Let Asa = CBAF(u,A0, E0, g)
12: return 〈SA-Solver(Asa, g), E〉

Datasets.

We used benchmarks from the DS-pr track of ICCMA’17, that is, the dataset A2
consisting of 50 AFs with a number of arguments |A| ∈ [61, 20K] and a number
of attacks |Σ| ∈ [97, 358K], and the dataset A3 consisting of 100 AFs with |A| ∈
[39, 100K] and |Σ| ∈ [72, 1.26M].

Methodology.

For each AF A0 in the dataset, we randomly selected an update u (or a set U of
updates when considering multiple updates), and an argument g. Then, we computed
the skeptical acceptance of g w.r.t. the updated AF u(A0) by using 1) SPA, that is
Algorithm 5 where ID-Solver is pyglaf [7] and SA-Solver is ArgSemSAT; 2) SPA-
base where only ArgSemSAT is used; and 3) ArgSemSAT (from scratch).

We measured the efficiency of the proposed technique as follows. For AF A0,
update u, and argument g, let tA and tB be the amount of time required by SPA
and SPA-base, respectively, to compute SAu(A0)(g). Let tS be the time required
by ArgSemSAT to compute SAu(A0)(g) from scratch. Then, the improvements of
SPA and SPA-base over ArgSemSAT are defined as tS

tA
and tS

tB
, respectively. Thus,

an improvement equal to x means that the incremental computation is x times faster
than the computation from scratch.

In the figures, each data-point is the average of 10 runs, and solid lines are ob-
tained by linear regression.

Experiment 1.

Figure 6.2 reports the improvement (log scale) of SPA and SPA-base over ArgSem-
SAT on datasets A2 (LHS) and A3 (RHS) for single updates versus the size of the

84 6 Efficient Computation of Skeptical Preferred Acceptance in Dynamic AFs

●

●

● ●

●
●
●●

●

●

●
●

●

●●

●

●
●

●
●●●

●

●

●

●

●●●●

●

●

●●
●

●

●

●

●

●●●●

●

●

●

●

●

●●

10−1

100

101

102

103

104

105

106

107

102 103 104 105

N. of Attacks

●●

SPA
SPA−base

●●
●●

●
●

●
●

●
●

●

●●●●
●

●●●
●
●

●
●●●

●

●

●

●

●

●

●

●

●

●●
● ●●● ●●●●

● ●
●

●

●
●

●

●

●
●●●●● ●

●
●

●

●● ●●
●

●
●

●●
●

●

●
●

●

●

●

●
●●●

●●●

●

●

●

●
●

●
●

●●●
●

●
●●

●

10−1

100

101

102

103

104

105

106

107

102 103 104 105 106

N. of Attacks

●●

SPA
SPA−base

Fig. 6.2: (Experiment 1). Improvement of SPA and SPA-base over ArgSemSAT on
datasets A2 (left-hand side) and A3 (right-hand side).

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

10−1

100

101

102

103

104

105

106

107

102 103 104

N. of Attacks

●●

SPA
SPA−base

●●
●

●

●

●
● ●

●
●

●

●

●
● ●

10−1

100

101

102

103

104

105

106

107

3000 4000 5000
N. of Attacks

●●

SPA
SPA−base

(a) (b)
Fig. 6.3: (Experiment 2). Improvement of SPA and SPA-base over ArgSemSAT on
AFs from datasets A2 and A3 having (a) a number of arguments in [160, 200]; (b)
an average degree in [5, 10].

AFs, i.e., the number of attacks. Both SPA and SPA-base significantly outperform
the computation from scratch, though the improvement decreases as the number of
attacks increases—see Experiment 2 for an analysis of this behaviour. Considering
the averages of the improvements, SPA and SPA-base turn out to be 5 and 4 orders
of magnitude faster than ArgSemSAT, respectively. However, as this can be skewed
by extremely large values of improvements (e.g. 106), we also considered the me-
dians of improvements for SPA (32 on A2, 134 on A3) and SPA-base (27 on A2,
40 on A3) (see dashed line in Figure 6.2), which confirm the significance of the gain
in efficiency. The experiments show that SPA is generally faster than SPA-base,
except for a few AFs whose initial ideal extension is empty.

Experiment 2.

We analysed the performances of SPA and SPA-base by varying the number of
attacks and keeping almost constant either the number of arguments or the aver-
age degree (i.e., N. of attacks / N. of arguments). To this end, we selected as many
AFs as possible from the two datasets having these properties. Figure 6.3 reports
the improvement for AFs having (a) a number of arguments in [160, 200] and (b) an

6.6 Summary 85

10−1

100

101

102

103

104

105

103 104 105

N. of Attacks

−−

SPA 1 update
SPA 10 simultaneous updates
SPA 10 sequential updates

10−2

10−1

100

101

102

103

104

105

106

107

103 104 105 106

N. of Attacks

−−

SPA 1 update
SPA 100 simultaneous updates
SPA 100 sequential updates

Fig. 6.4: (Experiment 3). Improvement of SPA over ArgSemSAT for 10 updates
(LHS) and 100 updates (RHS). Dashed gray lines are improvements for 10 and 100
updates applied sequentially.

average degree in [5, 10]. Figure 6.3(a) shows that the performance gets worse when
the increasing of the number of attacks is mainly due to the increasing of nodes’
degree (in experiments it varies from 1.5 to 40) and the AFs become more and more
dense. Figure 6.3(b) shows that when the average degree does not change signifi-
cantly and the increasing of the number of attacks is mainly caused by the increasing
of the number of arguments (in experiments it has more than doubled, from 2.4K to
5.4K), the improvement does not decrease. This can be explained by looking at the
ratio ρ between the size of the context-based AF and that of the initial AF. Indeed, ρ
increases from 4% to 95% when the average degree of the input AFs varies from 2
to 40 in Figure 6.3(a). On the other hand, for Figure 6.3(b), ρ is almost constant (i.e.,
in [60%, 65%]). Thus, the performance gets worse when the ratio between the size
of the context-based AF and that of the initial AF becomes very large because of the
increasing density of the initial AFs.

Experiment 3.

Figure 6.4 reports the improvement of SPA over ArgSemSAT on datasets A2 (LHS)
and A3 (RHS) for 10 and 100 updates performed simultaneously. To preserve the
structure of the AFs in the datasets, we changed at most 1% (resp., 10%) of the
number of attacks for the AFs of A2 (resp., A3), that is, we considered AFs whose
size is greater than 1K. Figure 6.2 also reports the improvement for 1 update, as well
as for 10 and 100 updates applied sequentially, i.e., one after another (see dashed
lines). The results show that SPA remains faster than the competitor even when 10
or 100 updates are performed simultaneously. Moreover, despite the overhead of the
construction given before Proposition 6.16, applying updates simultaneously is faster
than applying them sequentially.

6.6 Summary

Although handling dynamic AFs is becoming central to argumentation in AI, the
problem of computing skeptical acceptance within dynamic AF has not been unex-

86 6 Efficient Computation of Skeptical Preferred Acceptance in Dynamic AFs

plored so far. To the best our knowledge, this is the first work proposing an efficient
technique for the incremental computation of skeptical acceptance in dynamic AFs.

We have proposed a new algorithm, called SPA, which incrementally computes
the skeptical preferred acceptance by maintaining the ideal extension. For a better
understanding of the relevance of computing the ideal extension, we have also con-
sidered its simpler variant SPA-base which does not rely on the ideal extension.
Both algorithms outperform the computation from scratch, and SPA is generally
faster than SPA-base. However, as the experiments showed, SPA may be slower
than SPA-base when the initial ideal extension is empty. Thus, a first direction for
future work is devising heuristics to take advantages of both algorithms (for instance,
by avoiding the computation of the ideal extension at each step, when the current
ideal extension is empty).

Analogously to classical AF solvers, our approach allows us to determine the
skeptical acceptance of a single argument. However, the definition of supporting set
and context-based AF can be extended to sets of arguments—a way to do it is using
the union of the supporting sets to compute the context-based AF. As a further line
for future work, we plan to extend Algorithm 5 to take as input a set of arguments. In
this direction, SPA always computes the ideal extension, which being contained in
every preferred extension, already provides additional skeptical preferred arguments
other than the goal. Other directions for future work include extending our technique
to work also in the context of BAFs by using a similar approach as done in Chapter 5.

Finally, another direction for future work is extending the technique to other
argumentation semantics. Additionally, the ”base” version of our algorithm can be
extended to deal with other argumentation semantics that satisfy directionality prin-
ciple [17].

7

Incremental Computation of Warranted Arguments
over Dynamic Defeasible Logic Programs

“Repetition of an argument proves your determination, not truth.”

– Raheel Farooq

Recently there has been an increasing interest in structured argumentation, an
extension of the classical argumentation framework (AF) where arguments are not
simple simbols (associated to statements), but have a structure defined by a set of
(strict and defeasible) rules. Considering the structure of arguments allows users to
analyze reasons for and against a conclusion; the warrant status of such a conclu-
sion in the context of a knowledge base represents the main output of a dialectical
process. A naive approach to computing such statuses is costly, and any update to
the knowledge base potentially has a huge impact if done in this manner. We in-
vestigate the case of updates consisting of both additions and removals of pieces of
knowledge in the Defeasible Logic Programming (DeLP) framework, first analyzing
the complexity of the problem and then identifying conditions under which we can
avoid unnecessary computations—central to this is the development of structures
(e.g. graphs) to keep track of which results can potentially be affected by a given
update.

We introduce an algorithm for the incremental computation of the warrant status
of conclusions in DeLP knowledge bases that evolve over time due to the application
of updates. We present an experimental evaluation showing that our incremental al-
gorithm yields significantly faster running times in practice, as well as overall fewer
recomputations.

7.1 The Defeasible Logic Programming Formalism for
Structured Argumentation

Reasoning in argumentation-based systems is primarily carried out by weighing ar-
guments for and against a conclusion or specific query. In structured argumentation,
arguments are comprised of derivations that can make use of different kinds of rules

88 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

and statements. In this chapter, we adopt the Defeasible Logic Programming (DeLP)
language [79], which is a logic programming-based approach in which knowledge
bases, or programs, are composed of facts and rules, which can be either strict or
defeasible.

In [27], four frameworks that consider the structure of arguments are presented;
two of them—ASPIC+ [94] and ABA [110]—build the set of all possible arguments
from the knowledge base and then rely on using one of the possible Dung semantics
to decide on the acceptance of arguments; the other two—Logic-Based Deductive
Argumentation [28] and DeLP [78]—only build the arguments involved in answer-
ing the query. Given that our primary focus is on the changes in the structure of the
arguments that are used to answer a query, ASPIC+ and ABA make the analysis
rather difficult since Dung’s semantics are abstract and therefore not concerned with
the internal components of the arguments involved. The last two frameworks men-
tioned above exhibit several differences [27]—among them is the base logic used
as a knowledge representation language: [28] relies on propositional logic, requir-
ing a theorem prover to solve queries, while DeLP [78] adopts an extension of logic
programming, which is on the other hand a computational framework. An impor-
tant distinction between DeLP and the other three frameworks, which significantly
affects the resolution of a query, rests on the types of attacks that can be consid-
ered among arguments. As we will describe below, DeLP considers two types of
defeaters: proper and blocking; the former is akin to Dung’s form of defeat, called
attack in [61], whereas the latter behaves differently since the two arguments that are
part of the blocking defeat relation, attacker and attackee, are defeated. Of course,
this could be modeled in Dung’s graphs as a mutual attack but the DeLP mechanism
forbids the use of two blocking defeaters successively because in a properly formed
dialogue the introduction of another blocking defeater is unnecessary, since the first
two are already defeated. Moreover, to find the answers required by the query, other
considerations of dialogical nature are taken into account, which enriches the rea-
soning process by forbidding common dialogical fallacies; these characteristics have
been reflected in the development of a game-based semantics [112]. These consider-
ations led us to the choice of DeLP as the basis of the research. It is interesting to note
that the type of changes that could affect the knowledge base we study here from the
algorithmic point of view seeking computational efficiency have been studied from
the Belief Revision perspective in [98].

Reasoning in DeLP is based on building a set of so-called dialectical trees and
then marking their nodes based on their status in the dialog—the main goal of this
process is to arrive at a warrant status for a given literal. In general, one can be
interested in keeping track of the warrant status of all literals involved in the program,
allowing query answering to be optimized; in this scenario, an update to the DeLP
program can have far-reaching effects, or perhaps none at all. Thus, a naive approach
based on total recomputation of the warrant status of all literals after each update
can lead to a significant amount of wasted effort. We are interested in tackling the
problem of minimizing such wasted effort. Toward this end, in this chapter we make
the following contributions:

7.2 Basics of Defeasible Logic Programming 89

• We investigate the complexity of the problems of deciding the existence of an
argument as well as deciding its status, showing that the problems are NP-hard—
this motivates the investigation of incremental/efficient techniques.

• We identify several cases in which updates are guaranteed to have no effect,
i.e., updates that are irrelevant, as the status of the literals does not change after
performing such kinds of updates.

• We propose an approach based on the construction of a labeled hyper-graph in
order to keep track of literals that are potentially affected by a given update
(namely, influenced and core literals), which leads to an incremental computa-
tion algorithm that focuses only on these literals, and avoids the computation of
the status of inferable and preserved literals.

• We empirically evaluate the proposed approach, showing that it can lead to sig-
nificant savings in running time for both rule addition and removal updates.

The area of computational argumentation concerned with actual implementations
is in need of more research. There is an effort to develop abstract argumentation
solvers [108] that will benefit the systems that use this approach. Several researchers
have already examined the dynamics of argumentation following belief revision tech-
niques or abstract argumentation but not looking at the structure of arguments. The
proposed work is based on a system that directly implements an answer semantics,
i.e., it is concerned with deciding the status of a literal after a particular change in
the KB (program), looking to improve performance.

7.2 Basics of Defeasible Logic Programming

We first briefly review the syntax and semantics of Defeasible Logic Programming
(DeLP)—the interested reader can find a thorough description of this formalism
in [79]. After this we introduce the notion of updates for DeLP programs.

We assume the existence of a set AT of atoms from which DeLP programs can
be built. A literal is a ground atom α ∈ AT or its negation ∼α, where symbol “∼”
represents strong negation. We may write ∼∼α for denoting α. We use Lit to denote
the set of literals that can be obtained from the atoms in AT, that is Lit = AT ∪
{∼α | α ∈ AT }. In the following, we assume that literals used to define programs
and their updates are taken from the set Lit.

A DeLP program P is a set of strict and defeasible rules defined using elements
of AT as follows. A fact is a literal. A strict rule is of the form α0 ← α1, . . . , αn,
where α0, α1, . . . , αn (with n ≥ 0) are literals. A defeasible rule is of the form
α0−≺α1, . . . , αn, where α0, α1, . . . , αn (n > 0) are literals. Given a strict or defea-
sible rule r, we use head(r) to denote α0, and body(r) to denote the set of literals
{α1, . . . , αn}. Strict rules with empty body will also be called facts. With a little
abuse of notation, in the following we will denote a fact (α ←) simply by α. Intu-
itively, strict rules represent non-defeasible information, while defeasible rules rep-
resent tentative information (that is, information that can be used if nothing can be
posed against it). In a program P , we will distinguish the subsetΠ of strict rules, and

90 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

the subset ∆ of defeasible rules. We denote P as (Π,∆) when needed. Moreover,
we use LitP to denote the set of literals occurring in a fact or a rule of P .

Given a DeLP program P = (Π,∆) and a literal α ∈ LitP , a (defeasible)
derivation for α w.r.t. P is a finite sequence α1, α2, . . . , αn = α of literals such that
i) each literal αi is in the sequence because there exists a (strict or defeasible) rule
r ∈ P with head αi and body αi1 , αi2 , . . . , αik such that ij < i for all j ∈ [1, k],
and ii) there are not two literals αi and αj such that αj =∼αi. A derivation is said
to be a strict derivation if only strict rules are used.

Given a DeLP program P = 〈Π,∆〉, we denote as CL(P) the set of literals ob-
tained by computing the deductive closure of facts and strict rules of P . For instance,
for the program P1 of Example 7.1, CL(P1) = {∼a, b, d, t}. A set of rules is contra-
dictory if and only if there exist two defeasible derivations for two complementary
literals α and ∼α from that set. We assume that Π is not contradictory (i.e., CL(P)
does not contain two complementary literals)—checking this can be done in PTIME.
However, complementary literals can be derived from P when defeasible rules are
used in the derivation. Two literals α and β are said to be contradictory if i) neither
Π ∪ {α} nor Π ∪ {β} are contradictory, whereas ii) Π ∪ {α, β} is contradictory.
Pairs of complementary literals are obviously contradictory. A set of literals is said
to be contradictory if it contains two contradictory literals.

Example 7.1 (Running example). Let P1 = (Π1, ∆1) be a DeLP-program for sup-
porting doctors in medical diagnoses. Literals in LitP1 and their meaning are as
follows:

t Test proves presence of depression-related disorders
d Patient is diagnosed with depression-related disorders
h The patient is diagnosed with hyperactivity
b Test proves presence of toxins in blood
s Patient shows signs of stress
a Patient should take sleeping aids
i Patient is diagnosed with insomnia
e Patient shows symptoms of attention deficit disorder
f Patient suffers from forgetfulness

Let’s assume that the strict part of P1 is Π1 = {∼a, t, b, (d← t)}, and that the set
of defeasible rules is as follows:

∆1 =

(i−≺s), (s−≺h), (h−≺b),
(∼h−≺d, t), (∼i−≺ ∼a, s), (a−≺t),
(s−≺d), (h−≺d), (∼f−≺ ∼e),
(∼e−≺ ∼h,∼a)

The (non-contradictory) set of literals that can be derived from Π1 is {∼a, t, b, d}.
However, both ∼i and i can be derived from P1 using the following sets of rules and
facts: {(∼ i−≺ ∼a, s), (s−≺d), (d ← t), (t)} and {(i−≺s), (s−≺d), (d ← t), (t)},
respectively. 2

7.2 Basics of Defeasible Logic Programming 91

We use CL(P) to denote the set of literals obtained by computing the deductive
closure of facts and strict rules of P . For instance, CL(P1) = {∼a, b, d, t}

7.2.1 The Dialectical Process

DeLP incorporates a defeasible argumentation formalism for the treatment of contra-
dictory knowledge, which allows the identification of the pieces of knowledge that
are in contradiction, and a dialectical process is used for deciding which informa-
tion prevails as warranted. This process involves the construction and evaluation of
arguments that either support or interfere with a user-issued query.

Definition 7.2 (Argument). Given a DeLP program P = (Π,∆) and a literal α, we
say that 〈A, α〉 is an argument for α if A is a set of defeasible rules of ∆ such that:
(i) there is a derivation for α from Π ∪ A; (ii) the set Π ∪ A is not contradictory;
and (iii) A is minimal (i.e., there is no proper subset A′ of A satisfying both (i) and
(ii)).

Example 7.3. Some arguments for P1 are the following:

〈A1, i〉 = 〈{(i−≺s), (s−≺h), (h−≺b)}, i〉;
〈A2, i〉 = 〈{(i−≺s), (s−≺d)}, i〉;
〈A3, h〉 = 〈{(h−≺b)}, h〉;
〈A4,∼i〉 = 〈{(∼i−≺ ∼a, s), (s−≺d)},∼i〉;
〈A5,∼h〉 = 〈{(∼h−≺t, d)},∼h〉;
〈A6, h〉 = 〈{(h−≺d)}, h〉. 2

An argument 〈A, α〉 is said to be a sub-argument of 〈A′, α′〉 if A ⊆ A′. For
instance, 〈A7, s〉 = 〈{(s−≺h), (h−≺b)}, s〉 is a sub-argument of 〈A1, i〉.

A literal α is said to be warranted if there exists a non-defeated argument A
supporting α. To establish if the argument 〈A, α〉 is a non-defeated argument, de-
featers for 〈A, α〉 are considered, i.e., counter-arguments that by some criterion are
preferred to 〈A, α〉. The comparison criterion is a modular part of the argumentation
inference engine. It is possible to use priority among rules, where an explicit pref-
erence relation among rules is given; an alternative is generalized specificity, where
no explicit order among rules or arguments is needed, preferring arguments with
greater information content or with less use of rules (w.r.t. subset minimality) [106].
We will abstract away from this criterion and simply assume the existence of a pref-
erence relation � between arguments: 〈A, α〉 � 〈B, β〉 means that argument 〈A, α〉
is preferred to argument 〈B, β〉.
Definition 7.4 (Defeater). Let P = (Π,∆) be a DeLP program, and � be a prefer-
ence relation defined over arguments for P . An argument 〈A, α〉 is a defeater for an
argument 〈B, β〉 if and only if:

i) there is a sub-argument 〈C, γ〉 of 〈B, β〉, and
ii) α and γ are contradictory, and
iii) 〈C, γ〉 is not preferred to 〈A, α〉 (i.e.,〈C, γ〉 6� 〈A, α〉).

92 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

A defeater 〈A, α〉 for an argument 〈B, β〉 is proper if 〈A, α〉 � 〈C, γ〉; otherwise, it
is a blocking defeater.

Preferences among arguments can be defined explicitly, by introducing priority
among rules, or implicitly, by formalizing criteria that allow to derive preferences
among arguments. In this chapter we consider the implicit criterion known as gen-
eralized specificity (used in the current implementation of DeLP), where arguments
with greater information content or with less use of rules (w.r.t. subset minimality)
are preferred [106], as defined in what follows.

Definition 7.5 (Generalized Specificity Criterion [79]). Let P = (Π,∆) be a
DeLP program and let Πs be the set of all strict rules from Π (without includ-
ing facts). Let F be the set of all literals that have a defeasible derivation from P
(F will be considered as a set of facts). Let 〈A1, α1〉 and 〈A2, α2〉 be two argu-
ments obtained from P . 〈A1, α1〉 is strictly more specific than 〈A2, α2〉 (denoted
〈A1, α1〉 � 〈A2, α2〉) if the following conditions hold:

1. For all L ⊆ F : if α1 has a defeasible derivation fromΠs∪ L∪A1 and α1 does
not have a strict derivation from Πs ∪ L, then α2 has a defeasible derivation
from Πs ∪ L ∪ A2, and

2. there exists L′ ⊆ F s.t. α2 has a defeasible derivation from Πs ∪ L′ ∪ A2,
and α2 does not have a strict derivation from Πs ∪ L′, and α1 does not have a
defeasible derivation from Πs ∪ L′ ∪ A1.

From now on we assume that the status of arguments is computed by using Def-
inition 7.5 of generalized specificity, and it is used as preference relation � among
arguments, which is also the default criterion adopted by the DeLP solver used in the
experiments.

Definition 7.6 (Argumentation Line). An argumentation line for 〈A0, α0〉 is a se-
quence Λ of arguments where each argument defeats its predecessor, that is Λ =
[〈A0, α0〉, 〈A1, α1〉, 〈A2, α2〉, . . .] where 〈Ai, αi〉 is a defeater for 〈Ai−1, αi−1〉,
for all i > 0.

A line Λ = [〈A0, α0〉, 〈A1, α1〉, 〈A2, α2〉, . . .] can be split in two disjoint
sets: ΛS = {〈A0, α0〉, 〈A2, α2〉, . . . } of supporting arguments, and ΛI = {〈A1,
α1〉, 〈A3, α3〉, . . . } of interfering arguments.

To avoid undesirable sequences that may represent circular or fallacious argu-
mentation lines, an argumentation line must be acceptable. Given a DeLP program
P = (Π,∆), two arguments 〈A, α〉 and 〈B, β〉 are said to be concordant iffΠ∪A∪B
is not contradictory. More generally, a set {〈Ai, αi〉}ni=1 of arguments is concordant
iff Π ∪⋃n

i=1Ai is not contradictory.

Definition 7.7 (Acceptable Line). An argumentation line Λ = [〈A0, α0〉, 〈A1, α1〉,
〈A2, α2〉, . . .] is acceptable iff

i) it is a finite sequence;

7.2 Basics of Defeasible Logic Programming 93

ii) both the set ΛS of supporting arguments and the set ΛI of interfering arguments
are concordant;

iii) no argument 〈Ak, αk〉 in Λ is a sub-argument of an argument 〈Ai, αi〉 (i < k)
appearing earlier in Λ;

iv) for all i such that the argument 〈Ai, αi〉 is a blocking defeater for 〈Ai−1, αi−1〉,
if argument 〈Ai+1, αi+1〉 exists, then 〈Ai+1, αi+1〉 is a proper defeater for
〈Ai, αi〉.

Example 7.8. Consider the arguments from Example 7.3 and the following prefer-
ence relations: A5 � A6 and A3 � A5. Then, [〈A6, h〉, 〈A5,∼h〉, 〈A3, h〉] is an
acceptable argumentation line. 2

It is easy to see that many acceptable argumentation lines could arise from one
argument, leading to a tree structure. This tree is called dialectical because it repre-
sents an exhaustive dialectical analysis for the argument in its root.

Definition 7.9 (Dialectical Tree). Let 〈A0, α0〉 be an argument for a DeLP-program
P . A dialectical tree for 〈A0, α0〉, denoted as T〈A0,α0〉, is defined as follows:

– The root of the tree is labeled with 〈A0, α0〉.
– Let N be a non-root node of the tree labeled 〈An, αn〉, and Λ = [〈A0, α0〉, . . . ,
〈An, αn〉] the sequence of labels of the path from the root to N . Let 〈B1, β1〉,
. . . , 〈Bk, βk〉 be all the defeaters for 〈An, αn〉. For each defeater 〈Bi, βi〉 (1 ≤
i ≤ k), such that the argumentation lineΛ

′
= [〈A0, α0〉, . . . , 〈An, αn〉, 〈Bi, βi〉]

is acceptable, then node N has a child Ni labeled 〈Bi, βi〉. If there is no defeater
for 〈An, αn〉 or there is no 〈Bi, βi〉 s.t. Λ

′
is acceptable, then N is a leaf.

Dialectical trees can be marked in order to decide the status of the literals at their
roots.

Definition 7.10 (Marking of a Dialectical Tree). Let T〈A,α〉 be a dialectical tree for
〈A, α〉. The corresponding marked dialectical tree, denoted T ∗〈A,α〉, will be obtained
marking every node in T〈A,α〉 as follows:

– Leaves in T〈A,α〉 are marked UNDEFEATED in T ∗〈A,α〉.
– Let 〈Bi, βi〉 be an inner node of T〈A,α〉. Then 〈Bi, βi〉 will be marked as UNDE-

FEATED in T ∗〈A,α〉 iff every child of 〈Bi, βi〉 is marked as DEFEATED. The node
〈Bi, βi〉 will be marked DEFEATED in T ∗〈A,α〉 iff it has at least one child marked
as UNDEFEATED.

The warrant status is then easily determined by checking how the roots are
marked.

Definition 7.11 (Warranted Literal). Let 〈A, α〉 be an argument and T ∗〈A,α〉 its as-
sociated marked dialectical tree. The literal α is warranted iff the root of T ∗〈A,α〉 is
marked as UNDEFEATED. We will say that A is a warrant for α.

94 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

Example 7.12. In our running example, h is a warranted literal forP1. In fact, T ∗〈A6,h〉
for 〈A6, h〉 consists of only the argumentation line [〈A6, h〉, 〈A5,∼ h〉, 〈A3, h〉]
of Example 7.8. Thus, 〈A3, h〉 and 〈A6, h〉 are marked as UNDEFEATED, while
〈A5,∼h〉 is DEFEATED. It is easy to see that t, d, b, h, s,∼a are warranted as well.
2

Given a DeLP-program P , we define a total function SP : Lit → {IN, OUT,
UNDECIDED} assigning a status to each literal w.r.t. P as follows: SP(α) = IN if
there exists a (marked) dialectical tree T ∗〈A,α〉 such that α is warranted; SP(α) =

OUT if SP(∼α) = IN; SP(α) = UNDECIDED if neither SP(α) = IN nor SP(α) =
OUT. For literals not occurring in the program we also say that their status is un-
known. In our example, SP1

(h) = IN, SP1
(a) = OUT, and SP1

(i) = UNDECIDED.

7.2.2 Updates

An update modifies a DeLP-program P into a new one P ′ by adding or removing
a strict or a defeasible rule. In particular, we allow the removal of any rule r of P
through an update, and consider the addition of rules r such that body(r) ⊆ LitP
and head(r) ⊆ Lit, thus allowing also the addition of rules whose head is a literal
not belonging to LitP .

Given a DeLP-program P and a strict or defeasible rule r, we use +r (resp., −r)
to denote a rule addition (resp., deletion) update to be performed on P , and u(P) to
denote the DeLP-program resulting from the application of update u = ±(r) to P—
we use P ′ instead of u(P) if the update is understood or we do not need to specify
u explicitly.

Given a DeLP-programP = (Π,∆), and a strict or defeasible rule r, the updated
program P ′ = u(P) is as follows.
– If r is a strict rule and u = +r, then P ′ = ((Π ∪ {r}), ∆) if (Π ∪ {r}) is not
contradictory, otherwiseP ′ = P (i.e., it has no effect if it would yield a contradictory
program).
– If r is a strict rule and u = −r, then P ′ = ((Π \ {r}), ∆); note that (Π \ {r}) is
guaranteed to be not contradictory.
– If r is defeasible and u = +r, then P ′ = (Π, (∆ ∪ {r})).
– Finally, if r ∈ ∆ and u = −r, then P ′ = (Π, (∆ \ {r})).

We say that a set u is feasible with respect to a DeLP program P = (Π,∆), if i)
u = −r and {r} ⊆ Π ∪∆, ii) u = +r and {r}∩ (Π ∪∆) = ∅, and iii) the strict part
Π ′ of the updated program u(P) = (Π ′, ∆′) is not contradictory. In the following
we assume that update u is always feasible.

Example 7.13. Consider the DeLP-program P1 = (Π1, ∆1) of Example 7.1, and the
update u = +r where r = (∼ i−≺h). The updated DeLP-program is (Π1, (∆1 ∪
{r})). Note that new arguments may arise after performing the update; for instance,
〈A8,∼ i〉 = 〈{∼ i−≺h, h−≺b},∼ i〉 exists for the updated program but it did not
exist for P1. 2

7.2 Basics of Defeasible Logic Programming 95

We will use CL(u,P) = CL(P) ∩ CL(u(P)) to denote the set of literals which
are in the deductive closure of facts and strict rules both before and after an update.

7.2.3 Hyper-graphs for DeLP Programs

A directed hyper-graph is a pair 〈N,H〉, where N is the set of nodes and H ⊆
2N × N is the set of hyper-edges. For hyper-edge (S, t), S is a possibly empty set
and it is called the source set, while t is called the target node. The directed, labeled
hyper-graph G(P) is recursively defined as follows.1

Definition 7.14 (Labeled hyper-graph for a DeLP program). Let P be a program
and L = {def, str, cfl} be an alphabet of labels. G(P) = 〈N,H〉, where H ⊆
2N ×N × L, is defined as follows:

• (basic step) For each fact α in Π , then α ∈ N ;
• (iterative step) For each strict (resp. defeasible) rule r in P with head(r) = α0,

body(r) = α1, . . . , αn such that n > 0 and α1, . . . , αn ∈ N , then α0 ∈ N and
({α1, . . . , αn}, α0, str) ∈ H (resp. ({α1, . . . , αn}, α0, def) ∈ H);

• (final step) For each pair of nodes in N representing complementary literals α
and ∼α, both ({α},∼α, cfl) ∈ H and ({∼α}, α, cfl) ∈ H .

Thus, the literals for which there exists a strict derivation in Π belong to the
set N of nodes of G(P). Then, for each (strict or defeasible) rule whose body is in
N , the head is added to N and a hyper-edge corresponding to the rule is added to
the set H of hyper-edges. Finally, there is a pair of (hyper-)edges for each pair of
complementary literals.

The hyper-graph G(P1) for the DeLP-program P1 of Example 7.1 is shown in
Figure 7.1(a) where↔ (resp. �− andJ−) denotes hyper-edges labelled as cfl (resp.
def and str). By definition of G(P), if a literal α ∈ LitP does not belong to G(P),
then there is no argument for it w.r.t. P . However, there may be literals in G(P) that
have no argument. As shown later, deciding whether there is an argument for a given
literal is NP-hard.

Example 7.15. Consider program P ′1 obtained by update u = −(d ← t) on P1.
G(P ′1) is shown in Figure 7.1(b). Since d is not in G(P ′1), there is no argument for it
w.r.t. P ′1. 2

Given G(P) = 〈N,H〉, we say that there is a path from a literal β to a literal
α (and write pathG(P)(β, α), or simply path(β, α), whenever the graph is under-
stood), if either i) there exists an hyper-edge whose source set contains β and whose
target is α, or ii) there exist a literal γ and two paths from β to γ and from γ to α.

In the following, we say that a literal α depends on a literal β in G(P) if there is
a path from β to α in G(P). We also say that a node y is reachable from a set X of

1 Although graphs could be used instead of hyper-graphs, we consider that it is more natural
(and readable) to associate rules with hyper-edges since the related components are made
explicit.

96 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

t

a

s
h

b

i

∼f ∼e

∼a

∼i
∼h

d

t

a

s
h

b

i

∼a

∼i

(a) (b)

Fig. 7.1: (a) G(P1) for the program P1 of Example 7.1; (b) G(P ′1) for the program
P ′1 = −(d← t)(P1) of Example 7.15.

nodes if there exists a path from some x in X to y. We use ReachG(P)(X) to denote
the set of all nodes that are reachable from X in G(P). For instance, considering
the program of Example 7.1 and its hypergraph shown in Figure 7.1(a), we have
that ReachG(P1)({d}) = {d , h,∼h, s,∼i , i ,∼e,∼f }. Moreover, we also use the
notations ReachStrG(P)(X) to denote the set of nodes reachable from X using
only strict hyper-edges, and ReachStr−1G(P)(X) to denote the set of nodes that are
reachable from X by navigating backward strict hyper-edges only.

Structure G(P) can be built in polynomial time in the size of P; thus, both de-
ciding whether a literal depends on another one, and computing ReachG(P)(X), can
be done in PTIME.

7.3 Complexity Analysis

The status of a literal is computed by the dialectical process that builds a (marked) di-
alectical tree where each node is an argument. Thus, an important step of this process
is deciding whether there exists an argument for a given literal to build counterargu-
ments. A first result states that deciding whether there exists an argument for a literal
is costly.

Theorem 7.16. Given P and a literal α ∈ LitP , deciding whether there is an argu-
ment for α w.r.t. P is NP-complete.

Proof. Membership in NP follows from the results in [54], where it was shown that
checking whether a given subset of defeasible rules is an argument is P-complete.
This result guarantees that a polynomial-time guess and check strategy exists for
the problem of deciding the existence of an argument—that is, the problem we are
considering is in NP.

To prove hardness, we provide a LOGSPACE reduction to our problem from the
3-SATISFIABILITY (3SAT) problem [100], whose definition is recalled next. An

7.3 Complexity Analysis 97

instance of 3SAT is a pair 〈U,Φ〉, where U = {x1, x1, x2, x2, . . . , xk, xk} is a set of
propositional variables (where each xi is the negation of xi) and Φ is a propositional
CNF formula of the form C1 ∧ · · · ∧ Cn defined over U . Specifically, each Ci (with
1 ≤ i ≤ n) is a clause of the form xi,1 ∨ xi,2 ∨ xi,3, where xi,j (1 ≤ j ≤ 3) is
a (positive or negated) variable in U . A truth assignment for the variables in U is a
function τ : U → {true, false} such that, for each pair of variables x, x in U , it holds
that τ(x) = ¬τ(x). The truth value of the proposition resulting by substituting every
variable x in Φ with τ(x) is denoted as τ(Φ). The answer for a 3SAT instance 〈U,Φ〉
is true iff there is a truth assignment τ for U such that τ(Φ) is true.

Given an instance 〈U,Φ〉 of 3SAT, we obtain an instance 〈P, α〉 of our prob-
lem as follows. Let LitP = {φ,C1, . . . Cn} ∪ {xi,∼xi, fi | xi, xi ∈ U}. The DeLP
program P = (Π,∆) is such that:

• Π consists of a fact fi for each pair of variables xi, xi ∈ U ;
• ∆ consists of the following defeasible rules:

– For each pair of variables xi, xi ∈ U , the defeasible rules xi−≺fi and ∼
xi−≺fi;

– For each clause Ci (with 1 ≤ i ≤ n) and variable in it, the defeasible rule:
Ci−≺xi,j if xi,j occurs in Ci (with 1 ≤ j ≤ 3),
Ci−≺ ∼xi,j if xi,j occurs in Ci;

– The defeasible rule φ−≺C1 ∧ · · · ∧ Cn.

Finally, let the argument α in the instance 〈P, α〉 of our problem be the literal φ ∈
LitP .

We now show that 〈U,Φ〉 is true iff there is an argument 〈A, φ〉 for φ w.r.t. P .
(⇒) Let τ be a truth assignment for U such that τ(Φ) is true. Let B ⊆ ∆ consist of
the following defeasible rules:

• φ−≺C1 ∧ · · · ∧ Cn;
• Ci−≺xi,j (resp., Ci−≺ ∼xi,j) (with 1 ≤ i ≤ n and 1 ≤ j ≤ 3) if τ(xi,j) is true

and xi,j is in Ci (resp., τ(xi,j) is true and xi,j is in Ci);
• xi−≺fi (resp., ∼xi−≺fi) if τ(xi) (resp. τ(xi)) is true.

Basically, B contains (at least) a rule of the form C−≺x for each clause inC ∈ Φ and
(positive or negated) variable x causing C to evaluate to true. Moreover, B contains
a rule for deriving either x or ∼x, depending on which corresponding variable (x or
x) is assigned to true by τ .

Since τ(Φ) is true, B is a derivation for φ from Π ∪ B and such that Π ∪ B
is not contradictory (as either xi−≺fi or ∼ xi−≺fi is in B, and no other pair of
complementary literals can be derived using the rules in B). Moreover, the existence
of B implies that there is A ⊆ B such that i) A is a derivation for φ from Π ∪ A, ii)
Π ∪A is not contradictory, and iii) A is minimal. Thus, 〈A, φ〉 is an argument for φ
w.r.t. P .
(⇐) Given an argument 〈A, φ〉 for φ w.r.t. P , we define a truth assignment τ for the
variables in U such that τ(Φ) is true as follows.

1) For each defeasible rule xi−≺fi inA, we define τ(xi) = true and τ(xi) = false.

98 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

2) For each defeasible rule ∼xi−≺fi in A, we define τ(xi) = false and τ(xi) =
true.

3) Let U ′ ⊆ U be the subset of the variables that have not been assigned a truth
value at steps 1) and 2) above. We can assign to each variable x ∈ U ′ either
true or false, provided that τ(x) = ¬τ(x). Let us assume that τ(x) = true and
τ(x) = false for each x, x ∈ U ′.

It is easy to see that τ is a truth assignment, i.e., a function such that for each pair
of variables x, x in U , τ(x) = ¬τ(x)—this follows from the fact that Π ∪ A is not
contradictory, and item 3) of the above-described construction. Moreover, sinceA is
a derivation for φ from Π ∪A, it means that every clause of Φ are satisfied by τ , and
thus that τ(Φ) is true. 2

As the DeLP-program defined in the hardness proof of Theorem 7.16 can be reduced
to an equivalent one where all rules have at most two literals in the body, the result
holds even for this kind of programs.

Corollary 7.17. Let P = (Π,∆) be a DeLP-program such that for all r ∈ (Π ∪∆),
|body(r)| ≤ 2. Deciding whether there is an argument for α ∈ LitP w.r.t. P is
NP-complete.

Proof. Membership follows from Theorem 7.16. Hardness can be proved by slightly
modifying the construction in the proof of Theorem 7.16 so that all rules have at
most two literals in the body. Specifically, we only need to rewrite the defeasible rule
φ−≺C1 ∧ · · · ∧ Cn, as the others have at most one literal in the body. It is easy to
see that φ−≺C1 ∧ · · · ∧ Cn can be rewritten into an equivalent set of rules of the
following form (w.l.o.g., assume n = 2k):
ψ21,1−≺C1, C2

ψ21,2−≺C3, C4

. . .
ψ21,n2

−≺Cn−1, Cn
ψ22,1−≺ψ21,1, ψ21,2

. . .
ψ22,n4

−≺ψ21,n2−1, ψ21,n2
. . .
ψ2log2 n,1−≺ψ2(log2 n)−2,1, ψ2(log2 n)−2,2

φ−≺ψ2log2 n,1.
Roughly speaking, we build a (binary) tree whose leaf nodes represent the clauses

C1, . . . , Cn, and the internal nodes ψi,j at level i ∈ [21, 2log2 n] represent of conjunc-
tions of their children. So, the root node ψ2log2 n,1 logically represents the conjunc-
tion of all clauses.

As there are n groups of rules, each of them consisting of at most n/2 rules, the
number of rules is polynomial w.r.t. the number n of clauses, and thus it is polyno-
mial w.r.t. the size of the input 3SAT instance. This way, we obtain a DeLP program
equivalent to that of the proof of Theorem 7.16 and such that each rule has at most
two literals in the body. The statement follows. 2

7.3 Complexity Analysis 99

The following result identifies tractable cases for the problem of deciding whether
there is an argument for a literal.

Proposition 7.18. Given P = (Π,∆) and a literal α ∈ LitP , deciding whether
there is an argument for α w.r.t. P is in PTIME if either (i) α does not depend in
G(P) on literals β and γ such that {β, γ} ∪ Π is contradictory, or (ii) α is not in
G(P).
Proof. First observe that G(P) can be built in polynomial time w.r.t. the size of
P , and checking whether α depends on two contradictory literals is polynomial, too.
Then, if α does not depend on two contradictory literals in G(P), a derivation for
α can be obtained by using the rules belonging to an inverse path from α to facts in
P: once a node t has been visited, if there is a hyper-edge (S, t), then S can become
visited as well. Checking for the existence of such path inG(P) can be accomplished
in polynomial time.

Case (ii) follows from the definition ofG(P), according to which a node is added
to the hyper-graph only if there is a derivation for it starting from the facts of P . 2

Intuitively, case (i) holds because if α does not depend on two literals in G(P)
whose presence leads to a contradiction, a derivation for α can be obtained from the
rules in an inverse path from α to facts in P . Case (ii) follows from the definition of
G(P) and the fact that it can be built in PTIME.

Since in order to decide the status of a literal we must decide whether there is
an argument for at least one literal, Theorem 7.16 and Corollary 7.17 allow us to
conclude that computing the status of an argument is NP-hard.

Corollary 7.19. Let P = (Π,∆) be a DeLP-program such that for all r ∈ (Π ∪
∆), |body(r)| ≤ 2. Deciding whether SP(α) = IN, SP(α) = OUT, or SP(α) =
UNDECIDED, for α ∈ LitP is NP-hard.

Proof. We show that deciding whether SP(α) = IN is NP-hard, from which the
other two results easily follow.

We provide a reduction from 3SAT by providing a construction obtained by
augmenting that in the proof of Theorem 7.16. In the following, we use the notation
introduced in the proof of Theorem 7.16. Given an instance 〈U,Φ〉 of 3SAT, we
define an instance 〈P ′, α〉 of our problem as follows. Let P = (Π,∆) be the DeLP
program defined in the proof of Theorem 7.16. Then,P ′ is as follows:P ′ = (Π ′, ∆′)
where:

• Π ′ consists of all the facts in Π plus a fact f ′i for each pair of variables xi, xi ∈
U ;

• ∆′ consists of the defeasible rules in ∆ plus the following defeasible rules: for
each pair of variables xi, xi ∈ U , the defeasible rules xi−≺f ′i and ∼xi−≺f ′i .

Finally, we have a preference relation � between arguments such that, for each
propositional variable xi, argument 〈{xi−≺f ′i}, xi〉 is preferred to argument 〈{xi−≺fi},
xi〉, and argument 〈{∼xi −≺f ′i},∼xi〉 is preferred to argument 〈{∼xi−≺fi},∼xi〉.
Thus, arguments for xi (resp. or ∼xi) using primed facts f ′i are preferred over those
using not primed arguments fi.

100 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

We now show that 〈U,Φ〉 is true iff SP(φ) = IN, where φ is the literal in (Π,∆),
and thus in (Π ′, ∆′), corresponding to the 3SAT formula.
(⇒) We show that if Φ is satisfiable then there exists a dialectical tree T〈A,φ〉 w.r.t.
P ′ that is marked UNDEFEATED. As shown in the proof of Theorem 7.16, if Φ is
satisfiable then there is an argument 〈A, φ〉 for φ w.r.t. P . Then, there is the same
argument 〈A, φ〉 for φ w.r.t. P ′—the fact that we added some rules in P ′ does not
invalidate argument A for φ.

Argument A contains (sub)arguments of the form Xi = 〈{xi−≺fi}, xi〉 and
X i = 〈{∼xi−≺fi},∼xi〉 that are defeated, respectively, by arguments of the form
X i = 〈{∼xi−≺fi},∼xi〉, and Xi = 〈{xi−≺fi}, xi〉; the latter arguments form the
second level of the dialectical tree T〈A,φ〉. The defeaters between these arguments
and the sub-arguments of A are all blocking defeaters; thus, only proper defeaters
can be added in the (acceptable) argumentation lines starting in the root of T〈A,φ〉.

On the third level of T〈A,φ〉, we have arguments of the formX ′i = 〈{xi−≺f ′i}, xi〉
and X ′i = 〈{∼xi−≺f ′i},∼xi〉, which properly defeat, respectively, the arguments
Xi = 〈{xi−≺fi}, xi〉 and X i = 〈{∼xi−≺fi},∼xi〉 belonging to the second level of
T〈A,φ〉.

Therefore, a marked dialectical tree T ∗〈A,φ〉 such that the root is marked UNDEFEATED
exists, since all the arguments on the third level of T ∗〈A,φ〉 can be marked UNDEFEATED,
those on the second level can be marked DEFEATED, and the root A turns out to be
UNDEFEATED. This means that φ is warranted and SP(φ) = IN.
(⇐) If SP(α) = IN then there is a marked dialectical tree T ∗〈A,φ〉 such that the root
is marked UNDEFEATED. This means that there is an argumentA for φ. As shown in
the proof of Theorem 7.16, if there is an argument 〈A, φ〉 for φ then Φ is satisfiable,
which suffices to complete the proof for the IN case.

Concerning the problem of deciding whether SP(α) = OUT, its NP-hardness
follows from the fact that SP(α) = OUT iff SP(∼ α) = IN, which is NP-hard
as shown above. Reasoning analogously, the hardness for the problem of deciding
whether SP(α) = UNDECIDED can be proved.

Finally, reasoning as in the proof of Corollary 7.19, it can be shown that the
statement holds even if the DeLP program contains at most two literals in each rule’s
body. 2

The fact that computing the status of arguments is hard motivated the investigation
of incremental techniques.

7.4 Incremental Computation

We now address the problem of recomputing the status SP′ of the literals w.r.t. an
updated program P ′ = u(P), given P with status SP . Our approach consists of two
main steps:
(1) Check if the update is irrelevant, i.e., SP(α) = SP′(α) for all literals α ∈ Lit.
In such a case we say that all the literals are preserved, and return the initial status
SP .

7.4 Incremental Computation 101

(2) To deal with relevant updates, we identify the set of literals that are “influenced”
by an update and then define core literals whose status needs to be recomputed after
performing an update, and only recompute their status. The remaining literals are
either guaranteed to be preserved or their status can be inferred using the core literals.

In the following, given a DeLP-program P , an update u = ±r for P , and the
updated program P ′ = u(P), we will use G(u,P) to denote the hyper-graph of the
updated or original program depending on whether u = +r or u = −r, respectively.
That is,

G(u,P) =
{
G(P ′), if u = +r

G(P), if u = −r
As it will become clearer in what follows, the reason for considering G(P) in rule
removal cases—instead of G(P ′)—is that the head head(r) of a removed rule r may
not belong to the updated hyper-graph, and this would result in reaching no literal
from head(r) (and thus having no related literals, see for instance Example 7.15).

The next definitions characterizes the set of literal that are related to an update
u and a DeLP-program P by exploiting concepts of reachable literals both forward
and backward in G(u,P).

Definition 7.20 (Related literals). Let P be a DeLP-program, G(P) = 〈N,H〉 and
u = ±r be an update. Then, let

• R0(u,P) = {head(r)};
• Ri(u,P) = ReachG(u,P)(ReachStr

−1
G(u,P)(Ri−1(u,P))).

the set of nodes that are related w.r.t. u and P is: R(u,P) = Rn(u,P) such that
Rn(u,P) = Rn−1(u,P).

In the following we use R∗(u,P) to denote the set of literals computed as in Defi-
nition 7.20 but explicitly looking at the initial labelled hyper-graph G(P) (instead of
G(u,P)) also for the case of rule addition update.

The following lemma provides a sufficient condition under which the status of a
specific literal does not change; it will be useful both for checking whether an update
is irrelevant and dealing with relevant updates.

Lemma 7.21 (Related and Preserved Literals). LetP be a DeLP-program,G(P) =
〈N,H〉 and u = ±r be an update, and let R(u,P) be the set of nodes that are re-
lated w.r.t. u and P . Then, a literal α occurring as a node of G(u,P) is preserved
(i.e., SP(α) = SP′(α)) if α 6∈ R(u,P).

Proof. Let h = head(r), and assume u = +r. Hence,G(u,P) isG(u(P)). First of
all, we observe that if α 6∈ R(u,P) then α 6∈ R∗(u,P), from which it follows that
h cannot belong to any dialectical tree for 〈A, α〉, for any A (i.e., h 6∈ T ∗〈A,α〉 for all
A). We separately consider the three possible statuses SP(α) of α for which it may
turn out to be preserved:
(1) If SP(α) = IN, then there exists a marked dialectical tree for P T ∗〈A,α〉 whose
root is marked as UNDEFEATED. Since h 6∈ T ∗〈A,α〉 iff there is no node 〈B, β〉 in

102 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

T ∗〈A,α〉 such that h belongs to 〈B, β〉, then it follows that the marked dialectical tree
continues to exist for the updated DeLP program P ′. Thus α is preserved.
(2) If SP(α) = OUT, then SP(∼α) = IN, and α 6∈ R(u,P) iff ∼α 6∈ R(u,P).
Then, reasoning as in point (1) it follows that SP(∼α) does not change.
(3) If SP(α) = UNDECIDED, then the root of every T ∗〈A,α〉 is marked as DEFEATED

for all possible arguments A. Also, we have that SP(∼ α) = UNDECIDED, and
then the root of every T ∗〈A,∼α〉 is marked DEFEATED for all possible arguments A.
Reasoning as above, it can be shown that each such tree still exists, and its marking
remains the same. Then, SP(α) and SP(∼α) continues to be UNDECIDED.

Similar arguments can be used to prove the claim for update u = −r, for which
we need to consider G(P). 2

Thus, if a literal is not related w.r.t u and P then its status does not change after a
rule addition/removal update.

7.4.1 Irrelevant Updates

We provide conditions under which the status of all the literals in Lit are guaranteed
to remain unchanged w.r.t. their previous status, and thus need not be recomputed.
The first proposition provided conditions under which the status of all the literals in
Lit are guaranteed to remain unchanged after performing an update, and thus it does
not need to be recomputed.

Proposition 7.22. Let P be a DeLP-program and r = α0 −≺ α1, . . . , αn a defeasi-
ble rule such that {α0, . . . , αn} ⊆ (LitP ∩ LitP′).
(1) If SP(α0) = IN then +r is irrelevant for P .
(2) If SP(α0) = OUT then −r is irrelevant for P .

Proof. 1) Since SP(α0) = IN, there exists a marked dialectical tree T ∗〈A,α0〉 for P
whose root is marked as UNDEFEATED; the addition of rule r cannot interfere with
this tree, nor any other tree determining the warrant status of the rest of the literals
in P .
2) Since SP(α0) = OUT, then SP(∼α0) = IN and there exists a marked dialectical
tree forP T ∗〈A,∼α0〉 whose root is marked as UNDEFEATED; thus, reasoning as above,
the removal of rule r cannot interfere with this tree, nor any other tree determining
the warrant status of the rest of the literals in P . 2

Thus, if the update consists of adding (resp., removing) a defeasible rule involving
literals whose initial status is IN (resp., OUT), then nothing changes in the status of
any of the literals of the (updated) program.

However, the result of Proposition 7.22 does not hold for updates concerning
strict rules. For instance, the following example shows that a strict rule update may
be relevant (the status of at least one literal changes) even if the status of the head of
the rule update was IN.

Example 7.23. Consider the DeLP program P2 = 〈Π2, ∆2〉 where Π2 = {d, e, f}
and ∆2 = {(a−≺d), (a−≺e), (∼a−≺d), (b−≺a), (b−≺d), (∼c−≺f, b), (c−≺b)}

7.4 Incremental Computation 103

and let u = +(b ← f). Although SP2
(b) = IN (i.e. the status of the head of u

is IN), after performing the update we have that Su(P2)(∼c) = IN, though it was
UNDECIDED before performing the update, meaning that the status of at least one
literal (e.g. ∼c) changed, and thus the update is not irrelevant. Particularly, before
performing the update we have (among others) the following arguments:

• 〈Aex1 ,∼c〉 = 〈{(∼c−≺f, b), (b−≺a), (a−≺d)},∼c〉
• 〈Aex2 ,∼c〉 = 〈{(∼c−≺f, b), (b−≺a), (a−≺e)},∼c〉
• 〈Aex3 ,∼c〉 = 〈{(∼c−≺f, b), (b−≺d)},∼c〉
• 〈Aex4 , c〉 = 〈{(c−≺b), (b−≺a), (a−≺d)},∼c〉
• 〈Aex5 , c〉 = 〈{(c−≺b), (b−≺a), (a−≺e)},∼c〉
• 〈Aex6 , c〉 = 〈{(c−≺b), (b−≺d)},∼c〉

with 〈Aex1 ,∼c〉 � 〈Aex4 , c〉, 〈Aex2 ,∼c〉 � 〈Aex5 , c〉 , 〈Aex3 ,∼c〉 � 〈Aex4 , c〉,
〈Aex3 ,∼c〉 � 〈Aex6 , c〉 as preference relations between them.

Some acceptable argumentation lines are:

• [〈Aex1 ,∼c〉, 〈Aex6 , c〉, 〈Aex3 ,∼c〉, 〈Aex5 , c〉, 〈Aex2 ,∼c〉, 〈Aex4 , c〉]
• [〈Aex2 ,∼c〉, 〈Aex4 , c〉, 〈Aex1 ,∼c〉, 〈Aex5 , c〉]
• [〈Aex2 ,∼c〉, 〈Aex4 , c〉, 〈Aex3 ,∼c〉, 〈Aex5 , c〉]
• [〈Aex3 ,∼c〉, 〈Aex5 , c〉, 〈Aex2 ,∼c〉, 〈Aex4 , c〉, 〈Aex1 ,∼c〉, 〈Aex6 , c〉]
• [〈Aex4 , c〉, 〈Aex1 ,∼c〉, 〈Aex5 , c〉, 〈Aex2 ,∼c〉, 〈Aex6 , c〉, 〈Aex3 ,∼c〉]
• [〈Aex4 , c〉, 〈Aex1 ,∼c〉, 〈Aex6 , c〉, 〈Aex3 ,∼c〉, 〈Aex5 , c〉, 〈Aex2 ,∼c〉]
• [〈Aex5 , c〉, 〈Aex1 ,∼c〉]
• [〈Aex6 , c〉, 〈Aex1 ,∼c〉]

The change in the status is due to the fact that there exist two new arguments
〈Aex7 ,∼c〉 = 〈{(∼c−≺b, f)},∼c〉 and 〈Aex8 , c〉 = 〈{(c−≺b)}, c〉 for u(P2) hav-
ing b as strict part of the program and with the preference relation (among oth-
ers) 〈Aex7 ,∼ c〉 � 〈Aex4 , c〉, 〈Aex7 ,∼ c〉 � 〈Aex5 , c〉, 〈Aex7 ,∼ c〉 � 〈Aex6 , c〉, and
〈Aex7 ,∼c〉 � 〈Aex8 , c〉.

Then, [〈Aex7 ,∼ c〉] is the only acceptable argumentation line contained in the
dialectical three T〈Aex

7 ,∼c〉. 2

UsingG(u,P) and Lemma 7.21, additional irrelevant updates for both defeasible
and strict rules can be identified.

Proposition 7.24. Let P be a DeLP-program and r a strict rule α0 ← α1, . . . , αn or
defeasible rule α0−≺α1, . . . , αn such that {α0, . . . αn} ⊆ (LitP ∩ LitP′). Update
u = ±r is irrelevant for P if α0 does not belong to G(u,P).

Proof. If u = +r and α0 does not belong to G(P ′), then by Definition 7.14 it
holds that {α1, . . . , αn} 6⊆ N ′ and thus also α0 does not belong to N ′. Therefore,
no argument for α0 exists w.r.t. P ′, from which it follows that no argument exists for
α0 w.r.t. P . Thus, every dialectical tree w.r.t. P is still a dialectical tree w.r.t. P ′—
arguments for P are the same as those for P ′. Hence, the status of all the literals
remains unchanged, meaning that u is irrelevant.

104 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

If u = −r and α0 does not belong toG(P), then for each strict or defeasible rule
r such that head(r) = α0 it holds that {α1, . . . , αn} 6⊆ N . Then, after removing
one of these rules, α0 will continue to not belong to N ′. Therefore, dialectical trees
of the program will not change after performing the update, which entails that the
status of all literals is preserved. 2

Proposition 7.25. Let P be a DeLP-program and r a strict rule α0 ← α1, . . . , αn or
defeasible rule α0−≺α1, . . . , αn such that {α0, . . . αn} ⊆ (LitP ∩ LitP′). Update
u = ±r is irrelevant for P if there is αi (with i ∈ [1..n]) such that SP(αi) = OUT
and αi 6∈ R(u,P).

Proof. We now consider the case of u = +r consisting of a positive update
and show that the update has no effect on the way the roots of each dialectical tree
are marked w.r.t. P and P ′ = u(P), which entails that the status of each literal does
not change. Observe that if r does not appear in a dialectical tree for a literal α w.r.t.
P ′, then the status of α does not change. Thus, in the following, we focus on those
dialectical trees of P ′ where r appears in at least one of its arguments.

Let T〈Aj ,αj〉 be a dialectical tree for determining the status of αj w.r.t. P ′. Sup-
pose that at level k of the tree there is an argument 〈Ak, αk〉 such that r appears in
Ak, that is, β appears inAk. Since SP(β) = OUT w.r.t.P and β 6∈ R(U+,P), which
in turn implies that β 6∈ R({u},P), then SP(β) = OUT w.r.t.P ′ since it is preserved.
Therefore, the node labeled with argument 〈Ak, αk〉 is marked as DEFEATED w.r.t.
P ′. Thus, the parent node of the argument 〈Ak, αk〉 at level k − 1 will continue to
have the same marking assignment as in P . In fact, if it is UNDEFEATED w.r.t. P , it
remains UNDEFEATED w.r.t. P ′ because the only change in the tree is the addition of
a sub-tree rooted in 〈Ak, αk〉 marked as DEFEATED. On the other hand, if the parent
node of the argument 〈Ak, αk〉 is marked as DEFEATED w.r.t. P , it remains so in P ′
since it must still have a child marked as UNDEFEATED.

Assume now that we have a negative update u = −r. Analogously to the previous
case, we prove that update u = −r has no effect on the way the roots of each
dialectical tree are marked w.r.t. P and P ′. Again, if r does not appear in a dialectical
tree for a literal α w.r.t. P , then the status of α does not change. Thus, we focus on
those dialectical trees for P where r appears in at least one of its arguments. Let
T〈Aj ,αj〉 be a dialectical tree for determining the status of αj in P . Suppose that at
level k of the tree there is an argument 〈Ak, αk〉 such that r appears in Ak, that is,
β appears in Ak. Since SP(β) = OUT and SP′(β) = OUT (as β 6∈ R(U−,P),
and thus β 6∈ R({u},P)), then the node labeled with argument 〈Ak, αk〉 is marked
as DEFEATED w.r.t. P , and continues to be so in P ′. In fact, the parent node of the
argument 〈Ak, αk〉 at level k−1 will continue to have the same marking assignment
as in P since it has at least one other argument 〈A′k, αk〉 such that there exists r′ 6=
r such that head(r′) = head(r) that appears in A′k. In particular, if the marking
assignment of the parent node at level k−1 is UNDEFEATED it remains UNDEFEATED
because the only change in the tree is the removal of a sub-tree rooted in 〈Ak, αk〉
marked as DEFEATED. On the other hand, if the parent node of the argument 〈Ak, αk〉
is marked as DEFEATED, it remains so since it must still have a child marked as
UNDEFEATED. 2

7.4 Incremental Computation 105

However, in many cases updates are not irrelevant, as shown in the following
example.

Example 7.26. Consider again the DeLP-program P1 from our running example,
where we have that SP1(s) = SP1(t) = IN. For update u = +(s ← t), we have
that Su(P1)(∼i) = IN, though it was UNDECIDED before performing the update. The
change in the status of s is caused by the new argument 〈A10,∼i〉 = 〈{(∼i−≺ ∼
a, s)},∼ i〉 for u(P1) and A10 is preferred to all the other arguments of the form
〈A, i〉. 2

7.4.2 Dealing with Relevant Updates

An update is not irrelevant (or relevant) whenever it causes the status of at least one
literal to change. To avoid wasted effort, it is in our best interest to determine—as pre-
cisely as possible—the subset of literals whose status needs to be recomputed after
an update. Towards this end, we propose the concept of influenced set, which consists
of a subset of literals that are in R(u,P) computed by using only the hyper-edges
whose body does not contain an unrelated literal whose status is OUT—intuitively,
the other hyper-edges can be ignored as they correspond to rules whose head does
not change status.

Let OUT(u,P, SP) = {α | SP(α) = OUT ∧ α 6∈ R(u,P)} be the set of literals
whose status is OUT w.r.t. P and such that they are not related w.r.t u and P , where
u = ±r. The influenced set is iteratively defined as follows.

Definition 7.27 (Influenced Set). Let P be a DeLP-program, u = ±r, and SP the
status of literals w.r.t. P , and G(u,P) = 〈Nu, Hu〉.

– I0(u,P, SP)=
{
∅ if u is irrelevant for P
{head(r)} otherwise;

– Ii+1(u,P, SP) = Ii(u,P, SP) ∪
{∼α | ∃({α},∼α, cfl) ∈ Hu s.t. α ∈ Ii(u,P, SP)} ∪
{α |∃(X,α, `) ∈ Hu s.t. ` ∈ {str, def} ∧ (X ∩ Ii(u,P, SP) 6= ∅) ∧

({α,∼α} ∩ CL(u,P) = ∅) ∧ (X ∩ OUT(u,P, SP) = ∅)} ∪
{α |∃(X,β, str) ∈ Hu s.t. β ∈ Ii(u,P, SP) ∧ (α ∈ X) ∧

({α,∼α} ∩ CL(u,P) = ∅) ∧ (X ∩ OUT(u,P, SP) = ∅)}.
The influenced set for uw.r.t.P and SP is then defined as I(u,P, SP) = In(u,P, SP)
such that In(u,P, SP) = In+1(u,P, SP).

Example 7.28. Consider the DeLP-program P1 of Example 7.1 and the update u =
+(a−≺s), which yields the DeLP-program u(P1). The rule addition update u is not
irrelevant: Proposition 7.22 does not apply, as the SP1

(a) = OUT, Proposition 7.24
does not apply, as literal a belongs to G(u,P1), while Proposition 7.25 does not
apply since SP1(s) = IN.

Thus, we have I0(u,P1, SP1) = {a}. Moreover, OUT(+(a−≺s),P1, SP1) =
{∼h} Hence, since ∼a ∈ CL(u,P), I1(u,P2, SP1

) = I0(u,P1, SP1
) = {a}, and

I(u,P1, SP1
) = {a}. Supposing that ∼a 6∈ CL(u,P) yielding I1(u,P2, SP1

) =

106 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

{a,∼a}, observe that, although both ∼e and ∼f are reachable from ∼a in G(u,P1)
(and thus they are related literals too) through the (hyper-)edge ({∼h,∼a},∼e), ∼e
does not belong to I2(u,P1, SP1

) because ∼h ∈ OUT(+(a−≺s),P1, SP1
). 2

The notion of influenced set is conceptually similar to the influenced set in-
troduced in Chapter 4 in the context of abstract argumentation [61]—where argu-
ments have no internal structure—in order to identify arguments whose status may
change after performing an update (under a given argumentation semantics). Al-
though the aim is analogous, here we deal with incremental computation of the sta-
tus of structured arguments, and devised a notion of influenced set w.r.t. an update
for a DeLP-program and its status that we then apply to (hyper-)graphs representing
DeLP-programs, from which structured arguments are derived.

The following theorem strengthens the result of Lemma 7.21 by identifying a
possibly smaller subset of literals whose status does not change after performing an
update.

Theorem 7.29 (Influenced and Preserved Literals). Let P be a DeLP-program,
u = ±r, P ′ = u(P), and G(P ′) = 〈N ′, H ′〉 the updated hyper-graph. Then, a
literal α ∈ N ′ is preserved (i.e., SP(α) = SP′(α)) if α 6∈ I(u,P, SP).

Proof. Let P = (Π,∆), and let P∗ be the DeLP program obtained from P by
applying all the updates u = −r′ where r′ = α0−≺α1, . . . , αn ∈ ∆ and r′ is such
that (i) α0 ∈ R(u,P), and (ii) there is αi (with i ∈ [1..n]) such that SP(αi) = OUT
and αi 6∈ R(u,P). Since α0 ∈ R(u,P) and αi 6∈ R(u,P), then αi 6∈ R[α0](u,P)
whereR[α0](u,P) is computed as in Definition 7.20 but replacing head(r) with α0.
Therefore, αi 6∈ R∗[α0]

(u,P) and the same holds for any sub-graph G(P ′) of G(P)
where P ′ is obtained from P by removing some of the rules having the properties of
r′. Hence, updates−r′ are removal updates of the form of Proposition 7.25, and thus
all of them are irrelevant. Therefore, ∀α ∈ LitP∗ it holds that SP∗(α) = SP(α).

Let P∗∗ be the DeLP program obtained from P∗ by applying all the up-
dates u = r′′ where r′′ = α0−≺α1, . . . , αn ∈ ∆∗ and r′′ is such that {α0,∼
α0} ∩ CL(u,P∗) 6= ∅. We obtain that the status of all literals α ∈ LitP∗ is the
same w.r.t P∗∗ (i.e., ∀α ∈ LitP∗∗ , SP∗∗(α) = SP∗(α)). This is proved by noting
that if α0 ∈ CL(u,P∗) then i) no argument for ∼α0 exists and ii) it means that
SP∗(α0) = SP∗∗(α0) = IN. Any argument 〈A, α〉 in P∗ s.t. α0 is used in at least
one defeasible rule of A, will continue to be also an argument for P∗∗. Obviously,
any argument 〈A, α〉 in P∗ s.t. α0 is not used in at least one defeasible rule of A,
will continue to be also an argument for P∗∗. Thus, no dialectical tree will change,
meaning that SP∗(α) = SP∗∗(α)∀α ∈ LitP∗∗ . The same holds for the case where
∼α0 ∈ CL(u,P∗). Now consider the hyper-graphG(u,P∗∗). Using Definition 7.27,
with a little effort, it can be checked that I(u,P, SP) coincides with R(u,P∗∗).
Therefore, by applying Lemma 7.21, the statement follows. 2

Using this result, we can determine a set of literals whose status need not be
recomputed after performing a relevant update—though this is not guaranteed to be
a comprehensive set, it will certainly save us from a non-trivial amount of wasted
effort, as we will show empirically below.

7.4 Incremental Computation 107

Given the updated hyper-graph G(P ′) = 〈N ′, H ′〉, we use PR = {α ∈
N ′ \ I(u,P, SP)} to denote the set of literals of P ′ that are guaranteed to be pre-
served; the set of literals whose status needs to be recomputed is thus S = Lit \PR.
However, as we show next, the status of some literals in S can be derived from that
of (complementary) literals in S, and thus we only recompute the status of the latter,
which we call core literals.
Inferable and Core Literals. The status of a literal for which there is no argument in
the (updated) program may depend only on the status of its complementary literal—
we call such literals inferable. Using the hyper-graph of updated programs, we can
define inferable literals as follows.

Definition 7.30 (Set of Inferable Literals). Let P be a DeLP-program, u = ±r,
P ′ = u(P), and G(P ′) = 〈N ′, H ′〉. The set of inferable literals for u w.r.t. P is
Infer(u,P) = LitP′ \N ′.

Example 7.31. Consider P1 from Example 7.1, whose hyper-graph is shown in Fig-
ure 7.1(a) where ↔ (resp. �− and J−) denotes hyper-edges labelled as cfl (resp.
def and str), and the update u = −(d ← t) that yields program u(P1), whose
hyper-graph is shown in Figure 7.1(b). Then, Infer(u,P1) = {d,∼h,∼e,∼f}. 2

The core literals for a relevant update u = ±r w.r.t. P are those in LitP′ that are
influenced but are not inferable.

Definition 7.32 (Set of Core Literals). Let P be a DeLP-program, u = ±r, and
SP the status of the literals of P . The set Core(u,P) of core literals for u w.r.t. P is
Core(u,P)) = (I(u,P, SP) \ Infer(u,P)) ∩ LitP′ .

Observe that if the update is irrelevant, then Core(u,P) = ∅, and so is the influ-
enced set.

Example 7.33. Continuing from Example 7.31, we have that Core(u,P1) = ({h, s,∼
i, i, d,∼h,∼e,∼f} \ {d,∼h,∼e,∼f}) ∩ LitP′ = {h, s,∼i, i}. 2

The relationship between inferable and core literals is as follows: the status of an
inferred literal w.r.t. the updated program can be either OUT or UNDECIDED, and if
it is OUT it is entailed by the status of a core literal that is IN.

Theorem 7.34 (Status of Inferable Literals). Let P be a DeLP-program, u = ±(r)
an update, and P ′ = u(P). For each literal α ∈ Infer(u,P), it holds that
SP′(α) = OUT iff ∼ α ∈ Core(u,P, SP) and SP′(∼ α) = IN; otherwise
SP′(α) = UNDECIDED.

Proof. By the definitions of Infer(u,P), it follows that if α ∈ Infer(u,P) then α
does not belong to G(P ′), and thus no arguments can be built for it to determine its
status w.r.t. P ′—the status of α depends on that of its complementary literal ∼α.
We consider separately the cases where ∼α either belongs to Core(u,P) or not, and
whether ∼α is preserved.

108 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

LitP ′
N ′

R(u,P)

LitPN

LitP
N

R(u,P)

LitP ′N ′

PR
Core(u,P)
Infer(u,P)

I(u
,P
,SP

)

I(u
,P
,SP

)

Legend :

Fig. 7.2: Relationship between sets of literals LitP , Lit′P , N , N ′, R, PR, Infer, I
and Core for addition (a) and removal (b) case.

If ∼α ∈ Core(u,P) or ∼α is preserved, then the status SP′(∼α) will be IN if
there is a dialectical tree for it marked UNDEFEATED, otherwise the status will be
UNDECIDED (the status of ∼α cannot be OUT since no dialectical tree for α exists,
as no argument for it can be built w.r.t. P ′). Then, the status SP′(α) is entailed from
that of SP′(∼α): SP′(α) = OUT if SP′(∼α) = IN, while SP′(α) = UNDECIDED if
SP′(∼α) = UNDECIDED.

If ∼α 6∈ Core(u,P) and ∼α is not preserved, then ∼α ∈ Infer(u,P), and thus
arguments cannot be built either for α or for ∼α. Therefore, SP′(α) = UNDECIDED
if SP′(∼α) = UNDECIDED. 2

Example 7.35. Continuing from Examples 7.31 and 7.33, Theorem 7.34 tells us that
SP′1(∼h) = OUT since SP′1(h) = IN and h ∈ Core(u,P1, SP1

). Also, we have that
SP′1(d) = SP′1(∼e) = SP′1(∼f) = UNDECIDED. 2

Figure 7.2 and Table 7.1 report the relationship between the different sets of lit-
erals considered in this section. Note that, for the rule addition case, Core(u,P, SP)
coincides with the influenced set since Infer(u,P)∩N ′ = ∅, while Core(u,P,SP) ⊆
I(u,P, SP) when u is a rule removal since LitP′ \N and LitP′ \N ′ (the inferable
set) may both be non-empty, and the latter intersects the influenced set.

7.4.3 Incremental Algorithm

Algorithm 6 works as follows. First, by default, the status of the literals w.r.t. the
updated program is assigned to that of the initial program at Line 1. Then it checks
if the update belongs to the cases identified in Propositions 7.22–7.25 (and it is thus
irrelevant) and, if so, immediately returns the updated status that coincides with the
initial one (Line 3). The next check is for literals not occurring in the input program,
for which we compute the (updated) status w.r.t. P ′ by calling the DeLP-Solver2

2 See http://lidia.cs.uns.edu.ar/delp_client/index.php.

7.4 Incremental Computation 109

Sets
LitP LitP′ N N ′ R PR I Infer Core
+ − + − + − + − + − + − + − + − + −

LitP = =

LitP′ ⊇ ⊆ = =

N ⊆ ⊆ ⊆ = =

N ′ ⊆ ⊆ ⊆ ⊇ ⊆ = =

R ⊆ ⊆ ⊆ ⊆ = =

PR ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ = =

I ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊃⊂/ ⊃⊂/ = =

Infer ⊆ ⊆ ⊆ ⊃⊂/ ⊃⊂/ ⊃⊂/ ⊃⊂/ ⊃⊂/ ⊃⊂/ ⊃⊂/ ⊃⊂/ ⊃⊂/ = =

Core ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊃⊂/ ⊃⊂/ = ⊆ ⊃⊂/ ⊃⊂/ = =

Table 7.1: Relationship between sets of literals LitP , Lit′P , N , N ′ R, PR, Infer, I
and Core for addition (+) and removal (–) case. Symbol ⊃⊂/ denotes disjoint sets, while
blank means that the relationship between the sets depends on the input program.

Algorithm 6 Dynamic DeLP-Solver
Input: DeLP-program P , Initial status SP , Update u = ±r.
Output: Status SP′ w.r.t. the updated program P ′ = u(P).
1: SP′(α) = SP(α) ∀α ∈ LitP ;
2: if one of Propositions 7.22–7.25 holds (the update is irrelevant) then
3: return SP′ ;
4: if {head(r),∼head(r)} ∩ LitP = ∅ then
5: SP′(head(r))← DELP-SOLVER(P ′, head(r))
6: return SP′
7: for α ∈ Core(u,P) do
8: SP′(α) ← DELP-SOLVER(P ′, α);
9: for α ∈ Infer(u,P) do

10: if SP′(∼α) = IN

11: then SP′(α) ← OUT

12: else SP′(α) ← UNDECIDED;
13: for α ∈ Lit \ LitP′ do
14: SP′(α) = UNDECIDED

15: return SP′ .

with input P ′ and the new literal head(r), and return the initial status updated by
changing only that of head(r) (Line 6).

Otherwise, the status of the literals is updated by first calling the solver at Lines
7-8 for the core literals, and then using Theorem 7.34 to derive the status of inferable
literals in Lines 9-12. The status of preserved literals remains as assigned in Line 1.
Finally, the status of literals no longer belonging to the updated program (due to
rule removal) is set to UNDECIDED, and the updated status SP′ for all literals of the
updated program P ′ is returned.

The following result states that this algorithm is sound and complete.

110 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

Theorem 7.36. Let P be a DeLP-program, u = ±(r), and P ′ = u(P). For each
α ∈ Lit, Algorithm 6 returns SP′(α).

Proof. Soundness follows from the fact that Algorithm 6 returns the right status
SP′(α). Specifically, if the update is irrelevant then, using the results of Proposi-
tions 7.22–7.24, SP′(α) = SP(α) for each α ∈ Lit is returned at Line 3.

Otherwise, the update is relevant, and two cases are considered. First, if the literal
head(r) contained in the head of the rule r as well as its complementary literal ∼
head(r) do not appear in LitP , then the only literal whose status changes after

performing the update is head(r) (the status of ∼head(r) remains UNDECIDED). In
fact, in this case, the status of all literals of the initial DeLP program P carry over to
P ′—the same marked dialectical trees can be used to obtain the status w.r.t. P and
P ′ for all literals in LitP . Therefore, the status of head(r) is computed in Line 5 and
returned along with the previous status for the other literals in Lit in Line 6.

The second case we need to consider is when the update is relevant and the head
of rule r or its complementary literal are in the language of the program P . Using
Theorem 7.29, the status of preserved literals PR does not change, and it is computed
in Lines 1 by copying it from the initial status. Next, the status of core literals is
computed from scratch in Lines 7-8, and the status of inferable literals is computed
using the result of Theorem 7.34. Finally, in Lines 11-12 the status of the literals that
do not belong to the updated program anymore is set to UNDECIDED. This suffices
to show the soundness part of the proof.

As for completeness, it easily follows from the fact that LitP′ = head(r) ∪
PR ∪ Core(u, P) ∪ Infer(u,P), and the status of all these literals is computed by
Algorithm 6. Moreover, the status of literals in Lit\LitP′ are assigned UNDECIDED.
2

It is easy to see that the time complexity of Algorithm 6 is dominated by O(|Core
(u,P)| ×D(P, α)), where D(P, α) is the cost of a DeLP-solver call for computing
the status of a literal α w.r.t. P—Corollary 7.19 entails that solving this problem is
NP-hard in general. Thus, theoretically, Algorithm 6 has the same worst-case com-
plexity as total recomputation, as Core(u,P) may consist of the whole set of literals
whose status need to be recomputed (see Figure 7.2). However, as we experimentally
show in the next section, in practice the incremental approach turns out to be much
more efficient than the recomputing everything from scratch.

7.5 Implementation and Experiments

We report on a set of experiments designed to compare Algorithm 6 against full
recomputation from scratch (i.e., the direct computation of the status of all the literals
in an updated DeLP-program using the DeLP-Solver). We performed experiments
that aimed at evaluating both the efficiency and effectiveness of Algorithm 6.
Dataset. Inspired by the structure of the DeLP-program in our running example,
we generated a set of 40 DeLP-programs, each consisting of a number of literals in
[180, 220], of facts in [10, 20], of strict rules in [20, 30], and a number of defeasible

7.5 Implementation and Experiments 111

0

25

50

75

100

125

25 50 75 100
% Reachable

R
un

 ti
m

e(
se

c) Total Recomputation
Incremental Recomputation

0

25

50

75

100

125

25 50 75 100
% Reachable

R
un

 ti
m

e(
se

c) Total Recomputation
Incremental Recomputation

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●
●

●

●● ●●

●
●

●

●

●

●

●●

●

● ●●

●

● ●

●●

●

●

●

●

●

●

●

● ●●●

●

●●

●

● ●●

●

●

●

●

●

●

●●

●●

● ●●●

●

●●
●

●

●

●●

●

●

●

●

●●
●

●●
●
●●

●●

●●●

●

●●● ●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●

●

●

●

●●

●●

●

●
●●●●●●●

●●

●

●

●

●

●

●● ●

●

●

●●●

●

●●●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●●

●

●●●●●

●

●●●

●

●●

●

●●

0

25

50

75

100

25 50 75 100
% Reachable

%
E

(u
,P

)

●

●

●

●

●

●

● ●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●

●

●●●

●●

●●

●

● ●● ● ●

●●●

●●

●

●●● ●●

●

●●●●

●

●

●●

●

●

● ●●●●

●

●

●

●

●

●

●● ●●●

●

●●●

●

●

●

●● ● ●●

●

0

25

50

75

100

25 50 75 100
% Reachable

%
E

(u
,P

)

Fig. 7.3: Running time (top) and effectiveness (bottom) for rule addition (left-hand
side) and deletion (right-hand side) cases.

rules in [100, 150]. More in detail, benchmark DeLP-programs were generated by a
Python prototype as follows. First, numbers n, f , s, and d were randomly chosen
in the intervals specified above for the number of literals, facts, strict and defea-
sible rules, respectively. Then, each DeLP-program was iteratively built by using
every fact for defining the body of at least one (strict/defeasible) rule. Rule bodies
were randomly generated consisting of up to 4 distinct and non-contradictory liter-
als; rule heads were generated selecting literals not contradicting the body’s literals,
and also avoiding the generation of rules that would make the resulting program con-
tradictory. Given a generated DeLP-program, rule removal updates were obtained by
randomly selecting a rule in the program; rule addition updates were generated by
using the same procedure from above for generating a rule during the construction
of the benchmark program. For each program, we generated 5 different rule addi-
tion/deletion updates.

As far as we know, this is one of the first attempts to produce a benchmark
for structured argumentation, along with [59] where benchmarks were generated for
ABA [110].
Efficiency. Figure 7.3 (top) shows the running times for computing the status of all
the literals in DeLP-programs after adding (left-hand side) or removing (right-hand
side) a rule versus the percentage p of literals that are reachable from the head of
an update—for the sake of readability, besides data points, figures also show lines

112 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

obtained by LOESS local regression. The incremental computation outperforms full
recomputation from scratch: for percentages of reachability less than p ≤ 15% the in-
cremental approach takes only 2 seconds on average, while full recomputation takes
almost 2 minutes (irrespectively of p). Algorithm 6 performs better in the rule re-
moval case, compared with the rule addition case, as the status of a larger set of
literals can be inferred from that of core literals for that scenario, saving part of the
hard computation. Finally, the experiments also showed that, for both addition and
removal updates, incremental computation remains on average quite faster than total
recomputation, even when p is high. This is due to the fact that on average only 19%
of all the literals turn out to be core literals, which are those whose status actually
needs to be recomputed—this aspect is analyzed further in what follows.
Effectiveness. Given an update u and a program P , effectiveness E(u,P) is 100%
if one of the conditions in Propositions 7.22–7.25 applies—that is, if we are able
to recognize that u is irrelevant. Otherwise (either u is relevant or we are not able
to recognize that it is irrelevant), let M(u,P) be the set of literals whose status
needs to be recomputed, that is, M(u,P) is the set of literals α such that either
(i) SP′(α) 6= SP(α) or (ii) SP′(α) = SP(α) and α is associated with different
(marked) dialectical trees in P and P ′. Then, E(u,P) = |M(u,P)|

|Core(u,P)∪ Infer(u,P)| is the
percentage of literals whose status needs to be recomputed over the set of literals
whose status is recomputed by Algorithm 6. Given that M(u,P) ⊆ (Core(u,P) ∪
Infer(u,P)), we have that as the difference between Core(u,P) ∪ Infer(u,P) and
M(u,P) becomes smaller, E(u,P) increases and the technique is more accurate.

Figure 7.3 (bottom) shows E(u,P) versus p for rule addition and deletion up-
dates. The average effectiveness is about 85% (resp., 86%) in the rule addition (resp.,
deletion) case for p ≤ 10%, meaning that only 15% (resp., 14%) of the recomputa-
tion was unnecessary. The average effectiveness remains quite high (more than 75%)
for p ≤ 33%—see the red segment on the left-hand side of each figure reporting ef-
fectiveness. For p > 33%, the average wasted effort was larger, though still resulting
in lower running times.

Moreover, the experiments showed that, for almost half of the updates performed,
the proposed technique computes only the status of literals whose status actually
needs to be recomputed, thus fully avoiding wasted effort during the recomputation.
In fact, E(u,P) = 100% for 47% and 42% of the rule addition and deletion up-
dates performed, respectively. More in detail, it turned out that 20% and 17% of the
rule addition and deletion updates, respectively, were recognized as irrelevant—this
means that Propositions 7.22–7.25 were applied in 43% and 40% of the updates for
which E(u,P) = 100%.

Overall, the experiments showed that the incremental approach is quite effective
in that it often computes only the status of the literals whose status changes after an
update, and it is in any case faster than total recomputation—i.e., the overhead of
applying the technique always pays off.

7.6 Summary 113

7.6 Summary

Overviews of key concepts in argumentation theory and formal models of argumen-
tation can be found in [12, 25, 30, 102]. Further discussion regarding the uses of
computational argumentation as an Agreement Technology can be found in Modgil
et al. [97].

Several significant efforts dealing with dynamic aspects of abstract argumen-
tation frameworks have been developed (e.g., [20, 49, 99]), where arguments are
abstract entities with no internal structure [61]. The techniques proposed in [19, 89]
and [2, 3, 4, 81, 82] are related to the proposed approach in the sense that both exploit
the general concept of reachability in the graph corresponding directly to the given
abstract argumentation framework (i.e., each node represents an abstract argument).
On the other hand, here we apply the concept of reachability for (hyper-)graphs rep-
resenting DeLP-programs from which structured arguments are derived. None of the
above-mentioned works deal with structured arguments.

Although the technique we propose is related to incremental approaches for ab-
stract argumentation discussed in previous chapters, the complexity of the setting
considered here where arguments are “sub-programs” makes those approaches un-
usable for structured argumentation. Indeed, there are several differences to be con-
sidered when moving from abstract to structured argumentation. For instance, view-
ing an abstract argumentation framework as a logic program [42], the addition of an
attack consists in modifying the body of a rule, whereas in the considered structured
argumentation framework we dealt with the addition and deletion of (whole) rules.
Moreover, in our setting adding/deleting a single rule could generate/drop multiple
defeats between structured arguments.

As in the abstract argumentation case, there have been some works following
the belief revision approach. In [70], the issue of modifying strict rules to become
defeasible was analyzed in the context of revisions effected over a knowledge base,
while in [98] the authors thoroughly explored the different cases that may occur
when a DeLP program is modified by adding, deleting, or changing its elements.
Neither of these works explored the implementation issues related to the problems
studied here. Regarding implementations of approaches focusing on improving the
tractability of determining the status of pieces of knowledge, in [44, 45] the authors
consider several alternatives to avoid recomputing warrants. In [60], the authors fo-
cus on challenges arising in the development of recommender systems, addressing
them via the design of novel architectures that improve the computation of answers.
Finally, [80] make use of heuristics designed to improve efficiency. None of these
approaches have a deep connection with this work.

We have taken the first steps in tackling the problem of avoiding wasted effort
when determining the warrant status of literals in a DeLP program after it is changed.
We identified certain conditions under which updates can be guaranteed to have no
effect whatsoever, and then proposed a data structure that helps us determine the
potential effects of the update, thus allowing us to conclude that the rest of the literals
will be unaffected. The resulting incremental computation algorithm is shown—via
a set of experiments—to yield significantly lower running times in practice.

114 7 Incremental Computation of Warranted Arguments over Dynamic DeLPs

The analysis in a concrete formalism like DeLP is less difficult conceptually be-
cause the internal structure of arguments is readily available, and thus one can lever-
age this instead of reasoning about the relationships between abstract arguments.
However, we believe the basic ideas in the framework could carry over to other
frameworks, v.g. ASPIC+, ABA. Although Algorithm 6 could be used to improve
the performance of the inference process of DeLP, it is orthogonal to the process
itself and the engine that implements it. In fact, the ideas behind the concepts of rele-
vant/irrelevant updates, as well as preserved/core/inferable literals, could eventually
be extended to work with other formalisms/inference processes. This is a direction
we are planning to take in future work. Finally, we are now currently working on
extending the technique to deal with sets of updates to be performed simultaneously.

Conclusions and Future Work

This thesis mainly focused on advancing techniques for efficiently solving the prob-
lem of computing extensions of several kinds of argumentation frameworks. In the
static setting, i.e. when the represented knowledge does not change over the time,
an efficient algorithm is proposed to determine the set of both preferred and semi-
stable extensions exploiting properties of the considered semantics. This layed the
foundation to new algorithms for improving the efficiency of state-of-the-art solvers
returning extensions under different semantics. Therefore, an interesting challenge is
to find similar techniques for other multiple-status semantics (i.e. complete, stable,
etc..).

Analogously, in the dynamic setting, an incremental algorithm taking as input
an initial extension and a change (called update) of the argumentation graph, and
returning an extension of the updated framework under the most popular argumen-
tation semantics is presented. The experimental evaluation showed that, indepen-
dently of the argumentation framework adopted, using such incremental algorithms
yields lower running times for computing an extension. Although argumentation is
an inherently dynamic process, few works were proposed in literature to deal with
dynamic argumentation. This topic layed the groundwork to launch a new specific
competition [33], where solvers are required to incrementally compute extensions
after changes. It would be interesting to find out what happens if these solvers incor-
porate theoretical results presented in this thesis. Future work will be devoted to both
(i) applying our technique to other argumentation semantics and (ii) extending it to
cope with other computational problems, such as enumerating all the extensions and
deciding credulous acceptance in dynamic argumentation frameworks.

By exploiting the incremental algorithm proposed in Chapter 4, we also intro-
duced a technique for the incremental computation of extensions of dynamic EAFs,
i.e., BAFs (possibly) incorporating second-order attacks. Additionally, there could
be the possibility to discover similar techniques when a set of updates is performed
over an EAF. For this purpose, the construction described in Section 2.4 for reducing
the application of a set of updates to the application of a single attack update could
be extended to deal with multiple updates for EAFs. In this perspective, another
interesting direction for future work is to extend our technique to deal with other

116 8 Conclusions and Future Work

interpretations of support, particularly the approach in [51, 52] where meta-AFs are
also adopted to cope with bipolarity in argumentation. Also, tackling the problem of
recomputing the skeptical acceptance in the context of BAFs would complete the pic-
ture. For this scope, it can be investigated an approach that combines the translation
into a meta-AF with the incremental technique proposed in Chapter 6.

In this thesis, it is also addressed for the first time the problem of finding an effi-
cient technique for the incremental computation of skeptical acceptance in dynamic
AFs. Finally, it is also presented an algorithm able to efficiently solve the problem
of avoiding wasted effort when determining the warrant status of literals in a DeLP
program after it is changed by applying a set of strict/defeasible rule additions and
deletions. However, we believe the basic ideas in the framework could carry over to
other frameworks, e.g. ASPIC+ or ABA. This is a direction to take in future work.

For all the addressed problems, experiments confirmed the efficiency of tech-
niques, showing that them outperform state-of-the-art approaches/algorithms.

Acknowledgement

I would like to thank my supervisors Sergio Greco and Francesco Parisi. I believe
that a key element in obtaining a PhD is to find the right supervisors, and I feel that
I could not have been luckier in this regard. They are excellent supervisors with-
out whose guidance this work would have been impossible. I furthermore thanks all
thesis reviewers for precious comments/suggestions. I had the opportunity to discuss
ideas with many colleagues, both inside and outside the University of Calabria. Some
of these discussions lead to joint works, for which I want to thank Guillermo Ricardo
Simari, Gerardo Ignacio Simari, Andrea Cohen and Sebastian Gottifredi. I want to
thank all my colleagues for the great times, both during and after working hours.
I would like to thank my family for their support, as well as my friends. Finally, I
would like to thank Francesca, who has had to pay for this thesis with many lonely
weekends, for her love, support and patience.

References

[1] http://argumentationcompetition.org/2017/results.
html, 2017.

[2] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Computing stable
and preferred extensions of dynamic bipolar argumentation frameworks. In
Proc. of Workshop on Advances In Argumentation In Artificial Intelligence
co-located with XVI International Conference of the Italian Association for
Artificial Intelligence (AI*IA), pages 28–42, 2017.

[3] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Efficient compu-
tation of extensions for dynamic abstract argumentation frameworks: An in-
cremental approach. In Proc. of International Joint Conference on Artificial
Intelligence (IJCAI), pages 49–55, 2017.

[4] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. Computing ex-
tensions of dynamic abstract argumentation frameworks with second-order
attacks. In IDEAS, pages 183–192, 2018.

[5] Gianvincenzo Alfano, Sergio Greco, and Francesco Parisi. A meta-
argumentation approach for the efficient computation of stable and preferred
extensions in dynamic bipolar argumentation frameworks. Intelligenza Artifi-
ciale, 12(2):193–211, 2018.

[6] Teresa Alsinet, Josep Argelich, Ramón Béjar, César Fernández, Carles Mateu,
and Jordi Planes. An argumentative approach for discovering relevant opin-
ions in twitter with probabilistic valued relationships. Pattern Recognition
Letters, In press, 2017.

[7] Mario Alviano. The pyglaf argumentation reasoner. In ICLP, pages 2:1–2:3,
2017.

[8] Leila Amgoud, Jean-François Bonnefon, and Henri Prade. An argumentation-
based approach to multiple criteria decision. In Proc. of European Conference
on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (EC-
SQARU), pages 269–280, 2005.

[9] Leila Amgoud, Claudette Cayrol, and Marie-Christine Lagasquie-Schiex. On
the bipolarity in argumentation frameworks. In Proc. of International Work-
shop on Non-Monotonic Reasoning (NMR), pages 1–9, 2004.

120 References

[10] Leila Amgoud and Henri Prade. Using arguments for making and explaining
decisions. Artif. Intell., 173(3-4):413–436, 2009.

[11] Leila Amgoud and Srdjan Vesic. Revising option status in argument-based
decision systems. Journal of Logic and Computation, 22(5):1019–1058, 2012.

[12] Katie Atkinson, Pietro Baroni, Massimiliano Giacomin, Anthony Hunter,
Henry Prakken, Chris Reed, Guillermo R. Simari, Matthias Thimm, and Ser-
ena Villata. Towards artificial argumentation. AI Magazine, 38(3):25–36,
2017.

[13] Pietro Baroni, Guido Boella, Federico Cerutti, Massimiliano Giacomin, Leen-
dert W. N. van der Torre, and Serena Villata. On the input/output behavior of
argumentation frameworks. Artificial Intelligence, 217:144–197, 2014.

[14] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An intro-
duction to argumentation semantics. The Knowledge Engineering Review,
26(4):365–410, 2011.

[15] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida.
Encompassing attacks to attacks in abstract argumentation frameworks. In
Proc. of European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU), pages 83–94, 2009.

[16] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida.
AFRA: argumentation framework with recursive attacks. Int. J. Approx. Rea-
soning, 52(1):19–37, 2011.

[17] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of
extension-based argumentation semantics. Artif. Intell., 171(10-15):675–700,
2007.

[18] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. Scc-
recursiveness: a general schema for argumentation semantics. Artificial In-
telligence, 168(1-2):162–210, 2005.

[19] Pietro Baroni, Massimiliano Giacomin, and Beishui Liao. On topology-
related properties of abstract argumentation semantics. A correction and ex-
tension to dynamics of argumentation systems: A division-based method. Ar-
tificial Intelligence, 212:104–115, 2014.

[20] Ringo Baumann. Splitting an argumentation framework. In Proc. of Inter-
national Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR), pages 40–53, 2011.

[21] Ringo Baumann. Normal and strong expansion equivalence for argumentation
frameworks. Artificial Intelligence, 193:18–44, 2012.

[22] Ringo Baumann. Context-free and context-sensitive kernels: Update and dele-
tion equivalence in abstract argumentation. In Proc. of European Conference
on Artificial Intelligence (ECAI), pages 63–68, 2014.

[23] Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks:
Enforcing and monotonicity results. In Proc. of Third International Confer-
ence on Computational Models of Argument (COMMA), pages 75–86, 2010.

[24] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in AI and law:
Editors’ introduction. Artif. Intell. Law, 13(1):1–8, 2005.

References 121

[25] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial
intelligence. Artificial Intelligence, 171(10 - 15):619 – 641, 2007.

[26] Trevor J. M. Bench-Capon, Henry Prakken, and Giovanni Sartor. Argumen-
tation in legal reasoning. In Argumentation in Artificial Intelligence, pages
363–382. 2009.

[27] P. Besnard, A. J. Garcia, A. Hunter, S. Modgil, H. Prakken, G. R. Simari, and
F. Toni. Introduction to structured argumentation. Argument & Computation
– Special Issue: Tutorials on Structured Argumentation, 5(1):1–4, 2014.

[28] P. Besnard and A. Hunter. Constructing argument graphs with deductive ar-
guments: A tutorial. Argument & Computation, 5(1):5–30, 2014.

[29] Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT
Press, 2008.

[30] Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT
Press, 2008.

[31] Philippe Besnard and Anthony Hunter. Argumentation based on classical
logic. In Argumentation in Artificial Intelligence, pages 133–152. 2009.

[32] Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-
Christine Lagasquie-Schiex. Characterizing change in abstract argumenta-
tion systems. In Trends in Belief Revision and Argumentation Dynamics, vol-
ume 48, pages 75–102. 2013.

[33] Stefano Bistarelli, Lars Kotthoff, Francesco Santini, and Carlo Taticchi. Con-
tainerisation and dynamic frameworks in iccma’19. In Proceedings of the Sec-
ond International Workshop on Systems and Algorithms for Formal Argumen-
tation (SAFA 2018) co-located with the 7th International Conference on Com-
putational Models of Argument (COMMA 2018), Warsaw, Poland, September
11, 2018., pages 4–9, 2018.

[34] J Anthony Blair and Ralph H Johnson. The current state of informal logic.
Informal Logic, 9(2), 1987.

[35] Bernhard Bliem, Markus Hecher, and Stefan Woltran. On efficiently enumer-
ating semi-stable extensions via dynamic programming on tree decomposi-
tions. In Proc. of COMMA, pages 107–118, 2016.

[36] Guido Boella, Dov M. Gabbay, Leendert W. N. van der Torre, and Serena Vil-
lata. Support in abstract argumentation. In Computational Models of Argu-
ment: Proceedings of COMMA 2010, Desenzano del Garda, Italy, September
8-10, 2010., pages 111–122, 2010.

[37] Guido Boella, Souhila Kaci, and Leendert W. N. van der Torre. Dynam-
ics in argumentation with single extensions: Abstraction principles and the
grounded extension. In Proc. of European Conference on Symbolic and Quan-
titative Approaches to Reasoning and Uncertainty (ECSQARU), pages 107–
118, 2009.

[38] Guido Boella, Souhila Kaci, and Leendert W. N. van der Torre. Dynamics in
argumentation with single extensions: Attack refinement and the grounded ex-
tension. In Proc. of Sixth International Workshop on Argumentation in Multi-
Agent Systems (ArgMAS), pages 150–159, 2009.

122 References

[39] Richard Booth, Martin Caminada, and Braden Marshall. DISCO: A web-
based implementation of discussion games for grounded and preferred seman-
tics. In Proc. of COMMA, pages 453–454, 2018.

[40] Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations of
dung frameworks and their role in formal argumentation. IEEE Intelligent
Systems, 29(1):30–38, 2014.

[41] Martin Caminada. Semi-stable semantics. In Proc. of 1st International Con-
ference on Computational Models of Argument (COMMA), pages 121–130,
2006.

[42] Martin Caminada, Samy Sá, João Alcântara, and Wolfgang Dvorák. On the
equivalence between logic programming semantics and argumentation seman-
tics. Int. J. Approx. Reasoning, 58:87–111, 2015.

[43] Martin W. A. Caminada, Wolfgang Dvorák, and Srdjan Vesic. Preferred
semantics as socratic discussion. Journal of Logic and Computation,
26(4):1257–1292, 2016.

[44] M. Capobianco, C. I. Chesñevar, and G. R. Simari. Argumentation and the
dynamics of warranted beliefs in changing environments. Autonomous Agents
and Multi-Agent Systems, 11(2):127–151, 2005.

[45] M. Capobianco and G. R. Simari. A proposal for making argumentation com-
putationally capable of handling large repositories of uncertain data. In Proc.
of SUM, pages 95–110, 2009.

[46] Dan Cartwright and Katie Atkinson. Political engagement through tools
for argumentation. In Computational Models of Argument: Proceedings of
COMMA 2008, Toulouse, France, May 28-30, 2008., pages 116–127, 2008.

[47] Dan Cartwright and Katie Atkinson. Using computational argumentation to
support e-participation. IEEE Intelligent Systems, 24(5):42–52, 2009.

[48] Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine
Lagasquie-Schiex. Revision of an argumentation system. In Proc. of Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR), pages 124–134, 2008.

[49] Claudette Cayrol, Florence Dupin de Saint-Cyr, and Marie-Christine
Lagasquie-Schiex. Change in abstract argumentation frameworks: Adding an
argument. Journal of Artificial Intelligence Research, 38:49–84, 2010.

[50] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptabil-
ity of arguments in bipolar argumentation frameworks. In Proc. of European
Conference on Symbolic and Quantitative Approaches to Reasoning and Un-
certainty (ECSQARU), pages 378–389, 2005.

[51] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolar abstract ar-
gumentation systems. In Argumentation in Artificial Intelligence, pages 65–
84. 2009.

[52] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Coalitions of argu-
ments: A tool for handling bipolar argumentation frameworks. International
Journal of Intelligent System, 25(1):83–109, 2010.

References 123

[53] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Change in abstract
bipolar argumentation systems. In Proc. of International Conference on Scal-
able Uncertainty Management (SUM), pages 314–329, 2015.

[54] L. A. Cecchi, P. R. Fillottrani, and G. R. Simari. On the complexity of DeLP
through game semantics. In Proc. of NMR, pages 386–394, 2006.

[55] Federico Cerutti, Massimiliano Giacomin, and Mauro Vallati. ArgSemSAT:
Solving argumentation problems using SAT. In COMMA, pages 455–456,
2014.

[56] Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, and Marina Zanella.
An SCC recursive meta-algorithm for computing preferred labellings in ab-
stract argumentation. In Proc. of KR, 2014.

[57] Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter Wall-
ner, and Stefan Woltran. Methods for solving reasoning problems in abstract
argumentation - A survey. Artificial Intelligence, 220:28–63, 2015.

[58] Andrea Cohen, Sebastian Gottifredi, Alejandro Javier Garca, and
Guillermo Ricardo Simari. A survey of different approaches to support
in argumentation systems. The Knowledge Engineering Review, 29(5):513–
550, 2014.

[59] Robert Craven and Francesca Toni. Argument graphs and assumption-based
argumentation. Artif. Intell., 233:1–59, 2016.

[60] C. A. D. Deagustini, S. E. Fulladoza Dalibón, S. Gottifredi, M. A. Falappa,
C. I. Chesñevar, and G. R. Simari. Relational databases as a massive informa-
tion source for defeasible argumentation. Knowledge-Based Systems, 51:93–
109, 2013.

[61] Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artifi-
cial Intelligence, 77(2):321–358, 1995.

[62] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal
sceptical argumentation. Artificial Intelligence, 171(10-15):642–674, 2007.

[63] Paul E. Dunne. The computational complexity of ideal semantics. Artificial
Intelligence, 173(18):1559–1591, 2009.

[64] Paul E Dunne and Martin Caminada. Computational complexity of semi-
stable semantics in abstract argumentation frameworks. In European Work-
shop on Logics in Artificial Intelligence, pages 153–165, 2008.

[65] Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumenta-
tion. In Argumentation in Artificial Intelligence, pages 85–104. 2009.

[66] Wolfgang Dvorak, Matti Jarvisalo, Johannes Peter Wallner, and Stefan
Woltran. Complexity-sensitive decision procedures for abstract argumenta-
tion. Artificial Intelligence, 206:53–78, 2014.

[67] Wolfgang Dvorak, Reinhard Pichler, and Stefan Woltran. Towards fixed-
parameter tractable algorithms for argumentation. In Proc. of European Con-
ference on Symbolic and Quantitative Approaches to Reasoning and Uncer-
tainty (ECSQARU), 2010.

124 References

[68] Wolfgang Dvorak and Stefan Woltran. Complexity of semi-stable and stage
semantics in argumentation frameworks. Information Processing Letters,
110(11):425–430, 2010.

[69] Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor, editors.
Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019.
International Foundation for Autonomous Agents and Multiagent Systems,
2019.

[70] M. A. Falappa, G. Kern-Isberner, and G. R. Simari. Explanations, belief revi-
sion and defeasible reasoning. Artif. Intell., 141(1/2):1–28, 2002.

[71] Marcelo A. Falappa, Alejandro Javier Garcia, Gabriele Kern-Isberner, and
Guillermo Ricardo Simari. On the evolving relation between belief revision
and argumentation. The Knowledge Engineering Review, 26(1):35–43, 2011.

[72] Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. Efficiently estimating
the probability of extensions in abstract argumentation. In Proc. of Interna-
tional Conference on Scalable Uncertainty Management (SUM), pages 106–
119, 2013.

[73] Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. On the complexity
of probabilistic abstract argumentation frameworks. ACM Transactions on
Computational Logic, 16(3):22, 2015.

[74] Bettina Fazzinga, Sergio Flesca, and Francesco Parisi. On efficiently esti-
mating the probability of extensions in abstract argumentation frameworks.
International Journal of Approximate Reasoning, 69:106–132, 2016.

[75] Bettina Fazzinga, Sergio Flesca, Francesco Parisi, and Adriana Pietramala.
PARTY: A mobile system for efficiently assessing the probability of exten-
sions in a debate. In Proc. of International Conference on Database and Ex-
pert Systems Applications (DEXA), pages 220–235, 2015.

[76] John Fox, David Glasspool, Vivek Patkar, Mark Austin, Liz Black, Matthew
South, Dave Robertson, and Charles Vincent. Delivering clinical decision
support services: there is nothing as practical as a good theory. Journal of
biomedical informatics, 43(5):831–843, 2010.

[77] Sarah Alice Gaggl and Norbert Manthey. ASPARTIX-D ready for the compe-
tition, 2015.

[78] A. J. Garca and G. R. Simari. Defeasible logic programming: DeLP-servers,
contextual queries, and explanations for answers. Argument & Computation,
5(1):63–88, 2014.

[79] Alejandro J. Garca and Guillermo R. Simari. Defeasible logic programming:
An argumentative approach. Theory and Practice of Logic Programming
(TPLP), 4(1-2):95–138, 2004.

[80] S. Gottifredi, N. D. Rotstein, A. J. Garca, and G. R. Simari. Using argument
strength for building dialectical bonsai. Annals of Mathematics and Artificial
Intelligence, 69(1):103–129, 2013.

[81] Sergio Greco and Francesco Parisi. Efficient computation of deterministic
extensions for dynamic abstract argumentation frameworks. In Proc. of Euro-
pean Conference on Artificial Intelligence (ECAI), pages 1668–1669, 2016.

References 125

[82] Sergio Greco and Francesco Parisi. Incremental computation of determin-
istic extensions for dynamic argumentation frameworks. In Proc. of Euro-
pean Conference On Logics In Artificial Intelligence (JELIA), pages 288–304,
2016.

[83] Sergio Greco and Domenico Saccà. Complexity and expressive power of de-
terministic semantics for datalog¬. Inf. Comput., 153(1):81–98, 1999.

[84] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On
generating all maximal independent sets. Information Processing Letters,
27(3):119–123, 1988.

[85] Antonis C. Kakas and Loizos Michael. Cognitive systems: Argument and
cognition. IEEE Intelligent Informatics Bulletin, 17(1):14–20, 2016.

[86] Nadin Kökciyan, Nefise Yaglikci, and Pinar Yolum. Argumentation for resolv-
ing privacy disputes in online social networks: (extended abstract). In Proc.
of International Conference on Autonomous Agents and Multiagent Sytems
(AAMAS), pages 1361–1362, 2016.

[87] Markus Kröll, Reinhard Pichler, and Stefan Woltran. On the complexity of
enumerating the extensions of abstract argumentation frameworks. In Proc.
of IJCAI, pages 1145–1152, 2017.

[88] Jean-Marie Lagniez, Emmanuel Lonca, and Jean-Guy Mailly. CoQuiAAS: A
constraint-based quick abstract argumentation solver. In ICTAI, pages 928–
935, 2015.

[89] Bei Shui Liao, Li Jin, and Robert C. Koons. Dynamics of argumentation sys-
tems: A division-based method. Artificial Intelligence, 175(11):1790–1814,
2011.

[90] Beishui Liao. Toward incremental computation of argumentation semantics:
A decomposition-based approach. Annals of Mathematics and Artificial Intel-
ligence, 67(3-4):319–358, 2013.

[91] Beishui Liao and Huaxin Huang. Partial semantics of argumentation: ba-
sic properties and empirical results. Journal of Logic and Computation,
23(3):541–562, 2013.

[92] Beishui Liao, Liyun Lei, and Jianhua Dai. Computing preferred labellings by
exploiting sccs and most sceptically rejected arguments. In TAFA Workshop,
pages 194–208, 2013.

[93] Hugo Mercier and Dan Sperber. Why do humans reason? arguments for an
argumentative theory. Behavioral and brain sciences, 34(2):57–74, 2011.

[94] S. Modgil and H. Prakken. The ASPIC+ framework for structured argumen-
tation: A tutorial. Argument & Computation, 5(1):31–62, 2014.

[95] Sanjay Modgil. An abstract theory of argumentation that accommodates de-
feasible reasoning about preferences. In Proc. of European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (EC-
SQARU), pages 648–659, 2007.

[96] Sanjay Modgil. Reasoning about preferences in argumentation frameworks.
Artificial Intelligence, 173(9-10):901–934, 2009.

[97] Sanjay Modgil, Francesca Toni, Floris Bex, Ivan Bratko, Carlos I. Chesnevar,
Wolfgang Dvorak, Marcelo A. Falappa, Xiuyi Fan, Sarah Alice Gaggl, Ale-

126 References

jandro J. Garca, Maria P. Gonzalez, Thomas F. Gordon, Joao Leite, Martin
Mouzina, Chris Reed, Guillermo R. Simari, Stefan Szeider, Paolo Torroni,
and Stefan Woltran. Agreement Technologies, volume 8 of Law, Governance
and Technology, chapter 21: The Added Value of Argumentation: Examples
and Challenges, pages 357–404. Springer, 2013.

[98] M. O. Moguillansky, N. D. Rotstein, M. A. Falappa, A. J. Garca, and G. R.
Simari. Dynamics of knowledge in DeLP through argument theory change.
TPLP, 13(6):893–957, 2013.

[99] Emilia Oikarinen and Stefan Woltran. Characterizing strong equivalence for
argumentation frameworks. Artificial Intelligence, 175(14-15):1985–2009,
2011.

[100] C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

[101] Henry Prakken. An abstract framework for argumentation with structured
arguments. Argument & Computation, 1(2):93–124, 2010.

[102] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelli-
gence. Springer Publishing Company, Incorporated, New York, 1st edition,
2009.

[103] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelli-
gence. Springer Publishing Company, Incorporated, 1st edition, 2009.

[104] Domenico Saccà and Carlo Zaniolo. Deterministic and non-deterministic sta-
ble models. J. Log. Comput., 7(5):555–579, 1997.

[105] Raymond M Smullyan and Raymond Smullyan. What is the name of this
book?: the riddle of Dracula and other logical puzzles. Prentice-Hall Engle-
wood Cliffs, NJ, 1978.

[106] F. Stolzenburg, A. J. Garca, C. I. Chesnevar, and G. R. Simari. Computing
generalized specificity. Journal of Applied Non-Classical Logics, 13(1):87–
113, 2003.

[107] Hannes Strass and Stefan Ellmauthaler. godiamond-iccma 2017 system de-
scription.

[108] Matthias Thimm and Serena Villata. The first international competition on
computational models of argumentation: Results and analysis. Artificial Intel-
ligence, 252:267–294, 2017.

[109] Matthias Thimm, Serena Villata, Federico Cerutti, Nir Oren, Hannes Strass,
and Mauro Vallati. Summary report of the first international competition
on computational models of argumentation. Artificial Intelligence Magazine,
37(1):102, 2016.

[110] F. Toni. A tutorial on assumption-based argumentation. Argument & Compu-
tation, 5(1):89–117, 2014.

[111] Eugenio Di Tullio and Floriana Grasso. A model for a motivational system
grounded on value based abstract argumentation frameworks. In Electronic
Healthcare - 4th International Conference, eHealth 2011, Málaga, Spain,
November 21-23, 2011, Revised Selected Papers, pages 43–50, 2011.

[112] I. D. Viglizzo, F. A. Tohmé, and G. R. Simari. Ann. Math. Artif. Intell.,
57(2):181–204, 2009.

References 127

[113] Serena Villata, Guido Boella, Dov M. Gabbay, and Leendert W. N. van der
Torre. Modelling defeasible and prioritized support in bipolar argumentation.
Annals of Mathematics and Artificial Intelligence, 66(1-4):163–197, 2012.

[114] Yuming Xu and Claudette Cayrol. The matrix approach for abstract argu-
mentation frameworks. In Proc. of International Workshop on Theory and
Applications of Formal Argumentation (TAFA), pages 243–259, 2015.

