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Abstract

Uno dei principali problemi della geometria algebrica è la classificazione delle varietà
algebriche a meno di isomorfismi o di equivalenza birazionale. Mentre il problema
della classificazione di curve algebriche è essenzialmente risolto, il problema della clas-
sificazione di superfici presenta ancora qualche area sconosciuta.

L’argomento di ricerca discusso in questa tesi rientra in quello della classificazione
di superfici proiettive complesse con sezioni iperpiane Prym-canoniche. I soli esempi
conosciuti di questo tipo di superficie sono la superficie di Enriques ed una superficie
in P5 di grado 10 ottenuta come immersione dello scoppiamento di P2 nei 10 nodi di
una curva piana razionale irriducibile di grado 6.

Noi diciamo che una superficie X ha sezioni iperpiane Prym-canoniche se può es-
sere realizzata birazionalmente in qualche spazio proiettivo Pg−1, per g ≥ 5, tale che
una generica sezione iperpiana C di X è una curva liscia di genere g immersa Prym-
canonicamente.

Mostreremo che una superficie con sezioni iperpiane Prym-canoniche può essere bi-
razionalmente equivalente o ad una superficie di Enriques o a P2, ed in tal caso può
contenere soltanto punti doppi razionali come singolarità, oppure ad una superficie
rigata su una curva base di genere q ≥ 0. In quest’ultimo caso, la somma dei generi
geometrici delle singolarità di X è uguale al genere geometrico della curva base q. La
proprietà generale di queste superfici è che, se π : X ′ → X è la risoluzione minimale
delle singolarità di X, allora esiste solo un divisore antibicanonico effettivo su X ′ il cui
supporto è contenuto nel luogo eccezionale di π.

Dal momento che le superfici di Enriques sono già state studiate da diversi autori,
costruiremo nuove superfici con sezioni iperpiane Prym-canoniche birazionalmente equiv-
alenti a superfici rigate o a P2. Il metodo per costruire esempi di questo tipo di superfici
consiste nel trovare sistemi lineari L′′ su superfici minimali X ′′ (superfici rigate o P2)
tali che, dopo aver scoppiato tutti i punti base di L′′ per ottenere X ′, la trasformata
stretta L′ di L′′ è disgiunta dal solo divisore antibicanonico di X ′ mentre il divisore
anticanonico di X ′ ristretto ad una generica curva di L′ è un divisore di torsione non-
nullo.
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Introduction

One of the main problems of algebraic geometry is to classify algebraic varieties up
to isomorphisms or to birational equivalence. While the classification of algebraic
curves is essentially complete, the problem of classification of surfaces still presents
some unknown areas. In 1914, Enriques classified all the smooth surfaces into four
large classes; two surfaces in the same class have the same invariant, called “Kodaira
dimension”.

The research problem discussed in this thesis is the classification of complex projective
surfaces with Prym-canonical hyperplane sections. The idea of this work is inspired by
the PhD Thesis of Dick Epema entitled “Surfaces with canonical hyperplane sections”
(see [13], [14]).

We say that a surfaceX has Prym-canonical hyperplane sections if it can be birationally
realized in some projective space Pg−1, for g ≥ 5, such that a general hyperplane section
C of X is a smooth Prym-canonical embedded curve of genus g.

We will show that a surface with Prym-canonical hyperplane sections can be bira-
tionally equivalent to an Enriques surface or to P2 or to a ruled surface over a base
curve of genus q ≥ 0. In the last case, the sum of the geometric genus of the singulari-
ties of X is equal to the genus of the base curve q while, in the other cases, the surface
X can only contain rational double points as singularities. The general property of
these surfaces is that, if π : X ′ → X is the minimal resolution of the singularities
of X, then there exists only one effective antibicanonical divisor on X ′ with support
contained in the exceptional locus of π.

Since Enriques surfaces have already been studied in details by several authors, we
will only construct new surfaces with Prym-canonical hyperplane sections birationally
equivalent to ruled surfaces or P2. The method to construct examples of this type
of surfaces consists in constructing linear systems L′′ on minimal surfaces X ′′ (ruled
surfaces or P2) such that, after blowing up all the base points of L′′ to obtain X ′, the
strict transform L′ of L′′ is disjoint from the only antibicanonical divisor of X ′ while
the anticanonical divisor of X ′ restricted to a general curve of L′ is a non-zero two
torsion divisor.

More precisely, in Chapter 1 we will study general properties of surfaces with Prym-
canonical hyperplane sections. After a brief introduction, we will focus on the study
of the possible singularities on this type of surfaces.

In Chapters 2 and 3, we will construct new examples of these surfaces, respectively
birationally equivalent to ruled surfaces or P2. In particular, in Chapter 2, we will
recall some properties regarding ruled surfaces and, after studying the possible non-
rational singularities on them, we will construct other new examples. We will compute
how many moduli one of these new examples depends on, concluding that it can be a
degeneration of a generic Enriques surface. Moreover, we will give a list in terms of
invariants of some possible surface with Prym-canonical hyperplane sections.
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In Chapter 3, we will review the only known example of surface with Prym-canonical
hyperplane sections birationally equivalent to P2 and we will construct a new example.
Also in this case, we will give a list in terms of numerical values of some possible surface
with Prym-canonical hyperplane sections.

In the last Chapter, we will only consider surfaces with Prym-canonical hyperplane
sections with specific assumptions. Concerning these, we will give an upper bound to
the number of moduli of these surfaces birationally equivalent to rational ruled surfaces.
Whereas, for the case of surfaces birationally equivalent to non-rational ruled surfaces,
we will only give an upper bound for the number of moduli of their hyperplane sections.
This is still a work in progress.
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Terminology

In the next sections, we will work over C, the field of the complex numbers.

Later on, we will denote a divisor and its associated line bundle with the same symbol.

We will use the classical language of algebraic geometry. Below, we list some
symbols and notation:

KX = canonical divisor of a smooth variety X;

∼ = linear equivalence of divisors;

≡ = numerical equivalence of divisors;

grd = a linear system of dimension r and degree d on a curve;

C ·D, D2 = intersection, respectively self-intersection number of divisors C,D on a
surface;

|D| = the complete linear system of which D is a member;

H i(F ) = the i− th cohomology group of the coherent sheaf F ;

hi(F ) = dim H i(F );

IZ = ideal of a set Z of points;

Cliff(C) = Clifford index of a smooth curve C;

q(X) = irregularity h1(OX) of a variety X;

pa(X) = arithmetic genus of a variety X;

pg(X) = geometric genus of a variety X;

∧2E = second exterior power of the sheaf E ;

PX(E) = projective space bundle associated with a locally free coherent sheaf E on a
variety X;

supp(D), supp(F ) = support of a divisor D respectively a sheaf F ;

(−i)− curve = curve isomorphic to P1 such that its self-intersection number is equal
to −i;

N = set of natural numbers, including 0;

N>0 = set of natural numbers without 0;

NY |X = normal sheaf of a nonsingular subvariety Y on a nonsingular variety X;
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Pic(X) = group of isomorphism classes of invertible sheaves on X, called Picard group
of X;

Pic0(X) = subgroup of Pic(X) of invertible sheaf of degree 0;

Sing(X) = set of singular points of a variety X;

Rif∗F = i-th direct image of a sheaf F relative to the morphism f ;

SaE = a−th symmetric product of the sheaf E , with a ∈ N>0.
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1 Surfaces with Prym-canonical hyperplane sections

In this first chapter, we want to study the general properties of surfaces with Prym-
canonical hyperplane sections, that are the subject of our work. In particular, we will
give some information about the singularities that occur on them.

1.1 Properties of surfaces with Prym-canonical hyperplane
sections

Let us start with the definition of Prym-canonical curve. By curve we will mean an
irreducible projective algebraic variety of dimension 1 over C.

Definition 1.1. A divisor α ∈ Pic0(C) such that α � 0 but 2α ∼ 0 is called non-zero
two torsion divisor.

Definition 1.2. Let g ≥ 3. A Prym curve is a pair (C, α), where C is a smooth genus
g = pg(C) curve and α is a non-zero 2−torsion point of Pic0(C).

We can consider the so called Prym-canonical map, that is the rational map

φ|KC⊗α| : C → Pg−2

defined by |KC ⊗ α|. The pair (C,KC ⊗ α) is called Prym-canonical curve.

Remark 1.3. If g = pg(C) = 3, then the map φ|KC⊗α| : C → P1 cannot be an
embedding.
Let C be a smooth curve of genus g = 4. If we suppose that the morphism
φ|KC⊗α| : C → C ⊂ P2 is an embedding, then deg(C) = deg(KC ⊗ α) = 2g − 2 = 6.
Since C is smooth, we have that pg(C) = pa(C) = 5·4

2
= 10 by the Plücker formula.

This is a contradiction, so the Prym-canonical map can be an embedding only if g ≥ 5.

In the following, we will assume that the Prym-canonical map is an embedding, so
g ≥ 5.

We recall Lemma 2.1 proved in [6], that we will use later.

Lemma 1.4. The Prym-canonical system |KC ⊗ α| is base point free if and only if,
for any point p ∈ C, the linear system |p+ α| = ∅. Moreover |p+ α| 6= ∅ if and only
if C is hyperelliptic and α ∼ OC(p− q), with p and q ramification points of the g1

2.
If |KC⊗α| is base point free, then the divisor KC⊗α is very ample (i.e. the morphism
φ|KC⊗α| : C → Pg−2 is an embedding) if and only if |p + q + α| = ∅, for any two
points p, q ∈ C (also p = q). Moreover |p + q + α| 6= ∅ if and only if C has a g1

4 and
α ∼ OC(p+ q − x− y), where 2(p+ q) and 2(x+ y) are members of the g1

4.

Let X be a projective algebraic surface, that is an irreducible projective algebraic
variety of dimension 2 over C.
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Definition 1.5. A surface X is called surface with Prym-canonical hyperplane sections
if there is an embedding iL : X ↪→ Pg−1 defined by the linear system L such that, if
C is a general hyperplane section of X, then the restriction iL|C : C ↪→ Pg−2 is a
Prym-canonical embedding.

We will simply write X instead of iL(X). Because a general hyperplane section C ⊆ X
is Prym-canonically embedded in Pg−2, then pg(C) = g.

By definition, the linear system |KC ⊗ α| associated with iL|C is complete. We can
prove that L is also complete. Indeed, if V ⊆ H0(OX(1)) corresponds to the morphism
iL and VC = H0(OC(1)) (complete) corresponds to the morphism iL|C , then we have a
surjection V � VC , whose kernel is C. So dimV = 1 + dimVC = 1 + h0(OC(1)). From
the exact sequence

0→ OX → OX(1)→ OC(1)→ 0,

we have that 1 + h0(OC(1)) ≥ h0(OX(1)), then

dimV ≥ h0(OX(1)).

On the other hand, because V ⊆ H0(OX(1)), we have

dimV ≤ h0(OX(1)).

Thus V = H0(OX(1)) and L is also complete.

Remarks 1.6. • The generic hyperplane section of X is irreducible and smooth,
whence X has at most isolated singularities.

• Let π : X ′ → X be the minimal resolution of singularities of X and let C ′ = π∗C
be the inverse image of a general hyperplane section. Then π is an isomorphism
in a neighbourhood of C, so a general hyperplane section C ′ of X ′ is also Prym-
canonical embedded, i.e. OX′(C ′) ⊗ OC′ ∼= OC′(KC′ + B), with B a non trivial
two-torsion element of Pic0(C ′). By the adjunction formula and since X ′ is
smooth, we can say that B = −KX′ |C′, in particular KX′ · C ′ = 0.

We recall the definition of Clifford index.

Recall 1.7. Let C be a smooth curve of genus g ≥ 2. The Clifford index of a line
bundle A on C is defined by

Cliff(A) = deg(A)− 2(h0(A)− 1).

The Clifford index of C is defined by

Cliff(C) = min{Cliff(A) | h0(A) ≥ 2, h1(A) ≥ 2}.
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If C is a smooth curve of genus g, then Cliff(C) ≤ |g−1
2
|. If C is general, equality holds.

If we suppose that iL|C : C ↪→ Pg−2 is a Prym-canonical embedding and the Clifford
index Cliff(C)≥ 3 (if C is a general curve, then it happens if and only if g ≥ 7), then
C is projectively normal with respect to the given embedding. This is a consequence
of the following Theorem, applied to the case B = KC ⊗ α (see [18], Theorem 1):

Theorem 1.8. Let C be a smooth irreducible complex projective curve of genus g ≥ 2
and let B be a very ample line bundle on C. If deg(B) ≥ 2g+1−2h1(OC(B))−Cliff(C),
then B embeds C as a projectively normal curve.

In general, there are also projectively normal curves C ⊆ Pg−2 with Cliff(C) < 3. From
now on, we will assume that C embedded in Pg−2 is projectively normal.

We will see a first important result on surfaces with Prym-canonical hyperplane
sections after the following recall.

Recall 1.9. Let X ′ be a smooth surface. We recall that the Kodaira dimension of X ′

is
κ(X ′) = max{dim φ|nKX′ |(X

′), n ∈ N},

where φ|nKX′ | is the map associated with the pluricanonical linear system.

Theorem 1.10. Let X be a surface with Prym-canonical hyperplane section C of
genus g ≥ 5 and let π : X ′ → X be the minimal resolution of its singularities. If C is
projectively normal with respect to its embedding in Pg−2, then:

1. h1(OX(n)) = 0 and h2(OX(n)) = 0 for any n ≥ 0, in particular h1(OX) = 0 and
h2(OX) = 0, whence pa(X) = 0;

2. X is projectively normal with respect to its embedding in Pg−1;

3. the Kodaira dimension κ(X ′) equals to −∞ or 0; in the second case, X ′ is a
minimal Enriques surface;

4. deg(X) = 2g − 2.

Proof. 1. By assumption, C is a projectively normal curve, that means that

H0(OPg−2(n))� H0(OC(n)),

for all n ≥ 0. Thus also H0(OPg−1(n)) � H0(OC(n)), for any n ≥ 0. Since
H0(OPg−1(n)) � H0(OC(n)) is equal to H0(OPg−1(n)) → H0(OX(n)) composed
with H0(OX(n))→ H0(OC(n)), we have that the map H0(OX(n))→ H0(OC(n))
is surjective for any n ≥ 0.

Let us consider the exact sequence

0→ OX(n− 1)→ OX(n)→ OC(n)→ 0. (1)
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Then, the second part of the long exact sequence associated with (1) is

0→ H1(OX(n− 1))→ H1(OX(n))→ H1(OC(n))→ H2(OX(n− 1))→

→ H2(OX(n))→ 0. (2)

By Serre’s Theorem, there is an integer n0 such that hi(OX(n)) = 0 for each
i > 0 and each n ≥ n0. Then h1(OX(n)) = 0 for a sufficiently large n. From the
exact sequence (2), also h1(OX(n − 1)) = 0. Applying descending induction on
n, we obtain that h1(OX(n)) = 0 for any n ≥ 0.

It is clear that H1(OC(n)) = H1(OC(n(KC + α))). For n = 1, we have that
h1(OC(KC + α)) = h0(OC(−α)) = 0. Since deg(KC + α) = 2g − 2, then
deg(n(KC + α)) > 2g − 2 for n ≥ 2 and it is first cohomology has dimension 0
(see [20], Example IV.1.3.4). Again by Serre’s Theorem, we have h2(OX(n)) = 0
for n >> 0. Applying descending induction on n, from the long exact sequence
(2) we can conclude that h2(OX(n)) = 0 for any n ≥ 0.

2. To prove that X is projectively normal, it is enough to show that X is normal
and that the map H0(OPg−1(n))→ H0(OX(n)) is surjective for any n ≥ 0.

Let η : X̃ → X be the normalization of X. We consider the following exact
sequence on X:

0→ OX → η∗OX̃ → F → 0, (3)

where supp(F ) ⊂ Sing(X). Since X has isolated singularities

(Sing(X) = {x1, ..., xr}), then F ∼= H0(F ) = ⊕ri=1(Õi/Oi), where Oi is the local

ring of xi on X and (η∗OX̃)xi = Õi is the normalization of Oi in the function
field of X, with Sing(X) = {x1, ..., xr}.
We know that H0(OX) = k because X is irreducible. By the properties of push-

forward and because X̃ is still irreducible, it is obvious that
H0(η∗OX̃) ∼= H0(OX̃) ∼= k. Moreover h1(OX) = 0 by the previous part of
this Proposition. For the long exact sequence associated with (3) we have that

h0(F ) = 0 and by definition of F it is true that Õi ∼= Oi, for any i = 1, ..., r. We
conclude that X is normal.

The surjectivity of H0(OPg−1(n)) → H0(OX(n)) is trivial for n = 0. Let us
consider the following diagram, where H is a general hyperplane in Pg−1 and
C = X ∩H:

0 H0(OPg−1(n− 1)) H0(OPg−1(n)) H0(OH(n)) 0

0 H0(OX(n− 1)) H0(OX(n)) H0(OC(n)) 0

r1 r2 r3

The bottom row is the first part of the long exact sequence associated with
(1). We observe that r3 is surjective because C is projectively normal and r1 is
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surjective by the inductive hypothesis. Then r2 is also surjective and the claim
is proved.

3. Consider the following exact sequence:

0→ OX′(−C ′ +mKX′)→ OX′(mKX′)→ OC′(mKX′))→ 0.

Since −KX′|C′ ∼ α, for α a non-zero two torsion element of C ′, then we have that
(−C ′ + mKX′) · C ′ = −C ′2 = 2 − 2g < 0. Whence h0(OX′(−C ′ + mKX′)) = 0
otherwise, if this divisor was effective, it would be a fixed component of |C ′| that
is a linear system without base locus by definition. At the same time

h0(OC′(m(KX′))) =

{
0 if m odd
1 if m even.

Consequently the plurigenus Pm(X ′) := h0(OX′(mKX′)) ≤ h0(OC′(mKX′)) ≤ 1.
Then the Kodaira dimension κ(X ′) = −∞ or 0.

Let κ(X ′) be 0. Then X ′ is minimal because if it were not so, there would be
a (−1)−curve E ′ on X ′ and we would find a contradiction. Indeed, let m > 0
be such that |mKX′ | 6= ∅ (it can only happen if m is even by the previous
remark). Since κ(X ′) = 0, then |mKX′ | consists of one effective divisor D′. It
is obvious that E ′ is a component of D′. Now OC′(D′) ∼= OC′(mKX′) ∼= OC′
because m is even and −KX′ |C′ is a non-zero two torsion element. Therefore
D′ and consequently E ′ are contracted to a point on X by π, contradicting the
minimality of the resolution π.

It is true that 12KX′ ∼ 0 because X ′ is minimal and κ(X ′) = 0 (see [20], Theorem
V.6.3). By the classification of minimal surfaces, there is a smallest m ≥ 1 such
that mKX′ ∼ 0: the possibilities are m = {1, 2, 3, 4, 6}. If m = 1, then KX′ ∼ 0,
whence OC′(C ′) ∼= OC′(KC′ − KX′) ∼= OC′(KC′). This is not valid because
C ′ is a Prym-canonical curve. So we exclude the cases in which X ′ is a K3
surface or an abelian surface. Hence X ′ can be either an Enriques surface or
a hyperelliptic surface. If X ′ was a hyperelliptic surface, it would not contain
curves with negative self-intersection, then we would have X = X ′ smooth by
Mumford’s Theorem (see [25], Chapter 1). By definition, a hyperelliptic surface
is irregular, contradicting the first point of this proposition. In conclusion X ′ is
a minimal Enriques surface.

4. We have deg(X) = deg(C) = C2 = deg(KC + α) = 2g − 2.

1.2 Singularities on a surface with Prym-canonical hyperplane
sections

We want to determine the possible singularities on a surface X with Prym-canonical hy-
perplane sections. By the previous section, we know that such a surface is birationally
equivalent to either an Enriques surface, or a ruled or rational surface.
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Let us see a preliminary lemma before studying the antibicanonical divisor on X ′.

Lemma 1.11. Let X be a surface with Prym-canonical hyperplane section C and let
π : X ′ → X be the minimal resolution of singularities of X. Then π∗(2KX′) ∼ 0.

Proof. Let Cm ∈ |mC| be smooth satisfing Cm ∩ Sing(X) = ∅. We put C ′m = π∗(Cm)
and we want to show that 2KX′ |C′m ∼ 0 for any m ≥ 1.
By Chow’s moving Lemma (see [20], pag. 427), we have that −KX′ · C ′m is rationally
equivalent to −mKX′ · C ′, so −KX′ · C ′m ∼ −mKX′ · C ′ in A(X ′), where A(X ′) is the
Chow ring of X ′, i.e. the ring of the cycles of codimension 1 and 2 on X ′ modulo
rational equivalence.
Among the properties of the Chow ring, we can consider the following (see [20], pag.
426): if i : C ′m ↪→ X ′ is a morphism of varieties, then i∗ : A(X ′) → A(C ′m) is a ring
homomorphism. Since i∗ is a homomorphism, then i∗(0) = [OC′m ].
By definition, −KX′ |C′ is a non-trivial two torsion element, so, if m is even, we have
that −mKX′|C′ ∼ 0. Thus −2KX′ · C ′m ∼ −2mKX′ · C ′ ∼ 0 in A(X ′) and, by the
previous remark, we have that [OC′m ] = i∗(0) = i∗(−2KX′ · C ′m) = [OC′m(−2KX′)]. So
−2KX′|C′m ∼ 0 for any m ≥ 1 (rational equivalence and linear equivalence coincide on
a curve).

We also observe that π∗(2KX′)|Cm ∼ 0. Indeed, since π is an isomorphism in a neigh-
bourhood of C ′m, then π∗OC′m ∼= OCm and OC′m ∼= π∗(OCm). Using the projection for-
mula (see [20], Exe II.5.1) and the previous results, we obtain that
OCm

∼= π∗(OC′m) ∼= π∗(2KX′ ⊗OC′m) = π∗(2KX′ ⊗ π∗OCm) ∼= π∗(2KX′)⊗OCm .

By a known result of Zariski ([33], Theorem 4), if π∗(2KX′) is a Weil divisor on X (not
necessarily effective), then the existence of an effective divisor Dm on Cm such that
π∗(2KX′)|Cm ∼ Dm, for every m sufficiently large, implies the existence of an effective
Weil divisor D on X such that D ∼ π∗(2KX′) (linear equivalence of Weil divisor is
possible because codim(Sing(X)) ≥ 2). In our case Dm = 0 for any m, so there is
a divisor D such that D|Cm ∼ 0. Since Cm is very ample on X, then D ∼ 0. So
π∗(2KX′) ∼ 0. This proves the lemma.

Theorem 1.12. Let X be a surface with Prym-canonical hyperplane section C and let
π : X ′ → X be the minimal resolution of singularities of X.
Then dim | − 2KX′ | = 0.
In particular, if W ′ is the effective antibicanonical divisor on X ′, then either W ′ ∼ 0
or supp(W ′) = π−1(x1, ..., xr) for certain singularities xi ∈ X, for i = 1, .., r.

Proof. Since π∗(2KX′) ∼ 0 by the previous lemma, then either 2KX′ ∼ 0 or there is a
bicanonical divisor 2KX′ on X ′ with support in π−1(Sing(X)). In the latter case, let
2KX′ =

∑
miFi−

∑
njGj be the decomposition in reduced and irreducible components,

with mi, nj ∈ N>0 and Fi 6= Gj, for all i, j. Let F =
∑
miFi and G =

∑
njGj.

Suppose F 6= 0. By Mumford’s Theorem (see [25], Chapter 1), we have that F 2
i < 0

for any i and, because the intersection form on π−1(Sing(X)) is negative definite, also
F 2 < 0. So there is an i0 such that F ·Fi0 < 0. Up to renaming the index, we suppose
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that i0 = 1. It is obvious that F1 · G ≥ 0 because F1 6= Gj, for any j. Since F1 is an
irreducible component, then

0 ≤ pa(F1) = 1 +
1

2
F1 · (F1 +KX′) = 1 +

1

2
F 2

1 +
1

4
F1 · F −

1

4
F1 ·G.

If F 2
1 ≤ −2, then pa(F1) < 0, so we necessarily have F 2

1 = −1. Thus F1 is a (−1)−curve,
contradicting the minimality of π. Hence F = 0.
We conclude that either 2KX′ ∼ 0 or there are effective antibicanonical divisors with
support in π−1(Sing(X)). Then dim | − 2KX′| = 0.

Let |−2KX′| = {W ′}. To conclude the proof, we have only to show that, if x ∈ Sing(X)
is such that π−1(x) meets supp(W ′), then π−1(x) does not contain curves which are
not part of supp(W ′).
Suppose that there is an irreducible curve E ⊂ π−1(x) which is not part of supp(W ′).
Since X is normal by Theorem 1.10, Point 2., then π−1(x) is connected, so we can
assume that E intersects W ′ and E ·W ′ > 0. Then

0 ≤ pa(E) = 1 +
1

2
E2 +

1

2
E ·KX′ = 1 +

1

2
E2 − 1

4
E ·W ′.

Again by Mumford’s Theorem, we have E2 < 0. So the only possible case for which the
previous inequality is valid is: E ·W ′ = 2, E2 = −1 and pa(E) = 0. This contradicts
the minimality of π.

Remark 1.13. By the previous Theorem, we observe that, if X is smooth, then W ′ ∼ 0.
Since pa(X) = pg(X) = 0 by Theorem 1.10, Point 1., then X is an Enriques surface
by [20], Theorem V.6.3.

We recall the following definition.

Definition 1.14. Let X be a normal surface and x ∈ X a singularity. Let
π : X ′ → X be the minimal resolution of x. Then we call (geometric) genus of x
the number pg(x) = dimk(R

1π∗OX′)x.
If pg(x) = 0, then x is called rational singularity.

Finally we can determine the geometric genus of the singularities that occur on X
surface with Prym-canonical hyperplane sections.

We recall that the Kodaira dimension κ(X ′) = −∞ or 0 by Theorem 1.10. Moreover,
if it is equal to 0, then X ′ is a minimal Enriques surface (see Theorem 1.10, Case 3.).
Instead, since the Kodaira dimension is a birational invariant for smooth varieties, if
κ(X ′) = −∞, then the minimal model of X ′ is a ruled surface or P2 (see [20], Theorem
V.6.1).

Proposition 1.15. Let X be a surface with Prym-canonical hyperplane sections such
that a general hyperplane section C is projectively normal with respect to its embedding
in Pg−2 and let Sing(X) = {x1, ..., xr} be the locus of the singular points of X. Let
π : X ′ → X be the minimal resolution of singularities of X. Thus:
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• if X is birationally equivalent to an Enriques surface or P2, then all singularities
of X are rational;

• if X is birationally equivalent to a ruled surface X ′′ over a base curve of genus
q ≥ 0, then

∑r
i=1 pg(xi) = q.

Proof. These results can be obtained using the following exact sequence, which one
gets from the Leray spectral sequence for the sheaf OX′ and the morphism π (see [19],
pag. 462):

0→ H1(OX)→ H1(OX′)→ H0(R1π∗OX′)→ H2(OX)→ ...

We know that h1(OX) = h2(OX) = 0 by Theorem 1.10, so

h0(R1π∗OX′) = h1(OX′).

By Theorem 1.10, Point 3., the surfaceX is birationally equivalent to either an Enriques
surface or P2 or a ruled surface.

• If X is birationally equivalent to an Enriques surface, then X ′ is a minimal En-
riques surface by Theorem 1.10, Point 3., so h1(OX′) = 0 by definition. Thus∑r

i=1 pg(xi) = h0(R1π∗OX′) = 0, whence X can only contain rational singulari-
ties.

If X is birationally equivalent to P2, it is rational, as X ′. By definition, X ′ is
smooth. Then it is clear that h1(OX′) = 0 and

∑r
i=1 pg(xi) = 0. This proves the

first part of proposition.

• If X is birationally equivalent to a ruled surface X ′′ over a base curve of genus
q ≥ 0, also X ′ is birationally equivalent to X ′′ (relatively minimal model of
X ′). It is a known result that h1(OX′′) = q(X ′′) = q. Since the irregularity
q is a birational invariant for smooth varieties, then q(X ′) = q(X ′′) = q. So∑r

i=1 pg(xi) = h0(R1π∗OX′) = h1(OX′) = q.

Let us give some definition that we will use in the following lemma.

Let π : X ′ → X be the minimal resolution of singularities of X normal surface. Let
x ∈ X be a singular point. Then E = π−1(x) is a connected curve. Let E = ∪ni=1Ei be
its decomposition in irreducible components.

Definition 1.16. There is a unique non-zero effective divisor Z0 =
∑
aiEi such that

Z0 · Ei ≤ 0, for any i = 1, ..., n, and if Z is another divisor satisfying the above
conditions, then Z ≤ Z0. We call Z0 the fundamental cycle associated with x.

The following proposition gives us equivalent definitions of rational singularity (see
[24], Proposition-Definition 2.1.).
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Proposition 1.17. The singularity x ∈ X is a rational singularity if one of the fol-
lowing equivalent conditions holds:

• pg(x) = 0;

• for every effective divisor D supported on E, h1(OD) = 0;

• for every effective divisor D supported on E, pa(D) ≤ 0;

• pa(Z0) = 0, for Z0 the fundamental cycle associated with x.

Definition 1.18. A rational singularity with fundamental cycle Z0 is called a rational
n-point if −Z2

0 = n.

Let us see another result about the singularities that occur on X.

Lemma 1.19. Let X be a surface with Prym-canonical hyperplane section C and let
π : X ′ → X be the minimal resolution of singularities of X. If W ′ is the unique
effective antibicanonical divisor on X ′, then:
a singularity x ∈ X such that π−1(x) does not meet supp(W ′) is a rational double point.

Proof. Let x ∈ X be a singularity such that π−1(x) does not meet supp(W ′). Let T
be an irreducible component of the connected component π−1(x), then T ·W ′ = 0. So

0 ≤ pa(T ) = 1 +
1

2
T 2 +

1

2
T ·KX′ = 1 +

1

2
T 2 − 1

4
T ·W ′ = 1 +

1

2
T 2.

By Mumford’s Theorem T 2 < 0, so the only possible case for which the inequality above
is valid is: T 2 = −2 and pa(T ) = 0. Then all the irreducible components of π−1(x)
are smooth rational curves with self-intersection −2. In analogy with the previous
notation, we can call these curves Ei, for i = 1, ..., n.

We can prove that x must be a rational singularity using Proposition 1.17. Let
Z0 =

∑n
i=1 ai ·Ei, for ai ≥ 0 not all zero. First of all, pa(Z0) = 1+ 1

2
Z2

0 + 1
2
Z0 ·KX′ . Now

Z0 ·KX′ = −1
2
Z0 ·W ′ = −1

2

∑n
i=1 aiEi ·W ′ = 0, while Z2

0 < 0 since Z0 is contracted by
π. So pa(Z0) < 1.
By [30], Lemma 1.1, we have that pa(Ei) ≤ pa(Z0) for every Ei contained in Z0. Since
pa(Ei) = 0 as computed before, then the only possible case is pa(Z0) = 0.

In conclusion, x ∈ X is a rational double point. Indeed, by the adjunction formula,
the self-intersection Z2

0 = 2pa(Z0)− 2− Z0 ·KX′ = 2pa(Z0)− 2 = −2.

Remark 1.20. We have already seen that, if X is birationally equivalent to an Enriques
surface, then X can only contain rational singularities.
Moreover, by the previous lemma, we conclude that if X is birationally equivalent to
an Enriques surface, then it can only contain rational double points as singularities.
Indeed, if X ′ is a minimal Enriques surface, then 2KX′ ∼ 0. Thus the unique antibi-
canonical divisor W ′ on X ′ is linearly equivalent to 0. Therefore, π−1(x) does not meet
supp(W ′), for every singularity x ∈ X. The thesis follows by the previous lemma.
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1.3 Blowing up of minimal models of surfaces with Prym-
canonical hyperplane sections

Let φ : X ′ → X ′′ be a relatively minimal model for X ′, where X ′ is the minimal
resolution of the singularities of X, as seen before. Let W ′ be the only effective antibi-
canonical divisor of X ′ (see Lemma 1.12) and we put

W ′′ = φ∗W
′ ∈ | − 2KX′′ |.

Remark 1.21. In the following, we will talk about the connected components of a
divisor D on a surface Y . By connected component we mean a component that cannot
be represented as the union of two or more disjoint non-empty closed subsets.

Proposition 1.22. Let X ′ = X ′s
φs−1−−→ X ′s−1 → ...

φ1−→ X ′1 = X ′′ be the factorization of
φ in such a way that φ1 blows up the points on X ′′ in which φ−1 is not defined, φ2 blows
up the points in which φ−1 ◦ φ1 is not defined etc. and let W ′

t = (φt ◦ ... ◦ φs−1)∗(W
′) ∈

| − 2KX′t
|, for t = 1, ..., s− 1.

1. All points blown up by φt on X ′t lie on supp(W ′
t), for t = 1, ..., s− 1.

2. If φt blows up the points Pt,1, ..., Pt,i(t) ∈ X ′t, which have multiplicity µt,it on W ′
t , if

φ−1
t (Pt,it) = Et+1,it and if W̃ ′

t is the strict transform of W ′
t on X ′t+1, then µt,it ≥ 2

and

W ′
t+1 = W̃ ′

t +

i(t)∑
it=1

(µt,it − 2)Et+1,it ,

for t = 1, ..., s− 1 and it = 1, ..., i(t).

3. The number of connected components of the antibicanonical divisor W ′ on X ′

compared to the number of connected components of W ′′ on X ′′ can at most
increase by the number of the double points blown up by φ that lie on two or more
irreducible components of W ′′.

Proof. 1. Let E ⊂ X ′t+1 be a (−1)−curve such that φt(E) is a point P on X ′t,
for t = 1, ..., s − 1. Let W ′

t+1 = m · E + D′t+1, for m ≥ 0 and E not a com-
ponent of D′t+1 (we observe that, if m = 0, then W ′

t+1 does not contain E).
By the adjunction formula, the intersection E · W ′

t+1 = −2E · KX′t+1
= 2, so

E ·D′t+1 = E ·W ′
t+1−mE2 = 2 +m > 0. Then E and D′t+1 have intersection but

φt blows down E in a point P , so P ∈ supp((φt)∗D
′
t+1) = supp(W ′

t).

2. By the previous point of this Proposition, the intersection E ·D′t+1 ≥ 2, for any
t = 1, ..., s − 1. Since E is contracted to a point P ∈ (φt)∗W

′
t+1 = W ′

t , then the
multiplicity µ of P on W ′

t is at least 2. This is valid for any point Pt,it on W ′
t

blown up by φt, for any t = 1, ..., s− 1 and for any it = 1, ..., i(t). Then µt,it ≥ 2
for any t and for any it.
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Now we may assume t = 1 and i(t) = 1, so φ1 blows up only one point
P ∈ W ′

1 with multiplicity µ to a curve E on X ′2. The general formula for
the canonical divisor is KX′2

∼ φ∗1KX′1
+ E (see [20], Proposition V.3.3). Then

−2KX′2
∼ φ∗1(−2KX′1

) − 2E implies that W ′
2 ∼ φ∗1(W ′

1) − 2E. Observing that

φ∗1(W ′
1) ∼ W̃ ′

1 + µE, where W̃ ′
1 is the strict transform of W ′

1, then the desired
formula is proved.

3. It is enough to work with W ′
1 := W ′′ and W ′

2. Furthermore, we can assume that
φ1 blows up only one point P with multiplicity µ on W ′

1 to E ∈ X ′2 and that W ′
1

is connected.

If P lies on only one irreducible component of supp(W ′
1), then the strict transform

W̃ ′
1 is still connected and E intersects W̃ ′

1. By the previous point of this Theorem,
W ′

2 is also connected for any multiplicity µ. The number of connected components
of W ′

1 and W ′
2 is the same.

If P lies on two or more irreducible components of supp(W ′
1), then W̃ ′

1 can be
disconnected. If µ > 2, then E is a component of W ′

2 by the previous point of

this Proposition and it is clear that E intersects all connected components of W̃ ′
1,

so W ′
2 is still connected. Again in this case, the number of connected components

of W ′
1 and W ′

2 is the same.

Instead, if µ = 2, by the previous point of this Proposition we have that E is
not a component of W ′

2, so W ′
2 can be disconnected. More exactly, the number

of connected components of W ′
2 can increase by one. The result follows.

If L is the (g−1)−dimensional complete linear system of hyperplane sections of X and
L′ = π∗L, we put L′′ = φ∗L

′, with iL′′(X
′′) = iL(X), where iL and iL′′ are respectively

the maps associated with L and L′′.

Lemma 1.23. With the same notation as before, a general C ′ ∈ L′ is disjoint from
W ′.

Proof. If iL and iL′ are the maps associated respectively with the linear systems L and
L′, then iL ◦ π = iL′ . By Theorem 1.12, we have that
supp(W ′) = π−1(x1, ..., xr), for certain singularities xi ∈ X. So π blows down W ′

and so does iL′ . If C ′ is a general divisor of L′, then C ′ ·W ′ = 0 and C ′ is disjoint from
W ′.

As a consequence X ′ is obtained blowing up X ′′ along all the base points of L′′. Indeed,
if not, L′ would have another base point P to blow up and this would contradict the
previous lemma (the proof is similar to Proposition 1.22, Case 1.). By Proposition
1.22, all the base points of L′′ lie on supp(W ′′). In particular, L′′ can have infinitely
near base points. We will call base point of order t a base point of L′′ that lies on X ′t,
with the notation of Proposition 1.22.
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In the following, we will study the possible base points of L′′, where they are situated
on X ′′.

Proposition 1.24. As in Proposition 1.22, let X ′ = X ′s
φs−1−−→ X ′s−1 → ...

φ1−→ X ′1 = X ′′

be the factorization of φ in such a way that φ1 blows up the points on X ′′ in which
φ−1 is not defined, φ2 blows up the points in which φ−1 ◦ φ1 is not defined etc. and let
W ′
t = (φt ◦ ... ◦ φs−1)∗(W

′) ∈ | − 2KX′t
|, for t = 1, ..., s− 1. Then:

1. for every t = 1, ..., s − 1, the strict transform C ′t+1 ∈ X ′t+1 of a general C ′′ ∈ L′′
does not intersect supp(W ′

t+1) outside its base locus.

2. if P ∈ X ′t is a base point of L′′ lying on only one irreducible component D′t of W ′
t

on which it has multiplicity 2, then the possible base points infinitely near to P
lie on the strict transform of D′t by φt;

3. if P ∈ X ′t is a base point of L′′ of order t, for t = 1, ..., s−1, and if the multiplicity
of P on W ′

t is µ ≥ 3, then there must be base points infinitely near to P of order
j, at least for every t ≤ j ≤ [µ+1

2
] + t.

Proof. 1. If the strict transform C ′t+1 ∈ X ′t+1 of a general C ′′ ∈ L′′ had a variable
intersection with supp(W ′

t+1), for t = 1, ..., s − 1, i.e. if C ′t+1 had intersection
with supp(W ′

t+1) outside its base points, these intersection points would not be
blown up by φ, so the intersection would survive between C ′ and supp(W ′),
contradicting the previous point of this Proposition.

2. We suppose that φt blows up a point P ∈ X ′t of multiplicity µ = 2 on W ′
t such

that φ−1
t (P ) = E ∈ X ′t+1. In particular, we suppose that P lies on only one

irreducible component D′t of W ′
t .

By Proposition 1.22, we have that W ′
t+1 = W̃ ′

t +
∑i(t)

it=1(µt,it − 2)Et+1,it , so E is
not a component of W ′

t+1 because the multiplicity of P is µ = 2. Always by
Proposition 1.22, we have that the base points of L′′ on X ′t+1 must lie on W ′

t+1,
so the only possible base point on E (the only fixed direction in P ) is the point
E ∩W ′

t+1 = E ∩D′t+1, where D′t+1 is the strict transform of D′t.

3. We can assume that P ∈ W ′
1, so we fix t = 1. By Proposition 1.22, the divisor W ′

2

contains E = φ−1
1 (P ) with multiplicity µ− 2 ≥ 1. The strict transform C ′2 ∈ X ′2

of a general C ′′ ∈ L′′ intersects E according to the directions of C ′′ in P , so
the intersection points of C ′2 with E are the base points of L′′ of order 2 with
multiplicity at least µ − 2 for W ′

2. Iterating this process, if Q ∈ C ′2 ∩ E, then
W ′

3 contains F = φ−1
2 (Q) with multiplicity at least (µ − 2) − 2. Again C ′3 ∈ X ′3

intersects F in the base points of L′′ of order 3 with multiplicity at least (µ−2)−2
for W ′

3. We conclude that there must be base points infinitely near to P of order
j, at least for every j ≤ [µ+1

2
]. If t > 1 and P ∈ X ′t, we only translate this process

from t.
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2 Surfaces with Prym-canonical hyperplane sections

birationally equivalent to ruled surfaces

In this chapter, we will study in more detail surfaces with Prym-canonical hyper-
plane sections birationally equivalent to rational or non-rational ruled surfaces. After
studying the possible non-rational singularities that occur on them, we will construct
examples of this type of surfaces.

LetX be a surface with Prym-canonical hyperplane sections. As before, we will suppose
that a general hyperplane section C of X is projectively normal with respect to its
embedding in Pg−2. We will denote with π : X ′ → X the minimal resolution of the
singularities of X and with φ : X ′ → X ′′ be a relatively minimal model for X ′. We
will assume that X ′′ is a rational or non-rational ruled surface.

2.1 Notation and basic facts regarding ruled surfaces

We will first fix some notation and state some facts about minimal smooth ruled
surfaces in which we will follow [20], Chapter V.2.

Let Y be such a surface, then there is a natural map p : Y → Γ, where Γ is the smooth
base curve of genus pg(Γ) := q ≥ 0. If q = 0, then Y is a rational ruled surface. Every
fibre fy := p−1(y) is isomorphic to P1, for every point y ∈ Γ. We will denote with f
the generic fibre of Y .

We can find the proof of the following Proposition in [20], Proposition V.2.8:

Proposition 2.1. If p : Y → Γ is a ruled surface, it is possible to write Y ∼= P(E),
where E is a normalized locally free sheaf of rank 2 on Γ (we recall that normalized
means that h0(Γ, E) 6= 0, while h0(Γ, E ⊗L) = 0 for every invertible sheaf L of negative
degree on Γ). In this case the integer e = − deg(E) is an invariant of Y . Furthermore
there is a section σ0 : Γ→ Y with image C0 such that OY (C0) = OY (1).

Let D be the divisor on Γ corresponding to the invertible sheaf ∧2E , i.e.

∧2(E) = OΓ(D),

for D ∈ Div(Γ). The integer
e = − degD.

We recall the following exact sequence:

0→ OΓ → E → OΓ(D)→ 0. (4)

Definition 2.2. Let E be a normalized locally free sheaf of rank 2 on Γ. We say that
E is decomposable if E ∼= OΓ ⊕OΓ(D).
In particular, we will say that a ruled surface Y is decomposable if Y = PΓ(E), for E
a decomposable sheaf.
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By [20], Theorem V.2.12, the invariant e ≥ 0 if E is decomposable. Moreover, if q = 0,
then e ≥ 0 (see [20], Corollary V.2.13).

As showed in Proposition [20], V.2.9, the intersection C2
0 = −e.

If E is decomposable, then Y contains disjoint sections and we will denote by C1 a
fixed section of p disjoint from C0. The intersection C2

1 = e.

Every divisor on Y is of the form

aC0 + ∆ · f, for a ∈ Z and ∆ ∈ Pic(Γ). (5)

In particular, the canonical divisor KY ∼ −2C0 + (KΓ +D) · f .

Lemma 2.3. If Y = PΓ(E), with E decomposable, then the section C1 ∼ C0 − D · f
(see [15], Remark 27).

The next lemmas give simple techniques to compute the dimensions of linear systems
on ruled surfaces.

Lemma 2.4. If aC0 + ∆ · f is a divisor on Y ∼= PΓ(E) with a ≥ 0, then

h0(Y,OY (aC0 + ∆ · f)) = h0(Γ, SaE ⊗ OΓ(∆)),

where SaE is the a− th symmetric product of E.

Proof. By Lemma V.2.4 of [20], we know that

H0(Y,OY (aC0 + ∆ · f)) ∼= H0(Γ, p∗OY (aC0 + ∆ · f)),

where p : Y → Γ is the natural map associated with the ruled surface Y .
Using the projection formula (see [20], Exercise III.8.3), we can compute that

p∗OY (aC0 + ∆ · f) ∼= p∗(OY (aC0)⊗OY (∆ · f)) ∼= p∗(OY (aC0)⊗ p∗OΓ(∆)) ∼=

∼= p∗(OY (aC0))⊗OΓ(∆).

By [20], Exercise III.8.4, we have that p∗(OY (aC0)) ∼= SaE . The claim is proved.

We can find the proof of the following Lemma in [15], Lemma 35:

Lemma 2.5. Let |aC0 + ∆ · f | be an a−secant linear system on a decomposable ruled
surface Y ∼= PΓ(OΓ ⊕OΓ(D)). Then, for i ≥ 0, we have that

hi(OY (aC0 + ∆ · f)) =
a∑
k=0

hi(OΓ(∆ + kD)).

We also recall the following Theorem (see [20], V.2.15):
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Theorem 2.6. If Y is a ruled surface over an elliptic curve Γ corresponding to an
indecomposable E, then e = 0 or −1 and there is exactly one such ruled surface over Γ
for each of these two values of e, that we respectively call Y0 and Y−1.
In particular, if e = 0, then D ∼ 0.

Notation 2.7. From now on, we will identify C0 with Γ thanks to the isomorphism
i : Γ → C0. So we will use the following notation: if F ∈ Pic(X ′′), then
OΓ(F ) := i∗(OC0(F )).

Remark 2.8. If NC0/X′′ is the normal sheaf of C0 in X ′′, we observe that
OC0(C0) ∼= NC0/X′′

∼= OΓ(D). So D ∼ C0|C0 using the identification of Notation
2.7.

Finally we state a Proposition that we will use later ([13], Proposition II.1.4):

Proposition 2.9. Let Y = PΓ(E) be the minimal ruled surface over a smooth curve Γ
of genus q ≥ 1 associated with a locally free sheaf E on Γ of rank 2 which is a nontrivial
extension of OΓ(−KΓ) by OΓ. Let G be an irreducible, reduced curve on Y , G 6= C0.
Then G ∩ C0 6= ∅.

2.2 Study of possible non-rational singularities

If X ′′ is a rational ruled surface, then X contains only rational singularities (see Propo-
sition 1.15).
By Theorem 1.12, the surface X ′ contains a unique effective antibicanonical divisor W ′.
Because φ∗W

′ ∈ |−2KX′′ |, also the antibicanonical system of X ′′ is nonempty. We will
determine the possible antibicanonical divisors on a minimal non-rational ruled surface
X ′′, which we will use to study the possible non-rational singularities on X. Before
this, we recall a Lemma (see [29], Lemma 17.19.4).

Lemma 2.10. Let (X,OX) be a ringed space. Let F2 → F1 → F → 0 be an exact
sequence of sheaves of OX−modules. For each n ≥ 1, there is an exact sequence
F2 ⊗ Sn−1F1 → SnF1 → SnF → 0.

Remark 2.11. Applying the previous Lemma to the exact sequence (4), we obtain the
following sequence

Sn−1E ⊗ OΓ → SnE → OΓ(nD)→ 0.

It is obvious that this sequence is also exact on the left, thus

0→ Sn−1E → SnE → OΓ(nD)→ 0. (6)

Proposition 2.12. Let Y = PΓ(E) be a minimal ruled surface over a smooth curve Γ
of genus q ≥ 1 and assume E to be normalized. If | − 2KY | 6= ∅, we have the following
possibilities:
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I. if E is indecomposable and q ≥ 2, then dim | − 2KY | = 0; moreover

I.1 if h0(OΓ(2D − 2KΓ)) > 0, then | − 2KY | = {4C0 − 4KΓ · f}, e = −2 and
q = 2 .

In this case 2D ∼ 2KΓ;

I.2 if h0(OΓ(2D − 2KΓ)) = 0, then | − 2KY | = {4C0} and e = 2q − 2 .

In particular 2D ∼ −2KΓ;

II. if E is decomposable and q ≥ 2, then h0(OΓ(2D − 2KΓ)) = 0; moreover

II.1 if h0(OΓ(−2KΓ−D)) = 0, then dim |−2KY | = dim |−2KΓ−2D| , so every
antibicanonical divisor is of the form 4C0 +D0 · f , for D0 ∈ | − 2KΓ − 2D|
and 4C0 a fixed component.

In this case we have e ≥ 2q − 2;

II.2 if h0(OΓ(−2KΓ −D)) > 0, then dim | − 2KY | > dim | − 2KΓ − 2D|.
In this case e ≥ 4q − 4;

III. if E is indecomposable and q = 1, we have the two following possibilities:

III.1 if Y = Y0, then D ∼ 0, dim | − 2KY | = 0 and | − 2KY | = {4C0};
III.2 if Y = Y−1, then dim | − 2KY | = 1; every divisor in | − 2KY | is isomorphic

to the base curve Γ, except the non-reduced elements, precisely three, that
are irreducible;

IV. if E is decomposable and q = 1, then E ∼= OΓ ⊕ OΓ(D), for D ∈ Div(Γ) with
e = − deg(D) ≥ 0. Thus:

IV.1 if e = 0 and D ∼ 0, then Y = Γ × P1 and dim | − 2KY | = 4, so any
antibicanonical divisor is formed by four fibres of the projection Y → P1;

IV.2 if e = 0, D � 0 and 2D � 0, then dim | − 2KY | = 0 and
| − 2KY | = {2C0 + 2C1};

IV.3 if e = 0, D � 0 and 2D ∼ 0, then dim | − 2KY | = 2 and −2KY ∼ 4C0;

IV.4 if e > 0, then dim | − 2KY | = 3e and any antibicanonical divisor has 2C0 as
fixed component.

Proof.

I.,II. Let q ≥ 2. We have already seen that −2KY ∼ 4C0 − 2(KΓ + D) · f . Using
Lemma 2.4, the dimension

dim | − 2KY | = h0(OY (4C0 + 2(−KΓ −D) · f))− 1 =

= h0(Γ, S4E ⊗ OΓ(−2KΓ − 2D))− 1.

We assume | − 2KY | 6= ∅, so h0(Γ, S4E ⊗OΓ(−2KΓ − 2D)) ≥ 1. Tensoring with
OΓ(−2KΓ − 2D) the exact sequence (6) with n = 4, we obtain

0→ S3E⊗OΓ(−2KΓ−2D)→ S4E⊗OΓ(−2KΓ−2D)→ OΓ(2D−2KΓ)→ 0. (7)
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• We assume that h0(OΓ(2D − 2KΓ)) > 0. Then deg(2D − 2KΓ) =
−2e− 4q + 4 ≥ 0 and e ≤ −2q + 2. If we work with q ≥ 2, then e < 0, so E
is necessarily indecomposable. Moreover e ≥ −q by [20], Exe. V.2.5. Thus
the only possible value of q such that −q ≤ e ≤ −2q + 2 is q = 2. In this
case e = −2.

Tensoring with OΓ(−2KΓ − 2D) the exact sequence (6) with n = 3, we
obtain

0→ S2E⊗OΓ(−2D−2KΓ)→ S3E⊗OΓ(−2D−2KΓ)→ OΓ(D−2KΓ)→ 0.

Since deg(D−2KΓ) = −e−4q+ 4 < 0, we have that h0(OΓ(D−2KΓ)) = 0,
therefore we deduce that

h0(S3E ⊗ OΓ(−2KΓ − 2D)) = h0(S2E ⊗ OΓ(−2KΓ − 2D)).

In the same way we obtain that

h0(S2E ⊗ OΓ(−2KΓ − 2D)) = h0(E ⊗ OΓ(−2KΓ − 2D)).

Since deg(−2KΓ − 2D) = −4q + 4 + 2e = −8 and E is normalized, it is
obvious that h0(E ⊗ OΓ(−2KΓ − 2D)) = 0. Then

h0(S3E ⊗ OΓ(−2KΓ − 2D)) = 0.

By assumption h0(OΓ(2D − 2KΓ)) > 0. Since deg(2D − 2KΓ) = 0, this
implies that 2D ∼ 2KΓ and h0(OΓ(2D − 2KΓ)) = 1.

Now h0(S4E ⊗ OΓ(−2KΓ − 2D)) ≥ 1 by hypothesis and moreover
h0(S4E⊗OΓ(−2KΓ−2D)) ≤ h0(OΓ(2D−2KΓ)) = 1 from the exact sequence
(7). So the equality holds and

dim | − 2KY | = h0(S4E ⊗ OΓ(−2KΓ − 2D))− 1 = 0.

Since 2D ∼ 2KΓ, then | − 2KY | = {4C0 − 4KΓ · f} (CASE I.1).

• We assume that h0(OΓ(2D − 2KΓ)) = 0, then

h0(S4E ⊗ OΓ(−2KΓ − 2D)) = h0(S3E ⊗ OΓ(−2KΓ − 2D))

from the exact sequence (7).

Tensoring with OΓ(−2KΓ − 2D) the exact sequence (6) with n = 3, we
obtain:

0→ S2E⊗OΓ(−2KΓ−2D)→ S3E⊗OΓ(−2KΓ−2D)→ OΓ(D−2KΓ)→ 0.

If h0(OΓ(D − 2KΓ)) > 0, then deg(D − 2KΓ) = −e + 4 − 4q ≥ 0, so
e ≤ 4 − 4q < 0 since q ≥ 2. Thus E is indecomposable and by [20], Exe.
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V.2.5, we have that −q ≤ e. A value q ≥ 2 such that −q ≤ e ≤ 4− 4q does
not exist. Then h0(OΓ(D − 2KΓ)) = 0 and

h0(S3E ⊗ OΓ(−2KΓ − 2D)) = h0(S2E ⊗ OΓ(−2KΓ − 2D)).

Let us consider the exact sequence (6) with n = 2 already tensored with
OΓ(−2KΓ − 2D):

0→ E ⊗OΓ(−2KΓ − 2D)→ S2E ⊗ OΓ(−2KΓ − 2D)→ OΓ(−2KΓ)→ 0.

Since deg(−2KΓ) < 0, then h0(OΓ(−2KΓ)) = 0 and

h0(S2E ⊗ OΓ(−2KΓ − 2D)) = h0(E ⊗ OΓ(−2KΓ − 2D)).

As seen before, since dim | − 2KY | 6= 0 by hypothesis, then

h0(S4E ⊗ OΓ(−2KΓ − 2D)) = h0(E ⊗ OΓ(−2KΓ − 2D)) > 0.

Since E is normalized, then deg(−2KΓ − 2D) = −4q + 4 + 2e ≥ 0, so
e ≥ 2q − 2.

Finally, let us consider the exact sequence (4) tensored withOΓ(−2KΓ−2D):

0→ OΓ(−2KΓ− 2D)→ E ⊗OΓ(−2KΓ− 2D)→ OΓ(−2KΓ−D)→ 0. (8)

∗ If E is indecomposable, by [20], Theorem V.2.12 we have that
e ≤ 2q−2, so e must be equal to 2q−2. Since q ≥ 2 by assumption, then
deg(−2KΓ−D) = −4q+4+e = −2q+2 < 0, so h0(OΓ(−2KΓ−D)) = 0.
We conclude that

dim |−2KY | = h0(S4E⊗OΓ(−2KΓ−2D))−1 = h0(E⊗OΓ(−2KΓ−2D))+

−1 = h0(OΓ(−2KΓ − 2D))− 1 = dim | − 2KΓ − 2D|.

At this point it is clear that 4C0 is a fixed component of |−2KY |. Since
deg(−2KΓ − 2D) = 0 and h0(OΓ(−2KΓ − 2D)) > 0, then 2D ∼ −2KΓ

and −2KY ∼ 4C0. Therefore

dim | − 2KY | = dim | − 2KΓ − 2D| = 0

and | − 2KY | = {4C0} (CASE I.2).

∗ Let E be decomposable. As seen before we have that e ≥ 2q − 2.
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· Let us suppose that h0(OΓ(−2KΓ −D)) = 0, so

h0(E ⊗ OΓ(−2KΓ − 2D)) = h0(OΓ(−2KΓ − 2D)).

Also in this case we have that

dim | − 2KY | = dim | − 2KΓ − 2D|

and 4C0 is a fixed component of | − 2KY | (CASE II.1).

· Let us suppose that h0(OΓ(−2KΓ − D)) > 0. Then
deg(−2KΓ − D) = 4 − 4q + e ≥ 0, so e ≥ 4q − 4. We observe
that, since deg(3KΓ + 2D) = 3(2q − 2)− 2e ≤ 6q − 6 + 2(4− 4q) =
= 2− 2q < 0, then h1(OΓ(−2KΓ − 2D)) = h0(OΓ(3KΓ + 2D)) = 0.
Hence, using the exact sequence (8) and the previous remarks,
we have that dim | − 2KY | = h0(S4E ⊗ OΓ(−2KΓ − 2D)) − 1 =
= h0(E ⊗ OΓ(−2KΓ − 2D)) − 1 = h0(OΓ(−2KΓ − 2D)) +
h0(OΓ(−2KΓ −D))− 1.
So

dim | − 2KY | = dim | − 2KΓ − 2D|+ h0(OΓ(−2KΓ −D)) >

> dim | − 2KΓ − 2D|.

We have obtained CASE II.2.

III. As seen in Theorem 2.6, there are two different types of elliptic ruled surface with
E indecomposable: Y0 and Y−1. In both cases, since pg(Γ) = 1, it is clear that
KΓ ∼ 0, so −2KY ∼ 4C0 − 2D · f , for Y = Yi, with i = {0,−1}.

• CASE III.1

If Y = Y0, then D ∼ 0 (see Theorem 2.6) and −2KY ∼ 4C0. Let us suppose
that there is W ∈ | − 2KY | effective such that W 6= 4C0. If C0 was not
a component of W , then C0 · W = 4C2

0 = 0 and W ∩ C0 = ∅ which is
impossible by Proposition 2.9. Then C0 ⊂ W and W − C0 ∼ 3C0. Again,
if C0 was not a component of W − C0, then C0 · (W − C0) = 3C2

0 = 0 and
(W−C0)∩C0 = ∅ which is impossible by Proposition 2.9. So C0 ⊂ (W−C0)
and W − 2C0 ∼ 2C0. Another time, if C0 was not a component of W − 2C0,
then C0 · (W − 2C0) = 2C2

0 = 0 and W ∩ C0 = ∅ which is impossible
by Proposition 2.9. Then C0 ⊂ (W − 2C0) and W − 3C0 ∼ C0. Since
h0(OY (C0)) = h0(Γ, E) = 1, then |C0| = {C0} and W − 3C0 = C0, so
W = 4C0. Then

| − 2KY | = {4C0}.

• CASE III.2

If Y = Y−1, it was shown in Chapter 2 Section 5 of [5] that

dim | − 2KY | = 1.
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We denote by ⊕ the group operation on Γ and by e0 the neutral element.
Recall that the group law is defined by

x⊕ y ∼ x+ y − e0,

for x, y ∈ Γ. It is known that Y−1 := Sym2(Γ), that is the second symmetric
product of Γ. In particular, for every x ∈ Γ, we have a morphism

εx : Γ −→ Y−1

e −→ e+ (e⊕ x).

Let cx be the image curve in Y−1. Now εx is an isomorphism onto its image
except precisely when x is one of the three non-zero 2−torsion points of
Γ. In the latter three cases, the map εη realizes Γ as an unramified double
cover of its image curve cη, for η ∈ Γ a non-zero 2 torsion element. Indeed
cη = Γ/〈η〉. Moreover, the diagonal ∆ := ce0 is linearly equivalent to−2KY−1

(for more details see [5], Chapter 2, and [7]).

Therefore every divisor in |−2KY | is isomorphic to Γ, hence smooth and ir-
reducible, except precisely three irreducible and non-reduced elements, each
of multiplicity 2, isomorphic to Γ modulo a non-zero two torsion element,
as seen before.

IV. If E is decomposable, then Y = PΓ(OΓ ⊕ OΓ(D)), for D ∈ Div(Γ). By [20],
Theorem V.2.12, we have that e ≥ 0. Let q = pg(Γ) = 1, so KΓ ∼ 0. By the
previous remarks, we have that

−2KY ∼ 4C0 − 2D · f ∼ 2C0 + 2C1.

By Lemma 2.5, we have that

h0(OY (−2KY )) = h0(OY (4C0 − 2D · f)) =

= h0(OΓ(2D)) + h0(OΓ(D)) + h0(OΓ) + h0(OΓ(−D)) + h0(OΓ(−2D)).

• CASE IV.1

If e = 0 and D ∼ 0, then

dim | − 2KY | = h0(OY (−2KY ))− 1 = 4.

As observed in [20], Example V.2.11.1, we have that Y = Γ × P1. So
−2KY = −2pr∗1KΓ − 2pr∗2KP1 = −2pr∗2KP1 , where pr1 : Y → Γ and
pr2 : Y → P1 are the two projection maps. Then any antibicanonical divisor
is formed by four fibres of the projection pr2 : Y → P1.

• CASE IV.2

If e = 0, D � 0 and 2D � 0, then

dim | − 2KY | = h0(OY (−2KY ))− 1 = 0.

28



Using Lemma 2.5, we have that

h0(OY (−2KY − 2C0)) = h0(OY (2C0 − 2D · f)) =

= h0(OΓ) + h0(OΓ(−D)) + h0(OΓ(−2D)) = 1.

Since h0(OY (−2KY )) = h0(OY (−2KY − 2C0)) = 1, then 2C0 is a fixed
component of the linear system | − 2KY |. Hence the only possibility is

| − 2KY | = {2C0 + 2C1}.

• CASE IV.3

If e = 0, D � 0 and 2D ∼ 0, then

dim | − 2KY | = h0(OY (−2KY ))− 1 = 2

and −2KY ∼ 4C0.

• CASE IV.4

If e > 0, then deg(D) = −e < 0, so, using Lemma 2.5 and Riemann-Roch’s
Theorem, we have that

dim | − 2KY | = h0(OY (−2KY ))− 1 =

= h0(OΓ(2D)) + h0(OΓ(D)) + h0(OΓ) + h0(OΓ(−D)) + h0(OΓ(−2D))− 1 =

= h0(OΓ) + h0(OΓ(−D)) + h0(OΓ(−2D))− 1 = 1 + e+ 2e− 1 = 3e.

Moreover, always by Lemma 2.5, we can compute that

h0(OY (−2KY − 2C0)) = h0(OY (2C0 − 2D · f)) =

= h0(OΓ) + h0(OΓ(−D)) + h0(OΓ(−2D)) = 3e+ 1 = h0(OY (−2KY )),

while
h0(OY (−2KY − 3C0)) = h0(OY (C0 − 2D · f)) =

= h0(OΓ(−D)) + h0(OΓ(−2D)) = 3e 6= h0(OY (−2KY )).

We conclude that 2C0 is a fixed component of | − 2KY |, leaving as variable
part the system |2C0 − 2D · f | = |2C1|.

We can show that not all the cases of minimal ruled surfaces Y of the type of
Proposition 2.12 can be minimal models of surfaces with Prym-canonical hyperplane
sections.

Lemma 2.13. Let X ′′ = PΓ(E) be a minimal ruled surface over a smooth elliptic curve
Γ. We assume that E is normalized and decomposable, i.e. E = OΓ ⊕ OΓ(D), for
D ∈ Div(Γ) and e = − deg(D) ≥ 0.
If e = 0 and D ∼ 0 (CASE IV.1 of Proposition 2.12) or if e = 0, D � 0 and 2D � 0
(CASE IV.2 of Proposition 2.12), then X ′′ cannot be the minimal model of a surface
with Prym-canonical hyperplane sections.
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Proof. We analyze the two cases separately.

• Let D ∼ 0.

Let us suppose that X ′′ = PΓ(OΓ ⊕OΓ(D)) = Γ× P1 is the minimal model of a
surface X with Prym-canonical hyperplane sections. With the same notation as
before, we have that π : X ′ → X is the minimal resolution of the singularities of
X.

We exclude the case X ′′ = X ′ because dim | − 2KX′′ | = 4 by Proposition 2.12
and this would contradict Theorem 1.12. Then there are always base points of
L′′ to blow up and X ′′ 6= X ′.

Since KΓ ∼ 0, we can write −2KX′′ ∼ 4C0, where C0
∼= Γ (see Notation 2.7).

So there are at most four disjoint connected components in W ′′ (the fibres can
coincide).

We put W ′′ = C0,1 + C0,2 + C0,3 + C0,4, where C0,1, C0,2, C0,3, C0,4 ∈ |C0| not
necessarily disjoint. We have observed that the base locus of L′′ lies on supp(W ′′)
(see Proposition 1.22), and, as seen before, there are always base points of L′′

to blow up. Moreover C ′′ and W ′′ intersect only on the base locus of L′′ by
Proposition 1.22 and Proposition 1.24. Since W ′′ ∼ 4C0, then C ′′ intersects C0

and consequently C0,i, for i = 1, 2, 3, 4. The intersection points between C ′′ and
C0,i, for i = 1, 2, 3, 4, are base points of L′′, i.e. the points to blow up.

We recall that the multiplicity of any blown up point on W ′′ by φ is at least two
(see Proposition 1.22). If we suppose that W ′′ is formed by four disjoint fibres
either W ′′ contains three disjoint components of which only one is non-reduced
counted with multiplicity 2 or W ′′ has two disjoint components isomorphic to Γ,
one reduced and the other counted with multiplicity 3, then the multiplicity of
the blown up points by φ on the reduced components of W ′′ is one. We exclude
these three cases.

It remains to analyze the case in which W ′′ has two disjoint components non-
reduced, counted with multiplicity 2, whose supports are called respectively C0,1

and C0,2, or W ′′ has only one irreducible component of multiplicity 4, whose
support C0 is isomorphic to Γ.

We observe that−KX′′ = −pr∗1KΓ−pr∗2KP1 = pr∗2(−KP1), i.e. every anticanonical
divisor is formed by two fibres of the projection pr2 : X ′′ → P1. To obtain
X ′, we blow up the base points of L′′ that lie on supp(W ′′) = C0,1 + C0,2 or
supp(W ′′) = C0 respectively. In the first case, since C0,1 +C0,2 ∈ |−KX′′| and it

contains the points to blow up, then C̃0,1+C̃0,2 ∈ |−KX′ | and h0(OX′(−KX′)) > 0.
Similarly, if W ′′ = 4C0, then 2C0 ∈ |−KX′′ | and h0(OX′(−KX′)) > 0. Moreover,
in both cases, h0(OX′(−KX′−C ′)) = 0 (the anticanonical divisor does not contain
C ′). From the exact sequence

0→ OX′(−KX′ − C ′)→ OX′(−KX′)→ OC′(−KX′)→ 0,
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we deduce that h0(OC′(−KX′)) > 0. Since X has Prym-canonical hyperplane
sections by hypothesis and X ′ is the minimal resolution of its singularities, then
C ′ ·(−KX′) = 0, for C ′ a general hyperplane section of X ′. So h0(OC′(−KX′)) = 1
and OC′(−KX′) ∼= OC′ . Then C ′ is a canonical embedded curve and X has
canonical hyperplane sections. We also exclude these cases.

In conclusion X ′′ = Γ × P1 cannot be the minimal model of a surface X with
Prym-canonical hyperplane sections.

• Let D be a non-zero torsion divisor of order different from two (Proposition 2.12,
CASE IV.2). Then there are two disjoint connected components in W ′′, 2C0 and
2C1.

By Proposition 1.22, since 2C0 and 2C1 are irreducible and non-reduced with
multiplicity 2, we have that W ′ ∼ 2C̃0 + 2C̃1, where C̃0 and C̃1 are respectively
the strict transforms of C0 and C1. In this case W ′ has two disjoint connected
components.

Moreover we have that −KX′′ = {C0 + C1} (see [13], Proposition II.2.1). To
obtain X ′, we blow up the base points of L′′ that lie on supp(W ′′) = C0 +
C1. Since C0 + C1 ∈ | − KX′′ | and it contains the points to blow up, then
h0(OX′(−KX′)) > 0. As seen before, we obtain that h0(OC′(−KX′)) > 0. Since
X has Prym-canonical hyperplane sections by hypothesis and X ′ is the minimal
resolution of its singularities, then C ′ · (−KX′) = 0, for C ′ a general hyperplane
section of X ′. So h0(OC′(−KX′)) = 1 and OC′(−KX′) ∼= OC′ . Then X has
canonical hyperplane sections. Similarly, if X ′′ = X ′, i.e. L′′ has not base points
to blow up and φ : X ′ → X ′′ is an isomorphism, then X has canonical hyperplane
sections.

In conclusion, the surface X ′′ = PΓ(OΓ ⊕ OΓ(D)), for D a non zero torsion
divisor, not of order two, cannot be the minimal model of a surface X with
Prym-canonical hyperplane sections.

Finally, we can determine the number of non-rational singularities on a surface X
with Prym-canonical hyperplane sections birationally equivalent to a non-rational ruled
surface.

Proposition 2.14. Let X be a surface with Prym-canonical hyperplane sections bira-
tionally equivalent to a ruled surface X ′′ = PΓ(E) over a base curve Γ of genus q ≥ 2.
If W ′′ ∈ |− 2KX′′ | effective, then it contains only one connected component, except for
the case E decomposable and e = 4q−4, where there is the possibility that W ′′ contains
two disjoint connected components.

Proof. By Proposition 2.12 and Lemma 2.13, we have four different cases to study.
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• If E is indecomposable and | − 2KX′′ | = {4C0} (Proposition 2.12, CASE I.2),
then W ′′ = 4C0 is connected (it is irreducible and non-reduced).

• If E is indecomposable and |−2KX′′ | = {4C0−4KΓ ·f} (Proposition 2.12, CASE
I.1), we can prove that W ′′ contains only one connected component. Let us
suppose that ∆ := 4C0− 4KΓ · f can be factorized as ∆1 + ...+ ∆k +F1 + ...+Fl,
where ∆i are irreducible curves, for i = 1, ..., k, and Fj fibers, for j = 1, ..., l.
Since ∆ ≡ 4C0 − 8f , then ∆1 + ...+ ∆k ≡ 4C0 − (8 + l)f . So every ∆i is of the
form αiC0 − βi · f , with

∑k
i=1 deg(βi) = 8 + l and αi > 0 for any i because we

assume that ∆i is effective (we also exclude α = 0 because ∆i 6= Fj, for any i, j).

– Since ∆ ≡ 4C0 − 8f , then k ≤ 4. Let us start with the case in which
αi = 1, for i = 1, ..., 4. Since C0 is irreducible and C2

0 = −e, for e = −2 (see
Proposition 2.12, CASE I.1), then C0 ·∆i = C0(C0−βi ·f) = 2−deg(βi) ≥ 0,
so deg(βi) ≤ 2, for any i = 1, ..., 4. Then 8 =

∑4
i=1 2 ≥

∑4
i=1 deg(βi) = 8+l,

so l = 0 and deg(βi) = 2, for any i.

Therefore, for i 6= j, the intersection ∆i · ∆j = (C0 − βi · f) ·
(C0 − βj · f) = C2

0 − deg(βi) − deg(βj) = 2 − 2 − 2 < 0. Thus ∆i = ∆j

(∆i and ∆j are irreducible, so they cannot have common components) and
∆ = 4∆i. So the antibicanonical divisor is irreducible and non-reduced, in
particular connected.

– If k = 3, then α1 = 2 and αi = 1, for i = 2, 3. Since C0 is irreducible
and C2

0 = −e, with e = −2 as seen in Proposition 2.12, CASE I.1, then
C0 ·∆j ≥ 0, for j = 1, 2, 3. In particular, we have C0 ·∆1 = C0(2C0−β1 ·f) =
4−deg(β1) ≥ 0, so deg(β1) ≤ 4, and C0 ·∆i = C0(C0−βi ·f) = 2−deg(βi) ≥
0, so deg(βi) ≤ 2, for i = 2, 3. Then 8 = 4 + 2 + 2 ≥

∑3
i=1 deg(βi) = 8 + l,

so l = 0 and deg(β1) = 4 while deg(βi) = 2, for i = 2, 3. So the intersection
∆1·∆2 = (2C0−β1·f)·(C0−β2·f) = 2C2

0−deg(β1)−2 deg(β2) = 4−4−4 < 0.
This is impossible because ∆1 and ∆2 have not common components because
they are irreducible and distinct by hypothesis. So we exclude this case.

– If k = 2, then either α1 = α2 = 2 or α1 = 3 and α2 = 1.

∗ If α1 = α2 = 2, then, as observed in the previous cases, the intersection
C0 ·∆i = C0(2C0−βi ·f) = 4−deg(βi) ≥ 0, for i = 1, 2, so deg(βi) ≤ 4,
for any i. As before, we can show that deg(βi) = 4, for i = 1, 2, and
l = 0.
Then ∆1·∆2 = 4C2

0−2 deg(β1)−2 deg(β2) = −4e−8−8 < 0 because e =
−2 (see Proposition 2.12, CASE I.1). Since ∆1 and ∆2 are irreducible,
they do not have common components, so ∆1 = ∆2 and ∆ = 2∆i, that
is connected.

∗ If α1 = 3 and α2 = 1, then, with the same techniques as before, we have
that C0 ·∆1 = C0(3C0 − β1 · f) = 6− deg(β1) ≥ 0, so deg(β1) ≤ 6, and
C0 · ∆2 = C0(C0 − β2 · f) = 2 − deg(β2) ≥ 0, so deg(β2) ≤ 2. Then
8 = 6 + 2 ≥ deg(β1) + deg(β2) = 8 + l, so l = 0, deg(β1) = 6 and
deg(β2) = 2. Since e = −2 and C2

0 = −e, the intersection ∆1 · ∆2 =
(3C0 − β1 · f) · (C0 − β2 · f) = 3C2

0 − deg(β1) − 3 deg(β2) < 0. This is
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impossible because ∆1 and ∆2 have not common components because
they are irreducible and distinct by hypothesis. So we also exclude this
case.

– Finally, if k = 1, then α1 = 4. Since C0 is irreducible and C2
0 = −e, with

e = −2 as seen in Proposition 2.12, CASE I.1, then C0 ·∆1 = C0 · (4C0 −
β1 · f) = 8 − deg(β1) ≥ 0, so deg(β1) ≤ 8. Since 8 ≥ deg(β1) = 8 + l, then
l = 0 and deg(β1) = 8. Then ∆ = ∆1 and it is an irreducible component by
construction.

Then the claim is proved: in any analyzed case W ′′ contains only one connected
component.

• If E is decomposable and dim | − 2KX′′ | = dim | − 2KΓ − 2D| ≥ 0 (see Propo-
sition 2.12, CASE II.1), then −2KX′′ ∼ 4C0 + (−2KΓ − 2D) · f , with 4C0 a
fixed component. We observe that, since e ≥ 2q − 2, then deg(−2KΓ − 2D) =
−2(2q− 2) + 2e ≥ 0. In particular, if e = 2q− 2 and deg(−2KΓ− 2D) = 0, then
−2KΓ − 2D ∼ 0 since h0(OΓ(−2KΓ − 2D)) > 0. Therefore (−2KΓ − 2D) · f is
the variable part of −2KX′′ . Since C0 · f = 1, we have that the fixed part 4C0

and the variable part (−2KΓ − 2D) · f have intersection, so there is only one
connected component in W ′′.

• If E is decomposable and dim |−2KX′′ | > dim |−2KΓ−2D|, then h0(OΓ(−2KΓ−
D)) > 0 and e ≥ 4q − 4 (see Proposition 2.12, CASE II.2). We recall that
−2KX′′ ∼ 4C0 + (−2KΓ − 2D) · f , where
deg(−2KΓ−2D) = −2(2q−2)+2e ≥ 4−4q+2(4q−4) = 4q−4 > 0 since q ≥ 2.

Let us see which is the fixed component of | − 2KX′′|. Since C2
0 = −e ≤ 4− 4q,

then C0(4C0 +(−2KΓ−2D) ·f) = −4e+4−4q+2e < 0, again C0(3C0 +(−2KΓ−
2D)·f) = −3e+4−4q+2e < 0 and finally C0(2C0+(−2KΓ−2D)·f) = −2e+4−
4q+2e < 0. Thus 3C0 is a fixed component of |−2KX′′| = |4C0+(−2KΓ−2D)·f |.
Let us check if C0 is also a fixed component of |C0 + (−2KΓ − 2D) · f |.
By Lemma 2.5 we have that

h0(OX′′(C0 + (−2KΓ − 2D) · f)) = h0(OΓ(−2KΓ − 2D)) + h0(OΓ(−2KΓ −D))

and
h0(OX′′((−2KΓ − 2D) · f)) = h0(OΓ(−2KΓ − 2D)).

Since h0(OΓ(−2KΓ −D)) > 0, then

h0(OX′′(C0 + (−2KΓ − 2D) · f)) > h0(OX′′((−2KΓ − 2D) · f))

and C0 is not a fixed component of |C0 + (−2KΓ − 2D) · f |, in particular 4C0 is
not a fixed component of | − 2KX′′ | = |4C0 + (−2KΓ − 2D) · f | while 3C0 is.

So the following cases may occur:
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– if 4C0 is a component of W ′′ ∼ 4C0 + (−2KΓ − 2D) · f , then 4C0 intersects
(−2KΓ−2D) ·f since C0 ·f = 1, so W ′′ has only one connected component;

– if e > 4q− 4 and 3C0 is a component of W ′′ ∼ 4C0 + (−2KΓ− 2D) · f , then
3C0 · (C0 + (−2KΓ − 2D) · f) = −3e + 3 deg(−2KΓ − 2D) = −3e + 3(4 −
4q + 2e) = −12q + 12 + 3e > 12− 12q + 3(4q − 4) = 0, so W ′′ has only one
connected component;

– finally, we suppose that e = 4q − 4 and 3C0 is a component of W ′′ ∼
4C0 + (−2KΓ − 2D) · f . By Remark 2.8, we have that D ∼ C0|C0 . Since
h0(OΓ(−2KΓ − D)) > 0 (we are in CASE II.2 of Proposition 2.12) and
deg(−D − 2KΓ) = e− 4q + 4 = 0, then D ∼ −2KΓ. The restriction

(C0 + (−2KΓ − 2D) · f)|C0 = C0|C0 + (−2KΓ − 2D) ∼ D − 2KΓ − 2D ∼ 0,

so 3C0 and C0 +(−2KΓ−2D) ·f are the two disjoint connected components
of W ′′.

Corollary 2.15. Let X be a surface with Prym-canonical hyperplane sections bira-
tionally equivalent to a ruled surface X ′′ over a base curve Γ of genus q ≥ 2. Let us
suppose that a general hyperplane section C of X is projectively normal with respect to
its embedding in Pg−2. If the number of connected components of W ′ and W ′′ is the
same, then either X contains exactly one non-rational singularity x, whose pg(x) = q
or, if E is decomposable and e = 4q − 4, there is also the possibility that there are two
singularities x1 and x2 such that π−1(xi) ∩ supp(W ′) 6= ∅ and pg(x1) + pg(x2) = q.

Proof. By Lemma 1.19 we know that the singularities of the type x ∈ X such that
π−1(x) does not intersect supp(W ′) are rational double points. Moreover, by Theorem
1.12, we have that supp(W ′) = π−1(x1, ..., xr), for certain singularities in X, so there
are r connected components in supp(W ′), for r = 0, 1, 2, .... By Proposition 1.15, we
know that, if the singular locus Sing(X) = {x1, ..., xs}, for r ≤ s, then

∑s
i=1 pg(xi) = q.

Let us suppose that r := {number of connected components of W ′} is the same as the
number of connected components of W ′′ (see Proposition 1.22, Case 3.).
By Proposition 2.14, we have W ′′ ∈ | − 2KX′′ | is connected, except in the case in
which E is decomposable and e = 4q − 4. Since we suppose that W ′ has the same
number of connected component of W ′′, if W ′′ is connected, then X has only one
singularity x such that π−1(x) ∩ supp(W ′) 6= ∅. By Proposition 1.15, this singularity
is non-rational with pg(x) = q. Instead, if W ′′ has two disjoint connected components,
since W ′ is contracted by π, we have two singularities x1 and x2 on X such that
π−1(x1) ∪ π−1(x2) = supp(W ′) and pg(x1) + pg(x2) = q (see Propositon 1.15, Theorem
1.12 and Lemma 1.19).
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Remark 2.16. In the hypothesis of the previous Corollary, if q = 1, whatever the
number of connected components of W ′′ and W ′ we have that there is only one non-
rational singularity x on X, whose geometric genus pg(x) = 1 (see Proposition 1.15).

Remark 2.17. In the hypothesis of the above Corollary, if q ≥ 2 and the number
of connected components of W ′ and W ′′ is not the same, we do not know how many
non-rational singularities there are on X.

Remark 2.18. If a general hyperplane section C of X is not projectively normal, then
Proposition 1.15 is not valid. Anyway we can conclude that Corollary 2.15 is still valid,
except for the fact that we do not know the geometric genus of the singularities.

2.3 Construction of surfaces with Prym-canonical hyperplane
sections birationally equivalent to non-rational ruled sur-
faces

In this section, we will construct examples of surfaces with Prym-canonical hyperplane
sections birationally equivalent to ruled surfaces over a base curve of genus q ≥ 1.
Before this, we will study some general properties regarding minimal models of this
type of surfaces.

First of all we can list some notation that we will use in the following.

• Let X be a surface with Prym canonical hyperplane sections embedded in Pg−1,
for g ≥ 5.

• Let π : X ′ → X be the minimal resolution of the singularities of X and let
φ : X ′ → X ′′ be a relatively minimal model of X ′. We assume that X ′′ is a
ruled surface, so X ′′ ∼= PΓ(E), with E normalized, Λ2E = OΓ(D), for D ∈ Div(Γ),
and e = − deg(D). Let p : X ′′ → Γ be the natural projection of X ′′ onto its
base curve Γ. We also assume that pg(Γ) = q ≥ 1, so X ′′ is a non-rational ruled
surface.

• If L is the (g − 1)−dimensional complete linear system of hyperplane sections
of X and C ∈ L is its general curve, let L′ be the complete linear system of
hyperplane sections of X ′ such that iL′ : X ′ → Pg−1 and C ′ ∈ L′ is its general
curve. Then L′′ = φ∗L

′ is a linear system on X ′′, with C ′′ ∈ L′′ a general curve.
Also iL′′ : X ′′ 99K Pg−1, with

iL′′(X
′′) = iL(X).

• We have already seen that the divisors on X ′′ are of the form aC0 + ∆ · f , for
a ∈ Z and ∆ ∈ Pic(Γ). Then L′′ ⊆ |aC0 + ∆ · f |, for some a,∆. In particular, we
suppose that L′′ has base points Pt,it with multiplicity rt,it , for t = 1, ..., s−1 and
it = 1, ..., i(t), with possible infinitely near base points. We can observe that X ′ is
the blowing up of X ′′ along the base points of L′′, that lie on supp(W ′′) ⊂ X ′′ by
Proposition 1.22. In the following, we will assume that |aC0 + ∆ ·f | is base-point
free (we will see in Proposition 2.23 when this occurs). If also L′′ does not have
base points, then L′′ = |aC0 + ∆ · f | = L′ and X ′ = X ′′.
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How do we construct surfaces X with Prym-canonical hyperplane sections bira-
tionally equivalent to non-rational ruled surfaces? Let us give an outline of the pro-
gram.

1. Let X ′′ be a minimal ruled surface over a base curve of genus q ≥ 1 such that
| − 2KX′′ | 6= ∅ and let W ′′ be a fixed effective antibicanonical divisor.

2. Let us fix a linear subsystem L′′ ⊆ |aC0 + ∆ · f |, for a ≥ 1 and ∆ ∈ Pic(Γ), such
that the base points of L′′ lie on the supp(W ′′) and L′′ and W ′′ do not intersect
outside the base points of L′′. We suppose that |aC0 + ∆ · f | is base-point free.

3. We call φ : X ′ → X ′′ the blowing up of X ′′ along the base points of L′′. Let L′

be the strict transform of L′′ and let W ′ be an antibicanonical divisor of X ′. If
a general C ′ ∈ L′ is disjoint from W ′, i.e. −2KX′|C′ ∼ 0, and if −KX′ |C′ is a
non-zero torsion divisor of Pic(C ′), then X ′ is the required surface.

2.3.1 Preliminaries on minimal models

We can replace X ′′ by a more suitable minimal model in which the transform of the
linear system L′′ has a simpler form.

Proposition 2.19. Let X ′′ = PΓ(E) be a ruled surface over a smooth curve Γ
of genus q ≥ 1 and let us suppose that X ′′ is the minimal model of a surface
X with Prym-canonical hyperplane sections. Let e be the invariant of X ′′. Let
L′′ ⊆ |aC0 +∆ ·f | be the (g−1)−dimensional linear system of hyperplane sections
of X ′′.

a. We have that e ≥ 2q − 2, except for the cases I.1 and III.2 of Proposition 2.12,
that correspond to ruled surfaces with E indecomposable.

Moreover e = 2q − 2 if and only if 2D ∼ −2KΓ.

b. We can assume that E is decomposable, i.e. E ∼= OΓ ⊕OΓ(D), for D ∈ Div(Γ),
and a general curve C ′′ ∈ L′′ is disjoint from C0 after possibly replacing X ′′

by another relatively minimal model of X ′. In particular, we can assume that
the base points Pt,it of L′′ do not belong to C0 and to its strict transforms, for
t = 1, ..., s− 1 and it = 1, ..., i(t).

Then we have the following relations:

b.1 rt,it ≤ a− 1, for t = 1, ..., s− 1 and it = 1, ..., i(t);

b.2 ∆ ∼ −aD, whence L′′ ⊆ |aC1|, for a ≥ 1;

b.3
∑s−1

t=1

∑i(t)
it=1 rt,it = a(e− 2q + 2);

b.4 g = 1 + 1
2
a2e− 1

2

∑s−1
t=1

∑i(t)
it=1 r

2
t,it;

b.5 1 + a2(q − 1) + 1
2
a(e− 2q + 2) ≤ g ≤ 1 + 1

2
a2e− 1

2
a(e− 2q + 2);

b.6 if L′′ has base points, the number of conditions imposed by them is exactly
the expected number.
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Proof. a. As seen in Proposition 2.12, we always have e ≥ 2q − 2, except for the
CASE I.1, where e = −2 < 2q − 2 = 2, and CASE III.2, where e = −1 and
2q − 2 = 0. Both cases correspond to ruled surfaces with E indecomposable.

If 2D ∼ −2KΓ, then deg(2D) = −2e = deg(−2KΓ) = 4− 4q, so e = 2q − 2.

Let q ≥ 2. If E is indecomposable and e = 2q − 2, then we are in CASE I.2 of
Proposition 2.12. As computed in that Proposition, we have that 2D ∼ −2KΓ.

Again, let q ≥ 2. If E is decomposable and e = 2q − 2, then we are in CASE
II.1 of Proposition 2.12. Thus we have that h0(OΓ(−2KΓ − 2D)) > 0. Since
deg(−2KΓ − 2D) = 0, then 2D ∼ −2KΓ.

If q = 1 and X ′′ = Y0 (CASE III.1 of Proposition 2.12), then 0 = e = 2q−2 and
2D ∼ −2KΓ ∼ 0. On the other hand, if X ′′ = Y−1 (CASE III.2 of Proposition
2.12), then −1 = e 6= 2q − 2 = 0. Since deg(2D) = 2 and deg(−2KΓ) = 0, then
2D � −2KΓ. The thesis is satisfied also in the case q = 1 and E indecomposable.

Finally, we assume q = 1 and E decomposable. If e = 2q−2 = 0, then we exclude
CASE IV.1 and IV.2 of Proposition 2.12 by Lemma 2.13. So there is only one
case to consider: D � 0 but 2D ∼ 0 (CASE IV.3 of Proposition 2.12). Whence
it is clear that 2D ∼ −2KΓ ∼ 0.

In conclusion e = 2q − 2⇔ 2D ∼ −2KΓ.

b. In general, any decomposable ruled surface is obtained from an indecompos-
able one applying a finite number of elementary transformations at points on
C0 (see [15], Corollary 48). Moreover, if the minimal resolution of singularities
X ′ = PΓ(E), with E indecomposable, then the minimal model X ′′ is birationally
equivalent to PΓ(E ′), for E ′ decomposable. So we can suppose that the mini-
mal model is decomposable up to birational equivalence and a finite number of
elementary transformations at points on C0.

Let us suppose that L′′ has base points on C0, in particular we call P one of them.
If C ′′ ∈ L′′ is a general curve, then C ′′ · C0 > 0. We can apply an elementary
transformation of X ′′ centered in P to obtain another relatively minimal model
X̃ ′′. If C̃ ′′ and C̃0 are the strict transforms respectively of C ′′ and C0, since we
blow up the point P of intersection, then C̃ ′′ · C̃0 < C ′′ · C0. Repeating this
process a finite number of times, we can assume that L′′ has not base points on
C0. Moreover, since we assume that X ′′ is decomposable and we blow up points
of C0, then even the new minimal model is decomposable (see [15], Theorem 50).

We can also prove that a general curve C ′′ ∈ L′′ does not intersect C0 outside
the base points. Indeed, after the blowing up of X ′′ along the base points of L′′,
we obtain X ′ a surface whose hyperplane sections are Prym-canonical embedded.
With the notation of Proposition 1.22, since

W ′′ := W ′
1 ∼ 4C0 − (2KΓ + 2D) · f ≡ 4C0 + (4− 4q + 2e)f,
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then

W ′
2 ≡ 4C̃0 + (4− 4q + 2e) · f̃ +

i(1)∑
i1=1

(µ1,i1 − 2)E2,i1 ,

where C̃0 and f̃ are the strict transforms respectively of C0 and a generic fibre
f of X ′′, µ1,i1 is the multiplicity of the base point P1,i1 on W ′′ and E2,i1 is the
exceptional divisor associated with P1,i1 , for i1 = 1, ..., i(1). We observe that

C ′2 ·W ′
2 = 4C ′2 · C̃0 + (4− 4q + 2e)C ′2 · f̃ +

i(1)∑
i1=1

(µ1,i1 − 2)C ′2 · E2,i1 ,

where C ′2 is the strict transform of C ′′. Since e ≥ 2q − 2 by Case a. of this

Proposition, then (4−4q+2e) ≥ 0 and consequently (4−4q+2e)C ′2 ·f̃ ≥ 0. Again,
as observed in Proposition 1.22, we have that µ1,i1 ≥ 2 for any i1 = 1, ..., i(1), so∑i(1)

i1=1(µ1,i1 − 2)C ′2 · E2,i1 ≥ 0. If C ′′ and C0 intersected outside the base points,

then C ′2 and C̃0 would have intersection. Hence C ′2 · W ′
2 > 0. Iterating this

process, we would have that W ′
t · C ′t > 0, for t = 1, .., s. This would contradict

the Lemma 1.23.

We conclude that C ′′ and C0 have not intersection points.

With the previous assumptions, let us see the relations between the numbers
a, e, q, g and rt,it , for t = 1, ..., s− 1 and it = 1, ..., i(t).

b.1 First of all we observe that, if Pt2,it2 is a base point of L′′ infinitely near
to the base point Pt1,it1 ∈ X

′′, for t1, t2 ∈ {1, ..., s − 1}, it1 = {1, ..., i(t1)}
and it2 = {1, ..., i(t2)}, then rt1,it1 ≥ rt2,it2 . So it is enough to show that
the multiplicity r := r1,1 < a, for a base point P := P1,1 ∈ X ′′ that is not
infinitely near to another point.

Let f0 be the fibre on X ′′ passing through P . Since P ∈ C ′′ with multiplicity
r, then r ≤ C ′′ · f0. On the other hand, since C ′′ ∈ L′′ ⊆ |aC0 + ∆ · f |, we
have that C ′′ · f0 = (aC0 + ∆ · f) · f0 = a. Then r ≤ a. Let us suppose
that r = a, hence C ′′ and f0 intersect only in P , so, after blowing up this
point, the strict transforms C̃ ′′ and f̃0 respectively of C ′′ and f0 are disjoint

and, in particular, f̃0

2
= −1. To obtain X ′ we blow up only base points of

L′′ and since C̃ ′′ and f̃0 are disjoint, we do not blow up other points on f̃0,
so, if f ′0 is the strict transform of f0 on X ′, also (f ′0)2 = −1. Then f ′0 is a
(−1)−curve on X ′. We also observe that C ′ and f ′0 are still disjoint, so f ′0
is contracted by iL′ = iL ◦ π on X. This contradicts the minimality of the
resolution π, so r < a.

b.2 As observed before, we can assume that a general curve C ′′ ∈ L′′ is disjoint
from C0. On one hand

OX′′(C ′′)⊗OC0
∼= OC0

∼= OΓ
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with the identification of Notation 2.7. On the other hand, using Remark
2.8, we have that

OX′′(C ′′)⊗OC0
∼= OX′′(aC0 + ∆ · f)⊗OC0

∼= OΓ(aD + ∆).

Hence
∆ ∼ −aD.

Then C ′′ ∼ aC0 − aD · f ∼ aC1 and

L′′ ⊆ |aC1|.

b.3 We claim that

2
s−1∑
t=1

i(t)∑
it=1

rt,it = C ′′ ·W ′′,

for rt,it the multiplicities of all the base points of L′′. Since
C ′ ·W ′ := C ′s ·W ′

s = 0 by Lemma 1.23, it is sufficient to show that

C ′t ·W ′
t = C ′t+1 ·W ′

t+1 + 2

i(t)∑
it=1

rt,it ,

for t = 1, ..., s − 1, so C ′s−1 · W ′
s−1 = 2

∑i(s−1)
is−1=1 rs−1,is−1 , C

′
s−2 · W ′

s−2 =

2
∑i(s−1)

is−1=1 rs−1,is−1 + 2
∑i(s−2)

is−2=1 rs−2,is−2 and so on and the claim is proved.

Let us assume that t = 1. By Proposition 1.22, we know that
W ′

2 ∼ φ∗1W
′
1 − 2

∑i(1)
i1=1E2,i1 . If C ′2 ∈ X ′2 is the strict transform of C ′′ := C ′1,

then C ′2 ∼ φ∗1C
′
1 −

∑i(1)
i1=1 r1,i1E2,i1 . So

W ′
2 ·C ′2 = (φ∗1W

′
1− 2

i(1)∑
i1=1

E2,i1) · (φ∗1C ′1−
i(1)∑
i1=1

r1,i1E2,i1) = W ′
1 ·C ′1− 2

i(1)∑
i1=1

r1,i1

as asserted. Hence the claim is proved.

Moreover, using the previous point of this Proposition, we know that
C ′′ ·W ′′ = aC1 ·(4C0−(2KΓ +2D)·f) = a·deg(−2KΓ−2D) = a(4−4q+2e).

We can conclude that 2
∑s−1

t=1

∑i(t)
it=1 rt,it = C ′′ ·W ′′ = a(4− 4q+ 2e). So the

thesis is satisfied.

b.4 By the adjunction formula, the self-intersection (C ′)2 = 2g− 2−C ′ ·KX′ =
2g − 2 since −KX′ |C′ is a two torsion element. If C ′ is the strict transform

of C ′′, i.e. C ′ = φ∗C ′′ −
∑s−1

t=1

∑i(t)
it=1 rt,itEt+1,it , and C ′′ ∼ aC1 by the

point b.2 of this Proposition, then (C ′)2 = (φ∗C ′′)2 −
∑s−1

t=1

∑i(t)
it=1 r

2
t,it =

(C ′′)2−
∑s−1

t=1

∑i(t)
it=1 r

2
t,it = (aC1)2−

∑s−1
t=1

∑i(t)
it=1 r

2
t,it = a2e−

∑s−1
t=1

∑i(t)
it=1 r

2
t,it .

Unifying the two results we have that 2g − 2 = a2e −
∑s−1

t=1

∑i(t)
it=1 r

2
t,it and

g = 1 + 1
2
a2e− 1

2

∑s−1
t=1

∑i(t)
it=1 r

2
t,it .
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b.5 It is clear that
s−1∑
t=1

i(t)∑
it=1

r2
t,it ≥

s−1∑
t=1

i(t)∑
it=1

rt,it .

By the points b.3 and b.4 of this Proposition, we also have that

g = 1 +
1

2
a2e− 1

2

s−1∑
t=1

i(t)∑
it=1

r2
t,it ≤ 1 +

1

2
a2e− 1

2
a(e− 2q + 2).

This gives the upper bound to g.

Similarly,
∑s−1

t=1

∑i(t)
it=1 r

2
t,it reaches its maximum value when every

rt,it is equal to (a− 1) (see point b.1 of this Proposition). Then

s−1∑
t=1

i(t)∑
it=1

r2
t,it ≤

s−1∑
t=1

i(t)∑
it=1

rt,it(a− 1) = a(a− 1)(e− 2q + 2)

using the point b.3 of this Proposition. So

g = 1 +
1

2
a2e− 1

2

s−1∑
t=1

i(t)∑
it=1

r2
t,it ≥ 1 +

1

2
a2e− 1

2
a(a− 1)(e− 2q + 2) =

= 1+
1

2
a2e+

1

2
a(e−2q+2)− 1

2
a2(e−2q+2) = 1+a2(q−1)+

1

2
a(e−2q+2).

This gives the lower bound to g.

b.6 Since we assume that X ′′ = PΓ(E), with E decomposable, then the invariant
e ≥ 2q − 2 by Case a. of this Proposition. Moreover the coefficient a ≥ 1
by the previous assumptions and since

∑s−1
t=1

∑i(t)
it=1 rt,it = a(e − 2q + 2) by

the point b.3 of this Proposition, then L′′ has not base points if and only if
e = 2q − 2.

However, let us assume that L′′ has base points, so e > 2q − 2. If the base
points were independent, we would have

dimL′′ = dim |aC1| −
1

2

s−1∑
t=1

i(t)∑
it=1

rt,it(rt,it + 1).

We know that

dim |aC1| = h0(OX′′(aC1))− 1 = h0(OX′′(aC0 − aD · f))− 1.

By Lemma 2.5, we have that

h0(OX′′(aC0−aD ·f)) = h0(OΓ(−aD)) +h0(OΓ(−(a−1)D)) + ...+h0(OΓ).

Using the Riemann-Roch Theorem, the cohomology

h0(OΓ(−mD)) = h0(OΓ(KΓ +mD)) +me+ 1− q,
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for 1 ≤ m ≤ a. Since deg(KΓ + mD) = 2q − 2 − me and e > 2q − 2 as
observed before, we have that deg(KΓ +mD) < 2q − 2−m(2q − 2) ≤ 0, so
h0(OΓ(KΓ +mD)) = 0. Then

dim |aC1| = h0(OΓ(−aD))+h0(OΓ(−(a−1)D))+...+h0(OΓ(−D))+h0(OΓ)−1 =

= (ae+ 1− q) + ((a− 1)e+ 1− q) + ...+ (e+ 1− q) = (1 + ..+a)e+a(1− q).

Furthermore, by the point b.3 of this Proposition, we know that
−1

2

∑s−1
t=1

∑i(t)
it=1 r

2
t,it−

1
2

∑s−1
t=1

∑i(t)
it=1 rt,it = −1

2

∑s−1
t=1

∑i(t)
it=1 r

2
t,it−

1
2
a(e−2q+2).

In conclusion, the expected dimension of L′′ is

dim |aC1| −
1

2

s−1∑
t=1

i(t)∑
it=1

rt,it(rt,it + 1) =

= (1 + ...+ a)e+ a(1− q)− 1

2

s−1∑
t=1

i(t)∑
it=1

r2
t,it −

1

2
a(e− 2q + 2) =

=
a(a+ 1)

2
e+ a(1− q)− 1

2

s−1∑
t=1

i(t)∑
it=1

r2
t,it −

1

2
ae+ a(q − 1) =

=
1

2
a2e− 1

2

s−1∑
t=1

i(t)∑
it=1

r2
t,it .

Since dimL′′ = (g − 1) by hypothesis and g − 1 = 1
2
a2e− 1

2

∑s−1
t=1

∑i(t)
it=1 r

2
t,it

by the point b.4 of this Proposition, we conclude the Theorem.

Remark 2.20. From now on, we will assume the conclusions of Proposition 2.19
always satisfied.

Since we suppose that E is decomposable, by Case a. of the previous Proposition
we have that the invariant e ≥ 2q− 2, for q ≥ 1. It is not difficult to prove that, when
a ≥ 2, the linear system |aC1| is always base-point free, except for only one case. In
addition, there are also cases in which the linear system |C1| is base-point free. Before
showing this, we recall some preliminary results.

Proposition 2.21 ([15], Proposition 36). Let |aC0 + ∆ · f | be an a−secant linear
system on a decomposable ruled surface Y ∼= PΓ(OΓ⊕OΓ(D)). Then this linear system
is base-point free on Y if and only if |∆| and |∆ + aD| are base-point free on Γ.

Proposition 2.22 ([15], Corollary 13). Let Y = PΓ(E) be a ruled surface with Λ2(E) =
OΓ(D) and |H| = |C0 + ∆ · f | a complete linear system on Y . Then |H| is base-point
free if and only if, for all the points P ∈ Γ, we have

h0(OY (H − P · f)) = h0(OY (H))− 2.
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Proposition 2.23. If the conclusions of Proposition 2.19 are satisfied, in particular E
is decomposable and e ≥ 2q − 2, we have that

1. if a ≥ 2, then the linear system |aC1| is base-point free , except for the case in
which q = 1, e = 0 and −aD � 0 but −2aD ∼ 0;

2. let us consider the linear system |aC1|, with a = 1:

• if e > 2q− 2, the linear system |C1| is base-point free, except for the case in
which e = 2q − 1 and there is a point P ∈ Γ such that KΓ +D + P ∼ 0;

• * if e = 2q − 2 and q = 1, the linear system |C1| is base-point free if and
only if KΓ +D ∼ 0;

* if e = 2q − 2, q > 1 and KΓ +D ∼ 0, then |C1| is base-point free;

* if e = 2q − 2, q > 1 and KΓ +D ∼ α, for α ∈ Pic0(Γ) such that α � 0
but 2α ∼ 0, then |C1| is base-point free if and only if h0(OΓ(P+α)) = 0,
for any point P ∈ Γ.

Proof. 1. Let us consider the linear system |aC1| with a ≥ 2. By Proposition 2.21,
a linear system of the type |aC0 + ∆ · f | on X ′′ is base-point free if and only if
the linear systems |∆| and |∆ + aD| on Γ are base-point free.

In our case |aC1| = |aC0 − aD · f |, so ∆ ∼ −aD. It is clear that |∆ + aD| is
base-point free.

By [20], Corollary IV.3.2, the linear system |∆| is base-point free if deg(∆) ≥ 2q.
In our case, deg(∆) = deg(−aD) = ae. Since a ≥ 2 by hypothesis, then deg(∆) ≥
2e. By Proposition 2.19, Case a., since we suppose that E is decomposable, then
e ≥ 2q − 2 and, in particular, deg(∆) ≥ 2(2q − 2) = 4q − 4 = 2q + (2q − 4).

We observe that 2q − 4 ≥ 0 if and only if q > 1. Accordingly, if q > 1, we have
that deg(∆) ≥ 2q and |aC1| is base-point free.

We analyze the case q = 1 separately. By [20], Proposition IV.3.1, the linear
system | − aD| is base-point free if and only if, for every point P ∈ Γ, we have
that

dim | − aD| − 1 = dim | − aD − P |.

We observe that

h0(OΓ(−aD − P )) = h0(OΓ(KΓ + aD + P )) + ae− 1 + 1− q (9)

while
h0(OΓ(−aD)) = h0(OΓ(KΓ + aD)) + ae+ 1− q. (10)

We distinguish two cases:

- q = 1 and e > 0; we have that deg(KΓ +aD+P ) = −ae+1 < 0 since a ≥ 2,
so h0(OΓ(KΓ + aD + P )) = 0 and h0(OΓ(−aD − P )) = ae − q from (9).
Similarly, we have that deg(KΓ+aD) = −ae < 0, then h0(OΓ(KΓ+aD)) = 0
and h0(OΓ(−aD)) = ae+ 1− q from (10).

Hence h0(OΓ(−aD − P )) = h0(OΓ(−aD)) − 1, that is equivalent to the
equality dim | − aD| − 1 = dim | − aD − P |, for every point P ∈ Γ;
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- q = 1 and e = 0; since deg(D) = 0, then deg(−aD − P ) = −1, so
h0(OΓ(−aD − P )) = 0. By Proposition 2.19, since q = 1 and e = 0,
then 2D ∼ −2KΓ ∼ 0, so either D ∼ 0 or D is a non-zero two torsion
element on Γ. So we have the two following possibilities:

� aD ∼ 0; in this case h0(OΓ(−aD)) = 1, so dim | − aD| − 1 =
dim | − aD − P |, for every point P on Γ;

� aD � 0 and 2aD ∼ 0; we have that h0(OΓ(−aD)) = 0, so dim |−aD|−
1 6= dim | − aD − P |.

In conclusion, if q = 1 and a ≥ 2, then the linear system |aC1| is always base-
point free, except for the case e = 0 and −aD a non-zero two-torsion element in
Pic0(Γ).

2. Let us consider the linear system |C1|. By Proposition 2.22, a linear system of
the type |C0 + ∆ · f | is base-point free if and only if, for all points P ∈ Γ, we
have that h0(OX′′(C0 + (∆− P ) · f)) = h0(OX′′(C0 + ∆ · f))− 2. In our case we
want to show when |C1| = |C0 −D · f | is base-point free. Since we assume that
E is decomposable, then e ≥ 2q − 2 by Case a. of Proposition 2.19.

We distinguish between two cases.

• Let e > 2q − 2.

Using Lemma 2.5, we have that

h0(OX′′(C1)) = h0(OΓ(−D)) + h0(OΓ).

Thanks to the Riemann-Roch Theorem we know that

h0(OΓ(−D)) = h0(OΓ(KΓ +D)) + deg(−D) + 1− q.

Since deg(−D) = e > 2q − 2, then deg(KΓ + D) = 2q − 2 − e < 0, so
h0(OΓ(−D)) = e+ 1− q. Hence

h0(OX′′(C1)) = e+ 2− q.

As before, we can compute that

h0(OX′′(C1 − P · f)) = h0(OΓ(−D − P )) + h0(OΓ(−P )).

Since deg(−P ) < 0, then h0(OΓ(−P )) = 0, so h0(OX′′(C1 − P · f)) =
h0(OΓ(−D−P )). We observe that deg(−D−P ) = e−1 > 2q−2−1 = 2q−3.

– If deg(−D − P ) > 2q − 2, i.e. e > 2q − 1, then h1(OΓ(−D − P )) = 0.
By the Riemann-Roch Theorem, we have that h0(OΓ(−D − P )) = e−
1 + 1− q = e− q. In this case

h0(OX′′(C1 − P · f)) = e− q = h0(OX′′(C1))− 2.

As observed before, the linear system |C1| is base-point free.

43



– If deg(−D − P ) = 2q − 2, i.e e = 2q − 1, then h1(OΓ(−D − P )) =
h0(OΓ(KΓ +D + P )) by Serre Duality.
We know that deg(KΓ +D + P ) = 2q − 2− e+ 1 = 0. If there exists a
point P ∈ Γ such that KΓ + D + P ∼ 0, then h0(OΓ(KΓ + D + P )) =
h1(OΓ(−D−P )) = 1. In this case, by the Riemann-Roch Theorem, we
have that

h0(OΓ(−D − P )) = 1 + e− 1 + 1− q = e+ 1− q,

so
h0(OX′′(C1 − P · f)) 6= h0(OX′′(C1))− 2

for a certain P ∈ Γ, thus |C1| is not base-point free. On the contrary,
if P ∈ Γ such that KΓ +D + P ∼ 0 does not exist, i.e. KΓ +D + P is
a torsion element, then h0(OΓ(KΓ + D + P )) = h1(OΓ(−D − P )) = 0
and, by the Riemann-Roch Theorem, we have that

h0(OΓ(−D − P )) = e− 1 + 1− q = e− q.

In this case

h0(OX′′(C1 − P · f)) = h0(OX′′(C1))− 2

and the linear system |C1| is base-point free.

• Let e = 2q − 2.

We know that h0(OX′′(C1)) = h0(OΓ(−D)) + h0(OΓ) by Lemma 2.5. Using
the Riemann-Roch Theorem, we have that h0(OΓ(−D)) =
h0(OΓ(KΓ + D)) + deg(−D) + 1 − q = h0(OΓ(KΓ + D)) + e + 1 − q. We
observe that deg(KΓ +D) = 2q − 2− e = 0. Then

h0(OX′′(C1)) = h0(OΓ(−D)) + h0(OΓ) =

=

{
q if KΓ +D � 0
q + 1 if KΓ +D ∼ 0.

Similarly we have that h0(OX′′(C1−P ·f)) = h0(OΓ(−D−P ))+h0(OΓ(−P )).
Since deg(−P ) < 0, then h0(OΓ(−P )) = 0 and

h0(OX′′(C1 − P · f)) = h0(OΓ(−D − P )).

* If q = 1, since deg(−D − P ) = 2q − 2 − 1 < 0, then
h0(OΓ(−D−P )) = 0. Therefore h0(OX′′(C1))−2 = h0(OX′′(C1−P ·f))
if and only if KΓ + D ∼ 0. We conclude that the linear system |C1| is
base-point free if and only if KΓ +D ∼ 0.

* Let q > 1 and KΓ + D ∼ 0. Since |KΓ| is base-point free (see [20],
Lemma IV.5.1), we have that h0(OΓ(−D − P )) = h0(OΓ(KΓ − P )) =
q − 1 by [20], Proposition IV.3.1. Thus h0(OX′′(C1)) − 2 =
h0(OX′′(C1 − P · f)) and the linear system |C1| is base-point free.
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* Let q > 1 and D ∼ −KΓ +α, where α ∈ Pic0(Γ) is such that α � 0 and
2α ∼ 0 by Case a. of Proposition 2.19. We observe that h1(OΓ(−D −
P )) = h1(OΓ(KΓ − α− P )) = h0(OΓ(P + α)) by Serre Duality.

If a point P ∈ Γ such that h0(OΓ(P + α)) > 0 exists, then
h0(OΓ(−D − P )) = h0(OΓ(P + α)) + 2q − 2 − 1 + 1 − q ≥ q − 1.
So h0(OX′′(C1)) − 2 6= h0(OX′′(C1 − P · f)) and |C1| is not base point
free.

Instead, if h0(OΓ(P + α)) = 0 for any point P ∈ Γ, then
h0(OΓ(−D− P )) = q− 2 and h0(OX′′(C1))− 2 = h0(OX′′(C1 − P · f)).
In this case |C1| is base-point free.

Remark 2.24. In the hypothesis of the previous Proposition, if pg(Γ) := q > 1 and
h0(OΓ(P + α)) > 0, for P ∈ Γ a point and α a non-zero torsion element of order 2
in Pic0(Γ), then h0(OΓ(P + α)) = 1; indeed, if there was a divisor D ∈ Γ such that
deg(D) = 1 and h0(OΓ(D)) ≥ 2, then pg(Γ) = 0 but we know that pg(Γ) = q > 1. Then
there is only one point Q ∈ Γ such that P + α ∼ Q. In addition 2P ∼ 2Q. Since Γ is
not rational, then the linear system |2P | on Γ has degree 2 and dimension 1, so Γ is
hyperelliptic.

If we assume that Γ is not hyperelliptic, then h0(OΓ(P + α)) = 0, for any point P ∈ Γ
and for any α a non-zero two torsion element on Γ.

2.3.2 Examples

In this paragraph, we will construct new examples of surfaces with Prym-canonical
hyperplane sections.
First of all, we prove that, if L′′ ⊆ |aC1| with a = 1, then X is a cone over a Prym-
canonically embedded curve with only one singularity.

Proposition 2.25. We suppose that X ′′ is a minimal model of a surface X with
Prym-canonical hyperplane sections and π : X ′ → X is the minimal resolution of the
singularities of X. Moreover we assume that X ′′ satisfies the conclusions of Proposition
2.19.
If a = 1, i.e. if the fibres of X ′′ are transformed into straight lines on X, then
X ′ = X ′′ = PΓ(OΓ ⊕ OΓ(D)), with D ∼ −KΓ + α, where α is a non-trivial two
torsion divisor. In addition g = q ≥ 5 and L′′ = |C1|. Thus X is a cone over the
Prym-canonically embedded curve with only one singularity.

Proof. By Proposition 2.19, Case b.1, we know that, if a = 1, then rt,it ≤ 0 for
any t = 1, ..., s − 1 and it = 1, ..., i(t), so there are no base points for L′′ and
X ′ = X ′′ = PΓ(OΓ ⊕OΓ(D)), for D ∈ Pic(Γ).
Consequently L′′ = |C1| and, by Case b.3 of Proposition 2.19, we have that

0 =
∑s−1

t=1

∑i(t)
it=1 rt,it = a(e− 2q + 2), so e = 2q − 2.
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We also observe that g = 1+ 1
2
a2e− 1

2

∑s−1
t=1

∑i(t)
it=1 r

2
t,it = 1+ 1

2
(2q−2) = q by Proposition

2.19, Case b.4 and the previous remarks. Since we suppose that X is a surface with
Prym-canonical hyperplane sections, then a general hyperplane section C ′′ of X ′′ is
a Prym-canonically embedded curve, i.e. iL′′|C′′ : C ′′ ↪→ Pg−2 is a Prym-canonical
embedding, for C ′′ a general curve in L′′. We have already observed that g ≥ 5 (see
Remark 1.3).

Again by the assumptions on X ′′, we have that OC′′(−2KX′′) ∼= OC′′ while
OC′′(−KX′′) � OC′′ , where C ′′ ∈ L′′ is a general curve in the linear system L′′. We
know that dim | − 2KX′′ | = 0, as proved in Theorem 1.12. Indeed
W ′′ := −2KX′′ ∼ 4C0− (2KΓ + 2D) · f . By Proposition 2.19, Case a., since e = 2q− 2,
then 2D ∼ −2KΓ, so −2KX′′ ∼ 4C0. Moreover, because −2KΓ − D ∼ 2D − D = D
and deg(D) = −e = 2− 2q < 0, then h0(OΓ(−2KΓ −D)) = 0, hence we are in CASE
II.1 of Proposition 2.12 and |W ′′| = {4C0}. Since W ′′ is connected and contracted by
iL′′ , then the image of W ′′ is a single point.

It is obvious that C ′′ ·W ′′ = 0, so also C ′′ · (−KX′′) = 0.
If D ∼ −KΓ, then −KX′′ ∼ 2C0 and h0(OX′′(−KX′′)) = h0(OΓ) + h0(OΓ(D)) +
h0(OΓ(2D)) by Lemma 2.5. Since deg(D) = 2 − 2q < 0, then h0(OX′′(−KX′′)) =
h0(OΓ) = 1 and −KX′′ ∼ 2C0 is effective. Then OC′′(−KX′′) ∼= OC′′ but this contradict
the hypothesis.
Then D ∼ −KΓ + α, where α is a non-trivial two torsion divisor since 2D ∼ −2KΓ.
We can verify that, in this case, it is true that OC′′(−KX′′) � OC′′ . Indeed, we know
that h0(OX′′(−KX′′)) = h0(OX′′(2C0− (KΓ +D) ·f)) = h0(OΓ(−α))+h0(OΓ(−KΓ))+
h0(OΓ(−2KΓ + α)) by Lemma 2.5. Since α is a non-zero torsion element and
deg(−KΓ) = 2−2q < 0, then h0(OX′′(−KX′′)) = 0, so −KX′′ is not effective. Moreover,
since C ′′ is disjoint from C0 by Proposition 2.19, Case b., we have that C0|C′′ ∼= OC′′ .
Then OC′′(−KX′′) ∼= OC′′(2C0 − (KΓ + D) · f) ∼= OC′′(2C0)⊗OC′′(−(KΓ + D) · f) ∼=
OC′′(−(KΓ + D) · f). Since C ′′ ∼ C1 is a section of X ′′, then C ′′ ∼= Γ and, since
C ′′ · f = 1, then OC′′(−(KΓ +D) · f) ∼= OΓ(−(KΓ +D)) ∼= OΓ(−α) � OC′′ . The claim
is proved.

The images of fibres of X ′′ by iL′′ are lines since C ′′ · f = C1 · f = 1. Therefore
X = iL′′(X

′′) is a cone since iL′′ contracts W ′′ ∼ 4C0 in a single point. Thus X has
only one singularity because the generic hyperplane section is smooth by hypothesis.
The base curve of X is the image of a generic section C1 ∈ X ′′ disjoint from C0.
Since C = iL′′(C1) is a section of X and X has Prym-canonical hyperplane sections by
hypothesis, then C is a Prym-canonically embedded curve.

Before proving a Corollary of this Proposition, we recall a Theorem whose proof is
contained in [15], Theorem 33.

Theorem 2.26. Let Y be a decomposable ruled surface and let |H| = |C0 + β · f | be a
complete linear system on Y . Then:

• if β is very ample and β +D is base-point free, then |H| defines an isomorphism
in Y − C0;
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• if β +D is very ample and β is base-point free, then |H| defines an isomorphism
in Y − C1;

• |H| is very ample if and only if β and β +D are very ample.

Corollary 2.27. Let X ′′ = PΓ(OΓ ⊕ OΓ(D)) be a minimal ruled surface over a base
curve Γ of genus q ≥ 5, with D ∼ −KΓ + α, where α is a not trivial two tor-
sion divisor, and let L′′ = |C1|. If Γ is non-hyperelliptic and it does not admit g1

4,
then a general hyperplane section of X ′′ is Prym-canonically embedded and the map
iL′′ : X ′′ 99K Pq−1 defined by the linear system L′′ is such that X = iL′′(X

′′) is a cone
on a Prym-canonically embedded curve. In addition, X has only one singularity and if
a general hyperplane section C of X is projectively normal, then the geometric genus
of the only singularity is q.

Proof. We observe that e = − deg(D) = deg(KΓ − α) = 2q − 2, with q ≥ 5. Since Γ
is non-hyperelliptic, by Remark 2.24 we have that h0(OΓ(P + α)) = 0 for any point
P ∈ Γ. By Proposition 2.23, the linear system L′′ = |C1| is base-point free.
Using Lemma 2.5, we have that h0(OX′′(L′′)) = h0(OX′′(C0 − D · f)) = h0(OΓ) +
h0(OΓ(−D)) = 1 + h0(OΓ(KΓ +D)) + 2q − 2 + 1− q = h0(OΓ(α)) + q = q ≥ 5, so the
image of X ′′ by the map iL′′ defined by L′′ is contained in Pq−1.
By Bertini’s Theorem (see [20], Corollary III.10.9), the generic curve C ′′ ∈ L′′ is
smooth.

Since D ∼ −KΓ + α by hypothesis, then 2D ∼ −2KΓ and W ′′ ∼ 4C0. Again, since
−2KΓ −D ∼ D and deg(D) < 0, then h0(OΓ(−2KΓ −D)) = 0 and we are in CASE
II.1 of Proposition 2.12, so dim |−2KX′′ | = 0 and W ′′ = 4C0. Since C ′′ ·W ′′ = (C0−D ·
f) ·4C0 = 4C2

0−4 deg(D) = 0 and W ′′ is effective, then OC′′(W ′′) ∼= OC′′ . On the other
hand, as showed in the proof of Proposition 2.25, we have that OC′′(−KX′′) � OC′′ .

We know that iL′′ contracts W ′′ = 4C0. Our claim is to show that L′′ defines an
isomorphism in X ′′ −C0, so iL′′ |C′′ is an embedding for a general C ′′ ∈ L′′, the general
hyperplane section C ′′ of X ′′ is Prym-canonically embedded and X has Prym-canonical
hyperplane sections.

By Theorem 2.26, the linear system L′′ defines an isomorphism in X ′′ − C0 if −D is
very ample and |−D+D| is base-point free. The second hypothesis is always satisfied,
while, by [20], Proposition IV.3.1, the divisor −D is very ample if and only if, for every
two points P,Q ∈ Γ, we have that

dim | −D − P −Q| = dim | −D| − 2.

By the Riemann-Roch Theorem, the dimension

dim | −D| = h0(OΓ(KΓ − α))− 1 = h0(OΓ(α)) + 2q − 2 + 1− q − 1 = q − 2.

Then, it is sufficient to show that dim |−D−P−Q| = q−4, so−D is very ample and the
claim is proved. By the Riemann-Roch Theorem, we have that
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dim |−D−P−Q| = h0(OΓ(KΓ−α−P−Q))−1 = h0(OΓ(P+Q+α))+2q−4+1−q−1 =
h0(OΓ(P +Q+ α)) + q − 4.
If h0(OΓ(P +Q+α)) = 0 for any P,Q ∈ Γ, then the claim is proved. On the contrary
we suppose that h0(OΓ(P +Q+α)) > 0 for some P,Q ∈ Γ. Hence there are two points
T and S (with T not necessarily different from S) such that P + Q + α ∼ T + S, so
2P + 2Q ∼ 2T + 2S.
Since we suppose that Γ does not admit g1

4 and 2P + 2Q and 2T + 2S define a linear
system of this type, then we exclude this case. So h0(OΓ(P + Q + α)) = 0 for any
P,Q ∈ Γ and the claim is proved. In conclusion, the general hyperplane section of X ′′

is Prym-canonically embedded.

In the previous Proposition, we have already observed that X = iL′′(X
′′) is a cone.

Since X ′′ has hyperplane sections that are Prym-canonical embedded and the base
curve of X is the image of a generic section C1 disjoint from C0, then the base curve
of X is a Prym-canonically embedded curve. In particular, X is a cone with Prym-
canonical hyperplane sections. Thus X has only one singularity because the generic
hyperplane section is smooth by hypothesis. The only singularity is the image of W ′′

by iL′′ .
Moreover, if a general hyperplane section C of X is projectively normal, then, by
Proposition 1.15, the only singularity of X has geometric genus equal to q.

Remark 2.28. We assume that X ′ = X ′′ is a minimal ruled surface, that is the
minimal resolution of the singularities of a surface with Prym-canonical hyperplane
sections.
If a ≥ 2, then the images of fibres of X ′′ by the map iL′′ associated with L′′ are not lines
since C ′′ · f = (aC0 + ∆ · f) · f = a > 1, for C ′′ a general curve in L′′. Furthermore
there is not another family of rational curves on X ′′ mapped into lines by iL′′ because
the genus of the base curve Γ is q > 0. Indeed, by the Riemann-Hurwitz formula (see
[20], Corollary IV.2.4), there is not a curve of genus 0 (not equal to a fibre) on a ruled
surface over a base curve of genus q > 0. Hence we never obtain X = iL′′(X

′′) as a
cone.

Now we focus our attention on surfaces with Prym-canonical hyperplane sections
birationally equivalent to ruled surfaces X ′′ over a non-hyperelliptic base curve of genus
q ≥ 3 (not cone over a Prym-canonically embedded curve) and with only one non-
rational singularity. In the first phase, we will assume that X ′′ = X ′.

First of all, we recall a Theorem that we will use later (see [15], Theorem 38).

Theorem 2.29. Let |mC0 + β · f | be a m−secant linear system on a decomposable
ruled surface Y . It defines a rational map ε : Y → PN . Then:

• if β, β +D, β + (m− 1)D and β +mD are base-point free and

– β+(m−k)D is very ample for some k ∈ {0, ...,m}, then ε is an isomorphism
in Y − (C0 ∪ C1);

– β is very ample, then ε is an isomorphism in Y − C0;
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– β +mD is very ample, then ε is an isomorphism in Y − C1;

• |mC0 + β · f | is very ample if and only if β, β +D, β + (m− 1)D and β +mD
are base-point free and β and β +mD are very ample.

Theorem 2.30. Let X ′′ = PΓ(OΓ ⊕ OΓ(D)) be a minimal ruled surface over a non-
hyperelliptic smooth base curve Γ of genus q ≥ 3 and let L′′ = |aC1| be a base-point
free linear system with a ≥ 2. If D ∼ −KΓ + α, for α a non-zero two-torsion divisor,
then the image X = iL′′(X

′′) ⊆ Pa2(q−1) of the morphism associated with L′′ has Prym-
canonical hyperplane sections and only one singularity. In particular, if a general
hyperplane section C of X is projectively normal, then the geometric genus of the only
singularity x is pg(x) = q.

Proof. Let Γ be a smooth non-hyperelliptic curve of genus q ≥ 3 and let KΓ be its
canonical divisor. Set E = OΓ ⊕OΓ(D), for D ∈ Div(Γ) with e = − deg(D) > 0, and
let X ′′ = PΓ(E). Let p : X ′′ → Γ be the canonical surjection on the base curve of X ′′.
Fix a linear system L′′ ⊆ |aC1| on X ′′ and suppose that a ≥ 2. We recall that
C1 ∼ C0−D · f is a fixed section of p disjoint from C0. By Proposition 2.23, the linear
system |aC1| is base-point free because q > 1. Let us suppose that also L′′ does not

have base points, so L′′ = |aC1| and
∑s−1

t=1

∑i(t)
it=1 rt,it = 0. Since we want to construct

X ′′ whose hyperplane sections are Prym-canonical embedded, we fix e = 2q − 2, so it
is satisfied the relation

∑s−1
t=1

∑i(t)
it=1 rt,it = a(e − 2q + 2), as in Proposition 2.19, Case

b.3.
Since the linear system L′′ is base-point free and (C ′′)2 > 0, then, by Bertini’s Theorem
(see [20], Corollary III.10.9), the generic curve C ′′ ∈ L′′ is smooth and irreducible.

CLAIM 1 : If D ∼ −KΓ + α, for α a non trivial two-torsion element on Γ, hence
2D ∼ −2KΓ, then −KX′′ is not effective, while −2KX′′ is.

Proof. We know that h0(OX′′(−2KX′′)) = h0(OX′′(4C0)) = h0(OΓ) + h0(OΓ(D)) +
h0(OΓ(2D))+h0(OΓ(3D))+h0(OΓ(4D)) by [15], Lemma 35. Because deg(D) = 2−2q <
0, then h0(OX′′(−2KX′′)) = 1 and −2KX′′ is effective.

On the other hand, we have that h0(OX′′(−KX′′)) = h0(OX′′(2C0 − (KΓ + D) · f)) =
h0(OΓ(−KΓ − D)) + h0(OΓ(−KΓ)) + h0(OΓ(−KΓ + D)) by [15], Lemma 35. Since
deg(D − KΓ) = 4 − 4q < 0 and deg(−KΓ) < 0, then h0(−KX′′) =
h0(OΓ(−KΓ −D)) = h0(OΓ(−α)) = 0, so −KX′′ is not effective.

CLAIM 2 : We prove that OC′′(−KX′′) � OC′′ and OC′′(−2KX′′) ∼= OC′′ ,
where C ′′ ∈ L′′ is a general curve.

Proof. Since −2KX′′ is effective as seen in Claim 1 and C ′′ · (−2KX′′) =
(aC0 − aD · f) · (4C0) = 4aC2

0 − 4a deg(D) = 0, then OC′′(−2KX′′) ∼= OC′′ .
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Clearly also C ′′ · (−KX′′) = 0. Since h0(OX′′(−KX′′)) = 0 as seen in Claim 1, if we
prove that h1(OX′′(−KX′′ − C ′′)) = 0, then, from the exact sequence

0→ OX′′(−KX′′ − C ′′)→ OX′′(−KX′′)→ OC′′(−KX′′)→ 0,

we have that h0(OC′′(−KX′′)) = 0, which implies that OC′′(−KX′′) � OC′′ .

By Serre Duality, we know that h1(OX′′(−KX′′ − C ′′)) = h1(OX′′(2KX′′ + C ′′)). If
we prove that KX′′ + C ′′ is ample, then, by the Kodaira vanishing Theorem (see [20],
Remark III.7.15), we have that h1(OX′′(2KX′′ + C ′′)) = 0 and the claim is proved.
By [20], Proposition V.2.20, a divisor D ≡ bC0 + cf on X ′′, for b, c ∈ Z, is ample if
and only if b > 0 and c > be, for e the invariant of X ′′. In our case KX′′ + C ′′ ≡
aC0 + a(2q − 2)f − 2C0 = (a − 2)C0 + a(2q − 2)f . If a > 2, then a − 2 > 0 and
c = a(2q − 2) > (a− 2)(2q − 2) = be, so KX′′ + C ′′ is ample and the claim is satisfied.
Instead, if a = 2, then KX′′ + C ′′ is not ample because a − 2 = 0. About that, let
us suppose that OC′′(−KX′′) ∼= OC′′ . Then the image of X ′′ by iL′′ is a surface with
canonical hyperplane sections. By [13], Corollary 5.4, X ′′ contains only one effective
anticanonical divisor. This contradicts Claim 1. The claim is also satisfied for a =
2.

It is clear that dim(L′′) ≥ 0 since C1 is effective and, in particular, aC1 ∼ C ′′ is effective,
for a ≥ 2. More precisely we have that h0(OX′′(L′′)) =
h0(OX′′(aC0−aD·f)) = h0(OΓ(−aD))+h0(OΓ((−a+1)D))+...+h0(OΓ(−D))+h0(OΓ)
by Lemma 2.5.
We know that h0(OΓ) = 1. Using the Riemann-Roch Theorem, we also have that
h0(OΓ(−D)) = h0(OΓ(α)) + 2q − 2 + 1 − q = (2q − 2) + 1 − q and h0(OΓ(−mD)) =
m(2q − 2) + 1− q, for any m > 1. Hence

h0(OX′′(L′′)) = (1 + ...+ a)(2q − 2) + a(1− q) + 1 =

= a(a+ 1)(q − 1) + a(1− q) + 1 = a2(q − 1) + 1.

So X = iL′′(X
′′) is contained in Pa2(q−1), for a2(q − 1) ≥ 4 · 2 = 8.

CLAIM 3 : It remains to show that L′′ defines a birational morphism iL′′ , in particular
an isomorphism outside C0. So iL′′ |C′′ is a Prym-canonical embedding, for C ′′ ∈ L′′ a
general divisor.

Proof. We can prove that L′′ defines a birational map, in particular an isomorphism
outside C0, using Theorem 2.29. Indeed, this happens if −aD is very ample and if
| − aD +D|, | − aD + (a− 1)D| = | −D| and | − aD + aD| are base-point free.
The last case is trivial. By [20], Corollary IV.3.2, since deg(−aD) = a(2q−2) ≥ 4q−4 =
2q+(2q−4) ≥ 2q+1, then −aD is very ample. Again by [20], Corollary IV.3.2, if a ≥ 3,
since deg(−aD+D) = a(2q−2)+(2−2q) = (a−1)(2q−2) ≥ 4q−4 = 2q+(2q−4) ≥ 2q,
then | − aD +D| is base-point free.
It remains to show that |−D| is base-point free. By [20], Proposition IV.3.1, it happens
if and only if dim | −D − P | = dim | −D| − 1, for any point P ∈ Γ.
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We have that dim |−D| = h0(OΓ(KΓ−α))−1 = h0(OΓ(α))+2q−2+1−q−1 = q−2.
On the other hand, we observe that dim | − D − P | = h0(OΓ(KΓ − α − P )) − 1 =
h0(OΓ(P +α)) + 2q−2−1 + 1− q−1 = h0(OΓ(P +α)) + q−3. By Remark 2.24, since
we assume that Γ is not hyperelliptic, then h0(OΓ(P + α)) = 0 for any point P ∈ Γ.
So | −D| is base-point free and L′′ defines an isomorphism outside C0, called iL′′ .

A general C ′′ ∼ aC1 in L′′ is disjoint from C0 by definition, then

iL′′ |C′′ : C ′′ → Pa2(q−1)−1

is an embedding. By the adjunction formula, we know that

L′′|C′′ ∼= KC′′ −KX′′ |C′′

but in Claim 2 we have already proved that −KX′′ |C′′ is a non trivial two-torsion
divisor, so iL′′ |C′′ is a Prym-canonical embedding.

We observe that, since iL′′|C′′ : C ′′ → Pg−2 by definition of Prym-canonical map, then
g = g(C ′′) = a2(q − 1) + 1.
The image x ∈ X of W ′′ ∈ | − 2KX′′ | by iL′′ is a singular point (we observe that
dim | − 2KX′′| = 0 and W ′′ = 4C0 is connected). There are not other possible singu-
larities because L′′ is an isomorphism outside C0. We have found examples of surfaces
in Pa2(q−1) with Prym-canonical hyperplane sections birationally equivalent to non-
rational ruled surfaces, for a ≥ 2 and q ≥ 3.
If a general hyperplane section C of X is projectively normal, then, by Proposition
1.15, the singularity x has geometric genus equal to q.

Remarks 2.31. • We do not consider the case q = 2 in the previous Theorem
since we suppose that Γ is non-hyperelliptic.

• We suppose that X ′′ is a ruled surface over a base curve Γ of genus q = 1.
Moreover we suppose that X is a surface with Prym-canonical hyperplane sec-
tions and π : X ′′ → X is the minimal resolution of the singularities of X. We
assume that the linear system L′′ = |aC1|, for a ≥ 2, is base-point free. Thus∑s−1

t=1

∑i(t)
it=1 rt,it = 0 and, if X ′′ and L′′ satisfy the conclusions of Proposition

2.19, then e = 2q − 2 by Case b.3. In particular, a general C ′′ ∈ L′′ has genus
g(C ′′) = 1 + 1

2
(C ′′)2 + 1

2
C ′′ ·KX′′ = 1 + 1

2
a2e = 1. So we exclude this case since

we have already observed that g(C ′′) > 4 (see Remark 1.3).

Before constructing another example, we can list in terms of the invariants (q, g, a, e)
some of the possible surfaces X with Prym-canonical hyperplane sections whose mini-
mal models X ′′ satisfy the conclusions of Proposition 2.19.

Proposition 2.32. Let X be a surface with Prym-canonical hyperplane sections bi-
rationally equivalent to a ruled surface X ′′ over a base curve of genus q ≥ 2, not a
cone. Let us suppose that X ′′ satisfies the conclusions of Proposition 2.19. Using the
same notation as before, there are the following numerical possibilities for g ≤ 10 (it
is possible to continue for all g > 10):
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1. if g = {5, 6, 7, 8}, then (a, q, e) = (2, 2, g− 3) and L′′ has, respectively, {0, 2, 4, 6}
simple base points on X ′′;

2. if g = 9, then either (a, q, e) = (2, 2, 6) or (a, q, e) = (2, 3, 4). In the first case L′′

has 8 simple base points while in the second case there are not base points;

3. if g = 10, either (a, q, e) = (2, 2, 7) or (a, q, e) = (2, 3, 5) or (a, q, e) = (3, 2, 2).
Moreover L′′ has, respectively, {10, 2, 0} simple base points on X ′′.

Proof. Let a ≥ 2 otherwise X is a cone (see Proposition 2.25). By hypothesis we have
that q ≥ 2 and E is decomposable, so e ≥ 2q − 2 ≥ 2 as showed in Proposition 2.19,
Case a.. By Proposition 2.19, Case b.5, we have 1 + a2(q − 1) + 1

2
a(e − 2q + 2) ≤ g,

hence g ≥ 1 + a2(q − 1) ≥ 1 + 4(1) = 5.

We list all the possible relations in terms of the numbers q, a, e up to Pg−1 = P9 (always
using Proposition 2.19).

1. CASE g = 5 We look for values of a, e and q such that

1 + a2(q − 1) +
1

2
a(e− 2q + 2) ≤ 5 = g ≤ 1 +

1

2
a2e− 1

2
a(e− 2q + 2)

(Proposition 2.19, Case b.5). The only couples (a, q) that satisfy the previous
relation are (a, q) = {(2, 2), (2, 3)}.
If a = 2 and q = 2, then

5 + (e− 2) ≤ 5 ≤ 1 + 2e− (e− 2),

so e = 5 − 3 = 2. Moreover, by Proposition 2.19, Case b.3, we have that∑s−1
t=1

∑i(t)
it=1 rt,it = 2(2−2) = 0, i.e. there are not base points on L′′ and X ′ = X ′′.

Therefore L′′ = |2C1|.
Instead, if (a, q) = (2, 3), then

1 + 8 + (e− 4) ≤ 5 ≤ 1 + 2e− (e− 4) ⇔ e = 0.

Since we know that e ≥ 2q − 2 = 4, then we exclude this possibility.

CASE g = 6 By Proposition 2.19, Case b.5, we have that

1 + a2(q − 1) +
1

2
a(e− 2q + 2) ≤ 6 = g ≤ 1 +

1

2
a2e− 1

2
a(e− 2q + 2).

The only couples (a, q) that satisfy the previous relation are (a, q) = {(2, 2), (2, 3)}.
If a = 2 and q = 2, then

1 + 4 + (e− 2) ≤ 6 ≤ 1 + 2e− (e− 2),

so 6 = g = 3 + e and e = g− 3 = 3. Furthermore
∑s−1

t=1

∑i(t)
it=1 rt,it = 2(3− 2) = 2

and
∑s−1

t=1

∑i(t)
it=1 r

2
t,it = 2 + a2e − 2g = 2 + 12 − 12 = 2 respectively by Case
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b.3 and Case b.4 of Proposition 2.19. Then there are two simple base points for
L′′ ⊂ |2C1|.
Instead, if (a, q) = (2, 3), then

1 + 8 + (e− 4) ≤ 6 ≤ 1 + 2e− (e− 4) ⇔ e = 1 � 2q − 2.

So we exclude this possibility.

CASE g = 7 If (a, q) = (2, 3), then

1 + a2(q− 1) + (e− 2q+ 2) = 9− 4 + e ≤ 7 ≤ 1 + 2e− (e− 4)⇔ e = 2 � 2q− 2,

so we exclude this case. In this way it is possible to show that the unique
acceptable couple is (a, q) = (2, 2). In this case

1 + 4 + (e− 2) ≤ 7 ≤ 1 + 2e− (e− 2),

so 7 = g = 3 + e and e = g − 3 = 4. Moreover
∑s−1

t=1

∑i(t)
it=1 rt,it = 2(4 − 2) = 4

and
∑s−1

t=1

∑i(t)
it=1 r

2
t,it = 2 + 16− 14 = 4 by Proposition 2.19, Case b.3 and b.4, so

there are four simple base points for L′′ ⊂ |2C1|.
CASE g = 8 As seen before, the only values that satisfy the conclusions of
Proposition 2.19 are (a, q) = (2, 2) and e = g−3 = 5. Moreover

∑s−1
t=1

∑i(t)
it=1 rt,it =

2(5 − 2) = 6 and
∑s−1

t=1

∑i(t)
it=1 r

2
t,it = 2 + 20 − 16 = 6 by Proposition 2.19, Case

b.3 and b.4, so there are six simple base points for L′′ ⊂ |2C1|.

2. CASE g = 9 We have to analyze different cases.

If (a, q) = (2, 2), then

1 + 4 + (e− 2) ≤ 9 ≤ 1 + 2e− (e− 2) ⇔ e = 9− 3 = 6.

Furthermore
∑s−1

t=1

∑i(t)
it=1 rt,it = 2(6−2) = 8 and

∑s−1
t=1

∑i(t)
it=1 r

2
t,it = 2+24−18 =

8, i.e. we have eight simple base points for a generic C ′′ ∈ L′′ ⊂ |2C1|.
If (a, q) = (2, 3), then

1 + 8 + (e− 4) ≤ 9 ≤ 1 + 2e− (e− 4) ⇔ e = 9− 5 = 4.

In this case
∑s−1

t=1

∑i(t)
it=1 rt,it = 2(4 − 4) = 0, so L′′ = |2C1| does not have base

points and X ′ = X ′′.

We consider the couple (a, q) = (3, 2). Then

1 + 9 +
3

2
(e− 2) ≤ 9 ≤ 1 +

9

2
e− 3

2
(e− 2) ⇒ e ≤ 4

3
< 2 = 2q − 2.

So we esclude this case and similarly all the other cases with a > 2 and q > 2.

3. CASE g = 10 We have three possible cases to analyze:
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• if (a, q) = (2, 2), then

1 + 4 + (e− 2) ≤ 10 ≤ 1 + 2e− (e− 2) ⇔ e = 10− 3 = 7.

Furthermore
∑s−1

t=1

∑i(t)
it=1 rt,it = 2(7 − 2) = 10 and

∑s−1
t=1

∑i(t)
it=1 r

2
t,it =

2 + 28− 20 = 10, i.e. L′′ ⊂ |2C1| has ten simple base points;

• if (a, q) = (2, 3), then

1 + 8 + (e− 4) ≤ 10 ≤ 1 + 2e− (e− 4) ⇔ e = 10− 5 = 5.

Since
∑s−1

t=1

∑i(t)
it=1 rt,it = 2(5−4) = 2 and

∑s−1
t=1

∑i(t)
it=1 r

2
t,it = 2+20−20 = 2,

then L′′ ⊂ |2C1| has two simple base points;

• if (a, q) = (3, 2), then

1 + 9 +
3

2
(e− 2) ≤ 10 ≤ 1 +

9

2
e− 3

2
(e− 2) ⇔ 7 +

3

2
e ≤ 10 ≤ 4 + 3e.

Then the only acceptable value of e such that e ≥ 2q − 2 is e = 2. Since∑s−1
t=1

∑i(t)
it=1 rt,it = 3(2− 2) = 0, then X ′ = X ′′ and L′′ = |3C1|.

As in the previous cases, we exclude all the other couples (a, q) with a ≥ 3 and
q ≥ 3 because they do not satisfy the conclusions of Proposition 2.19.

We can continue with the same procedure for all g > 10.

Remark 2.33. We do not assure the existence of surfaces corresponding to the different
values of g, q, a, e found in the previous Proposition, they are at most possible.

Remark 2.34. If we assume that the number of connected components of W ′ and W ′′

is the same, then, by Corollary 2.15 and Remark 2.18, we know that, if the surfaces
X of Proposition 2.32 exist, then they have exactly one non-rational singularity x and
the only case in which there could be two non-rational singularities is for e = 4q − 4.
Among the cases considered in the previous Proposition, the surface X could have two
non-rational singularities if and only if g = 7, a = 2, q = 2 and e = 4.

The following Proposition is analogous to Proposition 2.32, only assuming q = 1.

Proposition 2.35. Let X be a surface with Prym-canonical hyperplane sections bira-
tionally equivalent to a ruled surface X ′′ over a base curve of genus q = 1, not a cone.
Let us suppose that X ′′ satisfies the conclusions of Proposition 2.19. Using the same
notation as before, if g = 5, then there are the following numerical possibilities for the
invariants of X ′′:

• (a, e) = (2, 4) and L′′ has 8 simple base points on X ′′;

• (a, e) = (3, 2) and L′′ has 2 simple base points and 2 double base points on X ′′;

• (a, e) = (4, 1) and L′′ has 2 double base points on X ′′;
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• (a, e) = (4, 2) and L′′ has 2 double base points and 1 base point of multiplicity
four on X ′′;

• (a, e) = (5, 1) and L′′ has 1 simple base point and 1 base point of multiplicity four
on X ′′.

Proof. Let a ≥ 2 otherwise X is a cone (see Proposition 2.25). Since q = 1 and we
suppose that E is decomposable, then, by Proposition 2.19, Case b.5 and Case a., we
have that

g ≥ 1 +
1

2
ae ≥ 1 +

1

2
a(2q − 2) = 1.

More precisely, by Remark 1.3, we know that g > 4. In the following, we will only
consider g = 5.
The only pairs (a, e) that satisfy the condition b.5 of Proposition 2.19 are

{(2, 4), (3, 2), (4, 1), (4, 2), (5, 1), (6, 1), (7, 1), (8, 1)}.

It is not difficult to verify that there are no multiplicities rt,it , for t = 1, ..., s − 1 and
it = 1, ..., i(t), that satisfy Case b.3 and Case b.4 of Proposition 2.19 assuming that
(a, e) = {(6, 1), (7, 1), (8, 1)}. Hence we exclude these three cases.
In the other situations, to find the multiplicities rt,it of all the base points of L′′ is easy
using the conditions of Proposition 2.19.

Remark 2.36. We can find other numerical invariants of possible surfaces X with
Prym-canonical hyperplane sections for any g ≥ 6 using the same techniques of the
previous Proposition.

Remark 2.37. We can apply Remark 2.33 also to the previous Proposition.

Remark 2.38. By Corollary 2.15 and Remark 2.18, we know that, if the surfaces X
of the previous Proposition exist, then they have only one non-rational singularity x.

We can construct an example of surface with Prym-canonical hyperplane sections
birationally equivalent to an elliptic ruled surface X ′′ such that X ′′ 6= X ′. If we fix
g = 10 and a = 3, then, by Proposition 2.19, Case b.5, we expect that 3 ≤ e ≤ 6 using
the same procedure of the proof of Proposition 2.35.
We will use e = 3 to construct a new example.

Example 2.39. Let Γ be an elliptic curve and let X ′′ = PΓ(OΓ⊕OΓ(D)) be a minimal
ruled surface with base curve Γ, for D ∈ Div(Γ). If Qi, for i = 1, 2, 3, is a general point
on Γ and α, β ∈ Γ are two points such that α− β is a non zero two torsion element of
Γ, then we assume that D = −Q1 −Q2 −Q3 − α + β. So e = − deg(D) = 3.

We consider the linear system |3C1| = |3C0 + 3(Q1 + Q2 + Q3 + α − β) · f |. As seen
in Proposition 2.23, this linear system is base-point free, so, by Bertini’s Theorem, its
general element L is smooth and, since L2 = 9C2

1 = 9e > 0, it is also irreducible.
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We call fi := Qi · f , for i = 1, 2, 3. For any fibre f , we have that L · f = 3, so we can
fix the 9 points

Z := {x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, x3,1, x3,2, x3,3}

of intersection between L and fi, for i = 1, 2, 3. Since 3C1 is disjoint from C0, we
can assume that Z ∩ C0 = ∅. So we can consider the linear system L′′ ⊂ |3C1|
with Z as base locus. In particular, we suppose that every curve C ′′ ∈ L′′ simply
passes through the 9 points, so L is an element of L′′. By Lemma 2.5, we have that
h0(OX′′(3C0 + 3(Q1 + Q2 + Q3 + α − β) · f)) = h0(OΓ(3(Q1 + Q2 + Q3 + α − β))) +
h0(OΓ(2(Q1 +Q2 +Q3)))+h0(OΓ(Q1 +Q2 +Q3 +α−β))+h0(OΓ) = 1+3+6+9 = 19,
so dimL′′ ≥ 18− 9 = 9. Since L ∈ L′′ and smoothness is an open condition, then the
general element C ′′ of L′′ is smooth.

We know that −KX′′ ∼ 2C0 −D · f and h0(OX′′(−KX′′)) = 4 by Lemma 2.5.
Given B := 2C0 + (Q1 + Q2 + Q3) · f an effective divisor on X ′′, then Z ⊂ B, i.e
h0(OX′′((2C0 + (Q1 +Q2 +Q3) · f)⊗ IZ)) > 0. On the other hand, we can show that
h0(OX′′(−KX′′) ⊗ IZ)) = 0. Indeed, if we suppose that there is an effective divisor
T ∈ | − KX′′ ⊗ IZ |, then T · C0 = 2C2

0 − deg(D) = 2(−3) + 3 < 0, so C0 is a fixed
component of T . Moreover T · f = 2 but T contains 3 points of the fibres fi, so it also
contains f1, f2, f3. Then

| −KX′′ ⊗ IZ | = |(2C0 −D · f)⊗ IZ | = C0 + f1 + f2 + f3 + |C0 + (α− β) · f |,

so
dim | −KX′′ ⊗ IZ | = dim |C0 + (α− β) · f |.

By Lemma 2.5, we have that h0(OX′′(C0 + (α − β) · f)) = h0(OΓ(α − β)) +
h0(OΓ(α− β −Q1 −Q2 −Q3 − α + β)) = 0. Hence T effective does not exist.

From Proposition 2.12, Case IV.4, it follows that h0(OX′′(−2KX′′)) = 10 and, since
−2KX′′ ∼ 4C0 + 2(Q1 + Q2 + Q3) · f and 4C0 + 2(Q1 + Q2 + Q3) · f contains Z with
multiplicity 2, then also h0(OX′′(−2KX′′)⊗ IZ) > 0, in particular h0(OX′′(−2KX′′)⊗
I2
Z) > 0.

Let φ : X ′ → X ′′ be the blowing up of X ′′ along the 9 points defining Z. Let Ei,j ∈ X ′

be the exceptional divisor of xi,j, for i, j ∈ {1, 2, 3}, and let f̃i be the strict transform of
fi, for i = 1, 2, 3. With abuse of notation, we call C0 := φ∗(C0) (we remark that φ∗(C0)
is the strict transform of C0 since Z ∩ C0 = ∅), φ∗(α · f) := fα and φ∗(β · f) := fβ.
Let L′ be such that L′′ = φ∗L

′. Then the strict transform C ′ ∈ L′ of a general C ′′ ∈ L′′
is of the form

C ′ = φ∗(C ′′)− E1,1 − ...− E3,3 ∼ 3φ∗(C0) + 3
3∑
i=1

φ∗(fi) + 3φ∗(α · f)− 3φ∗(β · f) +

−E1,1 − ...− E3,3 = 3C0 + 3
3∑
i=1

f̃i + 3(E1,1 + ...+ E3,3) +

+3fα − 3fβ − E1,1 − ...− E3,3 = 3C0 + 3
3∑
i=1

f̃i + 3fα − 3fβ + 2(E1,1 + ...+ E3,3).
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Moreover, using [20], Proposition V.3.3, we have that

−KX′ = φ∗(−KX′′)− E1,1 − ...− E3,3 ∼ 2φ∗(C0) +
3∑
i=1

φ∗(fi) + φ∗(α · f) +

−φ∗(β · f)− E1,1 − ...− E3,3 = 2C0 +
3∑
i=1

f̃i + E1,1 + ...+ E3,3 +

+fα − fβ − E1,1 − ...− E3,3 = 2C0 +
3∑
i=1

f̃i + fα − fβ.

At the same way, we find that every antibicanonical divisor of X ′ is of the form
−2KX′ ∼ 4C0 + 2f̃1 + 2f̃2 + 2f̃3. We put

W ′ = 4C0 + 2f̃1 + 2f̃2 + 2f̃3 ∈ | − 2KX′ |.

It is clear that h0(OX′(−KX′)) = h0(OX′′(−KX′′ ⊗ IZ)) = 0 while h0(OX′(−2KX′)) =
h0(OX′′(−2KX′′ ⊗ I2

Z)) > 0.

Step by step, we can prove that the general hyperplane section C ′ of X ′ is a Prym-
canonical embedded curve.

CLAIM 1 : We have that OC′(−KX′) � OC′ and OC′(−2KX′) ∼= OC′, where C ′ ∈ L′
is a general curve. In particular, −KX′ |C′ is a non-zero two torsion divisor.

Proof. The intersection

C ′ · (−KX′) = 6C2
0 + 6

3∑
i=1

C0 · f̃i + 3
3∑
i=1

(C0 · f̃i + f̃i
2
) + 2[f̃1 · (E1,1 + E1,2 + E1,3)+

+f̃2 ·(E2,1+E2,2+E2,3)+f̃3 ·(E3,1+E3,2+E3,3)] = 6(−3)+6(3)+3(3−9)+2(3+3+3) = 0

and clearly also C ′ · (−2KX′) = 0.
Since −2KX′ is effective, then the antibicanonical divisor of X ′ is contracted by iL′ , in
particular OC′(−2KX′) ∼= OC′ .
On the contrary, we have that h0(OX′(−KX′)) = 0, so −KX′ is not effective. Using
the exact sequence

0→ OX′(−KX′ − C ′)→ OX′(−KX′)→ OC′(−KX′)→ 0, (11)

if we prove that h1(OX′(−KX′−C ′)) = 0, then h0(OC′(−KX′)) = 0. This would imply
that OC′(−KX′) � OC′ .

By Serre Duality, we have that h1(OX′(−KX′−C ′)) = h1(OX′(2KX′+C
′)). If we prove

that KX′ +C ′ is big and nef, then, by the Kawamata-Viehweg vanishing Theorem (see
[22] and [32]), the first cohomology h1(OX′(2KX′ + C ′)) = 0.

In our case, since 2(α− β) ∼ 0, then 2fα − 2fβ ∼ 0 and the divisor

KX′ + C ′ ∼ C0 + 2f̃1 + 2f̃2 + 2f̃3 + 2E1,1 + ...+ 2E3,3.
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We recall that a divisor θ on a surface Y is nef if and only if, for any effective curve δ
on Y , the intersection θ · δ ≥ 0. Moreover, it is also big if θ2 > 0.
Since KX′ + C ′ is written as sum of irreducible and effective curves, then, to prove
that KX′ + C ′ is nef, it is enough to prove that (KX′ + C ′) · δ ≥ 0, for any irreducible
component δ. Therefore, for i, j ∈ {1, 2, 3}, we have:

(KX′ + C ′) · C0 = C2
0 + 2(C0 · (f̃1 + f̃2 + f̃3)) = −3 + 6 = 3 > 0;

(KX′ +C ′) · f̃i = C0 · f̃i + 2f̃i
2

+ f̃i · (2Ei,1 + 2Ei,2 + 2Ei,3) = 1 + 2(−3) + 2(3) = 1 > 0;

(KX′ + C ′) · Ei,j = 2f̃i · Ei,j + 2E2
i,j = 0.

Then KX′+C ′ is nef. Because we have strictly positive intersections between KX′+C ′

and its components, then KX′ + C ′ is also big. So the claim is satisfied.

It is not difficult to compute that C ′2 = 18, so, by the adjunction formula, the genus
g(C ′) = 1 + 1

2
(C ′2 + KX′ · C ′) = 10. We also observe that C ′ is smooth because it is

the strict transform of a general element C ′′ of L′′, that is smooth. Since −KX′|C′ is a
non-zero two torsion divisor as seen in Claim 1, we have that L′|C′ = |KC′ −KX′|C′ |
defines a Prym-canonical map

iL′|C′ : C ′ 99K P8.

CLAIM 2 : The rational map iL′|C′ : C ′ 99K P8 is an embedding, for any general curve
C ′ ∈ L′.

Proof. We know that (C ′,−KX′|C′) is a Prym curve of genus 10 and we can show that
the Prym-canonical system L′|C′ is base point free. Indeed, by [20], Proposition IV.3.1,
the linear system L′|C′ is base-point free if and only if, for every point P ∈ C ′,

dim L′|C′ − 1 = dim |C ′|C′ − P |.

By the Riemann-Roch Theorem, we have that dim L′|C′ − 1 = h0(OC′(C ′)) − 2 =
h1(OC′(C ′)) + 18 + 1 − 10 − 2. By Serre Duality and the adjunction formula, we
observe that h1(OC′(C ′)) = h0(OC′(KC′ − C ′)) = h0(OC′(KX′)). This is equal to 0
because −KX′|C′ is a non-zero two torsion divisor. Then

dim L′|C′ − 1 = 7.

On the other hand, the dimension dim |C ′|C′ − P | = h0(OC′(C ′ − P )) − 1 =
h1(OC′(C ′ − P )) + 17 + 1− 10− 1 by the Riemann-Roch Theorem. By Serre Duality
and the adjunction formula, we have that h1(OC′(C ′−P )) = h0(OC′(KC′ −C ′+P ) =
h0(OC′(P +KX′)).
Since −KX′|C′ is a non-zero two torsion divisor, if we suppose that h0(OC′(P+KX′)) >

0 for some point P ∈ C ′, then C ′ is hyperelliptic by Remark 2.24. Since C ′·f̃ = 3, where
f̃ is the pullback of a general fibre f of X ′′, then C ′ is also a covering 3 : 1 of the elliptic
curve Γ. So C ′ is a double cover of P1 and a triple cover of Γ. This is not possible by

58



Castelnuovo-Severi inequality otherwise we would have 10 = g(C ′) ≤ 2·0+3·1+1·2 = 5
(we will recall it in Recall 2.40).
Thus h0(OC′(P +KX′)) = 0 for any point P ∈ C ′ and

dim |C ′|C′ − P | = 7.

We have proved that L′|C′ is base-point free.

Thanks to [6], Corollary 2.2, we know that, if C ′ is not bielliptic, then L′|C′ is an
embedding. Since C ′ is a triple cover of Γ as observed before, we have that C ′ cannot
be bielliptic again by Castelnuovo-Severi inequality otherwise we would have 10 ≤
2 · 1 + 3 · 1 + 1 · 2 = 7. Then the claim is proved.

At this point, since L′|C′ is base-point free, it is clear that L′ is also base-point free.
Since the restriction L′|C′ defines an embedding for each generic curve C ′ ∈ L′, then
iL′ is a birational map, generically 1 : 1.

Before we have showed that dim(L′′) = dim(L′) ≥ 9. From the exact sequence

0→ OX′(C ′ − C ′)→ OX′(C ′)→ OC′(C ′)→ 0,

we conclude that h0(OX′(C ′)) ≤ 10 since OX′(C ′ − C ′) ∼= OX′ and h0(OC′(C ′)) = 9.
So we have that h0(OX′(C ′)) = 10.

Then X ′ has hyperplane sections that are Prym-canonical embedded and, in particular,
we have found a new surface X = iL′(X

′) ⊂ P9 with Prym-canonical hyperplane sec-
tions. Since W ′ is connected, then its image x ∈ X of W ′ is a singular point. There
are other possible rational double singularities on X whose exceptional divisors on X ′

do not intersect W ′.
If a general hyperplane section C of X is projectively normal, then, by Proposition
1.15, the geometric genus pg(x) is equal to 1.

Recall 2.40. We recall the Castelnuovo-Severi inequality for Riemann surfaces, dis-
cussed in [1].

Let Wg be a compact Riemann surface of genus g. We suppose that Wg covers two
Riemann surfaces, Wh of genus h in m sheets and Wk of genus k in n sheets. Again
we suppose that the two coverings admit no common non-trivial factorization.

Then the Castelnuovo-Severi inequality states:

g ≤ mh+ nk + (m− 1)(n− 1).
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Remark 2.41. We can compute how many moduli the couple (X ′′, L′′) of previous
example depends on.

The choice of the elliptic curve Γ depends on one parameter. In addition we fix a
divisor D = −Q1 − Q2 − Q3 − α + β of degree −3, where Qi is a general point on Γ,
for i = 1, 2, 3, and α− β is a non-zero two torsion element of Γ.
We know that there are only three non-zero two torsion points on Γ. Furthermore we
observe that |Q1 +Q2 +Q3| is a linear system of dimension 2, so the choice of OΓ(D)
depends on 3− 2 = 1 parameter.
Moreover, every automorphism of Γ lifts to an automorphism of X ′′ that means that, if
γ : Γ → Γ is an automorphism, then X ′′ = PΓ(OΓ ⊕ OΓ(D)) ∼=
PΓ(OΓ ⊕OΓ(γ∗(D))). The group Aut(Γ) has dimension 1.

To construct the surface with Prym-canonical hyperplane sections of the previous ex-
ample, we also fix a linear system L′′ ⊂ |3C1| = |3C0 − 3D · f | with 9 simple base
points. The linear system |3C1| depends on the parameters fixed before. The 9 simple
base points are the points of intersection between a general element L ∈ |3C1| and
the three fibres fi := Qi · f , for i = 1, 2, 3. The choice of the effective divisor in
a linear system of the type |Q1 + Q2 + Q3| that defines the three fibres f1, f2, f3 de-
pends on 2 parameters. In addition, as seen in the previous example, the nine points
{x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, x3,1, x3,2, x3,3} impose independent conditions on the linear
system L′′, so they depend on 9 parameters.

The choice of the pair (X ′′, L′′) depends on 1 + 1− 1 + 2 + 9 = 12 parameters.

We know that dim(Aut(P3)) = 15. We can consider X ′′ as the blowing up of the
vertex of the cone CX′′ on a plane cubic of P3. If CΓ is the base curve of CX′′, there
are ∞8 plane cubics isomorphic to CΓ. Since we can choose the vertex among all the
possible points of P3 obtaining always isomorphic cones, then there are ∞(8+3) = ∞11

isomorphic cones of the type of CX′′ in P3.
Thus there are ∞4 automorphism of P3 that fix X ′′ so, in conclusion, the couple
(X ′′, L′′) depends on 12− 4 = 8 parameters.

Since the surface constructed in the previous example depends on 8 moduli while a
general Enriques surface depends on 10 moduli, then the generic Enriques surface can
degenerate to one of these surfaces since they depend on less parameters.

2.4 Construction of surfaces with Prym-canonical hyperplane
sections birationally equivalent to rational ruled surfaces

In this section, we will construct examples of surfaces with Prym-canonical hyperplane
sections birationally equivalent to rational ruled surfaces. We will use the same notation
of the previous paragraph, so the base curve Γ of the ruled surface X ′′ has genus q = 0.

We recall that a surface X birationally equivalent to a rational ruled surface contains
only rational singularities (see Proposition 1.15).
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We can replace X ′′ by a more suitable minimal model, as done in Proposition 2.19.
The proof is similar, except for the point a. since we have already observed that e ≥ 0
always, then the case e = 2q−2 = −2 cannot happen as well as 2D ∼ −2KΓ. Moreover,
if q = 0, then E is always decomposable. Anyway we will assume the conclusions of
Proposition 2.19 always satisfied.

Remark 2.42. If the conclusions of Proposition 2.19 are satisfied, then we exclude the
case X ′ = X ′′. Indeed, by Case b.3 of Proposition 2.19, we would have
0 =

∑s−1
t=1

∑i(t)
it=1 rt,it = a(e + 2). Since a ≥ 1 and e ≥ 0, we have to exclude this

possibility.

We will use the same techniques as before to construct surfaces X with Prym-canonical
hyperplane sections. Since we consider a linear system L′′ ⊆ |aC1|, then it is important
to show that |aC1| is always base-point free on X ′′ rational ruled surface.

Proposition 2.43. Let X ′′ = PΓ(OΓ ⊕OΓ(D)), with pg(Γ) := q = 0 and D ∈ Div(Γ).
If C1 ∼ C0 − D · f is a fixed section of X ′′ disjoint from C0, then the linear system
|aC1| on X ′′ is base point free for any a ≥ 1.

Proof. By Proposition 2.22, the linear system |C1| is base-point free if and only if, for
any point P ∈ Γ, we have

h0(OX′′(C0 −D · f − P · f)) = h0(OX′′(C0 −D · f))− 2.

By Lemma 2.5, we know that h0(OX′′(C0 − D · f − P · f)) = h0(OΓ(−D − P )) +
h0(OΓ(−P )) = e− 1 + 1 = e.
On the other hand h0(OX′′(C0−D ·f)) = h0(OΓ(−D)) +h0(OΓ(−D+D)) = e+ 1 + 1.
So the claim is proved and |C1| is always base point free.

Consequently it is obvious that |aC1| is also base-point free, for any a ≥ 1.

Remark 2.44. To construct examples of surfaces with Prym-canonical hyperplane sec-
tions, we fix a linear system L′′ ⊆ |aC1|, for a ≥ 1. If a = 1, then

∑t−1
s=1

∑i(t)
it=1 rt,it = 0

by Case b.1 of Proposition 2.19. But this would imply that e = −2 by Proposition 2.19,
Case b.3. If X ′′ is a rational ruled surface, this is not possible.
Hence we assume a ≥ 2.

Before constructing a new example, let us recall a definition that we will use later.

Definition 2.45. Let C be an algebraic curve. A correspondence T is a curve in the
product C × C.
Let us suppose that T does not contain curves of the type Cx := x×C, for x ∈ C. We
call T (x) the divisor corresponding to x in the correspondence T , for x ∈ C, that is
the projection of the intersection between T and Cx on the second factor of Cx.
A correspondence T on a curve C is said valence correspondence with valence c ∈ Z
if, for any point x ∈ C, we have that the class of linear equivalence of the divisor
cx + T (x) does not depend on x. A correspondence without valence is said singular
correspondence.
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Remark 2.46. A valence correspondence belongs to the subgroup of Neron-Severi of
C ×C generated by C × q, p×C and by the diagonal class, for p and q points of C. A
singular correspondence is identified with a class of curves that does not belong to this
subgroup.

Example 2.47. Let Γ be a rational smooth curve and let X ′′ = PΓ(OΓ ⊕OΓ(D)) be a
minimal ruled surface with base curve Γ, for D ∈ Div(Γ). We assume that e = 4, so
deg(D) = −4. Hence X ′′ is a Hirzebruch surface F4.

We know that −KX′′ ∼ 2C0 − (KΓ +D) · f , where deg(−KΓ −D) = 2 + 4 = 6. Since
all divisors of the same degree on Γ are linearly equivalent, then we put

−KX′′ = 2C0 + 2
3∑
i=1

Fi,

where F1, F2 and F3 are distinct and fixed fibres. We also set

W ′′ = 4C0 + 3F0 + 3
3∑
i=1

Fi ∈ | − 2KX′′ |,

where F0 is a generic fibre distinct from Fi, for i = 1, 2, 3.

We consider the linear system |4C1| = |4C0 − 4D · f | on X ′′. Every element in |4C1|
intersects every fibre of X ′′ in 4 points since 4C1 · f = 4. In addition, we know
that h0(OX′′(4C1)) = h0(OΓ(−4D)) + h0(OΓ(−3D)) + h0(OΓ(−2D)) + h0(OΓ(−D)) +
h0(OΓ) = 17 + 13 + 9 + 5 + 1 = 45 by Lemma 2.5.

CLAIM 1 : There is a smooth curve L ∈ |4C1| such that L is tangent to Fi, for i =
0, 1, 2, 3, respectively in two points.

Proof. We can assume that X ′′ = F4 is the blowing up of the vertex of a cone in P5 on
a rational normal curve of P4. It is clear that C0 is the exceptional divisor associated
with the vertex.
Let E = F0 +F1 +F2 +F3 be the curve intersection between the cone and a hyperplane
H0 of P5 passing through the vertex of the cone. With abuse of notation, the total
transform of E on X ′′ is E = C0 +

∑3
i=0 Fi.

Let H1 and H2 be two generic hyperplane sections of X ′′ (they do not intersect C0).
Then

H1 ∩ E = {x0,1, x1,1, x2,1, x3,1},

where xi,1 ∈ Fi, for i = 0, 1, 2, 3, and

H2 ∩ E = {x0,2, x1,2, x2,2, x3,2},

where xi,2 ∈ Fi, for i = 0, 1, 2, 3.
Let L1 be the pencil of hyperplane sections of X ′′ generated by H0, hence by E, and
by H1 and let L2 be the pencil of hyperplane sections of X ′′ generated by H0, hence
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by E, and by H2. It is clear that {x0,1, x1,1, x2,1, x3,1} is the base locus of L1 and
{x0,2, x1,2, x2,2, x3,2} is the base locus of L2.

Since |3C1| is base-point free by Proposition 2.43, then it contains a general curve G
that is smooth by Bertini’s Theorem. Furthermore, since G is general, it does not
contain {x0,j, x1,j, x2,j, x3,j}, for j = 1, 2.
Let dj, ej ∈ Lj, for j = 1, 2, be generic divisors in the two pencils Lj. They are also
smooth curves since E, H1∩X ′′ and H2∩X ′′ simply pass through the base locus. Then
dj + ej contains {x0,j, x1,j, x2,j, x3,j} with multiplicity 2, for j = 1, 2.
Let us consider a pencil P generated by d1 + e1 + d2 + e2 and E + G. By Bertini’s
Theorem, its curves may have singular points only on the base locus of the pencil. At
this point we observe that G · (d1 + e1 + d2 + e2) = 48 since dj and ej are hyperplane
sections and G ∼ 3C1, where C1 is a rational normal curve of degree 4. These 48 points
are base points for the pencil, different from xi,j, for i = 0, ..., 3 and j = 1, 2. Now
E + G has only 16 singular points since E has only 4 singular points on C0, while G
is smooth and disjoint from C0 for its generality and E · G ∼ (C0 + 4F ) · 3C1 = 12.
These points are different from the 48 base points for the generality of the hyperplane
sections dj and ej, for j = 1, 2. Then E+G is smooth in the 48 base points. The same
is true for d1 + e1 + d2 + e2. Hence also a general divisor L in the pencil P is smooth
in the 48 base points.
On the other hand (d1 +e1 +d2 +e2)|E = {x0,1, x0,2, x1,1, x1,2, x2,1, x2,2, x3,1, x3,2}. These
are other 8 base points for P . Since d1 +e1 +d2 +e2 passes through xi,j, for i = 0, 1, 2, 3
and j = 1, 2, with multiplicity 2 and since E+G simply passes through the eight points
(E contains the fibres F0, F1, F2 and F3 while G does not contain these 8 points), then
a general curve L is smooth in these 8 points and, in particular, it is tangent to
F0, F1, F2, F3 in {x0,1, x0,2, x1,1, x1,2, x2,1, x2,2, x3,1, x3,2}.
Finally, we observe that dj and ej are general hyperplane sections of X ′′, so they are
linearly equivalent to C1 and furthermore d1 + e1 + d2 + e2 ∼ 4C1. Similarly, we have
G ∼ 3C1 and E ∼ C0 + 4f , so E + G ∼ 4C1. Then we have found a smooth curve
L ∈ |4C1| tangent to Fi in xi,1 and xi,2, for i = 0, 1, 2, 3.

In the Figure 1 below, we will analyze what happens blowing up all the intersection
points between L and W ′′, also infinitely near. We observe that, since L ∼ 4C1 and
4C1 is disjoint from C0, then L does not intersect C0. With abuse of notation, we will
call the strict transforms of C0, Fi and L with the same names.
In the figure, we only focus on F1, it is the same for F2, F3 and F0.

• STEP 1 We blow up the intersection points xi,1 and xi,2 on X ′′, for i = 1, 2, 3.
On

X ′′1 := Blx1,1,x1,2,x2,1,x2,2,x3,1,x3,2(X
′′),

we have that Fi is a (−2)−curve while the exceptional divisors Ji,1 and Ji,2 are
(−1)−curves, for any i. Moreover, the antibicanonical divisor

W ′′
1 = 4C0 + 3F0 +

3∑
i=1

(3Fi + Ji,1 + Ji,2) ∈ | − 2KX′′1
|.
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• STEP 2 In X ′′1 , the curve L simply passes through the infinitely near base points
yi,1 and yi,2, for i = 1, 2, 3. We also blow up these six points. On

X ′′2 := Bly1,1,y1,2,y2,1,y2,2,y3,1,y3,2(X
′′
1 ),

we have that Fi is a (−4)−curve, Ji,1 and Ji,2 are (−2)−curves and Ei,1 and Ei,2
are (−1)−curves, for any i. Furthermore, the antibicanonical divisor

W ′′
2 = 4C0 + 3F0 +

3∑
i=1

(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2) ∈ | − 2KX′′2
|.

• STEP 3 Again L intersects the exceptional divisors Ei,1 and Ei,2 respectively in
zi,1 and zi,2 on X ′′2 , for i = 1, 2, 3. Let

Y = Blz1,1,z1,2,z2,1,z2,2,z3,1,z3,2(X
′′
2 ).

On Y , we have that Fi is a (−4)−curve, Ji,1 and Ji,2 are (−2)−curves, Ei,1 and
Ei,2 are (−2)−curves and Bi,1 and Bi,2 are (−1)−curves, for i = 1, 2, 3. Now the
antibicanonical divisor

−2KY ∼ 4C0 + 3F0 +
3∑
i=1

(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2)

and we fix W ′′
Y = W ′′

2 , so there are not other infinitely near intersection points to
blow up belonging to L and Fi, for i = 1, 2, 3.
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Figure 1: Example of blowing up of the intersection points bewteen L and W ′′

With the same techniques as before, we also blow up {x0,1, x0,2, y0,1, y0,2, z0,1, z0,2} ∈
L ∩ F0 (as seen in the previous figure, they are infinitely near points). We define

X ′ := Blz0,1,z0,2(Bly0,1,y0,2(Blx0,1,x0,2(Y ))).

In X ′, there are no intersection points between L and −2KX′.

After observing how the blowing up works, we consider L′′ ⊂ |4C1| as the linear
system of the curves of |4C1| simply passing through

Z := {xi,1, xi,2, yi,1, yi,2, zi,1, zi,2}, for i = 0, 1, 2, 3.

Then dimL′′ ≥ dim |4C1| − 6 · 4 = 44 − 6 · 4 = 20. It is clear that L is an element of
L′′ and since smoothness is an open condition, then the general element C ′′ of L′′ is
smooth.

With the same notation as before, we can assume that

−KY = 2C0 +
3∑
i=1

(2Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2 +Bi,1 +Bi,2)

and, as observed above, we have that

W ′′
Y = 4C0 + 3F0 +

3∑
i=1

(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2) ∈ | − 2KY |.

CLAIM 2 : The divisor −KY = 2C0 +
∑3

i=1(2Fi+Ji,1 +Ji,2 +2Ei,1 +2Ei,2 +Bi,1 +Bi,2)
is the only one effective curve in its linear system.
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Proof. We will prove that 2C0 +
∑3

i=1(2Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2 +Bi,1 +Bi,2) is
a fixed component of | −KY |. This is true because −KY ·C0 = −8 + 6 < 0, so C0 is a
fixed component of −KY ; again (−KY −C0) · Fi = 1− 8 + 2 + 2 < 0, for i = 1, 2, 3, so
F1, F2 and F3 are fixed components of −KY − C0; iterating this process, we have that
(−KY −C0 −

∑3
i=1 Fi) ·Ei,j = 1 + 1− 4 + 1 < 0, for i = 1, 2, 3 and j = 1, 2, and again

(−KY − C0 −
∑3

i=1(Fi + Ei,1 + Ei,2)) · Ji,j = −2 + 1 < 0, for i = 1, 2, 3 and j = 1, 2.
Continuing with this computation, (−KY −C0−

∑3
i=1(Fi+Ei,1+Ei,2+Ji,1+Ji,2))·C0 =

(C0 +
∑3

i=1(Fi +Ei,1 +Ei,2 +Bi,1 +Bi,2)) ·C0 = −4 + 3 < 0, so C0 is a fixed component
of −KY with multiplicity 2; moreover (−KY − 2C0 −

∑3
i=1(Fi + Ei,1 + Ei,2 + Ji,1 +

Ji,2)) · Fi =
∑3

i=1(Fi + Ei,1 + Ei,2 + Bi,1 + Bi,2) · Fi = −4 + 2 < 0, for i = 1, 2, 3,
(−KY − 2C0 −

∑3
i=1(2Fi + Ei,1 + Ei,2 + Ji,1 + Ji,2)) · Ei,j = (

∑3
i=1(Ei,1 + Ei,2 +Bi,1 +

Bi,2)) · Ei,j = −2 + 1 < 0, for i = 1, 2, 3 and j = 1, 2, and finally (−KY − 2C0 −∑3
i=1(2Fi + 2Ei,1 + 2Ei,2 + Ji,1 + Ji,2)) · Bi,j =

∑3
i=1(Bi,1 + Bi,2) · Bi,j = −1 < 0, for

i = 1, 2, 3 and j = 1, 2. Then 2C0 +
∑3

i=1(2Fi+Ji,1 +Ji,2 + 2Ei,1 + 2Ei,2 +Bi,1 +Bi,2) is
a fixed component of |−KY | and, more precisely, −KY is the only one effective divisor
in its linear system.

CLAIM 3 : The part 4C0 +
∑3

i=1(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2) is the fixed part of
| − 2KY | while its variable part is 3F0. In particular, the dimension dim | − 2KY | = 3.

Proof. The thesis is a consequence of the following computations: −2KY ·C0 = −16 +
3 + 9 < 0, so C0 is a fixed component of −2KY ; (−2KY −C0) ·Fi = 3− 12 + 2 + 2 < 0,
for i = 1, 2, 3, so F1, F2 and F3 are fixed components of −2KY − C0; (−2KY − C0 −∑3

i=1 Fi) ·Fi = 3−8+2+2 < 0, for i = 1, 2, 3, so F1, F2 and F3 are fixed components of
−2KY −C0 with multiplicity 2; again (−2KY −C0−

∑3
i=1 2Fi) ·Ei,j = 1+1−4 < 0, for

i = 1, 2, 3 and j = 1, 2, and (−2KY −C0−
∑3

i=1(2Fi+Ei,1 +Ei,2))·Ji,j = −2+1 < 0, for
i = 1, 2, 3 and j = 1, 2. Continuing with this computations, (−2KY −C0−

∑3
i=1(2Fi +

Ei,1 +Ei,2 +Ji,1 +Ji,2)) ·Ei,j = (3C0 + 3F0 +
∑3

i=1(Fi +Ei,1 +Ei,2)) ·Ei,j = −2 + 1 < 0,
for i = 1, 2, 3 and j = 1, 2; (−2KY −C0−

∑3
i=1(2Fi + 2Ei,1 + 2Ei,2 + Ji,1 + Ji,2)) ·Fi =

(3C0 + 3F0 +
∑3

i=1 Fi) · Fi = −4 + 3 < 0, for i = 1, 2, 3; (−2KY − C0 −
∑3

i=1(3Fi +
2Ei,1 + 2Ei,2 + Ji,1 + Ji,2)) · C0 = (3C0 + 3F0) · C0 = −12 + 3 < 0; (−2KY − 2C0 −∑3

i=1(3Fi + 2Ei,1 + 2Ei,2 + Ji,1 + Ji,2)) ·C0 = (2C0 + 3F0) ·C0 = −8 + 3 < 0 and finally
(−2KY −3C0−

∑3
i=1(3Fi+2Ei,1 +2Ei,2 +Ji,1 +Ji,2)) ·C0 = (C0 +3F0) ·C0 = −4+3 < 0.

In conclusion, we have that 4C0 +
∑3

i=1(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2) is a fixed
component of | − 2KY |, while the variable part is 3F0, indeed 3F0 · F0 = 0 and |3F0|
is base point free, so F0 is not another fixed component. Therefore h0(OY (−2KY )) =
h0(OY (3F0)) = h0(OΓ(3)) = 4.

After obtaining Y , similarly we blow up x0,1, x0,2 ∈ F0 and the infinitely near base points
y0,1, y0,2, z0,1 and z0,2. Then it is clear that, if Y1 = Blx0,1,x0,2(Y ) and φ1 : Y1 → Y , we
have that

−KY1 ∼ 2C0 +
3∑
i=1

(2Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2 +Bi,1 +Bi,2)− J0,1 − J0,2

66



and we put
W ′

1 = φ∗1(W ′′
Y )− 2J0,1 − 2J0,2 =

= 4C0 + 3F0 + J0,1 + J0,2 +
3∑
i=1

(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2) ∈ | − 2KY1|.

Again, if Y2 = Bly0,1,y0,2(Y1) and φ2 : Y2 → Y1, we have that

−KY2 ∼ 2C0 +
3∑
i=1

(2Fi+Ji,1 +Ji,2 +2Ei,1 +2Ei,2 +Bi,1 +Bi,2)−J0,1−J0,2−2E0,1−2E0,2

and we put
W ′

2 = φ∗2(W ′
1)− 2E0,1 − 2E0,2 =

= 4C0 +
3∑
i=0

(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2) ∈ | − 2KY2|.

Finally, if X ′ = Blz0,1,z0,2(Y2) and φ′ : X ′ → Y2, then

−KX′ ∼ 2C0 +
3∑
i=1

(2Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2 +Bi,1 +Bi,2)+

−J0,1 − J0,2 − 2E0,1 − 2E0,2 − 3B0,1 − 3B0,2

is not effective. Instead W ′ = φ′∗(W ′
2)− 2B0,1 − 2B0,2 ∈ | − 2KX′ | is of the type

W ′ = 4C0 +
3∑
i=0

(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2)

and it is effective.

CLAIM 4 : The divisor W ′ ∈ | − 2KX′ | is the only effective curve in its linear system.

Proof. Since −2KX′ · C0 = −16 + 3 + 9 < 0, then C0 is a fixed component of −2KX′ ;
(−2KX′ −C0) · Fi = 3− 12 + 2 + 2 < 0, for i = 0, 1, 2, 3, so F0, F1, F2 and F3 are fixed
components of −2KX′ −C0; again (−2KX′ −C0−

∑3
i=0 Fi) ·Fi = 3− 8 + 2 + 2 < 0, so

F0, F1, F2 and F3 are fixed components of −2KX′ − C0 with multiplicity 2; (−2KX′ −
C0−

∑3
i=0 2Fi) ·Ei,j = 1+1−4 < 0, for i = 0, 1, 2, 3 and j = 1, 2; again (−2KX′−C0−∑3

i=0(2Fi + Ei,1 + Ei,2)) · Ji,j = −2 + 1 < 0, for i = 0, 1, 2, 3 and j = 1, 2. Continuing
with this computations, we still have that (−2KX′−C0−

∑3
i=0(2Fi+Ei,1 +Ei,2 +Ji,1 +

Ji,2))·Ei,j = (3C0+
∑3

i=0(Fi+Ei,1+Ei,2))·Ei,j = −2+1 < 0; (−2KX′−C0−
∑3

i=0(2Fi+
2Ei,1 + 2Ei,2 + Ji,1 + Ji,2)) · Fi = (3C0 +

∑3
i=0 Fi) · Fi = −4 + 3 < 0, for i = 0, 1, 2, 3;

moreover (−2KX′−C0−
∑3

i=0(3Fi+2Ei,1+2Ei,2+Ji,1+Ji,2))·C0 = 3C0 ·C0 = −12 < 0;
(−2KX′ − 2C0 −

∑3
i=0(3Fi + 2Ei,1 + 2Ei,2 + Ji,1 + Ji,2)) · C0 = 2C0 · C0 = −8 < 0 and

finally (−2KX′ − 3C0−
∑3

i=0(3Fi + 2Ei,1 + 2Ei,2 + Ji,1 + Ji,2)) ·C0 = C0 ·C0 = −4 < 0.
Then all 4C0 +

∑3
i=0(3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2) is a fixed component of | − 2KX′|

and consequently it is the only one effective divisor in its linear system.

67



Since all the divisors on Γ of the same degree are linearly equivalent, then we have that
−4D · f ∼ 4

∑3
i=0 Fi, so

C ′′ ∼ 4C0 + 4
3∑
i=0

Fi,

where C ′′ is a general element in L′′. Then, its strict transform C ′ on X ′ is linearly
equivalent to

C ′ ∼ 4C0 +
3∑
i=0

(4Fi + 3Ji,1 + 3Ji,2 + 6Ei,1 + 6Ei,2 + 5Bi,1 + 5Bi,2).

Step by step, we can prove that a general hyperplane section C ′ of X ′ is a Prym-
canonically embedded curve.

CLAIM 5 : We have that OC′(−KX′) � OC′ while OC′(−2KX′) ∼= OC′. In particular,
−KX′|C′ is a non-zero two torsion divisor.

Proof. It is easy to prove that

C ′ ·W ′ = (4C0 +
3∑
i=0

(4Fi + 3Ji,1 + 3Ji,2 + 6Ei,1 + 6Ei,2 + 5Bi,1 + 5Bi,2))·

·(4C0 +
3∑
i=0

3Fi + Ji,1 + Ji,2 + 2Ei,1 + 2Ei,2) =

= −64 + 16 + 48 + 4(12− 48 + 18 + 18) + 8(6− 6) + 8(6− 24 + 10 + 8) = 0.

Since W ′ is effective, then it is contracted by the map defined by L′, in particular
OC′(−2KX′) ∼= OC′ .
It is clear that also C ′ · (−KX′) = 0 but this time we have that h0(OX′(−KX′)) = 0.
Using the long exact sequence associated with

0→ OX′(−KX′ − C ′)→ OX′(−KX′)→ OC′(−KX′)→ 0, (12)

if we prove that h1(OX′(−KX′ − C ′)) = 0, then h0(OC′(−KX′)) = 0 and
OC′(−KX′) � OC′ .
By Serre Duality, we know that h1(OX′(−KX′ − C ′)) = h1(OX′(2KX′ + C ′)). If we
prove that KX′+C

′ is big and nef, then, by the Kawamata-Viehweg vanishing Theorem
(see [22] and [32]), the first cohomology h1(OX′(2KX′ + C ′)) = 0.
Now

KX′ + C ′ = 2C0 +
3∑
i=1

(2Fi + 2Ji,1 + 2Ji,2 + 4Ei,1 + 4Ei,2 + 4Bi,1 + 4Bi,2)+

+4F0 + 4J0,1 + 4J0,2 + 8E0,1 + 8E0,2 + 8B0,1 + 8B0,2.
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Since KX′+C ′ is written as sum of irreducible and effective curves, then, to prove that
KX′ + C ′ is nef, it is enough to prove that (KX′ + C ′) · δ ≥ 0, for any its irreducible
component δ. Then, for i ∈ {1, 2, 3} and j ∈ {1, 2}, we have:

(KX′ + C ′) · C0 = −8 + 6 + 4 = 2 > 0; (KX′ + C ′) · Fi = 2− 8 + 4 + 4 > 0;

(KX′ + C ′) · Ji,j = −4 + 4 = 0; (KX′ + C ′) · Ei,j = 2 + 2− 8 + 4 = 0;

(KX′ + C ′) ·Bi,j = −4 + 4 = 0; (KX′ + C ′) · F0 = 2− 16 + 8 + 8 > 0;

(KX′ + C ′) · J0,j = −8 + 8 = 0; (KX′ + C ′) · E0,j = 4 + 4− 16 + 8 = 0;

(KX′ + C ′) ·B0,j = −8 + 8 = 0;

Therefore KX′ + C ′ is nef. Because we have strictly positive intersections between
KX′ + C ′ and its components, then KX′ + C ′ is also big. So the claim is satisfied.

It is not difficult to compute that C ′2 = 40, so, by the adjunction formula, the genus
g(C ′) = 1 + 1

2
(C ′2) = 21. We also observe that C ′ is smooth because it is the strict

transform of a general element C ′′ of L′′, that is smooth. Since −KX′ |C′ is a non-zero
two torsion divisor as seen in Claim 5, we have that L′|C′ = |KC′ −KX′ |C′ | defines a
Prym-canonical map

iL′|C′ : C ′ 99K P19.

Moreover we have showed that dim(L′′) = dim(L′) ≥ 20. From the exact sequence

0→ OX′(C ′ − C ′)→ OX′(C ′)→ OC′(C ′)→ 0,

we conclude that h0(OX′(C ′)) ≤ 21 since OX′(C ′ − C ′) ∼= OX′ and h0(OC′(C ′)) = 20.
So we have that h0(OX′(C ′)) = 21 and iL′(X

′) ⊆ P20.

CLAIM 6 : The rational map iL′|C′ : C ′ 99K P19 is an embedding, for any general curve
C ′ ∈ L′.

Proof. We have that (C ′,−KX′ |C′) is a Prym curve of genus 21 and we can show that
the Prym-canonical system L′|C′ is base point free. Indeed, by [20], Proposition IV.3.1,
the linear system L′|C′ is base-point free if and only if, for every point P ∈ C ′,

dim L′|C′ − 1 = dim |C ′|C′ − P |.

Since L′|C′ = |KC′ −KX′ |C′ |, then dim L′|C′ = g − 2 = 19.
On the other hand, we have that dim |C ′|C′ − P | = h0(OC′(C ′ − P )) − 1 =
h1(OC′(C ′ − P )) + 39 + 1− 21− 1 by the Riemann-Roch Theorem. By Serre Duality
and the adjunction formula, we know that h1(OC′(C ′−P )) = h0(OC′(KC′−C ′+P ) =
h0(OC′(P +KX′)).
By Remark 2.24, since −KX′|C′ is a non-zero two torsion divisor, if we suppose that
h0(OC′(P +KX′)) > 0 for some point P ∈ C ′, then C ′ is hyperelliptic.
If we show that C ′ is not hyperelliptic, then h0(OC′(P+KX′)) = 0 for any point P ∈ C ′
and L′|C′ is base-point free.
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Let us suppose that C ′ is hyperelliptic. Since we know that C ′ ∈ X ′ is isomorphic to
C ′′ ∼ 4C1 on X ′′, then C ′′ is also hyperelliptic.
The self-intersection C ′′2 = (4C1)2 = 64. Furthermore C ′′ is nef since
C ′′ ∼ 4C0 + 4

∑3
i=0 Fi and (4C0 + 4

∑3
i=0 Fi) · C0 = 0 and

(4C0 + 4
∑3

i=0 Fi) · Fi = 4, for i = 0, 1, 2, 3. Moreover, by [20], Proposition IV.5.2,
we have that |KC′′ | is not very ample, precisely it does not separate any pair of points
p and q such that p + q is a member of the g1

2 on C ′′. By the adjunction formula, we
also have that |KX′′ + C ′′| does not separate such p and q.
By [27], Theorem 1., there is an effective divisor E on X ′′ passing through p and q, for
any couple of point p and q not separated by |KX′′ + C ′′|, such that either

C ′′ · E = 0 and E2 = −1 or − 2 (13)

or C ′′ · E = 1 and E2 = −1 or 0 (14)

or C ′′ · E = 2 and E2 = 0. (15)

Since C ′′ ∼ 4C1, then we exclude the two cases C ′′ · E = 1 and C ′′ · E = 2, for any E.
On the other hand, by Bertini’s Theorem, C ′′ is smooth and, since (C ′′)2 > 0 as seen
before, it is also irreducible. If we suppose that C ′′ · E = 0, since C ′′ is nef, then
the intersections bewteen C ′′ and the irreducible components of E are also 0. Since
C ′′2 > 0, then E does not contain C ′′. Since p and q belong to E and C ′′ (they define
the g1

2 of C ′′), then C ′′ · E cannot be 0. Thus E cannot exist and we exclude the case
C ′′ hyperelliptic. The claim is proved, hence L′|C′ is base-point free.

Furthermore, we can prove that L′|C′ defines a birational map. Indeed, if this did
not happen, we would have C ′ bielliptic and the image of X ′ via the map associated
with L′ would be a surface in P20 with elliptic sections (see [6], Corollary 2.2). Since
20 > 9, then the surface image in P20 could not be a Del Pezzo surface but it would be
an elliptic cone. Anyway X ′ is a rational surface, so it cannot cover an elliptic cone.
Then L′|C′ defines a birational map.

More precisely, we can also show that L′|C′ defines an embedding, for any general
C ′ ∈ L′. By [6], Lemma 2.1, we know that L′|C′ does not separate p and q (possibly
infinitely near) if and only if C ′ has a g1

4 and −KX′ |C′ ∼ OC′(p + q − x − y), where
2(p+ q) and 2(x+ y) are members of the g1

4.

We know that C ′ ∼= C ′′ and C ′′ ∼ 4C1 has a g1
4 defined by the fibres of the ruled

surface X ′′. This is the only one. Indeed, if C ′ had two g1
4, then there would be a map

ψ : C ′ → P1 × P1. If ψ was a birational map, the image curve would be of the type
(4, 4) on P1×P1. Then its geometric genus would be at most (4− 1)(4− 1) = 9. Since
C ′ has genus 21, this case is excluded. It is easy to show that ψ would be a map 2 : 1
on a curve D. The image curve D would be a curve of type (2, 2) on P1 × P1, so its
geometric genus would be g(D) ≤ 1. Since C ′ is non-hyperelliptic as seen before, then
g(D) = 1 and C ′ is bielliptic. Then C ′ admits a singular correspondence. By Corollary
2.2 of [8], the map determined by the linear system |C ′| is not birational, in particular
it is 2 : 1 on a surface with elliptic sections. We have already excluded this possibility,
so C ′′ has only one g1

4.
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It is clear that C ′′ ∩ F0 ∼ C ′′ ∩ F1 ∼ C ′′ ∩ F2 ∼ C ′′ ∩ F3 and we know that C ′′ is
tangent in two points to these four fibres. So we have four pairs of points (p, q) ∈ F0,
(x, y) ∈ F1, (z, w) ∈ F2 and (a, b) ∈ F3 such that 2(p+ q) ∼ 2(x+ y) and so on for all
the possible cases. Since C ′ is the strict transform of C ′′, it has the same characteristics
of C ′′ and, after the blowing up, the four pairs of points that satisfy this property are
the intersection points between C ′ and Bi,j, for i = 0, 1, 2, 3 and j = 1, 2. Now, with
abuse of notation and using the expression of −KX′ seen before, we have that

−KX′ |C′ =
3∑
i=1

(Bi,1 +Bi,2)|C′ − (3B0,1 + 3B0,2)|C′ =

= x+ y + w + z + a+ b− 3p− 3q ∼ x+ y − w − z + a+ b− p− q.

At this point, we observe that

x+ y − w − z + a+ b− p− q � x+ y − p− q

otherwise, if a + b − w − z ∼ 0, then C ′ would have a g1
2. Hence L′|C′ separate each

pair of points and it defines an embedding.

At this point, since L′|C′ is base-point free, it is clear that L′ is also base-point free.
Since the restriction L′|C′ defines an embedding for each generic curve C ′ ∈ L′, then
iL′ is a birational map, generically 1 : 1.
Then X ′ has hyperplane sections that are Prym-canonical embedded. In particular,
iL′(X

′) is a surface with Prym-canonical hyperplane sections.

We have found a new surface X = iL′(X
′) ⊂ P20 with Prym-canonical hyperplane

sections. Since W ′ is connected, then the image x ∈ X of W ′ is a rational singular
point (see Proposition 1.15). There are other possible rational double singularities on
X whose exceptional divisors on X ′ do not intersect −2KX′.

3 More surfaces with Prym-canonical hyperplane

sections birationally equivalent to P2

In this chapter we will study in more detail surfaces with Prym-canonical hyperplane
sections birationally equivalent to P2. Observing that many of the previous results are
still valid, we will construct new examples of this type of surfaces.

3.1 The only known example of a surface with Prym-canonical
hyperplane sections birationally equivalent to P2

First of all we recall the notation, similar to the previous section.

• Let X be the surface with Prym-canonical hyperplane sections embedded in Pg−1,
for g ≥ 5.
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• Let π : X ′ → X be the minimal resolution of the singularities of X and let
X ′′ = P2 be the minimal model of X ′. We denote by φ the map φ : X ′ → P2.

• Let L be the (g− 1)−dimensional complete linear system of hyperplane sections
of X and let C be its general curve of genus g. If L′ = π∗L is the complete
linear system of hyperplane sections of X ′ and C ′ is its general curve, then
L′′ = φ∗L

′ with general curve C ′′ defines a map iL′′ : X ′′ 99K Pg−1 such that
iL′′(X

′′) = iL(X).

• The linear system L′′ on P2 has base points Pt,it of multiplicity rt,it , for t =
1, ..., s− 1 and i = 1, ..., i(t), that lie on supp(W ′′) ⊂ X ′′, with possible infinitely
near base points. Since φ blows up the base points of L′′, we have that L′′ and
W ′′ do not intersect outside the base points of L′′.

We know that Pic(P2) ∼= Z and we can take the class l of a line as generator (see
[20], Example V.1.4.2). Moreover we know that KP2 ∼ −3l (see [20], Example V.1.4.4),
so −2KP2 ∼ 6l is effective and dim |6l| =

(
6+2

2

)
− 1 = 27.

Again we observe that, if C ′ is the strict transform of C ′′ on X ′, for C ′′ a general curve
in L′′, and W ′ is the antibicanonical divisor of X ′, then W ′|C′ ∼ 0 while −KX′|C′ is a
non-zero two torsion divisor of Pic(C ′).

Remark 3.1. The case X ′ = X ′′ = P2 is not possible because there are not linear
systems on P2 that contract effective curves while, if π : X ′ → X is the minimal
resolution of the singularities of X and X has Prym-canonical hyperplane sections,
then L′ contracts at least W ′.

The only known example of surface with Prym-canonical hyperplane sections bira-
tionally equivalent to P2 is the following.

Example 3.2. Let X ′ := P̃2 = Blx1,...,x10P2 be the blowing up of X ′′ = P2 at 10 nodes
{x1, ..., x10} of an irreducible rational plane curve J of degree 6 with ordinary nodes as
singularities. Rational plane sextic of this kind were intensively studied by Coble (see
[9], [12]).
We recall that the Severi variety is the Zariski closure of the following set:

Vn,g = {C ⊂ P2 | C is a nodal plane curve of degree n and geometric genus g},

where with nodal plane curve we mean an irreducible and reduced curve having exactly

δ = pa(C)− g =
(n− 1)(n− 2)

2
− g

nodes as singularities (see [10]). If δ ≤ pa(C) (so g ≥ 0), then there is a curve C of
this type. In our case, the irreducible sextic J with δ = 10 nodes in {x1, ..., x10} exists
since pa(J) = 10.
If we suppose that another irreducible sextic J ′ 6= J passing with multiplicity 2 through
the nodes {x1, ..., x10} of J exists, then either J ⊆ J ′ or J ′ ⊆ J since J · J ′ =
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6 · 6 − 2 · 2 · 10 < 0. But J and J ′ are irreducible by assumption, then J = J ′ is
the unique irreducible sextic with nodes in {x1, ..., x10}.

By [20], Proposition V.3.3, we have that

−KX′ ∼ 3l −
10∑
i=1

Ei and − 2KX′ ∼ 6l − 2
10∑
i=1

Ei,

where l is the pullback of the class l of a line of P2 on X ′ with abuse of notation and
Ei is the exceptional divisor of xi, for i = 1, ..., 10.

CLAIM 1 : The linear system | − 2KX′ | 6= ∅ while | −KX′| = ∅.

Proof. With abuse of notation, let J = 6l − 2
∑10

i=1Ei be the strict transform of J on
X ′. Since J is effective and J ∈ | − 2KX′ |, then it is clear that | − 2KX′| 6= ∅.
On the other hand we can show that | −KX′ | = ∅. Indeed, by [16], Example 9.3.3(c),
the nodes of J impose independent conditions on curves of degree k ≥ 6 − 3 = 3,
in particular they impose independent conditions on cubics. Since we know that
−KX′ ∼ 3l −

∑10
i=1 Ei, then | −KX′ | = ∅ since h0(OX′(3l −

∑10
i=1Ei)) =

(
3+2

2

)
− 10 =

0.

Let L′′ be the linear system of P2 of the curves C ′′ of degree 10 passing through the
nodes {x1, ..., x10} of J with multiplicity 3. By Plücker’s Formula, we have that

pa(C
′′) =

9 · 8
2

= 36 and pg(C
′′) =

9 · 8
2
− 10

3 · 2
2

= 6.

After the blowing up, we can write that

C ′ ∼ 10l − 3
10∑
i=1

Ei,

where C ′ is a generic curve of L′ and Ei is the exceptional divisor associated with xi,
for i = 1, ..., 10. We observe that h0(OX′(C ′)) ≥

(
10+2

2

)
− 10 · 3·4

2
= 66− 60 = 6.

With abuse of notation, we will indicate with J = 6l − 2
∑10

i=1 Ei the strict transform
on X ′ of J ∈ P2.

CLAIM 2 : The dimension dimL′ = h0(OX′(C ′)) − 1 = 5, so the surface image
X = iL′(X

′) is contained in Pg−1 = P5.

Proof. We use the following exact sequence:

0→ OX′(4l −
10∑
i=1

Ei)→ OX′(10l − 3
10∑
i=1

Ei)→ OJ(10l − 3
10∑
i=1

Ei)→ 0. (16)

Since the nodes of J impose independent conditions on curves of degree k ≥ 3 (see
[16], Example 9.3.3(c)), then h0(OX′(4l −

∑10
i=1Ei)) =

(
4+2

2

)
− 10 = 5.

Since J · (10l − 3
∑10

i=1 Ei) = 60 − 60 = 0, then h0(OJ(10l − 3
∑10

i=1Ei)) = 1. From
the exact sequence (16), we have that h0(OX′(10l− 3

∑10
i=1Ei)) ≤ 6. Since we already

know that h0(OX′(10l − 3
∑10

i=1Ei)) ≥ 6, then the claim is proved.

73



CLAIM 3 : There are irreducible curves of degree 10 with exactly 10 triple points in
the nodes of J .

Proof. We observe that curves of the type J+D, with D ∈ |4l−
∑10

i=1Ei|, are contained
in L′ = |10l − 3

∑10
i=1Ei|.

As proved in Claim 2, we have that dimL′ = 5 while dim |4l −
∑10

i=1Ei| = 4, so the
reducible curves J + D do not define all the linear system of the curves of degree
10. As consequence of Bertini’s Theorem (see [2], pag. 1), the generic curve C ′ of
L′ is irreducible (indeed the curves of the linear system L′ with fixed part J define a
sublinear system and moreover the sublinear system is not composed by a pencil, even
more so the linear system L′).
Since special curves of L′ of the type J + D, with D ∈ |4l −

∑10
i=1Ei|, have exactly

triple points in the 10 nodes of J , then the generic curves of the linear system L′ have
the same property. Thus irreducible curves of degree 10 with exactly triple points in
the 10 nodes of J exist.

Step by step, we can prove that a general hyperplane section C ′ of X ′ is a Prym-
canonical embedded curve.

Since C ′ · (−2KX′) = 0 and J is irreducible and effective, then L′ contracts J in a
single point, so

OC′(−2KX′) ∼= OC′ .

Therefore X has a rational singularity, since J is rational and irreducible, and of
multiplicity 4 because the fundamental cycle Z0 = J and Z2

0 = J2 = −4.

CLAIM 4 : We have that OC′(−KX′) � OC′ and in particular −KX′|C′ is a non-zero
two torsion divisor.

Proof. It is sufficient to show that h1(OX′(−KX′ − C ′)) = 0, indeed, using the long
exact sequence associated with

0→ OX′(−KX′ − C ′)→ OX′(−KX′)→ OC′(−KX′)→ 0, (17)

it is easy to see that OC′(−KX′) � OC′ since h0(OX′(−KX′)) = 0.

First of all we have that −KX′ − C ′ ∼ −7l + 2
∑10

i=1 Ei, so it is not effective and
h0(OX′(−KX′ − C ′)) = 0. Moreover, by Serre Duality, we have that
h2(OX′(−KX′ − C ′)) = h0(OX′(2KX′ + C ′)) = h0(OX′(4l −

∑10
i=1Ei)) =

(
4+2

2

)
−

10 = 5 (see [16], Example 9.3.3(c): the nodes of J impose independent conditions
on curves of degree k ≥ 3). Thus, using the Riemann-Roch Theorem, we have that
−h1(OX′(−KX′ − C ′)) + 5 = 1

2
(−7l + 2

∑10
i=1Ei)(−4l +

∑10
i=1Ei) + 1 − 0 = 5, so

h1(OX′(−KX′ − C ′)) = 0.
In conclusion, sinceOC′(−2KX′) ∼= OC′ , then−KX′|C′ is a non-zero two torsion divisor.

CLAIM 5 : The linear system L′ is base-point free.
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Proof. Let X ′ = Blx11(X
′), where x11 is a point of a general C ′ ∈ L′. If

L′ = |10l − 3
∑10

i=1Ei − E11|, where E11 is the exceptional divisor associated with
x11, then L′ is base point free if and only if

dim(L′) = dim(L′)− 1,

for any point x11 ∈ C ′, for a general C ′ ∈ L′.

We have already proved that dim(L′) = 5 while dim(L′) ≥
(

12
2

)
− 103·4

2
− 1 − 1 =

4. We observe that, since x11 ∈ C ′ and C ′ and J are disjoint by assumption, then
OJ(C ′) ∼= OP1 , where C ′ is a general curve in L′ and J is the strict transform of J on
X ′. Similarly to the exact sequence (16), we have the following:

0→ OX′(4l −
10∑
i=1

Ei − E11)→ OX′(10l − 3
10∑
i=1

Ei − E11)→ OP1 → 0; (18)

0→ OX′(3l −
9∑
i=1

Ei)→ OX′(4l −
10∑
i=1

Ei − E11)→ Ol−E10−E11(4l −
10∑
i=1

Ei − E11)→ 0

(19)

We know that h0(OX′(3l −
∑9

i=1 Ei)) = 1 while h1(OX′(3l −
∑9

i=1Ei)) = 0. Since
(l−E10−E11) · (4l−

∑10
i=1Ei−E11) = 2, then h0(Ol−E10−E11(4l−

∑10
i=1Ei−E11)) = 3.

From the exact sequence (19), we conclude that h0(OX′(4l −
∑10

i=1Ei − E11)) = 4.
Furthermore, from the exact sequence (18), we obtain that
h0(OX′(10l − 3

∑10
i=1Ei − E11)) ≤ 4 + 1. Since we know that

h0(OX′(10l − 3
∑10

i=1Ei − E11)) ≥ 5 as observed before, then the equality holds.
We conclude that L′ is base-point free since the above proof does not depend on the
choice of the point x11 ∈ C ′.

We have showed that L′ is base-point free, so the generic curve C ′ ∈ L′ is smooth by
Bertini’s Theorem.

CLAIM 6 : The linear system L′ defines an embedding outside the contracted curve J .

Proof. Let x11, x12 ∈ X ′ − J .
If x11 6= x12, let L′ = |10l−3

∑10
i=1Ei−E11−E12| be a linear system in X ′ = Blx11,x12X

′,
where E11 and E12 are the exceptional divisors associated with two points x11 and x12.
If x11 and x12 are infinitely near, we consider L′ = |10l − 3

∑10
i=1Ei − E11 − 2E12| in

X ′ = Blx12(Blx11(X
′)).

We have that L′ defines an embedding outside the contracted curve J if and only if

dimL′ = dim(L′)− 2,

for any x11 and x12 distinct or infinitely near not belonging to J .

Anyway we have already proved that dim(L′) = 5 while dim(L′) ≥
(

12
2

)
−103·4

2
−2−1 =

3.

At this point we observe three things:
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• if C ′ is a general curve in L′ and J is the strict transform of J on X ′, then
C ′ · J = 0 since C ′ and J are disjoint and we choose x11 and x12 not belonging
to J , for x11 and x12 distinct or infinitely near;

• the 10 nodes {x1, ..., x10} of J are not all belonging to a line, so there exists one
of them not aligned with x11 and x12. We suppose that, up to renaming the
terms, {x10, x11, x12} are not aligned. Similarly, if x11 and x12 are infinitely near,
we suppose that the only one line passing through x11 and x12 does not contain
x10.

• let us consider a generic Halphen pencil of sextic with 9 base points of multiplicity
2. The base points always lie on a unique cubic curve. If we consider a generic
Halphen pencil, then the cubic is smooth.

As showed in [9], pag. 12, in a pencil of sextic with nodes in 9 points there are
exactly twelve sextics with 10 nodes and clearly they admit a cubic through 9 of
them.

Hence we assume that the sextic J with 10 nodes {x1, ..., x10} belongs to a generic
Halphen pencil, so that a smooth cubic passing through {x1, ..., x9} exists.

� We prove the claim for x11 6= x12. We can consider the following exact sequence:

0→ OX′(4l−
10∑
i=1

Ei−E11−E12)→ OX′(10l− 3
10∑
i=1

Ei−E11−E12)→ OP1 → 0.

(20)

1. Let us suppose that x11, x12 /∈ 3l −
∑9

i=1Ei. Then we consider the exact
sequence:

0→ OX′(l − E10 − E11 − E12)→ OX′(4l −
12∑
i=1

Ei)→

→ O3l−
∑9

i=1 Ei
(4l −

12∑
i=1

Ei)→ 0. (21)

It is clear that h0(OX′(4l −
∑12

i=1Ei)) ≥
(

6
2

)
− 12 = 3.

On the other hand, since we choose E10, E11 and E12 not aligned, then we
have that h0(OX′(l−E10 −E11 −E12)) = 0. From the exact sequence (21),
we obtain that h0(OX′(4l −

∑12
i=1 Ei)) ≤ h0(O3l−

∑9
i=1 Ei

(4l −
∑12

i=1Ei)) =
3 + 1− 1 = 3. Then the equality holds.

2. If only x11 (or equivalently x12) belongs to 3l −
∑9

i=1Ei, then we consider

0→ OX′(l−E10−E12)→ OX′(4l−
12∑
i=1

Ei)→ O3l−
∑9

i=1 Ei−E11
(4l−

12∑
i=1

Ei)→ 0.

(22)
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We know that h0(OX′(l −E10 −E12)) = 1 and h1(OX′(l −E10 −E12)) = 0.
Using Riemann-Roch’s Theorem, we obtain that
h0(O3l−

∑9
i=1 Ei−E11

(4l −
∑12

i=1Ei)) = 2. Again, from the exact sequence

(22), we have that h0(OX′(4l −
∑12

i=1Ei)) = 3.

3. If both x11 and x12 belong to 3l −
∑9

i=1Ei, then we consider

0→ OX′(l−E10)→ OX′(4l−
12∑
i=1

Ei)→ O3l−
∑9

i=1 Ei−E11−E12
(4l−

12∑
i=1

Ei)→ 0

(23)

We know that h0(OX′(l − E10)) = 2 while h1(OX′(l − E10)) = 0.
Using Riemann-Roch’s Theorem, we have that
h0(O3l−

∑9
i=1 Ei−E11−E12

(4l−
∑12

i=1 Ei)) = 1. Then h0(OX′(4l−
∑12

i=1Ei)) = 3

from the exact sequence (23).

In all three cases we have h0(OX′(4l −
∑12

i=1Ei)) = 3.

Moreover, since h0(OP1) = 1, we conclude from the exact sequence (20) that
h0(OX′(10l − 3

∑10
i=1Ei − E11 − E12)) ≤ 4 but we know that

h0(OX′(10l − 3
∑10

i=1Ei − E11 − E12)) ≥ 4, so equality holds and the claim is
proved for x11 and x12 distinct.

� At this point, let x11 and x12 be infinitely near. So we can consider the following
exact sequence:

0→ OX′(4l−
10∑
i=1

Ei−E11−2E12)→ OX′(10l−3
10∑
i=1

Ei−E11−2E12)→ OP1 → 0.

(24)

1. Let us suppose x11 /∈ 3l −
∑9

i=1Ei and consequently also x12. Then we
consider the exact sequence:

0→ OX′(l − E10 − E11 − 2E12)→ OX′(4l −
11∑
i=1

Ei − 2E12)→

→ O3l−
∑9

i=1 Ei
(4l −

11∑
i=1

Ei − 2E12)→ 0. (25)

It is clear that h0(OX′(4l −
∑11

i=1Ei − 2E12)) ≥
(

6
2

)
− 12 = 3.

On the other hand, by the previous assumption, we have that
h0(OX′(l−E10−E11−2E12)) = 0. From the exact sequence (25), we obtain
that h0(OX′(4l−

∑11
i=1 Ei−2E12)) ≤ h0(O3l−

∑9
i=1 Ei

(4l−
∑11

i=1Ei−2E12)) =
3 + 1− 1 = 3. Then the equality holds.
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2. If x11 ∈ 3l −
∑9

i=1Ei but x12 /∈ 3l −
∑9

i=1 Ei, then we consider

0→ OX′(l − E10 − 2E12)→ OX′(4l −
11∑
i=1

Ei − 2E12)→

O3l−
∑9

i=1 Ei−E11
(4l −

11∑
i=1

Ei − 2E12)→ 0. (26)

If a line passes through x12, then it also contains x11. Then, as in the previ-
ous point, we have that h0(OX′(l − E10 − 2E12)) = 0. Using the Riemann-
Roch Theorem, we also have that h0(O3l−

∑9
i=1 Ei−E11

(4l−
∑11

i=1 Ei−2E12)) =

(12− 9− 2 + 2) + 1− 1 = 3. From the exact sequence (26), we obtain that
h0(OX′(4l −

∑11
i=1Ei − 2E12)) ≤ 3 but we know that

h0(OX′(4l −
∑11

i=1Ei − 2E12)) ≥ 3, so equality holds.

3. If both x11 and x12 belong to 3l −
∑9

i=1Ei, then we consider

0→ OX′(l − E10)→ OX′(4l −
11∑
i=1

Ei − 2E12)→

→ O3l−
∑9

i=1 Ei−E11−2E12
(4l −

11∑
i=1

Ei − 2E12)→ 0. (27)

We know that h0(OX′(l − E10)) = 2 while h1(OX′(l − E10)) = 0. Using the
Riemann-Roch Theorem, we have that
h0(O3l−

∑9
i=1 Ei−E11−2E12

(4l−
∑11

i=1Ei−2E12)) = (12−9−2+2−4+2)+1−1 =

1. From the exact sequence (27), we obtain that
h0(OX′(4l −

∑11
i=1Ei − 2E12)) = 3.

In all three cases we have h0(OX′(4l −
∑11

i=1Ei − 2E12)) = 3.

We conclude from the exact sequence (24) that
h0(OX′(10l − 3

∑10
i=1 Ei − E11 − 2E12)) ≤ 4 since h0(OP1) = 1 but we know

that h0(OX′(10l− 3
∑10

i=1Ei −E11 − 2E12)) ≥ 4, so equality holds and the claim
is proved.

In conclusion, X ⊂ P5 is a surface with Prym-canonical hyperplane sections of degree
deg(X) = C′2

deg iL′
= 10 birationally equivalent to P2 with only one singularity, that is a

quadruple rational singularity.
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3.2 Construction of other rational surfaces with Prym-canonical
hyperplane sections

In this section we will construct surfaces with Prym-canonical hyperplane sections
whose minimal model is X ′′ = P2 using techniques similar to Example 3.2.

Remark 3.3. With the same notation as before, assuming that X ′ = Blx1,...,xr(P2),
where {x1, ..., xr} ∈ P2 are the base points of L′′, we have that

−KX′ ∼ 3l −
r∑
i=1

Ei and − 2KX′ ∼ 6l − 2
r∑
i=1

Ei,

by [20], Proposition V.3.3,
Moreover, if we suppose that X ′ is a surface whose general hyperplane section is Prym-
canonical embedded, then C ′ · (−KX′) = 0, with OC′(−2KX′) ∼= OC′ and
OC′(−KX′) � OC′, for C ′ a general curve in L′. So we need to have −KX′ not
effective otherwise OC′(−KX′) ∼= OC′.

A first step to construct surfaces with Prym-canonical hyperplane sections is to as-
sume that −2KX′ is effective while −KX′ is not, i.e. h0(OX′(−2KX′)) > 0 while
h0(OX′(−KX′)) = 0. If we suppose that −2KX′ is irreducible, then this happens if
and only if r = 10 (see Claim 1 of Example 3.2). Indeed, if 1 ≤ r < 10, then
h0(OX′(−KX′)) ≥

(
3+2

2

)
− r = 10 − r > 0 and therefore −KX′ would be effective. On

the contrary, if r > 10, then −2KX′ would be reducible since an effective irreducible
nodal curve exists if and only if the number of nodes r is at most equal to the arithmetic
genus of the curve (if r > 10, then pa(−2KX′) = (6−1)(6−2)

2
= 10 and pg(−2KX′′) < 0).

Instead, as seen in Example 3.2, if r = 10 then the desired property is valid.

We can see a general result regarding surfaces with Prym-canonical hyperplane sections
birationally equivalent to P2.

Lemma 3.4. Let X be a surface with Prym-canonical hyperplane sections whose min-
imal model is X ′′ = P2 and let X ′ be the minimal resolution of the singularities of X.
If we also assume that −2KX′ is irreducible and effective, −KX′ is not effective and
C ′ is a general divisor of L′, then C ′ ∼ bl−

∑10
i=1 riEi is such that 3b =

∑10
i=1 ri, where

ri > 0 for any i.

Proof. If C ′′ ∈ X ′′ is a generic divisor in L′′, then C ′′ ∼ bl has base points {x1, ..., xk}
on X ′′, for b ≥ 1 and k ≥ 1 (see Remark 3.1). Let ri, for i = 1, ..., k, be the multiplicity
of xi on C ′′, so it is clear that ri > 0 for any i. The assumptions imply k = 10 (see
Remark 3.3).
The map φ : X ′ → X ′′ is the blowing up of X ′′ along {x1, ..., x10}. So
−2KX′ = 6l − 2

∑10
i=1Ei (as seen in Example 3.2, it is the only effective and irre-

ducible divisor in its class of linear equivalence). On the other hand we have that the
strict transform C ′ ∈ X ′ of C ′′ is C ′ ∼ bl −

∑10
i=1 riEi.
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Since we have that C ′ · (−2KX′) = 0 by hypothesis, then

0 = C ′ · (−2KX′) = (bl −
10∑
i=1

riEi) · (6l − 2
10∑
i=1

Ei) = 2(3b−
10∑
i=1

ri),

so the claim is satisfied.

Let us see a new example of surface with Prym-canonical hyperplane sections bira-
tionally equivalent to P2.

Example 3.5. Let X ′′ = P2 be such that −2KX′′ is an irreducible sextic with 10
nodes {x1, ..., x10}. Let L′′ be a linear system of curves of degree 18 with base points
{x1, ..., x10} ∈ X ′′ of multiplicity respectively ri = 4, for i = 1, 2, 3, and ri = 6, for
i = 4, ..., 10. Let X ′ = Bl{x1,...,x10}(P2) be the blowing up of X ′′ along the base points of
L′′. As observed before, the anticanonical divisor −KX′ is not effective.
Let

C ′ ∼ 18l − 4
3∑
i=1

Ei − 6
10∑
i=4

Ei

be a general curve in L′, where Ei is the exceptional divisor associated with xi, for
i = 1, ..., 10. It is obvious that

deg(C ′|C′) = 182 − 3 · 16− 7 · 36 = 24.

We have that h0(OX′(C ′)) ≥
(

20
2

)
− 44·5

2
− 76·7

2
= 13, so iL′(X

′) = X ⊂ Pr, for r ≥ 12.

Since −2KX′ ∼ J = 6l − 2
∑10

i=1 Ei is effective and C ′ · (−2KX′) = 0 by construction,
then OC′(−2KX′) ∼= OC′. So L′ contracts J in a single point since J is irreducible.
Moreover, since J is also rational, then iL′(J) is a rational singularity of multiplicity
4 because the fundamental cycle Z0 = J is such that Z2

0 = J2 = −4.

CLAIM 1 : The dimension dim(L′) = 12, so iL′(X
′) = X ⊆ P12.

Proof. If J = 6l − 2
∑10

i=1 Ei ∈ X ′, we can consider the exact sequence

0→ OX′(−J)→ OX′ → OJ → 0.

Tensoring with OX′(C ′), we obtain

0→ OX′(C ′ − J)→ OX′(C ′)→ OJ(C ′)→ 0. (28)

Since OC′(−2KX′) ∼= OC′ , J ∈ | − 2KX′| and J is rational, then OJ(C ′) ∼= OJ ∼= OP1 .
We can rewrite (28) as

0→ OX′(12l− 2
3∑
i=1

Ei− 4
10∑
i=4

Ei)→ OX′(18l− 4
3∑
i=1

Ei− 6
10∑
i=4

Ei)→ OP1 → 0. (29)
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Similarly we obtain that

0→ OX′(C ′ − 2J)→ OX′(C ′ − J)→ OJ(C ′ − J)→ 0,

so

0→ OX′(6l − 2
10∑
i=4

Ei)→ OX′(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei)→

→ OJ(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei)→ 0. (30)

It is possible to choose a quintuple of points among the 10 nodes {x1, ..., x10} of J such
that three of these points are not aligned, then an irreducible conic passing through
this quintuple of points exists. Up to renaming the nodes of J , we suppose that a conic
passing through {x4, ..., x8} exists.
So let us consider the following exact sequences:

0→ OX′(4l−
8∑
i=4

Ei−2E9−2E10)→ OX′(6l−2
10∑
i=4

Ei)→ O2l−
∑8

i=4 Ei
(6l−2

8∑
i=4

Ei)→ 0;

(31)

0→ OX′(3l −
10∑
i=4

Ei)→ OX′(4l −
8∑
i=4

Ei − 2
10∑
i=9

Ei)→

→ Ol−E9−E10(4l −
8∑
i=4

Ei − 2
10∑
i=9

Ei)→ 0. (32)

We have that h0(OX′(3l−
∑10

i=4Ei)) =
(

5
2

)
−7 = 3 by [16], Example 9.3.3(c). Since it is

an effective divisor on X ′ and it has the expected dimension, then
h1(OX′(3l −

∑10
i=4 Ei)) = 0.

Since l−E9−E10 is rational and (l−E9−E10) · (4l−
∑8

i=4Ei− 2
∑10

i=9Ei) = 0, then
h0(Ol−E9−E10(4l −

∑8
i=4 Ei − 2

∑10
i=9 Ei)) = 1 and

h1(Ol−E9−E10(4l −
∑8

i=4Ei − 2
∑10

i=9Ei)) = 0.
From the exact sequence (32), we conclude that h0(OX′(4l −

∑8
i=4 Ei − 2

∑10
i=9Ei)) =

3 + 1 = 4 and h1(OX′(4l −
∑8

i=4 Ei − 2
∑10

i=9Ei)) = 0.

We observe that, since J and 2l−
∑8

i=4Ei are rational, then, by Serre Duality, we have
that

h1(OJ(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei)) = h0(OJ(−2− 4)) = 0

and

h1(O2l−
∑8

i=4 Ei
(6l − 2

10∑
i=4

Ei)) = h0(O2l−
∑8

i=4
(−2− 2)) = 0.
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Using the Riemann-Roch Theorem, we obtain that

h0(OJ(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei)) = 4 + 1 = 5

and

h0(O2l−
∑8

i=4 Ei
(6l − 2

10∑
i=4

Ei)) = 2 + 1 = 3.

From the exact sequence (31), we conclude that h0(OX′(6l − 2
∑10

i=4Ei)) = 7 and
h1(OX′(6l − 2

∑10
i=4 Ei)) = 0. Again, from the exact sequence (30), we have that

h0(OX′(12l−2
∑3

i=1Ei−4
∑10

i=4 Ei)) = 12 and h1(OX′(12l−2
∑3

i=1Ei−4
∑10

i=4Ei)) = 0.
Finally, from the exact sequence (29), we obtain that

h0(OX′(18l − 4
3∑
i=1

Ei − 6
10∑
i=4

Ei)) = 12 + 1 = 13.

Then the claim is proved.

Step by step we want to show that a general hyperplane section of X ′ is a Prym-
canonically embedded curve.

CLAIM 2 : We prove that OC′(−KX′) � OC′.

Proof. If we show that h1(OX′(−KX′ − C ′)) = 0, then, using the long exact sequence
associated with

0→ OX′(−KX′ − C ′)→ OX′(−KX′)→ OC′(−KX′)→ 0

and observing that −KX′ is not effective, we have that h0(OC′(−KX′)) = 0, thus
OC′(−KX′) � OC′ .
Since

−KX′ − C ′ ∼ −15l + 3
3∑
i=1

Ei + 5
10∑
i=4

Ei,

then it is not effective and h0(OX′(−KX′ − C ′)) = 0. By Serre Duality, we have that
h2(OX′(−KX′ −C ′)) = h0(OX′(2KX′ +C ′)) = h0(OX′(12l− 2

∑3
i=1Ei− 4

∑10
i=4 Ei)) =

12 as proved in Claim 1.
Using the Riemann-Roch Theorem, we conclude that −h1(OX′(−KX′ − C ′)) +
+h2(OX′(−KX′−C ′)) = −h1(OX′(−KX′−C ′))+12 = 1

2
(−15l+3

∑3
i=1 Ei+5

∑10
i=4Ei)·

·(−12l + 2
∑3

i=1Ei + 4
∑10

i=4 Ei) + 1 − 0 = 12, so h1(OX′(−KX′ − C ′)) = 0 and the
claim is proved.

CLAIM 3 : There are irreducible curves of degree 18 with exactly 3 quadruple points
and 7 points of multiplicity six in the ten nodes of J .
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Proof. We observe that curves of the type J+D, with D ∈ |12l−2
∑3

i=1Ei−4
∑10

i=4Ei|
and J fixed part, are contained in L′ = |18l − 4

∑3
i=1Ei − 6

∑10
i=4 Ei|.

As proved in Claim 1, we have that dim |18l − 4
∑3

i=1 Ei − 6
∑10

i=4 Ei| = 12 while
dim |12l− 2

∑3
i=1 Ei− 4

∑10
i=4 Ei| = 11, so the reducible curves J +D do not define all

the linear system of the curves of degree 18. As consequence of Bertini’s Theorem (see
[2], pag. 1), the generic curve of L′ is irreducible (indeed the curves of the linear system
L′ with fixed part J define a sublinear system and moreover the sublinear system is
not composed by a pencil, even more so the linear system L′).
Also curves of the type 2J + F , with F ∈ |6l − 2

∑10
i=4 Ei| and 2J fixed part, are

contained in L′. Since these special curves of L′ have exactly quadruple points in three
of the 10 nodes of J and points of multiplicity 6 in seven of the 10 nodes of J , then the
generic curves of the linear system L′ have the same property. Thus irreducible curves
of degree 18 with exactly quadruple points in three of the 10 nodes of J and points of
multiplicity 6 in the remaining nodes of J exist.

Therefore the arithmetic genus, that is equal to the geometric genus of C, is

g(C ′) =
17 · 16

2
− 3

4 · 3
2
− 7

6 · 5
2

= 13

by the Plücker Formula.

It remains to show that L′ defines an embedding outside the contracted curve J , in
particular L defines an embedding.

CLAIM 4 : The linear system L′ is base-point free.

Proof. Let X ′ = Blx11(X
′), where x11 is a point of a general C ′ ∈ L′. If

L′ = |18l − 4
∑3

i=1Ei − 6
∑10

i=4 Ei − E11|, for E11 the exceptional divisor associated
with x11, then L′ is base point free if and only if

dim(L′) = dim(L′)− 1,

for any point x11 ∈ C ′, for a general C ′ ∈ L′.

We have already proved that dim(L′) = 12 while dim(L′) ≥
(

20
2

)
− 34·5

2
− 76·7

2
− 1− 1 =

11. We observe that, since x11 ∈ C ′ and C ′ and J are disjoint by assumption, then
OJ(C ′) ∼= OP1 , where C ′ is a general curve in L′ and J is the strict transform of J on
X ′.
Similarly to the exact sequences (29), (30), we have the following:

0→ OX′(12l−2
3∑
i=1

Ei−4
10∑
i=4

Ei−E11)→ OX′(18l−4
3∑
i=1

Ei−6
10∑
i=4

Ei−E11)→ OP1 → 0

(33)

0→ OX′(6l − 2
10∑
i=4

Ei − E11)→ OX′(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei − E11)→
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→ OJ(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei − E11)→ 0. (34)

As in Claim 1, we suppose that an irreducible conic passing through {x4, ..., x8} exists.

1. If x11 ∈ 2l −
∑8

i=4Ei, we can consider the exact sequence

0→ OX′(4l −
8∑
i=4

Ei − 2
10∑
i=9

Ei)→ OX′(6l − 2
10∑
i=4

Ei − E11)→

→ O2l−
∑8

i=4 Ei−E11
(6l − 2

10∑
i=4

Ei − E11)→ 0. (35)

From the exact sequence (32), we know that h0(OX′(4l−
∑8

i=4Ei−2
∑10

i=9 Ei)) =
4 and h1(OX′(4l −

∑8
i=4Ei − 2

∑10
i=9Ei)) = 0. Since

h0(O2l−
∑8

i=4 Ei−E11
(6l−2

∑10
i=4Ei−E11)) = 2 by Riemann-Roch’s Theorem, then

h0(OX′(6l − 2
∑10

i=4 Ei − E11)) = 6 and h1(OX′(6l − 2
∑10

i=4Ei − E11)) = 0 from
the exact sequence (35).

2. If x11 /∈ 2l −
∑8

i=4Ei, then we consider the following

0→ OX′(4l −
8∑
i=4

Ei − 2E9 − 2E10 − E11)→ OX′(6l − 2
10∑
i=4

Ei − E11)→

→ O2l−
∑8

i=4 Ei
(6l − 2

10∑
i=4

Ei − E11)→ 0. (36)

(a) If x11 ∈ l − E9 − E10, we have that

0→ OX′(3l −
10∑
i=4

Ei)→ OX′(4l −
8∑
i=4

Ei − 2
10∑
i=9

Ei − E11)→

→ Ol−E9−E10−E11(4l −
8∑
i=4

Ei − 2
10∑
i=9

Ei − E11)→ 0. (37)

By [16], Example 9.3.3(c), we have that h0(OX′(3l −
∑10

i=4 Ei)) = 3.
On the other hand, since the product
(l − E9 − E10 − E11) · (4l −

∑8
i=4Ei − 2

∑10
i=9 Ei − E11) = −1, then

h0(Ol−E9−E10−E11(4l −
∑8

i=4Ei − 2
∑10

i=9Ei − E11)) = 0. From the exact
sequence (37), we obtain that h0(OX′(4l−

∑8
i=4Ei− 2

∑10
i=9 Ei−E11)) = 3.
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(b) If x11 /∈ l − E9 − E10, we can consider the following exact sequences

0→ OX′(3l −
11∑
i=4

Ei)→ OX′(4l −
8∑
i=4

Ei − 2
10∑
i=9

Ei − E11)→

→ Ol−E9−E10(4l −
8∑
i=4

Ei − 2
10∑
i=9

Ei − E11)→ 0; (38)

0→ OX′(l −
11∑
i=9

Ei)→ OX′(3l −
11∑
i=4

Ei)→ O2l−
∑8

i=4 Ei
(3l −

11∑
i=4

Ei)→ 0.

(39)

By assumption we have that h0(OX′(l −
∑11

i=9 Ei)) = 0. Because
h0(O2l−

∑8
i=4 Ei

(3l −
∑11

i=4 Ei)) = 2, then, from the exact sequence (39) we

conclude that h0(OX′(3l −
∑11

i=4Ei)) ≤ 2. Since h0(OX′(3l −
∑11

i=4 Ei)) ≥(
5
2

)
− 8 = 2, then equality holds.

Moreover h0(OX′(4l−
∑8

i=4 Ei−2
∑10

i=9Ei−E11)) ≥
(

6
2

)
−6−3−3 = 3. Since

h0(Ol−E9−E10(4l −
∑8

i=4 Ei − 2
∑10

i=9 Ei − E11)) = 1, then, from the exact
sequence (38), we have that h0(OX′(4l −

∑8
i=4 Ei − 2

∑10
i=9Ei − E11)) ≤ 3,

so equality holds.

In both previous cases (a) and (b), we have found
h0(OX′(4l−

∑8
i=4 Ei−2

∑10
i=9Ei−E11)) = 3. Since it is the expected dimension,

then h1(OX′(4l −
∑8

i=4Ei − 2
∑10

i=9 Ei − E11)) = 0.

Using the Riemann-Roch Theorem, we have that
h0(O2l−

∑8
i=4 Ei

(6l − 2
∑10

i=4Ei − E11)) = 3. So we obtain that

h0(OX′(6l − 2
∑10

i=4 Ei − E11)) = 6 and h1(OX′(6l − 2
∑10

i=4Ei − E11)) = 0 from
the exact sequence (36).

In both cases we have that h0(OX′(6l − 2
∑10

i=4Ei − E11)) = 6.

With the same techniques as before, from the exact sequence (34) we obtain that
h0(OX′(12l − 2

∑3
i=1 Ei − 4

∑10
i=4Ei − E11)) = 11 and

h1(OX′(12l − 2
∑3

i=1Ei − 4
∑10

i=4Ei − E11)) = 0 and finally, from the exact sequence
(33), we obtain that h0(OX′(18l − 4

∑3
i=1Ei − 6

∑10
i=4 Ei − E11)) = 12. Then we can

conclude that L′ is base-point free.

By Bertini’s Theorem, since L′ is base-point free, then the generic C ′ ∈ L′ is smooth.

CLAIM 5 : The linear system L′ defines an embedding outside the contracted curve J .
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Proof. It is sufficient to show that dimL′ = dim(L′) − 2, where either
L′ = |18l − 4

∑3
i=1Ei − 6

∑10
i=4Ei − E11 − E12|, for E11 and E12 the exceptional

divisors associated with any two distinct points x11 and x12 not belonging to J , or
L′ = |18l − 4

∑3
i=1Ei − 6

∑10
i=4Ei − E11 − 2E12|, for E11 and E12 the exceptional

divisors associated with any two points x11 and x12 infinitely near not belonging to J .

We have already proved that dim(L′) = 12. Moreover we have that
dim(L′) ≥

(
20
2

)
− 34·5

2
− 76·7

2
− 2 − 1 = 10. If C ′ is a general curve in L′ and J is

the strict transform of J on X ′, then C ′ · J = 0 since we choose x11 and x12 not
belonging to J .

� Let x11 and x12 be distinct. We can consider the following exact sequences:

0→ OX′(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei − E11 − E12)→

→ OX′(18l − 4
3∑
i=1

Ei − 6
10∑
i=4

Ei − E11 − E12)→ OP1 → 0; (40)

0→ OX′(6l−2
10∑
i=4

Ei−E11−E12)→ OX′(12l−2
3∑
i=1

Ei−4
10∑
i=4

Ei−E11−E12)→

→ OJ(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei − E11 − E12)→ 0 (41)

0→ OX′(2
3∑
i=1

Ei − E11 − E12)→ OX′(6l − 2
10∑
i=4

Ei − E11 − E12)→

→ OJ(6l − 2
10∑
i=4

Ei − E11 − E12)→ 0. (42)

It is clear that h0(OX′(2
∑3

i=1 Ei −E11 −E12)) = 0. Again, by Serre Duality, we
have that h2(OX′(2

∑3
i=1Ei − E11 − E12)) =

h0(OX′(−3l +
∑12

i=1 Ei − 2
∑3

i=1Ei + E11 + E12)) = 0. Using the Riemann-Roch
Theorem, we obtain that −h1(2

∑3
i=1Ei − E11 − E12)) =

1
2
(2
∑3

i=1Ei − E11 − E12) · (3l +
∑3

i=1 Ei −
∑10

i=4Ei − 2E11 − 2E12) + 1 = −4.

Since J ·(6l−2
∑10

i=4Ei−E11−E12) = 8, then h0(OJ(6l−2
∑10

i=4Ei−E11−E12)) =
9. Moreover h0(OX′(6l−2

∑10
i=4 Ei−E11−E12)) ≥

(
8
2

)
−7·3−2 = 5. To show that

equality holds, it is sufficient to prove that h1(OX′(6l−2
∑10

i=4Ei−E11−E12)) = 0.

We observe that curves of the type (3l −
∑12

i=4 Ei) + F , with F ∈ |3l −
∑10

i=4Ei|
and 3l −

∑12
i=4Ei fixed part, are contained in |6l − 2

∑10
i=4Ei − E11 − E12|.

We have that dim |6l − 2
∑10

i=4Ei − E11 − E12| ≥ 5 while dim |3l −
∑10

i=4 Ei| =(
5
2

)
−7 = 5·4

2
−7 = 3, so the reducible curves of the type (3l−

∑12
i=4Ei)+F do not

define all the linear system of the curves of degree 6. As consequence of Bertini’s
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Theorem (see [2], pag. 1), the generic curve D of |6l − 2
∑10

i=4 Ei − E11 − E12|
is irreducible (indeed the curves of the linear system |6l − 2

∑10
i=4 Ei − E11 −

E12| with fixed part 3l −
∑12

i=4Ei define a sublinear system and moreover the
sublinear system is not composed by a pencil, even more so the linear system
|6l − 2

∑10
i=4Ei − E11 − E12|).

Let us consider the exact sequence

0→ OX′ → OX′(D)→ OD(D)→ 0. (43)

Since D2 = 36−28−2 = 6 and pa(D) = 5·4
2
−7 = 3, then h1(OD(D)) = 0 (see [20],

Example IV.1.3.4). Since h1(OX′) = 0 by definition, then
h1(OX′(6l − 2

∑10
i=4 Ei − E11 − E12)) = 0 from the exact sequence (43). Con-

sequently h0(OX′(6l− 2
∑10

i=4Ei−E11−E12)) = 5 from the exact sequence (42).

Since J is rational, then h0(OJ(12l−2
∑3

i=1 Ei−4
∑10

i=4 Ei−E11−E12)) = 5 and
h1(OJ(12l−2

∑3
i=1Ei−4

∑10
i=4 Ei−E11−E12)) = 0, so, from the exact sequence

(41), we have that h0(OX′(12l − 2
∑3

i=1Ei − 4
∑10

i=4 Ei − E11 − E12)) = 10 and
h1(OX′(12l − 2

∑3
i=1Ei − 4

∑10
i=4 Ei − E11 − E12)) = 0.

Finally, from the exact sequence (40), we obtain that
h0(OX′(18l − 4

∑3
i=1Ei − 6

∑10
i=4Ei − E11 − E12)) = 11. The claim is proved

for x11 and x12 distinct.

� Let x11 and x12 be infinitely near. We can consider the following exact sequences:

0→ OX′(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei − E11 − 2E12)→

→ OX′(18l − 4
3∑
i=1

Ei − 6
10∑
i=4

Ei − E11 − 2E12)→ OP1 → 0; (44)

0→ OX′(6l−2
10∑
i=4

Ei−E11−2E12)→ OX′(12l−2
3∑
i=1

Ei−4
10∑
i=4

Ei−E11−2E12)→

→ OJ(12l − 2
3∑
i=1

Ei − 4
10∑
i=4

Ei − E11 − 2E12)→ 0 (45)

0→ OX′(2
3∑
i=1

Ei − E11 − 2E12)→ OX′(6l − 2
10∑
i=4

Ei − E11 − 2E12)→

→ OJ(6l − 2
10∑
i=4

Ei − E11 − 2E12)→ 0. (46)

Exactly as the previous case, we can prove that h0(OX′(2
∑3

i=1 Ei−E11−2E12)) =
h2(OX′(2

∑3
i=1Ei − E11 − 2E12)) = 0 and h1(2

∑3
i=1Ei − E11 − 2E12)) = 4.
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Since J · (6l − 2
∑10

i=4Ei − E11 − 2E12) = 8, then
h0(OJ(6l − 2

∑10
i=4Ei − E11 − 2E12)) = 9. Moreover we have that

h0(OX′(6l− 2
∑10

i=4Ei−E11− 2E12)) ≥
(

8
2

)
− 7 · 3− 2 = 5. To show that equality

holds, it is sufficient to prove that h1(OX′(6l − 2
∑10

i=4 Ei − E11 − 2E12)) = 0.

Similarly to before, the generic curve D of
|6l − 2

∑10
i=4Ei − E11 − 2E12| is irreducible by Bertini’s Theorem.

Let us consider the exact sequence

0→ OX′ → OX′(D)→ OD(D)→ 0. (47)

Since D2 = 36− 28− 1− 4 + 2 + 2 = 7 and pa(D) = pg(D) = 5·4
2
− 7 = 3, then

h1(OD(D)) = 0 (see [20], Example IV.1.3.4). Since h1(OX′) = 0 by definition,
then h1(OX′(6l − 2

∑10
i=4Ei − E11 − 2E12)) = 0 from the exact sequence (47).

Consequently h0(OX′(6l− 2
∑10

i=4 Ei−E11− 2E12)) = 5 from the exact sequence
(46).

With the same computations as before, using the exact sequences (45) and (44),
we obtain that h0(OX′(18l − 4

∑3
i=1Ei − 6

∑10
i=4Ei − E11 − 2E12)) = 11. The

claim is proved for x11 and x12 infinitely near.

We have found a new example of rational surface X ⊂ P12 of degree
deg(X) = C′2

deg iL′
= 24 with Prym-canonical hyperplane sections and only one singu-

larity, a quartic rational singularity.

We can list some possible rational surface X with Prym-canonical hyperplane sec-
tions in terms of numerical values.

Lemma 3.6. The following list contains linear systems L′ on X ′ = Bl{x1,...,x10}(P2)
whose image X = iL′(X

′) satisfies the conclusions of Lemma 3.4 and dimL′ ≥ 4, so
they are candidates to be surfaces with Prym-canonical hyperplane sections.

1. L′ = |6ml −m
∑2

i=1Ei − 2m
∑10

i=3 Ei|, for m ≥ 2, m ∈ N;

2. L′ = |7ml − 2m
∑9

i=1Ei − 3mE10|, for m ≥ 2, m ∈ N;

3. L′ = |9ml − 2m
∑3

i=1Ei − 3m
∑10

i=4 Ei|, for m ≥ 2, m ∈ N;

4. L′ = |9ml −mE1 − 2mE2 − 3m
∑10

i=3Ei|, for m ≥ 2, m ∈ N;

5. L′ = |10ml − 3m
∑10

i=1Ei|, for m ≥ 1, m ∈ N;

6. L′ = |10ml − 2mE1 − 3m
∑9

i=2Ei − 4mE10|, for m ≥ 1, m ∈ N.
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Remark 3.7. To conclude that the surfaces X = iL′(X
′) of the previous Lemma are

surfaces with Prym-canonical hyperplane sections, it remains to show that
OC′(−2KX′) ∼= OC′ while OC′(−KX′) � OC′ and, moreover, L′ has the expected di-
mension, it is base-point free and it defines an embedding outside a finite number of
contracted curves, that determine the isolated singularities of X. However, if we only
know that L′ defines a birational map, then the image X could have non-isolated sin-
gularities.

Proof of Lemma 3.6. If X ′′ = P2, then −2KX′′ ∼ 6l, in particular we assume that
−2KX′′ is an irreducible sextic with 10 nodes {x1, ..., x10}. Let L′′ be a linear sys-
tem with base points {x1, ..., x10} of multiplicity ri > 0, for i = 1, ..., 10, and let
X ′ = Bl{x1,...,x10}(P2) be the blowing up of X ′′ along the base points of L′′. As seen
in Remark 3.3, the anticanonical divisor −KX′ is not effective. Clearly the generic
element of L′ is C ′ ∼ bl −

∑10
i=1 riEi, for b ∈ N>0.

We consider all the linear systems L′ on X ′ of curves C ′ of degree b passing through
{x1, ..., x10} with multiplicity ri > 0, for i = 1, .., 10, such that 3b =

∑10
i=1 ri and

dim(L′) ≥ 4. Thus, by Lemma 3.4 and by definition of surface with Prym-canonical
hyperplane sections, we expect the image X = iL′(X

′) to be a possible surface with
Prym-canonical hyperplane sections. As in Example 3.2, the linear system L′ contracts
−2KX′ to a quadruple rational singularity.

We observe that, if b ≤ 3, then 3b < 10, so the variable b never satisfies the condition
3b =

∑10
i=1 ri, for ri > 0, for i = 1, .., 10.

• If b = 4, then the relation 3b =
∑10

i=1 ri is satisfied either if{
ri = 1 for i=1,...,8
r9 = r10 = 2

or if {
ri = 1 for i=1,...,9
r10 = 3,

up to renaming the multiplicities ri. It is clear that all the positive multiples
satisfy the same relation, in the sense that 3mb =

∑10
i=1mri, for any m ∈ N>0.

If C ′ ∼ 4ml−m
∑8

i=1Ei − 2mE9 − 2mE10, for m > 0, then we can observe that

h0(OX′(C ′)) ≥
(4m+ 2)(4m+ 1)

2
− 8

m(m+ 1)

2
− 2

2m(2m+ 1)

2
=

= 8m2 + 6m+ 1− 4m2 − 4m− 4m2 − 2m = 1.

Since we do not know if dim |C ′| ≥ 4, then we exclude this case.

Similarly, if C ′ ∼ 4ml −m
∑9

i=1 Ei − 3mE10, we observe that

h0(OX′(C ′)) ≥
(4m+ 2)(4m+ 1)

2
− 9

m(m+ 1)

2
− 3m(3m+ 1)

2
=
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= 8m2 + 6m+ 1− 9

2
m2 − 9

2
m− 9

2
m2 − 3

2
m = −m2 + 1,

for m ∈ N>0. We exclude this case for the same reason as before.

• If b = 5, then the relation 3b =
∑10

i=1 ri is satisfied if{
ri = 1 for i=1,...,5
rj = 2 for j=6,...,10,

up to renaming the terms. All the positive multiples of
C ′ ∼ 5l −

∑5
i=1 Ei − 2

∑10
j=6Ej satisfy the same relation. We can observe that

h0(OX′(mC ′)) ≥
(5m+ 2)(5m+ 1)

2
− 5

m(m+ 1)

2
− 5

2m(2m+ 1)

2
=

=
25

2
m2 +

15

2
m+ 1− 5

2
m2 − 5

2
m− 10m2 − 5m = 1,

for any m ∈ N>0. Since we do not know if dim |mC ′| ≥ 4, for m > 0, then we
also exclude this case.

There are other {r1, ..., r10} satisfying the relation
3b =

∑10
i=1 ri, with values of ri greater than or equal to the previous ones, but it

is clear that h0(OX′(C ′)) ≤ 1 in these other possible cases (in the previous case
the value of h0(OX′(C ′)) was 1). Then we do not consider them.

• If b = 6, the relation 3b =
∑10

i=1 ri is satisfied if{
r1 = r2 = 1
ri = 2 for i=2,...,10,

up to renaming the multiplicities ri. We also consider all the positive multiples
of C ′ ∼ 6l − E1 − E2 − 2

∑10
i=2 Ei, so

h0(OX′(mC ′)) ≥
(6m+ 2)(6m+ 1)

2
− 2

m(m+ 1)

2
− 8

2m(2m+ 1)

2
=

= 18m2 + 9m+ 1−m2 −m− 16m2 − 8m = m2 + 1,

for any m ∈ N>0. We are sure that dimL′ ≥ 4 if and only if m ≥ 2. Hence the
linear systems L′ = |mC ′|, for m ≥ 2, are such that the image is a “possible”
surface with Prym-canonical hyperplane sections.

Another set {r1, ..., r10} that satisfies the relation 3b =
∑10

i=1 ri, for b = 6, is{ ri = 1 for i=1,2,3
rj = 2 for j=4,...,9
r10 = 3.

Again, if C ′ ∼ 6ml−m
∑3

i=1Ei−2m
∑9

i=4 Ei−3E10, for m ∈ N>0, then we have
that

h0(OX′(C ′)) ≥
(6m+ 2)(6m+ 1)

2
−3

m(m+ 1)

2
−6

2m(2m+ 1)

2
− 3m(3m+ 1)

2
=
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= 18m2 + 9m+ 1− 3

2
m2 − 3

2
m− 12m2 − 6m− 9

2
m2 − 3

2
m = 1.

Since we do not know if dim |C ′| ≥ 4, then we exclude this case.

We do not consider the other possible {r1, ..., r10} that satisfy the relation
3b =

∑10
i=1 ri because the associated linear systems have expected dimension

less than or equal to 1.

• With the same techniques as before, if b = 7, then
C ′ ∼ 7ml − 2m

∑9
i=1 Ei − 3mE10 is such that

h0(OX′(C ′)) ≥
49

2
m2 +

21

2
m+ 1− 18m2 − 9m− 9

2
m2 − 3

2
m = 2m2 + 1,

for m ∈ N>0. We are sure that dimL′ ≥ 4 if and only if m ≥ 2. So we only
consider the linear systems L′ = |C ′| with m ≥ 2, whose image is a “possible”
surface with Prym-canonical hyperplane sections.

If C ′ ∼ 7ml −mE1 − 2m
∑8

i=2Ei − 3mE9 − 3mE10, then

h0(OX′(C ′)) =
49

2
m2 +

21

2
m+ 1− m2

2
− m

2
− 14m2− 7m− 9m2− 3m = m2 + 1,

for m ∈ N>0. We are sure that dimL′ ≥ 4 if and only if m ≥ 2. If we apply a
quadratic transformation in the two points of multiplicity 3m and in one of the
points of multiplicity 2m of C ′, then these linear systems are the same found in
the case “b = 6”.

If C ′ ∼ 7ml −mE1 −mE2 − 2m
∑7

i=3Ei − 3m
∑10

i=8Ei, then

h0(OX′(C ′)) =
49

2
m2 +

21

2
m+ 1−m2 −m− 10m2 − 5m− 27

2
m2 − 9

2
m = 1,

for m ∈ N>0. We do not know if dimL′ ≥ 4, so we exclude this case. We also
exclude the other possible {r1, ..., r10} that satisfy the relation 3b =

∑10
i=1 ri, with

values of ri greater than or equal to the previous ones, because the associated
linear systems have expected dimension less than or equal to 1.

• Similarly, if b = 8, then C ′ ∼ 8ml − 2m
∑6

i=1Ei − 3m
∑10

i=7Ei is such that

h0(OX′(C ′)) = 32m2 + 12m+ 1− 12m2 − 6m− 18m2 − 6m = 2m2 + 1,

for m ∈ N>0. We are sure that dimL′ ≥ 4 if and only if m ≥ 2. So we only
consider the linear systems L′ = |C ′| with m ≥ 2. If we apply a quadratic
transformation in three of the points of multiplicity 3m of C ′, then these linear
systems are the same of the previous case with b = 7.

If C ′ ∼ 8ml − E1 − 2m
∑5

i=2Ei − 3m
∑10

i=6Ei, then

h0(OX′(C ′)) = 32m2 + 12m+ 1− m
2

2
− m

2
− 8m2− 4m− 45

2
m2− 15

2
m = m2 + 1,
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for m ∈ N>0. Again we are sure that dimL′ ≥ 4 if and only if m ≥ 2. If we apply
a quadratic transformation in three of the points of multiplicity 3m of C ′, then
these linear systems are the same found in the case “b = 7”.

If C ′ ∼ 8ml − E1 − E2 − 2E3 − 2E4 − 3m
∑10

i=5Ei, then

h0(OX′(C ′)) = 32m2 + 12m+ 1−m2 −m− 4m2 − 2m− 27m2 − 9m = 1,

for m ∈ N>0. We do not know if dimL′ ≥ 4, so we exclude this case and
similarly all the other possible {r1, ..., r10} that satisfy the relation 3b =

∑10
i=1 ri,

with values of ri greater than or equal to the previous ones, because the associated
linear systems have expected dimension less than or equal to 1.

• If b = 9, then C ′ ∼ 9ml − 2m
∑3

i=1 Ei − 3m
∑10

i=4 Ei is such that

h0(OX′(C ′)) =
81

2
m2 +

27

2
m+ 1− 6m2 − 3m− 63

2
m2 − 21

2
m = 3m2 + 1,

for m ∈ N>0. Because if m ≥ 2 then dimL′ ≥ 4, we only consider the linear
systems L′ = |C ′| with m ≥ 2, whose image is a “possible” surface with Prym-
canonical hyperplane sections.

If C ′ ∼ 9ml −mE1 − 2mE2 − 3m
∑10

i=3Ei, then

h0(OX′(C ′)) =
81

2
m2 +

27

2
m+ 1− m

2

2
− m

2
− 2m2−m− 36m2− 12m = 2m2 + 1,

for m ∈ N>0. Because if m ≥ 2 then dimL′ ≥ 4, we only consider the linear
systems L′ = |C ′| with m ≥ 2, whose image is a “possible” surface with Prym-
canonical hyperplane sections.

If C ′ ∼ 9ml − 2m
∑4

i=1Ei − 3m
∑9

i=5Ei − 4mE10, then

h0(OX′(C ′)) =
81

2
m2 +

27

2
m+1−8m2−4m− 45

2
m2− 15

2
m−8m2−2m = 2m2 +1,

for m ∈ N>0. Applying a quadratic transformation in the point of multiplicity
4m and in two of the points of multiplicity 3m of C ′, we obtain the same linear
systems of the case with b = 8.

If C ′ ∼ 9ml − 2m
∑5

i=1Ei − 3m
∑8

i=6 Ei − 4m
∑10

i=9 Ei, then

h0(OX′(C ′)) =
81

2
m2 +

27

2
m+1−10m2−5m− 27

2
m2− 9

2
m−16m2−4m = m2 +1,

for m ∈ N>0. Applying a quadratic transformation in the two points of multi-
plicity 4m and in one of the points of multiplicity 3m of C ′, we obtain the same
linear systems of the case with b = 7.

If C ′ ∼ 9ml − 2m
∑6

i=1Ei − 3mE7 − 4m
∑10

i=8Ei, then

h0(OX′(C ′)) =
81

2
m2 +

27

2
m+ 1− 12m2 − 6m− 9

2
m2 − 3

2
m− 24m2 − 6m = 1,

for m ∈ N>0. We do not know if dimL′ ≥ 4, so we exclude this case and
similarly all the other possible {r1, ..., r10} that satisfy the relation 3b =

∑10
i=1 ri,

with values of ri greater than or equal to the previous ones, because the associated
linear systems have expected dimension less than or equal to 1.
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• Finally, if b = 10, we can consider C ′ ∼ 10ml − 3m
∑10

i=1 Ei, for m ∈ N>0. It is
easy to prove that

h0(OX′(C ′)) ≥ 5m2 + 1,

with 5m2 + 1 ≥ 5 for any m. Example 3.2 corresponds to this case with m = 1.

If C ′ ∼ 10ml − 2mE1 − 3m
∑9

i=2Ei − 4mE10, then

h0(OX′(C ′)) ≥ 4m2 + 1 ≥ 5

for any m ∈ N>0. So the linear systems L′ = |C ′|, for m ≥ 1, are such that the
image is a “possible” surface with Prym-canonical hyperplane sections.

If C ′ ∼ 10ml − 2mE1 − 2mE2 − 3m
∑8

i=3Ei − 4mE9 − 4mE10, then

h0(OX′(C ′)) ≥ 3m2 + 1,

for m ∈ N>0. Using a quadratic transformation centered in the two points of
multiplicity 4m and in one of the points of multiplicity 3m of C ′, then these
linear systems are referable to the cases with b = 9.

If C ′ ∼ 10ml − 2m
∑3

i=1Ei − 3m
∑7

i=4Ei − 4m
∑10

i=8Ei, then

h0(OX′(C ′)) ≥ 2m2 + 1,

for m ∈ N>0. Using a quadratic transformation centered in the three points of
multiplicity 4m of C ′, then these linear systems are the same found in the case
“b = 8′′.

If C ′ ∼ 10ml − 2m
∑4

i=1Ei − 3m
∑6

i=5Ei − 4m
∑10

i=7Ei, then

h0(OX′(C ′)) ≥ m2 + 1,

for m ∈ N>0. Using two quadratic transformations, one centered in three of the
points of multiplicity 4m of C ′ and the other centered in the point of multiplicity
4m and in the two points of multiplicity 3m of the transformed curve, then these
linear systems are the same of the previous cases with b = 6.

If C ′ ∼ 10ml − 2m
∑5

i=1Ei − 4m
∑10

i=6Ei, then

h0(OX′(C ′)) ≥ 1,

for m ∈ N>0. We do not know if dimL′ ≥ 4, so we exclude this case and the
other possible {r1, ..., r10} that satisfy the relation 3b =

∑10
i=1 ri, with values of ri

greater than or equal to the previous ones, because the associated linear systems
have expected dimension less than or equal to 1.
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Remark 3.8. It is possible to extend the list of Lemma 3.6 continuing with the same
method as before for all b ≥ 10, so there are infinite possible linear systems
L′ = |bl −

∑10
i=1 riEi| that satisfy

3b =
10∑
i=1

ri and dim(L′) ≥ 4. (48)

In particular, we can prove that infinite linear systems not multiple one of the other
exist.

Let L′ = |bl −
∑10

i=1 riEi| be a linear system such that 3b =
∑10

i=1 ri and

dim(L′) = h0(OX′(C ′))− 1 =

(
b+ 2

2

)
−

10∑
i=1

ri(ri + 1)

2
− 1 =

=
b2 + 3b+ 2

2
−

10∑
i=1

ri(ri + 1)

2
− 1 =

b2 −
∑10

i=1 r
2
i

2
+

3b−
∑10

i=1 ri
2

≥ 4.

Then it is clear that, if k ∈ N≥2, the linear system L′ = |kbl −
∑10

i=1 kri| satisfies
3kb = k

∑10
i=1 ri and

dimL′ =

(
kb+ 2

2

)
−

10∑
i=1

kri(kri + 1)

2
− 1 = k2 b

2 −
∑10

i=1 r
2
i

2
+ k

3b−
∑10

i=1 ri
2

> 4.

We can prove that there are other examples of linear systems of degree kb that satisfy
the requests of (48) that are not multiples of linear systems of lower degree.
For example, we suppose that min{kr1, ..., kr10} = kr1 and max{kr1, ..., kr10} = kr10.

At this point, we can consider the linear system L̃′ = kbl− r̃1E1− r̃10E10−
∑9

i=2 kriEi,

where r̃1 = kr1 +1 and r̃10 = kr10−1. Hence L̃′ cannot be a multiple of a linear system
that satisfies (48) of lower degree. It is clear that 3kb =

∑10
i=1 kri =

∑9
i=2 kri + r̃1 + r̃2,

so one of the two properties of (48) is satisfied. Similarly we have that

dim L̃′ =

(
kb+ 2

2

)
−

9∑
i=2

kri(kri + 1)

2
− r̃1(r̃1 + 1)

2
− r̃10(r̃10 + 1)

2
− 1 =

= dim(L′) +
kr1(kr1 + 1)

2
+
kr10(kr10 + 1)

2
− r̃1(r̃1 + 1)

2
− r̃10(r̃10 + 1)

2
.

We have already observed that dimL′ > 4. Let us fix

x :=
kr1(kr1 + 1)

2
+
kr10(kr10 + 1)

2
− r̃1(r̃1 + 1)

2
− r̃10(r̃10 + 1)

2
=

=
k2r2

1 + kr1

2
+
k2r2

10 + kr10

2
− k2r2

1 + 3kr1 + 2

2
− k2r2

10 − kr10

2
=

=
kr1 + kr10 − 3kr1 − 2 + kr10

2
= k(r10 − r1)− 1.
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We observe that kr10 ≥ kr1 by the previous assumption. So, if kr10 = kr1, then x = −1
and dim L̃′ = dimL′ + x ≥ 4, instead, if kr10 > kr1, then x ≥ 2(r10 − r1) − 1 ≥ 1,

hence dim L̃′ > 5. The two properties of (48) are satisfied by L̃′.

We conclude that, for any degree, we can find linear systems that are not multiples of
linear system of lower degree.

As seen in Remark 3.3, in order to have −KX′ not effective, at least 10 points of
P2 must be blown up. If we suppose that −2KX′ is effective and irreducible, then only
10 points must be blown up, as discussed above.
Instead, if −2KX′′ is effective and reducible, we can blow up more than 10 points of
P2 keeping −2KX′ effective.

Remark 3.9. We know that −2KP2 ∼ 6l is linearly equivalent to a sextic curve.

We recall that a nodal plane curve irreducible and effective is such that the number of
nodes δ is at most equal to the arithmetic genus of the curve. It is clear that lines and
conics cannot have nodes. Instead, an irreducible cubic C can have at most one node
since pa(C) = 1, an irreducible quartic Q can have at most 3 nodes since pa(Q) = 3,
an irreducible quintic T can have at most 6 nodes since pa(T ) = 6 and so on.

If r is the number of nodes of −2KP2, then the possible reduced and reducible an-
tibicanonical divisors of P2, whose corresponding antibicanonical divisor −2KX′ of
X ′ = Blx1,..,xrP2 is effective while the anticanonical divisor −KX′ is not effective, are
formed by:

• if r = 11, the possibilities are

– union of a quintic with 6 nodes and a line;

– union of a quartic with 3 nodes and a conic;

– union of a quartic with 2 nodes and two lines;

– union of two cubics, each one with one node;

– union of a smooth cubic, a conic and a line;

• if r = 12, then we have

– union of a quartic with 3 nodes and two lines;

– union of a cubic with one node, a conic and a line;

– union of a smooth cubic and three lines;

– union of three conics;

• if r = 13, the possibilities are

– union of a cubic with one node and three lines;

– union of two conics and two lines;
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• if r = 14, the only possible antibicanonical divisor of P2 is

– union of one conic and four lines;

• if r = 15, the only possible antibicanonical divisor of P2 is

– union of six lines.

We can generalize Lemma 3.4.

Lemma 3.10. Let X be a surface with Prym-canonical hyperplane sections whose
minimal model is X ′′ = P2 and let X ′ be the minimal resolution of the singularities of
X. If we also assume that −2KX′ is effective, −KX′ is not effective and C ′ is a general
divisor of L′, then C ′ ∼ bl −

∑k
i=1 riEi is such that 3b =

∑k
i=1 ri, where 10 ≤ k ≤ 15

and ri > 0 for any i.

Proof. Similar to the proof of Lemma 3.4 but now −2KX′′ can be reducible, so
10 ≤ k ≤ 15 as seen in Remarks 3.3 and 3.9.

Remark 3.11. The previous Lemma is useful to list in terms of numerical values the
possible surfaces with Prym-canonical hyperplane sections, as seen in Lemma 3.6 for
−2KX′ irreducible.

4 Moduli of surfaces with Prym-canonical hyper-

plane sections

Let X ⊂ Pg−1 be a surface with Prym-canonical hyperplane sections that is not a cone,
for g ≥ 5. We assume that a general hyperplane section C of X has Clifford index
Cliff(C) ≥ 5, so, in particular, C is not hyperelliptic and it is projectively normal with
respect to its embedding in Pg−2 (see [23], Lemma 2.1).

Let π : X ′ → X be the minimal resolution of singularities of X and let C ′ = π∗C, as
seen in the previous chapters. Let us suppose that X ′ is not an Enriques surface, so
it is birationally equivalent to P2 or a ruled surface X ′′ over a base curve Γ of genus
q ≥ 0 (see Theorem 1.10). Let φ : X ′ → X ′′ be a relatively minimal model for X ′. We
have already proved that h0(OX′(−2KX′)) = 1 (see Theorem 1.12), so let W ′ be the
only effective antibicanonical divisor on X ′. Since −KX′ |C′ is a two-torsion divisor by
hypothesis, then h0(OX′(−KX′)) = 0.

In the following, we will suppose that all these assumptions are valid. Moreover, in
the first phase, we will work assuming X ′′ = P2 or X ′′ a rational ruled surface, with
q = q(X ′) = q(X ′′) = 0.

Lemma 4.1. If X ′ is rational, we have that h0(OW ′) = −K2
X′.
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Proof. We use the following exact sequence:

0→ OX′(−W ′)→ OX′ → OW ′ → 0. (49)

Since W ′ is effective, then h0(OX′(−W ′)) = 0. In addition h0(OX′) = 1 and h1(OX′) =
0 by hypothesis.
On the other hand, by the Riemann-Roch Theorem, we have that

h1(OX′(−W ′)) = h2(OX′(2KX′))−
1

2
(2KX′)(KX′)− 1 =

= h0(OX′(−KX′))−K2
X′ − 1 = −K2

X′ − 1.

From the long exact sequence associated with (49), we conclude that h0(OW ′) = −K2
X′ .

Remark 4.2. By Mumford’s Theorem (see [25], Chapter 1), we know that −K2
X′ > 0

since −2KX′ is contracted by π.

The divisor W ′ has one or more connected components, D1, ..., Dn, so, by Proposition
1.15, D1, ..., Dn are contracted to rational singularities on X with multiplicity µ1, ..., µn
respectively.

Let us suppose that W ′ is irreducible, so W ′ is contracted to a rational singularity
x ∈ X with multiplicity µ. Then, by definition, we have that µ = −W ′2.

Let h be the number of blown up points in φ (also infinitely near). With the same
notation of Proposition 1.22, we have that

−2KX′t+1
= π∗(−2KX′t

)− 2Et+1,1 − ...− 2Et+1,i(t),

where Et+1,i is the exceptional divisor associated with the blown up point xt,i, for
t = 1, ..., s− 1 and i = 1, .., i(t). So (−2KX′t+1

)2 = (−2KX′t
)2 − 4i(t). Hence, iterating

this process and observing that i(1) + ... + i(s − 1) = h by definition, we have that
−µ = W ′2 = (−2KX′′)

2 − 4h and, in particular,

µ = 4h− (2KX′′)
2. (50)

If X ′′ = P2, then µ = 4h− 36. Since µ is strictly positive, then h > 9 in this case.

We claim that surfaces of the type of X as above depend on a number of moduli
that has an upper bound. Before showing this, we will prove preliminary lemmas.

Lemma 4.3. Let X ⊂ Pg−1 be a surface with Prym-canonical hyperplane sections
that is not a cone, for g ≥ 5. Assume that a general hyperplane section C of X has
Cliff(C) ≥ 5. Then X is an intersection of quadrics (ideal-theoretic intersection of
quadrics).

Remark 4.4. As already observed, a general hyperplane section C of X with Cliff(C) ≥
5 is projectively normal with respect to its embedding in Pg−2 (see [18], Theorem 1).
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Proof. As seen in point 1. of Theorem 1.10, we have that h1(OX(n)) = 0 for any n ≥ 0.
We consider the exact sequence

0→ IC|X(2)→ IX|Pg−1(2)→ IC|Pg−2(2)→ 0,

where IC|X(2) ∼= OX(1). By the previous remark, we know that h1(OX(1)) = 0, hence

H0(IX|Pg−1(2))� H0(IC|Pg−2(2)). (51)

By [23], Corollary 2.3, we have that C is an intersection of quadrics. Let {q1, ..., qp}
be the equations of a basis for the space of quadrics containing C. Let H be a general
hyperplane section such that X ∩ H = C. Using (51), for every hypersurface f |H of
Pg−2 containing C of degree k ≥ 2, there exists a hypersurface f containing X in Pg−1

of degree k such that f induces f |H on Pg−2. Let {Q1, ..., Qp} be the equations of a
set of quadrics containing X such that Qi|H = qi, for i = 1, .., p. Similarly to the
techniques of [28], Corollary 7.11, let λ be the equation of a hypersurface of degree
k containing X. By the previous remark, we have that λ|H =

∑
i uiqi, where ui are

polynomials of degree k− 2. So λ−
∑

i UiQi, where Ui|H = ui for any i, vanishes on X
and H, hence λ−

∑
i UiQi = h · λ′, where h defines H and λ′ of degree k − 1 vanishes

on X. By induction on k, the ideal of X is generated by quadrics and the claim is
proved.

Let ρ : X → F ⊂ Pg−2 be the projection from x on a hyperplane, where x is the rational
singularity of X obtained by the contraction of W ′, that we assume irreducible.

Lemma 4.5. Let X be a rational surface with Prym-canonical hyperplane sections, not
a cone, and we assume that a general hyperplane section C of X has Cliff(C) ≥ 5 and,
in particular, C is projectively normal. The projection map ρ : X → F is birational
onto its image.

Proof. Let us suppose that ρ is not birational on its image, then X has trisecant
lines passing through x. Since X is an intersection of quadrics, then it contains these
trisecant curves. Thus X would be a cone of vertex x but it is rational by assumption,
then X would have rational hyperplane sections. This is impossible because we assume
that X is a surface with Prym-canonical hyperplane sections. The claim is proved.

We give an upper bound to h, that is the number of blown up points in φ.

Theorem 4.6. Let X be a surface with Prym-canonical hyperplane sections C of genus
g and let π : X ′ → X be the minimal resolution of singularities of X. Let φ : X ′ → X ′′

be a relatively minimal model for X ′ such that X ′′ is P2 or a ruled surface over a base
curve of genus q = 0. If Cliff(C) ≥ 5 and, in particular, C is projectively normal and
W ′ ∈ | − 2KX′ | is irreducible, then

h ≤ 1

6
g +

5

6
+K2

X′′ .

More precisely, if X ′′ = P2, then h ≤ 1
6
g + 59

6
.
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Proof. By Lemma 4.5, we have that ρ is birational onto its image F .
Let us suppose that F is a ruled surface. Then X is a surface described by curves of
degree d passing through x with multiplicity d− 1. Since X is intersection of quadrics
(see Lemma 4.3), then d ≤ 2. If d = 1, then X would have rational hyperplane sections
but this is not possible because g(C) ≥ 5. On the other hand, if d = 2, then C would
have a g1

2 but this is not possible because Cliff(C) ≥ 5. Thus F cannot be a ruled
surface.
By [21], Horowitz Formula, we have that

deg(F ) ≥ 4

3
(g − 2− 2) =

4

3
g − 16

3
.

On the other hand, we have that

deg(F ) = deg(X)− µ = 2g − 2− µ.

By (50), we can say that 2g − 2 − µ = 2g − 2 − 4h + (2KX′′)
2. Combining the two

results, we obtain that 4
3
g − 16

3
≤ 2g − 2− 4h+ (2KX′′)

2, from which

4h ≤ 2

3
g +

10

3
+ 4K2

X′′ .

The claim is proved.

Finally, let σ be the number of moduli of the surfaces of the type of X.

Theorem 4.7. With the same hypothesis of Theorem 4.6, we can conclude that:

1. if X ′′ is birationally equivalent to a rational ruled surface, then

σ ≤
{ 4K2

X′′ +
1
6
g − 31

6
if 0 ≤ e < 3

4K2
X′′ +

1
6
g − 31

6
+ 2e− 5 if 3 ≤ e < 6

4K2
X′′ +

1
6
g − 31

6
+ 3e− 10 if e ≥ 6.

2. if X ′′ = P2, then

σ ≤ 1

6
g +

173

6
.

Proof. 1. Let X ′′ be a surface birationally equivalent to a rational ruled surface.
Using Riemann-Roch’s Theorem, we can compute that

dim |−2KX′′ | = h0(OX′′(−2KX′′))−1 = h1(OX′′(−2KX′′))−h2(OX′′(−2KX′′))+

+
1

2
(−2KX′′)(−3KX′′) + 1− 1.

By Serre Duality, we have that h2(OX′′(−2KX′′)) = h0(OX′′(3KX′′)) = 0. By
Lemma 2.5, we know that h1(OX′′(−2KX′′)) = h1(OP1(4+2e))+h1(OP1(4+e))+
h1(OP1(4)) + h1(OP1(4 − e)) + h1(OP1(4 − 2e)), where
e = −deg(D) ≥ 0 is an invariant of X ′′, as seen in the previous sections.
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Using [20], Example IV.1.3.4. and Riemann-Roch’s Theorem, we obtain that

h1(OX′′(−2KX′′)) =

{ 0 if 0 ≤ e < 3
2e− 5 if 3 ≤ e < 6
3e− 10 if e ≥ 6.

Then

τ := dim | − 2KX′′ | =
{ 3K2

X′′ if 0 ≤ e < 3
3K2

X′′ + 2e− 5 if 3 ≤ e < 6
3KX′′ + 3e− 10 if e ≥ 6.

(52)

Since dim |− 2KX′| = 0 (see Theorem 1.12), we have to blow up at least τ points
that impose independent conditions on | − 2KX′′ |. Moreover, we blow up other
h− τ points on the antibicanonical divisor, so that it remains effective on X ′. It
is obvious that h− τ ≥ 0 by definition of h.

Hence σ ≤ 2τ + (h − τ) − dim(Aut(X ′′)). Since X ′′ is a minimal rational ruled
surface, then dim(Aut(X ′′)) ≥ 6. Thus σ ≤ τ + h− 6. By Theorem 4.6, we can
write that

σ ≤ τ +
1

6
g +

5

6
+K2

X′′ − 6 = τ +
1

6
g − 31

6
+K2

X′′ .

The claim is proved using the inequalities contained in (52).

2. Let X ′′ = P2. Then

dim | − 2KX′′ | = dim |6l| = h0(OX′′(6l))− 1 = h1(OX′′(6l))− h2(OX′′(6l))+

+
1

2
(6l)(9l) + 1− 1,

where l is the class of a line of P2. By Serre Duality, we have that h2(OX′′(6l)) =
h0(OX′′(−9l)) = 0. Moreover, by [20], Theorem III.5.1, we know that
h1(OX′′(−2KX′′)) = 0. Then

dim | − 2KX′′| =
1

2
(6l)(9l) + 1− 1 = 27.

Since dim |−2KX′ | = 0 (see Theorem 1.12), we have to blow up at least 27 points
that impose independent conditions on | − 2KX′′ |. Moreover, we blow up other
h − 27 points on the antibicanonical divisor, so that it remains effective on X ′.
It is obvious that h− 27 ≥ 0 by definition of h.

Hence σ ≤ 2 · 27 + (h − 27) − dim(Aut(X ′′)). Since X ′′ = P2, then
dim(Aut(X ′′)) = 8. Thus σ ≤ 27 + h − 8. By Theorem 4.6, we can write
that

σ ≤ 27 +
1

6
g +

59

6
− 8 =

1

6
g +

173

6
.

The claim is proved.
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From now on, we will assume X ′′ a non-rational ruled surface, with
q = q(X ′) = q(X ′′) > 0. Since X ′ is irregular and it has negative Kodaira dimension
(see Theorem 1.10, we have already excluded X ′ Enriques surface in the assumptions),
then X ′ is a ruled surface and we will denote by a ≥ 1 the degree of the rational curves
of the ruling. Also X is a ruled surface in curves of degree a.

Let σ be the number of moduli of the surfaces of the type of X and let m be the
number of moduli of hyperplane sections of X. Since X ⊆ Pg−1 by assumption and
there are ∞g−1 possible hyperplane in Pg−1, then m ≤ σ + g − 1.

Theorem 4.8. Let X be a surface with Prym-canonical hyperplane sections C of genus
g such that C is projectively normal and let π : X ′ → X be the minimal resolution of
singularities of X. Let φ : X ′ → X ′′ be a relatively minimal model for X ′ such that X ′′

is a ruled surface over a base curve of genus q > 0. If m is the number of moduli of
hyperplane sections of X, then

m ≤
{ 2g − 1 if q = 1

3g − 3 if q > 1 and a = 1
2g − 2− (2a− 3)(q − 1) < 2g − 1 if q > 1 and a > 1.

Proof. If C is a general hyperplane section of X, then it is a covering a : 1 of a curve
of genus q.

If q = 1, then the number of moduli of elliptic curves is 1 and, by Hurwitz formula,
the degree of the ramification divisor is 2g − 2. Thus m ≤ 1 + 2g − 2 = 2g − 1.

Similarly, if q > 1, then the number of moduli of curves of genus q is 3q − 3 and, by
Hurwitz formula, the degree of the ramification divisor is 2g − 2 − a(2q − 2). Hence
m ≤ 3q− 3 + 2g− 2− a(2q− 2) = (3− 2a)(q− 1) + (2g− 2) = 2g− 2− (2a− 3)(q− 1).
If a = 1, then it is obvious that g = q, so m ≤ 2g − 2 + (g − 1) = 3g − 3.
On the other hand, if a 6= 1, then the quantity 1 + (2a − 3)(q − 1) > 0. Hence
m ≤ 2g − 2− (2a− 3)(q − 1) < 2g − 1. The claim is proved.
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