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Due to the emerging Big Data paradigm, driven by the increase availabil-
ity of users generated data, traditional data management techniques are inad-
equate in many real life scenarios. The availability of huge amounts of data
pertaining to user social interactions calls for advanced analysis strategies in
order to extract meaningful information. Furthermore, heterogeneity and high
speed of user generated data require suitable data storage and management
and a huge amount of computing power. This dissertation presents a Big Data
framework able to enhances user quest for information by exploiting previous
knowledge about their social environment. Moreover an introduction to Big
Data and NoSQL systems is provided and two basic architecture for Big Data
analysis are presented. The framework that enhances user quest, leverages
the extent of influence that the users are potentially subject to and the influ-
ence they may exert on other users. User influence spread, across the network,
is dynamically computed as well to improve user search strategy by providing
specific suggestions, represented as tailored faceted features. The approach is
tested in an important application scenario such as tourist recommendation
where several experiment have been performed to assess system scalability
and data read/write efficiency. The study of this system and of advanced anal-
ysis on Big Data has shown the need for a huge computing power. To this end
an high performance computing system named CoremunitiTM is presented.
This system represents a P2P solution for solving complex works by using
the idling computational resources of users connected to this network. Users
help each other by asking the network computational resources when they face
high computing demanding tasks. Differently from many proposals available
for volunteer computing, users providing their resources are rewarded with
tangible credits. This approach is tested in an interesting scenario as 3D ren-
dering where its efficiency has been compared with "traditional" commercial
solutions like cloud platforms and render farms showing shorter task comple-
tion times at low cost.
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Chapter 1

Introduction

The impressive progress and development of Internet and on-line technologies
has led to an increasing availability of a huge volume of data generated by het-
erogeneous sources at high production rates (Economist, 2010). These massive
data, referred as Big Data (Nature, 2008), exhibit a great variety and may be
exploited to gather information about people, things, services and their inter-
actions. In this respect, a great deal of attention has been devoted to the design
of novel algorithms for analyzing information available from Twitter, Google,
Facebook, and Wikipedia, to cite a few of the main big data producers. Fur-
thermore, almost every individual leaves digital traces when connected to the
plethora of available Sensor Networks, Cloud Storages, and Global Position-
ing services, through smart phones and tablets. By using their devices, people
get in touch (e.g., with friends, followers and fans) and perform several ac-
tions (e.g., they post comments, videos, photos, they link resources, they rate
products and they express their sentiment about something or someone). The
availability of such unprecedented large amount of heterogeneous informa-
tion sources is quite challenging as they provide the ground for the analysis
of human behavior, and their evolution when influenced by other people’s
opinion/suggestion. Predicting user behaviors is crucial in many application
scenarios such as viral marketing, sentiment analysis and epidemic modeling
(Kempe, Kleinberg, and Tardos, 2003; Tang, Xiao, and Shi, 2014; Newman,
2010). As a result there is an increasing deal of interest, shared by both re-
searchers (Agrawal et al., 2012) and industries (Manyika et al., 2011), for a
deep understanding of user attitudes, user preferences and user interaction
patterns with complex systems, which is crucial for implementing effective
tools that are the basis of high quality services able to satisfy user requests.
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The definition of Big Data usually use the 3v model:

• Volume: refers to the amount of data (structured, unstructured) gener-
ated every second

• Variety: refers to the different types of data that are generated and col-
lected

• Velocity: refers to the speed at which new data is generated

Big Data management require new archiving and analysis approaches. More
in detail, the traditional relational model is replaced with the so-called NoSQL
systems. While the relational databases aim at a vertical scalability, which con-
sists practically in enhancing the machine on which the DBMS is hosted, the
NoSQL datastores aim at a horizontal scalability, which consists in the possi-
bility of dynamically adding new resources.

The heterogeneity and velocity these data are generated require appropri-
ate ad-hoc designed data storage. A major problem in the management of this
enormous amount of data is the extraction of "new" information that has a
consistent value with respect to the content of the entire database and its con-
sultation in near real-time timing. This new information is crucial and should
be stored and used within the whole analysis process.

The issue of devising novel solutions for analyzing big data is becoming
more and more compelling in the construction of Intelligent Information Sys-
tems (IIS) to assist end user in the search of relevant information and in the
interaction with services in the net.

A first challenge in the design of a such system is to extract and enhance the
information content of source data. An example could be related to tourist con-
text. Assuming to have only customer reviews of a large number of restaurants
we may want to classify restaurants according to the various “dimensions”
(i.e., categorized properties or other features) that have been singled out and
evaluated in the reviews. A solution will be presented based on a modified
version of data exchange.

However, the generation of new information and therefore the creation of
new dimensions analysis can lead to the generation of a too large number of
dimensions. So, a second challenge consists in detecting on-the-fly features (i.e.
dimensions) that are relevant in the search context and tailored to the user behavior. A
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possible solution is based on the influence that users of a system exert between
them. As example, consider the case of a user expressing an enthusiastic com-
ment on a recently visited city (e.g., by a Facebook “like" and/or post). Most
likely, his/her friends could be interested to utilize the positive feedback on
that city when deciding their next travel destination. In this respect, the sys-
tem should suggest some categorized high level information (e.g. "touristic
city" for family or "funny city" for young people) in response to a search for
a specific destination based on the influence exerted on him by other system
users.

Some issue arises from this challenges as How to allow relevant information
about user search preferences propagate over the network? or How to measure the
possible information spread? This issues are preliminary to the activity of dis-
covering new dimensions to be added to the information sources and to be
later used to support a search mixed with tailored browsing. Moreover, data
gathered by social network and search engines are inherently non structured;
therefore, a data exchange task has to be performed for moving source data
into a target “structured” database enabling an effective analysis of user be-
havior.

This work presents a framework tailored for analyzing user interactions
with IIS while seeking for some domain specific information (e.g. choosing
a good restaurant in a visited area). The framework enhance user quest for
information by exploiting previous knowledge about their social environment,
the extent of influence the users are potentially subject to and the influence
they may exert on other users. User influence spread, across the network, is
dynamically computed as well to improve user search strategy by providing
specific suggestions, represented as tailored faceted features. Such features
are the result of data exchange activity that enriches information sources with
additional background information and knowledge derived from experiences
and behavioral properties of domain experts and users. The approach is tested
in the tourist recommendation scenario using data gathered from Yelp, Twitter
and Facebook. Several experiment have been performed on this dataset to
assess system scalability and data read/write efficiency.

Analysis on Big Data require a lot of computational power. In recent years
there has been the development of projects whose complexity becomes very
challenging and requires enormous computing power.
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In order to solve similar of problems, a new computing paradigm has born:
crowdsourcing. This new paradigm is based on the idea of gathering the re-
sources needed to complete a task from the crowd in order to parallelize its
execution. The majority of systems that exploit this paradigm is based on peer
to peer network (P2P). A well known example of project involving resources
from crowd is BOINC (Berkeley Open Infrastructure for Network Computing)
1. It allow users to contribute voluntarily to a variety of project. In the last few
years, another approach has been developed related to cryptocurrency mining.
Users of a P2P network of this type provide disk and calculation resources to
maintains the system and earn a tangible reward. Some famous example of
this type of system are Bitcoin (Nakamoto, 2008) or Ethereum (Wood, 2014).

In this work a system named CoremunitiTM is presented, which is inspired
by the collaborative model used in BOINC while implementing an ad hoc re-
warding strategy similar to cryptocurrency mining. This system allows users
to share their CPU and memory in a secure and efficient way. By doing this,
users help each other by asking the network computational resources when
they face high computing demanding tasks. Differently from others propos-
als available for volunteer computing, users providing their resources are re-
warded with tangible credits, i.e., they can redeem their credits by asking for
computational power to solve their own task and/or by exchanging them for
money.

The design of a peer to peer network presents a large number of issues
such as peer discovery, task partitioning and assignment, security of commu-
nications and data. Alongside these typical issues of peer to peer systems,
other problems need to be addressed like those related to the quality of ser-
vice that must be comparable to those offered by centralized server farms and
the reuse of peer resources that are not completely used. So, main challenges
addressed in the design of this framework are:

• provide a P2P service better or comparable w.r.t centralized server farm

• design a subtask assignment that from one side minimize the expected comple-
tion time for overall task and from another take into account the user revenue
expectation

• design a network with a better revenue system than cryptocurrency mining
1https://boinc.berkeley.edu
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The designed framework can be used in several application scenarios, e.g.
computer simulation and advanced Big Data analysis and it is well suited for
vertical implementation of computing intensive tasks, representing a trans-
disciplinary opportunity. The first application developed is aimed at 3d ren-
dering industry that turns to be a severe test bench for this technology. The
rendering of photorealistic images takes, on average, several hours of com-
puting on typical user devices. Moreover, the calculation time becomes enor-
mous in case of movies rendering where for every second they usually need
20 frames. To this end, a specialized plugin named MozaikoTM has been de-
veloped which allows to render Blender 3D models in the distributed P2P net-
work.

In order to validate this framework a comparison was conducted against
some of the most popular specialized rendering server farms (i.e. RenderStreet
and RebusFarm) and some clusters on well known cloud service platform (i.e.
Microsoft Azure, Amazon EC2, Google Cloud, IBM Cloud and DigitalOcean).
The experimental analysis shows that existing solutions are slower and more
expensive than the proposed solution. Moreover, the designed system does
not require to frequently purchase new hardware, since users continuously
provide (up to date) computational power. Finally, the better re-use of already
powered resources could induce a beneficial systemic effect by reducing the
overall energy consumption for complex tasks execution.

This document is structured as follows. Chapter 2 introduces Big Data,
that is the main topic of our research and the NoSQL Paradigm. So, the main
difference between NoSQL and relational databases are shown. Moreover a
NoSQL classification based on data model is provided as well as a descrip-
tion of main open source tools to deal with big data. Chapter 3 focuses on Big
Data architectures and two basic models are presented. The first architecture,
called Sigma, describes a solution for the construction of a complete, interac-
tive and scalable Big Data system while the second is based on an OLAP type
approach. Chapter 4 describe the architecture and the main components of the
CoremunitiTM P2P network. Finally, Chapter 5 describe a Big Data solutions
for extract and enhance the information content of source data and for detect
features (i.e. dimensions) that are relevant in the search context and tailored to
the user behavior.
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Chapter 2

Dealing with Big Data

2.1 Background

Due to the continuous improvement in data generation techniques and the
widespread use of pervasive tools like sensor networks, a huge volume of het-
erogeneous, stream based and complex data are generated every day. This
scenario leads to various issues that affect entire data life cycle, from acqui-
sition phase to analysis phase. In particular, since data are collected at high
speed and from different sources, it is necessary to make some choices (typi-
cally ad-hoc) about which data to keep, which to discard and which metadata
to use to store them reliably. Many issues also arise in data pre-processing
phase. In particular, the following aspects must be addressed:

• Structure. Data is often generated in an unstructured format (for exam-
ple, in sensor networks data can be generated by heterogeneous sensors,
perhaps sold by different suppliers and operating with different proto-
cols);

• Semantics. Data can refer to different concepts (for example, in sensor
networks, data can refer to different physical properties that are observed
for various purposes);

• Integration. the value of data grows considerably when sources can be
linked to other sources. In data value chain, integration is a very impor-
tant task.

However, main challenge remains to organize and model data in order to
allow analysis of all possible information of interest in useful time. It must be
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said that in analysis phase the choice of algorithms to be used also represents a
crucial point, this in order to efficiently analyze data contained on these highly
distributed system. Finally we have knowledge extraction, presentation of re-
sults and their interpretation, all operations that should be treated by domain
experts (even non-technical). The classical relational model show several lim-
itation when used to support storage and retrieving in Big Data sources ; to
overcome this limitations a new paradigm, called NoSQL has been proposed
in recent years. The NoSQL (that stands for Not Only SQL) systems provide a
mechanism for data storage and retrieval that is modeled differently than tab-
ular relations used in relational databases. NoSQL databases use multiple data
models to access and manage data and are specifically optimized for applica-
tions that require large volumes of data, low latency and flexible data models,
obtained by streamlining some of data consistency criteria of other databases.
The definition of NoSQL was used for the first time in 1998 by Carlo Strozzi
(C. Strozzi. Nosql relational database management system.) for an open source re-
lational database that did not use an SQL interface. The term was reintro-
duced in 2009 by Rackspace employee Eric Evans when Johan Oskarsson of
Last.fm organized an event to discuss distributed open source databases. The
name was an attempt to describe the development of a large number of non-
relational distributed data storage systems that often do not attempt to provide
classic ACID guarantees.

In the next paragraphs will be provided a detailed characterization of the
NoSQL paradigm and a description of a series of open source tools to operate
on these types of databases.

2.2 The NoSQL Paradigm

The NoSQL movement was born from the need to manage an enormous
amount of data, which drove large companies like Google and Amazon to no
longer rely on relational systems for this purpose, but to build large hardware
platforms on inexpensive server clusters (the so-called "commodity servers").
Relational systems are designed to run on very powerful single machines and
although there have been many attempts to obtain from them a scalable solu-
tion, many difficulties remaining; some examples may be the operation man-
agement of joins on distributed tables and the high costs of software licenses,
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generally provided for individual servers. While relational databases aim
at vertical scalability, which basically consists in upgrading the machine on
which DBMS runs, NoSQL datastores aim at horizontal scalability, which con-
sists in the possibility of dynamically adding new machines to system. Con-
trary to what could be deduced from NoSQL term, this type of system does
not prohibit the use of SQL language, but aims to propose an alternative so-
lution to data management and database modeling in those cases where large
amounts of distributed and unstructured data are involved. NoSQL is the
acronym of "Not only SQL", probably the expression was taken as a refer-
ence only because SQL is most common query language used in relational
databases and therefore represents a symbol of whole relational paradigm.

Although supporters of new movement claim that these systems are more
performing, more scalable and easier to use, they do not claim to replace
relational model, because there are still many situations in which relational
databases are only the valid solution.

In addition to the desire of medium and large companies to be able to cap-
ture as much data as possible and be able to process them quickly, another rea-
son that favored the birth of NoSQL systems was the demand for greater pro-
ductivity in application development. Much of effort in this process is caused
by mapping between data structures that are in main memory and relational
databases, a problem known as "Impedance Mismatch". In relational model
data is organized in tables and rows, where a tuple is a set of name value pairs
and a relation is a set of tuples. All operations in SQL operate on relations
and return relations, similar to what happens in relational algebra. However,
if on one hand these tools provide elegance and simplicity, they also introduce
many limitations, including the impossibility of inserting complex structures
in tables, such as lists or nested records. However, these limitations are not
only in main memory, but are necessary when working with object-oriented
programming languages, such as Java. To solve this problem in 1990 the first
object-oriented databases were developed, but they had no success. The result
was that, if you wanted to exploit certain structures in main memory, a phase
of data translation was mandatory before storing them on disk, as you can
observe in figure 2.1.

Although relational databases have always been seen as a universal so-
lution, NoSQL datastores in general provide a data model that better fit the
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FIGURE 2.1: Translation of aggregated data toward a relational
representation

needs of applications and also require less code to write, debug and update.
Relational databases offer a good compatibility with different software imple-
mentation and an high level of abstraction thanks to tabular data model and
query language. On the contrary, NoSQL systems, of which there are currently
more than 200 implementations1, present greater differences on implementa-
tions starting from interrogation methods. The main features they have in
common are:

• No explicit schema: Lack of a schema specified through a formal language,
on the contrary, an implicit schema is used, that is contained in the code
that manipulates data. This is useful for dynamically add new attributes
to data records and easily manage non-uniform data, avoiding waste in
storing sparse tables.

• Horizontal scalability: The ability to work well in clusters through data
replication and segmentation

1For a complete list you can refer to the site http://nosql-database.org/
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• Ability to manage huge amounts of data: Automatically balance workload
between various network nodes

• Different Transaction Model: Different from relational transaction model,
the idea is that removing ACID constraints can improve performance
and scalability.

• Open Source Philosophy: Crucial to contribute to increasing potential of
used technologies

2.3 The Relational Databases

For a long time the only question that software developers asked themselves
when launching a new project was which relational database to use, as long as
their company didn’t already have preferences for any particular database.
So it is also natural to ask what are reasons why relational databases have
survived so long over time. Certainly one of main problems with business
applications is management of concurrency, that is, how to manage cases in
which multiple users simultaneously access the same piece of data. Concur-
rency is a notoriously difficult problem to deal with and relational databases
allows to manage control of all data accesses in a fairly simple manner using
transactions. The latter also play a fundamental role in error management, in
fact if an error occurs during execution of an operation, it is possible to do roll
back operation and restore initial state of things, all in a transparent way to
developer. Almost all RDBMS support ACID transactions:

• Atomicity: The transaction is indivisible: all parts that compose it are
applied to a database or none.

• Consistency: The database must remain in a consistent state before and
after execution of a transaction, so there must be no contradictions be-
tween data stored in DB.

• Isolation: When multiple transactions are executed by one or more users
simultaneously, a transaction does not see effects of other concurrent
transactions.
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• Durability: When a transaction has been completed (with a commit), its
changes become persistent, meaning they are no longer lost.

One of biggest advantages of relational databases was ability to make ap-
plications coexist in a single and rich ecosystem, even if different from each
other. Thanks to database sharing mechanisms, multiple applications can store
their data in a single database, which means that each application can access
data of other applications with necessary permissions while database system
manage simultaneous accesses. However, some applications must work on
billions and trillions of data every day and consistency is not the only de-
sirable property in these cases, scalability is the concept that plays the most
important role. The only way to deal with huge amounts of data is to move
towards a distributed system and in 2001 the same large producers of rela-
tional databases released on the market distributed solutions like Oracle RAC
(Real Application Clusters). These solutions proved to be difficult to configure
and highly unnatural; in fact, the integrity constraints or the control of consis-
tency on data segments (shards) placed on different nodes were lost. In this
direction, important limitations are highlighted by CAP Theorem.

2.4 The CAP Theorem

The CAP theorem was theorized by Eric Brewer (Brewer, 2000), first born as a
mathematical conjecture and only two years later became theorem as a formal
proof was presented. The three letters that make up his name stand for: C
= Consistency, A = Availability, P = Partition-Tolerance and these principles
have the following definition:

• Consistency (strong): If a data is written in a node and is read by another
node in a distributed system, the system will return last written value
(the consistent one);

• Availability: The distributed system must always satisfy client requests,
so eventual failure of a node must not block the whole system.

• Partition-Tolerance: The ability of a distributed system to be tolerant
to partitioning, the addition/removal of a node must not block system
execution.
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This theorem establishes that only two of the three properties just described
can be satisfied simultaneously.

FIGURE 2.2: Set theory representation of CAP theorem

It is possible to classify distributed databases in three categories: CA, CP
and AP, depending on whether system renounces Availability, Consistency or
Partition Tolerance.

• CA: Traditional RDBMS are contained in this category, thus guarantee-
ing consistency and availability but not tolerance to message loss. Algo-
rithms like two-phase commit allow you to manage distributed transac-
tions but literally block system when a network partition is needed.
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• CP: It is possible to obtain more scalable solutions using replication on
multiple nodes or through segmentation techniques but with the risk of
losing access to some data when some node fails.

• AP: In this solution it is assumed that system can return inaccurate data
in exchange for highest levels of availability and tolerance to partitioning

It would therefore seem that alternatives to relational databases are limited
to last two classes only, but in reality NoSQL systems offer hybrid solutions,
giving up strong consistency in exchange of more efficient and valid solutions.

2.5 NoSQL Consistency

2.5.1 Consistency limitations

The CAP theorem demonstrates that there are severe limitations on distributed
systems. While relational databases guarantee strong consistency, many NoSQL
datastores sacrifice it for the so-called "eventual consistency" or "final consis-
tency". The writing operation on a data are not executed immediately on all
replicas of system, but over time and in absence of further updates the replicas
become substantial in all system. This solution is tolerable in many cases as
DNS Services or Web sites. Problems may arise, however, when users access
multiple replicas, because there may be inconsistencies.

Most common approach to detect inconsistencies used by NoSQL peer-
to-peer systems is a special versioning system, called vector stamp. This uses
a vector of counters, each of which is associated with a network node, for
example for three nodes (red, green, blue) we could have the vector [red: 1,
green: 5, blue: 2]. Whenever a node modifies one of its resources it increments
its counter in vector and every time two nodes communicate they exchange
this vector. To detect conflicts, it is necessary to simple compare them. For
example, the vector [red: 2, green: 5, blue: 2] is bigger than vector [red: 1,
green: 5, blue: 2] because at least one of counters has a higher value than those
of second vector, while the vector [red: 2, green: 5, blue: 2] and vector [red:
1, green: 6, blue: 2] both have a bigger value of other, which means that a
conflict has occurred. Sometimes in addition to consistency, another property
of ACID transactions is also sacrificed: the isolation, so a small probability that
transactions will interfere each other is tolerated.
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With advent of NoSQL datastores an optimistic alternative to ACID solu-
tion called BASE has been defined and stands for:

• Basic Availability. The system offer availability, but not necessarily for
all nodes at any time, partial failures are accepted, provided that entire
system does not stop working.

• Soft-state. Data held in client’s cache expires if they are not updated by
server requests.

• Eventual Consistency. It is not required that database is always in a
consistent state, but that it becomes over time.

Developing BASE applications that support outdated data, give uncertain
answers and are tolerant to failures, it is much more difficult than managing
system with ACID transactions, but CAP theorem states that there is no other
choice if you want a scalable application. Another important difference be-
tween ACID and BASE lies in the way data is processed and stored, while
in first solution, durability/persistence property ensures that data is always
modified on disk, in second it works mainly in main memory and only peri-
odically perform a flush operation to secondary memory. In this way, if on
the one hand response times are significantly reduced, the data would be lost
if system were to crash. To limit this effect, data replication mechanisms are
exploited.

2.6 NoSQL System Classification

Usually NoSQL datastores are grouped into 10 categories:

• Key-Value datastore

• Document datastore

• Column family datastore

• Graph datastore

• Multimodel Databases

• Object Databases
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TABLE 2.1: Use Cases Of NoSQL Datastores.

DB Name Data Model Used By CAP

Big Table Column Family Google CP
HBase Column Family Twitter CP
Cassandra Key-Value / Column Family Facebook AP
MemcachedDB Key-Value Wikipedia CP
SimpleDB Key-Value Amazon AP
DynamoDB Key-Value Amazon AP
Voldemort Key-Value Linkedin AP
CouchDB Document Store Ubuntu One AP

• Grid & Cloud Database Solutions

• XML Databases

• Multidimensional Databases

• Multivalue Database

However, this complete classification is not considered by most of scientific
documents that address this topic; usually it is preferred to use the so-called
"data model" as only element of distinction. The latter is the model through
which we perceive and manipulate data, it differs from storage model, which
instead describes how database stores and manipulates data internally. In this
way we can distinguish four main classes, which will be analyzed later indi-
vidually:

• Key-Value datastore

• Document datastore

• Column family datastore

• Graph datastore

Table 2.1 shows some examples of datastores used by big companies. It is
important to say that boundaries of this classification are not well defined, so
some systems fall into several categories.
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The first three categories share a common feature among their data mod-
els: the orientation to aggregates, that is a different approach compared to
relational model. While in relational model information is maintained in sets
of tuples belonging to different tables, the term "aggregate" indicates a more
complex structure, which allows use of lists and records inserted inside it. In
practice it corresponds to a unit for data manipulation and consistency man-
agement and is naturally combined with mechanisms required in a distributed
system, such as data replication and segmentation.

The one shown here is an example of aggregate relating to a records of an
order for an e-commerce site.

{"customer": {
"id": 1,
"name": "Nunzio",
"billingAddress": [{"city": "Cosenza"}],
"orders": [{
"id":99,
"customerId":1,
"orderItems":[
{
"productId":25,
"price": 39.23,
"productName": "Book"
}],
"shippingAddress":[{"city":"Cosenza"}]

"orderPayment":[{
"ccinfo":"2300-4500-1560-10670",
"txnId":"bbkfuiuer879rft",
"billingAddress": {"city": "Cosenza"}
}],
}]}}

The concept of aggregate is not used from all NoSQL datastores, Graph
datastores and relational databases can be defined "aggregate-ignorant". A very
important property of aggregates is related to management of concurrency.
While in relational databases ACID transactions must refer several rows of
different tables and must guarantee atomicity of operations on this set of data,
on aggregates, atomicity is generally guaranteed only on single aggregate. If it
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is necessary to guarantee consistency on different aggregates, the management
is delegated to programmers.

2.6.1 Key-Value Datastore

Key-value datastores offer a form of opaque aggregate. The data to store is an ob-
ject identified by a key and formed by an array of bits, with possible limitations
on maximum size. This flattening makes very high performances (typically in
reading) and at the same time facilitates work of distributing load on multi-
ple machines (sharding) realizing an almost linear scalability. The only search
operation offered by DB is by key and it is not possible to construct indexes
on aggregate object, the only solution is to get entire object and then manip-
ulated as desired at application level. Of course this is not always true for all
key-value datastores, there are some, such as Redis2, which offer more com-
plex structures for storing and accessing data, such as lists or sets and which
allow to perform also particular queries such as unions, intersections or range
queries. In general, these datastores can be seen as common hash tables and
represent simplest category to use, among NoSQL systems, from API point of
view. The classic operations made available are: get, put and delete of a value.
In this type of datastore, the design of primary key is of fundamental impor-
tance, due to fact that storage is based on direct addressing (hash keys) and
efficient execution of searches and sorting is not permitted. Furthermore, cre-
ation of secondary indexes (via B + Tree or their variants) causes a reduction in
performance (especially in writing) and complicates management of sharding
and clustering, as well as consistency. The best way to improve performance
is to know the keys to be used in advance, preferring natural keys (as show in
Figure 2.3), which avoids dependence to a central authority to generate them.

Many Key-Value datastores existed before the birth of NoSQL movement
and were known as "application caches" or "application accelerators", in prac-
tice they had (and some still have) a single purpose: to store most frequently
accessed data in primary memory. Some implementations do not save, by
choice, data in secondary memory (e.g. Memcached3) and they would not sur-
vive a system crash, but they are still ideal solution for storing web sessions or

2https://redis.io
3https://www.memcached.org
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FIGURE 2.3: Key Value Content Example

"shopping carts". Typically this type of datastore supports very well computa-
tions that follow MapReduce pattern, as long as database remains simple and
poorly structured.

2.6.2 Document Datastore

A document datastore is able to "see" the structure of an aggregate and allows
to perform queries based on parts of the same. However, the lack of a prede-
termined scheme means that datastore cannot optimize data put and data get
phases. Almost all implementations allow to insert references to other doc-
uments making them very similar to object databases. This way of handling
data is very useful for developers, who can have a dynamic database dur-
ing development phases of a new project or a prototype to attract financiers.
The documents can also contain nested structures, such as lists or lists of
documents and unlike key-value based databases, these systems support sec-
ondary indexes (usually implemented through B+tree), replication and ad hoc
queries. The choice to use JSON data format for interaction with applications
and Javascript as a programming language was of great importance for devel-
opment and diffusion of Document Datastore. Both Javascript and JSON are
particularly appreciated by developers of interactive web applications. Exam-
ples of databases that uses this languages are MongoDB4 and CouchDB5.

4https://www.mongodb.com
5https://couchdb.apache.org
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The JSON format in particular is taking the place of XML in context of web
services, for various reasons:

• More concise syntax than XML / SOAP

• Ease of use of libraries, available for virtually any programming lan-
guage (not just Javascript)

• Less "formality" in definition of data interchange formats

All these features however decrease control (data schema) and predictabil-
ity of services (evolution of message format), making JSON less attractive in
enterprise and integration of complex systems, where XML / SOAP continues
to be the most used protocol .

2.6.3 Graph Datastore

Aggregates are very useful structures when dealing with data that must be
accessed together, but there are cases in which this does not happen. Even
in example used so far several times, where customer and his purchase or-
ders seem to be optimally modeled as a single aggregate, everything depends
on how that data is used. In fact, if we consider relationships between cus-
tomers and executed orders, for an application that requires a customer order
history, the modeling seen above is just fine, but the same cannot be said in
case of an application that needs to access all orders made by all customer.
What represents an advantage for first application becomes a disadvantage
for second. In this case, in fact, it is necessary to search into all aggregates
to obtain necessary information, when instead it would be sufficient to treat
orders and customers as two separate aggregates and memorize client’s ID in
every order, so that when it is necessary to derive who executed a certain or-
der, it is sufficient to perform a further query to DB using customer code. The
problem is basically that datastores seen so far, do not give any importance to
links between aggregates, indeed these relationships are completely invisible.
Breaking down an aggregate brings problems in update operations. In fact,
while NoSQL solutions guarantee atomicity property on single aggregate and
delegate to developers management of failures, the relational databases offer
a simple solution such as ACID transactions, but suffer from low performance
due to join operations.
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In these cases and in all those where a small amount of records must be
managed with respect to number of complex interconnections between them, a
NoSQL alternative is given by Graph Datastores. Figure 2.4 shows an example
of these systems, where data are treated as nodes of a graph and relations as
edges.

FIGURE 2.4: Graph of relationships between people

In the same way a graph could be used to capture complex relationships
of a social network or in a network of preferences on commercial products. A
complex query like finding products your friends like, would be easy to cal-
culate with this data model. There are many differences in implementations
of these systems, starting from the additional properties that can be specified
on nodes and edges up to possibility of directly storing objects written in a
particular programming language such Java. Most important difference com-
pared to relational databases remains the way of executing queries: while in
Graph Datastores queries allows to "navigate" at low cost the pre-built graph,
in relational databases it is necessary to perform appropriate and costly join
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operations. Problems arise in phase of construction of graph and in high time
costs that are shifted on insert operations of nodes and edges.

Graph datastores are becoming indispensable when an analysis of relation-
ships between data is needed, rather than data itself. They allows to extract
very valuable data, in reasonable time and in a very elegant way in most cases.
Some examples are:

• Classification using proximity and clustering algorithms

• Analysis of various types of flows, for example browsing websites and
social networks

• User profiling and suggestions for friendships or purchases

2.6.4 Column-Family Datastore

Most Column-Family Datastore systems have been influenced by project cre-
ated by Google, known as BigTable (Chang et al., 2008). These are datastores
with a tabular structure, made with sparse columns (common columns that
have storage optimized for null values) and generally in absence of prede-
fined schemes. Rather than thinking to these systems as huge tables it is more
useful to see them in form of two-level maps. In a sense, it is as the tables were
growing horizontally (in the sense of the columns) instead of vertically (in the
sense of the lines). Each column family represents a type of record, for exam-
ple a set of columns could be used to identify a user’s profile, while another
set, and then another column family, to define orders made by that customer
and so on. A two-level map (see Figure 2.5) makes a better idea of these sys-
tems, because if on the one hand it is possible to access the whole aggregate
using row key (as for key-value datastores), on the other it is also possible to
use column key to access in detail various object sections, just as accessing a
further map.

A read operation takes the following form:

get(‘row_id_1 ’, ’column1’)

although in some implementations (including BigTable) it is even possible to
specify an additional parameter, i.e. the timestamp of data. Each column must
belong to a single column family and it is assumed that data associated with
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FIGURE 2.5: Column Family Model Example

columns of a column family are accessed together. This grouping information
can be exploited for optimized data access and management. For example a
way to exploit this structure could be to store orders made by a customer as
an ordered list of columns inside the same column family. The names of these
columns could be given by concatenation of purchase date and order ID (eg
20190115-12345) and in this way it becomes simple to execute range queries
by date. There is also an extension of Standard Column Family Store, which is
represented by "Super Column Family Store" (see Figure 2.6). This model adds
an additional level of indexing between row key and the set of columns, the
so-called super column. This key is used to group related attributes between
them, belonging to same aggregate in order to obtain various advantages:

• Allows to have a more orderly and easily usable database from applica-
tions

• Easy implementation of efficient partitioning strategies (sharding)

• Easy reliability and safety management, dividing database into smaller
segments.

Thanks to their adaptability to “rich” data models, Column Family datas-
tores are increasingly used instead of relational model in fields such as web-
sites, web services or as back-end for mobile applications, and thanks to the
ease with which they can partitioning data and consequent possibility of greatly
optimizing writings are often used to store application logs.
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FIGURE 2.6: Super Column Family Model Example

2.7 Open Source Tools for Big Data analysis

In recent years, several frameworks have been developed that allow to work
with Big Data. In this section, we will describe the most widely used open
source tools to work efficiently with this type of data.

2.7.1 Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is a distributed file system designed
to handle large files (several TBs) through sequential read/write operations.
Each file is divided into large pieces, stored as local files on different nodes,
called Data Nodes.

The framework is composed of a central node called NameNode that keeps
track of directory structures and file parts location. This node can also be repli-
cated if necessary (Secondary NameNode). To read a file, the client’s Hadoop
libraries calculate the block index based on offset of file pointer and send a
request to NameNode. NameNode then responds with the id of DataNode
which has a copy of that block. At this point, client contacts DataNode directly,
avoiding the NameNode. To write a file (see Figure 2.7), the client node must
first contact NameNode to request primary replica that handles requested file.
The NameNode response contains primary and secondary replicas. The client
updates all DataNode copies, but these changes are stored in a buffer by each
DataNode. After all copies have stored these changes in their buffer, the client
commits to NameNode which updates all copies. When all copies have suc-
cessfully completed the update operation, the primary replica send to client
the success response.
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FIGURE 2.7: A read operation on HDFS

The NameNode uses a log file to recover its actions after a crash and also
periodically saves its status in a file. To recover from crashes, a new NameN-
ode can start after restoring state from last log file and repeating read opera-
tions. Each node periodically sends signals to other nodes to signal its exis-
tence. So, when a DataNode crashes, this is immediately detected by NameN-
ode because it no longer receives notifications. The NameNode then removes
from cluster the node that crashed and spreads its blocks to other DataNodes
that are active. In this way, the replication factor of each piece is maintained on
cluster. If DataNode resumes from crash, it sends to NameNode all blocks of
files it manages. Each block has a version number, which is incremented with
each update. Therefore, NameNode can easily understand if one of DataNode
blocks is an outdated version and delete it.

2.7.2 Apache HBase

HBase6 is a distributed Open Source database modeled on Google’s BigTable
and written in Java. The project was developed as part of Hadoop Project of

6https://hbase.apache.org
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Apache Software Foundation and run on HDFS providing capabilities sim-
ilar to Google’s BigTable for Hadoop. It allows to store a large amount of
data by offering a scalable and fault-tolerant architecture, through addition of
commodity nodes to cluster and native integration with MapReduce. It also
provides access to resources through simple REST APIs and ability to work
in memory to increase performance. HBase uses a Column Family type data
model, so applications that use it, store information in tables composed of
rows and columns, whose intersections (cells) are versioned and can contain
content of various kinds, formally considered an array of bytes. By default
version number is a timestamp generated by HBase during insert operations.
Row keys are also an array of bytes and can theoretically contain anything
from strings to binary data. Rows in tables are ordered through row key that
allows access to contained information through queries. Columns are grouped
into column families and can be added at run-time (by specifying column fam-
ily through a prefix). Physically all columns of a column family are stored to-
gether in filesystem. In addition to concept of column, table and row, HBase
also uses the so-called regions. In fact, the tables in HBase are automatically
partitioned horizontally into regions that are distributed in cluster. Each re-
gion includes a subset of rows from a table, in this way, a table that is too large
to fit on one server can be distributed to different servers in cluster. Moreover,
according to concept of aggregate, HBase row updates are atomic, regardless
number of columns of the row.

The HBase Architecture (see Figure 2.8) is composed by a HMaster node
that manages the cluster and one or more RegionServer slaves. The HMaster
node is responsible for initializing cluster, assigning regions to RegionServers
and managing RegionServer failures. As already mentioned, RegionServers
manage one or more regions, provide read/write functions and also manage
data sent by HMaster node containing information about new cluster nodes.
HBase uses HDFS file system and HFile format for data persistence (the equiv-
alent of SSTable on GFS for BigTable), although other implementations such as
local filesystem or Amazon S3 can be used. Zookeeper is an independent Open
Source project and it is integrated into all versions of HBase. It represents
a centralized system that offers: maintenance of configuration and naming
information, distributed synchronization, distribution of services and other
group services supplying (including quorum-based protocols).
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FIGURE 2.8: HBase Architecture

All these types of services are used in many distributed applications, so it
is very useful to avoid implementing them again each time.

HBase provides 4 access way:

• HBase Shell. A command line shell.

• API Java Native. Most common and fastest access path.

• REST Server. An integrated REST server provided by internal API.

• Thrift Server. A server compatible with different programming languages

HBase allows column-oriented storage only for columns belonging to the
same Column Family as shown in Figure 2.9. This structure allows improved
performance when different types of analysis are needed on same data. For
this reason it is necessary to group in the same column family the data that
must be accessed together.

2.7.3 Map Reduce

Parallel computing allows complex applications to handle large problems
(petabytes of data) relatively quickly. At these levels, parallel processing must
be implemented by distributing computation over a large number (thousands)
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FIGURE 2.9: HBase Storage Methodologies

of ordinary computers and therefore "not expensive". Google is one of main
users of parallel computing systems, whose reference software environment
is MapReduce (Dean and Ghemawat, 2004), a programming model used to
process and analyze large amounts of data in a highly performing way. This
system offer a framework that allows to implement extremely parallel applica-
tions and simple to use and manage from the point of view of developer. The
system automatically parallels computation on a large number of machines,
manages failures of individual sub-computations, schedules communication
between machines with the aim of make an efficient use of network and disks.
The MapReduce model is inspired by map and reduce functions present in
Lisp and in other functional languages. In fact, system users specify the com-
putation in terms of "map" functions that process key/value pairs to generate
a set of intermediate key/value pairs, and a "reduce" function that combines
all values associated with the same intermediate key.

A typical MapReduce problem is solved in the following steps:

• Iterate over a large number of records

• Extract something interesting from each record (map)

• Order intermediate results and distribute them on relevant reducers

• Aggregate intermediate results (reduce)

• Generate final output

Map and Reduce functions must be specified by user. Map function is ap-
plied in parallel on each element of input dataset, it processes a key/value pair
to generate a set of key/value intermediate pairs. Reduce function combines
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all intermediate values associated with the same intermediate key, therefore it
return a list of values, even if typically only one or none is produced.

MapReduce manage a series of problems making them invisible to pro-
grammer. In fact, the framework automatically manage distribution of data,
starting from assignment of initial data to map workers, up to transfer of inter-
mediate key-value pairs to reduce worker, including optimizations based on
principle of locality when possible. Two other operations managed automati-
cally are scheduling, that is the assignment of workers to map or reduce type
of tasks and fault management, which identify failed workers and re-execute
assigned tasks. Among optimizations that the system provides, there are the
ability to move process where data to be analyzed are located and the possi-
bility of executing "combine" function on same machine of mapper as a sort of
"mini-reduce" on data just generated, so it is possible to send more elaborate
data to reducer in order to save bandwidth. Finally, there is also a solution to
problem of existence of slow mappers, which could slow down entire compu-
tation. To avoid finding machines that slow down entire process, a redundant
execution of map is introduced, so that the first mapper that ends execution
sends data to reducer.

The entire data transformation process is described in detail by the follow-
ing steps:

• A MapReduce job starts with a predefined set of input data (normally
placed in a directory of a distributed file system). A master process
(which is the central coordinator) is launched and gets a "job configu-
ration", which describes the job to be performed.

• According to job configuration, the master launches several mapper and
reducer processes on different machines. It also launches an "input reader"
to read data from input directory (located in distributed file system). The
input reader partitions the read data and distributes it to various map-
pers. This phase is called split and starts parallelism.

• After obtaining the data part, the mapper process executes a map func-
tion (provided by user) and produces a collection of pairs (key/value).
Each pair of results is sorted and, according to key, is sent to the corre-
sponding reducer process. This is the shuffle phase.
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• All pairs with same intermediate key are sent to same reducer process,
which collects all pairs of same intermediate key and invokes a reduce
function (provided by the user) that produces a single pair (key, aggre-
gated values) as a result. This phase is called merge.

• The output of reducer process is collected by output writer. This phase
is named join phase and ends the MapReduce parallelism.

Google Map Reduce

The Google MapReduce framework, of which the official operating scheme is
shown in Figure 2.10, uses GFS (Google File System) as support for the execu-
tion and represents a proprietary solution.
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.

This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1) Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

FIGURE 2.10: Google Map Reduce Overview

The sequence of operations performed during a normal operation of this
library is described below, this sequence is connected by numbers to the dia-
gram in Figure 2.10.
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1. The program divides initial file into M parts typically from 16-64 MB per
block (the size of the parts can be specified by user) and Initialize a series
of copies of MapReduce program within the cluster.

2. A copy program will be the master. The others will be divided by master
into M workers who will manage map tasks, and R workers who will
manage reduce tasks.

3. The mappers reads the contents of split input assigned to them and an-
alyze related key/value pairs using the map function specified by user.
This function produces a key/value intermediate pairs that are buffered
in memory.

4. Periodically, buffer is written to local disk, partitioned into R regions by
partition function. The locations of these regions are sent back to master
who is responsible for forwarding them to reduce worker.

5. When a reduce worker is notified by the master, this uses a remote pro-
cedure to read data stored in local mapper disk. When a reducer reads
all data from its partitions, it sorts data by intermediate key, in order to
group all occurrences with the same key.

6. For each intermediate key, the reducer finds a list of values that are sent
to reduce function specified by user. The output of a reduce function
is added to a final output file for this partition. When all map tasks and
reduce tasks are completed, the master sends the results to the user node.

Apache Hadoop

Apache Hadoop is a framework written entirely in Java and corresponds to
an open source version of Google MapReduce. In this case, however, the dis-
tributed file system used is HDFS. The operation of Hadoop library is exactly
the same of those of Google library, so in this paragraph will be described the
entities participating in the management of MapReduce process rather than
operations seen above.

The execution of process (see Figure 2.11) begins when client, on its own
Java Virtual Machine, requests the creation of a Job, then it loads system pa-
rameters and copies all necessary resources (mapper classes and reducer, in-
put and output files, split sizes where the initial file will be divided, etc.) into a
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FIGURE 2.11: Hadoop Map Reduce Working Scheme

location on HDFS file system. The program notifies submission to JobTracker
thus the latter returns a Job Id to client and the computation begins. JobTracker
splt and assigns data to TaskTrackers based on proximity principle (or loca-
tion), having precedence first those on the same node, then on the same rack
in the cluster and finally those on the same network. Assigned TaskTracker
creates a new MapTask process that extracts input data from split (using Recor-
dReader and InputFormat classes) and invokes map function specified by user.
This function emits a number of key pairs/values in the buffer memory. Data
stored in memory must be periodically saved on disk (to avoid memory satu-
ration). For efficiency reasons it is possible to use a local reduce that invokes
the combine function to aggregate values for each key. At this point a par-
tition function is invoked which calculates the relative reduce node for each
key, which will reduce the data. Then the intermediate key/value pairs are
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written to R local files (assuming that there are R reducer nodes). When the
JobTracker understands that some map tasks have been completed, it begins to
allocate reduce tasks to TaskTrackers, which remotely download the region file
of completed map nodes and link them all into one file. When all map tasks
have been completed, Job Tracker notify the Task Trackers to proceed with the
reduce phase. To allow framework to manage the failures, TaskTracker peri-
odically sends their status to JobTracker. If the latter does not receive notifica-
tions for a long time from a node, it assumes that it has crashed and reassigns
its tasks to another TaskTracker.

2.7.4 Apache Hive

Apache Hive is an Open Source project, initially developed by Facebook,
which allows to execute SQL queries on a DB stored in the distributed HDFS
file system using the Map Reduce framework. It is a Data Warehousing infras-
tructure built on top of Hadoop ecosystem, which simplifies the querying and
the management of large datasets stored on distributed storage. Hive pro-
vides a mechanism to create data structures and perform queries using SQL
language, which automatically translates SQL queries into Map Reduce jobs
to be executed on Hadoop. An Hadoop cluster is an archive of heterogeneous
data from many sources and in different formats. Hive allows the user to ex-
plore, analyze these data and transform them into business. Within a Hive
database, table data is serialized and each table corresponds to a directory on
HDFS.

Hive provides the following features:

• Tools to enable easy access to data via SQL, thus enabling data ware-
housing tasks such as extract/transform/load (ETL), reporting, and data
analysis.

• A mechanism to impose structure on a variety of data formats

• Access to files stored either directly in HDFS or in other data storage
systems such as HBase

• Query execution via Apache Spark, or MapReduce

Figure 2.12 shows the major components of Hive and its interactions with
Hadoop. As shown in that figure, the main components of Hive are:
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FIGURE 2.12: Hive Architecture

• UI. The user interface for users to submit queries and other operations to
the system. The system has a command line interface and a web based
GUI.

• Driver. The component which receives the queries. This component im-
plements the notion of session handles and provides execute and fetch
APIs modeled on JDBC/ODBC interfaces.

• Compiler. The component that parses the query and makes semantic
analysis on different query blocks and query expressions and eventu-
ally generates an execution plan with the help of the table and partition
metadata looked up from the metastore.

• Metastore. The component that stores all the structure information of
the various tables and partitions in the warehouse including column and
column type information, the serializers and deserializers necessary to
read and write data and the corresponding HDFS files where the data is
stored.

• Execution Engine. The component which executes the execution plan
created by the compiler. The plan is a DAG of stages. The execution
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engine manages the dependencies between these different stages of the
plan and executes these stages on the appropriate system components.

There are two different aspects concerning the storage of tables in Hive:
the line format and the file format. Line format regulates how the fields are
stored in a particular line. In Hive this format is defined by SerDe (Serializer-
Deserializer). When it acts as a deserializer, i.e. in the case in which a table is
queried, a SerDe converts a row of data from bytes into objects used internally
by Hive to operate with that data. When instead the SerDe acts as a serializer,
i.e. in INSERT case, the internal representation of Hive is stored as bytes in
output file. On the other hand, the file format dictates the type of file to be
used to store data on file system. The simplest format available is text file,
but there are other more complex formats such as RCFile (a columnar file data
structure) and the binary format.

2.7.5 Apache Spark

Apache Spark is an open source distributed computing framework developed
by the University of California’s Berkeley’s AMPLab and later donated to
Apache Software Foundation. Characterized by the ability to store (usually
partial) results in central memory, it offers a valid alternative to Map Reduce,
which necessarily stores results of computations on disk. The optimal use of
memory allows Spark to be orders of magnitude faster, compared to MapRe-
duce, in the execution of iterative algorithms, i.e. for those algorithms that
iteratively carry out the same instructions on different data until a certain con-
dition occurs. This framework remains a valid alternative, probably more flex-
ible and easy to use, even when you want or need to use the hard disk, for
example because the data does not all fit into memory. It offers an API much
easier to use than MapReduce paradigm. Data can be read from a multitude
of sources, including HDFS, Amazon S3, Cassandra, HBase, etc., as well as
numerous structured, semi-structured or unstructured file formats. Spark can
be used in Java, Scala, Python and R programming languages.

Apache Spark has as its architectural foundation the resilient distributed
dataset (RDD), a read-only multi-set of data items distributed over a cluster of
machines, that is maintained in a fault-tolerant way.

Figure 2.13 show the Spark stack composed of the following modules:
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FIGURE 2.13: Spark Stack

• Spark Core: contains basic functionalities of Spark, including memory
management, network management, scheduling, recovery from cluster
node failure, etc. The Spark core API manage RDDs.

• Spark SQL: it is a component on top of Spark Core that introduced a
data abstraction called DataFrames, which provides support for struc-
tured and semi-structured data. Spark SQL provides a domain-specific
language (DSL) to manipulate DataFrames in Scala, Java, or Python. It
also provides SQL language support, with command-line interfaces and
ODBC/JDBC server.

• Spark Streaming: Spark Streaming allows to analyze real-time data
flows, such as error logs or stream of tweets. This component perfectly
fit with the others modules. For example, it is possible to make a join
between data flow and an historical database in real time. Streams flows
can come from sources like Apache Flume, Kafka, or HDFS, and are used
in small batches for analysis.
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• MLlib: It is a highly optimized machine learning library, which exploits
in memory data stored. Many of the machine learning algorithms are
iterative, so MLlib offers the possibility to use only algorithms that are
inherently parallelizable, including linear regression, K-means, random
forests, etc. It is possible to use Spark Streaming streams for machine
algorithms training phase.

• GraphX: GraphX is a library for the analysis of very large graphs that
could not be analyzed on a single machine (for example the graphs of
social networks). A graph is a collection of nodes (or vertices) connected
by arcs. The library offers different algorithms such as PageRank (to
measure how "important" each node of a graph is), computation of con-
nected components, computation of triangles, etc. GraphX unifies ETL,
exploratory analysis and iterative calculation on graphs in a single sys-
tem. The graphs are managed like the other datasets, with which you
can even make joins.

Spark uses a master/slave architecture, where there is one coordinator pro-
cess and many worker processes. The coordinator is named driver, while the
worker is named executor. Since each execution takes place in a separate pro-
cess, different applications cannot share data unless they are first written to
disk. Working on a single node allows to have only one process that contains
both the driver and an executor, but this is a special case and usual it is used for
application testing.

The basic Apache Spark architecture is shown in the Figure 2.14.

FIGURE 2.14: Spark Architecture
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The driver manages the execution of a Spark program, deciding the tasks to
be performed by executor processes, which are usually running in the cluster
(server machines). This process is usually running on the client machine. In
the main program of a Spark application (the driver program) there is an object
of type SparkContext, whose instance communicates with the cluster resource
manager to request a set of resources (e.g. RAM, core) for executors. Sev-
eral cluster managers are supported including YARN, Mesos, EC2 and Spark’s
Standalone cluster manager.

The driver is the main process and contains the source code of transfor-
mation operations and actions on RDD that must be performed in parallel by
executor processes distributed in the cluster.

Executors carry out tasks chosen by the driver. Each application run on
its own executors (i.e. its own processes) each of which can have multiple
threads. The executors have an amount of assigned memory (configurable)
which allows to store part of datasets in memory if requested by user applica-
tion. The executors of different Spark applications cannot communicate with
each other, in this way, different applications cannot share data between them
unless they are first written to disk. The life cycle of an executor is valid for the
duration of one application; if an executor fails, Spark continue to run program
by recalculating only lost data.
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Chapter 3

Analytics on Big Data

3.1 Background

Due to great interest in Big Data by academia, industry and individual, a
variety of architectures for Big Data Analysis have been defined in recent
years (Manogaran and Lopez, 2017) (Liu, Iftikhar, and Xie, 2014) . However
there is no generic architecture available for analytical big data systems and a
number of small-scale architectures have been proposed by various organisa-
tions to fulfil their own requirements (Thota and Vijayakumar, 2016). Most of
these architectures are developed for specific purposes such as stream process-
ing, batch processing, security and storage. A part of these architectures are
product-oriented and thereby they limit their scope to specific products from a
company, while other architectures are technology-oriented thereby skipping
a functional view and mappings of technology to functions. In this section
we focus on two well known and state-of-the-art architectures: Lambda and
Kappa.

3.1.1 The Lambda Architecture

Marz and Warren (Marz and Warren, 2015) introduced the Lambda Architec-
ture that provides a set of architectural principles to ingest and process both
stream and batch data. The main idea of the Lambda Architecture is to build
Big Data systems as a series of layers: Batch Layers, Serving Layer and Speed
Layer. Each layer satisfies a subset of the properties and builds upon the func-
tionality provided by the layers beneath it.

The Batch Layer stores the master copy of the dataset and precomputes
batch views on that master dataset. The master dataset can be thought as
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a very large list of records. This layer needs to be able to do two things:
store an immutable, constantly growing master dataset, and compute arbi-
trary functions on that dataset. This type of processing is best done using
batch-processing like Map-Reduce. The output of this layer (batch view) can
be represented by the equation:

batch view = function(all data);

The Serving Layer is always connected with the batch layer to store the
batch views. This layer is a specialized distributed database that loads in a
batch view and makes it possible to do random reads on it. When new batch
views are available, the serving layer automatically swaps those in so that
more up-to-date results are available.

In general, due to high latency the batch views is always out of date. This
latency issue can be solved by Speed Layer, because this layer is always re-
sponsible for any data that are not yet available in the Serving Layer. It up-
dates the realtime views as it receives new data instead of recomputing the
views from scratch like the Batch Layer does. The speed layer does incre-
mental computation instead of the recomputation done in the Batch Layer. It
is possible to formalize the data flow on the Speed Layer with the following
equation:

realtime view = function (realtime view, new data)

Figure 3.1 shows the complete Lambda Architecture.
To solve queries it is necessary to look at both the batch and realtime views

and merge the results together instead of resolve queries by just using only
the batch view. The Lambda Architecture in full is summarized by these three
equations:

Batch View = function (all data)

Realtime View = function (realtime view, new data)

Query = function (batch view, realtime view)

3.1.2 The Kappa Architecture

Kappa Architecture was first proposed by Kreps (Kreps, 2014) for manage-
ment and analisys of data stream. It simplifies the Lambda architecture by
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FIGURE 3.1: Lambda Architecture

removing the batch layer and replacing it with a streaming layer. The basic
idea is that a batch is a data set with a start and an end (bounded), while a
stream has no start or end and is infinite (unbounded). Because a batch is a
bounded stream, one can conclude that batch processing is a subset of stream
processing. Hence, the Lambda batch layer results can also be obtained by us-
ing a streaming engine. This simplification reduces the architecture to a single
streaming engine capable of ingesting the needed volumes of data. The ad-
vantage of Kappa architecture over Lambda architecture is in simplicity. With
Lambda, you would need to maintain two different processes and possibly dif-
ferent set of codes which can put pressure on small budget projects. In Kappa,
there’s only one level of process and one set of code so it’s cheaper to imple-
ment. Also from end-user perspective, with Kappa there’s only one plug-in
required to read the data while in Lambda there are two different views for
batch and real-time data results.

Figure 3.2 shows the Kappa Architecture where the Straming Layer ingests
ordered data events while the Serving Layer manages the query results.
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FIGURE 3.2: Kappa Architecture

3.1.3 Architectures Implementation

The implementation of these architectures can be done by using different frame-
works. With regard to Lambda Architecture, a first implementation definition
was illustrated by Marz and Warren, 2015. They proposed to use HDFS as
Master Dataset and Hadoop as Batch View Engine for the Batch Layer; while
to use ElephantDB1 as Batch View Storage for the Serving Layer. Finally for
the Speed Layer to use Kafka as Realtime View engine and Cassandra2 as Real
Time View storage.

A different implementation of Lambda Architecture is proposed in Kiran et
al., 2015 where a benchmark was conducted on the popular cloud computing
platform Amazon EC2. In this paper the architecture is implemented with S33

as Master Dataset and Elastic Map Reduce4 as Batch View Engine for Batch
Layer while into the Speed Layer the flows are managed with Kinesis Stream5

and stored on S3 Storage.
For Kappa Architecture, instead, Kreps, 2014 proposed to use Apache Kafka

as Log Data Store and Apache Samza6 as distributed stream processing frame-
work in Real Time Engine.

In Persico et al., 2018 a benchmark of both architectures was performed.
The Lambda Architecture has been implemented using Apache Spark while
for Kappa Architecture it was used Apache Storm. The benchmark has been
carried out on Microsoft Azure public cloud using as benchmark a diffusion

1https://github.com/nathanmarz/elephantdb
2http://cassandra.apache.org/
3https://aws.amazon.com/it/s3
4https://aws.amazon.com/emr/
5https://aws.amazon.com/kinesis/data-streams/
6https://samza.apache.org/
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network algorithm. Experimental campaigns have been carried out on the
Yahoo Flickr Creative Commons 100 Million (YFCC100M)7 and the results
showed that Lambda outperforms Kappa architecture for this class of prob-
lems.

3.2 Search Based Analysis Architecture

3.2.1 Complex Search

Search engines have been proposed since the early stage of Internet, however,
results returned by search engines are often quite far from the expected query
answers from a user viewpoint. Indeed, search results can be improved by
building a custom map that, based on the initial query results, tries to learn ad-
ditional knowledge about data being queried by iterative refinement of search
dimensions and parameters. Figure 3.3 shows the above mentioned scenario.

FIGURE 3.3: Learning By Results

In this scenario, the type of query being performed plays a crucial role.
Unfortunately, this process is suitable only for simple search of well-defined
terms. On the contrary, dynamic learning by exploratory research cannot be
performed by this naive process. Obviously enough, for well defined queries,
a search engine like Google, is able to provide correct results in a few millisec-
onds 8.

7www.yfcc100m.org
8As a matter of fact, due to its quick result presentation, many users go through Google even

if they exactly know the URLs of the resources they are interested in
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However, in some cases users do not know exactly how to find the desired
information about an object or a service (e.g. a book or a restaurant). In this
case, the model depicted in Figure 3.4 is more suitable.

FIGURE 3.4: Amazon search

More in detail, Amazon-like search tools, feature product categorization
and recommender systems, thus making the user search experience quite in-
teractive and iterative. In a sense, intermediate results guide users to a bet-
ter definition of target information. Furthermore, search engines usually al-
low non-structured queries (referred as “ranked retrieval") whose results are
sorted according to some relevance criteria w.r.t. the target search. As a matter
of fact, these queries are easier to pose by users compared to boolean expres-
sions, but they can produce low quality results.

In order to overcome this limitation, some categorization service like Ya-
hoo!Directory, exploits context information 9. More in detail, directory con-
tents are hierarchically organized in order to guide users through a subset of
documents potentially related to information being queried, thus limiting the
possibility to input free text queries. In this respect, users re-think and refine
their needs by learning the adjustments to the search being performed by ex-
ploiting the available choices. To better understand how directory navigation
works, we resurge to accommodation booking portals analogy. Indeed, those
portals offer a hierarchical navigation systems, i.e. from the home page, user
can choose the desired country, then he can specify the city and finally the type

9Yahoo!Directory is no longer active since 2014, however it is worth mentioning as it was
one of the first services for massive assisted browsing
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of structure he is interested in. This navigation model suffers a great limitation
due to taxonomy specification. Indeed, taxonomy specified by the service de-
signer may not meet user needs. A solution to overcome the above mentioned
limitations is the implementation of faceted navigation that helps users in the
information “surfing" process. Next section is devoted to clarify this issue.

Consider the faceted view of a search engine depicted in Figure 3.5. Start-
ing from the home page, the user has the chance to search information about
the location and several attributes pertaining to the search (i.e. the type of
structure, the rating and so on).

FIGURE 3.5: Faceted Navigation Example

For example, he can browse the cities (Cosenza, Scilla, . . . ), the structure
types (Hotel, B&B, apartment, . . . ) and their star rating (2, 3, 4, . . . ). As a fea-
ture is selected, the user can choose other attributes among those available for
the current search status. Moreover, during the browsing process, it is also
possible to discard features no longer relevant to the search (i.e. user can per-
form dimensional filtering). This iterative process guides the user through the
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accommodation search by selecting a custom path instead of a hierarchy pro-
vided by the service designer.

It is worth noticing that efficient faceted navigation (i.e. easy to use and
providing access to richer information) relies on the availability of a meaning-
ful feature set that characterize the domain being searched. In particular, it is
mandatory, for implementing effective faceted navigation, that the objects a
user may choose share some common feature.

Browsing through facets makes data exploration very similar to OLAP
analysis. Drill-down and roll-up operation can be performed by selecting
items from facets, while slice and dice operations can be simulated using ap-
propriate filters.

3.2.2 The Sigma Architecture

A new architecture, named Sigma, is proposed to provide a solution for build
a complete Big Data System, interactive and scalable, using a variety of tools
and techniques. This Architecture is composed of three Layer as depicted in
Figure 3.6.
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FIGURE 3.6: Sigma Architecture

The Data Layer stores a copy of all raw data that come to the system. This
layer need to be able to store an immutable, constantly growing dataset (Data
Layer View) and to offer a backend able to perform random reads on the whole
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content. The Engine Layer is responsible to compute arbitrary function on the
data layer and to store results on the Serving Layer. This computation can be
executed in batch mode on the whole Data Layer View (via Batch Engine) or
can be executed in real time mode every time new data arrives in the Data
Layer (via Real Time Engine). The Serving Layer is a specialized distributed
database that loads in the results of Engine Layer Computation (Serving Layer
View) and makes it possible to do random reads on it.

Let’s start from new data coming into the system. Typically Big Data comes
under forms of stream, so the Data Layer need to serialize these flows and per-
sist it. Moreover, in this step a first operation of ETL is performed on incoming
data flows. The Sigma Architecture allows to manage different situations. It
is possible that data are already present in a data warehouse and in this case
it is convenient to create the Serving Layer View using a batch operation via
Batch Engine using for example the Map Reduce paradigm. In other situa-
tions, instead, data can only come in the form of streams and in this case it
is convenient to create the Serving Layer View using real time functions via
Real Time Engine. Maintaining all data on Data Layer allows to easily recover
the system in case of failure on Serving Layer and allows to extends the Data
Layer content by applying Batch Engine functions on the starting contents of
the Data Layer. Once the Engine Layer created the Serving Layer View on the
Serving Layer, the system is ready to receive queries via Serving Backend. To
satisfy incoming queries, the Serving Backend uses data from Serving Layer
View and data from Data Layer View, performing one or more requests to
Data Backend. This mechanism is useful to optimize the content of the Serv-
ing Layer allowing him to keep only an index for some data thus avoiding
excessive data replication between Data Layer and Serving Layer. The Sigma
Architecture can therefore be summarized by these equations:

Data Layer View = all input data

Serving Layer View = function (Data Layer View)

Query = function (Serving Layer View, Data Layer View)

The Sigma Architecture differs from Lambda Architecture in many respects.
The Data Layer is similar to the Batch Layer, but in the Sigma Architecture it
can be accessed both from Engine Layer and from Serving Layer. For the com-
putation of data on Serving Layer, the proposed Architecture can use Batch or
Real Time Engine and not all two simultaneously as in Lambda. As explained
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above, the Batch Engine is typically used when persistent data is available,
when there are system failures for system recovery or when there is need to
operate on Data Layer. The Real Time Engine, instead, is used to compute
data flows. An implementation of the Sigma Architecture could be done only
with Batch Engine or only with Real Time Engine thus becoming similar to the
Kappa Architecture. The decoupling between Batch and Real Time Engine al-
lows to considerably simplify the implementation and the maintenance of the
system as this was one of the main criticisms of Lambda.

As for the Kappa architecture, the proposed solution add the Data Layer
and the use of batch processing. Adding this level allows you to decouple
the input data from the Engine Layer at the cost of slightly increasing the com-
plexity of the system. However, this layer optimizes the data stored on Serving
Layer reducing its size. Moreover, the use of Batch Engine allows to use Sigma
Architecture in a in a greater number of instances w.r.t Kappa, for example
when you need to analyze persistent data or when you need to perform batch
operations on input data.

3.2.3 A Sigma Implementation for Search Based Analysis

In this section an implementation of the Sigma Architecture will be presented
with the primary objective of offering a full-text search mechanism, which is
interactive, scalable on Big Data and which is also dynamic. To design and
develop a similar tool it is necessary to use complex data indexing and man-
agement. To this end, some famous open source projects have been integrated
into a final system like Apache Hadoop, Flume, HBase, Solr, Lily HBase In-
dexer and Hue. Figure 3.7 show system architecture.

Let’s start from Data Layer with data extraction. It is possible to extract
data from different information sources and in this case it was supposed to
have data streams. For this purpose it was decided to exploit the Apache
Flume10 project, which is a reliable and distributed service to efficiently col-
lect, aggregate and move large amounts of data. It has an architecture that is
simple and flexible, based on data streaming management. It is also a robust
and fault tolerant system with configurable reliability mechanisms. This tool
was chosen over others (like Apache Kafka 11 ) for the close coupling with the

10https://flume.apache.org
11https://kafka.apache.org
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FIGURE 3.7: Big Data Search Architecture

Hadoop environment: it is a special purpose tool for sending data into HDFS
and HBase and therefore it requires less configuration time than other tools.

Once the data have been intercepted by Flume, these are stored on the data
warehouse created with HBase and through a project known as Morphline,
ETL procedures are applied "on the fly", which clean up input data and per-
form mapping with the columns structure of the datastore. The choice to use
a column family oriented datastore like HBase is necessary as in this architec-
ture we need to make an index on some parts of data content and to avoid
to create an inverted index on all fields of a column we need to use a row id
to retrieve not-indexed fields contents. Also the columnar structure allows to
put in the same column-family the content that need to be indexed speeding
up the indexing phase. Once data arrived on HBase, there are two possible
situations in the Engine Layer. In the case in which data are already present in
data warehouse, it is desirable to perform a static indexing operation. To this
end it is possible to use the Map Reduce framework, through which it is pos-
sible to exploit all the resources present in the cluster and thus complete the
operation as quickly as possible. For this purpose HBase Map Reduce Indexer
library has been used and will be discussed later. If instead you only need to
index new data entered in the data warehouse, then you can take advantage
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of a project called Lily Indexer 12. The data flows are thus sent on HBase, or
indexed and stored on Solr.

Apache Hadoop works well for off-line analysis, as in the case of data in-
dexing. However in case of full-text search, for the implementation of the
Serving Layer, it is necessary to refer to another project created specifically for
this purpose: Apache Solr13. It allows users to search for arbitrary keywords in
any field that has been previously indexed and allows to quickly view a num-
ber of documents that satisfy a specific query. All thanks to the well-known
mechanism of inverted index. The set of operations that can be performed via
Solr is really extensive and includes field facets, arbitrary range queries and
pivot facets, all operations that have much in common with the classic OLAP
operators (slice, dice, drill-down, roll-up, pivoting) and that make Solr an ex-
cellent real-time analysis engine for text documents.

As a toy example, we can think to a website that collects log files and addi-
tional information on user behavior. This type of data can be indexed by Solr
in order to be able to perform queries on specific time ranges and keywords or
to derive graphs on aggregate information, such as the growth over time of the
number of registered users or operations performed of a certain type. In this
context, the Carrot214 module, a Solr system plugin, makes search even more
effective, allowing real-time clustering on search results. The system therefore
allows to obtain new dimensions of analysis with some limitations, including
the maximum number of results that can be analyzed. Increasing this limit too
much would make the entire functionality unusable, due to the consequent
waiting times. To display search results, the Hue15 project has been used; it is
a software that can be natively integrated with other components of Apache
Hadoop ecosystem. From a single and simple interface, it is possible to offer
different functionalities to all possible types of users, including end users and
domain experts. In particular, end user can only be interested to search in a
simplified way among the data indexed on Solr, while for domain expert it
is also possible to display/modify the dimensions available in the data ware-
house and to build categories starting from search results that can be grouped.

12https://ngdata.github.io/hbase-indexer
13http://lucene.apache.org/solr
14https://search.carrot2.org
15https://gethue.com



3.2. Search Based Analysis Architecture 51

A relevant aspect of the proposed solution is to avoid the transfer of whole
data warehouse inside Solr. There is a distinction between data that are only
indexed and usable only to search for documents and data also stored on Solr.
It is possible to access the last type directly, without going through the source
from which the data were extracted. In this regard, we keep the minimum
amount of information possible on Solr and make the other information acces-
sible through REST API Server.

In the proposed architecture, as can be seen in Figure 3.7, two different data
management methods have been provided: one for persistent data and the
other for data flows. The blue arrows indicate the components that are used in
data flows processing, while with red arrows those oriented to persistent data.
It is a general architecture that can be used in different contexts.

In summary, this implementation of Sigma Architecture is able to offer:

• Full-text search, interactive, scalable and with a flexible indexing system.

• Possibility of discovering some new dimensions of analysis (e.g. "similar
results") starting from results obtained by search

• Data Analysis through facets in a similar way to OLAP analysis

A convenient faceted navigation is available, which can be of two types:

• Static facet navigation: these are classic categories on attributes that are
defined a priori.

• Dynamic faceted navigation: in this case, categories are generated start-
ing from the search results and without defining anything a priori, using
clustering algorithms.

3.2.4 System Description and Integration

The proposed architecture implementation is based on HBase datastore as this
system provide the possibility of storing data in a highly scalable and fault-
tolerant way. A main feature of this datastore is the lack of rigid schemes in the
dataset structure, in this way it is possible to add new attributes at any time,
without modifying the already existing data. HBase is certainly one of the
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most suitable solutions when you have an enormous amount of data to ana-
lyze and you want to give priority to reading operations. Unfortunately, with-
out the support of an indexing system, the response time to full-text search,
would remain too high, making the service unusable by end user. This is
just one of the reasons why it was decided to integrate the Solr project into
the proposed solution. Among the most interesting features, we can find, in
fact, those related to the generation of facets through which the user can not
only search through the data, but navigate it easily in a similar way like classic
OLAP tools or even be guided by the system itself through suggestions of sim-
ilar results to those searched. It is important to highlight the fact that starting
from the last Solr release (SolrCloud), the index management becomes dis-
tributed, because it no longer refers to the local file system but to HDFS for the
storaging and to Zookeeper system for communication, the same services to
which the HBase project is based. Another aspect not to be underestimated in
the integration of the two systems is the full support for multivalue attributes;
Solr allow to memorize them natively (it has a specific multivalued type), on
HBase instead one of the possible ways to manage them, consists in adding a
suffix to interested columns. Supposing, for example, to have in the data ware-
house an attribute that refers to various email contacts of a receptive structure,
we could think of modeling the storage in the following way on HBase:

columnFamily_registry [email_1:<value1>, email_2:<value2>, etc..]

while on Solr we could define a field of this type:

<field name="email" type="string" indexed="true" multivalued="true"

stored=”true”/>

To make a whole indexing of HBase content, the Map Reduce framework
can be exploited. The advantages of this choice consist in the possibility of
executing the entire operation of generation/construction of the index in batch
mode, in order to commit all resources available to cluster. For the other cases,
the Lily project represents a more suitable solution, as it allows NRT indexing
(Near Real Time). It is through this module and its compatibility with data
extraction sources such as the Flume project, that the latest data entered in the
data warehouse become searchable by the user.

The architecture includes a simple and intuitive search interface made by
the Hue project. In Figure 3.8 it is reported the Hue-based search interface.
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FIGURE 3.8: Hue-Based Search Interface

Data Indexing

Data indexing on Solr can be done in two distinct ways, in a static manner,
usually when you need to work on a huge dataset available on a system, or
dynamically when the system is in production and it is necessary to index
new data coming from outside. In the first case HBase Map Reduce Indexer is
used, while in the second case Lily HBase Indexer.

HBase Map Reduce Indexer is a Java library able to facilitate the installa-
tion of a Map Reduce job on a Hadoop cluster. The index generation/construction
operation, once started, is performed in batch mode. As first operation, all tu-
ples on HBase are converted into <key, value> pairs, using Map type tasks.
Therefore in Reduce tasks SolrInputDocument objects are generated which con-
stitute the storage unit on Solr. Figure 3.9 shows a diagram with the entire
indexing process:

In Reduce phase it is possible to perform the duplication of existing index
or merge them. However, if autocommit mode is configured on Solr, once the
indexes have been created and loaded it is possible immediately to use them
to perform searches.

To start this type of indexing it is necessary:

• Populate a HBase table
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FIGURE 3.9: Solr Indexes Generation Starting From HBase

• Create a corresponding collection on SolrCloud

• Create a configuration file for Lily HBase Indexer

• Create a Morphline configuration file (for ETL)

• Run HBaseMapReduceIndexerTool

The advantages of this type of solution are that a high level of parallelism
is reached in the creation of index through Map phase and that merging opera-
tions with pre-existing indexes are possible through reduce phase. The disad-
vantage lies in the fact that it is not possible to give priority to a given type of
input data rather than to others because all the pairs <value key> are received
with equal weight/importance in reduce phase

Lily HBase Indexer is an Open Source project distributed by NGDATA
company. This system allows to integrate capabilities of Apache HBase and
Solr projects, indexing data stored in the first system, in order to allow their use
in real time. In practice, Lily processes data as soon as it is inserted on HBase
using a sort of trigger. The entire operation takes place in a perfectly asyn-
chronous manner, so it does not impact performance of HBase, but requires the
enabling of data replication system. In practice, Lily indexer daemon works
like a normal replication process for HBase. When a writing operations occur
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on datastore, these are managed in a distributed way by HBase Region Servers
through Zookeeper project. The data is then "replicated" asynchronously by
several processes and indexer simply captures and analyzes change events
generated by HBase, and in case of insert operations, the corresponding doc-
uments are created on Solr. These documents contains sufficient information
to uniquely identify HBase row on which they are based, allowing Solr to be
used to search for content stored in HBase. The performances of HBase are
not affected, because Lily does not perform read operations directly on datas-
tore, but refers to HBase log file, the same one on which Region Servers work.
This register contains all information necessary for index, moreover since the
events generated by HBase replication system are released in batches, the in-
dexer is able to exploit them to avoid performing unnecessary operations, for
example in the case where the same line is updated several times in a short
space of time. This batch mode not only reduces the number of updates to
Solr, but also offers important performance improvements. Lily represents a
distributed system and offers a high level of horizontal scalability thanks to
Zookeeper project, that is used for the configuration storage. Therefore new
indexing processes can be added to the cluster at any time and automatically.

3.2.5 Open Source Tools For The System

In this section we describe some open source tools used in the proposed ar-
chitecture. These are, mostly, projects that were born to be used in different
contexts than Big Data, but have been extended later to adapt to this new
paradigm (as Solr/Solrcloud) or have been integrated into our architecture so
that they can work with huge amounts of data using parallelism or multiple
sequential execution on partitioned data (as Carrot2 and Hue).

Apache Solr

Solr is a search engine used by many famous sites including CNet, Source-
Forge and Netflix; it is a project written in Java that uses HTTP protocol and
XML for communication and offers several features such as highlighting re-
sults, spelling correction of queries, automatic suggestions for similar docu-
ments and most importantly the organization as facet of results. Solr uses
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the Java and Open Source Apache Lucene 16 library to build and manage an
"inverted indexes", a specialized structure for managing queries on text docu-
ments.

A relevant aspect that distinguishes a query on Lucene (hence on Solr) from
a query on a relational database is the fact that results are sorted according to
their relevance to the query itself, while on a relational database at most they
can be ordered based on one or more columns of a table. The Figure 3.10 shows
the structure of an inverted index, which considers offers of houses for sale as
input documents.

FIGURE 3.10: Inverted Index Example

16https://lucene.apache.org
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The construction of these inverted indexes can take place in a distributed
and simply way using Map Reduce framework (which is exactly what Google
does). In this case the Map phase produces a unique term and ID pair of doc-
ument in which the term was found, while in Reduce phase the list of docu-
ments in which the term is found is created. At this point Reduce will count
the relative frequencies in documents for each term and construct the inverted
index. Using Solr rather than Lucene directly leads to many advantages, in-
cluding the ability to define the structure of indexes without writing lines of
code but directly through XML files. Some of the most important features of
Lucene are:

• Storing a reverse index for quick retrieval of documents by keywords

• Text analysis tools that transform a string of characters into a series of
terms (words), which are the fundamental units for indexing and re-
search

• A rich syntax of query language

• A flexible and customizable scoring algorithm for sorting results based
on relevance.

• A spell checker for queries based on indexed data

Lucene itself is not a server and cannot communicate via XML. Solr can
be seen as the implementation in form of server of this library, although addi-
tional features are introduced, such as the following:

• Indexing and querying via HTTP and XML protocol: communication
with Solr occurs by sending data to the servlet URL through the POST
method of http protocol

• Multiple cache memories to get results faster

• Administration interface accessible via browser that includes statistics
on the use of the cache, an index query form, a data schema browser and
details of the scoring algorithms and text analysis.

• Configuration file for the schema and for the server itself (in XML).

• Possibility to scale the system by distributing it to several machines.
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Solr is implemented using servlets and requires a server for web applica-
tions that implement the Oracle Java Servlet specifications, such as Apache
Tomcat or Jetty.

Solr allows to create a multidimensional search system, in which the fields
of diagram constitute the facets (precisely the dimensions). Thanks to counting
functions and ability to filter queries in a sequential manner, Solr is able to
provide a counter for each indexed term, thus detecting the total number of
documents that contain it and guiding navigation to subset of results more
interesting to the user. Solr generates these counters together with the results
of the text search and therefore both information is returned following a single
query; in SQL, a similar result might require a series of separate queries.

SolrCloud

Although Solr was born as a full-text search engine in order to research and
evaluate documents, over time the project has evolved to the point of man-
aging much more. Many organizations already use this evolution, known as
SolrCloud, as a classification engine, recommendation system or even directly
as a NoSql datastore, but one of the areas in which it has shown to have many
potential is precisely Big Data analysis. SolrCloud is optimized for a specific
class of problems, full-text search on large amounts of data and the relative
ordering of results based on relevance. The properties that distinguish it are
the following:

• Scalability: indexing and querying operations are distributed across
multiple servers in a cluster

• Search Optimization: it is a system able to give answers to complex
queries in a short time (tens of milliseconds)

• Management of large volumes of documents: the system is designed to
manage indexes with many millions of documents

• Optimized system for searching documents written in natural language
(e.g. emails, pdf, etc.)

• Sort results by relevance
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FIGURE 3.11: SolrCloud Architecture

Figure 3.11 shows the internal architecture of Solr Cloud.
As you can see from Figure 3.11, SolrCloud allows to run multiple different

indexes (cores) on a server, each with its own configuration files and its own
space dedicated to data storage. Furthermore, a single core can be segmented
and replicated on multiple nodes of a cluster in order to distribute the index
and make it fault tolerant able to handle multiple requests simultaneously. In
the last version of SolrCloud these aspects are managed through Zookeeper
project (component on the left of figure), which deals both with distributing
the cluster configuration between the various nodes and with continuously
monitoring the state of the cluster.
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Carrot2

Carrot2 is a library, with a series of support applications, that can be used
to build a search engine with clustered results. This engine organizes search
results in topic in a totally automatic way without external knowledge such
as taxonometers or pre-classified contents. The project is released with two
proprietary algorithms, both created specifically for the clustering of search
results: Suffix Tree Clustering (Zamir and Etzioni, 1998) and Lingo (Osinski
and Weiss, 2005) as well as a version of k-means. Furthermore, there are com-
ponents for retrieving documents from search engines, such as Bing or Google,
and data sources such as Lucene and Solr are supported. In the latter case the
Carrot2 library is used as a search component within a pipeline, so the result
is processed by various Solr modules.

FIGURE 3.12: Carrot2 Web Interface

Carrot2 is distributed in different forms. It is possible to directly use the
tools in standalone version, the API to quickly get results from Java and C#
programs or delegate all operations to a remote service. Carrot2 distribution
contains the following elements:

• Carrot2 Document Clustering Workbench which is a standalone GUI
application you can use to experiment with Carrot2 clustering on data
from common search engines or your own data.
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• Carrot2 Document Clustering Workbench which is a standalone GUI
application you can use to experiment with Carrot2 clustering on data
from common search engines or your own data.

• Carrot2 Java API for calling Carrot2 document clustering from your Java
code.

• Carrot2 C# API for calling Carrot2 document clustering from your C# or
.NET code.

• Carrot2 Document Clustering Server which exposes Carrot2 clustering
as a REST service.

• Carrot2 Command Line Interface applications which allow invoking
Carrot2 clustering from command line.

• Carrot2 Web Application which exposes Carrot2 clustering as a web ap-
plication for end users.

Clustering in Carrot2 is based on a pipeline of components. The two main
types of components are Document Sources and Clustering Algorithm. The
first provide data processing functions. In a typical scenario this component
could retrieve search results from external search engine or from a Lucene/Solr
index or an XML file. Clustering algorithms allow to organize documents pro-
vided in significant groups. Algorithms available in Carrot2 are Lingo, STC
and a version of k-means.

Hue

Hue is a easy to use web application that facilitates the interaction of the end
user with the Hadoop ecosystem. This system allows to avoid the use of com-
mand line for interactions with the Hadoop ecosystem services.

The main features of this tool are following:

• HDFS File browser

• Graphic query editor for Hive

• HBase Browser to view and edit HBase Tables
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• Metastore Browser to view and edit Hive metadata

• Job Browser to monitor Map Reduce jobs

• ZooKeeper Monitor

FIGURE 3.13: Hue Interface

3.3 OLAP Based Analysis Architecture

In this section an OLAP tools designed for supporting the analysis of Big Data
gathered from several sources will be described. In particular, an end-to-end
framework will be presented which assist decision makers in all phases of data
warehousing from the pre-elaboration process (that could reveal really hard
for heterogeneous sources) till the analysis steps.

3.3.1 The Pentaho Data Warehouse Analysis Tools

Due to Big Data features, a system to manage a data warehouse need to take
care of several requirements. In order to guarantee the maximum flexibility
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to a system, it is possible to exploit the Pentaho BI Suite 17. This is a suite
that provides services of data integration, OLAP, reporting, dashboard, data
mining and ETL. The Pentaho suite offers two products: the Community Edi-
tion (CE) and the Enterprise Edition (EE). The CE is the open source solution
offered by this suite and, even if it is a free version, it contains a series of prod-
ucts that offer a valid alternative to other commercial BI solutions. The EE
version provides additional components and programs that make the prod-
uct more powerful and more competitive even for medium-large companies.
The enterprise version is obtained through an annual subscription which also
includes additional assistance services. The amount of the license varies ac-
cording to the services requested by the individual companies, therefore it is
difficult to estimate. In this work we will refer only to the open source CE
version.

Pentaho Data Integration

A crucial activity for data warehousing is the Extraction, Transformation and
Loading (ETL) of raw data being collected from several sources. In this re-
spect, Pentaho provides a suite for performing this task, namely Pentaho Data
Integration (PDI) (usually referred as Kettle - Kettle Extraction Transforming
Transportation Loading Environment- ). It is a powerful tool with a metadata-
oriented graphic development environment as shown in Figure 3.14. Thanks
to this tool it is possible to cross data from multiple sources, update them in
real time, migrate data between different systems and so on.

PDI provides the following tools:

• Spoon. It is the graphical user interface for editing the options provided
by PDI. The main features provided concern the possibility of extract-
ing and storing data from a large number of sources (databases, spread-
sheets, text files, etc.), data manipulation with the possibility of using
tasks with predefined functions already present in the environment and
execute tasks defined by the user through Java and JavaScript code. This
tool allows to aggregate data and store it in the Data Warehouse.

17https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-
platform.html
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FIGURE 3.14: Pentaho Data Integration Interface

• Pan. It is a tool that allows to perform the transformations designed
with PDI. Usually the transformations are scheduled in batch mode to
be performed automatically at regular intervals.

• Kitchen. It allows to execute the jobs defined with Spoon from command
line.

• Carte. It is an HTTP server for remote execution of transformations and
jobs. It runs in clusters with other active instances in order to distribute
the execution load.

Pentaho Business Analytics Platform

Commonly referred to as the BI Platform, and recently renamed Business An-
alytics Platform (BA Platform), it makes up the core software piece that hosts
content created both in the server itself through plug-ins or files published
to the server from the desktop applications. It includes features for manag-
ing security, running reports, displaying dashboards, report bursting, scripted
business rules, OLAP analysis and scheduling out of the box. The Pentaho BA
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Platform runs in the Apache Tomcat Java Application Server, so it provides a
useful web interface as shown in Figure 3.15 and It can be embedded into other
Java Application Servers. This platform contains and is based on Mondrian

FIGURE 3.15: Pentaho BA Server Interface

server which is an open-source OLAP (online analytical processing) server,
written in Java. It supports the MDX (multidimensional expressions) query
language and the XML for Analysis and olap4j interface specifications. It is
based on ROLAP technology, thus it translates MDX queries to SQL based on
a user defined XML multidimensional model. It accesses information stored in
the data repository and perform aggregation operations that are then cached.
It also makes extensive use of materialized views to optimize the speed of re-
sponse. Mondrian can be run separately from the Pentaho BA Platform, but is
always bundled with the platform itself in both EE and CE versions.

Schema Workbench

Schema Workbench (SW) is a graphical tool for data cubes creation. The schema
file is generated using a graphical user interface. Schema Workbench produces
as output an XML file containing the definition of the cube structure for OLAP
analysis that will be performed by Mondrian. It is not necessary to use Schema
Workbench to create the schema, but it is often helpful for beginners and even
experts who need go inspect a cube visually and come up to speed with how
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FIGURE 3.16: Schema Workbench Interface

to maintain or extend it. Schema Workbench provides an integrated environ-
ment in order to validate the specified schema based on the source data speci-
fied during configuration. Figure 3.16 shows the interface of this tool.

Display Tools

By default Pentaho BA Server provides JPivot tools to display data but it is
possible to extends the platform downloading other GUI in form of plugins.
A better tool for display BA data is Saiku, a plugin that offers several advan-
tages with respect to JPivot as it allows simple drag and drop and deals with
HTML5 and CSS in a flexible way.

JPivot
JPivot is an open source Java library, therefore independent of the Penthao
platform, consisting of custom JSP tags, i.e. it allows to display an OLAP table
and to execute on it the typical operations of navigation, such as slice/dice,
drill-down and roll-up. JPivot uses Mondrian as an OLAP engine in this
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FIGURE 3.17: JPivot Interface

framework, but it can also interact with XMLA data sources (XML for Analy-
sis), it is based on the WCF library (Web Component Framework) for render-
ing the graphic objects of the user interface and on the well-known JFreeChart
package for tracking graphics. This software represents the graphic compo-
nent for browsing the datacubes, and in addition to converting the result of
MDX queries into an HTML graphic format that can be understood by the
user, it allows users simple navigation. In Figure 3.17 it is possible to see the
format of a classic data navigation table built by JPivot.

Saiku
Saiku represents a better alternative to JPivot, it is an independent open source
project that offers the possibility of performing OLAP analysis by connecting
to an OLAP server like Mondrian. It is provided in the form of plugin that can
be easily integrated into the Pentaho platform and available through the mar-
ket of the Suite. Unlike JPivot, the graphical interface for executing queries is
based on the most intuitive drag and drop mode. The plugin uses HTML 5,
Javascript and CSS.

This plug-in also allows the direct creation of reports from the results of
MDX queries that can be exported to the most common graphic file formats.
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FIGURE 3.18: Saiku Interface

It also allows the export of results in different formats such as Excel, PDF or
CSV. Figure 3.18 shows the Saiku Web Interface.

By harnessing the power of OLAP, Saiku allows users to choose the mea-
sures and dimensions they need to analyse and “slice and dice” the data and
drill into the detail to uncover relationships, opportunities and issues. The in-
tuitive user interface lets users drill down and up, filter, pivot, sort, and chart
against OLAP and In-Memory engines.

Pentaho Analysis Operation

The core system of Pentaho Suite consists of the Mondrian Server. This is
a component capable of transforming MDX queries into SQL format using a
Data Warehouse descriptor XML file for mapping. This file, called cube de-
scriptor usually is generated via Schema Workbench tool. Schema Workbench
allows the writing of this file in a guided way, allowing connection to the Date
Warehouse for which the descriptor must be written. At a logical level it is
possible to define indifferently a star or snowflake schema inside this descrip-
tor. The making of MDX queries usually occurs through visual procedures on
client software like JPivot or Saiku that simplify this step using drag-and-drop
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FIGURE 3.19: Pentaho System Interactions

or selection procedures. Once an MDX query is created, it is sent to the Mon-
drian server by a web client. The Mondrian server transforms the MDX query
into SQL using the XML descriptor and forwards it to the SQL server. At this
point the SQL server executes the query and returns the result in tabular form
to the Mondrian server which in turn forwards it to the web client which will
show the results to the user. Figure 3.19 shows this execution cycle.

3.3.2 Big Data OLAP System Architecture

This section presents a Big Data analysis system that uses Pentaho Server as
Business Intelligence suite and Hive tool ( see section 2.7.4 ) for distributed
access to data contained in the Data Warehouse. As storage layer, this system
exploits a NoSQL solution based on HBase, which allows to obtain in a natural
way greater efficiency on reading operations compared to standard solutions.
The Pentaho suite allows access to the information stored in the data archive
and to perform data aggregation operations, whose results for efficiency rea-
sons are then stored in cache.

Figure 3.20 shows the system architecture, which is composed of three
macro modules:

1. Mondrian, as OLAP Server

2. Hive, as Query Executor on Hadoop Map Reduce
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FIGURE 3.20: OLAP Analysis Architecture for Big Data

3. HBase, as NoSQL Data Storage

This architecture combine Mondrian Server and Hive in order to guarantee
the distributed processing of queries on different nodes of a server cluster. In
this way it is possible to obtain various advantages, including the possibility
of exploiting SQL as a query language, towards a sub-system that does not
support it natively. The combined use of HBase and Hive, allows to overcome
some limitations of Hive like slowness of data access and interrogation. In
fact, among the main features of HBase, we have vertical partitioning in Col-
umn Families, horizontal partitioning in Regions, replication and indexing,
(as shown in section 2.7.2) all of which should ensure Near Real Time access
to data.

The analysis process is the following:

• The user specifies a query on predefined multidimensional cube through
a graphical interface (JPivot or Saiku)
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• The interface module creates the MDX expression associated with the
user query

• Mondrian translates MDX into SQL, as long as the query result is not
already in cache

• Hive create a Map Reduce type job, which accesses data stored on dis-
tributed datastore, using a generated map from SQL commands to
Hadoop ecosystem

• The final result is shown to the user, going back through previous phases

Figure 3.21 shows the user interactions with the system. It provides two
types of users: "Basic User" and "Domain Expert". The users of type "Basic
User" interacts with the system by generating reports and applying the classic
OLAP operators using GUI client like Saiku or JPivot. They cannot define any
new cube or measure but only can use those already present in the system. The
users of type "Domain Expert" can use all the features of the "Basic User" and
in addition they can define new cubes or measures using Schema Workbench.

FIGURE 3.21: System User Interactions
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Chapter 4

High Performance Computing
On Peer to Peer Network

4.1 Background

The advances in computer science allow many problems to be solved in a quite
effective way both in terms of computational time and resource usage. How-
ever, several problems still require an amount of computational resources that
goes far beyond the power of a single device or a single user. In order to solve
these kind of problems, a new computing paradigm has born: crowdsourcing.
This new paradigm is based on the idea of gathering the resources needed to
complete a task from the crowd in order to parallelize its execution.

Many attempts have been made to properly define the key features of
crowdsourcing systems; however, the answer to this apparently trivial ques-
tion is not straightforward, since there exist many different crowdsourcing
system based on different models and assumptions. If we try to find the com-
mon features shared among all the successful crowdsourcing systems (e.g.,
Wikipedia, Yahoo! Answers, Amazon Mechanical Turk) we can clearly realize
that they rely on some assumptions:

• They should be able to involve project contributors

• Each contributor should solve a specific task

• It is mandatory to effectively evaluate single contributions

• They should properly react to possible misconducts
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As we can see from the examples above many systems are based on an
explicit collaboration of many different people sharing the will to build a long-
lasting product that can be used by the whole community. Aside from this
human-centric view, there exist a plethora of systems that leverage implicit co-
operation among users (e.g. multiplayer games) or tools that are not devoted
to the production of a tangible object (e.g., Amazon Mechanical Turk).

A well known open source framework that is widely used (mainly) for sci-
entific purposes is BOINC (Berkeley Open Infrastructure for Network Com-
puting) (BOINC website). It allows volunteers to contribute to a wide vari-
ety of projects. Their contribution is rewarded by credits used to climb a
leaderboard. In recent years a new category of collaborative approaches for
cryptocurrency mining is emerging, such as Bitcoin (Nakamoto, 2008) im-
plemented by blockchain technology. Users aiming at mining new Bitcoins
contribute in solving a decoding task and are rewarded with a portion of the
gathered money, proportional to the effort put in the mining task. The latter
approach is gaining a lot of attention from the end users just because it allows
them to earn a tangible reward.

In this chapter a system named CoremunitiTM (that stands for Community
of Cores) is presented. This system is inspired by the collaborative model used
in BOINC while implementing an ad hoc rewarding strategy similar to Bitcoin
mining. The system does not require in principle any specific user skills but
users can join the network simply providing their under used computational
resources. Therefore the Coremuniti approach can be seen as an hybrid crowd
as tasks can be solved by computer-based resources(Peng, 2015).

More in detail, the novelty of this innovative project is the design of a peer
to peer framework able to provide services at much lower prices compared to
centralized center farms, by exploiting idle computational resources from the
users joining the network.

This system represents an alternative to Map Reduce based systems (like
Google Map Reduce or Hadoop) described in 2.7.3 or similar systems like
Spark described in 2.7.5. However the basic approach is different: while our
system was thought to operate in a extra-cluster scenario (with a lot of differ-
ent devices located around the world), the map reduce systems were designed
to work usually in the same cluster of the same organization.
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These differences make it necessary to work on some additional issues in-
cluding:

• Correctness of the results. Since the system involves different users,
these could return incomplete or incorrect results to maximize their cred-
its.

• Data and results movement. Working on one or more clusters of the
same organization allows to obtain network speeds that are much higher
than peers that are located around the world and with different connec-
tion speeds.

• Security of communications. Extra-cluster communication need to be
secured to avoid that can be intercepted and manipulated by third par-
ties.

The Coremuniti system can be used in several application scenarios, e.g.
computer simulation and advanced data analysis and it is well suited for ver-
tical implementation of computing intensive tasks, representing a
trans-disciplinary opportunity. More specifically, this approach can be a valid
alternative to traditional solutions, such as buying or renting expensive ded-
icated servers. Furthermore, in many cases, even using powerful dedicated
servers, the time needed to solve a problem is still too high, because the sub-
tasks composing the problem are not parallelized at all. Coremuniti approach
is based on an high performance Peer to Peer (P2P) network composed by
computational resources shared by the users of the network itself. Each node
of the network (i.e. users in the crowd) can set the amount of their resources
to share. When a peer needs to execute a high resource consuming task, he
can ask the necessary computational power to the network. The process can
be executed in few clicks thus making this software quite user friendly. In
order to assess the effectiveness of this solution, a the 3D rendering scenario
has been analyzed that turns to be a severe test bench for this technology. A
specialized plugin named MozaikoTM (this name was chosen as basic approach
splits a complex task in several sub-tasks that will be re-assembled like mosaic
tiles) has been developed to allows to render Blender 3D models on this dis-
tributed network. The rendering process typically engages user’s computers
for a considerable amount of time. The experimental analysis shows that ex-
isting solutions are slower and more expensive than the proposed approach.
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Moreover, this system does not require to frequently purchase new hardware,
since users continuously provide (up to date) computational power. Finally,
the better re-use of already powered resources could induce a beneficial sys-
temic effect by reducing the overall energy consumption for complex tasks
execution.

4.1.1 Coremuniti in a nutshell

P2P networks feature a common goal: the resources of many users and com-
puters can be used in a collaborative way in order to significantly increase the
computing power available for the users and parallelizing task executions. In
“full” P2P networks, each computer communicates directly to each other thus
allowing better bandwidth use. However, in many cases, there are some inher-
ent drawbacks to P2P solutions and some functionality needs to be centralized.
Those systems, that can be used both for data sharing(Yang and Yang, 2010)
and distributed computation(Yang and Garcia-Molina, 2001), are denoted as
“hybrid” P2P. Coremuniti falls in the latter category and aims to build a P2P
network where users can share their unexploited computing resources. Figure
4.1 shows a possible usage scenario for the platform when using Mozaiko plu-
gin. However, it must be said that this platform is general purpose, thus can
be used for solving any complex problem that is parallelizable.

In order to join this network a user has to download the Coremuniti Server
(platform independent) software. By running this software the user becomes
a node server of network, denoted in Figure 4.1 as NSA (Node Server Agent).
This software does not interfere with other applications running on the com-
puter and the user can easily set the amount of CPU that wants to share with
the network, so that Coremuniti Server can be easily adapted to everyone’s
needs. On the opposite side, users who need additional computational power,
in order to complete computing intensive tasks for example, can install the
specific software that is denoted in Fig. 4.1 as NCA (Node Client Agent) (i.e.,
Mozaiko for the case study). To start a new task, they simply issue a request
to the network in order to gather the required resources. The submission of a
new task in the network will cost to the user a number of credits proportional
to the complexity of the task itself (see 4.3). Since each node of the network
can act both as a server and as a client, when submitting a new task two cases
may occur:
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FIGURE 4.1: Coremuniti System at Work

1. the user has previously earned (a portion of) the required credits for run-
ning the task (e.g., because they acted as servers)

2. they bought the required credits

In order to guarantee a high level of service, the central server is respon-
sible of performing the subtask assignment. More in detail, to fully take ad-
vantage from the capability of this network, the (possibly huge) initial task
is partitioned in an adequate number of (much smaller) subtasks that can be
quickly executed by the server peers. Moreover, an internal company network
of 80 peers was created to be used when the number of available public peers
is not sufficient to guarantee proper execution of user tasks.

As soon as subtasks are completed, the system checks their correctness and
it rewards the participating peers. The model for subtask assignment, that will
be described in 4.3, guarantees efficient execution for clients and gave to all
peers (even if they have limited computational power) the possibility to be
rewarded. Interesting enough, even users that are not going to ask for task
execution have the chance to earn credits that can be redeemed by coins or
gadgets. The latter feature makes Coremuniti a more convenient choice w.r.t.
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other collaborative systems such a cryptocurrency mining (as shown in the
experimental evaluation paragraph).

Main Contribution. To summarize, the major contributions of this work
are the following:

• An hybrid P2P infrastructure named Coremuniti has been designed and
implemented which allows collaboration among users by sharing unex-
ploited computational resources. In particular, by running this software,
users can join the Coremuniti network and they can either provide or
request computational resources;

• A robust model for task partitioning, assignment and rewarding to net-
work users has been designed. More in detail, users that are available for
task execution are assigned with a suitable set of (sub-)tasks. When the
execution is completed, the system reward users with credits that can be
later redeemed for asking computational resources, coins or gifts;

• To prove the effectiveness of the proposed approach, several experiments
have been performed on a real 3D rendering scenario. To this end the
system performances have been measured against those of commercial
popular 3D rendering farms and cloud services. Moreover, the system
performances have been compared w.r.t. other systems that reward users
for their effort in solving computational expensive tasks.

4.2 Coremuniti Architecture

The goal of Coremuniti Network is to build a reliable infrastructure that allows
to share computational resources in an easy and secure way. This framework
has to be robust against attacks from malicious users, analogously to every
distributed computing systems (Bhatia, 2013) or distributed storage systems
(Firdhous, 2012). More in detail, the system need to guarantee secure commu-
nication between clients and server, trusted software for remote execution and
privacy for the intermediate computation. To this end, the system rely on an
hybrid P2P framework (Franklin et al., 2011) where some functionality is still
centralized, since it aims at guaranteeing continuous service availability.

Figure 4.2 shows the interactions among system components. Herein: Client
Node refers to those users who want to execute a high computing demanding
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FIGURE 4.2: System Architecture

task (also referred to as project in the following) using Coremuniti network.
Server Node refers to those users who will to share with other Coremuniti net-
work users the computational resources that are not fully employed on their
devices. Finally, Central Server is the core of the system. It is in charge of the al-
location of the nodes, the displacement of the messages and the scheduling of
tasks issued from client nodes that have to be distributed among server nodes.

The system is general purpose, every specific case study is implemented
as a new dedicated plugin. Thanks to the use of software agents the system is
able to be independent from low level processes and/or threads that are spe-
cific to the task being executed on the network. Figure 4.2 depicts the overall
system architecture where we can see how for each component several agents
are deployed.

Aside from the Client and Server Nodes, two new components complete
the architecture: the DB Server and the Web Server. The first consists of a
classical relational DB which stores information about the network status, the
users and the devices. The web server, instead, allows users to interact with
the system via web interface.

In what follows, the main components of Coremuniti architecture will be
described.
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Definition 1 (Client Node) The machines of all users who want to submit new
projects to the Coremuniti Network run a Client Node. It allows the execution of
the NodeClientAgent (NCA) whose role is to create projects to be submitted.

More in detail, a project is submitted to an agent residing on Central Server
component. Thanks to the NodeClientAgent, users, after authentication, can
perform the following actions:

• Create and send new project to Central Server that allows the agent to create
a new project by specifying the execution data and parameters.

• List all active project

• Stop and resume the remote execution of a project

• Delete a project

• Download partial updates, i.e., a user can download the results of the com-
putation even if the main task is still not completed. Thus, if the output
of the project is too big, it can be downloaded while it is still running.
This feature is very useful for Rendering Type tasks where the output
can be very large (typically in the order of Gigabytes).

Definition 2 (Server Nodes) Users willing to share their computing resources mak-
ing them available to other users act as resource providers by running a Server Node.

It allows the execution of the NodeServerAgent (NSA), whose job is to exe-
cute subtasks received from the Central Server. The agent is able to retrieve the
technical features of the machine on which it is currently running and offers
the opportunity to set the amount of computational resources to share with the
network. Currently it is possible to share CPU or GPU power, RAM and disk
space. The central server chooses the server nodes for a specific computation
taking into account several aspects related to the complexity of the task and
the availability of computational resources.

The Central Server component implements a clustered architecture and man-
ages the execution of tasks submitted to the Coremuniti Network. This is the
component that centralizes some core functionality of the peer to peer network
and allows the concurrent execution of different types of agents.
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The MainExecutionAgent (MEA) receives the remote execution requests per-
formed by NodeClientAgent agents. For each request an ExecutionAgent (EA)
is created, with the goal of handling the remote execution.

The primary role of MEA is to manage the load balancing of internal servers
by properly assigning the EA to different machines.

ExecutionAgent takes care of managing remote execution of a single project.
It performs the following jobs:

• Subtask execution coordination for a single project. This activity includes
the initial assignment of subtasks to NSA (Algorithm 1 reported in Sec-
tion 4.3). During execution of the subtasks the EA receives updates about
the execution status and once the computation ends, it receives the final
subtask results from each NSA. In addition to that, the EA periodically
allocates new NSA to subtasks if the assigned NSA are slow (Algorithm 2
reported in Section 4.3).

• Result Quality Control. Specifically, a subtask is assigned to more than
one resource provider. It is crucial for the EA to validate the obtained
results. Since system protocol can be used in different scenarios by de-
veloping specialized plugins, the validation step is strongly tied to the
process being executed. Generally, in order to perform the validation,
different results are compared using a specific task evaluation metric.
The comparison details can be implemented by using the TaskValidation
API, that provides a fully customizable and easy way to manage differ-
ent types of tasks in the Coremuniti network (as it will be shown for the
rendering case study described in Section 4.4).

• Credits Management. When at least three NSA complete the execution of
the assigned subtask st the EA assigns credits to all NSA working on st
as described in Section 4.3.

• Data Transfer Management (Upload/Download project/subtask data). The sys-
tem uses an internal file server that deals with data transfer among peers
and central server.

The PA keeps track, using a database, of the information related to the ex-
ecution of the tasks from the resource providers. It constantly monitors the
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availability of resource providers that can be assigned to new tasks and up-
dates a pool of available resources that can be requested by EA.

Since the primary goal of this framework is to minimize the overall com-
pletion time of a given problem, it is mandatory to estimate this total time in
order to perform an effective division of the main task that guarantees good
results in terms of execution time. The estimation of the overall completion
time is performed by the TaskEvaluatorAgent (TEA). This component is also
in charge of splitting the initial task into multiple subtasks with a similar ex-
pected duration.

Each TEA runs on a single machine (denoted as reference machine). The
reference machine adopted in the current implementation has the following
technical specifications:

• CPU: Single core - Single thread 4.0 GHz Intel Processor

• RAM: 32 Gb DDR3 1600 Mhz

• HDD: SATA SSD 1 Tb 550 Mb/s peak

4.2.1 Communication Protocols

This section describes the communication protocols between agents carrying
out the main functions on the Coremuniti Network. Each project (task) Pj
is a triple 〈type, D, pms〉, where type is the type of the task to be performed,
D are the data on which the execution should be carried on and pms are the
execution parameters. Each message M exchanged on the network has the
form 〈mtype, content〉 where mtype is a string that defines the type of message
and content is a generic object that specifies the content of the message.

In the following, the details of two communication protocols implemented
in Coremuniti is reported in order to enable the communication between the
Central Server and Client/Server nodes: Adding New Project Protocol and Task
Assignment and Execution Protocol. These protocols are open specification in or-
der to allow the developer community to eventually design new Client/Server
node implementations.

Main agents involved in the submission of a new task to the system are:

• NodeClientAgent: It creates the project Pj by choosing its type, sending
D and setting the values of one or more pms for the selected project type;
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• MainExecutionAgent: It listens for remote execution requests, creates a
new ExecutionAgent and deploys it to a selected machine to balance the
system load;

• ExecutionAgent: it manages the project evaluation interacting with the
TaskEvaluatorAgent, the PeerAgent and the NodeServerAgents;

• TaskEvaluatorAgent: Receives projects from ExecutionAgent and esti-
mates the Pj total cost splitting it in subtasks of uniform cost.

In order to add new project, a NodeClientAgent sends to a MainExecution-
Agent a message of type RemoteExecutionRequest. The MainExecutionAgent
creates and deploys a new instance of ExecutionAgent trying to balance the
system load. After the new ExecutionAgent is created, a new ExecutionAgentAddress
message is sent to NodeClientAgent with a content containing the following
information:

• Address and port of the ExecutionAgent

• Address and port of a data server

• Credentials for the data server

At this point the NodeClientAgent talks directly to ExecutionAgent that
will handle both the creation and the remote execution of project. Each Execu-
tionAgent has an internal data Server in order to receive the data D. The user
agent uploads D to ExecutionAgent via data server using credentials received
with the previous message, (in the 3D rendering use case this data is the scene
file for the project with type: Rendering). After upload is completed, Node-
ClientAgent can send a cost calculation request through a message with mtype
CalculateCostExecution and with content embedding the values of project pa-
rameters pms. In the example use case, the pms for Rendering type projects are
the numbers of first and last frame to render. Obviously, the value of param-
eters can change overall total execution time and therefore the cost of project.
For this reason, this message can be sent multiple times with different parame-
ters in order to let user choose preferred parameters based on total project cost.
When first message with mtype: CalculateCostExecution comes is received by
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FIGURE 4.3: Adding New Project Protocol
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ExecutionAgent, the D is uploaded to data server and pms are sent via mes-
sage to TaskEvaluatorAgent to estimate the total cost of Pj. After the evalua-
tion is completed a new message is sent from TaskEvaluatorAgent to Execu-
tionAgent with the total cost and number of subtasks of project. It is important
to underline that an ExecutionAgent executes only one Pj, therefore a triple
〈ExecutionAgent, Pj, pms〉 uniquely identifies a request of Pj evaluation. As
soon as ExecutionAgent receives the message containing total execution cost,
it sends a new message to NodeClientAgent notifying total cost for the Pj with
selected pms. At this point NodeClientAgent can start remote execution send-
ing a new message to ExecutionAgent with mtype StartRemoteComputation
and content the pms selected. If user on NodeClientAgent has enough cred-
its she can request the task execution: the ExecutionAgent writes on DB Server
the project data and remote computation can start; otherwise an error message
is returned to NodeClientAgent. In order to save resources on the machines
where ExecutionAgents are deployed a session timeout is set. If data D is not
sent before timeout, the agent is closed and resource released. Furthermore, af-
ter D is uploaded another timeout is used to allow users to select preferred pms
(via CalculateCostExecution messages) and start remote computation. Again
if this timeout expires ExecutionAgent is closed.

Since each Coremuniti project Pj must be executed in a parallel way among
nodes of the network, Pj is splitted into several subtask (st1, st2, . . . , stn). In
this section, the interaction between Server Nodes (resource providers) and Cen-
tral Server that occur when a subtask of a project Pj needs to be retrieved and
executed will be described. The main actors involved in this phase are:

• NodeServerAgent: Receives the subtask to execute, downloads the data
and uploads the results to the ExecutionAgent,

• PeerAgent: Provides a pool of NodeServerAgent to the ExecutionAgent,

• ExecutionAgent: Manages the remote execution of Pj.

When a NodeServerAgent is available, it send a message to PeerAgent with
mtype NodeHeartBeat to notify its presence and to ask for tasks to perform.
The content of this message, shown in table 4.1, is a list of information about
the architecture and the status of the device on which the agent is running.
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FIGURE 4.4: Task Assignment and Execution Protocol

TABLE 4.1: NodeServerAgent Beat Message Content

Field Description
Device name Name of the computational device
Device type Type of the device. Currently supported types

are CPU and GPU
Core Number Number of cores of the device (optional)
Available RAM (Mb) Total amount of RAM of the device
Available HD (Mb) Total amount of disk space of the device
Currently Used RAM (Mb) Currently used RAM of the device
Currently Used Device Power (%) Percentage of device power currently used
Currently Used HD (Mb) Amount of currently used disk space of the de-

vice
Max Shared RAM (Mb) Maximum amount of RAM the user wants to

share
Max Shared Device Power (%) Maximum amount of device power the user

wants to share
Max Shared HD (Mb) Maximum amount of disk space the user wants

to share
Public signature key A public key used to sign the results sent to the

central server
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This message is cyclically sent to PeerAgent to notify peer availability. A
node is considered alive if

LTU < CST − ∆t

where LTU is the timestamp of NodeHeartBeat message, CST is the timestamp
of current server time and ∆t is a fixed time interval (currently 60 seconds). In
the actual state, in terms of GPUs, we only support Nvidia cards with CUDA-
Enabled (Nickolls et al., 2008; Harris, 2008).

When an ExecutionAgent starts a remote project, it sends a message con-
taining mtype: NewProjectStarted to the PeerAgent. This agent selects a pool
of available NodeServerAgents that can be assigned to the project. Afterwards
it sends a message to the ExecutionAgent with mtype: PeerList and content
made of a list of nodes ids that are authorized to work on Pj. Subsequently,
a message with mtype: NewTaskAssignment is sent by the ExecutionAgent to
all NodeServerAgent that have been chosen. This message contains the Exe-
cutionAgent address and port. At this point, NodeServerAgent contacts Exe-
cutionAgent using a message of the form mtype: ExecutionBargaining and, if
authorized, it will receive an ExecutionTaskIn f o message. This message con-
tains all information needed by the agent in order to execute subtask and to
send results to ExecutionAgent:

• Executable Links: Links to download the executable file for the assigned
task. This is a list of several links, each for a different system architecture
and Operating System. Currently OS supported are Windows (x86 and
x64), Mac Os (x64) and Linux (x86 and x64).

• Params: Parameter to pass to the executable. For the Rendering type
projects are the coordinates and the number of frames to be rendered.

• Upload Server Data: These are the information needed to connect to
the in internal ExecutionAgent data Server: address, port, username and
password.

As soon as ExecutionTaskIn f o message has been received, the NodeServer-
Agent downloads data D and starts execution of assigned subtask. Further-
more, cyclically it sends a message with mtype: TaskStatusUpdate to notify the
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local subtask execution progress. The content field of this message contains a
couple 〈ES, Perc〉 where ES is the Execution Status and Perc is a percentage
representing current state of completion of subtask. The ES variable can be
one of the values: DOWNLOAD,EXECUTION or UPLOAD. When the execu-
tion of the subtask ends, the agent uploads the results (typically a file) to the
Execution Agent data Server (e.g., in the 3D rendering case study, the result
is an encrypted object containing the rendered tiles). A message with mtype:
TaskResult is then sent by the NodeServerAgent in order to notify the Execu-
tionAgent about the completion of the task.

4.3 Subtasks Assignment and Credit Rewarding

In order to properly assign subtasks to resource providers the system rely on
a mathematical model, described in this section, whose primary goals are the
following:

1. it aims at minimizing the expected completion time for the overall task

2. it takes into account resource providers’revenue expectations

More in detail, as explained above, when a user submits a task to the
Coremuniti network, this task is splitted in several subtasks, much easier to
solve than the initial one. Every subtask can be completed using a reasonable
amount of computational resources by the server nodes connected to the P2P
network. The obtained results are then combined in order to produce the ini-
tial task solution. On the opposite side, users providing their computational
power to the Coremuniti network wish to maximize their revenues by execut-
ing as much tasks as they can, in order to gain as many credits as possible.
Obviously enough, the assignment should take into account the computing
capability of each node in order to give to every node the chance to gain cred-
its for their subtask executions. In the following the assignment model will be
described.

The model assumes the presence of a set of available resource providers
RP = {rp1, rp2, . . . , rpn}, and of a function λc : RP → N × N, that assigns to
every resource provider rp a pair 〈tmin, tmax〉, where tmin (resp. tmax) is the
minimum (resp. maximum) execution time required by the resource node to
complete a subtask.
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Furthermore, the system leverage a credit assignment function which is
based on the “usefulness” of the results yielded by the resource providers.
Specifically, let st be a subtask whose execution was assigned c credits and
which was assigned to the resource providers rpi1 , rpi2 , . . . , rpix . Let the re-
source providers rpi1 , rpi2 , . . . , rpix sorted ascending w.r.t. their completion
times and store them in a sequence RPst. Resource providers which did not
terminate their subtask are put at the end of the sequence RPst ordered accord-
ing to the percentage of the subtask they completed.

When at least three resource providers completed their work, the system
assigns 3c

10 of the total credits, paid by the client for running the subtask on
the network, to the first three resource providers in RPst, i.e., the resource
providers which “step up on the podium" for returning st result. Moreover,
he distributes the remaining c

10 credits among the other resource providers in
RPst as follows. For each j ∈ [4 . . . x], the system assigns to RPst[j] the credits
given by the following formula

c · Compl(RPst[j])
10 ·∑x

k=4 Compl(RPst[k])
,

where Compl(rp) is the percentage of the subtask st which was completed by
rp.

During the task assignment phase the system aims at finding an optimal
distribution of the subtask among resource providers which minimize the ex-
pected completion time while guaranteeing that:

1. to every resource provider is assigned at most a subtask,

2. it is possible, for every resource provider with a subtask assigned, to be
one of the first three resource providers completing the subtask.

Subtask assignment proceeds in two phases. First, an initial assignment
of the various subtasks to resource is yielded (Algorithm 1). Next, at regu-
lar intervals, the systems checks for the overall completion of the project and
assigns resource providers that are available to new subtasks (Algorithm 2).

Let st be a subtask and RP = {rp1, rp2, . . . , rpk} be the set of resource
providers assigned to st. The expected completion time of st given RP is de-
noted as ECst,RP and is computed as follows. Let ~t↓ and ~t↑ be two vectors
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reporting, respectively, the minimum and maximum completion times of the
resource providers in RP in increasing order. Let t′ denote the value ~t↓[2] and
t′′ denote the value ~t↑[2]. Let vect = [t0 = t′, . . . , tk = t′′] be a vector containing
all the values in ~t↓ and ~t↑ which lie in the interval [t′, t′′]. Hence, denoting with
F3(x) the probability that at least three resource providers complete their job
before time limit x, we have that:

ECst,RP =
∫ ∞

0 (1− F3(x))dx = t′ +
∫ t′′

t′ (1− F3(x))dx =

t′ + ∑k−1
i=0

∫ ti+1
ti

(1− F3
i (x))dx =

t′ + ∑k−1
i=0 FF3

i (ti, ti+1),

where F3
i (x) is the probability that at least three resource providers complete

their work before x time limit given that ti ≤ x ≤ ti+1 and FF3
i (ti, ti+1) is equal

to
∫ ti+1

ti
(1− F3

i (x))dx. It is easy to see that FF3
i (ti, ti+1) can be easy derived from

the minimum and maximum completion times associated to every resource
provider by the function λc.

Example 1 Consider the case that a set of four resource providers
RP = {rp1, rp2, rp3, rp4} was assigned to st where λc(rp1) = 〈1, 5〉, λc(rp2) =

〈2, 7〉, λc(rp3) = 〈6, 7〉 and λc(rp4) = 〈4, 8〉. In this case, t′ = 4 and t′′ = 7 and

ECst,RP =

4 +
∫ 5

4(1−F3
0 (x))dx +

∫ 6
5(1−F3

1 (x))dx +
∫ 7

6(1−F3
2 (x))dx =

4 +
∫ 5

4(1−
x−1
5−1

x−2
7−2

x−4
8−4 )dx +

∫ 6
5(1−

x−2
7−2

x−4
8−4 )dx +∫ 7

6

(
1−
( x−2

7−2
x−6
7−6 + x−2

7−2

(
1− x−6

7−6

) x−4
8−4 +

(
1− x−2

7−2

) x−6
7−6

x−4
8−4

))
dx =

4 +
∫ 5

4(1−
x−1

4
x−2

5
x−4

4 )dx +
∫ 6

5(1−
x−2

5
x−4

4 )dx +∫ 7
6

(
1−
( x−2

5
x−6

1 + x−2
5

(
1− x−6

1

) x−4
4 +

(
1− x−2

5

) x−6
1

x−4
4

))
dx =

4 +
[

11x
10 −

7x2

80 + 7x3

240 −
x4

320

]5

4
+
[

3x
5 + 3x2

20 −
x3

60

]6

5

+
[

1
10 (−126x + 44x2 − 17x3

3 + x4

4 )
]7

6
=

4 + 901
960 +

11
15 +

31
120 ≈ 5.93

Before describing the details of subtask assignment Algorithms, some ad-
ditional notations will be defined. A subtask assignment SA is a set of pairs of
the form 〈st, rp〉, where st is a subtask and rp is a resource provider. Moreover
given a subtask assignment SA and a subtask st, we denote with SA(st) the



4.3. Subtasks Assignment and Credit Rewarding 91

set of the resource providers assigned to st in SA, i.e., SA(st) = {rp|〈st, rp〉 ∈
SA}, and we denote as ST (SA) the set of subtasks mentioned in SA, i.e.,
ST (SA) = {st|〈st, rp〉 ∈ SA}. Furthermore, given a subtask assignment
SA we define as MaxECP(SA) the maximum expected completion time of a
subtask in SA, i.e., MaxECP(SA) = maxst∈ST (SA)(ECst,SA(st)).

The initial subtask assignment is computed by running Algorithm 1. It
works in two phases. First, an initial assignment of resource providers to tasks
is yielded by assigning a resource provider at a time to the every subtask pay-
ing attention to minimize the maximum expected completion time of all the
subtasks. This is done considering resource providers in ascending order of
their expected completion time (lines 2-8). Next, the initial assignment is re-
vised by swapping pairs of task between resource providers. The algorithm it-
eratively selects a pair of assignments 〈st′, rp′〉, 〈st′′, rp′′〉which once swapped
provide the greatest decrement of the maximum expected completion time
(lines 9-12). Finally, the subtask assignment is returned.

Algorithm 1: Initial Assignment
Input: Resource provider sequenceRP of size n
Input: Subtask sequence ST of size k < n

3
Output: Tasks assignment SA

1: SA = ∅
2: RP = order(RP)
3: for i = 1 to n do
4: st = selectBestST(ST ,SA,RP [i])
5: if st 6= null then
6: SA = SA ∪ 〈st,RP [i]〉
7: end if
8: end for
9: repeat

10: (〈st′, rp′〉, 〈st′′, rp′′〉) = selectBestCP(SA)
11: SA = SA− {〈st′, rp′〉, 〈st′′, rp′′〉} ∪ {〈st′, rp′′〉, 〈st′′, rp′〉}
12: until existsCP(SA)
13: return SA

Function order receives as input a sequence of resource providers RP and
returnsRP sorted ascending w.r.t. the expected resource provider completion
time. Function selectBestST returns, given a resource provider rp and a sub-
task assignment SA, the subtask st ∈ ST such that MaxECP(SA ∪ {〈st, rp〉})
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is the minimum, i.e., st = arg minst∈ST (MaxECP(SA ∪ {〈st, rp〉})), such that
MaxECP(SA ∪ {〈st, rp〉}) < MaxECP(SA), null otherwise. Since in the ini-
tial step of the algorithm there could be some subtasks st in ST such that
|SA(st)| = x < 3, for each subtask st satisfying this constraint, when comput-
ing MaxECT function selectBestST assumes that 3− x fake resource providers
have been assigned to st, where the minimum and maximum completion times
of these fake resource providers are max− 1 and max, respectively, where max
is a constant value (much) greater than the maximum completion time of every
the resource provider inRP .

Function selectBestCP returns a pair of assignments 〈st, rp〉 and 〈st′, rp′〉 in
SA such that there do not exists an assignment 〈st′′, rp′′〉 and 〈st∗, rp∗〉 in SA
such that
MaxECP(SA− {〈st, rp〉, 〈st′, rp′〉} ∪ {〈st, rp′〉, 〈st′, rp〉}) >
MaxECP(SA− {〈st′′, rp′′〉, 〈st∗, rp∗〉}cup{〈st′′, rp∗〉, 〈st∗, rp′′〉}).
Function existsCP returns true if there is a pair of assignments 〈st, rp〉 and
〈st′, rp′〉 in SA such that
MaxECP(SA− {〈st, rp〉, 〈st′, rp′〉} ∪ {〈st, rp′〉, 〈st′, rp〉}) < MaxECP(SA).
Moreover, both functions selectBestCP and existsCP consider only pairs of as-
signments 〈st, rp〉 and 〈st′, rp′〉 in SA such that swapping rp and rp′ guaran-
tees that the probability that rp (resp. rp′) is among the first three resource
providers assigned to st′ (resp. st) completing st is greater than zero.

The following proposition describe the behavior of Algorithm 1.

Proposition 1 Let RP be a sequence of resource providers of size n and ST
be a sequence of tasks of size k < n

3 . Algorithm 1 returns a subtask assignment
SA in polynomial time w.r.t. |RP| and |ST | such that

1. for each st ∈ ST |SA[st]| ≥ 3, and

2. for each rp ∈ RP if 〈st, rp〉 ∈ SA the probability that rp is among the
first three resource providers that complete st is greater than zero.

Proof (Sketch). The first property follows from the hypothesis that k < n
3 and

the fact that the initial assignment of resource providers to tasks (lines 2-8 is
done by selecting the subtask st that provides the largest decrement of the
maximum expected completion time. Therefore, it is easy to see that, as in the
case that a subtask st have been assigned less than three resource providers,
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at least one fake resource provider is considered in the computation of st ex-
pected completion time and the minimum completion time of a fake resource
provider is much larger than the maximum completion time of any (real) re-
source provider. Furthermore, it cannot happen that more than three resource
providers are assigned to a subtask before that all the other tasks have been
assigned at least three resource providers.

As regards the second property, it straightforwardly follows from the defi-
nition of functions selectBestST and selectBestCP.

Finally, it can be show that the algorithm runs in polynomial time w.r.t.
|RP| and |ST | by proving that in the case that a pair of assignments is re-
turned by function selectBestCP at least one of the resource providers that will
be swapped, will never be returned by subsequent invocation of function se-
lectBestCP. 2

Coremuniti central server runs Algorithm 2 periodically, in order to check
for the overall completion of the project and to assign resource providers, that
have completed the assigned tasks, to new tasks. The statistics of the resource
providers involved in the computation of the subtasks are updated before run-
ning this algorithm, so that the system deals with up to date values for mini-
mum and maximum completion times. Essentially Algorithm 2 first sorts the
available resource providers ascending w.r.t. their expected completion times
and next iteratively assigns each resource provider rp to the subtask st selected
by invoking function selectBest. Function selectBest returns, given a resource
provider rp and a subtask assignment SA, the subtask st ∈ ST such that
MaxECP(SA ∪ 〈st, rp〉) is the minimum, i.e.,
st = arg minst∈ST (MaxECP(SA ∪ 〈st, rp〉)) and is such that
MaxECP(SA ∪ {〈st, rp〉}) < MaxECP(SA), null otherwise.

4.4 Case study: Efficient and Effective 3D rendering

Many real life application requires huge computing resources in order to prop-
erly execute. As an example we mention here physical science simulation,
mathematical simulation for insurance companies, biology simulation and cryp-
tography. In this section, the CoremunitiTM based solution will be described
for a quite interesting scenario, i.e., 3D Professional Rendering. More in detail,
rendering is the process of converting a graphical model into an high quality
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Algorithm 2: Incremental Assignment
Input: Available resource providers sequenceRP of size n
Input: Subtask sequence ST
Input: Initial Subtasks assignment SA
Input: Subtasks and Resource Providers constraints STC
Output: Revised Subtasks assignment SA

1: RP = order(RP)
2: for i = 1 to n do
3: st = selectBest(ST ,SA,RP [i])
4: if st 6= null then
5: SA = SA ∪ 〈st,RP [i]〉
6: end if
7: end for
8: return SA

image by means of a computer program. The input of the rendering process is
the model (also called scene), composed of texture, lighting, shading, viewpoint
and geometry information. Starting from these information, many rendering
algorithms have been implemented in order to obtain the final image. The
most important concept used by these algorithms is light tracing. A naive so-
lution to the rendering problem could be obtained by tracing every particle of
light from every source to every object in the scene. This solution is (obviously)
impractical because it calls for massive amount of computational time. More-
over, it is useless because some portion of the scene being rendered will not
be visible in the final image in the majority of real life rendering task. In par-
ticular, only a space region of the model may appear as a part of the rendered
image, it is referred as view frustum. The exact shape of this region varies de-
pending on many factors such as the viewing direction and the camera being
used.

Based on this assumption a more efficient light transport modeling tech-
niques have been defined, such as:

• Ray casting: it runs the rendering process starting from a point of view
and using basic reflection laws and elementary geometry computes the
rendering output. The obtained image quality could be improved by
using Monte Carlo based correction techniques;
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• Ray tracing: it works analogously to Ray Casting, but it is based on more
sophisticated optical laws (Glassner, 1989).

The use of the above mentioned approaches allows to limit the light trac-
ing execution only to those pixels that will be visible in the final image, nev-
ertheless, the rendering process still requires high performance resources for
running to completion if the input scene is (slightly) complex.

Although many advances in computing device technology led to afford-
able computational power (thus ameliorating the curse of huge execution time
for professional use), the always growing demand of photorealistic results and
high resolution artistic products, make the rendering problem more and more
challenging. Coremuniti provides a nice solution to this problem by taking
advantage of the resources provided by users joining the P2P network. Figure
4.5, shows the Coremuniti Server status running a rendering task. In partic-
ular, resource providers can set the amount of resources they are willing to
share both as a percentage of the the total CPU usage (in Fig. 4.5 it has been set
to 80%) and the maximum amount of memory (in Fig. 4.5 it has been set to 1
GB).

It is straightforward to note that the rendering task is highly parallelizable
as frames and tiles (composing each frame) can be rendered independently.
Parallel rendering drastically improves the speed of rendering operations. If
we take into account ray tracing we can divide the whole view frustum into
portions. Each piece of the frustum can be rendered on different nodes using
the appropriate rays in order to obtain the corresponding portion of the ren-
dered image. It is easy to see that single machine execution requires to send
rays to all the pixels in the frustum slowing down the overall rendering time.

Mozaiko natively provides the opportunity to parallelize the rendering
process on Coremuniti network. In the first implementation the software Blender 1

is used to render models. Blender is a professional computer graphic software
available for many platforms that is actually considered one of the best tool
for professional rendering and movie making. As a default add-on, Blender
provides Cycles render engine that is based on ray-tracing. An interesting fea-
ture provided by Cycles is the Render Border function. Border rendering works
on a smaller piece of the original render model. It is typically used to refine
the rendering of an image portion that requires longer execution times w.r.t.

1https://www.blender.org
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FIGURE 4.5: Coremuniti Server At Work

the rest of the image or for previewing purposes. The images are then easily
combined in order to obtain the final rendered image.

More in detail, the rendering process starts from the pixel that will be vis-
ible in the final image and sends a “ray" into the scene to identify the exact
colour for that pixel. Each ray will bounce around the scene from object to ob-
ject to light source based on rendering settings set to calculate the final result.
While the render border will reduce the pixels used as the starting point for
each ray, it does not reduce the objects or lights in the scene that each ray may
encounter on its way. Each ray crossing the scene will still “see" every visible
object and light effects in the scene that can influence the final result for each
pixel. Using border rendering, then, does not introduce any degradation on
the quality of the resulting output image. Mozaiko uses border render func-
tion to split the original model to be rendered into rectangular regions that
are sent to the computing nodes for parallel rendering. As the intermediate
results from each node are gathered, the rendered regions are merged into the
final image. Fig. 4.6 depicts the Mozaiko client. It allows to check the comple-
tion status of the tasks that have been launched and to see the preview of the
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FIGURE 4.6: Mozaiko Rendering View

rendering output. It is also possible to control the execution flow and to check
the credits needed to perform the rendering.

Rendering Task Validation. A crucial requirement for Coremuniti archi-
tecture is the detection of incorrect task execution. Since the system renders the
models using distributed resources, it is mandatory to implement a checking
strategy to determine if the rendering task solved by peers is correct. In par-
ticular, the system needs to output properly rendered files to requesting users
and identify possible malicious actions (e.g., a user submitting a wrong im-
age with the intent of damaging the network). As explained in section 4.3, the
system asks several peers to solve a specific task and waits for their answers.
Since these results may slightly differ each other, the system needs to find a
way to evaluate them in order to output the best one w.r.t. the requesting user
viewpoint. As this process involves complex neurological mechanism that are
beyond the scope of this work, we simply mention here that a method based
on visual perception metrics (Witzel, Burnham, and Onley, 1973) was applied
in order to determine the similarity threshold for the pixels that differs among
rendered images. If the difference is higher than the obtained threshold, the
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system randomly chooses a small subset of pixels to render on the internal spe-
cialized backup server in order to determine the best result to be returned to
the requesting client. As a final note, we point out that, it is mandatory to pre-
vent the injection of malicious script in the model to be rendered (e.g., Blender
allows to execute custom python script in a 3D model). Into the Coremuniti
software, some security actions are performed. For example the execution of
unnecessary scripts are disabled and in case that the script is claimed by the
client to be crucial for the rendering completion, the system runs it in a secured
sandbox (Payer, Hartmann, and Gross, 2012).

4.5 Experimental Evaluation

This section is devoted to experimentally evaluate the Coremuniti performances
from two standpoints:

1. Efficiency and effectiveness evaluation of the Coremuniti approach by
comparing his performance against the state of the art solutions avail-
able;

2. Comparison of the revenue that users can get by joining Coremuniti net-
work w.r.t. other collaborative approaches that reward users (e.g., cryp-
tocurrency mining).

We focus our attention on two different kind of tasks: 3D rendering and
matrix multiplication (implemented by the highly parallelizable Strassen al-
gorithm described in (Li, Ranka, and Sahni, 2011)) since it is one of the basic
operation behind most of computer simulations. For the latter we used the
dataset of the University of Florida Sparse Matrix Collection 2

The experimental evaluation was carried out on a testnet network that in-
volve 40 peers that have been classified according to the computational power
of devices. The network features are reported in Table 4.2.

As explained above, the Coremuniti system works in parallel with the nor-
mal user activities. This is a crucial assumption as traditional approaches for
high performance computing relies on dedicated resources. We measured the
running time of the rendering tasks by considering several usage scenarios for
resource providers:

2Available at https://sparse.tamu.edu/
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Type Equipment Peer Percentage

BASIC Intel i5-6440HQ - 8GB RAM - GPU Nvidia GeForce GTX 950M 60
INTERMEDIATE Intel i7-4790K 4GHz - 32GB RAM - GPU Nvidia 980 Ti 6 Gb RAM 25

ADVANCED Xeon E5-26700 2.60GHz - 128GB RAM - GPU NVIDIA GK110GL 15

TABLE 4.2: Computation Power of Resource Providers in Test-
net Network

• Low-Use: Users who are performing activities that do not require huge
amount of computing resources such as browsing simple pages and/or
editing text (this is the system best case)

• Medium-Use: Users who are playing multimedia files (this is the system
medium case)

• Intensive-Use: Users who are playing video games (this is the system
worst case)

These 3 scenarios were simulated using ad-hoc software solutions installed
on the peers of the test network. For Low-Use simulation a system that open
and interact with with productivity tools (e.g. Libreoffice Writer, Calc, Base
ecc.) has been developed. For Medium-Use, films or playlist of soundtrack
have been performed on the peers and for Intensive-Use, some 3D games
benchmark were performed on network nodes.

For each possible scenario, three task categories (each category being com-
posed of 10 tasks) were performed. For each category a set of models have
been chosen so that can be partitioned respectively in 10, 20 and 30 subtasks
but it must be said that there is in principle no fixed upper bound for the num-
ber of subtastks.

4.5.1 System Performances

In order to validate the framework a comparison was conducted against some
of the most popular specialized rendering server farms in the case of 3D ren-
dering (i.e. RenderStreet3 and RebusFarm 4) and some clusters on well known
cloud service platform in the case of matrix multiplication. Below the used
configurations on cloud services:

3https://render.st
4https://us.rebusfarm.net/en
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• Microsoft Azure.5 8 Virtual Machines D5 V2 having 2.4 GHz Intel Xeon R©
E5-2673 v3 - 16 Core (Virtualized) CPU, 56 Gb RAM, 800 GB HD - Linux
Centos OS.

• Amazon EC2.6 8 Virtual Machine m5.4xlarge (On-Demand plan) having
3,1 GHz Intel Xeon R© P 8175 - 16 Core (Virtualized), 60 Gb RAM 800 GB
HD (via ABS - Amazon Block Store) - Linux Centos OS.

• DigitalOcean.7 8 Virtual Machine having Intel Xeon R© Skylake (2.7 GHz,
3.7 GHz turbo) - 16 Core (Virtualized), 64 Gb RAM 200 GB HD - Linux
Centos OS.

• Google Cloud8 8 Virtual Machine n1-standard-16 having Intel Xeon R© Sky-
lake (2.7 GHz, 3.7 GHz turbo) - 16 Core (Virtualized), 60 Gb RAM 200 GB
HD - Linux Centos OS.

• IBM Cloud9 8 Virtual Machine B1.16x64 having Intel Xeon R© CPU - 16
Core (Virtualized), 64 Gb RAM 25 GB HD - Linux Centos OS.

Time Performances

Figures 4.7 and 4.8 show the execution times of the Coremuniti solution by
running a first series of tests using the software to simulate the above men-
tioned usage scenarios. The benchmark used for experiments of the Figure 4.7
is the 3D Rendering while for the Figure 4.8 is the matrix multiplication. In
order to extremely stress this approach, we gave to competitors the advantage
of discarding the (eventual) set-up time for the cloud and the server farm de-
vices (marked in Fig. 4.7 as ∗ and ∗∗). More in detail, both Render Farm and
Render Street require users to sign up and choose a profile type, if the user
chooses the cheapest one, her tasks will be categorized as low priority. This
significantly slows down the overall execution time since the task could start
hours later. As for the cloud cluster, in addition to the cluster set-up times,
advanced skills are needed to be able to create an intra-cluster network and let
the various machines communicate with each other.

5https://azure.microsoft.com
6https://aws.amazon.com
7https://www.digitalocean.com
8https://cloud.google.com/
9https://www.ibm.com/cloud
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FIGURE 4.7: Execution Times Comparison - 3D Rendering

It is easy to see that, except for the system worst case scenario (i.e., when
the service providers are all intensively busy with other activities) the Coremu-
niti execution times are always better than the competitors. Even in the inten-
sive use case, the system times are slightly higher than RenderFarm. However,
we point out that the set up time have been discarded, so if this is summed up
to the execution time, is likely to be higher than Coremuniti execution in the
system worst case. Finally, it is worth noticing that the execution times of the
cloud based solution is almost double between the 10 and the 20 subtask runs,
while they remain almost the same between the 20 and the 30 subtask. This is
due to the fixed number of nodes and to the higher number of scene frames
with respect to node number that fail to execute all the frames simultaneously.
A similar issue occurs on RenderStreet between the 20 and the 30 subtask runs.

As regards to the matrix multiplication scenarios, it is easy to see that Core-
muniti performances are still better than the cloud services we compare to in
runs with 20 and 30 subtasks with only exception of Intensive-Use of 20 sub-
tasks w.r.t. DigitalOcean and Google Cloud where execution times are slightly
higher. For short tasks, for the cases of Medium-Use and Intensive-Use, the
execution times of cloud cluster are low, while for Low-Use times are very
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FIGURE 4.8: Execution Times Comparison - Matrix multiplica-
tion

similar. As already mentioned, in this case the cluster set-up and virtual ma-
chine startup times are not considered so if this is summed up to the execution
time, is likely to be higher than Coremuniti execution also in 10 subtask run.

Cost Evaluation

The Coremuniti strongest advantage w.r.t. the competitors is the money that
users can save using this network. Due to the system peculiar model it does
not suffer from fixed cost deriving from continuous update of hardware in-
frastructure.

Indeed, users joining the network are mainly professionals and technical
faculty university students that own up to date computing devices, thus the
network do not suffer of technical obsolescence. This competitive advantage,
reflects on Coremuniti cost model, where it is used a fixed price for each task
(in this use-case scenario is 0.12 Euro).

As shown in Figure 4.9, the total cost paid by users executing their tasks on
Coremuniti network is always lower than the cost paid if using render farm or
cloud services in case of Rendering. Moreover, as for the time performances,
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FIGURE 4.9: Rendering Cost Comparison

we gave to the competitor some advantage in the calculus, i.e., we do not ac-
count the cost for signing to their service, while users can join the Coremuniti
network for free.

Figure 4.10 show the cost comparison of Coremuniti w.r.t. cloud cluster.
In this case Coremuniti cost are lower than Azure Cluster, while they are sim-
ilar to other cloud providers. However, in this comparison, only the execu-
tion costs were considered. In the use of cloud clusters other hidden costs
are present as the cost of set-up the cluster, the cost of storage and the cost of
network.

Furthermore, we do not account also the possibly accumulated credits by
users that prior to ask for additional resources may had provided their own
computational time to the network. Finally, the system redistributes the 80%
of the paid cost to reward the resource providers. Next paragraph is devoted
to discuss this issue.

4.5.2 User Revenues Evaluation

As mentioned above the system redistribute to resource providers a great por-
tion of the money paid by users requesting computational power to the Core-
muniti network. In order to compare the possible outcome for joining Core-
muniti network with respect to other collaborative systems that rewards their
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FIGURE 4.10: Matrix Multiplication Cost Comparison

users we compare the system performances to the most popular services cur-
rently available using their own metrics, i.e. Bitcoin mining 10, Ethereum smart
contracts 11 and Monero mining 12 and . First of all, it is necessary to clar-
ify that those services require intensive-use advanced devices in order to give
users a chance to be rewarded (according to publicly available statistics). Table
4.3 shows more details on the key parameters for actual system comparison.
The parameter Network Difficulty is peculiar of cryptocurrency mining while it
is not applicable to Coremuniti network. We considered a resource provider
holding a video card Nvidia GTX 980 Ti (EVGA) fully dedicated to task ex-
ecution for the considered networks. We were forced to choose this device
because the basic and intermediate settings are not powerful enough to get
neither Bitcoin or Ethereum or Monero revenues. The device is able to com-
plete a Coremuniti task in 5 minutes and 30 seconds. This means that it is able
to complete 10 tasks per hour while for mining the other coins it can decode
the number of hashes reported in Table 4.3. Considering that the Coremuniti
system redistribute to the network 0.12 Euro for each accumulated credit, by
applying the mathematical task assignment model (as shown in 4.3) the user

10https://alloscomp.com/bitcoin/calculator
11https://badmofo.github.io/ethereum-mining-calculator
12https://www.cryptocompare.com/mining/calculator/xmr
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TABLE 4.3: Gain Comparison

Network Max Effort Network Coin Gain Current Rate Daily Gain
Difficulty (Euro)

Coremuniti 10 subtask/hour - 21,6 0,12 2,07
Bitcoin 240 Mhash/s 7,4094 T 0,00000001 10195 0,000090

Ethereum 18,5 Mhash/s 159418 T 0,001932 295,75 0,51
Monero 600 Hash/s 37,1689G 0,00384 109,72 0,37

can get up to 2.07 Euros per day. In this calculation we suppose that the user
that the user arrives in the top 3 positions at least 50% of the time. Also, an-
other main difference between cryptocurrency mining and Coremuniti is that
the first always returns a portion of coin to the miners during the 24 hours,
while for the Coremuniti system it is necessary that there are some users who
launches tasks in the system to be able to distribute credits. For this motivation
in the calculation was assumed a 12-hour execution time a day for Coremuniti
peers. As shown in the table 4.3 also with this assumption and limitation, the
Coremuniti gain is 4 times higher than revenues obtained by Ethereum (which
turns out to be the most profitable cryptocoin for the used devices)13.

13We considered the exchange rates available on 21st Jun 2019 on Poloniex Exchange
(https://www.poloniex.com)
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Chapter 5

Enhancing Big Data Information
Search

5.1 Introduction

The issue of devising novel solutions for analyzing Big Data, coming both
from heterogeneous information sources and from logs of user interactions
and behaviors, is becoming more and more compelling in the construction of
Intelligent Information Systems (IIS) to assist end user in the search of relevant
information and in the interaction with services in the net. To this end, several
research issues need to be dealt with.

First of all, data gathered by social network and search engines available
on the web are inherently non structured; therefore, a data exchange task has
to be performed for moving source data into a target “structured” database
enabling an effective analysis of user behavior. In the proposed framework,
source data should be also enriched with additional background information
and knowledge patterns on the application domain, derived by previous anal-
ysis of experiences from both experts and simple users. In this chapter, the
following challenge will be investigated: devising a data exchange setting for en-
hancing the information content of source data. As an example, given raw data
about restaurants and post reviews, the system will have to classify the restau-
rants according to the various “dimensions” (i.e., categorized properties or
other features) that have been singled out and evaluated in the reviews.

A relevant issue is to adapt the content of target data to the strategy fol-
lowed by the users when seeking for useful information. In particular, the user
may be driven by some predefined faceted features (browsing) or may simply



108 Chapter 5. Enhancing Big Data Information Search

formulate a query using “free" keywords (searching). Most of the present sys-
tems mainly follow one of the two mentioned paradigms and only few sys-
tems offer a mix of the two of them. A new frontier for IIS is to combine
searching and browsing by using features that are not a-priori predefined but
selected for and adapted to the search context. The challenge explored in this
chapter is: detecting on-the-fly features that are relevant in the search context and tai-
lored to the user behavior. As an example, consider the case of a user expressing
an enthusiastic comment on a recently visited city (e.g., by a Facebook “like"
and/or post). Most likely, his/her friends could be interested to utilize the
positive feedback on that city when deciding their next travel destination. In
this respect, enabling users to exploit some useful information in the search for
a specific destination can be done by suggesting some categorized high level
information (e.g., “funny cities for young people"), which can be eventually
further refined (e.g., by adding specific search keywords).

The relevance of user behavioral features makes necessary to investigate
the following two additional issues: How to allow relevant information about user
search preferences propagate over the network? How to measure the possible infor-
mation spread? The two issues are preliminary to the activity of discovering
new dimensions to be added to the information sources and to be later used to
support a search mixed with tailored browsing.

In sum, in this chapter we focus on (i) the analysis of user’s searching
and comment posting activities in order to identify potentially interesting sug-
gestions about user searches, (ii) the proposal of a novel data exchange set-
ting that exploits them for enhancing the information contents of the source
databases and (iii) the definition of a search strategy based on tailored faceted
features. This approach is motivated by the observation that both performed
searches and posted comments define a quite accurate profiling of user wishes
and feedbacks that can be exploited to construct background information and
knowledge in an application domain for supporting advanced further searches.
The final result of this work is a user behavior oriented search framework for
implementing new generation IIS.

Clearly enough, exploring Big Data in IIS has several implications aside the
technical ones. In particular, the merge of data collected from distinct informa-
tion sources may cause the so-called private information leakage. Therefore,
a IIS should be aware of possible privacy threats as discussed in (Narayanan
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and Shmatikov, 2008). Indeed, that paper has shown that, by using the Inter-
net Movie Database as the source of background knowledge, it is possible to
successfully identify the Netflix records of known users, uncovering their ap-
parent political preferences and other potentially sensitive information. This
scenario gives an intuition of the relevant privacy problems that arise when
users interact with IIS. This drawback has been mentioned for the sake of
completeness, although dealing with privacy issues is beyond the scope of
this work.

The selected application scenario is tourism recommendation. The ratio
behind the choice of this scenario is that, users (i.e., tourists) do an extensive
search activity when traveling and they post comments and suggestions, thus
contributing to the definition of their behavior and needs and to the construc-
tion of a background knowledge ground to assist them in further searches.

Example 2 .

Consider the scenario depicted in Figure 5.1. Each node of the network rep-
resents a user interacting with a social network1. When interacting with the
social network, users usually issue several queries, post comments and upload
(tagged) files. For example a user may pose the following query: Find a restau-
rant in Milan. Traditional search engines will provide user results ranked on
the basis of their default criteria. However, this ranking could be ineffective as
users may not be satisfied by query answers as they are mainly based on prox-
imity search and some fixed categorization (e.g. stars, price). In order to over-
come this limitation, the proposed system performs a data pre-processing by
clustering user comments stored in the system. As a result, a set of comments
groups are obtained that may contain some new possible search categories (re-
ferred in the following as search dimensions) previously hidden in the data. It
could therefore happen that the clustering algorithm suggests to add a new
dimension to the source information that classifies the quality of dishes served
at each restaurant, while matching the user query for a restaurant located in
Milan area. The new dimension could be Food Quality. As users interact with
the system and new enquiries and comments are made, some other additional
dimensions could arise. For instance, the Food Quality could be refined by an
additional dimension fresh fish with suitable values: bad/good/excellent.

1In the prototype Facebook, Yelp and Twitter are used but the same reasoning applies to
every social network
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FIGURE 5.1: Influence Model for User Search

Furthermore, as users may be influenced by their social contacts, the new di-
mensions might spread in the network so that an increasing number of queries
include them. Therefore, to understand how the discovered dimensions spread
over the network, we need to take into account the probability that a user
could be influenced by her/his social contacts. By simply considering how the
new dimensions spread in the network, we can eventually detect the influence
spreading on the network and update the user connection graph consequently.
More in detail, by analyzing the social environment of each user and her/his
search activity log over time, it is possible to label each edge with a value
representing the influence currently exerted by a user to its connections – see
the labeled edges in Figure 5.1. The influence plays a crucial role for filtering
dimensions that the clustering algorithm will suggest for a tailored search.

Data posting is used both to enrich the source raw data with the discovered
dimensions and to personalize them for the current user so that the enriched
information may be added to the search toolbar as soon as search keywords
(e.g., “starters” or “main courses”) are typed for which the dimensions are
pertinent, thus enabling a faceted browsing – this functionality is represented
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as a cube aside the user symbol in Figure 5.1. 2

5.1.1 The proposed framework in a nutshell.

In this paragraph, an high-level description of proposed framework for imple-
menting user search task described is provided in the example above. Figure
5.2 depicts the overall process of information analysis, enrichment and deliv-
ery to the final user.

FIGURE 5.2: Overview of Framework

Data about user activities and interactions with a social network are col-
lected by Big Data Storage System, which performs the following preliminary
operations: i) it first computes some high level statistics about user search (e.g.
most frequent search keywords) that will be refined during the information
analysis and enrichment steps; ii) it stores all the collected data in a staging
area to overcome potential problems due to different speed, size and format of
incoming data; iii) it performs the proper extraction, transformation and load-
ing operations for making data well suited for efficient storage (space saving)
and analysis (fast execution time); iv) finally, it stores the pre-processed data
in a structure tailored for Big Data.

After data pre-elaboration takes place, data goes through the Discovery
Layer, which includes three modules. The first one is based on a suite of clus-
tering algorithms that are devoted to the extraction of unsupervised informa-
tion hidden in the collected data. The obtained clusters, are filtered by the
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influence evaluator module that identifies the dimensions that have the po-
tential to spread across the network. After this filtering step, high level infor-
mation will be used by the data posting module to enrich information sources.
We stress that data posting differs from classical data exchange because, while
moving data, the contents are enriched by supplying additional pieces of infor-
mation. To this end, a source database is linked with additional tables, called
domain relations, that store the dimensions to be added into the target database
and aggregate data dependencies (in particular, count constraints) are used to
select dimension values that better characterize user behaviors. We observe
that the dimension-based structure of a target database can be effectively sup-
ported by a column-based Big Data storage system – actually, in this system
implementation a distribution of HBase was used.

Finally the Presentation Layer is used to personalize the enriched informa-
tion for the current user query and to present portions of it (dimensions) into
the search toolbar that are pertinent with entered keywords for enabling a
faceted browsing.

5.1.2 Improving Faceted Navigation by Clustering

The faceted search pattern can be enhanced by exploiting a data mining ap-
proach for information enrichment. Among the plethora of data mining algo-
rithms proposed in literature, we focused on Clustering. The rationale for this
choice is described in the following. When users interact with web based sys-
tems, either for information browsing and searching or for posting comments
and suggestions, they provide useful information about their behaviors. This
information can be exploited for an accurate user profiling that is the basis for
designing better user-oriented services. Unfortunately, no information about
a possible classification of user features is easily available as no labeled exam-
ples can be collected. To overcome this limitation, a clustering solution has
been used due to its unsupervised features. The addressed clustering prob-
lem can be formalized as follows: Given a set O = {o1, . . . , on} containing n
objects2, cluster analysis aims at producing a partitioning3 C = {C1, · · · , Ck}

2For the sake of generalization we do not distinguish between query text and post as both
of them can be considered as plain text objects

3In this chapter we refer to the hard clustering problem, where every data point belongs to
exactly one cluster.
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of the objects in O, such that objects in the same set Ci are maximally similar
and objects in different sets are minimally similar, according to some similarity
function. Consequently, each object o ∈ O is contained in exactly one set Ci.
These sets Ci ∈ C are called clusters.

More in detail, given an input dataset the following steps are performed:

• Given the initial set O of objects, a partition C of O is provided. The fea-
ture set to be used for representing objects is derived by the data source
(e.g. timestamps, location, etc.);

• A technique for discovering cluster labels which is based on the notion
of discriminative cluster patterns is performed. Discriminative cluster pat-
terns highlight all the characteristics of a given cluster, since they are
expected to lie in a specific cluster and at the same time not to lie in any
other cluster;

• The initial partition is incrementally updated according to a (possibly
infinite) stream {on+1, . . . , on+k, . . .} of new incoming objects. In this re-
spect, each object oi (may) induce a new partition Pi that could contain a
different number of discriminative features.

A detailed description of the clustering strategy is beyond the scope of this
work, however, we briefly recall some basic concepts that have been exploited
in the system.

When dealing with data containing textual information, a major issue is the
selection of the set of relevant terms, or index terms, i.e., the terms capable of
best representing the topics associated with a given textual content. In order
to achieve this, some standard text processing operations are used (Moens,
2000; Baeza-Yates and Ribeiro-Neto, 1999), such as lexical analysis, removal of
stopwords, stemming, lemmatisation.

Terms have different discriminating power, i.e., their relevance in the con-
text where they are used. To weight term relevance, a common approach is to
assign high significance to terms occurring frequently within a document, but
rarely with respect to the remaining documents of the collection. The weight of
a term is hence computed as a combination of its frequency within a document
(term frequency - TF) and its rarity across the whole collection (inverse document
frequency - IDF). We denote by tf(wj, mi) the number of occurrences of term wj
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within message mi, and by df(wj,M) the number of messages (within a given
message collection M) containing wj. A term wj is denoted as an index term
forM if l ≤ df(wj,M) ≤ u, where l and u represent default threshold values.
The ratio here is that terms appearing in a few documents, as well as terms
appearing in most documents, are less significant, and hence they should be
discarded.

A widely used representation model is the vector-space model (Baeza-
Yates and Ribeiro-Neto, 1999). Each message mi is represented as an m-dimensional
vector wi, where m is the number of index terms and each component wi[j] is
the (normalized) TF.IDF weight associated with a term wj:

wi[j] =
tf(wj, mi) · log(N/df(wj,M))√

∑m
p=1[tf(wp, mi) · log(N/df(wp,M))]2

After the pre-elaboration steps have been performed, many algorithms can
be exploited for text clustering. For the sake of conciseness, we report here
only the pseudo-code for Lingo algorithm as there exists an efficient implemen-
tation provided by Carrot2 4, a suite exploited in the system implementation.

As the cluster partition is obtained, the system checks if the discrimina-
tive terms that characterize the clusters may cause new dimensions to arise.
To this end, a novel approach, referred as Data Posting is used, which, start-
ing from raw data and existing ontologies, can add new dimensions induced
by clustering. More in detail, the system stores query result as a material-
ized data cube to be exploited for further search. These data will be used as
training set for further clustering refinement that will group query results in a
unsupervised way. The obtained clustering will be used for extracting features
relevant to the query, that have not been neither specified by the user nor con-
sidered for building the query result. As an example consider a user searching
for a restaurant in Milan. S/he will type the query “restaurant in Milan" (also
many search engines will suggest this statement). Traditional search results
will include restaurants located in the city along with their rank. By exploiting
the proposed approach, instead, the system is able to suggest users a further
interesting parameter (i.e., analysis dimension) as the rank of appetizers, main
courses and sweets, allowing a more focused search.

4http://project.carrot2.org/
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Algorithm 3: The clustering Algorithm
Input: A set of text objects O = {o1, . . . , on}
Output: A set of clusters C = {c1, · · · , ck} of the objects in O

1: C ← ∅
2: for o ∈ O do
3: text f iltering;
4: identi f y the document′s language;
5: apply stemming;
6: mark stop words;
7: end for
8: discover f requent terms and phrases;
9: discover abstract concepts AC = {ac1, · · · , acj};

10: for ac ∈ AC do
11: f ind best−matching phrase;
12: end for
13: create cluster labels CL = {cl1, · · · , clz};
14: prune similar cluster labels in CL;
15: for cl ∈ CL do
16: create new cluster ck in C;
17: determine the cluster contents o f ck;
18: end for
19: calculate C clusters scores;
20: apply cluster merging f or C;
21: return C

5.2 Data Exchange and Count Constraints

Data exchange (Fagin, Kolaitis, and Popa, 2005; Arenas et al., 2004) is the prob-
lem of migrating a data instance from a source schema to a target schema
such that the materialized data on the target schema satisfies a number of
given integrity constraints (mainly inclusion and functional dependencies).
The integrity constraints are specified by: TGDs (Tuple Generating Depen-
dencies), which are universal quantified formulas with additional existential
quantifiers, and EGDs (Equality Generating Dependencies), which are univer-
sal quantified formulas enforcing the equality of two variables.

The classical data exchange setting is: (S, T, Σst, Σt), where S is the source
relational database schema, T is the target schema, Σt are dependencies on the
target scheme T and Σst are source-to-target dependencies.

The dependencies in Σst map data from the source to the target schema
and are TGDs, which have the following format: ∀X( φS(X) → ∃Y ψT(X, Y) ),
where φS(X) and ψT(X, Y) are conjunctions of literals on S and T, respectively,
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and X, Y are lists of variables.
Dependencies in Σt specify constraints on the target schema and can be

either TGDs or EGDs – the latter ones have the form ∀X(ψT(X) → x1 = x2 ),
where x1 and x2 are variables in X.

Example 3

As an example, consider a source schema S with three relations:

1. R(N, P) (Restaurant) with attributes N (Restaurant Name) and P (Average
Price),

2. P(I, U, N, E) (User Review Post) with attributes I (Post Identifier), U (User),
N (Restaurant Name) and E (Evaluation) and

3. DPEC(P, E, C) (Restaurant Category) with attributes P (Average Price), E (Eval-
uation) and C (Category Value).

The target schema T has two relations:

1. CR(N, C) (Classified Restaurant) with two attributes N (Restaurant Name)
and C (Category Value), and

2. CP(I, U, N, C) (Classified Post) with attributes I (Post identifier), U (User), N
(Restaurant Name) and C (Classified Review Evaluation).

We want that each restaurant be classified by choosing one of the evalua-
tion reviews given for it:

Σst = { R(n, p) → ∃ C CR(n, C);

P(i, u, n, e) ∧ R(n, p) ∧ DPEC(p, e, c) → CP(i, u, n, c) }
Σt ={ CR(n, c) → ∃ I, U CP(I, U, n, c);

CR(n, c1) ∧ CR(n, c2) → c1 = c2 }

where all low-case letter variables are universally quantified. The constraints
in Σst move restaurant names and user reviews into the target database; in ad-
dition, every review evaluation is replaced by the category value associated to
the pair (average price, evaluation) by the relation DPEC and every restaurant is
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classified with a value that is non specified but only declared by the existen-
tially qualified C. The first constraint in Σt is a TGD and enforces that every
restaurant be classified using any of the classified review evaluations issued
for it. The second constraint is an EGD that admits at most one classification
for a restaurant. 2

The target schema typically contains some new attributes that are defined
using existentially quantified variables and the main issue of Data Exchange
is to reduce arbitrariness in selecting such variable values. Therefore a data
exchange solution is required to be “universal” in the sense that homomor-
phisms exists into every possible solution, i.e., a universal solution holds a sort
of “minimal arbitrariness” property. Indeed, a main goal of data exchange is
to single out situations for which a universal solution exists and can be com-
puted in polynomial time. A universal solution has the benefit that the query
semantics is independent from any specific solution that may be selected as
target database, so that it can support certain answers, that is, the answers that
occur in the intersection of a query over all “possible" target databases. In the
above example, a universal solution does not bound a restaurant classification
to one of its review but it generates a new review tuple for each restaurant in
order to respect the principle of “minimal arbitrariness”.

In the proposed framework, the issue of “minimal arbitrariness” is not cru-
cial for our goal, which consists in finding a “specific" solution that enriches
the knowledge content of the target database instead. In the example, a spe-
cific solution can be obtained by choosing one of the issued reviews to classify
a restaurant. But an arbitrary choice is not really a great achievement: the data
exchange setting must provide mechanisms for making “intelligent" choices.
A major step forward in this direction is to extend the data exchange setting
with a new type of data dependency, called count constraint (an extension of
cardinality constraint), first proposed in (Saccà, Serra, and Guzzo, 2012), which
prescribes the result of a given count operation on a relation to be within a cer-
tain range. Count constraints use a set term that is either a constant set term or a
formula term, defined as {X : ∃Yψ}, where X and Y are disjoint list of variables,
and ψ is conjunction of literals in which variables in X occur free (similar no-
tation for set terms and aggregate predicates has been used in the dlv system
(Faber et al., 2008)). There is an interpreted function symbol count (denoted by
#) that can be applied to a set term T to return the number of tuples in T (i.e.,
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the cardinality of the table represented by T).
The following example is devoted to clarify how count constraints can be

used to enlarge the perspective of Data Exchange.

Example 4

Consider the data exchange problem that has been modeled in Example 3. We
now enrich the criteria for restaurant classification by requiring that a category
can be assigned to a restaurant only if there are at least 10 reviews supporting
it. If more than one category is applicable, the one which occurs more fre-
quently in the reviews posted by distinct users is chosen. In absence of an
applicable category, a restaurant gets the classification value “NA" (not appli-
cable).

The new mapping is defined by keeping the rules in Σst and modifying
the ones in Σt as shown next. As usual, lower-case and upper-case letters
denote variables that are respectively universally and existentially quantified
– in addition, dotted letters denote free variables used for defining sets.

(1): c 6= “NA”∧ CR(n, c) → #({ Ï : CP(Ï, U, n, c)}) ≥ 10.

(2): CR(n, “NA”) ∧ CP(_, _, n, c) → #({ Ï : CP(Ï, U, n, c)}) < 10.

(3): c 6= “NA”∧ CR(n, c) ∧ CP(_, _, n, ĉ) → #({ Ü : CP(I, Ü, n, c)}) ≥
#({ Ü : CP(I, Ü, n, ĉ)}).
(4): CR(n, _) → #({ C̈ : CR(n, C̈)}) = 1.

All the four rules in Σt are count constraints. Constraint (1) states that any
restaurant classification value c different from “NA" must be substantiated by
at least 10 distinct users posting a review that classifies the restaurant with
the value c – such reviews are collected by means of the set term with free
variable Ï. Constraint (2) states that if a restaurant is classified with “NA", then
any classification posted for must violate the previous constraint. Among the
applicable categories for a restaurant, the constraint (3) choices the one with
highest frequency in the restaurant reviews posted by distinct users – note that
in this case, as the set term is defined by the variable Ü rather than by Ï, reviews
posted by a same user are counted only once. Constraint (4) implements the
functional dependency N → C in the relation CR so that, in case of a tie in a
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restaurant classification, any of the values satisfying the constraint (3) is to be
chosen.

As mentioned above, # is an interpreted function symbol for computing
the cardinality of a set. We point out that existentially quantified variables are
local in a set term, e.g, {Ï : CP(Ï, U, n, c)} stands for {Ï : ∃ U CP(Ï, U, n, c)}; in
addition, anonymous variables, denoted by underscore, are used to define a
relation projection, e.g., CP(_, _, n, c) stands for the projection of CP on N and C.
2

The approach of using count constraints for Data Exchange has an evident
drawback: the lack of a universal solution in most cases. Indeed, a universal
solution is achievable only when the upper bound of a count constraints is 1,
as it happens for functional dependencies. Nevertheless, as pointed out be-
fore, the goal is finding a solution that enriches data while exchanging them,
rather than preserving the correspondence with the source database in order
to support certain answers. More specifically, the proposed approach is aimed
at enabling the selection of suitable values for existentially quantified vari-
ables, whereas the classical data exchange setting leave them undistinguished,
except for the cases functional dependencies have to be satisfied. Count con-
straints are powerful formal tools to define “intelligent” value selection. The
relationship of count constraints with value selection mechanisms has been
discussed in (Saccà and Serra, 2012), where an extension of Datalog with a
choice construct is presented to provide a logic programming formalization of
the data exchange problem.

The introduction of count constraints allows to enrich source data with
new features (i.e., additional attributes 5 reflecting properties discovered dur-
ing the process of data exchange), in order to construct big data tables that
can be effectively queried by end users. Thus, the new setting can be used
for a new declination of data exchange for posting existing data with addi-
tional patterns so that the end user is enabled to extract additional information
and knowledge from existing data while receiving suggestions and guidelines
for making more comprehensive queries. This approach can be thought of

5Also in OLAP analysis, attributes used to highlight properties of raw data (mainly, by cat-
egorization and grouping) are called dimensions – we recall that an OLAP system is character-
ized by multidimensional data cubes that enable manipulation and analysis of data stored in a
source database from multiple perspectives (see for instance (Chaudhuri and Dayal, 1997)).
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as a theoretical contribution to support the so-called “faceted" navigation, de-
scribed in Section 3.2.1.

We point out that data posting as the process of enriching content while
publishing them is nowadays very popular in social networks – in particular is
the main strength of the Twitter’s success. A tweet is a short message typically
composed by a URL (a reference to existing data or news) and a number of
hashtags (key words adding values to referenced data). Thus, tweeting can be
thought of as a social network example of data posting.

5.3 Modeling discovered dimensions diffusion

Social network users links each other in several ways. They can simply estab-
lish a friendship relation (e.g., Facebook friends) or they can follow other users
(e.g., Twitter followers). As user interactions take place, some users could be-
come more influential than others, i.e. they are able to drive their friends (or
followers) choices in many context such as food, entertainment and travels.
Users influence can be also exploited for providing personalized search sug-
gestions to their social connection. As explained above, the proposed system
derives new knowledge about user search preferences by clustering. However,
only a subset of the obtained dimensions can be actually considered in order
to provide useful suggestions. To this end, an influence evaluation model tai-
lored for dimension ranking is proposed such that only the most promising
ones will be suggested to the network users. This ranking can be computed by
exploiting the possible influence exerted by users to their social links. The ratio
behind this choice is that, when users need to take a decision, they are largely
influenced by their social environment. Moreover, users performing complex
searches are usually sensitive to suggestions about related searches performed
by other users. In order to clarify this statement, an example is reported.

Example 5

Consider a social network user u1 who is searching for a good restaurant in
Naples. The clustering algorithm suggests two novel dimensions, d2 (e.g.
good fish) and d3 (e.g. good fried appetizers), that have already been exploited,
respectively, by two u1 friends, u2 and u3. Suppose that u1 refines its search
by choosing d2, i.e., it searches for good fish dishes. In a sense, the latter im-
plies that u1 has been influenced by u2. Based on u1 choice it is likely that u2
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dimensions have an higher probability to be exploited by u1 for his/her fu-
ture queries. Such a dimension diffusion process is not sharp, but it can be
modeled by assigning a value to the edge connecting u1 and u2 in the social
graph. This value represents the influence weight that a user exerts on other
user choices. Obviously, this weight is not fixed, but it varies according to the
actual user searches. Indeed, as u1 makes new inquiries, it might happen that
s/he decides to follow u3 suggestion, searching for fried appetizers, causing
an increase of the probability that u3 will influence u1 in the future. 2

As a result, identifying for each user his/her most influential friends and
ranking the dimensions in decreasing order of their diffusion probability will
allow to improve both users interaction with the (specialized) search engine
and their query experience. To this end, in the following, the model exploited
to emulate the dimensions diffusion across the network and the heuristic to
compute their diffusion probability will be described. Moreover, the math-
ematical basis of influence evaluation that have been exploited for updating
the influence weight associated to each edge of the social graph will be intro-
duced.

5.3.1 The Algorithm for Influence Evaluation

In this section, the algorithm for modeling the diffusion of dimensions across
the network will be described. Let G = (V, E) be a directed graph representing
a social network, where V is the set of nodes (i.e., users) and E the set of edges
(i.e., social links between users). We denote with Nin(v) (resp. Nout(v)) the
set of in-neighbors (resp. out-neighbors) of an user v, i.e., Nin(v) = {u ∈
V|∃(u, v) ∈ E} (resp. Nout(v) = {u ∈ V|∃(v, u) ∈ E}). Let Dv be the set
of dimensions exploited by user v for issuing his/her last query, and let D =

{D1, · · · , Dn}, with n = |V|, be the current assignment of search dimensions
for each user in the graph.

A formal mathematics model for information diffusion is firstly introduced
by (Granovetter, 1978). Different groups of models types are described in
(Singh et al., 2019) :

• Threshold Models: They use some thresholds values to differentiate be-
haviour prediction of user.
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• Cascading Models: This models work in a interactive manner and are used
mainly in viral marketing.

• Epidemic Models: Used to model various news and rumours transmission
and virus infection.

• Competitive Models: Differently by previous, they concentrate not only on
single cascade of diffusion, but on multiple cascade competition.

In order to evaluate the spread of a set of dimensions D∗ catching their
diffusion process, we consider a Threshold Type Model: the Linear Threshold
model (LT) (Kempe, Kleinberg, and Tardos, 2003) as it fit well to collective be-
haviour applications and is one of the most widely-studied diffusion models.
In the LT model, the diffusion process evolves in discrete time and involves
a set S of initial active users (e.g., users who have exploited some suggested
dimensions). Moreover, a node v is influenced by its neighbor u according
to the weight bu,v labeling the edge between u and v. More in detail, at the
beginning of the process, each node v chooses a threshold ϑv uniformly at ran-
dom from the interval [0, 1]. Then, starting from the set S, each inactive node
v is activated if the total weight of its active neighbors is at least ϑv. As the
sum of in-neighbors weights for each node must not exceed 1, ϑv represents
the weighted fraction of v’s in-neighbors that must become active6 in order to
activate v. The process runs until no more activations are possible.

In order to simulate the diffusion process of D∗ through the LT model,
we need to learn its parameters. To this end, we initialize bu,v by applying
the Bernoulli model proposed in (Goyal, Bonchi, and Lakshmanan, 2010) to
the available social network activity logs. Thus, for each edge (u, v) ∈ E, the
weight bu,v is computed as the ratio between the number of actions performed
by both u and v if v’s actions took place after u’s, and the total number of
actions performed by v. This weight is next updated by the influence evaluator
every time v poses a new query as follows:

bu,v =


|Du ∩ Dv|+ bu,v

|Du ∪ Dv|+ 1
i f |Du| 6= 0

bu,v otherwise
(5.1)

6In the application scenario, a user u is active for a given dimension d if u has exploited d for
issuing its last query, i.e., d ∈ Du
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According to Eq. 5.1, bu,v will be updated only in the case that u exploits
some of the dimensions suggested by the system. Clearly enough, the higher is
the number of dimensions shared by u and v, the greater will be the increase of
bu,v. The same reasoning applies if the number of shared dimensions decrease
thus causing a lower value for bu,v to be set. As the sum of the in-weights for a
node could exceed 1, a normalization of these values dividing each bu,v by their
sum is performed. The latter allows to accomplish the constraint imposed by
the LT model.

Once assigned the weights to graph edges, the solution proposed in (Goyal,
Lu, and Lakshmanan, 2011) is exploited to estimate the diffusion probabilities
of D∗. In the LT model, the probability of a path π = [v0, v1, . . . , vl ] (l > 0) is
defined as Pr [π] = ∑l−1

i=0 bvi ,vi+1 . In (Goyal, Lu, and Lakshmanan, 2011), it has
been shown that the overall activation probability of a node u in the LT model,
given a set of initial spreader S, can be computed by summing up, for each
node s ∈ S, the path probability of each path from s to u that does not cross
any other node in S.

The algorithm for influence diffusion analysis is inspired by the study pre-
sented in (Goyal, Lu, and Lakshmanan, 2011). Algorithm 4 shows the pro-
posed heuristic, namely DIM-DIFF, that, given a dimensions assignment D,
computes the diffusion probabilities A of a set of dimensions D∗ by consider-
ing the possible paths along which they can spread across the network.

DIM-DIFF first computes the set S of initial active nodes for D∗. Since a
user can be active only for a subset d∗ of dimensions in D∗, it is necessary to
keep track of this subset during the diffusion process (steps 2-6). Once built
the set S, the algorithm proceeds by considering all the paths whose source
nodes belongs to S and computing the path probability by multiplying the
weight of the edges which compose the path. To this end, a recursive imple-
mentation of the depth first visit from an active node at a time is provided
by the function computeProbability. The latter takes as input the last node u of
the path currently considered, the set d∗ of dimensions that u might propa-
gate to its neighbors, the path probability pp and a vector which keeps track
of the nodes already visited, and tries to extend the path by considering u’s
out-neighbors (line 14). Once the probability of the new path which includes
edge (u, v) is obtained (step 15), DIM-DIFF updates the set of dimensions that
can spread through node v by removing those for which v is already active
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Algorithm 4: DIM-DIFF
Input: Weighted graph G = (V, E, b), dimensions assignment D = {D1, · · · , Dn}

with n = |V|, set D∗ of dimensions to spread, pruning threshold δ
Output: Diffusion probability A for D∗

1: S← ∅; A← ∅
2: for u ∈ V do
3: if D∗ ∩ Du 6= ∅ then
4: S← 〈u,D∗ ∩ Du〉 // identifies nodes that are active for at least one dimension in

D∗
5: end if
6: end for
7: while S 6= ∅ do
8: 〈u, d*〉 ← S.extract()
9: visited [u] = true

10: computeProbability(u, d*, 1, visited) // starts the depth first visit from each active
node

11: end while
12: return A;

13: Function computeProbability(u, d*, pp, visited)
14: for v ∈ Nout(u) ∧ !visited [v] do
15: pp← pp× bu,v // updates the path probability
16: d*← d* \ Dv // removes the dimensions node v is currently activated for
17: if d* 6= ∅ ∧ pp ≥ δ then
18: Av ← A [v]
19: for d ∈ d* do
20: Av(d) = Av(d) + pp // updates the diffusion probability of dimension d for

node v
21: end for
22: visited [v] = true
23: computeProbability(v, d*, pp, visited)
24: visited [v] = f alse
25: end if
26: end for

(step 16). By step 20, the diffusion probability of the dimensions not yet used
by node v is updated. Clearly, since the path probability rapidly diminishes as
the path gets longer, a threshold δ is used to consider only the contributions of
paths with a reasonable probability (step 17).

To better understand how the algorithm works, an execution trace will be
shown. Consider the graph in Figure 5.3 (left), with nodes identifying users of
a social network and the current influence weight for each edge highlighted
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in blue. Users a, b and e have already exploited some of the dimensions sug-
gested by the system (see Figure 5.3 (right) that depicts the current dimen-
sion assignment D). Assume we want to evaluate the diffusion process for
D∗ = {d1, d3} when δ = 0. Thus, the set S consists of the nodes highlighted in
red, i.e., a and e.

c b 

e f 

g 

a 

0.6 

0.1 

0.4 

0.3 

0.05 

0.25 

0.2 

0.02 0.3 

D 

Da = {d1, d2} 
Db = {d2} 
Dc = {} 
De = {d1, d3} 
Df = {} 
Dg = {} 
 

FIGURE 5.3: Diffusion Graph (left) and Dimensions Assign-
ment (right)

Once defined the set S of initial spreaders, the algorithm starts visiting the
graph from each active node. Figure 5.4 (left) highlights in red the edges con-
sidered by DIM-DIFF during the visit from node a. The box beside the reached
nodes contains the diffusion probability of D∗ to that node. As node a is ac-
tive only for dimension d1, each box contains only the values for dimension d1.
Moreover, it is worth noting that, despite there exist several paths connecting
a to e, these are never considered since e is already active for dimension d1. In
next steps, DIM-DIFF repeats the visit starting from node e (Figure 5.4 (right)),
which is active for both dimensions in D∗, causing the update of the diffusion
probability for node c.

The algorithm described above can be used for defining a strategy for
dimension recommendation based on the potential influence that can be ex-
cerpted by a user. We recall that, in this system, dimensions can arise, disap-
pear and/or reappear according to the users needs. Thus, main interest is not
focused in maximizing the spread of a dimension in the network. However,
the system can be easily exploited to detect the most influential users, as it
allows to keep track of users who lead to the largest cascade of dimension dif-
fusion. In the experimental sections, we will show that the algorithm exhibits
good performances in real scenarios.
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FIGURE 5.4: Diffusion process of Dimensions d1 and d3 Start-
ing From Node a (left) and From Node e (right)

5.4 System Architecture

In this section, the overall architecture of the system for big data search will
be described. This architecture exploits the techniques described above and
sketched in Figure 5.2. Main goal is to provide users a flexible tool for assisted
text search, that is interactive, scalable and dynamic. To this end, several in-
dexing and data management strategies are exploited, which allow us to cope
with high volume, heterogeneous and burst information. Figure 5.5 shows the
system architecture describing in detail each high level module depicted in
Figure 5.2.

Proposed architecture is based on the Sigma Architecture described in sec-
tion 3.2.2 where the Layers have been renamed to match the overall framework
terminology as showed in Figure 5.2. As users interact with this system, new
data are collected by the storage layer. Based on data arrival rate, the system
schedules offline clustering of the whole dataset (e.g. after a burst of 1.000.000
tuples is collected). The cluster partitioning is then refined by evaluating the
potential influence diffusion of the emerging dimensions by exploiting influ-
ence evaluator described in Section 5.3. Finally, a data posting task is executed
to enrich the dimensions migrating data from a source schema of clustering re-
sults to the target schema of HBase storage (as reported in section 5.2). These
new dimensions can be fruitfully exploited for guiding users through an as-
sisted search task.

For Presentation Layer two customized views is provided for different user
categories, one for end-users and the other for domain experts. In particular,
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FIGURE 5.5: System Architecture for Big Data Search

end-users are able to search only data indexed by Solr, while domain experts
can also view/query data available in the data warehouse (including those
automatically detected by the system and suggested by the influence diffusion
and data posting tasks) and (eventually) add new dimensions. The rationale
behind this choice is the following: end-users are interested to data pertaining
their own search, thus they are not interested in additional details. On the
opposite side, domain experts need a comprehensive view of the interactions
taking place among users. We recall that, as end-users interact with the system,
usage statistics are collected and stored for better evaluating how dimensions
spread among users.

Finally, for the sake of efficiency, the system prevent the reversal of the
entire data warehouse by Solr. More in detail, there is a distinction between
indexed data used to search for documents and data stored on HBase. The
latter can be accessed directly, avoiding the additional overhead due to raw
data access. Moreover, in order to improve system performances, the mini-
mum amount of information is maintained on Solr index and the access to the
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complete information is allowed by REST API service7.

5.5 Experimental results

In order to validate the system, several experiments have been performed on a
real dataset. Some anonymized tourist data, with their comments and search
logs, have been provided by ACI Informatica. The overall dataset consists of
1.000.000.000 tuples, most of them obtained by crawling additional data from
Yelp, Twitter and Facebook. More in detail, the system works with three kinds
of tuples:

• Action tuples. Posts and comments from the same user have been col-
lected in a single tuple in order to exploit the column family store fea-
tures. Each action tuple has the form 〈idu, C, DL〉, where:

– idu is a user identifier;

– C is a pair 〈SN, count〉, where SN is the social network from which this
tuple has been collected and count is the number of interactions the
user has with SN (e.g. the number of posts or comments);

– DL is a set of triples 〈cid, content, τ 〉, where cid is an object identifier,
content is the object text (objects here can be either comments, posts or
suggestions) and τ is the post timestamp;

• Graph tuples. These tuples keep track of the user connections. In-
deed, each graph tuple consists of two users identifiers and a numerical
value representing the influence weight. For data retrieved by Facebook
and Twitter the connections among users can be easily derived through
friendship and followers/followee relationships. As regards Yelp, two
users are considered as connected if it posted a comment on the same
company (e.g. a restaurant). As concern the influence weight, its ini-
tial value is set according to the Bernoulli model presented in (Lu et al.,
2013), which is based on the number of actions performed by the users.

• Dimension tuples. The system keep track for each user who poses queries
of a dimension tuple which has the form 〈idu, Didu , Aidu〉, where:

7This feature is implemented by HBase Rest Server
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– idu is the user identifier;

– Didu is a list of pairs 〈 d, t〉where d is the dimension being used/exploited
by user idu and t is the timestamp of the last use of this dimension;

– Aidu is a list of pair 〈 dimension, pp〉 containing the output of the DIM-
DIFF algorithm for that user;

In what follows, the detailed description of data gathering strategy is pro-
vided.

5.5.1 Data Gathering.

In order to perform an effective data analysis, data are collected by implement-
ing some wrappers specifically tailored for tourist data scenario. The crawling
strategy have been designed by exploiting some basic tourist information ob-
tained by ACI Informatica.

Step 1: Yelp. The augmentation strategy starts from Yelp. Data regard-
ing companies whose activity is of potential interest for tourists (e.g. restau-
rants and bars) and users posting information about them have been down-
loaded from Yelp. In order to implement a proper querying strategy that
complies with the social network policy, several accounts have been created
and the API provided by Yelp, namely search API and Business API have been
used. The search API allows to issue REST requests to the web site for re-
trieving information based on geographical location of the companies, their
category and meaningful keywords. Results are ordered by their relevance
w.r.t. the issued query and their ranking. In principle, it is also possible to
identify companies offering special discounts but we did not use this fea-
ture as it is not relevant for our purposes. Each query corresponds to 40 re-
sults, thus the requests were iterated till the maximum per day limit 8. It
was chosen to search for Italian companies by iterating the requests on the
Italian city list and Yelp category list (e.g.the following request was issued
for each city and category: http://api.yelp.com/v2/search?category_filter=’Category
X’&location=’city Y’). For each collected companies id, an excerpt of user re-
views about each company (and the corresponding user id) has been collected
As we got the companies id, we collected an excerpt of user by querying the

8The maximum number of requests per day is 10.000
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business API9. The reviews pertaining a company consist of a JSON object,
which is cleaned and sent to the Hbase datastore.

Step 2: Twitter. Once data extraction task from Yelp has been completed,
additional data by Twitter has been added. Also in this case several user ac-
counts have been used. In order to work properly, Twitter Search API requires:
1) a correct identification of the user that is requesting the data; 2) the appli-
cation that is performing the data access and 3) the signature for user autho-
rization. The API allows to gather information about tweets published in the
last 7 days. The extraction procedure exploits the open source library Twit-
ter4J 10. The crawling strategy exploits the company names and locations pre-
viously collected in order to retrieve tweets pertaining to them. Also Twitter
API poses some access restriction (e.g. 15 minutes time windows and a maxi-
mum number of 180 requests for each window) thus it was necessary to iterate
the strategy according to these constraints.

Step 3: Facebook. Finally, additional information from Facebook have been
collected. The core of Facebook data structures is the Social Graph that stores
social network users and their interactions (represented as labeled nodes and
edges). The graph can be queried by Graph API which allows to gather both
single node information 11 and node interactions (e.g. friends, posts, tags) 12

once you get an Access Token13. The extraction procedure exploits the open
source library Facebook4J14 which allows to search and download Facebook
contents that are matched with company name (and/or city) picked from the
list built in previous steps15. For each query, we get up to 500 public posts. As
in previous steps, there exist time window limitations, thus several iterations
have been performed.

9The request process must be performed by secure authentication protocol OAuth 1.0a,
xAuth

10http://twitter4j.org
11https://graph.facebook.com/< id >
12https://graph.facebook.com/< id >/< connection_type >
13Facebook exploits OAuth 2.0 protocol
14https://facebook4j.github.io
15In case of ambiguity due to the company name we discard the data as we are not able to

automatically resolve it
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5.5.2 Experimental Setup.

As concern the system response time, we analyze the impact of the data shard
size on the proposed indexing strategy and the performance of read and write
operations. Experiments were executed on ALEPH cluster having 12 comput-
ing nodes (24GB RAM each), 1 front-end node and a GPU (NVIDIA Tesla).

5.5.3 System Scalability Evaluation

Evaluating the performance of a system exploiting Big Data techniques is a
non-trivial task as we need to address several issues. Moreover, it requires ad-
hoc approaches due to the complexity of the architectures and the interactions
of Big Data oriented environments. This section will be devoted to describe
the strategy for evaluating the performance of the system from several points
of view.

Map Reduce Efficiency

In the proposed system, data arrive in form of data shards and they need to be
indexed for later analysis as described in Section 5.4. The key tasks at this stage
are the Map and Reduce operations. The system collects data continuously, thus
it is necessary to measure the performance of these tasks w.r.t. the number of
shards to be processed and their size. Two set of experiments were performed:

• The number of posts for each shard has been fixed while keeping con-
stant their arrival rate;

• The arrival rate of posts has been varied for each shard size

Several experiments have been performed, and in order to evaluate the ef-
ficiency of the proposed approach, we report here the worst case performances
as they allow to appreciate the high efficiency of this framework even in a
“stressing" condition. More in detail, Figure 5.6 shows the execution times ob-
tained by fixing the arrival rate to 10.000 post per minute as it is the maximum
arrival rate we tested which causes the slower execution times.

It is worth noticing that, the execution times reach a minimum when the
number of tuples is in the range [50.000.000, 100.000.000]. After that minimum,
the execution times are almost constant. Indeed, a low number of tuples causes
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a large response time due to the high work that the few shards have to perform
to complete the map operations. When the number of tuples is higher than the
one that exhibits the minimum value, the slight increase in execution times is
due to the latency for waiting all the nodes finish their task.

For the sake of completeness, Figure 5.7 shows the results obtained by
varying the arrival time (i.e. post per minute) while keeping fixed the data
shard size. Analogously with the results reported before, we report the results
obtained for the data shard size causing the slower execution times.

Also in this case, it is possible to observe the same trend for execution times
(disregarding the arrival rate) and best performances are obtained for lower
arrival frequencies. The latter is caused by the increased complexity of the
reduce operations when the arrival rate increases.

Read and Write Efficiency

An important parameter for assessing the efficiency of the proposed system is
the read and write performance. Several test were performed, by varying the
number of tuples in the Hbase storage system. For the sake of readability, we
do not plot the results as they present a constant trend both for read operations
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(1 msec average independently of the number of tuples in the data store) and
write operations (6 msec average independently of the number of tuples in the
data store). These results are quite interesting from several viewpoints: 1) The
read operations over the HBase secondary index are performed in the order
of a millisecond. This implies that the proposed knowledge discovery and en-
richment algorithms can run at minimum latency, thus linking new posts on
the fly without undergoing any delay that may worsen the system real-time
functionalities; 2) The execution time of the read operations is stable and does
not increase as the number of posts grew. This is crucial for the proposed
framework, as the system is capable to produce timely answers for such high
volumes of data as reported below. Table 5.1 reports the execution times ob-
tained for dynamic searches using a varying number of keywords. For each
table row it is reported the number of keywords composing the query and the
time elapsed for producing the results matching the query. More in detail, for
each number of keywords we performed 100 queries and in table it is reported
the average response time.

The results reported in Table 5.1 is quite intriguing as they imply that the
system is capable to provide really fast answers. No results are reported for
queries composed by more than 5 keywords for two motivations: 1) they are
quite uncommon; 2) the results are almost the same as for 5 keywords.
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TABLE 5.1: Response Time vs. Number of Keywords

#TotalKeywords ResponseTimes (sec)
1 < 1
2 < 1
3 1.23
4 1.41
5 1.45



135

Chapter 6

Conclusions

The impressive progress and development of Internet and on-line technolo-
gies has led to an increasing availability of a huge volume of data generated
by heterogeneous sources at high production rates. The availability of such
unprecedented large amount of information sources represents an opportu-
nity for the analysis of human behavior, and their evolution when influenced
by other people’s opinion/suggestion. This type of analysis requires on one
hand the availability of adequate systems for storing large amounts of data
and on the other hand the availability of high performance computing sys-
tems with huge potential calculation. The main question that we attempted to
answer with this work is, basically, to what extent classic Big Data Tools to an-
alyze and extract complex and useful information in an effective way and how
to design an effective high performance P2P network for resource sharing.

To this end, a user behaviour oriented search framework which imple-
ments a new generation of IIS and an hybrid peer to peer architecture for
computational resource sharing named CoremunitiTM have been presented.
Moreover, an introduction to Big Data and NoSQL has been provided and
two basic architecture for Big Data analysis have been illustrated. The first
architecture, named Sigma, describes a solution for building a complete, inter-
active and scalable Big Data system and an implementation of it, able to offer
a full-text search mechanism, has been presented. To design and develop a
similar tool it was necessary to use complex data indexing and management
exploiting the potential of some open source projects. The second architecture
is based on an OLAP approach using the Pentaho BI Suite. In this architecture
the basic data warehouse services provided by Pentaho have been extended
using the Map Reduce features provided by the Hive project.
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The presented user behavior oriented search framework implementing new
generation IIS is based on Sigma architecture and is organized into three lay-
ers:

1. Big Data Storage System, which (i) computes some high level statistics
about user search (e.g. most frequent search keywords) that will be re-
fined during the information analysis and enrichment steps, (ii) stores
all the collected data in a staging area to overcome potential problems
due to different speed, size and format of incoming data, (iii) performs
the proper extraction, transformation and loading operations for mak-
ing data well suited for efficient storage (space saving) and analysis (fast
execution time) and (iv) organize the pre-processed data in a structure
tailored for Big Data;

2. Discovery Layer, which includes three modules: (i) Clustering devoted to
the extraction of unsupervised information hidden in the collected data
by means a suite of clustering algorithms, (ii) Influence Evaluator that fil-
ters the obtained clusters to identify properties (dimensions) of potential
interest for users and evaluates how they spread across the network and
(iii) Data Posting extending classical data exchange so that, while moving
data, the contents are enriched by supplying additional pieces of infor-
mation.

3. Presentation Layer is used to personalize the enriched information for the
current user query and to present portions of it (dimensions) into the
search toolbar that are pertinent with entered keywords for enabling a
faceted browsing.

A prototype implementation of the search framework has been described
and the various design solutions adopted for offering advanced search func-
tionalities have been illustrated in detail. Results on the usability, efficiency
and effectiveness of the system were reported as well and they confirmed
the validity of the overall approach. The application scenario used for ex-
periments was tourism recommendation. The ratio behind the choice of this
scenario was that, users (i.e., tourists) do an extensive search activity when
traveling and they post comments and suggestions, thus contributing to the
definition of their behavior and needs and to the construction of a background
knowledge useful to assist them in further searches.
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As main future direction of this research line, some possible ideas are the
following:

• Testing the approach on a wider set of social networks and application
contexts (e.g., viral marketing, food education sentiment analysis and
epidemic modeling)

• Applying more sophisticated diffusion models and influence evaluation
algorithms

Moreover, in this work, an hybrid peer to peer architecture for computa-
tional resource sharing has been proposed. Users joining this network are able
to share their unexploited computational resources and are rewarded by tan-
gible credits. The computational power shared is used to solve difficult task
submitted by other users. In order to guarantee the efficiency and effectiveness
of the computation process, a task partitioning and assignment algorithm has
been provided which reduces the execution times while allowing satisfactory
revenues for resource providers. Extensive experiments were conducted in a
real life scenario such as 3D rendering to assess the system performances. As
shown in the experimental evaluation, the Coremuniti approach is able to im-
prove the use of efficient digital solutions in “traditional" field like engineering
and architectural design, by offering a new high speed and low cost tool for
increasing their productivity.

As future work, it will be useful to develop specialized plugins for other
challenging application fields such as medical and insurance simulation. Fur-
thermore, we are in the process of evaluating the energy consumption achiev-
able by leveraging the Coremuniti network. More in detail, the ICT industry
currently accounts for about 2% of global emissions of carbon dioxide (CO2).
Many international organizations recommends the sector to reduce the carbon
footprint in next years. Coremuniti shows a possible way to reduce the impact
of computing intensive processes by a P2P network that can induce a signifi-
cant energy saving (as we do not need to power additional resources but better
use already powered ones) compared to processes running on a single node or
server farm. This reduction in energy consumption will reduce the pollution
emission, characterizing our solution as an environment friendly solution for
high performance computing.
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