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Introduction

The theory of Partial Differential Equations, and in particular the Nonlin-
ear Equations, is an important tool to describe real models. In fact, many
problems coming from science and engineering are described by nonlinear
differential equations, which can be notoriously difficult to solve. This is
also the case of the equations we study in this thesis.

The aim of this work is to analyze some elliptic equations that are per-
turbative in nature. We will examine our problem using two tools:

(i) perturbative methods;

(ii) variational methods.

In particular, in this thesis, we are interested in the following perturbed
mixed problem 




−ε2∆u + u = up in Ω;
∂u
∂ν = 0 on ∂NΩ; u = 0 on ∂DΩ;
u > 0 in Ω,

(P̃ε)

where Ω is a smooth bounded subset of Rn, p ∈
(
1, n+2

n−2

)
, ε > 0 is a

small parameter, and ∂NΩ, ∂DΩ are two subsets of the boundary of Ω such
that the union of their closures coincides with the whole ∂Ω. This type of
perturbative equations, with Neumann conditions or Dirichlet conditions,
were been studied in literature by many authors, see for example [2], [21],
[49], [50] and [51].

Nevertheless these problems, with mixed conditions, appear in several
situations. Generally the Dirichlet condition is equivalent to impose some
state on the physical parameter represented by u, while the Neumann condi-
tions give a meaning at the flux parameter crossing ∂NΩ. Here below there
are some common physical applications of such problems:

• Population dynamics. Assume that a species lives in a bounded region
Ω such that the boundary has two parts, ∂NΩ and ∂DΩ, where the
first one is an obstacle that blocks the pass across, while the second
one is a killing zone for the population.
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• Nonlinear heat conduction. In this case (P̃ε) models the heat (for
small conductivity) in the presence of a nonlinear source in the interior
of the domain, with combined isothermal and isolated regions at the
boundary.

• Reaction diffusion with semi-permeable boundary. In this framework
we have that the meaning of the Neumann part, ∂NΩ, is an obstacle
to the flux of the matter, while the Dirichlet part, ∂DΩ, stands for a
semipermeable region that allows the outwards transit of the matter
produced in the interior of the cell Ω by the reaction represented by a
general nonlinearity f(u).

Partial differential equations, as the one in (P̃ε), also appear in the study
of reaction-diffusion systems. For single equations with Neumann boundary
conditions it is known that when Ω is convex the only stable solutions are
constants, see [12] and [45]. On the other hand, as noticed in [55], reaction-
diffusion systems with different diffusivities might lead to non-homogeneous
stable steady states. A well-know example is the following one (Gierer-
Meinhardt)





Ut = d1∆U − U + Up

Vq in Ω× (0,+∞),
Vt = d2∆V − V + Ur

Vs in Ω× (0,+∞),
∂U
∂ν = ∂V

∂ν = 0 on ∂Ω× (0,+∞),

(GM)

introduced in [28] to describe some biological experiment. The functions
U and V represent the densities of some chemical substances, the numbers
p, q, r, s are non-negative and such that 0 < p−1

q < r
s+1 , and it is assumed

that the diffusivities d1 and d2 satisfy d1 ¿ 1 ¿ d2. In the stationary case
of (GM), as explained in [48], when d2 → +∞ the function V is close to
a constant (being nearly harmonic and with zero normal derivative at the
boundary), and therefore the equation satisfied by U resembles the first one
in (P̃ε). Clearly a similar reduction procedure could be used when mixed
boundary conditions are imposed.

Let us now describe some results which concern singularly perturbed
problems, with Neumann or Dirichlet boundary conditions, well studied by
different authors (see, for example, [2], [20], [48], [49], [50] and [51]), and
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specifically

(Nε)





−ε2∆u + u = up in Ω;
∂u
∂ν = 0 on ∂NΩ;
u > 0 in Ω,

(Dε)





−ε2∆u + u = up in Ω;
u = 0 on ∂DΩ;
u > 0 in Ω.

These problems arise also as limits of reaction-diffusion systems different
from (GM) (with chemotaxis for example, as shown in [48]).

Another motivation comes from the Nonlinear Schrödinger equation (in
short NLS)

i~
∂ψ

∂t
= −~2∆ψ + V (x)ψ − |ψ|p−1ψ in Rn,

where ψ is a complex-valued function (the wave function), V is a potential
and p is an exponent greater than 1. NLS of this sort are used, for example,
in Plasma Physics, but also arise in Nonlinear Optics. Indeed, if one looks
for standing waves, namely solutions of the form ψ(x, t) = e−

iωt
~ u(x), for

some real function u, then the latter will satisfy

−ε2∆u + V (x)u = up in Rn,

where we have set ε = ~ and we absorbed the constant ω into the potential
V . Therefore, up to the potential, we still obtain the equation in (Nε) or
(Dε): about this subject we refer the reader to the (still incomplete) list of
papers [1], [2], [6], [24] and to the bibliographies therein.

The typical concentration behavior of solutions uε to the above two prob-
lems is via a scaling of the variables in the form uε(x) ∼ U

(
x−Q

ε

)
, where Q

is some point of Ω, and U , see Section 1.1, is a solution of

−∆U + U = Up in Rn (or in Rn
+ = {(x1, . . . , xn) ∈ Rn : xn > 0}), (1)

the domain depending on whether Q lies in the interior of Ω or at the
boundary; in the latter case Neumann conditions are imposed. When p <
n+2
n−2 (and indeed only if this inequality is satisfied), such problem (1) admits
positive radial solutions which decay to zero at infinity, see Proposition 1.1.1.

Solutions of (P̃ε) which inherit this profile are called spike layers, since
they are highly concentrated near some point of Ω. There is an extensive
literature regarding this type of solutions, beginning from the papers [38],
[49] and [50]. Indeed their structure is very rich, and we refer for example
to the (far from complete) list of references [17], [20], [31], [32], [33], [34],
[36], [37], [56] and [57].
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Spike layers solving (Nε) and sitting on the boundary of Ω are peaked
near critical points of the mean curvature of ∂Ω. To see this one can exploit
the variational structure of the problem, whose Euler functional is

Ĩε,N (u) =
1
2

∫

Ω

(
ε2|∇u|2 + u2

)− 1
p + 1

∫

Ω
|u|p+1; u ∈ H1(Ω). (2)

Plugging into Ĩε,N a function of the form UQ,ε(x) = U
(

1
ε (x−Q)

)
with

Q ∈ ∂Ω one sees that

Ĩε,N (UQ,ε) = C̃0ε
n − C̃1ε

n+1H(Q) + o(εn+1),

where C̃0, C̃1 are positive constants depending only on n and p and H de-
notes the mean curvature.

This expansion can be obtained using the radial symmetry of U and
parameterizing ∂Ω as a normal graph near Q. From the above formula
we see that, the bigger is the mean curvature the lower is the energy of this
function: roughly speaking, boundary spike layers would tend to move along
the gradient of H in order to minimize their energy. Indeed in [49], [50] it
was shown that Mountain Pass solutions to (Nε) (ground states) have only
one local maximum over Ω and it concentrates at ∂Ω near global maxima
of the mean curvature.

Concerning instead (Dε), spike layers with minimal energy concentrate
at the interior of the domain, at points which maximize the distance from
the boundary, see [51]. The intuitive reason for this is that, if Q is in the
interior of Ω and if we want to adapt a function like U

(
1
ε (x−Q)

)
to the

Dirichlet conditions, the adjustment needs an energy which increases as Q
becomes closer and closer to ∂Ω. Following the above heuristic argument,
we could say that spike layers are repelled from the regions where Dirichlet
conditions are imposed.

In this thesis, we are interested in finding boundary spike layers for the
mixed problem (P̃ε). First, we apply a perturbative approach: the idea
is to obtain two compensating effects from the Neumann and the Dirichlet
conditions. More precisely, calling IΩ the intersection of the closures of ∂DΩ
and ∂NΩ, and assuming that the gradient of H at IΩ points toward ∂DΩ,
a spike layer centered on ∂NΩ will be pushed toward IΩ by ∇H and will be
repelled from IΩ by the Dirichlet condition.

Our main result will show that there exists a solution uε to the problem
(P̃ε) concentrating at the interface IΩ. The general strategy used relies
on a finite-dimensional reduction, which is conceptually rather simple and
nowadays well understood, see Chapter 1 or, for example, the book [2]. One
finds first a manifold Z of approximate solutions to the given problem, which
in our case are of the form U

(
1
ε (x−Q)

)
, and solve the equation up to a

vector (in the Hilbert space) parallel to the tangent plane of this manifold.
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In this way, see Proposition 2.1.3, one generates a new manifold Z̃ close to Z
which represents a natural constraint for the Euler functional of (P̃ε), which
is

Ĩε(u) =
1
2

∫

Ω
ε2|∇u|2 + u2 − 1

p + 1

∫

Ω
|u|p+1; u ∈ H1

D(Ω). (3)

Here H1
D(Ω) stands for the space of functions in H1(Ω) which have zero

trace on ∂DΩ, and by natural constraint we mean a set for which constrained
critical points of Ĩε are true critical points.

The main difficulty however is to have a good control of Ĩε|Z̃ , which
is done improving the accuracy of the functions in the original manifold
Z: in fact, the better is the accuracy of these functions, the closer is Z̃ to
Z, so the main term in the constrained functional will be given by Ĩε|Z ,
see Proposition 2.2.12 and Lemma 2.3.5 below. To find sufficiently good
approximate solutions we start with those constructed in literature for the
Neumann problem (Nε) (see Chapter 2, Section 2.1.2) which reveal the role
of the boundary mean curvature, as in the expansion after (2). However
these functions are not zero on ∂DΩ, and if one tries naively to annihilate
them using cut-off functions, the corresponding error turns out to be too
large. A method which revealed itself to be useful for (Dε) is to consider the
projection operator in H1(Ω), which consists in associating to some function
in this space its closest element in H1

D(Ω). In some previous works, see for
example [37] and [58], the asymptotic behavior of this projection has been
studied in detail when the limit concentration point lies in the interior of
Ω, using (see Chapter 1, equations (1.3) and (1.4)) the well known limit
behavior of the solution U to (1),

lim
r→+∞ err

n−1
2 U(r) = αn,p,

where the positive constant αn,p depends only on n and p, together with

lim
r→+∞

U ′(r)
U(r)

= −1; lim
r→+∞

U ′′(r)
U(r)

= 1.

In our case instead, apart from having mixed conditions, the maxima of the
spike-layers tend to the interface IΩ, so, to better understand the projection,
we need to work at a scale d ' ε| log ε|, the order of the distance of the peak
from IΩ. At this scale the boundary of the domain looks nearly flat, so
in this step we replace Ω with a non smooth domain Γ̂D ⊆ Rn such that
part of ∂Γ̂D looks like a cut of dimension n − 1. We choose Γ̂D to be
even with respect to the coordinate xn and we study H1 projections here
(with Dirichlet conditions) which are also even in xn: as a consequence we
will find functions which have zero xn-derivative on {xn = 0} \ ∂Γ̂D, which
mimics the Neumann boundary condition on ∂NΩ. After analyzing carefully
the projection we define a family of suitable approximate solutions to (P̃ε),
which turn out to have a sufficient accuracy for our analysis.
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We can finally apply the above mentioned perturbation method to reduce
the problem to a finite dimensional one, and study the functional constrained
on Z̃. If zε

Q denotes (roughly speaking) an approximate solution peaked at
Q, with dist(Q, IΩ) = dε, then its energy turns out to be the following

Ĩε(zε
Q) = εn

(
C̃0 − C̃1εH(Q) + e−2 dε

ε
(1+o(1)) + O(ε2)

)
.

The first two terms in this formula are as in the expansion after (2) for (Nε),
while the third one represents a sort of potential energy which decreases with
the distance of Q from the interface, consistently with the repulsive effect
which was described before for (Dε). From the latter formula it follows
that, if dε remains constant, then we recover the expansion corresponding
to the Neumann problem. On the other hand even if dε → 0, that is when
the concentration points converge to the interface, one can check that the
energy has a critical point when H|IΩ

is stationary, provided ∇H points
toward ∂DΩ, and dε ' ε| log ε|.

Next in the thesis, via variational methods, we analyze also the asymp-
totic profile of the least energy solutions to the problem (P̃ε) under generic
assumptions on the domain and on the interface.

First we show that Mountain Pass solutions are in fact least energy
solutions. Then we prove that, given a family of least energy solutions {uε},
their points of maximum must lie on the boundary of the domain Ω, as in
the Neumann case.

We also analyze the rate of convergence to specify better the location
of maximum limit points Pε of the least energy solutions as ε → 0: we
show that the concentration point cannot belong to the interior of Dirichlet
boundary part. To obtain these results, we use the moving plane method
proving also an important Liouville type result, see Lemma 3.3.2. Next,
we characterize the shape of least energy solutions showing that, also in
the Mixed case, such solutions can be approximated by the ground state
solution U to the problem (1). This fact follows from other results proved
in the thesis; in particular we have that, after a scaling, the maximum Pε

(indeed unique, see Theorem 3.3.9) of the solutions uε is always bounded
away from the interface IΩ as ε → 0.

Moreover, we prove that, as for (Nε), the least energy solutions concen-
trate at boundary points in the closure of ∂NΩ where the mean curvature is
maximal. When this constrained maximum is attained on the interface (and
if ∇H here is non zero), we will be able to show that the Mountain Pass
solution has precisely the behavior found in Theorem 2.0.1 by perturbative
methods.

In the last part of the thesis we consider the least energy solutions to the
problem (P̃ε) and, via numerical algorithm, we construct their shape and
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we present the related results.
We use a numerical method which allows us to find solutions of Mountain

Pass type. Such a method was introduced by Y.S.Choi and P.J.McKenna
in [14] for some elliptic equations in square domains. Instead, we consider a
particular case of (P̃ε), choosing p = 3 and n = 2, namely





−ε2∆u + u = u3 in Ω;
∂u
∂ν = 0 on ∂NΩ; u = 0 on ∂DΩ;
u > 0 in Ω,

( ˜̃P ε)

where Ω is a bounded domain of R2.
Such a problem is perturbative one with mixed boundary conditions that

are numerically difficult to deal with.
We define problem ( ˜̃P ε) in a bounded elliptical domain of R2 in order to

have a non constant mean curvature H to find Mountain Pass type solutions
concentrating at the interface IΩ. Then, we need to mesh Ω in order to
describe and define the discrete differential problem associated to ( ˜̃P ε).

We want to point out that, from the numerical point of view, curved
boundary domains, such as the elliptical ones, are generally more difficult
to treat than the square ones.

All the algorithm, used to get the shape of least energy (Mountain Pass

type) solutions of ( ˜̃P ε), was implemented with a MATLAB code.

This thesis is organized as follows.
In Chapter 1 we will recall some tools of nonlinear analysis which are em-
ployed in the rest of the thesis. For a better understanding, we will examine
the perturbative approach in critical point theory, in particular referring to
the singularly perturbed Neumann problem. Then we will recall some def-
initions and some theorems about critical point theory. We also will give
some notations.
In Chapter 2 we will deal with the existence results and the asymptotic
behavior of some solutions to the singularly perturbed problem (P̃ε) with
mixed Dirichlet and Neumann conditions by using perturbative methods.
These results were been obtained in [25].
In Chapter 3 we will analyze the location and the shape of the least energy
solutions to the problem (P̃ε), when the singular perturbation parameter
tends to zero, via variational methods. The results presented in this chapter
were been achieved in [26].
In Chapter 4 we will present some results about the construction of the
shape of the least energy solutions to the problem (P̃ε) via numerical meth-
ods. The results presented in this chapter are part of a work in progress.



Chapter 1

Preliminaries

In this chapter we will recall the fundamental tools and definitions which
will be employed in this thesis. We also will give some notations.

1.1 A uniqueness result

Let us consider the following problem

−∆U + U = Up in Rn. (1.1)

Corresponding to (1.1) we define an energy of a function u ∈ H1(Rn):

I(u) :=
1
2

∫

Rn

(| ∇u|2 + u2) − 1
p + 1

∫

Rn

|u|p+1 (1.2)

Proposition 1.1.1 If p ∈
(
1, n+2

n−2

)
problem (1.1) admits a solution U sat-

isfying

(i) U ∈ C2(Rn) ∩H1(Rn) and U > 0 in Rn;

(ii) U is spherically symmetric: U(x) = U(r) with r = |x| and dU
dr < 0 for

r > 0;

(iii) U and its first derivatives decay exponentially at infinity, i.e., there
exists a positive constant αn,p depending only on n and p such that

lim
r→+∞ err

n−1
2 U(r) = αn,p, (1.3)

and

lim
r→+∞

U ′(r)
U(r)

= −1; lim
r→+∞

U ′′(r)
U(r)

= 1; (1.4)
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(iv) for any non-negative solution u ∈ C2(Rn) ∩H1(Rn) to (1.1),

0 < I(U) ≤ I(u)

holds unless u ≡ 0.

Remark 1.1.2 M.K.Kwong [35] showed that radial solutions to (1.1) are
unique when p ∈

(
1, n+2

n−2

)
.

Remark 1.1.3 Sometimes, through the thesis, we will call ground state,
the solution given by Proposition 1.1.1 and Remark 1.1.2 .

1.2 Perturbation methods

In this section, we want to give just a very short outline to the perturbation
methods to better understand the basic ideas used in the sequel of the thesis.
However for more details about the perturbation methods we refer strongly
to the book [2].

There are several elliptic problems on Rn which are perturbative in na-
ture. For these perturbation problems a specific approach, that takes advan-
tage of such a perturbative setting, seems the most appropriate. Actually, it
turns out that such framework can be used to handle a large variety of equa-
tions, different in nature. These problems can be studied using a common
abstract setting.

Let H be a Hilbert space. We look for critical point of a sufficiently
smooth functional Iε : H → R depending on a small perturbative parameter
ε ∈ R, that is solutions of equation

I ′ε(u) = 0, u ∈ H. (1.5)

Generally, in the perturbative methods, one arranges the functional Iε

associated to the differential problem in a functional like

Iε(u) = I0(u) + εG(u),

where I0 is called unperturbed functional and G is a perturbation. On
the Perturbation theory one supposes that I0 possesses non-isolated crit-
ical points which form a manifold Z referred to as a critical manifold, that
is:

Z = {z ∈ H : I ′0(z) = 0}. (1.6)

Let TzZ be the tangent space to Z at z, we denote the orthogonal comple-
ment to TzZ as

W = (TzZ)⊥. (1.7)

In this case, finding solutions of I ′ε(u) = 0 becomes a kind of bifurcation
problem in which z ∈ Z is the bifurcation parameter and the set {0} ×
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Z ⊂ R × H is the set of the trivial solutions. One looks for conditions
on the perturbation G that generate non-trivial solutions, namely a pair
(ε, u) ∈ R×H, with ε 6= 0, such that I ′ε(u) = 0. In this context, in order to
solve equation (1.5) one uses a finite-dimensional reduction procedure. This
is the classical Lyapunov-Schmidt method, with appropriate modifications,
which allow us to take advantage of the variational nature of our equations.
Roughly, under appropriate non degeneracy conditions on Z, it is possible
to show that critical points of the perturbation G constrained on Z give rise
to critical point of Iε.

1.2.1 Critical points for the perturbed functional Iε

In this section we consider functional of the form

Iε(u) = I0(u) + εG(u)

where I0, G belong to C2(H,R). We suppose also that the manifold Z
defined in (1.6), is finite dimensional:

0 < d = dim(Z) < ∞.

If Z is a critical manifold then one has that

I ′0(z) = 0 ∀z ∈ Z.

Differentiating this identity, we get

(I ′′0 (z)[v]|φ) = 0 ∀v ∈ TzZ,∀φ ∈ H,

and this shows that every v ∈ TzZ is a solution of the linearized equation
I ′′0 (z)[v] = 0, that is I ′′0 (z) has a non-trivial kernel whose dimension is at
least d and hence all z ∈ Z are degenerate critical points of I0. In this
context we shall require that this degeneracy is minimal supposing that

(ND) TzZ = Ker[I ′′0 (z)] ∀z ∈ Z

and also that

(FR) ∀z ∈ Z, I ′′0 (z) is an index 0 Fredholm map.

Remark 1.2.1 A linear map T ∈ L(H,H) is Fredholm if the kernel is
finite-dimensional and the image is closed and has a finite codimension.
The index of T is defined as the difference between the dimension of kernel
and the codimension of the image of the linear operator T .
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Next, the idea is to apply a finite-dimensional reduction (Lyapunov-
Schmidt procedure) and to look for critical points of Iε in the form u =
z + w with z ∈ Z, see equation (1.6), and w ∈ W , see equation (1.7). If
Pz : H → W denotes the projection onto the orthogonal complement of
TzZ, the equation I ′ε(z + w) = 0 is equivalent to the system

{
PzI

′
ε(z + w) = 0 (auxiliary equation);

(Id− Pz)I ′ε(z + w) = 0 (bifurcation equation).
(1.8)

In Chapter 2 we will show how to solve these last equations in the mixed
case (P̃ε) considered.

1.2.2 The singular perturbation case

When we deal with singular perturbation problems, as in the case of this
thesis, we need to modify a little the abstract setting given before. Unlike
the preceding case where we have defined a critical unperturbed manifold Z,
see equation (1.6), we have to consider that the functional Iε associated to
the problem (P̃ε) possesses a manifold Zε of pseudo-critical points. We mean
that the norm of Iε(z) is small for all z ∈ Zε, in an appropriate uniform way.
In our case, in Chapter 2 we will show that PzI

′′
ε (z) is uniformly invertible

on W = (TzZ)⊥. This allows us to apply the contraction mapping theorem
to the auxiliary equation and rewrite w tautologically

w = −(PzI
′′
ε (z))−1

[
PzI

′
ε(z) +

(
PzI

′
ε(z + w)− PzI

′
ε(z)− PzI

′′
ε (z)[w]

)]
:= Gε,z(w).

We will show that Gε,z(w) is a contraction, which maps a ball in W into
itself. Then we will provide conditions for solving the bifurcation equation
and the auxiliary equation (2.2).

1.2.3 A technical lemma for the Neumann case

The next lemma is proved in Section 9.2 of [2]. We will use it later in
Chapter 2 to construct more accurate approximate solutions to the mixed
perturbed problem.

Lemma 1.2.2 Let T = (aij) be a (n− 1)× (n− 1) symmetric matrix, and
consider the following problem

{
LUw = −2〈Tx′,∇x′∂xnU〉 − (trT )∂xnU in Rn

+;
∂

∂xn
w = 〈Tx′,∇x′U〉 on ∂Rn

+,
(1.9)

where LU is the operator LUu = −∆u + u − pUp−1u. Then (1.9) admits
a solution wT , which is even in the variables x′ and satisfies the following
decay estimates

|wT (x)|+ |∇wT (x)|+ |∇2wT (x)| ≤ C|T |∞(1 + |x|K)e−|x|, (1.10)

where C, K are constants depending only on n and p.
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1.2.4 Some estimates for the Neumann problem

The next results collect estimates for the singularly perturbed Neumann
problem proved in Chapter 9 in [2]. We will use these estimates in the se-
quel of the thesis.

We recall that Ωε =
1
ε
Ω and Q is a point belonging to ∂Ωε. Moreover let

zε,Q be an approximate solution to the problem (P̃ε), depending on (i) U ,
the ground state solution to the problem (1.1) and on (ii) w, that is the
solution given by Lemma 1.2.2. As we will show later in Chapter 2, such a
zε,Q constitutes a manifold of pseudo-critical points of Iε,N (see Subsection
1.2.2).

Lemma 1.2.3 There exists C > 0 such that for ε small there holds

||I ′ε,N (zε,Q)|| ≤ Cε2; for all Q ∈ ∂Ωε.

Lemma 1.2.4 Let H be the mean curvature of the boundary ∂Ωε. For ε
small the following expansion holds

Iε,N (zε,Q) = C̃0 − C̃1εH(εQ) + O(ε2),

where

C̃0 =
(

1
2
− 1

p + 1

)∫

Rn
+

Up+1dx, C̃1 =
(∫ ∞

0
rnU2

r dr

) ∫

Sn
+

yn|y′|2dσ.

Lemma 1.2.5 For ε small the following expansion holds

∂

∂Q
Iε,N (zε,Q) = −C̃1ε

2H ′(εQ) + o(ε2),

where C̃1 and H are given in the preceding Lemma.

1.3 A classical variational theorem

In this section we will recall a classical theorem about critical point theory
which will be used in this thesis. Let B denote a Banach space. In what
follows we will denote by C1(B,R) the set of functionals that are Fréchet
differentiable on B and whose Fréchet derivatives are continuous on B.

Definition 1.3.1 Let I be a functional belonging to C1(B,R). c ∈ R is
called a critical level of I if there exists a critical point u such that I(u) = c.

The Mountain Pass Theorem involves a useful technical assumption, the
Palais-Smale condition, that occurs repeatedly in critical point theory.
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Definition 1.3.2 Let B be a Banach space and I ∈ C1(B,R). We will say
that I satisfies the Palais-Smale condition ((PS)c for short) if any sequence
{uj}, uj ∈ B, for which

(i) I(uj) → c;

(ii) I ′(uj) → 0,

possesses a strongly convergent subsequence.

Remark 1.3.3 We note that the (PS)c condition is a compactness condi-
tion for the functional I. Such condition implies that the set

Kc :=
{

u ∈ B : I(u) = c, I
′
(u) = 0

}
,

i.e. the set of critical points having critical value c, is compact for any c ∈ R.

I(u)

u1

u0

Figure 1.1: The Mountain Pass Geometry.

Theorem 1.3.4 (Mountain Pass) Let B be a Banach space and I ∈ C1(B,R).
Suppose that there exist u0, u1 ∈ B and α, r > 0 such that

(MP1) inf‖u−u0‖=r I(u) ≥ α > I(u0);

(MP2) ‖u1‖ > r and I(u1) ≤ I(u0).

Then there exists a sequence {un} ⊂ B such that
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(i) I(un) → c, where
c := inf

γ∈Γ̃
max
t∈[0,1]

I(γ(t))

Γ̃ = {γ ∈ C([0, 1],B) : γ(0) = u0, γ(1) = u1}

(ii) I ′(un) → 0 strongly in B∗.

If the functional I satisfies the (PS)c condition, then the number c, defined
above, is a critical level of I.

1.4 The Perron method

In this thesis, we will use the Perron method to solve some questions of ex-
istence of solutions of a Dirichlet problem in a bounded domain, see Section
2.2.1. For more details about the Perron’s method we recommend to refer
to the book [29].

In the Perron method the study of boundary behaviour of the solution,
separated from the existence problem, is connected to the geometric prop-
erties of the boundary through the concept of barrier function.

Definition 1.4.1 Let f be a function belonging to C0(Ω) and ξ a point of
∂Ω. Then f = fξ is called a barrier at ξ relative to Ω if:

(i) f is superharmonic in Ω;

(ii) f > 0 in Ω− ξ; f(ξ) = 0.

Definition 1.4.2 A boundary point will be called regular if there exists a
barrier at that point.

Theorem 1.4.3 The classical Dirichlet problem in a bounded domain is
solvable for arbitrary continuous boundary values if and only if the boundary
points are all regular.

1.5 A monotonicity result

The next result, due to H.Berestycki, L.Caffarelli and L.Nirenberg, [11], is
about the monotonicity in some directions of positive solutions of elliptic
second order boundary value problems of the type:





∆u + f(u) = 0 in Ω;
u > 0 in Ω;
u = 0 on ∂Ω,

(1.11)

in the case that Ω is a slab domain. Such result will be useful in Chapter 3 to
prove the nonexistence of solutions of boundary value problems like (3.33).
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Theorem 1.5.1 ([11]) Let u be a solution of (1.11) in a slab

Ω = Rn−1 × (0, h),

n ≥ 2, satisfying
u(x, 0) = 0, ∀x ∈ Rn−1. (1.12)

Assume that f is Lipschitz and that

f(0) ≥ 0. (1.13)

Then,
∂u

∂y
(x, y) > 0, ∀x ∈ Rn−1, ∀y ∈ (0, h/2). (1.14)

1.6 Some useful results about the least-energy so-
lutions to a semilinear perturbed Neumann
problem

In this section we collect a couple of useful results that we will use in Chap-
ter 3.

Let us consider the following problem:




−ε2∆u + u = f(u) in Ω;
∂u
∂ν = 0 on ∂NΩ;
u > 0 in Ω.

(1.15)

Moreover denote uε(Pε) = maxx∈Ω uε(P ) and H(·) the mean curvature of
the boundary ∂NΩ. The next result was proved by W.M.Ni and I.Takagi in
[49].

Theorem 1.6.1 (Ni-Takagi) Let uε be a least-energy solution to the prob-

lem (1.15) with f(u) = up, p ∈ (1,
n + 2
n− 2

) if n ≥ 3 and p ∈ (1, +∞) if n = 2.

Suppose also that there exists P0 ∈ ∂NΩ such that

Pε → P0 ∈ ∂NΩ.

Then

Ĩε(uε) = εn

{
1
2
I(U)− (n− 1)εγH(Pε) + o(ε)

}
as ε → 0

where U is the ground state solution of problem (1.1), Ĩε(·) the Euler func-
tional associated to this problem (1.2), and γ a constant given by

γ :=
1

n + 1

∫

Rn
+

U ′(|z|)zndz > 0.
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The following technical result was proved by C.S.Lin, W.M.Ni and I.Takagi
in [38].

Lemma 1.6.2 (Li-Ni-Takagi) Let us consider the problem (1.15). As-
sume that the function f : R→ R is of class C1(R) and satisfies the following
classical assumptions:

(i) f(t) ≡ 0 for t ≤ 0;

(ii) f(t) = O(tr) as t → +∞, with:





2 < r + 1 < 2n
n−2 if n ≥ 3,

r > 1 if n = 2;

(iii)
f(t)

t
is increasing for t > 0 and lim

t→+∞
f(t)

t
= +∞, while f(t) = o(t)

for t → 0;

(iv) there exists a constant θ > 2 such that 0 < θF (t) ≤ tf(t) for t ≥ 0,
where F (t) is defined by

F (t) :=
∫ t

0
f(s)ds.

Moreover let uε be a solution to the problem (1.15). Then
∫

Ω
ur

εdx ≤ Crε
n,

where Cr is a constant independent of ε and r any exponent greater than
zero.

Next result, proved by W.M. Ni and I.Takagi, locates the maximum point
Pε on the boundary. Indeed it shows that H(Pε), the mean curvature of ∂Ω
at Pε, approaches the maximum of H(P ) over ∂Ω as ε → 0.

Theorem 1.6.3 Let uε be a least-energy solution to problem (1.15) and
Pε ∈ ∂Ω be the unique point at which maxuε is achieved. Then

lim
ε→0

H(Pε) = max
P∈∂Ω

H(P ),

where H(P ) denotes the mean curvature of ∂Ω at P.

1.7 The Lax-Milgram lemma

In this section we state a very useful lemma that we will utilize in Chapter 4
in connection with the weak formulation of some elliptic problem. Let there
be given a normed vector space V with norm || · ||, a continuous bilinear
form a(·, ·) : V × V → R and a continuous functional f : V → R.
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Lemma 1.7.1 (Lax-Milgram) Let V be a Hilbert space, let a(·, ·) : V ×
V → R be a continuous coercive bilinear form and let f : V → R be a
continuous linear form.

Then the abstract variational problem: Find an element u such that

u ∈ V and ∀v ∈ V, a(u, v) = f(v), (1.16)

has one and only one solution.

By this theorem one can affirm that the variational problem (1.16) is well-
posed in the sense that its solution exists, is unique and depends continu-
ously on the data f , all other data being fixed.

1.8 Notations

In this section we will introduce some notations used throughout this thesis.
In what follows Ω will be an open bounded subset of Rn, n ≥ 2, with a
sufficiently smooth boundary ∂Ω. We will suppose that ∂Ω is union of two
disjoint open subsets ∂DΩ and ∂NΩ. We will call IΩ the intersection of the
closures of ∂DΩ and ∂NΩ.

We will consider the usual Sobolev space H1
0 (Ω), i.e. the closure of

C∞
0 (Ω) with respect to H1(Ω), endowed with the norm defined as follows

‖u‖ =
(∫

Ω
| ∇u |2

) 1
2

.

We will also use the Sobolev space H1
D(Ω), i.e. the family of functions

belonging to H1(Ω) with zero trace on ∂DΩ.
Moreover ε > 0 will denote, throughout the thesis, a perturbation pa-

rameter tending to zero.
Generic fixed constants will be denoted by C, and will be allowed to vary

within a single line or formula. We will often use the notation d(1 + o(1)),
where o(1) stands for a quantity which tends to zero as d → +∞.



Chapter 2

Concentration of solutions
and Perturbation Methods

In this chapter we study the asymptotic behavior of some solutions to a
singularly perturbed problem with mixed Dirichlet and Neumann boundary
conditions. In particular we are interested in the following problem





−ε2∆u + u = up in Ω;
∂u
∂ν = 0 on ∂NΩ; u = 0 on ∂DΩ;
u > 0 in Ω,

(P̃ε)

where Ω is a smooth bounded subset of Rn, p ∈
(
1, n+2

n−2

)
, ε > 0 is a small

parameter, and ∂NΩ, ∂DΩ are two subsets of the boundary of Ω such that the
union of their closures coincides with the whole ∂Ω. We prove that, under
suitable geometric conditions on the boundary of the domain, there exist
solutions which approach the intersection of the Neumann and the Dirichlet
parts as the singular perturbation parameter tends to zero. Denoting IΩ the
intersection of closures of ∂DΩ and ∂NΩ and assuming that the gradient of
H at IΩ point toward ∂DΩ, the main result of this chapter is the following
theorem.

Theorem 2.0.1 Suppose Ω ⊆ Rn, n ≥ 2, is a smooth bounded domain, and
that 1 < p < n+2

n−2 (1 < p < +∞ if n = 2). Suppose ∂DΩ, ∂NΩ are disjoint
open sets of ∂Ω such that the union of the closures is the whole boundary of
Ω and such that their intersection IΩ is an embedded hypersurface. Suppose
Q ∈ IΩ is such that H|IΩ

is critical and non degenerate at Q, and that
∇H 6= 0 points toward ∂DΩ. Then for ε > 0 sufficiently small problem (P̃ε)
admits a solution uε concentrating at Q.

Remark 2.0.2 (a) The non degeneracy condition in Theorem 2.0.1 can be
replaced by the condition that Q is a strict local maximum or minimum of
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H|IΩ
, or by the fact that there exists an open set V of IΩ containing Q such

that H(Q) < inf∂V H (respectively H(Q) > sup∂V H).
(b) With more precision, as ε → 0, the above solution uε possesses a

unique global maximum point Qε ∈ ∂NΩ, and dist(Qε, IΩ) is of order ε log 1
ε

as ε tends to 0.

To prove Theorem 2.0.1, we will apply the perturbation methods in critical
point theory. In the next section, we will start with an abstract outline to
prove the existence of critical points of functionals, as in our case, that are
perturbative.

2.1 The mixed perturbed problem

We are interested in finding solutions to (P̃ε) with a specific asymptotic
profile, so it is convenient to scale the variables like x 7→ εx and to study
(P̃ε) in the dilated domain

Ωε :=
1
ε
Ω.

After this change of variables the problem becomes




−∆u + u = up in Ωε;
∂u
∂ν = 0 on ∂NΩε u = 0 on ∂DΩε;
u > 0 in Ωε,

(Pε)

where ∂NΩε and ∂DΩε stand for the dilations of ∂NΩ and ∂DΩ respectively.
The Euler functional corresponding to (Pε) is the following

Iε(u) =
1
2

∫

Ωε

(|∇u|2 + u2
)
dx− 1

p + 1

∫

Ωε

|u|p+1dx; u ∈ H1
D(Ωε), (2.1)

where H1
D(Ωε) denotes the family of functions in H1(Ωε) with zero trace on

∂DΩε.

2.1.1 Perturbation in critical point theory

In this subsection, we introduce an abstract perturbation method which
takes advantage of the variational structure of the problem, allowing to
reduce it to a finite dimensional one. In particular we start treating existence
of critical points for a class of functionals which are perturbative in nature.

Given a Hilbert space H (which might depend on the perturbation pa-
rameter ε), we want to consider manifolds embedded smoothly in H, pre-
cisely for which

i) there exists a smooth d-dimensional manifold Zε ⊆ H and C, r > 0 such
that for any z ∈ Zε, the set Z ∩Br(z) can be parameterized by a map
on BR

d

1 whose C3 norm is bounded by C.
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We are also interested in functionals Iε : H → R of class C2,α which satisfy
the following properties

ii) there exists a continuous function f : (0, ε0) → R with limε→0 f(ε) = 0
such that ‖I ′ε(z)‖ ≤ f(ε) for every z ∈ Zε: moreover we require that
‖I ′′ε (z)[q]‖ ≤ f(ε)‖q‖ for every z ∈ Zε and every q ∈ TzZε;

iii) there exist C, α ∈ (0, 1], r0 > 0 such that ‖I ′′ε ‖Cα ≤ C in the subset
{u : dist(u,Zε) < r0};

iv) letting Pz, z ∈ Zε, denote the projection onto the orthogonal comple-
ment of TzZε, there exists C > 0 (independent of z and ε) such that
PzI

′′
ε (z), restricted to (TzZε)⊥, is invertible from (TzZε)⊥ into itself,

and the inverse operator satisfies ‖(PzI
′′
ε (z))−1‖ ≤ C.

First some notation is in order. Let us set W = (TzZε)⊥ and let (qi)1≤i≤d

be an orthonormal d-tuple (locally smooth on Zε) such that

TzZε = span{q1, . . . , qd}.

In the sequel we will denote by z = zξ, ξ ∈ Rd, a smooth local parameteri-
zation of Zε as in i). Furthermore, we also suppose that qi = ∂ξizξ/‖∂ξizξ‖
at a given point of Zε.

We will look for critical points of Iε in the form u = z + ω with z ∈ Zε

and ω ∈ W . If Pz : H → W is as in iv), the equation I ′ε(z + ω) = 0 is
equivalent to the system

{
PzI

′
ε(z + ω) = 0 (auxiliary equation);

(Id− Pz)I ′ε(z + ω) = 0 (bifurcation equation).
(2.2)

Proposition 2.1.1 Let i)-iv) hold true. Then there exists ε0 > 0 with the
following property: for all |ε| < ε0 and for all z ∈ Zε, the auxiliary equation
in (2.2) has a unique solution ω = ωε ∈ W = (TzZε)⊥, which is of class C1

with respect to z ∈ Zε and such that ‖ωε(z)‖ ≤ C1f(ε) as |ε| → 0, uniformly
with respect to z ∈ Zε. The derivative of ω with respect to z, ω′ε, satisfies
the bound ‖ω′ε(z)‖ ≤ CC1f(ε)α.

Proof. The proof is a refinement of a (by now) standard argument, which
can be found for example in [2], Section 2: since however the procedure is
rather short, we write here the details for the reader’s convenience.

Property iv) allows us to apply the contraction mapping theorem to the
auxiliary equation. In fact, by the invertibility of PzI

′′
ε (z) we can rewrite it

tautologically as

ω = −(PzI
′′
ε (z))−1

[
PzI

′
ε(z) +

(
PzI

′
ε(z + ω)− PzI

′
ε(z)− PzI

′′
ε (z)[ω]

)]
:= Gε,z(ω).
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We claim next that the latter map is a contraction on a suitable metric ball
of W . In fact, for the second term of Gε, using iii) we can write that

∥∥PzI
′
ε(z + ω)− PzI

′
ε(z)− PzI

′′
ε (z)[ω]

∥∥ =∥∥∥∥Pz

∫ 1

0
(I ′′ε (z + sω)− I ′′ε (z))[ω]ds

∥∥∥∥ ≤ C‖ω‖1+α,

and therefore by ii) and iv) we have

‖Gz,ε(ω)‖ ≤ Cf(ε) + C2‖ω‖1+α; ‖ω‖ ≤ r0.

Similarly, one also finds

‖Gz,ε(ω1)−Gz,ε(ω2)‖ ≤ C2(‖ω1‖α + ‖ω2‖α)‖ω1 − ω2‖.
By the last two equations, if we fix C1 > 0 sufficiently large and let

Bε = {ω ∈ W : ‖ω‖ ≤ C1f(ε)},
we can check that Gz,ε is a contraction in Bε, so for every z ∈ Zε we obtain a
(unique) function ω satisfying the required bound (for brevity, in the sequel
the dependence on z will be assumed understood).

Let us now show that also the derivatives of ω with respect to ξ can be
controlled by means of f(ε). Indeed, for the components of ω tangent to Zε

we can argue as follows: since (ω, ∂ξz) = 0 for every ξ, differentiating with
respect to ξ we find that (∂ξω, ∂ξz) = −(ω, ∂2

ξ z). Since ‖ω‖ = O(f(ε)) and
since ∂2

ξ z is bounded (by i)), the tangent components of ∂ξω are bounded
in norm by CC1f(ε).

About the normal components, we can differentiate the relation
I ′ε(z + ω) =

∑d
i=1 αi∂ξi

z (where αi ∈ R) with respect to ξ to find

I ′′ε (z + ω)[∂ξz] + I ′′ε (z + ω)[∂ξω] =
d∑

i=1

(∂ξαi)∂ξiz +
d∑

i=1

αi∂
2
ξξi

z. (2.3)

Since I ′′ε is locally Hölder continuous (by iii)) and since ‖ω‖ = O(f(ε))
projecting on W , for ε small by iv) we have that

‖Pz∂ξω‖ ≤ C|α|+ C‖I ′′ε (z)[∂ξz]‖+ C‖ω‖α ≤ Cf(ε)α.

For the latter inequality we used again ‖ω‖ = O(f(ε)) together with the
Lipschitzianity of I ′ε (which imply |α| ≤ Cf(ε)) and ii).

Remark 2.1.2 From formula (2.3), writing I ′′ε (z+ω) as (I ′′ε (z+ω)−I ′′ε (z))+
I ′′ε (z) and using ii), one finds the following more precise estimate

‖Pz∂ξω‖ ≤ Cf(ε) + C‖(I ′′ε (z + ω)− I ′′ε (z))[∂ξz]‖.
Under further regularity assumptions on ω, the estimate of ‖Pz∂ξω‖ can be
improved: this will be useful for us to treat the case p ∈ (1, 2), see the proof
of Proposition 2.3.5.
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We shall now provide conditions for solving the bifurcation equation in
(2.2). In order to do this, let us define the reduced functional Iε : Z → R by
setting

Iε(z) = Iε(z + ωε(z)). (2.4)

Proposition 2.1.3 Suppose we are in the situation of Proposition 2.1.1,
and let us assume that Iε has, for |ε| sufficiently small, a stationary point
zε: then uε = zε + ωε(zε) is a critical point of Iε. Furthermore, there exist
c̃, r̃ > 0 such that if u is a critical point of Iε with dist(u,Zε,c̃) < r̃, where

Zε,c̃ = {z ∈ Zε : dist(z, ∂Zε) > c̃} ,

then u has to be of the form zε + ωε(zε) for some zε ∈ Zε.

Proof. The first assertion can be proved as follows. Consider the manifold
Z̃ε = {z + ωε(z) : z ∈ Zε}. If zε is a critical point of Iε, it follows that
uε = zε + ω(zε) ∈ Z̃ε is a critical point of Iε constrained on Z̃ε and thus uε

satisfies I ′ε(uε) ⊥ TuεZ̃ε. Moreover the definition of ωε, see Proposition 2.1.1,
implies that I ′ε(uε) ∈ TzεZε. Since, for |ε| small, TuεZ̃ε and TzεZε are close,
which is a consequence of the smallness of ω′ε, it follows that I ′ε(uε) = 0.

To prove the last statement it is sufficient to notice that the contraction
argument in the proof of Proposition 2.1.1 can be performed in the larger ball
B̃ = {ω ∈ W : ‖ω‖ ≤ 2r̃} with r̃ sufficiently small, so one has uniqueness of
the solution of the auxiliary equation in this set. The distance condition on
Zε,c̃ ensures the full applicability of these arguments in {dist(u,Zε,c̃) < r̃},
so the conclusion follows.

2.1.2 Approximate solutions for (Pε) with Neumann condi-
tions

In this subsection we exhibit a family of (known) functions which satisfy
the equation in (Pε) up to an error of order ε2, and whose normal boundary
derivative vanishes, up to the same order. After, introducing some conve-
nient coordinates which stretch the boundary, we recall some results from
[2] concerning approximate solutions to the Neumann problem. Then, using
a further change of variables which also stretches the interface, we modify
these functions conveniently for our purposes.

Let us describe ∂Ωε near a generic point Q ∈ ∂NΩε. Without loss of
generality, we can assume that Q = 0 ∈ Rn, that {xn = 0} is the tangent
plane of ∂Ωε (or ∂Ω) at Q, and that ν(Q) = (0, . . . , 0,−1), where ν(Q) stands
for the outer unit normal at Q. In a neighborhood of Q, let xn = ψQ(x′) be
a local parametrization of ∂Ω, x′ ∈ Rn−1. Then on ∂Ω one has

xn = ψQ(x′) := 1
2〈AQx′, x′〉+ O(|x′|3); |x′| < µ0, (2.5)
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where AQ is the Hessian of ψ at 0, and where µ0 is some small number
depending on Ω. We have clearly H(Q) = 1

n−1 trAQ. On the other hand,
∂Ωε is parameterized using the function ψε

Q(x′) := 1
εψQ(εx′), for which the

following expansions hold

ψε
Q(x′) =

ε

2
〈AQx′, x′〉+ ε2O(|x′|3);

(2.6)
∂iψ

ε
Q(x′) = ε(AQx′)i + ε2O(|x′|2).

Concerning the outer normal ν, we have also

ν =

(
∂ψε

Q

∂x1
, . . . ,

∂ψε
Q

∂xn−1
,−1

)

(
1 + |∇ψε

Q|2
) 1

2

=
(
ε(AQx′),−1

)
+ ε2O(|x′|2). (2.7)

Since ∂Ωε is almost flat for ε small and since the function U (see the
Introduction) is radial, for Q ∈ ∂Ωε we have ∂

∂ν U(·−Q) ∼ 0. Thus U(·−Q)
is an approximate solution to (Pε) if we impose pure Neumann boundary
conditions. Hence for the latter problem a natural choice of the manifold Zε

(see Subsection 2.1.1) could be the following

Zε = {U (· −Q) := UQ : Q ∈ ∂Ωε} .

Indeed we need a more accurate expansion, and we will construct better ap-
proximate solutions, in particular improving the condition at the boundary.

Given µ0 as in (2.5), we introduce a new set of coordinates on Bµ0
ε

(Q)∩Ωε.
Let

x̃′ = x′; x̃n = xn − ψε
Q(x′). (2.8)

The advantage of these coordinates is that ∂Ωε identifies with {x̃n = 0},
but the corresponding metric coefficients g̃ij will not be constant anymore.
From (2.6) it follows that

g̃ij = Id + εAQ + O(ε2|x̃′|2); ∂x̃k
(g̃ij) = ε∂x̃k

AQ + O(ε2|x̃′|), (2.9)

with

AQ =
(

0 AQx̃′

(AQx̃′)t 0

)
.

Here the zero in the upper left corner of AQ stands for the trivial (n −
1) × (n − 1) matrix, while (AQx̃′)t stands for the transpose of the column
vector (AQx̃′). It is also easy to check that the inverse matrix (g̃ij) is of the
form g̃ij = Id− εAQ +O(ε2|x̃′|2), and that ∂x̃k

(g̃ij) = −ε∂x̃k
AQ +O(ε2|x̃′|).

Moreover, by the expression of the coordinates x̃ one has

det g̃ ≡ 1. (2.10)
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Recall that the Laplacian with respect to a general metric is given by

∆gu =
1√

det g
∂j

(
gij

√
det g

)
∂iu + gij∂2

iju,

so in our situation, by (2.10), we get

∆gu = gijuij + ∂i(gij)∂ju.

Using (2.9) we find that, formally

∆g̃u = ∆Rnu− ε
(
2〈AQx̃′,∇x̃′∂x̃nu〉+ (trAQ)∂x̃nu

)
+ O(ε2)(|∇u|+ |∇2u|).

(2.11)
We also give the expression of the unit outer normal to ∂Ωε, ν̃, in the new
coordinates x̃. Letting νi (resp. ν̃i) be the components of ν (resp. ν̃), from
ν =

∑n
i=1 νi ∂

∂xi =
∑n

i=1 ν̃i ∂
∂x̃i , we have ν̃k =

∑n
i=1 νi ∂x̃k

∂xi . This implies

ν̃k = νk, k = 1, . . . , n− 1; ν̃n =
n−1∑

i=1

νi
∂ψε

Q

∂x̃i
+ νn.

From (2.6) and the subsequent formulas we find

ν̃ =
(
εAQx̃′,−1

)
+ ε2O(|x̃′|2). (2.12)

Finally the area-element of ∂Ωε can be expanded as

dσ = (1 + O(ε2|x̃′|2))dx̃′. (2.13)

Linearizing the equation in (Pε) near U(x̃), one sees that the function U(y)+
εw(y) solves the equation (Pε) up to an error o(ε), if w satisfies

{
LUw = −2〈AQx̃′,∇x̃′∂x̃nU〉 − (trAQ) ∂x̃nU in Rn

+;
∂

∂x̃n
w = 〈AQx̃′,∇x̃′U〉 on ∂Rn

+.

Therefore, if wAQ
is given by Lemma 1.2.2 (see Chapter 1) with T = AQ,

one sees that, formally at least, the accuracy of the solution improves. To
derive rigorous estimates in this spirit, one can choose a cut-off function χµ0

on Rn with the properties




χµ0(x̃) = 1 in Bµ0
4

;
χµ0(x̃) = 0 in Rn \Bµ0

2
;

|∇χµ0 |+ |∇2χµ0 | ≤ C in Bµ0
2

(Q) \Bµ0
4

,

(2.14)

and for any Q ∈ ∂Ω define the following function, in the coordinates (x̃′, x̃n)

zε,Q(x̃) = χµ0(εx̃)(U(x̃) + εwAQ
(x̃)). (2.15)

The next result collects estimates in the statements and the proofs of Lem-
mas 1.2.3, 1.2.4 and 1.2.5 in Subsection 1.2.4.



18 Concentration of solutions and Perturbation Methods

Proposition 2.1.4 There exist constants C, K > 0, depending only on p,
n and Ω such that for ε small the following estimates hold

∣∣∣∣
∂zε,Q

∂ν̃

∣∣∣∣ (x̃′) ≤
{

Cε2(1 + |x̃′|K)e−|x̃′| for |x̃′| ≤ µ0

4ε ;
Ce−

1
Cε for µ0

4ε ≤ |x̃′| ≤ µ0

2ε ,

∣∣∣−∆gzε,Q + zε,Q − zp
ε,Q

∣∣∣ (x̃) ≤
{

Cε2(1 + |x̃|K)e−|x̃| for |x̃| ≤ µ0

4ε ;
Ce−

1
Cε for µ0

4ε ≤ |x̃| ≤ µ0

2ε ,

Iε,N (zε,Q) = C̃0−C̃1εH(εQ)+O(ε2);
∂

∂Q
Iε,N (zε,Q) = −C̃1ε

2H ′(εQ)+o(ε2),

where

C̃0 =
(

1
2
− 1

p + 1

)∫

Rn
+

Up+1dx, C̃1 =
(∫ ∞

0
rnU2

r dr

) ∫

Sn
+

yn|y′|2dσ.

To improve the estimate, we need to take into account the effect of the
Dirichlet boundary condition. To this end, we make next a further change
of variables, in order to stretch also the interface: we claim indeed that,
in the coordinates x̃, the latter can be parameterized as x̃1 = d + ψ̃ε

Q(x̃′′),
x̃′′ = (x̃2, . . . , x̃n−1), with d ∈ R and ψ̃ε

Q satisfying estimates similar to
(2.6). To see this, we first claim that the curvature of the interface IΩε , in
the coordinates x̃, is of order O(ε). Here we are assuming that the distance
of Q from IΩε , multiplied by ε, is bounded by a small constant depending
on Ω. For showing this, let us consider a curve γ(s) in the interface whose
geodesic curvature (relative to IΩε) vanishes and which is parameterized
by arclength: its curvature in Rn will be therefore of order O(ε). Let us
split γ into its tangent and normal components (with respect to TQ∂Ωε)
γ = (γT , γN ). Since in our notation γN = ψε

Q(γT ), from (2.6) and a Taylor
expansion we have that

|γ̇|2 = |γ̇T |2 + |γ̇N |2 ⇒ |γ̇| = |γ̇T |(1 + O(ε2)|γT |2).

The curvature of γ is k = 1
|γ̇|

d
ds

(
γ̇
|γ̇|

)
, which can be written as

k =
(1 + O(ε2)|γT |2)

|γ̇T |
d

ds

(
γ̇T

|γ̇T |(1 + O(ε2)|γT |2)
)

.

Expanding the above expression we obtain

k = kT (1 + O(ε2)|γT |2) + O(ε2)|γT |.

This formula shows that, since k is of order ε, also kT is of order ε. Therefore,
if the point Q is close to the interface (in the sense specified before) and if we
choose the x̃1 axis to be perpendicular to the projection of IΩε onto TQ∂Ωε,
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if the latter projection is at distance d from Q we have that the points in
IΩε satisfy

x̃1 = d + ψ̃ε
Q(x̃′′); x̃′′ = (x̃2, . . . , x̃n−1), (2.16)

where ψ̃ε
Q (which depends on Q and ε) is such that

ψ̃ε(0) = 0; ∇ψ̃ε(0) = 0; ψ̃ε
Q(x̃′′) =

1
2
ε〈ÃQx̃′′, x̃′′〉+ O(ε2|x̃′′|2),

see also (2.6). Below, it will be always understood that the symbol d refers
to the distance to the scaled interface IΩε and we will never use subscript ε
to stress this fact.

Introducing the new coordinates

y1 = x̃1 − ψ̃ε
Q(x̃′′); y′′ = x̃′′; yn = x̃n, (2.17)

we have that the metric coefficients gy satisfy again

det gy ≡ 1, (2.18)

as in (2.10). Then, similarly to (2.9) we have that

gy
ij = Id + εÃQ + O(ε2|y′|2); ∂yk

(gy
ij) = ε∂yk

ÃQ + O(ε2|y′|) (2.19)

(and similarly (gy)ij = Id − εÃQ + O(ε2|y′|2), ∂yk
(gy)ij = −ε∂yk

ÃQ +
O(ε2|y′|)), where

ÃQ =




0 (ÃQy′′)t AQy′

ÃQy′′ 0
(AQy′)t 0


 .

Remark 2.1.5 (a) We stress that, in the new coordinates y, the origin
parameterizes the point Q on ∂Ω, and that functions decaying as |y| → +∞
will concentrate near Q.

(b) It is also useful to understand how the metric coefficients gy
ij vary

with Q. Notice that in (2.19) the deviation from the Kronecker symbols is
of order ε, and that we are working in a domain scaled of 1

ε , so a variation
of order 1 of Q corresponds to a variation of order ε in the original domain.
Therefore, a variation of order 1 in Q yields a difference of order ε2 in gy

ij,
and precisely

∂gy
ij

∂Q
= O(ε2|y′|2),

with a similar estimate for the derivatives of the inverse coefficients (gy)ij.
For more details see the end of Subsection 9.2 in [2].
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From the latter formulas, the counterpart of (2.11) becomes

∆gyu = ∆Rnu− ε
(
2〈AQy′,∇y′∂ynu〉+ (trAQ)∂ynu

)−
ε
(
2〈ÃQy′′,∇y′′∂y1u〉+ (trÃQ)∂y1u

)
+

O(ε2)
(|∇yu|+ |∇2

yu|
)
, (2.20)

while the analogues of (2.12) and (2.13) are

νy =
(
εAQy′,−1

)
+ ε2O(|y′|2); dσy = (1 + O(ε2|y′|2))dy′. (2.21)

Reasoning as for the above coordinates x̃ (see the comments after (2.13)),
one sees that the function U(y)+ εw̃(y) solves the equation in (Pε) up to an
error o(ε) if and only if w̃ satisfies





LU w̃ = −2〈AQy′,∇y′∂ynU〉 − (trAQ) ∂ynU−
2〈ÃQy′′,∇y′′∂y1U〉 − (trÃQ) ∂y1U in Rn

+;
∂

∂yn
w̃ = 〈AQy′,∇y′U〉 on ∂Rn

+.
(2.22)

We have an explicit solution to (2.22) in terms of the above function wAQ

through a simple change of variable. Indeed, in the new coordinates y we
can write that formally

zε,Q(x̃) ' U
(
y1 +

ε

2
〈ÃQy′′, y′′〉, y′′, yn

)
+ εwAQ

(
y1 +

ε

2
〈ÃQy′′, y′′〉, y′′, yn

)

' U(y) +
ε

2
〈ÃQy′′, y′′〉∂1U(y) + εwAQ

(y) + o(ε).

Choosing w̃(y) = w̃Q(y) := 1
2〈ÃQy′′, y′′〉∂1U(y) + wAQ

(y) and using the fact
that LU∂yiU(y) = 0, from an explicit computation we find that

LU w̃Q(y) = LUwAQ
(y)− (trÃQ)∂1U(y) + 2〈Ãy′′,∇y′′∂1U(y)〉,

which is exactly the desired equation. Clearly, by (1.10), there exists a
constant C ′

Ω, depending on Ω and on the curvatures of the interface such
that

|w̃Q(y)|+ |∇w̃Q(y)|+ |∇2w̃Q(y)| ≤ C ′
Ω(1 + |y|K)e−|y|. (2.23)

In conclusion, choosing a cutoff function as in (2.14) and defining the new
approximate solution zε,Q as

zε,Q(y) = χµ0(εy) (U(y) + εw̃Q(y)) , (2.24)

the arguments for the proof of Proposition 2.1.3 yield the following variant
of the above result.
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Proposition 2.1.6 There exists C,K > 0 such that for ε small the follow-
ing estimates hold

∣∣∣∣
∂zε,Q

∂ν̃

∣∣∣∣ (y′) ≤
{

Cε2(1 + |y′|K)e−|y′| for |y′| ≤ µ0

4ε ,

Ce−
1

Cε for µ0

4ε ≤ |y′| ≤ µ0

2ε ;

∣∣∣−∆gzε,Q + zε,Q − zp
ε,Q

∣∣∣ (y) ≤
{

Cε2(1 + |y|K)e−|y| for |y| ≤ µ0

4ε ,

Ce−
1

Cε for µ0

4ε ≤ |y| ≤ µ0

2ε ;

Iε,N (zε,Q) = C̃0−C̃1εH(εQ)+O(ε2);
∂

∂Q
Iε,N (zε,Q) = −C̃1ε

2H ′(εQ)+o(ε2),

where C̃0, C̃1 are as in Proposition 2.1.3.

An immediate consequence of this proposition is that

‖I ′ε,N (zε,Q)‖ ≤ Cε2 for all Q ∈ ∂Ωε and for some fixed C > 0, (2.25)

where Iε,N is the counterpart of the functional in (2) when we scale Ω to
Ωε.

2.2 Approximate solutions to (Pε)

The functions zε,Q constructed in (2.24) constitute good approximate solu-
tions to (Pε) when we impose pure Neumann boundary conditions. Nev-
ertheless, we need an expansion which takes into account the parameter
d = dε

ε , the distance of the peak point to the interface in the scaled domain
(see the notation in the last formula of the introduction), and to this end
some relevant modifications are necessary.

As in [51], a useful tool is the projection operator onto H1
D(Ωε), namely

the one which associates to every element in H1(Ωε) its closest point in
H1
D(Ωε). Explicitly, this is constructed subtracting to any given u ∈ H1(Ωε)

the solution to 


−∆v + v = 0 in Ωε;
v = u on ∂DΩε;
∂v
∂ν = 0 on ∂NΩε.

(2.26)

This solution can be found variationally by looking at the following minimum
problem

inf
v=u on ∂DΩε

{∫

Ωε

(|∇v|2 + v2
)
dx

}
.

Instead of studying (2.26) directly, it is convenient to modify the domain in
order that the region of the boundary near IΩε becomes flat.
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For technical reasons we construct a domain in the following way: first
in Rn−1 we consider the square

S = {|x1 + 2| < 2} ∩ {∣∣x′′∣∣ < 2
}

; x′′ = (x2, . . . , xn−1),

and then the set S̃ which is obtained from S rounding off smoothly the
corners of S, and in order that

(S ∩ {|x1 + 2| < 1}) ∪ (
S ∩ {|x′′| < 1})

=
(
S̃ ∩ {|x1 + 2| < 1}

)
∪

(
S̃ ∩ {|x′′| < 1}

)
, (2.27)

see Figure 3.1. Notice that in this way the set {x1 = 0} ∩ {|x′′| < 1} lies
on the boundary of S̃. Below, we will identify S̃ with its natural immersion
into Rn ∩ {xn = 0}.
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Figure 2.1: The domain S̃.

Next, in the (x1, xn) plane, we consider a C∞ curve γ which runs on
the segment (t, 0), t ∈ [0, 4(n + 2)], which hits the xn axis horizontally,
stays in the quadrant x1, xn > 0 and stays external to the circle {x2

1 + x2
n =

16(n+2)2}, see Figure 3.3 (there is no specific reason in choosing the number
4(n + 2): we just need that a sufficiently large cube is contained in the set
Γ̂D defined below).

We then consider the set Γ obtained by intersecting the semi-closed quad-
rant {x1 ≥ 0}∩{xn > 0} with the interior of the curve, together with its re-
flection across the x1 axis. Then, we call Γ̃ the set generated by the rotation
of Γ around the xn axis, jointly with S̃. We finally define the burger-shaped
domain Γ̂ as

Γ̂ = Γ̃ ∪ Γ̌, (2.28)

where Γ̌ is the reflection of Γ̃ across the plane {xn = 0}, see Figure 3. For
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Figure 2.2: The curve γ in the (x1, xn) plane.

a large number D, we also consider the scaling

Γ̂D = DΓ̂. (2.29)

The advantage of dealing with this set is that if we solve a Dirichlet problem
in Γ̂D with data even in xn, then for suitable boundary conditions (as in
(2.30) below) the solution in the upper part Γ̂D ∩ {xn > 0} will be qualita-
tively similar to that of (2.26). Quantitative estimates on the real accuracy
of this substitution will be derived in Proposition 2.2.12, and will turn out
to be sufficiently good for our purposes.

Our next goal is to consider the following problem
{ −∆ϕ̃ + ϕ̃ = 0 in Γ̂dD;

ϕ̃ = U(· − dQ0) on ∂Γ̂dD,
Q0 = (−1, 0, . . . , 0). (2.30)

The reason for studying (2.30) is that, using the coordinates y introduced
in Subsection 2.1.2 (see in particular (2.17)), the function U(·−dQ0) stands
for the main term in the approximate solution zε,Q, up to a translation in
the y1 axis: this is how we are modeling (2.26) (in the above coordinates y),
when u = zε,Q. By a scaling of the variables, the latter problem is clearly
equivalent to { − 1

d2 ∆ϕ + ϕ = 0 in Γ̂D;
ϕ = U(d(· −Q0)) on ∂Γ̂D.

(2.31)

2.2.1 Asymptotic analysis of (2.31)

First of all we notice that (2.31) is solvable: for example one can use the
classical method by Perron, provided one knows that barrier functions exist,
see Section 1.4. This is guaranteed by the following result. Its proof could
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Figure 2.3: The domain Γ̂.

be probably derived from a modification of some arguments in [30]. Since
however we did not find a direct reference for our case, we give a sketch of
the construction.

Lemma 2.2.1 The set Γ̂ admits barrier functions for the operators ∆ and
−∆ + 1 at all boundary points.

Proof. It is clearly sufficient to prove the claim only for the points which
are not regular. We begin by considering the Green’s function G(·, ·) of
−∆ + 1 in Rn: when the singularity is at the origin G(·, 0) is radial and by
standard ODE analysis one can show that

|x|n−2G(x, 0) → cn |x| → 0; e|x||x|n−1
2 G(x, 0) → c′n |x| → +∞,

(2.32)
where cn, c′n are positive dimensional constants (see for instance [54], pages
130-133, for more details). Then, given a smooth radial compactly sup-
ported non decreasing mollifier function %(x), we can consider the scaled
one %λ(x) = λn%(λx), and for z ∈ ∂Γ̂D define

fz,λ(x) =
∫

∂Γ̂D

%λ(y − z)G(y, x)dσ(y), x ∈ Γ̂D.

By the first formula in (2.32) and since ∂Γ̂D is n − 1 dimensional one can
show that fz,λ is continuous up to the boundary of Γ̂D. To sketch the
proof of this fact for a singular point, we can ideally substitute ∂Γ̂D with
Rn−1 ∩ {y′1 ≥ 0} and %λ with χ|y′|<1. Then the function fz,λ becomes

fz,λ(x) =
∫

Rn−1∩{y′1≥0}
χB1(0)(y

′)G(y′, x)dy′,
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satisfies −∆fz,λ + fz,λ = 0 and has clearly a maximum at x = 0. Its
continuity at the origin follows by dominated convergence: indeed, suppose
that |xn|2 + |x′|2 < R2. By (2.32) we have that the integrand is bounded by

c′n
χ|x′−y′|<1(|y′|)
(x2

n + |y′|2)n−2
2

≤ c′n
χ|y′|<R+1(|y′|)

|y′|n−2
,

which is of class L1 in Rn−1, so continuity follows.
Furthermore, by the exponential decay of G (see the second formula in

(2.32)), if λ is sufficiently large fz,λ will be peaked near some point Pz,λ ∈
∂Γ̂D close to z, and Pz,λ will be its unique maximum. Finally, fixing any
P ∈ ∂Γ̂D, we can vary the position of z, depending on λ and P so that Pz,λ

coincides with P : this choice of z, for λ large, will provide a barrier function
which is maximal only at P , and which solves ∆ = u in the interior of the
domain. With similar constructions one can find barriers which satisfy the
same equation and which are minimal at any given point of the boundary.

Remark 2.2.2 It is worth pointing out that the previous result holds only
for domains with cuts since the function in latter formula is only integrable
in dimension greater or equal to n− 1. The above argument does not apply
to domains with spines as in Lebesgue’s counterexample.

As in [51], if we consider the function φ = −1
d log ϕ, then φ satisfies

{
1
d∆φ− |∇φ|2 + 1 = 0 in Γ̂D;
φ = −1

d log (U(d(· −Q0))) on ∂Γ̂D,
(2.33)

where, we recall, Q0 = (−1, 0, . . . , 0).

Lemma 2.2.3 For any fixed constant D > 0 we have that

−1
d

log U(d(· −Q0)) → |x−Q0| uniformly on ∂Γ̂D (2.34)

as d → +∞.

Proof. By (1.3), the function U satisfies

U(x) = αn,pe
−|x| 1

|x|n−1
2

(1 + o|x|(1))

as |x| → +∞, so we find

−1
d

log U(d(x−Q0)) = |x−Q0|+ O

(
1
d
| log(d|x−Q0|)|

)
,
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x ∈ ∂Γ̂D, d → +∞.

For x ∈ ∂Γ̂D, we have by the construction of Γ̂ that 1 ≤ |x−Q0| ≤ CD, for
a fixed constant C, so we obtain the desired claim provided

log(dD) = o(d),

which is the case since D is fixed.

By Lemma 2.2.3, the boundary datum is everywhere close to the function
|x−Q0|, so it is useful for us to consider the following auxiliary problem

{
1
d∆φ− |∇φ|2 + 1 = 0 in Γ̂D;
φ = |x−Q0| on ∂Γ̂D.

(2.35)

Lemma 2.2.4 Suppose D > 1 is a fixed constant. Then, when d → ∞,
problem (2.35) has a unique solution φd, which is everywhere positive, and
which more precisely satisfies the estimates

1 ≤ φd(x) ≤ C in Γ̂D, (2.36)

where C depends only on D and Γ̂.

Proof. Proving existence and uniqueness is rather easy: one can apply
the transformation inverse to the one at the beginning of this subsection,
and study { −∆ϕ + ϕ = 0 in Γ̂dD;

ϕ = e−|x−dQ0| on ∂Γ̂dD.

Existence for the latter problem follows from Lemma 2.2.1, while uniqueness
and positivity of φd follows from the maximum principle.

To prove (2.36) we use suitable barrier functions, exactly as in [51],
Lemma 4.2: the barrier argument can be applied to (2.35) even if the domain
is singular, by Lemma 2.2.1. Since dist(Q0, ∂Γ̂D) = 1, the function φd− ≡ 1
in Γ̂D is a subsolution to (2.35). On the other hand, for C sufficiently large
the function φd

+(x) = C +2x1 is a supersolution, and then our claim follows.

We next show some improved pointwise bounds on φd, which in particular
imply a control on the gradient within some region in the boundary of Γ̂D.
Here and below, many of the arguments in [51] break down if we try to use
them for non smooth domains, and we need to perform suitable adaptations.
In fact, we obtain gradient bounds only near smooth parts of the bound-
ary, and in general weaker Sobolev norm bounds, see also the beginning of
Subsection 2.2.2.
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Lemma 2.2.5 Suppose S̃ is as at the beginning of this section, and that D
is as in Lemma 2.2.4. Then there exists a fixed constant C > 0 such that
for any 0 < ρ < 1

8 there exists dρ > 0 so large that

|φd(x)− φd(zx)| ≤ C|x− zx|,
zx ∈ ∂Γ̂D, dist(zx, DS̃) ≥ ρ, |x− zx| ≤ 1

2
, d ≥ dρ.

In the above formula zx denotes the point in ∂Γ̂D closest to x (which is
unique if D is sufficiently large).

Proof. Let us fix 0 < ρ < 1
8 , and let us consider the function φ̂d

+ defined
in this way. For any x ∈ ∂Γ̂D with dist(x,DS̃) ≥ ρ, let nx denote the unit
normal to ∂Γ̂D at x. Since ∂Γ̂D is smooth away from DS̃, since it is flat
near this set and since its curvatures tend to zero uniformly as D → +∞,
the sets

Σt :=
{

z + tnz : z ∈ ∂Γ̂D, dist(z, DS̃) ≥ ρ
}

,

where nz is the inner unit normal at z, constitute a smooth manifold with
boundary for any t ∈ (

0, 1
2

]
. Moreover the Σt’s are flat near their boundary

and they are all disjoint as t varies in
(
0, 1

2

]
. Below in this proof (and

only here), we use the convention that the distance function from ∂DS̃ in
{xn = 0} is extended inside the interior of DS̃ with negative sign. We then
define the function

φ̂d
+(y) = |z−Q0|+θt; y ∈

{
z + tnz : z ∈ ∂Γ̂D, dist(z,DS̃) ≥ ρ, t ∈

[
0,

1
2

]}
,

where θ is a large constant so that φ̂d
+(y) > φd(y) when

y ∈
{

z + 1
2nz : z ∈ ∂Γ̂D, dist(z, DS̃) ≥ ρ

}
. The existence of such constant

θ is guaranteed by Lemma 2.2.4.
Next we consider a smooth non-increasing function χρ :

[−1
2 , ρ

] → R
satisfying the following properties

{
χρ(t) = 0 for t ∈ [

5
6ρ, ρ

]
;

χ′ρ(t) < 0 for t ∈ [−1
2 , 2

3ρ
]
,

and another smooth non decreasing cutoff function χ̃ρ :
[−1

2 , ρ
]

such that
{

χ̃ρ(t) = 0 for t ≤ 1
3ρ;

χ̃ρ(t) = 1 for t ≥ 2
3ρ.

Finally we extend the function φ̂d
+ to the set

{
z + tnz : z ∈ Rn−1, dist(z, DS̃) ∈

[
−1

2
, ρ

]}
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(we are using the above convention on the distance function) in the following
way

φ̂d
+(z, xn) = |z−Q0|+θ |xn| χ̃ρ

(
dist(z, DS̃)

)
+Cρχρ

(
dist(z,DS̃)

)
. (2.37)

For dist(z,DS̃) ≥ 2
3ρ, χ̃ρ

(
dist(z,DS̃)

)
is equal to 1, so the norm of the

xn-component of ∇φ̂d
+ is bounded below by θ. Also, for dist(z,DS̃) ≤ 2

3ρ,

χ′ρ
(
dist(z,DS̃)

)
is bounded above by a fixed negative constant. It follows

that, for θ and Cρ sufficiently large, the norm of∇φ̂d
+ can be made arbitrarily

big on its domain. By (2.36), if θ and Cρ are large then φ̂d
+ is everywhere

bigger than φd on
{

dist(·, ∂Γ̂D) = 1
2

}
, so φ̂d

+ is a supersolution of (2.35) in{
dist(·, ∂Γ̂D) < 1

2

}
.

On the other hand, we claim that the function φd− = |x − Q| is a sub-

solution of (2.35) in the set Γ̂D ∩
{

dist(·, ∂Γ̂D) < 1
2

}
. In fact, consider first

Γ̂D \Bδ̃(ε)(Q0), where δ̃(d) is a small positive number depending on d. Here
φd− satisfies

d∆φd
− − |∇φd

−|2 + 1 =
n− 1

d|x−Q0| ,

and moreover, if we choose δ̃(d) sufficiently small, we have that φd− < φd,
since φd is positive. Therefore we obtain that φd− ≤ φd in the closure of

Γ̂D ∩
{

dist(·, ∂Γ̂D) < 1
2

}
.

Finally, since φd− and φ̂d
+ coincide on

{
x ∈ ∂Γ̂D : dist(x,DS̃) ≥ ρ

}
and

have uniform bounds on the gradient here (independently of d), the conclu-
sion is achieved.

The gradient estimate which follows from the previous lemma is extended
next to a subset of the interior of the domain.

Lemma 2.2.6 Suppose D, φd are as in Lemma 2.2.4. Then there exists a
fixed constant C > 0 such that for any 0 < ρ < 1

8 there exists dρ > 0 so
large that

|∇φd(x)| ≤ C in
{

x ∈ Γ̂D : dist(x,D∂S̃) ≥ ρ
}

, d ≥ dρ.

Proof. Recall that ϕd := e−dφd
satisfies the equation − 1

d2 ∆ϕd + ϕd = 0
in Γ̂D, and hence the function ϕ̃d := ϕd(·/d) solves

{ −∆ϕ̃d + ϕ̃d = 0 in Γ̂dD;
ϕ̃d(·) = e−|·−dQ0| on ∂Γ̂dD.
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Notice that |∇φd| ≤ C is bounded in the desired set if and only if |∇ϕ̃d|
ϕ̃d ≤ C

in its d-dilation.
By the Harnack inequality and by standard elliptic estimates we obtain

immediately that

|∇ϕ̃d|
ϕ̃d

≤ Cn in
{

x ∈ ĜdD : dist(x, ∂Γ̂dD) > 1
}

,

where Cn depends only on the dimension n. Therefore we only need to show
the estimate in a neighborhood of (a subset of) the boundary, which is done
using a blow-up argument. Suppose by contradiction to the statement that
we have the following condition

for every m ∈ N there exists ρm such that for every ε > 0 there exist

Qm ∈ Γ̂D with dist(Qm, DS̃) ≥ ρm and d < ε with |∇φd(Qm)| ≥ m.

If dρm is the constant in Lemma 2.2.5 corresponding to ρm, let us choose dm

such that dm = max {m, 2dρm}. Let us also choose Q̃m for which

Mm := |∇φdm(Q̃m)| = sup
Am

|∇φdm(Q)|; Am = {Q ∈ Γ̂D : dist(Q,DS̃) ≥ ρm}.

Consider the functions ϕ̃dm(·) := e−dmφdm (·/dm), and the new sequence

vm(x) :=
ϕ̃dm

(
dmQ̃m + x

Mm

)

ϕ̃dm(dmQ̃m)
. (2.38)

Each vm satisfies

−∆vm +
1

M2
m

vm = 0 in Mmdm(Γ̂D −Qm), (2.39)

and moreover

vm > 0; vm(0) = 1; |∇vm(0)| = 1; sup
x∈Mmdm(Am−Qm)

|∇vm(x)|
vm(x)

≤ 1.

(2.40)
Depending on the asymptotic behavior of Q̃m, dm and Mm, we have one of
the following two possibilities (up to a subsequence)

(a) the component of Mmdm(Γ̂D−Qm) containing the origin converges
to Rn;

(b) the component of Mmdm(Γ̂D−Qm) containing the origin converges
to a half space {xn > B},
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for some B ≤ 0. On the other hand, we also have one of the following three
cases (still, up to a subsequence)

(c) the component of Mmdm(Am−Qm) containing the origin converges
to Rn;

(d) the component of Mmdm(Am − Qm) containing the origin con-
verges to a half space;

(e) the component of Mmdm(Am−Qm) containing the origin converges
to a quadrant.

In the above alternatives, by convergence we mean Hausdorff convergence
once we take the intersection with any fixed compact set of Rn. Case (c)
can only occur when (a) holds, and case (e) only when (b) holds. Calling A
the limit of the sets Mmdm(Am−Qm), by (2.40) and by the Ascoli theorem
we have convergence (in any smooth sense) of vm on the compact sets of
A to some non-negative harmonic function v : A → R for which v(0) =
1, |∇v(0)| = 1.

If (a) and (c) hold, then v must be constant on Rn by the Liouville
theorem, which contradicts the fact that |∇v(0)| = 1. If (a) and (d) hold,
by (2.39) we have the Harnack inequality for vm in any fixed compact set
of Rn, provided m is sufficiently large: again by the Ascoli theorem we
get convergence to a non-negative entire harmonic function and reach a
contradiction as in the previous case.

If (b) holds, we can use Lemma 2.2.5 (including the notation in its
statement), the fact that dzx/d = zx and φ̃d(·) = e−dφd(·/d) to obtain

e−|zx−dmQ0|e−C|x−zx| ≤ ϕ̃dm(x) ≤ e−|zx−dmQ0|eC|x−zx|; |x− zx| ≤ dm

2
.

Using (2.38) and the fact that vm(0) = 1, we see that the vm’s converge
uniformly to the constant 1 in any given compact set of {xn ≥ B}. Elliptic
regularity results imply indeed convergence in any smooth sense to 1, which
is again in contradiction to |∇vm(0)| = 1).

We are now in position for analyzing the asymptotic behavior of the solutions
to (2.33), whose existence (and uniqueness) can be deduced as in Lemma
2.2.4.

Proposition 2.2.7 For D large but fixed, let Φd denote the solution of
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(2.33). Then, as d → +∞, we have

Φd(x) →
((

1 +
√

x2
1 + x2

n

)2

+ |x′′|2
) 1

2

uniformly on the compact sets of
[
Γ̂D \ (∂DS̃)

]
∩B D

4
(0).

Proof. Since φd satisfies (2.35), we have that

φd + sup
x∈∂Γ̂D

∣∣∣∣|x−Q0|+ 1
d

log U(d(x−Q0))
∣∣∣∣

is a supersolution of (2.33), while

φd − sup
x∈∂Γ̂D

∣∣∣∣|x−Q0|+ 1
d

log U(d(x−Q0))
∣∣∣∣

is a subsolution. Since Φd lies in between these two, by Lemma 2.2.3 we are
reduced to prove the analogous statement for φd. The proof of the latter
fact is a consequence of Lemmas 2.2.8 and 2.2.9 below.

Lemma 2.2.8 If φd is as in Lemma 2.2.4 we have that

φd(x) → φ(x) := inf
z∈∂Γ̂D

(|x− z|+ |z −Q0|) as d →∞, (2.41)

uniformly on the compact sets of Γ̂D \ ∂DS̃.

Proof. First of all, by Lemma 2.2.6, in any set compactly contained
Γ̂D \∂DS̃ the gradient of φd is uniformly bounded, provided d is sufficiently
large: hence by Ascoli’s theorem we know that the φd’s admit limit in the
whole closure of Γ̂D.

The rest of the proof is a modification of the arguments in Lemma 4.3
of [51]: there it is shown that, when Γ̂D is replaced by a smooth domain Λ,
the function on the right-hand side of (2.41) turns out to be the supremum
of all the elements of

SΛ,|·−Q0| =
{
v ∈ W 1,∞(Λ) : v(x) ≤ |x−Q0| on ∂Λ, |∇v| ≤ 1 a.e. in Λ

}
.

(2.42)
We can actually reduce ourselves to this situation. First of all, in Rn−1, we
have this fact once we take Λ to be DS̃, since its boundary is smooth and
since the infimum will be attained on ∂DS̃. Let us call φDS̃ : DS̃ → R the
function given by

φDS̃(x) := inf
z∈∂DS̃

(|x− z|+ |z −Q0|) ; x ∈ DS̃,
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which is a Lipschitz function with Lipschitz constant bounded by 1.
Next, if we restrict ourselves to the set

ΛD := Γ̂D ∩ {xn > 0},
which is now smooth, and if we consider the function φ̃DS̃ : ∂ΛD → R
defined as

φ̃DS̃(z) =
{ |z −Q0| z ∈ {xn ≥ 0} ∩ ∂Γ̂D;

φDS̃(z) z ∈ DS̃,

we claim that

inf
z∈∂Γ̂D

(|x− z|+ |z −Q0|) = inf
z∈∂ΛD

(
|x− z|+ φ̃DS̃

)
, xn > 0. (2.43)

In fact, suppose z1 realizes the infimum on the right-hand side. If z1 6∈ DS̃
we are done, since φ̃DS̃ and | · −Q0| coincide on (∂ΛD) \ DS̃. If instead
z1 ∈ DS̃, by the definition of φ̃DS̃ there exists z2 ∈ ∂DS̃ such that

φ̃DS̃(z1) = |z1 − z2|+ |z2 −Q0|.
Therefore we have

inf
z∈∂Γ̂D

(|x− z|+ |z −Q0|) ≤ |x− z2|+ |z2 −Q0|

≤ |x− z1|+ |z1 − z2|+ |z2 −Q0|
= |x− z1|+ φ̃DS̃(z1)
= inf

z∈∂Γ̂D

(|x− z|+ |z −Q0|) ,

where the last equality is a consequence of our definition and our assumption
on z1, so the claim follows. Hence we can apply the result in [51] in the
smooth domain ΛD, with boundary datum φ̃DS̃ , and use (2.43).

Let us now prove next convergence to the function φ: similarly to Step
1 in the proof of Lemma 4.3 in [51] (and as noticed before) we can apply
Ascoli’s theorem (by Lemma 2.2.6) to guarantee existence of a limit for
d →∞, which indeed must belong to the set SΓ̂D,|·−Q0| (see the notation in
(2.42)). We need then to prove only limd→∞ φd ≥ φ.

Two comments are in order: first of all the solutions are even (by unique-
ness and since the boundary datum in (2.33) is), and we can limit ourselves
to take only even functions in the definition of φ. Second, we can extend in
a Lipschitz manner every v ∈ SΓ̂D,|·−Q0| (even in xn) to a δ neighborhood

of Γ̂D: we can for example consider v restricted to the boundary of Γ̂D and
extend it constantly in the normal direction (and stop at xn = 0 if we reach
this hyperplane at a distance from the boundary smaller than δ). Once we
have this extension, we can use convolutions with mollifiers as for Step 2 in
the proof of Lemma 4.3 in [51].
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Lemma 2.2.9 If φ is as in (2.41), then

φ(x) =

((
1 +

√
x2

1 + x2
n

)2

+ |x′′|2
) 1

2

x ∈ B D
4
(0). (2.44)

Proof. By construction of Γ̂D, the points z ∈ Γ̂D which realize the in-
fimum will necessarily belong to the set {{xn = 0} ∪ {x1 ≥ 0}}, so we can
write that

φ(x) = inf
z∈{{xn=0}∪{x1≥0}}

(|x− z|+ |z −Q0|) .

First of all we claim that the latter infimum can be attained on {z1 = 0}. In
fact, two possibilities may occur: the first is when x ∈ {{xn = 0} ∪ {x1 ≥ 0}}.
In this case the points z realizing the infimum are exactly those which belong
to the segment connecting x to Q0, and we can choose the one for which
z1 = 0.

In the second case, when x 6∈ {{xn = 0} ∪ {x1 ≥ 0}}, we can argue as
follows: for x and Q0 fixed, the level sets of the function z 7→ |x−z|+|z−Q0|
are the axially symmetric ellipsoids with focal points x and Q0. The smaller
is the ellipsoid, the smaller is the value of this function so we are reduced
to find the smallest ellipsoid which intersects {{xn = 0} ∪ {x1 ≥ 0}}: this
will happen at a point where z1 = 0, so we can still reduce ourselves to this
situation.

After the above claim has been established, it is sufficient to consider
the minimum problem

min
z′′∈Rn−2

(
(x2

1 + |z′′ − x′′|2 + x2
n)

1
2 + (12 + |z′′|2) 1

2

)
. (2.45)

By differentiation we obtain that at a minimum point

z′′ − x′′

(x2
1 + |z′′ − x′′|2 + x2

n)
1
2

+
z′′

(12 + |z′′|2) 1
2

= 0,

which implies

z′′ = x′′
√

x2
1 + x2

n − 1
x2

1 + x2
n − 1

=
x′′√

x2
1 + x2

n + 1
.

If we plug in this expression into (2.45) we obtain the desired conclusion.

Remark 2.2.10 Since the convergence in (2.34) is indeed uniform in every
smooth sense (by (1.3)), a reasoning as in the proof of Lemma 2.2.6 hold
true for the function Φd (the solution of (2.33)) as well. Therefore, there
still exists a fixed constant C > 0 such that for any 0 < ρ < 1

8 there exists
dρ > 0 so large that

|∇Φd(x)| ≤ C in
{

x ∈ Γ̂D : dist(x,DS̃) ≥ ρ
}

, d ≥ dρ. (2.46)
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The arguments in [37] (see in particular Proposition 1.4, Lemma 1.5 and
Lemma B.1) imply that

∇Φd → ∇φ uniformly in O, (2.47)

where O is any set compactly contained in Γ̂D \ (∂DS̃) on which ∇φ 6= 0.

Remark 2.2.11 It is also useful to make a few comments on the derivative
of ϕ with respect to d, where ϕ is the solution of (2.31). Differentiating
(2.31) in d we obtain

{ − 1
d2 ∆∂ϕ

∂d + ∂ϕ
∂d = − 2

d3 ∆ϕ = −2
dϕ in Γ̂D;

∂ϕ
∂d (x) = ∇U(d(x−Q0)) · (x−Q0) on ∂Γ̂D.

(2.48)

By the asymptotics in (1.3)-(1.4) there exists a positive constant CD such
that for d large we have the inequality 1

CD
U(d(x−Q0)) ≤ −∇U(d(x−Q0)) ·

(x−Q0) ≤ CDU(d(x−Q0)). Hence, from the latter formula, from the fact
that ϕ > 0, (2.31) and the maximum principle we obtain that ς := −∂ϕ

∂d ≥
1

CD
ϕ in Γ̂D. Moreover, as for (2.33) one checks that Υd := −1

d log ς satisfies
{

1
d∆Υd − |∇Υd|2 + 1− ϕ

dς = 0 in Γ̂D;
Υd(x) = −1

d log (−∇U(d(x−Q0)) · (x−Q0)) on ∂Γ̂D.

Since (as we just remarked) ϕ
ς stays bounded, ϕ

dς tends to zero as d → +∞.
Moreover by (1.4) the boundary datum in the latter formula converges in
every smooth sense (where ∂Γ̂D is regular) to |x − Q0| as d → +∞. As a
consequence, the previous analysis adapts to Υd and allows to conclude that
still

Υd → φ and ∇Υd → ∇φ uniformly in O, (2.49)

where O is as in Remark 2.2.10.

2.2.2 Definition of the approximate solutions and study of
their accuracy

In this subsection we construct a manifold of approximate solutions to (Pε),
in order to apply the theory in Subsection 2.1.1.

First of all, we need to collect some preliminary estimates. If Φd is the
solution of (2.33), the function

Ξd(y) = e−dΦd( y
d
+Q0) (2.50)

solves the problem
{ −∆Ξd + Ξd = 0 in d(Γ̂D −Q0);

Ξd = U(·) on d∂(Γ̂D −Q0),
Q0 = (−1, 0, . . . , 0). (2.51)



2.2 Approximate solutions to (Pε) 35

As explained at the beginning of Section 2.2, we can obtain a solution looking
at the minimum problem

inf
v=U on d(∂Γ̂D−Q0)

{∫

Ωε

(|∇v|2 + v2
)
dy

}
. (2.52)

We can easily derive both norm estimates on Ξd from (2.52), and pointwise
estimates on Ξd, ∇Ξd from Proposition 2.2.7 and Remark 2.2.10 respectively.

To derive a norm estimate, one can take a cutoff function

χ1 : d(Γ̂D −Q0) → R

such that




χ1(y) = 1 for dist(y, d(∂Γ̂D −Q0)) ≤ 1
2 ;

χ1(y) = 0 for y ∈ d(∂Γ̂D −Q0), dist(y, d(∂Γ̂D −Q0)) ≥ 1;
|∇χ1(y)| ≤ 4 for all y,

and then consider the function

v(y) = χ1(y)U(y).

It is easy to see (using for example polar coordinates centered at the origin
and the asymptotic behavior in (1.3)) that ‖v‖H1(d(Γ̂D−Q0)) ≤ e−d(1+o(1)), so
by (2.52) we also find that

‖Ξd‖H1(d(Γ̂D−Q0)) ≤ ‖v‖H1(d(Γ̂D−Q0)) ≤ e−d(1+o(1)). (2.53)

Here and below, we use the notation d(1 + o(1)) described at the end of the
introduction.

To obtain instead pointwise estimates on Ξd, we can use Lemma 2.2.7
to get that

Ξd(y) = exp

[
−

((
d +

√
(y1 − d)2 + |yn|2

)2
+ |y′′|2

) 1
2

]
× eo(d); (2.54)

y ∈ d(O −Q0), d → +∞,

where O is any set compactly contained in Γ̂D \ ∂DS̃. On the other hand,
Remark 2.2.10 implies

∇Ξd(y) = − exp

[
−

((
d +

√
(y1 − d)2 + |yn|2

)2
+ |y′′|2

) 1
2

]
× eo(d)

×
(
∇φ

(y

d
+ Q0

)
+ o(1)

)
; y ∈ d(O −Q0), d → +∞, (2.55)

where O is as before.
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We will obtain next similar bounds and estimates for ∂Ξd
∂d and its gradi-

ent: recalling that Ξd(y) = ϕ
(y

d + Q0

)
(and that also ϕ depends on d) we

have that
∂Ξd

∂d
(y) =

∂ϕ

∂d

(y

d
+ Q0

)
− y

d2
· ∇ϕ

(y

d
+ Q0

)
. (2.56)

Using (2.48) and reasoning as for (2.53) one can prove that
∥∥∥∥
∂ϕ

∂d

( ·
d

+ Q0

)∥∥∥∥
H1(d(Γ̂D−Q0))

≤ e−d(1+o(1)). (2.57)

On the other hand, from (2.51) one finds that the function $ := y
d2 ·

∇ϕ
(y

d + Q0

)
= y

d · ∇Ξd(y) satisfies

−∆$ + $ = −2
d
Ξd in d(Γ̂D −Q0).

To control the boundary value of $ we divide ∂d(Γ̂D−Q0) into its intersec-
tion with {yn = 0} and its complement. In the first region we have simply
that $ = y

d ·∇U(y). In the second instead the estimate in (2.54) holds true,
which shows that the L2 norm of the trace of $ on d(∂Γ̂D −Q0) is of order
e−d(1+o(1)). This fact and the latter formula imply that ‖$‖H1(d(Γ̂D−Q0))

satisfies a bound similar to (2.57), and hence from these two we conclude
that ∥∥∥∥

∂Ξd

∂d

∥∥∥∥
H1(d(Γ̂D−Q0))

≤ e−d(1+o(1)). (2.58)

By Remark 2.2.11 (which yields ϕ ≤ CD

∣∣∣∂ϕ
∂d

∣∣∣ and (2.49)) together with the
Harnack inequality (which implies |∇ϕ| ≤ Cdϕ in d(O−Q0)) one also finds

∂Ξd

∂d
(y) = − exp

[
−

((
d +

√
(y1 − d)2 + |yn|2

)2
+ |y′′|2

) 1
2

]
×

eo(d) ×
(

1 + O

( |y|
d

))
(2.59)

for y ∈ d(O −Q0) and d → +∞, and moreover
∣∣∣∣∇

∂Ξd

∂d
(y)

∣∣∣∣ ≤ exp

[
−

((
d +

√
(y1 − d)2 + |yn|2

)2
+ |y′′|2

) 1
2

]
× eo(d);

(2.60)
y ∈ d(O −Q0), d → +∞.

After these preliminaries, we are now in position to introduce our approx-
imate solutions. Define next two smooth non negative cutoff functions
χD : Rn → R, χ0 : R→ R satisfying respectively




χD(y) = 1 for |y| ≤ dD
16 ;

χD(y) = 0 for |y| ≥ dD
8 ;

|∇χD| ≤ 32
dD on Rn,





χ0(y) = 0 for y ≤ −1;
χ0(y) = 1 for y ≥ 0;
χ0 is non decreasing on R.
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Using then the coordinates y in Subsection 2.1.2 (see also (2.16) for the
relation between Q and d) we define

ẑε,Q(y) = χµ0(εy) [(U(y)− Ξd(y))χD(y) + εw̃Q(y)χ0(y1 − d)] . (2.61)

Notice that, since Ξd(y) coincides with U(y) for yn = 0, y1 > d and y in
the support of χD, the function ẑε,Q belongs to H1

D(Ωε). We also point out
that, by our choice of Γ̂D, the support of χD intersects d(∂DS̃ − Q0) only
on {y1 = d}.

We prove next that the ẑε,Q’s are good approximate solutions to (Pε) for
suitable conditions on Q.

Proposition 2.2.12 Let µ0 be the constant appearing in Proposition 2.1.4.
Then there exists another constant CΩ > 0 (independent of ε) such that, for
CΩ ≤ d ≤ 1

εCΩ
and for Dd < 1

CΩ

µ0

ε , the functions ẑε,Q satisfy

‖I ′ε(ẑε,Q)‖ ≤ C
(
ε2 + εe−d(1+o(1)) + e−

(p+1)d
2

(1+o(1)) + e−
3d
2

(1+o(1))
)

, (2.62)

for some fixed C, K > 0 and for ε sufficiently small.

Proof. Using the coordinates y, let us write ẑε,Q = zε,Q+ žε,Q (see (2.24)),
where

žε,Q = χµ0(εy) [(χD(y)− 1)U(y)− χD(y)Ξd(y) + ε(1− χ0(y1 − d))w̃Q(y)] .
(2.63)

With this notation, testing the gradient of Iε at ẑε,Q on any function v ∈
H1
D(Ωε) we can write that

I ′ε(ẑε,Q)[v] =
∫

Ωε

(∇gy ẑε,Q∇gyv + ẑε,Qv
)
dy −

∫

Ωε

ẑp
ε,Qv dy

=
∫

Ωε

(∇gyzε,Q∇gyv + zε,Qv
)
dy −

∫

Ωε

zp
ε,Qv dy (2.64)

+
∫

Ωε

(∇gy žε,Q∇gyv + žε,Qv
)
dy +

∫

Ωε

(zp
ε,Q − ẑp

ε,Q)v dy

= I ′ε(zε,Q)[v] + A1 + A2,

where

A1 =
∫

Ωε

(∇gy žε,Q∇gyv + žε,Qv
)
dy; A2 =

∫

Ωε

(zp
ε,Q − ẑp

ε,Q)v dy.

By Proposition 2.1.6 (see (2.25)) we have that I ′ε(zε,Q)[v] is of order at most
ε2, so we only need to estimate A1 and A2 in the last line of (2.64).

To estimate A1 we divide further žε,Q into the three parts žε,Q,1, žε,Q,2

and žε,Q,3

žε,Q,1 = χµ0(εy)(χD(y)− 1)U(y); žε,Q,2 = χµ0(εy)χD(y)Ξd(y);
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žε,Q,3 = χµ0(εy)ε(1− χ0(y1 − d))w̃Q(y),

and write A1 = A1,1 + A1,2 + A1,3, where

A1,i =
∫

Ωε

(∇gy žε,Q,i∇gyv + žε,Q,iv
)
dy; i = 1, 2, 3.

Since χD(y) is identically equal to 1 for |y| ≤ dD
16 and since (1−χ0(y1−d)) = 0

for y1 ≤ d− 1, from (1.3) and (2.23) one finds

|A1,1| ≤ e−
dD
16

(1+o(1))‖v‖H1
D(Ωε); |A1,3| ≤ Cε(1 + |d|K)e−|d|‖v‖H1

D(Ωε).

(2.65)
To control A1,2 we write that

A1,2 =
∫

Ωε

(∇gy žε,Q,2∇gyv + žε,Q,2v
)
dy =

∫

Ωε

(
gij
y ∂ižε,Q,2∂jv + žε,Q,2v

)
dy

=
∫

Ωε

(∇Rn žε,Q,2∇Rnv + žε,Q,2v) dy +
∫

Ωε

(
gij
y − δij

)
∂ižε,Q,2∂jv dy.

From (2.19) (and the subsequent comments) we have that

|(gy)ij − δij | ≤ Cε|y|,
and hence ∣∣∣∣A1,2 −

∫

Ωε

(∇Rn žε,Q,2∇Rnv + žε,Q,2v) dy

∣∣∣∣

≤ Cε

(∫

Ωε

|y|2|∇žε,Q,2|2dy

) 1
2

‖v‖H1
D(Ωε).

Since žε,Q,2 is supported in
{|y| ≤ dD

8

}
, we obtain from the above formula

and (2.53) that
∣∣∣∣A1,2 −

∫

Ωε

(∇Rn žε,Q,2∇Rnv + žε,Q,2v) dy

∣∣∣∣ ≤ CεdDe−d(1+o(1))‖v‖H1
D(Ωε).

Next, since Ξd satisfies (2.51), we have
∫

Ωε

(∇Rn žε,Q,2∇Rnv + žε,Q,2v) dy (2.66)

=
∫

Ωε

(∇Rn(Ξd(χµ0(εy)χD − 1))∇Rnv + (Ξd(χµ0(εy)χD − 1))v) dy.

Since also Dd < 1
CΩ

µ0

ε , the function χµ0(εy)χD − 1 is identically zero for
|y| ≤ dD

16 (if CΩ is sufficiently large), so from (2.54), (2.55) and the Hölder
inequality one finds (also for D large)

∣∣∣∣
∫

Ωε

(∇Rn(Ξd(χµ0(εy)χD − 1))∇Rnv + (Ξd(χµ0(εy)χD − 1))v) dy

∣∣∣∣
≤ e−

dD
16

(1+o(1))‖v‖H1
D(Ωε). (2.67)
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The last three formulas imply

|A1,2| ≤
(
εdDe−d(1+o(1)) + e−

dD
16

(1+o(1))
)
‖v‖H1

D(Ωε).

From (2.65) and the latter formula it follows that

|A1| ≤ C
(
εdDe−d(1+o(1)) + e−

dD
16

(1+o(1)) + ε(1 + |d|K)e−|d|
)
‖v‖H1

D(Ωε).

(2.68)

We can now turn to the estimate of A2: one has the inequalities

|zp
ε,Q − ẑp

ε,Q| ≤
{

Czp−1
ε,Q |žε,Q| for žε,Q ∈

(
0, 1

2zε,Q

)
;

C|zε,Q|p−1|žε,Q|+ C|žε,Q|p otherwise,
(2.69)

for a fixed constant C depending only on p. First of all we notice the
following: by (1.3) and (2.23) there exists a (small) constant cK,n such that

zε,Q(y) ≥ 7
8

e−|y|

1 + |y|n−1
2

; for |y| ≤ 1
εcK,n

.

We divide next Ωε into the two regions

B1 =
{
|y| < min

{
d

2
,

1
εcK,n

}}
; B2 = Ωε \ B1.

For y ∈ B1 we have that χµ0(εy) ≡ 1, χD(y) ≡ 1, χ0(y1 − d) ≡ 1, and
hence žε,Q(y) ≡ −Ξd(y). By (2.54) one has also that |žε,Q(y)| = |Ξd(y)| ≤
e−

3
2
d+o(d) < 1

2zε,Q for y ∈ B1. This fact, (2.69) and the Hölder inequality
yield

∫

B1

|zp
ε,Q − ẑp

ε,Q||v| dy ≤ C

∫

B1

zp−1
ε,Q |žε,Q||v| dy

≤ C

(∫

B1

e−
3(p+1)

2
d+o(d)dy

) 1
p+1

‖v‖H1
D(Ωε)

≤ Ce−
3
2
d(1+o(1))‖v‖H1

D(Ωε). (2.70)

On the other hand, in B2 we have that |zε,Q| < C

(
e−

d
2
+o(d) + e

− 1+o(1)

ε
cK,n

)

and that |žε,Q| ≤ e−d+o(d), therefore (2.69) and the Hölder inequality imply
again

∫

B2

|zp
ε,Q − ẑp

ε,Q||v|dy ≤

C

[(
e−

(p−1)d
2

+o(d) + e
− p−1+o(1)

ε
cK,n

)
e−d+o(d) + e−pd+o(d)

]
‖v‖H1

D(Ωε).
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The last formula and (2.70) provide

|A2| ≤ C

(
e−

(p−1)d
2

+o(d) + e
− p−1+o(1)

ε
cK,n + e−

d
2
+o(d)

)
e−d+o(d)‖v‖H1

D(Ωε).

(2.71)
Finally, we obtain the conclusion from (2.64), (2.25), (2.68) and (2.71).

We have next a related estimate when we vary the parameters in the defi-
nition of ẑε,Q, in the spirit of condition ii) in Subsection 2.1.1.

Proposition 2.2.13 There exists a constant CΩ > 0 (independent of ε)
such that, for CΩ ≤ d ≤ 1

εCΩ
and for Dd < 1

CΩ

µ0

ε , the functions ẑε,Q satisfy

‖I ′′ε (ẑε,Q)[q]‖ ≤ C
(
ε2 + εe−d(1+o(1)) + e−

(p+1)d
2

(1+o(1)) + e−
3d
2

(1+o(1))
)
‖q‖,
(2.72)

for some fixed C,K > 0 and for ε sufficiently small. In the above formula q
represents a vector in H1

D(Ωε) which is tangent to the manifold of the ẑε,Q’s
(when Q varies).

Proof. Since the arguments are quite similar to those in the proof of
Proposition 2.2.12, we will be rather sketchy. Using (2.18) and the first line
in (2.64), for any given test function v ∈ H1

D(Ωε) we can write that

I ′ε(ẑε,Q)[v] =
∑

i,j

∫

Rn
+

(
(gy)ij∂iẑε,Q∂jv + ẑε,Qv

)
dy −

∫

Rn
+

ẑp
ε,Qv dy.

We want to differentiate next with respect to the parameter Q, taking first
a variation qT of the point Q for which d stays fixed, namely we take the
tangential derivative to the level set of the distance d to the interface. In the
above formula the dependence on Q is in the metric coefficients (gy)ij and
in the function w̃Q appearing in the expression of ẑε,Q, see (2.61). Therefore
we obtain

∂

∂QT
I ′ε(ẑε,Q)[v] = I ′′ε (ẑε,Q)

[
ẑε,Q

∂QT
, v

]
=

∑

i,j

∫

Rn
+

∂(gy)ij

∂QT
∂iẑε,QT

∂jv dy

+
∑

i,j

∫

Rn
+

(
(gy)ij∂i

∂ẑε,Q

∂QT
∂jv +

∂ẑε,Q

∂QT
v

)
dy

− p

∫

Rn
+

ẑp−1
ε,Q

∂ẑε,Q

∂QT
v dy. (2.73)

From Remark 2.1.5 (b) we have that ∂(gy)ij

∂Q is of order ε2|y|, while computing

the expression of ∂ẑε,Q

∂QT
we obtain

∂ẑε,Q

∂QT
= εχµ0(εy)χ0(y1 − d)

∂w̃Q(y)
∂QT

.
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Since the dependence of w̃Q on AQ, ÃQ is linear (see (2.22)) and since the
derivatives of the latter quantities with respect to Q are of order ε (by the
arguments in Remark 2.1.5) we find that ∂ẑε,Q

∂QT
(y) = O

(
ε2(1 + |y|K)e−|y|

)
.

Reasoning as in the proof of Proposition 2.2.12 we then have
∥∥∥∥

∂

∂QT
I ′ε(ẑε,Q)[v]

∥∥∥∥ ≤ Cε2‖v‖H1
D(Ωε) for every v ∈ H1

D(Ωε). (2.74)

On the other hand, when we take a variation qd of Q along the gradient
of d, similarly to (2.73) we get

∂

∂Qd
I ′ε(ẑε,Q)[v] = I ′′ε (ẑε,Q)

[
ẑε,Q

∂Qd
, v

]
=

∑

i,j

∫

Rn
+

∂(gy)ij

∂Qd
∂iẑε,Qd

∂jv dy

+
∑

i,j

∫

Rn
+

(
(gy)ij∂i

∂ẑε,Q

∂Qd
∂jv +

∂ẑε,Q

∂Qd
v

)
dy

− p

∫

Rn
+

ẑp−1
ε,Q

∂ẑε,Q

∂Qd
v dy. (2.75)

Concerning the derivatives of (gy)ij with respect to Qd we can argue exactly
as for QT , to find

∣∣∣∣∣∣
∑

i,j

∫

Rn
+

∂(gy)ij

∂Qd
∂iẑε,Qd

∂jv dy

∣∣∣∣∣∣
≤ Cε2‖v‖.

However, ∂ẑε,Q

∂Qd
has a more involved expression compared to the previous

case. Assuming that the cutoff function χD(y) is defined as χD

(y
d

)
for some

fixed χD, we obtain

∂ẑε,Q

∂Qd
= −χµ0χD

∂Ξd

∂d
+

1
d2

χµ0Ξd y · ∇χD

(y

d

)
+ εχµ0w̃Q

∂χ0(y1 − d)
∂d

+ εχµ0(εy)χ0(y1 − d)
∂w̃Q(y)

∂Qd
. (2.76)

The last two terms in the right hand side are easily seen to give contributions
to (2.75) of order at most εe−d(1+o(1))‖v‖ and ε2e−d(1+o(1))‖v‖ respectively.
Concerning the second one, we can use the fact that ∇χD is supported in
|y| ≥ Dd

16 , together with (2.54), (2.55) to see that the contribution of this
term is at most of order e−

dD
16

(1+o(1))‖v‖.
We can then focus on the first term in the right hand side of (2.76), and

consider the quantity

−
∑

i,j

∫

Rn
+

(
(gy)ij∂i

(
χµ0χD

∂Ξd

∂d

)
∂jv + χµ0χD

∂Ξd

∂d
v

)
dy

+ p

∫

Rn
+

ẑp−1
ε,Q χµ0χD

∂Ξd

∂d
v dy. (2.77)
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First of all, by (2.19) and (2.58), if we substitute the coefficients (gy)ij with
the Kronecker symbols we find a difference of order εe−d(1+o(1)). Next, since
Ξd satisfies

−∆Ξd + Ξd = 0,

when we differentiate with respect to d we get the same equation for ∂Ξd
∂d , so

reasoning as for (2.66), (2.67) (and using the fact that v ∈ H1
D(Ωε) together

with (2.59), (2.60)) we find
∣∣∣∣∣
∫

Rn
+

(
∇

(
χµ0χD

∂Ξd

∂d

)
· ∇v + χµ0χD

∂Ξd

∂d
v

)
dy

∣∣∣∣∣ ≤ Ce−
dD
16

(1+o(1))‖v‖H1
D(Ωε).

For the last term in (2.77) one can use (2.58), (2.59) and the exponential
decay of ẑε,Q (reasoning with arguments similar to those for (2.71)) to find

that it is of order e−d(1+o(1))
(
e−

d
2 + e−

(p−1)d
2 + o(ε2)

)
‖v‖H1

D(Ωε). All the
above comments yield that

∥∥∥∥
∂

∂Qd
I ′ε(ẑε,Q)[v]

∥∥∥∥ (2.78)

≤ C
(
ε2 + εe−d(1+o(1)) + e−

(p+1)d
2

(1+o(1)) + e−
3d
2

(1+o(1))
)
‖v‖H1

D(Ωε).

From (2.74) and (2.78) we finally obtain the desired conclusion.

2.3 Proof of Theorem 2.0.1

We can now prove our main theorem. We first derive an accurate expansion
of the energy of approximate solutions, and then obtain the existence result
using the abstract theory in Subsection 2.1.1.

2.3.1 Energy expansions for the approximate solutions ẑε,Q

Here we expand Iε(ẑε,Q) in terms of Q and ε, where ẑε,Q is the function
defined in (2.61).

Proposition 2.3.1 If C̃0 and C̃1 are the constants in Proposition 2.1.4 and
if d = d(Q) is as in Subsection 2.1.2, then we have the following expansion

Iε(ẑε,Q) = C̃0 − C̃1εH(εQ) + e−2d(1+o(1)) + O(ε2),

as ε → 0 and d → +∞.

Proof. As in the proof of Proposition 2.2.12, let us write ẑε,Q = zε,Q+žε,Q,
see (2.24) and (2.63). Then, using the coordinates y introduced in Subsection
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2.1.2 we find that

Iε(ẑε,Q) = Iε(zε,Q) +
∫

Ωε

(∇gyzε,Q∇gy žε,Q + zε,Qžε,Q

)
dy

+
1
2

∫

Ωε

(|∇gy žε,Q|2 + ž2
ε,Q

)
dy

+
1

p + 1

∫

Ωε

(|zε,Q|p+1 − |ẑε,Q|p+1
)
dy. (2.79)

Using (2.19) (and the subsequent comments) we have that
∣∣∣∣∣
∫

Ωε

(∇gyzε,Q∇gy žε,Q + zε,Qžε,Q

)
dy −

∫

Rn
+

(∇Rnzε,Q∇Rn žε,Q + zε,Qžε,Q) dy

∣∣∣∣∣

≤ Cε

∫

Rn
+

|y| |∇Rnzε,Q| |∇Rn žε,Q|dy; (2.80)

∣∣∣∣∣
∫

Ωε

(|∇gy žε,Q|2 + ž2
ε,Q

)
dy −

∫

Rn
+

(|∇Rn žε,Q|2 + ž2
ε,Q

)
dy

∣∣∣∣∣

≤ Cε

∫

Rn
+

|y||∇Rn žε,Q|2dy. (2.81)

Concerning (2.80), we can divide the domain of integration into B d
2
(0) and

its complement and use (1.3), (2.23), (2.53), (2.54), (2.55) to find

Cε

∫

Ωε

|y| |∇Rnzε,Q| |∇Rn žε,Q|dy ≤ Cεe−
3
2
d(1+o(1)).

For (2.81), the same estimates yield

Cε

∫

Ωε

|y||∇Rn žε,Q|2dy ≤ Cεe−2d(1+o(1)).

The last two formulas, (2.79), (2.80) and (2.81) imply

Iε(ẑε,Q) = Iε(zε,Q) +
∫

Rn
+

(∇Rnzε,Q∇Rn žε,Q + zε,Qžε,Q) dy

+
1
2

∫

Rn
+

(|∇Rn žε,Q|2 + ž2
ε,Q

)
dy

+
1

p + 1

∫

Ωε

(|zε,Q|p+1 − |ẑε,Q|p+1
)
dy

+ O
(
εe−

3
2
d(1+o(1))

)
. (2.82)
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Using the same notation as in the proof of Proposition 2.2.12, we write
žε,Q = žε,Q,1 + žε,Q,2 + žε,Q,3. Formulas (1.3) and (2.23) imply

∣∣∣∣∣
∫

Rn
+

(∇Rnzε,Q∇Rn žε,Q,1 + zε,Qžε,Q,1) dy

∣∣∣∣∣ ≤ Ce−
dD
16

(1+o(1));

∣∣∣∣∣
∫

Rn
+

(∇Rnzε,Q∇Rn žε,Q,3 + zε,Qžε,Q,3) dy

∣∣∣∣∣ ≤ Cεe−2d(1+o(1)),

from which we deduce that
∫

Rn
+

(∇Rnzε,Q∇Rn žε,Q + zε,Qžε,Q) dy

=
∫

Rn
+

(∇Rnzε,Q∇Rn žε,Q,2 + zε,Qžε,Q,2) dy

+O
(
e−

dD
16

(1+o(1)) + εe−2d(1+o(1))
)

.

Similar estimates also yield
∫

Rn
+

(|∇Rn žε,Q|2 + ž2
ε,Q

)
dy =

∫

Rn
+

(|∇Rn žε,Q,2|2 + ž2
ε,Q,2

)
dy

+ O
(
e−

dD
16
−d(1+o(1)) + εe−2d(1+o(1))

)
.

From a straightforward computation one finds that for any function v

∇žε,Q,2∇v + žε,Q,2v = ∇Ξd∇(χµ0(ε·)χD(·)v) + Ξdχµ0(ε·)χD(·)v
+ ∇(χµ0(ε·)χD(·)) (Ξd∇v − v∇Ξd) .

Applying this relation for v = zε,Q and v = žε,Q respectively, and using
(1.3), (2.23), (2.53), (2.54) and (2.55) we find that

∫

Rn
+

(∇Rnzε,Q∇Rn žε,Q + zε,Qžε,Q) dy

=
∫

Rn
+

(∇Rn(χµ0(ε·)χD(·)zε,Q)∇RnΞd + χµ0(ε·)χD(·)zε,QΞd) dy

+O
(
e−

dD
16

(1+o(1))
)

;

∫

Rn
+

(|∇Rn žε,Q|2 + ž2
ε,Q

)
dy

=
∫

Rn
+

(|∇Rn(χµ0(ε·)χD(·)Ξd)|2 + (χµ0(ε·)χD(·)Ξd)2
)
dy

+O
(
e−

dD
16

(1+o(1))
)

.
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Using now the fact that, by our construction, the function

χµ0(ε·)χD(·)ẑε,Q = χµ0(ε·)χD(·)(zε,Q + žε,Q)

vanishes on d(Γ̂D −Q0), from (2.51) we obtain
∫

Rn
+

(∇Rn(χµ0(ε·)χD(·)zε,Q)∇RnΞd + χµ0(ε·)χD(·)zε,QΞd) dy

+
1
2

∫

Rn
+

(|∇Rn(χµ0(ε·)χD(·)Ξd)|2 + (χµ0(ε·)χD(·)Ξd)2
)
dy

=
1
2

∫

Rn
+

(∇Rn(χµ0(ε·)χD(·)zε,Q)∇RnΞd + χµ0(ε·)χD(·)zε,QΞd) dy.

From (2.82) and the last eight formulas we find

Iε(ẑε,Q) = Iε(zε,Q) +
1
2

∫

Rn
+

(∇Rnzε,Q∇Rn žε,Q + zε,Qžε,Q) dy

+
1

p + 1

∫

Ωε

(|zε,Q|p+1 − |ẑε,Q|p+1
)
dy

+ O
(
e−

dD
16

(1+o(1)) + εe−
3
2
d(1+o(1))

)
.

From (1.3), (2.23), (2.25), (2.53) we then obtain

Iε(ẑε,Q) = Iε(zε,Q) +
1
2

∫

Ωε

zp
ε,Qžε,Qdy

+
1

p + 1

∫

Ωε

(|zε,Q|p+1 − |ẑε,Q|p+1
)
dy

+ O
(
e−

dD
16

(1+o(1)) + εe−
3
2
d(1+o(1)) + ε2e−d(1+o(1))

)
. (2.83)

Using a Taylor expansion we can write that

|zε,Q|p+1 − |ẑε,Q|p+1

=

{
−(p + 1)zp

ε,Qžε,Q + O
(
zp−1

ε,Q ž2
ε,Q

)
for žε,Q ∈

(
0, 1

2zε,Q

)
;

O
(|zε,Q|p|žε,Q|+ |žε,Q|p+1

)
otherwise.

(2.84)

As for the estimate of A2 in (2.71), we divide the domain into the two regions
B1,B2, and deduce that

1
p + 1

∫

Ωε

(|zε,Q|p+1 − |ẑε,Q|p+1
)
dy = −

∫

Ωε

zp
ε,Qžε,Qdy

+O
(
e−3d(1+o(1)) + e−

p+3
2

d(1+o(1)) + e−d(1+o(1))e
− 1

ε
cK,n

)
.
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Therefore using (2.83) the energy becomes

Iε(ẑε,Q) = Iε(zε,Q)− 1
2

∫

Ωε

zp
ε,Qžε,Qdy

+ O
(
e−3d(1+o(1)) + e−

p+3
2

d(1+o(1)) + εe−
3
2
d(1+o(1)) + ε2e−d(1+o(1))

)
.

From (2.54), the expression of žε,Q and estimates in the same spirit as above
one finds that ∫

Ωε

zp
ε,Qžε,Qdy = −e−2d(1+o(1)),

and hence from Proposition 2.1.6 we finally find

Iε(ẑε,Q) = C̃0 − C̃1εH(εQ) + O(ε2) + e−2d(1+o(1)) (2.85)

+ O
(
e−3d(1+o(1)) + e−

p+3
2

d(1+o(1)) + εe−
3
2
d(1+o(1)) + ε2e−d(1+o(1))

)
.

The conclusion follows from the Schwartz inequality.

We have a related result concerning the derivative of the energy with respect
to Q: again, we will be rather quick in the proof since the arguments are
quite similar to the previous ones.

Proposition 2.3.2 If C̃0 and C̃1 are the constants in Proposition 2.1.4 and
if d = d(Q) is as in Subsection 2.1.2, then in the same notation as in the
previous section we have the following expansion

∂

∂QT
Iε(ẑε,Q) = −C̃1ε

2∇T H(εQ) + o(ε2); (2.86)

∂

∂Qd
Iε(ẑε,Q) = −C̃1ε

2∇dH(εQ)− e−2d(1+o(1)) + o(ε2), (2.87)

as ε → 0 and d → +∞.

Proof. After some elementary calculations, recalling the definition of zε,Q

in (2.24), we can write

I ′ε(ẑε,Q)
[
∂ẑε,Q

∂Q

]
=

∂

∂Q
Iε(zε,Q) +

∫

Ωε

(
∇gyzε,Q∇gy

∂žε,Q

∂Q
+ zε,Q

∂žε,Q

∂Q

)
dy

−
∫

Ωε

zp
ε,Q

∂žε,Q

∂Q
dy

+
∫

Ωε

(
∇gy žε,Q∇gy

∂ẑε,Q

∂Q
+ žε,Q

∂ẑε,Q

∂Q

)
dy

+
∫

Ωε

(zp
ε,Q − ẑp

ε,Q)
∂ẑε,Q

∂Q
dy, (2.88)
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where žε,Q = ẑε,Q − zε,Q was defined in (2.63). The first term on the right
hand side is estimated in Proposition 2.1.6. The next two, integrating by
parts and using Proposition 2.1.6, can be estimated in terms of a quantity
like

Cε2

∫

Ωε

(1 + |y|K)
∣∣∣∣
∂žε,Q

∂Q

∣∣∣∣ .

From the same arguments as in the proof of Proposition 2.2.13 one deduces
that the latter integral is of order ε2e−2d(1+o(1)). To control the first integral
in the last line of (2.88) we can reason as for the estimate of A1,2 in the
proof of Proposition 2.2.12 to see that this is of order

e−d(1+o(1))(ε + e−d)
∥∥∥∥
∂ẑε,Q

∂Q

∥∥∥∥
H1
D(Ωε)

.

From the proof of Proposition 2.2.13 one can deduce that
∥∥∥∥
∂ẑε,Q

∂Q

∥∥∥∥
H1
D(Ωε)

≤ C
(
ε2 + e−d(1+o(1))

)
,

and hence the integral under interest is controlled by o(ε2) + e−3d(1+o(1)).
Finally, the last term in (2.88) can be estimated using a Taylor expansion

as for the term A2 in the proof of Proposition 2.2.12, and up to higher order
is given by

p

∫

Rn
+

U(y)p−1žε,Q∇U(y) · q dy,

where q stands either for the variation of Q in the coordinates y. If q
preserves d, the latter integral gives a negligible contribution, and we find
(2.86). If instead q is directed toward the gradient of d the above estimates
(and in particular (2.54)) allow to deduce (2.87).

2.3.2 Finite-dimensional reduction and study of the constrained
functional

We apply now the abstract setting developed in Subsection 2.1.1. First of
all, we state the following two lemmas.

Lemma 2.3.3 If CΩ is as in the previous section and if we choose

Zε =
{

ẑε,Q : CΩ < d <
1

CΩε

}
; H = H1

D(Ωε),

then properties i), iii) and iv) in Subsection 2.1.1 holds true, with α =
min{1, p− 1}.
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Proof. The proof of i) and iii) is immediate: the value of α in particular
is determined by the standard properties of Nemitski operators. Property
iv) can be easily deduced from the (well known) fact that the kernel of
the linearization of (1.1) in the half space is spanned by ∂U

∂x1
, . . . , ∂U

∂xn−1
, as

proved in [52], and from some localization arguments which can be found in
Subsections 4.2, 9.2 and 9.3 of [2].

The results in the next lemma could have been collected with the previous
one (with some small modification): however, since in the second part of
the paper, [26], we are going to need the way it is stated, it was convenient
to leave the two of them separated.

Lemma 2.3.4 For any small positive constant δ, if we take

Zε =
{

ẑε,Q : (1− δ)| log ε| < d <
1

CΩε

}
; H = H1

D(Ωε),

then also property ii) in Subsection 2.1.1 holds true, with

f(ε) = εmin{2−2δ, p+1
2

(1−2δ)}.

Proof. This lemma simply follows from Propositions 2.2.12 and 2.2.13.

As a corollary of the above two lemmas we can apply Propositions 2.1.1
and 2.1.3, so we expand next the reduced functional and its gradient on the
natural constraint Z̃ε.

Proposition 2.3.5 With the choice of Zε in Lemma 2.3.4, if ωε is given
by Proposition 2.1.1, then we have

Iε(ẑε,Q) := Iε(ẑε,Q + ωε(ẑε,Q)) = C̃0 − C̃1εH(εQ) + e−2d(1+o(1)) + O(ε2);
(2.89)

∂

∂QT
Iε(ẑε,Q) = −C̃1ε

2∇T H(εQ) + o(ε2); (2.90)

∂

∂Qd
Iε(ẑε,Q) = −C̃1ε

2∇dH(εQ)− e−2d(1+o(1)) + o(ε2), (2.91)

as ε → 0, where C̃0 and C̃1 are as in Proposition 2.3.1, and where QT , Qd

are as in the proof of Proposition 2.2.13.

Proof. By Propositions 2.1.1 and 2.2.12 we have that

‖ωε(ẑε,Q)‖ ≤ C1‖I ′ε(ẑε,Q)‖
≤ C

(
ε2 + εe−d(1+o(1)) + e−

(p+1)d
2

(1+o(1)) + e−
3d
2

(1+o(1))
)

.
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From the regularity of Iε and Proposition 2.3.1 we then have

Iε(ẑε,Q + ωε(ẑε,Q)) = Iε(ẑε,Q) + I ′ε(ẑε,Q)[ωε(ẑε,Q))] + O
(‖ωε(ẑε,Q)‖2

)

= C̃0 − C̃1εH(εQ) + e−2d(1+o(1)) + O(ε2)

+ O
(
ε4−4δ + ε(p+1)(1−2δ)

)
.

This immediately gives (2.89), since p > 1 and since δ is small.
The remaining two estimates are also rather immediate for p ≥ 2: in fact

in this case property iii) in Subsection 2.1.1 holds true for α = 1, so we also
have ‖∂Qωε‖ ≤ Cf(ε) by the last statement in Lemma 2.1.1. This, together
with the Lipschitzianity of I ′ε implies that

∂

∂Q
Iε(ẑε,Q) = I ′ε(ẑε,Q + ωε) [∂Qẑε,Q + ∂Qωε] =

∂

∂Q
Iε(ẑε,Q)

+ I ′′ε (ẑε,Q) [ωε, ∂Qẑε,Q] + I ′′ε (ẑε,Q) [ωε, ∂Qωε]
+ ‖ωε‖1+α (‖∂Qẑε,Q‖+ ‖∂Qωε‖)
=

∂

∂Q
Iε(ẑε,Q) + O(f(ε)2) (2.92)

=
∂

∂Q
Iε(ẑε,Q) + O

(
ε4−4δ + ε(p+1)(1−2δ)

)
,

since α = 1. The last two estimates then follow from Proposition 2.3.2.
For the case 1 < p < 2, we can arrive to the end of the second line in

(2.92), but since α = p−1 ∈ (0, 1) we cannot conclude anymore, and we need
to use a slightly more technical argument, which requires the improved esti-
mate mentioned in Remark 2.1.2. We only give a brief sketch, and refer the
reader for example to Subsection 4.2 in [4], where a similar issue is treated
in more detail. The main point is to show that the function ωε satisfies
suitable pointwise estimates in some regions of the domain. The auxiliary
equation in (2.2), after testing on any smooth function and integrating by
parts yields

−∆(ẑε,Q +ωε)+ ẑε,Q +ωε− (ẑε,Q +ωε)p = α ·∇Q(−∆ẑε,Q + ẑε,Q) in Ωε,
(2.93)

where α is a vector of Rn−1 with norm of order at most ‖I ′ε(ẑε,Q + ωε)‖,
which in turn is of order f(ε).

Using the coordinates y in Subsection 2.1.2 and restricting our attention
to d(O−Q0)∪ (Rn

+ \B dD
8

(0)), see (2.54) and (2.61), we have here pointwise
estimates on the right-hand side, by (2.54) and (2.55). This control, together
with a bootstrap argument for (2.93) allows to prove that in d(O − Q0) ∪
(Rn

+ \ B dD
8

(0)) the function ωε is pointwise of order f(ε)(U(y) + |Ξd|). On
the other hand, in the complement of this set, still by (2.93) (used in its
weak form), the H1 norm of ωε is controlled by

α(‖zε,Q‖H1((Rn
+\d(O−Q0))∩B dD

8
(0)) + ‖Ξd‖H1

D(Ωε)).
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Hence, given any test function v ∈ H1
D(Ωε), if we use Taylor expansions

in the regions where we have pointwise estimates (as for (2.69)) and the
Hölder-Sobolev inequalities elsewhere we find that
∣∣∣∣
∫

Ωε

[
(ẑε,Q + ωε)p−1 − ωp−1

ε

]
∂Qẑε,Qvdx

∣∣∣∣ ≤ ε1+δ̃p‖v‖H1
D(Ωε) as ε → 0,

where δ̃p is a positive constant depending only on p. Remark 2.1.2 then
implies that ‖∂Qωε‖ ≤ ε1+δ̃p for ε small. Finally, a Taylor expansion of the
functional Iε gives

∂

∂Q
Iε(ẑε,Q) = I ′ε(ẑε,Q + ωε) [∂Qẑε,Q + ∂Qωε] =

∂

∂Q
Iε(ẑε,Q)

+ O
(‖I ′ε(ẑε,Q + ωε)− I ′ε(ẑε,Q)‖)

+ O
(‖I ′ε(ẑε,Q + ωε)‖ ‖∂Qωε‖

)
(2.94)

=
∂

∂Q
Iε(ẑε,Q) + O(f(ε)2),

provided we choose δ small compared to δ̃p. This concludes the proof.

Proof of Theorem 2.0.1 We use degree theory and the previous expan-
sions: first of all, since Q is non-degenerate for H|IΩ

, we can find a small
neighborhood V of Q in IΩ such that ∇H|IΩ

6= 0 on ∂V and such that in
some set of coordinates

deg(∇H|IΩ
,V, 0) 6= 0.

Then, if δ is as in Lemma 2.3.4, we choose 0 < β < δ
2 , and consider the set

Y = {(d,Q) : d ∈ ((1− β)| log ε|, (1 + β)| log ε|) , εQ ∈ V} .

Since ∇H|IΩ
(Q) corresponds to ∇T H(εQ) in the scaled domain Ωε, by using

(2.90) and our choice of V we know that, as ε → 0

∇QT
Iε(ẑε,Q) = −C̃1ε

2∇T H(εQ) + o(ε2) 6= 0 on
1
ε
∂V. (2.95)

On the other hand, by (2.91) we also have

∇Qd
Iε(ẑε,Q) = −ε2(1−β)(1+o(1)) for d = (1− β)| log ε|, (2.96)

and

∇Qd
Iε(ẑε,Q) = −C̃1ε

2∇dH(εQ) + o(ε2), for d = (1 + β)| log ε|. (2.97)

Since we are assuming that the gradient of H points toward ∂DΩ near the
interface IΩ, ∇dH(εQ) is negative and therefore the two d-derivatives in the
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last two formulas have opposite signs. It follows from the product formula
for the degree and (2.95)-(2.97) that

deg(∇Iε,Y, 0) = −deg(∇H|IΩ
,V, 0) 6= 0,

which proves the existence of a critical point for Iε in Y. Since we can choose
V and β arbitrarily small, the solution has the asymptotic behavior required
by the theorem (and more precisely by Remark 2.0.2 (b): the uniqueness
of the global maximum follows from the asymptotics of the solution and
standard elliptic regularity estimates).

To prove also the assertion in Remark 2.0.2 (a), using (2.89) in the case of
local maximum is it easy to construct an open set of Zε where the maxi-
mum of Iε at the interior is strictly larger than the maximum at the bound-
ary. On the other hand, when we have a local minimum, one can con-
struct a mountain-pass path connecting the two points parameterized by(

1
εQ, (1− β)| log ε|) and

(
1
εQ, (1 + β)| log ε|). Using a suitably truncated

pseudo-gradient flow, one can prove that the evolution of the path remains
inside 1

εV × ((1− β)| log ε|, (1 + β)| log ε|), and still find a critical point of
Iε.
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Chapter 3

Asymptotics of least energy
solutions

In this Chapter we carry on the study of asymptotic behavior of some solu-
tions to a singularly perturbed problem with mixed Dirichlet and Neumann
boundary conditions, started in Chapter 2. Here we are mainly interested
in the analysis of the location and shape of least energy solutions, that is
Mountain Pass solutions, when the singular perturbation parameter tends
to zero. We will look for positive solutions to the problem





−ε2∆u + u = f(u) in Ω;
∂u
∂ν = 0 on ∂NΩ; u = 0 on ∂DΩ;
u > 0 in Ω,

(P̃ε)

where Ω is a smooth bounded subset of Rn, ε > 0 a small parameter, and
∂NΩ, ∂DΩ two disjoint subsets of the boundary of Ω such that the union
of their closures coincides with the whole ∂Ω. We are interested in the case
f(u) = up, with p ∈

(
1, n+2

n−2

)
. Singularly perturbed problems with Neu-

mann or Dirichlet boundary conditions have been studied in detail. There
is a wide literature regarding the solution of this type of problems (see for
example [38], [51], [49], [50]). Many times they have a sharply peaked profile
so they are called spike layers, since they are highly concentrated near some
points of Ω, appear in [26].

W.M. Ni and I.Takagi, in the paper [49] studied the homogeneous Neu-
mann boundary problem





−ε2∆u + u = up in Ω,
∂u
∂ν = 0 on ∂NΩ;
u > 0 in Ω,

(Nε)

They showed that least energy solutions of (Nε), that is Mountain Pass
solutions, have only one local maximum over Ω achieved at a point that
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must lie on the boundary, when the perturbation parameter ε → 0. In
the same work, they give also a detailed description of the shape of such a
solution. The same authors in a subsequent paper [50] clarified the location
of the point where the maximum of least energy solutions is attained. By
an asymptotic formula for the smallest positive critical value of the energy
they proved that the mean curvature of ∂Ω attains its maximum where the
maximum of least energy solutions concentrate.

W.M.Ni and J.Wei in [51] studied the corresponding Dirichlet problem.




−ε2∆u + u = up in Ω,

u = 0 on ∂DΩ;
u > 0 in Ω.

(Dε)

A least energy solution of (Dε) is a function uε which minimizes the energy

Ĩε,D(u) =
1
2

∫

Ω

(
ε2|∇u|2 + u2

)− 1
p + 1

∫

Ω
|u|p+1; u ∈ H1

0 (Ω).

The existence and characterization of a least positive critical value of Ĩε,D
is provided by the Mountain Pass theorem (1.3.4). They proved that least
energy solutions of (Dε) have only one local maximum over Ω achieved at
the most centered part of Ω when the perturbation parameter goes to zero.

Later P.L.Felmer and M.Del Pino [21] generalized the works of Ni-Takagi
and Ni-Wei by enlarging a lot the class of the nonlinearity in both problems
(Nε) and (Dε).

Mixed Dirichlet-Neumann boundary value problems present some par-
ticular features. This can be easily seen in the one dimensional case:

If we analyze the one-dimensional problem
{ −ε2u′′ + u = up in (−1, 1)

u(−1) = 0 = u′(1)
(3.1)

then it is immediate to see that positive solutions of this problem correspond
with trajectories in the phase plane (see Figure 3.1) given by

x′ = y

y′ = ε−2(x− xp)

This phase plane has (0, 0) and (1, 0) as critical points in the admissible
region (since we are looking for positive solutions, we must take x > 0).
The first one is a saddle point, and the second one is a center. There are
three types of trajectories:
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Figure 3.1: Phase plane.

• There is a homoclinic trajectory, which starts and ends at (0, 0). This
trajectory corresponds, up to a rescaling (ε), to a ground state.

• There are infinitely many closed trajectories around the point (1.0).
This means that we have periodic solutions, which correspond with
solutions with several ”bumps”, and boundary condition u′(−1) =
u(1) = 0.

• There are infinitely many trajectories passing through a point (0, c),
turning around the homoclinic trajectory, and passing from (0,−c).
One of these arcs covers exactly the interval (−1, 1) and correspond
to a solution with Dirichlet boundary condition u(−1) = 0 = u(1),
and maximum at the middle point t = 0. Moreover, there is another
solution which passes from (0, c) to (m, 0) as t goes from −1 to +1.
This arc corresponds to a solution with mixed boundary condition
u(−1) = 0 = u′(1).

However, the n-dimensional case is more involved, in particular when there
exists an interface which separates the Dirichlet and the Neumann parts,
namely IΩ := ∂DΩ ∩ ∂NΩ 6= ∅.

In these mixed problems we have to solve two questions:
Question 1: Determine the geometric conditions that a point P has to

satisfy, to have some sequence of solutions {uε} whose maximum points
converge to P .

Question 2: Given a precise sequence {uε}, determine (up to subse-
quences) the limit of the maximun points.

Question 1 has been analyzed in Chapter 2 of this thesis, and question
2 is the subject of this chapter. In particular we want to study Mountain
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Pass solutions to the mixed problem (P̃ε). We will characterize the shape of
least-energy solutions and we will show that, as in the Neumann case, the
concentration point must lie on the boundary of Ω. In particular, as ε → 0,
there exist least-energy solutions reaching first, the interior of Neumann
boundary part and then, concentrating at the interface IΩ. Moreover we
will show that, under suitable geometric assumptions on Ω and IΩ, the
ground state solution uε of (Pε) belongs to the set Zε,c̃ (see the notation in
Proposition 2.1.3), where

Zε = {ẑε,Q : d1,ε ≤ d ≤ d2,ε, Q ∈ V} ,

where d1,ε → +∞, εd2,ε → 0 as ε → 0, and where V is a neighborhood
of a point Q which realizes maxQ∈IΩε

H. If ∇H points inside ∂DΩε we
can then apply the second statement in Proposition 2.1.3 (with f(ε) =(
ε2 + εe−d(1+o(1)) + e−

(p+1)d
2

(1+o(1)) + e−
3d
2

(1+o(1))
)
, by Proposition 2.2.12)

and (2.91). These two yield that uε = ẑε,Q + ω(ẑε,Q), where the distance of
Q from IΩε is of order ε| log ε|, as in Theorem 2.0.1, see Remark 2.0.2 (b).

3.1 The least energy solution

Generally a least energy solution for the above problems (P̃ε) exists if the
function f : R → R is of class C1(R) and satisfies the following classical
assumptions:

(i) f(t) ≡ 0 for t ≤ 0;

(ii) f(t) = O(tr) as t → +∞, with:





2 < r + 1 < 2n
n−2 if n ≥ 3,

r > 1 if n = 2;

(iii)
f(t)

t
is increasing for t > 0 and lim

t→+∞
f(t)

t
= +∞, while f(t) = o(t)

for t → 0;

(iv) There exists a constant θ > 2 such that 0 < θF (t) ≤ tf(t) for t ≥ 0,
where F (t) is defined by

F (t) :=
∫ t

0
f(s)ds.

Remark 3.1.1 In our case all the above assumptions hold, being the non-
linearity of the form f(u) = up with p ∈

(
1, n+2

n−2

)
.

The differential problem (P̃ε) presents a variational structure and the asso-
ciated Euler functional Ĩε : X → R is defined by

Ĩε(u) =
1
2

∫

Ω

(
ε2|∇u|2 + u2

)
dx− 1

p + 1

∫

Ω
|u|p+1dx; u ∈ X (3.2)
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where
X = {u ∈ H1

D(Ω) : u 6≡ 0 and u ≥ 0 in Ω} (3.3)

and H1
D(Ω) (see Section 1.8) stands for the space of functions in H1(Ω)

which have zero trace on ∂DΩ:

H1
D(Ω) = {u ∈ H1(Ω) : u|∂DΩ = 0} (3.4)

In general, critical levels can be found by min-max procedures. The least en-
ergy level comes from the Mountain-Pass Theorem (1.3.4) due to Ambrosetti-
Rabinowitz.

Remark 3.1.1 We want to point out that in our case, since the exponent p
is subcritical, the Palais-Smale condition is easily fulfilled by the functional
Ĩε (3.2).

Below, in the next Proposition, we simplify the characterization of the
energy of Least Energy Solutions namely the Mountain Pass solutions of the
problem (P̃ε), in a different way that will be useful throughout the paper.

Proposition 3.1.2 Let Ĩε and X defined in (3.2) and (3.3). Then the
Mountain Pass critical level cε can be characterized as

cε = min
v∈X

max
t>0

Ĩε(tv) (3.5)

Proof. We can follow the ideas contained in ([49], Lemma 3.1), then we
will give here a sketchy proof.

First, we note that in our case, the function h(t) = Ĩε(tv) attains an
unique maximum for such a t∗ > 0 because h′(t∗) = 0, that is

∫

Ω

(
ε2|∇u|2 + u2

)
dx =

1
t∗

∫

Ω
uf(t∗u)dx,

with f(t) = tp, has an unique solution since the right-hand side
∫

Ω
u2 f(t∗u)

t∗u
dx

is strictly increasing in t∗ > 0 by virtue of (iii) and the nonlinear term of
problem (P̃ε) is in the form up, implying that h(t) > 0 for t > 0 small and
h(t) → −∞ as t → +∞. Then if we fix a non-negative function ṽ ∈ X,
ṽ 6≡ 0, Ĩε(ṽ) = 0, by Theorem (1.3.4) we get a critical point v∗ such that
Ĩε(v∗) = cε. By the above considerations we have that cε = max

t>0
Ĩε(tv∗).

Then it is obvious that

cε ≥ min
v∈X

max
t>0

Ĩε(tv).
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By contradiction suppose that the strict inequality holds. Then there exists
some fixed v ∈ X such that

cε > max
t>0

Ĩε(tv).

We can construct a path γ ∈ Γ̃ (see (i), Theorem (1.3.4)) where Ĩε is positive
only on the line segment joining 0 and t̂v, where Ĩε(t̂v) = 0. Then we find

cε > max
v∈γ

Ĩε(v).

From (i) of Theorem (1.3.4), we get the desired contradiction. Then the
equality holds true, showing that cε is the least positive critical value of Ĩε.

It is interesting to point out an important and simple fact that comes
from the characterization of the critical value cε given in equation (3.5). We
have the following

Corollary 3.1.3 If we denote with cNε the critical value of the functional
Ĩε,N associated to the semilinear Neumann problem (Nε), cDε the critical
value of the functional Ĩε,D associated to the semilinear Dirichlet problem
(Dε) and with cMε the critical value of the functional Ĩε associated to the
mixed semilinear problem (P̃ε), then one has that:

cNε ≤ cMε ≤ cDε (3.6)

Proof. It is sufficient to observe the definition (3.5) and that

H1(Ω) ⊃ H1
D(Ω) ⊃ H1

0 (Ω)

To study the concentration of the solutions uε to problems (Nε) or (Dε),
one usually employs a blow-up argument consisting in a suitable scaling of
the variables, witch allows to prove that uε(x) ∼ U(x−Q

ε ), where U , see
Section 1.1, denotes a solution of the following problem:

−∆U +U = Up in Rn (or in Rn
+ = {(x1, . . . , xn) ∈ Rn : xn > 0}),

the domain depending on whether Q lies in the interior of Ω or at the
boundary; in the latter case Neumann conditions are imposed. As we have
seen in Remark 1.1.2, when p < n+2

n−2 (and indeed only if this inequality
is satisfied), problem (1.1) admits positive radial solutions which decay
(exponentially fast) to zero at infinity, see Proposition 1.1.1:

• lim
r→+∞ err

n−1
2 U(r) = αn,p,
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• lim
r→+∞

U ′(r)
U(r)

= −1; lim
r→+∞

U ′′(r)
U(r)

= 1,

for some positive constant αn,p depending only on n and p. We denote the
energy associated to the problem (1.1) as made in (1.2):

I(u) =
1
2

∫

Rn

|∇u|2 + u2dx− 1
p + 1

∫

Rn

up+1dx.

3.2 Straightening the boundary

As in Section 2.1, it is convenient to change variable x → εx and to study
the problem (P̃ε) in the dilated domain Ωε. Then the problem becomes





−∆u + u = up in Ωε;
∂u
∂ν = 0 on ∂NΩε u = 0 on ∂DΩε;
u > 0 in Ωε,

(Pε)

In the blow-up argument a crucial point is to analyze the behavior of
solutions on the boundary. Here we introduce some preliminary material
that will be used later. Letting P0 ∈ ∂Ω ⊂ Rn, we set P0 = (x′, xn) with
x′ = (x1, · · ·, xn−1) ∈ Rn−1, xn ∈ R. To simplify the notation, without loss
of generality, we can assume that P0 = 0 ∈ Rn. Since we assume that Ω is
regular, we describe the ∂Ω near a generic point P0 ∈ ∂Ω: we know that
there exists a constant δ > 0 and a smooth function ψP0 defined for |x′| < δ
such that

• ψP0(0) = 0 ,
∂ψP0

∂xj
= 0 , 1 ≤ j ≤ n− 1;

• Given a neighborhood of P0, denoted by U , then

Ω∩U = {(x′, xn)|xn > ψP0(x
′)} and ∂Ω∩U = {(x′, xn)|xn = ψP0(x

′)}.

The first condition implies that {xn = 0} is the tangent plane of ∂Ω at P0.
We frequently need to change coordinates near a point of ∂Ω to flatten the
boundary, in fact, there exists a constant δ′ > 0 such that if |y| < δ′ then
we can define x = Φ(y) = (Φ1(y), · · · , Φn(y)) in the following way:

Φj(y) = yj − yn
∂ψP0

∂xj
(y′) , 1 ≤ j ≤ n− 1

Φn(y) = yn + ψP0(y
′).

In particular, DΦ(0) = Id and Φ has a inverse that we denote by Ψ ≡ Φ−1,
defined in a neighborhood of the origin. Then if we change variables, and
define

vε(y) = uε(x) = uε(Φ(y))
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then vε satisfies

ε2

(
n∑
i,j

aij(y)
∂2vε

∂yiyj
+

n∑

j

bj(y)
∂vε

∂yj

)
− vε(y) + vp

ε(y) = 0 in {yn > 0} ∩Bρ

(3.7)
where Bρ stands for the open ball centred at zero with radius ρ small enough
and boundary conditions that depend on where P0 lies in the boundary:





vε = 0 on {yn = 0} ∩Bρ,

if the point P0 lies on the interior of the Dirichlet boundary part ∂DΩ, or
∂vε
∂yn

= 0 on {yn = 0} ∩Bρ,

if the point P0 lies on the interior of the Neumann boundary part ∂NΩ, or
vε = 0 on {y1 > 0, yn = 0} ∩Bρ and ∂vε

∂yn
= 0 on {y1 < 0, yn = 0} ∩Bρ,

if the point P0 lies on the interior of the interface IΩ := ∂DΩ ∩ ∂NΩ.

(3.8)
The coefficients in equation (3.7) are given by





aij(y) =
∑
k

∂Ψi

∂xk
(Φ(y)) · ∂Ψj

∂xk
(Φ(y)) , 1 ≤ i, j ≤ n;

bj(y) = (∆Ψj)(Φ(y)) , 1 ≤ j ≤ n.
(3.9)

In particular, since DΨ(0) = Id, then

aij(0) = δij . (3.10)

Remark 3.2.1 (i) To better understand the notation in the sequel, in Fig-
ure 3.2 we show that, (a-b) when the limit point concentrates at the boundary
∂Ω, first we flatten the domain and then we scale; instead, (c) if the limit
point concentrates in the interior of Ω, obviously we only scale .

3.2.1 Convergence of scaled function

Here we want to point out that the proof of convergence of scaled function
is a little different if the points Pε converge to a point P0 in the interior
of domain or on the boundary of domain. Below we analyze the different
cases. Let uε be a least energy solution to the problem (P̃ε), suppose that
Pε a maximum point of uε and f the nonlinear term appearing in problem
(P̃ε). We have two cases:

Case 1: Up to a subsequence, Pε → P0 ∈ Ω.
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Figure 3.2: Flattening & Scaling

We define the scaled function w like in (3.51).

wεj (x) = uεj (Pεj + εjx) (3.11)

We consider two increasing sequences j, m ∈ N such that εj → 0 as j → +∞
and rm → +∞ when m → +∞. In (3.11) we consider y ∈ Bρj . For each rm

we consider a number jm such that

2rm < ρj if j ≥ jm. (3.12)

As starting point, see Lemma 1.6.2, we use the following:
∫

Ω
ur

εdx ≤ Crε
n (3.13)

where Cr is a constant independent from ε and r any exponent greater
than zero. We want to remark that this estimate is also valid under mixed
boundary conditions since, for the functional space X defined in (3.3), we
have also classical results about Sobolev embedding theorems and because
hypothesis (iv) (see Section 3.1) holds true also in our case. Hence the proof
Lemma 2.3 in [38] applies in our case as well.

From equations (3.11) and (3.13) we have
∫

Bρj

|wεj |rdx =
∫

Bρj

|uεj (Pεj + εjx)| < Cr
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From this last equation and (3.12) we get
∫

B2rm

|wεj |rdx ≤
∫

Bρj

|wεj |rdx ≤ Cr. (3.14)

Then, if we use the classical Lp estimate and Sobolev Embedding theorem
we obtain (see [29]):

‖wj‖W 2,r(Brm) ≤ C(‖u‖Lr + ‖f‖Lr).

By Sobolev embedding we know that if

kr > n and n + r(h + α) < kr

we get
W 2,r(Brm) ⊂ Ch,α(Brm)

Therefore it readily follows wεj ∈ C0,α(Brm). The functions wεj satisfy the
following differential equation

−∆wεj + wεj = wp
εj

,

where f ∈ C1(Brm) and wεj ∈ C0,α(Brm). By Schauder interior estimate in
Brm one has

‖wεj‖C2,α(Brm ) < C (3.15)

From (3.15) we get that{wεj}j≥jm is a relatively compact set in C2(Brm).
Therefore we can extract a convergent subsequence by a diagonal process.
We choose a monotone increasing sequence {Rk} such that

• Rk → +∞ as k → +∞,

• BR1 ⊂ BR2 ⊂ · · · ⊂ BRk

We have

‖wεj‖C2,α(Brm ) < C ∀BRk
∈ Rn bounded in the Euclidean topology.

Let us choose

{w1
εj
} ⊂ {wεj} (Ascoli Arzelà Theorem) ⇒ ∃w1 : w1

εj
→ w1 uniformly on BR1 ,

{w2
εj
} ⊂ {w1

εj
} (Ascoli Arzelà Theorem) ⇒ ∃w2 : w2

εj
→ w2 uniformly on BR2 ,

...

{wk
εj
} ⊂ {wk−1

εj
} (Ascoli Arzelà Theorem) ⇒ ∃wk : wk

εj
→ wk uniformly on BRk

.
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Remark 3.2.2 The subsequence wk is an extension of wk−1, since wk ≡
wk−1 on BRk−1

because subsequences of the same convergent sequence.

Then we can consider the sequence {wj
εj} that converges uniformly to the

function
w(x) = wk(x) if x ∈ BRk

∀R > 0.

Therefore we have
w ∈ C2(Rn) ∩W 1,2(Rn)

and in particular convergence in C2
loc(Rn). From equation (3.11) we get that

wεj (0) > c, where c is some positive constant. This implies that w ≥ 0. By
the strong maximum principle we obtain that w > 0 in Rn, solution of the
following PDE

−∆w + w = wp. (3.16)

Remark 3.2.3 We can also obtain a Hölder estimate in a different way,
following [53] or [15]. We can write the mixed problem (P̃ε) as

−∆uε = ε−2fε,

where fε ≡ up
ε − uε. We know uniform a priori bounds for ||uε||Lr , for any

r, see equation (3.13); in particular it follows

||fε||Lr ≤ Crε
n/r.

We will look for a uniform Cα estimate in the rescaled problem that is when
we take the sequence {wε}, defined by equation (3.11). We follow the proof
of the Cα regularity result by G. Stampacchia in [53], to get the dependence
on ε of the final estimate. Roughly, the proof consists in a careful estimate
of the measure of the sets

A(k,R) ≡ {x ∈ BR(x0) ∩ Ω |u(x) > k} , x0 ∈ Ω, K ∈ R,

which leads to a Caccioppoli type inequality. This inequality, combined with
an iterative argument, allows us to control the oscillation of u, proving the
Hölder estimate. However, in our case we need an explicit control of the
dependence with respect to ε of the constants which appear in all the process,
since we need to extend the Hölder estimates to the rescaled problem. Then
we get the following result:

|uε(x)− uε(y)| ≤ Cε|x− y|α,

where:

• Cε ≈ ||fε/ε2||m/2.

• α = min(α0,−2( n
m − 1)),
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where α0 is a constant which depends only on Ω.
In particular, if we take m > n, but m ≈ n, then we have that

α = −2(
n

m
− 1).

Let us fix such a p from now on. Therefore, in our case we have

Cε ≈ Cnε2( n
m
−1).

We note that the exponent is negative, and therefore

|uε(x)− uε(y)| ≤ Cnε2( n
m
−1)|x− y|−2( n

m
−1) (3.17)

In particular, taking the rescaled functions vε we get

|wε(r)−wε(s)| = |uε(εr+Pε)−uε(εs+Pε)| ≤ . . . ≤ Cn|r−s|−2( n
m
−1), (3.18)

that is Uniform Hölder estimate for the sequence {wε}. In particular, taking
a subsequence we can assume that wε converges uniformly on compact sets
to a continuous function w.

Otherwise as said in Remark 3.2.1, we can get also a uniform (on compact
sets) convergence result for the solutions of the scaled problem with the
boundary locally rectified, namely:

Case 2: Up to a subsequence Pε → P ∈ ∂NΩ.

We know that there exists a neighborhood U of this point and a regular
map, see Subsection 3.2, Ψ = Φ−1 such that Ψ(U ∩Ω) ⊂ Rn

+. We can define
as before the functions

vε(y) ≡ uε(Φ(y)) y ∈ B+
ρj := {y ∈ Bρj , yn ≥ 0},

and then scaling

wε(z) = ṽε(Qε + εz), Qε = ψ(Pε) (3.19)

which solve an elliptic problem in some (rescaled) domain with boundary
conditions on a flat boundary. In this case the function ṽε is defined by
reflection as

ṽε :=

{
vε(y) if y ∈ B+

ρj

vε(y′,−yn) if y ∈ B−
ρj

(3.20)

where as usual y′ = (y1, y2, . . . , yn−1) and B−
ρj

:= {y ∈ Bρj , yn < 0}. Then,
we can write the differential equation satisfied from the scaled function w
defined as above (where Qε = Ψ(Pε)) and Pε is the maximum point of the
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solution of the problem (P̃ε). After some computations, from equation (3.7)
we obtain

ε2

( N∑

i,j

1
ε2

aε
ij(z)

∂2wε

∂zizj
+ ε

N∑

j

1
ε2

bj(z)ε ∂wε

∂zj

)
− wε(z) + wε(z)p = 0 (3.21)

where the coefficients aε
ij and bε

j depend on the subsequences {ε}r and {Qε}r

and on the coefficients aij and bj defined before by equation (3.9). It turns
out that these coefficients are Lipschitz continuous with constant uniformly
bounded in r, where with r we are denoting the index of subsequence. Then,
if we take the limit ε → 0 as in the first case above (Pε → P0), with the
same argument we get a convergent subsequence

wr → w ∈ C2(Rn) ∩W 1,2(Rn) (3.22)

with w solution to the problem (3.16). We note also that if Pε → P0 ∈ ∂NΩ,
the previous estimates in Remark 3.2.3, in particular equation (3.18), can
be applied concluding that there exists a Hölder continuous function w such
that wε → w uniformly on compact sets on Rn

+.
Since we are dealing with problems which in general have many solutions,

we need to fix the sequence of solutions that we consider. A natural choice is
to take the sequence of least energy solutions, that is, the solutions that come
from the Mountain Pass Lemma. In this work, from now on, we will always
consider these solutions. Let {uε} be a sequence of least energy solutions to
the problems (P̃ε), and suppose that Pε a maximum point of uε .
Then as ε → 0, depending on the location of the limit point P0 = limε→0 Pε

(for a subsequence) we could arrive to a problem in all Rn or to a problem
in Rn

+. The first case is easily excluded, as the following theorem shows.

Theorem 3.2.4 Let {uε} be the family of least energy solutions to problem
(P̃ε) and {Pε} their points of maximum. Then, up to a subsequence, Pε →
P0 ∈ ∂Ω.

Given the family of least energy solutions {uε}, let us denote by Pε a point
where uε attains a local maximum.

Theorem 3.2.5 Let {uε} be the family of least energy solutions to problem
(P̃ε) and {Pε} their points of maximum. Then, up to a subsequence, Pε →
P0 ∈ ∂Ω.

Proof. We will work out the proof in two steps. In the first one we will
get an upper bound for the critical level cε while in the second, using this
upper bound, we will show that the concentration point P0 must lie on the
boundary. Then let cε be as in (3.5) and define (see [49])

M [u] = sup
t>0

Ĩε(tu) u ∈ X
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Step 1. First we claim that, if ∂NΩ 6= ∅, then

cε ≤ εn

{
I(U)

2
+ o(ε)

}
.

Choose P ∈ ∂NΩ and define the set

AiR := BR(x− P ) ∩ Ω = {x ∈ Ω : |x− P | < iR} i = 1, 2

where throughout the paper Bρ(· − c) stands for the open ball centred at
c and with radius ρ. We want to remark that the radius R is such that
A2R ∩ ∂DΩ = ∅.

Define next a smooth non increasing and non negative radial cutoff func-
tions χR : R→ R satisfying





χR(y) = 1 in BR;
χR(y) = 0 in Rn\B2R;
|∇χR(y)| < C in B2R\BR.

(3.23)

From the definition of the Mountain Pass level, see Proposition 3.1.2, we
can argue that, after a flattening and a scaling,

cε ≤ M

[
χR

ε

(
x−Q

ε

)
U

(
x−Q

ε

)]
,

where U is the ground state solution of problem (1.1) and Q = Ψ(P ). Then,
if

Ωε :=
{

y ∈ Rn : ∃x ∈ Ω s.t. y =
x−Q

ε

}

denote the scaled domain and

ϕε := χR
ε

(
x−Q

ε

)
U

(
x−Q

ε

)
,

we have

M [ϕε] =
1
2
t2∗ε

n

∫

Ωε

|∇ϕε|2 + ϕ2
ε −

εn

p + 1

∫

Ωε

(t∗ϕε)p+1

where t∗ is such that g(t) ≡ I(tϕε) attains its unique maximum. From
(3.23), we get

M [ϕε] =
1
2
t2∗ε

n

∫

A2Rε

|∇ϕε|2 + ϕ2
εdy − εn

p + 1

∫

A2Rε

(t∗ϕε)p+1 = I1 + I2 − I3.

where
Rε =

R

ε
, AiRε = {y ∈ Ωε : |y| < iRε} ,
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I1 =
1
2
t2∗ε

n

∫

A2Rε

|∇ϕε|2,

I2 =
1
2
t2∗ε

n

∫

A2Rε

ϕ2
ε,

I3 =
εn

p + 1

∫

A2Rε

(t∗ϕε)p+1.

Then

I1 =
1
2
t2∗ε

n

∫

A2Rε

|∇ϕε(y)|2dy

=
1
2
εnt2∗

(∫

ARε

|∇U(y)|2dy +
∫

A2Rε\ARε

|∇ (ϕ(y)U(y)) |2dy

)

=
1
2
εnt2∗

(∫

Rn
+

|∇U(y)|2dy + o(1)

)

=
1
4
εnt2∗

(∫

Rn

|∇U(y)|2dy + o(1)
)

as ε → 0. (3.24)

where in the last equality we have used the asymptotic behavior of U (1.3),
and polar coordinates centered at the origin and (3.23). For the same reasons
we obtain the follow two equations:

I2 =
1
2
εnt2∗

(∫

Rn
+

u2
0(y)dy + o(1)

)

=
1
4
εnt2∗

(∫

Rn

u2
0(y)dy + o(1)

)
as ε → 0. (3.25)

I3 =
εn

p + 1

(∫

Rn
+

(t∗ϕε)p+1dy + o(1)

)

=
εn

2(p + 1)

(∫

Rn

(t∗ϕε)p+1dy + o(1)
)

as ε → 0. (3.26)

From the uniqueness of the maximum of I(tU(·)) for t > 0, it follows
that

t∗ − 1 = o(1) as ε → 0 (3.27)

Then from equations (3.24), (3.25), (3.26) and(3.27) we get

cε ≤ εn

{
I(U)

2
+ o(1)

}
. (3.28)

Step 2. Since Ω is bounded, for some subsequence we can assume
Pε → P0 ∈ Ω. Suppose P0 ∈ Ω. In this case, since dist{P0, ∂Ω} = ρ > 0,

dist{Pε, ∂Ω}/ε →∞ as ε → 0.
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Then uε(Pε + εy), up to a subsequence, would converge uniformly to a limit
U belonging to C2(Rn) ∩ W 1,2(Rn) (see Subsection 3.2), solution to the
problem

−∆U + U = Up in Rn.

We want to point out that by maximum principle U > 0 and moreover using
argument in [27], we get

lim
r→+∞ err

n−1
2 U(r) = αn,p,

where, as above, αn,p is a positive constant depending only on n and p.

By the uniqueness result in [35] it follows that

cε = εn {I(U) + o(1)} . (3.29)

This is a contradiction from equation (3.28). Then the concentration neces-
sarily occurs on the boundary ∂Ω.

Remark 3.2.6 With the same arguments in the proof of the last theorem,
getting the same contradiction, see (3.29), we can show that

lim
ε→0

dist(Pε, ∂Ω)
ε

6= ∞,

that is, in the scaled problem the limit point P0 (or Q0, if we flatten before)
is inside a neighborhood of ∂Rn

+ :

P0 ∈ BR(x′)

for some number R positive and some x′ = (x1, x2, . . . , xn−1) ∈ ∂Rn
+.

Case 3: We suppose, up to a subsequence, that Pε → P0 ∈ ∂DΩ.

We want to point out that in this case we can have only that

dist(Pε, ∂DΩ)
ε

→ C, (3.30)

where 0 < C < +∞. This follow by Remark 3.2.6 and from a general
property of the least-energy solution to problem (P̃ε) at the local maximum
points, as shown below (see equation (3.32)). Then, straightening a portion
of boundary around the point P0, as usual we define vε(y) = uε(Φ(y)), with
y defined in an open set containing the ball B2s(Q0) with s > 0 sufficiently
small and Q0 = Ψ(P0). Now, denote

wε(z) = vε(Qε + εz) z ∈ B s
ε



3.2 Straightening the boundary 69

with Qε = (q′ε, εcε), q′ε ∈ Rn−1 and cε > 0 bounded via hypothesis (3.30).
Moreover wε satisfies





ε2

(
N∑
i,j

1
ε2 aε

ij(z)
∂2wε

∂zizj
+ ε

N∑

j

1
ε2

bj(z)ε ∂wε

∂zj

)
− wε(z) + wε(z)p = 0

in B s
ε
∩ {zn > −cε},

wε(z) = 0
in B s

ε
∩ {zn = −cε}.

where the coefficients aε
ij and bε

j , depend on the subsequences {ε}r and {Qε}r

and on the coefficients aij and bj defined before by equation (3.9). From
equation (3.13), following the previous arguments we get

wε → w ∈ C2(Rn
+) ∩W 1,2(Rn

+)

and w solution of (3.16).

Case 4: We suppose, up to a subsequence, that Pε → P0 ∈ IΩ.

We can repeat the arguments of Case 3, supposing, for the same reason
that

dist(Pε, IΩ)
ε

→ C

with C positive constant getting

wε → w ∈ C2(Rn
+) ∩W 1,2(Rn

+),

where w is a solution to the problem (3.16). The same conclusions of this
two last cases can be obtained applying the arguments in Remark 3.2.3.
Therefore by Theorem 3.2.5 and Remark 3.2.6, we can exclude that the
limit point P0 is in the interior of domain Ω. Then as ε → 0, from the
previous cases, we reach the limit problem

−∆w + w = wp in Rn
+

and, in according to equation (3.8), with one of the following boundary
condition depending on the limit point P0. We have three cases:




(1) w = 0 on ∂R+
n if Pε → P0 ∈ ∂DΩ,

(2) ∂w
∂ν = 0 on ∂R+

n if Pε → P0 ∈ ∂NΩ,

(3) w = 0 on {y1 > 0 ∩ ∂R+
n } and ∂w

∂ν = 0 on {y1 < 0 ∩ ∂R+
n } if Pε → P0 ∈ IΩ.

(3.31)
Next we try to determine the part of the boundary where the concentration
takes place.
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3.3 Analysis of the limit points Pε

In this section we want to specify the limit behaviour of the point Pε. We
will establish where, up to a subsequence, this point can be attained and
what is the rate of convergence, see Corollary 3.3.6. This last result is very
important for the sequel because it will allow us to complement the present
results with those in the first part of the paper, [26]. We start showing a
useful property of the solution uε to the problem (P̃ε) in a local maximum
point. Denoting uε(Pε) = maxx∈Ω uε(P ), we claim that:

uε(Pε) ≥ 1. (3.32)

This follows by using elementary arguments about subharmonic functions.
In fact if we suppose that the maximum point Pε ∈ Ω then, bearing in mind
problem (P̃ε), in a neighborhood of Pε we have that

u(Pε)p − u(Pε) = −ε2∆u(Pε) ≥ 0,

that imply (3.32).
Now, we suppose that Pε ∈ ∂NΩ and by contradiction that uε(Pε) < 1.

Then we get
−ε2∆u = up − u ≤ 0

in a neighborhood of Pε. From the boundary Hopf lemma follows that
∂uε

∂ν
> 0 for some point in ∂NΩ that give us the desired contradiction. We

do not have to consider the case Pε ∈ ∂DΩ since we are looking for nontrivial
positive solutions to the problem (P̃ε).
By Theorem 3.2.5, we can affirm that the limit point P0 of a least-energy
solution cannot belong to the interior of Ω. To understand better the loca-
tion of such point, the idea is to analyze the rate of convergence. Our first
result about the location of the concentration points is the following:

Theorem 3.3.1 Let uε be a least-energy solution to the problem (P̃ε) and
{Pε} its local maximum points. As ε → 0, up to a subsequence, we suppose
that Pε → P0 ∈ ∂Ω. Then the limits of concentration points satisfy

P0 /∈ Int(∂DΩ).

Proof. Denote ρε = dist(Pε, ∂Ω). Assume by contradiction P0 ∈ Int(∂DΩ),
and let P̃ε ∈ Int(∂DΩ) be such that

ρε = dist(Pε, P̃ε).

Taking a subsequence, we have two cases:

1. ρε

ε →∞ as ε → 0;
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2. ρε

ε → c < ∞ as ε → 0.

In the case (1) after the usual scaling uε(Pε + εy), we arrive to a problem
in all Rn and, as in the second step of the proof of Theorem 3.2.5, we can
show that the energy solution

cε = εn {I(U) + o(1)}

which is a contradiction for equation (3.28) (see also Remark 3.2.6).
In the case (2), we can consider two different subcases:

(i) c = 0;

(ii) c > 0.

If c = 0 we immediately get the contradiction. In fact in the scaled prob-
lem, the maximum of the least energy solution is attained on the Dirichlet
boundary part and then the contradiction follows from equation (3.32).
Otherwise if c > 0, as usual, after straightening the boundary and scaling
(see Figure 3.2), we arrive to a solution v > 0 with v(Q0) ≥ 1, of the problem




−∆v + v = vp in Rn

+;
v(0, α) > 1;
v(x̄, 0) = 0 on ∂Rn

+ = 0.
(3.33)

Here we will show, by contradiction, that the problem (3.33) does not have
any solution. Without loss of generality, we can consider the limit maximum
point Q0 = Ψ(P0) located in the xn axis at some positive distance of the
limit boundary ∂Rn

+. In fact when ε → 0 the limit maximum point Q0

will be achieved at some point of the type (q0, α) ∈ Rn−1 × R+. Being the
problem (3.33) invariant under translation, we can assume Q0 → (0, α) as
ε → 0. On the other hand, since we assume that (ρε

ε → c, with 0 < c < ∞
) then xn remains bounded away from zero. Now, we choose a positive
number

h > 2α (3.34)

and we consider a slab domain Ω = Rn−1×(0, h). The contradiction readily
follows from a theorem proved by H. Berestycki, L. Caffarelli, L. Nirenberg,
see Theorem 1.11 in Section 1.5. Since our limit problem (3.33) satisfies all
the hypothesis of Theorem 1.11, then we obtain that the limit solution is
increasing in the xn direction in the (0, h/2) interval. The hypothesis (3.34)
imply that the limit maximum point Q0 is inside this interval and then we
have the contradiction.

From the previous convergence results, see Theorem 3.2.5 and Theorem
3.3.1, we can estimate more precisely the convergence Pε → P0.
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• If P0 is in the interior of the Neumann boundary part, after straight-
ening the boundary and scaling, we get a limit problem with Neumann
boundary conditions, and then, since the argument is local, we can use
the methods in [50], to obtain the same asymptotic expansion getting
a term which involves the mean curvature H, where as usual, H(·)
stands for the mean curvature of ∂Ω and it is clear that

H(P ) =
1

n− 1
trAP

where AP is the hessian of ψ at 0 (see Subsection 3.2). In this case,
the result, due to W.M.Ni and I.Takagi, gives us the desired expansion
of the energy, see Theorem 1.6.1:

Ĩε(uε) = εn

{
1
2
I(U)− (n− 1)εγH(Pε) + o(ε)

}
as ε → 0

• The remaining case is P0 ∈ ∂NΩ ∩ ∂DΩ.

In the sequel, we try to extend some of the main results for the Neu-
mann case to the Mixed boundary value problem. For example, it is
possible to prove that, for ε small, necessarily Pε ∈ ∂NΩ, as in the
Neumann problem. The proof follows from various lemmas. In the
first one we get an important Liouville type result:

Lemma 3.3.2 Let us consider the problem





−∆u + u = up in Rn
+;

u ≥ 0 in Rn
+;

u = 0 on Γ0;
∂u
∂ν = 0 on Γ1,

(3.35)

where

Γ0 = {x = (x1, · · ·, xn) : xn = 0 , x1 > 0},
Γ1 = {x = (x = (x1, · · ·, xn) : xn = 0 , x1 < 0}

and

1 < p <
n + 2
n− 2

.

Define

X̃ =
{

φ ∈ W 1,2(Rn
+) : φ = 0 on Γ0,

∂φ

∂ν
= 0 on Γ1

}

Then if u ∈ X̃ is a solution, u ≡ 0.
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Proof. Here we want to obtain a Liouville type result for the problem
(3.35). Previously Damascelli and Gladiali in [16] obtained a similar Li-
ouville type result for a mixed problem that unfortunately does not apply
to our case. They considered the differential problem −4u = f(u), get-
ting a nonexistence result when the nonlinear term f(u) satisfies different
conditions. Some of them

(i) g(t) := f(t)

t
n+2
n−2

is nonincraesing in (0, +∞);

(ii) f(t) > 0 for every t > 0,

do not apply in our case, being f(t) = tp − t.
However we can use some of the ideas in [16], getting a nonexistence

result. In the proof we use the moving plane method, therefore we introduce
some notation. For λ > 0 we let

Tλ = {x ∈ Rn
+ : x1 = λ} Σλ = {x ∈ Rn

+ : x1 > λ},

and also we define

Rλ(x) = xλ = (2λ− x1, x2, · · · , xn) x ∈ Rn
+ uλ(x) = u(xλ).

Note the xλ is the reflection trough the plane Tλ and uλ(x) the reflected
function.

u uλ

λ

Σλ

u

x2

x1

Tλ

Figure 3.3: Moving plane

We note that, for any λ ∈ R, the function (u− uλ)+ vanishes in the set
Σλ ∩ Γ0. In particular, if λ ≥ 0 then Σλ ∩ {xn = 0} ⊂ Γ0. If λ < 0, then
(Σλ ∩ {xn = 0}) ∩ Γ1 6= ∅, but notice that in this part of the boundary the
normal derivatives of u and uλ vanishes. Then if we consider the problem
(3.35) in Σλ and the similar one satisfied by the reflected function uλ (see
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[16]), we multiply both problems by the function (u−uλ)+, and we integrate
by parts and subtract the equations we obtain:

∫

Σλ

|∇(u− uλ)+|2dx +
∫

Σλ

[(u− uλ)+]2dx =
∫

Σλ

[up − up
λ](u− uλ)+dx

≤ p

∫

Σλ

(
up−1 + up−1

λ

)
[(u− uλ)+]2dx.

Then we have to consider separately two cases:

Case 1 4
n + 1 ≤ p < n+2

n−2

Case 2 1 < p ≤ 4
n + 1

If we are in Case 1, via Holder and Sobolev inequalities, we get:
∫

Σλ

|∇(u− uλ)+|2 + [(u− uλ)+]2dx

≤ p

( ∫

Σλ∩{u≥uλ}
(up−1

λ + up−1)
n
2

) 2
n
(∫

Σλ

[(u− uλ)+]2
∗
) 2

2∗

∫

Σλ

|∇(u− uλ)+|2 + [(u− uλ)+]2dx

≤ pC

( ∫

Σλ∩{u≥uλ}
(up−1

λ + up−1)
n
2

) 2
n
( ∫

Σλ

|∇(u− uλ)+|2
)

Then∫

Σλ

|∇(u− uλ)+|2 + [(u− uλ)+]2dx ≤ (3.36)

≤ pC

( ∫

Σλ∩{u≥uλ}
(up−1

λ + up−1)
n
2

) 2
n
( ∫

Σλ

|∇(u− uλ)+|2 + [(u− uλ)+]2
)

where C is the Sobolev constant.
On the other hand, in Case 2, using again Holder and Sobolev inequal-

ities, we are led to consider the following
∫

Σλ

|∇(u− uλ)+|2 + [(u− uλ)+]2dx

≤ p

( ∫

Σλ∩{u≥uλ}
(up−1

λ + up−1)
2

p−1

) p−1
2

( ∫

Σλ

[(u− uλ)+]
4

3−p

) 3−p
2

Then∫

Σλ

|∇(u− uλ)+|2 + [(u− uλ)+]2dx ≤ (3.37)

≤ pC

( ∫

Σλ∩{u≥uλ}
(up−1

λ + up−1)
2

p−1

) p−1
2

( ∫

Σλ

|∇(u− uλ)+|2 + [(u− uλ)+]2
)
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In both cases we get

‖(u−uλ)+‖W 1,2(Σλ) ≤ pC

( ∫

Σλ∩{u≥uλ}
(up−1

λ +up−1)r

) 1
r

‖(u−uλ)+‖W 1,2(Σλ)

(3.38)
where r > 0 is some number such that (p− 1)r ∈ [2, 2∗].

We want to show, that u ≤ uλ in Σλ ∀λ ∈ R i.e. the solution is decreasing
in the x1 direction and this implies that the solution cannot have finite
energy. Now, it is easy to see that there is at least one λ̃ such that u ≤ uλ

in Σλ ∀λ > λ̃. In fact if λ is big enough, then it readily follows that
∫

Σλ∩{u≥uλ}
(up−1

λ + up−1)r < 1

and then
‖(u− uλ)+‖W 1,2(Rn

+) ≤ 0 ∀λ > λ̃.

Then we can infer that ∀λ > λ̃ u ≤ uλ in Σλ. From the Hopf lemma and
the strong maximum principle, we can claim that u < uλ in Σλ ∀λ > λ̃. In
fact if u ≡ uλ in Σλ, then u would be a nontrivial solution of problem (3.35)

with
∂u

∂ν
< 0 on Rλ(Γ1). This is a contradiction since

∂uλ

∂ν
= 0 on Rλ(Γ1).

Then by maximum principle we have the conclusion.
Now, we will show that

inf
{

λ̃ : u ≤ uλ in Σλ if λ > λ̃
}

= −∞.

We suppose by contradiction that such infimum λ̂ is finite. We write a
generic point x ∈ Rn

+ in the form x = (x1, y) where x1 ∈ R and y ∈
Rn−2 × R+. We define a change of variable such that

ubλ(x1, y) = u(2λ̂− x1, y) := u(z, y).

Then if we consider µ < λ̂ we have

uµ(x1, y) = u(2µ− x1, y) = u(z − 2(λ̂− µ), y) = u(z − δ, y).

where δ := 2(λ̂−µ) is bigger than zero. Here, we want to prove the following

Claim 3.3.3 If 2 ≤ g ≤ 2∗
∫

Rn
+∩{z>bλ} ug(z − δ, y)dzdy −→

∫

Rn
+∩{z>bλ} ug(z, y)dzdy as δ → 0.

We know that ∀α > 0 there exists a compact set K (see Figure 3.4), such
that: ∫

Rn
+\K

ug(z, y)dzdy <
α

2
. (3.39)
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By a direct computation we find
∫

Rn
+∩{z>bλ} ug(z − δ, y)− ug(z, y)dzdy =

∫

Rn
+∩{s>bλ−δ}

ug(s, y)−
∫

Rn
+∩{z>eλ} ug(z, y).

From (3.39), we have
∫

Rn
+∩{bλ−δ<z<bλ} ug(z, y) <

α

2
+ Mdδ < α (3.40)

if we choose δ such that Mdδ < α
2 . This concludes the proof of the Claim.

Notice that the constant M that appears in (3.40) is the absolute maximum
of ug over the compact K whereas d is a constant that depends on the
diameter of the compact K. It is important to note that the two constants
are independent of δ.

x2

x1

K

̂
λ

̂
λ − δ

Figure 3.4: The compact K

Now we fix another compact set K0, such that K0 ∈ Rn
+ ∩ Σbλ and

∫

Σbλ\K0

ugbλ(x)dx < ρ.

Over the compact K0, we have

ubλ − u > cK0 > 0

where cK0 is some constant depending on K0. The continuity of the reflection
implies

uµ − u >
cK0

2
(3.41)
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in fact if µ < λ̂ we have

|ubλ − uµ| < ε ⇐⇒ |λ̂− µ| < δ̃ (3.42)

ubλ − u = |ubλ − u| = |uµ + ubλ − uµ − u| ≥ cK0 ;

|uµ − u| = uµ − u ≥ cK0 − ε >
cK0

2
(3.43)

for some δ̃ > 0. The inequality (3.43) is satisfied only if uµ − u ≥ cK0 − ε.
In fact, by contradiction, if we suppose that uµ − u < ε− cK0 then

uµ − ubλ + cK0 < ubλ − u + uµ − ubλ+ < ε− cK0 . (3.44)

From (3.44) and by the continuity of the reflection we get the contradiction:

ubλ − uµ > 2cK0 − ε > ε.

By continuity, we can choose δ̃ in (3.42) such that, on the compact K0,
uµ − u >

cK0

2
. Then Claim 3.3.3 (note that the compact K0 does not

depend on µ) implies
∫

Σµ\K0

ug
µ −→

∫

Σbλ\K0

ug
µ < ρ. (3.45)

Then from equations (3.45) and (3.41) we obtain:
∫

Σµ∩{u≥uµ}
ug

µ ≤
∫

Σµ\K0

ug
µ ≤ 2ρ. (3.46)

Finally if we choose ρ << 1
2 , via equations (3.38) and (3.46) we get the

contradiction concluding the proof of the lemma.

Remark 3.3.4 We want to point out that if 4
n + 1 ≤ p < n+2

n−2 then g :=
(p − 1)n

2 belongs to [2, 2∗] and similarly if 1 < p ≤ 4
n + 1 then g := 4

3−p
belongs to [2, 2∗].

Theorem 3.3.1 guarantees that the limit point P0 cannot be inside ∂DΩ.
However, it could be possible that P0 ∈ ∂DΩ∩∂NΩ. In any case, we get the
estimate

Lemma 3.3.5 Suppose we are in the hypothesis of Theorem 3.2.5, then

dist(Pε, ∂DΩ)
ε

→∞ as ε → 0.
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Proof. We assume by contradiction that there exists a constant C ≥ 0
such that for ε small and for some subsequence we have

dist(Pε, ∂DΩ)
ε

→ C.

We distinguish two cases:

• Case 1.
dist(Pε, ∂DΩ)

ε
→ 0 as ε → 0.

Then if we consider Qε = ψ(εPε) (i.e., the maximum point in the scaled
problem with rectified boundary, where the functions are denoted by
wε), up to a subsequence, {Qε} converges to a point on the boundary
of Rn

+ with Dirichlet boundary data.

On the other hand wε(Qε) ≥ 1. Hence, we get a contradiction with
the continuity of the uniform limit w0.

• Case 2.
dist(Pε, ∂DΩ)

ε
→ C > 0 as ε → 0.

Here, we will distinguish two subcases:

– Subcase 2.1

dist(Pε, ∂DΩ ∩ ∂NΩ)
ε

→∞ as ε → 0.

Then, passing to the problem satisfied by wε, we get that the limit
w0 solves an equation in Rn

+, with Dirichlet boundary data on the
boundary, and with an interior maximum point w0(Q0) > 1:




−∆w0 + w0 = wp

0 in Rn
+;

w0(0, α) > 1;
w0(x̄, 0) = 0 on ∂Rn

+ = 0.

The contradiction follows from the same reasons seen in the proof
of Theorem 3.2.5 (see case 2, subcase (ii)).

– Subcase 2.2

dist(Pε, ∂DΩ ∩ ∂NΩ)
ε

→ M > 0 as ε → 0.

Notice that we cannot have M = 0, since we are assuming that
dist(Pε, ∂DΩ)

ε
→ C > 0.

In this case, in the limit, the problem which is solved by w0, is a
PDE with mixed boundary conditions, and an interior maximum
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point w0(Q0) > 1. We note that Q0(0, α), 0 ∈ Rn−1, α > 0,
because M > 0.





−∆w0 + w0 = wp
0 in Rn

+;
w0 ≥ 0 in Rn

+;
w(0, α) > 1;
w0 = 0 on Γ0;
∂w0
∂n = 0 on Γ1.

(3.47)

Then the contradiction follows by using the Lemma 3.3.2.

This completes the proof.

In particular since ∂DΩ ∩ ∂NΩ ⊂ ∂DΩ, it follows:

Corollary 3.3.6 If we denote IΩ ≡ ∂DΩ ∩ ∂NΩ, then

dist(Pε, IΩ)
ε

→∞ as ε → 0.

Finally, assuming that the concentration point is located on the boundary
at the Dirichlet-Neumann interface, from this last Corollary we can show
that, when ε is small, the point where the least-energy solution uε of the
differential problem (P̃ε) attains the maximum, must lie on the boundary.
That is, if the limit point P0 lies at the interface IΩ, then the sequence {Pε}
for ε small enough, lies in the Neumann boundary part. In the next theorem
we consider only the case that the limit point P0 ∈ IΩ. Otherwise if the limit
point P0 ∈ ∂NΩ, since the argument is local we can join with the Neumann
case studied by W.M. Ni and I.Takagi in [49]. They proved a similar result
(see Theorem 2.1), showing that in the Neumann case (Problem (Nε)), if
a least energy solution uε attains a local maximum at Pε ∈ Ω, then the
distance from Pε to ∂Ω is O(ε) which imply that, for ε sufficiently small,
the sequence {Pε} must lie on the boundary. The next theorem extends this
result to the mixed case.

Theorem 3.3.7 Suppose that Pε → P0 ∈ IΩ. Then for ε small enough one
has

Pε ∈ ∂NΩ.

Proof. It is sufficient to apply Lemma 3.3.5 and Corollary 3.3.6. In fact,
by virtue of Lemma 3.3.5, we can exclude that the point Pε is on ∂DΩ when
ε → 0. So we suppose that up to a subsequence Pε → P0 such that {Pε} ∈ Ω
for ε sufficiently small. Corollary 3.3.6 implies

dist(Pε, IΩ)
ε

→∞ as ε → 0.

Then, after scaling, we reach the limit problem

−∆U + U = Up in Rn.
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As in the proof of Theorem 3.2.5 by a cut-off function, we can show that
the non-trivial solution of the rescaled problem has an energy

cε = εn {I(U) + o(ε)} ,

where U stand for the ground state solution. This is a contradiction, since
cε ≤ εn

{
I(U)

2 + o(1)
}

(see Theorem 3.2.5).

In particular it follows

Corollary 3.3.8 Let us consider problem (P̃ε) and suppose that up to a
subsequence Pε → P0 ∈ ∂NΩ. Then for ε small enough Pε lies on the
Neumann boundary part.

Proof. It’s sufficient to apply Theorem 3.3.7 and Theorem 2.1 in [49].

In the next two theorems we want to better characterize the shape of least
energy solutions to problem (P̃ε). Since before we have proved Corollary
3.1.3 and Corollary 3.3.6, we can strongly rely results and ideas of the proofs
of W.M. Ni and I.Takagi in [49]. Therefore here we will be very short and
rather sketchy.

Theorem 3.3.9 Let uε be a least-energy solution of problem (P̃ε). Then
for ε sufficiently small, there exists at most one local maximum Pε, achieved
at some point that must lie in the Neumann boundary part.

Proof. By contradiction, suppose that there exist two local maxima for uε

achieved at points P̃ε and Pε. Call pε =
∣∣∣ ePε−Pε

ε

∣∣∣ then, up to a subsequence,
we distinguish three cases

1. pε → 0 as ε → 0,

2. pε → c with 0 < c < +∞ as ε → 0,

3. pε → +∞ as ε → 0.

We know, see Corollary 3.3.8, that for ε sufficiently small the local maxi-
mum point is attained on the boundary Neumann part. Let us consider the
following PDE 




−∆w0 + w0 = wp
0 in Rn

+;
w0 > 0 in Rn

+;
w0(0) = max∂Rn

+
w0;

∂w0
∂ν = 0 on ∂Rn

+.

(3.48)

Problem (3.48) possesses a least energy solution w0, decreasing and van-
ishing exponentially at infinity. As usual, consider the diffeomorphism
y = Ψ(x), introduced before that flattens the boundary around at some
point on ∂Ω. After rescaling and straightening the boundary around the
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any of the two maxima points, the limit problem satisfied by wε is the same
one (see (3.48) above), both maxima are in the interior boundary Neumann
part, and not in in the set IΩ, since Corollary 3.3.6 holds true. If we are
in the second or third case, then we get readily the contradiction, since the
solution w0 of the limit problem is exponentially decreasing. Then suppose
that

pε =

∣∣∣∣∣
P̃ε − Pε

ε

∣∣∣∣∣ → 0 as ε → 0. (3.49)

Hence we have that there exists some ε0 > 0, sufficiently small, such that
for all ε ≤ ε0, the maximum points P̃ε and Pε, after straightening with the
diffeomorphism y = Ψ(x) and scaling, are together contained in a ball of
radius δ̃ sufficiently small, since

|P̃ε − Pε| =
∣∣∣∣∣
P̃ε − Pε

ε

∣∣∣∣∣ ε → 0, as ε → 0.

We assume that Φ = Ψ−1 is defined in some open set containing a closed ball
B ρ

ε
(·). Then we define the reflection ṽ of v with respect to the yn coordinate.

Moreover if we rescale, we obtain

wεk
(y) = ṽεk

(Pεk
+ εky) z ∈ B ρ

ε
.

From (3.49) we may assume that there exists a closed ball Bν(ε), ν(ε) suffi-
ciently small, with more than maximum points inside. Then the contradic-
tion follows by Lemma 4.2 in [49].

3.4 Location of the least energy solution

In this section we use some results proved in Chapter 2. First of all to
better understand the sequel, we will recall a Lemma due to P.C.Fife, see
[23], stated as in cite [49].

Lemma 3.4.1 Let φ(x) be a C2 function satisfying the elliptic equation

ε2

(
Σaij(x)

∂2φ

∂xi∂xj
+ Σbj(x)

∂φ

∂xj

)
− c(x)φ = 0

in a bounded domain D, where (i) the coefficient aij, bj are bounded and (ii)
c(x) ≥ c0 > 0 for all x ∈ D. Then there is a positive constant µ depending
only on aij, bj, c0 and D such that

|φ(x)| ≤ (sup |φ(x)|) exp{−µδ(x)/ε},

where δ(x) is the distance from x to ∂D.
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Lemma 3.4.2 Let uε be a least-energy solution to the problem (P̃ε). Let
K ⊂ Ωε be a compact containing the origin and B+

r ⊂ Ωε the set {z ∈
Br, zn > 0}. Moreover let y = Ψ(x) be the diffeomorphism that straightens
a boundary portion around Pε, where Pε is the unique maximum point of
uε. Let wε be, as usual, the scaling of the least-energy solution uε after
straightening the boundary. Then for any α > 0, there exists ε0 such that
for ε < ε0 we have two sets Ω̂ε ⊂ Ω̃ε ⊂ Ω, such that

1. diam(Ω̂ε) < C1ε,

2.
∥∥∥uε(x)− U(Ψ(x)

ε )
∥∥∥

C2(bΩε)
< C α

ε2 , ‖wε(z)− U(z)‖C2(K) < α,

3. |uε(x)| < Cαe−µ1δ(x)/ε if x ∈ Ω\Ω̂ε,

4. ‖uε‖H1
D(Ω\eΩε)

≤
(
Cα e−µ1δ(x)/ε

ε2

)1/2
, ‖wε‖H1

D(Ωε\B+
r ) ≤

(
Cα e−µ1δ0/ε

εn

)1/2
.

where δ(x) = dist(x, ∂Ω̂ε \ ∂Ω) with C1, C, µ1, δ0 are positive constants that
depending only on Ω.

Proof. We carry on the proof in two steps.

Step 1. From Corollary 3.3.8 we know that, for ε small enough Pε ∈
∂NΩ. Moreover if we denote

d =
dist(Pε, IΩ)

ε
(3.50)

that is, the distance of the point Qε = Ψ(Pε) from the interface IΩε in the
scaled domain after a straightening of the boundary around the point Pε,
by Corollary 3.3.6 we have that d → +∞ for ε sufficiently small. Then we
define

vε(y) ≡ uε(Φ(y)) y ∈ B+
s := {y ∈ Bs(Qε), yn ≥ 0},

with s sufficiently small. Then the scaled function

wε(z) = vε(Qε + εz) (3.51)

solves an elliptic problem in some (rescaled) domain with Neumann bound-
ary conditions on a flat boundary. In this case the function w̃ε is defined by
reflection as

w̃ε :=

{
wε(z) if z ∈ B+

s
ε

wε(z′,−zn) if z ∈ B−
s
ε
.

(3.52)

Then, denoting for the sake of simplicity w̃ε as wε, by equations (3.21),
(3.22), we know that, given a compact K ⊂ Ωε containing the origin and
α > 0 there exist ε0 such that,

‖wε(z)− U(z)‖C2(K) < α ∀ε < ε0 (3.53)
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where, as usual, U the ground state solution of Problem (1.1). Then, since
∇Ψ(·),∇2Ψ(·) are bounded, from equation (3.53) we get also

∥∥∥∥uε(x)− U(
Ψ(x)

ε
)
∥∥∥∥

C2(Ω̃r
ε)

≤ C
α

ε2
∀ε < ε0

where Ω̃r
ε = Φ(B+

rε), Ω̃r
ε ∈ Ω, with diam(Ω̃r

ε) ≤ C1ε, B+
r ⊂ K as ε → 0, and

C, C1 are constants that depend on the domain Ω, proving 1. and 2. We
note that if Pε → P0 ∈ IΩ, from Corollary 3.3.6, we have that the size of Ω̃r

ε

becomes small faster than the rate of convergence of Pε to P0.
Then choose B+

r ⊂⊂ K. From equation (3.53) we have

wε(z) ≤ U(z) + α. (3.54)

We know that in the flattened and scaled domain Ωε, d → +∞, by (3.50).
Then from equation (1.3), we can choose the compact K and therefore r
sufficiently big, such that the following estimate holds

U(z) ≤ αn,pe
− r

2 < α if
r

2
≤ |z| ≤ r.

From equation (3.54) we get

wε(z) ≤ 2α if
r

2
≤ |z| ≤ r.

Since the scaling that we are using further throughout the paper does not
modify the values of the function but only the size of the domain, it follows
that

uε(x) ≤ 2α if x ∈ Φ(B̃) ∩ Ω

where B̃ := B+
εr\B+ εr

2
.

We know that
∫

Ω
|∇uε|2 < +∞. Moreover from Theorem 3.3.9, for ε suffi-

ciently small, we can affirm that uε has one local maximum. Then it follows
that the set {x ∈ Ω : uε(x) > 2α} has one connected component. Then we
have that

uε(x) ≤ 2α if x ∈ Ω\Ω̂ε,

where, as above, Ω̂ε = Φ(B+
εr
2
). Now as in [49], we can apply Lemma 3.4.1

to uε in (Ω \ Ω̂ε) getting that

uε(x) < k1αe−µδ(x)/ε, (3.55)

for some positive constant k1, since uε(x) < 2α in this set. We want to note
that the estimate (3.55) keeps an exponential decay for all the interior points
of the set (Ω \ Ω̂ε), that is where δ(x) > 0, see Lemma 3.4.1. Now, since it
is important for the sequel, we want to get exponential decay also for the
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boundary points x ∈ ∂(Ω \ Ω̂ε)∩ ∂Ω, that is where δ(x) = 0 in the equation
(3.55). For the boundary Neumann part, after straightening (around each
point), denoting ṽε the reflected function around these points we get

ε2

( n∑

i,j

aij(y)
∂2ṽε

∂yiyj
+

n∑

j

bj(y)
∂ṽε

∂yj

)
− ṽε(y) + ṽp

ε(y) = 0 in S̃,

where S̃ is a strip around some Neumann boundary point.
Then we use Lemma 3.4.1 again for this problem in a strip around

∂(Ω\Ω̂ε) ∩ ∂NΩ, getting

ṽε(y) < k2αe−µδ(y)/ε, (3.56)

for some positive constant k2 and where δ(y) is the distance from ∂S̃. Then,
from (3.55) and since uε ≡ 0 on ∂DΩ, by continuity, also for all the points
x ∈ ∂(Ω\Ω̂ε) ∩ ∂DΩ we have

uε(x) < k1αe−µδ(x)/ε, (3.57)

where δ(x) is the distance from ∂Ω̂ε \ ∂Ω. Finally from equations (3.55),
(3.56) and (3.57), we prove (3).
This means that in the scaled domain Ωε we have a similar estimate for the
scaled function wε(z) = vε(Qε + εz), that is

|wε(z)| < Cαe−µ1δ(z) if z ∈ Ωε \B r
2

(3.58)

where δ(z) is the distance from ∂B r
2
∩ Ωε.

We are assuming that µ1 is uniform on ε (see [23], Lemma 4.2).

Step 2. Since from the boundary conditions uε vanishes on an open set
∂DΩ ⊂ ∂Ω, a Poincaré inequality holds true, that is

‖uε‖L2(Ω) ≤ Cp‖∇uε‖L2(Ω).

The last inequality is very important in our case because it implies the
equivalence with the gradient norm in L2(Ω), in fact

‖∇uε‖L2(Ω) ≤
√
‖uε‖2

L2(Ω)
+ ‖∇uε‖2

L2(Ω)
≤

√
C2

p + 1‖∇uε‖L2(Ω). (3.59)

Now, let r∗ be such that r
2 < r∗ < r and Ω̃ε = Φ(B+

εr∗). From equation (P̃ε),
integrating by parts we can write

ε2

∫

Ω\eΩε

|∇uε|2 ≤
∫

Ω\eΩε

(
up+1

ε + u2
ε

)
+

∫

∂(Ω\eΩε)
uε

∂uε

∂ν
≤ Cαe−µ1δ(x)/ε

(3.60)
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where δ(x) is the distance from ∂Ω̂ε \ ∂Ω and ν is the outer normal at
the boundary of the domain Ω\Ω̃ε. As ε → 0, from Corollary 3.3.6 we
know that dist(Pε, IΩ) goes to zero slower than ε, and that, as seen above,
diam(Ω̃ε) = O(ε). Then we get, in the domain Ω\Ω̃ε, for all ε sufficiently
small, an equivalent norm as equation (3.59) states. In fact a Poincaré
inequality holds, since an open set Υ ⊂ ∂DΩ on which uε ≡ 0, is always
contained in the boundary of Ω\Ω̃ε. Then from equation (3.60) and from
the equivalence of the norm we have that

‖uε‖H1
D(Ω\eΩε)

≤
(

Cα
e−µ1δ(x)/ε

ε2

)1/2

Now we want to obtain a similar estimate for the scaled function wε. From
equation (3.60), by a straight calculation we have

∫

Ωε\B+
r

| ∇wε(z) |2≤ K
εn−2

∫

Ω\Ω̃r
ε

| ∇uε |2≤ Cα
e−µ1δ(x)/ε

εn
, (3.61)

for some constant K and where, as above, Ω̃r
ε = Φ(B+

rε). We want to point
out that in the last equation, in the domain Ω \ Ω̃r

ε, δ(x) ≥ δ0 > 0. We

note also that in the scaled domain
dist(Pε, IΩ)

ε
= +∞, see Corollary 3.3.6;

then again a Poincaré inequality holds in the scaled domain. From equation
(3.61) we get

‖wε‖H1
D(Ωε\B+

r ) ≤
(

Cα
e−µ1δ0/ε

εn

)1/2

→ 0 as ε → 0.

proving (4).

Remark 3.4.3 This Lemma is very important because it states that the
least-energy solutions to the Mixed problem can be approximated, via a scal-
ing, by the ground state solution U in a subset of Ω and outside this subset
can be made arbitrarily small. This follows because Corollary 3.3.6 holds,
that is, in the straightened and scaled domain the Mixed problem is similar
to the Neumann one.

Lemma 3.4.4 Let uε a least energy solution to the problem (P̃ε). Suppose
Ω ⊆ Rn, n ≥ 2, is a smooth bounded domain, IΩ denote the interface, H|IΩ

has a strict local maximum and ∇H points inside ∂DΩε. Define, as in the
first part of paper, the manifold

Zε = {ẑε,Q : d1,ε ≤ d ≤ d2,ε, Q ∈ V} ,
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there are d1,ε, d2,ε, such that d1,ε → +∞, εd2,ε → 0 as ε → 0, ẑε,Q as in the
equation (2.61) and where V is a neighborhood of a point Q which realizes
maxQ∈IΩ

H . Then as ε → 0

dist(wε, Zε) < α,

where wε is the scaling of the least-energy solution uε after straightening the
boundary and α a sufficiently small constant.

Proof. Recall that

ẑε,Q(y) = χµ0(εy) [(U(y)− Ξd(y))χD(y) + εw̃Q(y)χ0(y1 − d)] .

Then we evaluate the difference

‖ẑε,Q(y)− wε(y)‖H1
D(Ωε) (3.62)

= ‖χµ0(εy) [(U(y)− Ξd(y))χD(y) + εw̃Q(y)χ0(y1 − d)]− wε(y)‖H1
D(Ωε)

≤ ‖ [(U(y)− Ξd(y)) + εw̃Q(y)]− wε(y)‖H1
D(Ωε) < α → 0 if ε → 0.

By this lemma we have showed that the least-energy solution belongs to
the set Zε, that is, as said before, when ∇H points inside ∂DΩε we can then
apply the second statement in Proposition 2.1.3 with

f(ε) =
(
ε2 + εe−d(1+o(1)) + e−

(p+1)d
2

(1+o(1)) + e−
3d
2

(1+o(1))
)

,

by Proposition 2.2.12 and (2.91). These two yield that uε = ẑε,Q + ω(ẑε,Q),
where the distance of Q from IΩ is of order ε| log ε|, as in Theorem 2.0.1,
see Remark 2.0.2 (b).

It is well known, see Theorem 1.6.3 in Chapter 1, that in the Neumann
case (1.15) if the unique maximum point Pε of least-energy solutions uε

concentrate on the boundary of the domain at a point P0, then as ε → 0
one has

H(P0) = lim
ε→0

H(Pε) = max
P∈∂Ω

H(P ) (3.63)

In the following we want to go ahead in such direction to find other results for
the Mixed case (P̃ε). In the next theorem, we will show that if a least-energy
solution concentrate at a point of the interface, then here the curvature H
is maximal.

Theorem 3.4.5 Let uε be a least energy solution to the Mixed problem (P̃ε).
We suppose that, up to a subsequence, as ε → 0, Pε → P̂ ∈ IΩ. Then P̂ is
such that

H(P̂ ) = max
P∈∂NΩ

H(P )
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Proof. Here we use also some results proved in the first part of this
paper (see [26]). In particular from Lemma 3.4.4 and Proposition 2.3 in
[26] we have an uniqueness result. From Proposition 4.1 in [26], we have
the following expansion for the functional Ĩε(u) associated to the Mixed
problem:

Ĩε(uε) = C̃0 − C̃1εH(Pε) + e−2d(1+o(1)) + O(ε2), (3.64)

as ε → 0 and d → +∞. We want to remember that, see [26]:

d = dist(Qε, IΩε),

and C̃0, C̃1 are constants such that

C̃0 =
(

1
2
− 1

p + 1

) ∫

Rn
+

Up+1dx, C̃1 =
(∫ ∞

0
rnU2

r dr

)∫

Sn
+

yn|y′|2dσ.

We note also that with Pε we refer to a point in the domain Ω and otherwise
with Qε we refer, after a flattening, to a point in the scaled domain Ωε, see
Figure 3.2.

By contradiction, we suppose that there exists a point P ∗ ∈ ∂NΩ such
that

H(P̂ ) < H(P ∗) (3.65)

Then we evaluate equation (3.64), over another function, say ẑε,P ∗ , getting

Ĩε(ẑε,P ∗) = C̃0 − C̃1εH(P ∗) + e−2d(1+o(1)) + O(ε2).

We remember that ẑε,Q is represented by

ẑε,Q(y) = χµ0(εy) [(U(y)− Ξd(y))χD(y) + εw̃Q(y)χ0(y1 − d)] . (3.66)

We suggest to refer the Subsection 3.2 of [26] to better understand the
meaning of all terms.

Then if we arrange the last equation, we have

Ĩε(ẑε,P ∗) = C̃0 − C̃1εH(Pε)−Aε(P ∗, Pε) + e−2d(1+o(1)) + O(ε2) (3.67)

where
Aε(P ∗, Pε) = C̃1εH(P ∗)− C̃1εH(Pε),

and Aε(P ∗, Pε) → 0 as ε → 0. Next we can show that, as ε → 0
{

Aε(P ∗, Pε) > 0
|Aε(P ∗, Pε)| = O(εs) 0 < s < 2

(3.68)

The former of (3.68) easily follow from equation (3.65). To prove the latter
one, we note that

ε2C̃1
|P ∗ − Pε|

ε

1
| H |∞ ≤ |Aε(P ∗, Pε)| ≤ ε2C̃1 | H |∞ |P ∗ − Pε|

ε
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From Corollary 3.3.6, we know that for ε sufficiently small,
|P ∗ − Pε|

ε
→ +∞,

showing the last of (3.68). Then for ε sufficiently small, from equation (3.64),
(3.67) (3.68) we have

Ĩε(ẑε,P ∗) < Ĩε(uε).

This obviously is a contradiction, since, by hypothesis, uε is a least energy
solution.

Next we will prove another important result

Corollary 3.4.6 Let uε be a least-energy solution to the Mixed problem (P̃ε)
and Pε such that u(Pε) = max

x∈Ω
uε(x). Moreover suppose that there exists a

point P ∗ ∈ ∂DΩ, where P ∗ is such that

H(P ∗) = max
P∈∂Ω

H(P ),

and let P̂ be the unique point, such that

H(P̂ ) = max
P∈∂NΩ

H(P ).

Then
Pε → P̂ (3.69)

Proof. By Theorem 3.3.1 we can affirm that, up to a subsequence, the
point Pε cannot concentrate on the Dirichlet boundary part. Then Pε must
lie on the Neumann boundary part ∂NΩ. We have two cases:

(i) if Pε concentrate on the interior of boundary Neumann part ∂NΩ we
can joint with the Neumann case and we know (see [49]) that P̂ max-
imize the mean curvature H(·);

(ii) if Pε concentrate on the interface IΩ then from Theorem 3.4.5, P̂
maximize the mean curvature H(·).

In both cases (i) and (ii), hypothesis (3.69) is satisfied, concluding the proof.

Remark 3.4.7 In the Corollary 3.4.6 we require that the point P̂ is unique
because, otherwise, we need of more terms in the expansion (3.64) that con-
tain a higher order of the derivatives of the boundary. However we can
consider a particular case, very interesting.

Proposition 3.4.8 Let uε be a least-energy solution to the problem (P̃ε).
Suppose that the maximum of H(·) on the closure of the Neumann boundary
part ∂NΩ, is achieved both at the interior and at the interface IΩ that is,
there exist P̃ ∈ ∂NΩ and P̂ ∈ IΩ such that

Hmax(P̃ ) = Hmax(P̂ ).

Then the least-energy solution uε peaks at point P̃ .
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Proof. We know that, up to a subsequence, Pε → P ∈ ∂NΩ and that one
has the following energy expansions:

Ĩε(uε) = C̃0 − C̃1εH(Pε) + e−2 dε
ε

(1+o(1)) + O(ε2) as ε → 0. (3.70)

Peaking at the interior, dε remains a constant recovering the expansion cor-
responding to the Neumann problem, see Theorem 1.6.1. Otherwise if the
concentration points converge to the interface, we have that dε ' ε| log ε|.
It follows that the least-energy solution uε peaks at the point P̃ , since the
boundary expansion (3.70) has an extra e−2 dε

ε term which is positive, con-
cluding the proof.
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Chapter 4

The shape of the
least-energy solution

In this chapter we are interested in the construction of the shape of positive
least-energy solutions (Mountain Pass Type Solutions) for a mixed semilin-
ear Dirichlet-Neumann problem. We analyze the case n = 2 and p = 3, that
is:





−ε2∆u + u = u3 in Ω;
∂u
∂ν = 0 on ∂NΩ; u = 0 on ∂DΩ;
u > 0 in Ω,

( ˜̃P ε)

where Ω is an elliptical domain of R2. We want to point out that in the two
dimensional case the interface IΩ is a point. Figure 4.1 shows how Dirichlet
and Neumann conditions are imposed.

Dir i chl et Condi t i on

Dir ichl et Condit ion

Neumann Condi t i on

Neumann Condit ion

Γ1

N

Γ2

N

Γ1

D
Γ2

D

Figure 4.1: The Elliptical Domain Ω.

In order to construct the shape of the positive least energy solution
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of problem ( ˜̃P ε) we take advantage of Mountain Pass Algorithm due to
Y.S. Choi and P.J. McKenna, see [14], taking into account the intrinsic
differences.

Indeed in [14] the authors applied such method to study some elliptic
equations in square domains in order to show the capability of this algorithm.
On the contrary, in our case, we consider a perturbative problem with mixed
boundary conditions and defined in an elliptical domain contained in R2. In
fact we need to consider the problem in a domain with non constant mean
curvature H because our goal is finding a spike layer solution concentrating
at the interface.

From numerical point of view a curved boundary domain is difficult to
mesh in order to define all the discrete variables that the algorithm requires.
Moreover we impose mixed conditions on four disjoint subsets of the bound-
ary ∂Ω, as shown in Figure 4.1, in such a way that Dirichlet conditions are
imposed on the two boundary parts, Γ1

D and Γ2
D, where the curvature H

reaches its maximum value. We need Dirichlet conditions on Γ1
D and Γ2

D
because this implies that least energy solutions do not concentrate where
the mean curvature is maximal. In this way we get solutions to ( ˜̃P ε) con-
centrating at the interface IΩ as shown in Chapter 3.

Both from the mathematical point of view and from the numerical one,
all these motivations made difficult to implement the code in some program-
ming language.

Solutions of problem ( ˜̃P ε) correspond to critical points of the functional

Ĩε(u) =
1
2

∫

Ω
ε2|∇u|2 + u2 − 1

4

∫

Ω
u4; u ∈ X (4.1)

where
X = {u ∈ H1

D(Ω) : u 6≡ 0 and u ≥ 0 in Ω}
and H1

D(Ω) (see Section 1.8) stands for the space of functions in H1(Ω)
which have zero trace on ∂DΩ, i.e.

H1
D(Ω) = {u ∈ H1(Ω) : u|∂DΩ = 0}.

To apply the method of Y.S. Choi and P.J. McKenna is necessary to have
the Mountain Pass geometry: it is clear that u ≡ 0 is a solution of problem
( ˜̃P ε) and that in fact this solution corresponds to a local minimum of the
functional Ĩε. If we pick another positive function v ∈ H1

D(Ω), then we have
that Ĩε(tv) → −∞ as t → +∞. Since for Ĩε hypothesis (i), (ii), (iii) and
(iv) in Section 3.1 hold together with a (PS)c condition, then we can apply
the Mountain Pass Theorem (1.3.4) to get the existence of a least energy

solution (Proposition 3.1.2) to problem ( ˜̃P ε).
In this chapter, following [14], we implement an algorithm that will al-

ways converge to a solution with the Mountain Pass (least-energy) property.
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On a finite-dimensional approximating subspace, one takes a piecewise lin-
ear path from the local minimum to some point v belonging to H1

D(Ω) such
that the value Ĩε(v) is lower than that of the minimum. One finds the max-
imum of Ĩε along that path and then one deforms the path by pushing the
point at which the local maximum is located in the steepest descent direc-
tion. This direction is located by minimizing the Fréchet derivative of Ĩε

(with an appropriate norm to use) at the local maximum point. One repeat
this step, stopping only when the critical point is reached, that is when no
further lowering of the local maximum is possible.

4.1 The Mountain Pass geometry

Since it is relevant for the application of the algorithm, in this section we
show that the functional associated to the differential problem ( ˜̃P ε) has the
Mountain Pass geometry. A crucial point for the proof is based on the use
of a Poincaré inequality.

We know that Ĩε(0) = 0. We are looking for positive solutions of problem

( ˜̃P ε), with a nonlinear term f(t) = t3, and F given by

F (t) =
∫ t

0
f(s)ds.

We have also that (see (ii) and (iii), Section 3.1)

f(t) = O(tp) as t → +∞,

f(t) = o(t) for t → 0. (4.2)

Then by equations (4.2), we get that ∀M > 0 ∃δ = δM such that

f(u) ≤ Mu + δMup ∀u ≥ 0,

F (u) ≤ M

2
u2 +

δM

p + 1
up+1, ∀u ≥ 0. (4.3)

By the Poincaré inequality, it follows that
∫

Ω
u2 ≤ C2

p

∫

Ω
|∇u|2. Then we

have:
ε2

∫

Ω
|∇u|2 ≤

∫

Ω
ε2|∇u|2 + u2 ≤ ε2(1 + C2

p)
∫

Ω
|∇u|2. (4.4)

Remark 4.1.1 These last inequalities imply that

‖u‖H1
D

=
(∫

Ω
ε2|∇u|2

) 1
2

is an equivalent norm to

‖u‖H1
D

=
(∫

Ω
ε2|∇u|2 + u2

) 1
2
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for the boundary problem ( ˜̃P ε).

Then by equation (4.3) and Remark 4.1.1, if we choose M < 1, we get:

Ĩε(u) =
1
2

∫

Ω
ε2|∇u|2 + u2 −

∫

Ω
F (u)

≥ 1
2

∫

Ω
ε2|∇u|2 + u2 − M

2

∫

Ω
u2 − δM

p + 1

∫

Ω
up+1

=
1
2

∫

Ω
ε2|∇u|2 +

1
2
(1−M)

∫

Ω
u2 − δM

p + 1

∫

Ω
up+1

≥ 1
2
||u||2H1

D
− δM

p + 1
||u||p+1

H1
D

. (4.5)

Equation (4.5) shows that u ≡ 0 is a local minimum of Ĩε satisfying
(MP1) of Theorem 1.3.4.

We know also (see (iv), Section 3.1) that there exists a constant θ > 2
such that, if f(u) = u3

0 < θF (t) ≤ tf(t) ∀t ≥ 0 (Ambrosetti-Rabinowitz condition).

From this inequality, trivially:

d

du

(
F (u)
uθ

)
=

f(u)uθ − θuθ−1F (u)
uθ−1uθ+1

≥ 0. (4.6)

Equation (4.6) implies:

F (u)
uθ

≥ F (R)
Rθ

∀u ≥ R > 0,

F (u) ≥ Buθ − c ∀u ≥ 0, (4.7)

where
B =

F (R)
Rθ

and c is a positive constant. Then by (4.7) and (4.4) we get

Ĩε(u) =
1
2

∫

Ω
ε2|∇u|2 + u2 −

∫

Ω
F (u)

≤ 1
2
(1 + C2

p)
∫

Ω
ε2|∇u|2 −

∫

Ω
Buθ +

∫

Ω
c. (4.8)

If we pick a function u ≥ 0 and a constant t > 0, we obtain:

Ĩε(tu) ≤ t2

2
(1 + C2

p)
∫

Ω
ε2|∇u|2 − tθ

∫

Ω
Buθ +

∫

Ω
c. (4.9)

Being θ > 2 one has that

I(tu) → −∞ as t → +∞. (4.10)
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Equation (4.10) implies that (MP2) of Theorem 1.3.4 holds.
The assumptions (MP1) and (MP2) together imply the Mountain Pass

geometry. Then, in order to obtain a Mountain Pass critical point, we have
to prove that a Palais-Smale condition holds for the functional Ĩε.

4.1.1 The Palais-Smale (PS)c condition

Following [7], we first prove that every (PS)c sequence of Ĩε is bounded.
Take {un} Palais-Smale sequence at level c. We know that

Ĩε(un) =
1
2

∫

Ω
ε2|∇un|2 + u2

n −
∫

Ω
F (un) → c, (4.11)

and
Ĩ ′ε(un)(un) → 0. (4.12)

From equation (4.12), it follows that:

Ĩ ′ε(un)(un) =
∫

Ω
ε2|∇un|2 + u2

n −
∫

Ω
f(un)un = o(1)‖un‖. (4.13)

We multiply equation (4.13) by q :=
1
θ
, q ∈ (0,

1
2
) (see the Ambrosetti-Rabinowitz

condition) and then we substract this from equation (4.11) getting:

1
2

∫

Ω
ε2|∇un|2 + u2

n −
∫

Ω
F (un)− q

∫

Ω
ε2|∇un|2 + u2

n + q

∫

Ω
f(un)un

= c + o(1)‖un‖. (4.14)

Then by the Ambrosetti-Rabinowitz condition

(
1
2
− q)

∫

Ω
ε2|∇un|2 + u2

n + q

∫

Ω
f(un)un −

∫

Ω
F (un)

≥ (
1
2
− q)

∫

Ω
ε2|∇un|2 + u2

n ≥ (
1
2
− q)

∫

Ω
ε2|∇un|2. (4.15)

Equations (4.4), (4.14) and (4.15) imply:

c + o(1)‖un‖H1
D
≥ (

1
2
− q)||un‖2

H1
D

(4.16)

Since q <
1
2

equation (4.16) shows that the norm is bounded, that is

‖un‖H1
D
≤ const. (4.17)

By equation (4.17)
un ⇀ u0, (4.18)
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and moreover, from equation (4.12) one has that

0 ← Ĩ ′ε(un)(un−u0) =
∫

Ω
ε2∇un∇(un−u0)+un(un−u0)−

∫

Ω
f(un)(un−u0).

(4.19)
By Sobolev Embedding we have that un → u0 in Lp+1(Ω). Then

∫

Ω
|f(un)||un − u0| ≤ ‖f(un)‖

L
p+1

p
‖un − u0‖Lp+1 → 0.

Equation (4.19) becomes:
∫

Ω
ε2|∇un|2 + u2

n −
∫

Ω
ε2∇un∇u0 −

∫

Ω
unu0 → 0. (4.20)

By equation (4.20) and by weakly convergence (4.18) un ⇀ u0 we get:

‖un‖2 → ‖u0‖2. (4.21)

By Lemma 4.1.1 below and equations (4.18) and (4.21), Palais-Smale (PS)c

condition holds for Ĩε.

Lemma 4.1.1 Let H be a Hilbert space. Let un be a sequence belonging to
H and u0 a point of H. We suppose that:

(i) un ⇀ u0,

(ii) ‖un‖ → ‖u0‖.
Then un → u0 in H.

Proof. A straight calculation implies:

‖un − u0‖2 = ‖un‖2 + ‖u0‖2 − 2 < un, u0 >−→ ‖u0‖2 + ‖u0‖2 − 2‖u0‖2 = 0.
(4.22)

4.2 The steepest descent direction

In this section we consider the following problem




−ε2∆u + u = u3 in Ω;
∂u
∂ν = g on ∂NΩ; u = 0 on ∂DΩ;
u > 0 in Ω,

(4.23)

where g 6≡ 0 and g ∈ L2(∂NΩ). This is important to better understand
the boundary problem that we have to solve to finding the steepest descent
direction v. Then, later, we will set g ≡ 0.
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The steepest descent method is a numerical method that tracks down
a local minimum of a functional without a good initial guess provided that
some growth conditions of the functional at infinity is satisfied. The steepest
descent direction at any u ∈ H1

D(Ω) is the direction that a given functional I
decreases most rapidly per unit distance with respect to the norm in H1

D(Ω).

With such method, we have to analyze the perturbed mixed problem ( ˜̃P ε)
and then drawing the different shapes of the least-energy solution uε as
ε → 0.

In our case, the steepest descent direction at u ∈ H1
D(Ω) corresponds to

finding the direction v ∈ H1
D(Ω) with ||v||H1

D
= 1 such that

Ĩε(u + δv)− Ĩε(u)
δ

will be as negative as possible when δ → 0, namely to finding the minimum
of Fréchet derivative Ĩ ′ε(u)v subject to the constraint that ||v||H1

D
= 1. Intro-

ducing the Lagrange multiplier λ, we look for the unconstrained minimum
of the functional Jε : H1

D(Ω) → R defined as:

Jε(v) =
∫

Ω
ε2∇u∇v + uv − f(u)v + λ|∇v|2 −

∫

∂NΩ
ε2gv (4.24)

where u, v ∈ H1
D(Ω).

From this last equation we see that we are minimizing over
∫

Ω
|∇v|2 = 1,

since by Remark 4.1.1 this quantity, for a fixed small ε, is an equivalent norm.
This fact is very important because in this way is more simple to deal with
equation (4.24).

Now we find the direction v ∈ H1
D(Ω) that minimizes the Fréchet deriva-

tive of functional Jε defined in equation (4.24). We have

J ′ε(v)w =
∫

Ω
ε2∇u∇w + uw − f(u)w + 2λ∇v∇w −

∫

∂NΩ
ε2gw (4.25)

where u,w ∈ H1
D. If such a function v is a minimum of the functional Jε

(4.24), it must satisfy
J ′ε(v) = 0 i.e. (4.26)∫

Ω
ε2∇u∇w + uw − f(u)w −

∫

∂NΩ
ε2gw = −

∫

Ω
2λ∇v∇w. (4.27)

To finding the direction v, we have to write the partial differential equa-
tion associated to the weak problem (4.27). To do that we denote v as:

v := 2λv + ε2u. (4.28)

Note that v ∈ H1
D(Ω) and that by linearity one has

∇v = 2λ∇v + ε2∇u. (4.29)
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Moreover we define a function l as

l(u) := f(u)− u. (4.30)

Now we arrange equation (4.27) in this way:
∫

Ω
∇w(ε2∇u + 2λ∇v) + w(u− f(u))−

∫

∂NΩ
ε2gw = 0. (4.31)

By equations (4.28), (4.29) and (4.30), we get:
∫

Ω
∇w∇v − l(u)w −

∫

∂NΩ
ε2gw = 0, (4.32)

and integrating by parts the equation (4.32) becomes:
∫

Ω
−4vw − l(u)w +

∫

∂NΩ

∂v

∂n
w −

∫

∂NΩ
ε2gw = 0. (4.33)

Then v ∈ H1
D(Ω) corresponds to a weak solution for the problem:





−∆v = l(u) in Ω;
∂v
∂ν = 0 on ∂NΩ; v = 0 on ∂DΩ;
v > 0 in Ω,

(Pv)

where we have set g ≡ 0. If we find the weak solution v to problem (Pv),
by equation (4.28) we get the steepest descent direction v. From equation
(4.28), |λ| is determined so that ||v||H1

D
= 1. To find the sign of λ we have

to consider

Ĩε(u + δv)− Ĩε(u)
δ

=
∫

Ω
ε2∇u∇v + uv − f(u)v −

∫

∂NΩ
ε2gv + o(δ)

=
∫

Ω
−2λ∇v∇v + o(δ)

= −2λ + o(δ)

In the last equality, we have used the fact that v is a weak solution of
equation (4.27) and that g ≡ 0 on ∂NΩ. As δ → 0 the first term on right-
hand side dominates and λ has to be chosen positive so that v represents
the steepest descent direction.

4.3 Solution of problem (Pv)

In order to solve problem (Pv) we need to find a numerical approximation of
the solution v, with l(u) known at the mesh points. We use the finite element
method which is the most appropriate for approximating the solutions of
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second-order problem posed in variational form over a given functional space
V . A well-known approach to solve such problems is Galerkin’s method,
which consists in defining similar problems, called discrete problems, over
finite-dimensional subspace Vh of the space V .

The finite element method is a Galerkin’s method characterized by three
basic aspects in the construction of the space Vh:

1. a triangulation Th is established over the set Ω, that is, the set Ω is
written as a finite union of finite elements K ∈ Th;

2. the function vh ∈ Vh are piecewise polynomials, i.e., the spaces PK =
{vh|K : vh ∈ Vh} consist of polynomials;

3. there should exist a basis in the space Vh whose functions have a
compact support.

4.3.1 Numerical approximation

To solve problem (Pv), we consider the linear abstract variational problem:

Find u ∈ V such that

∀v ∈ V, a(u, v) = f(v), (4.34)

where the space V , the bilinear form a(·, ·) and the linear form f satisfy the
assumptions of the Lax-Milgram lemma, see Section 1.7. In our case

• V = H1
D(Ω),

• a(u, v) =
∫

Ω
∇u∇v,

• f(v) =
∫

Ω
lv,

where l is defined in (4.30).
Then we have to construct a similar problem in finite-dimensional sub-

space of the space V . With any Vh of V we associate the discrete problem:

Find uh ∈ Vh such that

∀vh ∈ Vh, a(uh, vh) = f(vh). (4.35)

By Lax-Milgram lemma , we infer that such a problem has only one solution
uh. We denote Nh the number of all mesh points of the domain without
consider the mesh points belonging to the Dirichlet boundary. We use a
piecewise linear basis functions ϕj satisfying

ϕj(Ni) = δij =
{

0 i 6= j,
1 i = j,
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where Ni is a generic mesh point and i, j = 1, 2, . . . , Nh. Hence we express
the discrete solution uh as

uh(x) =
Nh∑

j=1

ujϕj(x), ∀x ∈ Ω ∪ ∂NΩ, uj = uh(Nj),

and vh ∈ Vh as

vh(x) =
Nh∑

i=1

viϕi(x), ∀x ∈ Ω ∪ ∂NΩ., vi = vi(Ni).

Remark 4.3.1 We note that in the numeration Nh of mesh points, we do
not have to consider the mesh points belonging to the Dirichlet boundary
∂DΩ because at such points the discrete solution uh must be set equal to
zero.

Then we have to find the coefficients uj such that they are solutions of the
linear system

Nh∑

j=1

a(ϕj , ϕi)uj = f(ϕi), i = 1, 2, . . . , Nh. (4.36)

From equation (4.36) we get
Au = b (4.37)

where A is a Nh ×Nh matrix given by

A = [aij ], with aij =
∫

Ω
∇ϕj∇ϕi,

and u and b are vectors defined as

u = [uj ] with uj = uh(Nj), b = [bi] with bi =
∫

Ω
fϕi.

All the integrals in the above expressions are been approximated by Gaussian
2-d quadrature rule and 2-d composite trapezoidal rule.

Proposition 4.3.2 Let uh be the discrete solution to the problem (4.35).
Then the H1 norm is given numerically by

||uh||H1 = (uT Au)
1
2 , (4.38)

where A and u are as in equation (4.37).
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Proof. By a straight calculation, one has that:
∫

Ω
∇uh∇uh =

a




Nh∑

j=1

ujϕj ,

Nh∑

i=1

uiϕi


 =

Nh∑

j=1

Nh∑

i=1

a(ujϕj , uiϕi)

Nh∑

j=1

Nh∑

i=1

uia(ϕj , ϕi)uj =
Nh∑

j=1

Nh∑

i=1

uiaijuj

= uT Au.

By Proposition (4.3.2) we can find the H1 norm of approximated func-
tions, solutions, and also the H1 distance between any two given functions.

Now, another important goal is to create a mesh for the domain Ω which
is elliptical. With respect to the domains considered in [14], in our case the
main difficulty is that the boundary is curved. In general a mesh requires a

Figure 4.2: Subdivision of the domain Ω into triangles.

choice of mesh points (vertex nodes) and a triangulation, see Figure 4.2. The
mesh should have small elements to resolve the fine details of the geometry,
but larger sizes, where possible, to reduce the total number of nodes. We
have chosen triangular elements because triangles are obviously better at
approximating a curved boundary. We subdivide the basic region Ω into
triangles. The union of these triangles will be a polygon Ωh. In general, if
∂Ω is a curved boundary, there will be a nonempty skin Ω \Ωh. We assume
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that Ωh is a subset of Ω and that no vertex of any triangles lies along the
edge of another.

4.4 The numerical algorithm

In this section, since we have used the same algorithm proposed by Y.S.Choi
and P.J.McKenna to get the shape of the least energy solution to the problem
( ˜̃P ε), we outline and rewrite, for completeness and a better understanding,
the main steps in finding an approximate critical point as made by the
authors in [14].

First, we initialize a path from the local minimum w to the point of
lower altitude e. Second, we find the maximum of Ĩε along this path. Third,
we deform the path in such a way as to make the maximum along the path
decrease as fast as possible. Finally, in the last step we decide whether to
stop, if the maximum turns out to have been a critical point, or repeat the
process again.

4.4.1 Step 1 of the algorithm

Since for our problem ( ˜̃P ε) the Mountain Pass geometry holds, there exist
the local minimum w and the point of lower altitude e. We prescribe a fixed
number N , which determine the number of linear segments in the piecewise
linear path Γ0. One possible starting path would be simply to take a straight
line path from e, to w. It is clear that the initial point e was not optimal.
Thus we are led to make an improvement in the initial path by choosing

g(i) = w +
i

N
(e− w), 1 ≤ i ≤ N

and then evaluating Ĩε(g(i)) for i ≥ 1 until we find at i = i0 that

Ĩε(g(i)) ≤ Ĩε(w).

Having found such an i0, we replace the original e with g(i0), shortening the
distance between w and e. We now choose our initial Γ0 to be the straight
line between w and e, and the corresponding g(i) to be the equally spaced
points along this path.

4.4.2 Step 2 of the algorithm

With a given discretized path g(i), the value of i = im at which a maximum
of Ĩε(g(i)) occurs is computed. If the number of segments N is large enough,
then 1 ≤ im ≤ N − 1, because w is a local minimum and Ĩε(e) ≤ Ĩε(w).
This first estimate of the maximum along the path is a little crude. We try
to refine it by the procedures below. Since the path is a discretized one, we
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will try to locate a higher maximum between i = im−1 and i = im+1. Now,
we join g(im) and g(im+1) by a straight line path. In theory we seek α ≥ 0
such that I(g(im) + αz) stops increasing, where z = g(im+1) − g(im). In
practice, we test successively

g1 =
1
2
(g(im) + g(im+1)), g2 =

1
2
(g(im) + g(i1)) g3 =

1
2
(g(im) + g(i2))

etc. until either

(a) gi is found such that I(gi) > I(g(im)) or;

(b) ||gi−g(im)||H1
D

= (1/2i)||gim+1−g(im)||H1
D

is smaller than a prescribed
tolerance.

In case (a), we evaluate gmid = 1
2(g(im) + gi), and perform a quadratic

polynomial interpolation to find a better value for the maximum location of
Ĩε. In case (b), we do not change g(im).

Having checked whether we can improve the estimate of the maximum
in the direction of g(im+1), we now perform a similar task with g(im−1)
and our revised location of g(im), so that g(im) will be moved to attain a
higher maximum. We now refine the path in the neighborhood of the local
maximum, by moving some of the nearby nodes closer. If the H1 norm
distance between g(im) and g(im+1) is larger than a prescribed value, we
then move a prescribed number of mesh points (around this local maximum)
to avoid the missing of saddle points.

4.4.3 Step 3 of the algorithm

The steepest descent direction at the local maximum location is computed
by finding a solution of the problem (Pv) via finite element method, solving
equation (4.37). Thus, a numerical approximation of 2λv = v − ε2u can be
computed.

If the difference on the right-hand side is smaller than a prescribed tol-
erance in the H1 norm, we stop the algorithm and find an approximate
critical point of the functional Ĩε. Otherwise, up to a prescribed maximum,
the maximum point is moved downhill for a certain descent distance. This
distance is determined by a similar procedure as in step 2. If this distance or
the difference in Ĩε before and after the descent is smaller than a prescribed
tolerance, then we have a numerical approximation of a critical point and
stop the algorithm. If not, repeat steps 2 and 3.

4.5 The spike-layer solution

In this section we present the results obtained applying the numerical method
described in this chapter. The algorithm was implemented using a MATLAB
code.
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Figure 4.3: Three-dimensional view with ε = 0.7.

Below, in the different figures, we analyze the behavior of the least energy
solution when the perturbation parameter ε goes to zero. We run the algo-
rithm fixing, every time, a smaller different ε-value. As Figure 4.1 shows,
we have considered an elliptical domain with boundary subdivided in four
parts, that is, we set:

∂NΩ = Γ1
N ∪ Γ2

N ,

∂DΩ = Γ1
D ∪ Γ2

D,

with Γ1
N ∩ Γ2

N = ∅, Γ1
D ∩ Γ2

D = ∅ and ∂Ω = ∂NΩ ∪ ∂DΩ.
Since we are working in a domain Ω ⊂ R2, the interface IΩ consists

in four points belonging to R2 space. On the two boundary parts, where
the curvature reaches its maximum value we impose Dirichlet conditions,
see Figure 4.1. We know, by Theorem 3.3.1, that the maximum point Pε

cannot concentrate on the Dirichlet boundary part. Then, since the two
points where the curvature maximize belong to Γ1

D and Γ2
D, the maximum

point Pε should concentrate at a point P0 ∈ IΩ, as Corollary 3.4.6 states.
For each ε-value considered, we have a three-dimensional view, see for

example Figure 4.3, and a two-dimensional view, see for example Figure 4.4.
The three-dimensional view shows better the profile of such a solution:

in fact that is called spike layer, since it is highly concentrated near some
point of Ω. As the perturbation parameter ε becomes smaller, see Figure
4.5, Figure 4.7 and Figure 4.9, the Mountain Pass type solutions uε tend to
zero uniformly on every compact set of Ω \ {P0}, while there exist δ ≥ 1
and Pε such that uε(Pε) ≥ δ, see Section 3.3. As above, the point Pε is such
that uε(Pε) = maxx∈Ω uε(P ) and, up to a subsequence, Pε → P0.
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Figure 4.4: Two-dimensional view with ε = 0.7.

Instead, in the two dimensional view, see Figure 4.6, Figure 4.8 and Figure
4.10, we note that the maximum point Pε belongs to the Neumann boundary
part (see Corollary 3.3.8) and, as ε goes to zero, this point reaches the
interface IΩ. Moreover the support of the least energy solution becomes
smaller when ε goes to zero. In fact, for example, if we give a look at Figure
4.9 and Figure 4.10, we note that the maximum point Pε concentrates at
the interface IΩ and the spike layer’s profile is concentrated around the
maximum point in a small support, as Lemma 3.4.2 shows.
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Figure 4.5: Three-dimensional view with ε = 0.4.

Figure 4.6: Two-dimensional view with ε = 0.4.
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Figure 4.7: Three-dimensional view with ε = 0.2.

Figure 4.8: Two-dimensional view with ε = 0.2.



108 The shape of the least-energy solution

Figure 4.9: Three-dimensional view with ε = 0.1.

Figure 4.10: Two-dimensional view with ε = 0.1.
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