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Abstract

In the last few years, the need for knowledge-based technologies is emerging in
several application areas. Industries are now looking for semantic instruments for
knowledge-representation and reasoning. In this context, ontologies (i.e., abstract
models of a complex domain) have been recognized to be a fundamental tool; and
the World Wide Web Consortium (W3C) has recommended OWL [58] as a standard
language for ontologies.

Some semantic assumptions of OWL, like Open World Assumption and non-
Unique Name Assumption, make sense for the Web, but they are unsuited for Enter-
prise ontologies, that are specifications of information of business enterprises, which
often evolve from relational databases, where both CWA and UNA are adopted.

The subject of this thesis is OntoDLV , a system based on Disjunctive Logic
Programming (DLP) for the specification and reasoning on enterprise ontologies.

OntoDLP , the language of the system, overcomes the above-mentioned limita-
tions of OWL, it adopts both CWA and UNA avoiding ”semantic clash” to enterprise
databases.

OntoDLP extends DLP with all the main ontology constructs including classes,
inheritance, relations and axioms. The language is strongly typed, and includes also
complex type constructors, like lists and sets.
Importantly,OntoDLV supports a powerful interoperability mechanism with OWL,
allowing the user to retrieve information also from OWL Ontologies and to reason
on top of that by exploiting OntoDLP powerful deduction rules. The system is
endowed with a powerful Application Programming Interface and is already used in
a number of real-world applications, including agent-based systems and information
extraction applications.

Rende (CS), Lorenzo Gallucci
November 2007
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1

Introduction

1.1 Motivation

In the last few years, the need for knowledge-based technologies is emerging in
several application areas. Industries are now looking for semantic instruments for
knowledge-representation and reasoning. In this context, ontologies (i.e., abstract
models of a complex domain) have been recognized to be a fundamental tool; and
the World Wide Web Consortium (W3C) has already provided recommendations and
standards related to ontologies, like, e.g., RDF(s) [64] and OWL [58]. In particular,
OWL has been conceived for the Semantic-Web, with the goal to enrich web pages
with machine-understandable descriptions of the presented contents (the so-called
Web ontologies). OWL is based on expressive Description Logics (DL)[6]; distin-
guishing features of its semantics are the adoption of the Open World Assumption
and the non-uniqueness of the names (the same individual can be denoted by differ-
ent names).

While the semantic assumptions of OWL make sense for the Web, they are in-
appropriate for Enterprise ontologies. Enterprise/Corporate ontologies are specifi-
cations of terms and definitions relevant to business enterprises; they are used to
share/manipulate the information already present in a company. Since an enterprise
ontology describes the knowledge of specific aspects of the “closed world” of the en-
terprise, a Closed World Assumption (CWA) seems more appropriate than the Open
World Assumption (OWA), while the latter is more appropriate for the Web, which is
an open environment. Moreover, the presence of naming conventions, often adopted
in enterprises, guarantee names uniqueness making also the Unique Name Assump-
tion (UNA) plausible. It is worthwhile noting that enterprise ontologies often are the
evolution of relational databases, where both CWA and UNA are mandatory. To un-
derstand the better suitability for CWA and UNA for enterprise ontologies, consider
the following example.

The enterprise ontology of a food-distribution company stores its pasta suppliers
and their respective production branches in the relation depicted in Table 1.1 (of the
company database).
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Supplier Branch City Branch Street
Barilla Rome Veneto
Barilla Naples Plebiscito
Voiello Naples Cavour

Table 1.1. The Supplier-Branch table.

Consider the following query: “which are the pasta suppliers of the company hav-
ing a branch only in Naples?”. The expected answer to this query is clearly “Voiello”.
This answer is obtained whenever the CWA is adopted (if the world is “closed”, then
Voiello cannot have branches other than those specified), and computed also in the
query language SQL. OWL, instead, provides an empty answer; it cannot entail that
Voiello has only a branch in Naples (since, according with the OWA, Voiello could
have also a branch in Rome).

To understand the role of the UNA, consider an axiom stating that each supplier
has a branch only in one city. Then, a language adopting UNA derives that the ontol-
ogy is inconsistent; while, OWL, missing the UNA, derives that Rome=Naples (i.e.,
the names Rome and Naples denote the same city!).

Similar scenarios are frequent when we deal with enterprise ontologies. In these
cases logic programming languages like DLP, strongly relying on CWA and UNA,
are definitely more appropriate than OWL. Disjunctive Logic Programming [30],
is a powerful logic programming language, which is very expressive in a precise
mathematical sense; in its general form, allowing for disjunction in rule heads and
nonmonotonic negation in rule bodies, DLP can represent every problem in the com-
plexity class ΣP

2 and ΠP
2 (under brave and cautious reasoning, respectively) [23].

However, DLP is, somehow, a “low-level” formalism for ontologies since in its
classical formulation it does not directly support the most common ontology con-
cepts like classes, inheritance, individuals, etc. Moreover, DLP systems are far away
from comfortably enabling the development of industry-level applications, mainly
because they miss important tools for supporting users and programmers. In particu-
lar, friendly user interfaces are missing, and there is a lack of advanced Application
Programming Interfaces (API) for implementing applications on top of DLP sys-
tems.

1.2 Contribution of the Thesis

This thesis work describes OntoDLV , a DLP-based system for knowledge mod-
eling and advanced knowledge-based reasoning, which addresses all the above-
mentioned issues.

On the one hand,OntoDLV overcomes the semantic clash to database semantics
of OWL, thanks to the adoption of CWA and UNA of DLP.

On the other hand, OntoDLV enhances DLP with the most relevant ontology
constructs.

Indeed, OntoDLV implements a powerful logic-based ontology representation
language, called OntoDLP , which is an extension of DLP with all the main ontol-
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ogy constructs including classes, relations, inheritance, and axioms. OntoDLP is
strongly typed, and includes also complex type constructors, like lists and sets.

Importantly, OntoDLV supports a powerful interoperability mechanism with
OWL, allowing the user to retrieve information also from OWL Ontologies and to
exploit this information in OntoDLP ontologies 1.

Moreover,OntoDLV allows the development of complex applications in a user-
friendly visual environment; and it seamlessly integrates the DLV system [40] ex-
ploiting the power of a stable and efficient DLP solver. The system is also able to
seamlessly switch to DLV DB [61], taking advantage of relational database capabil-
ities.

Using OntoDLV , domain experts can create, modify, navigate, and query on-
tologies thanks to a user-friendly visual environment; and, at the same time, applica-
tion developers can easily implement knowledge-intensive applications embedding
OntoDLP specifications by exploiting a complete Application Programming Inter-
face (API). Indeed, OntoDLP is already used for the development of real-world
applications including agent-based systems, information extraction and text classifi-
cation frameworks.

The main contributions of the thesis can be grouped in three categories:

• Language. We defined a powerful language, calledOntoDLP , for the represen-
tation and reasoning on enterprise ontologies. The language complies with the
semantic assumption of databases and is endowed with interoperability mecha-
nisms to OWL.

• Algorithms. We designed a bunch of algorithms and optimization techniques for
the efficient implementation of the proposed language.

• System and implementation. We implemented the OntoDLV system, fully
supporting the OntoDLP language. The system is endowed with a friendly vi-
sual interface and powerful API for the development of knowledge-based appli-
cations.

Both the language (OntoDLP ) and the system (OntoDLV ) have features that
make them well suited for managing enterprise ontologies. Among the features of
the language, we recall:

• Ontology constructs, such as classes, relations, (multiple) inheritance: essential
to build a domain representation;

• Axioms: a way to enforce properties that must hold in a consistent domain;
• Modular programming: logic programs defining reasoning tasks may be split

over different reasoning modules;
• Rich set of data types: OntoDLP can handle strings, integers, decimal num-

bers and dates. In addition to simple operations, also aggregate functions can be
applied;

• Complex types (e.g., lists and sets): the language has the ability to build and
explore complex, nested data structures and use them as values;

1 It is well known that rule-based inference systems are needed by OWL applications [34,
36].
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• Objects reclassification support (collection classes), intensionally defined rela-
tions: entities which are defined by specifying the properties they hold, rather
than explicitly enumerated;

• Meta reasoning capabilities: the language offers capabilities to reason on the
structure of the ontology, rather than on the data contained therein;

• OWL interoperability mechanisms at language level:OntoDLP supports a kind
of OWL atoms, able to gather knowledge from elsewhere stored OWL ontologies

The system also features:

• Application Programming Interface (API): all OntoDLV functionalities are ac-
cessible through an easy-to-use programming interface that exposes concepts at
a higher level;

• Modular architecture, based on an extensible ontology storage engine: the sys-
tem can use (and mix) different storage engines (on filesystem, on a relational
database, etc.), for different parts of the ontology;

• Mass-memory query execution: OntoDLV supports the direct execution of
queries in mass memory on (possibly remote) relational databases;

• OWL interoperability mechanism at system level: OntoDLV has the ability to
import (from OWL) and export (to OWL) any ontology, keeping entailment com-
patibility for a significant fragment of OWL language;

1.3 Organization

The rest of this work is organized as follows:

In the first part, we focus on the characteristics of the language, OntoDLP .
In Chapter 2 we introduce some preliminaries about the domain of logic pro-

gramming in general and disjunctive logic programming in particular. Chapter 3 de-
scribes the language OntoDLP , highlighting its base characteristics, the ability to
define intensional entities, enhanced data types, lists and sets, name extensions, and
external knowledge gathering constructs. The ability to reason on structure of the
ontology, called meta reasoning, is described in Chapter 4.

The mechanisms for achieving interoperability with OWL are illustrated in Chap-
ter 5; we describe therein import/export facility and the ability to reason on top of
OWL ontologies, via OWL atoms.

In the second part we describe the system, OntoDLV .
Architecture and capabilities of the system are described in Chapter 6.
Base principles and features of Application Programming Interface are taken into

account in Chapter 7.

Eventually, in the third part, Chapter 8 compares our work with a number of
languages and systems, related to OntoDLP and OntoDLV , already proposed in
the literature.

Chapter 9 concludes this thesis.
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The language: OntoDLP





2

Disjunctive logic programming (DLP)

In this chapter, we provide a formal definition of the syntax and the semantics of
Disjunctive Logic Programming (DLP), which our OntoDLP language is built on.
For further background, see [44, 23, 30].

2.1 Syntax

A term is either a variable or a constant. An atom is an expression p(t1, . . .,tn), where
p is a predicate of arity n and t1,. . . ,tn are terms. A literal is a positive literal p or a
negative literal not p, where p is an atom.

A disjunctive rule (rule, for short) R is a formula

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm. (2.1)

where a1, · · · , an, b1, · · · , bm are atoms and n ≥ 0, m ≥ k ≥ 0. The dis-
junction a1 v · · · v an is called head of R, while the conjunction b1, · · · , bk,
not bk+1, · · · , not bm is the body of R. We denote by H(r) the set {a1, ..., an}
of the head atoms, and by B(R) the set of the body literals. In particular, B(R) =
B+(R) ∪ B−(R), where B+(R) (the positive body) is {b1,. . . , bk} and B−(R)
(the negative body) is {bk+1, . . . , bm}. A rule having precisely one head literal (i.e.
n = 1) is called a normal rule. If the body is empty (i.e. k = m = 0), it is called a
fact, and we usually omit the “ :- ” sign.

An (integrity) constraint is a rule without head literals (i.e. n = 0)

:- b1, · · · , bk, not bk+1, · · · , not bm. (2.2)

A disjunctive logic program (often simply DLP program) P is a finite set of
rules (possibly including integrity constraints), and Rules(P) denotes the set of rules
(including integrity constraints) in P . A not-free program P (i.e., such that ∀r ∈ P :
B−(r) = ∅) is called positive, and a v-free program P (i.e., such that ∀r ∈ P :
|H(r)| ≤ 1) is called normal logic program.
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A rule is safe if each variable in that rule also appears in at least one positive
literal in the body of that rule. A program is safe, if each of its rules is safe, and in
the following we will only consider safe programs.

A term (an atom, a rule, a program, etc.) is called ground, if no variable appears
in it. A ground program is also called a propositional program.

Given a literal l, let not.l = a if l = not a, otherwise not.l = not l, and given a
set L of literals, not.L = {not.l | l ∈ L}.

Example 2.1. For example consider the following program:

r1 : a(X) v b(X) :- c(X,Y ), d(Y ), not e(X).
r2 : :- c(X, Y ), k(Y ), e(X), not b(X).
r3 : m :- n, o, a(1).
r4 : c(1, 2).

r1 is a disjunctive rule s.t. H(r1) = {a(X), b(X)}, B+(r1) = {c(X,Y ), d(Y )},
and B−(r1) = {e(X)}; r2 is a constraint s.t. B+(r2) = {c(X, Y ), k(Y ), e(X)},
and B−(r2) = {b(X)}; r3 is a ground positive (non-disjunctive) rule s.t. H(r3) =
{m} B+(r3) = {n, o, a(1)}, and B−(r3) = ∅; r4 is a fact (note that :- is omitted).

Relevant Classes of Programs

In this paragraph, we introduce syntactic classes of disjunctive logic programs with
interesting properties. First we need the following:

Definition 2.2. Functions || || : BP → {0, 1, . . .} from the Herbrand Base BP to
finite ordinals are called level mappings of P.

Level mappings give a useful technique for describing various classes of programs.

Definition 2.3. A disjunctive logic program P is called (locally) stratified [5, 50], if
there is a level mapping || ||s of P such that, for every rule r of Ground(P)1,

1. for any l ∈ B+(R), and for any l′ ∈ H(r), ||l||s ≤ ||l′||s;
2. for any l ∈ B−(R), and for any l′ ∈ H(r), ||l||s < ||l′||s.
3. for any l, l′ ∈ H(r), ||l||s = ||l′||s.

Example 2.4. Consider the following two programs.

P1 = {p(a) v p(c) :- not q(a). ; p(b) :-not q(b).}

P2 = {p(a) v p(c) :- not q(b). ; q(b) :-not p(a).}
It is easy to see that program P1 is stratified, while program P2 is not. A suitable

level mapping for P1 is the following:

1 See 2.2 for a definition of Ground(P)
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||p(a)||s = 2 ||p(b)||s = 2 ||p(c)||s = 2
||q(a)||s = 1 ||q(b)||s = 1 ||q(c)||s = 1

As for P2, an admissible level mapping would need to satisfy ||p(a)||s < ||q(b)||s
and ||q(b)||s < ||p(a)||s, which is impossible.

Another interesting class of problems consists of head-cycle free programs.

Definition 2.5. A program P is called head-cycle free (HCF) [10, 11], if there is a
level mapping || ||h of P such that, for every rule r of Ground(P),

1. for any l ∈ B+(R), and for any l′ ∈ H(r), ||l||h ≤ ||l′||h;
2. for any pair l, l′ ∈ H(r) ||l||h 6= ||l′||h.

Example 2.6. Consider the following program P3.

P3 := {a v b. ; a :- b.}

It is easy to see that P3 is head-cycle free; an admissible level mapping for P3 is
given by ||a||h = 2 and ||b||h = 1. Consider now the program

P4 = P3 ∪ {b :- a.}

P4 is not head-cycle free, since a and b should belong to the same level by Condition
(1) of Definition 2.5, while they cannot by Condition (2) of that definition. Note,
however, that P4 is stratified.

Another characterization of the HCF property is given in term of the so called
dependency graph.

Definition 2.7. With every ground programP , we associate a directed graph DGP =
(N, E), called the dependency graph of P , in which (i) each atom of P is a node in
N and (ii) there is an arc in E directed from a node a to a node b iff there is a rule r
in P such that b and a appear in the head and positive body of r, respectively.

The graph DGP singles out the dependencies of the head atoms of a rule r on
the positive atoms in its body.2

Example 2.8. Consider the programs

P5 = {a v b. ; c :- a. ; c :- b.}
P6 = P5 ∪ {d v e :- a. ; d :- e. ; e :- d, not b.}.

The dependency graph DGP5 of P5 is depicted in Figure 2.1 (a), while the de-
pendency graph DGP6 of P6 is depicted in Figure 2.1 (b).

2 Note that negative literals cause no arc in DGP .
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Fig. 2.1. Graphs (a) DGP4 , and (b) DGP5

Definition 2.9. [10, 11] A program P is head-cycle-free (HCF) iff there is no rule r
in P such that two atoms occurring in the head of r are in the same cycle of DGP .

Example 2.10. Considering Example 2.8, the dependency graphs given in Figure 2.1
reveal that program P4 is HCF and that program P5 is not HCF, as rule d v e :- a.
contains in its head two atoms belonging to the same cycle of DGP5 .

Another refinement of this property is given in term of the components of the
dependency graph.

Definition 2.11. A component C of a dependency graph DG is a maximal subgraph
of DG such that each node in C is reachable from any other. The subprogram of C
consists of all rules having some atom from C in the head. An atom is non-HCF if
the subprogram of its component is non-HCF.

2.2 Semantics

The semantics of a disjunctive logic program is given by its stable models [49], which
we briefly review in this section.

Given a program P , let the Herbrand Universe UP be the set of all constants
appearing in P and the Herbrand Base BP be the set of all possible ground atoms
that can be constructed from the predicate symbols appearing in P with the constants
of UP .

Given a rule R, Ground(R) denotes the set of rules obtained by applying all
possible substitutions σ from the variables in R to elements of UP . Similarly, given
a program P , the ground instantiation P of P is the set

⋃
R∈P Ground(R).

Stable Models

For every program P , we define its stable models using its ground instantiation in
two steps: First we define the stable models of positive programs, then we give a
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reduction of general programs to positive ones and use this reduction to define stable
models of general programs.

A set L of ground literals is said to be consistent if, for every atom ` ∈ L, its
complementary literal not ` is not contained in L. An interpretation I for P is a
consistent set of ground literals over atoms in BP .A ground literal ` is true w.r.t. I if
` ∈ I; ` is false w.r.t. I if its complementary literal is in I; ` is undefined w.r.t. I if it
is neither true nor false w.r.t. I .

LetR be a ground rule in P . The head ofR is true w.r.t. I if exists a ∈ H(r) s.t.
a is true w.r.t. I (i.e., some atom in H(r) is true w.r.t. I). The body ofR is true w.r.t.
I if ∀` ∈ B(r), ` is true w.r.t. I (i.e. all literals on B(r) are true w.r.t I). The body of
R is false w.r.t. I if ∃` ∈ B(r) s.t. ` is false w.r.t I (i.e., some literal in B(r) is false
w.r.t. I). The rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its body
is false w.r.t. I .

Interpretation I is total if, for each atom A in BP , either A or not.A is in I (i.e.,
no atom in BP is undefined w.r.t. I). A total interpretation M is a model for P if, for
every R ∈ P , at least one literal in the head is true w.r.t. M whenever all literals in
the body are true w.r.t. M . X is a stable model for a positive program P if its positive
part is minimal w.r.t. set inclusion among the models of P .

Example 2.12. Consider the positive programs:

P1 = {a v b v c. ; :- a.}
P2 = {a v b v c. ; :- a. ; b :- c. ; c :- b.}

The stable models of P1 are {b,not a,not c} and {c,not a,not b}, while
{b, c, not a} is the only stable model of P2.

The reduct or Gelfond-Lifschitz transform of a general ground program P w.r.t.
an interpretation X is the positive ground program PX , obtained from P by (i) delet-
ing all rulesR ∈ P whose negative body is false w.r.t. X and (ii) deleting the negative
body from the remaining rules.

A stable model of a general program P is a model X of P such that X is a stable
model of PX .

Example 2.13. Given the (general) program

P3 = {
a v b :- c. ;
b :- not a, not c. ;
a v c :- not b.

}

and the interpretation I = {b, not a,not c}, the reduct PI
3 is {a v b :- c., b.}. I is a

stable model of PI
3 , and for this reason it is also a stable model of P3. Now consider

J = {a,not b,not c}. The reduct PJ
3 is {a v b :- c. ; a v c.} and it can be easily

verified that J is a stable model of PJ
3 , so it is also a stable model of P3.
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2.3 Some DLP Properties

In this section, we recall some important properties of (ground) DLP programs.

Definition 2.14. Given an interpretation I for a ground program P , we say that a
ground atom A is supported in I if there is a supporting rule r ∈ ground(P), i.e.
the body of r is true w.r.t. I and A is the only true atom in the head of r.

Proposition 2.15. [45, 42, 8] If M is a stable model of a program P , then all atoms
in M are supported.

Example 2.16. Consider the program P2 of Example 2.12, and its stable model M =
{b, c, not a}. We have that M contains two atoms (b and c), and both of them are
supported, in fact: the rule b :- c supports b, and the rule c :- b supports c.

Another important property of stable models is related to the notion of unfounded
set [63, 42].

Definition 2.17. Let I be a (partial) interpretation for a ground program P . A set
X ⊆ BP of ground atoms is an unfounded set for P w.r.t. I if, for each a ∈ X and
for each rule r ∈ P such that a ∈ H(r), at least one of the following conditions
holds: (i) B(r) ∩ not.I 6= ∅, (ii) B+(r) ∩X 6= ∅, (iii) (H(r)−X) ∩ I 6= ∅.

Let II denote the set of all interpretations of P for which the union of all un-
founded sets for P w.r.t. I is an unfounded set for P w.r.t. I as well3. Given I ∈ II,
let GUS(I) (the greatest unfounded set of P w.r.t. I) denote the union of all un-
founded sets for P w.r.t. I .

Proposition 2.18. [42] If M is a total interpretation for a program P . M is a stable
model of P iff not.M = GUS(M).

2.4 Computational Complexity

In this section, we recall the computational complexity of Disjunctive Logic Pro-
gramming. We first provide some preliminaries on the complexity theory. Then, we
define the main computational problems under consideration and illustrate their pre-
cise complexity.

2.4.1 The Polynomial Hierarchy

We assume that the reader is familiar with the concepts of NP-completeness and
complexity theory and so we provide only a very short reminder of the complexity
classes of the Polynomial Hierarchy which are relevant to this chapter. For further
details, the reader is referred to [48].
3 While for non-disjunctive programs the union of unfounded sets is an unfounded set for all

interpretations, this does not hold for disjunctive programs (see [42]).
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The classes ΣP
k , ΠP

k , and ∆P
k of the Polynomial Hierarchy (PH, cf. [38]) are

defined as follows:
∆P

0 = ΣP
0 = ΠP

0 = P

and for all k ≥ 1, ∆P
k = PΣP

k−1 , ΣP
k = NPΣP

k−1 ,ΠP
k = co-ΣP

k ,

where NPC denotes the class of decision problems that are solvable in polynomial
time on a nondeterministic Turing machine with an oracle for any decision problem
π in the class C. In particular, NP = ΣP

1 , co-NP = ΠP
1 , and ∆P

2 = PNP.
The oracle replies to a query in unit time, and thus, roughly speaking, models a

call to a subroutine for π that is evaluated in unit time.
Observe that for all k ≥ 1,

ΣP
k ⊆ ∆P

k+1 ⊆ ΣP
k+1 ⊆ PSPACE

where each inclusion is widely conjectured to be strict. By the rightmost inclusion
above, all these classes contain only problems that are solvable in polynomial space.
They allow, however, a finer-grained distinction among NP-hard problems that are in
PSPACE.

2.4.2 Complexity of the Main DLP Decision Problems

Three important decision problems, corresponding to three different reasoning tasks,
arise in the context of Disjunctive Logic Programming:

Brave Reasoning. Given a program P , and a ground atom A, decide whether A
is true in some stable model of P (denoted P |=b A).
Cautious Reasoning. Given a program P , and a ground atom A, decide whether
A is true in all stable models of P (denoted P |=c A).
Stability Checking. Given a program P , and a set M of ground literals as input,
decide whether M is a stable model of P .

We summarize the complexity of these decision problems for ground (i.e., proposi-
tional) DLP programs; we shall address the case of non-ground programs at the end
of this section.

An interesting issue is the impact of syntactic restrictions on the logic program
P . Starting from normal positive programs (without negation and disjunction), we
consider the effect of allowing the (combined) use of the following constructs:

• stratified negation (nots),
• arbitrary negation (not),
• head-cycle free disjunction ( vh ),
• arbitrary disjunction ( v ).

Given a set X of the above syntactic elements (with at most one negation and
at most one disjunction symbol in X), we denote by DLP[X] the fragment of DLP
where the elements in X are allowed. For instance, DLP[vh, nots] denotes the frag-
ment allowing head-cycle free disjunction and stratified negation.
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{} {nots} {not}

{} P P NP

{vh} NP NP NP

{v} ΣP
2 ΣP

2 ΣP
2

Table 2.1. The Complexity of Brave Reasoning in fragments of DLP

{} {nots} {not}

{} P P co-NP

{vh} co-NP co-NP co-NP

{v} co-NP ΠP
2 ΠP

2

Table 2.2. The Complexity of Cautious Reasoning in fragments of DLP

{} {nots} {not}

{} P P P

{vh} P P P

{v} co-NP co-NP co-NP

Table 2.3. The Complexity of Stability Checking in fragments of DLP

The complexity of Brave Reasoning and Cautious Reasoning from ground DLP
programs are summarized in Table 2.1 and Table 2.2, respectively. Table 2.3, shows
the results on the complexity of Stability Checking.

The rows of the tables specify the form of disjunction allowed; in particular, {}
= no disjunction, {vh} = head-cycle free disjunction, and {v} = unrestricted (possi-
bly not head-cycle free) disjunction. The columns specify the support for negation.
In detail, {}, {nots} and {not} denotes positive programs, negation as failure and
arbitrary negation respectively. Each entry of the table provides the complexity of
the corresponding fragment of the language, in terms of a completeness result. For
instance, ({vh}, {nots}) is the fragment allowing head-cycle free disjunction and
stratified negation. The corresponding entry in Table 2.1, namely NP, expresses that
brave reasoning for this fragment is NP-complete. The results reported in the tables
represent completeness under polynomial time (and in fact LOGSPACE) reductions.
All results have been proved in [23, 31, 24, 21, 13]. Furthermore, not all complexity
results in the quoted papers were explicitly stated for LOGSPACE reductions, but
can be easily seen to hold from (suitably adapted) proofs.
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Looking at Table 2.1, it can be seen that limiting the form of disjunction and
negation reduces the respective complexity. For disjunction-free programs, brave
reasoning is polynomial on stratified negation, while it becomes NP-complete if un-
restricted (nonmonotonic) negation is allowed. Brave reasoning is NP-complete on
head-cycle free programs even if no form of negation is allowed. The complexity
jumps one level higher in the Polynomial Hierarchy, up to ΣP

2 -complexity, if full
disjunction is allowed. Thus, disjunction seems to be harder than negation, since the
full complexity is reached already on positive programs, even without any kind of
negation.

Table 2.2 contains results for cautious reasoning. One would expect its com-
plexity to be symmetric to the complexity of brave reasoning, that is, whenever the
complexity of a fragment is C under brave reasoning, one expects its complexity to
be co-C under cautious reasoning (recall that co-P = P, and co-ΣP

2 = ΠP
2 ).

Surprisingly, there is one exception: While full disjunction raises the complexity
of brave reasoning from NP to ΣP

2 , full disjunction alone is not sufficient to raise the
complexity of cautious reasoning from co-NP to ΠP

2 . Cautious reasoning remains
in co-NP if default negation is disallowed. Intuitively, to disprove that an atom A is
a cautious consequence of a program P , it is sufficient to find any model M of P
(which need not be a stable model or a minimal model) which does not contain A.
For not-free programs, the existence of such a model guarantees the existence of a
subset of M which is a stable model of P (and does not contain A).

The complexity results for Stability Checking, reported in Table 2.3, help us
to understand the complexity of reasoning. Whenever Stability Checking is co-NP-
complete for a fragment F , the complexity of brave reasoning jumps up to the second
level of the Polynomial Hierarchy (ΣP

2 ). Indeed, brave reasoning on full DLP pro-
grams suffers from two sources of complexity:

(s1)the exponential number of model “candidates”,
(s2)the difficulty of checking whether a candidate M is stable (the minimality of M

can be disproved by an exponential number of subsets of M ).

Now, disjunction (unrestricted or even head-cycle free) or unrestricted negation
preserve the existence of source (s1), while source (s2) exists only if full disjunction
is allowed (see Table 2.3).

As a consequence, e.g., the complexity of brave reasoning is the highest (ΣP
2 )

in the fragments preserving both the two sources of complexity (where both full
disjunction and unrestricted negation are allowed). The complexity goes down to the
first level of PH if source (s2) is eliminated; avoiding source (s1) the complexity falls
down to P, as (s2) is automatically eliminated. Finally, we note that HCF disjunction
preserves the tractability of the Stability Checking

We close this section with briefly addressing the complexity and expressiveness
of non-ground programs. A non-ground program P can be reduced, by naive instan-
tiation, to a ground instance of the problem. The complexity of this ground instantia-
tion is as described above. In the general case, where P is given in the input, the size
of the grounding Ground(P) is single exponential in the size of P . Informally, the
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complexity of Brave Reasoning and Cautious Reasoning increases accordingly by
one exponential, from P to EXPTIME, NP to NEXPTIME, ΣP

2 to NEXPTIMENP,
etc. For disjunctive programs and certain fragments of DLP, complexity results in
the non-ground case have been derived e.g. in [23, 24]. For the other fragments, the
results can be derived using complexity upgrading techniques [23, 32].
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A DLP-based language for ontology representation
and reasoning: OntoDLP

The role of a knowledge representation language is to capture domain knowledge
and provide a commonly agreed upon understanding of a domain. The specification
of a common vocabulary defining the meaning of terms and their relations, usually
modeled by using primitives such as concepts organized in taxonomies, relations,
and axioms is commonly called an ontology.

In this chapter, we present OntoDLP , an extension of Disjunctive Logic Pro-
gramming (DLP) aimed at representing ontologies and enabling reasoning tasks on
them.

Organization

The remainder of this chapter is structured as follows. In Sec. 3.1, we present an
overview of the OntoDLP language with respect to extensional ontology entities
(i.e., entities whose instances are defined explicitly and independently).

Defining properties of instances is crucial to domain modeling; we describe the
choices available for properties’ types in Sec. 3.2.

Importantly, OntoDLP allows the usage of entities described by rules, rather
than by an explicit enumeration of instances; intensional entities are described in
Sec. 3.3.

Axioms and queries are presented in Sec. 3.4, together with reasoning modules.
In reasoning modules unstratified negation and disjunction are permitted, thus en-
hancing complexity up to ΣP

2 , allowing for direct encoding of complex problems.

3.1 Extensional ontology entities

An ontology in OntoDLP can be specified by means of base classes, and base
relations.

In the following subsections we describe these fundamental constructs; for a bet-
ter understanding, we will exploit an example (the living being ontology), which will
be built throughout the whole section, thus illustrating the features of the language.
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3.1.1 Base classes

One of the most powerful abstraction mechanism for the representation of a knowl-
edge domain is classification, i.e., the process of identifying object categories (classes),
on the basis of the observation of common properties (class attributes).

A class can be thought of as a collection of individuals that belong together
because they share some properties.

Suppose we want to model the living being domain, and we have identified four
classes of individuals: persons, animals, food, and places. Those classes can be de-
fined in OntoDLP as follows:

class person.

class animal.

class food.

class place.

The simplest way to declare a class is, hence, to specify the class name, preceded
by the keyword class1. However, when we recognize a class in a knowledge domain,
we also identify a number of properties or attributes which are defined for all the
individuals belonging to that class.

A class attribute can be specified in OntoDLP by means of a pair (attribute-
name : attribute-type), where attribute-name is the name of the property and attribute-
type is the class the attribute belongs to.

For instance, we can enrich the specification of the class person by the definition
of some properties that are common to each person: the name, age, father, mother,
and birthplace.

Note that many properties can be represented by using alphanumeric strings and
numbers. To this end, OntoDLP features the built-in classes string and integer, re-
spectively representing the class of all alphanumeric strings and the class of integer
numbers. Additionally, types like decimals, dates plus ”container types” are avail-
able; they are discussed later in this chapter, in Sec. 3.2.1 and 3.2.3.

Thus, the class person can be better modeled as follows:

class person(
name : string,
age : integer,
father : person,
mother : person,
birthplace : place).

1 The keyword class may be, in fact, preceded by keyword base; however, the latter is often
omitted, for brevity.
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Note that this definition is “recursive” (both father and mother are of type per-
son). Moreover, the possibility of specifying user-defined classes as attribute types
allows for the definition of complex objects, i.e., objects made of other objects2. It is
worth noting that attributes model the properties that must be present in all class in-
stances; properties that, might be present or not should be modeled, as will be shown
later, by using relations3.

In the same way, we could enrich the specification of the other above mentioned
classes in our domain by adding some attributes. For instance, we could have a name
for each place, food and animal, an age for each animal etc.

class place(name : string).

class food(name : string, origin : place).

class animal(name : string, age : integer, speed : integer).

Thus, each class definition contains a set of attributes, which is called class
scheme. The class scheme represents, somehow, the “structure” of (the data we have
about) the individuals belonging to a class.

Next section illustrates how we represent individuals in OntoDLP .

3.1.2 Objects

Domains contains individuals which are called objects or instances.
Each individual in OntoDLP belongs to a class and is univocally identified by

using a constant called object identifier (oid) or surrogate.
Objects are declared by asserting a special kind of logic facts (asserting that

a given instance belongs to a class). For example, we declare that “Rome” is an
instance of the class place as follows:

rome : place(name : ”Rome”).

Note that, when we declare an instance, we immediately give an oid to the in-
stance (in this case is rome), and a value to the attributes (in this case the name is the
string “Rome”).

The oid rome can now be used to refer to that place (e.g., when we have to fill
an attribute of another object). Suppose that, in our living being domain, there is
a person (i.e., an instance of the class person) whose name is “John”. John is 34
years old, lives in Rome, his father and his mother are identified by jack and ann
respectively. We can declare this instance as follows:

2 Unnamed aggregation of objects may be defined also via container types, see Sec. 3.2.3
3 In other words, an attribute (n : k) of a class c is a total function from c to k; while partial

functions from c to k can be represented by a binary relation on (c, k).
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john : person(
name : ”John”,
age : 34,
father : jack,
mother : ann,
birthplace : rome).

In this case, “john” is the object identifier of this instance, while “jack”, “ann”,
and “rome” are suitable oid’s respectively filling the attributes father, mother (both
of type person) and birthplace (of type place).

The language semantics guarantees the referential integrity, both jack, ann and
rome have to exist when john is declared.

3.1.3 Inheritance

Another relevant abstraction tool in the the field of knowledge representation is the
specialization/generalization mechanism, allowing to organize concepts of a knowl-
edge domain in a taxonomy. This is obtained in the object-oriented languages by
using the well-known mechanism of inheritance.

Inheritance is supported byOntoDLP , and class hierarchies can be specified by
using the special binary relation isa.

For instance, one can exploit inheritance to represent some special categories of
persons, like students and employees, having some extra attribute, like a school, a
company etc. This can be done in OntoDLP as follows:

class student isa person(
code : string,
school : string,
tutor : person).

class employee isa person(
salary : integer,
skill : string,
company : string,
tutor : employee).

In this case, person is a more generic concept or superclass and both student and
employee are a specialization (or subclass) of person. Moreover, an instance of stu-
dent will have both the attributes: code, school, and tutor, which are defined locally,
and the attributes: name, age, father, mother, and birthplace, which are defined in
person. We say that the latter are “inherited” from the superclass person. An analo-
gous consideration can be made for the attributes of employee which will be name,
age, father, mother, birthplace, salary, skill, company, and tutor.

An important (and useful) consequence of this declaration is that each proper
instance of both employee and student will also be automatically considered an in-
stance of person (the opposite does not hold!).
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For example, consider the following two instances of student and employee:

al : student(name : ”Alfred”,
age : 20,
father : jack,
mother : betty,
birthplace : rome,
code : ”100”,
school : ”Cambridge”,
tutor : hanna).

jack : employee(name : ”Jack”,
age : 54,
father : jim,
mother : mary,
birthplace : rome,
salary : 1000,
skill : ”Javaprogrammer”,
company : ”SUN”,
tutor : betty).

They are automatically considered also instances of person as follows:

al : person(name : ”Alfred”,
age : 20,
father : jack,
mother : betty,
birthplace : rome).

jack : person(name : ”Jack”,
age : 54,
father : jim,
mother : mary,
birthplace : rome).

Note that we do not need to assert the above two instances, both al and jack are
automatically considered instances of person.

In OntoDLP there is no limitation on the number of superclasses (i.e., multiple
inheritance is allowed). Thus, a class can be a specialization of any number of classes,
and, consequently, it inherits all the attributes of its superclasses.

As an example, consider the following declaration:

class stud emp isa {student, employee}(
workload : integer).
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So, the class stud emp (exploiting multiple inheritance) is a subclass of both
student and employee. Note that, the attribute tutor is defined in both student, with
type student, and employee with type employee 4.

In this case, the attribute tutor will be taken only once in the scheme of stud emp,
but it is not intuitive what type will be taken for it.

This tricky situation is dealt with by applying a simple criterion. The type of
the “conflicting” attribute tutor will be employee, which is the “intersection” (some-
how in the sense of instance sharing) of the two types of the tutor attribute (person
and employee). This choice is reasonably safe, and guarantees that all instances of
stud emp are correct instances of both student and employee.

We complete the description of inheritance recalling that there is also another
built-in class in OntoDLP , which is the superclass of all the other classes (whether
they are user defined or built-in) and is called object (or >). An immediate subclass
of object is individual, which is the common superclass of all base classes (see Sec.
3.2.4).

3.1.4 Base relations

A fundamental feature of a knowledge representation language is the capability to
express relationships among the objects of a domain. This can be done inOntoDLP
by means of (base) Relations.

Relations are declared like classes: the keyword relation5 (instead of class) pre-
cedes a list of attributes.

As an example, the relation friend, which models the friendship between two per-
sons, and the relation lived containing information about the places where a person
lived can be declared as follows:

relation friend(pers1 : person, pers2 : person).

relation lived(per : person, pla : place, period : string).

Like classes, the set of attributes of a relation is called scheme while the cardi-
nality of the scheme is called arity. The scheme of a relation defines the structure of
its tuples (this term is borrowed from database terminology).

In particular, to assert that a person, say “john”, lived in Rome for two years we
write the following logic fact:

lived(per : john, pla : rome, period : ”twoyears”).

4 We acknowledge that is quite unnatural that the tutor of a student employee is an employee.
Actually we made this choice to show an important feature of the language.

5 The keyword relation may be, in fact, preceded by keyword base; however, the latter is
often omitted, for brevity.
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We call this assertion a tuple of the relation lived. Thus, tuples of a relation are
specified similarly to class instances, that is, by asserting a set of facts (but tuples are
not equipped with an object identifier).

It is worth noting that OntoDLP base relations support inheritance, like base
classes do.

As an example, we could define the relation trustedFriend as a subrelation of
friend, as follows:

relation trustedFriend isa friend(trustLevel : integer).

Instances of relation trustedFriend are thus also seen as instances of friend, while
the opposite is not true.

3.2 Typing system

OntoDLP features a number of useful types and type constructors; in the following,
we introduce them.

First, built-in classes provided are analyzed in Sec. 3.2.1. We describe naming
system, together with reserver names and namespace concept, in Sec. 3.2.2.

Container classes, i.e., lists and sets, are explained in Sec. 3.2.3.
The complete type hierarchy of OntoDLP is finally shown in Sec. 3.2.4.

3.2.1 Built-in classes

OntoDLP provides the built-in classes depicted in Figure 3.1. Classes are organized
in an isa hierarchy rooted in object.

number

object

string date individual list classes set classes

Fig. 3.1. builtin class hierarchy

The direct subclasses of object are:

• string: strings of characters
• date: Gregorian dates (without time)
• individual: common root of all user defined base classes (3.1.1)
• number: numerals
• container types (lists and sets, 3.2.3)
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Thus, each class instance is also an instance of object (indirectly), which therefore
is the most general type in OntoDLP . object is the ”universe” of the language: any
legal value is necessarily the object identifier of some class instance, whose type is a
subclass of object. In the following, we illustrate the above classes, describing their
extensions and properties.

Strings

Strings are sequences of Unicode characters enclosed in double quotes (”). Some
Unicode characters cannot be used, namely the control characters:

• Ctrl-C (Unicode 0003)
• Ctrl-D (Unicode 0004)
• Ctrl-E (Unicode 0005)

Besides, there are some special (control) characters that can be used in strings, pro-
vided they are properly encoded, as follows:

• single quotes → \’
• double quotes → \”
• horizontal tabulation → \t
• newline → \n
• carriage return → \r
• backslash → \ \

OntoDLP number classes and their hierarchy

Numbers are organized in a class hierarchy whose root is the class number. Like
object class, number does not have any proper values; its values come from its
subclasses. Actual numeric classes are of the form decimal[n,m], where n and m
represent, the maximum number of integer (resp. decimal) digits of the elements of
this data type (n ≥ 1, m ≥ 0). In other words, decimal[n,m] is the set of numbers
having at most n integer digits and at most m decimal digits. decimal is used as
synonymous for decimal[9, 9].

Moreover, each number class has two subclasses, which form a complete par-
tition over the number class’s domain into positive (and zero) values and negative
values. In particular:

• number has two direct subclasses: positive number and negative number
• each decimal[X, Y ] class has two direct subclasses: positive decimal[X,Y ]

and negative decimal[X, Y ];
• each integer[X] class has two direct subclasses: positive integer[X] and

negative integer[X].

Also, positive decimal[n, 0] (resp. negative decimal[n, 0]) is aliased to positive
integer [n] (resp. negative integer[n]) . Decimal classes are organized in a hierar-
chy, where direct children of decimal[n,m] are decimal[n−1,m] and decimal[n,m−
1]; the lowest classes of the hierarchy (i.e., the leaves of the isa tree) are the classes
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of the form decimal[n, 0]. Classes of the former kind collect integer numbers and
can be equivalently denoted by integer[n]. The top decimal classes, i.e., the decimal
classes which are direct subclasses of number, are the decimal classes of the form
decimal[n, m] such that n + m = 18, n ≤ 9 and m ≤ 9 (thus, the only top decimal
class is decimal[9, 9]). Note that: decimal[X,Y ] is a (direct or indirect) subclass of
decimal[X1, Y 1] if both X ≤ X1 and Y ≤ Y 1 hold; the intersection of (the values
of) any pair of classes decimal[X, Y ] and decimal[X1, Y 1] is given precisely by
the set of values in decimal[min(X,X1), min(Y, Y 1)].

These rules combine into a number hierarchy, depicted in Figure 3.2.

number

object

positive numbernegative number decimal[9,9]

decimal[9,8]decimal[8,9]negative decimal[9,9]

negative decimal[9,8]negative decimal[8,9]

positive decimal[9,9]

positive decimal[9,8]positive decimal[8,9]

Fig. 3.2. Number classes hierarchy

It is worth noting that each number is uniquely represented in a canonical form,
where superfluous zeroes in head and tail are omitted. For instance, 3.4100 is repre-
sented by 3.41 (the user is allowed to write 3.4100 for syntactic sugar, but the number
is represented in its canonical form 3.41 for OntoDLP ). Also ’.’ is omitted if there
is no decimal digit (3.0 is represented by 3 in canonical form). The proper instances
of positive decimal[n,m] are the positive numbers having precisely n integer dig-
its and m decimal digits in their canonical form. Conversely, proper instances of
negative decimal[m,n] are the negative numbers, having precisely n integer digits
and m decimal digits in their canonical form. Zero (0) is a special case and is con-
sidered as being part of positive decimal[1] class. Thus, each number is a proper
value of precisely one class. Some examples:

• 892.23 (which is the same as 892.230, 892.2300, etc.) is a proper instance of
positive decimal[3, 2]

• 28.3 is a proper member of positive decimal[2, 1]
• 0.75 is a proper member of positive decimal[1, 2]
• −0.75 is a proper member of negative decimal[1, 2]
• 3 (the same as 3.0, 3.00, 3.000, etc.) is a proper member of positive decimal[1, 0]

(equivalent to positive integer[1])
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Due to the number hierarchy, each of these values is also a (non-proper) instance
of other classes. For example:

• 892.23 is an instance of positive decimal[m,n] and of decimal[m,n] (for each
m ≥ 3 and n ≥ 2)

• 28.3 is an instance of positive decimal[m,n] and of decimal[m,n] (for each
m ≥ 2 and n ≥ 1)

• and so on . . .

In general, each numeric type can be:

• used in comparison operators inside rules;
• used with built-in operators such as +, ∗, −:

Dates

Dates are Gregorian dates, enclosed between two symbols ”ˆ”. A value of the date
class has the following format:

ˆ〈year〉〈month〉〈day〉ˆ
For example, ˆ20070512ˆ is a valid date, whereas ˆ200705 ˆ is not, due to missing

day-of-month. Dates do not include neither a time, nor a time zone.

3.2.2 Namespaces and reserved names

A known drawback of DLP is the impossibility to use names that either do not start
with a lowercase letter or contain ”strange” characters (such as white spaces, slashes,
etc.). OntoDLP overcomes this problem by allowing ”complex names”, composed
by any sequence of Unicode characters, enclosed in single quotes (’). For example,
’Piazza dei Bruzi’ is a valid name in OntoDLP and it can be used as follows:
’Piazza dei Bruzi’: place ( name:”Piazza dei Bruzi”).

Note that the character ’, used to enclose complex names is different than ”, used
for strings (see ”Strings” paragraph in 3.2.1). For example, ”Piazza dei Bruzi” is a
value of type , whereas ’Piazza dei Bruzi’ is the object identifier of a descendant
of class individual. A name in OntoDLP is seen as split into two components:
the namespace and the local name, separated by the symbol ”/”. For example, the
name ’people/jack’ has jack as local name and people as namespace. If multiple
slashes occur in a name, only the last one (from left to right) matters as a separator.
Therefore, the name ’http://www.example.org/people/jack’ has jack as local name
and http://www.example.org/people as namespace6.

When a name has no slashes, it is considered as being declared in the default
namespace; so, ’jack’ is an OntoDLP name whose local name is jack and whose
namespace is equal to default one. Additionally, single quotes around a name in the
default namespace may also be omitted, provided that it is regular enough to avoid
confusion with other language elements, such as variables names and keywords. In

6 Note that the separator does not belong to either the namespace or the local name.



3.2 Typing system 27

particular, a ”regular” name starts with a lowercase letter and does not contain any
special characters (such as spaces or slashes); thus, e.g., regular name myName can
be written also as ’myName’, whereas in ’my spaced name’ single quotes could not
be omitted. The default namespace can be changed using the following declaration:

#namespace ’<new default namespace>’

For example:

#namespace ’http://www.example.org/ontology/core’

changes the default namespace to http://www.example.org/ontology/core for each
simple name used in the ontology. When an explicit namespace declaration is miss-
ing, the default namespace is the empty string; so, for example, in absence of a
namespace declaration, ’simpleName’, ’/simpleName’ 7 and simpleName are quite
equivalent. Even when a default namespace declaration is present, names can belong
to different namespaces, using a prefix (alias). An alias can be declared as follows:

#alias prefix = ’namespaceDefinition’

Valid declarations of aliases are the following:

#alias core = ’http://www.example.org/ontology/core’

#alias living being = ’http://www.example.org/ontology/domain of the living being’

Aliases can be used to compose names, prefixing a local name with an alias name
and the symbol ”::”. For example:

’living being::person’

is fully equivalent to:

’http://www.example.org/ontology/domain of the living being/person’

7 ’/simpleName’ is obtained by concatenating a namespace equal to the empty string and a
local name equal to simpleName; remember that a slash ( / ) is always required to separate
namespace from local name.
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though the former is dependent on the declaration of alias living being, while
the latter is not dependent on anything. In this sense, the former syntax for names
is called ”relative”, while the latter is called ”absolute”. It should be noted that, in
order to avoid ambiguities, a local name cannot contain the symbols ”::” and ”/”,
while a namespace cannot contain the symbol ”::”. Some control characters cannot
be used in names, namely:

• Ctrl-C (Unicode 0003)
• Ctrl-D (Unicode 0004)
• Ctrl-E (Unicode 0005)

Besides, some special (control) characters can be used in names, provided they
are properly encoded, as follows:

• single quotes → \’
• double quotes → \”
• horizontal tabulation → \t
• newline → \n
• carriage return → \r
• backslash → \ \

It is useful to remember that some keywords (such as built-in classes and relations
names) belong to any conceivable namespace, including the empty one. Thus, they
are reserved everywhere and cannot be used outside its original meaning. Reserved
names include:

• the names of all classes that are built-in, namely:
object, individual
decimal, ′positive decimal′, ′negative decimal′

integer, ′positive integer′, ′negative integer′

number, ′negative number′, ′positive number′

string, date
• the names of meta-classes and relations 8, namely:

′base class′, ′base relation′, ′collection class′, ′intensional relation′

class, relation
isa , isaClosure
hasAttribute

3.2.3 Container classes: lists and sets

In this section we illustrate container classes, i.e. theOntoDLP constructs allowing
the representation of groups of objects. In particular, we show how the definition of
classes of type list and set allows to build terms at an arbitrary nesting level.

8 Meta classes and relations are explained in detail in chapter 4
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Lists as containers

In general, a list is an ordered group of values that accepts multiple copies of the
same value. For each class C, in OntoDLP there is an implicitly defined class ”list
of C” (referred as [C]). The instances of this class are all the possible lists having
instances of the class C as elements. The implicit definition of the list classes allows
declaring attributes having a list of objects as type. For example, we can define a
class person, adding the attribute sons with type list of person, as follows:

class person (name: string, age: integer, birthplace: place, sons : [person]).

Lists can appear inside the predicates of a rule as terms (see also Sec. 3.3.1). For
example, the predicate firstBorn associating each person to his first-born son can be
defined as 9:

firstBorn(X,Y) :- X: person(sons: [Y|R]).

In this case sons list is partitioned in two parts: Y represents the first element of
the list (denoted as list head) and R, the sublist obtained eliminating the first element
from the complete list (denoted as list tail)10 .

Using built-in functions, lists can be manipulated in an efficient way (avoiding
the use of recursion for enumerating list elements). The implicit definition of class
[object] allows the representation of list anyhow complex (nested lists and/or lists
containing heterogeneous elements).

Sets as containers

In a similar way, OntoDLP allows to define sets, which are collection of objects
whose order does not matter; unlike lists, sets do not accept multiple copies of a
given value.

Thus, for each class C, in OntoDLP there exists a class ”set of C” (referred
as {C}). The instances of this class are all the possible sets having instances of the
class C as elements.

Sets can be used as type of an attribute, like in:

class person (name: string, age: integer, birthplace: place, cars : {car}).

9 In this example, we are supposing that the sons list is ordered by age.
10 Since we do not care about what the tail is, we could also use substitute R for , thus writing:

firstBorn(X,Y) :- X: person(sons: [Y| ]).
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Sets can also be used inside the predicates of a rule as terms. For example, the
predicate twoCars identifying people having two cars can be defined as:

twoCars(X) :- X: person(cars: {Car1, Car2}).

3.2.4 The complete hierarchy

We are now able to look at the complete type hierarchy of OntoDLP . The common
superclass, called object, has six different built-in subclasses, namely:

• individual, common superclass of all base classes
• date, a non-derivable built-in class, for Gregorian dates
• number, the root of number classes hierarchy
• string, another non-derivable built-in class, representing strings
• [object], the generic ”list of objects” (and superclass of all list classes)
• {object}, the generic ”set of objects” (and superclass of all set classes)

Moreover, all the list classes are part of the OntoDLP inheritance hierarchy;
basically, the class [a] is a subclass of class [b] if class a is a subclass of class b. For
example, the class [student] is subclass of [person] if student is subclass of person.

This rule also applies to object: since every class is a subclass of object, given
a class a it holds certainly that [a] is a subclass of [object]. Moreover, object is
a special class with respect to inheritance. In fact, inheritance relations involving
container classes always relate container classes at the same nesting depth, with only
two exceptions, regarding object class:

• a list of objects is an object ([object] isa object)
• a set of objects is an object ({object} isa object)

A property of container classes spring from these rules; since object is superclass
of all classes, [object] is superclass of [[...everyotherclass...]], and, in particular, of
[[object]]. Thus, the hierarchy relation between object and [object] generates an
infinite hierarchy of list classes having increasing depths. Of course, this also applies
to {object}, e.g., object is superclass of object, etc.

Combining both hierarchy dependencies, we have that [object] is also superclass
of [{object}], e.g., ”a list of sets of objects is also a list of objects”, since a set of
objects is an object in itself. Similarly, we can say that {object} is also superclass
of {[object]}, e.g., ”a sets of lists of objects is also a set of objects”, since a list of
objects is an object in itself.

The class hierarchy springing from these rules is, in fact, unlimited; a scheme
that depicts how it could be generated is in Figure 3.3.

While an OntoDLP ontology can use classes in any depth level in the hierar-
chy, a given ontology uses only a limited subset of the classes, thus defining a finite
”view” of the unlimited hierarchy.
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lists of objects

lists of sets of objects

lists of lists of objects

lists of lists of lists of objects

sets of objects

sets of lists of objects

sets of sets of objects

sets of sets of sets of objects

number

object

string

date

individual user classes ...

[object]

[individual]

[number]

[string]

[date]

lists of user classes’ instances

[{object}] ...etc...

[[object]]

[[individual]]

[[number]]

[[string]]

[[date]]

lists of lists user classes’ instances

[[[object]]] ...etc...

{object}

{individual}

{number}

{string}

{date}

sets of user classes’ instances

{[object]} ...etc...

{{object}}

{{individual}}

{{number}}

{{string}}

{{date}}

sets of sets user classes’ instances

{{{object}}} ...etc...

Fig. 3.3. OntoDLP class hierarchy, with containers
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An example

As an example, let’s consider a small ontology with four classes a, b, c, and d, de-
picted in Fig. 3.4.

class a.
class b isa {a}.
class c isa {a}.
class d isa {b, c}.

b

a

c

d

Fig. 3.4. A simple class hierarchy

From these declarations, the class hierarchy scheme in Fig. 3.4 is instantiated
into a class hierarchy whose first levels are shown in Fig. 3.5.

first-level classes

lists of objects sets of objects

... built-in classes ...

object

individual

b

a

c

d

[object]

[individual] ...lists of builtin class instances...

[a]

[b] [c]

[d]

{object}

{individual} ...sets of builtin class instances...

{a}

{b} {c}

{d}

Fig. 3.5. The class hierarchy OntoDLP ”sees”, an extension of the previous one
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3.3 Intensional ontology entities

In addition to base classes, base relations and their instances, OntoDLP offers to
the user the possibility to define knowledge by means of other constructs that exploit
the inferential features of the language. Logical rules are, in fact, the basis which
these constructs are built on. In particular, OntoDLP modeling constructs defined
by means of logical rules include:

• intensional relations : relations whose instances can be declared explicitly as well
as inferred through rules (as opposed to base relations, whose instances have to
be enumerated);

• collection classes : a mean to collect object identifiers defined elsewhere and
assign them a set of attributes, either via explicit declaration of values or through
rules.

In the next sections we illustrate the above language constructs. In Sec. 3.3.1, we
present the basic building blocks of these constructs: logical terms, arguments, liter-
als and rules. Then, we show how base class instances (see 3.1) can be reclassified
by using collection classes. Similarly, we illustrate how intensional relations can be
defined by inferring tuples by means of logical rules.

Other constructs based on logical rules are described in Sec. 3.4.

3.3.1 Building blocks: terms, arguments, literals

Since OntoDLP extends the Disjunctive Logic Programming, it inherits the capa-
bility to express logical rules, built on literals; the latter use logical terms.

Logical terms

Logical terms are the ”atoms” of the inferential process; in OntoDLP , a term can
be:

• a variable, either having a ”regular” name starting with an uppercase letter (such
as X, Zed, etc.), or an anonymous one expressed as (whose meaning is ”do not
care”);

• a constant value of one of the aforementioned classes (namely, a decimal value,
a date, a string, a name or a list/set of values, possibly nested);

• a complex term whose values are later determined to be the object identifiers of
entities satisfying some properties (this allows navigating ontology right from
terms);

• a list enumeration term, composed of other terms grouped in a list (such as [First,
Second, Third]);

• a set enumeration term, composed of other terms grouped in a set (such as
{OneMember, ASecondMember, AThirdMember});

• a head/tail list term, used to decompose lists into first element and the next ones
(such as [Head|Tail]).



34 3 A DLP-based language for ontology representation and reasoning: OntoDLP

Variables and constant values are simple terms, in that they are not built on top of
other terms, whereas complex terms, list enumeration terms and head/tail list terms
can use general terms in their syntax. Terms can be combined at arbitrarily deep
nesting levels, resulting in complex expressions, such as in:

• employee(worksIn: company(foundedInYear: 2002)) all employees that work
in companies whose founding year is 2002 [complex on complex on constant
value];

• [[1,2], [3,4]] a list whose elements are two lists of numbers ([1,2] and [3,4])
[list on list on constant values];

• [X, Y, Z] a list whose elements are variables, may turn out to represent any three-
element list depending on the actual values of X, Y, Z11 [list on variables];

• {X, Y, Z} a set whose elements are variables, may turn out to represent any three-
element set depending on the actual values of X, Y, Z [set on variables];

• [company(foundedInYear: 2002), company(foundedInYear: 2006)] a list of two
elements, where the former is an object identifier of companies founded in 2002
and the latter is oid of companies founded in 2006; this may turn out to represent
many lists, depending on the number of combinations of companies having these
properties [list on complex on constant value].

Arguments

An argument is the occurrence of a term linked to some schema. It may specify a
name (such as age : X) or not (e.g., just 42). While unnamed arguments are exactly
the kind of arguments supported in plain DLP, the former are an extra feature of
OntoDLP , which allows pointing out an attribute on the basis of its name, rather
than on its positioning among the others. For that reason, lists of arguments having
a name are said to be in non-positional notation, whereas if no one of the arguments
in the list has a name before it, the list itself is said to be in positional notation. Note
that a list of argument cannot mix both named and unnamed arguments; it would be
considered as a syntax error.

Literals

Literals are the building blocks of many reasoning constructs (including rules); they
are heavily based on terms and arguments. Supported literals are of the following
kinds:

• simple literals, referring to knowledge contained into the ontology
• aggregate literals, expressing ways to aggregate knowledge using accumulation

operators
• built-in literals, expressing knowledge about some built-in relations (such as

value comparisons or arithmetics)

A list of literals separated by commas is a conjunction; a list of simple literals
separate by ∨ symbol is a disjunction.
11 Note that some or all of X, Y, Z may be lists or sets themselves; thus, the proposed term

would match e.g., [[1, 2], 3, a].
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Simple literals

Simple literals refer to knowledge contained in the ontology; the general syntax is

[oid:] name (arg1, ..., argn)

where:

• oid is a term whose value will be (if it is a variable) or dictates (if it is a constant
term), the object identifier of entity referred to (valid only if it is a base class or
a collection class)

• name refers to an entity defined in the ontology (such as a base class, a base
relation, a collection class or an intensional relation) or an auxiliary predicate

• arg1, ..., argn are arguments referring to attributes of the entity

Moreover, name can be also the name of a built-in class, such as decimal, integer,
date, string, etc.; this special kind of simple literal can be used to test for membership
of some values to a given class. For example,

X: string()

can be used to test that X belongs to class string12, but cannot give values to X
(in particular, it cannot be used to enumerate all strings in Herbrand’s base). When
the class name is individual, though, the simple literal allows also enumerating: e.g.,

Someone: individual()

enumerates through all base class instances.

Aggregate literals

Values of some of types can also be ”aggregated” with operators like #count, #min,
#max, #sum13.

Table 3.1 reports which aggregate operator can be used, on the basis of the type
of the aggregated variables type; each combination of type and aggregation operator
is marked with a symbol:

• NA: Not Applicable, this combination does not make sense
• S: Supported, this combination is feasible
• NS: Not supported, this combination, while feasible, would lead to highly ineffi-

cient computation and is thus unsupported (forbidden) at system level

In particular:

12 A literal of kind would falsify the body of a rule in which X: string() appears, in each
ground instantiation where X is not a string.

13 For more information on DLP with aggregates (DLP), please refer to Appendix A
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#min #max #sum #count

string NA NA NA S
date S S NA S
integer NS NS S S
positive integer S S S S
negative integer S S S S
decimal NS NS S S
positive decimal S S S S
negative decimal S S S S
individual and its descendants NA NA NA S

Table 3.1. Supported aggregates with respect to aggregation variable type.

• #count is applicable and supported on any type (one can always count ”how
many” exist of a given thing, this does not imply computing an ”accumulation”
of data, but only a count of elements);

• #sum is applicable and is supported on any numeric type (i.e., any built-in type
except for string and date);

• sign-homogeneous integer numeric types (i.e., positive integer and negative
integer) support both #min and #max;

• also sign-homogeneous non-integer numeric types (i.e., positive decimal and
negative decimal) support both #min and #max;

• numeric types with mixed sign could support #min and #max, but this would
lead to an overly complicated rewritten DLP program, with bad performances,
so those combinations are recognized at system level as invalid.

Built-in literals

Built-in literals refer to relations that are built-in in the system, such as ordering
between numerals, or arithmetic. The name of the built-in literal is the name of the
relation queried for. In particular, the following built-in relations are available:

• arithmetic operators: +, ∗
• equality check: = (also ==)
• comparison: >, >=, <, <=, <> (also ! =)

Moreover, a number of built-in exist for manipulating lists and sets, e.g., getting
or checking the cardinality of a list, getting first or last element, etc.

For example, the following rule computes in the predicate numberOfChildren,
the number of sons of a person:

numberOfChildren (P,X) :- P: person(children: L), #length(L, X).
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Rule

A rule is a conjunction of literals that implies a disjunction of simple literals. An
example of logical rule in OntoDLP is the following:

male(X) ∨ female(X) :- X:person().

The disjunction male(X) ∨ female(X) is the rule head and it is followed by the
conjunction X:person(), also said the rule body. The meaning of this rule is:

a person can be male or female
Another example of rule is the following:

bornInUSA(X) :- X:person(birthplace:B), locatedIn(B, ”USA”).

This rules states that a person is born in USA if its birthplace is located in a
country named ”USA”. In this case the rule is not disjunctive, since the head is given
by only one literal.

Note that in a rule body literals can appears also negated. For example, the rule

unreachableByTrain(X) :- X: place(),not Y: ’RailwayStation’(placedIn:X).

is used to state that a place is unreachable by train if it does not have a train
station.

3.3.2 Instances reclassification: collection classes

In OntoDLP one can define a special kind of classes, named collection classes,
which allow to represent collections of heterogeneous objects belonging to different
classes.

Indeed, collection classes are rather different from base classes, mainly for the
way their instances are defined.

Instances of base classes have to be explicitly defined and they cannot be in-
stances of other classes at the same time, unless those classes are super-classes of the
class in which these instances have born.

On the other hand, collection classes instances are given through the union of
subsets of instances of pre-existing classes, i.e., they spring from a re-classification
of instances already defined in other classes (both user defined classes and built-in
classes such as integer, string, etc.), and they can be at the same time instances of
other unrelated collection classes.

In particular, while a class instance’s identifier must be defined from scratch and
attributes of a base class instance have to be defined explicitly, a collection class
instance’s identifier has to be an existing object identifier already used to identify a
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class instance, and, together with the collection class instance’s attributes, has to be
determined using suitable logic rules.

Declaring a collection class may be useful whenever it is required to refine, using
some criterion, a classification of existing instances.

For example, suppose that the class musicalInstrument and the relation plays that
links an instance of person to an instance of musicalInstrument have been defined as
follows:

class musicalInstrument (name: string).
relation plays(pers: person, inst: musicalInstrument).

One can afterward define the collection class musician as follows:

collection class musician (name:string)
{
X: musician(name:N) :- plays(X, ), X:person(name:N).
}

This way one specifies how to compute instances of collection class musician
through a simple logic rule, which translates the basic notion that a musician is a
person that plays a musical instrument.

Declaring a collection class thus needs the definition of a schema (like with, e.g.,
base classes) and the specification of a set of logic rules. These rules determine how
instances and values of their attributes are computed.

In the above-mentioned example, instances of collection class musician are a
subset of instances of person class. Classes which instances are taken from are named
”generating classes”; so, person is a generating class for musician. Moreover, the
value of each attribute present in the schema of the collection class is computed
through the given inference rules, like happens, in the example, for the musician’s
name.

Now consider to redefine the collection class of the above example as follows:

collection class musician (name:string, instrument:musicalInstrument)
{
X: musician(name:N, instrument:Y) :- plays(X,Y), X:person(name:N).
}

Noting that the relation plays of the example is ”n:m” (i.e., a person might play
more than one instrument or none, a musical instrument might be played by many
people, or none), we can have that two different set of attributes values are com-
puted for a given object identifier (e.g., jos: musician(name: ”josh”, violin) and jos:
musician(name: ”josh”, viola)).

In this case the collection class itself is considered not valid.
Let’s examine another example, in order to show how one can compute the value

of an attribute using aggregates.
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We define collection class busyPerson as (informally) the set of people that have
at least two jobs.

collection class busyPerson(jobCount: integer)
{
X: busyPerson (jobCount: Z) :- X:person(), #count{Y:hasJob(X,Y) }=Z, Z>=2.
}

Note that attribute jobCount is computed using aggregate #count in the in-
stances definition rule.

It is important to note that rules in a collection class definition have to be normal
stratified rules, that they may define and use auxiliary predicates14 and that they
admit, in rules heads, a predicate whose name is equal to the collection class being
defined. Constraint (i.e., , rules without head, whose body must always be false) are
not allowed15.

A special case of collection class definition is the enumeration of its instances,
through body-less rules, named facts.

collection class threeStringedInstruments()
{
violin: threeStringedInstruments ().
viola: threeStringedInstruments ().
cello: threeStringedInstruments ().
}

The same principle allows one to use built-in classes as generating classes in
facts.

For example:

collection class firstThreeIntegers()
{
1: firstThreeIntegers ().
2: firstThreeIntegers ().
3: firstThreeIntegers ().
}

and:

14 The scope of auxiliary predicates is limited to definition of collection class
15 If consistency conditions for a collection class are needed, one can use axioms, see 3.4.1.
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collection class weekday()
{
”monday”: weekday ().
”tuesday”: weekday ().
”wednesday”: weekday ().
”thursday”: weekday ().
”friday”: weekday ().
”saturday”: weekday ().
”sunday”: weekday ().
}

While in the examples seen to this point, each collection class has an unique
generating class, this is not necessarily true.

For example, given the class:

class voice(kind: string).

which models the classification of voices in opera (tenor, soprano, etc.), one can
define the collection class:

collection class orchestraElement()
{
X: orchestraElement () :- X: musicalInstrument ().
X: orchestraElement () :- X:voice().
}

Which specify the set of elements of an orchestra, encompassing both musical
instruments and voices. Collection classes may be organized into taxonomies (like
classes and relations), using isa relation.

For example:

collection class veryBusyPerson isa {busyPerson} ()
{
X: veryBusyPerson (jobCount: Z) :- X:person(), #count{Y:hasJob(X,Y) }=Z, Z>=10.
}

Inheritance semantics for collection classes is slightly different than the one
adopted for classes. In fact, two base classes may share instances only if there ex-
ists an inheritance path between them (i.e., one is subclass, direct or indirect, of the
other), while a pair of collection classes may share instances no matter they are linked
by means of inheritance or not. However, like for classes, if B is a sub-collection
class of A, all instances of B are also instances of A.

Anyway, please note that hierarchies of collection classes and hierarchy of
classes must remain disjoint (a class and a collection class cannot be involved in
an inheritance relation).
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In general:

• different hierarchies of collection classes (trees of them, linked by isa) are al-
lowed;

• hierarchies of collection classes are disjoint w.r.t. classes;
• collection classes do not have a common super-collection classes, while classes

have the class individual as common super-class;
• collection classes can be used to define type of attributes16.

3.3.3 Intensional relations

Defining a relation implies, like for classes, defining the schema and its instances
(tuples).

However, often it could be more comfortable to define instances ”intensionally”,
i.e., using some logic rules to specify how to compute rather than enumerating them.
This can be accomplished in OntoDLP by using an intensional relation. An exam-
ple of intensional relation is sonInLaw, defined as follows:

intensional relation sonInLaw (son : person, father : person)
{
sonInLaw(X, Y) :- X: person(partner: Z), Z: person(father: Y).
}

Here, the definition of the tuples of the intensional relation sonInLaw is accom-
plished by a rule asserting that, if Y is the father of X’s partner, then X is son-in-law
of Y .

Another example of intensional relation is:

intensional relation cousin(p1: person, p2: person)
{
cousin(X,Y):- X : person(father : V), V : person(father : Z),

Y : person(father : W), W : person(father : Z), X != Y, V !=W.
}

The above-mentioned intensional relations sonInLaw and cousin are similar to
well-known ”views” in relation databases; however, it is important to note that
OntoDLP interpretation of view concept is more powerful than relation databases
one, since, for example, OntoDLP allows for recursion in rules.

As an example of recursive intensional relation, let’s consider the classical an-
cestor example:

16 In this case, checking for type correctness implies computing extension of a collection
class, i.e., instances.



42 3 A DLP-based language for ontology representation and reasoning: OntoDLP

intensional relation ancestor(desc: person, anc: person)
{

ancestor(A,X):-A : person(father : X).
ancestor(A,X):-A : person(father : Y), ancestor(Y,X).

}

3.4 Axioms, queries and reasoning modules

Apart from defining intensional entities, literals and logical rules may be used in
other very important OntoDLP constructs:

• axioms, a mean to assess properties that must hold in a consistent view of the
domain;

• reasoning modules: the language components endowingOntoDLP with power-
ful reasoning capabilities coming from DLP.

• queries, which give the possibility of extracting knowledge contained in the on-
tology;

In Sec. 3.4.1 we illustrate axioms, whereas reasoning modules are described in
Sec. 3.4.2. Usage of queries in OntoDLP is depicted in Sec. 3.4.3.

3.4.1 Axioms and Consistency

We said before that the structural representation of a knowledge domain is obtained
in OntoDLP by specifying classes and relations; however, in general, this informa-
tion is not enough to obtain a correct description of the domain. Often, we need to
impose constraints asserting additional conditions that hold in the domain.

These assertions are modeled in OntoDLP by means of axioms.
An axiom is a consistency-control construct modeling sentences that are always

true (at least, if everything we specified is correct). They can be used for several pur-
poses, such as constraining the information contained in the ontology and verifying
its correctness.

As an example suppose we declared the relation colleague, which associates per-
sons working together in a company, as follows:

relation colleague(emp1 : employee, emp2 : employee).

It is clear that the information about the company of an employee (recall that
there is an attribute company in the scheme of the class employee, see Sec. 3.1.3)
must be consistent with the information contained in the tuples of the relation col-
league. To enforce this property we state the following axiom:

(1) : X2 : employee(company : C) ::− colleague(emp1 : X1, emp2 : X2),
X1 : employee(company : C)
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The above axiom states that, if two persons are colleagues and the first one works
for a company, then also the second one works for the same company.

Note that OntoDLP axioms are different from logic rules, they do not derive
new knowledge, but they are only used to model sentences that must be always true,
like integrity constraints. Importantly, axioms are distinguished by rules because they
are declared by using the symbol ::− instead of :- . Moreover, OntoDLP also
supports a syntax which is very close to the one used in logic programming for
constraints. In the previous example, we could equivalently write:

(2) : ::− colleague(emp1 : X1, emp2 : X2), X1 : employee(company : C),
notX2 : employee(company : C)

Note that it is always possible to write an axiom as a constraint.

3.4.2 Reasoning modules

Given an ontology, it can be very useful to reason about the data it describes.
Reasoning modules are the language components endowing OntoDLP with

powerful reasoning capabilities coming from DLP. Basically, a reasoning module
is a disjunctive logic program conceived to reason about the data described in an on-
tology. Reasoning modules in OntoDLP are identified by a name and are defined
by a set of (possibly disjunctive) logic rules and integrity constraints.

Syntactically, the name of the module is preceded by the keyword module while
the logic rules are enclosed in curly brackets (this allows one to collect all the rules
constituting the encoding of a problem in a unique definition identified by a name).
Moreover, it is possible to define derived predicates having a “local scope” without
giving a scheme definition. This gives the possibility to exploit a form of modular
programming, because it becomes possible to organize logic programs in a simple
kind of library.

As an example consider the following module, which allows to single out in the
derived predicate youngAndShy the names of the persons who are less than 18 years
old, and who have less than ten friends:

module (shyFriends){
youngAndShy(N) :-P : person(name : N, age : A), A < 18,

#count{F : friend(pers1 : P, pers2 : F )} < 10.
}

Note that, this information is implicitly present in the ontology, and the reasoning
module just allows to make it explicit.

We now show another example demonstrating that the reasoning power of
OntoDLP can be exploited also for solving complex real-world problems.

Given our living being ontology, we want to compute a project team satisfying the
following restrictions (i.e., we want to solve an instance of team building problem):
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• the project team has to be constituted of a fixed number of employees;
• the availability of a given number of different skills has to be ensured inside the

team;
• the sum of the salaries of the team members cannot exceed a given budget;
• the salary of each employee in the team cannot exceed a certain value.

Suppose that the ontology contains the class project whose instances specify the
information about the project requirements, i.e., the number of team employees, the
number of different skills required in the project, the available budget, the maximum
salary of each team employee:

class project(numEmp : integer,
numSk : integer,
budget : integer,
maxSal : integer).

We can solve the above team building problem with the following module:

module (teamBuilding){
/*r*/ inTeam(E,P ) v outTeam(E, P ) :- E : employee(),

P : project().

/*c1*/ :-P : project(numEmp : N),
not#count{E : inTeam(E, P )} = N.

/*c2*/ :-P : project(numSk : S),
not#count{Sk : E : employee(skill : Sk),
inTeam(E,P )} ≥ S.

/*c3*/ :-P : project(budget : B),
not#sum{Sa,E : E : employee(salary : Sa),
inTeam(E,P )} ≤ B.

/*c4*/ :-P : project(maxSal : M),
not#max{Sa : E : employee(salary : Sa),
inTeam(E,P )} ≤ M.

}
Intuitively, the disjunctive rule r guesses whether an employee is included in

the team or not, generating the search space, while the constraints c1, c2, c3, and
c4 model the project requirements, cutting off the solutions that do not satisfy the
constraints.

Concluding, reasoning modules isolate a set of logic rules and constraints con-
ceptually related, they exploit the expressive power of disjunctive logic programming
allowing to perform complex reasoning tasks on the information encoded in an on-
tology.
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3.4.3 Querying

An important feature of the language is the possibility of asking queries in order to
extract knowledge contained in the ontology, but not directly expressed. As in DLP
a query can be expressed by a conjunction of atoms, which, in OntoDLP , can also
contain complex terms.

As an example, we can ask for the list of persons having a father who is born in
Rome as follows:

X : person(father : person(birthplace : place(name : ”Rome”)))?

Note that we are not obliged to specify all attributes; rather we can indicate only
the relevant ones for querying. In general, we can use in a query both the predicates
defined in the ontology and the derived predicates in the reasoning modules.

For instance, consider the reasoning module shyFriends defined in the previous
section, we can ask, using queries:

• whether the number of people who are “young and shy” and were born in Rome
is less than ten

#count{X : youngAndShy(X), X : person(birthplace : rome)} < 10?

• whether there is a person whose name is “Jack” and is “young and shy”:

youngAndShy(person(name : ”Jack”))?
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Meta reasoning

OntoDLP offers powerful meta-reasoning features, giving the possibility to access
the information contained in the ontology schemas. In other words, OntoDLP al-
lows one for the extraction of knowledge contained in the ontology structure itself;
this meta-information can be obtained through some special classes and relations,
defined by the system and usable for querying, as well as for any other reasoning
purpose, even in combination with other literals.

In Sec. 4.1 we depict the meta hierarchy, showing some of its features; then, in
Sec. 4.2, we present some usage examples.

4.1 The meta hierarchy

The definition of built-in classes and relations, which are necessary to perform meta-
reasoning, starts from the enrichment of the OntoDLP type hierarchy by means of
the type meta, representing all the entities appearing in the ontology.

Recall that OntoDLP classes include:

• base classes, i.e., subclasses of individual (see Sec. 3.1.1);
• builtin classes, like e.g., date, string and number (see Sec. 3.2.1);
• container classes, i.e., lists and sets (see Sec. 3.2.3);
• collection classes (see Sec. 3.3.2).

Relations include:

• base relations (see Sec. 3.1.4);
• intensional relations (see Sec. 3.3.3).

OntoDLP mimics this structure of entities in a parallel hierarchy of ”special”
classes, rooted at meta. Meta-classes are shown in Fig. 4.1 and organized as fol-
lows:1:

1 Please note that most of the syntax used herein would not be acceptable in a regular,
user-defined OntoDLP ontology; meta classes are built automatically from the system.
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meta

object

class

base class collection class builtin class container class

relation

base relation intensional relation

Fig. 4.1. OntoDLP meta class hierarchy

• class ’base class’(), has an instance c: ’base class’() if c is the name of a base
class existing in the ontology. It also holds that individual: ’base class’(), since
individual is the ancestor of all user-defined base classes;

• class ’collection class’(), has an instance cc: ’collection class’() if cc is the name
of a collection class existing in the ontology;

• class ’container class’(), has an instance cc: ’container class’() if cc is the name
(like, e.g., [integer], [myclass], {individual}, {[object]}, etc.) of a container
class existing2 in the ontology;

• class ’builtin class’(), has an instance bc: ’builtin class’() if bc is the name of a
builtin class;

• class ’base relation’(), has an instance r: ’base relation’() if a relation named r
exists in the ontology;

• class ’intensional relation’(), has an instance ir: ’intensional relation’() if an
intensional relation named ir exists in the ontology;

Applying inheritance, we have that class has an instance c: class() whenever c is
the name of a base class, a builtin class, a collection class or a container class. More-
over, since object and any of its descendant are all classes, the meta-class named
class has also an instance for each of the classes defined in OntoDLP and not in-
cluded in the above listing. In particular, instances of meta-class class are also:

• object, i.e., it holds that object: class()
• the name of all meta-classes themselves, i.e., it holds that:

meta: class().
class: class().
’base class’: class().

Note also that ’meta’ is equivalent to meta, while for writing names having spaces single
quotes are needed. So, ’intensional relation’ is not equivalent to intensional relation (with-
out quotes); occurrence of the latter, also in an otherwise legal user program, would be a
syntax error. More on name syntax can be found in Sec. 3.2.2.

2 Existence, in this context, means that the given container class appears somewhere in the
ontology; since a container class may be used only when declaring attributes, an ”existing”
container class must be the type of an attribute declared in some entity (see Sec. 3.2.4).
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’collection class’: class().
’builtin class’: class().
’container class’: class().
relation: class().3

’base relation’: class().
’intensional relation’: class().

While the double occurrence of class in class: class() may seem ambiguous at
first glance, it is not the case. In fact, when a name like class it is used both in
contexts where values (i.e., instances of classes) are accepted, such as before the
colon ’:’, and in contexts where types (i.e., name of classes) are expected, such as
between the colon ’:’ and the first open parenthesis ’(’, the context matters and it
drives proper recognition of the meaning for a given name.

In a similar way, we have that instances of ’base relation’ and ’intensional rela-
tion’ both contribute, via projection, to their common superclass, relation. In other
words, relation has an instance r: relation() if r is the name of a base relation or an
intensional relation.

Both instances of meta-class class and instances of meta-class relation are col-
lected in their common super-class, meta.

Meta-classes are also involved in some system-defined relations, called meta-
relations. They are:

• relation isa(subentity: meta4, superentity: meta) has a tuple isa(subentity: e1,
superentity:e2) if e1 is a class or a relation that is a direct specialization 5 of e2
that is a class or a relation, respectively;

• intensional relation isaClosure (subentity: meta, superentity: meta) has a tuple
isaClosure (subentity: e1, superentity : e2) if e1 is a class or a relation that is a
specialization of e2 that is a class or a relation, respectively;

• relation hasAttribute(entity: meta, name: string, position: integer, type: class)
has a tuple hasAttribute(entity: e, name: ”attrName”, attributePosition: pos, type:
attrType) for each attribute of e6 in position pos (starting from 1), having name
attrName and type attrType.

Note that isaClosure can be thought of as:

3 Please pay attention to this; we are not saying that a relation is a class (which would be
absurd), instead that relation is the object identifier of an instance of meta-class class.

4 In the isa meta-relation, meta individuals are projected only on the user defined classes.
5 e1 is a direct specialization of e2 if it does not exist an entity e3 such that e3 is a direct

specialization of e2 and e1 is a direct specialization of e3
6 Note that, though attribute entity is declared as being of type meta, it will take values only

among instances of meta-classes corresponding to entities, i.e., base classes, base relations,
collection classes, intensional relations
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intensional relation isaClosure(subentity: meta, superentity: meta)
{
isaClosure(Sub, Super) :- isa(Sub, Super).
isaClosure(Sub, Super) :- isa(Sub, IntermediateSuper), isaClosure(IntermediateSuper, Super).
}

4.2 Using meta classes and meta relations

In this section we depict what can be done by using meta classes and meta relations.

Example 4.1. If we have an example ontology:

class’living being’ (name: string).
classpersonisa{’living being’} (age: ’positive integer’).

Then system builds a corresponding meta-knowledge base, that has a fixed part
(which does not change with respect to the actual ontology), composed of:

• the definition of meta classes (the meta hierarchy);
• instances of meta classes;
• the definition of meta relations.

Another portion of the meta-knowledge is driven by user declarations, though,
and in this example it will contain:

’living being’: class ().
person: class ().
isa(sub: ’person’, super: ’living being’).
hasAttribute(e: ’living being’, name: ”name”, pos: 1, type: string).
hasAttribute(e: person, name: ”name”, pos: 1, type: string).
hasAttribute(e: person, name: ”age”, pos: 2, type: ’positive integer’).

Example 4.2. If we change the previous ontology as:

class ’living being’ (name: string).
class person isa {’living being’} (age: ’positive integer’, friends: [person]).

Then, the meta-knowledge available to OntoDLP will be:
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’living being’: class ().
person: class ().
isa(sub: person, super: ’living being’).
’[person]’: ’container class’().
hasAttribute(e: ’living being’, name: ”name”, pos: 1, type: string).
hasAttribute(e: person, name: ”name”, pos: 1, type: string).
hasAttribute(e: person, name: ”age”, pos: 2, type: ’positive integer’).
hasAttribute(e: person, name: ”age”, pos: 3, type: [person]).

Note that addition of a container-class valued attribute (friends) triggered both a
new fact in hasAttribute meta-relation and a new instance of ’container class’ meta
class, whose object identifier is [person] (the same used in the value of attribute
named type).

Meta reasoning

Since meta, the root of all meta-hierarchy is also a class (it descends from object),
its instances can legally appear everywhere an instance of object (i.e., a value) is
accepted. Thus, the above-mentioned meta classes and relations can be also used in
every component of OntoDLP based on reasoning. For example, we can use meta
classes and relations to express queries as follows:

• hasAttribute(entity: E, type: company)? asks for all the entities having an at-
tribute of type company;

• C: ’base class’()? asks for all the user define base classes;
• isaClosure(subentity: web programming language, superentity:E)? asks for all

the superclasses (direct or indirect) of class web programming language.

Let’s look at some more examples about meta reasoning.

Example 4.3. If we have the ontology:

class furniture’().
class ’modern furniture’ isa {furniture} ().
class ’classic furniture’ isa {furniture} ().
class office ().
class ’styled office’ isa {office} (style: class).

And we want to constrain attribute style of class ’styled office’ to accept, in actual
instances of the latter, only subclasses of furniture, we can add the axiom:

/*(a)*/ ::- StyledOffice: ’styled office’(style: StyleClass), not isaClosure(sub: StyleClass, super: furniture).

Thus, instances:
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’office #1’: ’styled office’(style: ’classic furniture’).
’office #2’: ’styled office’(style: ’modern furniture’).

Would pass axiom checking, whereas:

’bad office #1’: ’styled office’(style: individual).
’bad office #2’: ’styled office’(style: office).

would be marked as invalid, making the ontology inconsistent.
Note that, since isaClosure is not reflexive, i.e., for each class or relation x, it

never holds isaClosure(x, x), instances of ’styled office’ having the value furniture
for attribute style would be also marked invalid by the axiom (a).

If this is undesired behavior, and furniture has to be considered as a legal value,
one can always first process interesting tuples from isaClosure using a collection
class or an intensional relation, then use the latter in a (modified) axiom.

For example, using a collection class we can extract the object identifiers of all
furniture subclasses, plus furniture class itself, with a code like this:

collection class ’valid furniture class’()
{
furniture: ’valid furniture class’().
F: ’valid furniture class’() :- O: ’valid furniture class’(), isa(F, O).
}

The axiom could then be changed to:

::- StyledOffice: ’styled office’(style: StyleClass), not StyleClass: ’valid furniture class’().
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OWL Interoperability

As discussed in Chapter 1,OntoDLP is more suitable than OWL for Enterprise On-
tologies, while OWL has been conceived for describing and sharing information on
the Web (i.e., to deal with Web ontologies). However, it may happen that enterprise
systems have to share or to obtain information from the Web; thus, from inside an
enterprise ontology, one may need to access and query an external OWL ontology
for specific purposes. At the same time, it is well known that Semantic-Web applica-
tions may need to integrate rule-based inference systems, to enhance their deductive
capabilities. Based on these observations, our system supports some mechanisms for
OWL interoperability1.

The first mechanism is an import (from OWL) and export (to OWL) facility,
whose principles are sketched in Sec. 5.1 and Sec. 5.2; in Sec. 5.3 we define two
important properties of import/export facility, guaranteeing syntactic and semantic
equivalence for a language fragment.

In the last section, 5.4, we explain a further mechanism, OWL Atoms, that enables
OntoDLP ontologies to reason on top of (even multiple) OWL ontologies.

5.1 Importing OWL in OntoDLP

In the following we provide a description of the import strategy by exploiting some
examples. Each group of OWL constructs is described in a separate paragraph.

5.1.1 OWL Thing (>) and OWL Nothing (⊥).

The OWL universal class Thing corresponds to the OntoDLP class individual (be-
cause both are the set of all individuals). Conversely, in OntoDLP we cannot di-
rectly express the empty class ⊥, but we approximate it as follows:

class ’Nothing’. ::− X:Nothing().

1 In this chapter we assume the reader to be familiar with semantics and Description Logics
syntax of OWL.
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Note that the axiom imposes that the extension of Nothing is empty.
Please note that the name of the class Nothing is written as ’Nothing’ inOntoDLP

syntax. This is mandatory, since names starting with a capital letter and not enclosed
by single quotes could be confused, at syntactic level, with variables. See Sec. 3.2.2
for more on this matter.

5.1.2 Atomic classes and class axioms (C, C v D).

Atomic classes are straightforwardly imported inOntoDLP . For example, we write:
class Person()to import the specification of the atomic class Person.

Inclusion axioms directly correspond to the isa operator in OntoDLP . Thus,
the statement Student v Person (asserting that student is a subclass of person) is
imported by writing: class ’Student’ isa ’Person’.

In OWL one can assert that two or more atomic classes are equivalent (i.e. they
have the same extension) by using an equivalent class axiom (≡). OntoDLP does
not have a similar construct, but we can obtain the same behavior by using col-
lection classes and writing suitable rules to enforce the equivalence. For example,
USPresident ≡ PrincipalResidentOfWhiteHouse is imported as follows:

collection class ’USPresident’ {
X:’USPresident’() :- X: ’PrincipalResidentOfWhiteHouse’(). }

collection class ’PrincipalResidentOfWhiteHouse’ {
X:’PrincipalResidentOfWhiteHouse’() :- X:’USPresident’(). }

Another class axiom provided by OWL, called disjointWith, asserts that two
classes are disjoint. We approximate this behavior by using an axiom in OntoDLP .
For example:

Man uWoman v ⊥
in represented in OntoDLP using the axiom:

::− X: ’Man’(), X:’Woman’().

which asserts that an individual cannot belong to both class Man and class Woman.

5.1.3 Enumeration classes {a1, ..., an}.

A class can be defined in OWL by exhaustively enumerating its instances (no indi-
viduals exist outside the enumeration).

For example, if we model the RGB color model as follows:

RGB ≡ red, green, blue

we will import it in OntoDLP by using a collection class in this way:

collection class ’RGB’ { green: ’RGB’(). red : ’RGB’().
blue : ’RGB’(). }
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and we also add to the resulting ontology, the axiom ::− #count { X: X: 2 ’RGB’()
} > 3. in order to correctly fix the number of admissible instances of the class.

5.1.4 Properties and Restrictions (∀, ∃, Q nR).

One of the main features of OWL (and, originally of Description Logics) is the pos-
sibility to express restriction on relationships. Mainly, relationships are represented
in OWL by means of properties (which are binary relations among individuals) and,
three kinds of restrictions are supported: ∃R.C (called some values from), ∀R.C
(called all values from) and restrictions on cardinality Q nR. While properties are
naturally “imported” in OntoDLP by exploiting relations, the restrictions on prop-
erties are simulated by exploiting logic rules.

We start considering ∃R.C, and for example, we define the class Parent as fol-
lows: Parent ⊇ ∃hasChild.Person, which means that parent contains the class of
all individuals which are child of some instance of person. Importing this fragment
of OWL in OntoDLP we obtain:

collection class ’Parent’ {
X: ’Parent’() :- hasChild(X,Y), Y: ’Person’(). }

The rule allows one to infer all individuals having at least one child.
Also for the ∀R.C property restriction we use a simple example, in which we

define the concept HappyFather as follows:

HappyFather v ∀hasChild.RichPerson

In practice, an individual is an happy father if all its children are rich. The above
statement can be imported in OntoDLP in the following way:

collection class ’RichPerson’ {
Y: ’RichPerson’() :- hasChild(X,Y), X: ’HappyFather’(). }

Similarly, we import the property restriction ∃R.{o}. For example we can de-
scribe the class of persons which are born in Africa as follows:

African ≡ ∃ bornIn.africa

where africa is a specific individual representing the mentioned continent. To import
it in OntoDLP , we write:

collection class ’African’ {
X: ’African’() :- bornIn(X, africa). }

intensional relation bornIn (domain: object, range: object){
bornIn(X, africa) :-X : ’African’(). }

2 The first X indicates the aggregation variable of #count, the second one is the variable of
class literal for class ’RGB’, which will assume, during grounding, the value of all object
identifiers of ’RGB’ instances.
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Note that, in this case the import strategy is more precise than the one used of
∃R.C; in fact, we could also “fill” the bornIn (intensional) relation with exactly all
the individuals belonging to class African.

We now consider the cardinality constraints that allow one to specify for a certain
property either an exact number of fillers (= nR.C), or at least n / at most n different
fillers (respectively ≥ nR.C and ≤ nR.C). In order to describe the way how ≤
nR.C is imported, we define the class ShyPerson as a Person having at most five
friends:

ShyPerson ≡≤ 5hasFriend

To import it in OntoDLP we write:

collection class ’ShyPerson’ {
X: ’ShyPerson’() :- hasFriend(X, ),

#count {Y: hasFriend(X,Y)}<= 5. }
Note that, the aggregate function #count (see [51]) allows one to infer all the indi-
viduals having less than (or exactly) five friends.

The remaining cardinality constraints can be imported by only modifying the
operator working on the result of the aggregate function (with >= and = for≥ nR.C
and = nR.C, respectively).

OWL also allows to specify domain and range of a property. As an example,
consider the property hasChild which has domain Parent and range Person.

> v ∀hasChild−.Parent > v ∀hasChild.Person

when we import this in OntoDLP we obtain:

relation hasChild (domain: ’Parent’, range: ’Person’ ).

It is worth noting that consistently with rdfs:domain and rdfs:range semantic,
we can state that an individual that occurs as subject (resp. object) of the relation
hasChild, also belongs to the Parent (resp. Person) class. To simulate this behavior,
the definition of the collection classes Parent and Person is modified by introducing
the following rules (the first for Parent, the second for Person):

X: ’Parent’() :- hasChild (X, ).
Y: ’Person’() :- hasChild ( ,Y).

Moreover, in OWL properties can be organized in hierarchies, can be defined
equivalent (by using the owl:equivalentProperty construct), functional, transitive and
symmetric. Property inheritance is easily imported by exploiting the corresponding
OntoDLP relation inheritance, while the remaining characteristics of a property
(like being inverse of another) are expressed in OntoDLP by using intensional re-
lations with suitable rules. For example if the relation hasChild is declared inverse
of hasParent, when we import it in OntoDLP we have:

intensional relation hasChild (domain: ’Parent’, range: ’Person’) {
hasChild(X, Y ) :-hasParent(Y, X). }

intensional relation hasParent (domain: ’Person’, range: ’Parent’) {
hasParent(X, Y ) :-hasChild(Y, X). }
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Similarly, the transitive property ancestor, is imported in OntoDLP as:

intensional relation ancestor (domain: ’Person’, range: ’Person’) {
ancestor(X, Z) :- ancestor(X,Y ), ancestor(Y, Z). }

A classic example of symmetric property is the property marriedWith. We can import
such a property into OntoDLP as:

intensional relation marriedWith (domain: ’Person’, range: ’Person’) {
marriedWith(X, Y ) :-marriedWith(Y,X). }

Moreover, OWL functional and inverse functional properties are encoded by us-
ing suitable OntoDLP axioms. For example, consider the functional property has-
Father and its inverse functional property childOf ; they are imported in OntoDLP
as:

::− hasFather(X, ), #count {Y: hasFather(X,Y)}> 1.
::− childOf ( ,Y), #count {X: childOf(X,Y)}> 1.

5.1.5 Intersection, Union and Complement (u, t, ¬).

In OWL we can define a class having exactly the instances which are common to
two other classes. Consider, for example the class Woman which is equivalent to the
intersection of the classes Person and Female; in OWL we write:

Woman ≡ Person u Female

This expression is imported in OntoDLP as:

collection class ’Woman’ isa { ’Person’, ’Female’}() {
X: ’Woman’() :- X: ’Female’(), X: ’Person’(). }

Note that we use inheritance in OntoDLP in order to state that each instance of
class Woman is both instance of Person and Female; and, conversely, the logic rule
allows one to assert that each individual that is common to Person and Female is an
instance of class Woman.

In a similar way we deal with the class union construct. For instance, if we want
to model the Parent class as the union of Mother and Father, then in OWL we write:

Parent ≡ Mother t Father

and the following is the result of the import of this axiom in OntoDLP :

collection class ’Parent’ {
X: ’Parent’() :- X: ’Mother’().
X: ’Parent’() :- X: ’Father’(). }

Another interesting construct of OWL is called complement-of, and is analogous
to logical negation. An example is the class InedibleFood defined as complement of
the class EdibleFood, as follows:
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InedibleFood ≡ ¬EdibleFood

and, we import it in OntoDLP by using negation as failure as follows:

collection class ’InedibleFood’ {
X: ’InedibleFood(’) :- X: individual ()3, not X: ’EdibleFood’(). }

5.1.6 Individuals and datatypes.

The import of the ABox of a OWL ontology is straightforward; and actually, the A-
Box assertions are directly imported in OntoDLP facts. For example, consider the
following

Person(mike) hasFather(mark, mike)

which are, thus imported in OntoDLP as:

mike: ’Person’(). hasFather(mark,mike).

OWL makes use of the RDF(S) datatypes which exploit the XMLSchema data-
type specifications[62].

OntoDLP supports only a subset of XMLSchema datatypes; to import un-
supported OWL datatypes, thus, we encode each datatype property filler in an
OntoDLP string that univocally represents its value.

5.2 Exporting OntoDLP in OWL

In this section, we informally describe how an OntoDLP ontology is exported in
OWL by using some example.

5.2.1 Classes.

Exporting (base) classes (with no attribute), and inheritance it is quite easy since they
can be directly encoded in OWL . For instance:

class Student isa Person. becomes simply: Student v Person

However, OntoDLP class attributes do not have a direct counterpart in OWL,
and we represent them introducing suitable properties and restrictions. Suppose that
the class Student has an attribute advisor of type Professor. To export it in OWL, we
first create a the functional property advisor, with Student as domain and Professor as
range; and, then we export the class Student as Student v ∀advisor.Professor.4

4 If a class C has more than one attribute, we create a suitable property restrictions for each
attribute of C and we impose that C is the the intersection of all the defined property
restrictions.
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5.2.2 Relations.

We can easily export binary (base) relations and inheritance hierarchies in OWL,
since the destination language natively supports them. In particular, isa state-
ments are translated in inclusion axioms, and domain and range description allowed
us to simulate the attributes. For relations having arity greater than two, we adopt
the accepted techniques described in the W3C Working Group Note on n-ary Rela-
tions [47].5

5.2.3 Instances.

As we have seen for the import phase, also instances exporting is straightforward.
For instance, if we have:

john: ’Person’(father : mike). friends(mark, john).

then we can export it in OWL as:

Person(john) person father(john,mike) friends(mark, john)

Note the person father property, created as explained above for class attributes.

5.2.4 Collection classes and intensional relations.

These constructs, representing the ”intensional” part of the OntoDLP language, do
not have corresponding language feature in OWL. Moreover, collection classes and
intensional relations are exploited in the import strategy to “simulate” the semantics
of several OWL constructs. Since we want to preserve their meaning as much as pos-
sible in our translation, we implemented a sort of “rule pattern matching” technique
that recognizes wether a set of rules in a collection class or in an intensional relation
corresponds to (the “import” of) an OWL construct. For example, when we detect
the following rule (within an intensional relation):

ancestor(X, Z) :- ancestor(X,Y ), ancestor(Y, Z).

we can assert that the relation ancestor is a transitive property. This can be done for
all the supported OWL feature, because the correspondence induced by the import
strategy between OWL constructs and corresponding collection classes is direct and
not ambiguous.

In case of rules that do not “correspond” to OWL features, we export them as
strings (using an auxiliary property). In this way, we are able to totally rebuild a col-
lection class (intensional relation) when (re)importing a previously exported OWL
ontology.

5 Basically, to represent an n-ary relation we create a new auxiliary class having n new func-
tional properties.
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5.2.5 Axioms and Reasoning Modules.

OWL does not support rules, thus we decided to export axioms and reasoning mod-
ules only for storage and completeness reasons. To this end, we defined two OWL
classes, namely: OntoDLPAxiom and OntoDLPReasoningModule. Then, for each
reasoning module (resp. axiom) we create an instance of the OntoDLPReasoning-
Module (resp. OntoDLPAxiom) class representing it; and we link the textual encoding
of the rules (resp. axioms) to the corresponding instances of the OntoDLPReason-
ingModule (resp. OntoDLPAxiom) class.

5.3 Theoretical Properties

In this section we show some important properties of out import/output strategies. In
particular, we single out fragments of OWL DL and OntoDLP where equivalence
between the input and the output of our interoperability strategies is guaranteed.

5.3.1 Syntactic Equivalence.

Let import(Oowl) and export(Odlp) denote, respectively, the result of the appli-
cation of our import and export strategies to OWL ontology Oowl and OntoDLP
ontology Odlp.

Theorem 5.1. Given a OWL DL ontology Oowl, and an OntoDLP ontology Odlp

without class attributes and n-ary relations, we have that:
(i) export(import(Oowl)) = Oowl, and
(ii) import(export(Odlp)) = Odlp.

This means that if we import (resp. export) an ontology, we are able to syntactically
reconstruct it by successively applying the export (resp. import) strategy. Intuitively,
the property holds because we defined a bidirectional mapping between the primi-
tives of the two languages (actually, there is no ambiguity since we use a syntactically
different kind of rule for each construct).

A synopsis of transformations performed during OWL import/export is given in
Table 5.1.

5.3.2 Semantic Equivalence.

We now single out a restricted fragment of OWL DL in which the import strategy
preserves the semantics of the original ontology (i.e., the two specifications have
equivalent semantics).

Theorem 5.2. Let Γ , ΓR and ΓL be the following sets of class descriptors: Γ =
{A,B uC, ∃R.o}, ΓR = Γ∪ {∀R.C }, ΓL = Γ ∪ {∃R.C, t}, and, let Oowl be an
ontology containing only:
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OntoDLP OWL DL FOL
Base elements
class a(). A
class a() isa { b }. A v B ∀x.(A(x) → B(x))

relation r(. . . ,. . . ). (binary) R
relation r (. . . ,. . . ) isa { p } R v P ∀x, y.(r(x, y) → p(x, y))

class individual. (built-in) > (x = x)

class ’owl::nothing’.
::- X: ’owl::nothing’(). ⊥ ¬(x = x)

::- X: c1(), X: c2(). C1 u C2 v ⊥
Collection class rules
X: a() :- X: c(). ∀x.(B(x) → A(x))
X: c() :- X: a(). A ≡ C ∀x.((A(x) → B(x)))

X: a() :- X: c1(), X: c2(). A ≡ C1 u C2 ∀x.(C1(x) ∧ C2(x) → A(x))
class a isa c1, c2(). ∀x.(Λi∈[1,2](D(x) → Ci(x)))

X: a() :- X: c1(). ∀x.((C1(X) → A(X)) ∧ (C2(X) → A(X)))
X: a() :- X: c2(). A ≡ C1 t C2 ∀x.(A(x) → C1(x) ∨ C2(X))

X: a() :- X: individual(), not X: c(). A ≡ ¬C ∀x.(¬A(x) ∨ ¬B(x) ∧ (A(x) ∨B(x)))

∀x.∃y.((R(x, y) ∨A(x)) ∧ (C(y) → A(x)))
Y: c() :- r(X,Y),X: a(). A ≡ ∀R.C ∀x, y.((A(x) ∧R(x, y)) → C(y))

∀x.((A(x) → R(x, f(x))) ∧ (A(x) → C(f(x))))
X: a() :- r(X,Y),Y: c(). A ≡ ∃R.C ∀x, y.((C(y) ∧R(x, y)) → A(x))

X: a() :- r(X, o ). ∀x.(R(x, o) → A(x))
r(X, o ) :- X: a(). A ≡ ∃R.o ∀x.(A(x) → R(x, o))

a1 : a() . . . an : a(). ∀x.((x = a1 ∨ · · · ∨ x = an) → A(x))
::−#count{X : a()} > n. A ≡ {a1, ..., an} ∀x.(x = a1 ∨ · · · ∨ x = an ∨ ¬A(x))

X: a() :- r(X, ), #count {Y: r(X,Y)} ϕ n. A ≡ ϕ n R.C
ϕ ∈ {=, <=, >=} ϕ ∈ {=, <=, >=}
Intensional relation rules
r(X, Y) :- S(X, Y). ∀x, y.((S(x, y) → R(x, y))
s(X, Y) :- r(X, Y). R ≡ S ∀x, y.((R(x, y) → S(x, y)))

X: c() :- r(X, ). > v ∀R.C ∀x, y.(R(x, y) → C(x))

Y: c() :- r( ,Y). > v ∀R−.C ∀x, y.(R(x, y) → C(y))

r(X,Y) :- s(Y,X). ∀x, y.((S(y, x) → R(x, y))
s(X,Y) :- r(Y,X). R ≡ S− ∀x, y.((R(y, x) → S(x, y))

r(X,Y) :- r(Y,X). R ≡ R− ∀x, y.((R(x, y) → R(y, x))

r(X,Z) :- r(X,Y), r(Y,Z). R+ v R ∀x, y, z.((R(x, y) ∧R(y, z) → R(x, z))

::− r(X, ), #count{Y : r(X, Y )} > 1. > v≤ 1.R

::− r( , Y ), #count{X : r(X, Y )} > 1. > v≤ 1.R−

Instances
o : c(). o : C C(o)

r(o ,o1). < o, o1 >: R R(o, o1)

Table 5.1. Synopsis of OWL import/export facility
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• class axioms A ≡ B where A,B ∈ Γ ;
• class axioms C v D where C ∈ ΓL and D ∈ ΓR;
• property axioms: domain, range, inverse-of, symmetry and transitivity;
• ABox assertions

then import(Oowl) under the OntoDLP semantic entails precisely the same conse-
quences as Oowl.

Intuitively, the equivalence property holds because6 the First Order Theories
equivalent to the admitted fragment of OWL only contains Horn equality-free for-
mulae whose semantics corresponds to the one of the produced logic program.

5.4 OntoDLP reasoning on top of OWL ontologies

In the following, we describe how to import OWL knowledge into OntoDLP on-
tologies and how this information can be exploited to write reasoning modules (and,
thus, logic programs) that allow one to add rules and reason on top of OWL.

To enable the interfacing and import of existing OWL ontologies into the frame-
work of OntoDLP , the so-called OWL Atoms have been introduced7. OWL Atoms
can be used in rule bodies of OntoDLP reasoning components and facilitate the
evaluation of specific queries to an OWL knowledge base. This allows to import
ABox data, like concept and role extensions, but also TBox information, like con-
cept subsumption, ancestors and descendants. To comfortably handle the translation
of names in this interfacing process, a mapping component can be specified.

OWL atoms can be used in OntoDLP constructs wherever ordinary atoms are
allowed. They can contain variables and are as such also subject to the grounding of
the logic program. A ground OWL atom has a truth value, depending on the evalua-
tion of the respective query. The flow of information between anOntoDLP program
is strictly uni-directional, i.e., data from ontologies is imported to the OntoDLP
program. Moreover, the parameters and hence the evaluation of OWL atoms does
not depend on other rules, thus they can be fully evaluated prior to any model com-
putation procedure.

5.4.1 OWL Atoms

The types of queries that can be stated by an OWL atom is specified by the DIG De-
scription Logic Interface. The DL Implementation Group (DIG) is a self-selecting
assembly of researchers and developers associated with implementations of Descrip-
tion Logic systems. The DIG interface allows for a number of TBox and ABox
queries, returning either a truth value for boolean queries or a set of result tuples
of values.

6 According to the approach of Borgida [12], also used in [34].
7 Actually, we lifted the approach of [22] to the OntoDLP framework.
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The set of constants that are imported by OWL atoms extends the set of object
identifiers of theOntoDLP program. In other words, OWL Atoms can intuitively be
regarded as functional queries that import new values into the OntoDLP program.
Since these atoms can not occur in any recursion, the entire set of objects stays
strictly finite.

An OWL query atom is characterized by the identifier #OWL. It has three oblig-
atory parameters, the query type, the query itself, and the data source:

#OWL[querytype, query , source]

The query and source strings have to be double-quoted. The possible values for
querytype are those allowed in the DIG ASK directive, comprising queries such
as instances of a concept, pairs of a role, subsumption of concepts, all children con-
cepts of a concept, all types of an individual, etc. A specific query type determines
the syntax of the actual query string.

The table in Figure 5.1 lists all possible query types and their according query
syntax. C and D are here used as placeholders for concept names, R for a role name,
and I for a name of an individual. C, D, and I must be ground. ?X and ?Y stand for
variables.

The third parameter, source, specifies the source address of the ontology to be
queried. This can be either a URI, such as “http://www .example.org /data.owl” or
a local file, like “/home/user /data.owl”.

For example, the OWL atom

#OWL[disjoint , “Truck SUV ”, “http://ex .org /vehicle.owl”]

is a purely boolean query, evaluating to true if the concepts Truck and SUV are
disjoint in the specified OWL KB.

The following rule imports all children classes of the concept Mammal of the
spcified OWL-KB:

mammals(X) :-#OWL[children, “?X Mammal”, “http://ex .org /animals.owl”].

These children concept names instantiate the variable X in the respective rule. In
order to be distinguishable from upperase concept or role identifiers, variable sym-
bols within the query string are prefixed with ‘?’. Variables in such queries act just
like variables in ordinary body atoms, being bound to a specific extension, with the
difference that the extension is not determined within the program itself, but by an
external evaluation.

The next rule imports the extension of a class into the OntoDLP program:

projects(P ) :-#OWL[instances, “projects(?X )”, “http://ex .org /dep.owl”].

The following collection class gathers all red parts together with their prices.
Note that the part object and its price stems from OntoDLP itself, while the color
information is derived from an external ontology.

collection class redParts(price: integer) {
X : redParts(price : P ) :- X : part(price : P ),

#OWL[relatedIndividuals, “hasColor(?X, red)”, “inventory .owl”]. }
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query type possible meaning
query

allConceptNames ?X ?X is instantiated with all concepts names
allRoleNames ?X ?X is instantiated with all role names
allIndividuals ?X ?X is instantiated with all individual names
satisfiable C the query atom is true if C is satisfiable
subsumes C D the query atom is true if C subsumes D
disjoint C D the query atom is true if C and D are disjoint
parents ?X C ?X is instantiated with all parent concepts of C
children ?X C ?X is instantiated with all children concepts of

C
ancestors ?X C ?X is instantiated with all ancestor concepts of

C
descendants ?X C ?X is instantiated with all descendant concepts

of C
equivalents ?X C ?X is instantiated with all concepts that are

equivalent to C
rparents ?X R ?X is instantiated with all parent roles of R
rchildren ?X C ?X is instantiated with all children roles of R
rancestors ?X C ?X is instantiated with all ancestor roles of R
rdescendants ?X C ?X is instantiated with all descendant roles of R
instances C(?X) ?X is instantiated with all instances of C
types ?X(I) ?X is instantiated with all concepts subsuming

the individual I
relatedIndividuals R(?X,?Y) ?X,?Y is instantiated with all pairs of the Ob-

jectProperty R
toldValues R(?X,?Y) ?X,?Y is instantiated with all pairs of the

DatatypeProperty R

Fig. 5.1. OWL atom query types

5.4.2 Name Mappings

Mappings ease the syntactic translation of constant names when they are imported
into the OntoDLP program. A mapping is defined via the mapping keyword. It is
used like a module:

mapping family {
‘dad ’ ‘father ’
‘mom’ ‘mother ’

}
If this mapping is specified in a query atom, each occurrence of ‘father ’ resp.
‘mother ’ in the query answer (i.e., data that comes from an OWL ontology) is trans-
lated to the name ‘dad ’ resp. ‘mom’ in theOntoDLP program. The mapping spec-
ification itself is a list of pairs of strings. The first string in each pair is the local (i.e.,
in OntoDLP ) name to be translated, the second string is the ontology name. The
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mapping-name is used to refer to a name mapping within a query atom, where one
or more mappings can be optionally specified:

#OWL[relatedIndividuals, “fatherOf (?X, ?Y )”, “family .owl”][family ]

Thus, mappings are always local to a specific query-atom.
Mappings are not functional, hence they can be seen as n : n relations. Conse-

quently, one name can be mapped to multiple replacement names, which will all be
inserted, and multiple names can be mapped to the same single replacement name.
It is in the responsibility of the author of a mapping to consider the effect of such
mappings on the Unique Name Assumption.

More than one mapping can be specified in a single query atom, such as:

#OWL[instances, “Person(?X )”, “people.owl”][persons, family ]

Since mappings are not functional, simply their union comes into effect. However,
the user will have the possibility to specify a command line switch which enforces
unique mappings and applies a priority relation in case of conflicting mappings: the
one further left has priority, as shown in the following example. Consider the follow-
ing mappings:

mapping persons {
‘john’ ‘http://www .example.org /#Doe’
‘jane’ ‘http://www .example.org /#Smith’

}
mapping family {

‘johnny’ ‘http://www .example.org /#Doe’
}
and the query atom above. Assume that the user specifically requested functional
mappings. Considering the namespaces, two conflicting mappings for the external
name ‘http://www .example.org /#Doe’ exist. Since the mapping persons is speci-
fied before family , the name will be translated into ‘john’.





Part II

The system: OntoDLV
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The OntoDLV System

OntoDLV is a complete tool that supports the development of OntoDLP ontolo-
gies and permits to specify, navigate, query and reason. It is a cross-platform develop-
ment environment for knowledge modeling and advanced knowledge-based reason-
ing. TheOntoDLV system allows one for the development of complex applications
and allows to perform advanced reasoning tasks in third-party applications, via an
advanced Application Programming Interface. The OntoDLV system seamlessly
integrates the DLV system (together with DLV DB) exploiting the power of a stable
and efficient DLP solver.

In this chapter we illustrate the overallOntoDLV architecture, and we highlight
the features of the system together with its main components.

6.1 System Architecture

We now illustrate the OntoDLV architecture, and present the main features of the
system.

The system architecture ofOntoDLV , depicted in Figure 6.1a, can be divided in
three abstraction levels. The lowest level, named OntoDLV core contains the com-
ponents implementing the main functionalities of the system, namely: Persistency
Manager, Type Checker, and Rewriter. The Persistency Manager provides all the
methods needed to store and manipulate the ontology components. In particular, it
exploits the Parser submodule to analyze and load the content of severalOntoDLP
text files (together with a Stream Module, and a RDB Module submodule to imple-
ment data persistency on relational databases through Hibernate/JDBC.

The admissibility of an ontology is ensured by the Type Checker module which
implements a number of type checking routines.

The Rewriter module translates OntoDLP ontologies, axioms, reasoning mod-
ules and queries to an equivalent DLP program that runs on the DLV system [40] ;
either the results or possible error messages are redirected to the Persistency Man-
ager. Importantly, ontologies are translated into an equivalent (stratified) DLP pro-
gram which is solved by DLV in polynomial time (under data complexity). More-
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Fig. 6.1. The OntoDLV architecture.

over, the Rewriter features a number of optimization and caching techniques in order
to reduce the time spent interacting with DLV.

OntoDLV system can exploit DLV DB , rather than DLV, for computations than
can take advantage of direct execution on relational databases.

6.2 Persistency

Persistency manager can handle different storage engines, represented as ”reposi-
tories”; anyone can develop its own interface module towards a particular storage
medium. Each storing engine is responsible for performing some high-level brows-
ing operations (see Chap. 7) efficiently on its own, and is free to exploit whichever
resources fit to achieve this goal.

OntoDLV natively provides two implementations of the storage engine concept:

• the Stream Module
• the RDB Module

The two implementations both rely on a common base, named Common Reposi-
tory Layer; to promote reuse, the OntoDLP Parser has been developed as an inde-
pendent module.
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The parser module

We refrained from building a parser with fixed semantic actions for the OntoDLP
language, which would have blocked reuse; instead, we built a parser that is able to
incrementally generate nodes of an Abstract Syntax Tree (AST). Text streams are
converted to syntactic node streams (one AST per single syntactic construct), in a
format suitable to feed other modules (e.g., , for bulk loading operations).

By using JavaCC parser generator (plus JJTree for AST generation), we are also
able to associate each node of the AST with its underlying tokens (i.e., actual text
and its coordinates). This, in turn, allows one for building other applications, like
e.g., an OntoDLP editor with syntax coloring capabilities, etc.

The parser module is also able to acquire the output of DLV output, which is then
translated back intoOntoDLP constructs. In this case, no AST nodes are generated,
since this functionality is used only internally.

The Common Repository Layer

This module has the main goal of ensuring a consistent behavior for each repository,
either user-defined or system-defined. Speaking in terms of object-oriented language,
the Common Repository Layer has the role of an intermediate abstract class. Here,
we are referring to a classical scheme of development in object-oriented languages,
where a concept, modeled at the highest level via a purely abstract class, is imple-
mented through some steps, each reducing the abstraction level, until a concrete class
is eventually defined. At each step only methods whose implementation is clear with
respect to the particular abstraction level are defined, implementing the other in the
levels beneath.

Following this scheme, Common Repository Layer defines abstract classes im-
plementing some methods from the storage engine concept, leaving implementation
of storage-specific issues to concrete storage modules, such as Stream Module and
RDB Module.

The Stream Module

This module is a storage engine that uses stream-oriented resources, such as files, as
the storage medium; it works entirely in main memory, which is used to keep the
current content of the ontology.

The underlying stream (like, e.g., a java.io.File) can be synchronized in both
ways with the ”ontology image”.

The latter is kept in an extremely tight format, in order to reduce memory alloca-
tion. Moreover, the content of ontology is also automatically enriched with a number
of pre-computed information, such as indexes, to speed up access.

In fact, a goal of the module is to keep feasible the handling in main memory of
huge ontologies.

To achieve this goal, memoization techniques, which are garbage collector-
friendly, have been employed. Indeed, even when a memoized information is al-
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located1, if Java garbage collector detects that memory occupied by that information
is needed for other purposes, it can reclaim that space immediately.

Balance between the retention of all pre-computed information and a minimal
usage of memory is thus automatic; it is regulated by the Java Virtual Machine itself.

This way, on machines with plenty of memory with respect to the size of ontology
being handled, the Stream Module balances towards massive usage of pre-computed
information, to enhance performance. On the contrary, when memory is scarce with
respect to the size of the ontology, this module tends to keep in memory only a
”core” of information, smoothly degrading performance levels, without failing for,
e.g., a dreaded OutOfMemoryError.

The RDB Module

RDB module stores ontology content in a database. Entities and reasoning constructs
are stored as tuples of a fixed relational schema; the mappings between relational
database tables and the object model is managed by the Hibernate framework for
Object/Relation Mapping (ORM).

As opposed to intensional/schema part, instances of base classes and tuples are
stored in a dynamic relational schema, managed by the module itself (via DDL op-
erations) whenever a (ontology) schema change occurs.

While Stream Module needs to maintain some indexes in memory in order to
speed up data access, RDB Module can get rid of any locally-stored information,
leaving the burden of data indexing to database.

As said early in this section, each module is free to choose a plan to execute
efficiently user-requested tasks; to do so, RDB module exploits SQL querying capa-
bilities, building and executing even complex queries (depending on user requests),
whose results are merged as needed and presented to the user of the module in a
format that is common to other storage engines.

For example, the request to execute this expression (see Sec 7.1):

ontology.baseClassInstances().havingValue("a", 1974)

(”give me all instances of base classes that have an attribute named ’a’, whose
value is 1974”)

is internally translated to multiple executions of the SQL query:

SELECT * FROM <X> WHERE a = 1974

where < X > takes the names of tables, used for storing instances of base
classes, which have an attribute named ”a”. Results are then merged in a final step,
invisible to the user.

1 It is worth noting that memoized information is always referenced via a
java.lang.SoftReference, rather than using garbage collector-hostile hard references.
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6.3 Type checking and rewriting

The ontology stored in a set of storage engines can be browsed in a global view in a
transparent way. Type-checking and rewriting procedure indeed exploit this feature,
in order to check the admissibility of an ontology, and to perform a ”translation” of
OntoDLP code in an ”equivalent” DLP encoding, respectively.

The rewriter module

The rewriter module performs translations fromOntoDLP code to DLP code, when
a reasoning task is requested, taking into account the language extensions. In partic-
ular, among other things, the rewriter must efficiently:

• select the minimum set of constructs to be translated, depending on the kind of
task requested;

• transform OntoDLP values into DLP ones, ensuring that no clash happens be-
tween values of different types (extended names, strings, numbers, etc.), though
they have to be mapped, in DLP, using only two domains, natural numbers and
strings;

• translate operations on extended types to DLP, using native DLV operations or
external built-ins, as needed;

• flatten extended constructs (like, e.g., complex terms), possibly creating interme-
diate predicates in generated DLP program;

• create rules corresponding to the various OntoDLP constructs;
• create rules without body for the instances of entities.

The type checker

Type checking algorithms work on the whole ontology, in order to assess validation
status of each ontology component.

The result of the type checker module is not a simple status assessment (i.e.,
”valid” or ”not valid”) for the whole ontology; rather, the system is able to ideally
”split” the ontology in two parts, valid and not valid, allowing the user to work on
both (which is useful during development of ontologies), or just on one of them.

Sophisticated checks are implemented; for example, in each entity the hierar-
chy chain is checked for inconsistencies, the type of attributes is controlled, etc. For
intensional entities forming a group in a a dependency graph, a check for unstrati-
fied negation is also performed, using Tarjan’s algorithm. In general, the consistency
between entity declarations and entity occurring in literals is checked.

Every status assessment contains details of type checking violations (”issues”)
found, which is useful as debugging information for OntoDLP developers.

6.4 Mass-memory query execution

DLV DB is a version of DLV capable to evaluate normal stratified programs in mass
memory (i.e., a relation database is exploited by DLV DB in order to compute answer
sets). DLV DB requires to map each predicate of a program to a database table.
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The translation process described for the Rewriter module is tailored for main
memory execution. However, theOntoDLV system is also able to take advantage of
DLV DB capabilities, if the ontology is stored on a relation database, thus realizing
an execution of queries on mass-memory.

The rewriting procedure of OntoDLV has been extended in order to produce a
logic program plus the required mappings. DLV DB leaves the output of the com-
putation on the database, and OntoDLV handles output accordingly. In particular,
results are taken from the database instead of being rebuilt starting from output of
DLV, but the technicalities of this process are hidden from the user of OntoDLV
system, which sees, through API, a query reasoning system.
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OntoDLV API: embedding OntoDLV in
third-party applications

Integrating a complex reasoning engine in a system is not easy, especially when
an ”impedance mismatch” exists between the reasoner and the third-party system
needing integration.

We provided OntoDLV with an Application Programming Interface (API),
written in Java. The main goal of OntoDLV API is to offer a set of classes and
methods easy enough to be used by casual developer. This in turn requires to exploit
basic, though fundamental, concepts of Java programming like Collections, Itera-
tors. Exposing a minimal set of information is also crucial to leave enough room for
internal optimizations.

In the following sections, we explore the functionalities of API for ontology
browsing (Sec. 7.1), then we describe functionalities that control reasoning tasks
execution (Sec. 7.2). A sample application illustrating API usage is eventually de-
veloped in Sec. 7.3.

7.1 Browsing an ontology

All the operations the user can require (e.g., creation and browsing of ontology el-
ements, reasoner invocations etc.) are made available through a suitable set of Java
classes. It is worth noting that the OntoDLV API is characterized by a rather high
level of abstraction, and it is composed of a relatively rich set of Java interfaces, to-
gether with a single factory class (like, e.g., the JAXP API from Sun1). However, the
extensive usage of standard Java components (e.g., both the interfaces Collection
and Iterator play a central role) makes expert programmers rapidly familiar with
the OntoDLP API.

In the following, we describe the core components of OntoDLV API and we
sketch its working principles.

1 Though the two APIs are aimed at rather different tasks, some of the design principles are
in common, such the usage of ”abstract factory” pattern.
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Core API Components

In the core part of theOntoDLV API each language construct (class schema, rela-
tion schema, instance, etc.) has an associated Java concept describing it. To achieve
a high level of abstraction we decided to use interfaces rather than classes, In partic-
ular, the available Java interfaces are:

• BaseClass for base classes (see Sec. 3.1.1);
• BaseClassInstance for instances of base classes (see Sec. 3.1.2)
• BaseRelation for base relations (see Sec. 3.1.4)
• Tuple for instances of base relations (see Sec. 3.1.4)
• CollectionClass for collection classes (see Sec. 3.3.2)
• IntensionalRelation for intensional relations (see Sec. 3.3.3)
• Mapping for name mapping, used in OWL Atoms (see Sec. 5.4.2)
• Query for OntoDLP queries (see Sec. 3.4.3)
• Axiom for axioms (see Sec. 3.4.1)
• ReasoningModule for reasoning modules (see Sec. 3.4.2)

All the above-mentioned interfaces extend the common interface Component,
which defines precisely the concept of an OntoDLP language component.

Access points for ontology browsing

Concrete implementors of all the above component interfaces are accessible through
an interface containing a set of browsing methods, called ComponentBrowser. In
particular, each ComponentBrowser provide a view of a set of components (either
coming from a single storage engine) it ”owns”, and provides some methods that
return lists of components, namely:

• baseClasses(), which returns a list of all base classes;
• baseClassInstances(), which returns a list of all instances of base classes;
• baseRelations(), which returns a list of all base relations;
• tuples(), which returns a list of all instances of base relations (tuples);
• collectionClasses(), which returns a list of all collection classes;
• intensionalRelations(), which returns a list of all intensional relations;
• mappings(), which returns a list of all name mappings;
• queries(), which returns a list of all queries;
• axioms(), which returns a list of all axioms;
• modules(), which returns a list of all reasoning modules.

For example, if cb is a ComponentBrowser, one can print out the definition of
all known classes with this code:

for (BaseClass cl: cb.baseClasses()) {
\ System.out.println(cl);

}
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It is worth noting that these lists are not “materializations” of the corresponding
entities; they rather represent virtual “views” aggregating a set of objects, possibly
coming from many sources (e.g., different physical storage 2), and they are imple-
mentations of Java standard Collections, which henceforth can be manipulated us-
ing well-known Java methods such as add(), contains(), remove(), etc.

Selectors

The principle exploited above, which is based on lists of Components, is applied to
browse the content of schemas and instances. For example, the BaseClass compo-
nent has a method which returns the list of all superclasses of the given class object.
Moreover, the lists returned by the browsing methods also provide the user the abil-
ity to perform selections over the set of objects through specialized methods. Those
methods, called “selectors”, return a list of the same kind as the one they were called
on (cascading calls are allowed), but filtered on the basis of a given criterion. Lists
and selectors form, in fact, an Embedded Domain Specific Language [26], based on
Java, for accessing the ontology content.

A number of selection criteria has been designed by exploiting the proper-
ties of each collection; and, for instance, a list of classes has a set of special-
ized selectors that deal with the schema properties (such as havingSubclass() and
havingSuperclass()). As an example, the following code snippet allows one to
print out the names of all classes (if any) which are common ancestors of both
aClass and bClass:

System.out.printf("Class names are: %s",
cb.baseClasses().havingSubclass(aClass).
havingSubclass(bClass).names());

Similarly, a list of instances (namely, either BaseClassInstanceLists or TupleLists) may
be queried for the occurrence of a particular value for an attribute by using the method
havingV alue(). For example, one can obtain the list of instances (of any class) having,
among their attribute values, both the number 1974 and the string “Rome” (clearly, for differ-
ent attributes of a given instance) in this way:

BaseClassInstanceList specialInstances =
componentBrowser.baseClassInstances().havingValue(1974)
.havingValue("Rome");

Moreover, havingValue() may take an additional parameter, representing the name of the
attribute to be matched.

As an example:

componentBrowser.baseClassInstances()
.havingValue(a, myValue)

selects all base class instances having an attribute ”a” with specified value.

2 As described in Sec. 6.2 OntoDLV core supports both filesystem and database persis-
tency, which are handled transparently by the API
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Repositories and ontologies

The aforementioned ComponentBrowser interface is implemented by two other interfaces:

• Repository, which represents, as a Java object, a physical source;
• Ontology, which is a integrated view of a set of contributions, coming from Repositories.

Ontology serves instead as a mixing point for lists of components provided by Reposito-
ries; e.g., when asked for a list of base classes, an Ontology returns a composite list aggre-
gating lists coming from various storages. Moreover, composite lists do not evaluate selectors
directly; instead, they take care of properly ”pushing down” selectors to underlying lists. This
way, each Repository providing a list has the opportunity to independently execute associated
selectors.

In fact, Repositories are responsible for translating navigational paths, built by chaining
selectors, into an optimal query to underlying storage system.

The implementation of Repository in RDB Module (see Sec. 6.2) exploits SQL during
selectors evaluation, whereas in Stream Module selectors are evaluated with respect to a set of
indexes.

For example, if ontology integrates contributions from a repositories r1 and r2, the fol-
lowing query, expressed via selectors:

BaseClassInstanceList result =
ontology.baseClassInstances().havingValue(myValue).
fromSchemas(ontology.baseClasses().named(namespace))

is somewhat equivalent to:

BaseClassList interestingClasses =
ontology.baseClasses().named(namespace);

BaseClassInstanceList result = ....
result.addAll(r1.baseClassInstances().

havingValue(myValue).fromSchemas(interestingClasses));
result.addAll(r2.baseClassInstances().

havingValue(myValue).fromSchemas(interestingClasses));

Except for that the internal translation performed by Ontology class gives a BaseClassIn-
stanceList that is not a copy, it is active, i.e., components may still be modified or removed.

Ontology maintains also a central directory of objects, indexed by name; for example, to
access a base class with a given name, no matter where it is stored, one can use:

ontology.findBaseClassByName(myName);

Project

Project is the main starting point of API; it:

• has a set of Repositories
• may create implementation of Repository, either stream-based or RDB-based;
• provides an integrated view through an Ontology
• has an Engine object, to control reasoning tasks (see Sec. 7.2)

Instances of Project may be created using ProjectFactory, which follows the abstract
factory pattern.
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7.2 Controlling reasoning tasks

Reasoning functionalities are accessible via the Engine interface, which allows one for select-
ing either DLV engine, or DLV DB , by switching the InvocationStrategy.

Engine is a factory for Invocation objects, which serve as reasoning task control ”knobs”.
Four kinds of reasoning tasks are available:

• model computation, a set of reasoning modules is selected for execution, all the models
computed (encompassing only auxiliary predicates defined in modules) are returned as
output;

• querying, a given query is submitted to the system, truth value (for ground queries) or
variable binding satisfying the query are returned (may be execute in brave mode, or in
cautious mode);

• consistency check, the ontology is checked for consistency with respect to axioms, viola-
tions are detected and pointed out as result of this task;

• instance computation, the actual extension of intensional entities is computed and cached
on a repository-specific medium (either in main memory or in database tables).

For the first three kinds of reasoning tasks, Engine returns specialized implementations
of Invocation interface (e.g., ModelComputationInvocation, QueryInvocation, Consistency-
CheckInvocation). Each invocation must be provided an implementation of OutputBuilder in-
terface, tailored to the specific task, which is responsible for accepting (and, possibly, storing)
reasoning results.

In order to simplify usage of reasoning engine, when an OutputBuilder is not set, default
implementations (whose names end with OutputResultProvider) are provided, which simply
store the latest result in a suitable Java object for further reference.

As an example a QueryInvocation has, by default, a QueryOutputResultProvider that re-
turns QueryResults; the latter may be explored to gather results from query.

The last kind of invocation, is used internally, whenever the system has to maintain a
snapshot of extension for each intensional entity. Access to the latter is mediated via a se-
lector instances() on CollectionClass and IntensionalRelation, which triggers computation as
needed.

7.3 A sample application

In this section, we show how to use OntoDLV API by running an example. In particular,
we describe a snippet of Java code which uses the API to deal with the living being ontology
introduced in Section 3.1. We refrain from reporting all the technical details (package inclu-
sions, main function declaration etc.), while we focus on the part of the code where the API
methods are used. We report a program that executes the following four operations:

1. load a text file containing the living being ontology;
2. add some new data to the relation friends;
3. build the reasoning module shyFriends described in Section 3.4.2;
4. perform the query youngAndShy(X), X:person(name:”Jack”))?, and print the obtained

results in standard output.

To perform step 1, we first create an instance of the Project class, which, in general, allows
one to handle many different sources of data (e.g. text files, and/or, relational databases).
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Project project = ProjectFactory.buildEmptyProject();

Then, we load the ”living-beings.dlpp” text by writing:

project.buildStreamRepository("LB",
new File("living-beings.dlpp"));

This statement, actually, creates a new Repository class object that handles the data stored in
the ”living-beings.dlpp” text file. Basically, the text file is parsed, and an in-memory represen-
tation of its content can be handled exploiting that object.

Then, we add some tuple to the relation friends (step 2) by writing as follows:

repository.buildTuple("friend(pers1:ted, pers2:frank).");
repository.buildTuple("friend(pers1:frank, pers2:josh).");

In order to perform step 3, we build an object of the class ReasoningModule, and we add a
rule within it:

ReasoningModule module = ontology.buildReasoningModule(
"shyFriends");

module.buildRule("youngAndShy(N) :- P:person(name:N, age:A),
A<18, #count{ F : friend(pers1:P, pers2:F)} < 10.");

Eventually, we perform step 5 by building a QueryInvocation object as follows:

String queryText = "youngAndShy(X), X:person(name:"Jack"))?";
QueryInvocation queryInvocation =
project.getEngine().performQuery(queryText, DerivationMode.BRAVE);
queryInvocation.invokeSynchronously();

The last statement, basically, performs a synchronous invocation of the internal reasoner (i.e.,
the current thread it is constrained to wait until the output is computed); then we get and print
the results on standard output by writing:

QueryOutputResultBuilder resultBuilder =
(QueryOutputResultBuilder)queryInvocation.getOutputProvider();
QueryResult result = resultBuilder.getLatestQueryResult();
System.out.printf("Results: \%s", result.toString());
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Related work

A number of languages and systems somehow related to OntoDLP and OntoDLV have
been proposed in the literature. In this chapter we compare both the language and the system
with other interesting work, highlighting differences and similarities.

Extensions of Datalog

Among systems descending from Datalog, COMPLEX [33] is the most closely related to
OntoDLV ; it supports the Complex-Datalog language, an extension of (non-disjunctive)
Datalog with some concepts from the object-oriented paradigm. OntoDLV and COMPLEX
share a similar object-oriented model, however the language of the latter is less expressive than
OntoDLP . In fact, COMPLEX supports normal (non-disjunctive) stratified programs only
(its expressive power is confined to P ), which are strictly less expressive than OntoDLP
language expressing even ΣP

2 -complete properties.
It is worth noting that other similar languages and systems have been quite successful

and positively accepted in the literature (see e.g., [17, 1, 43]), even if they were based on less
powerful logic programming languages.

Logic-related formalisms

Another popular logic-based object-oriented language is F-Logic [39], which includes most
aspects of object-oriented and frame-based languages. F-logic was conceived as a language
for intelligent information systems based on the logic programming paradigm. A main imple-
mentation of F-logic is the Flora-2 system [65] which is devoted to Semantic Web reasoning
tasks. Flora-2 integrates F-Logic with other novel formalisms such as HiLog [16] (a logi-
cal formalism that provides higher-order and meta-programming features in a computation-
ally tractable first-order setting) and Transaction Logic [3] (that provides a logical foundation
for state changes and side effects in a logic programming language). Comparing OntoDLP
with F-Logic, we note that the latter has a richer set of object oriented features (e.g., class
methods, while multi-valued attributes perfectly match OntoDLP sets), but it misses some
important constructs ofOntoDLP like disjunctive rules, which increase the knowledge mod-
eling ability of the language. Concerning system-related aspects, two important advantages of
OntoDLV (w.r.t. Flora-2) are the availability of an Application Programming Interface, and
the presence of a graphical development environment (not discussed here). The former eases
the task of writing multi-platform Java applications on top of OntoDLV , while the latter
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simplifies the interaction with OntoDLV for both the end user and the knowledge engineer.
Moreover, interoperability mechanisms, which are available in OntoDLV , tend to lower the
”knowledge gap” that has to faced when knowledge one wants to reason on is not encoded in
the native formalism (OntoDLP ).

Semantic Web

A couple of other formalisms for specifying ontologies have been recently proposed by W3C,
namely, RDF/RDFS and OWL. The Resource Description Framework (RDF) [64] is a knowl-
edge representation language for the Semantic Web. It is a simple assertional logical language
which allows for the specification of binary properties expressing that a resource (entity in the
Semantic Web) is related to another entity or to a value. RDF has been extended with a basic
type system; the resulting language is called RDF Vocabulary Description Language (RDF
Schema or RDFS). RDFS introduces the notions of class and property, and provides mech-
anisms for specifying class hierarchies, property hierarchies, and for defining domains and
ranges of properties. Basically, RDF(S) allows for expressing knowledge about the resources
(identified via URI), and features a rich data-type library (richer than OntoDLP ), but, un-
like OntoDLP , it does not provide any way to extract new knowledge from the asserted one
(RDFS does not support any “rule-based” inference mechanisms nor query facilities).

The Ontology Web Language (OWL)[58] is an ontology representation language built on
top of RDFS. The ontologies defined in this language consist of concepts (or classes) and
roles(binary relations also called class properties). OWL has a logic based semantics, and in
general allows to express complex statements about the domain of discourse (OWL is undecid-
able in general). The largest decidable subset of OWL, called OWL-DL, coincides, basically,
with SHOIN (D), an expressive Description Logic (DL)[6]. OWL is based on classical logic
(there is a direct mapping from SHOIN to First Order Logic (FOL)) and, consequently, is
quite different form OntoDLP , which is based on DLP. Compared to OntoDLP , OWL
misses, for instance, default negation, nonmonotonic disjunction, and inference rules. “Rules”,
in particular, are considered an indispensable tool for enabling agents to reason about the
knowledge represented in an ontology [58, 36]

The approach we took in this respect is, somehow, connected with the effort of combining
OWL with rules for the Semantic Web (see [4] for an excellent survey). One of the major
problems existing in the interaction of rules and description logics with strict semantic inte-
gration is retaining decidability (which is, instead, ensured in our framework) without loosing
easy of use and expressivity. For instance, the SWRL[36] approach is undecidable; while, in
the so-called DL-safe rules [46] a very strict safety condition is imposed to retain decidability.
Notably, this safety condition has been recently weakened in some works [53, 52] thus ob-
taining a more flexible environment. However, the goal of the above-mentioned approaches is
different from the one achieved in this paper.

Indeed, one may use OntoDLP rules to reason on top of OWL ontologies; in particular,
by means of our OWL Atoms (see Sec. 5.4, that can appear in the rules’ bodies, one can query
OWL ontologies and apply the powerful OntoDLP reasoning mechanisms on the resulting
knowledge.

In addition, we have provided also a mechanism to import simple OWL ontologies in
OntoDLP and to exportOntoDLP ontologies to OWL. We have singled out language frag-
ments where the semantic equivalence is guaranteed, along the line of the approach proposed
by B.N. Grosof et al. [34], who defined the so-called Description Logic Programs, to combine
logic programming with DL.
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The techniques exploited to obtain our import transformation are similar to (even if more
pragmatic and less general than) the ones used for reducing description logics to logic pro-
gramming (see [9, 59, 35, 37]).

DLV+

Previous works on DLP extensions for ontology representation and reasoning have been car-
ried out at the Mathematics Department of University of Calabria [14, 41, 51], and have led to
the development of the DLV+ prototype [51]. OntoDLV finds its roots in the DLV+ work,
but, compared to DLV+, OntoDLV brings many relevant extensions, optimizations, and en-
hancements.

First, there is a number of additions to the language; compared to DLP+, OntoDLP
additionally features:

• objects reclassification support through collection classes (see Sec. 3.3.2);
• intensionally defined relations (see Sec. 3.3.3), hierarchical relations (see Sec. 3.1.3);
• meta reasoning: the language handles seamlessly reasoning on the schema as well as on

data (see Chap. 4);
• container types (i.e., lists and sets): the user is allowed to build and explore complex data

structures, with unlimited nesting level, and use them as regular values (see Sec. 3.2.3);
• richer set of data types: the language can natively handle a wider range of types (e.g.,

dates, decimals, signed integers), both in simple operations and using aggregates (see Sec.
3.2.1);

• support for externally defined built-in predicates;
• wider range of acceptable names for named components (e.g., entities and individuals),

support for namespaces (see Sec. 3.2.2);
• OWL interoperability mechanisms at language level: a kind of ”import atoms” is sup-

ported, so as to making OntoDLP able to reason on top of OWL ontologies (see Sec.
5.4).

Importantly, the system itself is fitted with new capabilities; compared to DLV+,OntoDLV
features also:

• Application Programming Interface (API): all OntoDLV functionalities are accessible
through an easy-to-use programming interface that exposes concepts at a higher level (see
Chap. 7);

• modular architecture, featuring a pluggable ontology storage engine: the system can use
(and mix) different storage engines (e.g., on filesystem, on a relational database, etc.), for
different parts of the ontology, still retaining an unified, virtual view of concepts defined
in the ontology (see Sec. 6.2);

• mass-memory query execution: OntoDLV , rooted on DLV system, can switch seam-
lessly to DLV DB engine for direct execution of queries on relation databases (see Sec.
6.4);

• OWL interoperability mechanism at system level: OntoDLV has the ability to import
from OWL and export to OWL (see Sec. 5.1, 5.2) ontologies, keeping entailment compat-
ibility for a significant fragment of OWL language (see Sec. 5.3);

These enhancements over DLV+ make OntoDLV well-suited for the development of
industrial applications.
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Conclusion

In this thesis work, we have presentedOntoDLP , an extension of disjunctive logic program-
ming with relevant constructs for advanced knowledge modeling, including classes, objects,
(multiple) inheritance, intensional entities, lists, sets, extended types and meta-reasoning. We
have described the syntax of OntoDLP and shown its usage for ontology representation and
reasoning.

The features of the language, like the closed world assumption and its rich set of tools for
ontology specification and reasoning, combined with an high computational power (allowing
for the direct implementation of complex problem-solving tasks like planning, team building,
etc.) make OntoDLP very suitable for dealing with Enterprise/Corporate ontologies. More-
over,OntoDLV supports a powerful interoperability mechanism with OWL, allowing one to
simultaneously deal with both OWL and OntoDLP ontologies.

In particular, ”OWL Atoms” allow for mixing knowledge coming from OWL into logical
rules; thus, OntoDLP can reason on top of an OWL ontology.

Importantly, we have provided a concrete implementation of the language: theOntoDLV
system. It combines powerful type-checking mechanism and flexible storing of ontologies
for fast ontologies specification and error detection.OntoDLV features also an Application
Programming Interface (API), in order to ease exploiting of the system for solving problems
and developing real-world applications based on OntoDLP . The system is built on top of
DLV (a state-of-the art DLP system), and DLV DB (a version of DLV featuring a fragment
of DLP with direct execution of reasoning tasks on DBMS).

We proposed also pragmatic approach to the problem of interoperability betweenOntoDLP
and OWL. In particular, we designed and implemented in the OntoDLV system two trans-
formation facilities, which are able to import an OWL ontology in OntoDLP , and export
an OntoDLP specification in an OWL one. We shown also that semantic equivalence be-
tween the original OWL ontology and the obtained OntoDLP ontology is guaranteed for a
fragment of both languages.

TheOntoDLV system has already been exploited for the development of some advanced
real-world applications. We close the section by describing a couple of them.

HıLεX system

The HıLεX system [56, 55, 57] is an advanced tool for semantic information-extraction from
unstructured or semi-structured documents. Here, anOntoDLP ontology is used to represent
concepts of the documents domain, while a set of “semantic” regular expressions (HiLEx
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expressions) represent ways of writing a concept in a document. The extraction is achieved by
rewriting such expressions in OntoDLP (by exploiting modules and collection classes) and
computing the answer sets of the obtained OntoDLP specification.

The HıLεX system has been successfully applied for the extraction of clinical data (stored
in flat text format in Italian language) from an Electronic Medical Record (EMR).

Ontology driven agent environment (RAP platform)

The RAP platform, developed by Orangee (http://www.orangee.com) an agent-based
system, implemented by using the JADE Framework, for the governance of the distribution
process of antiblastic medicines in hospitals. Basically, in this application, the “agent’s brain”
is an OntoDLP program.

In particular, application domain has been represented through a domain ontology. The
main events are captured by an agent network (supported by a physical RFID network) and
mapped into semantic model (domain ontology). OntoDLV supports the agent network giv-
ing the ability to reason on the basis of captured events. On the basis of results, the agents are
able to choose the right action as the logic consequence of the captured event.

Semantic Extraction and Adaptive Delivery of Multimedia Contents for the Cultural
Assets

A mesh between the OntoDLP ontology-based modeling system and the DISAS [2, 27, 60]
adaptive system has been presented in [15]. OntoDLP supports ontology-based contents
modeling and extraction, while DISAS allows to deliver contents extracted and produced by
OntoDLV in an adaptive way, taking into account user’s profile, network characteristics and
kind of user terminal.

We envisioned a scenario composed by a set of cultural assets (e.g., museums, archeo-
logical sites, as well as points of interests on a cultural path) each one producing its own
contents by using theOntoDLP system. EachOntoDLP instance is coupled to an instance
of a DISAS server to form a site of the Content Network. Content extracted by theOntoDLP
server is passed to the DISAS server that adapts it taking into account user profile. User profiles
are built by DISAS servers that monitor user activity and network bandwidth. In a centralized
implementation, each DISAS server maintains the profiles of its visiting users needed to make
adaptation, so when a user moves to another site his/her profile has to be rebuilt. In the paper
we sketch a Peer-To-Peer (P2P) approach for the sharing of profile information among DISAS
servers. When a user enters a new site, the DISAS server recovers his/her profile, if available,
using the P2P sharing mechanism.



Part IV

Appendices





A

Disjunctive Logic Programs with Aggregates

Syntax

We assume that the reader is familiar with standard DLP; we refer to atoms, literals, rules, and
programs of DLP, as standard atoms, standard literals, standard rules, and standard programs,
respectively. Two literals are said to be complementary if they are of the form p and notp for
some atom p. Given a literal L, ¬.L denotes its complementary literal. Accordingly, given a
set A of literals, ¬.A denotes the set {¬.L | L ∈ A}. For further background, see [7, 30].

Set Terms.

A (DLP) set term is either a symbolic set or a ground set. A symbolic set is a pair {Vars :
Conj}, where Vars is a list of variables and Conj is a conjunction of standard atoms.1 A
ground set is a set of pairs of the form 〈t :Conj 〉, where t is a list of constants and Conj is a
ground (variable free) conjunction of standard atoms.

Aggregate Functions.

An aggregate function is of the form f(S), where S is a set term, and f is an aggregate
function symbol. Intuitively, an aggregate function can be thought of as a (possibly partial)
function mapping multisets of constants to a constant.

Example A.1. (In the examples, we adopt the syntax of DLV to denote aggregates.) Aggregate
functions currently supported by the DLV system are: #count (number of terms), #sum

(sum of non-negative integers), #times (product of positive integers), #min (minimum term,
undefined for empty set), #max (maximum term, undefined for empty set)2.

1 Intuitively, a symbolic set {X : a(X, Y ), p(Y )} stands for the set of X-values making
a(X, Y ), p(Y ) true, i.e., {X |∃Y s.t . a(X, Y ), p(Y ) is true}.

2 The first two aggregates correspond, respectively, to the cardinality and weight constraint
literals of Smodels.
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Aggregate Literals.

An aggregate atom is f(S) ≺ T , where f(S) is an aggregate function,≺∈ {=, <, ≤, >,≥}
is a predefined comparison operator, and T is a term (variable or constant) referred to as guard.

Example A.2. The following aggregate atoms in DLV notation, where the latter contains a
ground set and could be a ground instance of the former:

#max{Z : r(Z), a(Z, V )} > Y
#max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atom is either a standard (DLP) atom or an aggregate atom. A literal L is an atom A
or an atom A preceded by the default negation symbol not; if A is an aggregate atom, L is an
aggregate literal.

DLP Programs.

A (DLP) rule R is a construct

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm.

where a1, . . . , an are standard atoms, b1, · · · , bm are atoms, n ≥ 0, and m ≥ k ≥
0. The disjunction a1 v · · · v an is referred to as the head of R while the conjunction
b1, ..., bk, not bk+1, ..., not bm is the body of R. We denote the set {a1, . . . , an of the head
atoms by H(R), and the set {b1, ..., bk, not bk+1, ..., not bm} of the body literals by B(R).

A (DLP) program is a set of DLP rules. A global variable of a rule r is a variable appear-
ing in a standard atom of r; all other variables are local variables.

Safety.

A rule r is safe if the following conditions hold: (i) each global variable of r appears in a
positive standard literal in the body of r; (ii) each local variable of r appearing in a symbolic
set {Vars : Conj} appears in an atom of Conj ; (iii) each guard of an aggregate atom of r is
a constant or a global variable. A program P is safe if all R ∈ P are safe. In the following we
assume that DLP programs are safe.

Stable Model Semantics

Universe and Base.

Given a DLP program P , let UPdenote the set of constants appearing in P , and BPbe the
set of standard atoms constructible from the (standard) predicates of P with constants in UP .
Given a set X , let 2

X denote the set of all multisets over elements from X . Without loss of
generality, we assume that aggregate functions map to I (the set of integers).
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Instantiation.

A substitution is a mapping from a set of variables to UP . A substitution from the set of
global variables of a rule r (to UP ) is a global substitution for r; a substitution from the set of
local variables of a symbolic set S (to UP ) is a local substitution for S. Given a symbolic set
without global variables S = {Vars : Conj}, the instantiation of S is the following ground
set of pairs inst(S):
{〈γ(Vars) : γ(Conj )〉 | γ is a local substitution for S}.3

A ground instance of a rule r is obtained in two steps: (1) a global substitution σ for r is first
applied over r; (2) every symbolic set S in σ(r) is replaced by its instantiation inst(S). The
instantiation Ground(P) of a program P is the set of all possible instances of the rules of P .

Example A.3. Consider the following program P1:

q(1) v p(2, 2). q(2) v p(2, 1).
t(X) :- q(X), #sum{Y : p(X, Y )} > 1.

The instantiation Ground(P1) is the following:

q(1) v p(2, 2).t(1) :- q(1), #sum{〈1:p(1, 1)〉, 〈2:p(1, 2)〉}>1.
q(2) v p(2, 1).t(2) :- q(2), #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉}>1.

Interpretations.

An interpretation for a DLP program P is a consistent set of standard ground atoms, that is
I ⊆ BP . A positive literal A is true w.r.t. I if A ∈ I , is false otherwise. A negative literal
notA i true w.r.t. I , if A 6∈ A, is false otherwise.

An interpretation also provides a meaning for aggregate literals.
Let I be an interpretation. A standard ground conjunction is true (resp. false) w.r.t I if

all its literals are true. The meaning of a set, an aggregate function, and an aggregate atom
under an interpretation, is a multiset, a value, and a truth-value, respectively. Let f(S) be a an
aggregate function. The valuation I(S) of S w.r.t. I is the multiset of the first constant of the
elements in S whose conjunction is true w.r.t. I . More precisely, let I(S) denote the multiset
[t1 | 〈t1, ..., tn : Conj 〉 ∈ S∧ Conj is true w.r.t. I ]. The valuation I(f(S)) of an aggregate
function f(S) w.r.t. I is the result of the application of f on I(S). If the multiset I(S) is not
in the domain of f , I(f(S)) = ⊥ (where ⊥ is a fixed symbol not occurring in P).4

An instantiated aggregate atom A = f(S) ≺ k is true w.r.t. I if: (i) I(f(S)) 6= ⊥,
and, (ii) I(f(S)) ≺ k holds; otherwise, A is false. An instantiated aggregate literal notA =
notf(S) ≺ k is true w.r.t. I if (i) I(f(S)) 6= ⊥, and, (ii) I(f(S)) ≺ k does not hold;
otherwise, A is false.

Minimal Models.

Given an interpretation I , a rule r is satisfied w.r.t. I if some head atom is true w.r.t. I whenever
all body literals are true w.r.t. I . An interpretation M is a model of a DLP program P if all
R ∈ Ground(P) are satisfied w.r.t. M . A model M for P is (subset) minimal if no model N
for P exists such that N ⊂ M .
3 Given a substitution σ and a DLP object Obj (rule, set, etc.), we denote by σ(Obj) the

object obtained by replacing each variable X in Obj by σ(X).
4 In this paper, we assume that the value of an aggregate function can be computed in time

polynomial in the size of the input multiset.
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Stable Models.

We now recall the generalization of the Gelfond-Lifschitz transformation to programs with
aggregates from [25].

Definition A.4 ([25]). Given a ground DLP program P and a total interpretation I , let PI

denote the transformed program obtained from P by deleting all rules in which a body literal
is false w.r.t. I . I is a stable model of a program P if it is a minimal model of Ground(P)I .

Example A.5. Consider the following two programs:

P1 : {p(a) :-#count{X : p(X)} > 0.}
P2 : {p(a) :-#count{X : p(X)} < 1.}

Ground(P1) = {p(a) :-#count{〈a : p(a)〉} > 0.} and
Ground(P2) = {p(a) :-#count{〈a : p(a)〉} < 1.},
and interpretation I1 = {p(a)}, I2 = ∅. Then, Ground(P1)

I1 = Ground(P1), Ground(P1)
I2 =

∅, and Ground(P2)
I1 = ∅, Ground(P2)

I2 = Ground(P2) hold.
I2 is the only stable model of P1 (because I1 is not a minimal model of Ground(P1)

I1 ),
while P2 admits no stable model (I1 is not a minimal model of Ground(P2)

I1 , and I2 is not
a model of Ground(P2) = Ground(P2)

I2 ).

Note that any stable model A of P is also a model of P because Ground(P)A ⊆
Ground(P), and rules in Ground(P)−Ground(P)A are satisfied w.r.t. A.
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