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Summary 
 

Several studies on both humans and rodents indicate that prenatal or postnatal exposure to 

estrogens migth have a central role in the mechanism leading to male reproductive tract 

malformations as well as testicular tumors (1;2). While the effects of estrogen on 

mammary gland tumorogenesis is well known, the role of aromatase overexpression and in 

situ estrogen production in testicular tumorogenesis  is not clearly defined. In this study we 

have investigated the molecular mechanisms causing aromatase overexpression and the 

effect of estradiol (E2) overproduction on Leydig cell tumor proliferation. Our hypotesis is 

that constitutive E2 production stimulates Leydig tumor cell proliferation acting on cell 

cycle regulators. Moreover, among several potential factors inducing aromatase, we 

investigated the role of IGF-I, produced locally in the testis, and of COX-2 overexpressed 

in other estrogen-dependent tumors. We used rat R2C Leydig tumor cells and testicular 

samples from Fischer rats with a developed Leydig tumor (FRTT). Both experimental 

models express high levels of aromatase and Estrogen Receptor alpha (ERα). Treatment 

with exogenous E2 induced proliferation of R2C cells and upregulation of cell cycle 

regulators cyclin D1 and E, that were blocked by addition of antiestrogens. These 

observations leaded us to suppose an E2/ERα dependent mechanism for Leydig cell tumor 

proliferation.  

Aromatase expression in rat Leydig cells is driven by the PII promoter regulated mainly by 

three CRE sites and one SF1 site. Determining the molecular mechanism responsible for 

aromatase overexpression, we found that total and phosphorylated levels of transcription 

factors CREB and SF-1 were higher in tumor samples. Moreover, we found that R2C cells 

produce also high levels of IGF-I that increased aromatase mRNA, protein and activity as a 

consequence of increased total and phosphorylated SF-1 levels. Binding of IGF-I to its 

receptor causes receptor autophosphorylation and the activation of an intrinsic tyrosine 

kinase that acts on various substrates, leading to activation of multiple signaling pathways 

including the PI3K/AKT and MAPK cascades. In addition, it has been shown that IGF-I 
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can activate the PLC/PKC pathway (3). Specific inhibitors for IGF-I receptor, Protein 

Kinase C and Phosphoinositol-3-kinase  determined a reduction in SF1 and consequently 

in aromatase expression and activity. The same inhibitors were also able to inhibit the IGF-

1 dependent-SF-1 recruitment to the aromatase PII promoter. These results indicate that in  

Leydig tumor cells one of mechanism determining aromatase overexpression is an 

enhanced IGF-I signaling potentiating SF-1 action.  

Determining the molecular mechanism responsible for constitutive CREB phosphorylation, 

we investigate the role of COX-2 (cyclooxygenase-2) an enzyme involved in 

prostaglandins (PGs) synthesis that has not been detected in the human normal testis, but it 

is expressed in testicular biopsies of men with cancer. We show that COX-2 is expressed in 

rat Leydig tumor samples while is not detectable in normal testis. COX-2 specific inhibitor 

NS398 (5-50 uM) is able to reduce dose-dependently  aromatase mRNA, protein 

expression, activity and  tumor Leydig cell proliferation. NS398 significantly decreases 

CREB activation reproducing the same effect of H89 (a PKA inhibitor) on both aromatase 

and CREB. The drop in estrogen production determines a decrease in tumor Leydig cell 

proliferation. Moreover, the addition of increasing amounts of PGE2 were able to increase 

phosphorylation but not synthesis of CREB which consequently increased aromatase 

expression. Next, in order to evaluate PGE2 receptor (EP) subtype(s) responsible for 

induction of aromatase expression and activity, we used the selective inhibitors: SC19220, 

AH6809, AH23848 for EP1, EP2/EP4 and EP4 respectively. Our data demonstrate that 

only the AH23848 was able to determine a decrease in CREB phosphorylation and again in 

aromatase expression. These findings led us to suppose that, in tumor Leydig cells, COX-

2-derived PGE2, through an autocrine mechanism, activates PKA which is responsible of 

CREB activation.  

In summary, our results give a contribution to clarify two molecular mechanisms 

determining aromatase overexpression in Leydig cell tumor. The first one involves some of 

pathways (PI3-K and PKC) activated the IGF-I determining SF-1 production and enhanced 

P450 mRNA transcription. The other one involves the production of PGE2 (induced by 

COX-2 overexpression), which is responsible of PKA activation and CREB 
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phosphorylation. It remains to elucidate the molecular mechanisms determining IGF-I and 

COX-2 overexpression in tumoral Leydig cells. 

However, the observations that COX-2 and IGF-I pathway inhibitors are able to decrease 

E2 production and to block Leydig cell tumor proliferation, open new perspectives on 

trapeutic approach of Leydigioma in the human. 
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1. Endocrinology of the male reproductive system 

 
1.1 The testis: general structure  

The human male reproductive system includes the hypothalamic-pituitary-gonadals axis, 

the epididymis, vas deferens, seminal vesicles, prostate and the urethra. The testis is 

composed primarily of seminiferous tubules packed closely together and interstitial cells 

(4). The seminiferous tubules are composed by Sertoli cells that support germ cells during 

their maturation into spermatozoa. Sertoli cells create a blood-estis barrier, and separate the 

germinal epithelium into basal and adluminal compartments. They are responsible for the 

physical support of the germ cells, in addition to providing nutrients and growth factors. 

The major cell in the interstitial space outside the seminiferous tubule is the Leydig cell, 

which produces testosterone, a necessary component for germ cell maturation. Male 

fertility requires the production by the testes of large numbers of normal spermatozoa 

through a complex process of spermatogenesis. The germ cells are sequentially organised 

into several layers signifying the respective mitotic or meiotic processes and spermatid 

development. Each seminiferous tubule is surrounded by mesenchymal cells. Among these 

are the peritubular myoid cells whose contractile elements generate peristaltic waves along 

the tubules, but do not present a tight diffusion barrier. Vascular smooth muscle cells, 

macrophages and endothelial cell types are also located in the interstitial space of the testis. 

The physiological role of macrophages has long been underestimated. In the rat, the 

number of macrophages is one quarter of the number of Leydig cells and the presence of 

macrophages is crucial for (re)population of Leydig cells during development and after 

experimental depletion (5;6). Immune cells, known to secrete a number of growth factors 

and cytokines, are part of the intratesticular communication pathways (7).  
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1.2 Testicular function and its regulation 

Testes are components of both the reproductive system (being gonads) and the endocrine 

system (being endocrine glands). The respective functions of the testicles are: 

1. producing sperm (spermatozoa); 

2. producing male sex hormones. 

These two functions occur in separate compartments within the testis: 1. the seminiferous 

tubules produce sperm and 2. the interstitial cells (i.e., Leydig cells) synthesize androgens 

(Fig. 1).  

 

 
 
Figure 1. Schematic representation of functions of the testis. 

 

Both functions of the testis, sperm-forming and endocrine, are under control of 

gonadotropic hormones produced by the anterior pituitary: luteinizing hormone (LH) and 

follicle-stimulating hormone (FSH). Synthesis and release of both FSH and LH is 
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regulated by a single gonadotropin releasing hormone (GnRH) also referred to as LHRH, a 

decapeptide produced by specialized neurons in the hypothalamus. Pulsatile GnRH 

production signals gonadotroph cells in the anterior pituitary to produce follicle-

stimulating hormone (FSH) and luteinizing hormone (LH) that then act on the testis to 

regulate spermatogenic potential. LH binds to receptors on the surface of Leydig cells in 

the testis and stimulates the production of testosterone, a steroid hormone that diffuses into 

the seminiferous tubules. Within the seminiferous tubules only Sertoli cells possess 

receptors for testosterone and FSH and thus these cells are the major targets of the ultimate 

hormonal signals that regulate spermatogenesis.  

Serum testosterone and inhibin ( Sertoli-cell product) downregulate LH and FSH secretion 

via negative feedback loop. Testosterone also decreases the responsiveness of the pituitary 

to GnRH (Fig. 2).  

 

 
 
Figure 2.  Hypothalamic-Pituitary-Testicular axis. 
 

LH, through specific receptors found on the surface of Leydig cells, controls the 

production and secretion of testosterone (8;9). 
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Thus, pituitary gonadotropins are the chief regulators of testicular function. LH stimulates 

androgen production by Leydig cells after binding to LHR and FSH acts through its 

receptors in Sertoli cells (FSHR) to regulate spermatogenesis (Fig. 3).  

 

 
 

Figure 3. Endocrine regulation of the testis. PMC, peritubular myoid cell; CRE, cAMPresponsive elements, 
ARE, androgen-responsive elements; ERE, estrogen-responsive elements; (by Akingbemi BT 2005). 
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The interaction of LH with its receptor initiates signalling through GTP binding proteins 

determining the cyclic AMP production (10). Signal transduction occurs through the 

protein kinase A pathway as its principal signal transduction mechanism. Some data 

suggests that intracellular calcium concentration can be induced by the action of LH by 

activating phospholipases in the lipoxygenase pathway (11). In addition, the changes in 

calcium can also regulate adenylate  cyclase through the protein kinase C pathway. 

Within the seminiferous tubules only Sertoli cells possess receptors for testosterone and 

FSH and thus these cells are the major targets of the ultimate hormonal signals that 

regulate spermatogenesis. FSH binding to its receptor is known to activate at least 5 

signaling pathways in Sertoli cells: cAMP-PKA pathway, MAP kinase pathway, 

Phosphatidylinositol 3-kinase (PI3-K) pathway, Calcium pathway, Phospholipase A2 

(PLA2) pathway. Initially FSH binding to the FSH receptor causes receptor coupled G 

proteins to activate adenylate cyclase (AC) and increase intracellular cAMP levels. 

Multiple factors can be activated by cAMP in Sertoli cells including PKA that can 

phosphorylate a number of proteins in the cell and also regulate the expression and activity 

of numerous transcription factors including CREB. During puberty, FSH activates the 

MAP kinase cascade and ERK kinase in Sertoli cells most likely via cAMP interactions 

with guanine nucleotide exchange factors (GEFs) and activation of Ras-like G proteins. 

ERK is capable of activating transcription factors including SRF, c-jun and CREB. In 

granulosa cells, FSH also activates the p38 MAP kinase. FSH and cAMP also likely act 

through GEFs to activate PI3-K and then phosphoinositide dependant protein kinase 

(PDK1) and PKB in Sertoli cells. Studies of granulosa cells identified Forkhead 

transcription factor (Forkhead), SGK (glucocorticoid-induced kinase) and GSK-3 

(glycogen synthase kinase-3) as additional downstream targets of the PI3-K pathway. FSH 

also mediates the induction of PLA2 and the subsequent release of arachadonic acid (AA) 

and the activation of eicosanoids such as PGE2 that may act as intracellular or extracellular 

signaling agents (12). However, gonadal steroids, i.e., androgen and estrogen, and other 

agents that bind or prevent binding to steroid hormone receptors (androgen receptor AR, 

ERα, and ERβ), which are present in Sertoli cells, germ cells and Leydig cells also regulate 
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testicular function (9). The pathway mediated by adenosine-3',5'-cyclic monophosphate 

(cAMP) appears to be the primary intracellular signaling pathway in all testicular cells. 

However, several growth factors e.g., insulin like growth factor-1 (IGF-1) and epidermal 

growth factor (EGF), acting via their receptors, IGF-1R and EGF-R, possibly modulate AR 

and ER-mediated pathways. Thus, testicular function is regulated by interactions between 

several signaling pathways, some acting locally, e.g., AR and ER-mediated pathways, and 

others indirectly by modulating hypothalamus-pituitary function. Hormonal activation of 

transcriptional gene activity results in changes in cell differentiation and function. 

 

1.3 Steroid production 

 

Testosterone is the major androgen secreted by the testis from its site of production within 

the Leydig cells. In addition to testosterone, through the actions of the enzyme 5α-

reductase, dihydrotestosterone is produced by the testis in smaller amounts. The testis also 

contributes approximately 25% of the total daily production of 17β-estradiol through the 

local action of the enzyme aromatase which converts androgenic substrates to this estrogen 

(13). The remainder of the circulating estradiol is produced by the adrenal and peripheral 

tissues through the actions of aromatase. Cholesterol represents the major substrate for 

androgen production by the Leydig cells and is derived by an uptake mechanism involving 

the binding of circulating low density lipoprotein to specific receptors on Leydig cells 

which, following internalisation provides a significant source of cholesterol (14). In 

addition, the Leydig cells are able to undertake de novo synthesis of cholesterol from 

acetate and relative contributions of these two sources is partly dependent on species and 

the state of stimulation of the Leydig cells.  

The conversion of cholesterol to testosterone involves a number of steps that are catalyzed 

by enzymes, predominantly belonging to cytochrome P450 family. The mobilization of 

cellular sources of cholesterol is achieved through the action of cholesterol ester hydrolase 

and subsequently, this is converted to pregnenolone by the enzyme cholesterol side-chain 

cleavage termed cytochrome P450SCC (15) (Fig. 4).  
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Figure 4. Steps in steroidogenesis leading to androgens and estrogens production. 
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The conversion of cholesterol to pregnenolone is a key step at which regulation of 

androgen production within the Leydig cells occurs. Availability of cholesterol substrate 

can be rate-limiting and the intracellular trafficking of cholesterol across mitochondrial 

membranes is dependent on the steroidogenic acute regulatory protein (STAR) (16-18). 

The role of this protein has been well demonstrated in patients with mutations in the gene 

encoding STAR in the disorder termed congenital lipoid adrenal hyperplasia wherein the 

mitochondria from the adrenals and gonads of these patients are unable to convert 

cholesterol to pregnenolone (19). Further, the results of studies involving targeted 

disruption of the mouse gene encoding STAR support the data derived from human studies 

(20). Pregnenolone may progress to testosterone production through two pathways. It can 

be converted to progesterone through the enzyme 3βhydroxysteroid dehydrogenase (the 

D4 pathway) or can be hydroxylated at the 17α position by the enzyme 17-alfahydroxylase 

to form 17α-hydroxypregnenolone (the D5 pathway). The relative importance of these two 

pathways vary with the species and the physiological status of the male (21). The further 

conversion of 17α-hydroxypregnenolone through the D5 pathway involves the formation 

of the C19 steroid dehydroepiandrosterone catalyzed by the enzyme 17,20 lyase and both 

steps appear to be catalyzed by a single microsomal enzyme cytochrome P450 c17 

encoded by a single copy gene on chromosome 10 (22;23). The conversion of 

dehydroepiandrosterone to androstenediol is mediated by a microsomal enzyme 17β-

hydroxysteroid dehydrogenase encoded by a single gene (24;25). The conversion of 

substrates from the D5 to the D4 pathway are catalyzed by the enzyme 3β-hydroxysteroid 

dehydrogenase (26). In the D4 pathway 17α-hydroxyprogesterone proceeds through the 

action of cytochrome P450 c17 to androstenedione and testosterone. Testosterone can be 

converted to a dihydrotestosterone by the enzyme 5α-reductase (27) or can be metabolised 

to 17β-estradiol by the enzyme aromatase (13;28).  
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2. Estrogen regulation of testicular function 

 
Evidence supporting a role for estrogen in male reproductive tract development and 

function has been collected from rodents and humans. These studies fall into three 

categories: i) localization of aromatase and the target protein for estrogen (ER-alpha and 

ER-beta) in tissues of the reproductive tract; ii) analysis of testicular phenotypes in 

transgenic mice deficient in aromatase, ER-alpha and/ or ER-beta gene; and, iii) 

investigation of the effects of environmental chemicals on male reproduction. Estrogen is 

thought to have a regulatory role in the testis because estrogen biosynthesis occurs in 

testicular cells and the absence of ERs caused adverse effects on spermatogenesis and 

steroidogenesis (29). All of these topics will be individually discussed in this section of the 

introduction. In males, estrogens derive from circulating androgens. Aromatization of the 

C19 androgens, testosterone and androstenedione, to form estradiol and estrone, 

respectively, is the key step in estrogen biosynthesis, which is under the control of the 

aromatase enzyme (Fig. 5).  

  

Figure 5. Biochemical pathway of testosterone conversion into estrogens. 
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2.1 The aromatase gene: structure and regulation 

 

Aromatase is composed of two proteins: a ubiquitous NADPH-cytochrome P450 reductase 

and a cytochrome P450 aromatase (P450arom), which contains the heme and the steroid-

binding pocket. In humans, P450arom is the product of a single gene located in region 

q21.1 of chromosome 15 and called cyp19, which belongs to the cytochrome P450 gene 

family. The cyp19 gene is more than 123 kb in length with a coding region of 9 exons (II-

X) and 9 nontranslated exons I (30)  (Fig. 6).  

 

 
 
Figure 6. Schematic presentation of the human aromatase gene. P = promoter; (by Carreau S 2007). 
 

Expression of the cyp19 gene is regulated by tissue-specific promoters producing alternate 

5'-untranslated exons I that are then spliced onto a common 3'- splice acceptor site in exon 

II, upstream of the translation starting site (31-33). Therefore, there is generation of cyp19 

variants with different 5’untranslated regions giving rise to different mRNAs; however, the 

coding sequences are identical and give rise in humans to a single protein composed of 503 

amino acids with a molecular mass of 55 kDa. It is of note that  P450arom is encoded by a 

single cyp19 gene in most species except for pigs in which three distinct genes encode 
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three aromatase isoenzymes (34) and for fish in which two cyp19 genes (specifically 

expressed in the brain and gonads) have been identified (35). Different mechanisms of 

regulation of Cyp19 gene expression have been described for various tissues. The synthesis 

of different aromatase isoforms between species and tissues may involve distinct 

aromatase genes and/or the function of different promoter elements (36). In human adipose 

tissue, the primary promoter I.4 lies about 15 kb upstream of the start site of translation 

(37;38)  and is a TATA-less promoter driven by glucocorticoids and class I cytokines e.g. 

IL-6 and TNFα (33). The region of PII proximal to the translation start site regulates 

P450arom expression in mammalian gonads (37;39) as well as in Leydig cell tumors (40). 

Numerous functional motifs have been identified in P.II (33) (Fig. 7).  

 
 
Figure 7. Structure of the human Cyp19 gene showing the various untranslated first exons and their 
corresponding promoters. The region around promoter PI.4 and PII from human and PII from rat are 
expanded to show the identified response elements. Sequences of these are shown in boxes; (by Carreau S 
2004). 
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In the testis, FSH and LH act by increasing concentrations of intracellular cyclic AMP to 

induce expression of P450arom. Promoter PII activity is therefore regulated by cyclic 

AMP and requires the transcription factors cAMP response element binding protein 

(CREB), cAMP response element modulator (CREM) and steroidogenic factor-1 (SF-1). 

SF-1 belongs to the nuclear orphan receptor superfamily and regulates steroidogenic gene 

transcription (e.g. P450arom via its interaction with numerous coactivators including 

CREB binding protein, DAX-1, SOX-9, WT1).  

It has been shown that the level of P450arom mRNA is increased in Leydig cells of mice 

deficient for DAX-1 (41). In addition, it is shown that liver receptor homologue-1 (LRH-

1), an SF-1 homologue, wich is present in leydig cells and germ cells, but not in sertoli 

cells, increases the P450arom gene expression in a mouse leydig cell line (42).  

Moreover, it is now clear that not only P.II drives the aromatase gene in rat testis but two 

additional promoters, P.I.f (brain promoter) and a new one that we called P.I.Tr  (testis 

rat;(43), are involved. It is also demonstrated that the nutritional status of fetuses (44)  and 

aging  (Hamden K, Silandre D, Delalande C, El Feki A, Carreau S, unpublished results) 

can modulate aromatase gene expression in male rats. 

 

2.2 The Estrogen Receptors (ERs)  

Estrogen actions are mediated by binding to specific nuclear estrogen receptors (ERs), 

which are ligand-inducible transcription factors regulating the expression of target genes 

after hormone binding. Two subtypes of ERs have been described: estrogen receptor α 

(ERα) and the more recently discovered estrogen receptor β (ERβ). The human gene 

encoding for ERα is located on the long arm of chromosome 6, while the gene encoding 

for ERβ is located on band q22-24 of chromosome 14.  
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The two ER (α and β) proteins have a high degree of homology at the amino acid level 

(Fig. 8).  

 

Figure 8. ERs gene and its products (by Akingbemi BT 2005) . 
 
 

While it is clear that estrogens regulate transcription via a nuclear interaction after binding 

their receptors, a non-genomic action of estrogens has been recently demonstrated, 

suggesting a different molecular mechanism accounts for some estrogen actions. In vitro 

studies showed a very short latency time between the administration of estrogens and the 

appearance of biological effects. These actions are thought to be mediated through cell-

surface receptors, which are not believed to act via a transcriptional mechanism (45). The 

different types of estrogen action are summarized in Table 1. 
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Table 1. Estrogen actions and related biomolecular pathways and 
mechanisms. 

Estrogen 
Actions 

Receptors  Mechanism  Final effect  Features 

ERα Transcriptional: 
nuclear interaction 
with estrogen-
responsive 
elements  

Modulation of 
estrogen target 
gene 
expression.  

Slow effects 
(minutes or 
hours) 

Genomic 
(nuclear 
actions)  

ERβ Transcriptional: 
nuclear interaction 
with estrogen-
responsive 
elements  

Modulation of 
estrogen target 
gene 
expression.  

Slow effects 
(minutes or 
hours) 

Non 
Genomic 
(cell 
membranes 
actions)  

Estrogen 
receptors on 
cells 
membrane  

Cells membrane 
changes  

Changes in 
ionic transport 
through cell 
surface.  

Rapid effects 
(seconds) 

 

ERs are members of the steroid/thyroid hormone super family of nuclear receptors, which 

share a common structural architecture, and consist of three independent but interacting 

functional domains: the N-terminal or A/B domains, the C or DNA-binding domain, and 

the D/E/F or ligand-binding domain (Fig. 8). Binding of a ligand to the ER causes a series 

of downstream events, including receptor dimerization, receptor-DNA interactions 

mediated by EREs present in the promoter region of target genes, recruitment of and 

interaction with transcription factors, and the formation of a preinitiation complex. 

Ligand- receptor interactions ultimately cause changes in target gene expression (46). The 

N-terminal domain of nuclear receptors encodes an activation function called AF-1, which 

mediates protein-protein interactions to induce transcriptional activity. It is thought that 

this domain is highly active in ERα-mediated stimulation of reporter gene expression from 

a variety of ERE-constructs but its activity in the ERβ is limited (47). On the other hand, 

the C-terminal or ligand-binding domain contains the AF-2 interacting surface that 

mediates ligand binding and receptor dimerization to stimulate transcriptional activity (48).  
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Thus, AF-1 and AF-2 are both involved in mediating the transcriptional activation 

functions of ERs. Although there is a high degree of homology in the DNAbinding 

domains of ERα and ERβ (about 95%), only a partial homology exists in the ligand-

binding domain (~60%) (49). Differences in ligand binding, in association with other 

factors, have the effect of altering the pattern of ER-mediated transcriptional activity. For 

example, some agonists bind both ER subtypes with the same affinity while others 

preferentially bind to ERα or ERβ (50-52). There is general agreement that ERs function as 

dimers, and co-expression of ERα and ERβ in the same cell causes the formation of 

homodimers (ERα/ERα and ERβ/ERβ) or heterodimers (ERα/ERβ), which affect ligand-

specificity. The interactions between ERs and EREs are complicated by other factors, 

including the ability of ERβ to modulate ERα transcriptional activity and recruitment of 

several protein co-activators and repressors by both ER subtypes. Therefore, the relative 

amounts of ERα and ERβ  in a given tissue are key determinants of cellular responses to 

estrogen and other ER agonists and antagonists (53). Moreover, ER and other steroid 

receptors have the ability to mediate biological effects through non-transcriptional 

mechanisms mediated by protein-protein interactions occurring between ERs and growth 

factors e.g., IGF-1 and EGF (54). Furthermore, there is growing evidence for the presence 

of a small pool of ERs localized to the plasma membrane. For example, BSA-conjugated 

E2, which is unable to gain entry into the cytosol and acts at the plasma membrane, 

decreased testicular androgen production in vitro (55). Membrane ER is thought to signal 

mainly by coupling to GTP-activating proteins and through pathways involving second 

messengers (e.g., calcium) and kinase cascades (56). The integration of several pathways 

implies that estrogen action in any particular tissue and organ is the result of activities 

mediated by genomic and non-genomic pathways although the physiological significance 

of specific pathways in the testis remains to be elucidated (57) . 

2.3 Distribution of ERs and aromatase in the male reproductive system  

ERs and the aromatase enzyme are widely expressed in the male reproductive tract in both 

animals and humans, implying that estrogen biosynthesis occurs in the male reproductive 
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tract and that both locally produced and circulating estrogens may interact with ERs in an 

intracrine/paracrine and/or endocrine fashion (45). The concept of a key estrogen action in 

the male reproductive tract is strongly supported by the fact that male reproductive 

structures are able to produce and respond to estrogens (58). 

2.3.1 ERs and aromatase in rodent testis 

Aromatase and ERs are found at a very early stage of development in the rodent testis, thus 

suggesting a role for estrogens in influencing testicular development (59-61). ERα is 

expressed by Leydig cells in the rodent fetal testis at a developmental stage in which the 

androgen receptor is not yet expressed. The developing efferent ductules and epididymis 

also express ERα in the fetal rodent. By contrast, it is unclear whether ERα is present 

within the seminiferous tubules of the fetal testis, with variable results having been 

reported (60). ERα is abundant in the developing efferent ductules, which are the first male 

reproductive structures to express ERs during fetal development (62). ERβ is also found 

early in testis development in the gonocytes, Sertoli cells and Leydig cells, with the 

gonocytes showing the highest expression suggesting a role for estrogens in their 

maturation. In addition, ERβ is expressed by rat Wolffian ducts, the structures from which 

the efferent ductules and epididymis arise (60). Aromatase is expressed in both Leydig and 

Sertoli cells in the rodent fetal testis, but not in gonocytes and immature structures of 

seminal tract. ERs and aromatase distribution in the fetal testes is summarized in Table 2.  

Table 2. ERs and Aromatase distribution in the rodent fetal testis. 

    ERα  ERβ  Aromatase 

Leydig cells  ++  ++  + 

Sertoli cells  -  ++  ++ 

Gonocytes  -  +++  - 

Seminiferous tubules  +/-  +  + 

Ducts  +  +  - 
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The finding of both aromatase and ERs in the developing fetal testis imply a possible 

involvement of estrogens in the process of differentiation and maturation of developing 

rodent testis from an early stage of morphogenesis (59;63). In the postnatal immature 

rodent testis ERα expression does not occur in the seminiferous epithelium, remaining 

confined to the Leydig cells, rete testis, efferent ductules and epididymis (Table 3). In the 

neonatal rodent testis, ERβ is widely expressed by the rat seminiferous epithelium (Sertoli 

cells and germ cells) as well as by Leydig cells, efferent ductules and epididymis. At this 

stage ERβ seems to be the only ER in germ cells and is found in pachytene spermatocytes, 

round spermatids, and perhaps in elongated spermatids of rats and humans (58) (Table 3). 

Table 3. ERs and Aromatase distribution in postnatal immature 
rodent testis. 

    ERα ERβ Aromatase 

Leydig cells +  +  + 

Sertoli cells  -  +  +++ 

Gonocytes  -  +  - 

Seminiferous tubules  -  +  + 

Ducts  +  ++  (?) 

 

Aromatase is expressed by the dividing Sertoli cells and is stimulated by FSH, with the 

levels of aromatase declining with age. Fetal Leydig cells also have the ability to produce 

estrogens in response to LH, but aromatase in this cell type is expressed to a lesser degree 

than during neonatal life. Interestingly the neonatal testis continues to show a greater 

degree of aromatase expression in the Sertoli cells than in the Leydig cells (the latter only 

express aromatase to a greater extent in the adult rat testis when they become one of the 

major sources of estrogens under the influence of LH) (Table 3). Germ cells in immature 

rats do not yet express aromatase. ERα is expressed in the Leydig cells of both adult rats 

and mice (64) but not in Sertoli cells. ERα expression in adult rodent germ cells remains to 
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be confirmed, with its presence in pachytene spermatocytes and round spermatids being 

suggested by one study yet its absence demonstrated by others such that the prevailing 

view is that ERα is absent in germ cells. Studies on the precise cellular localization of ERs 

expression, however, are mainly based on immunocytochemistry, using different 

antibodies, and led to contradictory results. Whereas, it is generally agreed that both 

subtypes are expressed by the epithelial cells of the efferent ductules and epididymis, data 

concerning testicular expression differ between species, possibly due to different 

specificity characteristics of the antisera used.  Knowledge of the distribution of ERα is of 

great importance in understanding estrogen action on the male reproductive tract. ERα is 

highly expressed in the proximal reproductive ducts (rete testis, efferent ductules, proximal 

epididymis) and its expression progressively decreases distally (corpus and cauda of the 

epidydimis, vas deferens). The highest degree of ERα expression is seen in the efferent 

ductules of the rat (65) and accounts for one of the most well-documented estrogenic 

actions on male reproductive system, that of fluid reabsorption from the efferent ductules. 

It has to be remarked that the concentration of ERα in the male reproductive tract is 

opposite to that of ERβ, which is more concentrated in the distal tract (Table 4). 

Table 4. ERs and Aromatase distribution in the adult rodent testis. 

  ERα ERβ Aromatase 

Leydig cells  +/-  +/-  +++ 

Sertoli cells  -  +  + 

Germ cells  
Spermatogonia 
Pachytene Spermatocytes 
Round Spermatids 
Spermatozoa  

+/- 
- (?) 
-/+ 
-/+ 

+ (?)  

++ 
+ 
+ 
+ 

+ (?)  

++++ 
+ (?) 

+ 
++ 
+ 

Efferent ductules  ++++  +  - (?) 
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ERβ is expressed in Leydig, Sertoli and germ cells in adult rodents (66;67) and has also 

been detected in primate germ cells (68). There is now considerable evidence that germ 

cells contain both ERβ and aromatase (68). It should be noted that there are some 

controversies in terms of ERβ localization, with immunohistochemical studies showing 

some discrepancies, possibly due to methodological differences. It seems that the 

regulation of gonocyte multiplication, which is under the influence of growth factors and 

estradiol, may occur through the involvement of ERβ (69). By adulthood, rodent Leydig 

cells show higher aromatase activity compared to every other age and in comparison to 

Sertoli cells (70). Aromatase is also expressed at high levels in germ cells throughout all 

stages of maturation, and its expression appears to increase as the germ cell becomes a 

mature spermatid (Fig. 9). 

 

Figure 9. Aromatase and estrogen receptors (ER) in adult male rat gonad. Aromatase has been demonstrated 
in terms of mRNA (RT-PCR), protein (Western blots) and enzyme activity (measurements of estradiol output 
in culture media) in the various testicular cells. ER: estrogen receptors localization; (by Carreau S 2003, 
2005). 
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Aromatase mRNA and activity, in fact, are found in germ cells from the pachytene 

spermatocyte stage in both rats and mice, and during their subsequent maturation into 

round spermatids(61;70;71). Aromatase seems to be present in higher levels in mature 

spermatids of the rat than in earlier germ cells (61;71;72). It is of interest that aromatase 

mRNA expression and enzyme activity is higher in germ cells when compared with Leydig 

cells, suggesting that germ cells may be a major source of estrogen in adult rodents. When 

fully developed spermatids are released from the epithelium, aromatase remaining in the 

residual body is subsequently phagocyted by the Sertoli cell. Some aromatase activity 

remains in the cytoplasmic droplet that remains attached to the flagellum as the sperm 

make its way through the epididymis, suggesting that mature spermatozoa are able to 

synthesize their own estrogen as they traverse the efferent ducts (73;74). The ability to 

synthesize estrogen gradually decreases as the droplet slowly moves to the end of the tail 

during epididymal transit until it's finally lost. The demonstration of aromatase in sperm is 

important as it suggests that the sperm itself could control the levels of estrogen present in 

the luminal fluid, directly modulating functions such as the reabsorption of fluid from the 

efferent ductules (65). 

2.3.2 ERs and aromatase in the human testis 

Both ERs have been found in human testis and reproductive tract. In the male fetus ERβ 

expression is higher than ERα, the latter being absent or expressed at very low levels. In 

the human fetus ERβ immunoreactivity has been shown in the seminiferous epithelium 

(Sertoli cells and a few germ cells) and in the epididymis suggesting a role for ERβ in the 

prenatal development and function of male reproductive structures (75). In adult men ERα 

was expressed only in Leydig cells, while ERβ has been documented in both Leydig and 

Sertoli cells and in the efferent ducts (76). The presence of ERs in the human epididymis is 

still debated, even though recently ERα has been detected in the nuclei of epithelial cells of 

the caput of the epididymis (77). Both ERα and β have been detected in human pachytene 

spermatocytes and round spermatids with in situ hybridization (78-80). These latter studies 

have been contradicted by more recent studies showing strong expression of ERβ in human 
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testis but failing to find evidence for ERα using immunohistochemistry (81) and RT PCR 

(82), suggesting that ERβ is the primary mediator of estrogen action in the human testis. Of 

particular interest is the demonstration of differential expression of wild type ERβ (ERβ1) 

and a novel human variant form of ERβ, arising from alternate splicing (ERβcx, or ERβ2), 

in the human testis (83). ERβ2, which may act as a dominant negative inhibitor of ER 

action, was highest in spermatogonia and Sertoli cells in adult men, suggesting that these 

cells may be "protected" from estrogen action by the expression of this variant. However 

wild type ERβ1 was highest in pachytene spermatocytes and round spermatids, which have 

been proposed to be estrogen sensitive, yet was low in less mature germ cells (81). As 

previously suggested by Durkee et al. (84), ERs are present in human sperm. In particular 

it has recently been documented by Luconi et al. (85) that the sperm membrane contains an 

estrogen receptor-related protein able to bind steroid hormones that may act through a 

calcium-calmodulin dependent pathway and thus perhaps accounts for a well documented 

rapid non-genomic action. Aromatase expression in the human testis is present in both 

somatic and germ cells from pachytene spermatocytes through elongated spermatids 

(80;86). Aromatase is also expressed in both human Leydig and Sertoli cells (71). 

Recently, the presence of aromatase has been demonstrated not only in immature germ 

cells, but also in mature human spermatozoa (87). In contrast to rodents, aromatase 

expression in human gametes is not lost during transit through the genital tracts since P450 

aromatase was demonstrated in ejaculated human spermatozoa at three different functional 

levels: mRNA expression, protein and activity (87). Thus ejaculated human spermatozoa 

continue to express P450 aromatase and contain active aromatase, and thus sperm have to 

be considered a potential site of estrogen biosynthesis. These evidences support the 

concept that human spermatozoa should be considered a mobile endocrine unit since they 

are able to synthesize and to respond to estrogens. Again, the presence of functionally 

aromatase in human spermatozoa permits the conversion of androgens into estrogens 

throughout the whole transit of reproductive tract, an event that constantly provides free 

estrogens in the seminal fluid able to act on the cells of the reproductive ducts.  
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2.4 Role of estrogens in animal male reproduction 

In animals, a previously unsuspected physiological role of estrogens in testicular function 

was revealed by the creation of the ERα knockout (αERKO) mouse. Adult, sexually 

mature, male αERKO mice are infertile even though the development of the male 

reproductive tract is largely unaffected (69). Adult testicular histology shows an atrophic 

and degenerating seminiferous epithelium, together with dilated tubules and a dilation of 

the rete testis (88). The disruption of spermatogenesis is progressive as the testicular 

histology is normal at ten days of age but starts to degenerate at twenty-thirty days. By 

about 40-60 days the tubules are markedly dilated with a corresponding significant 

increase in testicular volume while the seminiferous epithelium becomes atrophic. A 

severe impairment in tubule fluid absorption in the efferent ducts was demonstrated to be 

the cause of infertility in αERKO male mice, and this defect is partially mimicked also by 

the administration of an anti-estrogen in wild-type mice (65). In the male genital tract the 

highest concentration of ERα is found in the efferent ducts (89) and the estrogen-dependent 

fluid reabsorption in this site probably results from estrogen interaction with the ERα that 

seems regulate the expression of the Na(+)/H(+) exchanger-3 (NHE3). In fact, the 

disruption of ERα or the use of antiestrogens result in decreased expression of NHE3 

mRNA, as well as in a decrease of other proteins involved in water reabsorption, such as 

aquaporin I (90;91). The lack of fluid reabsorption in the efferent ductules of αERKO male 

mice and the consequent dilatation of these ductules induces a retroactive progressive 

swelling of the seminiferous tubules. The seminiferous tubule damage results from the 

increased fluid pressure and severely impaired spermatogenesis coupled with testicular 

atrophy as seen at the age of 150 days (65). In addition, reproductive hormones profiles are 

abnormal in αERKO male mice as serum LH is significantly increased with a consequent 

elevated serum testosterone and Leydig cells hyperplasia, but FSH remains in the normal 

range (69). It is also worth noting that detailed investigations into the development of 

efferent ductules in αERKO male mice suggest that a congenital absence of ERα leads to 

developmental abnormalities in this tissue (92). The recent production of both aromatase 
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knockout (ArKO) (93) and ERβ knockout (βERKO) (94) mice supports the idea that in 

mice estrogen actions on the male reproductive tract are more complex than previously 

suggested on the basis of the αERKO mice. In fact, unlike αERKO mice, male ArKO mice 

are initially fully fertile (93), but fertility decreases with advancing age (95), and, 

conversely, βERKO mice are fully fertile and apparently reproductively normal in 

adulthood (94). From seven months of age male ArKO mice are not able to sire any litters. 

Again histology of the testes of one-year-old ArKO mice shows a disruption of 

spermatogenesis at the early spermatid without significant (95). The late onset  of the 

alterated phenotype in male ArKO mice is attribuitable to estrogenic substance present in 

their diet and which are capable of agonistic effect on spermatogenesis (96). Despite the 

phenotype of αERKO male mice, the mechanism involved in the development of infertility 

is different in ArKO male mice, since the early arrest of spermatogenesis suggests a failure 

of germ cell differentiation probably caused by the lack of estrogen action at the level of 

the seminiferous epithelium rather than a problem referable to impaired fluid reabsorption 

(59). Recent findings from studies in which human germ cells were treated with estrogen 

in vitro suggest that estradiol may serve as a survival factor for round spermatids and that 

lack of estradiol may promote apoptosis with a resulting failure in elongated spermatid 

differentiation (79). Recently studies in mice deficient in both ER α and β (αβERKO mice) 

showed a male phenotype very close to that of αERKO mice with infertility and dilated 

seminiferous tubules (69). These findings, together with the observation that βERKO male 

mice are fully fertile (94), lead to the hypothesis that estrogen activity in the male 

reproductive tract differs with regard to both the type of estrogen receptor involved in the 

pathway of estrogenic action and the site of action through the male reproductive tract. 

Importantly, results from mice lacking functional ERs or aromatase point to an important 

role for estrogen in the maintenance of mating behaviour in male mice, and that infertility 

in αERKO, αβERKO and ArKO mice are at least in part due to reductions in various 

aspects of mating behavior from an early age. The above studies support the concept that a 

functional ERα, but not ERβ, is needed for the development and maintenance of a normal 

fertility in male mice (69). Clearly, further studies are needed to fully understand the 
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precise role of estrogens and their receptors in the establishment and maintenance of male 

fertility, and the importance of intracrine and paracrine pathways for these effects. 

2.5 Role of estrogens in human male reproduction 

The demonstration of abundant ERs in human efferent ducts and aromatase activity in 

human sperm, speaks in favor of the involvement of estrogens in male reproductive 

function. On the other hand, data from human subjects with congenital estrogen deficiency 

have provided conflicting and somewhat confusing results. The only man with estrogen 

resistance discovered up till now, a human equivalent of the ERKO mouse, had normal 

testicular volumes and a normal sperm count but with slightly reduced motility (97). The 

four adult men affected by congenital aromatase deficiency showed a variable degree of 

impaired spermatogenesis (98-101). The patient described by Carani et al., showed both a 

severely reduced sperm count and an impairment of sperm viability with germ cell arrest at 

the level of primary spermatocytes (63). A more recent patient had complete germ cell 

arrest on testicular biopsy but a semen analysis was not performed according to patient's 

religious views (98;99). Data concerning the patient described by Morishima et al. are 

lacking since sperm counts were not analyzed (100). It should be remarked that a clear 

cause-effect relationship between infertility and aromatase deficiency is not demonstrable 

in the patient studied by Carani et al., since one of his brothers was infertile despite the 

absence of mutations in the aromatase gene, suggesting an alternate common cause for 

their infertility (102). Recently a new patient with aromatase deficiency has been described 

to have impaired fertility (101), confirming a possible association between congenital 

estrogen deficiency and infertility. The variable degree of fertility impairment in men with 

congenital deficiency of estrogen action or synthesis deficiency does not permit a firm 

conclusion about whether these features are a consequence of a lack of estrogen action or 

are only epiphenomena, even though a possible role of estrogen on human spermatogenesis 

is suggested by rodent studies. Recently, the administration of aromatase inhibitors to 

infertile men with an impaired testosterone to estradiol ratio resulted in an improvement of 

fertility rate (103), although in the absence of a placebo or control group, these findings 
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need to be interpreted with great caution. Clearly our knowledge of a role for estrogen in 

human male reproduction is far from complete. The exposure to the excess of 

environmental estrogens has been proposed as a possible cause of impaired fertility.  

2.6 Effects of excess estrogen on male reproduction 

2.6.1 Exposure to excess estrogens in animals 

In order to evaluate the effect of estrogen excess on the reproductive tract, several studies 

have been performed in various animal species treated with diethylstilbestrol, a synthetic 

estrogenic compound. In male mice, the critical period for Műllerian duct formation is day 

13 post-coitus. Prenatal exposure of fetal male mice to DES caused a delay in Műllerian 

duct formation by approximately two days as well as incomplete Műllerian duct regression 

with a female-like differentiation of the non-regressed caudal part (104). An increase in the 

expression of anti-Műllerian-Hormone (AMH) mRNA in male mice fetuses exposed to 

DES has also been demonstrated. This increase was not accompanied by a regression of 

the ducts. This data was interpreted to suggest that the asynchrony in the timing of 

Műllerian duct formation, with respect to the critical period of Műllerian duct regression, 

led to the persistence of Műllerian duct remnants at birth in male mice. Moreover DES 

exposure did not impair embryonal genetic development, but increased ERs number, and 

slightly prolonged the gestation time (cesarean sections were performed to rescue the litter 

and revealed no difference in size of fetuses from control and DES treated mothers). The 

timing of DES exposure is crucial to the induction of abnormalities of Műllerian duct 

development and regression (104). Many studies in rodents suggest that inappropriate 

exposure to estrogen in utero and during the neonatal period impairs testicular descent, 

efferent ductule function, the hypothalamic-pituitary-gonadal axis, and testicular function 

(58). The latter effect can be a direct consequence of exposure to excess estrogen, as well 

as a secondary effect due to perturbations in circulating hormones or the ability of the 

efferent ductules to reabsorb fluid. Some studies show that low dose estrogenic substances 

given during puberty can actually stimulate the onset of spermatogenesis, likely due to 
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stimulatory effects on FSH (105), highlighting the fact that the effects of excess estrogen 

on male fertility are often complex. The effects of excess estrogen in the neonatal period 

can impact upon the testis into adulthood, with permanent changes in testis function and 

spermatogenesis evident (106). 

2.6.2 Aromatase over-expression in rodents 

Recently a transgenic line of mice overexpressing aromatase enzyme (AROM+) has been 

developed (107;108). These mice show highly elevated serum estradiol concentrations, 

with a reciprocal decrease in testosterone concentrations. The AROM+ males display 

several of the changes observed in males perinatally exposed to estrogens, such as 

undescended testes, testicular interstitial cell hyperplasia, hypoandrogenism, and growth 

inhibition of accessory sex glands. A disruption of spermatogenesis has also been observed 

which could be a consequence of multiple factors, including cryptorchidism, abnormal 

Leydig cell function, hypoandrogenemia or hyperestrogenemia. Estrogens are thought to 

inhibit Leydig cell development, growth and function, resulting in the suppression of 

androgen production (58). The observation of numerous degenerating germ cells and the 

absence of spermatids within the seminiferous tubules of AROM+ mice suggest that germ 

cells development was arrested at the pachytene spermatocyte stage in the cryptorchid 

testes. Interestingly, the spermatogenic arrest occurred at a stage where P450arom is 

typically expressed. The spermatogenic arrest found in the AROM+ mice could be 

explained, at least partially, by the suppression of FSH action. The reduced serum FSH 

levels in AROM+ males are further evidence of the inhibiting actions of estrogens on FSH 

secretion in males. No significant differences in the LH concentrations were seen in 

AROM+ and wild type mice (107;108). 
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2.6.3 Exposure to excess estrogens in humans 

The clinical use of diethylstilbestrol (DES) by pregnant women in order to prevent 

miscarriage resulted in an increased incidence of genital malformations in their sons (109). 

In these individuals the presence of Műllerian ducts remnants was found indicating that 

fetal exposure to DES may have an effect on sex differentiation in men, as is the case in 

rodents (104). Moreover a large number of structural and functional abnormalities were 

found, the most frequent being: epididymal cysts, meatal stenosis, hypospadias, 

cryptorchidism and microphallus (109). The frequency of abnormalities was dependent on 

the timing of estrogen exposure: in fact, men who were exposed to DES before 11th week 

of gestation (i.e. the time of Műllerian ducts formation) had a two fold higher rate of 

abnormalities than those who were exposed only later (109). This data supports the 

previously discussed hypothesis that the asynchrony between formation and regression of 

embryonal reproductive structures is determined by estrogen exposure. Various reports 

have demonstrated that semen quality of men exposed to DES in utero is significantly 

worse than in unexposed controls (110;111). However, the sperm concentrations of most of 

the DES exposed men were well above the limit at which subfertility occurs, and it is 

therefore not surprising that the fertility of these men was reported to be normal (112). The 

risk of testicular cancer among men exposed to DES in utero has been a controversial issue 

and several meta-analyses showed no increased risk (113). However more direct evidence 

will be necessary in order to fully understand this issue. While various studies suggest that 

environmental estrogens affect male fertility in animal models, the implications for human 

spermatogenesis are less clear (114). It has been demonstrated that male mice whose 

mothers have consumed a 29 ng/g dose of bisphenol A for seven days during pregnancy 

had a 20% lower sperm production as compared to control males (115). Various 

abnormalities in reproductive organs have also been described in males exposed to 

bisphenols (i.e. a significant decrease in the size of the epididymis and seminal vesicles 

and an increase in prostate gland volume), suggesting that bisphenols interfere with the 

normal development of the Wolffian ducts in a dose-related fashion. Exogenous estrogens 
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could interfere with the development of the genital structures if administered during early 

organogenesis, by leading to both an impairment of gonadotropin secretion and by creating 

an imbalance in the androgen to estrogen ratio, which may account for impaired androgen 

receptor stimulation or inhibition according to the dose, the cell type and age (1;116;117). 

An excess of environmental estrogens has been suggested as a possible cause of impaired 

fertility in humans (118). A progressive decline in sperm count has been reported in some 

Western countries during the past 50 years, suggesting a possible negative effect of 

environmental contaminants on male reproductive function (119). Data concerning the role 

of estrogens in male reproductive structure development remains conflicting. Animal 

studies suggest that exposure to estrogen excess may negatively affect the development of 

reproductive male organs. These effects, however, are considered to be the result of an 

impaired hypothalamic-pituitary function as a consequence of estrogen excess and of the 

concomitant androgen deficiency (1;117). Much of the knowledge on excess estrogen 

exposure and human fertility depends upon animal data and the validity of these concepts 

to humans has not been established. 

2.6.4 Aromatase over-expression in humans 

In 1996 a boy with aromatase excess syndrome was reported (120). His condition was 

presumably inherited in an autosomal dominant fashion with sex-limited expression as his 

father had a history of peripubertal gynecomastia, elevated serum estrogen levels and 

increased aromatase activity in vitro. The father was fertile and had a normal libido despite 

a small testicular volume (15 mL bilaterally), and a reduced testosterone level of 234 

ng/dL (120). In the son, mild suppression of testicular growth and Leydig cell function 

probably reflected direct estrogen negative feedback on pituitary gonadotropin secretion. 

In general, the inhibitory effects of estrogen on reproductive function appear to be milder 

in males with aromatase excess syndrome than in patients receiving exogenous estrogens 

or with estrogen-secreting tumors, probably because serum estradiol and/or estrone levels 

are lower in the former (120). 
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3. Testicular cancer 
 

3.1 Introduction 

 

Although cancer of the testes is rare, accounting for only about 1 percent of all cancers in 

men of all ages and about 5 percent of all male genitourinary system cancers, it is the most 

common cancer in men between the ages of 15 and 35, and the second most common 

malignancy in men ages 35 to 39 (121-124).   

Because the incidence of testicular cancer has risen markedly in the past 20 years, 

numerous studies are being conducted to explore possible environmental causes, including 

the mother's diet during her pregnancy as well as her use of diethlstilbestrol (DES) to 

prevent miscarriage. Researchers are also looking at the increasing presence of estrogen-

mimicking pollutants in the environment. The most consistent occupational association has 

been the elevated rate among men in professional and white-collar occupation, which may 

be linked to an increased risk observed with lower levels of exercise. Other possible causes 

include hereditary factors, genetic anomalies, congenital defects involving the reproductive 

tract, testicular injury, and atrophy of the testes. Viral infections such as mumps, which 

cause inflammation of the testes, have not been proven to cause cancer. 

Testicular cancer comprises a number of different diseases. Nearly all of the main cell 

types in the testis can undergo neoplastic transformation, but germ cell-derived tumors 

constitute the vast majority of cases of testicular neoplasms. Ninety-five percent of 

testicular cancers arise from sperm-forming, or germ cells and are called germinal tumors. 

The remaining 5 percent are nongerminal tumors. About 40 percent of germinal tumors are 

categorized as seminomas. Several other types of germinal tumors are referred to 

collectively as non-seminomas. Somatic cell tumors, known as sex cord-stromal neoplasms 

and Leydig cell tumors are relatively rare. However, being derived from endocrine active 

cells, they have endocrine manifestations.  
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3.2 Leydig cell hyperplasia and tumors  

 

Although Leydig cells in adult men are considered to be a terminally differentiated and 

mitotically quiescent cell type, in various disorders of testicular function, focal or diffuse 

Leydig cell hyperplasia is very common. Micronodules of Leydig cells are frequently seen 

in certain conditions associated with severe decrease of spermatogenesis or germinal 

aplasia, such as the so-called Sertoli-cell-only syndrome (Del Castillo syndrome), 

cryptorchidism, or Klinefelter’s syndrome (125). A term “Leydig cell adenoma” is used 

when the size of a nodule exceeds several fold the diameter of a seminiferous tubule. It is 

unknown whether Leydig cell adenomas can progress further to form overt Leydig cell 

tumors, but even if it was the case, it is exceedingly rare. Morphological heterogeneity of 

hyperplastic Leydig cells is noticeable in some cases.  

The mechanism of Leydig cell hyperplasia in the human male is still poorly understood. 

The disruption of hypothalamo-pituitary-testicular axis leading to an excessive stimulation 

of Leydig cells by LH can play a central role (125). However, molecular pathways remain 

largely unknown in the vast majority of cases. In a small subset of cases structural changes 

of the LH receptor (126;127) and G proteins (128;129) were detected. Constitutively 

activating mutations of LH receptor cause early Leydig cell hyperplasia and precocious 

puberty (126;130). Similarly, constitutively activating mutations of Gs-protein in Leydig 

cells lead into hyperplasia and endocrine hyperactivity (129;131). However, Leydig cell 

hyperplasia is distinct from tumors that are usually solitary, and the role of the LH receptor 

and G protein mutations in the tumorigenesis may be limited to few cases (127;129). 

Leydig cell hyperplasia and adenomas can be easily induced in rodents by administration 

of estrogens, gonadotropins and a wide range of chemical compounds. Whether or not 

humans would be similarly susceptible to environmental effects remains to be elucidated.  

Leydig cell tumors account for one to three percent of testicular neoplasms and occur in all 

age groups (131-133). Approximately 20 % are found before the age of 10, most often 

between five and ten years of age. Precocious puberty is the presenting symptom in these 

cases. Tumors produce androgens, mainly testosterone in a gonadotropin independent 
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manner, and therefore LH and FSH remain low in spite of external signs of puberty. 

Approximately 10 % of the boys also have gynecomastia that is caused by estrogens 

produced in excess due to aromatase activity. In adults, gynecomastia is found in 

approximately 30 % of patients (133). The excessive androgen secretion rarely causes 

notable effects in adults.  

Leydig cell tumors are always benign in children and can be treated with surgical 

enucleation when the tumor is encapsulated (123), whereas in adults malignant tumors 

have been found in 10-15 % of patients, and inguinal orchidectomy remains the treatment 

of choice (132). The presence of cytologic atypia, necrosis, angiolymphatic invasion, 

increased mitotic activity, atypical mitotic figures, infiltrative margins, extension beyond 

testicular parenchyma, and DNA aneuploidy are associated with metastatic behavior in 

Leydig cell tumors (133;134). Malignant tumors are hormonally active only in exceptional 

cases. Benign tumors can be treated by orchidectomy, whereas an additional 

retroperitoneal lymphadenectomy should be considered when the gross or histological 

features suggest malignancy (134). Malignant tumors have not responded favorably to 

conventional chemotherapy and irradiation (134). Survival time has ranged from 2 months 

to 17 years (median, 2 years), and metastases have been detected as late as nine years after 

the diagnosis (133;134). Therefore follow-up of patients with malignant Leydig cell tumors 

has to be life-long. The remaining testis may be irreversibly damaged by longstanding high 

estrogen levels, resulting in both permanent infertility and hypoandrogenism(133-135).  

The most frequently encountered testicular neoplasm of the mouse and rat is the Leydig 

cell adenoma. Incidence rates vary in different strains with the Sprague-Dawley SD rat 

ranging from 1 to 5% and the F-344 rat reaching nearly, 100% (136). Early neoplasm are 

common in 1 yr old F-344 rats and become increasingly more frequent with age (137). 

Testicular neoplasia is less frequently observed in alla strains of mice  with incidence 

ranging from 1 to 2,5%. Leydig cell tumors in rodents generally occur in older animals, but 

in human can arise in any age, the majority between 20 and 60 yr (138). The estimated 

incidence in man is 0.1-3 per million. The proliferative lesions in Leydig cells in rodents 

are similar and are observed as a continuous spectrum starting  with smaller nodular foci of 
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hyperplasia leading to large Leydig cell adenomas that can eventually replace the entire 

testis. The distinction between hyperplasia and adenoma is not always clear, with size 

being the major factor in the diagnostic criteria, with some debate over when focal 

hyperplasia becomes early neoplasia and there can be little morphological difference 

between a hyperplastic nodule and a small Leidig cell adenoma. The major difference 

between the testicular tumors observed in human and rodents (particularly the rat) are the 

high incidence of germ cell tumors in human and their occurrence in relatively young men. 

In rats, germ cell tumors are extremely rare, but Leydig cell tumors can be almost 100% in 

incidence in certain strains (e.g., Fisher F-344) and occur most frequently in older animals. 

 

3.3 Relationship between estrogens and Leydig tumors 

 

The biological significance of estrogen-induced testicular tumorigenesis has been 

suggested by the in vivo model overexpressing aromatase transgenic mice (139). Half of 

these males were infertile and some of them showed larger than normal testis and Leydig 

cell hyperplasia/Leydig cell tumor. Furthermore, aromatase was markedly 

immunolocalized in the cytoplasm of interstitial cells, and its immunoreactivity appeared 

to be strongest in the testes with more advanced stages of neoplasia. The same transgenic 

animals exhibited estrogen circulating levels at least twice higher than those of control 

animals and the levels of aromatase mRNA in their testicular tissues were fourfold higher 

when compared with controls. It is worth to mention how ERα protein in testicular tissue 

of aromatase transgenic animals was very high with respect to the undetectable levels of 

control animals. So the authors suggest how an enhanced synthesis of estrogens in tumoral 

tissues led to an upregulation of ERα expression. Human Leydig cell tumor is a rare 

testicular neoplasm where estrogen involvement in tumorigenesis process has scarcely 

been investigated. Recently, a strong aromatase expression in tumoral tissues was revealed 

by immunostaining and western blotting (140). This finding agrees with a single previous 

report (141) showing the aromatase immunolocalization in Leydig cell tumors. 

Furthermore, aromatase expression in control human testicular tissue confirmed Turner’s 
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report in normal testes (142). The enhanced endogenous synthesis of estrogens by Leydig 

cell tumor was reflected in both patients by a dramatic increase of estrogen circulating 

levels, resulting more than twofold higher than those of adult normal male, and by the low 

testosterone levels (at the lower limit of normal range) (140). Moreover, the ratio between 

the free fraction levels of the two steroids is furthermore increased in the target tissues. The 

diminished sperm count and motility of both patients may not only be related to altered 

testicular tropism, parenchymal compression, and increased local temperature ipsilateral to 

the tumor (143) but also to the detrimental effects of high circulating estrogen levels on the 

counter-lateral gonad activity. In the adult normal male, 80% of the plasma estradiol 

originates from aromatization of testosterone and androstenedione in fat, striated muscle, 

and other tissues including bone and brain, while 20% in the circulation is secreted by the 

testis. So, it is reasonable to argue how the excessive increase of estradiol circulating 

levels, observed in the two patients with Leydig cell tumor, is the consequence of an 

enhanced rate of testicular secretion. This is confirmed by the evidence that estradiol, as 

well as E2/T ratio circulating levels, drops dramatically following surgical treatment, while 

for one of the two patients the persistence of a conspicuous bilateral gynecomastia led to 

bilateral mastectomia (140). Following orchidectomy, the two patients exhibited a 

moderate increase of sperm count and a remarkable augment of sperm motility (140). The 

latter event may be reconducted to the restored testosterone circulating levels likely 

affecting the entire male genital tract. The expression of ER isoforms in Leydig cell tumor 

is, to date, unknown. In fact, only a single work showed the ER immunolocalization in 

cryostat sections of Leydig cell tumor (24); recently, immunohistochemical and western 

blot analysis of tumoral tissues revealed the expression of ERα and of the two ERβ 

isoforms, ERβ1 and ERβ2, in neoplastic Leydig cells of both patients. So, the pattern of 

ERs expression in tumoral cells appears different from that of control Leydig cells, 

exhibiting only ERβ1 and ERβ2 as previously reported (81;83) . 

There is a growing body of evidence that ERα and ERβ can be expressed together in the 

same cell type and independently expressed in another. Therefore, homodimers (ERα–

ERα/ERβ–ERβ) or heterodimers (ERα–ERβ) can be formed (28). The binding affinity of 
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ERα–ERα/ ERα–ERβ dimers for a consensus DNA estrogen response element is reported 

to be higher than that of the ERβ –ERβ homodimer (29). Thus, the presence of ERα could 

reinforce the estradiol-induced tumor cell proliferation. Finally, has been demonstrated that 

neoplastic Leydig cells are potential estrogen biosynthesis sites and display a modified ER 

expression pattern. Therefore, it appears reasonable to suggest that the high estrogen 

levels, measured in the two patients, could play a role in the neoplastic transformation of 

Leydig cells, while the exclusive presence of ERα in tumoral cells could amplify E2 

signaling contributing to the tumor cell growth and progression. 
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4. The IGF system 
 

4.1 Introduction 

 

The insulin-like growth factor (IGF) signalling axis involves the coordinated function of 

two ligands, IGF-I and IGF-II, three cell surface receptors, at least six high affinity binding 

proteins and binding protein proteases). This signalling axis plays a pivotal role in normal 

growth and development (144), and is also implicated in mediating many aspects of the 

malignant phenotype in a variety of human malignancies (145-147).  

IGF-I and -II are growth-promoting peptides, members of a superfamily of related insulin-

like hormones that includes insulin and relaxin in the vertebrates and bombyxn, locusta 

insulin-related peptide, and molluscan insulin-like peptide in invertebrates (148-153). 

However, insulin and IGFsare the most closely related in terms of primary sequence and 

biological activity. The IGFs are major growth factors, whereas insulin predominantly 

regulates glucose uptake and cellular metabolism. Them both are secreted as prohormones 

and undergo trough a proteolitic process to produce the active peptide. 

Structurally, they consist of A, B, C, and D domains (Fig. 10).  

 

 
 
Figure 10. Protein domains in IGFs and Insulin. Regions showing homologies with insulin are indicated by 
dark blue rectangles. The lengths of individual fragments (in amino acids) are indicated in brackets. 
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Large parts of the sequences within the A and B domains are homologous to the α- and β-

chain of the human proinsulin. This sequence homology is 43% for IGF-I and 41% for 

IGF-II. No sequence homology exists between the C domains of IGFs and the C peptide 

region of human proinsulin. The gene encoding IGF-I is highly conserved (154) such that 

57 of 70 residues of the mature protein are identical among mammals, birds, and 

amphibians (155-157). Expression of the IGF-I gene is affected at many levels including 

gene transcription, splicing, translation, and secretion. IGF-I expression is also influenced 

by hormonal (GH) (158), nutritional (159), tissue-specific and developmental factors 

(160), The biological actions of the IGFs are mediated by the type I IGF receptor (IGF-IR), 

a glycoprotein on the cell surface that transmits IGF binding to a highly integrated 

intracellular signaling system (161). Binding of IGF-I to its receptor causes receptor 

autophosphorylation and the activation of an intrinsic tyrosine kinase that acts on various 

substrates, leading to activation of multiple signaling pathways including the PI3K/AKT 

and MAPK cascades. In addition, it has been shown that IGF-I can activate the PLC/PKC 

pathway (3).. IGF-II also binds to the IGF-IR buth with lower affinity (161). Expression of 

the IGF-IR gene (162) has been detected in many tissues and is constitutively expressed in 

most cells (163;164); its promoter is regulated in vitro and in vivo by transcription factors 

such as Sp1 and the transcription factor p53 (165). Various IGF-I receptor subtypes that 

present distinct structures or binding properties have also been described. Two of these 

subtypes, namely hybrid and atypical IGF-I receptors, have been particularly investigated 

in a variety of cell types (166). The atypical IGF receptors are characterized by their ability 

to bind insulin as well as IGFs with relatively high affinity (167). Hybrid insulin/IGF-I 

receptors have been reported in cells expressing both IGF-I and insulin receptors (168); 

however, the physiological significance of hybrid and atypical IGF receptors is unclear. 

The IGF-II ligand has greatest affinity for a distinct receptor, the type-II or IGF-II receptor 

(169). This single chain polypeptide with a short cytoplasmic domain lacking tyrosine 

kinase activity is identical to the cation-independent mannose-6 phosphate (M6P) receptor 

(170). The IGF-II/M6P receptor binds two general classes of ligands: 1) non-M6P-

containing ligands, the best characterized of which is IGF-II; and 2) M6P-containing 
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ligands, including lysosomal enzymes. The multifunctional role of the receptor is 

evidenced by its function in the mediation of lysosomal enzyme trafficking, endocytosis, 

and lysosomal degradation of extracellular ligands, regulation of apoptotic/mitogenic 

effects, and possible intracellular signal transduction (171;172). More recently, high-

affinity binding of IGF-II to an insulin receptor isoform (IR-A) has also been reported 

(173), thus suggesting that IGF-II might also signal via the insulin receptor. However, this 

insulin receptor isoform (IR-A), lacking the alternative spliced exon 11, is preferentially 

expressed in fetal and cancer cells (174). 

A family of six high-affinity IGF-binding proteins (IGFBP-1 through IGFBP-6) coordinate 

and regulate the biological activity of IGF in several ways: 1) transport IGF in plasma and 

control its diffusion and efflux from the vascular space; 2) increase the half-life and 

regulate clearance of the IGFs; 3) provide specific binding sites for the IGFs in the 

extracellular and pericellular space; and 4) modulate, inhibit, or facilitate interaction of 

IGFs with their receptors (175;176). IGFBP biological activity is regulated by 

posttranslational modifications such as glycosylation and phosphorylation and/or 

differential localization of the IGFBPs in the pericellular and extracellular space (175;176). 

It is therefore hypothesized that IGFBPs, in addition to stabilizing and regulating levels of 

diffusible IGFs, might regulate IGF-I cellular responses by facilitating receptor targeting of 

IGF-I or modulating IGF-I bioavailability in the pericellular space. The effects of the 

IGFBPs are further regulated by the presence of specific IGFBP proteases, which cleave 

the binding proteins, generating fragments with reduced or no binding affinity for the IGFs 

(177). Some IGFBPs, including IGFBP-2 and -3, can induce direct cellular effects 

independent of the IGFs (176;178). IGFBP-3, similar to IGFBP-5, contains sequences with 

the potential for nuclear localization (179) and detection of IGFBP-3 in the nuclei of 

dividing cells, as reported by several investigators (180), strongly suggesting a role for 

IGFBP-3 in gene regulation. More recently, perinuclear or nuclear localization has also 

been reported for IGFBP-2 (181); however, the role of IGFBP-2 in this cellular 

compartment is yet to be determined. 
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4.2 Effect of Insulin-Like Growth Factor I on testicular function 

 

Although it is well established that testicular function is mainly controlled by the 

gonadotropins LH and FSH, there is now considerable evidence indicating that local 

factors are extremely important in regulating the functions of the testis (182). For example, 

higher insulin levels in testicular fluid have suggested a role for this factor in Leydig cell 

development and function (183). Another factor, insulin-like growth factor I (IGF-I), is 

believed to be a potent para/autocrine stimulator of Leydig cell function (184). Several 

laboratories have demonstrated IGF-I immunoreactivity (185;186) and IGF-I messenger 

RNA (mRNA) (187) in the adult rat testis. Immunostainable IGF-I has been found in adult 

human testes (188). Cultures of Sertoli and Leydig cells from adult rats and immature pigs 

secrete immunoreactive IGF-I into the medium, and this secretion is enhanced by FSH 

(Sertoli cells) or LH (Leydig cells) (189;190). Type I receptors for IGF-I have been found 

on human, pig, and rat Leydig cells (191;192), and IGF-I enhances the differentiated 

functions of Leydig cells (193). IGF-I stimulates the hCG-supported production of cAMP 

and testosterone by cultures of rat (194) and pig (195) Leydig cells. The response to cAMP 

analogs is also enhanced (195), suggesting that IGF-I potentiates the action of LH/hCG at 

sites both proximal and distal to cAMP generation. IGF-I increases the number of LH/hCG 

receptors (192) and the amount of LH/hCG receptor mRNA (196) as well as the activities 

of several steroidogenic enzymes and the amounts of mRNAs encoding them (197-199). 

The role of IGF-I has been demonstrated in testicular growth and development, control of 

Leydig cell numbers, and in the onset of steroidogenesis and spermatogenesis (184;200). 

Lastly, the crucial role of IGF-I in the development and function of Leydig cells was 

obtained in studies of IGF-I gene knock-out mice(201). The testes of these animals were 

reduced in size and had fewer and smaller Leydig cells than normal, and the plasma 

testosterone levels were markedly reduced. It has recently been demonstrated that IGF-I 

null mice have decreased levels of serum testosterone and steroidogenic acute regulatory 

(StAR) protein (202). StAR has been demonstrated to play an essential role in regulating 

steroid biosynthesis by mediating the transfer of cholesterol from the outer to the inner 



                                                                                                                              Introduction 

 - 43 - 
 

mitochondrial membrane where it is converted to pregnenolone (203). Transcriptional 

and/or translational inhibition of StAR expression results in a dramatic decrease in steroid 

biosynthesis whereas approximately 10–15% of steroid synthesis appears to be mediated 

through StAR-independent mechanisms (204). Recent findings indicate that IGF-I is 

capable of increasing expression of StAR protein and steroid synthesis in mouse Leydig 

cells (3). 

 

4.3 IGF system  and tumorigenesis 

 

IGF-I is a peptide hormone that is involved in controlling proliferation and differentiation. 

Although most of the IGF present in circulation is protein bound, a small fraction of  IGF-I 

is "free"; this component may be more bioavailable, but assays specific for free ligand are 

controversial. The IGF binding proteins IGFBP-3 and IGFBP-1 both affect IGF-I 

bioavailability and, in addition, seem to exert independent effects on the growth control of 

malignant cells (205) as part of a comprehensive regulation system of cell survival and 

death. Several reports indicate that high circulating levels of IGF-1 are associated with 

increased risk of developing breast, colorecatal, prostate and skin cancer. In fact, a positive 

association between circulating levels of IGF-I generally and breast cancer risk was 

observed in premenopausal women (206). However, results from observational studies 

have not been consistent (206;207) and considerable uncertainty remains regarding the true 

association between IGF-I and premenopausal breast cancer risk. Furthermore, the 

association between IGFBP-3 and breast cancer risk is also inconsistent. In part, these 

inconsistencies may be attributed to technical variation in performance of assays for IGFs, 

particularly IGFBP-3, the primary IGF-I binding protein. Other potential explanations for 

inconsistencies in results include differing blood sampling and storage methods, different 

definitions of cancer "cases," differences in age at blood sampling, and the possibility of 

differences between populations in factors that may influence the IGF-I risk relation.  

Several studies suggest that IGF-I and IGF-II are important in the pathophysiology of 

colorectal carcinoma. IGF receptors are found in human colon cancers (208), and full-
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length messenger RNAs for IGFs have been detected in human tumor cells (209). 

Exogenous IGF-I and -II stimulate proliferation of human colorectal cancer cells (210), 

whereas blockade of the IGF-I receptor inhibits tumor cell growth (211). Individuals with 

acromegaly, a disease of somatic growth caused by increased growth hormone and IGF-I, 

have an increased incidence of colonic cancer (212). IGF-binding protein-3 (IGFBP-3) 

binds more than 95% of the IGF in serum and influences cell proliferation by modulating 

access of IGFs to the IGF receptors (213). IGFBP-3 also apparently inhibits growth and 

induces apoptosis through IGF-independent mechanisms (214). Most circulating IGF-I and 

IGFBP-3 are synthesized in the liver, where expression of each is increased by growth 

hormone. There is considerable between-person variability in blood levels of IGF-I, IGF-II, 

and IGFBP-3 (215). Tissue IGF bioactivity is influenced by circulating IGF levels and by 

local expression of IGFs, IGFBPs, and IGFBP proteases (175). Some factors that regulate 

determinats of local IGF bioactivity may regulate circulating IGF-I levels in a parallel 

fashion (216). 
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5. The cyclooxygenase enzymes  (COX) 

 
5.1 Structure, function and regulation of COX 

 

The prostaglandin endoperoxide H synthase (also COX) is a rate-limiting enzyme involved 

in the conversion of arachidonic acid to prostaglandin H2, the precursor of various 

molecules including prostaglandins, prostacyclin, and thromboxanes (Fig 11). 

 

 
 

Figure 11. Schematic representation of the COX pathway illustrating the synthesis of the major PGs. This 
process is initiated when COX-1 and COX-2 catalyze both a reaction in which arachidonic acid is converted 
to PGG2 and a subsequent peroxidase reaction in which PGG2 is reduced to PGH2, which serves as the 
common precursor for all of the terminal PGs. 
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Two COX genes, COX-1 and COX-2, which share over 60% identity at the amino acid 

level have been identified (217). The gene contains 10 exons is 7.5 kb in length and located 

at chromosome 1. The transcriptional start site was mapped at 134 bases upstream from the 

ATG start codon. Nucleotide sequence of 1.8 kb promoter region contains a TATA box 

and a number of potential regulatory elements including CRE, NF-kappa B, Sp1 and AP2 

sites. The linear sequence and three-dimensional structure of the two isoforms are very 

similar. Even the active site of the isoforms differs minimally (valine/isoluecine 

substitutions) at only two positions. Nevertheless, inhibitors with high and clinically 

demonstrable selectivity for the isoforms are available (218-220). COX-1 is constitutively 

expressed in most cells, thus regarded as a housekeeping molecule, and is responsible for 

various physiological functions including cytoprotection of the stomach, vasodilatation in 

the kidney, and production of a proaggregatory prostanoid, thromboxane, by the platelets. 

On the other hand, the expression of COX-2 is inducible and remains undetectable in most 

mammalian tissues under basal conditions. Exposure of several types of cells including 

fibroblasts, endothelial cells and monocytes to bacterial endotoxins, cytokines, hormones 

or growth factors induces its expression within 2–6 h. Historically, gram (−) bacterial LPS 

was the first inducer of COX-2 expression to be identified in macrophages (221). It is now 

known that most pro-inflammatory mediators induce the expression of COX-2. More 

specifically, LPS and other TLR ligands bind to MyD88-associated receptors and via 

MEK/ERK induce the transcription factor activator protein 1 (AP1). LPS also activates the 

TRAF6/NIK/Tpl2/IKK/NFkB pathway, which also leads to induction of COX-2 

transcription. Tpl2 signals also lead to ERK1/2 activation, which in turn activates p90RSK 

and MSK1, which phosphorylate CREB, a central regulator of COX-2 transcription (222). 

LPS activates C/EBPβ and C/EBPδ via p38MAPK and ERK1/2. It should be noted that 

C/EBPβ and CREB play a major role during the initial stage of COX-2 transcriptional 

activation while C/EBPδ maintains an already induced transcription (223). The 

transcription complex at the COX-2 promoter requires the transcriptional co-activator 

p300. It now appears that p300 binds on CREB, AP1, C/EBP and NFkB, controlling the 

initiation of transcription (224). Nitric oxide (NO) affects COX-2 directly by increasing its 
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catalytic activity and indirectly by triggering several signalling cascades that affect 

transcription. Thus, NO reacts acutely with superoxide anions to form peroxynitrite anions 

(ONOO−), which enhance COX-2 catalytic activity in a direct manner (225). It should be 

noted here that NO may affect carcinogenesis in two parallel ways: first, via activation of 

COX-2 catalytic activity and secondly in synergy to COX-2 by inducing VEGF production 

(226). NO and reactive oxygen species (ROs) induce COX-2 mRNA expression (227) via 

the beta catenin/TCF pathway leading to activation of the polyoma enhancer activator 3 

(PEA3) transcription factor (228). Moreover, NO utilizes cAMP/PKA/CREB and 

JNK/Jun/ATF2 signalling cascades affecting COX-2 transcription (228). 

Several pro-inflammatory cytokines such as IL-1 or IFN-γ induce COX-2 expression. The 

major signalling pathway involved is a cAMP- and PKA-dependent activation of CREB. It 

is of interest that among the MAPK pathways, p38MAPK appears to be involved while 

ERK1/2 appears not to participate (229). On the contrary, TNF-α-induced COX-2 

expression depends heavily on activation of ERK1/2 and NFkB. COX-2 expression is 

induced by several growth factors including IGF, TGFα and EGF. Growth factor-induced 

COX-2 expression takes place in both normal as well as cancer cells. The IGF-induced 

signals are mediated by PI3Kinase and Src/ERK but not by p38MAPK while the effect of 

TGF and EGF is mediated by p38MAPK, ERK1/2 and PI3K (230). UVB induces COX-2 

mRNA expression in cancer cells. UVB activates the transcription factors CREB and 

ATF1 via a cAMP-dependent pathway. Induction of p38MAPK and PI3K but not NFkB 

appears to be essential for UVB-induced COX-2 expression (231). Fine-tuning of COX-2 

expression levels can occur by extracellular signals such as G-protein coupled receptor 

(GPCR) binding proteins. The stress neuropeptides corticotropin releasing factor (CRF) 

and urocortins augment LPS-induced COX-2 expression via cAMP/PKA/CREB activation 

(232). Accumulation in the cytoplasm of this sphingosine-based lipid-signalling molecule 

appears to regulate COX-2 expression resulting in inflammation and tumorogenesis. It has 

been also implicated in the aging process. More specifically, it has been shown that 

ceramide is the mediator of TNF-α-induced COX-2 expression in fibroblasts and of 

cannabinoid-induced COX-2 expression in neuroglioma cells (233). It should be noted that 
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the induction of COX-2 expression by ceramide involves NFkB but not AP1 or CREB 

(234). Glycogen synthase kinase 3 (GSK3) phosphorylates/inactivates β-catenin leading to 

inhibition of the transcription factor TCF4 which regulates COX-2 transcription. 

Moreover, GSK3 acts through PKCδ to inactivate ERK1/2 and suppress COX-2 expression 

(235). Another negative regulator of COX-2 expression is the glucocorticoids. Indeed, they 

may represent the most important negative regulator of COX-2 transcription. They achieve 

this effect via inhibition of NFkB. Protein levels of COX-2 are also regulated at a prost-

transcriptional level via modulation of the stability of its mRNA. COX-2 mRNA contains 

an ARE element at the 3′ end responsible for its stability. HuR binds on COX-2 ARE 

increasing its half life (236). Signals from cytokines such as IL-1β, TNF-α or TLR ligands 

affect COX-2 mRNA stability. The major signalling molecule mediating this process 

appears to be the p38MAPK. Hypoxia represents another regulator of COX-2 mRNA; it 

increases its stability most likely via induction of TNF-α. As mentioned above, COX-2 

activity is directly regulated by NO. A recent report introduced an additional step in the 

regulation of COX-2 action; iNOs directly binds to COX-2 and s-nitrosylates it, thus 

enhancing its enzymatic activity (237) (Fig. 12).  

 
Figure 12. Signalling  pathways involved in the regulation of COX-2 expression. 
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5.2 The cyclooxygenase-2 in diseases and cancer 

 

COX-2 is known to be over-expressed in the synovia of patients with rheumatoid arthritis, 

osteoarthritis and in the colonic epithelium in ulcerative colitis. Atherosclerosis is now 

considered a chronic inflammatory disease, a consequence of a pathological interaction 

between vascular endothelial and immune cells. COX-2 is upregulated in stimulated 

macrophages during exposure to high levels of oxLDL and in oxLDL-induced foam cell 

formation (238). Selective inhibition of COX-2 expression reduces early atherogenesis in 

LDLR (−/−) and APO-E (−/−) mice (239). These studies suggest that COX-2 in 

macrophages promotes early atherosclerotic lesions through the monocyte chemotactic 

protein-1 (MCP1) which affects recruitment of monocytes. MCP1 is a member of the small 

inducible gene (SIG) family and plays a crucial role in the recruitment of monocytes to 

sites of injury and infection. Interestingly, lack of TLR4 reduces atherosclerosis in APO-E 

(−/−) mice and is associated to reduced COX-2 and MCP-1 expression in these lesions 

(240). COX-2 and PGE2 have been shown to promote the release and activation of MMP-2 

and MMP-9 (241) which are implicated in macrophage migration and contribute to plaque 

rupture. Epidemiological studies suggest that anti-inflammatory drugs, especially NSAIDs, 

may reduce the risk for the development of Alzheimer's disease or at least delay its onset 

(242). It should be reminded here that the neuropathology of Alzheimer's disease is mainly 

characterized by deposits of amyloid beta peptides and neurofibrillary tangles as well as by 

a concomitant chronic inflammation which may be associated, at least in part, to the 

accumulation of these deposits. Thus, the beneficial effect of NSAIDs may be explained by 

their anti-inflammatory effects, since COX-2 expressing inflammatory cells are located 

around the amyloid-plaques. 

Recent studies have also highlighted the relevance of COX-2 in human carcinogenesis. In 

fact, selective COX-2 inhibitors prevent tumorigenesis in experimental animals, and that 

these compounds induce apoptosis and inhibit growth in several types of cancer cells  

(243-246). Increased levels of COX-2 has been reported in carcinomas of the colon (247), 

stomach (248), esophagus (249), lung (250), liver (251), and pancreas (252). COX-2 is not 
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detected in normal human testes, but it is present in testicular biopsies of men with 

impaired spermatogenesis (253) or in testicular cancer (254). 

There is increasing evidence that dysregulated expression of the COX-2 enzyme is an 

important pathophysiological step in breast cancer evolution, with numerous studies 

demonstrating increased levels of COX-2 mRNA and protein in mammary malignant 

tissue (255). In fact, expression of COX-2 is associated with poor prognostic features, and 

adverse clinical outcome (256). In human breast cancer, correlations are known to exist 

between COX-2 levels and expression of angiogenic factors such as vascular endothelial 

growth factor (257) and then development of distant metastases (258). 

Moreover, it has been shown a correlation between COX-2 and aromatase expression (259) 

Furthermore, COX-2 inhibitors decrease aromatase mRNA and activity in breast cancer 

cells (260) and the use of combined COX-2 and aromatase inhibitor appear to be more 

effective than the single agents used alone in decreasing aromatase activity and 

consequently estradiol production (261).  

COX-2 is considered  to mediate its deleterious effects via PG synthesis. These molecules 

have extremely short half-lives, so direct correlation between COX-2 activity and PG 

presence is difficult to demonstrate experimentally. It is clear, however, that PGs stimulate 

cell proliferation (262), induce mitogenesis of mammary epithelial cells (263), suppress 

proliferation of immune cells (264). PG production is also higher in lesions associated with 

the presence of cancer cells in tumor lymphatics, blood vessels, and axillary nodes, and 

levels are greater in sites of nodal metastases compared to primary tumor areas (265). 

In particular, PGE2 has been observed in high levels in breast tumor cells and is 

synthesized by several human breast cancer cell lines (266). 

 PGE2 has been found to be the most potent factor stimulating aromatase expression via 

promoter II (267). A correlation between COX-2 and CYP19 mRNA levels has been 

demonstrated in human breast cancer specimens using semi-quantitative RT-PCR (259). 

Furthermore, it was demonstrated that PGE2 is produced by breast tumors stimulating 

local estrogen biosynthesis in the surrounding adipose tissue (268;269). Local estrogen 

production by breast tumors is considered to be an important mechanism by which tumors 
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develop, evolve, and possible metastasize (268). PGs, produced through COX, exert their 

actions binding to specific transmembrane G-protein coupled receptors termed Prostanoid 

(P) receptors, present as different splice variants (270) Specifically, PGE2 receptors, EP1 

(271), EP2 (272), EP3 (273) and EP4 (274), are transduced through modulation of the 

activity of either adenylyl cyclase or inositol phospholipid hydrolysis and calcium 

mobilization (270;275). In particular, EP1 activates PKC, EP2 and EP4  are coupled to 

PKA, EP3 can either couple negatively to adenylyl cyclase through binding a Gi protein or 

associate to inositol phospholipid hydrolysis and calcium mobilization. Importantly, PGE2 

was shown to increase aromatase expression, while on the contrary EP1 and EP2 selective 

antagonists decreased the enzyme activity (276), suggesting that both PKA and PKC 

pathways are required for activation of promoter PII and aromatase optimal expression.  
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Specific aim 
 

Several studies on both humans and rodents indicate that prenatal or postnatal exposure to 

estrogens migth have a central role in the mechanism leading to male reproductive tract 

malformations as well as testicular tumors (1;2). While the effects of estrogen on 

mammary gland tumorogenesis is well known, the role of aromatase overexpression and in 

situ estrogen production in testicular tumorogenesis  is not clearly defined.  

In this study we have investigated the molecular mechanisms causing aromatase 

overexpression and the effect of estradiol (E2) overproduction on Leydig cell tumor 

proliferation. Our hypotesis is that constitutive E2 production stimulates Leydig tumor cell 

proliferation acting on cell cycle regulators. Moreover, among several potential factors 

inducing aromatase, we investigated the role of IGF-I, produced locally in the testis, and of 

COX-2 overexpressed in other estrogen-dependent tumors.  

Whe believe that an enhanced IGF-I production is responsible for the activation of 

signalling pathways determining an excess in SF-1 synthesis. This transcription factor, 

toghether with CREB, is the most important regulator of aromatase expression. On the 

other hand, we hypothesize an involvement of COX-2 in the molecular mechanism 

determining  the constitutive activation of CREB in Leydigioma. 
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Cell cultures and animals 

 

TM3 cells (immature mouse Leydig cell line) were cultured in DMEM/F-12 medium 

supplemented with 5% horse serum (HS), 2.5% fetal bovine serum (FBS) and antibiotics 

(Invitrogen, S.R.L., San Giuliano Milanese, Italy); R2C cells (rat Leydig tumor cell line) 

were cultured in Ham/F-10 medium supplemented with 15% HS, 2.5% FBS and antibiotics 

(Invitrogen, S.R.L., San Giuliano Milanese, Italy). Male Fischer 344 rats (a generous gift 

of Sigma-Tau Pomezia, Italy),  6 (FRN) and 24 (FRT) months of age, were used for 

studies. Twenty-four-month-old animals presented spontaneously developed Leydig cell 

tumors, which were absent in younger animals. Testes of all animals were surgically 

removed by qualified, specialized animal care staff in accordance with the Guide for Care 

and Use of Laboratory Animals (National Institutes of Health) and used for experiments.  

 

Aromatase activity assay 

 

The aromatase activity in subconfluent R2C cell culture medium was measured by tritiated 

water-release assay using 0.5 µM [1β-3H(N)]androst-4-ene-3,17-dione (DuPont NEN, 

Boston, MA, USA) as a substrate (277). Incubations were performed at 37 °C for 2 h under 

a 95%:5% air/CO2 atmosphere. Obtained results were expressed as picomoles (pmol/h) 

and normalized to milligrams of protein (pmol/h/mg protein). The protein content was 

determined by Bradford method (278). 

 

Radioimmunoassay (RIA) 

 

Before the experiments, TM3 cells were maintained overnight in DMEM/F-12 and R2C 

cells in Ham/F-10 (medium only). The estradiol content of medium recovered from each 

well was determined against standards prepared in low-serum medium using a RIA kit 

(DSL 43100; Diagnostic System Laboratories, Webster, TX, USA). Results of the assay 

were normalized to the cellular protein content per well and expressed as picomoles per 
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milligram of cell protein. To measure IGF-I concentration in testicular extracts, testes were 

weighed, homogenated in 500 µL of 0.05 mol/L Tris/HCl (pH 7.6) plus protease inhibitors, 

and then submitted to ultrasonication followed by centrifugation, as previously published 

(279). IGF-I content in testicular extracts and in medium recovered from each well of R2C 

and TM3 cells was determined following extraction and assay protocols provided with the 

mouse/rat IGF-I RIA kit (DSL 2900; Diagnostic System Laboratories, Webster, TX, USA). 

 

Chromatin immunoprecipitation (ChIP) 

 

This assay was done using the chromatin immunoprecipitation assay kit from Upstate 

(Upstate Technology, Lake Placid, NY) with minor modifications in the protocol. R2C 

cells were grown in 100-mm plates. Confluent cultures (90%) were treated for 24 h with 

AG1024 (Sigma, St Louis, MO, USA), PD98059 (Calbiochem, VWR International S.R.L. 

Milano), LY294002 (Calbiochem, VWR International S.R.L. Milano), GF109203X 

(Calbiochem, VWR International S.R.L. Milano), NS398 (Sigma St Louis, MO, USA), 

H89 (Sigma St Louis, MO, USA) or for increasing times with 100 ng/mL IGF-I (Sigma St 

Louis, MO, USA), or left untreated. Following treatment, DNA/protein complexes were 

cross-linked with 1% formaldehyde at 37°C for 10 min. Next, cells were collected and 

resuspended in 400 µL of SDS lysis buffer (Upstate Technology, Lake Placid, NY) and left 

on ice for 10 min. Then, cells were sonicated four times for 10 s at 30% of maximal power 

and collected by centrifugation at 4°C for 10 min at 14,000 rpm. Ten microliters of the 

supernatants were kept as input (starting material, to normalize results) whereas 100 µL 

were diluted 1:10 in 900 µL of chromatin immunoprecipitation dilution buffer (Upstate 

Technology, Lake Placid, NY) and immunocleared with 80 µL of sonicated salmon sperm 

DNA/protein A agarose (Upstate Technology, Lake Placid, NY) for 6 h at 4°C. 

Immunocomplex was formed using 1 µL of 1:5 dilution of specific anti–SF-1 antibody 

(provided by Prof. Ken-ichirou Morohashi, Division for Sex Differentiation, National 

Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, 
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Japan) or using 2 µl of specific antibody anti-CREB or anti-pCREB (Cell Signaling, 

Celbio, Milano, Italy) overnight at 4°C.  Immunoprecipitation with salmon sperm 

DNA/protein A agarose was continued at 4°C until the following day. DNA/protein 

complexes were reverse cross-linked overnight at 65°C. Extracted DNA was resuspended 

in 20 µL of Tris-EDTA buffer. In order to examine the binding of SF-1 and CREB, 3 µl 

volume of each sample and input were used for PCR using CYP19 promoter II specific 

primers: forward, 5’-TCAAGGGTAGGAATTGGGAC-3’; reverse, 5’-

GGTGCTGGAATGGACAGATG-3’.  PCR reactions were performed in the iCycler iQ 

Detection System (BioRad Hercules, CA, USA), using 0.1 µM of each primer, in a total 

volume of 50 µL reaction mixture following the manufacturer’s recommendations. SYBR 

Green Universal PCR Master Mix (BioRad Hercules, CA, USA) with the dissociation 

protocol was used for gene amplification, negative controls contained water instead of 

DNA. Final results were calculated using the ∆∆Ct method as explained above, using input 

Ct values instead of the 18S, calibrator was basal (untreated) sample. Amplification 

products were analyzed on a 1% agarose gel and visualized by ethidium bromide staining. 

In control samples, nonimmune rabbit immunoglobulin G was used instead of specific 

antibodies. 

 

Real-time reverse transcription-PCR 

 

Before the experiments, cells were maintained overnight in low-serum medium. Cells were 

then treated for the indicated times and RNA was extracted from cells using the TRizol 

RNA isolation system (Invitrogen, S.R.L., San Giuliano Milanese, Italy). TRizol was also 

used to homogenize total tissue of normal (FRNT) and tumor (FRTT) Fisher rat testes for 

RNA extraction. Each RNA sample was treated with DNase I (Ambion, Austin, TX), and 

purity and integrity of the RNA were confirmed spectroscopically and by gel 

electrophoresis before use. One microgram of total RNA was reverse transcribed in a final 

volume of 30 µL using the ImProm-II Reverse transcription system kit (Promega, Promega 

Italia S.R.L. Milano, Italy); cDNA was diluted 1:3 in nuclease-free water, aliquoted, and 
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stored at  20°C. Primers for the amplification were based on published sequences for the 

rat CYP19, rat CREB, and rat SF-1 genes. The nucleotide sequences of the primers for 

CYP19 were forward, 5’-GAGAAACTGGAAGACTGTATGGAT-3’, and reverse, 5’-

ACTGATTCACGTTCTCCTTTGTCA-3’. For CREB amplification, we used the 

following primers: forward, 5’-AATATGCACAGACCACTGATGGA-3’, and reverse, 5’-

TGCTGTGCGAATCTGGTATGTT-3’; for SF-1 amplification, primers have been 

previously published (42). PCR reactions were done in the iCycler iQ Detection System 

(BioRad Hercules, CA, USA) using 0.1 µmol/L of each primer, in a total volume of 30 µL 

reaction mixture following the manufacturer’s recommendations. SYBR Green Universal 

PCR Master Mix (BioRad Hercules, CA, USA) with the dissociation protocol was used for 

gene amplification; negative controls contained water instead of firststrand cDNA. Each 

sample was normalized on the basis of its 18S rRNA content. The 18S quantification was 

done using a TaqMan rRNA Reagent kit (Applied Biosystems, Monza, Milano, Italy) 

following the method provided in the TaqMan rRNA Control Reagent kit (Applied 

Biosystems, Monza, Milano, Italy). The relative gene expression levels were normalized to 

a calibrator that was chosen to be the basal, untreated sample. Final results were expressed 

as n-fold differences in gene expression relative to 18S rRNA and calibrator, calculated 

using the ∆∆Ct method, as follows:  

 

n-fold = 2 – (∆Ctsample – ∆Ctcalibrator)  

 

where ∆Ct values of the sample and calibrator were determined by subtracting the average 

Ct value of the 18S rRNA reference gene from the average Ct value of the different genes 

analyzed.  
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Western blot analysis 

 

R2C and TM3 cells or total tissue of FRNT and FRTT were lysed in ice-cold 

radioimmunoprecipitation assay (Ripa) buffer containing protease inhibitors (20 mmol/L 

Tris, 150 mmol/L NaCl, 1% Igepal, 0.5% sodium deoxycholate, 1 mmol/L EDTA, 0·1% 

sodium dodecyl sulphate (SDS), 1 mmol/L phenylmethylsulfonyl fluoride (PMSF), 0.15 

units/ml aprotinin and 10 µmol/L leupeptin) for protein extraction. The protein content was 

determined by Bradford method (278). The proteins were separated on 11% 

SDS/polyacrylamide gel and then electroblotted onto a nitrocellulose membrane. Blots 

were incubated overnight at 4 °C with: 1. anti-human P450 aromatase antibody (1:50) 

(Serotec, Oxford, UK, MCA 2077), 2. anti-ERα (F-10) antibody (1:500) (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA, sc8002), 3. anti-ERβ (H-150) (1:1000) (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA, sc8974), 4. anti-cyclin D1 (M-20) antibody 

(1:1000)  (Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc718), 5. anti-cyclin E (M-

20) antibody (1:1000) (Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc481), 6. anti-

CREB antibodies (1:1000) (Cell Signaling Technology, Celbio, Milan, Italy, 48H2) and 

(1:1000) (Biosource Inc. Camarillo CA USA, AHO0842);  7. anti-pCREB ser133 (1:1000) 

(Cell Signaling Technology, Celbio, Milan, Italy, 87G3) or anti-pCREB Ser129/133 

(1:1000) (Biosource Inc. Camarillo CA USA,  44-297G), 8.  anti SF-1 (1:1000) provided 

by Prof. Ken-ichirou Morohashi, Division for Sex Differentiation, National Institute for 

Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki, Japan), 9. 

anti-pSF-1 (1:1000) provided by Dr Holly A. Ingraham Department of Physiology, 

University of California, San Francisco, San Francisco, California 94143-0444, USA), 10. 

anti–IGF-I receptor (IGF-IR; 1:800; Santa Cruz Biotechnology Santa Cruz, CA, USA, 

sc713; 11. anti COX-2 (1:1000) (Cell Signaling Technology, Celbio, Milan, Italy, 4842), 

12. anti-actin (C-2) antibody (1:1000) (Santa Cruz Biotechnology, Santa Cruz, CA, USA, 

sc8432), 13. anti GAPDH (FL-335) (1:3000) (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA, sc25778). Membranes were incubated with horseradish peroxidase (HRP)-

conjugated secondary antibodies (Amersham Pharmacia Biotech, Piscataway, NJ) and 
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immunoreactive bands were visualized with the ECL western blotting detection system 

(Amersham Biosciences, Cologno Monzese, Italy). To assure equal loading of proteins 

membranes were stripped and incubated overnight with β-actin or GAPDH antiserum.  

 
 

Immunohistochemical analysis 

 

Tumor human testicular tissues were retrieved from biopsy of two male patients with 

Leydig cell tumour (ages 31 and 33 years). Control human testicular tissues were retrieved 

from biopsy of two male patients (ages 29 and 35 years) showing testes with a Sarcoidosis-

like granulomatous lesion. The archival human cases were provided by the Pathologic 

Anatomy Unit (Annunziata, Hospital) Italy.  

Immunohistochemical experiments were performed on formalin–fixed and paraffin-

embedded testis tissues after heat-mediated antigen retrieval (280). Paraffin embedded 

sections, 5µm thick, were mounted on slides precoated with poly-lysine, and then they 

were deparafinized and dehydrated (7-8 serial sections). Hydrogen peroxide (3% in 

distillate water) was used, for 30 minutes, to inhibit endogenous peroxidase activity while 

normal horse serum (10% ) was utilised, for 30 minutes, to block the non-specific binding 

sites.  

Immunodetection was carried out using anti-COX2 (1:50), primary antibodies at 4°C 

overnight. Then, a biotinylated horse universal IgG was applied (1:600) for 1 hour at RT, 

followed by the avidin-biotin-horseradish peroxidase complex (ABC/HRP) (Vector, 

Laboratories, CA, USA). Immunoreactivity was visualized by using the diaminobenzidine 

chromogen (DAB)(Zymed Laboratories, CA, USA). Sections were also counterstained 

with haematoxylin. The primary antibody was replaced by normal rabbit serum in negative 

control sections. Absorption controls have utilised primary antibodies preabsorbed with an 

excess (5nmol/ml) of the purified respective blocking peptides at 4°C for 48 hours (data 

not show). 
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Cell proliferation assay 

 

For proliferative analysis a total of 1x105 cells were seeded onto 12-well plates in 

complete medium and let grow for 2 days. Prior to experiments, cells were maintained for 

24h in Ham/F-10 medium and the day after treated with ICI 182780 (Astra-Zeneca, 

Basiglio, Milano, Italy), 4-hydroxytamoxifen (OHT) (Sigma St Louis, MO, USA), 

Letrozole (Novartis Pharma AG, Basel, Switzerland), NS398 (Sigma, St Louis, MO, 

USA), H89 (Sigma, St Louis, MO, USA), AH 23848 (Sigma, St Louis, MO, USA), 17β- 

estradiol (E2) (Sigma St Louis, MO, USA), or treated at the indicated times with IGF-I or 

PGE2 (Sigma, St Louis, MO, USA), alone or in combination with inhibitors or incubated 

with an anti IGF-I antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc1422). 

Control (basal) cells were treated with the same amount of vehicle alone (DMSO) that 

never exceeded the concentration of 0.01% (v/v). [3H]Thymidine incorporation was 

evaluated after 6 h incubation with 1 µCi [3H]thymidine (PerkinElmer Life Sciences, 

Boston, MA, USA) per well. Cells were washed once with 10% trichloroacetic acid (TCA) 

(Sigma, St Louis, MO, USA), twice with 5% trichloroacetic acid and lysed in 1 ml 0.1 

mol/L NaOH at 37°C for 30 min. The total suspension was added to10 ml optifluor fluid 

and was counted in a scintillation counter. 

 

Non-radioactive in vitro assay for PKA activity in cell lysates 

 

This assay was performed using the PepTag for non-radioactive detection of cAMP-

dependent protein kinase assay kit from Promega (Madison, WI ). R2C cells were grown in 

100X60mm plates to 100% confluence. After stimulation (4h) cells were washed with 

phosphate-buffered saline (PBS) (5ml per 100 mm disch) and lysed in cold PKA extraction 

buffer (0.5 ml/plate) containing 25 mmol/L Tris–HCl pH 7.5, 0,5 mmol/L EDTA, 

0,5mol/L EGTA, 10mmol/L beta–mercaptoethanol, 1ug/ml leupeptin, 1ug/ml aprotinin. 

The lysates were cleared by centrifugation at 14,000×g, 5 min and 5 ul of cleared lysates 

were subjected to a kinase reaction with the fluorescence-labeled PKA substrate, kemptide, 
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following the manufacturer's protocol. The reaction was stopped by boiling the samples for 

10 min. The samples were separated on 0,8% agarose gel by electrophoresis at 100V for 15 

minutes. Phosphorylated peptide migrated toward the anode (+), while non-phosphorylated 

peptide migrated toward the cathode (-). The gel was photographed on a transilluminator. 

The quantitative differences in the amount of phosphorylated and non-phosphorylated 

peptide species were detected by spectrophotometric method reading the absorbance at 570 

nM. 

 

RNA interference 

 

COX-2 Sthealth® siRNA and scrambled siRNA were purchased from Invitrogen 

(Invitrogen, S.R.L., San Giuliano Milanese, Italy). Twenty-four hours after plating cells 

into 60 mm dishes at 4 x 106 cells, siRNAs were transfected to a final concentration of 50, 

100 or 200 nM using Lipofectamine2000 Transfection Reagent (Invitrogen, S.R.L., San 

Giuliano Milanese, Italy) according to manufacturer’s instructions. Two days after 

transfection cells were used for western analysis or cell proliferation assay.  

.  

Data Analysis and Statistical Methods 

 

Pooled results from triplicate experiments were analyzed using one-way ANOVA with 

Student-Newman-Keuls multiple comparison methods, using SigmaStat version 3.0 (SPSS, 

Chicago, IL). 
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Estradiol induces Leydig cell tumor proliferation through an autocrine mechanism 

 

We performed our study utilizing as model system R2C Leydig tumor cells. These cells 

have been demonstrated to have high aromatase expression and, consequently, activity 

(40), while we used another Leydig cell line, TM3 cells, as a normal control. We also 

analyzed testes from older and younger Fischer rats. Aged animals have a high incidence 

of spontaneous neoplasm of Leydig cells (281;282), a phenomenon not observed in 

younger animals, allowing us to use them as a good in vivo model to confirm results 

obtained in cell lines. Our first step was to measure estradiol (E2) content in culture 

medium of R2C and TM3 cells maintained in culture for increasing time. While E2 levels 

in TM3 medium were extremely low (data not shown) in R2C cells E2 levels after 24 h 

were 0.5 pmol/mg protein and increased by 7-fold at 96 h (Fig. 1A).  

 

 
 

Figure 1 A. E2 production in R2C cells. R2C cells were cultured for the indicated times in serum free 
medium. E2 content was determined by RIA and normalized to the cell culture well protein content. Data 
represent the mean ± SEM of values from three separate cell culture wells expressed as pmol/mg protein. 
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This production was dependent on high constitutive active aromatase activity, since the 

presence of aromatase inhibitor Letrozole was able to decrease E2 production at all time 

points tested (Fig. 1B). E2 levels after 24 h treatment with Letrozole were still detectable, 

but were completely knock down when we removed the medium after 24 h and renewing 

the treatment for an additional 24 h. The same effect was maintained for the other two time 

points investigated (Fig. 1B). 

 

 

 
 
 
Figure 1 B. E2 production in R2C cells. R2C cells were treated for the indicated times in HAM-F10 in the 
absence (0) or presence of aromatase inhibitor letrozole (0.1, 1, 10 µmol/L). Every 24h, before renewing 
treatment, cell culture medium was removed and analyzed for steroid content. E2 content was determined by 
RIA and normalized to the cell culture well protein content. Data represent the mean ± SEM of values from 
three separate cell culture wells expressed as pmol/mg protein. 
 

 

 

 

 



                                                                                                                                      Results 

 - 65 - 
 

Once estradiol is produced it can exert its actions binding to specific receptors, the 

estrogen receptors α e β (ERα and ERβ). Analysis of the two receptor protein isoforms in 

our models demonstrated that tumor Leydig cells express both isoform of ERs (Fig. 2). 

Particularly the α isoform seems to be more expressed in R2C cells respect to TM3 and in 

FRTT respect to the its control FRNT where ERβ is more expressed. Moreover aromatase 

protein content is extremely high in tumoral samples(139)  (Fig. 2).  

 

 
 
Figure 2. Expression of estrogen receptors (ER) and aromatase in R2C cells. ERα , ERβ and aromatase 
western blot analysis was performed on 50 µg of total proteins extracted from TM3 and R2C cells or from 
total tissue of normal (FRNT) and tumor (FRTT) Fisher rat testes. Results are representative of three 
independent experiments. β-Actin was used as a loading control. Protein expression in each lane was 
normalized to the β-actin content and expressed as fold over control represented by normal cells. Normalized 
absorbances were subjected to statistical analysis; statistically significant differences are indicated (*, P < 
0.05; **, P < 0.01, compared with control). 
 

Our next experiments demonstrated that estrogen receptors are required for proliferation 

through a short autocrine loop maintained by endogenous E2 production in Leydig tumor 

cells. 
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For instance, the use of both antiestrogens hydroxytamoxifen (OHT) and ICI 182,760 (ICI) 

and the use of aromatase inhibitor Letrozole (Letr) determined a dose-dependent inhibition 

of cell proliferation (Fig. 3A). Among the different doses tested the highest dose of OHT 

(10 µmol/L) was able to inhibit cell proliferation by 90%, ICI (10 µmol/L) by 86% and 

letrozole (10 µmol/L)  by 70%.  

 

 

 
 
 

Figure 3 A. Effects of antiestrogens, aromatase inhibitor Letrozole and estradiol on R2C cell 
proliferation. Cells were treated for 96h in HAM-F10 in the absence (-) or presence of antiestrogens 
hydroxytamoxifen (OHT) or ICI 182,760 (ICI) or aromatase inhibitor letrozole (Letr) at the indicated 
concentrations. Proliferation was evaluated by [3H] Thymidine incorporation analysis. Values expressed as 
percent of untreated (basal) cells (100%) represent the mean ± SEM of three independent experiments each 
performed in triplicate. (*P< 0.05 compared with basal condition).  
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In the same vein, starving cells for prolonged time and changing the medium every day in 

order to remove local E2 production, we found that addition of 1, 10 and 100 nmol/L E2 

stimulated Leydig tumor cell proliferation (Fig. 3B), and partially abrogated the inhibition 

induced by Letrozole (Fig. 3C). 

 

 

 
 
 
Figure 3 B, C. Effects of antiestrogens, aromatase inhibitor Letrozole and estradiol on R2C cell 
proliferation. (B) Cells were cultured for 48h in serum-free HAM-F10, every 24 h cell culture medium was 
removed and renewed. Cells were then treated for 24 h with estradiol at the indicated concentrations. (C)  
Cells were cultured for 24h in serum-free HAM-F10, cells were then treated for 48 h with letrozole 
(1µmol/L) changing the culture medium and renewing treatment every 24h. For additional 24h cells were 
treated with letrozole (Letr) (1µmol/L) in combination with estradiol (E2) at the indicated concentrations. 
Proliferation was evaluated by [3H] Thymidine incorporation analysis. Values expressed as percent of 
untreated (basal) cells (100%) represent the mean ± SEM of three independent experiments each performed 
in triplicate. (*P< 0.05 compared with basal condition).  
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The stimulatory effect of E2 was concomitant with the increased levels of cell cycle 

regulator cyclin D1 and E, whose expression was inhibited by pure antiestrogen ICI 

182,760 (Fig. 4). All these results address how the classic E2/ERα signalling may control 

Leydig cell tumor growth and proliferation similarly to what observed in other estrogen-

dependent tumors. 
 

 
 

Figure 4.  Effects of E2 and ICI 182,760 on cyclin D1 and E protein levels. R2C cells were cultured for 
48h in serum-free HAM-F10, every 24 h cell culture medium was removed and renewed. Cells were then 
treated for 24 h in the absence (bs) or in the presence with estradiol (E2) (1 nmol/L) and ICI 182,760 (ICI) (1 
µmol/L) before extracting total proteins. Western blot analysis of Cyclin D1 and Cyclin E was performed on 
50 µg of total proteins extracted from R2C cells. Blots are representative of three independent experiments 
with similar results. β-Actin was used as a loading control. Protein expression in each lane was normalized to 
the β-actin content and expressed as fold over control represented by basal condition. Normalized 
absorbances were subjected to statistical analysis; statistically significant differences are indicated (*, P < 
0.05; **, P < 0.01, compared with basal condition). 
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Aromatase overexpression is determined by constitutive activation of transcription 

factors SF-1 and CREB 

 

Aromatase gene transcription in rat Leydig cells is driven by the PII promoter, which is 

principally regulated through three CRE-like sites and one NRE site binding SF-1 and 

LRH-1 (40;42). Constitutive active levels of CREB have been previously demonstrated in 

R2C cells (283).  

Here we confirmed these data and demonstrated high phosphorylated status of CREB 

together with enhanced phosphorylation of SF-1 in FRTT (Fig. 5). Furthermore we 

demonstrated the presence of high expression levels of SF-1 with the protein present in a 

phosporylated status in R2C but not in TM3.  

 

 

 

Figure 5. Expression of total and phosphorylated forms of SF-1 and CREB. Western blot analyses of SF-
1, pSF-1, CREB, and pCREB were done on 50 µg of total proteins extracted from TM3 and R2C cells or 
from total tissue of normal (FRNT) and tumor (FRTT) Fisher rat testes. Blots are representative of three 
independent experiments with similar results. β-actin was used as loading control.  
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IGF-I is produced by R2C cells and induces aromatase expression through PI3K- and 

PKC- mediated activation of SF-1 

 

Starting from previous findings showing the ability of IGF-I to activate SF-1 and CREB, 

which leads to an increase in StAR transcription and then  steroidogenesis (3;284), we 

investigated the role of this factor in regulating aromatase.  

Determination of IGF-I content in TM3 and R2C culture medium by RIA revealed a 

significant difference in growth factor production, with R2C cells producing 4-fold higher 

IGF-I amounts (Fig. 6A). Moreover, we measured IGF-I content in testicular tissues, 

revealing a significant difference between FRTT and FRNT (Fig. 6B).  

 

 

 
 
 
 
Figure 6 A, B. IGF-I production and autocrine effects in Leydig cells. (A) TM3 and R2C cells were 
cultured for 24 h in serum-free medium and IGF-I levels in culture medium were determined by RIA. IGF-I 
levels were normalized to the cell culture well protein content. Columns, mean of three independent 
experiments each done in triplicate; bars, SE. (B) Total protein extracts from FRNT and FRTT were assayed 
for IGF-I content. IGF-I levels were normalized to the tissue weight. Columns, mean of three independent 
samples; bars, SE. *, P < 0.01, compared with control conditions, represented by TM3 cells or FRNT. 
 

 

 

 



                                                                                                                                      Results 

 - 71 - 
 

IGF-I exerts its actions by binding to specific receptors (IGF-IR); however, we did not 

reveal differences in IGF-IR expression between TM3 and R2C cells (Fig. 6C). Upon 

binding to its receptor, IGF-IR, IGF-I activates three major transductional pathways: 

Ras/Raf/MAPK, PI3K/AKT, PLC/PKC; to demonstrate involvement of IGF-I 

transductional pathways in modulating aromatase expression in Leydig cell tumors, we 

used specific inhibitors: of IGF-I receptor (IGF-IR) [AG1024 (AG)], of ERK1/2 [PD98059 

(PD)], of PI3K [LY294002 (LY)] and of PKC [GF109203X (GFX)]. IGF-I receptor 

inhibitor (AG1024) was able to inhibit aromatase activity in R2C cells by 85%, LY294002 

determined 65 % inhibition, PD98059 35 % and GF109203X 61% (Fig. 6D).  

 

 

 
 
 
 
Figure 6 C, D. IGF-I production and autocrine effects in Leydig cells. (C) Western blot analysis of IGF-
IR in TM3 and R2C cells. β-Actin was used as a loading control. (D) R2C cells were treated with AG1024 
(AG; 20 µmol/L), LY294002 (LY; 10 µmol/L), PD98059 (PD; 20 µmol/L), and GF109203X (GFX; 20 
µmol/L). Aromatase activity was assessed by using the modified tritiated water method. Results obtained are 
expressed as picomoles of [3H]H2O released per hour and normalized to the well protein content (pmol/h/mg 
protein). Columns, mean of three independent experiments each done in triplicate; bars, SE. *, P < 0.01, 
compared  with basal (bs). 
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The same inhibitory pattern was observed also on aromatase mRNA (Fig. 7A). Parallely all 

of the different inhibitors but not PD98059 were able to reduce SF-1 mRNA (Fig. 7 B), 

while CREB remained unchanged (Fig. 7C). For SF-1 inhibition was 75% with AG1024, 

90 % with LY204002 and 80 % with GF109203X (Fig. 7B).  

 
 

Figure 7. Effects of inhibitors of IGF-I pathways on mRNA expression of CYP19, SF-1 and CREB in 
R2C cells. Total RNA was extracted from R2C cells untreated (bs) or treated for 24h with AG1024 (AG) 
(20µmol/L), LY294002 (LY) (10 µmol/L), PD98059 (PD) (20 µmol/L) and GF109203X (GFX) (20 µmol/L). 
Real time RT-PCR was used to analyze mRNA levels of CYP19, SF-1, and CREB. Data represent the mean 
± SEM of values from three separate RNA samples. Each sample was normalized to its 18S ribosomal RNA 
content. Final results are expressed as n-fold differences of gene expression relative to calibrator (bs) 
calculated with the ∆∆Ct method. * P < 0.001 compared to basal condition (bs). 
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Analysis of protein levels by western blot confirmed the data on mRNA (Fig. 8). 

Treatments with increasing doses of AG1024 (Fig. 8A), LY204002 (Fig. 8B) and 

GF109203X (Fig. 8D) but not PD98059 (Fig. 8C) were able to induce a dose-dependent 

inhibition of total and phosphorylated levels of SF-1, on the other hand CREB was not 

affected by the presence of any of the inhibitors (Fig. 8).  

 
 

Figure 8. Effects of IGF-I pathway inhibitors on aromatase, SF-1 and CREB expression in R2C cells. A 
to D, Western blot analyses were done on 50 µg of total proteins extracted from R2C cells untreated (bs) or 
treated for 24 h with the indicated doses of AG1024 (AG) (A), LY294002 (LY) (B), PD98059 (PD) (C), and 
GF109203X (GFX) (D). Representative of three independent experiments with similar results. β-Actin was 
used as a loading control. Normalized absorbances were subjected to statistical analysis; statistically 
significant differences are indicated (*, P < 0.01, compared with basal).  



                                                                                                                                      Results 

 - 74 - 
 

IGF-I induces aromatase expression and activity in R2C cells 

 

To further demonstrate the prevalent role of SF-1 in IGF-I induced aromatase expression in 

Leydig cell tumor, we monitored the effect of IGF-I on CYP19 and SF-1 expression. 

Addition of exogenous amounts of IGF-I were able to induce aromatase activity by 1.8-

fold (Fig. 9). 

 

 
 
Figure 9. Aromatase activity in R2C cells in response to IGF-I. Cells were treated with IGF-I (100 ng/ml) 
for 24h. Aromatase activity was assessed by using the modified tritiated water method.  Results obtained are 
expressed as pmoles of [3H]H2O released per hour and are normalized to the well protein content (pmol/h/mg 
protein). Values represent the mean ± SEM of three independent experiments each performed with triplicate 
samples. *P<0.05 compared to basal (bs). 
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A significant effect of IGF-I treatment was seen also on CYP19 mRNA levels (Fig. 10A). 

IGF-I was able to induce a significant increase of 2- and 3.8-fold in aromatase mRNA at 

12h and 24h, respectively (Fig. 10A). Aromatase protein levels under the same treatments 

reflected the mRNA data (Fig. 10B). Analysis of expression levels of total and 

phosphorylated forms of transcription factors SF-1 and CREB showed an increase in SF-1 

and pSF-1 in the presence of IGF-I starting at 4 h, whereas no differences were observed 

for CREB at any of the investigated times (Fig. 10B).  

 

 
 

Figure 10 A, B. Effects of IGF-I on aromatase, SF-1 and CREB expression in R2C cells. Cells were 
treated in serum-free medium for the indicated times with IGF-I (100 ng/mL). (A), Total RNA was extracted 
from R2C cells untreated or treated as indicated. Real-time reverse transcription-PCR was used to analyze 
CYP19 mRNA levels. Columns, mean of values from three separate RNA samples; bars, SE. Each sample 
was normalized to its 18S rRNA content. *, P < 0.01; **, P < 0.001, compared with basal. (B),  Western blot 
analyses were done on 50 µg of total proteins extracted from R2C cells untreated (bs) or treated as indicated. 
Representative of three independent experiments with similar results. β-Actin was used as a loading control. 
Normalized absorbances were subjected to statistical analysis; statistically significant differences are 
indicated (*, P < 0.01, compared with bs). 
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AG1024, LY294002, and GF109203X were able to inhibit IGF-I effects on CYP19 mRNA 

(Fig. 10C) and protein levels (Fig. 10D) as a consequence of a decreased SF-1 expression 

(Fig. 10D). 

 

 

 
 
 
 
Figure 10 C, D. Effects of IGF-I on aromatase, SF-1 and CREB expression in R2C cells. Cells were 
treated in serum-free medium for 24 h with AG1024 (AG) (20 µmol/L), LY294002 (LY) (10 µmol/L), 
PD98059 (PD) (20 µmol/L), and GF109203X (GFX) (20 µmol/L), alone or in combination with IGF-I (100 
ng/mL). (C), Total RNA was extracted from R2C cells untreated or treated as indicated. Real-time reverse 
transcription-PCR was used to analyze CYP19 mRNA levels. Columns, mean of values from three separate 
RNA samples; bars, SE. Each sample was normalized to its 18S rRNA content. **, P < 0.001, compared 
with IGF-I. (D),  Western blot analyses were done on 50 µg of total proteins extracted from R2C cells 
untreated (basal) or treated as indicated. Representative of three independent experiments with similar 
results. β-Actin was used as a loading control. Normalized absorbances were subjected to statistical analysis; 
statistically significant differences are indicated (*, P < 0.01, compared with basal; **, P < 0.01, compared 
with IGF-I). 
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Changes in IGF-I pathway activation status lead to changes in SF-1 binding to the 

aromatase PII promoter 
 

We also performed CHIP assay to investigate how IGF-I stimulation influence per se 

binding of transcription factors to the aromatase PII promoter. We evidenced how in basal 

condition all the different inhibitors but not PD98059 reduced the amount of bound SF-1 

reflecting changes in SF-1 protein amount (Fig. 11A). The increase in SF-1 protein content 

seen under IGF-I treatment (Fig. 10B) reflected an increase in SF-1 binding to the PII 

promoter (Fig. 11B).  

 

 
 
 
Figure 11. IGF-I increases SF-1 recruitment to the aromatase PII promoter through PI3K and PKC. 
(A) R2C cells were incubated for 24 h with AG1024 (20µmol/L), LY294002 (10 µmol/L), PD98059 (20 
µmol/L) and G109203FX (20 µmol/L). Untreated cells (bs) were treated with the same amount of vehicle 
alone (DMSO) that never exceeded 0·01% (v/v). (B) R2C cells were incubated for the indicated times with 
IGF-I (100 ng/ml). In vivo binding of SF-1 to the aromatase PII promoter was examined using ChIP assay. 
Immunoprecipitated (SF-1) and total (10% input) DNA were subject to PCR using specific primers. Similar 
results were obtained in two additional experiments. 
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IGF-I–induced estradiol production modulates R2C cell proliferation 

 

Treatment with IGF-I induces aromatase activity and estradiol production, which are 

decreased by AG1024, LY294002, and GF109203X, as well as by PD98059 (Fig. 12A and 

B).  

 

 

 
 

Figure 12 A, B. Effects of IGF-I and IGF-I pathway inhibitors on estradiol production and R2C cell 
proliferation. Cells were treated in serum-free medium for 24 h with IGF-I (100 ng/mL)alone or in 
combination with AG1024 (AG) (20 µmol/L), LY294002 (LY) (10 µmol/L), PD98059 (PD) (20 µmol/L), 
and GF109203X (GFX) (20 µmol/L). (A), Aromatase activity is expressed as percent of basal. Columns, 
mean of three independent experiments each done in triplicate; bars, SE. *, P < 0.01; **, P < 0.001, 
compared with IGF-I. (B), R2C cells were maintained for 48 h in serum-free medium, before being treated 
for 24 h. E2 content in R2C culture medium was determined by RIA and normalized to the cell culture well 
protein content. Columns, mean percent of basal; bars, SE.  *, P < 0.05, compared with basal; **, P < 0.01, 
compared with IGF-I. 
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The observed changes in estradiol production modified R2C cell proliferative behavior 

(Fig. 12C). In addition, the use of an anti–IGF-I antibody in immunoneutralization 

experiments caused a dose-dependent inhibition in tritiated thymidine incorporation (Fig. 

12C). The ability of IGF-I to stimulate, and that of the inhibitors to block, cell proliferation 

was linked to an alteration in cyclin D1 and cyclin E expression (Fig.12D). 

 

 
 

 
 
 
 
Figure 12 C, D. Effects of IGF-I and IGF-I pathway inhibitors on estradiol production and R2C cell 
proliferation. Cells were treated in serum-free medium for 24 h with IGF-I (100 ng/mL)alone or in 
combination with AG1024 (AG) (20 µmol/L), LY294002 (LY) (10 µmol/L), PD98059 (PD) (20 µmol/L), 
and GF109203X (GFX) (20 µmol/L). (C), R2C cell proliferation was evaluated by [3H]thymidine 
incorporation analysis. Cells were maintained for 24 h in serum-free medium and treated for 24 h as 
indicated. IGF-I antibody (IGF-I Ab) was added to the medium at 1, 5, 10, and 25 µg/mL. Columns, mean 
percent of untreated (basal) cells (100%) from three independent experiments each done in triplicate; bars, 
SE. *, P < 0.01; **, P < 0.001, compared with IGF-I. (D), Western blot analyses were done on 50 µg of total 
proteins extracted from R2C cells treated as indicated. Representative of three independent experiments with 
similar results. β-Actin was used as a loading control. Normalized absorbances were subjected to statistical 
analysis; statistically significant differences are indicated (*, P < 0.01, compared with basal; **, P < 0.01, 
compared with IGF-I). 
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COX-2 is highly expressed in tumor Leydig samples and is necessary for aromatase 

expression 

 

Using western analysis we investigated COX-2 expression in normal and tumor Leydig 

samples (Fig. 13A). Both R2C cells in basal condition as well as testes from Fischer rats 

with a developed tumor (FRTT) express increased COX-2, that is absent in normal 

controls. Moreover, we found similar results in human samples; the cytoplasm of 

neoplastic human Leydig cells showed a strong COX2 immunoreactivity, while 

immunonegative nuclei displayed only the blue counterstaining (Fig. 13B). Control human 

testes showed immunonegative reaction for COX-2 (Fig 13B).  
 

 
 

 
 
Figure 13. Expression of Cyclooxygenase-2 in tumor Leydig samples. (A) Western blot analysis was 
performed on 50 µg of total proteins extracted from TM3 and R2C cells or from total tissue of normal 
(FRNT) and tumor (FRTT) Fischer rat testes. GAPDH was used as a loading control. Results are 
representative of three independent experiments.  (B) Immunolocalization of COX-2 in normal human testis 
and  in testis with a Leydig cell tumor. Scale bars = 20µm (normal human testis); 12,5µm (human Leydig cell 
tumor). Brown (diaminobenzidine) cytoplasmic staining is indicative of COX-2 immunoreactivity.  
 



                                                                                                                                      Results 

 - 81 - 
 

Same experiments performed with COX-1 antibodies did not give different levels of 

expression between rat and human tumoral samples (data not shown). We have previously 

shown that expression of aromatase, SF-1 and phosphorylated form of CREB are higher  in 

rat tumor Leydig cells. The altered activation of CREB, together with higher SF-1 

expression, can explain the increase in aromatase levels observed in tumor Leydig cells. 

Knock down of COX-2 in R2C cells, using siRNA, caused a significant decrease in 

aromatase expression together with a decrease in CREB phosphorylation (Fig. 14).   
 

 

 
 

Figure 14. Effects of knocking down COX-2 on CREB and aromatase expression. R2C cells were 
transfected in serum-free medium with COX-2 (100nM) siRNA. After 48h western blot analysis of pCREB, 
CREB and aromatase were performed on 50 µg of total protein extracted from R2C cells transfected with 
scrambled siRNA (basal) or  with COX-2 siRNA (COX-2 siRNA). Blots are representative of three 
independent experiments with similar results. GAPDH was used as a loading control. 
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COX-2 inhibitor NS398 decreases pCREB and aromatase expression 

 

To investigate whether COX-2 is involved in the mechanism determining pCREB 

activation in R2C cells we used a specific COX-2 inhibitor NS398 (NS). Western blot 

analyses showed that addition of increasing doses of NS (5, 25 and 50 µmol/L) caused a 

decrease in both phosphorylated CREB, as seen using a specific anti pCREB antibody, and 

aromatase levels (Fig. 15A). A drop in aromatase expression was also reflected by a 

change in enzymatic activity, that was dramatically reduced with all the investigated 

NS398 doses (Fig. 15B).  

 

 
 
Figure 15 A, B. Effects of COX-2 inhibitor on aromatase expression in R2C cells. (A) Western blot 
analysis of pCREB and aromatase were performed on 50 µg of total proteins extracted from R2C cells non 
treated (basal) and  treated with NS398 (5, 25, 50 µmol/L) for 24h. Blots are representative of three 
independent experiments with similar results. β-actin was used as a loading control. (B) R2C cells were 
untreated (basal) or treated for 24h with the increasing amounts of NS398 (5, 25, 50 µmol/L). Aromatase 
activity was assessed by using the modified tritiated water method. Results obtained were calculated as 
pmoles of [3H]H2O released per hour normalized to the well protein content (pmol/h/mg protein) and 
expressed as percent of basal. Columns, mean of three independent experiments each done in triplicate; bars, 
SE. *, P < 0.01, compared  with basal. 
 

 



                                                                                                                                      Results 

 - 83 - 
 

Being active CREB a transcription factor necessary for aromatase transcription via PII 

promoter, these observation could potentially reflect changes on the mRNA levels. As seen 

by  real time RT-PCR, addition of the different doses of NS398, determined a decrease in 

aromatase mRNA (Fig. 15C), without affecting CREB levels (Fig. 15D), indicating a 

specific effect of COX-2 inhibition on the phosphorylative protein status.  

 
 

 
 
 
Figure 15 C, D. Effects of COX-2 inhibitor on aromatase expression in R2C cells. Total RNA was 
extracted from R2C cells untreated (basal) or treated for 24 h with the indicated doses of NS398. Real-time 
reverse transcription-PCR was used to analyze mRNA levels of  CYP19 (C) and CREB (D). Columns, mean 
of values from three separate RNA samples; bars, SE. Each sample was normalized to its 18S rRNA content. 
*, P < 0.01 compared with basal. 
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The effects of NS398 on aromatase expression led us to hypothesize that potentially, there 

could be a decrease in pCREB binding to the aromatase PII promoter responsible for a 

decreased gene transcription. With a ChIP assay, we were able to show a specific decrease 

in pCREB binding (Fig. 16A) without any change in the amount of total CREB protein 

present on the aromatase PII promoter (Fig. 16B).  

 

 
 
 
Figure 16. Effects of COX-2 inhibitor on pCREB and CREB binding to aromatase PII promoter in 
R2C cells. ChIP assays were performed on R2C cells untreated (basal) or treated for 24 h with the indicated 
doses of NS398. Immunoprecipitated (pCREB and CREB) and total (10% input) DNA were subject to real 
time PCR using specific primers (A, B). Untreated cells (basal) were treated with the same amount of vehicle 
alone (DMSO) that never exceeded 0.01% (v/v). Columns, mean of values from three separate experiments; 
bars, SE. Each sample was normalized to the amplified input values. *, P < 0.01 compared with basal. 
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PGE2 activated pathway regulates aromatase expression 

 

Either isoform of COX is responsible for prostaglandins (PGs) synthesis. Starting from 

previous findings demonstrating that PGE2 stimulates aromatase expression (267;276) we 

investigated the role of this factor in the regulation of aromatase in our cell model.  

Addition of exogenous amounts of PGE2 to R2C cells were able to increase CREB 

phosphorylation and consequently aromatase expression (Fig. 17A). Since PGE2 works 

binding to four different receptor isoforms, named EP, we tested the effect of selective 

inhibitors (EP1 [SC19220], of EP2/EP4 [AH6809], of EP4 [AH23848]) on pCREB and 

aromatase levels (Fig. 17B). Among the tested antagonist only the one selective for the 

EP4, AH23848 was able to produce an effect; specifically, a decrease in pCREB and in 

aromatase levels.  

 

 

 

Figure 17. Effects of PGE2 administration and EP inhibitors on CREB and aromatase expression in 
R2C cells. (A) Western blot analysis of pCREB, CREB and aromatase were performed on 50 µg of total 
proteins extracted from R2C cells non treated (basal) and treated with PGE2 (10 and 30 µmol/L) for 48h. 
Blots are representative of three independent experiments with similar results. GAPDH was used as a loading 
control. (B) Western blot analysis of pCREB, CREB and aromatase were performed on 50 µg of total 
proteins extracted from R2C cells non treated (basal) and treated with EP inhibitors (SC19220, AH6809,  
AH23848) (10 µmol/L) for 48h. Blots are representative of three independent experiments with similar 
results. GAPDH was used as a loading control.  
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Moreover, addition of PGE2 abrogated the inhibition on aromatase activity caused by 

AH23848 (Fig 18).  

 

 
 

Figure 18. Effects of PGE2 and AH23848 on aromatase activity in R2C cells. Cells were cultured for 24h 
in serum-free HAM-F10 and then treated for 48 h with AH23848 (10 µmol/L). Medium was then removed 
and replaced with medium only or where indicated with PGE2 (30µmol/L). Aromatase activity was assessed 
by using the modified tritiated water method. Results obtained were calculated as pmoles of [3H]H2O 
released per hour normalized to the well protein content (pmol/h/mg protein) and expressed as percent of 
basal. Columns, mean of three independent experiments each done in triplicate; bars, SE. *, P < 0.01, 
compared  with basal; **, P < 0.01, compared  with AH23848. 
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PKA inhibitor H89 decreases aromatase expression and activity as a consequence of 

reduced pCREB activation 

 

EP4 transduces its signal activating PKA, and we wanted to test the effect of a specific 

PKA inhibitor, H89, on aromatase expression. H89 decreased in a dose dependent manner 

both phosphorylated CREB and aromatase levels (Fig. 19A). A drop in aromatase 

expression was also reflected by a change in enzymatic activity, that was reduced with all 

the investigated H89 doses (Fig. 19B).  

 

 
 
Figure 19 A, B. Effects of PKA inhibitor H89 on aromatase expression in R2C cells. (A) Western blot 
analysis of pCREB and aromatase were performed on 50 µg of total proteins extracted from R2C cells non 
treated (basal) and treated with H89 (5, 10, 20 µmol/L) for 24h. Blots are representative of three independent 
experiments with similar results. β-actin was used as a loading control. (B) R2C cells were untreated (basal) 
or treated for 24h with the increasing amounts of H89 (5, 10, 20 µmol/L). Aromatase activity was assessed 
by using the modified tritiated water method. Results obtained were calculated as pmoles of [3H]H2O 
released per hour normalized to the well protein content (pmol/h/mg protein) and expressed as percent of 
basal. Columns, mean of three independent experiments each done in triplicate; bars, SE. *, P < 0.01, 
compared  with basal. 
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Similarly, H89 decreased aromatase mRNA (Fig.19C), but had no effect on CREB mRNA 

levels (Fig. 19D).  

 

 

 

 
 
 
Figure 19 C, D. Effects of PKA inhibitor H89 on aromatase expression in R2C cells. Total RNA was 
extracted from R2C cells untreated (basal) or treated for 24 h with the indicated doses of H89. Real-time 
reverse transcription-PCR was used to analyze mRNA levels of  CYP19 (C) and CREB (D). Columns, mean 
of values from three separate RNA samples; bars, SE. Each sample was normalized to its 18S rRNA content. 
*, P < 0.001 compared with basal. 
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The decrease in aromatase expression was due to a decrease in pCREB binding to the 

aromatase PII promoter (Fig. 20A), while the amount of total CREB protein present on the 

aromatase PII promoter did not change (Fig. 20B). 

 

 

 
 
 
Figure 20. Effects of PKA inhibitor on CREB and pCREB binding to aromatase PII promoter in R2C 
cells. ChIP assays were performed on R2C cells untreated (basals) or treated as indicated. Untreated cells 
(basal) were treated with the same amount of vehicle alone (DMSO) that never exceeded 0.01% (v/v). 
Immunoprecipitated (pCREB and CREB) and total (10% input) DNA were subject to real time PCR using 
specific primers (A, B).  Columns, mean of values from three separate experiments; bars, SE. Each sample 
was normalized to the amplified input values. *, P < 0.01 compared with basal. 
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A further demonstration of PKA implication in all the observed effects derives from the 

direct measurement of kinase activity after treatment with the inhibitors (Fig. 21). As 

expected H89 caused a 58% inhibition of PKA activity after 4h treatment, similarly NS398 

and AH23848 determined 33 and 70 % inhibition respectively (Fig. 21).     

 

 
 
 
Figure 21. Effect of  NS398, AH23848 and H89 on PKA activation. Cell lysates were analyzed for PKA 
activity by non-radioactive in vitro PKA assay as described in materials and methods. R2C cells  were treated 
for 4h with NS398 (50 µmol/L), AH23848 (10 µmol/L) and H89 (20 µmol/L). Absorbance of phosphorylated 
peptide was quantified by spectrophotometric method. Results are mean ± S.D. of three independent 
experiments. *P <0.001 compared to basal. 
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Inhibition of PGE2 dependent pathway decreases estradiol production and 

consequently tumor Leydig cell proliferation 

 

The involvement of COX-2 through PGE2 production and PKA activation in controlling 

aromatase activity in tumor Leydig cell is further supported by the ability of NS398, 

AH23848 and H89 to inhibit basal estradiol production (Fig. 22).  

 

 

 
 
 
Figure 22. Effects of NS398, AH23848 and H89 on estradiol production. Cells were maintained for 24 h 
in serum free HAM-F10 medium before being treated for 48 h with NS398 (50 µmol/L), AH23848 
(10µmol/L) or H89 (10 µmol/L) or maintained untreated (basal). E2 content in culture medium was 
determined by RIA and normalized to the cell culture well protein content. Columns, mean of three 
independent experiments each done in triplicate; bars, SE. *, P < 0.05, compared with basal. 
 
 
 

 

 



                                                                                                                                      Results 

 - 92 - 
 

As expected, the effect of decreased E2 production was a decrease in cell proliferation, that 

with the higher doses of both NS398, AH23848 or H89 was 72%, 70% and 82% 

respectively (Fig. 23 A, B, C).  

 

 
 
 
Figure 23. Effects of NS398, AH23848 and H89 on Leydig cell proliferation. (B, C) Cells were treated in 
serum-free medium in the absence (basal) or  presence of NS398 (A), AH23848 (B) or H89 (C) at the 
indicated concentrations for 72h after 24 h starvation. R2C cell proliferation was evaluated by [3H] 
Thymidine incorporation analysis. Values expressed as percent of untreated (basal) cells (100%) represent 
the mean ± SEM of three independent experiments each performed in triplicate. (*) P< 0.05 compared with 
basal. 
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An additional demonstration of the involvement of COX-2 dependent pathway in 

controlling estradiol production in R2C cells derives from a evaluation of cell proliferation 

after knocking down COX-2 in these cells with a specific siRNA (Fig. 24). Thymidine 

incorporation was reduced by all the amounts of transfected COX-2 siRNA. 

 

 
 

Figure 24. Effects of knocking down COX-2 on Leydig cell proliferation. R2C cells were transfected in 
serum-free medium with COX-2 siRNA at the indicated concentrations. After 48h cell proliferation was 
evaluated by [3H] Thymidine incorporation analysis. Values expressed as percent of untreated (basal) cells 
(100%) represent the mean ± SEM of  three independent experiments each performed in triplicate. (*) P< 
0.05 compared with basal. 
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These changes in cell cycle can be explained by the decrease in Cyclin E expression 

determined by NS398 (Fig. 25A) , AH23848 (Fig. 25B) and H89 (Fig. 25C). 

. 

 
 

Figure 25. Effects of NS, AH23848 and H89 on cyclin E expression. Western blot analysis of cyclin E  
was performed on 50 µg of total protein extracted from R2C cells non treated (basal) and treated with NS398 
(5, 25, 50 µmol/L), AH23848 (1, 3, 10 µmol/L) and H89 (5, 10, 20 µmol/L) for 24h. Blots are representative 
of three independent experiments with similar  results. β-actin was used as a loading control. 
 

 

These findings led us to suppose that in tumor Leydig cells the PGE2 derived from COX-2 

overexpression could act through an autocrine mechanism in activating aromatase 

expression. 
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Discussion 

 
The current study was aimed to explain the molecular mechanism responsible for 

aromatase overexpression in tumor Leydig cells with a consequent excess of estradiol in 

situ production sustaining tumor cell growth and proliferation.  

Mammalian testis is capable of estrogen synthesis, whose production is regulated by 

different factors at different ages. In mature animals, aromatization of testosterone to 

estradiol is enhanced by LH/chorionic gonadotropin (CG) and not by FSH. The site of this 

synthesis appears to be age-dependent, at least in some species, such as the rat (285). 

Leydig cells are an elective target site of LH/CG which controls testosterone biosynthesis 

as well as its conversion to estradiol through aromatase activity. Leydig cell is also known 

to be the site of estrogen synthesis in several species, including mice (286), humans (287), 

suine (288), and sheep (289). Alterations in local estrogen synthesis may have significant 

consequences in malignancy of these cells. In the present study we observed that 

manteinance of R2C cells in the absence of serum induces a cospicous release of E2 from 

cellular storage in a time dependent manner. This synthesis was abrogated by treatment 

with Letrozole, an aromatase inhibitor, addressing how estrogen production is dependent 

on high constitutive aromatase activity. 

A strongly increased aromatase expression was observed in R2C cells respect to the 

normal cell line control TM3 as well as in FRTT respect to FRNT. These findings concord 

with a previous study on human tissues showing that the increase in estrogen synthesis, as 

a consequence of a more intense aromatase activity, is higher in Leydig cell tumor fraction 

than in normal tissue surrounding the tumor of the same patient (290).  

Mediators of the physiological effects of estrogens are the estrogen receptors (ER), α and 

β. ERα appears to be confined to Leydig cells in testicular tissue (58), while ERβ has been 

detected immunohistochemically in several rat testicular cell types, including Sertoli cells, 

germ cells, and peritubular cells (291). An enhanced expression of ERα resulting in an 

increased ERα /ERβ ratio was observed in R2C compared to TM3 cell line as well as in 



                                                                                                                                Discussion 

 - 96 - 
 

FRTT respect to FRNT. This is in agreement with previous reports demonstrating that 

transgenic mice overexpressing aromatase have an enhanced occurrence of breast and 

Leydig cell tumors together with an enhanced expression of ERα in the tumoral tissue 

(139) . The latter findings address reasonably how an estrogen short  autocrine loop may be 

involved in breast and testicular tumorogenesis in the presence of an excess of locally 

produced estradiol. Indeed, an arrest of cell growth was observed following abrogation of 

local E2 production with Letrozole or after addition of ERα inhibitors ICI or OHT. 

Besides, only after remotion of medium every day along with prolonged R2C starvation 

abolishing local steroid production, we observed how exogenous E2 was able to display  

proliferative effects.   

One mechanism through which estrogens induce cell proliferation is by increasing protein 

levels of G1 regulatory cyclins A, B1, D1, D3, and E in target cells (292). In our study we 

showed that the expression of two of the most important regulators of Leydig cell cycle, 

cyclin D1 and E can be increased by E2 and downregulated by treatment with 

antiestrogens. These data further confirm that aromatase overexpression and the 

consequent E2 production may be the cause of altered cell cycle regulation of Leydig 

tumor cells. 

In the attempt to explain the molecular mechanism determining aromatase overexpression 

in our tumor cell line, we focused our attention on expression levels of transcription factors 

identified as crucial regulators of aromatase gene expression: CREB and SF-1. In the adult 

testis SF-1 is predominantly expressed in Leydig cells (293). The increase of total and/or 

phosphorylated protein can potentiate SF-1 transcriptional activity (294). In R2C cells and 

in FRTT compared to the normal controls we found higher SF-1 phosphorylated protein 

levels as a consequence of elevated protein content. Total CREB levels were similar in all 

samples but highly phosphorylated in tumor samples. Starting from these observations we 

investigated which pathways could be involved in the activation of these transcription 

factors. 

The most important signal that initiates steroidogenesis in Leydig cells is the binding of 

LH to the LH receptor (295). It has been demonstrated that LH/LHreceptor signaling 
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pathway is constitutively active in R2C cells and makes the phenotype of these cells 

constitutively steroidogenic (296). For instance in the presence of a specific PKA inhibitor, 

constitutive synthesis of Steroidogenic Acute Regulatory Protein (StAR) mRNA and 

steroids were significantly inhibited (297). These observations fit well with our findings 

evidencing how the presence of PKA inhibitor determined a strong decrease in aromatase 

activity together with a drop in CREB phosphorylation. In the presence of a specific PKC 

inhibitor no effects were elicited on phosphorylation of CREB, while SF-1 dropped 

dramatically.  

It has been shown that CREB in mouse Leydig cells can be phosphorylated also through 

the PKC pathway, activated by IGF-I (296). In this study we have revealed that R2C tumor 

Leydig cells release higher levels of IGF-I in the culture medium respect to TM3 cells. 

However, the exposure to IGF-I as well as the treatment with inhibitors of IGF-I signalling 

did not affect CREB phosphorylative status but decreased SF-1 phosphorylation, 

postulating a separate mechanism controlling CREB and SF-1 activation in modulating 

aromatase activity. 

These findings led us to suppose that the IGF-I derived from tumor Leydig cells could act 

through an autocrine mechanism in activating aromatase expression.  

IGF-I receptors have previously been identified in Leydig cells of several species 

(188;198;298;299). It has been hypothesized that changes in IGF-RI expression can 

influence tumor cell progression. However in our cellular models, we did not reveal 

differences in IGF-RI expression between normal and tumor cells, indicating that IGF-I 

level may be the determining factor in potentiating IGF-I signalling. A previous study 

investigating the effects of long term IGF-I treatment on Leydig cells did not reveal 

alterations in DNA synthesis, indicating that IGF-I may act as a differentiation factor rather 

than a mitogenic factor (191). In fact, expression levels of all mRNA species associated 

with testosterone (T) biosynthesis were shown to be lower in the absence of IGF-I, while 

treatment with IGF-I/insulin has been found to stimulate steroidogenesis and StAR 

expression in Leydig cells through a process that does not require cAMP signalling 

(184;299;300).  
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In the same vein we may reasonable hypothesize that IGF-I could sustain, through an 

autocrine/paracrine mechanism, the elevated aromatase expression/activity in tumor 

Leydig cells. To verify this hypothesis we studied the various signalling pathways initiated 

by IGF-I through IGF-IR. Binding of IGF-I to its receptor causes receptor 

autophosphorylation and the activation of intrinsic tyrosine kinase that acts on various 

substrates including the insulin receptor substrate (IRS) and Shc adaptor proteins. These 

activated proteins recruit other factors, leading to activation of multiple signalling 

pathways including the phosphatidyl inositol 3-kinase (PI3K)/Akt and the mitogen-

activated protein (MAP) kinase cascade. In addition, it has been shown that IGF-I can 

activate also the phospholipase C (PLC)/protein kinase C (PKC) pathway (3;301).  

To demonstrate a role for IGF-I in mediating aromatase activation we used specific 

inhibitors for IGF-I signaling [AG1024 (AG)], ERK1/2 [PD98059 (PD)], PI3K [LY294002 

(LY)] and PKC [GF109203X (GFX)] and showed a reduction of aromatase activity with 

all of them. Together these data confirm a role for IGF-I in mediating aromatase activation 

in tumor Leydig cells. All of the different inhibitors but PD were able to produce a similar 

inhibitory pattern on both aromatase and SF-1 mRNA and protein expression. Furthermore 

by ChIP assay we evidenced that SF-1 binding to the aromatase promoter II that was 

reduced by AG, LY, GFX but not by PD indicating a central role of this transcription 

factor in regulating aromatase gene transcription in tumor Leydig cells. This is the first 

report of a direct link between SF-1 transcription and IGF-I signalling pathway in  

regulating aromatase expression. 

Furthermore, addition of IGF-I itself was able to increase aromatase activity and 

expression. These events were due to an increase in the amount of total and phosphorylated 

SF-1 levels whose binding to the aromatase promoter was shown to be rapidly augmented. 

So we postulate that an enhanced endogenous IGF-I local production may contribute to 

maintain an elevated aromatase activity sustained by a direct stimulatory effect of SF-1. 

For instance the inhibition of IGF-I signalling through inhibition of either PI3K/AKT and 

PLC/PKC pathways were able to block SF-1 expression and protein phoshorylation. 

Particularly treatment with AG blocked SF-1 phosphorylation more efficiently than the 
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separate treatment of PI3K or PKC, addressing how both pathways may synergize in 

upregulating SF-1 activity. In the presence of PD, SF-1 expression remained unchanged 

together with unaffected aromatase mRNA and protein levels. Importantly aromatase 

activity appeared decreased in the presence of PD suggesting a potential stimulatory role of 

ERK1/2 on the enzyme at a post-transcriptional level. From our findings then emerges a 

double mechanism inducing enhanced expression of aromatase: 1. a constitutive activation 

of PKA determining CREB phosphorylation; 2. an enhanced IGF-I signaling potentiating 

SF-1 action. The enhanced expression of SF-1 may be maintained by the lack of DAX-1 

(Dosage-Sensitive Sex Reversal, Adrenal Hypoplasia Congenita, Critical Region on the X 

Chromosome, Gene-1) in R2C cells (283). DAX-1 is a specific co-repressor of SF-1 and 

inhibits  StAR expression and steroidogenesis by 40-60% when overexpressed in R2C cells 

(283).  The lack of DAX-1 expression in R2C cells may be due to the constitutive active 

PKA signalling, in fact since in a mouse Leydig cell line was shown a marked decrease of 

DAX-1 mRNA within 3 h after addition of LH or forskolin (302). Then, the activation of 

LH/LHr/PKA pathway decreases DAX-1 expession and promotes SF-1 activity, at the 

same time PKA activation if the cause an higher CREB phosphorylation and consequently 

activity. The mechanism responsible for PKA constitutive activation in tumor Leydig cells 

is yet to be defined.  

Our hypothesis was that an increase in COX-2 levels and consequent prostaglandin 

synthesis could be the event responsible for PKA activation. This hypothesis was 

supported by immunostochemistry showing COX-2 overexpression in human Leydigioma 

samples and its absence in normal testes. In addition, western analysis for COX-2 on 

normal and tumor Leydig samples showed that COX-2 is highly expressed in R2C cells 

and in testicular lysates from Fischer with tumors.  

Similarly, COX-2 is expressed in breast cancer (254) and it has been shown a correlation 

between aromatase and COX-2 expression in this type of tumor (259). Knock down of 

COX-2 in R2C cells using RNAi was able to decrease aromatase expression and to almost 

abolish CREB phosphorylation. These events produced by COX-2 knock down were also 

observed using a COX-2 selective antagonist, NS398. In addition, using ChIP assay, we 
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were able to show that the amount of pCREB bound to the PII promoter was significantly 

reduced, this implies that the cause of the observed reduction in aromatase expression 

could be due to a decrease in PKA-dependent CREB phosphorylation. 

Several studies have been performed on aromatase regulation in breast cancer, which 

represents another estrogen-dependent type of tumor, meaning that it expresses estrogen 

receptor and requires estrogen for growth (303). Similarly to tumor Leydig cells, breast 

cancer cells have an increased aromatase expression (304), due to a switch in the promoter 

region utilized in gene expression. In breast cancer patients is found a switch from promote 

I.4 to promoter I.3 and II and I.7 (267;305-307) regulated through cAMP-mediated 

pathways. In addition, a previous study on adipose stromal cells surrounding breast cancer 

cells, showed PGE2 to be a potent activator of aromatase expression via promoter II. 

Furthermore, it was demonstrated that PGE2 is produced by breast tumors stimulating 

local estrogen biosynthesis in the surrounding adipose tissue, suggesting a potential 

paracrine/autocrine role for prostaglandins (PGs) in regulating aromatase expression in 

other cell types, including tumor Leydig cells. 

Different prostaglandins are produced by the rat testis at different levels; in particular they 

include PGF2α (79,5%), PGE2 (20.3%) and PGD2 (0.17%) (308). PGE2-producing rat 

testicular cells include Leydig cells, Sertoli cells and spermatogenic cells and it has been 

implicated in the control of testicular steroidogenesis, spermatogenesis and local immunity 

(309). In addition, in the mouse there is also a correlation between COX-2 expression and 

PGE2 production in male genital organs (310). Even in another species, such as newt, it 

was observed that PGE2 increases 17β-estradiol, cAMP and aromatase activity while 

decreasing testosterone, probably as a consequence of increased conversion into estrogens 

(311). Consistent with findings related to COX-2 and tumor, PGE2 is also known to 

possess properties that promote malignant growth. For example, PGE2 stimulates 

angiogenesis, invasiveness and inhibits immune surveillance (312). PGs, produced through 

COX, exert their actions binding to specific transmembrane G-protein coupled receptors 

termed Prostanoid (P) receptors, present as different splice variants (270).  
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Specifically, PGE2 receptors, EP1(271) , EP2(272), EP3(273) and EP4(274), are transduced 

through modulation of the activity of either adenylyl cyclase or inositol phospholipid 

hydrolysis and calcium mobilization (270;275). In particular, EP1 activates PKC, EP2 and 

EP4  are coupled to PKA, EP3 can either couple negatively to adenylyl cyclase through 

binding a Gi protein or associate to inositol phospholipid hydrolysis and calcium 

mobilization. Importantly, PGE2 was shown to increase aromatase expression, while on the 

contrary EP1 and EP2 selective antagonists decreased the enzyme activity (276), suggesting 

that both PKA and PKC pathways are required for aromatase optimal expression. 

In our experiments using selective antagonists for the different EP subtypes, we found that 

only AH23848, an EP4 inhibitor was able to decrease aromatase. EP4 transduces its signal 

through PKA, and in fact its block determines a decrease in CREB phosphorylation. These 

events are opposite to what observed using PGE2, which allows for increase in aromatase 

expression and in CREB phosphorylation.   

R2C cells are known to have a constitutive active PKA activity (313), we measured kinase 

activity after treating R2C cells with COX-2 inhibitor NS398, EP4 inhibitor AH23848 and 

after treatment with a specific PKA inhibitor H89. All of the tested antagonists were able 

to decrease enzyme activity. The importance of PKA pathway in regulating aromatase 

expression in R2C cells can be seen in the experiments with H89, which specifically 

decreasing CREB phosphorylation determines a decrease in aromatase levels.  

As is the case for IGF-I pathways inhibitors, that decrease estrogen production as a 

consequence of decreased aromatase expression, all of the tested inhibitors working at 

different levels on the same pathway, directly on either COX-2, EP4 or PKA determine a 

drop in the ability of R2C cells to produce estradiol. This event as previously shown causes 

a decrease in tumor cell proliferation, depending on the decrease of estrogen regulated 

cyclin such as cyclin E. The importance of COX-2/PGE2 dependent pathway is further 

confirmed by knocking down COX-2 expression with siRNA. The absence of this protein 

in R2C cells causes a decrease in tumor cell progression.  
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All these data complete our knowledge on the mechanisms involved in aromatase 

regulation in Leydig cell tumor: COX-2 over-expression inducing PGE2 sinthesis activates 

PKA, which increases CREB phosphorylation; phosphorylated CREB binds CYP19 PII 

promoter together with SF-1, regulated by IGF-I, and increase aromatase expression.  

Constitutive active aromatase produces higher estradiol levels which then, increase Leydig 

cell proliferation (Diagram 1). 

 
Diagram 1. Schematic model showing the mechanism of tumor Leydig cell proliferation.  

 

 

Targeted inhibition of COX-2 and/or PGE2 are now regarded as poteintial strategies to 

stop completely the occurrence or progress of cancers. Selective COX-2 inhibitors are used 

for treatment of colorectal polyps in humans (243;314;315) women with high grade 

cervical dysplasia (316), and experimental studies showed that specific inhibition of COX-

2 or PGE2 led to significant in vivo tumor reduction in murine lung cancer models (244). 
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In fact, the observation that antiestrogens and aromatase inhibitors, IGF-I signalling 

blockers as well as COX-2 inhibitor are able to reduce R2C proliferation opens new 

perspectives on the adjuvant therapeutic approach of testicular cancer. Remains to explain 

which molecular mechanism(s) is responsible for the elevated IGF-I production in tumor 

Leydig cells. In vivo, administration of hCG increases IGF-I mRNA levels in rat Leydig 

cells (317). LH deprival determines a decrease in BrdU incorporation as well as a decrease 

in mRNA levels of IGF-I and IGF-I receptor (318). These observations together with our 

data showing a decrease in IGF-I basal production after treatment with a PKA inhibitor 

(data not shown) suggest the possibility that LH can mediate its proliferative effects also 

by regulating IGF-I and its receptor in Leydig cells and that the altered LH/LHreceptor 

activated pathway in R2C cells could be the cause of IGF-I overproduction . 

The mechanism detemining COX-2 expression and if the constitutive activation of 

LH/LHr/PKA signalling in R2C cells may be involved in upregulation of IGF-I expression 

remains also to be explored. 
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Abstract

The aim of this study was to investigate the role of estrogens in
Leydig cell tumor proliferation. We used R2C rat Leydig tumor
cells and testicular samples from Fischer rats with a developed
Leydig tumor. Both experimental models express high levels
of aromatase and estrogen receptor A (ERA). Treatment with
exogenous 17B-estradiol (E2) induced proliferation of R2C
cells and up-regulation of cell cycle regulators cyclin D1 and
cyclin E, the expression of which was blocked by addition of
antiestrogens. These observations led us to hypothesize an
E2/ERA–dependent mechanism for Leydig cell tumor prolife-
ration. In determining the molecular mechanism responsible
for aromatase overexpression, we found that total and phosphor-
ylated levels of transcription factors cyclic AMP–responsive
element binding protein and steroidogenic factor 1 (SF-1)
were higher in tumor samples. Moreover, we found that tumor
Leydig cells produce high levels of insulin-like growth factor I
(IGF-I), which increased aromatase mRNA, protein, and
activity as a consequence of increased total and phosphory-
lated SF-1 levels. Specific inhibitors of IGF-I receptor, protein
kinase C, and phosphatidylinositol 3-kinase determined a
reduction in SF-1 expression and in IGF-I–dependent SF-1
recruitment to the aromatase PII promoter. The same
inhibitors also inhibited aromatase expression and activity
and, consequently, R2C cell proliferation. We can conclude
that one of the molecular mechanisms determining Leydig cell
tumorigenesis is an excessive estrogen production that stimu-
lates a short autocrine loop determining cell proliferation.
In addition, cell-produced IGF-I amplifies estrogen signaling
through an SF-1–dependent up-regulation of aromatase
expression. The identification of this molecular mechanism
will be helpful in defining new therapeutic approaches for
Leydig cell tumors. [Cancer Res 2007;67(17):8368–77]

Introduction

The etiology and pathogenesis of human testicular tumors are
poorly defined. It has been reported that serum estrogen levels
are elevated in patients with testicular germ cell cancer as a
consequence of increased local estrogen production reflecting
higher aromatase activity present in Sertoli and Leydig cells (1).

Ninety-five percent of all human testicular neoplasms arise from
germinal cells whereas Leydig cell tumors are the most common
tumors of the gonadal stroma (2).

In rodents, reproductive system tumors are uncommon in
general, with the few exceptions of Leydig cell and ventral prostatic
neoplasms in some rat strains (3) or non-inbred mice (4); however,
analogously to the human (5), chronic administration of estrogens
induces testicular tumors.

A useful model used to investigate whether excess estrogens
might have a central role in the mechanism leading to testicular
tumorigenesis are transgenic mice overexpressing aromatase and
presenting enhancement of circulating 17h-estradiol (E2) levels (6).
About half of the male mice are infertile and/or have enlarged testis
and show Leydig cell hyperplasia and Leydig cell tumors (6),
whereas the female mice reveal mammary gland hyperplasia
associated with an altered expression pattern of proteins involved
in apoptosis, cell cycle, growth, and tumor suppression (7).
Whereas the effects of estrogen on mammary gland tumorigenesis
in human and rodents are well known, the role of aromatase
overexpression and in situ estrogen production in testicular
tumorigenesis has not been clearly defined. In this study, we have
investigated the molecular mechanisms causing aromatase over-
expression and the effect of estradiol (E2) overproduction on rat
Leydig cell tumor proliferation. As an experimental model, we
used the R2C rat Leydig tumor cell line; to validate our in vitro data
in an in vivo model, we used Leydig cell tumors from older Fisher
rats characterized by an exceptionally high incidence of sponta-
neous neoplasm with aging (8).

Aromatase activity is regulated primarily at the level of gene
expression and is present in testicular somatic cells and along the
maturative phases of male germ cells (9, 10). The CYP19 gene that
encodes aromatase has at least eight unique promoters that are
used in a tissue-specific manner (11). The proximal promoter II
regulates aromatase expression in human fetal and adult testis,
R2C and H540 rat Leydig tumor cells, and purified preparations
of rat Leydig, Sertoli, and germ cells (12, 13). Specific sequences
seem to be mainly involved in aromatase expression: a sequence
that contains a half-site binding nuclear receptors (AGGTCA) in
position �90 in the rat binding steroidogenic factor 1 (SF-1; ref. 14)
and cyclic AMP (cAMP)–responsive element (CRE)–like sequences
binding cAMP-responsive element binding protein (CREB)/activat-
ing transcription factor protein family members (15, 16) localized
upstream at a more distal position, in the rat in positions �169
(TGCACGTCA), �335 (TGAACTCA), and �231 (TGAAATCA; ref. 17).
Similar responsive elements (binding CRE and SF-1) have been
reported for the steroidogenic acute regulatory (StAR) protein gene
promoter (18) whose expression is regulated by insulin-like growth
factor-I (IGF-I) signaling in Leydig cells. Because the StAR protein is
involved in the transfer of cholesterol from the outer to the inner
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mitochondrial membrane, the rate-limiting and regulated step in
steroidogenesis IGF-I plays an important role in the regulation of
testicular steroid biosynthesis.

For these reasons, we investigated the role of IGF-I, a peptide
also shown to have a role in testicular growth and development
and in the control of Leydig cell number (19). IGF-I is produced
locally in the testis, in Sertoli, Leydig, and peritubular cells derived
from the immature rat testis and cultured in vitro (20, 21). The
crucial role of IGF-I in the development and function of Leydig
cells was highlighted by studies on IGF-I gene knockout mice
(22, 23). The failure of adult Leydig cells to mature and the
reduced capacity for testosterone production are caused by
deregulated expression of testosterone biosynthetic and metabo-
lizing enzymes (24). Expression levels of all mRNA species
associated with testosterone biosynthesis are lower in the absence
of IGF-I. However, this study did not investigate the effect of
IGF-I on aromatase expression, although an effect could be
supposed.

Starting from these findings, in this study we investigated
whether a testicular overproduction of IGF-I could be one of the
mechanisms determining aromatase overexpression in rat tumor
Leydig cells through the activation of specific transcription factors.
The elevated aromatase-dependent E2 production in Leydig
cells, through an autocrine/paracrine mechanism mediated by
their own receptors, could contribute to the hormone dependence
of testicular tumorigenesis by stimulating Leydig tumor cell
proliferation.

Materials and Methods

Cell cultures and animals. TM3 cells (immature mouse Leydig cell line)

were cultured in DMEM/F-12 supplemented with 5% horse serum (HS),

2.5% fetal bovine serum (FBS), and antibiotics (Invitrogen S.R.L.); R2C cells

(rat Leydig tumor cell line) were cultured in Ham/F-10 supplemented with
15% HS, 2.5% FBS, and antibiotics (Invitrogen). Male Fischer 344 rats

(a generous gift of Sigma-Tau), 6 (FRN) and 24 (FRT) months of age, were

used for studies. Twenty-four-month-old animals presented spontaneously

developed Leydig cell tumors, which were absent in younger animals. Testes
of all animals were surgically removed by qualified, specialized animal care

staff in accordance with the Guide for Care and Use of Laboratory Animals

(NIH) and used for experiments.
Aromatase activity assay. The aromatase activity in subconfluent R2C

cell culture medium was measured by tritiated water-release assay using

0.5 Amol/L [1h-3H(N)]androst-4-ene-3,17-dione (DuPont NEN) as a sub-

strate (25). Incubations were done at 37jC for 2 h under a 95%:5% air/CO2

atmosphere. Obtained resultswere expressed as picomoles per hour (pmol/h)

and normalized to milligrams of protein (pmol/h/mg protein).

RIA. Before the experiments, TM3 cells were maintained overnight in

DMEM/F-12 and R2C cells in Ham/F-10 (medium only). The estradiol
content of medium recovered from each well was determined against

standards prepared in low-serum medium using a RIA kit (DSL 43100;

Diagnostic System Laboratories). Results of the assay were normalized to

the cellular protein content per well and expressed as picomoles per
milligram of cell protein.

To measure IGF-I concentration in testicular extracts, testes were

weighed, homogenated in 500 AL of 0.05 mol/L Tris/HCl (pH 7.6) plus
protease inhibitors, and then submitted to ultrasonication followed by

centrifugation, as previously published (26). IGF-I content in testicular

extracts and in medium recovered from each well of R2C and TM3 cells was

determined following extraction and assay protocols provided with the
mouse/rat IGF-I RIA kit (DSL 2900; Diagnostic System Laboratories).

Chromatin immunoprecipitation. This assay was done using the

chromatin immunoprecipitation assay kit from Upstate with minor

modifications in the protocol. R2C cells were grown in 100-mm plates.

Confluent cultures (90%) were treated for 24 h with AG1024 (Sigma),

PD98059 (Calbiochem, VWR International S.R.L.), LY294002 (Calbiochem,

VWR International), GF109203X (Calbiochem, VWR International), or for

increasing times with 100 ng/mL IGF-I (Sigma), or left untreated.

Following treatment, DNA/protein complexes were cross-linked with 1%

formaldehyde at 37jC for 10 min. Next, cells were collected and

resuspended in 400 AL of SDS lysis buffer (Upstate Technology) and left

on ice for 10 min. Then, cells were sonicated four times for 10 s at 30% of

maximal power and collected by centrifugation at 4jC for 10 min at

14,000 rpm. Ten microliters of the supernatants were kept as input

(starting material, to normalize results) whereas 100 AL were diluted 1:10

in 900 AL of chromatin immunoprecipitation dilution buffer (Upstate

Technology) and immunocleared with 80 AL of sonicated salmon sperm

DNA/protein A agarose (Upstate) for 6 h at 4jC. Immunocomplex was

formed using 1 AL of 1:5 dilution of specific anti–SF-1 antibody (provided

by Prof. Ken-ichirou Morohashi, Division for Sex Differentiation, National

Institute for Basic Biology, National Institutes of Natural Sciences,

Myodaiji-cho, Okazaki, Japan) overnight at 4jC. Immunoprecipitation

with salmon sperm DNA/protein A agarose was continued at 4jC until

the following day. DNA/protein complexes were reverse cross-linked

overnight at 65jC. Extracted DNA was resuspended in 20 AL of Tris-EDTA

buffer. A 3-AL volume of each sample and input was used for PCR using

CYP19 promoter II–specific primers. The PCR conditions were 1 min at

94jC, 1 min at 50jC, and 2 min at 72jC for 30 cycles using the following

primers: forward, 5¶-TCAAGGGTAGGAATTGGGAC-3¶; reverse, 5¶-GGTGC-

TGGAATGGACAGATG-3¶. Amplification products were analyzed on a 1%

agarose gel and visualized by ethidium bromide staining. In control

samples, nonimmune rabbit immunoglobulin G was used instead of

specific antibodies.
Real-time reverse transcription-PCR. Before the experiments, cells

were maintained overnight in low-serum medium. Cells were then treated

for the indicated times and RNA was extracted from cells using the TRizol

RNA isolation system (Invitrogen). TRizol was also used to homogenize

total tissue of normal (FRNT) and tumor (FRTT) Fisher rat testes for RNA

extraction. Each RNA sample was treated with DNase I (Ambion), and

purity and integrity of the RNA were confirmed spectroscopically and by

gel electrophoresis before use. One microgram of total RNA was reverse

transcribed in a final volume of 30 AL using the ImProm-II Reverse

transcription system kit (Promega, Promega Italia S.R.L.); cDNA was

diluted 1:3 in nuclease-free water, aliquoted, and stored at �20jC. Primers

for the amplification were based on published sequences for the rat

CYP19 , rat CREB , and rat SF-1 genes. The nucleotide sequences of the

primers for CYP19 were forward, 5¶-GAGAAACTGGAAGACTGTATGGAT-

3¶, and reverse, 5¶-ACTGATTCACGTTCTCCTTTGTCA-3¶. For CREB ampli-

fication, we used the following primers: forward, 5¶-AATATGCACAGAC-

CACTGATGGA-3¶, and reverse, 5¶-TGCTGTGCGAATCTGGTATGTT-3¶; for

SF-1 amplification, primers have been previously published (27). PCR

reactions were done in the iCycler iQ Detection System (Bio-Rad) using 0.1

Amol/L of each primer, in a total volume of 30-AL reaction mixture

following the manufacturer’s recommendations. SYBR Green Universal

PCR Master Mix (Bio-Rad) with the dissociation protocol was used for

gene amplification; negative controls contained water instead of first-

strand cDNA. Each sample was normalized on the basis of its 18S rRNA

content. The 18S quantification was done using a TaqMan rRNA Reagent

kit (Applied Biosystems) following the method provided in the TaqMan

rRNA Control Reagent kit (Applied Biosystems). The relative gene

expression levels were normalized to a calibrator that was chosen to be

the basal, untreated sample. Final results were expressed as n-fold

differences in gene expression relative to 18S rRNA and calibrator,

calculated using the DDC t method as follows:

n� fold ¼ 2�ðDCtsample�DCtcalibratorÞ

where DC t values of the sample and calibrator were determined by

subtracting the average C t value of the 18S rRNA reference gene from the

average C t value of the different genes analyzed.
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Western blot analysis. R2C and TM3 cells or total tissue of FRNT
and FRTT were lysed in ice-cold radioimmunoprecipitation assay buffer

containing protease inhibitors (20 mmol/L Tris, 150 mmol/L NaCl, 1%

Igepal, 0.5% sodium deoxycholate, 1 mmol/L EDTA, 0.1% SDS, 1 mmol/L

phenylmethylsulfonyl fluoride, 0.15 units/mL aprotinin, and 10 Amol/L
leupeptin) for protein extraction. The protein content was determined

by the Bradford method. The proteins were separated on 11% SDS-

polyacrylamide gel and then electroblotted onto a nitrocellulose membrane.

Blots were incubated overnight at 4jC with (a) antihuman P450 aromatase
antibody (1:50; Serotec, MCA 2077), (b) anti-ERa (F-10) antibody (1:500;

Santa Cruz Biotechnology), (c) anti-ERh (H-150) antibody (1:1,000; Santa

Cruz Biotechnology), (d) anti–cyclin D1 (M-20) antibody (1:1,000; Santa

Cruz Biotechnology), (e) anti–cyclin E (M-20) antibody (1:1,000; Santa Cruz
Biotechnology), ( f ) anti-CREB antibodies [48H2 (1:1,000; Cell Signaling

Technology) and AHO0842 (1:1,000; Biosource, Inc.)]; (g ) anti-pCREB Ser133

(87G3; 1:1,000; Cell Signaling Technology) or anti-pCREB Ser129/133 (1:1,000;
Biosource, Inc.), (h) anti–SF-1 (1:1,000; provided by Prof. Ken-ichirou

Morohashi), (i) anti–pSF-1 (1:1,000; provided by Dr. Holly A. Ingraham,

Department of Physiology, University of California, San Francisco, San

Francisco, California), ( j) anti-actin (C-2) antibody (1:1,000; Santa Cruz
Biotechnology), and (k) anti–IGF-I receptor (IGF-IR; 1:800; Santa Cruz

Biotechnology). Membranes were incubated with horseradish peroxidase–

conjugated secondary antibodies (Amersham Pharmacia Biotech) and

immunoreactive bands were visualized with the enhanced chemilumines-
cence Western blotting detection system (Amersham Biosciences). To

ensure equal loading of proteins, membranes were stripped and incubated

overnight with h-actin antiserum.

Cell proliferation assay. For proliferative analysis, a total of 1 � 105

cells were seeded onto 12-well plates in complete medium and allowed to

grow for 2 days. Before the experiments, cells were maintained overnight

in Ham/F-10 medium and were treated the next day with ICI 182780

(a gift from Astra-Zeneca), 4-hydroxytamoxifen (Sigma), and letrozole (a gift
from Novartis Pharma AG) and E2 (Sigma), or treated for 24 h with IGF-I

alone or in combination with inhibitors, or incubated with an anti–IGF-I

antibody (Santa Cruz Biotechnology). Control (basal) cells were treated
with the same amount of vehicle alone (DMSO) that never exceeded the

concentration of 0.01% (v/v). [3H]Thymidine incorporation was evaluated

after a 24-h incubation period with 1 ACi of [3H]thymidine (Perkin-Elmer

Figure 1. E2 production and autocrine effects in R2C cells. A, cells were treated for the indicated times in HAM-F10 in the absence (0) or presence of aromatase
inhibitor letrozole (0.1, 1, and 10 Amol/L). Every 24 h, before renewing treatment, cell culture medium was removed and analyzed for steroid content. E2 content in
R2C culture medium was determined by RIA and normalized to the cell culture well protein content. Points, mean from three separate cell culture wells; bars, SE.
B, Western blot analyses of ERa, ERh, and aromatase (Arom ) were done on 50 Ag of total proteins extracted from TM3 and R2C cells or from tissues of normal
(FRNT) and tumor (FRTT) Fisher rat testes. Representative of three independent experiments. h-Actin was used as a loading control. C, R2C cell proliferation was
evaluated by [3H]thymidine incorporation analysis. Cells were treated for 96 h in HAM-F10 in the absence (�) or presence of antiestrogens hydroxytamoxifen (OHT) or
ICI 182780 (ICI ) or aromatase inhibitor letrozole (Letr ) at the indicated concentrations or treated with estradiol (0.001–0.1 Amol/L) for 24 h after being cultured for 48 h in
serum-free HAM-F10, removing and renewing cell culture medium every 24 h. D, R2C cells were cultured for 48 h in serum-free HAM-F10; every 24 h, cell culture
medium was removed and renewed. Cells were then treated for 24 h in the absence (basal, bs) or presence of estradiol (1 nmol/L) and ICI 182780 (1 Amol/L)
before extracting total proteins. Western blot analysis of cyclin D1 and cyclin E was done on 50 Ag of total proteins extracted from R2C cells. h-Actin was used as a
loading control. Protein expression in each lane was normalized to the h-actin content and expressed as fold over control represented by normal cells (B ) or basal
condition (D ). Normalized absorbances were subjected to statistical analysis; statistically significant differences are indicated (*, P < 0.05; **, P < 0.01, compared with
basal or control).
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Life Sciences) per well. Cells were washed once with 10% trichloroacetic
acid, twice with 5% trichloroacetic acid, and lysed in 1 mL of 0.1 mol/L

NaOH at 37jC for 30 min. The total suspension was added to 10 mL

optifluor fluid and was counted in a scintillation counter.

Data analysis and statistical methods. Pooled results from triplicate
experiments were analyzed by one-way ANOVA with Student-Newman-

Keuls multiple comparison methods, using SigmaStat version 3.0 (SPSS).

Results

Estradiol induces Leydig cell tumor proliferation through
an autocrine mechanism. We carried out our study using R2C
Leydig tumor cells as model system. These cells have been shown
to have high aromatase expression and activity (14). We also used
another Leydig cell line, TM3, as a normal control and analyzed
testes from older and younger Fischer rats. Aged animals have a

high incidence of spontaneous Leydig cell neoplasm (8, 28), a
phenomenon not observed in younger animals, allowing us to
use them as a good in vivo model to confirm results obtained in
cell lines. Our first step was to measure estradiol content in culture
media of R2C and TM3 cells. Whereas E2 levels in TM3 medium
were extremely low (data not shown) in R2C cells, E2 levels after
24 h were 0.5 pmol/mg protein and increased by 7-fold at 96 h
(Fig. 1A). This production was dependent on high constitutive
active aromatase activity because the presence of the aromatase
inhibitor letrozole was able to decrease E2 production at all doses
and times tested (Fig. 1A). E2 levels after 24-h treatment with
letrozole were still detectable but were completely knocked down
when we removed the medium after 24 h and renewed the
treatment for an additional 24 h. The same effect was maintained
at the other two time points investigated (Fig. 1A). Once estradiol is
produced, it can exert its actions by binding to specific receptors,
the estrogen receptors a and h (ERa and ERh). Analysis of the two
protein receptor isoforms in our models showed that tumor Leydig
cells express both isoforms of ER (Fig. 1B). Particularly, the a
isoform seems to be more expressed in R2C cells with respect to
TM3 and in FRTT with respect to its control FRNT (Fig. 1B)
in which ERh, instead, is more expressed (Fig. 1B). In R2C as well
as in FRTT, an increase in the ERa/ERh ratio was observed
(Supplementary Fig. S1A). Moreover, aromatase protein content is
extremely high in tumor samples (Fig. 1B).

Our next experiments showed that ERs are required for
proliferation through a short autocrine loop maintained by
endogenous E2 production in Leydig tumor cells. For instance,
the use of both antiestrogens 4-hydroxytamoxifen and ICI 182780
and the use of the aromatase inhibitor letrozole determined a
dose-dependent inhibition of cell proliferation (Fig. 1C). Among
the different doses tested, the highest dose of 4-hydroxytamoxifen
(10 Amol/L) was able to inhibit cell proliferation by 90%; 10 Amol/L
ICI 182780, by 86%; and 10 Amol/L letrozole, by 70%. Moreover,

Figure 2. Expression of total and phosphorylated forms of SF-1 and CREB.
Western blot analyses of SF-1, pSF-1, CREB, and pCREB were done on 50 Ag
of total proteins extracted from TM3 and R2C cells or from tissues of normal
(FRNT) and tumor (FRTT) Fisher rat testes. Representative of three independent
experiments with similar results. h-Actin was used as a loading control.
Protein expression in each lane was normalized to the h-actin content.

Figure 3. IGF-I production and autocrine
effects in Leydig cells. A, TM3 and R2C
cells were cultured for 24 h in serum-free
medium and IGF-I levels in culture medium
were determined by RIA. IGF-I levels
were normalized to the cell culture well
protein content. Columns, mean of three
independent experiments each done
in triplicate; bars, SE. B, total protein
extracts from FRNT and FRTT were
assayed for IGF-I content. IGF-I levels
were normalized to the tissue weight.
Columns, mean of three independent
samples; bars, SE. *, P < 0.01, compared
with control conditions, represented by
TM3 cells or FRNT. C, Western blot
analysis of IGF-IR in TM3 and R2C cells.
h-Actin was used as a loading control.
D, cells were treated with AG1024 (AG ;
20 Amol/L), LY294002 (LY ; 10 Amol/L),
PD98059 (PD ; 20 Amol/L), and
GF109203X (GFX ; 20 Amol/L). Aromatase
activity was assessed by using the
modified tritiated water method. Results
obtained are expressed as picomoles of
[3H]H2O released per hour and normalized
to the well protein content (pmol/h/mg
protein). Columns, mean of three
independent experiments each done in
triplicate; bars, SE. *, P < 0.01, compared
with basal.
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after starving cells for a prolonged time and changing the medium
everyday to remove local E2 production, we found that addition
of 1, 10, and 100 nmol/L E2 stimulated Leydig tumor cell proli-
feration (Fig. 1C), overcoming the inhibition induced by letrozole
(Supplementary Fig. S1B). The stimulatory effect of E2 was
concomitant with increased levels of cell cycle regulators cyclin
D1 and cyclin E, whose expression was inhibited by the pure
antiestrogen ICI 182780 (Fig. 1D). All these results address how
the classic E2/ERa signaling may control Leydig cell tumor growth
and proliferation similarly to what was observed in other estrogen-
dependent tumors.
Aromatase overexpression is determined by constitutive

activation of transcription factors SF-1 and CREB. Aromatase
gene transcription in rat Leydig cells is driven by the PII promoter,

which is mainly regulated through three CRE-like sites and one
NRE site binding SF-1 and LRH-1 (14, 27). Constitutively active
levels of CREB have previously been shown in R2C cells (29). Here,
we confirmed these data and showed that FRTT have a high
phosphorylated CREB status (Fig. 2), together with enhanced
expression and phosphorylation of SF-1, with respect to FRNT
(Fig. 2). Furthermore, we showed the presence of high expression
levels of SF-1 with the phosporylated protein present in R2C but
not in TM3 cells (Fig. 2).
IGF-I is produced by R2C cells and induces aromatase

expression through phosphatidylinositol 3-kinase– and protein
kinase C–mediated activation of SF-1. Starting from previous
findings showing the ability of IGF-I to activate SF-1 and CREB,
which leads to an increase in StAR transcription and then

Figure 4. Effects of IGF-I pathway
inhibitors on aromatase, SF-1, and CREB
expression in R2C cells. A to D, Western
blot analyses were done on 50 Ag of
total proteins extracted from R2C cells
untreated (bs ) or treated for 24 h with
the indicated doses of AG1024 (A),
LY294002 (B), PD98059 (C ), and
GF109203X (D ). Representative of
three independent experiments with
similar results. h-Actin was used as a
loading control. Normalized absorbances
were subjected to statistical analysis;
statistically significant differences are
indicated (*, P < 0.01, compared with
basal).
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steroidogenesis (18), we investigated the role of this factor in
regulating aromatase. Determination of IGF-I content in TM3 and
R2C culture medium by RIA revealed a significant difference in
growth factor production, with R2C cells producing f4-fold higher
IGF-I amounts (Fig. 3A). Moreover, we measured IGF-I content in
testicular tissues, revealing a significant difference between FRTT
and FRNT (Fig. 3B). IGF-I exerts its actions by binding to specific
receptors (IGF-IR); however, we did not reveal differences in IGF-IR
expression between TM3 and R2C cells (Fig. 3C).

On binding to IGF-IR, IGF-I activates three major transductional
pathways: Ras/Raf/mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3-kinase (PI3K)/AKT, and phospholipase C
(PLC)/protein kinase C (PKC). To show the involvement of IGF-I
transductional pathways in modulating aromatase expression in
Leydig cell tumors, we used specific inhibitors of IGF-IR (AG1024),
extracellular signal–regulated kinase (ERK)-1/2 (PD98059), PI3K
(LY294002), and PKC (GF109203X). The IGF-IR inhibitor was able
to inhibit aromatase activity by 85%; LY294002 determined 65%
inhibition; PD98059, 35%; and GF109203X, 61% (Fig. 3D). A similar
inhibitory pattern, except for PD98059, was observed also on

aromatase mRNA (Supplementary Fig. S2A) and protein content
(Fig. 4A–D). All of the different inhibitors, excluding PD98059, were
able to reduce SF-1 mRNA (Supplementary Fig. S2B), whereas
CREB remained unchanged (Supplementary Fig. S2C). Analysis
of protein levels by Western blot confirmed the data from mRNA
(Fig. 4A–D ). Treatments with increasing doses of AG1024,
LY294002, and GF109203X, but not PD98059, were able to induce
a dose-dependent inhibition of total and phosphorylated levels of
SF-1 without affecting CREB (Fig. 4A–D).

Addition of exogenous amounts of IGF-I was able to induce a
significant increase of 2- and 3.8-fold in aromatase mRNA at 12
and 24 h, respectively (Fig. 5A). Aromatase protein levels under
the same treatments reflected the mRNA data (Fig. 5B). Analysis
of expression levels of total and phosphorylated forms of
transcription factors SF-1 and CREB showed an increase in SF-1
and pSF-1 in the presence of IGF-I starting at 4 h, whereas no
differences were observed for CREB at any of the investigated
times (Fig. 5B). AG1024, LY294002, and GF109203X were able to
inhibit IGF-I effects on CYP19 mRNA and protein levels (Fig. 5C
and D) as a consequence of a decreased SF-1 expression (Fig. 5D).

Figure 5. Effects of IGF-I on aromatase,
SF-1, and CREB expression in R2C cells.
Cells were treated in serum-free medium
for the indicated times with IGF-I
(100 ng/mL) or for 24 h with AG1024
(20 Amol/L), LY294002 (10 Amol/L),
PD98059 (20 Amol/L), and GF109203X
(20 Amol/L), alone or in combination with
IGF-I (100 ng/mL). A and C, total RNA was
extracted from R2C cells untreated or
treated as indicated. Real-time reverse
transcription-PCR was used to analyze
CYP19 mRNA levels. Columns, mean of
values from three separate RNA samples;
bars, SE. Each sample was normalized
to its 18S rRNA content. *, P < 0.01; **,
P < 0.001, compared with basal. B and D,
Western blot analyses were done on 50 Ag
of total proteins extracted from R2C cells
untreated (basal) or treated as indicated.
Representative of three independent
experiments with similar results. h-Actin
was used as a loading control. Normalized
absorbances were subjected to statistical
analysis; statistically significant differences
are indicated (*, P < 0.01, compared with
basal; **, P < 0.01, compared with IGF-I).
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We also carried out chromatin immunoprecipitation assays to
investigate how IGF-I influences binding of transcription factors
to the aromatase PII promoter. The increase in SF-1 protein
content that was seen under IGF-I treatment reflected an increase
in SF-1 binding to the PII promoter (Supplementary Fig. S3A).
Moreover, we evidenced how in basal conditions (Supplementary
Fig. S3B), as well as after IGF-I treatment (Supplementary
Fig. S3C), all the different inhibitors, but not PD98059, reduced
SF-1 binding.
IGF-I–induced estradiol production modulates R2C cell

proliferation. Treatment with IGF-I induces aromatase activity
and estradiol production, which are decreased by AG1024,
LY294002, and GF109203X, as well as by PD98059 (Fig. 6A and
B). The observed changes in estradiol production modified R2C
cell proliferative behavior (Fig. 6C). In addition, the use of an
anti–IGF-I antibody in immunoneutralization experiments caused
a dose-dependent inhibition in tritiated thymidine incorporation
(Fig. 6C). The ability of IGF-I to stimulate, and that of the
inhibitors to block, cell proliferation was linked to an alteration in
cyclin D1 and cyclin E expression (Fig. 6D).

Discussion

The current study aimed to explain the molecular mechanism
responsible for aromatase overexpression in tumor Leydig cells
leading to a consequent excess of in situ estradiol production that
sustains tumor cell growth and proliferation.

The mammalian testis is capable of estrogen synthesis, which is
regulated by different factors at different ages. In mature animals,
aromatization of testosterone to estradiol is enhanced by lute-
inizing hormone (LH)/chorionic gonadotropin (CG) and not by
follicle-stimulating hormone. The site of this synthesis seems to be
age dependent, at least in some species such as the rat (30). Leydig
cells are an elective target site of LH/CG that controls testosterone
biosynthesis as well as its conversion to estradiol through
aromatase activity. Alterations in local estrogen synthesis may
have significant consequences in malignancy of these cells. In the
present study, we observed that R2C cells release a conspicuous
amount of E2 from cellular storage in a time-dependent manner.
In this condition, E2 production (1,300 F 230 pg/106 cells/24 h) is
significantly higher compared with E2 levels produced by TM3
cells and by primary rat Leydig cell cultures (246 pg/106

Figure 6. Effects of IGF-I and IGF-I pathway inhibitors on estradiol production and R2C cell proliferation. Cells were treated in serum-free medium for 24 h with IGF-I
(100 ng/mL) alone or in combination with AG1024 (20 Amol/L), LY294002 (10 Amol/L), PD98059 (20 Amol/L), and GF109203X (20 Amol/L). A, aromatase activity is
expressed as percent of basal. Columns, mean of three independent experiments each done in triplicate; bars, SE. *, P < 0.01; **, P < 0.001, compared with IGF-I.
B, R2C cells were maintained for 48 h in serum-free medium, before being treated for 24 h. E2 content in R2C culture medium was determined by RIA and normalized
to the cell culture well protein content. Columns, mean percent of basal; bars, SE. *, P < 0.05, compared with basal; **, P < 0.01, compared with IGF-I. C, R2C cell
proliferation was evaluated by [3H]thymidine incorporation analysis. Cells were maintained for 24 h in serum-free medium and treated for 24 h as indicated. IGF-I
antibody (IGF-I Ab) was added to the medium at 1, 5, 10, and 25 Ag/mL. Columns, mean percent of untreated (basal) cells (100%) from three independent experiments
each done in triplicate; bars, SE. *, P < 0.01; **, P < 0.001, compared with IGF-I. D, Western blot analyses were done on 50 Ag of total proteins extracted from
R2C cells treated as indicated. Representative of three independent experiments with similar results. h-Actin was used as a loading control. Normalized absorbances
were subjected to statistical analysis; statistically significant differences are indicated (*, P < 0.01, compared with basal; **, P < 0.01, compared with IGF-I).
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3h-hydroxysteroid dehydrogenase–positive cells/24 h; ref. 31). E2

synthesis by R2C cells was abrogated by treatment with letrozole,
addressing how steroid production is dependent on high
constitutive aromatase activity. A strong increase in aromatase
expression was observed in R2C cells compared with the normal
cell line TM3 control, as well as in FRTT compared with FRNT.
These findings agree with a previous study on human tissues
showing that the increase in estrogen synthesis, as a consequence
of a more intense aromatase activity, is higher in the Leydig cell
tumor fraction than in normal tissues surrounding the tumor of
the same patient (32).

Mediators of the physiologic effects of estrogens are ERa and
ERh. An enhanced expression of ERa, resulting in an increased
ERa/ERh ratio, was observed in R2C compared with TM3 cell line,
as well as in FRTT compared with FRNT. This is in agreement
with previous reports showing that transgenic mice overexpress-
ing aromatase have an enhanced occurrence of breast and Leydig
cell tumors together with an enhanced expression of ERa in the
tumor tissue (6). The latter findings reasonably address how a
short estrogen autocrine loop may be involved in breast and
testicular tumorigenesis in the presence of an excess of locally
produced estradiol. Indeed, an arrest of cell growth was observed
following abrogation of local E2 production with letrozole or
after addition of ERa inhibitors ICI 182780 or 4-hydroxytamoxifen.
Besides, only after changing the medium everyday along with
prolonged R2C starvation, abolishing local steroid production, did
we observe how exogenous E2 was able to display proliferative
effects.

One mechanism through which estrogens induce cell prolifer-
ation is by increasing protein levels of G1 regulatory cyclins A, B1,
D1, D3, and E in target cells (33). In our study, we showed that the
expression of two of the most important regulators of Leydig cell
cycle, cyclin D1 and cyclin E, can be increased by E2 and down-
regulated by treatment with antiestrogens. These data further
confirm that aromatase overexpression and the consequent E2

production may be the cause of altered cell cycle regulation of
Leydig tumor cells.

In an attempt to explain the molecular mechanism determining
aromatase overexpression in our tumor cell line, we focused our
attention on the expression levels of transcription factors identified
as crucial regulators of aromatase gene expression, CREB and SF-1.
In the adult testis, SF-1 is predominantly expressed in Leydig cells
(34). The increase of total and/or phosphorylated protein can
potentiate SF-1 transcriptional activity (35). In R2C cells and in
FRTT, compared with the normal controls, we found higher
phosphorylated SF-1 protein levels as a consequence of elevated
protein content. Total CREB levels were similar in all samples but
highly phosphorylated in tumor samples. Starting from these
observations, we investigated which pathways might be involved in
the activation of these transcription factors.

The most important signal regulating Leydig cell function is the
binding of LH to the LH receptor (LHR; ref. 36). Several
observations indicate that constitutively active mutants of LHRs
could be involved in Leydig cell transformation (37). It has been
shown that the LH/LHR signaling pathway is constitutively active
in the R2C tumor Leydig cell line and makes the phenotype of
these cells constitutively steroidogenic (38). For instance, in the
presence of a specific protein kinase A (PKA) inhibitor, constitutive
syntheses of Star mRNA and steroids were significantly inhibited
(39). These observations fit well with our findings indicating how
the presence of PKA inhibitor determined a strong decrease in

aromatase activity, together with a drop in CREB phosphorylation
(data not shown). Here, we show that the presence of a specific
PKC inhibitor had no effects on CREB phosphorylation while SF-1
dropped dramatically.

It has been shown that CREB in mouse Leydig cells can be
phosphorylated also through the PKC pathway activated by IGF-I
(38). In this work, we have revealed that R2C tumor Leydig cells
release higher levels of IGF-I in the culture medium with respect to
TM3 cells, and the concentration of IGF-I in FRTT is increased with
respect to FRNT. However, the exposure to IGF-I as well as to
the treatment with inhibitors of IGF-I signaling did not affect the
CREB phosphorylative status but decreased SF-1 phosphorylation,
postulating separate mechanisms that control CREB and SF-1
activation in modulating aromatase activity.

It has been suggested that IGF-I can influence Leydig cell
survival and proliferation (40, 41). Moreover, it has been shown
that IGF-I up-regulates aromatase expression in primary cultures
of rat Leydig cells through a cAMP-independent mechanism (42).
Our findings led us to suppose that the elevated IGF-I levels
derived from tumor Leydig cells in vivo and in vitro contribute to
enhance aromatase expression through an autocrine mechanism
activating SF-1. The important role played by IGF-I in Leydig cell
tumorigenesis is further supported by the substantially unchanged
IGF-IR expression level between TM3 and R2C cells. Binding of
IGF-I to its receptor causes receptor autophosphorylation and the
activation of an intrinsic tyrosine kinase that acts on various
substrates, leading to activation of multiple signaling pathways
including the PI3K/AKT and MAPK cascades. In addition, it has
been shown that IGF-I can activate the PLC/PKC pathway (18).
We treated R2C cells with specific inhibitors of IGF-I signaling
(AG1024), ERK1/2 (PD98059), PI3K (LY294002), and PKC
(GF109203X) in the presence or absence of IGF-I and revealed
that addition of IGF-I itself was able to increase aromatase
expression, activity, and estradiol production, whereas all the
inhibitors determined a reduction of enzyme activity and estradiol
release.

For instance, the inhibition of IGF-I signaling through inhibition
of either the PI3K/AKT or PLC/PKC pathway was able to block SF-1
expression and protein phosphorylation. In particular, treatment
with AG1024 blocked SF-1 phosphorylation more efficiently than
the separate treatment with PI3K or PKC alone, addressing how
both pathways may synergize in up-regulating SF-1 activity. In the
presence of PD98059, SF-1 expression remained unchanged as did
aromatase mRNA and protein levels. Importantly, aromatase
activity and estradiol production seemed to be decreased in the
presence of PD98059, suggesting a potential stimulatory role of
ERK1/2 on the enzyme at a posttranscriptional level. Furthermore,
we observed that SF-1 binding to the aromatase promoter II is
enhanced by IGF-I and reduced by AG1024, LY294002, and
GF109203X, but not by PD98059, indicating the central role of this
transcription factor in regulating aromatase gene transcription in
tumor Leydig cells. This is the first report of a direct link between
SF-1 transcription and the IGF-I signaling pathway in regulating
aromatase expression.

The observed changes in estradiol production due to IGF-I
determined an effect on R2C cell proliferative behavior. In fact,
inhibitors of IGF-I signaling or the use of an anti–IGF-I antibody in
immunoneutralization experiments blocked thymidine incorpora-
tion. Moreover, IGF-I up-regulates cyclins D1 and E whereas IGF-I
signaling inhibitors decrease the same factors, analogously to the
antiestrogen ICI 182780.
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From our findings emerges a double mechanism inducing
enhanced expression of aromatase: (a) constitutive activation of
the LH/cAMP/PKA pathway, which determines CREB activation;
(b) enhanced IGF-I signaling potentiating SF-1 action. The
enhanced activity of SF-1 in inducing aromatase expression may
be maintained by the lack of DAX-1 (dosage-sensitive sex reversal,
adrenal hypoplasia congenita, critical region on the X chromosome,
gene 1) expression in R2C cells (29). DAX-1 is a specific corepressor
of SF-1 (43, 44) and inhibits StAR expression and steroidogenesis by
40% to 60% when overexpressed in R2C cells (29). The lack of
DAX-1 expression in R2C cells may be due to constitutively active
PKA signaling because in a mouse Leydig cell line, a marked
decrease of DAX-1 mRNA occurred within 3 h after addition of
LH and forskolin (45). Then, the activation of LH/LHR/PKA
pathway at the same time decreases DAX-1 expression and
promotes SF-1 activity. A further demonstration of the role of
DAX-1 in regulating P450 aromatase expression comes from the
observations that in TM3 cells, IGF-I induces SF-1 expression but is
unable to induce aromatase expression because DAX-1 is highly
expressed (data not shown). Finally, the finding that in DAX-1
knockout mice aromatase is overexpressed selectively in Leydig
cells (46) underscores the importance of this type of transcription
factor in local testicular estrogen production in vivo .

It remains to be explained which molecular mechanism(s) is
responsible for the elevated IGF-I production in Leydig tumor cells.
In vivo , the administration of human CG increases IGF-I mRNA
levels in rat Leydig cells (47). LH deprival determines a decrease in
bromodeoxyuridine incorporation as well as a decrease in IGF-I
and IGF-IR mRNA levels (48). These observations suggest the
possibility that LH can mediate its proliferative effects also by
regulating IGF-I and its receptor in Leydig cells and that the altered
LH/LHR–activated pathway in R2C cells could be the cause of IGF-
I overproduction. Moreover, the observation that in murine Leydig
cells IGF-I is able to increase LHR mRNA stability (49), together
with data showing that the presence of an anti–IGF-I antibody

reduces the steroidogenic responsiveness to LH/human CG (50),
also suggests the possibility of IGF-I action in sustaining LH/LHR
signaling. Aromatase overexpression seems to be induced by the
combined enhancement of LH/LHR and IGF-I signaling. Particu-
larly, LH/LHR signaling determines a constitutive active CREB
phosphorylation on aromatase gene promoter whereas IGF-I
overproduction stimulates SF-1 binding on the same promoter
through an autocrine mechanism. In other words, from this study,
it emerges that the reproducibility of data between our in vivo and
in vitro models is linked to an enhanced PKA activity, together with
increased E2/ERa and IGF-I signaling.

In conclusion, in this study we showed that in Leydig tumor
cells, aromatase overexpression determines an excessive local
estradiol production that is able to stimulate the expression of
genes involved in cell cycle regulation sustaining cell proliferation.
Aromatase overexpression seems to be concomitant with an
enhanced IGF-I signaling in R2C cells as well as in our in vivo
model, supporting the hypothesis of a cooperation between
estrogen and IGF-I in Leydig cell tumorigenesis, which is also
observed in other tumor tissues. The observation that antiestro-
gens and aromatase inhibitors as well as IGF-I signaling blockers
are able to reduce R2C proliferation is indicative of possible
applications of these drugs as new adjuvant therapeutic tools for
the treatment of testicular cancer.
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