To my Father

Acknowledgements

First of all, I would like to express my gratitude to my academic advisor, Prof. Bruno de Cindio, who believed in my capacities and taught me all that I know. Thank you for your constant *"hidden"* supervision and for being always humane and friendly.

I also thank the Ing. Domenico Gabriele and Massimo Migliori, my advisors "*in pectore*", for the constant encouragement and unconditional assistance and for being always patient.

Special thanks go to my co-worker Rosa di Sanzo for helping me to carry out the experimental work and with whom I have spent many good times.

Finally I would say thanks to United Biscuits and Codap S.p.A. to give me the possibility to publish the research results and to gain experience in industry.

Table of Contents

Chapter 1:	General introduction	1
1.1	Introduction	
1.2	Process of foam formation	4
1.3	Bakery Products	5
	1.3.1 Dough Biscuits Types	7
	1.3.2 Water- flour doughs	9
	1.3.3 Dough for crunchy biscuits	10
1.4	Short Dough	11
1.5	"Batter" Dough	16
1.6	Mixing and baking stage	17
1.7	Emulsions	18
1.8	Foams and emulsions stability	22
1.9	Examples of typical alimentary foams	24
1.10	Aim and outline of the thesis	31
1.11	References	32

Chapter 2:]	Expansion of a single bubble in an infinite viscoelastic medium	35
2.1	Introduction	35
2.2	Bubble Growth	36
2.3	Internal gas pressure calculation	43
	2.3.1 Raising agent decomposition kinetic	43
	2.3.2 Thermodynamic equilibrium	43
2.4	Conclusions	45
2.5	References	46

Chapter 3: Bubbles interaction modelling in doughs		48
3.1	Introduction	48
3.2	Squeeze flow modelling	53
3.3	Elastic energy and "coalescence ability"	55

3.4	Rupture work calculation and coalescence sensitivity	58
3.5	Conclusions	62
3.6	References	63

Chapter 4: Biscuit macroscopic baking model		65
4.1	Introduction	65
4.2	Baking modelling	71
	4.2.1 Bubble opening	72
	4.2.2 Biscuit collapse	74
4.3	Mass transport (Macrosystem)	75
	4.3.2 Water transportation	76
	4.3.3 Carbon Dioxide and Ammonia transportation	79
4.4	Energy transport (Macrosystem)	81
4.5	Opened cell mechanical equilibrium	83
4.6	Opened cell thermodynamic equilibrium	85
4.7	Shrinkage Computation	86
4.8	Calculation Method	87
4.9	Thermodynamic and transport properties	89
	4.9.1 Equilibrium Constants	89
	4.9.2 Heat Conductivity and Emissivity	90
	4.9.3 Mass Diffusivity	92
	4.9.4 Specific Heat	93
	4.9.5 Latent Heat	93
	4.9.6 Density	94
	4.9.7 Surface Tension	94
4.10	Initial Conditions	94
4.11	Block Diagram of the main programme and conclusions	95
4.12	References	98

Chapter 5: R	heological characterization of crunchy biscuit	99
5.1	Introduction	99
5.2	Dough – Biscuits Rheology	101

5.3	Relaxation modulus determination	103
5.4	Squeezing flow parameters	105
5.5	Collapse and Rupture Work parameters	110
5.6	Conclusions	113
5.7	References	114

Chapter 6: Biscuit model validation		116
6.1	Introduction	116
6.2	Heat fluxes and program graphic interface	116
6.3	Simulations for standard flour	121
6.4	Rheological model sensitivity	131
6.5	Conclusions	135

Chapter 7: Rheological formulation and characterization for soft ice cream emulsions		136
7.1	Introduction	136
7.2	Materials and methods	138
7.3	Materials characterization: dynamic tests	140
7.4	Materials characterization: steady tests	149
7.5	Conclusions	151
7.6	References	151

Chapter 8: Modelling of foam fluid dynamics		154
8.1	Introduction	154
8.2	Modelling of foam fluid dynamics	155
	8.2.1 Single bubble model	156
	8.2.2 Nozzle fludynamics model	158
8.3	Conclusions	161
8.4	References	162

Introduction	163
Numerical Solution	163
Numerical results	165
Conclusions	173
References	174
	Numerical Solution Numerical results Conclusions

Chapter 10: Concluding remarks	175
Appendix I	177
Appendix II	181
Appendix II	181
Publications	183