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Chapter 3 

 

Bubbles interaction modelling in doughs 

 

 

3.1 Introduction  

To obtain a bread crumb with a light and even texture after mixing, a sufficient number of gas cells 

has to be incorporated in the dough [Bloska A.H. et al., 1990a] This is due to fermentation 

reactions that produce the gas. As the fermentation proceeds, the gas cells become larger and the 

distance between them decreases, consequently there is  small thickness to the dough membrane. 

The types of physical instabilities during leavening and baking in dough such as Ostwald ripening 

(disproportionation) and coalescence of gas cells is relevant [Bloksma, 1990; Van Vliet et al., 1992]. 

The mechanism behind disproportionation is the diffusion of gas through the dough from small to large 

cells caused by differences in gas pressure between cells of different size [Kokelaar and Prins, 1995]. 

The result is the growth of large gas cells at the expense of small ones. Coalescence instead is defined 

as “the process by which the thin lamella between two adjacent bubbles collapses to form one 

bigger bubble” [Lallemand Baking Update]. This phenomenon of gas cells is initiated by fracture of 

the dough film between them [Van Vliet et al., 1992]. This results in a coarse bread crumb, while the 

fracture of dough films between gas cells and the surrounding air results in a loss of gas and a small 

loaf volume [Sliwinskia E.L. et al.2004]. Coalescence is the most important process by which 

bubbles disappear in porous bakery products such as bread and cakes, where gas retention is 

maximized by stabilizing the lamella between the bubbles. 

Bakery products such as breads are characterized by a typical porous structure and a high specific 

volume. To obtain such a porous structure, air bubbles have to be incorporated during a mixing or 

blending step, as stated above. Then the gas produced during fermentation, baking or incorporated 

in mixing must be retained by the gas cells to have a good expansion for the baked product and 

their volume expansion directly related to the extent to which gas cells can expand. Then the 

rheological properties of the dough and the stability of the film around the gas cells control the 

expansion capacity. It therefore must have sufficient extensibility to respond to the gas pressure but 

also sufficient strength to resist collapse [Jang W. et al. 2005]. 

For this reason the contact area between bubbles and continuous phase is one of the key parameters 

controlling mass transfer in the baking industrial process. 
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In fact the rheological properties of gas cell walls in bread doughs, for instance, are considered to 

be important in relation to their stability and gas retention during kneading and baking, in 

particular their extensional strain hardening properties. Large deformation rheological properties of 

gas cell walls were measured by B.J. Dobraszczyk (2004) using biaxial extension for a number of 

doughs of varying breadmaking quality at constant strain rate and at elevated temperatures in the 

range between 25–60 °C. The stability of gas cell walls during baking is strongly related to their 

strain hardening properties, and that extensional rheological measurements can be used as 

predictors of baking quality [B.J. Dobraszczyk, 2004]. 

Gluten is the major protein in wheat flour doughs, responsible for their unique viscoelastic 

behaviour and their ability to retain gas during kneading and baking. 

The gluten matrix forms membranes or sheets that surround the gas bubble. The elastic properties 

of the gluten matrix allow the gas cells to expand, thereby allowing the gas to be retained with the 

bubbles.  

 
Figure 3. 1 – Dough Structure. 

 

From the literature a positive correlation is confirmed between loaf volume and the bubble 

expansion. From another point of view, it is wrong to consider that dough has a foam structure in 

which individual gas cell are completely separated by a continuous starch-gluten matrix, but there 

is the rupture of gas cell membrane during fermentation and baking [Gan Z. et al.,1990]. This 

transforms the foam structure of dough with separate gas cells into a sponge with a continuous gas 

phase. The rupture of the membrane has been ascribed to the rapid increase in dough viscosity as 

starch gelatinizes at temperature above 60°C during baking. And Gan Z. et al. (1990) found that the 
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rupture of the film leads to the interconnection of gas cells and, eventually, to an open sponge 

structure as found in baked bread. 

During fermentation and baking the gas cell can be subject to various types of physical instability: 

creaming, aggregation, Ostwald ripening or disproportionation and coalescence. The first two types 

of instability can be neglected due to the high viscosity of the dough, but the other two must be 

considered. The Ostwald ripening, as stated above, is the growth of large cells at the expense of 

small ones. This is caused by a gas pressure difference between gas cells of different size. Probably 

this phenomenon is not essential for gas retention, but affects the appearance of the bread crumb., 

It has been found that disproportionation can occur directly after mixing. This is the coalescence 

of gas cells initiated by rupture of the film between them. Rupture of films and surrounding air 

results in a loss of gas and a small loaf volume [Van Vliet et al., 1992, Kokelaar J.J. et al., 1995]. 

Kokelaar J.J. et al.(1995) measured the surface dilatational modulus, E, also called the surface 

elasticity modulus, and the surface tension, γ, to study the disproportion and the coalescence, 

because, from the literature data, if the decrease in surface tension of a shrinking bubble is great 

enough compared with the decrease in bubble radius, the driving force for disproportionation is 

absent and the process will be prevented. Moreover, against coalescence, it is good to have a low 

surface tension during expansion of the film and to have a surface tension gradient during 

expansion [Kokelaar J.J. et al., 1994]. To study coalescence, the dynamic surface rheological 

properties of wheat flour components have recently been published. It was stated that films with 

higher surface elasticity are supposed to have higher stability towards rupture. Higher surface 

elasticity in shear was found for a dough of a good making quality. To study the surface behaviour 

of dough components in relation to gas bubble stability in dough, it is more relevant to deform the 

surface in dilation, since this is the type of deformation around a growing (or shrinking) gas 

bubble. It was found by J.J. Kokelaar et al. (1995) that the coalescence of gas bubbles in bread 

dough may occur during oven rise, since dough films between expanding gas bubbles thin out. 

When the temperature in dough increases to ca. 60°C, starch gelatinises. Film stabilisation owing 

to surface properties is only relevant until this transformation from a foam into a sponge structure 

occurs. An estimate of film thickness, h, where surface and bulk properties contribute equally to 

film resistance against extension, can be made with the following equation: 

 ( ) BhE σγ =+2  (3.1) 

The left hand side of the equation gives the resistance of a film during expansion due to the 

presence of surface tension, γ, and the extra resistance owing to increase of the surface tension by 
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this expansion, E. The film has two surfaces, which explains factor 2. The right hand side gives the 

contribution of the bulk properties, where σB is the biaxial stress of the dough. However, surface 

properties are important in determining the rate of disproportionation of the gas bubbles directly 

after mixing, and they may be important in determining the film stability against rupture for very 

thin films. 

When baking proceeds, the dough around the growing gas cell is tangentially extended in two 

directions and compressed radially. This deformation is called biaxial extension. For this reason 

many authors have tested the doughs carrying out biaxial extensional experiments. Van Vliet et al. 

(1992), analyzing doughs from different wheat cultivars, found that the stress increases with 

increasing strain at constant biaxial strain rate and also with increasing biaxial strain rate at 

constant strain. They found that the film is unstable if the extension of the thinner part is 

accelerated (and this can cause bubble rupture), the contrary happens if the thinner part extension is 

slower. In every case the potential gas retention of wheat flour dough is largely due to bulk 

rheological property [Van Vliet et al., 1992; Janssen et al., 1996; Kokelaar et al., 1996]. An earlier 

analysis of the bread making process revealed the requirements for a satisfactory performance of 

wheat flour doughs that can be expressed in rheological terms [Bloksma, 1990]: 

• the viscosity has to be high enough to prevent the ascent of the gas cells. This condition is met 

by virtually all doughs; 

• the dough must be extensible in order to prevent coalescence and thus premature fracture of 

membranes between gas cells. The extensibility must be maintained long enough under baking 

conditions to permit sufficient oven rise;  

• Van Vliet et al. (1992) proposed an addition dough property to favour gas retention: strain 

hardening of the dough in biaxial extension has to exceed a specific power limit.  

In this chapter a new bubble growth model is proposed. The previous proposed criterion for bubble 

expansion in an infinite visco-elastic medium does not consider any interaction of a bubble with 

surrounding ones. This hypothesis is acceptable for the mass transfer model, but an interaction 

mechanism should be considered from a mechanical point of view. In fact, when the bubble radius 

increases the bubbles start interacting and eventually coalescing. As a consequence of the model 

reported in the previous chapter, bubble growth stops both if the reactants are completely 

consumed, according to irreversible kinetics, and temperature remains constant and the water 

reaches the equilibrium conditions. Moreover, it is well-known that bubble stabilisation happens 
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earlier than that stated above and, therefore, another mechanical stabilisation mechanism should be 

taken into account. 

From a physical point of view, when a bubble expands, the mass around it becomes thinner and 

thinner, and at a certain time it cannot be any longer assumed as an infinite medium as proposed 

above. Some authors [Gan et al., 1995] state that coalescence occurs when the uniform 

starch/protein layer surrounding the bubble becomes thin enough to break, therefore a critical 

dough thickness value should be evaluated. This theory has been successfully applied to bread 

dough mainly composed of flour and water, but the same authors report that stabilisation is affected 

by the dough recipe, especially when plasticizer ingredients are involved, such as fat and sugar in 

biscuit recipes. In addition, the evaluation of a critical thickness implies that the layer should be 

uniform, i.e. a spatial uniform interaction between bubbles should be assumed. On the contrary 

physical evidence indicates that the material surrounding bubbles do not form a layer of constant 

thickness and the region of layer reduction can be individuated, depending on the spatial 

distribution of the bubbles. Other authors [Van Vliet et al, 1992] proposed the hypothesis of 

different bubble spatial distributions, but difficulties in experimental validation make this solution 

unreliable for modelling purposes. 

To overcome this problem, a new modelling approach is proposed: the bubble rupture/coalescence 

phenomenon is linked to the elastic deformation energy accumulated in the dough layer as result of 

bubble expansion. From a mass balance, if the bubble size distribution is known and the mass of 

paste associated with any bubble is constant during the process, if the water content does not 

change, the initial layer around the bubble may be computed. The material contained in this layer is 

subjected to a variable force that tends to squeeze it out from the gap when two contiguous bubbles 

interact with each other. As a consequence, the material distribution around the bubble is not a 

uniform layer nor time dependent. This effect starts to be relevant only when the radius becomes 

sufficiently large so that the infinite paste hypothesis does not apply any longer. During this 

phenomenon a certain amount of elastic energy is accumulated in the material, according to the 

time dependent rheological properties of the dough. When a maximum energy load is reached the 

dough layer may break and the bubble eventually coalesces. 

From a modelling point of view, the problem may be split into two parts: the calculation of the 

dough layer thickness profile and, secondly, the calculation of the elastic energy associated with 

the deformation process owing to the smallness of the interaction zone. The local layer thickness 
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evolution was modelled referring to a planar equivalent squeezing flow whilst the elastic energy is 

calculated using the mechanical theory of shell and membranes subjected to an external load. 

 

 

3.2 Squeeze flow modelling 

When the distance between two bubbles is reduced as an effect of expansion, owing to the pressure 

inside the gas cells, a local squeeze flow of paste takes place and the dough is forced to flow out of the 

gap (Figure 3.2). Since interest is focused on the local reduction of the distance between the two 

bubbles, the flow of the paste was locally approximated as a planar between two equivalent parallel 

plates, under a constant force F related to the gas pressure PG. A “quasi-steady” flow was supposed, 

whilst the boundary condition of the force is assumed to be time dependent (Bird et al., 1977). 

PG PG PGPG PGPG PG PG

 
Figure 3. 2 – Membrane equivalent geometry 

 

In accordance with that, referring to fig.4 and neglecting inertial terms, continuity equation and r-

component and z-component of motion equations in cylindrical coordinates become: 

 ( )r zrv1 dv 0
r r dz
∂

+ =
∂

 (3.2) 

 ( )rr rzrdp 1 0
dr r r r z

θθτ τ τ⎛ ⎞∂ ∂
− − − + =⎜ ⎟∂ ∂⎝ ⎠

 (3.3) 

 ( )rz zzr1 0
r r z

τ τ⎛ ⎞∂ ∂
− + =⎜ ⎟∂ ∂⎝ ⎠

 (3.4) 

where for geometrical reasons it is assumed vr=vr(r,z), vz=vz(z) and p=p(r). 

According to the fact that a cereal paste subjected to a stationary shear flow often may be fitted by a 

power-law equation, the following constitutive equation was used: 
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If the quasi-stationary solution is adopted, the previous r-component of motion equation becomes: 

 rzdp 0
dr z

τ∂
− − =

∂
 (3.6) 

while all the terms in eq.3.3 vanish. If it is also assumed that the decrease in viscosity results 

predominantly from velocity gradients associated with shear and not with elongation, the previous 

constitutive equation becomes 

 ( )n 1
ij rz ijmτ γ γ−= − ⋅& &  (3.7) 

where obviously the only τrz term is needed. In such a way it is possible to apply the lubrication theory 

and the following results are obtained: 
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Where Rd is the radius of the equivalent plate having the same surface as the bubble, therefore Rd may 

be calculate at any time as follow: 

 RRd ⋅= 2  (3.11) 

Eq.3.10 is known as Scott’s equation. Since h is half of the gap between two plates, in the dough this 

value was measured as the distance between the considered bubble and a stress-free surface. 

To make this result representative of the situation under consideration, the force F must take into 

account the effect of distribution radius, pressure and amount of adjacent bubbles. 

 
2

3F F * ψ= ⋅  (3.12) 

A random spatial distribution of bubbles was assumed, and an interaction parameter Ψ, depending on 

void fraction, was introduced to take into account the interaction increasing when the bubble expands. 

This interaction parameter may be reasonably assumed as the ratio between the current bubble volume 
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and its initial value, taking into account the physical evidence that the effect of squeeze flow becomes 

relevant only when bubbles expand and their volume increases: 

 
)0(

)(
3

3

=
=Ψ

tR
tR  (3.13) 

The 2/3 exponent was inserted to adjust the solution for the planar flow hypothesis by means of a 

surface-volume ratio. The effective force F* has to take into account the amount of interacting bubbles, 

according to the evidence that the more they are, the lower will be the force. Therefore F* was defined 

as:  

 2
G

int

1F* 4 R P
N

π= ⋅ ⋅   (3.14) 

where Nint is the number of interacting bubbles. By introducing Eq.s3.12-3.14 into Eq.3.10, owing to 

known experimental values of m and n, the value of h(t) is obtained at any time step by integration 

using a Runge-Kutta method. 

 

 

3.3 Elastic energy and “coalescence ability” 

The mass squeezed out of the gap by the bubble internal pressure is not distributed symmetrically thus 

the mechanical resistance of different areas are different too. This means that rupture may occur in the 

spatial region where the thickness has the smallest value. To model this phenomenon, it is suggested 

that the aside accumulated mass would act as fixed supports (Figure 3.2), thus the kinematics 

corresponds to a shell loaded with a constant PG. The thickness at the pole of the shell corresponds to 

the value of h(t) computed by the squeezing flow and, according to its low thickness, the mechanical 

analysis of membranes applies [Williams, 1973]. Since the deformation of the material separating the 

bubbles may be locally approximated as a biaxial extension of a shell, the thickness h(t) was used as a 

measure of deformation with respect to the initial thickness: 

 ( )
0

h t
h

λ =  (3.15) 

The thickness h(t) is easily calculated at any time from the mass balance if the amount of paste 

surrounding the bubble in known as initial condition.  

Even though the shell thickness does not remain uniform during the deformation, because the main 

interest is to determine when the bubble breaks, the evaluation of the elastic energy may be limited to 

the apex of the membrane where a pure biaxial extension is realised and where breakage occurs. 
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In this geometrical configuration [Williams, 1973], the elastic energy is obtained by multiplying the 

stress tensor by the deformation tensor. since as stated above the analysis is limited only to the apex of 

the shell, the first deformation gradient tensor may be expressed in terms of principal components: 
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and also the stress tensor is expressed in term of principal components: 
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With reference to principal components a simple expression for the strain energy is obtained by 

integrating the expression [Williams, 1973]:  

 I II III I II I III II III I II IIIdW d d dσ λ λ λ σ λ λ λ σ λ λ λ= + +  (3.18) 

By assuming incompressibility, it holds: 

 I II III 1λ λ λ =  (3.19) 

and because the assumed kinematics valid in the shell apex is a pure biaxial extension the following 

expression applies: 
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 (3.20) 

Thus the first deformation gradient tensor assumes the following form: 
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and the incremental work becomes: 

 I II III
1 1 1dW d d dλ λσ λ σ σ
λ λ λ λ λ

= + +  (3.22) 

According to biaxial extension σII=σIII, the following expression is finally found: 

 ( )I II
ddW λσ σ
λ

= −  (3.23) 
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To integrate the equation above it is necessary to know the transient values of the deformation through 

the value of h(t) obtained by the squeezing flow: 

 ( )
W ln

I II
0 0

W dW d ln
λ

σ σ λ= = −∫ ∫  (3.24) 

It is worth noticing that the integral at the right side is implicitly dependent on time, because λ=λ(t). To 

complete the computation a constitutive equation is needed for the stress tensor the linking stress 

component to the deformation. This must be done relating the stress tensor to a proper deformation 

tensor, as Cauchy tensor, defined in terms of principal components as: 
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Therefore, in the case of a biaxial deformation, the Cauchy strain tensor for an incompressible material 

with reference to principal axis becomes: 

 ( )
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The constitutive link for a cereal paste considered as viscoelastic solid like reads: 

 ( ) ( ) ( )
t '

0

t ' p1 t' t" C t" dt"σ μ= − + − ⋅∫  (3.27) 

where μ(t’-t”) is the memory function of the considered material. The time dependency was 

concentrated into the memory function, which in turn may be put in terms of derivative of an elastic 

time dependent modulus [Ferry, 1976] as: 

 ( ) ( )dG t
t

dt
μ = −  (3.28) 

Thus by applying Eq.s 3.22-3.23, it is possible to evaluate the stress component difference of interest at 

any instant t’ as a sum of the contribution weighted by a time-dependent modulus:  

 
( )t '

2
I II

0

dG t' t" 1 dt"
dt"

σ σ λ
λ

− ⎛ ⎞− = − −⎜ ⎟
⎝ ⎠∫  (3.29) 

By inserting this result into eq. 3.22, the transient elastic strain energy at any time t is found by 

integration as a function of deformation. It is worth noting that the relaxation was taken into account 
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with the time dependence of the elastic modulus G(t) at any time, for which the weak gel constitutive 

equation was assumed to hold [Gabriele et al., 2001]. 

As coalescence criterion a maximum deformation energy may be identified for the material under 

biaxial extension flow conditions (see paragraph below) and when the calculated one exceeds that 

value the bubble may potentially coalescence. By using this approach, a bubble “coalescence-ability” 

criterion was identified with bubble breakage instead of a critical shell thickness. In fact, this choice 

looks more physically acceptable and therefore it was assumed that breakage occurs at the maximum 

value of elastic strain energy W, corresponding to the deformation work at rupture. This proved to be 

realistic enough, because rupture happens either owing to low thickness or when high stresses are 

exhibited, in addition rupture work is a quantity that may be measured by means of an inflation 

technique, obtaining reliable experimental data. 

 

 

3.4 Rupture work calculation and coalescence sensitivity 

The elastic energy at rupture point was measured using a patented prototype performing bi-axial 

extension tests [de Cindio et al, 2003]. Flat dough samples were inflated at constant air flow rate up to 

the rupture point (fig. 3.3) and data of bubble height with time were collected using a laser measurer 

(Baumer, Germany). Starting from the already developed model for polymeric materials [Schmidt and 

Carley, 1975], the kinematic analysis of the flat membrane can be developed if a circular sample locked 

at the borders is inflated and a spheroid geometry may be assumed. According to Hart-Smith and Crisp 

(1967) the geometry of the expansion may be simplified by assuming that the shape of the deformed 

sample is always a perfect sphere. In this case, referring to fig.8, principal deformation included in 

Finger’s tensor are: 
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The maximum local stress is always realised at the pole of the sphere where the deformation 

becomes: 
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Figure 3. 3 – Biaxial expansion schematization 
 

In addition, because of the small curvature in the pole region, the extension may be locally 

approximated to a planar biaxial extension and stress computation may be done consequently as 

reported in the previous paragraph. If the bubble height evolution during experiment is measured 

up to the bubble bursting, according to the geometric relationship of fig. 3.3, the angle θmax may be 

obtained and therefore deformation can be calculated during experiment time. 

Following the hypothesis formulated, the application of eq.s 3.17-3.23 allows the calculation up to 

the rupture point of the elastic deformation energy during time Wrup. 

The coalescence criterion was assumed comparing deformation work W during expansion calculated in 

the layer of dough surrounding the bubble and the maximum energy at rupture derived from 

experimental test. When deformation work exceeds the measured rupture value the bubble may 

coalesce with the closest ones and the time at which it holds is called coalescence time tc. 

Deformation depends on the thermal history, in fact, different baking profiles cause different 

coalescence times. To show model sensitivity to the temperature profile, three different baking profiles 

Short, Normal and Long, are reported in the figs. 3.4 and 3.5, respectively with temperature rising 

quickly, slowly and very slowly and with bubble growth evolution up to coalescence. 

The model is sensitive also to the different initial conditions, like the quantity of raising agents (figs. 

3.6-3.7). This behaviour is in agreement with the physical evidence, because changing the rising agent 

(R.A.) quantity changes the pressure inside the bubbles, then the load on the bubble membrane causes 
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the thinning of the material distribution around the bubble. Specifically, lowering the R.A. increases the 

coalescence time because the pressure inside the bubble decreases, owing to the lesser quantity of 

reaction products (fig. 3.6). 
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Figure 3. 4 – Temperature profile at Biscuit Core in three different cases. 
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Figure 3. 5 – Bubble radius profile for three different temperature profiles. 
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Figure 3. 6 - Bubble radius profile for three different raising agent quantities. 
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Figure 3. 7 - Pressure profile inside the bubble for three different raising agent quantities. 

 

 

3.5 Conclusions 

In this chapter a realistic approach was proposed, being based on the mechanical theory of shell and 

membranes subjected to an external load, taking into account the dimension, the shape and distribution 

of the bubbles. It was assumed that when two contiguous bubbles interact with each other, the material 

contained between them, is subjected to a variable force that tends to squeeze it out of the gap. As a 

consequence, the material distribution around the bubble is not a uniform layer of constant thickness.  

The thickness change of the paste surrounding the bubble during its expansion, was studied as an 

equivalent squeezing flow. This effect starts to be relevant only when the radius becomes sufficiently 

large so that the infinite paste hypothesis does not apply any longer. During expansion the squeezed 

material accumulates alongside the bubble and in a restricted zone, characterized by low thickness and 

high local stresses are generated. In this zone rupture may occur. Thus as coalescence criterion the 

condition was assumed that the deformation work exceeds a measured rupture work Wrup. In the case of 

a visco-elastic solid-like behaviour, the deformation work corresponds reasonably to the strain elastic 
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energy. The time at which holds W=Wrup is called coalescence time tc and is considered a kind of 

switch from closed to open cell. 

An important conclusion from the presented results is also that the bubble growth model is very 

sensitive to the initial and baking condition that then controls bubble expansion and coalescence.  

It was shown too that the radius increase is determined by the mass of gas in the bubble that thus 

determines the mechanical force, then the pressure inside the bubble, acting on the bubble membrane 

and controlling the final texture of the biscuit, causes the open structure of some bakery products. 
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