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Introduction

Iwasawa Theory has been one of the richest areas of research in number theory
in the last half century. Before going into the details of this thesis we provide
a quick overview of the development of the theory and of its main features
(for a very nice survey on the subject see [15]).
The theory was initiated by Kenkichi Iwasawa in the late 50’s with the study
of the cyclotomic Zp-extensions Q(µp∞)/Q(µp), i.e., the field obtained adding
all p-power roots of unity to Q. The study of cyclotomic extensions has always
been an important topic in number theory; as examples of their relevance one
can think about the Kronecker-Weber theorem or at the proof of Fermat
Last Theorem for regular primes. Iwasawa proposed to consider all p-power
roots of unity at once and studied the infinite extension generated by them.
Infinite Galois theory shows that Gal(Q(µp∞)/Q(µp)) ' Zp (the ring of p-
adic integers, which gives the name to all this type of extensions), so Iwasawa
quickly generalized his ideas to consider the whole family of Zp-extensions of
a number field.
The main object of his research was the following: given a (general) Zp-
extension K/k, consider its finite subextensions which form a tower

k = k0 ⊆ k1 . . . ⊆ kn ⊆ . . .K =
⋃
n

kn

and let A(kn) be the p-Sylow of the ideal class group of kn . LetX(K/k) be the
inverse limit of the A(kn)’s with respect to the natural norm maps. Studying
the structure of X(K/k) as a module over the ring Λ := Zp[[Gal(K/k)]],
Iwasawa was able to prove (among other things) his celebrated formula for
the order of A(kn). If |A(kn)| = pen , then, for n large enough,

en = µ(K/k)pn + λ(K/k)n+ ν(K/k)

for some constants µ(K/k), λ(K/k) and ν(K/k) usually called the Iwasawa
invariants of the extension K/k (see Theorem 1.3.1).
Moreover, the well known analogy between number fields and function fields
in one variable over finite fields and the results of Weil which link the zeta
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function of an algebraic curve (over a finite field) to the characteristic polyno-
mial of the Frobenius acting on its Jacobian (see for example [49]), provided
good reasons for Iwasawa to imagine a similar relation for number fields: this
is what he called the Main Conjecture.
The module X(K/k) (a purely algebraic object) defines a principal charac-
teristic ideal in Λ ' Zp[[T ]] (for a precise definition see Definition 1.2.4), call
it (fX(T )). Let ω be the Teichmüller character at p and let

ei :=
∑

σ∈Gal(Q(µp)/Q)

ωiσ−1

be the idempotent associated to ωi . Then the same reasoning associates to
eiX(K/k) a characteristic polynomial feiX(T ). On the other hand Iwasawa
(and, before him, Kubota and Leopoldt, see [25]) used distributions on the
rings Zp[Gal(kn/k)] to define a measure as a limit of those distributions and,
associated to that measure, a p-adic L-function Lp(s, ω

i) (an analytic ob-
ject). This function can be pushed to Λ to define a series L(T, ωi). The Main
Conjecture asserts (roughly speaking) the equality between the ideals gener-
ated by fe1−iX(T ) and the one generated by L(T, ω1−i) for any odd i with
3 6 i 6 p− 2.
Instances of the Main Conjecture have been proved for the Zp-cyclotomic
extension of Q(µp) by Iwasawa himself for regular primes p (see [17]) and by
B. Mazur and A. Wiles for every prime p (see [32]). Today there are many
more formulations of the Main Conjecture and extensions to more general
fields k. For instance A. Wiles proved the conjecture for totally real fields (see
[50]) and K. Rubin used Kolyvagin’s Euler systems to provide a simpler proof
of the already known cases and some generalizations to imaginary quadratic
fields (see [44] and [45]).
This beautiful link between analytic and arithmetic (or algebraic) objects lies
at the heart of Iwasawa theory and has inspired many generalizations. We
only mention (for its relevance) the study of Iwasawa theory for elliptic curves
started by B. Mazur and others in the 70’s (see [29], [30] and [31]). The Main
Conjecture relating the p-adic L-function associated to some Zp-extensions
K/k (which interpolates the L-function associated to the elliptic curve) and
the characteristic ideal of the Pontrjagin dual of the Selmer group of the curve
over K, has led to many results in the direction of the Birch and Swinnerton-
Dyer Conjecture (see, for example, [23] and [3]).

Recently M. Ozaki (in [40]) has developed a nonabelian Iwasawa theory for
number fields to study the maximal unramified (not necessarily abelian) pro-p

extension L̃(K) of a Zp-extension K/k. The author breaks such a big Galois
group into smaller pieces using the lower central series, which lead to the def-
inition of higher Iwasawa modules X(i)(K/k) (the original Iwasawa module is
X(1)(K/k) in this new setting), we refer to Section 2.1 for precise definitions



INTRODUCTION 5

and more details. The study of Gal(L̃(K)/K) relates Iwasawa theory to the
problem of studying the class field tower of number fields. For some examples
in this direction see [35], [34], [37], [9] (and several others).

In this thesis we address some classical phenomenons of Iwasawa theory like
capitulation and stabilization both in the abelian and nonabelian setting.
The A(kn) come equipped with another natural map in,m : A(kn) → A(km)
(for any m > n) arising from the inclusion of ideals. The ideal classes in
Hn,m := Ker(in,m) are said to capitulate in km and those inHn :=

⋃
m>nHn,m

are said to capitulate in K. Capitulation is strictly connected to the finiteness
of the Iwasawa module X(K/k): indeed R. Greenberg has shown that

X(K/k) is finite (i.e., λ(K/k) = µ(K/k) = 0) ⇐⇒ A(kn) = Hn for any n

(see [14] or Proposition 1.5.1).
In Theorem 3.2.4 we give a description of the Hn,m’s and the Hn’s in terms
of the maximal finite submodule D(K/k) of X(K/k). We use this description
to provide stabilization properties in Theorem 3.2.9. In Iwasawa theory is
quite usual for the order of modules like A(kn) to stabilize (i.e., to become
constant) at the very first level in which it does not increase (if such a level
exists), i.e.,

|A(kn)| = |A(kn+1)| =⇒ |A(kn)| = |A(km)| ∀m > n,

and the same holds for the p-ranks. We show that the Hn’s enjoy a similar
property while the Hn,m’s do not. Encouraged by that we go on studying (and
proving) stabilization properties for other related modules like the kernels of
the norm maps or the cokernels of the inclusions. In Theorem 3.4.2 (resp.
Theorem 3.4.4)) we show how the stabilization of orders (resp. of p-ranks) of
those modules is deeply related with the vanishing of the λ-invariant (resp.
the µ-invariant) of the Iwasawa module X(K/k).
In the last chapter we do the same for the modules of Galois invariants and
coinvariants of A(kn) (see Theorem 4.1.2).
We also tried to extend this type of results to the nonabelian setting and, in
particular, to the higher Iwasawa modules X(i)(K/k) (or, more precisely, to
the A(i)(kn) ’s) defined by Ozaki, but we soon found an example (see Section
2.2.1) in which the starting levels A(j)(k) and A(j)(k1) were trivial for some
j > 2, while A(j)(k4) 6= 0. It turns out that to establish stabilization proper-
ties in this setting one needs more stringent hypotheses: namely stabilization
for the i-th Iwasawa module requires stabilization at all the previous levels as
shown in Theorem 2.2.11.

Now we give a brief overview of the contents of this thesis. In the first chap-
ter we open with some examples and explicit calculations on cyclotomic Zp-
extensions. In the following two sections we recall definitions, properties, some
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basic theorems and classical conjectures (still open) on Zp and Zdp-extensions.
Sections 1.4 and 1.5 introduce the phenomenons of stabilization and capitu-
lation of ideals recalling some of the classical and/or more recent results.
Chapter 2 is devoted to nonabelian Iwasawa Theory. Section 2.1 describes
Ozaki’s work, establishing definitions, notations and recalling the properties
and the main theorems. Section 2.2 first shows how the same type of stabiliza-
tion (both for the orders and for the p-ranks) we had in the classical theory,
is no longer valid in this new context. In fact, the stabilization theorems that
follow require stronger assumptions.
The third chapter was the first to be completed: and its results have been
presented as a contributed talk at the “28-th Journées Arithmétiques” held
in Grenoble, in July 2013.
The chapter goes back to the classical case of Zp-extensions. After some pre-
liminary results, in Section 3.2, we will begin a detailed study of the maximal
finite submodule D(K/k) of X(K/k). We shall consider the sequences of the
absolute capitulation kernels (the Hn ’s) and of the relative capitulation kernels
(the Hn,m ’s) and we will get some formulas (depending on certain parameters
linked to D(K/k)) for their sizes, which describe accurately the growth of their
orders and p-ranks. Moreover we get positive answers to questions related to
the stabilization of the two sequences mentioned above and, in Section 3.3,
we will discuss the problem of finding bounds for the delay of capitulation. In
Section 3.4 we provide several new conditions (based on the properties arising
from the phenomena of stabilization and capitulation) which will be shown
to be equivalent to the vanishing of the Iwasawa invariants λ(K/k) and/or
µ(K/k).
In Chapter 4 we consider Galois invariants and coinvariants of the A(kn)’s.
In particular, in Section 4.1, we treat inverse and direct limits for them and
study stabilization and capitulation with their consequences. In Sections 4.2
and 4.3 we provide two new criterions for the finiteness of X(K/k). The first
is based only on the capitulation of the invariants subgroups and the second is
based on the nilpotency of the Galois group Gal(L(K)/k) (where L(K) is the
maximal abelian unramified pro-p extension of K). Finally, in Section 4.5, we
show two results on the vanishing of the Iwasawa µ-invariant: in particular
we study the connection between the vanishing of µ(F∞/F ) and µ(kF∞/k),
where F∞/F is a Zp-extension of a number field F and k ⊃ F is a Galois
extension of degree p, or of degree a prime q different from p.



Contents

Acknowledgements 1

Introduction 3

1 Classical Iwasawa Theory 9
1.1 Zp-extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Multiple Zp-extensions and Λd-modules . . . . . . . . . . . . . 12
1.3 Iwasawa’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Capitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Non-abelian Iwasawa Theory 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Stabilization for the order of X

(i)
n . . . . . . . . . . . . . . . . . 25

2.2.1 Counterexample . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 On the p-ranks of X
(i)
n . . . . . . . . . . . . . . . . . . . . . . . 30

3 Stabilization and capitulation 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The maximal finite submodule . . . . . . . . . . . . . . . . . . 36

3.2.1 Relation between rkp(Hn), λ̃n and X ∼Λ 0 . . . . . . . 45
3.3 Bounds for ρ(m)− ρ(n) . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Sharpness of the bounds . . . . . . . . . . . . . . . . . . 48
3.4 Finiteness of the Iwasawa module . . . . . . . . . . . . . . . . . 50

3.4.1 The kernel of the norm map . . . . . . . . . . . . . . . . 52
3.4.2 The cokernel of the inclusion maps . . . . . . . . . . . . 55
3.4.3 Proofs of the opening Theorems . . . . . . . . . . . . . 58

7



CONTENTS 8

4 Invariants and coinvariants 60
4.1 Stabilization for invariants and coinvariants of An . . . . . . . 60
4.2 The modules Bn and the pseudo-nullity of X (I) . . . . . . . . 65
4.3 The modules Bn and the pseudo-nullity of X (II) . . . . . . . . 68
4.4 µ(F∞/F ) vanishes for certain families of

number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Finite p-extensions . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Galois extensions of prime degree q 6= p . . . . . . . . . 72

Bibliography 78

Compendio (abstract in Italian) 83



Chapter 1

Classical Iwasawa Theory

In this section we give a brief account of the basic facts about Iwasawa Theory
for number fields. One can find more detailed treatments of the content of
this chapter in the books [48], [26], [36] or in the original papers of Iwasawa
[21], [20] or in [15].

1.1 Zp-extensions

Let p be a prime number and let k be a number field, i.e., a finite extension
of Q. We say that a Galois extension K of k is a Zp-extension if its Galois
group is topologically isomorphic to Zp , the additive group of p-adic integers
and, in this case, we denote Gal(K/k) by Γ. Since every closed subgroup of
Zp is of the form pnZp we have that, for every n > 0, there exist a unique
subfield of K of degree pn over k: we call it the n-th layer of the Zp-extension
K/k and denote it by kn. In other words the subfields between k and K form
a tower

k = k0 ⊂ k1 ⊂ k2 . . . ... ⊂ kn ⊂ . . . ⊂ K =

∞⋃
n=0

kn ,

and the Galois group Gal(kn/k) ' Γ/Γp
n

=: Γn is isomorphic to Zp/pnZp '
Z/pnZ.
We recall other basic properties for a Zp-extension:

• K/k is unramified outside p ;

• there exist at least a prime of k (over p) which ramifies in K/k.

Let p1, p2, . . . , pt be the primes of k which ramify in K/k and let I(p1), I(p2),
. . . , I(pt) be their inertia groups in Gal(K/k). Then I(pi) ' Γp

ni
for some

ni > 0 and we define

n0 = n0(K/k) := max{ni : i = 1, . . . , t} .

9
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The index n0(K/k) is the minimal n > 0 such that every prime which ramifies
in the extension K/kn is totally ramified. Moreover we define

s = s(K) = s(K/k):= the number of ramified prime ideals in K/kn0 (1.1)

and

s(kn) := the number of the prime ideals of kn which are ramified in K/kn .
(1.2)

Remark 1.1.1. We remark that, throughout the thesis, when we type “s”,
we always refer to definition (1.1), which is undoubtedly the most important.
The notations “s” and “s(K/k)” are the one used originally by Iwasawa (see
[20]) and they do not say anything about the number of primes in k (or kn )
lying above p (i.e., s = 1 means that, even if there might be several primes in
k above p, only one of them is ramified in K/k). Finally, note that s=s(kn0).

Example 1.1.2. Let q = p if p is odd and q = 4 if p = 2. For every n > 0,
Gal(Q(ζqpn)/Q) ' (Z/qpnZ)× ' (Z/qZ)× × (Z/pnZ). Let Qn be the fixed
field of (Z/qZ)× , then we have

Q = Q0 ⊂ Q1 ⊂ Q2 ⊂ . . . ⊂ Qn ⊂ . . . ⊂ Qcyc :=

∞⋃
n=0

Qn ,

and we call Qcyc the cyclotomic Zp-extension of Q. If k is any number field,
then kcyc := kQcyc is a Zp-extension of k and we call it the cyclotomic Zp-
extension of k. Let t ∈ N be such that Qt = k ∩Qcyc, then kn = kQt+n is the
n-th layer of kcyc/k (for all n > 0). This also shows that every number field
k has at least a Zp-extension, namely the cyclotomic one.

Example 1.1.3. If p = 2, then the first layers of Qcyc/Q are:

• Q1 = Q(
√

2) ' Q[X]/(X2 − 2),

• Q2 = Q
(√

2 +
√

2
)
' Q[X]/(X4 − 4X2 + 2),

• Q3 = Q
(√

2 +
√

2 +
√

2

)
' Q[X]/(X8 − 8X6 + 20X4 − 16X2 + 2),

• Q4 = Q

(√
2 +

√
2 +

√
2 +
√

2

)
' Q[X]/(X16−16X14 + 104X12−352X10 + 660X8−672X6 + 336X4−
64X2 + 2).

If p = 3, then the first layers of Qcyc/Q are:
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• Q1 ' Q[X]/(X3 − 3X + 1),

• Q2 ' Q[X]/(X9 − 9X7 + 27X5 − 30X3 + 9X + 1).

• Q3 ' Q[X]/(X27−27X25+324X23−2277X21+10395X19−32319X17+
69768X15−104652X13 + 107406X11−72930X9 + 30888X7−7371X5 +
819X3 − 27X + 1).

Other polynomials for higher indices can be found, for example, in [1]. Once
a number field k is given, using a Computer Algebra System as PARI/GP or
MAGMA one can easily calculate k∩Qcyc and consequently the n-th layer of
kcyc/k (if the base field k is not too large and for small values of n).

Example 1.1.4. A particular feature of the cyclotomic Zp-extension is that
every prime of k lying over p is ramified in kcyc . But it is not totally ramified
in general, in fact to have n0 = 0 we need some additional hypothesis. For
example, it is easy to see that, if one of the following holds

(a) [k : Q] < p ;

(b) p is unramified in k/Q ;

(c) p - [k : Q] and k/Q is a Galois extension,

then n0(kcyc/k) = 0.
To give an explicit example we show that the condition p - [k : Q], mentioned
in (c), is not sufficient to guarantee that n0(kcyc/k) = 0.
Let p = 2, let α be a root of the irreducible polynomial P (X) = X3 +X2 +8 ∈
Q[X] and k = Q(α). Using PARI/GP we can find the composite of P (X)
with the polynomials given in the example 1.1.3, obtaining the early layers of
the cyclotomic Z2-extension kcyc/k. In particular the first layer

k1 = Q(α,
√

2) ' Q[X]/(X6 − 2X5 − 5X4 − 8X3 + 24X2 − 104X + 92) .

Computing the decomposition of 2 in k and k1 , we obtain 2Ok = q0(q′0)2 ,
q0Ok1

= q2
1, q′0Ok1

= q′1q
′′
1 and 2OQ1

= p2
1 (where, for any field L, we denote

withOL its ring of integers). The situation is pictured in the following diagram

k2 q2
2(q′2)2(q′′2)2

Q2

ssssssssssss
k1 p4

2

nnnnnnnnnnnnnn
q2

1(q′1)2(q′′1)2

Q1

ssssssssssss
k p2

1

nnnnnnnnnnnnnn
q0(q′0)2

Q

sssssssssssss
2Z

nnnnnnnnnnnnnn
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where the symbols p2, q2, q′2 and q′′2 have an obvious meaning. We can
conclude that n0(kcyc/k) = 1 and this yields the desired counterexample.

1.2 Multiple Zp-extensions and Λd-modules

An extension K/k is called Zdp-extension if it is Galois and Gal(K/k) is topo-

logically isomorphic to Zdp (for some d ∈ N). Let k be of degree [k : Q] =
r1 + 2r2 (where r1 and r2 denote the number of real and of pairs of complex
embeddings of k in C, respectively), let Kd/K be a Zdp-extension and denote

by k̃ be the compositum of all the Zp-extensions of k. In accordance to what
we have already seen in the case d = 1, we have that

• Kd/k is unramified outside p ;

• there exists an integer dk, with r2 + 1 6 dk 6 r1 + 2r2, such that
Gal(k̃/k) ' Zdkp ;

• Leopold’s Conjecture for k is equivalent to dk = r2 + 1.

Recall that Leopold’s conjecture is true for abelian extension of Q or of a
quadratic imaginary field (see [6]).
Before proceeding further, we fix some standard notations in Iwasawa theory
which we will be used throughout this thesis:

• for any algebraic extension E of Q (of finite or infinite degree) we denote
by L(E) the maximal abelian unramified pro-p-extension of E (in a fixed
algebraic closure of Q) and by X(E) the Galois group Gal(L(E)/E) ;

• for any number field F we denote its ideal class group by Cl(F ) and the
p-part of it by A(F ) ;

• if K/k is a fixed Zp-extension of a number field k, to shorten notations,
we shall indicate L(K), L(kn) and A(kn) simply by L, Ln and An (for
every n > 0): moreover we let Xn := Gal(Ln/kn) and X := Gal(L/K).

With these notations the Artin map provides a canonical isomorphism An '
Xn for any n ∈ N. We also have canonical maps Nm,n : Xm → Xn and
in,m : Xn → Xm (for any m > n) induced (respectively) by the norm and the
inclusion of ideals.
For any Zdp-extension Kd/k (d > 1) we pose G(Kd) := Gal(L(Kd)/k) and
X(Kd) = Gal(L(Kd)/Kd): hence G(Kd) is obtained by a group extension of
Gal(Kd/k) by X(Kd).
The most important (for us) feature of X(Kd) = Gal(L(Kd)/Kd) is that
it is a Zp-module on which Gal(Kd/k) acts in a natural way via conjuga-
tion. In particular, for every n > 0, let k′n be the fixed field of (pnZp)d (i.e.,
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Gal(k′n/k) ' (Zp/pnZp)d ), then X(k′n) = Gal(L(k′n)/k′n) is a Zp[Gal(k′n/k)]-
module and, taking inverse limits with respect to the norm maps, we have
that

X(Kd) ' lim
←
X(k′n)

is a module over the completed group ring

Zp[[Gal(Kd/k)]] := lim
←

Zp[Gal(Kd/k)/Gal(Kd/k
′
n)] ' lim

←
Zp[Gal(k′n/k)] .

Choosing d independent topological generators σ1, . . . , σd of Gal(Kd/k), we
have a noncanonical isomorphism

Zp[[Gal(Kd/k)]]
∼−→ Λd := Zp[[T1, . . . , Td]] (1.3)

(Λd is the formal power series ring in d variables over Zp ) which sends σi to
Ti + 1 for every i = 1, . . . , d. We call Zp[[Gal(Kd/k)]] the Iwasawa algebra of
Kd and, since it is easier to investigate its properties by studying the ring Λd ,
we shall always tacitly use the isomorphism above to picture its elements as
formal power series.
It is well known that Λd is a complete regular local ring of dimension d + 1,
hence a noetherian factorial domain (in particular a noetherian integrally
closed domain in which every prime ideal of height one is principal).
A finitely generated torsion Λd-module M is said to be pseudo-null if there
are at least two relatively prime elements of Λd which annihilate M (in par-
ticular, in the case d = 1, this is equivalent to the finiteness of M). A
Λd-homomorphism ϕ : M → N is called pseudo-isomorphism if both Ker(ϕ)
and Coker(ϕ) are pseudo-null. In this case we write ϕ : M ∼Λ N (or simply
M ∼Λ N) and we say that M is pseudo-isomorphic to N . It is important to
remark that the relation ∼Λ is transitive, but in general, is not symmetric: the
existence of a pseudo-isomorphism ϕ : M −→ N in one direction, does not
guarantee the existence of a pseudo-isomorphism in the opposite direction.
For example consider the natural inclusion (p, T1) ↪→ Λ1 : it is obviously a
pseudo-isomorphism but there is no such map from Λ1 to (p, T1). Nevertheless
being pseudo-isomorphic is an equivalence relation between finitely generated
torsion Λd-modules.
For other details one can see for example [5, Chapter VII], [36, Chapter V] or
[48, Chapter 13].

The starting point for the study of the Iwasawa module X(Kd) is the following

Theorem 1.2.1. ([13, Theorem 1]) For every number field k and every Zdp-
extension Kd/k, X(Kd) is a finitely generated torsion Λd-module.

Conjecture 1.2.2. (Generalized Greenberg Conjecture - GGC - [15, Conjec-

ture 3.5]) For every number field k, the Λdk -module X(k̃) is pseudo-null.
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Now we give the following structure theorem for Λd-modules.

Theorem 1.2.3. ([5, Ch. VII §4.4, Theorems 4 and 5]) Let M be a finitely
generated Λd-module, then there exist an integer r > 0 and two finite families
{fi : i = 1, . . . , s} of irreducible elements of Λd and {ni : i = 1, . . . , s} of
positive integers such that M is pseudo-isomorphic to

Λrd ⊕

(
s⊕
i=1

Λd/(f
ni
i )

)
. (1.4)

Moreover r, the family of ideals {(fi) : i = 1, . . . , s} and the ni’s are uniquely
determined by M modulo a bijection of the indexing set.

A Λd-module of the form (1.4) (for some r, s, {fi}i and {ni}i as above) is
called elementary Λd-module. For any finitely generated Λd module, we write
E(M) to denote the elementary module E associated with M .

Definition 1.2.4. The characteristic polynomial of M is

fM (T ) = fE(M)(T ) :=


0 if r 6= 0
s∏
i=1

fni
i if r = 0 .

Note that the characteristic polynomial is well defined only up to a unit in Λd
and, in particular, M is pseudo-null (i.e., M ∼Λd

0) if and only if fM (T ) ∈
Λ∗d .

Since it will be of particular importance in what follows, we restate the pre-
vious theorem for the case d = 1 (this structure will lead to the definition of
the Iwasawa invariants for a Zp-extension).

Corollary 1.2.5. Let M be a finitely generated Λ := Λ1-module, then there
exist integers r, s, t > 0, finite families {mi : i = 1, . . . , s}, {lj : j = 1, . . . , t}
of positive integers and {fj(T ) : j = 1, . . . , t} of irreducible distinguished
polynomials of Λ such that M is pseudo-isomorphic to

Λr ⊕

(
s⊕
i=1

Λ/(pmi)

)
⊕

 t⊕
j=1

Λ/(fj(T )lj )

 . (1.5)

Moreover, r, s, t, the family of ideals {(fj(T )) : j = 1, . . . , s} and the families
of integers {mi : i = 1, . . . , s}, {lj : j = 1, . . . , t} are uniquely determined by
M modulo a bijection of the indexing sets.
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1.3 Iwasawa’s Theorem

The following celebrated Theorem 1.3.1 was announced by K. Iwasawa during
a conference in Seattle in 1956. The details of the proof appeared in [21] in
1959. In the same year J. P. Serre gave a Bourbaki Seminar on Iwasawa’s
result and introduced a different approach which Iwasawa soon adopted (see
[46] or [20]).

Theorem 1.3.1. (Iwasawa’s growth formula) Let K/k be a Zp-extension of
a number field k. Then there exists integers n(K/k), µ(K/k), λ(K/k) > 0 and
ν(K/k), all independent from n, such that

|An| = pµ(K/k)pn+λ(K/k)n+ν(K/k)

for every n > n(K/k).

Proof. See, for example, [48, Theorem 13.13].

Definition 1.3.2. The parameters µ(K/k) and λ(K/k) of the previous theo-
rem are the Iwasawa µ-invariant and the Iwasawa λ-invariant for K/k. Look-
ing at (1.5) they can be written as

µ(K/k) =

s∑
i=1

mi and λ(K/k) =

t∑
j=1

deg(fj(T ))lj .

There is a vast literature on these invariants and many conjectures regarding
their values (or how those values should vary in different families of extensions)
are still open. Iwasawa himself proposed the following:

Conjecture 1.3.3. (Iwasawa’s µ-Conjecture) For every number field k and
for every prime number p, the µ-invariant of the cyclotomic Zp-extension
µp(kcyc/k) is zero.

It was proved for abelian number field by B. Ferrero and L. C. Washington in
1979 (see [8] or [48, Theorem 7.15]). For totally real number fields Greenberg’s
Conjecture (originally stated in [13]) predicts also the vanishing of the λ-
invariant. We write it separately for future references.

Conjecture 1.3.4. (Greenberg’s Conjecture) For every totally real number
field k and for every prime number p both the µ-invariant and the λ-invariant
of the cyclotomic Zp-extension vanish, i.e., X(kcyc/k) is finite.

Assuming Leopoldt’s conjecture, this is now just a particular version of Con-
jecture 1.2.2, since a totally real number field has r2 = 0 (hence has a unique
Zp-extension, namely the cyclotomic one, i.e., k̃ = kcyc in this case).
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We end this section providing some more classical notations for the basic
objects of Iwasawa Theory.
Let γ be a fixed topological generator of Γ = Gal(K/k) (i.e., 〈 γ 〉 = Γ): we
recall the identification γ ↔ T + 1 in the isomorphism (1.3). There are some
elements in Λ := Zp[[T ]] which play an important role in the study of the
class groups An .

Definition 1.3.5. For every m > n > 0, we put

• ωn := γp
n − 1 = (1 + T )p

n − 1,

• νn,m := 1 + γp
n

+ γ2pn + . . .+ γp
m−pn

= ωm

ωn
= (1+T )p

m
−1

(1+T )pn−1
= 1 + (1 + T )p

n

+ ...+ ((1 + T )p
n

)p
m−n−1 .

For simplicity we write νn in place of ν0,n: hence νn = 1 + γ + γ2 + . . . +

γp
n−1 = ωn

ω0
= (1+T )p

n
−1

T and νn,m = νm
νn

as well. Note that ωn and νn,m are
distinguished polynomials of Λ and νn,m is Eisenstein (hence irreducible) if
m = n+ 1.

Proposition 1.3.6. For any m > n > 0 we have

νn,m ≡ pm−n (mod Tνn) . (1.6)

The proof of the previous formula is immediate (see, e.g., [10, Lemma]): it

suffices to note that νn,m = ((1+T )p
n
−1)+1)p

m−n
−1

(1+T )pn−1
.

Now let Yn0 := Yn0(K/k) be the Λ-submodule of X := X(K/k) generated
by the commutators of G(K) and by all its inertia subgroups. Then An0 is
isomorphic to X/Yn0

. Using the polynomials above, we define Yn := νn0,nYn0

(for all n > n0) and one can prove the following

Proposition 1.3.7. ([48, Lemma 13.18]) An ' X/Yn for all n > n0 .

Finally we introduce our definition of p-rank and recall a criterion for the
nullity of the µ-invariant related to that.

Definition 1.3.8. For any finitely generated Zp-module A, we define its p-
rank as

rkp(A) := dimFp
(A/pA) .

Moreover we shall denote by λ̃n the p-rank of An .

Remark 1.3.9. The previous notation is in accordance with the one usually
found in the literature for torsion Zp-modules (like the An’s), but we remark
that in this thesis we apply it to any finitely generated Zp-module M for
which we obtain

rkp(M) := rkZp(M) + rkp(Tor(M))

(for an interpretation like this see, for example, [42, Section 8.2]).
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Proposition 1.3.10. ([48, Proposition 13.23]) Let K/k be a Zp-extension of
a number field k, then

µ(K/k) = 0⇔ {λ̃n}n>n0 is bounded .

1.4 Stabilization

The term “stabilization” has the expected obvious meaning: given a sequence
of finite p-groups {Mn }n∈N, we say that their orders stabilize at an index
q ∈ N if |Mn| = |Mq| for all n > q. In the same way, we say that their p-ranks
stabilize at q′ ∈ N if rkp(Mn) = rkp(Mq′) for all n > q′ .
Stabilization is quite natural in Iwasawa Theory even if there are not many
results in this direction. We have stabilization theorems for {|An|}n∈N and for
{rkp(An)}n∈N but not much else. Usually Iwasawa modules tend to stabilize
at the very first level in which they do not grow (i.e., if we have no growth
from n to n+ 1, we are not going to have any growth at all from n on).
The references for the following theorems are [10], [2] and [24] (we provide
just a short proof for the second one to illustrate some of the techniques we
are going to encounter in the next chapters).

Theorem 1.4.1. If |An| = |An+1| for some n > n0 , then Am ' An ' X for
all m > n.

Theorem 1.4.2. If rkp(An) = rkp(An+1) for some n > n0 , then rkp(Am) =
rkp(An) for all m > n (hence µ(K/k) = 0 and rkp(An) = rkp(X)).

Proof. Without loss of generality we can assume n = 0 (hence n0 = 0 too) so

our hypothesis is λ̃0 = λ̃1 . First we show that ∀t > 0 one has

Yt + pX = T p
t−1Y0 + pX .

Indeed

Yt = νtY0 = (1 + γ0 + γ2
0 + ...+ γp

t−1
0 )Y0

↔ (1 + (1 + T ) + (1 + T )2 + ...+ (1 + T )p
t−1)Y0 = (1+T )p

t
−1

(1+T )−1 Y0

=

pt∑
i=0

(
pt

i

)
T i − 1

T Y0 =
(∑pt

i=1

(
pt

i

)
T i−1

)
Y0

= (T p
t−1 + p · (polynomial))Y0 .

Hence
Yt + pX = T p

t−1Y0 + pX for any t > 0 . (1.7)
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Now the hypothesis λ̃0 = λ̃1 means Y0 + pX = Y1 + pX and, by what we
just proved, Y1 + pX = T p−1Y0 + pX. Obviously Y0 + pX ⊇ TY0 + pX ⊇
T p−1Y0 + pX, hence the equality of the first and last terms implies

Y0 + pX = TY0 + pX . (1.8)

An immediate consequence is that Y0 + pX = T aY0 + pX for any a > 0.
Indeed, it is obvious for a = 0 and we use induction, assuming it is true for
a− 1, to prove it for a > 1. We have

Y0 + pX = T a−1Y0 + pX = T a−1(Y0 + pX) + pX
= T a−1(TY0 + pX) + pX (by (1.8) )
= T aY0 + pX .

Therefore, choosing a = ph − 1, we get

Y0 + pX = T p
h−1Y0 + pX = Yh + pX ,

(the second equality comes from (1.7)) and this is precisely the claim for
n = 0.

1.5 Capitulation

From Corollary 1.2.5 we have an exact sequence

0→ D(X)→ X
ϕ−→ E(X)→ B(X)→ 0 (1.9)

where ϕ is a pseudo-isomorphism and D(X), B(X) are finite. Note that D(X)
is the maximal finite submodule of X and to simplify the notations we shall
simply write D from now on.
For allm > n > 0, letNm,n : Am → An be the norm map and in,m : An → Am
be the natural map induced by extension of ideals. We put

A := lim
→
An and in : An → A

as the natural map. Moreover let Hn,m be the kernel of in,m and Hn be the
kernel of in , i.e.,

Hn =
⋃
m≥n

Hn,m .

The Hn,m’s and the Hn’s are often called capitulation kernels and are very
important in Iwasawa theory, for example because of the following proposition
which links them to Greenberg’s Conjecture.

Proposition 1.5.1. ([14, Proposition 2]) We have that λ(K/k) = µ(K/k)
= 0 if and only if Hn = An for every n ≥ 0.
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In the following theorem the statement is not exactly the original one appear-
ing in [14], but it can be easily derived from it because the proof only uses
the hypothesis s(K/k) = 1.

Theorem 1.5.2. ([14, Theorem 1]) Let n0 = 0 and s(K/k) = 1 (i.e., there is
only one prime in k which ramifies in K), then X is pseudo-null if and only
if H0 = A0 .

A very important remark is that, in the previous theorem, the hypothesis
n0 = 0 can be easily suppressed. This has been showed by J. Minardi and we
write down it separately for future reference.

Corollary 1.5.3. ([33, Proposition 1.B]) Assume s = 1, then X is pseudo-
null if and only if H0 = A0 .

Corollary 1.5.4. If there is only one prime in k dividing p and it generates
the whole A0 , then X(K/k) is pseudo-null for every Zp-extension K/k.

Statement (a) of the next theorem provides a stronger result and it was proved
by T. Fukuda in 1994 in a very elegant way. Indeed Theorem 1.5.5 (a) gives
the precise layer km for which X ' Am , but there is a price to pay: with this
kind of proof the hypothesis n0 = 0 acquires a crucial role and it cannot be
removed anymore.

Theorem 1.5.5. ([10, Theorem 2]) Let s(K/k) = 1 and n0(K/k) = 0.

(a) If H0,n = A0 for some n > 1, then |Am| = |An| = |X| for all m > n.

(b) If |An+1| = |An| for some n > 0 and the exponent of An is pt, then
Hn,n+t = An .

In Lemma 4.2.1 we will provide a Criterion which yields a generalization of
part (a) of the previous theorem. We conclude this section recalling

Theorem 1.5.6. ([38, Theorem]) Let n0(K/k) = 0, then X(K/k) is pseudo-
null if and only if kerN1,0 ⊆ H1 .

Not much more is known about the Hn,m’s, in particular regarding their
orders and their stabilization properties. For example, Iwasawa proved that
Hn,m is bounded by |D| · |B(X)| · |An0

| independently from n and m (see e.g.
[20] or [36]) and M. Ozaki showed in [38] a relation between the Hn’s and
the maximal finite submodule d of X. We will go deeper in this direction in
Chapter 3 studying the submodule D, providing some results on these topics
and describing some consequences of the phenomenons of stabilization and
capitulation in a general Zp-extension.



Chapter 2

Stabilization in Ozaki’s
non-abelian Iwasawa
Theory

In this chapter we want to expose some results obtained in non-abelian Iwa-
sawa Theory (as developed by M. Ozaki in [40]). In the introduction we recall
the basic objects and facts of the theory, for more details and complete proofs
see [40].

2.1 Introduction

For any algebraic extension E of Q (not necessarily finite) we denote by L̃(E)
the maximal unramified (not necessary abelian) pro-p extension of E (where,
as in the previous chapter, p is any prime). Let k be a number field, K

any Zp-extension of k and, to simplify the notations, we put L̃ := L̃(K) and

L̃n := L̃(kn) for every n > 0. To study the non abelian extensions L̃n/kn and

L̃/K, the method is to break these extensions into smaller (abelian) pieces.
Before doing this, we give some notations and definitions.
Let H be a group. For all a, b ∈ H we put ab = b−1ab and [a, b] = a−1b−1ab.
If H1, H2 are subgroups of H we denote the commutator group of H1 and
H2 by

[H1, H2] := 〈[h1, h2] : h1 ∈ H1, h2 ∈ H2〉 (2.1)

When H is a topological group we refer to [H1, H2] (the topological closure
of [H1, H2] ) as the topological commutator group of H1 and H2. Moreover we
pose

C1(H) := H and Ci(H) := [H,Ci−1(H)] (for any i > 2) (2.2)

20
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and

D0(H) := H and Di(H) := [Di−1(H), Di−1(H)] (for any i > 1) .
(2.3)

We call them the lower central series and the derived series of H respectively.
If H is an abstract group, Ci(H) and Di(H) have the obvious meaning.

Let G̃ := Gal(L̃/K): in the following pages we will consider both these series

for G̃
G̃ = C1(G̃) ⊇ C2(G̃) ⊇ C3(G̃) ⊇ . . . , (2.4)

G̃ = D0(G̃) ⊇ D1(G̃) ⊇ D2(G̃) ⊇ . . . . (2.5)

A well known relation is that Di(H) ⊆ C2i(H) (which holds for every abstract
group H), i.e., the i-th term of the derived series is contained in the 2i-th term
of the lower central series. For more details see, for example, [4, Ch. I §6.3].

The derived series of G̃ is naturally related with the class field tower of K,
while the lower central series is less intuitive so we give here notations and
properties for the fields it is related with.

Definition 2.1.1. For every i > 1, we pose

(a) L(i) := the subfield of L̃ fixed by Ci+1(G̃) ;

(b) G(i) := G̃/Ci+1(G̃) ' Gal(L(i)/K) ;

(c) X(i) := Ci(G̃)/Ci+1(G̃) = Ci(G
(i)) ' Gal(L(i)/L(i−1)) .

The group X(i) will be called the i-th Iwasawa module of K/k.

We have analogous notations/definitions for groups related with the fields kn
for every n > 0. Let G̃n := Gal(L̃n/kn) and consider, as above, the lower

central (and the derived) series of G̃n :

G̃n = C1(G̃n) ⊇ C2(G̃n) ⊇ C3(G̃n) ⊇ . . . . (2.6)

G̃n = D0(G̃n) ⊇ D1(G̃n) ⊇ D2(G̃n) ⊇ . . . . (2.7)

Definition 2.1.2. For every i > 1 and n > 0, we pose

(a) L
(i)
n := the subfield of L̃n fixed by Ci+1(G̃n);

(b) G
(i)
n := G̃n/Ci+1(G̃n) ' Gal(L

(i)
n /kn);

(c) X
(i)
n := Ci(G̃n)/Ci+1(G̃n) = Ci(G

(i)
n ) ' Gal(L

(i)
n /L

(i−1)
n ).

If F (i)(kn) is the i-th term of the class field tower of kn (i.e., the maximal
abelian unramified p-extension of F (i−1)(kn) ), then, from the relation above,

L(2i−1)(kn) ⊆ F (i)(kn). Note that for i = 1 we get L(1) = L(K), X(1) =
X(K/k) and λ(1) = λ(K/k) (the same holds for the groups related with the
layers kn ), so we shall often use the same notation of Chapter 1 for them
dropping the exponent (1) .
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The above setting for the central lower series is summarized by the following
diagram

L̃
C4(G̃)

C3(G̃)

C2(G̃)

C1(G̃)=G̃

L(3)

G(3)
X(3)

{{
{{

{{
{{

L(2)

G(2)
X(2)

{{
{{

{{
{{

L(1)

X(1)=G(1)
vvvvvvvvv

K = L(0) L̃n
C4(G̃n)

C3(G̃n)

C2(G̃n)

C1(G̃n)=G̃n

L
(3)
n

G(3)
n X(3)

n}}
}}

}}
}

L
(2)
n

G(2)
n X(2)

n}}
}}

}}
}

L
(1)
n

X(1)
n =G(1)

nvvvvvvvvv

kn

Z/pnZ

k

Γ'Zp

Now we proceed to give an account of the principal facts of this “non-abelian
setting” giving references to the main results of [40]. Recall that if F is a
number field, A(F ) stands for the p-part of the ideal class group Cl(F ).

Proposition 2.1.3. ([40, Lemma 1])

(a) For all i > 1, X(i) has a natural Λ-module structure;

(b) for all i > 1 and all n > 0 we have X
(i)
n ' A(L

(i−1)
n )

G
(i−1)
n

(i.e., the
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G
(i−1)
n -coinvariants of A(L

(i−1)
n ) ).

It is well known that in the first column of nilpotency the norm map
Nm,n : Am → An is surjective for all m > n > n0(K/k) and (by Galois theory
and class field theory) we have that lim

←
Xn ' X.

The following proposition shows that the corresponding statements are true
also in this new context.

Proposition 2.1.4. ([40, Lemma 2])

(a) For all i > 1 and m > n > n0(K/k) the natural restriction map

πm,n : X
(i)
m → X

(i)
n is surjective;

(b) for all i > 1 we have lim
←
X(i)
n ' X(i) and lim

←
G(i)
n ' G(i).

The following proposition provides the structure for X(i) viewed as a Zp-
module. Moreover we remark that if M is a module over a (complete) discrete
valuation ring R (e.g. a Zp-module) and it is not finitely generated, then, in
general, TorRM is not a direct summand of M . A (standard) counter-example
is given by M =

∏∞
i=1 Z/piZ as Zp-module (see e.g. [27, Exercise 4.37]).

Proposition 2.1.5. ([40, Proposition 3]) Let K/k be any Zp-extension.

(a) For every i > 1 there exist an integer λ(i) = λ(i)(K/k) > 0 such that

X(i) ' (Zp)⊕λ
(i)(K/k) ⊕ TorZp

X(i)

as Zp-modules.

(b) There exist a power of p which annihilates the torsion submodule
TorZpX

(i).

Proposition 2.1.6. ([40, Proposition 1]) Let µ(K/k) = 0, then, for any
i > 1, X(i) is finitely generated as Zp-module and, in particular, it is a finitely
generated torsion Λ-module.

Proof. The proof is based on the Burniside Basis Theorem: since X(1) is
finitely generated over Zp then G̃ is a finitely generated pro-p group. Let α

be the minimal number of generators for G̃ and consider the epimorphism
φ : Fα � G̃ where Fα is the free pro-p group on α generators. We have
induced isomorphisms φi : Ci(Fα)/Ci+1(Fα)� X(i) and, since

Ci(Fα)/Ci+1(Fα) ' Z
1
i

∑
d|i µ(d)αi/d

p ,

(see, for example, [16, §I.5], where µ(.) is the Möbius function), then X(i) is
finitely generated over Zp for every i > 1.
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Definition 2.1.7. The invariant λ(1)(K/k) is equal to the familiar Iwasawa
invariant λ(K/k). For every i > 1 we will call λ(i)(K/k) the higher Iwasawa
i-th λ-invariant for K/k.

From the proof above and Proposition 2.1.5, one easily gets the following
corollary:

Corollary 2.1.8. For any i > 1 we have

λ(i)(K/k) 6
1

i

∑
d|i

µ(d)λ(K/k)i/d .

Now we return to view the higher Iwasawa modules X(i)’s as modules over Λ.

Proposition 2.1.9. ([40, Proposition 2]) Let µ(K/k) > 0. Then, for every
i > 2, X(i) is not a finitely generated Λ-module.

In the case µ(K/k) = 0 it is possible to obtain a formula for |X(i)
n | which is

similar to the classical Iwasawa’s one which deals only with |An| = |X(1)
n | .

Theorem 2.1.10. ([40, Theorem 1]) Let µ(K/k) = 0, then for every i > 1
there exist integers ν(i)(K/k) and n(i)(K/k) > 0 (independent from n) such
that

|X(i)
n | = pλ

(i)(K/k)n+ν(i)(K/k)

∀n > n(i)(K/k).

Summing up for i = 1, . . . , n we obtain

Corollary 2.1.11. ([40, Theorem II]) Let µ(K/k) = 0, then for every i > 1

|G(i)
n | = p

∑i
j=1 λ

(j)(K/k)n+
∑i

j=1 ν
(j)(K/k)

∀n > max{n(1)(K/k), . . . , n(i)(K/k)}.

We notice that in the case µ(K/k) > 0 it is commonly believed that there

exists a formula for |X(i)
n |, but it is very difficult to find. One special case is

described in the following

Theorem 2.1.12. ([40, Theorem 2]) Let p be an odd prime and K/k a Zp-
extension satisfying the following conditions:

(a) there is only one prime of k over p and it is totally ramified in K/k;

(a) X(K/k) ' (Λ/p)t for some t > 0 (i.e., µ(K/k) = r and λ(K/k) = 0).

Then there exist integers κ(2)(K/k) and ν(2)(K/k) such that

|X(2)
n | = p

(
tpn−1

2 t−κ(2)(K/k)
)
pn+ν(2)(K/k)

for all sufficiently large n.
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2.2 Stabilization for the order of X
(i)
n

From Theorem 1.4.1, we know that if |An| = |An+1| in a Zp-extension (for
some n > n0(K/k)), then the sequence {|Am|}m∈N stabilizes for m > n. Re-

call that An is isomorphic to X
(1)
n , so we can reformulate this property: if

|X(1)
n | = |X(1)

n+1|, then the sequence {|X(1)
m |}m∈N become constant from n on.

An obvious generalization would be the following: does an analogous state-

ment hold for {|X(i)
m |}m∈N ? That is, if we assume |X(i)

n | = |X(i)
n+1| for some

n > n0(K/k) and i > 2, can we conclude that {|X(i)
m |}m∈N stabilizes for

m > n ?
In the same way we know that a Zp-extension enjoys a similar property
for the stabilization of p-ranks (see Theorem 1.4.2), hence this leads to the

corresponding generalization: assume that rkp(X
(i)
n ) = rkp(X

(i)
n+1) for some

n > n0(K/k) and i > 2, can we conclude that {rkp(X(i)
m )}m∈N stabilizes for

m > n ?
This questions turn out to be too optimistic (or naive) as the following coun-
terexample shows.

2.2.1 Counterexample

We first recall the following group theoretical results (for the first see, for
example, [47, Section III], we provide a short proof for the second for the
convenience of the reader).

Theorem 2.2.1. Let G be a finite 2-group such that G/D1(G) ' Z/2Z ⊕
Z/2Z, then D1(G)/D2(G) is cyclic and D2(G) = 1.

Remark 2.2.2. We recall (for future reference as well) the definition of nilpo-
tent group which we will use in the rest of the paper. When G is an abstract
group we put

[G, iG] := [. . . [[A,B], B] . . . ], B] ,

where B appears i times. We say that G is nilpotent of class i > 1 if [G, iG] =
1 and [G, i−1G] 6= 1. If G is a topological group whose space is Hausdorff, the
last conditions are equivalent to Ci(G) = 1 and Ci−1(G) 6= 1 (we shall often
use this equivalent definition).

Proposition 2.2.3. Let G be a pronilpotent group (i.e., the inverse limit of
finite nilpotent groups) such that G/C2(G) is cyclic or procyclic. Then G is
abelian.

Proof. Let H := G/C3(G) and note that C2(H) = C2(G)/C3(G) is contained
in Z(H) (the center of H). This means that H/Z(H) is cyclic or procyclic,
hence H is abelian. Therefore C2(G)/C3(G) = C2(H) = 1, which yields
C2(G) = C3(G) (and Ci(G) = C2(G) for all i > 2). Since G is pronilpotent, it
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is clear that
⋂∞
i=2 Ci(G) = 1. Hence C2(G) =

⋂∞
i=2 Ci(G) = 1, which means

G is abelian.

Since “pro-p” implies “pronilpotent”, the previous proposition shows that if
there is a cyclic or procyclic quotient in the series (2.5) or (2.7) then the series
stops there.

Take p = 2 and consider the cyclotomic Z2-extension of the number field
k = Q(

√
5 · 732678913) as in [41, Example 1]. In the first layer we have

k1 = k(
√

2). Using PARI/GP we can see that A0 ' Z/2Z, which yields

X
(i)
0 = 0 for every i > 2: indeed if the p-rank of X

(1)
0 = G̃0/C2(G̃0) is 1, then

X
(2)
0 = 0 (by Proposition 2.2.3). Moreover

k1 '
Q[x]

(x4 − 7326789134x2 + 13420459724217960969)

and A1 ' Z/2Z ⊕ Z/2Z. Now let H := G̃1/D3(G̃1): since H/D1(H) '
Z/2Z⊕Z/2Z, Theorem 2.2.1 implies thatD2(H) = 1 which yieldsD2(G̃1) = 1.

This means that G̃1 is nilpotent of class i1 (for some i1 > 2) and X(i) = 0 for

all i > i1 (in other words G̃1 has derived length at most 2 and it is nilpotent
of class i1 ).
Going on with the computations, one finds the 4-th layer k4 with A4/A

2
4 '

(Z/2Z)16. Now we denote by ρ the number of generators of the group of units
of k4 (since k4 is totally real and has degree 25 over Q, ρ = 25 as well): we
have

dimF2
A4 = 16 > 2 + 2

√
ρ+ 2 = 2 + 2

√
25 + 2 ≈ 13.662 .

Thus by Golod-Shafarevich inequality (see, for example, [36, Theorem 10.10.5],
which improves a little the bound of the original article [11]), we have that k4

has an infinite Hilbert 2-class field tower, hence, a fortiori, the lower central

series has infinite length, i.e., X
(i)
4 6= 0 for any i > 1.

Summing up we have X
(i1)
0 = X

(i1)
1 = 0 but certainly X

(i1)
4 6= 0: this give us

a counterexample (for the sequence of the p-ranks as well).

2.2.2 Stabilization

Therefore we have to add other hypothesis to obtain the stabilization of the

order or of the p-rank of X
(i)
m .

To simplify the notations we assume in this chapter n0(K/k) = 0, i.e., every
ramified prime in the Zp-extension K/k is totally ramified. Let p1, . . . , ps be
the primes of k which ramify in K/k and, for every 1 6 j 6 s, chose one

prime of L̃ lying over pj . Let I(p1), . . . , I(ps) ⊆ G = Gal(L̃/k) be the inertia
subgroups of p1, . . . , ps and observe that the natural restriction G → Γ induces
isomorphisms I(pj) ' Γ ' Zp for every 1 6 j 6 s. Now we fix a topological
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generator of I(p1) and, with a little abuse of notation, we denote it also by

γ. We have that there exist gj ∈ G̃ such that γgj is a topological generator
of I(pj) for 2 6 j 6 s.

Definition 2.2.4. Let g be any element of G̃. For every m > n > 0 we define

νn,m(g) = gνn,m := gγ
(pm−n−1)pn+γ(pm−n−2)pn+...+γpn+1

= (γ−(pm−n−1)pngγ(pm−n−1)pn)·(γ−(pm−n−2)pngγ(pm−n−2)pn)·. . .·(γ−p
n

gγp
n

)·g .

As in the classical theory, we write simply νn to indicate ν0,n , i.e.,

νn(g) = gνn = gγ
(pn−1)+γ(pn−2)+...+γ+1

= (γ−(pn−1)gγp
n−1) · (γ−(pn−2)gγp

n−2) · . . . · (γ−1gγ) · g ,

(for any g ∈ G̃).

Remark 2.2.5. Note that G̃ is not a Λ-module because the “+” in the
exponent is not commutative. For example, if g is a general element of

g ∈ G̃, it can happen that gγ+1 6= g1+γ and gνn = gγ
pn−1+γpn−2+...+γ+1 6=

g1+γ+...+γpn−2+γpn−1

.

Definition 2.2.6. For every n > 0 we put

R̃n := (νn([γ, x]), νn(gj) | x ∈ G̃, 2 6 j 6 s)G̃ ,

where (.)G̃ stands for a normally generated closed subgroup in G̃ and the
commutator [x, y] denotes the product x−1y−1xy.

Lemma 2.2.7. For every n > 0 we have G̃n ' G̃/R̃n .

Proof. See [40, Lemma 3].

Now we focus our attention on the first i columns of the tower, i.e., we consider
G(i) = G̃/Ci+1(G̃) in the place of G̃. We continue to use only γ and gj to

indicate the cosets γCi+1(G̃) and gjCi+1(G̃) in G(i) .

Definition 2.2.8. For every n > 0 and i > 1, we put

(a) Y
(i)
n := Ker{res : X(i) → X

(i)
n }, where res denotes the natural restriction

map;

(b) R
(i)
n := (νn([γ, x]), νn(gj) | x ∈ G(i), 2 6 j 6 s)G(i) .

Proposition 2.2.9. For every n > 0 and i > 1 we have

(a) G
(i)
n ' G(i)/R

(i)
n ;
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(b) Y
(i)
n = (Ci(G̃) ∩ R̃n)Ci+1(G̃)/Ci+1(G̃) = X(i) ∩R(i)

n .

For a proof of the previous proposition see [40, Lemma 3]. Moreover, note

that if i = 1 the characterization of Y
(i)
n is consistent to the one of Yn in the

classical context.

Lemma 2.2.10. For any g ∈ G̃ and any m > n > 0 we have

(gνn)νn,m = gνm .

Proof. Note that

(gνn)νn,m = (νn(g))γ
(pm−n−1)pn+γ(pm−n−2)pn+...+γ1·pn+1

=

0∏
ε=pm−n−1

γ−εp
n

· νn(g) · γεp
n

= νm(g) = gνm .

Theorem 2.2.11. Let i > 1 and n > 0; if |X(j)
n | = |X(j)

n+1| for all 1 6 j 6 i,

then X
(j)
n ' X(j)

m ' X(j) and Y
(j)
n = 0 for every 1 6 j 6 i and for all m > n.

Proof. We use an induction argument on i.

If i = 1, Theorem 1.4.1 yields Y
(1)
n = 0 and X

(1)
n ' X(1)

m for all m > n.
Now we assume the statement true for i > 1 and prove it for i + 1. First,

note that if m > n, then km ∩ L(i)
n = kn since km/kn is totally ramified and

L
(i)
n /kn is unramified (we recall that n0 = 0 here). Thus

Gal(kmL
(i)
n /km) ' Gal(L(i)

n /kn) ' G(i)
n .

This means that the natural restriction induces an epimorphism

G(i)
m ' Gal(L(i)

m /km)� Gal(kmL
(i)
n /km) ' G(i)

n . (2.8)

By inductive hypothesis,

|G(i)
m | = |X(1)

m | · |X(2)
m | · ... · |X(i)

m | = |X(1)
n | · |X(2)

n | · ... · |X(i)
n | = |G(i)

n | ,

so (2.8) is an isomorphism. But K ∩ L(i)
m = km, hence Gal(L

(i)
m /km) '

Gal(KL
(i)
m /K) and, from [40, Lemma 2 (2)], we have

lim
←−
m

G(i)
m ' lim

←−
m

Gal(L(i)
m /km) ' lim

←−
m

Gal(KL(i)
m /K)

' Gal(
⋃
m∈N

KL(i)
m /K) ' Gal(L(i)/K) ' G(i) .

Now the isomorphism in (2.8) yields

Gal(KL(i)
n /K) ' G(i)

n ' lim
←−
m

G(i)
m ' G(i) ' Gal(L(i)/K)
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and this means that
KL(i)

n = L(i) . (2.9)

Now recall that Y
(i+1)
n = X(i+1) ∩R(i+1)

n and G
(i+1)
n ' G(i+1)/R

(i+1)
n . So we

have the following isomorphisms

Gal(KL(i+1)
n /K) ' Gal(L(i+1)

n /kn) ' G(i+1)
n ' G(i+1)/R(i+1)

n (2.10)

and, from (2.9),

Gal(KL(i)
n /K) = Gal(L(i)/K) ' G(i) = G̃/Ci+1(G̃) ' G(i+1)/X(i+1) .

(2.11)

By comparing (2.10) and (2.11) we obtain R
(i+1)
n ⊆ X(i+1) , which yields

R
(i+1)
n = Y

(i+1)
n . Since X(i+1) ⊆ Z(G(i+1)) (where Z denotes the center

of the group), we can take away the “normally generated” condition in the

definition of R
(i+1)
n , i.e.,

R
(i+1)
n

def
= (νn([γ, x]), νn(gj)|x ∈ G(i+1), 2 6 j 6 s)G(i+1)

= 〈νn([γ, x]), νn(gj)|x ∈ G(i+1), 2 6 j 6 s〉G(i+1) ,

where 〈.〉 stands for topologically generated subgroup. We also recall that

Y
(i+1)
n is a Λ-submodule of X(i+1) (as the kernel of an homomorphism or be-

cause Y
(i+1)
n = Gal(L(i+1)/L(i)L

(i+1)
n ) is a normal subgroup of Gal(L(i+1)/k) ),

so we have the following equation between Λ-modules

νn,n+1Y
(i+1)
n = νn,n+1R

(i+1)
n = R

(i+1)
n+1 = Y

(i+1)
n+1 .

Our final hypothesis |X(i+1)
n | = |X(i+1)

n+1 | implies that the natural restriction

map X
(i+1)
n+1 � X

(i+1)
n is an isomorphism, hence Y

(i+1)
n+1 = Y

(i+1)
n as well.

Thus Nakayama’s Lemma yields Y
(i+1)
n = R

(i+1)
n = 0 and the theorem follows.

Remark 2.2.12. The hypothesis G
(i)
n ' G

(i)
n+1 (or R

(i)
n = R

(i)
n+1 which is the

same) is equivalent to those of the above theorem, i.e., |X(j)
n | = |X(j)

n+1| for
1 6 j 6 i.
In the same way it is easy to see that the condition G̃n ' G̃n+1 (or R̃n = R̃n+1)

is equivalent to requiring |X(j)
n | = |X(j)

n+1| for any j > 1.

Remark 2.2.13. We write here some of the facts that were showed during
the proof of Theorem 2.2.11 for emphasis (and for future reference). Observe

that if |X(j)
n | = |X(j)

n+1| for any 1 6 j 6 i then

(a) kmL
(j)
n = L

(j)
m , for all m > n and any 1 6 j 6 i;
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(b) KL
(j)
n = L(j) for any 1 6 j 6 i;

(c) Gal(L(j)/kn) ' Zp ×G(j)
n for any 1 6 j 6 i;

(d) L(j)/L
(j)
n is a Zp-extension of the number field L

(j)
n and, for any 1 6

j 6 i, the fixed field of Gal(L(j)/L
(j)
n )p

h

is L
(j)
n+h .

We end this section showing that Theorem 2.2.11 can be applied even with
slightly different hypotheses.

Proposition 2.2.14. Assume that |X(j)
n | = |X(j)

n+1| for all j = 1, ..., i− 1 and

that |A(L
(i−1)
n+1 )| = |A(L

(i−1)
n )|. Then X

(i)
n ' X(i)

n+1 .

Proof. Recall that X
(i)
n ' A(L

(i−1)
n )

G
(i−1)
n

, i.e., X
(i)
n is isomorphic to the max-

imal quotient of A(L
(i−1)
n ) on which G

(i−1)
n = Gal(L

(i−1)
n /kn) acts trivially

(see Proposition 2.1.3 (b) or [40, Lemma 1]), and, since L
(i−1)
n ∩ kn+1 = kn,

we have a surjection

G
(i−1)
n+1 = Gal(L

(i−1)
n+1 /kn+1)� Gal(kn+1L

(i−1)
n /kn+1)

∼−→ Gal(L(i−1)
n /kn) = G(i−1)

n

given by the natural restriction maps. The first hypothesis yields G
(i−1)
n+1 '

G
(i−1)
n , so A(L

(i−1)
n+1 ) ' A(L

(i−1)
n ), immediately implies X

(i)
n ' X(i)

n+1 .

2.3 On the p-ranks of X
(i)
n

Definition 2.3.1.

(a) For all i > 1 and n > 0, let λ̃
(i)
n := rkp(X

(i)
n ) = dimFp

(X
(i)
n /pX

(i)
n ).

(b) For every i > 1, let λ̃(i) := rkp(X
(i)) = dimFp

(X(i)/pX(i)).

The sequences {λ̃(i)
n }n∈N0

are increasing (see Proposition 2.1.4 or [40, Lemma
2]) and their behaviour only depends on µ(K/k) (in particular it is indepen-
dent from i).

Proposition 2.3.2.

(a) If µ(K/k) = 0, then {λ̃(i)
n }n∈N0 is bounded for any i > 1;

(b) if µ(K/k) > 0, then {λ̃(i)
n }n∈N0

diverges for any i > 1.
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Proof. (a) If µ(K/k) = 0, then X(i) is a finitely generated Zp-module for any
i (see Proposition 2.1.6 or [40, Proposition 1]). Then, for all n ∈ N0 , we have

λ̃
(i)
n 6 λ̃(i) which is finite.

(b) Assume that for some i > 1 we have λ̃
(i)
n 6 t for all n ∈ N. Now

lim
←−
n

X(i)
n /pX(i)

n = X(i)/pX(i)

and it is clear that λ̃(i) 6 t. This means that X(i)/Φ(X(i)) is generated by
(at most) t elements as an Fp-vectorial space (where Φ(X(i)) is the Frattini
subgroup of X(i) ). Thus, by Burnside Basis Theorem, these t elements gen-
erate X(i) as a topological group, or, which is the same, as a Zp-module. This
contradicts Proposition 2.1.9 (i.e., [40, Proposition 2]).

The stabilization of p-ranks turns out to be much more complicated to obtain.
Up to now we can only prove it with rather stringent hypotheses similar to
those of Theorem 2.2.11 (in particular they yield λ(i) = 0 for any i).

Theorem 2.3.3. Suppose that |X(j)
n | = |X(j)

n+1| for all 1 6 j 6 i, and λ̃
(i+1)
n =

λ̃
(i+1)
n+1 . Then λ̃

(i+1)
n = λ̃

(i+1)
n+2 = ... = λ̃(i+1) .

Proof. In the proof of Theorem 2.2.11 we have already seen that the hypoth-
esis on the orders yield

R(i+1)
n ⊆ X(i+1) if and only if R(i)

n = 0 .

We give here a different proof of it, using only group theory. Let π : G(i+1) →
G(i) be the natural projection and observe that

R
(i)
n = π(R

(i+1)
n ) = (R

(i+1)
n · C(i+1)(G

(i+1)))/C(i+1)(G
(i+1))

' R(i+1)
n /(R

(i+1)
n ∩ C(i+1)(G

(i+1))) = R
(i+1)
n /(R

(i+1)
n ∩X(i+1)) .

Thus the claim is clear.
Now the first hypothesis yields R

(i+1)
n ⊆ X(i+1), so Y

(i+1)
m = νn,mY

(i+1)
n for

all m ≥ n. Moreover, from the hypothesis λ̃
(i+1)
n = λ̃

(i+1)
n+1 , we have

X(i+1)/(Y (i+1)
n + pX(i+1)) = X(i+1)/(νn,n+1Y

(i+1)
n + pX(i+1)) .

Then Y
(i+1)
n + pX(i+1) = νn,n+1Y

(i+1)
n + pX(i+1) and, moding out pX(i+1),

we obtain

(Y (i+1)
n + pX(i+1))/pX(i+1) = νn,n+1(Y (i+1)

n + pX(i+1)/pX(i+1)) .

Nakayama’s Lemma yields

Y (i+1)
n + pX(i+1)/pX(i+1) = 0 , i.e., Y (i+1)

n ⊆ pX(i+1) .

Thus λ̃
(i+1)
n = λ̃(i+1) .
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Remark 2.3.4. Note that assuming |X(1)
n | = |X(1)

n+1| (as in the above theo-

rem) yields λ(1) = 0 and, consequently, λ(j) = 0 for all j > 1 (as mentioned
before, see Proposition 2.1.8 or [40, Proposition 3]). Of course it is still pos-

sible for λ̃(j) to be nonzero even if the applications of the theorem might be
limited.

As seen in Proposition 2.2.14, if we replace the hypothesis λ̃
(i+1)
n = λ̃

(i+1)
n+1

of the previous theorem with the corresponding one on class groups, i.e.,

rkp(A(L
(i)
n+1)) = rkp(A(L

(i)
n )), then the claim remains true.

Proposition 2.3.5. Assume that rkp(A(L
(i)
n+1)) = rkp(A(L

(i)
n )) and that

|X(j)
n | = |X(j)

n+1| for all 1 6 j 6 i. Then λ̃
(i+1)
n = λ̃

(i+1)
n+2 = ... = λ̃(i+1) .

Proof. Put A
(i+1)
n+1 := A(L

(i)
n+1) and let

B
(i+1)
n+1 := 〈 ag−1 : g ∈ G(i)

n+1, a ∈ A
(i+1)
n+1 〉 ⊆ A

(i+1)
n+1 .

The hypothesis on the orders implies that Gal(L
(i)
n+1/L

(i)
n ) ' Gal(Kn+1/kn)

(see also Remark 2.2.13.(d) ). Thus the action of g commutes with the norm

N
L

(i)
n+1/L

(i)
n

and one gets N
L

(i)
n+1/L

(i)
n

(B
(i+1)
n+1 ) = B

(i+1)
n . Hence

N
L

(i)
n+1/L

(i)
n

(pA
(i+1)
n+1 +B

(i+1)
n+1 ) = pA(i+1)

n +B(i+1)
n .

By the hypothesis on ranks, the norm map N
L

(i)
n+1/L

(i)
n

: A
(i+1)
n+1 → A

(i+1)
n

induces an isomorphism

N : A
(i+1)
n+1 /pA

(i+1)
n+1

∼−→ A(i+1)
n /pA(i+1)

n ,

which induces the following one

A
(i+1)
n+1 /(pA

(i+1)
n+1 +B

(i+1)
n+1 )

∼−→ A(i+1)
n /(pA(i+1)

n +B(i+1)
n ) .

But A
(i+1)
n /(pA

(i+1)
n + B

(i+1)
n ) is canonically isomorphic to X

(i+1)
n /pX

(i+1)
n ,

so we have λ̃
(i+1)
n = λ̃

(i+1)
n+1 and we can apply Theorem 2.3.3.



Chapter 3

Stabilization and
capitulation for
Zp-extensions

In this chapter we look for stabilization properties for the capitulation kernels
(and many more relevant groups in Iwasawa Theory) and for connections
between them and the finiteness of the Iwasawa module X := X(K/k). The
notations are the ones established in the Chapter 1: since the extension K/k
is fixed throughout the chapter we usually omit the reference to K/k in the
Iwasawa invariants or in Iwasawa modules.

3.1 Introduction

We recall the definitions given in Chapter 1 for the main objects of this chap-
ter.

Definition 3.1.1. We denote by Hn,m the kernel of the inclusion map in,m
and by Hn the kernel of in , i.e., Hn =

⋃
m>nHn,m . We will call Hn,m the

relative capitulation kernel and Hn the absolute capitulation kernel.

We first focus our attention over the chains of absolute and relative capitula-
tion kernels

Hn0 , Hn0+1, Hn0+2, . . . (3.1)

and
Hn,n+1 ⊆ Hn,n+2 ⊆ Hn,n+3 ⊆ . . . . (3.2)

The first goal is to find an answer to following question: are there any stabi-
lization properties for the sequence of the orders or for the one of the p-ranks

33
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given from (3.1) and (3.2) ?
In Section 3.2, after some preliminary material, we provide statements like
the ones of Theorems 1.4.1 and 1.4.2 for the modules Hn (see Theorem 3.2.9)
and Hn,m. The starting point is the following description of the relative ca-
pitulation kernel Hn,m in terms of the maximal finite submodule D of X(K)
(inspired by [38, Proposition])

Theorem 3.1.2. For n � 0, Hn,m ' Ker{νn,m : D/(Yn ∩ D) → D/(Ym ∩
D) }.

In Section 3.3 we will consider some generalization of the following problem
(often referred to as the capitulation delay): if kρ(n) is the exact capitulation
layer for Hn, when does Hn+1 capitulate ? (For a precise definition of ρ(n)
see Definition 3.2.10.) A more general problem is to get a bound for the
difference ρ(m) − ρ(n) which is explicitly computable, for instance, in terms
of |Hn,m|, |An|, |Am|, or similar quantities. We will obtain precise values
for this delay of capitulation, which is interesting also from a computational
point of view as mentioned before.
In Section 3.3.1 we provide some explicit computations for all the modules (or
parameters) defined in the previous sections. The computations rely on the
knowledge of some specific modules D: there are results by Ozaki (see [39]
and [41]) which lead us to believe that there exist Zp-extensions K/k with
Iwasawa module isomorphic to the D’s we use (indeed to any D one can imag-
ine), but we did not pursue here the issue of finding explicitly the extension K.

We have already seen in Chapter 1 that capitulation, stabilization and the
finiteness of the Iwasawa module X(K/k) are closely tied (see Theorem 1.4.1,
Proposition 1.5.1, Theorem 1.5.2, and Theorem 1.5.5): in the last section
of this chapter we will investigate other conditions for the vanishing of the
Iwasawa invariants µ(K/k) and λ(K/k) involving the modules Hn , Hn,m

Im(in,m) , Coker(in,m) and Ker(Nm,n). For example, in Theorem 3.4.2 we
prove

Theorem 3.1.3. Assume that all primes which ramify in K/k are totally
ramified. Then the following are equivalent:

(a) X(K) is finite;

(b) Ker(Nn,n−1) ⊆ Hn for some n > 1;

(c) Hn + Ker(Nn,1) = An for some n > 1;

(d) Im(in−1,n) +Hn = An for some n > 1;

(e) Im(in,m) = Im(in−1,m) for some m > n > 1;

(f) rkp(Hn) = rkp(An) = rkp(An+1) for some n > 0.
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A similar statement for the p-ranks (leading to µ(K/k) = 0) is given in The-
orem 3.4.4.

3.1.1 Preliminaries

We gather here a few well known statements in Iwasawa Theory which will
be useful in the next sections.

Remark 3.1.4. We recall a general fact on modules over a commutative ring
R. Let N ⊆M be R-modules such that |M/N | is finite and let a = (a1, ..., au)
be a finitely generated ideal of R. Then using induction on u, it is easy to see
that |aM/aN | 6 |M/N |u . Note, furthermore, that the given bound is sharp:
take for example M = R = Λ and N = a = (p, T ).

Proposition 3.1.5. Let ϕ : M → N be a pseudo-isomorphism of Λ-modules,
a an ideal in Λ, τ a nonzero element of Λ and M [τ ] (resp. N [τ ] ) the kernel
of τ : M → M (resp. of τ : N → N). Then we have canonical pseudo-
isomorphisms

(a) ϕ|M [τ ] : M [τ ]→ N [τ ];

(b) ϕ|aM : aM → aN ;

(c) ϕ : M/τM → N/τN (where ϕ is induced by ϕ).

Proof. For (a) and (c) just consider the Snake Lemma sequences associated
to the diagrams

0 // M [τ ] //

��

M //

ϕ

��

τM

��

// 0

0 // N [τ ] // N // τN // 0

and

0 // τM //

ϕ

��

M //

ϕ

��

M/τM

ϕ

��

// 0

0 // τN // N // N/τN // 0

with easy estimates between the cardinalities of kernels and cokernels. For
(b) use also the previous remark.

Corollary 3.1.6. Let M be a finitely generated torsion Λ-module and τ a
nonzero element of Λ, then

gcd(τ, fM ) = 1⇔M [τ ] ∼Λ 0⇔M/τM ∼Λ 0 .
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Moreover if any of the previous condition holds then, for any submodule N of
M , the induced map τ : M/N → τM/τN has pseudo-null kernel.

Proof. The statements are obvious for an elementary torsion Λ-module E
(where one actually finds E[τ ] = 0 and E/N ' τE/τN). For a general
module M just consider a pseudo-isomorphism ϕ : M → E and apply the
previous proposition.

3.2 The maximal finite submodule

We now consider capitulation of ideals and study the maps in,m : An → Am
induced by inclusion (in particular their kernels denoted by Hn,m ). We pro-
vide a description in terms of D := D(X(K)) (the maximal finite submodule
of X(K) appearing in the sequence (1.9)) in the spirit of the results of [38]
for Hn := ∪m≥nHn,m .

Definition 3.2.1. We put

(a) for all m > n > 0, Dn,m := νn,mD;

(b) for all n > n0 , Dn := D ∩ Yn .

The following lemma shows that the Dn’s behave well with respect to the
usual Iwasawa relations.

Lemma 3.2.2. For all m > n > n0 , we have νn,mDn = Dm = Dn,m ∩ Ym .

Proof. The relation νn,mDn ⊆ Dm is trivial. For the converse take z ∈
Dm − νn,mDn , i.e., an y ∈ Yn such that z = νn,my ∈ D − νn,mDn and note
that y /∈ Dn yields y /∈ D. Since |X/νn,mX| 6 |X/Ym| = |Am| is finite and
X/νn,mX ∼Λ E(X)/νn,mE(X) (by Proposition 3.1.5.(c)), Corollary 3.1.6
shows that νn,m : E(X) → E(X) is injective. Hence the induced map νn,m :
X/D → X/D is injective as well: this contradicts our choice of y /∈ D with
νn,my ∈ D.
For the last equality, observe that

νn,mDn ⊆ νn,mYn = Ym =⇒ νn,mDn ⊆ νn,mD ∩ Ym ⊆ Dm ,

and we have already seen that the two extremities of the chain are equal.

Since νn,m ∈ (p, T ) (the maximal ideal of Λ), Nakayama’s Lemma and Lemma
3.2.2 show that, for n > n0 , Dn+1 6= Dn unless Dn = 0. Moreover, since D
is finite, there exists an m such that Dm = 0.

Definition 3.2.3. We put

(a) r := r(K/k) = min{z > n0 s.t. Dz = 0 } ;
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(b) r̃ := r̃(K/k) = min{z > n0 s.t. Dz ⊆ pD } .

Note that the isomorphisms X/Ym ' Am induce embeddings D/Dm ↪→ Am
for all m > n0 and, in particular, we can embed D into Ar .
Now we provide an isomorphism for the kernels Hn,m in terms of the finite
module D which leads to a description of Hn as in [38, Proposition].

Theorem 3.2.4. With the above notations we have

Hn,m ' Ker {νn,m : D/Dn −→ D/Dm } (3.3)

and
Hn ' D + Yn/Yn ' D/Dn (3.4)

for all m > n > n0. Moreover, if m > n > r(K/k), Hn,m ' D[pm−n] (where
D[pm−n] is the submodule of the pm−n-torsion elements of D).

Proof. From the well known commutative diagram

Am '
// X/Ym

An

in,m

OO

'
// X/Yn

νn,m

OO
(3.5)

we have that Hn,m ' Ker {νn,m : X/Yn −→ X/Ym }. Now consider the dia-
gram

D + Yn/Yn
� � //

ν(1)
n,m

��

X/Yn // //

νn,m

��

X/D + Yn

ν(2)
n,m

��
D + Ym/Ym

� � // X/Ym // // X/D + Ym .

Let α ∈ X be such that νn,mα ∈ D+ Ym , i.e., α (mod D+ Yn) ∈ Ker(ν
(2)
n,m).

Then there exist d ∈ D and ym ∈ Ym such that νn,mα = d + ym and, since
Ym = νm,nYn, νn,mα = d + νn,myn for some yn ∈ Yn . Therefore νn,m(α −
yn) = d and α − yn ∈ Ker{νn,m : X → X/D}. The injectivity of the map

νn,m : X/D → X/D yields α − yn ∈ D, i.e., α ∈ D + Yn , which means ν
(2)
n,m

is injective. Hence

Hn,m ' Ker(νn,m) ' Ker
{
ν(1)
n,m : D + Yn/Yn −→ D + Ym/Ym

}
and the isomorphism D/Di = D/D ∩ Yi ' D + Yi/Yi concludes the proof of
(3.3).
The second isomorphism follows easily.
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For the final statement use (1.6) to get νn,m = pm−n + g(T )Tνn (for some
g(T ) ∈ Λ). For m > n > r one has

TνnD = νn0,nνn0
TD ⊆ νn0,n(Yn0

∩D) = νn0,nDn0
= Dn = 0 .

Hence νn,m acts as multiplication by pm−n on D.

Remark 3.2.5. In [12] the authors treat capitulation in the case µ = 0. If we
consider X as a Zp-module, we can write X ' Zλp⊕TorZp

X and, if µ = 0, then
TorZp

X = D. The claims of [12, Theorem] follow easily from this observation
and from Theorem 3.2.4. In particular

(a) for any n > r, the norm map Nn : X → An induces an isomorphism
D ' Hn ;

(b) for any n > n0 , Hn is a direct summand of An ;

(c) A ' (Qp/Zp)λ .

Proof. (a) The map Nn is given by the projection X → X/Yn . Just note
that

(Nn)|D : D → D + Yn/Yn ' D/Dn = D

for all n > r.
(b) Let F ' Zλp be the free part of the Zp-module X and note that

An ' F + Yn/Yn ⊕D + Yn/Yn

for all n > n0 .
(c) Note that A ' lim

→
F + Yn/Yn and that (for n big enough) νm,n =

pm−nun,m for some unit un,m ∈ Λ∗ .

Corollary 3.2.6. For all m > n > n0 we have

(a) |Hn,m| =
|D| · |Dm|
|Dn| · |Dn,m|

;

(b) |Hn,m| = |D + Yn/Dn,m + Ym| ·
|An|
|Am|

;

(c) if D 6= 0 and n > n0 , then in : An → A is injective if and only if n = n0

and D is contained in Yn0
.

Proof. (a) Follows immediately from Theorem 3.2.4, noting that Im(νn,m) =
Dn,m/Dm .

(b) From Theorem 3.2.4 and the fact that Im(ν
(1)
n,m) = Dn,m + Ym/Ym , one

finds

|Hn,m| =
|D + Yn/Yn|
|Dn,m + Ym/Ym|

.
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Using the exact sequences

Yn/Ym ↪→ D + Yn/Ym � D + Yn/Yn , Yn/Ym ↪→ X/Ym � X/Yn

and
Dn,m + Ym/Ym ↪→ D + Yn/Ym � D + Yn/Dn,m + Ym

(recalling that |X/Yi| = |Ai| for any i > n0 ), one gets

|D + Yn/Yn|
|Dn,m + Ym/Ym|

=
|D + Yn/Ym|
|Yn/Ym|

· |D + Yn/Dn,m + Ym|
|D + Yn/Ym|

=
|D + Yn/Dn,m + Ym|

|Yn/Ym|
= |D + Yn/Dn,m + Ym| ·

|An|
|Am|

.

(c) By Theorem 3.2.4, Hn = 0 implies D ⊆ Yn ⊆ Yn0
, then D = Dn = Dn0

.
Now as remarked before Definition 3.2.3, since D is not zero, we obtain n = n0

and D ⊆ Yn0
. The converse is trivial.

Note that from the last assertion it follows that if D 6= 0 and n > n0 , then
there are at least p− 1 ideal classes in An which capitulate in some Am .

Corollary 3.2.7. For any Zp-extension K/k, the following are equivalent:

(a) X does not contain any nontrivial finite submodule;

(b) Hn0+1 = 0;

(c) in,m : An → Am are injective for all m > n > n0 .

Proof. (a)⇒ (c) follows from Theorem 3.2.4, (c)⇒ (b) is obvious and (b)⇒
(a) is given by Corollary 3.2.6.(c) .

An example for (a) is provided by the minus part of the Iwasawa module for
the Zp-cyclotomic extension of a CM field (see [48, Propositions 13.26 and
13.28]), similar results can be derived from [38].
The following corollary generalizes [10, Proposition].

Corollary 3.2.8. Let K/k be a Zp-extension, assume that An 6= 0 and in,m
is injective for some m > n > n0 . Then |Am| > pm−n|An|.

Proof. It suffices to prove that Yi ) Yi+1 for any n 6 i 6 m−1 or, equivalently,
Ym−1 6= 0. So we assume Ym−1 = 0 and look for a contradiction. Obviously

|An| = |in,m−1(An)| = |νn,m−1X/Ym−1| = |νn,m−1X|

and
|An| = |in,m(An)| = |νn,mX/Ym| = |νn,mX| .

This yields νm−1,mνn,m−1X = νn,m−1X and, by Nakayama’s Lemma,
νn,m−1X = 0. Then in,m is the zero map and this contradicts An 6= 0.
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As customary for Iwasawa modules, the Hn’s verify some stabilization results.

Theorem 3.2.9. Assume n > n0 :

(a) if |Hn|=|Hn+1| , then Hm ' Hn ' D for all m > n. In particular

|Hn0
| < |Hn0+1| < ... < |Hr| = |Hr+1| = ... = |D| ; (3.6)

(b) if rkp(Hn) = rkp(Hn+1) , then rkp(Hm) = rkp(Hn) = rkp(D) for all
m > n. In particular

rkp(Hn0
) < rkp(Hn0+1) < ... < rkp(Hr̃) = rkp(Hr̃+1) = ... = rkp(D) .

(3.7)

Proof. (a) Since Hn ' D/Dn , the hypothesis yields Dn = Dn+1 = νn,n+1Dn

(by Lemma 3.2.2). Nakayama’s Lemma implies Dn = 0, so, for any m > n,
Dm = 0 and Hm ' Hn ' D. The cardinalities in (3.6) follow from the
definition of r.
(b) The hypothesis yields D/Dn + pD ' D/Dn+1 + pD, i.e., Dn + pD =
Dn+1 + pD. Therefore Dn + pD/pD = νn,n+1(Dn + pD/pD) and, from
Nakayama’s Lemma, Dn+pD/pD = 0. Thus, for any m > n, Dm ⊆ Dn ⊆ pD
and D/Dm + pD = D/Dn + pD = D/pD, which is the claim.

From Theorem 3.2.9, we have r = min{z > n0 s.t. Hz = Hz+1 } and
r̃ := min{z > n0 s.t. rkp(Hz) = rkp(Hz+1)} , so these two parameters in-
dicate the stabilization of orders and p-ranks of the Hn’s (even if they were at
first expressed in terms of Dn’s). Motivated by this, we define other param-
eters dealing with the stabilization of the Hn,m’s and the delay of capitulation.

Definition 3.2.10. We put

(a) for any n > 0, h(n) := min{z > n s.t. Dn,z = 0};

(b) for any n > n0, ρ(n) := min{z > n s.t. Hn,z = Hz } = min{z >
n s.t. Dn,z = Dz } .

(c) ρ̃(n) := min{z ≥ n s.t. rkp(Hn,z) = rkp(Hn) } .

Remarks 3.2.11.

1. For notational convenience we shall also use r1(n) := min{z > n s.t. Dz

= 0 } (for n > n0). Note that, by definition,

r1(n) =

{
r if n0 6 n 6 r
n if n > r

.
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2. Note that the different parameters verify some obvious relations which
basically derive from their definitions. In particular

n0 6 r̃ 6 r = r1(n0) 6 r1(n) , n0 6 n 6 r1(n) 6 h(n)

and
n0 6 n 6 ρ̃(n) 6 ρ(n) 6 h(n)

(the last one follows from Dh(n) = νn,h(n)Dn ⊆ Dn,h(n) = 0).

3. From Theorem 3.2.4 and the definition of ρ, for any m > ρ(n), one has

|Hn| = |Hn,m| =
|D|
|Dn|

and rkp(Hn) = rkp(Hn,m) = rkp(D/Dn).

The following propositions (and their corollaries) emphasize similarities (and
differences) between ρ(n) and h(n).

Proposition 3.2.12. Let |D| = pδ with δ ∈ N and let pε ∈ N be the exponent
of D (i.e., the minimum integer for which pεD = 0). Then

(a) for every n > 0, we have h(n) − n 6 δ and, for every n > δ − 1,
h(n)− n = ε;

(b) h(n)− n = ε holds, also, for all n > r.

Proof. (a) The first statement follows from Nakayama’s Lemma: indeed, for
any n > 0, νn,n+δD = 0 (since νn,mP = P if and only if P = 0, the order of
a nontrivial module must decrease of a factor at least p at any step, i.e., D
vanishes after at most δ steps).
For the second statement, consider the action of Γ = Gal(K/k) over D and

let p∆ be the cardinality of the greatest orbit in D. Then Γp
∆

acts trivially
on D, so, for all n > δ − 1 > ∆, the element νn,n+1 = 1 + γp

n

+ ...+ γ(p−1)pn

acts on D as multiplication by p. This implies νn,n+ε−1D = pε−1D 6= 0 and
νn,n+εD = pεD = 0, i.e., h(n) = n+ ε.
(b) As seen in the proof of Theorem 3.2.4, for m > r, νm,m+1D = pD. This
yields h(n) = n+ ε.

Corollary 3.2.13. We have:

(a) for all n > n0 ,

1 = |Hn,n| 6 |Hn,n+1| 6 |Hn,n+2| 6 · · · 6 |Hn,r1(n)|
= |Hn,r1(n)| < |Hn,r1(n)+1| < |Hn,r1(n)+2| < · · · < |Hn,h(n)|
= |Hn,h(n)| = |Hn,h(n)+1| = |Hn,h(n)+2| = · · · = |D/Dn| ;

(b) if n > r, |Hn,m| = |D|
|Dn,m| for all m > n and

1 < |Hn,n+1| < · · · < |Hn,h(n)| = |Hn,h(n)+1| = · · · = |D| .
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Proof. Everything follows immediately from Corollary 3.2.6. For the central
line of (a) we just remark that, since νn,r1(n)+jDn = Dr1(n)+j = 0 for any
j > 0, one has

|Hn,r1(n)+j | =
|D|

|Dn| · |Dn,r1(n)+j |
.

Moreover, by Lemma 3.2.2 and Nakayama’s Lemma, the Dn,r1(n)+j ’s stabilize
(i.e., become 0) only at the level Dn,h(n) .

Proposition 3.2.14.

(a) If n > n0 and r1(n) 6= h(n), then ρ(n) = h(n). Moreover if n > r, then
ρ(n) = h(n) = n+ ε.

(b) For all n > n0 , ρ(n)− n 6 δ.

(c) Assume D 6= 0 and r > δ: moreover assume that r = n0 + 1 and
D * Yn0 , or that r > n0 + 1. Then ρ(r − 1)− (r − 1) = ε.

(d) For all n ≥ n0 we have

ρ̃(n)

 = n+ 1 if n ≥ r and D 6= 0
≤ r + 1 if r̃ ≤ n < r
≤ r if n < r̃

.

Proof. (a) If r1(n) 6= h(n), then the central line in Corollary 3.2.13.(a) is
nontrivial. Hence Hn,h(n) = Hn and h(n) is the minimal index with this
property, i.e., h(n) = ρ(n).
If n > r, then, by definition, Dm = νr,mDr = 0. Hence 0 = Dm = Dn,m if
and only if m > h(n) and, by the minimality of ρ(n), one gets ρ(n) = h(n)
(in particular ρ(n) = n+ ε in this case).
(b) Follows easily from (a) and Proposition 3.2.12.
(c) By Proposition 3.2.12.(a) we have h(r− 1)− (r− 1) = ε, so, if h(r− 1) >
r1(r−1) = r, the thesis follows from part (a). If h(r−1) = r1(r−1) = r, then
the additional hypotheses ensure that Hr−1 6= 0 = Hr−1,r−1 (see Corollary
3.2.6.(c)). Thus ρ(r − 1) = h(r − 1) = r and the statement follows (this can
only happen when ε = 1).
(d) Observe that, if n ≥ r, we have Dn = 0 and νn,m acts as pm−n on D from
(1.6). Hence ρ̃(n) = n+ 1. The other cases are clear.

Remarks 3.2.15.

1. If we assume that |An+1| = |An| for some n > n0 then, Yn = 0 and
X = D ' An . Therefore Dn = 0 and r 6 n. Thus, for every m > n,
ρ(m) = m+ ε, i.e., Am capitulates in Am+ε but not in Am+ε−1.



CHAPTER 3. STABILIZATION AND CAPITULATION 43

2. We emphasize the difference between the layers n0 and n0 + 1 (already
showed by Corollary 3.2.6.(c), we will see similar phenomenons in Sec-
tion 3.4): if D 6= 0, then for every n > n0 there exists a non zero class of
ideal in An which capitulates in A, while we might have no capitulation
from An0 to A. It is also easy to find examples in which A0 = 0 and
A1 does not capitulate. Just take k = Q(

√
m) an imaginary quadratic

field, a prime p which splits in k and does not divide the class number
of k and K = kcyc the cyclotomic Zp-extension of k. Then A1 does not
capitulate because λ(kcyc/k) > 1 (see Theorem 3.4.2).

From Proposition 3.2.14 we obtain equations analogous to those in Corollary
3.2.13 (a) and (b). Now, as a further application of the theory developed
until here, we can consider the sequences of the Hn,m’s but fixing m and
letting the lower index vary.

Proposition 3.2.16. Let m > n0 be a fixed integer.

(a) If m > r + ε, we have

|Hn0,m| < ... < |Hr,m| = ... = |Hm−ε,m| > ... > |Hm,m| = 1 .

(b) If r < m < r+ ε, let n1 := max({n0} ∪ {q > n0 : ρ(q) 6 m}). Then we
have

|Hn0,m| < ... < |Hn1,m| and |Hr,m| > ... > |Hm,m| = 1 .

Proof. (a) If n is contained in {n0, ...,m− ε} then, by Proposition 3.2.14(b),
we have ρ(n) 6 ρ(m − ε) = m and this means Hn,m = Hn for all n0 6
n 6 m − ε. Hence, from Theorem 3.2.9(a), we obtain the first piece of our
equation. The second part follows from the last statement of Theorem 3.2.4.
(b) Note that, essentially by definition, n1 < r. If n ∈ {n0, ..., n1 − 1}, we
have ρ(n+ 1) 6 ρ(n1) 6 m. This means Hn+1,m = Hn+1 and, from Theorem
3.2.9(a), we obtain the first equation. The second one follows from Theorem
3.2.4 as before.

In the remaining case, i.e., m 6 r(K/k), we do not have a precise statement
(except for the obvious one |Hn0,m| < ... < |Hn1,m| as in the previous propo-
sition, part (b)). As far as the p-ranks are concerned, we have the following
corollary to Proposition 3.2.14.

Corollary 3.2.17.

(a) If D 6= 0 and m > r + 1, we have

0 6 rkp(Hn0,m) < ... < rkp(Hr̃,m) = ...

... = rkp(Hr,m) = ... = rkp(Hm−1,m) > rkp(Hm,m) = 0 .
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(b) If m 6 r, let n2 := max({n0}∪ {n : n0 6 n 6 r̃(K/k) and ρ(n) 6 m}).
Then

rkp(Hn0,m) < ... < rkp(Hn2,m) .

Proof. The equation in (a) follows from Proposition 3.2.14 and Theorem
3.2.9(b). The one in (b) is clear from the same Theorem.

Before looking at some explicit examples we recall that, sinceNm,n◦ in,m is the
multiplication by pm−n map, one has exp(Hn,m) 6 pm−n for all m > n > 0.
For example, if n > r, then Hn,n+1 is a non-trivial elementary p-group.

Example 3.2.18. By [39, Theorem 1], for any finite Zp[[Γ]]-module D there
exist a field k whose cyclotomic Zp-extension provides X(kcyc) ' D. Take
D ' Λ/(pu, T ): then there exists u0 such that 0 6 u0 6 u and D0 = pu0D.
A little calculation shows that

|Hn,m| =


1 if 0 6 n 6 m 6 u− u0

pm−u+u0 if n 6 u− u0 and u− u0 < m 6 n+ u
pm−n if n > u− u0 and n 6 m 6 n+ u
pu if n > u− u0 and m > n+ u .

Furthermore we can easily see that our parameters take the following values:

r = u− u0 , r̃ = 0 and, for any n > 0, r1(n) = max{n, u− u0} ,

h(n) = ρ(n) = n+ u and ρ̃(n) = max{n+ 1, u− u0 + 1} .

In particular, if n 6 u− u0 , the equation of Corollary 3.2.13 becomes

1 = |Hn,n| = ... = |Hn,u−u0
| < ... < |Hn,n+u| = ... = |Hn| .

Example 3.2.19. Let v > 1 and D ' Λ/(p, T v). As in the previous example,
there exist a number field k whose cyclotomic Zp-extension providesX(kcyc) '
D and, starting from some large layer, we can assume Y0 = 0.
With a little computation one can show that, for all m > n > 0, we have

|Hn,m| =
{
pp

m−pn if m 6 blogp(v + pn − 1)c
pv if m > blogp(v + pn − 1)c

and

rkp(Hn,m) =

{
pm − pn if m 6 blogp(v + pn − 1)c
v if m > blogp(v + pn − 1)c ,

where bac is the floor of a ∈ R (i.e., the largest integer less than or equal to
a). Our parameters take the following values:

r = 0 , r̃ = 0 and, for any n > 0, r1(n) = n , h(n) = blogp(v+ pn− 1)c+ 1 ,

ρ(n) = blogp(v + pn − 1)c+ 1 and ρ̃(n) = blogp(v + pn − 1)c+ 1 .
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As a final remark, note that if we define

α := max{i ∈ N0 : v > pi+1 − pi}
= max{i ∈ N0 : v + pi > pi+1 + 1}
= max{i ∈ N0 : blogp(v + pi − 1)c > i}

,

then we have that |Hn,n+1| = pv if (and only if) n > α + 1. In particular
h(n) = ρ(n) = n+ 1 when n > α+ 1.

3.2.1 Relation between rkp(Hn), λ̃n and X ∼Λ 0

We conclude this section with a theorem which relates rkp(Hn), λ̃n and
pseudo-nullity of X. To simplify notations we assume n0 = 0 even if this
is not a necessary condition.

Theorem 3.2.20. If rkp(Hn) = λ̃n = λ̃n+1 for some n > 0, then X is
pseudo-null.

Proof. Consider the map ψ := π ◦ i given by the composition

D + Yn
� � i // X

π // X/Yn + pX .

Since λ̃n = λ̃n+1 (i.e., Yn ⊆ pX, by Theorem 1.4.1), we have the equalities

Ker(ψ) = (D+Yn)∩(pX+Yn) = (D+Yn)∩pX = (D∩pX)+Yn = pD+Yn ,

where the last equality comes from Corollary 3.1.6 (indeed if px is an element
of D ∩ pX of order pβ , then x ∈ Ker{pβ+1 : X → X} which is finite, hence
contained in D, because µ(K/k) = 0). So ψ induces an embedding

D + Yn/pD + Yn
� � ψ // X/Yn + pX .

Now note that D+Yn/pD+Yn ' D/(D∩Yn) + pD ' Hn/pHn (by Theorem

3.2.4), hence the hypothesis rkp(Hn) = λ̃n implies that ψ is an isomorphism.
Then X = D + pX and eventually X = D.

3.3 Bounds for ρ(m)− ρ(n)

By definition we have that ideals in Hn capitulate exactly in Aρ(n) (i.e., ρ(n)−
n measures how much capitulation is delayed in the tower). We have given
estimates for ρ(n) − n in Proposition 3.2.14, now we are going to provide
bounds for the rate of growth of the sequence of the ρ(n)’s, i.e., for ρ(m)−ρ(n)
when m > n. By Proposition 3.2.14.(a) we know that ρ(n) = n + ε for any
n > r, hence for any m > n > r one has ρ(m) − ρ(n) = m − n. We now
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consider indices between n0 and r and, to avoid trivialities, we assume X 6= 0
(while D = 0 is permitted even if no proofs would be needed in that case).
We begin with some estimates on the growth of the parameter h(n) (defined
for all n > 0). The easiest one follows from h(m) 6 m + δ = m + logp(|D|)
(Proposition 3.2.12.(a)) which yields

h(m)− h(n) 6 logp(|D|) +m− n (3.8)

(ifD 6= 0 one can add a -1 on the right side). The following results improve this
bound and lead to an estimate for ρ(m) − ρ(n). They can all be formulated
(and proved) in terms of the Dn’s (which provide sharper bounds), but in
the main statements we prefer to use the An’s which are more suitable for
computations in explicit examples.

Proposition 3.3.1. For all m > n > 0 we have

h(m)− h(n) 6 logp

(
|D|
|Dn,m|

)
+ max{0,m− h(n)} . (3.9)

Proof. If h(n) > m, then νn,mDm,h(n) = νn,mνm,h(n)D = νn,h(n)D = 0.

Hence |Dm,h(n)| 6 |D|
|Dn,m| . Now note that νh(n),h(m)Dm,h(n) = Dm,h(m)

= 0, so, by Nakayama’s Lemma and the minimality of h(m), we have that
|Dm,h(n)| > ph(m)−h(n) . Therefore

h(m)− h(n) 6 logp

(
|D|
|Dn,m|

)
.

Ifm > h(n), thenDn,m = 0 and we write h(m)−h(n) = h(m)−m+(m−h(n)).
One has

h(m)− h(n) 6 logp(|D|) +m− h(n) = logp

(
|D|
|Dn,m|

)
+m− h(n) .

Note that if h(n) > m, then the last term in (3.9) (i.e., max{0,m − h(n)} )
disappears: this certainly happens, for example, when m = n+ 1.

Theorem 3.3.2. For all m > n > n0 we have

h(m)− h(n) 6 logp

(
|Am|
|An|

)
+ logp(|Hn,m|) +m− n . (3.10)

and

h(m)− h(n) 6 logp

(
|Am|
|An|

)
+

m−n∑
i=1

logp(|Hn+i−1,n+i|) . (3.11)
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Proof. The first equation follows from Proposition 3.3.1 and Corollary 3.2.6.(a),
which yields

h(m)−h(n) 6 logp

(
|D|
|Dn,m|

)
+m−n = logp

(
|Dn|
|Dm|

)
+logp(|Hn,m|)+m−n .

Now note that we can embed Dn/Dm into Yn/Ym and (as seen in the proof

of Corollary 3.2.6.(b)) we have |Yn/Ym| = |Am|
|An| .

If D 6= 0, take any i ∈ {1, . . . ,m− n} and use (3.9) to get

h(n+ i)− h(n+ i− 1) 6 logp

(
|D|

|Dn+i−1,n+i|

)
(note that if D 6= 0 then h(n+ i− 1) > n+ i). Summing up one finds

h(m)− h(n) 6
m−n∑
i=1

logp

(
|D|

|Dn+i−1,n+i|

)
= logp

(
|D|m−n∏m−n

i=1 |Dn+i−1,n+i|

)
.

Using again Corollary 3.2.6.(a), we have

logp

(
|D|m−n∏m−n

i=1 |Dn+i−1,n+i|

)
= logp

(
m−n∏
i=1

|Hn+i−1,n+i| ·
|Dn+i−1|
|Dn+i|

)

= logp

(
|Dn|
|Dm|

)
+ logp

(
m−n∏
i=1

|Hn+i−1,n+i|

)

= logp

(
|Dn|
|Dm|

)
+

m−n∑
i=1

logp(|Hn+i−1,n+i|) .

We have already seen that |Dn/Dm| 6 |Am|
|An| , so the proof is complete.

Now we use the previous results to achieve the bounds for ρ(m)− ρ(n) when
m > n > n0 . The easiest one, coming from (3.8), is

ρ(m)− ρ(n) 6 δ +m− n . (3.12)

Corollary 3.3.3. For all m > n > n0 , we have

ρ(m)− ρ(n) 6 logp

(
|D|
|Dn,m|

)
+ max{0,m− h(n)}+ (h(n)− ρ(n)) , (3.13)

ρ(m)−ρ(n) 6 logp

(
|Am|
|An|

)
+logp(|Hn,m|)+m−n+max{0, r−ρ(n)} (3.14)

and

ρ(m)− ρ(n) 6 logp

(
|Am|
|An|

)
+

m−n∑
i=1

logp(|Hn+i−1,n+i|) + max{0, r − ρ(n)} .

(3.15)
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Proof. Just note that ρ(m)−ρ(n) 6 h(m)−ρ(n) = h(m)−h(n)+h(n)−ρ(n)
and use the bounds of Proposition 3.3.1 and Theorem 3.3.2.

We remark that the last two bounds are not completely independent from D,
since it implicitly appears in the constant r.

Remark 3.3.4. The bound given in (3.13) is always better or equal to the
one given in (3.12). The proof is an easy computation for which we have only
to distinguish the following four cases: (1) n > r, (2) n < r, m 6 h(n) and
m > r, (3) n < r and m > h(n), (4) m < r.

We prove (1) as an example: we have logp

(
|D|
|Dn,m|

)
6 δ, h(n) = ρ(n) = n+ ε

and max{0,m− h(n)} = max{0,m− n− ε}. Then

logp

(
|D|
|Dn,m|

)
+ max{0,m− h(n)}

+h(n)− ρ(n)6

{
δ +m− h(n) if m > h(n)
δ if m < h(n)

6 δ +m− n .

The proofs of the other cases are similar.

3.3.1 Sharpness of the bounds

Ozaki proved that for every prime p and every finite Λ-module D there ex-
ists a totally real field k whose cyclotomic Zp-extension has Iwasawa module
isomorphic to D (see [39, Theorem 1]) as we already mentioned in Examples
3.2.18 and 3.2.19. For an explicit computation of all our parameters we need
to know the module Y0 as well. There are easy cases in which Y0 = X or
Y0 = TX but they depend on the class group of k or on the number (and
behaviour) of the primes of k above p and Ozaki’s results give no informations
about them.
To speculate on the possible values of our parameters it seems reasonable to
assume the following (it can be considered as a conjecture generalizing Ozaki’s
results):

Assumption 3.3.5. Let Γ be a (multiplicative) topological group isomorphic
to Zp and let D0 ⊆ D be two finite Zp[[Γ]]-modules. Then there exists a
number field k and a Zp-extension K of k such that

• n0(K/k) = 0;

• the Iwasawa module X(K/k) is isomorphic to D;

• the submodule Y0(K/k) is isomorphic to D0 ,

via the isomorphism induced by Γ ' Gal(K/k).
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The following proposition provides a strategy (and the explicit modules) to
prove the sharpness of some of the previous bounds.

Proposition 3.3.6. Assume Assumption 3.3.5, then for any 0 6 r′ 6 h′ and
for every finite sequence of integers {ti}16i6h′ such that{

ti > 0 if 1 6 i 6 r′

tr′+1 > tr′+2 > . . . > th′ > 1
,

there exist a number field k and a Zp-extension K/k such that

n0(K/k) = 0 , r(K/k) = r′ , h(0) = h′ ,
|H0,i|
|H0,i−1|

= pti for all 1 6 i 6 h′

and
|H0,j | = p

∑h′
i=1 ti for any j > h′ .

Proof. Let

D =

r′⊕
i=1

(Λ/(pi, T ))ti ⊕ Λ/(pr
′
, T )⊕

h′−1⊕
i=r′+1

(Λ/(pi, T ))ti−ti+1 ⊕ (Λ/(ph
′
, T ))th′

and

D0 =

r′⊕
i=1

((p, T )/(pi, T ))ti ⊕ Λ/(pr
′
, T )

⊕
h−1⊕

i=r′+1

((pi−r
′
, T )/(pi, T ))ti−ti+1 ⊕ ((ph

′−r′ , T )/(ph
′
, T ))th′ .

There are four summands both in D and D0: the first one influences the part
|H0,0| 6 |H0,1| 6 . . . 6 |H0,r′ |, the second one is the same for D and D0 and it
guarantees that r(K/k) = r′ , the last two affect the part |H0,r′ | < |H0,r′+1| <
. . . < |H0,h′ |. The checking of the claim is just a matter of direct (even if a
bit involved) calculation.

Looking at Corollary 3.2.13, we see that the previous proposition shows that
every possibility for the part |Hn,n| 6 |Hn,n+1| 6 . . . 6 |Hn,r| (when n 6 r) is
realizable. In particular if |Hn,q| stabilizes at a certain index m, i.e., |Hn,m| =
|Hn,m+1| = . . . = |Hn,t| for some n 6 m < r, then this does not guarantee a
definitive stabilization, i.e., we can still have |Hn,t| < |Hn,t+1|.
Furthermore note that if h(n) = r + 1 for some n > n0 , then Proposition
3.3.6 can take the following form: every situation not explicitly prohibited by
Corollary 3.2.13 is realizable. Nevertheless Proposition 3.3.6 does not describe
all possible situations: for example a case in which tr′+1 < tr′+2 < . . . < th′

can be easily realized (a particular case is provided by Example 3.2.19), but
involves a more complicated (and not particularly enlightening) computation.
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3.4 Finiteness of the Iwasawa module

In this final section to simplify notations we assume the following

Assumption 3.4.1. All primes which ramify in K/k are totally ramified,
i.e., n0 = 0.

We remark that all statements can be proved for a general n0 with no relevant
modifications.

Theorem 3.4.2. The following are equivalent:

(a) λ(K/k) = µ(K/k) = 0;

(b) Hn = An for all n > 0;

(c) Hn = An for some n > 1;

(d) Ker(Nn,n−1) ⊆ Hn for some n > 1;

(e) Hn + Ker(Nn,1) = An for some n > 1;

(f) Im(in−1,n) +Hn = An for some n > 1;

(g) Im(in,m) = Im(in−1,m) for some m > n > 1;

(h) rkp(Hn) = λ̃n = λ̃n+1 for some n > 0.

Note that if (c), (d), (e) or (f) are true for a certain suitable n, then they
are true for all n > 0 (because of (b)).
We mention that one can find several other equivalences (mainly dealing with
inverse images of norms and inclusions, but see also the beginning of Sections
3.4.1 and 3.4.2), but we decided to include only kernels, cokernels and images
since they are more commonly used in the theory (see, e.g., [12] or [28]) and
they give a full account of the techniques used in the proofs.
We can include the level n0 = 0 if we add some hypotheses.

Theorem 3.4.3. Assume that one of the following holds:

(i) λ̃0 = λ̃1;

(ii) |AΓ
1 | = |A0|.

Then the following statements are equivalent:

(a) λ(K/k) = µ(K/k) = 0;

(c′) Hn = An for some n > 0;

(e′) Hn + Ker(Nn,0) = An for some n > 0.
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The final theorem only deals with the triviality of the µ-invariant which is
related to the stabilization of the p-ranks of kernels and cokernels of natural
maps.

Theorem 3.4.4. The following are equivalent:

(a) µ(K/k) = 0;

(b) λ̃n = λ̃n+1 for some n > 0;

(c) rkp(Ker(Nm,n)) = rkp(Ker(Nm+1,n)) for some m > n > 0;

(d) rkp(Ker(Nm,n)) = rkp(Ker(Nm,n−1)) for some m > n > 1;

(e) rkp(Coker(in,m)) = rkp(Coker(in,m+1)) for some m > n > 0;

(f) rkp(Coker(in,m)) = rkp(Coker(in−1,m)) for some m > n > 1;

(g) rkp(Coker(in,m)) = λ̃m for some m > n > 1.

Remark 3.4.5. If in k there is only one prime over p, then Y0 = TX and
this is equivalent to |AΓ

1 | = |A0| (see Proposition 3.4.6 below). In particular
[14, Theorem 1] and [10, Theorem 2] can be seen as a special cases of our
Proposition 3.4.6.

The proofs will be divided in various propositions whose results we regroup
in Section 3.4.3. Here we just give a generalization of [10, Theorem 2], useful
for Theorem 3.4.3.

Proposition 3.4.6. We have |AΓ
1 | = |A0| if and only if Y0 = TX. Moreover,

if |AΓ
1 | = |A0| and H0,n = A0 for some n > 1, then An ' X.

Proof. From the exact sequence

1 −→ AΓ
1 −→ A1

γ−1−→ A1 −→ (A1)Γ −→ 1

we have |AΓ
1 | = |(A1)Γ| = |X/Y1 + TX|. Hence |X/Y0| = |X/TX + Y1| which

yields Y0 = TX + Y1 . Therefore ν1(Y0/TX) = TX + Y1/TX = Y0/TX and,
by Nakayama’s Lemma, Y0/TX = 0. The converse is obvious.
To prove the last statement note that, from the hypothesis H0,n = A0 , we
have ν0,nX ⊆ Yn = ν0,nY0 = ν0,nTX. By Nakayama’s Lemma, we get
ν0,nX = 0, i.e., Yn = 0.

The last claim of the previous proposition is a particular case of a criterion
we shall show in Chapter 4 on the Γ-invariant subgroup of AΓ

n: more precisely
it can be seen as a corollary of Lemma 4.2.1.
Now, before going to the details of the proofs of the previous theorems, we
provide here an application of Theorem 3.4.2. For every n > 0, we define ln
as the minimum q ∈ N such that An can be generated by the prime divisors
(in kn ) of 2, ..., q.
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Theorem 3.4.7. Let k be a totally real number field for which Leopold’s Con-
jecture holds and let kcyc be the cyclotomic Zp-extension of k. Then Green-
berg’s Conjecture holds for k if and only if the sequence {ln}n∈N is bounded
as n→∞.

Proof. The “only if” direction is trivial. For the other implication, assume
that {ln}n∈N is bounded and let l be the maximum of the ln’s. Therefore, for
any n > 0, the group An is generated by the primes lying above 2, . . . , l. We
know that every prime of N is finitely decomposed in kcyc , hence all primes
6 l are totally ramified or unramified (and non-split) in kcyc/km0

for a large
enough m0.
Let now m > m0 and note that the subgroup of Am generated by the primes
of km which are inert in kcyc/km is obviously contained in Ker(Nm,1) (if
m� m0).
Let M(k) be the maximal abelian pro-p extension of k unramified outside

(primes dividing) p and recall that Leopold’s Conjecture implies k̃ = kcyc (see
the beginning of the Section 1.2). Thus class field theory yields [M(k) : kcyc]
is finite (see, for example, the proof of [48, Theorem 13.4]).
Let n > m and denote by Em,n, the maximal abelian extension of km con-
tained in Ln . Following the proof of [48, Lemma 13.14] it is easy to see that
(γp

m − 1)An = ((1 + T )p
m − 1)An corresponds, via the Artin map, to the

commutator subgroup of Gal(Ln/km), i.e., to Gal(Ln/Em,n). Thus for the
subgroup of An fixed by Γp

m

we have

|AΓpm

n | = [An : ((1 + T )p
m

− 1)An] = [Em,n : kn] .

Since Em,n ∩ kcyc = kn , by Galois theory we have [Em,n : kn] = [kcycEm,n :
kcyc] which is bounded by [M(k) : kcyc].

Therefore we have that |AΓpm

n | is bounded as n → ∞. Hence, if n � m,
the subgroup of Am generated by the primes of km which are ramified in
kcyc/km is contained in Hm . Since the subgroups generated by inert and

ramified primes less than or equal to l̃ generate the whole Am , we obtain
Am = Hm + Ker(Nm,1), i.e., condition (e) of Theorem 3.4.2 holds.

3.4.1 The kernel of the norm map

Since the extension K/k is totally ramified at some prime, the maps Nm,n
have trivial cokernels, hence we only focus on stabilization properties of their
kernels. The stabilization of the Ker(Nm,n)’s is easily seen to imply the finite-
ness of X (just like the stabilization of the An’s). For example (noting that
Ker(Nn,m) ' Yn/Ym , see diagram (3.16) below), Ker(Nm,n) = Ker(Nm,n−1)
is equivalent to Yn−1/Ym = Yn/Ym = νn−1,nYn−1/Ym , i.e., Yn−1 = Ym =
νn−1,mYn−1. Hence Yn−1 = 0 and X ' An−1 (and Ker(Nb,a) = 0 for all
b > a > n − 1). In a similar way Ker(Nm,n) = Ker(Nm+1,n) is equivalent to
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X ' Am (and yields Ker(Nb,n) = Ker(Nm,n) for all b > m). Hence (after
some results on the relation between Ker(Nm,n) , Hm and X) we focus on the
stabilization properties for the rkp(Ker(Nm,n))’s to emphasize their link with

the stabilization of the λ̃n’s.

Proposition 3.4.8. The following hold

(a) assume that Hn,m = An for some m > n > 1, then X ' Am.

(b) if Ker(Nn,n−1) ⊆ Hn,m for some m > n > 1, then X ' Am .

Proof. (a) Note that Hn,m = An implies H1,m = A1 , so we only consider the
case n = 1. From diagram (3.5) and the hypothesis one gets ν1,mX ⊆ Ym =
ν0,1ν1,mY0 ⊆ ν0,1ν1,mX. Nakayama’s Lemma yields ν1,mX = 0, thus Ym = 0
and X ' Am .
(b) The norm map fits in the following commutative diagram

Am '
//

Nm,n

��

Xm ' X/Ym
πm,n

��
An '

// Xn ' X/Yn

(3.16)

(where πm,n is the natural projection). So Ker(Nm,n) ' Yn/Ym and the
hypothesis yields Yn−1/Yn ⊆ Ker(νn,m) , i.e., νn,mYn−1 ⊆ Ym . Since Ym =
νn,mYn ⊆ νn,mYn−1 , we have νn,mYn−1 = Ym . Multiplying by νn−1,n , one
has Ym = νn−1,nYm , which yields Ym = 0 and X ' Am .

The following corollary improves the range of Proposition 3.2.14 for a bound
for the delay of capitulation.

Corollary 3.4.9. Assume that Ker(Nn,b) ⊆ Hn,m for some m > n > b > 0.
Then An = Hn,m+εb and, in particular, n + εn 6 ρ(n) 6 m + εb (pεj is the
exponent of Aj ).

Proof. As in Proposition 3.4.8.(b), we obtain νn,mYb = Ym = 0. By (1.6),
νm,m+εbX ⊆ pεbX + TνmX ⊆ Yb . Therefore νn,m+εbX = νn,mνm,m+εbX ⊆
νn,mYb = 0, i.e., in,m+εbAn = 0.
For the inequality n + εn 6 ρ(n) it suffices to note that An * Hn,n+εn−1 is
always true (e.g., because the map Nn+εn−1,n ◦ in,n+εn−1 = pεn−1 cannot be
0).

We recall that ρ(n) 6 m + εb does not mean An = Hn,m+εb but only Hn =
Hn,m+εb .
Having seen that Ker(Nm,n) ⊆ Hm is equivalent to the finiteness of X, we
now point out that the reverse inclusions hold if and only if D = 0.

Proposition 3.4.10. The following hold
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(a) if m > n > 1, then Hm ⊆ Ker(Nm,n) if and only if D = 0;

(b) if n > 0, then Hn ⊆ Ker(Nn,0) if and only if H0 = 0.

Proof. Note that Hm ⊆ Ker(Nm,n) ⇐⇒ D = Dn . Then (b) follows from
(3.4), while, in case (a), n > 1 yields D = Dn = Dn−1 and finally D = 0.

The following proposition can be compared with [38, Theorem].

Proposition 3.4.11. Assume pm−a−1An = 0 and Ker(Nm,n) ⊆ Im(ia,m) for
some m > a > n (if p = 2 we require a > n). Then An ' X.

Proof. From the inclusion Ker(Nm,n) ⊆ Im(ia,m) it follows that Yn ⊆ νa,mX
and the hypothesis yields pm−a−1X ⊆ Yn . Since, by (1.6), νa,m = pm−a +
qνaT for some q ∈ Λ, we have

Yn ⊆ pm−aX + qνn,aνnTX ⊆ pYn + qνn,aYn ⊆ (p, T )Yn

(note that if p 6= 2 the explicit formulas yields q ∈ (p, T ), whereas if p = 2 we
have νn,a ∈ (p, T ) from n < a). Now Nakayama’s Lemma yields Yn = 0.

Theorem 3.4.12. Assume that λ̃0 = λ̃1 .

(a) If H0,n = A0 for some n > 0, then X ' An ;

(b) if Hn + Ker(Nn,0) = An for some n > 0, then X is finite.

Proof. The hypothesis on p-ranks yields Y0 ⊆ pX.
(a) If H0,n = A0 , then νnX ⊆ Yn = νnY0, so we obtain νnX ⊆ pνnX. By
Nakayama’s Lemma we have νnX = 0 and Yn = νnY0 = 0 as well.
(b) If Hn+Ker(Nn,0) = An , then, by Theorem 3.2.4, (D+Yn/Yn)+Y0/Yn =
X/Yn . Hence X = D + Y0 ⊆ D + pX and X is contained in D, i.e., X is
pseudo-null.

Now we start considering results on p-ranks which appear in Theorem 3.4.4.

Theorem 3.4.13. Let K/k be as above.

(a) If rkp(Ker(Nn,l)) = rkp(Ker(Nn,l−1)) for some n > l > 1, then

rkp(Ker(Nn,l)) = rkp(Ker(Nm,l)) = rkp(Yl) and λ̃m = λ̃n for all m > n;

(b) if rkp(Ker(Nn,l)) = rkp(Ker(Nn+1,l)) for some n > l > 0, then

rkp(Ker(Nm,l)) = rkp(Ker(Nn,l)) = rkp(Yl) and λ̃m = λ̃n for all m > n.

Proof. (a) Since Ker{νl−1,l : Yl−1 → Yl/Yn } ⊇ νl,nYl−1 one has a surjective
map

Yl−1/Yn
π // Yl−1/νl,nYl−1

νl−1,l // Yl/Yn
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(where π is the natural projection). This map υ := νl−1,l ◦ π induces a
surjection υ : Yl−1/Yn + pYl−1 → Yl/Yn + pYl . By hypothesis

rkp(Yl−1/Yn) = rkp(Ker(Nn,l−1)) = rkp(Ker(Nn,l)) = rkp(Yl/Yn) ,

thus both υ and π : Yl−1/Yn + pYl−1 → Yl−1/νl,nYl−1 + pYl−1 are isomor-
phisms. This means that Yn+pYl−1 = νl,nYl−1 +pYl−1 and, if we consider the
quotient module M := νl,nYl−1 + pYl−1/pYl−1 , we have that νl−1,lM = M .
Nakayama’s Lemma yields M = 0 and νl,nYl−1 ⊆ pYl−1. Therefore Yn ⊆ pYl
and, in general, Ym ⊆ pYl ⊆ pX for any m > n. Hence

rkp(Ker(Nm,l)) = dimFp
(Yl/Ym + pYl) = dimFp

(Yl/pYl) = rkp(Yl)

and
λ̃m = dimFp

(X/Ym + pX) = dimFp
(X/pX)

for any m > n (note that, in particular, the last equality implies µ(K/k) = 0).
(b) From the hypothesis we have Yl/Yn+pYl ' Yl/Yn+1+pYl , then Yn+pYl =
Yn+1 + pYl . As in part (a), letting M := Yn + pYl/pYl , one gets M = 0, i.e.,
Yn ⊆ pYl and, in general, Ym ⊆ pYl ⊆ pX for any m > n.

Remark 3.4.14. As the proof shows, rkp(Ker(Nn,l)) = rkp(Ker(Nn,l−1))
is a stronger condition than rkp(Ker(Nn,l)) = rkp(Ker(Nn+1,l)). Moreover,

both statements of Theorem 3.4.13 cannot be reversed, i.e., if λ̃n = λ̃n+1 for
some n > l > 0, we cannot conclude that rkp(Ker(Nn,l)) = rkp(Ker(Nn+1,l)).
But with the following proposition we can give a bound for the delay of the
stabilization of the rkp(Ker(Nm,l))’s.

Proposition 3.4.15. Let n > 0 be such that λ̃n = λ̃n+1. Then, if l ∈
{0, 1, ..., n}, we have

rkp(Ker(Nm,l)) = rkp(Ker(Nn+εl,l))

for all m > n+ εl .

Proof. The hypothesis yields Yn ⊆ pX. Now exp(Al) = pεl and Proposition
1.3.6 imply νn,n+εlX ⊆ Yl . Thus

Yn+εl = νn,n+εlYn ⊆ νn,n+εlpX ⊆ pYl .

Since rkp(Ker(Nn+εl,l)) = rkp(Yl/Yn+εl + pYl), the statement follows.

3.4.2 The cokernel of the inclusion maps

We recall that Coker(in,m) ' X/νn,mX, hence Coker(in,m) = Coker(in,m+1)
yields νm,m+1νn,mX = νn,mX. Thus νn,mX = 0, Ym = 0 and X ' Am .
The same holds if Coker(in−1,m) = Coker(in,m). The stabilization of the
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rkp(Coker(in,m))’s are more interesting and are related with the stabilization

of the rkp(Ker(Nm,n))’s and of the λ̃n’s. First of all observe that, once n and
m are fixed, we have increasing sequences

rkp(Coker(in,m)) 6 rkp(Coker(in,m+1)) 6 rkp(Coker(in,m+2)) 6 . . . (3.17)

and

rkp(Coker(in,m)) 6 rkp(Coker(in−1,m)) 6 rkp(Coker(in−2,m)) 6 . . . . (3.18)

Theorem 3.4.16. Let m > n > 0 be such that rkp(Coker(in,m))
= rkp(Coker(in,m+1)) (or rkp(Coker(in,m)) = rkp(Coker(in−1,m)) which is
equivalent when n > 1). Then

(a) rkp(Coker(il,q)) = rkp(Coker(in,m)) for all l 6 n 6 m 6 q;

(b) λ̃q = λ̃m for all q > m.

Proof. (a) By hypothesis X/νn,mX + pX ' X/νn,m+1X + pX, hence pX +
νn,mX = pX+νn,m+1X and νm,m+1(νn,mX+pX/pX) = νn,m+1X+pX/pX.
By Nakayama’s Lemma νn,mX+pX/pX = 0, thus νn,mX ⊆ pX and νl,qX ⊆
pX for any l 6 n 6 m 6 q.
(b) Just note that νn,mX ⊆ pX implies Yq ⊆ Ym ⊆ pX for all q > m.

Remark 3.4.17. An immediate consequence of the previous theorem (resp.
of Theorem 3.4.13) and of Theorem 3.2.20 is that if rkp(Coker(ia,n)) (resp.
rkp(Ker(Nn,a)) ) stabilizes and is equal to rkp(Hn), then X is pseudo-null.

Note also that λ̃m = rkp(Coker(in,m) is easily seen to imply νn,mX ⊆ pX,
which is equivalent to the stabilization of rkp(Coker(in,m)).

Corollary 3.4.18. Assume that |AΓ
1 | = |A0| or A0 = 0. If rkp(Coker(in,m)) =

rkp(Coker(in,m+1)) for some m > n > 0, then {rkp(Ker(Nq,n))}q>n stabilizes
for q > m.

Proof. In the proof of Proposition 3.4.16(a), we obtained νn,mX ⊆ pX.
Adding one of the two hypothesis A0 = 0 or |AΓ

1 | = |A0|, this implies
Ym ⊆ pYn (see also the proof of the Proposition 3.4.6). The corollary im-
mediately follows (see, for example, the proof of Corollary 3.4.13).

This corollary is another example of the relation between Theorems 3.4.2 and
3.4.3 (note also that here conditions |AΓ

1 | = |A0| or A0 = 0 provide the same
outcome). Another characterization for the stabilization of (3.17) is given by
the following proposition.

Proposition 3.4.19. Let n > 1 (or alternatively n > 0 and |AΓ
1 | = |A0|). The

sequence (3.17) stabilizes if and only if Ωn := {q > n : rkp(Coker(in,q)) = λ̃q}
is nonempty. Moreover, in this case, the precise index of stabilization is the
minimum of Ωn .
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Proof. The proof is similar to those of Proposition 3.4.16 and its Corollary
3.4.18.
If rkp(Coker(in,m)) = rkp(Coker(in,m+1)), then we have νn,mX ⊆ pX (see the
proof of Proposition 3.4.16), hence Yn ⊆ pX which yields rkp(Coker(in,m)) =

λ̃m.
On the other hand if rkp(Coker(in,m)) = λ̃m for some m > n, then νn,mX +
pX = Ym + pX and applying Nakayama’s Lemma we obtain νn,mX ⊆ pX,
which implies rkp(Coker(in,m)) = rkp(Coker(in,m+1)).

We can give a bound for the delay of the stabilization of the rkp(Coker(in,m))
analogous to the one in Proposition 3.4.15 and the proof is similar to that.

Proposition 3.4.20. Let m > 0 such that λ̃m = λ̃m+1. Then, if n ∈
{0, 1, ...,m}, we have

rkp(Coker(in,q)) = rkp(Coker(in,m+εn))

for all q > m+ εn .

Assuming |AΓ
1 | = |A0| (resp. A0 = 0 but limiting ourselves to indices n > 1),

one has Y0 = TX (resp. Y0 = X) and it is easy to see that the stabiliza-
tion of the rkp(Coker(in,m))’s (i.e., νn,mX ⊆ pX) yields stabilization of the
rkp(Ker(Nm,n))’s (i.e., Ym ⊆ pYn ). To obtain a relation in the other direction
one needs to assume also the maximality of rkp(Ker(Nm,n)).

Theorem 3.4.21. Assume |AΓ
1 | = |A0| or A0 = 0 and n > 1.

If rkp(Ker(Nm,n)) = λ̃m , then rkp(Coker(in,q)) stabilizes for q > m.

Moreover λ̃q and rkp(Ker(Nq,n)) stabilize for q > m too.

Proof. We give a proof only in the case |AΓ
1 | = |A0| because the other one is

similar. Consider the map β := π ◦ νn ◦ T pictured as

X
T // Y0

νn // Yn
π // Yn/Ym + pYn

where π is the canonical projection. Since pX + νn,mX ⊆ ker(β), we can
consider the map

X/Ym + pX // X/νn,mX + pX
β // Yn/Ym + pYn

where β is induced by β and the first map is again a projection. By hypothesis
X/Ym+pX ' Yn/Ym+pYn , hence, from the middle term, we get Ym+pX =
νn,mX + pX. Moding out by pX one has

T (νn,mX + pX/pX) = νn,mY0 + pX/pX ⊇ Ym + pX/pX = νn,mX + pX/pX .
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Nakayama’s Lemma yields νn,mX + pX/pX = 0, i.e., νn,mX ⊆ pX and, in
general, νn,qX ⊆ pX for any q > m. This implies

rkp(Coker(in,q)) = dimFp(X/νn,qX + pX) = dimFp(X/pX)

for any q > m. The final statement follows from Theorem 3.4.16.

Corollary 3.4.22. In the setting of the previous theorem assume

rkp(Ker(Nm,n)) = rkp(Coker(ia,d))

for some 0 6 a 6 n 6 m 6 d with a 6= n or m 6= d. Then rkp(Coker(in,q)),

λ̃q and rkp(Ker(Nq,n)) stabilize for q > m.

Proof. The proof is similar to the one of the Theorem.

3.4.3 Proofs of the opening Theorems

Proof of Theorem 3.4.2. The equivalence (a)⇔ (b) is the content of [14, Propo-
sition 2].
(c)⇒ (a) and (d)⇒ (a) are given by Proposition 3.4.8.
For (e)⇒ (a) note that the hypothesis yields (D+ Yn/Yn) + Y1/Yn = X/Yn,
hence D + Y1 = X. Therefore ν1(X/D) = ν1X + D/D ⊇ Y1 + D/D = X/D
and Nakayama’s Lemma implies X = D.
For (f)⇒ (a) the situation is similar to the previous one: the hypothesis
yields (νn−1,nX/Yn)+(D+Yn/Yn) = X/Yn , hence D+νn−1,nX = X, which
again leads to X = D.
For (g)⇒ (a) the hypothesis yields νn−1,mX = νn,mX, hence νn,mX = 0,
Ym = 0 and X ' Am.
(h)⇒ (a) is given by Theorem 3.2.20.
All the remaining arrows are clear.

Proof of Theorem 3.4.3. By Theorem 3.4.2 we only need to check the case
n = 0.
If condition (i) holds, the implications (c′)⇒ (a) and (e′)⇒ (a) are given by
Theorem 3.4.12.
If condition (ii) holds, then (c′)⇒ (a) is Proposition 3.4.6. For (e′)⇒ (a)
the hypothesis yields (D+ Yn/Yn) + Y0/Yn = X/Yn , hence D+ Y0 = X. By
Proposition 3.4.6 one has Y0 = TX, which gives D + TX = X. Applying
Nakayama’s Lemma to X/D we find X = D.
The other implications are clear.

Proof of Theorem 3.4.4. The equivalence (a)⇔ (b) is well known (see e.g.
[48, Proposition 13.23]).
(c)⇒ (a) and (d)⇒ (a) follow from Theorem 3.4.13.
(e)⇒ (a) and (f)⇒ (a) follow from Theorem 3.4.16.
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The equivalence (a)⇔ (g) is given by Theorem 3.4.16 (and Remark 3.4.17).
The other implications are clear.



Chapter 4

Invariants and coinvariants
of class groups

In this chapter we consider two more modules associated with the class groups
An : namely their invariants and coinvariants with respect to the action of
the Iwasawa algebra. In Section 4.1 we will treat stabilization properties for
the sequences of the invariants and coinvariants of An and in Section 4.2 we
will give a criterion for the pseudo-nullity of X(K/k) based on the invariant
subgroup of the An’s.

4.1 Stabilization for invariants and coinvariants
of An

Let Bn := (An)Γ be the invariant subgroup of An with respect to the action
of Γ, i.e.,

Bn := {b ∈ An : γ(b) = b} .
Let IΓ be the augmentation ideal of Λ = Zp[[Γ]] (which correspond to TΛ in
the isomorphism (1.3)) and let Cn := (An)Γ be the coinvariants of An with
respect to the same action of Γ, i.e.,

Cn := An/IΓAn = An/{aγ−1 : a ∈ An} .

In terms of Galois groups Bn corresponds, through the Artin map, to
Gal(Ln/L

′
n), (where L′n is the smallest extension of kn contained in Ln such

that Γ/Γp
n

acts trivially on Gal(Ln/L
′
n) ), while Cn ' Gal(L′′n/kn) (where L′′n

is the maximal abelian extension of k contained in Ln ). Finally note that Bn
and Cn appear in the exact sequence

Bn ↪→ An
γ−1−→ An � Cn ,

60
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hence they have the same cardinality for every n.

Lemma 4.1.1. For all n > 0 we have

(a) Nn+1,n(Bn+1) ⊆ Bn and in,n+1(Bn) ⊆ Bn+1 ;

(b) Nn+1,n(IΓAn+1) ⊆ IΓAn and in,n+1(IΓAn) ⊆ IΓAn+1 .

Proof. All statement can be easily derived from the commutativity of the
following two diagrams

An+1
γ //

Nn+1,n

��

An+1

Nn+1,n

��

An
γ //

in+1,n

��

An

in+1,n

��
An

γ // An An+1
γ // An+1

Therefore inclusions and norms induce well defined maps on Bn and Cn as
well (we will still denote them with in,m and Nm,n ). We define

B∞(K/k) := lim
←
Bn , B(K/k) := lim

→
Bn ,

C∞(K/k) := lim
←
Cn and C(K/k) := lim

→
Cn .

As usual, since K/k will be fixed, we denote them only by B∞ , B, C∞ and C.
Furthermore let in : Bn → B and in : Cn → C be the natural maps induced
by inclusions.

Theorem 4.1.2. Let k be any number field and K/k a Zp-extension (in this
chapter we drop the previous hypothesis on n0(K/k) ). Then the following
statements are equivalent:

(a) B∞(K/k) ∼Λ 0;

(b) C(K/k) = 0;

(c) C∞(K/k) ∼Λ 0;

(d) |Bn| = |Bn+1| for some n > n0 ;

(e) |Cn| = |Cn+1| for some n > n0 ;

(f) in(Cn) = 0 for some n > n0 + 1;

(g) [L(K) ∩ k̃ : K] < ∞, i.e., the maximal unramified extension of K con-

tained in k̃ is finite over K;

(h) T - fX .
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Proof. First of all conditions (d) and (e) are obviously equivalent (because
|Bn| = |Cn| for any n), we put both just for completeness.
Since C∞ ' X/TX and B∞ = X[T ] (the T -torsion of X), the equivalences
(c)⇔(h) and (a)⇔(h) are obvious.
Now (c)⇒(e) is trivial and the converse will follow from Theorem 4.1.4(a).
The equivalence (f)⇔(e)⇔(b) is proved in Proposition 4.1.6.
We are left with condition (g), so we show here that (g)⇔(c). We recall some
notations: L is the maximal abelian unramified pro-p extension of K, L′′ is the
maximal abelian extension of k contained in L, M(k) is the maximal abelian

p-ramified pro-p extension of k and k̃ the compositum of all the Zp-extensions
of k. Consider the following diagram

L

L′′

ppppppppppppp
M(k)

k K k̃ ∩ L

qqqqqqqqqqqq
k̃

qqqqqqqqqqqq

and note that, since [M(k) : k̃ ] is finite by class field theory (see for example

the proof of [48, Theorem 13.4]), then [L′′ : k̃ ∩ L] = [k̃L′′ : k̃] is finite too.

We can conclude that [k̃ ∩ L : K] is finite if and only if [L′′ : K] = |C∞| is
finite.

In the previous theorem we eluded the condition B = 0: it is because it is
much stronger. We recover this condition in Theorem 4.2.2 from which we
derive the following equivalence

B = 0⇔ A = 0 .

Remark 4.1.3. Note that if s(K/k) = 1, then we have L′′m = kmL0 for all
m > 0 and |Cm| = |Gal(L′′m/km)| = |Gal(L0/k0)| 6 |A0| for all m > n0 .
Hence condition (e) of Theorem 4.1.2 holds.

Now we proceed with the results on the stabilization of the groups Bn and
Cn .

Theorem 4.1.4.

(a) If |Cn| = |Cn+1| for some n > n0, then Cm ' Cn ' C∞ for any m > n.

(b) If rkp(Cn) = rkp(Cn+1) for some n > n0, then rkp(Cm) = rkp(Cm) for
any m > n.
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Proof. (a) Since Cn = X/TX+Yn , the hypothesis |Cn| = |Cn+1| means that
TX + Yn = TX + Yn+1 . Considering the quotient module TX + Yn/TX we
have νn,n+1(TX + Yn/TX) = TX + Yn/TX and, from Nakayama’s Lemma,
Yn ⊆ TX. Thus the restriction map Gal(L′′/K)→ Gal(L′′n/kn) is an isomor-
phism. Similarly the norm maps Nm,n : Cm → Cn are isomorphisms for all
m > n.
(b) In this case rkp(Cn) = rkp(Cn+1) means (T, p)X + Yn = (T, p)X + Yn+1

and, considering the quotient module (T, p)X + Yn/(T, p)X, we obtain Yn ⊆
(T, p)X. Hence Ym ⊆ (T, p)X and consequently rkp(Cm) = rkp(Cn) for every
m > n.

Corollary 4.1.5. If |Bn| = |Bn+1| for some n > n0 , then B∞ is finite
and |Bm| = |Bn| > |B∞| for all m > n (equality holds if and only if X is
pseudo-null, see Proposition 4.1.7).

There are obvious relations between the groups we are considering.
If {rkp(An)}n>n0

stabilizes at certain index m, then {rkp(Cn)}n>n0
stabi-

lizes at most at m. Moreover if sequence {|An|}n>n0 stabilizes at m, then
{|Bn|}n>n0 stabilizes at most at m as well. More precisely: if Nn+1,n :
An+1 → An is an isomorphism for some n > n0 , then it maps isomorphically
Bn+1 onto Bn as well. On the contrary, if we assume that Bn+1 is isomorphic
to Bn , we cannot conclude anything unless we know that the isomorphism is
given by the norm map (i.e., if Nn+1,n : Bn+1 → Bn is an isomorphism, then
Nn+1,n : An+1 → An is an isomorphism too, see Remark 4.2.4).

Proposition 4.1.6.

(a) Assume in,m(Cn) = 0 for some m > n > n0 + 1. Then {|Cq|}q>n0

stabilizes for q > m.

(b) Assume |Cn| = |Cn+1| for some n > n0 and let pβ be the exponent of
Cn . Then Cm capitulates exactly in Cm+β for all m > n.

Proof. (a) If in,m(Cn) = 0, then νn,mX is contained in Ym+TX and νn,mX+
TX = Ym + TX. Consider the quotient module νn,mX + TX/TX and note
that

Ym + TX = νn−1,mYn−1 + TX ⊆ νn−1,mX + TX ⊆ νn,mX + TX .

Since n− 1 > n0, the above equality yields

νn−1,n(νn,mX + TX/TX) = νn,mX + TX/TX

and, by Nakayama’s Lemma, νn,mX ⊆ TX. But this imply Ym ⊆ TX: so we
have Cm ' Cm+1 and can apply Theorem 4.1.4.(a).
(b) As in the proof of Theorem 4.1.4.(a) we obtain Yn ⊆ TX. Since pβ

is the exponent of Cn, one has that pβX is contained in TX + Yn and so
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it is contained in TX as well. Recall that νm,m+β ≡ pβ (mod T ), hence
νm,m+βX ⊆ pβX + TX and finally νm,m+βX ⊆ TX. This means that Cm
capitulates in Cm+β .
For the last claim it is easy to show that if Cm capitulates in Cm+β−1 for
some m > n, then, with similar arguments, we have pβ−1Cm = 0, from which
pβ−1Cn = 0: a contradiction.

We end this section noting that |C∞| is always a bound for |B∞|: indeed if
B∞ is not pseudo-null, then they are both infinite. When B∞ is finite we
have the following statement.

Proposition 4.1.7. Let E be the elementary module associated with X and
denote by θ : X → E a pseudo-isomorphism between them. If B∞ is pseudo-
null, then

|C∞| = |B∞||E/TE| .

Proof. Recall that B∞ = X[T ] and C∞ = X/TX, so, in particular, |B∞| <
∞ implies T - fX . If X pseudo-null (i.e., E = 0) the statement follows
immediately from the exact sequence

X[T ] ↪→ X
T−→ X � X/TX .

Now assume X is not pseudo-null and consider the following diagram

0 // X[T ] //

θ′

��

X //

θ

��

TX

θ′′

��

// 0

0 // E[T ] // E // TE // 0

where θ′ and θ′′ are induced by θ and E[T ] = 0 (see Corollary 3.1.6). From
the Snake Lemma exact sequence we obtain

|X[T ]| = |Ker(θ)|
|Ker(θ′′)|

and |Coker(θ)| = |Coker(θ′′)| .

Now consider the “other side” of the previous diagram

0 // TX //

θ′′

��

X //

θ

��

X/TX

θ′′′

��

// 0

0 // TE // E // E/TE // 0

(where θ′′′ is induced by θ on the quotients). Its Snake Lemma sequence reads
as

Ker(θ′′) ↪→ Ker(θ)→ Ker(θ′′′)→ Coker(θ′′)→ Coker(θ)� Coker(θ′′′) .
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Computing orders one gets

|Ker(θ)|
|Ker(θ′′)|

=
|Ker(θ′′′)||Coker(θ)|
|Coker(θ′′)||Coker(θ′′′)|

.

Noting that
|Ker(θ′′′)|
|Coker(θ′′′)|

=
|X/TX|
|E/TE|

and putting the pieces together we obtain the proposition.

4.2 The modules Bn and the pseudo-nullity of
X (I)

The following lemma gives another criterion for the pseudo-nullity of X which
can be useful in specific cases (mainly when r(K/k) is large, |Bn| = |Bn+1|
for a small n and Bn is generated by classes of totally ramified ideals or of
ideals which totally split). We introduce a final piece of notation: we let
ξT : X → X represent multiplication by T , this implies that, in terms of
Λ-modules, we write Bn as ξ−1

T (Yn) = {x ∈ X : ξT (x) = Tx ∈ Yn } (it might
seem redundant but it is useful to avoid using a possibly misleading T−1 ).

Lemma 4.2.1. If |Bn| = |Bn+1| and Bn ⊆ Hn,m for some m > n > n0 , then
X ' Am .

Proof. The hypothesis of capitulation for Bn means that νn,mξ
−1
T (Yn) is con-

tained in Ym , so Tνn,mξ
−1
T (Yn) ⊆ TYm . As we have already seen in the

proof of Theorem 4.1.4, |Bn| = |Bn+1| implies Yn ⊆ TX, i.e., Yn is contained
in the image of ξT . Thus Tνn,mξ

−1
T (Yn) = νn,mYn = Ym and Ym = TYm .

Nakayama’s Lemma yields Ym = 0 and X ' Am .

If we consider the very particular situation in which s(K/k) = 1 (and n0(K/k)
= 0), we have that |Bn| = |A0| for all n > 0 and in particular |B0| = |A0|.
Hence [14, Theorem 1] and the first statement of [10, Theorem 2] can be seen
as particular cases of our criterion (to understand better the situation see
Theorem 1.5.5.(a): if s = 1, n0 = 0 and A0 = H0,n for some n > 0, then
B0 = A0 is contained in H0,n and |B0| = |B1| = |A0| and we can apply our
criterion). Note, furthermore, that Proposition 3.4.6 is also a particular case
of Lemma 4.2.1.
Another application of the criterion (yielding the announced equivalence
B = 0⇔ A = 0) is given by the following

Theorem 4.2.2. We have

B = 0⇔ X ∼Λ 0 .
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Proof. The ⇐ direction is obvious. For the other direction if B = 0, then
ir+1(Br+1) = 0 and this means that Br+1 is contained in Hr+1 , i.e., in
terms of Iwasawa modules, ξ−1

T (Yr+1) ⊆ Yr+1 + D. It is easy to see that
ξ−1
T (Yr+1) = Yr+1 +D[T ], thus

Br+1 ' D[T ] + Yr+1/Yr+1 ' D[T ]

(the last isomorphism depends on the fact that D[T ]∩Yr+1 = 0, which comes
from our definition of r in Definition 3.2.3). Now consider Br which, by
hypothesis, is contained in Hr : repeating the previous argument we find
Br ' D[T ]. Therefore Br = Br+1 and we can apply the criterion of Lemma
4.2.1 to obtain the pseudo-nullity of X.

Remark 4.2.3. For completeness we also give a direct proof of B = 0 ⇒
A = 0. Assume that B = 0 and that there exists n > 0 such that Hn 6=
An . Consider the action of Γn on An/Hn : from the class orbit formula we
have that there exists [a] ∈ An − Hn such that [a]Hn is fixed by γ. Hence
[a]γ−1 ∈ Hn , i.e., there exists m > n such that in,m([a]) ∈ Bm . By hypothesis
Bm ⊆ Hm and we have a contradiction. Therefore Hn = An for every n > 0
and A = 0 (and X is pseudo-null).

We want to point out a final simple fact about the Bn’s, in connection with
the kernel of the norm maps.

Lemma 4.2.4. Suppose that Bn+1 ∩Ker(Nn+1,n) = 0 for some n > n0, then
X ' An .

Proof. We give two proofs (the first is more direct but the second is more in
the spirit of the rest of our results).
First proof. Consider the action of Γn+1 on Ker(Nn+1,n)/Ker(Nn+1,n)∩Bn+1

which, by hypothesis, is isomorphic to Ker(Nn+1,n).
Since Ker(Nn+1,n)/Ker(Nn+1,n)∩Bn+1 has no fixed points, by the class orbit
formula we have that Ker(Nn+1,n) is trivial: hence X ' An+1 ' An .
Second proof. By hypothesis Nn+1,n : Bn+1 → Bn is injective. Thus it has to
be surjective too and then |Bn+1| = |Bn|. But this means ξ−1

T (Yn+1) + Yn =
ξ−1
T (Yn) and, as we have seen in the proof of Theorem 4.1.4, Yn is contained

in the image of ξT . Therefore Yn+1 +TYn = Yn, i.e., (νn,n+1, T )Yn = Yn . By
Nakayama’s Lemma Yn = 0 and X ' An .

Proposition 4.2.5. For any n > r, Bn ∩ Hn capitulates exactly in Bn+ζ ,
where pζ is the exponent of D[T ].

Proof. In terms of Λ-modules

Bn ∩Hn ' (ξ−1
T (Yn)/Yn) ∩ (D + Yn/Yn) = ξ−1

T (Yn) ∩ (D + Yn)/Yn ,
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so, using the modular law, we get

Bn ∩Hn ' (ξ−1
T (Yn) ∩ Yn) + (ξ−1

T (Yn) ∩D)/Yn = Yn + (ξ−1
T (Yn) ∩D)/Yn .

Since n > r, note that Yn+ (ξ−1
T (Yn)∩D)/Yn is isomorphic to ξ−1

T (Yn)∩D =
D[T ], hence we obtain Bn ∩Hn ' D[T ] + Yn/Yn and, using Lemma 1.3.6, we
get

νn,n+ζ(Yn+D[T ]) = Yn+ζ+νn,n+ζD[T ] ⊆ Yn+ζ+pζD[T ]+TνnD[T ] = Yn+ζ .

This means that Bn ∩Hn capitulates in Bn+ζ for all n > r.
Now assume that there exist some m > r such that Bm ∩Hm capitulates in
Bm+ζ−1 . Working as before, one finds νm,m+ζ−1(Ym +D[T ]) = Ym+ζ−1 and,
in particular, νm,m+ζ−1D[T ] ⊆ Dm+ζ−1 = 0. Using Lemma 1.3.6, we find
pζ−1D[T ] = 0: a contradiction.

An immediate consequence is that if X is pseudo-null, then Propositions 4.2.5
and 3.2.14 yield that Bn capitulates exactly in An+ζ and An exactly in An+ε

independently from the value of n > r.
To end this section recall that (from Theorem 4.1.2) {|Bm|}m>n0

is bounded
if and only if T - fX . The following theorem gives an expected formula for
the growth of |Bn| in the same spirit of Iwasawa’s Theorem 1.3.1.
First recall the pseudo-isomorphism given in (1.5):

X ∼ E =

(
s⊕
i=1

Λ/(pmi)

)
⊕

 t⊕
j=1

Λ/(fj(T )lj )

 ,

with s, t > 0, the fj(T )’s irreducible distinguished polynomials of Λ and
lj > 1. We denote by ϑ the number of fj(T ) which are equal to T .

Theorem 4.2.6. Let K/k be a Zp-extension of any number field k, then there
exist n′ ∈ N such that

|Bn| = pϑn+ν′

for all n > n′ .

Proof. We can write |Bn| = |X/Yn0 |·|Yn0/TYn0 +Yn|·|TX+Yn/TYn0 +Yn|−1 .
Note that the sequence {|TX+Yn/TYn0 +Yn|}n>n0 is increasing and bounded
by |TX/TYn0

| which is less than or equal to |X/Yn0
| = |An0

|. This means
that there exist n1 > n0 such that the sequence stabilizes (actually we can
also prove that |TX + Yn/TYn0

+ Yn| = |TX/TYn0
| for every n > n1 ).

Now from Proposition 3.1.5.(c) we have that Yn0/TYn0 is pseudo-isomorphic
to E/TE which is isomorphic to (Λ/(T ))ϑ ⊕ (a finite Λ-module). Now define
Y ′n0

:= Yn0
/TYn0

and E′ := (Λ/(T ))ϑ, so that Y ′n0
∼Λ E′ . From this we

obtain |Y ′n0
/νn0,nY

′
n0
| = pα|E′/νn0,nE

′| for all n sufficiently large and for
some constant α (see for example [48, Lemma 13.21]). But Y ′n0

/νn0,nY
′
n0

is
isomorphic to Yn0/Yn + TYn0 and, by an easy calculation, |E′/νn0,nE

′| =
pϑ(n−n0). Putting all the pieces together, we obtain the claim.
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4.3 The modules Bn and the pseudo-nullity of
X (II)

This section is devoted to proving the following statement (for the definition
of nilpotent group we refer to Remark 2.2.2.)

Theorem 4.3.1. Let k be a totally real field for which Leopold’s Conjecture
holds. Then Greenberg’s Conjecture is true for k if and only if Gal(L(kcyc)/k)
is nilpotent.

We will find this claim as a particular case of the more general Theorem 4.3.4
which gives a new criterion for the pseudo-nullity of X(K/k) (where K/k is
any Zp-extension of a, not necessarily totally real, number field k).
In this section we allow n0 to be any non negative integer and we use the
notation H ≤c G (resp. H ≤o G) to indicate that H is a closed (resp. open)
subgroup of a topological group G.
We begin with a simple observation: if a group G has a normal subgroup N
such that G/N ' Z, then there exists a subgroup H of G isomorphic to Z such
that G = N oH. The following lemma deals with the case of a topological
group.

Lemma 4.3.2. Let G be a profinite group and N a closed normal subgroup
such that G/N is a torsion-free procyclic group. Then there exists a procyclic
subgroup H of G such that G is the topological semidirect product of H acting
on N .

Proof. Let α1 ∈ G be a representative of a topological generator of G/N
and let H1 := 〈α1〉 ≤c G. Note that H1N/N , being a subgroup of G/N , is
torsion-free. By the canonical isomorphism (which is also an homeomorphism,
because N is compact) between H1N/N and H1/N ∩H1, we obtain that the
last is torsion-free too. Hence (see, for example [42, Section 2.7]) there exist
disjoint subsets S1, S2, S3 ⊆ {p prime ∈ N} and an isomorphism

φ : H1
'−→

∏
p∈S1

Zp ×
∏
p∈S2

Zp ×
∏
p∈S3

Zp/pn(p)Zp

(where n(p) is a positive integer for every p ∈ S3) such that

φ(H1 ∩N) =
∏
p∈S2

Zp ×
∏
p∈S3

Zp/pn(p)Zp .

Define H := φ−1(
∏
p∈S1

Zp) and let α be a topological generator of H: since
H ∩ (H1 ∩N) = 0, it follows immediately that H ∩N = 0.
The natural projection π : G→ G/N is a closed map since G is profinite and
N is compact. Hence the equality α1N = αN yields

G/N = 〈α1N〉 = 〈αN〉 = 〈π(α)〉 = π(〈α〉) = π(〈α〉) = π(H) .
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Therefore G = HN and we have an isomorphism of groups between G and
N oH. It is easy to check that the map

θ : N ×H −→ G

given by θ(n, h) = nh, is also a homeomorphism of topological spaces.

Lemma 4.3.3. Let G be a group and let A� G, B ≤ G be abelian subgroups
such that G = AoB. Then

Ci(G) = [A, i−1B]

for all i > 2 (where [A, i−1B] = [. . . [[A,B], B] . . .], B] with B appearing i− 1
times).

Proof. We use induction on i > 2. Let i = 2 and a, a1 ∈ A, b, b1 ∈ B. A
simple computation shows that

[ab, a1b1] = [ab, b1][(a−1
1 )b1 , b] ∈ [A,B] ,

so C2(G) = [A,B].
Now assume the statement true for some i > 2 and observe that, if E is
a normal subgroup of G contained in A, then [E,G] = [E,B]. Thus, since
Ci(G) is a normal subgroup of G contained in A,

Ci+1(G) = [Ci(G), G] = [[A, i−1B], G] = [[A, i−1B], B] = [A, iB] .

The following theorem gives a criterion (for the finiteness of the Iwasawa
module X(K/k)) which relies on methods very different from the ones used
until now.

Theorem 4.3.4. Let K/k be a Zp-extensions of a number field k. The fol-
lowing conditions are equivalent:

(a) X = X(K/k) is finite;

(b) the sequence {|Bn|}n∈N is bounded and G := Gal(L(K)/k) is nilpotent.

Proof. By Lemma 4.3.2, we can write G as a semidirect product G = X o Γ
(where Γ is isomorphic to Zp ). We claim that Ci+1(G) = T iX for every i > 1
and prove it with an induction argument on i.
If i = 1 the claim is true by, for example [48, Lemma 13.14], so assume that
it holds for some i > 1. We have

Ci+2(G) = [Ci+1(G),G] = [T iX,G]
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and, applying Lemma 4.3.3, we obtain

Ci+2(G) = [T iX,Γ] .

It is easy to show that [T iX,Γ] = T i+1X and T i+1X is closed (since it is the
image of a compact set). Thus Ci+2(G) = T i+1X and the claim is proved.
(b)⇒(a) Let j ∈ N be the nilpotency class of G (i.e., the least t such that
Ct+1(G) = 1). The previous claim yields X = X[T j ] and, since {|Bn|}n∈N is
bounded, from Theorem 4.1.2 we also have T - fX . Hence T j and fX are two
relatively prime annihilators of X.
(a)⇒(b) The boundness of the orders of the Bn’s comes from the bound for
the Xn’s. Since X is finite, there exists a j ∈ N such that T jX = 0 which
yields Cj+1(G) = 1.

Proof of Theorem 4.3.1. As we have already seen in the proof of Theorem
4.1.2, [M(k) : k̃] is finite. Since k is a totally real field for which Leopold’s

Conjecture holds, then k̃ = kcyc and the finiteness of [M(k) : kcyc] gives the
boundedness of the sequence {|Bn|}n∈N of the invariants. Thus the thesis
follows from Theorem 4.3.4 above.

The results of this section seem to suggest that it could be worthwhile to
study the lower central series of the Galois group G := Gal(L(K)/k). It is
reasonable to expect that (at least in some cases) it could provide a different
approach to results similar to those of Chapter 2.

4.4 µ(F∞/F ) vanishes for certain families of
number fields

The Iwasawa’s µ-Conjecture, in Iwasawa’s original papers, states that the µ-
invariant is always zero for the p-primary subgroup of the ideal class group of
F (ζp∞), i.e., the field obtained by adjoining to F all p-power roots of unity
(see Conjecture 1.3.3 and the papers [22], [20]). This conjecture was proved
by B. Ferrero and L. C. Washington (see [8]) when F is an abelian extension
of Q as we recalled in the first chapter, but it remains open in general.
In the following we consider a general Zp-extension F∞/F , with the only
exception of the cyclotomic extension which will always be written as Fcyc :
the Iwasawa invariants will be µp(F∞) and λp(F∞) or simply µp(F ) and λp(F )
if F∞ is clearly fixed. The modules Cn (and the others appearing here) will
have the same meaning of the previous sections, whenever needed we add a
reference to the Zp-extension they belong to, for example Cn(F∞) will denote
the coinvariants of the p-part of the class group of the n-th layer of F∞/F .

Definition 4.4.1. For a Zp-extension F∞/F we let n1(F∞) = n1 := min{n >
n0 : rkp(Cn) = rkp(Cn+1) }.
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Note that the sequence {rkp(Cn)}n>n0 is always bounded by rkp(X/TX),
so from part (b) of Theorem 4.1.4 we have that {rkp(Cn)}n>n0

is strictly
growing between n0 and n1 and constant from n1 on (in particular Cm/pCm '
X/(p, T )X for any m > n1 ).
By a finite p-extension we mean a Galois extension whose Galois group is a
finite p-group. Let k/F be a Galois extension of number fields. If the Galois
group Gal(k/F ) is of certain types we can transfer the vanishing of µ from a
Zp-extension F∞/F to k∞/k, where k∞ = kF∞ (the general result is given
by Corollary 4.4.9). To obtain this we need two main ingredients: the first
(see Theorem 4.4.2) deals with the case of a finite p-extension and the second
(see Theorem 4.4.6) is a criterion on Cn1 = Cn1(k∞) to have the vanishing
of µ(k∞) in the case in which the order of Gal(k/F ) is a prime number q
different from p.

4.4.1 Finite p-extensions

Theorem 4.4.2. Let F∞/F be a Zp-extension, k/F be a finite p-extension
and put k∞ := kF∞. If every ramified prime of k/F is finitely decomposed in
F∞/F , then

µ(F∞) = 0 ⇐⇒ µ(k∞) = 0 .

Proof. The arrow “⇐” is clear: see for example [26, Chap. 13, § 1, Lemma
1]. For the reverse arrow assume µ(F∞/F ) = 0. Let G := Gal(L(k∞)/F∞)
and consider its Frattini subgroup Φ(G). Since G is a pro-p group, then
Φ(G) = [G,G]Gp and, in particular, G/Φ(G) is abelian (see, for example, [42,
Section 2.8]).
Let F ′ be the subfield of L(k∞) fixed by Φ(G), denote Gal(F ′/F∞) by H and
let t ∈ N be such that Ft = F∞ ∩ k (the setting is summarized in the diagram
below).

L(F∞) L(k∞)

F ′

Φ(G)
iiiiiiiiiiiiiiiiiiiiii

F∞

X(F∞)

ssssssssssssssssssssssss

H

iiiiiiiiiiiiiiiiiiiiii ∆
k∞ = kF∞

X(k∞)

rrrrrrrrrrrrrrrrrrrrrrrr

Ft

'Γ

∆
k

'Γ

F

Γ

Γt
Θ

iiiiiiiiiiiiiiiiiiiiiii

(4.1)
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Let q be a prime ideal of F∞ (not necessarily lying over p) and note that
if q ramifies in k∞/F∞ , then q ∩ Ft ramifies in k/Ft as well. Since every
prime ideal of Ft which ramifies in k/Ft is finitely decomposed in F∞/Ft by
hypothesis, there are finitely many primes of F∞ which ramify in k∞/F∞ .
Moreover, if qL is a prime of L = L(k∞) lying over q and q1 = qL ∩ k∞ , then

I(qL/q) ' I(q1/q)

and so I(qL/q) is finite for every q in F∞ . Let S be the set of the prime ideals
of F∞ which ramify in F ′ : since S is finite, H abelian and the groups I(q)
are closed we have

I := 〈
⋃
q∈S

I(q)〉 =
∏
q∈S

I(q) ,

(where I(q) stands for the inertia group of q in H). Then I is a finite subgroup
of H and H/I is a quotient of X(F∞) which is a finitely generated Zp-module
by hypothesis. Thus H ' G/Φ(G) is Zp-finitely generated (hence finite,
because it is an Fp vector space) and this implies that G is a finitely generated
pro-p group (by [42, Proposition 2.8.10]). Since X(k∞) is a (closed) subgroup
of G of finite index, it is open and this yields (see for example [7, Proposition
1.7]) that X(k∞) is finitely generated too, i.e., µ(k∞/k) = 0.

The previous theorem can obviously be applied to Fcyc .

Corollary 4.4.3. Let p be a prime number and F a number field such that
µp(Fcyc) = 0. If k is a finite p-extension of F then µp(kcyc) = 0.

To prove the previous corollary just recall that in a cyclotomic Zp-extension
every ideal is finitely decomposed and apply Theorem 4.4.2. Note that, in
particular, if k is any finite p-extension of Q (not necessarily abelian), then
µp(kcyc) = 0.

4.4.2 Galois extensions of prime degree q 6= p

We recall some standard definitions for profinite groups. A supernatural num-
ber is a formal product of the kind

∏
p p

n(p) where p runs through the set P
of all prime numbers and n(p) is a non negative integer or the symbol ∞.
Multiplication, divisions, greatest common divisors and least common multi-
ples are defined between supernatural numbers in the obvious way. If G is a
profinite group and H a closed subgroup of G, the index of H in G is defined
as the supernatural number

[G : H] := lmc{[G/N : HN/N ]}

where N runs in the set of all open normal subgroups of G. The order |G|
of G is the index [G : 1]. Let π be a set of prime numbers (not necessarily
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a finite set) and denote by π′ the complement set π′ = P − π; we say that a
supernatural number n =

∏
p p

n(p) is a π-number if n(p) = 0 for all p ∈ π′. A
closed subgroup H of G is called a π-Hall subgroup if |H| is a π-number and
[G : H] is a π′-number. When π consist of only an element, i.e., π = {p}, we
say that n = pn(p) is a p-number and call H a p-Sylow subgroup of G.
Now we establish a criterion of pronilpotency for profinite groups which is
based on the well known criterion of nilpotency of P. Hall for finite groups
(see for example [43, 5.2.10]).

Lemma 4.4.4. (Pronilpotency Criterion.) Let G be a profinite group and
H be a normal closed subgroup such that G/C2(H) and H are pronilpotent.
Then G is pronilpotent.

Proof. Let U be an open normal subgroup of G and pose NU = HU/U ,
GU = G/U . Note that NU ' H/U ∩H is a finite quotient of a pronilpotent
group, so it is nilpotent.
Using the commutator identities [ab, c] = [a, c]b[b, c] and [a, bc] = [a, c][a, b]c,
we can easily show that [HU,HU ] can be written as [H,H][U,H][U,U ]. This
yields, recalling that U is normal in G,

[NU , NU ] = [HU/U,HU/U ] = [HU,HU ]U/U = [H,H]U/U ,

and since [H,H]U is open (hence closed) in G, then [H,H]U = [H,H]U . So

GU/[NU , NU ] ' G/[H,H]U ,

being a finite quotient of G/[H,H], is nilpotent and applying to the couple
GU , NU the criterion of Hall we obtain the claim.

The following lemma will be used in the proof of Theorem 4.4.6.

Lemma 4.4.5. Let G be a group, N be a normal torsion subgroup of fi-
nite exponent εN , and φ be an automorphism of finite order of G such that
gcd(o(φ), εN ) = 1. If φ acts trivially on N and on G/N , then it acts trivially
on the whole group G.

Proof. Denote by φ : G/N → G/N the automorphism on the quotient induced
by φ. By hypothesis φ is the identity on G/N , then for every g ∈ G there
exists ng ∈ N such that φ(g) = gng. By induction it is immediate to prove
that φt(g) = g(ng)

t for all t ∈ N. Choosing t = o(φ) we find (ng)
o(φ) = 1 and

since o(φ) and εN are relatively prime then ng = 1 for every g ∈ G, i.e., φ is
the identity on G.

We are now ready to examine the nullity of the µ-invariant for extensions k/F
of degree prime with p: the result depends on a hypothesis on the action of
Gal(k/F ) on Cn1

(k∞) (we recall that the same criterion can be formulated
for X(k∞)/(T ) ).
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Theorem 4.4.6. Let p be a prime number and k/F an extension whose Galois
group ∆ = Gal(k/F ) has prime order q 6= p. Let F∞/F be a Zp-extension in
which every ramified prime of k/F is finitely decomposed and put k∞ := kF∞.
If ∆ acts trivially on Cn1

(k∞)/pCn1
(k∞) , then

µ(F∞) = 0 ⇐⇒ µ(k∞) = 0 .

Proof. As said in the proof of Theorem 4.4.2, the arrow “⇐” is clear and it
holds in general.
For the reverse arrow we need some new notations: let E(k∞) := L(k∞)pX(k∞),
i.e., the subfield of L(k∞) fixed by pX(k∞) and let E′′(k∞) be the maximal
abelian extension of k contained in E(k∞), by [48, Lemma 13.14], we have

Gal(E′′(k∞)/k∞) ' X(k∞)/(p, T ) ' C∞(k∞)/pC∞(k∞) .

Note that E′′(k∞) can also be visualized as E(k∞) ∩ L′′(k∞) where L′′(k∞)
is the maximal abelian extension of k contained in L(k∞). In the same way
we define E(F∞) := L(F∞)pX(F∞) and we also put

G := Gal(L(k∞)/k) , G := Gal(E(k∞)/F∞) , G1 := Gal(E(k∞)/F ) ,

H1 := Gal(E(k∞)/k) and R := Gal(E′′(k∞)/F )

as can be visualized in the following picture

L(k∞)

L′′(k∞)

TX(k∞) jjjjjjjjj

E(k∞)

pX(k∞)

E′′(k∞)

jjjjjjjj

F∞
∆

G

k∞

kkkkkkkk

F

Γ

∆

G1

R

k

Γ

H1

(4.2)

Claim: G1 is pronilpotent.
Note that C2(H1) = [H1, H1] = Gal(E(k∞)/E′′(k∞)), hence R is isomorphic
to G1/C2(H1). Moreover R has only one p-Sylow subgroup, i.e., the Galois
group of E′′(k∞) over k. By hypothesis ∆ acts trivially over Cn1/pCn1 and
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consequently on C∞/pC∞ ' Gal(E′′(k∞)/k∞). Let δ be a generator of ∆
and note that applying the Lemma 4.4.5 to the couple Gal(E′′(k∞)/k∞) �
Gal(E′′(k∞)/k) and the automorphism of Gal(E′′(k∞)/k) induced by δ, we
obtain that ∆ acts trivially on Gal(E′′(k∞)/k). If Q is a q-Sylow of R =
Gal(E′′(k∞)/F ), then it is immediate that R = Q×Gal(E′′(k∞)/k), so R is
a pronilpotent group. Now note that H1 is pronilpotent because it is a pro-p
group, then, applying Lemma 4.4.4 to the closed normal subgroup H1 of G1 ,
we obtain that G1 is a pronilpotent group as claimed.

Now we continue the proof of the theorem and observe that, since G =
Gal(E(k∞)/F∞) is a closed subgroup of G1 , G is pronilpotent as well. This
implies (see [51, Proposition 2.5.1]) that G/Φ(G) is abelian (where Φ(G) is
the Frattini subgroup of G). Now we put

F ′ := E(k∞)Φ(G) and H := Gal(F ′/F∞) ' G/Φ(G) ,

and we consider the following diagram

L(k∞)

L(F∞)

ggggggggggggggggggggggggggg
E(k∞)

pX(k∞)

zzzzzzzz

E(F∞)

oooo
F ′

Φ(G) jjjjjjjjjjj

F ′′

I
hhhhhhhhhhhhhhh

F ′′′

xxxxxxxxxxx V

F∞

uuuu W H

∆
k∞

X(k∞)/pX(k∞)

yyyyyyyyyyyyyyyyyyyyyyyyy

F

Γ

∆
k

Γ

(4.3)

Let S be the set of the prime ideals of F∞ which ramify in F ′ and put

I = 〈
⋃
q∈S

I(q)〉 ,

where I(q) is the inertia group of q in Gal(F ′/F∞). Repeating the same argu-
ment of the proof of the Theorem 4.4.2, we obtain that I is a finite subgroup
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of H = Gal(F ′/F∞). Put F ′′ := (F ′)I , W := Gal(F ′′/F∞) and consider the
q-Sylow V of W (it could be V = 1): let F ′′′ := (F ′′)V . Now, finally, F ′′′

is contained in L(F∞): then Gal(F ′′′/F∞) is finitely generated and the same
holds for H ' G/Φ(G) because I and V are finite. Thus G is finitely gener-
ated (as profinite group, see [7, Proposition 1.9]) and Gal(E(k∞)/k∞) (being
open in G) is finitely generated as well. But Gal(E(k∞)/k∞) is isomorphic
to X(k∞)/pX(k∞) = X(k∞)/Φ(X(k∞)), so X(k∞) is finitely generated, i.e.,
µ(k∞) = 0.

Remark 4.4.7. We can provide an alternative proof of the previous Theo-
rem which avoids the pronilpotency criterion of Lemma 4.4.4. We decided to
use the criterion in the proof above to illustrate its possible application to
the setting of Iwasawa theory hoping that it could be useful in other similar
situations.
Let X := X(k∞)/pX(k∞): by the hypotheses of Theorem 4.4.6, ∆ acts triv-
ially on Cn1

/pCn1
, hence also on C∞/pC∞ ' X/TX. We only need to show

that ∆ acts trivially on X and, since
⋂
n T

nX = 0, it suffices to prove that
∆ acts trivially on X/TnX for any n. We use induction: if n = 1 there is
nothing to prove. Assume ∆ acts trivially on X/TnX, let δ be a generator of
∆ and let x be an element of X. Since the action of δ over X/TnX is trivial
we have

(x+ TnX)δ = xδ + TnX = x+ TnX .

Then there exists x1 ∈ X such that

xδ = x+ Tnx1 (4.4)

and, similarly, there exists x2 ∈ X such that

xδ1 = x1 + Tx2 . (4.5)

From these equations one easily gets

(x+ Tn+1X)δ
s

= x+ sTnx1 + Tn+1X

for every s ∈ N. For s = q = |∆|, we find qTnx1 ∈ Tn+1X, which yields
Tnx1 ∈ Tn+1X. Thus ∆ acts trivially on X/Tn+1X and the induction is
completed.

The following corollary for Fcyc is the analogue of Corollary 4.4.3.

Corollary 4.4.8. Let F be a number field such that µp(Fcyc) = 0 and k/F
an extension whose Galois group ∆ = Gal(k/F ) has prime order q 6= p. If ∆
acts trivially on Cn1

(kcyc)/pCn1
(kcyc) , then µp(kcyc) = 0.

It is easy to combine Theorems 4.4.2 and 4.4.6 to get the following corollary
(we write it only in the case of cyclotomic Zp-extensions but it has obvious
generalizations).
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Corollary 4.4.9. Let k be a number field, p a fixed prime number and suppose
that there exist a finite chain of number fields Q = κ0 ⊆ κ1 ⊆ κ2 ⊆ . . . ⊆ κn
such that

(i) κ1/κ0 is an abelian extension (possibly trivial);

(ii) for every i > 2, κi/κi−1 is a normal extension such that

(ii.1) Gal(κi/κi−1) is a group of p-power order or

(ii.2) Gal(κi/κi−1) is cyclic of prime order different from p and it acts
trivially on Cn1

((κi)cyc/κi)/pCn1
((κi)cyc/κi);

(iii) k is contained in κn .

Then µp(kcyc) vanishes.

Proof. We only have to use the Ferrero-Washington Theorem for the first
step of the chain, followed by Theorems 4.4.2 and 4.4.6 in sequence as we
need. Recall again that if k ⊆ k′ and k∞ is any Zp-extension of k, then
µ(k∞) 6 µ(k∞k

′).
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Compendio

Nella tesi vengono trattati i fenomeni della capitolazione degli ideali e della
stabilizzazione in Teoria di Iwasawa, sia in ambito non abeliano (come svilup-
pato di M. Ozaki in [40]), che abeliano classico.
Una breve panoramica dei contenuti: il primo capitolo si apre con esempi e
calcoli espliciti sulla Zp-estensione ciclotomica; poi si ricordano definizioni,
proprietà, alcuni teoremi fondamentali e alcune congetture classiche (ancora
aperte) sulle Zp e sulle Zdp-estensioni. Nei paragrafi 1.4 e 1.5 si introducono
i fenomeni della capitolazione degli ideali e della stabilizzazione, richiamando
alcuni risultati classici e recenti.
Il Capitolo 2 è dedicato alla Teoria di Iwasawa non abeliana. Il paragrafo 2.1
descrive il lavoro di Ozaki stabilendo definizioni, proprietà e teoremi princi-
pali. Nel paragrafo 2.2 si fa vedere come lo stesso tipo di stabilizzazione (sia
per gli ordini che per i p-ranghi) che vale nella teoria classica, non è più valido
in questo nuovo contesto. Infatti, il teorema di stabilizzazione, in ambito non
abeliano, richiede ipotesi più forti.
Il terzo capitolo torna indietro al caso delle Zp-estensioni: dopo alcuni risultati
preliminari, nel paragrafo 3.2 si comincia uno studio dettagliato del massimo
sottomodulo finito D(K/k) del modulo di Iwasawa X(K/k). Si considerano
poi le successioni degli absolute capitulation kernels e dei relative capitulation
kernels e si ottengono alcune formule (dipendenti da certi parametri legati a
D(K/k)) che descrivono in modo accurato come crescono i loro ordini e i loro
p-ranghi. Nel seguito, poi, si danno risposte affermative riguardo alla stabi-
lizzazione delle due successioni su menzionate e nel paragrafo 3.3 si discute il
problema di limitare il ritardo nella capitolazione. Infine, nel paragrafo 3.4,
si ottengono diverse nuove condizioni (basate su proprietà relative a capito-
lazione e stabilizzazione) che si dimostrano essere equivalenti all’annullamento
degli invarianti di Iwasawa µ(K/k) e/o λ(K/k).
Nel Capitolo 4 si considerano invarianti e coinvarianti di Galois per i gruppi
A(kn). In particolare, nel paragrafo 4.1 trattiamo i loro limiti diretto e in-
verso, e studiamo stabilizzazione e capitolazione con le loro conseguenze. Nei
paragrafi 4.2 e 4.3 otteniamo due nuovi criteri per la finitezza di X(K/k): il
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primo è basato solo sulla capitolazione del sottogruppo degli invarianti mentre
il secondo sulla nilpotenza del gruppo di Galois Gal(L(K)/k) (dove L(K) è
la massima pro-p estensione abeliana non ramificata di K). Infine, nel para-
grafo 4.5, si dimostrano due risultati che pongono in relazione l’annullamento
di µ(F∞/F ) e di µ(kF∞/k) (dove F∞/F è una Zp-estensione di un campo di
numeri F ) nei casi in cui k ⊃ F è un’estensione di Galois di grado p, o di
grado un primo q diverso da p.


