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Sommario

Lo sviluppo delle moderne tecnologie informatiche, nonché la diffusione dei servizi per il Web, ha
portato ad una considerevole produzione di informazioni e dati di diversa natura: documenti testuali
(dati non strutturati), basi di dati (dati strutturati) e pagine Html (dati semi-strutturati). La disponi-
bilità, sempre più crescente, di considerevoli quantità di dati ha posto, di conseguenza, il problema
della loro memorizzazione, della loro organizzazione e del loro reperimento. Inoltre, se non ci
fossero strumenti idonei a trattare le sole informazioni di interesse, tutti questi dati rischierebbero
di essere inutilizzabili. Le informazioni, infatti, rappresentano il punto di partenza per l’estrazione
di conoscenza, attività che, in passato, ha fatto riferimento all’analisi e all’interpretazione manuale,
fondata sull’attività di uno o più esperti addetti a prendere le decisioni sul caso corrente. L’analisi
manuale, chiaramente, presenta molteplici aspetti negativi. Prima tra tutti essa è caratterizzata da
lunghi tempi di analisi e da alti costi di realizzazione; infine, risulta altamente soggettiva e in ac-
curata. Tali aspetti negativi vengono ulteriormente aggravati dall’enorme mole di dati da dover
trattare. Aggregare, classificare e recuperare le informazioni di interesse con tempestività, efficacia
e a costi ridotti è sicuramente più vantaggioso rispetto ai tradizionali approcci di analisi manuale.
In particolare, la possibilità di poter classificare automaticamente enormi quantità di documenti,
potendoli poi ritrovare facilmente sulla base dei concetti espressi e sulle tematiche trattate, piut-
tosto che affidarsi ad un’analisi manuale, è una necessità che viene sentita non solo dalla comunità
scientifico/accademica, ma anche da quella aziendale, commerciale e finanziaria.

Il Text Classification (TC) o Text Categorization è una disciplina che coniuga diverse aree
di ricerca, dall’Information Retrieval (IR), al Machine Learning (ML), al Natural Language Pro-
cessing (NLP) e mira alla costruzione di sistemi per la classificazione automatica dei dati in cat-
egorie tematiche di interesse. In particolare, nel TC, i dati sono costituiti da una collezione di
documenti testuali non strutturati, i quali vengono suddivisi in gruppi sulla base del contenuto, at-
traverso l’assegnamento del testo ad una o più categorie tematiche predefinite. Le prime ricerche
nell’ambito del TC risalgono all’inizio degli anni ‘60. Tuttavia, è solo nell’ultimo decennio che tale
problema sta suscitando un interesse crescente sia nel settore della ricerca scientifica che in con-
testi industriali. Possibili applicazioni del TC spaziano dall’indicizzazione automatica di articoli
scientifici, all’organizzazione delle e-mail, al filtraggio dello spam, ecc.

Negli ultimi decenni, sono stati proposti un gran numero di sistemi per la classificazione di
documenti testuali suddivisibili, principalmente, in tre macro-tipologie sulla base dell’approccio
seguito nella costruzione dei classificatori:

• approccio di tipo Expert Systems (ES);
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• approccio di tipo Machine Learning (ML);

• approccio di tipo Ibrido.

Il primo approccio, affermatosi all’inizio degli anni ’60 prevede l’impiego di esperti di do-
minio (classificazione manuale) nella definizione dei classificatori per le categorie di interesse.
Questo tipo di approccio ha consentito la definizione di classificatori molto efficaci. Di contro,
però, l’approccio di tipo ES presenta due svantaggi principali: risulta molto dispendioso in termini
di risorse umane utilizzate e poco flessibile. Infatti, nel momento in cui cambia il contesto di riferi-
mento, i nuovi classificatori devono essere nuovamente definiti manualmente. Per questo motivo, a
partire dagli anni ’90, l’approccio di tipo ES è stato quasi completamente sostituito dall’approccio
di tipo ML, il cui obiettivo principale non è la definizione dei classificatori, quanto la costruzione
di sistemi in grado di generare automaticamente i classificatori. Più in particolare, nell’ambito
di questo paradigma, l’obiettivo è la definizione di sistemi capaci di apprendere automaticamente
le caratteristiche di una o più categorie, sulla base di un insieme di documenti precedentemente
classificati (training set). Questo approccio presenta numerosi vantaggi rispetto a quello di tipo
Expert Systems. I sistemi di apprendimento, infatti, mostrano generalmente un’elevata efficacia,
consentono un considerevole risparmio in termini di risorse umane impiegate nel processo di defi-
nizione dei classificatori e garantiscono una immediata portabilità verso nuovi domini.

Negli ultimi anni sono stati proposti svariati sistemi per la classificazione automatica di docu-
menti testuali basati, essenzialmente, su processi di tipo induttivo. Tali sistemi sfruttano, general-
mente, misure statistiche e, talvolta, vengono importati nell’ambito del TC da altre aree dell’Information
Retrieval e del Data Mining. Un esempio emblematico è il caso delle Support Vector Machine
(SVM) utilizzate, dapprima, per la risoluzione di problemi di regressione e, attualmente, conside-
rate allo stato dell’arte per il Text Categorization.

Un posto di rilievo nel paradigma dell’induzione di classificatori è occupato dagli algoritmi di
apprendimento ”a regole” o ”rule-based”, dove i classificatori vengono specificati come insiemi
di regole. Tali classificatori hanno la proprietà desiderabile di essere comprensibili da un lettore
umano, mentre la maggior parte degli altri approcci esistenti, come SVM e Neural Network, pro-
ducono classificatori che difficilmente un lettore umano riesce ad interpretare. Classificatori con
queste caratteristiche vengono spesso chiamati di tipo black-box. Infine, l’approccio di tipo Ibrido
combina il metodo Expert System con quello Machine Learning, per ottenere un sistema di catego-
rizzazione che sfrutta sia i benefici derivanti da una conoscenza di dominio, sia i benefici derivanti
dalla costruzione di sistemi automatici.

Ultimamente, la comunità scientifica sta adottando tecniche di TC sempre più innovative che,
generalmente, si discostano di molto dagli approcci classici di tipo deterministico. In effetti, una
recente tendenza nell’ambito del TC è quella di sfruttare tecniche di apprendimento basate su meta-
euristiche, come gli Algoritmi Evoluzionistici o Genetici. Tecniche di questo tipo sono, general-
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mente, costituite da tre componenti essenziali:

• un insieme di soluzioni candidate, chiamato popolazione, costituito da individui o cromo-
somi. Questi evolvono durante un certo numero di iterazioni (generazioni) generando, alla
fine dell’evoluzione, la soluzione migliore;

• una funzione obiettivo, chiamata funzione di fitness, usata per assegnare a ciascun individuo
un peso (score) che indica la bontà dell’individuo stesso;

• un meccanismo evolutivo, basato su operatori evoluzionistici come crossover, mutazione ed
elitismo, che consentono di modificare il materiale genetico degli individui che costituiscono
la popolazione.

Approcci di questo tipo introducono notevoli vantaggi rispetto alle tecniche classiche. Ad es-
empio, il meccanismo evolutivo è noto per essere un metodo robusto e di successo, infatti, è uti-
lizzato per la risoluzione di molti problemi di ottimizzazione intrinsecamente difficili da risolvere.
Inoltre, il meccanismo evolutivo riduce sensibilmente lo spazio di ricerca delle soluzioni ammissi-
bili e molte tecniche evolutive riescono a risolvere problemi complessi senza conoscere il preciso
metodo di soluzione.

In questo lavoro di tesi proponiamo un modello di classificazione a regole, denominato GA-
MoN, basato sull’utilizzo di Algoritmi Genetici per l’induzione delle regole di classificazione. Un
classificatore H generato dal sistema GAMoN per una data categoria c assume la forma di una
disgiunzione di atomiHi

c del tipo:

Hc = H1
c ∨ · · · ∨ Hr

c

dove ciascun atomoHi
c è una quadrupla < Pos,Neg,mi, ni >, dove:

• Pos = {t1, .., tn} è l’insieme dei termini positivi, ovvero l’insieme dei termini che sono
rappresentativi per la categoria c di riferimento;

• Neg = {tn+1, , tn+m} è l’insieme dei termini negativi, ovvero l’insieme dei termini che sono
indicativi della non appartenenza alla categoria;

• mi e ni sono numeri naturali, chiamati soglie, tali che mi >= 0 e ni > 0.

Intuitivamente, il significato attribuito a ciascun atomo Hi
c è il seguente: “classifica il gener-

ico documento d sotto la categoria c se almeno mi termini positivi compaiono in d e meno di
ni termini negativi compaiono in d”. Infatti, il linguaggio delle ipotesi introdotto da GAMoN è
chiamato MofN+, una estensione dei classificatori di tipo MofN con la componente dei termini
negativi. Da qui nasce l’acronimo “GAMoN”, che sta ad indicare un sistema di classificazione tes-
tuale basato su “Algoritmi Genetici” di tipo “M of N”. GAMoN è un sistema di classificazione che
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nasce come estensione di “Olex-GA”, un modello di classificazione “a regole” basato sul paradigma
evoluzionistico e realizzato in precedenti lavori di ricerca. Un classificatore generato da GAMoN
coincide con quello di Olex-GA quando mi=1 e ni = 1. Infatti, un classificatore Olex-GA assume
il significato “se almeno uno dei termini positivi t1, ..., tn appare nel documento d e nessuno dei
termini negativi tn+1, , tn+m appare in d, allora classifica d sotto la categoria c”.

Il sistema GAMoN è stato testato su 13 corpora di benchmark (Reuters-21578, Ohsumed, OH5,
OH0, OH10, OH15, Blogs Gender, Ohscale, 20 Newsgroups, Cade, SRAA, ODP e Market) e messo
a confronto con altri 5 sistemi di classificazione: BioHEL [18, 48] e Olex-GA [101], che sono sis-
temi di classificazione a-regole basati sul paradigma evoluzionistico; Ripper [37] e C4.5 [105],
che sono sistemi di classificazione a-regole non evoluzionistici; infine, SMO che è una implemen-
tazione di SVM lineare [76]. Gli studi sperimentali mettono in evidenza come GAMoN induca
classificatori che sono, al tempo stesso, accurati e compatti. Tale proprietà è stata osservata su tutti
i corpora utilizzati nella sperimentazione, dove GAMoN ha mostrato sempre un comportamento
uniforme. Poiché i corpora utilizzati si riferiscono a contesti applicativi notevolmente diversi, pos-
siamo affermare che GAMoN ha dato prova di essere un sistema robusto. Complessivamente,
GAMoN ha dimostrato un buon bilanciamento tra accuratezza e complessità del modello generato;
inoltre, è risultato molto efficiente per la classificazione di corpora di grandi dimensioni.

Il seguito della tesi è organizzato in tre parti principali di seguito elencate:

• nella Parte I verrà definito formalmente il problema del Text Categorization e verranno rivis-
itati i principali contesti applicativi nei quali sono sfruttate tecniche di questo tipo;

• nella Parte II verranno presentati diversi metodi e sistemi di classificazione documentale, al
fine di realizzare una valutazione comparativa delle loro peculiarità nell’ambito della temat-
ica di interesse;

• nella Parte III verrà presentato dettagliatamente il sistema GAMoN. In particolare, verranno
riportate alcune definizioni formali quali, ad esempio, il linguaggio e lo spazio delle ipotesi,
gli operatori di crossover utilizzati dal sistema e verranno descritti e mostrati i risultati speri-
mentali ottenuti, attraverso un’analisi comparativa con i sistemi di learning sù citati.



Abstract

The development of modern information technology and the diffusion of services for the Web,
has led to a considerable production of information and data, of a different kind: textual documents
(unstructured data), databases (structured data) and HTML pages (semi-structured data). The avail-
ability, more and more increasing, of a considerable amounts of data has place, consequently, the
problem of storing them, of their organization and their retrieval. Furthermore, if there were no
instruments that treat only the information of interest, all of these data would risk to being unus-
able. The information, in fact, represent the starting point for the knowledge extraction, activity
that, in the past, made reference to the manual analysis and interpretation, consisting in the manual
definition of a classifier by one ore more domain experts. The manual analysis, of course, intro-
duces many negative aspects. First of all it is characterized by long analysis times and high costs
of implementation and, finally, it is highly subjective and not accurate. These negative aspects
are further aggravated by the huge amount of data to be treated. Aggregate, classify and retrieve
the information of interest with a timeliness, effectiveness and at reduced cost is certainly more
advantageous than traditional approaches of manual analysis. In particular, the possibility to au-
tomatically classify a huge amounts of documents, rather than relying on manual analysis, it is a
necessity that is felt not only by the scientific/academic community, but also by the commercial
and financial companies.

The Text Classification (TC) or Text Categorization is a discipline that combines different re-
search areas like Information Retrieval (IR), Machine Learning (ML), Natural Language Processing
(NLP) and aims to build systems for the automatic classification of data into predefined thematic
categories of interest. Specifically, in the TC, the data consists of a collection of textual unstruc-
tured documents, which are divided into groups based on the content, through the assignment of the
text to one or more predefined thematic categories. It dates back to the early ‘60s, but only in the
last ten years it has witnessed a booming interest, both in research area and in applicative contexts.
Applications of the TC range to automated indexing of scientific articles, to e-mail routing, spam
filtering, authorship attribution, and automated survey coding.

In the last years, a large number of systems for the classification of textual documents have
been proposed, but three are the main approaches to Text Categorization problem:

5
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• Expert Systems (ES) approach;

• Machine Learning (ML) approach;

• Hybrid approach.

The first approach, has been proposed in the ‘60s and it is based on the manual definition of
classifiers by one or more domain experts(manual classification). Experimental results showed that
this technique can give very good effectiveness results. However, the ES approach presents two
main disadvantages: is a very costly activity and it is low flexible. In fact, if the set of categories
change, new classifiers must be manually redefined by the domain experts. For this reason, since
the early ‘90s, the Machine Learning approach to the construction of text classifiers has gained
popularity. The ML approach, aiming at the construction not of a classifier, but of an automatic
builder of classifiers (the learner).

More in particular, in this approach a general inductive process (also called the learner) auto-
matically builds classifier for a category ci by observing the characteristics of a set of documents
that have previously been classified manually under ci or ci (training set) by a domain expert; from
these characteristics, the inductive process gleans the characteristics that a novel document should
have in order to be classified under ci. This approach presents numerous advantages compared to
that of Expert Systems: generally show high efficacy, is less expensive and provides immediate
portability to new domains (categories).

In the last years, a great number of statistical classification and machine learning methods
have been proposed, based on an inductive process. These systems exploit, in general, statistical
measures that, sometimes, are imported under the TC from other areas of Information Retrieval
and Data Mining. Is the case of Support Vector Machine (SVM), initially used for the resolution of
regression problems and, currently, considered the state of the art for Text Categorization.

An important place among the inductive paradigm is represented by the rule-based models,
where the classifiers are specified as sets of rules. Rule-based classifiers, instead, provide the desir-
able property of being readable and easy for people to understand, while most of the other existing
approaches, such as SVM and Neural Network, produce classifiers that are difficult to interpret by
a human reader. Classifiers with these characteristics are, often, called black-box classifiers. Fi-
nally, the hybrid approach exploits the cooperation between the above described approaches for the
development of a categorization workbench combining the benefits of domain specific rules with
the generality of automatically learned ones.

Lately, the scientific community is increasingly adopting innovative TC techniques, which dif-
fer from classical deterministic approaches. In fact, a recent trend in the TC is the usage of learning
techniques based on meta-heuristics approaches, such as genetic or evolutionary algorithms. This
techniques are, generally, made up of three components:
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• a set of candidate solutions, called population, consisting of individuals or chromosomes.
These evolve during a certain number of iterations (generations) generating, at the end of the
evolution, the best solution;

• an objective function, called fitness function, that assigns a weight (score) to each individual.
The fitness function indicates the goodness to the individuals;

• an evolutionary mechanism, based on evolutionary operators such as crossover, mutation and
elitism, which modify the genetic material of the individuals that make up the population.

This approaches introduce considerable advantages over the classic techniques. For example,
the evolutionary mechanism is known to be a robust and successful method, in fact, it is used
for the resolution of many optimization problems inherently difficult to solve. Furthermore, the
evolutionary mechanism reduces significantly the search space of admissible solutions and many
evolutionary techniques fail to solve complex problems without knowing the precise method of
solution.

In this thesis we propose a model of rule-classification, called GAMoN, based on the use of
Genetic Algorithms for induction of rules classification. A classifier H generated by the system
GAMoN for a given category c takes the form of a disjunction of atomsHi

c of the type:

Hc = H1
c ∨ · · · ∨ Hr

c

where each atomHi
c is made up of the quadruple < Pos,Neg,mi, ni >, where:

• Pos = {t1, .., tn} is the set of positive terms, ie the set of terms which are representative for
the category c of reference;

• Neg = {tn+1, , tn+m} is the set of negative terms, ie all the terms that are not representative
for the category c of interest;

• mi e ni are integers, called thresholds, such that mi >= 0 and ni > 0.

Intuitively, the meaning of each atom Hi
c is the following: “classify the generic document d

under the category c if at least mi positive terms appear in d and less than ni negative terms appear
in d”. Indeed, the hypothesis language introduced by GAMoN is called MofN+, an extension of
MofN classifiers with negative terms. Hence, the acronym “GAMoN” indicates a textual classifi-
cation system based on “Genetic Algorithms” of the type “M-of-N”.

GAMoN arises as an extension of “Olex-GA”, a classification system for the induction of rule-
based text classifiers and implemented in previous research work. A classifier generated by GA-
MoN coincides with that of Olex-GA when mi=1 and ni = 1. In fact, an Olex -GA classifier has the
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meaning “if at least one of the positive terms t1, ..., tn appears in the document d and no negative
terms tn+1, , tn+m appears in d, then classify d under the category c” . Benchmarking was per-
formed over 13 real-world text data sets (Reuters - 21578 , Ohsumed, OH5, OH0, OH10, OH15,
Blogs Gender, Ohscale, 20 Newsgroups, Cade, SRAA, ODP and Market) and compared with other
5 classification systems: BioHEL [18, 48] and Olex-GA [101], which are evolutionary rule-based
systems, Ripper [37] and C4.5 [105], which are not evolutionary rule-based systems and SMO, a
linear SVM classifier [76].

Experimental results demonstrate that GAMoN delivers state-of-the-art classification perfor-
mance, providing a good balance between accuracy and model complexity. Further, they show that
GAMoN can scale up to large and realistic real-world domains better than both C4.5 and Ripper.

In this thesis, after having described Text Categorization problem and discussed some interest-
ing related works, we introduce our learning approach. More specifically, this thesis is organized
as follows:

• In Part I, we formally define Text Categorization and its various subcases and review the most
important tasks to which Text Categorization has been applied;

• In Part II, we give a survey of the state-of-the-art in Text Categorization, describing some of
the algorithms that have been proposed and evaluated in the past.

• In Part III, after providing an overview of GAMoN and giving some preliminary definitions
and notation, like the language and the hypothesis space, we provide a detailed description of
the crossover operators used by the system; we present the experimental results and provide
a performance comparison with other learning approaches.
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Text classification (TC) is a discipline at the crossroads of information retrieval (IR), machine
learning (ML), and computational linguistics (CL), and consists in the realization of text classifiers,
i.e. software systems capable of assigning texts to one or more categories, or classes, from a
predefined set. Applications range from the automated indexing of scientific articles, to e-mail
routing, spam filtering, authorship attribution, and automated survey coding.

This part of the thesis will focus on the ML approach to TC, whereby a software system (called
the learner) automatically builds a classifier for the categories of interest by generalizing from a
training set of pre-classified texts.

The part is organized as follows:

• Chapter 1 provides a formal definition of the text classification problem.

• In Chapter 2 we give a detailed analysis of the performance measures defined in Information
Retrieval and their application to TC.

• Finally, in Chapter 3, we illustrate the benchmark corpora widely used to evaluate text clas-
sifiers.



Chapter 1

Text Categorization

Text categorization (TC - also known as Text Classification or Document Classification) represents
the activity of labelling natural language texts with thematic categories from a predefined set. TC
has a long history, dating back to the early ‘60s, but it was not until the early 90s that it became a
major subfield of the information systems discipline, largely due to increased applicative interest
and to the availability of more powerful hardware. Nowadays TC is used in many applicative
contexts, ranging from automatic document indexing based on a controlled vocabulary, to document
filtering, automated metadata generation, word sense disambiguation, population of hierarchical
catalogues of Web resources, and in general any application requiring document organization or
selective and adaptive document dispatching.
In this chapter, we formally define the Text Categorization problem and review the most important
tasks to which TC has been applied. In section 1.3 we discuss three types of approach to Text
Categorization problem, here summarized:

Expert Systems approach, based on the manual definition of classifiers, has been proposed in the
‘60. Experimental results showed that this technique achieves very high performances but is
a very costly activity;

Machine Learning approach, aiming at the construction not of a classifier, but of an automatic
builder of classifiers (the learner), appeared in Text Categorization are since the early ’90s
and eventually become the dominant one;

Hybrid approach, which exploits the cooperation between the above described approaches for the
development of a categorization workbench combining the benefits of domain specific rules
with the generality of automatically learned ones.

Finally, we explore the use of external knowledge in Text Categorization, aiming at finding an
improvement of performance results by using formally represented background knowledge in the

14
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form of thesauri. More precisely, the aim is to extend the classical document representation, based
on the extraction of terms trough simple linguistic techniques, by means of external vocabularies
which should help to “capture” the meaning of words.

1.1 Problem Definition

Text Categorization may be may be seen as the task of determining an assignment of a boolean
value to each pair ⟨dj, ci⟩ ∈ D × C where C = c1, ..., cm is a set of pre-defined categories, and
D = d1, ..., dn is a set of documents to be categorized. A value of T for aij is interpreted as a deci-
sion to file dj under ci, while a value of F is interpreted as a decision not to file dj under ci. More
formally, TC represents the task of approximation of the unknown function Φ̃ : D × C → {T, F}
(that describes how documents ought to be classified) by means of a function Φ : D×C → {T, F},
called the classifier (aka rule, or hypothesis, or model) such that Φ and Φ̃ coincide as much as pos-
sible. In chapter 2, we will show how to precisely define and measure this degree of coincidence.
Basic assumptions are that no additional knowledge about categories is provided (they are just sym-
bolic labels), neither exogenous information about documents (metadata such as e.g. publication
date, document type, publication source) is available to help the process of building the classifier.
The effect of these assumptions is that the algorithms that we will discuss are completely general
and do not depend on the availability of special-purpose resources that might be costly to develop
or might simply be unavailable.
Different constraints may be enforced on the categorization task; depending on the application, we
may want that:

1. {≤ 1 | 1 | ≥ 1 | ...} elements of C must be assigned to each element of D. When ex-
actly one category is assigned to each document this is often referred to as the single-label
categorization case.

2. each element of C must be assigned to {≤ 1 | 1 | ≥ 1 | ...} elements of D.

A special case of single-label categorization (or “non-overlapping categories” case) is binary cate-
gorization, in which each document dj must be assigned either to category ci or to its complement
ci. From a theoretical point of view, the binary case (hence, the single-label case too) is more
general than the multi-label case, in the sense that an algorithm for binary classification can also
be used for multi-label classification: one needs only transform a problem of multi-label classi-
fication under categories {c1, ...., cm} into m independent problems of binary classification under
categories {ci, c̄i}, for i = 1, ...,m.

The techniques we will consider here are applicable irrespectively of whether any of above-
mentioned constraints are enforced or not and, in the rest of the chapter, unless explicitly specified,
we will be dealing with the binary case.
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1.2 Application of Text Categorization

Since its first application in 1961, in Marons seminal work on probabilistic text classification, TC
has been applied in a number of different contexts. In this section, we briefly review the most
important applications, in which it has been used. The borders between the different classes of
applications listed here are fuzzy and somehow artificial, and some of these may be considered
special cases of others. Other applications we do not explicitly discuss are speech categorization
by means of a combination of speech recognition and TC [97] [114], multimedia document cate-
gorization through the analysis of textual captions [112], author identification for literary texts of
unknown or disputed authorship [47], language identification for texts of unknown language [29],
automated identification of text genre [77] and automated essay grading [80].

1.2.1 Automatic Indexing for Boolean IR Systems

The first applications of TC were in the field of automatic document indexing for IR systems re-
lying on a controlled dictionary. Among them, the most prominent is that of Boolean Systems,
whose target is the assignment of a set of key words and key phrases to each available document,
in order to describe their content. Key words and phrases belong to a finite set called controlled
dictionary, often consisting of a thematic hierarchical thesaurus (e.g. the NASA thesaurus for the
aerospace discipline, or the MESH thesaurus for medicine). Usually, this is a costly activity be-
cause the selection of representative words and expressions is done by trained human indexers. If
the entries in the controlled vocabulary are viewed as categories, text indexing can be considered an
instance of document-pivoted TC [116], where new documents may be classified as they become
available. Various text classifiers explicitly conceived for document indexing have been described
in the literature; see, for example, [52], [110], [125].
Another application, closely related to automatic indexing, is that of automated metadata gen-
eration, which represent a fundamental tool in building and maintaining digital libraries, where
documents are tagged by metadata that describe them under a variety of aspects (e.g., creation date,
document type or format, availability, etc.). Some of these metadata is thematic, that is, its role
is to describe the semantics of the document by means of bibliographic codes, key words or key
phrases. The generation of metadata may thus be viewed as a problem of document indexing with
controlled dictionary, and thus tackled by means of TC techniques.

1.2.2 Document Organization

Among the applications that may be addressed to TC techniques, there are many issues pertaining
to document organization and filing, be it for purposes of personal organization or structuring of
a corporate document base. As an instance, we can consider the classification task to which the
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news are subjected, prior to their publication, in order to be filed under the categories of the scheme
adopted by the newspaper; typical categories might be Personals, Cars for Sale, Real Estate, etc.
While most newspapers would handle this application manually, those dealing with a high volume
of classified ads might prefer an automatic system to choose the most suitable category for a given
ad. In this case a typical constraint is that exactly one category is assigned to each document.
Similar applications are the organization of patents into categories for making their search easier,
the automatic filing of newspaper articles under the appropriate sections (e.g. Politics, Home News,
Lifestyles, etc.), or the automatic grouping of conference papers into sessions.

1.2.3 Text Filtering

Text filtering (also known as document routing) is the activity of classifying a dynamic collection of
texts, i.e. a stream of incoming documents dispatched in an asynchronous way by an information
producer to an information consumer [24]. A very useful document routing system is an e-mail
filter, whose role is to reject “junk” mail, keeping only those ones that are relevant to the user.
Mail filtering can be seen as a case of single-label categorization, i.e. the classification of incoming
documents in two disjoint categories, relevant and irrelevant. Additionally, a filtering system may
also perform a further categorization into topical categories of the documents deemed relevant to the
consumer; in the example above, an e-mail filter might be trained to discard “junk” mail [13] [42]
and further classify non-junk mail into topical categories of interest to the user [34].

1.2.4 Word sense disambiguation

Word sense disambiguation (WSD) refers to the activity of finding, given the occurrence in a text of
an ambiguous (i.e. polysemous or homonymous) word, the sense this particular word occurrence
has. For instance, the English word bank may have (at least) two different senses, as in the Bank
of England (a financial institution) or the bank of river Thames (a hydraulic engineering artifact).
It is thus a WSD task to decide to which of the above senses the occurrence of bank in “Last
week I borrowed some money from the bank” refers to. WSD is very important for a number
of applications, including natural language understanding, or indexing documents by word senses
rather than by words for IR purposes. WSD may be seen as a categorization task (see e.g. [55] [64])
once we view word occurrence contexts as documents and word senses as categories.

1.2.5 Hierarchical categorization of Web pages

Automatic document categorization has recently arisen a lot of interest also for its possible Internet
applications. One of these is automatically categorizing Web pages, or sites, into one or several
of the categories that make up commercial hierarchical catalogues. When Web documents are
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catalogued in this way, rather than addressing a generic query to a general-purpose Web search
engine, a searcher may find it easier to first navigate in the hierarchy of categories and then issue his
search from (i.e. restrict his search to) a particular category of interest. Automatically categorizing
Web pages has obvious advantages, since the manual categorization of a large enough subset of the
Web is problematic to say the least. Unlike in the previous applications, this is a case in which one
might typically want each category to be populated by a set of k1 ≤ x ≤ k2 documents, and one
in which category-centered categorization may be aptest.

1.3 Approaches to Text Categorization

1.3.1 Expert Systems Approach

Since the first applications of Text Categorization, during the early ’60s and until the ’80s, the
main approach used to the construction of automatic document categorizers involved knowledge-
engineering techniques: domain experts used to process and analyze documents to manually build
an expert system capable of taking categorization decisions. Such an expert system might have
typically consisted of a set of manually defined rules (one per category) of type

if < DNFBooleanformula > then < category >

which has the effect of classifying the document under < category >, if it satisfies the disjunctive
normal form < DNF Booleanformula >.
A well known example of an expert system for this task is the CONSTRUE system [63] built by
Carnegie Group and used by the Reuters news agency. The drawback of this “manual” approach
to the construction of automatic classifiers is the existence of a knowledge acquisition bottleneck.
That is, rules must be manually defined by a knowledge engineer with the aid of a domain expert (in
this case, an expert in document relevance to the chosen set of categories). If the set of categories
is updated, then these two professional figures must intervene again, and if the classifier is ported
to a completely different domain (i.e. set of categories), the work has to be repeated anew.
On the other hand, it was suggested that this approach can give very good effectiveness results:
Hayes et al. [63] report a .90 “break-even” result (that we will discuss, together with other effec-
tiveness measures for TC, in chapter 2) on a subset of the REUTERS-21578 . While these are
exceptionally good results, the test set seems to have been relatively sparse when compared to the
number of possible topics.
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1.3.2 Machine Learning Approach

Since the early ’90s, the Machine Learning approach to the construction of text classifiers has
gained popularity and eventually become the dominant one, at least in the research community
(see [95] for a comprehensive introduction to ML). In this approach a general inductive process
(also called the learner) automatically builds a classifier for a category ci by observing the char-
acteristics of a set of documents that have previously been classified manually under ci or ci by
a domain expert; from these characteristics, the inductive process gleans the characteristics that a
novel document should have in order to be classified under ci .
In ML terminology, the classification problem is an activity of supervised learning, since the learn-
ing process is driven, or “supervised”, by the knowledge of the categories and of the training in-
stances that belong to them. The advantages of this approach over the previous one are evident.
The engineering effort goes towards the construction not of a classifier, but of an automatic builder
of classifiers. This means that if a learner is (as it often is) available off-the-shelf, all that is needed
is the inductive, automatic construction of a classifier from a set of manually classified documents.
The same happens if a classifier already exists and the original set of categories is updated, or if the
classifier is ported to a completely different domain. In the ML approach the manually classified
documents are then the key resource. The most favorable case is the one in which they are already
available; this is the typical case of an organization that had already been carrying out the same cat-
egorization activity manually and decides to automate the process. The less favorable case is when
no manually classified documents are available; this is typically the case of an organization that
starts a categorization activity and decides to opt for an automated modality straightaway. In this
case, the ML approach is still more convenient than the KE approach. In fact, it is easier to manu-
ally classify a set of documents than to build and tune a set of rules, for the simple reason that it is
usually easier to characterize a concept extensionally (i.e. to indicate instances of it) than intension-
ally (i.e. to describe the concept in words, or to describe a procedure for recognizing its instances).
Classifiers built by means of ML techniques nowadays achieve impressive levels of effectiveness
(see chapter 2), making automatic classification a qualitatively (and not only economically) viable
alternative to manual classification.

Training set, test set and validation set

The ML approach relies on the existence of an initial corpus Ω = {d1, ..., dΩ}, (Ω ⊂ D) of
documents previously classified under the same set of categories C = {c1, ..., cm}, with which the
system will need to operate. This means that the values of the total function Φ̃ : D × C → {T, F}
are known for every pair ⟨dj, ci⟩ ∈ Ω× C. For a given a category ci, a document dj is said

- positive example if Φ̃(dj, ci) = T
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- negative example if Φ̃(dj, ci) = F

In research settings (and in most operational settings too), once a classifier has been built it is
desirable to evaluate its effectiveness. In this case, prior to classifier construction the initial corpus
is usually split in two sets, not necessarily of equal size:

• a training(-and-validation) set TV = {d1, .., d|TV |}. This is the set of documents observing
the characteristics of which the classifiers for the various categories are inductively built;

• a test set Te = {d|TV |+1, .., dΩ}. This set will be used for the purpose of testing the effective-
ness of the classifiers. Each document in Te will be fed to the classifiers, and the classifier
decisions Φ(dj, ci) compared with the expert decisions Φ̃(dj, ci); a measure of classification
effectiveness will be based on how often the Φ(dj, ci) values match the Φ̃(dj, ci) values.

Note that, in order to carry out a scientific realistic evaluation of a learning algorithm, the docu-
ments in Te cannot participate in the inductive construction of the classifiers, since if this condition
were not satisfied the experimental results obtained would probably be unrealistically good [95].
In an operational setting, after evaluation has been performed one would typically re-train the clas-
sifier on the entire initial corpus, in order to boost effectiveness. This means that the results of
the previous evaluation would be a conservative estimation of the real performance, since the final
classifier has been trained on more data than the evaluated classifier. This approach is called the
train-and-test approach.
An alternative approach is the k-fold cross-validation approach (see [95]), whereby k different clas-
sifiers Φ1, ...,Φk are induced by partitioning the initial corpus into k disjoint sets Te1, ..., T ek, and
then iteratively applying the train-and-test approach on pairs ⟨TVi = Ω\Tei, T ei⟩. The final effec-
tiveness figure is obtained by individually computing the effectiveness of the resulting k classifiers
Φ1, ...,Φk, different among each other because they have been generated from k different training-
and-validation sets, and then averaging the individual results in some way.
In both the train-and-test and k-fold cross-validation approaches, it is often the case that in order to
optimize the classifier its internal parameters should be tuned by testing which values of the param-
eters yield the best effectiveness. In order to make this optimization possible, in the train-and-test
approach the set {d1, .., d|TV |} is further split into a training set Tr = {d1, .., d|Tr|}, from which
the classifier is inductively built, and a validation set V a = {d|Tr|+1, .., d|TV |} (sometimes called
a hold-out set), on which the repeated tests of the classifier aimed at parameter optimization are
performed; the obvious variant may be used in the k-fold cross-validation case. Note that, basically
for the same reason why we do not test a classifier on the documents it has been trained on, we do
not test it on the documents it has been optimized on; that is, test set and validation set must be kept
separate.
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1.3.3 Hybrid Approach

The Machine Learning and Expert Systems Approaches, described in the above sections, have
sometimes been combined for the development of categorization workbench combining the benefits
of domain specific rules with the generality of automatically learned ones. This cooperation, in
fact, may be very effective, since both approaches have some limits, that can be overcome if used
in synergy. As noticed by [121], in real world applications, users of automatic categorization are
confronted with two problems:

1. Getting the needed quantity of training samples for a taxonomy can be a laborious task,
especially for category topics chosen which are semantically close to each other.

2. Though using automatic categorization, some customers wish to keep control of the assign-
ment of certain documents. Instead, text categorization methods are determined by catego-
rization model generated on the basis of training samples and the customer can only let the
model be modified by altering the training data.

These problems awake the need for an integration of manual categorization rules into the overall
categorization process with which the sample complexity should be reduced and the user should
be enabled to influence the categorization result more directly and effectively. A trivial way to
allow the intervention of the knowledge engineer into the classifier definition problem is to let
him build some categorization rules and then adding them to the automatic learned ones. A more
interesting way to exploit domain knowledge is to use the domain knowledge in the automatic
induction of a classifier. Unlike automatic categorizers, the manual categorization performed by
knowledge engineers is based on the semantic of words. Usually, humans associate each category
with its characteristics which can be symbolized by and embodied in words. So categories can be
discriminated by domain-specific lexicon. Compared with automatic categorizer, manually defined
classifiers have lower precision, but often achieve higher recall, since a domain expert has over
those of the training set more extensive domain-specific vocabulary.
Conversely, machine learning methods are not able to choose features according to their semantic
relevance like humans do. A study on automatic feature selection shows that in order to achieve a
precision of more than 90% with decision tree method C4.5 either at least ca. 200 training sample
are needed, or applied algorithm is able to determine an appropriate subset with few features [79].
In their study, [104] show that benefiting from the incorporation of user’s domain knowledge, the
categorization workbench can improve the recall by a factor of two till four with the same number
of training samples as the automatic categorizer uses, Further, to get a comparable categorization
quality, the categorization workbench just needs an eighth till a quarter of the training samples as
the automatic categorizer does.
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1.4 Use of external knowledge in Text Categorization

Recently proposed works aim at finding an improvement of text classification results by using
formally represented background knowledge in the form of thesauri to extend the classical bag-of-
words feature representation paradigm. The latter, together with the multi-words expression one,
often shows to be sufficient for accurate learning, since individual words and their combination
carry and important part of the meaning of the text. However, this doesn’t always hold, due to the
polysemy and synonymy of words. In fact, synonymous words are mapped into different features
while polysemous ones are treated as one single feature (but the may actually have multiple distinct
meanings). Further, there is a lack of generalization (as an instance, there is no way to generalize
similar terms like “beef” and “pork” to their common hypernym “meat”.
Thus, thesauri have sometimes been introduced in Text Categorization approaches to exploit se-
mantic relations among terms. Formally speaking, a thesaurus is made up of three components,
described below.

Definition 1.1 (Core Component) It is a structure T := (C;<C) consisting of a set C, whose
elements are called concept identifiers, and a partial order <C on C, called concept hierarchy or
taxonomy.

Definition 1.2 (Relation between Concepts) If c1 <C c2 for any c1, c2 ∈ C, then c1 is a subcon-
cept (specialization) of c2 and c2 is a superconcept (generalization) of c1. If c1 <C c2 and there
exists no c3 ∈ C with c1 <C c3 <C c2, then c1 is a direct subconcept of c2, and c2 is a direct
superconcept of c1, denoted by c1 ≺ c2.

Definition 1.3 (Lexicon) A lexicon for a thesaurus T is a tuple Lex := (SC ;RefC) consisting of
a set SC , whose elements are called signs for concepts (symbols), and a relation RefC ⊆ SC × C

called lexical reference for concepts, where (c, c) ∈ RefC holds for all c ∈ C ∩ SC . Based on
RefC , for s ∈ SC we define RefC(s) := {c ∈ C|(s, c) ∈ RefC}. Analogously, for c ∈ C it is
Ref−1

C (c) := {s ∈ SC |(s, c) ∈ RefC}.

Examples of thesauri used for Text Categorization tasks are WordNet [27] and Mesh [5]. WordNet
is a lexical database which organizes simple words and multi-word expressions of different syntac-
tic categories into so called synonym sets (synsets), each of which represents an underlying concept
and links these through semantic relation. The MeSH Thesaurus is has more complex structure.
It is an ontology that has been compiled out of the Medical Subject Headings (MeSH) controlled
vocabulary thesaurus of the United States National Library of Medicine (NLM). The ontology con-
tains more than 22000 concepts, each enriched with synonymous and quasi-synonymous language
expressions.
Different strategies have been explored in the literature in order to use domain specific knowledge
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in the automatic induction of category classifiers; some rule-based approaches exploiting thesaurus
knowledge based are provided in section 5.3.



Chapter 2

Categorization Effectiveness Evaluation

The evaluation of a text classifier is typically conducted experimentally. The reason to select the
experimental way rather than the analytical one is that, in order to evaluate a system analytically
(e.g. proving that the system is correct and complete) we always need a formal specification of
the problem that the system is trying to solve (e.g. with respect to what correctness and complete-
ness are defined), and the central notion of document classification (namely, that of relevance of
a document to a category) is, due to its subjective character, inherently non-formalizable. The ex-
perimental evaluation of classifiers, rather than concentrating on issues of efficiency, usually tries
to evaluate the effectiveness of a classifier, i.e. its capability of taking the right categorization
decisions. The main reasons for this bias are that:

• efficiency is a notion dependent on the hw/sw technology used. Once this technology evolves,
the results of experiments aimed at establishing efficiency are no longer valid. This does
not happen for effectiveness, as any experiment aimed at measuring effectiveness can be
replicated, with identical results, on any different or future hw/sw platform;

• effectiveness is really a measure of how the system is good at tackling the central notion of
classification, that of relevance of a document to a category.

2.1 Precision and Recall Measures

While a number of different effectiveness measures have been used in evaluating text categorization
in the past, almost all have been based on the same model of decision making by the categorization
system.

Generally, classification effectiveness with respect to a category ci is measured in term of the
classic IR notions of precision (P) and recall (R), adapted to the case of text categorization [117].
Intuitively, P indicates the probability that if a random document dx is classified under ci, the

24
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decision is correct; while R indicates the probability that, if a random document dx should be
associated to the category ci, then the right decision is taken. More specifically, given a category ci,
the precision P with respect to ci is defined as the conditional probability P (caix = T |aix = T ) and,
analogously the recall R is defined as the conditional probability P (aix = T |caix = T ). As they
are defined here, P and R are to be understoodas subjective probabilities, i.e. values measuring the
expectation of the user that the system will behave correctly when classifying a random document
under ci. These probabilities may be estimated in terms of the contingency table for category ci on
a given test set (see Table 2.1).

Category expert judgment
ci YES NO

classifier YES TPi FPi

judgment NO FNi TNi

Table 2.1: Contingency table for category ci.

Here, FPi (false positives wrt ci, also known as errors of commission) is the number of doc-
uments of the test set that have been incorrectly classified under ci; TNi (true negatives wrt ci),
TPi (true positives wrt ci) and FNi (false negatives wrt ci, also known as errors of omission) are
defined accordingly. Precision wrt ci and recall wrt ci may thus be estimated as

P =
TPi

TPi + FPi

; (2.1)

R =
TPi

TPi + FNi

. (2.2)

In multi-label TC, when effectiveness is computed for a set of categories the precision and recall
results for individual categories may be averaged in two different ways: here, one may opt for

• microaveraging, rewards classifiers that behave well on heavily populated (“frequent”) cate-
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gories, which count proportionally to the number of their positive training examples:

µP =

|C|∑
i=1

TPi

|C|∑
i=1

(TPi + FPi)

; (2.3)

µR =

|C|∑
i=1

TPi

|C|∑
i=1

(TPi + FNi)

. (2.4)

• macroaveraging, emphasizes classifiers that perform well also on infrequent categories,
since “all categories count the same”. To compute macro averages, precision and recall are
first evaluated locally for each category, and then “globally” by averaging over the results of
the different categories:

MP =

|C|∑
i=1

Pi

|C|
; (2.5)

MR =

|C|∑
i=1

Ri

|C|
. (2.6)

Note that these two methods may give quite different results, especially when the different
categories are unevenly populated: for instance, if the classifier performs well on categories with
a small number of positive test instances, its effectiveness will probably be better according to
macroaveraging than according to microaveraging. There is no agreement among authors on which
is better. Some believe that “microaveraged performance is somewhat misleading (. . . ) because
more frequent topics are weighted heavier in the average” [131] and thus favour macroaveraging,
while others believe that topics should indeed count proportionally to their frequence, and thus lean
towards microaveraging.
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2.2 Combining Precision and Recall

Some of the performance measures may be misleading when examined alone. For example, a trivial
algorithm that says YES to every category for any document will have a perfect recall of 100%, but
an unacceptably low score in precision. Conversely, if a system rejects every document for every
category, it will have a perfect score in precision, but will sacrifice recall to the extreme. Usually, a
classifier exhibits a trade-off between recall and precision when the internal parameters or decision
threshold in the classifier are adjusted; to obtain a high recall usually means sacrificing precision
and vice-versa. If the recall and precision of a classifier can be tuned to have an equal value, then
this value is called the break-even point (BEP) of the system [86]. BEP has been commonly used
in text categorization evaluations. If the recall and precision values cannot be made exactly equal,
the average of the nearest recall and precision values is used as the interpolated BEP [16, 83]. A
problem with the interpolation is that when the nearest recall and precision values are far apart, the
BEP may not reflect the true behavior of the system. The most popular way to combine the two is
the function Fα function [84], for some 0 ≤ α ≤ 1, i.e.:

Fα =
1

α 1
P
+ (1− α) 1

R

(2.7)

In this formula α may be seen as the relative degree of importance attributed to P and R: if
α = 1, then Fα coincides with P, if α = 0 then Fα coincides with R. Usually, a value of α = 0.5 is
used, which attributes equal importance to P and R. As shown in [136], for a given classifier Ψ, its
breakeven value is always less or equal than its 1 value.

2.3 Other Effectiveness Measures

Other effectiveness measures different from the ones discussed here have occasionally been used
in the literature. Together with precision and recall, accuracy and error have been often used to
evaluate category classifier performance values. With respect to Table 2.1 for category ci, they are
defined as:

accuracy =
TPi + TNi

N
(2.8)

error =
FPi + FNi

N
(2.9)

where N indicates the total number of documents in the test set.
Although accuracy and error are common performance measures in the machine learning literature
and have been used in some evaluations of text categorizations systems, there is a potential pitfall
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in using them to train or evaluate a binary classifier. When the number of categories is large and the
average number of categories per document is small, the accuracy or error may not be a sensible
measure of the effectiveness or usefulness of a classifier in text categorization.
Fundamentally, these difficulties in using accuracy and error as performance measures raised from
their definitions. Unlike recall and precision, accuracy and error have N , the number of test docu-
ments, in their divisor. Therefore, a small change in Table 2.1 of the value TPi or TNi will produce
only a small change in the value of accuracy( likewise a small change in FPi or FNi will produce
only a small change in the value of error). However, for rare categories the maximum value of
TPi or FNi is small. Consequently, TPi and FNi may range from zero to their maximum value
without having much effect on the value of accuracy or error, respectively. Now consider the value
of recall, defined as TPi/(TPi + FNi); the potential values of TPi and FNi are both small, and
furthermore the quantity TPi +FNi is always constant and equal to the number of documents that
belong to the category in question. Consequently, any change in the value of TPi will produce a
relatively large change in the value recall. So, recall and precision measures are often preferred
in classifiers evaluation, as they are more sensitive with respect to rare categories than accuracy or
error.



Chapter 3

Benchmark data sets

Text Categorization algorithms are usually tested on public available standard benchmarks test
collections. The existence of such corpora is beneficial to research on this task, since they al-
low different researchers to experimentally compare their own systems by comparing the results
they have obtained on this benchmark. In the following sections, we analyze the two most used
benchmark data sets in Text Categorization, the REUTERS-21578 and the OHSUMED corpora, and
discuss the problem of the existence of different sub-collections. In fact, while using the same data
sets, different researchers have “carved” different sub-collections out of the collections, and tested
their systems on one of these sub-collections only.

3.1 The REUTERS-21578 collection

The REUTERS-21578 test collection, together with its earlier variants, has been such a standard
benchmark for the text categorization task throughout the last ten years. REUTERS-21578 is a set
of 21,578 news stories appeared in the Reuters newswire in 1987, which are classified according
to 135 thematic categories, mostly concerning business and economy. This collection has several
characteristics that make it interesting for Text Categorization experimentation:

• similarly to many other applicative contexts, it is multi-label, i.e. each document may belong
to more than one category;

• the set of categories is not exhaustive, i.e. some documents belong to no category at all;

• the distribution of the documents across the categories is highly skewed, in the sense that
some categories have very few documents classified under them, while others have thou-
sands;
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• there are several semantic relations among the categories (e.g. there is a category Wheat and
a category Grain, which are obviously related), but these relations are “hidden”(i.e. there is
no explicit hierarchy defined on the categories).

This collection is also fairly challenging for Text Categorization systems based on machine learn-
ing techniques, since several categories have (under any possible split between training and test
documents) very few training examples, making the inductive construction of a classifier a hard
task. All of these properties have made REUTERS-21578 the benchmark of choice for Text Cate-
gorization research in the past years.
The data contained in the “REUTERS-21578 , Distribution 1.0 corpus consist of news stories ap-
peared on the Reuters newswire in 1987. The data was originally labelled by Carnegie Group, Inc.
and Reuters, Ltd. in the course of developing the CONSTRUE text categorization system [63], and
was subsequently collected and formatted by David Lewis with the help of several other people. A
previous version of the collection, known as REUTERS-22173 , was used in a number of published
studies up until 1996, when a revision of the collection resulted in the correction of several other
errors and in the removal of 595 duplicates from the original set of 22173 documents, thus leaving
the 21578 documents that now make REUTERS-21578 . The REUTERS-21578 documents actu-
ally used in Text Categorization experiments are only 12902, since the creators of the collection
found ample evidence that the other 8676 documents had not been considered for labelling by the
people who manually assigned categories to documents. In order to make different experimental
results comparable, standard “splits” (i.e. partitions into a training and a test set) have been de-
fined by the creators of the collection on the 12902 documents. Apart from very few exceptions,
researchers have used the “ModApté” split, in which 9603 documents are selected for training and
the other 3299 form the test set. In this thesis we will always refer to the ModApté split. There are
5 groups of categories that label REUTERS-21578 documents: EXCHANGES, ORGS, PEOPLE,
PLACES, and TOPICS. Only the TOPICS group has actually been used in experimental research,
since the other four groups do not constitute a very challenging benchmark for Text Categoriza-
tion. The TOPICS group contains 135 categories. Some of the 12902 “legitimate” documents have
no categories attached to them, but unlike the 8676 documents removed from consideration they
are unlabelled because the indexers deemed that none of the TOPICS categories applied to them.
Among the 135 categories, 20 have (in the ModApté split) no positive training documents; as a
consequence, these categories have never been considered in any experiment, since the Text Cate-
gorization methodology requires deriving a classifier either by automatically training an inductive
method on the training set only, and/or by human knowledge engineering based on the analysis of
the training set only.
Since the 115 remaining categories have at least one positive training example each, in principle
they can all be used in experiments. However, several researchers have preferred to carry out their
experiments on different subsets of categories. Globally, the three subsets that have been most
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popular are

R10 the set of the 10 categories with the highest number of positive training examples.

R90 the set of the 90 categories with at least one positive training example and one positive test
example

R115 the set of the 115 categories with at least one training example

Reasons for using one or the other subset have been different. Several researchers claim that
R10 is more realistic since machine learning techniques cannot perform adequately when positive
training examples are scarce, and/or since small numbers of positive test examples make the inter-
pretation of effectiveness results problematic due to high variance. Other researchers claim instead
that only by striving to work on infrequent categories too we can hope to push the limits of Text Cat-
egorization technology, and this consideration leads them to use R90 or R115. Obviously, systems
that have been tested on these different REUTERS-21578 subsets are not immediately compara-
ble. A full description of the REUTERS-21578 collection and a discussion of the experimentation
results on its subsets can be found in [39].

3.2 OHSUMED

OHSUMED1 is a bibliographical document collection, developed by William Hersh and colleagues
at the Oregon Health Sciences University [66]. The test collection is a subset of the MEDLINE
database, which is a bibliographic database of medical documents maintained by the National Li-
brary of Medicine (NLM). There are currently over seven million references in MEDLINE dating
back to 1966, with about 250000 added yearly. The majority of references are to journal articles,
but the test collection also contains a number of references to letters to the editor, conference pro-
ceedings, and other reports. About 75% of the references contain abstracts, while the remainder
(including all letters to the editor) have only titles. Each reference has been manually assigned
to one of more subject headings from the 17000-term Medical Subject Headings (MeSH) the-
saurus [5].
As for REUTERS-21578 , different subsets of OHSUMED have been used by researchers for exper-
imental purposes. Among these, a commonly used subset firstly appeared in [71]. Out of 50216
original documents for the year 1991, the first 20000 documents which are classified into the 23
MeSH ‘disease’ categories and labelled with one or multiple categories have been chosen by T.

1The OHSUMED collection may be freely downloaded for experimentation purposes from ftp://
medir.ohsu.edu/pub/ohsumed.
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Joachims [71]. Here, various learning approaches have been compared on this data collection, us-
ing the first 10000 for training and the second 10000 for testing the produced classifiers. Other
researchers used the OHSUMED collection for TC experiments, but the employed document set
and categories vary: among the others, Yang in [137] chose only documents of 1991 and 1992,
using the 1991 ones for training and the remaining to form the test set.
The various subsets showed that OHSUMED dataset is a “difficult” one. Literature results can give
an indication of the magnitude order of the Ohsumed performance. For instance, from the fact that
accuracy does not overcome 70% in all results obtained in different portion of Ohsumed, it possible
to argue that this corpus is more difficult than Reuters, for which classifiers reaches 86% of accu-
racy. This is because the data are more “noisy” and the word/category correspondences are more
“fuzzy” in OHSUMED. Consequently, the categorization is more difficult to learn for a classifier.



Part II

Machine Learning Approaches to Text
Categorization
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A growing number of statistical classification methods and machine learning techniques to au-
tomatically construct classifiers using labelled training data have been applied to text categorization
in recent years. The most of them are devoted to binary problems, where a document is classified
as either relevant or not relevant with respect to a predefined topic, while the common approach
for the multi-label case, where a document belong to more than one class, is to break the task into
disjoint binary categorization problems, one for each class. In these approaches, the classification
of a new document needs the application of all the binary classifiers, whose predictions are com-
bined into a single decision.
In the following chapters, we discuss some classical approaches to Text Categorization; unless
specified otherwise, we will refer to binary classification problem. Since it is impossible to give
a exhaustive overview of the inductive approaches proposed in Text Categorization literature, we
will focus our attention on some of them. These algorithms are organized into classes, following
their classical classification or according to the properties they share. In particular:

• In chapter 4, we discuss some of the best known approaches considered the state-of-art in
Text Categorization area. Algorithms introduced here are Support Vector Machines [71] and
k-NN [135], with which Olex shows to be competitive.

• In chapter 5, we explore the class of rule-based algorithms, of which our method is an exam-
ple. In particular, we analyze the two subclasses of decision tree inducers and inductive rule
learners, presenting some interesting methods, such C4.5 [108] and Ripper [33].

• In chapter 7, we discuss some approaches (both rule-based and not) that, like Olex does,
use the evidence provided by negative training instances in the categorization decision. At
first, we discuss a variant of k-NN, proposed in [54], where some weight is given to negative
information; then we focus our attention on some rule-based approaches aiming at the con-
struction of rules containing negative information. Finally, we shortly describe some methods
for the extraction of positive and negative features from the training data.



Chapter 4

Probabilistic Induction Methods

In this chapter, we discuss some inductive approaches among the most representative of text cat-
egorization literature. At first, we describe Support Vector Machines (SVMs) approach, which
embodies the latest results in statistical learning theory [127] and is considered one of the most
accurate classifier. Then, we explore lazy learning approach and we discuss the k-NN algorithm,
at first applied to pattern recognition problems and introduced in Text Categorization in the early
‘90s [135]. This algorithm was chosen as representative of this family because it is considered
among the top-performing methods in Text Categorization problem.

4.1 Support Vector Machines

The support vector machines (SVM) method has been introduced in Text Categorization by Joachims
[71, 73] and subsequently used in [42–44, 78, 122, 136]. The SVMs integrate dimension reduction
and classification. This technique has been mostly applied to binary classification tasks and only
recently it has been used to multi-class categorization problems [38].
This technique is based on recent advances in statistical learning theory. They map documents into
a high dimensional feature space, and try to learn a separating hyperplane, that provides the widest
margins between two different types of documents. SVMs use Lagrange multipliers to translate
the problem of finding this hyperplane into an equivalent quadratic optimization problem for which
efficient algorithms exist, and which are guaranteed to find the global optimum.
In geometrical terms, it may be seen as the attempt to find, among all the surfaces σ1, σ2, ... in
|T |-dimensional space that separate the positive from the negative training examples (decision sur-
faces), the surface σi that separates the positives from the negatives by the widest possible margin,
i.e. such that the separation property is invariant with respect to the widest possible translation of
σi [117].
The simplest case we can take into consideration, which can give an idea about how SVMs work,

35



Probabilistic Induction Methods 36

is that in which the positives and the negatives are linearly separable, i.e. the decision surfaces
are (|T | − 1)- hyperplanes. As an example, see figure 4.1, which shows a 2-dimensional case:
here, various lines may be chosen as decision surfaces. The decision hyperplane chosen by SVMs
is the bold solid line, which corresponds to the largest possible separation margins. The squares
indicate the corresponding support vectors. The SVM method chooses the middle element from
the “widest” set of parallel lines, i.e. from the set in which the maximum distance between two ele-
ments in the set is highest. It is noteworthy that this “best” decision surface is determined by only a
small set of training examples, called the support vectors. The method described is applicable also
to the case in which the positive and the negative examples are not linearly separable.

Figure 4.1: Example of a two class, linearly separable problem and two possible separation hyper-
planes with corresponding margins.

As argued by Joachims in [71], the main advantages of SVMs are the following: first, term
selection is often not needed, as SVMs tend to be fairly robust to overfitting and can scale up
to considerable dimensionalities; second, no human and machine effort in parameter tuning on a
validation set is needed, as there is a theoretically motivated, “default” choice of parameter settings,
which has also been shown to provide the best effectiveness. The main drawback of SVM is that
the classifiers generated are not understandable by humans.

4.2 Example-based classifiers

Example-based classifiers are often called lazy learners, since they do not build an explicit, declar-
ative representation of the category of interest, but rely on the category labels attached to the train-
ing documents similar to the test document. Example-based methods (also known as memory-
based reasoning methods) have been applied to text categorization since the early stages of the
research [70, 91, 134].
A well known example based approach is k-NN (for “k nearest neighbours”) algorithm imple-
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mented by Yang in the ExpNet system [135]. The basic idea in k-NN algorithm is that of finding,
for a given test document, the k nearest neighbors among the training documents, and to use the cat-
egories of the k neighbors to weight the category candidates. The similarity score of each neighbor
document to the test document is used as the weight of the categories of the neighbor document. If
several of the k nearest neighbors share a category, then the per-neighbor weights of that category
are added together, and the resulting weighted sum is used as the likelihood score of that category
with respect to the test document. By sorting the scores of candidate categories, a ranked list is
obtained for the test document. By thresholding on these scores, binary category assignments are
obtained. The decision rule in k-NN can be written as:

y(−→x , cj) =
∑

di∈kNN

sim(−→x ,
−→
di )y(

−→
di , cj)− bj

where y(
−→
di , cj) ∈ {0, 1} is the classification for document di with respect to category cj ,

sim(−→x ,
−→
di ) is the similarity between the test document −→x and the training document

−→
di ; and

bj is the category-specific threshold, automatically learned by using a specific validation set. The
construction of a k-NN classifier also involves determining a threshold k that indicates how many
top-ranked training documents have to be considered for computing y(−→x , cj) ; k is usually deter-
mined experimentally on a validation set. For instance, Larkey and Croft [81] use k = 20, while
Yang [134, 136] has found 30 ≤ k ≤ 45 to yield the best effectiveness. Anyhow, various experi-
ments have shown that increasing the value of k does not significantly degrade the performance.

A number of different experiments have shown k-NN to be quite effective. However, its most
important drawback is its inefficiency at classification time: while e.g. with a linear classifier only
a dot product needs to be computed to classify a test document, k-NN requires the entire training
set to be ranked for similarity with the test document, which is much more expensive. This is a
characteristic of “lazy” learning methods, since they do not have a true training phase and thus
defer all the computation to classification time [117].



Chapter 5

Rule Based Approaches

In this chapter, we focus our attention on the class of rule-based algorithms, of which our method
is an example. This kind of approach is gaining considerable appeal in research area, since rule-
based classifiers provide the desirable property of being readable, easy for people to understand,
contrary to most of the other approaches, such as probabilistic induction methods which, even
showing to be effective, lack of interpretability. We can distinguish two principal subclasses of
rule-based algorithms: the decision tree inducers and the inductive rule learners, both analyzed in
the following sections.

5.1 Decision Tree Inducers

A decision tree (DT) text classifier is a tree in which internal nodes are labelled by terms, branches
departing from them are labelled by tests on the weight that the term has in the test document, and
leaf nodes are labelled by categories. Such a classifier categorizes a test document dj by recursively
testing for the weights that the terms labelling the internal nodes have in vector

−→
dj , until a leaf node

is reached; the label of this node is then assigned to dj . Most such classifiers use binary document
representations, and thus consist of binary trees.
There are a number of standard packages for DT induction, and most DT approaches to Text Cat-
egorization have made use of one such package. Among the most popular ones are ID3 (used
in [51]), C4.5 (used in [35,37,71,85]) and C5 (used in [88]). TC efforts based on experimental DT
packages include [44, 86, 130].

A possible procedure for the induction of a DT for category ci consists in a “divide and conquer”
strategy, made up of the following step:

1. check whether all the training examples have the same label (either ci or ci);

2. if not, select a term tk, partition the training set into classes of documents that have the same
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value for tk, and place each such class in a separate subtree.

These step are recursively repeated on the subtrees until each leaf of the tree so generated
contains training examples assigned to the same category ci, which is then chosen as the label for
the leaf.

The key step, in DT algorithms, is the choice of the term tk on which to operate the partition.
This choice, generally made according to an information gain (e.g C4.5) or Gini coefficient (e.g.
CART), tends to maximize the homogeneity (in terms of attached label) of the produced sets, hence
to minimize the depth of the tree. However, such a “fully grow” tree may be prone to overfitting,
as some branches may be excessively specific to the training data. In order to avoid overfitting, two
strategies are used: either the growth of the tree is interrupted before excessively specific branches
are produced, or the tree is pruned, removing the overly specific branches, in a subsequent step. An
example of Decision Tree algorithm employing a pruning phase to revisit the produced classifiersis
the C4.5 algorithm.

5.1.1 C4.5 Classifier

C4.5 is a decision tree classifier that was developed by Quinlan [106]. The training algorithm
constructs a decision tree by recursively splitting the data set using a test of maximum gain ratio,
subject to the constraint that information gain due to the split must also be large. The tree can be
pruned back based on an estimate of error on unseen cases. During classification a test vector is
evaluated according to the chosen tests at each split, and when it arrives at a leave, estimated are
given for probabilities of its belonging to each category. In binary classification, for each category
a tree is built using all the training data labeled as “yes” or “no” for that category. Although the
principle is simple and the construction is very clear, the dilemma between overfitting and achieving
maximum accuracy is seldom resolved. As the large feature set of text vector, overfitting is a hard
controlled problem.

5.2 Associative Rule Learning

Association rule mining is a data mining task that discovers relationships among items in a transac-
tional database. Association rules have been extensively studied in the literature for their usefulness
in many application domains such as recommender systems, diagnosis decisions support, telecom-
munication, intrusion detection, etc. The efficient discovery of such rules has been a major focus
in the data mining research community. From the original apriori algorithm [7], there have been a
remarkable number of variants and improvements of association rule mining algorithms i.e. [58].
Formally, association rules are defined as follows: Let I = i1, i2, ...in be a set of items. Let D be a
set of transactions, where each transaction T is a set of items such that T ⊆ I . Each transaction is
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associated with a unique identifier TID. A transaction T is said to contain X , a set of items in I ,
if X ⊆ T . An association rule is an implication of the form X ⇒ Y , where X ⊆ I , Y ⊆ I , and
X ∩ Y = ∅. The rule X ⇒ Y has a support s in the transaction set D if s% of the transactions
in D contain X ∪ Y . In other words, the support of the rule is the probability that X and Y hold
together among all the possible presented cases. It is said that the rule X ⇒ Y holds in the trans-
action set D with confidence c if c% of transactions in D that contain X also contain Y . In other
words, the confidence of the rule is the conditional probability that the consequent Y is true under
the condition of the antecedent X .

The main steps in building an associative classifier when a data set is given are the following:

1. Generating the set of association rules from the training set. In this phase association rules
of the form setoffeatures⇒ class label are discovered by using a mining algorithm.

2. Pruning the set of discovered rules. In the previous phase a large set of association rules
can be generated especially when low support is given. That is why pruning techniques
are a challenging task to discover the best set of rules that can cover the training set. This
phase is employed to weed out those rules that may introduce errors or are overfitting in the
classification stage.

3. Classification phase. At this level a system that can make a prediction for a new object is
built. The task here is how to rank and make use of the set of rules from the previous phase
to give a good prediction.

The two most known models presented in the literature are CMAR [87] and CBA [89]. Al-
though both of them proved to be effective and achieve high accuracy on relatively small UCI
datasets, they have some limitations. Both models perform only single-class classification and were
not implemented for text categorization. In many applications, however, and in text categorization
in particular, multiple class classification is required. An attempt to overcome this limitation and
construct an associative classification model that allows single and multiple-class categorizations
of text documents based on term co-frequency counts (i.e. a probabilistic technique that doesnt
assume term independence) is provided in [14].
In this approach, given a data collection, a number of steps are followed until the classification
model is found. Data preprocessing represents the first step, in which cleaning techniques can
be applied such as stopwords removal, stemming or term pruning according to the TF/IDF values
(term frequency/inverse document frequency). The next step in building the associative classifier
is the generation of association rules using an apriori-based algorithm. Once the entire set of rules
has been generated, an important step is to apply some pruning techniques for reducing the set of
association rules found in the text corpora. The last stage in this process is represented by the use
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of the association rules set in the prediction of classes for new documents. The first three steps
belong to the training process while the last one represents the testing (or classification) phase.
More details on the process are given below. If a document Di is assigned to a set of categories
C = {c1, c2, ..., cm} and after word pruning the set of terms T = {t1, t2, ..., tn} is retained, the
following transaction is used to model the document: Di = c1, c2, ..., cm, t1, t2, ..., tn and the as-
sociation rules are discovered from such transactions representing all documents in the collection.
The association rules are, however, constrained in that the antecedent has to be a conjunction of
terms from T , while the consequent of the rule has to a member of C.

Association Rule Generation

The algorithm takes advantage of the apriori algorithm to discover frequent term-sets in documents.
Eventually, these frequent itemsets associated with text categories represent the discriminate fea-
tures among the documents in the collection. The association rules discovered in this stage of the
process are further processed to build the associative classifier. Using the apriori algorithm on trans-
actions representing the documents would generate a very large number of association rules, most
of them irrelevant for classification. The used apriori-based algorithm is guided by the constraints
on the rules to be discovered, i.e. rules that indicate a category label, rules with a consequent being
a category label. In other words, given the document model described above, the task is to find
rules of the form T ′ ⇒ ci where T ′ ⊆ T and ci ∈ C. To discover these interesting rules effi-
ciently, the rule shape constraint is used in the candidate generation phase of the apriori algorithm
in order to retain only the suitable candidate itemsets. Moreover, at the phase for rule generation
from all the frequent k-itemsets, the rule shape constraint is used again to prune those rules that
are of no use in classification. There are two possible approaches in building an associative text
classifier. The first one ARCAC (Association Rule-based Classifier with All Categories) [139] is
to extract association rules from the entire training set following the constraints discussed above.
As a result of discrepancies among the categories in a text collection of a real-world application, it
has been showed that is difficult to handle some categories that have different characteristics (small
categories, overlapping categories or some categories having documents that are more correlated
than others). The second technique (proposed to solve such problems) is ARC-BC, that stands for
Associative Rule-based Classifier By Category. In this approach each set of documents belonging
to one category is considered as a separate text collection to generate association rules from. If a
document belongs to more than one category this document will be present in each set associated
with the categories that the document falls into.
Although the rules are human readable and understandable if the amount of rules generated is too
large it is time consuming to read the set of rules for further tuning of the system. This problem has
been solved by using pruning methods.
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Pruning the Set of Association Rules

The number of rules that can be generated in the association rule mining phase could be very large.
Because such a huge amount of rules could contain noisy information which would mislead the
classification process and make the classification time longer, [14] present some pruning methods
based on the definition of more general rule and higher ranked rule: eliminate the specific rules and
keep only those that are more general and with high confidence, and prune unnecessary rules by
database coverage.

Prediction of Classes Associated with New Documents

The set of rules selected after the pruning phase represent the actual classifier. This categorizer is
used to predict with which classes new documents are labelled. Given a new document, the clas-
sification process searches in this set of rules for finding those categories that are the closest to be
assigned to the document presented for categorization by employing a dominance factor (propor-
tion of rules of the most dominant category in the applicable rules for a document to classify).

Experimental results reported in [14] show that the association rule-based classifier performs
well and its effectiveness is comparable to most well-known text classifiers. One major advan-
tage of the association rule-based classifier is its relatively fast training time. The drawback lies
in the huge set of rules generated that have to be submitted to a time-consuming phase of prun-
ing. Notwithstanding this, the use of associative rules to text classification introduced in [14] is
interesting as rules generated are understandable and can easily be manually updated or adjusted if
necessary.

5.3 Decision Rule Classifiers

A classifier for category ci built by an inductive rule learning method consists of a disjunctive
normal form (DNF) rule, i.e. of a conjunction of conditional formulae (“clauses”), whose premises
denote the presence or absence of terms in the test document, while the head denotes the decision
whether to classify it or not under ci. DNF rules are similar to decision trees in that they can encode
any Boolean function. However, one of the advantages of DNF rule inducers is that they tend to
generate more compact classifiers than DT inducers. Rule induction methods usually attempt to
select from all the possible covering rules (i.e. those rules that correctly classify all the training
examples) the “best” one according to some minimality criterion. While DTs are typically induced
by a top-down, divide-and-conquer strategy, DNF rules are often induced in a bottom-up fashion.

At the beginning of the classifier induction for category ci, every training example is viewed as
a clause η1, ..., ηn → γi, where η1, ..., ηn are the terms contained in the document and γi equals ci
or ci according to whether the document is a positive or negative example of ci. This set of clauses
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is already a DNF classifier for ci, but obviously scores high in terms of overfitting. The induction
algorithm employs then a process of generalization in which the rule is simplified through a series
of modifications (e.g. removing premises from clauses, or merging clauses) that maximize its
compactness while at the same time not affecting the “covering” property of the classifier. At the
end of this process, a “pruning” phase similar in spirit to that employed in DTs is applied, where
the ability to correctly classify all the training examples is traded for more generality.

For rule induction, the objective is to find sets of decision rules that distinguish one category of
text from the others. Obviously, the set of rules promoted as “best rule set” has to be, at the same
time, accurate and not excessively complex. Accuracy of rule sets can be effectively measured
on large numbers of independent test cases. Complexity can be measured in terms of numbers of
rules or rule components, where smaller rule sets that are reasonably close to the best accuracy are
sometimes preferred to more complex rules sets with slightly greater accuracy.
DNF Rule learners vary widely in terms of methods, heuristics and criteria employed for gener-
alization and pruning. In the following section we will analyze RIPPER algorithm, eventually
discussing some attempts of improving its performance results by introducing external knowledge
in it.

5.3.1 RIPPER

Ripper algorithm attempts to find a small hypothesis, i.e. a set of rules, in the form of a small dis-
junction of conjunctions, which accurately classifies the training data. The conjunctions included
in RIPPER’s hypothesis always represent “contexts” that are positively correlated with the class
being learned.
The algorithm used by RIPPER consists of two main stages: (1) a greedy process constructs an
initial rule set; (2) an optimization phase attempts to further improve the compactness and accuracy
of the rule set.

Stage 1: Building an Initial Rule Set

The first stage is a “set-covering” algorithm, called IREP* (based on the earlier rule-learning al-
gorithm called Incremental Reduced Error Pruning IREP). Rules are constructed one at time, and
once the construction of the rule is ended, the covered positive example are removed form the
training data. In this phase of learning, different ad hoc heuristic measures are used to guide the
greedy search for new conditions, and greedy search for simplifications [32]. All the heuristics
used in constructing a rule are intended to ensure that the rule covers many positive examples and
few negative examples. To construct a rule, the uncovered examples are randomly partitioned into
two subsets, a “growing set” containing two-thirds of the examples and a “pruning set” containing
the remaining one-third. IREP* will first grow a rule, and then simplify or prune the rule. A rule
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is “grow” by repeatedly adding conditions to rule r0 with an empty antecedent. This is done is a
greedy fashion: at each stage i, a single condition is added to the rule ri, producing a longer and
more specialized rule ri+1. The greedy addition of new literals continues until the clause covers no
negative examples in the growing set, or until no “good” condition is found.

After growing a rule, the rule is pruned (i.e., simplified). This is another greedy process, in
which IREP* considers deleting any final sequence of conditions from the rule and chooses the
deletion that maximizes the function

f(ri) =
U+
i+1−U−

i+1

U+
i+1+U−

i+1

where U+
i+1 (respectively, U−

i+1) is the number of positive (negative) examples in the pruning set
covered by the new rule. After pruning, the pruned clause is added to the rule set, and the examples
covered by it are removed [36].

Stage 2: Optimization of a Rule Set.

When the construction of the rule set is finished, it has to be “optimized” to further reduce its size
and improve its accuracy. Rules are considered in turn in the order in which they were added. For
each rule r, two alternative rules are constructed. The replacement for r is formed by growing
and then pruning a rule r′, where pruning is guided so as to minimize error of the entire rule set
on the pruning data. The revision of r is formed analogously, except that it is grown by greedily
adding literals to r, instead of to the empty rule. Finally a decision is made as to whether the final
theory should include the revised rule, the replacement rule, or the original rule. This decision is
made using the description length heuristic, whereby the definition with the smallest description
length after compression is preferred. After optimization, the definition may cover fewer positive
examples; thus IREP* is called again on the uncovered positive examples, and any additional rules
that it generates are added. This optimization step can be repeated, occasionally resulting in further
improvements in a rule set.
Some attempts have been done to introduce in RIPPER the usage of external knowledge, provided
by public thesauri. In the next two sections, we will discuss two different approaches to this prob-
lem. In the first, Scott and Matwin [115] used RIPPER algorithm in union with pre-processing
techniques and WordNet thesaurus, while the second is a true extension on RIPPER build to intro-
duce external knowledge in the learning process.

5.3.2 Using WordNet Thesaurus in RIPPER

An example of exploration of the use of external knowledge in Text Categorization is given by
[115]. In this work, the authors analyzed the hypothesis that incorporating linguistic knowledge
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into text representation can lead to improvements in classification accuracy. Specifically, they
applied RIPPER algorithm to the training data, pre-processed by means of linguistic techniques
and using part of speech information from the Brill tagger [25]and the synonymy and hypernymy
relations from WordNet [27]. Trough this pre-processing process the representation of the text
has been changed from bag-of-words to hypernym density, where synsets (synonyms sets) replace
words. The algorithm for computing hypernym density requires three passes through the corpus:

1. assignment of the part of speech tag to each word in the corpus, through the Brill tagger.

2. creation of a global list of all synonym and hypernym synsets, made up by looking up all
nouns and verbs in WordNet. In this phase, infrequently occurring synsets are discarded, and
those that remain form the feature set. (A synset is defined as infrequent if its frequency of
occurrence over the entire corpus is less than 0.05N , where N is the number of documents
in the corpus.)

3. computation of the density of each synset for each example resulting in a set of numerical
feature vectors. The density of a synset is defined as the number of occurrences of the synset
in the WordNet output divided by the number of words in the document.

The calculations of frequency and density are influenced by the value of a parameter h that con-
trols the height of generalization. This parameter can be used to limit the number of steps upward
through the hypernym hierarchy for each word. At height h = 0 only the synsets that contain the
words in the corpus will be counted. At height h > 0 the same synsets will be counted as well as
all the hypernym synsets that appear up to h steps above them in the hypernym hierarchy. A special
value of h = max is defined as the level in which all hypernym synsets are counted, no matter how
far up in the hierarchy they appear. In the new representation, each feature represents a set of either
nouns or verbs. At h = max, features corresponding to synsets higher up in the hypernym hier-
archy represent supersets of the nouns or verbs represented by the less general features. At lower
values of h, the nouns and verbs represented by a feature (synset) will be those that map to synsets
up to h steps below it in the hypernym hierarchy. The best value of h for a given text classification
task will depend on characteristics of the text such as use of terminology, similarity of topics, and
breadth of topics. It will also depend on the characteristics of WordNet itself. In general, if the
value for h is too small, the learner will be unable to generalize effectively. If the value for h is too
large, the learner will suffer from overgeneralization because of the overlap between the features.
Note that no attempt is made at word sense disambiguation during the computation of hypernym
density. Instead all senses returned by WordNet are judged equally likely to be correct, and all of
them are included in the feature set. The use of the density measurement is an attempt to capture
some measure of relevancy. The learner is aided by the fact that many different but synonymous or
hyponymous words will map to common synsets, thus raising the densities of the “more relevant”
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synsets. In other words, a relatively low value for a feature indicates that little evidence was found
for the meaningfulness of that synset to the document.
Some experiments have been carried out, to compare the results obtained by RIPPER, using the
two different type of text representation. Hypernym density has been observed to greatly improve
classification accuracy in some cases, while in others the improvements are not particularly evident.
Hypernym density representation brings a side benefit: induced classification rules are often sim-
pler and more comprehensible than rules induced using the bag-of-words. The experiments showed
the hypernym density representation can work well for texts that use an extended or unusual vo-
cabulary, or are written by multiple authors employing different terminologies. It is not likely to
work well for text that is guaranteed to be written concisely and efficiently, such as the text in
Reuters-21578. In particular, hypernym density is more likely to perform well on classification
tasks involving narrowly defined and/or semantically distant classes [115].

5.3.3 TRIPPER

TRIPPER is a rule induction algorithm that extends RIPPER, by using external-knowledge. The
main goal in TRIPPER (i.e. Taxonomical Ripper) is the construction of classifiers at higher levels
of abstraction, where rules are generated on the basis of user-supplied knowledge, available in the
form of attribute value taxonomies. The extensions to RIPPER can be summerized as follow [128]:

Improvement at rule growth phase (TRIPPER G): Introducing the taxonomical knowledge at
the rule-growth phase is a straightforward process called feature space augmentation. The
augmentation process takes all the interior nodes of the attribute value taxonomy and adds
them to the set of candidate literals used for the growth phase.

Improvement at rule pruning phase (TRIPPER G+P): A more general version of feature selec-
tion than pruning is abstraction: in the case of abstraction, instead of casting the problem as a
matter of preserving or discarding a feature, TRIPPER chooses from a whole range of levels
of specificity for the feature under consideration.

Some experimental results about TRIPPER have been reported in [128]. The main goal of the
experiments carried out was to compare TRIPPER and RIPPER performances. Both algorithms
have been evaluated on the benchmark dataset REUTERS-21578, with experimental setting simi-
lar to those used in [92]. The text-specific taxonomies, used for TRIPPER growing and pruning
phases, comes from WordNet [27], using only the hypernimy relation that stands for “is-a” relation
between concepts.

The experiments showed that TRIPPER generally outperforms RIPPER on the Reuters text
classification task in terms of break-even point, while generating potentially more comprehensible
and concise rule sets than RIPPER, thanks to the improvements in both phases of learning. Further,
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the additional computation cost of TRIPPER is small when compared with RIPPER, consisting in
an additional multiplicative factor that represents the height of the largest taxonomy, which in the
average case scales logarithmically with the number of feature values.



Chapter 6

Evolutionary Approaches

Text Classification is the task of assigning natural language texts to one or more thematic categories
on the basis of their contents. A number of machine learning methods have been proposed in the
last few years, including k-nearest neighbors (k-NN), probabilistic Bayesian, neural networks and
SVMs. In a different line, rule learning algorithms, have become a successful strategy for classifier
induction. Rule-based classifiers provide the desirable property of being readable and, thus, easy
for people to understand (and, possibly, modify). Genetic Algorithms (GA’s) are stochastic search
methods inspired to the biological evolution [59,94]. Their capability to provide good solutions for
classical optimization tasks has been demonstrated by various applications, including TSP [6, 75]
and Knapsack [69]. Rule induction is also one of the application fields of GA’s [12, 49, 99, 100].
The basic idea is that each individual encodes a candidate solution (i.e., a classification rule or
a classifier), and that its fitness is evaluated in terms of predictive accuracy. In the various GA-
based approaches to rule induction used in the literature (e.g., [49, 99, 100]), an individual of the
population may either represent a single rule or a rule set. The former approach (single-rule-per-
individual) makes the individual encoding simpler, but the fitness of an individual may not be a
meaningful indicator of the quality of the rule. On the other hand, the several-rules- per-individual
approach, where an individual may represent an entire classifier, requires a more sophisticated
encoding of individuals, but the fitness provides a reliable indicator. So, in general, there is a
tradeoff between simplicity of encoding and effectiveness of the fitness function In the following
section we will analyze two GA’s models, BioHEL [18, 48] and Olex-GA [101].

6.1 BIOHEL

The BioHEL (Bioinformatics-oriented Hierarchical Evolutionary Learning) system is a rule-based
evolutionary learning system based on the Pittsburgh approach, where each individual encodes a
candidate classifier. BioHEL applies an iterative rule learning (IRL) approach to evolve individuals

48
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Figure 6.1: BioHEL general workflow

that are a set of rules. Each set of rules represents a classifier. The learning process creates a rule
set by iteratively learning one rule at a time using a GA approach. Each time the system learns a
new rule, adds it to the theory and removes all covered examples from the training set. This process
is repeated iteratively until all examples are covered.

Figure 6.1 contains the pseudo-code of the general workflow of BioHEL.

6.2 Olex-GA

Olex-GA is a GA-based approach for the induction of rule-based text classifiers. An Olex-GA
classifier Hc for a category c is a pair ⟨Pos,Neg⟩, where Pos = {t1, · · · tn} is the set of positive
terms and Neg = {t(n + 1), · · · t(n + m)} the set of negative terms. The informal meaning of
such a classifier is ”classify document d under category c if any of the positive terms occurs in d
and none of the negative terms occurs in d”. The formal meaning of Hc is given by the following
classification rules:

c← (t1 ∈ d ∨ · · · ∨ tn ∈ d) ∧ ¬(tn+1 ∈ d ∨ · · · ∨ tn+m ∈ d)

where c is a category, d a document and each ti a term (n-gram) taken from a given vocabulary.
We denote a classifier for c as above by Hc(Pos,Neg), where Pos = {t1, · · · , tn} and Neg =
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{tn+1 · · · tn+m}. Positive terms in Pos are used to cover the training set of c, while negative terms
in Neg are used to take precision under control.

The problem of learning Hc(Pos,Neg) is formulated as an optimization task (MAX-F) aimed
at finding the sets Pos and Neg which maximize the F -measure when Hc(Pos,Neg) is applied
to the training set. MAX-F can be represented as a 0-1 combinatorial problem and, thus, the GA
approach turns out to be a natural candidate resolution method.

In Olex-GA an individual represents a candidate classifier (instead of a single rule). It relies
on the Pittsburgh approach for (variable-length) individual encoding. The fitness of an individual
is expressed in terms of the F -measure attained by the corresponding classifier when applied to
the training set. This several-rules-per-individual approach (as opposed to the single-rule-per-
individual approach) provides the advantage that the fitness of an individual reliably indicates its
quality, as it is a measure of the predictive accuracy of the encoded classifier rather than of a single
rule.

Once the population of individuals has been suitably initialized, evolution takes place by iterat-
ing elitism, selection, crossover and mutation, until a pre-defined number of generations is created.

Figure 6.2 contains the pseudo-code of the general workflow of Olex-GA for category c.
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Algorithm Olex-GA

Input: vocabulary V (f, k) over the training set TS; number n of generations;
Output: “best” classifierHc(Pos,Neg) of c over TS;

- begin
- Evaluate the sets of candidate positive and negative terms from V (f, k);
- Create the population oldPop and initialize each chromosome;
- Repeat n times
- Evaluate the fitness of each chromosome in oldPop;
- newPop = ∅;
- Copy in NewPop the best r chromosomes of oldPop (elitism - r is

determined on the basis of the elitism percentage)
- While size(newPop) < size(oldPop)
- select parent1 and parent2 in oldPop via roulette wheel
- generate kid1, kid2 through crossover(parent1, parent2)
- apply mutation, i.e., kid1 = mut(kid1) and kid2 = mut(kid2)
- apply the repair operator ρ to both kid1 and kid2;
- add kid1 and kid2 to newPop;
- end-while
- oldPop = newPop;
- end-repeat;
- Select the best chromosome K in oldPop;
- Eliminate redundancies from K;
- return the classifierHc(Pos,Neg) associated with K.

Figure 6.2: Evolutionary Process for category c



Chapter 7

Exploitation of Negative Information

Machine Learning techniques to Text Categorization generally aim at the construction of classi-
fiers, basing their classification decision of the new document on the similarity with the positive
training documents. In other words, they use the fact that a test document is “similar” to a training
document, representing a positive instance for a given category, as evidence towards the fact that
the test document belongs to that category. Generally, the similarity to a negative training instance
is not used anyway.
In this chapter, we discuss some approaches, where negative evidence, i.e. evidence provided by
negative training instances, is not discarded, but used in the categorization decision. At first, we
discuss a variant of k-NN, based on the use of negative information, proposed in [54], then we
focus our attention some rule-based approaches aiming at the construction of rules containing neg-
ative information and, finally, we shortly describe some methods for the extraction of positive and
negative features from the training data.

7.1 A variant of k-NN using negative information

Galavotti et al in [54] proposed a family of variants of Yang’s version of K-NN, called k-NNp
neg.

The original method, discussed in section 4.2, is distance-weighted algorithm, since the fact that
a training document d′z similar to the test document dj belongs to ci is weighted by the similarity
between d′z and dj . Mathematically, classifying a document by means of k-NN thus comes down
to computing

CSVi(dj) =
∑

d′i∈Trk(dj)

RSV (dj, d
′
z) · viz (7.1)

where

52
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• CSVi(dj) measures the computed evidence that dj belongs to ci, i.,e. the categorization
status value of document dj with respect to category ci

• RSV (dj, d
′
z) represents some measure of semantic relatedness between dj and d′z, i.e. the

retrieval status value of document d′z with respect to document dj

• Trk(dj) is the set of the k training documents d′z for which RSV (dj, d
′
z) is highest. The num-

ber k of training top-ranked documents to be considered is often determined experimentally.

• viz is the weight of the training document d′z. The value of viz is 1 if d′z is a positive instance
for category ci, 0 otherwise.

The first variant proposed in [54], called k-NN1
neg, is based on the simple intuition of assign-

ing a negative weight to those documents of the training set, that are negative instances for category
ci. This is realized by using, in equation 7.2, a value of −1 for viz, if d′z is a negative instance for
ci. Contrary to the expectations, experiments have shown that the use of negative evidence doesn’t
bring any substantial improvement in k-NN classifiers. In fact, the highest performance obtained
for k-NN1

neg(0.775) is practically the same as that obtained for k-NN (0.776). An interesting
characteristic of k-NN1

neg is that it needs smaller similarity document set than k-NN, in fact it
peaks at substantially lower values of k than k-NN (10 vs 50); even if k-NN1

neg is less robust than
k-NN with respect to the choice of k. In fact, for k-NN1

neg effectiveness degrades somehow for
values of k higher than 10, while the original system is hardly influenced by the value of k.
The basic intuition of k-NN1

neg is stressed in k-NNp
neg methods. In contrasts with k-NN, where

very dissimilar documents have not much influence, since positive instances are usually far less
than negative ones, in k-NNp

neg they do, since each of the most k most similar documents, how-
ever semantically distant, brings a little weight to the final sum of which the CSV consists. The
k-NNp

neg methods are based on the use of CSV functions that downplay the influence of the simi-
larity value in the case of widely dissimilar documents. This class of functions can be represented
as:

CSVi(dj) =
∑

d′i∈Trk(dj)

RSV (dj, d
′
z)

p · viz (7.2)

where the larger the value of p parameter is, the more the influence of the similarity value is
played in the case of widely dissimilar documents.
A small group of experiments have been carried out in order to compare k-NN2

neg with k-NN1
neg

and with k-NN. The experiments showed that k-NN2
neg outperform both methods: it peaks for

higher value of k than k-NN1
neg and it is remarkably more stable for higher values of k. This
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seemingly suggests that negative evidence provided by very dissimilar documents is indeed useful,
provided its importance is de-emphasized. Instead k-NN3

neg slightly underperforms k-NN2
neg,

showing that the level of de-emphasization must be chosen carefully.

7.2 Association Rules with Negation

The association rules mining algorithms described in section 5.2 focus on discovering association
rules of the form A ⇒ B, whose support (supp) and confidence (conf) meet some user speci-
fied minimum support (minsupp) and minimum confidence (minconf ) thresholds. Association rules
from the support-confidence framework are positive rules.
Different techniques for the classification of structured data and texts, aiming at improving tradi-
tional associative classification models taking advantage of negative information, have been pro-
posed in the last years. Brin et al. [26] mentioned for the first time the notion of negative rela-
tionships in the literature. Their model is chisquare based. They use the statistical test to verify
the independence between two variables. To determine the nature (positive or negative) of the re-
lationship, a correlation metric was used. In [113], the authors present a new idea to mine strong
negative rules. They combine positive frequent itemsets with domain knowledge in the form of a
taxonomy to mine negative associations. However, their algorithm is hard to generalize since it is
domain dependant and requires a predefined taxonomy. In the following, we focus our attention on
two approaches proposed in literature. The first one, described in [133], aims at the construction of
classifier composed by positive and negative rule, on the basis of frequent and infrequent itemsets;
the second one, presented in [15] consider another framework that adds to the support-confidence,
for the choice of positive and negative items set, some measures based on correlation analysis.

7.2.1 Mining Positive and Negative Associative Rules

The Association Rule Mining approach presented in [133] aims at extending the traditional def-
inition of association rule to support negative rules. Association rules, traditionally defined as
implications of the form A⇒ B, where A and B are frequent itemsets in a transactional databases
(positive rules), in [133] include implications of the form A ⇒ ¬B, ¬A ⇒ B and ¬A ⇒ ¬B
, generated from the infrequent itemsets (negative rules). A set of condition, that we discuss af-
terwards, are used to state the interest of an itemset, while the confidence of positive and negative
rules is estimated using the increasing degree of the conditional probability relative to the prior
probability.
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Frequent and infrequent itemsets

As defined in [30], a frequent itemset is an itemset that meets the user-specified minimum support.
Accordingly, an infrequent itemset is defined as an itemset that doesn’t meet the user-specified
minimum support.
Let I = i1, i2, ...., iN be a set of N distinct literals called items, and D a database of variable-length
transactions over I . Each transaction contrains a set of items i1, i2, .., ik ∈ I , called itemset of
length k and referred to as k−itemsets. Each itemset has an associated measure called support,
denoted as supp. For an itemset A ⊆ I , supp(A) = s if the fraction of transactions in D containing
A equals to s.
A (positive) association rule in the support-confidence framework is an implication of the form
A ⇒ B, where A,B ⊆ I and A ∩ B = ∅. The support of the rule A ⇒ B is defined as
supp(A ∪ B), while the confidence is defined as the ratio of the supp(A ∪ B) of itemset A ∪ B

over the supp(A) of itemset A. That is, conf(A⇒ B) = supp(A ∪B)/supp(A).
Once defined support and confidence for a rule, [133] proceeds to the extraction of valid positive
and negative rules, according to a set of conditions stating the interest of a rule.
A positive rule X ⇒ Y is of interest if and only if

(1) X ∩ Y = ∅

(2) supp(X ∪ Y ) ≥ minsupp

(3) supp(X ∪ Y )/supp(X) ≥ minconf

(4) supp(X ∪ Y )− supp(X)× supp(Y ) ≥ mininterest

where X ∪ Y is a frequent itemset and mininterest,minconf and minsupp thresholds are
specified by the user. Intuitively, rule X ⇒ Y is of interest if its support and confidence are greater
or equal to the fixed minimum values and the itemset X ∪ Y is more interesting than the pair of
independent itemset X and Y .

Based on the conditions for frequent itemset for mining positive rules, a set of conditions for a
rule of the form X ⇒ ¬Y to be a valid negative rule of interest:

(1) X ∩ Y = ∅

(2) supp(X) ≥ minsupp, supp(Y ) ≥ minsupp, supp(X ∪ ¬Y ) ≥ minsupp

(3) supp(X ∪ ¬Y )/supp(X) ≥ minconf

(4) supp(X ∪ ¬Y )− supp(X)× supp(¬Y ) ≥ mininterest
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where A∪B and B is an infrequent itemset of interest. In fact, the condition supp(X ∪¬Y ) ≥
minsupp implies that supp(X ∪ Y ) ≤ minsupp and, when the minsupp is high, X ∪ Y cannot
be generated as frequent itemset. The conditions for rules of the form ¬X ⇒ Y and ¬X ⇒ ¬Y
are defined accordingly. Once frequent and infrequent itemsets are identified, on the basis of the
constraints discussed above, positive and negative rules are defined. This approach has been tested
on three different datasets and it has been compared with Apriori [9] in the support-confidence
framework proposed in [8]. When mining only positive rules of interest, the classifiers produced
in the compared approaches are identical (if the same constraints are applied). In the meanwhile,
the approach proposed by [133] is more efficient than Apriori algorithm in discovering positive
association rules. The proposed approach seems promising, even if no experimental result has been
provided in [133] about the introduction of negative information in rule mining.

7.2.2 ARC-PAN Classifier

In this section we introduce ARC-PAN (Associative Rule Classification with Positive And Neg-
ative), so called because the set of rules generated is the union of PCR (Positive Classification
Rules) and NCR (Negative Classification Rules). In this approach, the generation of positive and
negative rules is based on correlation measures, computed by using a correlation coefficient. Given
two variables X and Y , the correlation coefficient measures the strength of the linear relationship
between a pair of two variables, according to the following formula:

ρ =
Cov(X,Y )

σXσY

(7.3)

where Cov(X,Y ) represents the covariance of the two variables and σX stands for the standard
deviation. The range of values for ρ is between −1 and +1. Here, we report the values of interest
for correlation coefficient:

ρ =


0 X and Y are independent
+1 X and Y are perfectly positive correlated
+1 X and Y are perfectly negative correlated

A positive correlation is evidence of a general tendency that when the value of X increases/decreases
so does the value of Y . A negative correlation occurs when for the increase/decrease of X value,
we discover a decrease/increase in the value of Y .

ARC-PAN algorithm is an apriori-like process for the generation of a set of classification rules
of the form set of features ⇒ class label, which will be used in the subsequent classification
stage [15].
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It generates first the set of frequent 1-itemsets. Once the 1-frequent itemsets is generated the can-
didate sets C2 to Cn are found as a join between Fk−1 and F1. Those candidates that exceed
minimum support threshold are added to the corresponding frequent set. For each candidate, the
positive and negative association rules are generated , using a function based on the item correla-
tion with a class label. This function takes as input an itemset and the set of class labels and, for
each pair (item, class label) computes the correlation coefficient. If the correlation in absolute
value is greater than the correlation threshold given, than the classification rule is of interest. If the
correlation is positive, a positive association rule is discovered. When the correlation is negative,
negative rules are generated. Given two items X and Y , a positive association rule is a rule of the
form X ⇒ Y . A negative association rule is one of the follows: ¬X ⇒ Y or X ⇒ ¬Y . Once the
rules are generated, they are added to PCR or NCR if their confidence exceeds the minimum confi-
dence threshold. The values for the correlation coefficient are chosen based on the values discussed
before. First, they consider as high correlation threshold, in order to discover strong correlations, if
no strong correlation is discovered, the threshold can be lowered to discover moderate correlations.
The algorithm described above has been tested on various dataset, in order to evaluate its perfor-
mance values and comparing it with other learning algorithm, such as CBA and C4.5, whose results
have been taken from [89]. When all types of rules are used the classification accuracy increases
on three datasets when compared with the state-of-the-art classifier C4.5 and with the CBA. In par-
ticular, the experiments showed that the classification accuracy can be improved as well with only
the generation of positive association rules that are strongly correlated, while generating only the
negative rules only, the results decrease.
As noticed in [15], there is a drastic reduction in rule number when the correlation measure is used
to derive interesting rules, without any consequence for the error rate, which remains in the same
range.This demonstrates that a much smaller set of positive and negative association rules can per-
form similar or outperform existing categorization systems.

7.3 Use of Negative Information in Features Selection

In [140] a different approach for feature set selection has been proposed. A set of features is con-
structed for each category by first selecting a set of terms highly indicative of membership as well
as another set of terms highly indicative of non-membership, then unifying the two sets. The size
ratio of the two sets was empirically chosen to obtain optimal performance. This is in contrast with
the standard local feature selection approaches that either (1) only select the terms most indicative
of membership; or (2) implicitly but not optimally combine the terms most indicative of member-
ship with non-membership.
The proposed feature selection method is based the following two key concepts:
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• In literature, many statistical function, such as Chi Square, Odds Ratio or GSS Coefficient,
have been successfully used to extract positive features selecting, for each category, a set of
terms based on the relevant and irrelevant documents in this category.

• The same method can be used to extract negative information, simply extracting for each
category the less indicative of membership, too.

Given a feature selection function f, which measures the relationship between a term t and a
category ci as f(t, Ci), this can be used in global feature extraction by computing and comparing
the average and maximum of their category-specific values (for more details, see [137]). Given
a vocabulary V and a function f that maps terms to real values, two subsets of V with size l are
defined as Max[V, f, l] and Min[V, f, l], so that they consist of the l terms tj ∈ V with the highest
and the lowest f(tj) values, respectively.
The feature selection is carried out into three steps:

STEP 1: a positive-feature set F+
i is generated for each category ci.

F+
i = Max[V, f(·, ci, l1)], where l1, 0 < l1 < l is a natural number;

STEP 2: a negative-feature set F−
i is generated for each category ci.

F+
i = Max[V, f(·, ci, l2)], where l2 = l − l1 is a not negative number;

STEP 3: Fi = F+
i

∪
F−
i

Some improvement in classification performance have been obtained by experimenting this
method on the Reuters-21578 dataset. In particular, in most cases the results achieved show that
the combination of positive and negative features, by selecting more negative terms than positive
ones, outperform the standard approaches of positive terms selection.
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While there has been a long history of rule-based text classifiers, to the best of our knowledge
no M-of-N-based approach for text categorization has so far been proposed. In this paper we ar-
gue that M-of-N hypotheses are particularly suitable to model the text classification task because
of the so called ‘family resemblance” metaphor: ‘the members (i.e., documents) of a family (i.e.,
category) share some small number of features, yet there is no common feature among all of them.
Nevertheless, they resemble each other”. Starting from this conjecture, we provide a sound exten-
sion of the M-of-N approach with negation and disjunction, called M -of-N{¬,∨}, which enables
to best fit the true structure of the data. Based on a thorough theoretical study, we show that the
M -of-N{¬,∨} hypothesis space has two partial orders that form complete lattices.
GAMoN is the task-specific Genetic Algorithm (GA) which, by exploiting the lattice-based struc-
ture of the hypothesis space, efficiently induces accurate M -of-N{¬,∨} hypotheses.
In chapter 8, we provide a complete overview of the GAMoN language, the hypothesis space and
the refinement operators. Then, we give a description of the learning process. In chapters 9 and
10 we present the experimental results and provide a comparison with other learning approaches.
Benchmarking was performed over 13 real-world text data sets, by using four rule induction al-
gorithms: two GAs, namely, BioHEL and OlexGA, and two non-evolutionary algorithms, namely,
C4.5 and Ripper. Further, we included in our study linear SVM, as it is reported to be among the
best methods for text categorization.



Chapter 8

GAMoN: effective rule learning for TC

In this chapter we define a task-specific Genetic Algorithm (GA), called GAMoN, relying on spe-
cialized evolutionary operators representing a stochastic implementation of the refinement opera-
tors defined over the subsumption lattices. At a glance, the following are the main characteristics
of GAMoN:

• It relies on a variable-length individual representation, where each individual encodes a can-
didate classifier (Pittsburgh approach [65]).

• It combines the standard search strategy of GAs with ad hoc generalizing/specializing (GS)
reproduction operators which exploit the structure of the hypothesis space.

• It dynamically adapts the probability of selecting the GS operators over the standard ones.

• It maintains a number of competing sub-populations.

• It uses the F -measure to assess the fitness of an individual.

Unlike in the classical approach, where the feature space is simply a subset of terms from the
vocabulary, the one on which GAMoN builds its hypotheses consists of both a set of positive and a
set of negative candidate features.

In this chapter, we provide a concise introduction of the M-of-N hypothesis (section 8.2), a
complete overview of the GAMoN language (section 8.3), the language definition and the hypoth-
esis space (section 8.4) and the refinement operators (section 8.5). In the 8.6 section we give a
definition of the learning problem and show its complexity. Thus, we provide an effective algo-
rithm for learning classifiers in the M -of-N{¬,∨} hypothesis space. In particular, we propose a
heuristic approach based on a Genetic Algorithm (GA) (Section 8.7).

61
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8.1 Background

Various supervised machine learning techniques have been applied to document classification. An
excellent overview can be found in [118].
SVMs are a class of learning algorithms that showed to be highly accurate in many data mining
tasks. In [72, 74], Joachims has investigated their application to text classification. The results of
the empirical study showed that SVMs are more effective than other learning algorithms, namely,
Naive Bayes, Rocchio, C4.5 and k-Nearest Neighbor. Further, linear SVM showed to perform as
well as non-linear kernels, but substantially more efficiently.
Naive Bayes (NB) has been a very popular technique to classify texts due to its computational
efficiency and simplicity. McCallum and Nigam [93] investigated the two main document repre-
sentations for NB text classification, the Bernoulli and multinomial. They concluded that the latter
is superior in accuracy in most cases. However, one problem with Multinomial NB (MNB) is that,
when one class has more training examples than another, it selects poor weights for the decision
boundary. One additional problem is that MNB does not model text well. To improve the perfor-
mance of MNB, Rennie et al. [109] proposed Complement Naive Bayes (CNB). While learning
the conditional probability of one class, CNB uses the frequency information pertaining to all other
classes (that is, uses negative information).
In a different view, rule learning algorithms have become a successful strategy for classifier in-
duction. Direct methods extract rules directly from data, while indirect methods extract rules from
other classification models, such as decision trees (e.g., C4.5 [105]). Representative examples of di-
rect methods include Inductive Rule Learning (IRL) systems, such as FOIL [107] and Ripper [37],
and Associative Rule Learning (ARL) systems, such as CMAR [62], CPAR [138] and TFPC [31].
A sub-class of the inductive rule learners is that of Genetics-Based Machine Learning algorithms
(GBML) [45], which rely on the Evolutionary Algorithms as search mechanisms. Examples of
such systems are XCS [132], SIA [129], GAssist [19] and BioHEL [18,48]. Many GBML systems
have explicit generalisation/specialisation operators [20, 28, 41, 56, 57, 90].
The most well known rule-based classifiers used to learn from texts, notably, Ripper and C4.5,
actually originate from non-text data mining (see, e.g., [37, 53, 72]). Among the few examples
of rule-based systems specifically designed to classify texts, we mention the associative classifier
NeW [23] and the IRL systems Olex [111] and OlexGA [101]. Olex induces rules consisting of one
positive conjunction and (zero or) more negative conjunctions. It relies on a search technique that
greedily selects at each step the conjunct, either positive or negative, that maximizes the F-measure
over the training set. OlexGA is a GBML which is a special case of GAMoN, where a classifier is
a M -of-N{¬,∨} atom with thresholds p = 1 and n = 11. A peculiarity of such systems is that of
explicitly dealing with negated features.

1The Olex and OlexGA suite is downloadable from http://www.mat.unical.it/OlexGA
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Even if prior studies found SVMs and Complement Naive Bayes to be particularly effective for
text categorization, rule-based text classifiers are often preferred in real-world applications as they
provide interpretable models. Readability is indeed a very desirable property of classification mod-
els, which allows a human being to understand and possibly modify them based on his a-priori
knowledge.
However, one drawback with most rule-based systems is the high computational cost, especially
on high dimensional data sets. In ARL systems, the time cost for frequent pattern mining may in-
crease very sharply when the size of data set grows. In addition, the high number of rules generated
usually requires an additional pruning step where redundant rules are discarded. Also IRL systems
typically rely on a two-stage process: a greedy heuristic constructs an initial rule set and, then, one
or more optimization phases improve compactness and accuracy of the rule set (a similar approach
is used for decision tree as well). All this makes it difficult for most rule induction methods to scale
up to large and realistic real-world data sets.

8.2 The M-of-N hypothesis

A M-of-N hypothesis, also called Boolean threshold function, may be thought of intuitively as fol-
lows. Given a set of N features, whenever an example satisfies at least M of such features, it is
a positive example; otherwise, it is a negative one. That is, a M-of-N hypothesis is a description
that involves “counting properties”. There is quite a literature on methods for building M-of-N
hypotheses. For instance, in [119] algorithms for extracting M-of-N hypotheses from neural net-
works are reported. M-of-N concepts are also constructed as tests for the induction of decision
trees [82, 96, 120, 124, 141].
However, to the best of our knowledge, no M-of-N-based approach for text classification has been
so far proposed. Despite this, we conjecture that M-of-N hypotheses are well suited to model the
text classification task.
Text categorization (TC) is aimed at assigning natural language texts to one or more thematic cat-
egories on the basis of their contents. It is a difficult task essentially because of two main factors:
on one hand, TC has to do with the complexity and richness of the natural language, which allows
a concept to be expressed by a variety of constructs and words. This aspect is often amplified by
the presence in a category of documents which are not about a single narrow subject with limited
vocabulary. On the other hand, the TC task deals with highly dimensional data sets (i.e., with many
features). Both such factors concur to make quite unlikely the existence of a set of features, or even
a single feature, that occur in all documents of a given category. It may even happen that documents
that belong to the same category do not share any content words. However, as argued in [74], the
relationship of “family resemblance” holds. That is, documents under the same category share a
(usually small) set of N features, yet this set is not present in every document. Instead, each doc-
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ument contains M ≤ N of such features, and different documents may not share features at all.
That is, the text classification task deals with the kind of data that M-of-N hypotheses are able to
explain.
A shortcoming of the M-of-N approach, however, is that its propositions handle positive informa-
tion only, whereas negative evidence is deemed to play a crucial role in text categorization. This is
mainly because natural languages are intrinsically ambiguous, and negation helps to disambiguate
concepts - e.g., the word “ball” may ambiguously refer to either the concept “sport” or “dance”,
whereas the conjunction “ball and not ballroom” much likely refers to “sport”.
To overcome this drawback, we extend classical M-of-N hypotheses by negation. In addition, to
best fit the true structure of the data, we allow disjunctions of hypotheses. That is, we define a
new hypothesis language for text classification, called M -of-N{¬,∨}, which generalizes the classi-
cal M-of-N language through negation and disjunction (a preliminary description of the proposed
approach can be found in [103]).
In our approach, a classifier is a propositional formula of the formHc = H1

c ∨· · ·∨Hr
c , where each

Hi
c = pi-of -Pos∧¬ni-of -Neg is an atom (note that all atoms formingHc share the same sets Pos

and Neg.). Here, Pos is the set of positive terms, Neg the set of negative terms, and pi ≥ 0 and
ni > 0 are integers called thresholds. The meaning of an atom Hi

c is: classify document d under
category c if at least pi positive terms occur in d and (strictly) less than ni negative terms occur in
d. That is, M -of-N{¬,∨} provides support for explicitly modeling the interactions between positive
and negative features. Of course, Hc classifies document d under c if any of H1

c , · · · ,Hr
c classifies

d under c.
The special case of M -of-N{¬,∨}where a hypothesis is an atom with thresholds p = n = 1 is
OlexGA [101].
There is a natural ordering in the space of M -of-N{¬,∨} hypotheses determined by two kinds of
subsumption relationships: the feature and the threshold relationships. The feature relationship is
determined by the feature sets Pos and Neg appearing in a classifier Hc. As an example, assume
that Hc is the atomic classifier p-of -Pos ∧ ¬n-of -Neg, with p = 2 and n = 1. Clearly, the larger
Pos, the higher the probability that the condition “at least two positive features occur in a docu-
ment” is satisfied. Dually, the smaller Neg, the more likely a document will contain no negative
feature in Neg. In summary, the larger Pos, the smaller Neg, the more general Hc. The threshold
relationship, in turn, is determined by the thresholds appearing in Hc. For an instance, if in the
above classifier we replace p = 2 by p = 1, we get a new classifier which is more general than
the previous one - intuitively, only one instead of two positive features is necessary for classifying
a document. These relationships define two hierarchies of hypotheses (more precisely, complete
lattices) exploitable for an effective exploration of the hypothesis space. To this end, we provide
suitable refinement operators whereby “navigating” the hypothesis lattices.
As argued in [82], the evolutionary approach seems to be particularly suited for the M-of-N learn-
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ing task, as the global search style of GAs (as opposed to the “one-attribute-at-a-time” of the greedy
approach) makes them capable of catching the hidden interactions among attributes that strongly
characterize the induction of M-of-N hypotheses. However, the purely non-deterministic nature of
conventional genetic operators does not enable the search strategy to benefit of the structure of the
hypothesis space. To overcome this drawback, we define a task-specific Genetic Algorithm (GA),
called GAMoN, relying on specialized evolutionary operators representing a stochastic implemen-
tation of the refinement operators defined over the subsumption lattices. At a glance, the following
are the main characteristics of GAMoN:

• It relies on a variable-length individual representation, where each individual encodes a can-
didate classifier (Pittsburgh approach [65]).

• It combines the standard search strategy of GAs with ad hoc generalizing/specializing (GS)
reproduction operators which exploit the structure of the hypothesis space.

• It dynamically adapts the probability of selecting the GS operators over the standard ones.

• It maintains a number of competing sub-populations.

• It uses the F -measure to assess the fitness of an individual.

Unlike in the classical approach, where the feature space is simply a subset of terms from the
vocabulary, the one on which GAMoN builds its hypotheses consists of both a set of positive and a
set of negative candidate features. One main issue that in general arises when inducing a classifier
is that of selecting the appropriate dimensionality of the feature space, i.e., how many features the
classifier can access during the learning process. This is a very important design choice, as the
quality of the selected features strongly determines the quality of the learned classifier, especially
in text classification, where data sets are usually highly dimensional, noisy and ambiguous. For
most systems, the size of the feature space is managed as a tuning parameter, that is, the learning
process is rerun over feature spaces of different dimensions and the best results are eventually taken.
Unfortunately, this may require very long training times, especially over large data sets. To get over
this inconvenience, GAMoN was provided with techniques to automatically detect an appropriate
dimensionality of the feature space. This way, no manual feature selection is preliminarily needed.
GAMoN was designed as a binary classification system. We use the “one-vs-all” approach to
produce one (independent) model for each class in a multi-class classification task (this technique
is frequently used in multi-label classification, where each example may have more than one label
- as it is the case in text classification).
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8.3 Language Overview

The M -of-N{¬,∨} representation generalizes the classical notion of M-of-N concepts by allowing
negation and disjunction. A M -of-N{¬,∨} classifier for category c is a propositional formula of the
form Hc = H1

c ∨ · · · ∨ Hr
c , where each Hi

c = pi-of -Pos ∧ ¬ni-of -Neg is an atom expressing the
following condition: classify document d under category c if at least pi positive features in Pos and
less than ni negative features in Neg occur in d. Integers pi ≥ 0 and ni > 0 are called thresholds.
Of course,Hc classifies document d under c if any amongH1

c , · · · ,Hr
c classifies d under c.

Since all atoms forming Hc = H1
c ∨ · · · ∨ Hr

c share the same sets of features Pos and Neg, a
convenient notation for Hc is ⟨Pos,Neg, T ⟩, where T = {(p1, n1), · · · , (pr, nr)} is the set of
threshold pairs appearing in the atoms ofHc (T is called threshold set). For example, (1-of -Pos∧
¬2-of -Neg)∨(2-of -Pos∧¬3-of -Neg) can be simpler represented as ⟨Pos,Neg, {(1, 2), (2, 3)}⟩.
As a concrete example, consider the classifier constructed by GAMoN for category “grain” from
the Reuters data set:

Hgrain = ⟨Pos = {barley, cereals, corn, grain,maize, rice, sorghum,wheat},

Neg = {acquisition, bank, earning, pay, profit, tax, york},

T = {(1, 1), (2, 2)}⟩

This is a classifier of order 2 (as its threshold set has two elements, i.e., (1, 1) and (2, 2)), with 8
positive features (barley, cereals, etc.) and 7 negative ones (acquisition, bank, etc.). The meaning
of Hgrain is the following: classify document d under category “grain” if either one of the follow-
ing conditions hold: (1) d contains (exactly) one positive feature and no negative features, or (2) d
contains more than one positive feature and less than two negative ones. That is to say, one single
positive feature has no effect on predicting the category “grain” if any negative feature occurs in
d, while one single negative feature has no effect in denying the classification of d if more positive
features occur in d.
As the above example shows, one beneficial aspect of the M -of-N{¬,∨} representation is readabil-
ity. This is a very important feature, as it makes possible for people to visually inspecting and
understanding the induced model.
The M -of-N{¬,∨} hypothesis space has a structure determined by two kinds of subsumption rela-
tionships: the feature and the threshold subsumptions.
Intuitively, positive features are indicative of membership for a category, contrary to negative ones
that are indicative of non-membership. Thus, the more elements are in Pos, the less are in Neg, the
more general a classifier ⟨Pos,Neg, T ⟩ is (i.e., it classifies more documents). Feature subsumption
encodes this intuition. As an example, ⟨{t0, t1}, {t3, t4}, T ⟩ subsumes ⟨{t0, }, {t3, t4}, T ⟩ and is
subsumed by ⟨{t0, t1}, {t3}, T ⟩.
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The threshold subsumption relationship is in turn determined by the threshold sets appearing in the
classifiers. For an instance, the hypothesis ⟨Pos, Neg, {(1, 1)}⟩ subsumes ⟨Pos, Neg, {(2, 1)}⟩
as only one, instead of two positive features, is necessary for it to classify a document.
Thus, both the above hierarchies capture the intuitive notion of general-to-specific ordering, that is,
ifHc subsumesH′

c in either hierarchy, then whatever is classified byH′
c is classified byHc as well.

One interesting property of such relationships is that they form complete lattices in the hypothesis
space (thus, any hypothesis can be reached in the search space).
We can take advantage of this general-to-specific ordering in order to selectively search the hy-
pothesis space. For an instance, if the classifier ⟨Pos,Neg, {(2, 1)}⟩ is too specific (i.e., it covers
too few positive examples) it can be generalized either (i) through the threshold subsumption, by
replacing the threshold set {(2, 1)} by one less restrictive, say, {(1, 1)}, or (ii) by the feature sub-
sumption, i.e., by adding some term to Pos or removing some term from Neg.
Another way of generalizing or specializing a hypothesis is by “interaction” with another one. To
this end, we exploit the lattice structure of the hypothesis space. That is, the least upper bound
(resp. greatest lower bound) of two hypotheses can be taken, in any of the two lattices, in order
to get a more general (resp. specific) one. As an example, given two hypotheses sharing the same
threshold sets, say, ⟨{t0, t1}, {t3}, {(2, 1)}⟩ and ⟨{t0, t4}, {t5}, {(2, 1)}⟩, we can specialize both by
taking the greatest lower bound in the feature subsumption lattice, that is, ⟨{t0}, {t3, t5}, {(2, 1)}⟩ -
a classifier whose sets of positive and negative features are {t0} = {t0, t1}∩ {t0, t4} and {t3, t5} =
{t3} ∪ {t5}, respectively. Likewise, given two hypotheses sharing the same feature sets, say,
⟨Pos,Neg, {(1, 1)}⟩ and ⟨Pos,Neg, {(2, 2)}⟩, we can specialize both by taking the greatest lower
bound in the threshold subsumption lattice, that is, ⟨Pos,Neg, {(2, 1)}⟩ - a classifier whose thresh-
old set is {max(1, 2),min(1, 2)} (see Figure 8.1). It can be easily verified that both greatest lower
bounds are more specific than the respective parents.
As we will see later on this paper, the above concepts are at the basis of the definition of the refine-
ment operators. These are the abstract tools for searching the hypothesis space, that find concrete
application in the definition of the reproduction operators of GAMoN.
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8.4 Language Definition and Hypothesis Space

Now that we have an intuitive view of the basic ideas, in the next subsections we will provide
formal definitions of them. In particular, we will start from the notion of feature space, i.e., the
set of features which provide the lexicon from which hypotheses are built. Then we formalize the
M -of-N{¬,∨}language and define the feature ≽ϕ and the threshold ≽τ subsumption relationships,
showing a number of interesting properties. In particular, we will prove that they form complete
lattices in the hypothesis space and provide a constructive definition of the meet and the join oper-
ators in both lattices. Finally, we will give a deep insight into the structure of the hypothesis space,
and show the notion of decision boundary for M -of-N{¬,∨} classifiers.

8.4.1 Feature Space

We are given a set T of training documents (also called “examples”) and a set C of categories (also
called “concepts”). A document is a set of features (also called “terms”), a feature being a sequence
of one or more words (or word stems). Each document in T is associated with a category in C. We
denote by Tc ⊆ T the training set of c, i.e., the set of training documents associated with category
c. We call vocabulary the set of features occurring in the documents of T .
Unlike in the classical definitions, where the feature space is simply a subset of the vocabulary, in
our definition the feature space consists of both a set of positive and a set of negative features. This
is because M -of-N{¬,∨} hypotheses explicitly models the interaction between positive and negative
features, the latter being regarded as “first class citizens”.

Definition 8.1 (Feature space) We are given a vocabulary V , a non-negative integer k and a scoring
function σ which assigns a score to every feature in V based on its correlation with category c

(e.g., CHI Square [46]) . Define the feature space F(k) (of size k) for category c as the pair
⟨Pos∗c(k), Neg∗c (k)⟩, where Pos∗c(k) ⊆ V and Neg∗c (k) ⊆ V are as follows:

• Pos∗c(k) is the set of the k highest scoring features in V for category c, according to σ; we
say that t ∈ Pos∗c(k) is a candidate positive feature of c.

• given Pos∗(k), consider the set N of terms co-occurring with positive candidate features
within negative examples, i.e.,
N = {t ∈ V | t /∈ Pos∗c(k) and (Θ

+ ∩Θ(t) \Tc) ̸= ∅} where Θ(t) ⊆ T is the set of training
documents containing feature t, Θ+ = ∪t∈Pos∗c(k)Θ(t) and Tc is the training set of c. With
each feature t ∈ N we assign a score η(t) as follows:

η(t) =
|Θ+ ∩Θ(t) \ Tc|

|Θ+ \ Tc|+ |Θ(t) ∩ Tc|
.
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It can be easily seen that 0 < η(t) ≤ 1. In particular, a term t occurring in all negative
examples and in no positive one containing any positive feature has score η(t) = 1. On the
other hand, η(t) > 0, ∀t ∈ N as, by definition, t co-occurs with a candidate positive feature
in some negative example. Then, we define Neg∗c (k) as the set of the best k elements of N
according to η; we say that t ∈ Neg∗c (k) is a candidate negative feature of c.

The rationale behind the above definition is rather intuitive: candidate positive features are sup-
posed to capture most of the positive examples, as they are characterized by high scoring values.
On the contrary, candidate negative features, defined as terms co-occurring with positive candidate
terms within negative examples, are supposed to discard most of the (potentially) false positive ex-
amples. For an instance, if the feature “ball” is a candidate positive and “ballroom” co-occurs with
“ball” within some negative examples, “ballroom” becomes a negative candidate feature. Clearly,
the higher the scoring σ(t) (resp. η(t)) of a term t, the higher its value as a candidate positive (resp.
negative) feature.

8.4.2 Hypothesis Space

A hypothesis is a propositional formula used to describe the examples of a given concept. The
hypothesis language we propose in this section is an extension of the M-of-N language, called
M -of-N{¬,∨}.

Definition 8.2 (Hypothesis language) We are given the feature spaceF(k) = ⟨Pos∗c(k), Neg∗c (k)⟩,
along with two integers, P and N , called threshold bounds. A M -of-N{¬,∨} hypothesis (or “classi-
fier”) for category c over F(k) is inductively defined as follows:

• Basis: p-of -Pos ∧ ¬n-of -Neg is an atom (or 1-order classifier), where 0 ≤ p ≤ P and 0 <

n ≤ N are integers called positive and negative thresholds, respectively, and Pos ⊆ Pos∗c(k)

and Neg ⊆ Neg∗c (k) are (possibly empty) sets of features. In particular, Pos is the set of
positive features and Neg the set of negative features. This classifier classifies a document
d under category c if at least p positive features occur in d and less than n negative features
occur in d. A convenient notation for p-of -Pos ∧ ¬n-of -Neg is ⟨Pos,Neg, {(p, n)}⟩.

• induction: let H1
c = ⟨Pos,Neg, T1⟩ be a r-order classifier and H2

c = ⟨Pos,Neg, T2⟩ a s-
order classifier (note thatH1

c andH2
c share the same sets of features). ThenHc = H1

c ∨H2
c is

a classifier of order q ≤ r + s. Hc classifies document d under c if eitherH1
c orH2

c classifies
d under c. A convenient notation forHc is ⟨Pos,Neg, T ⟩, where T = T1 ∪ T2.

As already noticed, all atoms forming a classifier hold the same sets Pos and Neg. That is why we
can denoteHc = H1

c∨· · ·∨Hr
c by using the compact notation ⟨Pos,Neg, T ⟩, where T = {(p1, n1),
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· · · , (pr, nr)} is the set of all threshold pairs appearing in the atoms ofHc. Clearly, the size of T is
the order of the classifier.

Example 8.3 The 2-order classifier (1-of -Pos∧¬2-of -Neg)∨ (2-of -Pos∧¬3-of -Neg) can be
represented as ⟨Pos,Neg, {(1, 2), (2, 3)}⟩.

An atom with p = 0 and n > |Neg| acts as an acceptor, while one with p > |Pos| is to be
understood as a rejector. An atom ⟨Pos,Neg, {(1, 1)}⟩ coincides with an OlexGA classifier [101].
In general, a (non-acceptor, non-rejector) atom ⟨Pos,Neg, {(p, n)}⟩ is logically equivalent to the
following propositional formula:

c← (T1 ∨ · · · ∨ Tk) ∧ ¬(Tk+1 ∨ · · · ∨ Tk+m)

where T1 · · ·Tk are all possible conjunctions made of p positive terms in Pos, and Tk+1 · · ·Tk+m

are all possible conjunctions made of n negative terms in Neg. The rule-based semantics of a r-
order classifierHc = H1

c ∨ · · · ∨Hr
c is the obvious generalization of the base case: Hc is equivalent

to the union of the rule sets of allHi
c, 1 ≤ i ≤ r.

We finally provide the definition of hypothesis space.

Definition 8.4 The hypothesis space H(F(k), P,N) is the set of all hypotheses constructible over
a feature space F(k) and for given thresholds bounds P and N .

8.4.3 Ordering the hypothesis space

There is a natural ordering in the hypothesis space determined by two kinds of subsumption rela-
tionships, namely, the feature and the threshold subsumption.

Ordering along the feature dimension

Let HT (F(k)) ⊆ H(F(k), P,N) be the hypothesis subspace consisting of all hypotheses in
H(F(k), P,N) having the same given threshold set T . Hypotheses in HT (F(k)) are said τ -
homogeneous. On HT (F(k)) there exists a binary relation that we call feature-subsumption (ϕ-
subsumption, for short).

Definition 8.5 (Feature-subsumption) We are given two classifiers in HT (F(k)), say,H1
c = ⟨Pos1,

Neg1, T ⟩ and H2
c = ⟨Pos2, Neg2, T ⟩. H1

c ϕ-subsumes H2
c (and H2

c is ϕ-subsumed by H1
c) if both

Pos2 ⊆ Pos1 and Neg1 ⊆ Neg2 (write H1
c ≽ϕ H2

c). H1
c is called a ϕ-generalization of H2

c (and
H2

c a ϕ-specialization ofH1
c).
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Example 8.6 According to the definition 8.5, the following classifier
Hc = ⟨{t0, t1}, {t3, t4}, {(1, 1)}⟩ ϕ-subsumes H′

c = ⟨{t0}, {t3, t4}, {(1, 1)}⟩ and is ϕ-subsumed
by H′′

c = ⟨{t0, t1}, {t4}, {(1, 1)}⟩. Intuitively, the former subsumption holds as the classification
condition on the positive features “at least one of t0 and t1 must occur in d” is clearly weaker than
“t0 must occur in d”, so as (ceteris paribus) more documents will be classifier by Hc than by H′

c.
Dually, Hc is ϕ-subsumed by H′′

c as the condition on the negative features expressed by the latter
“t4 must not occur in d” is weaker than that expressed by the former “neither t3 nor t4 can occur in
d”.

Next we show that ifH1
c ≽ϕ H2

c thenH1
c classifies all documents classified byH2

c . In the following,
we will denote by D(Hc) ⊆ D the set of documents classified byHc, for a document set D.

Proposition 8.7 LetH1
c andH2

c be two classifiers in HT (F(k)). ThenH1
c ≽ϕ H2

c impliesD(H1
c) ⊇

D(H2
c)

The following proposition shows that (HT (F(k)),≽ϕ) is a complete lattice.

Proof Let H1
c and H2

c be two classifiers in HT (F(k)). Next we show that H1
c ≽ϕ H2

c im-
plies D(H1

c) ⊇ D(H2
c). The proof proceeds by induction. (Basis) H1

c and H2
c are atoms in

HT (F(k)) of the form, say, ⟨Pos1, Neg1, {(p, n)}⟩ and ⟨Pos2, Neg2, {(p, n)}⟩. A document d
is classified by H2

c iff |d ∩ Pos2| ≥ p and |d ∩ Neg2| ≤ n (recall that a document is a set
of features - see Subsection 8.4.1). It can be easily seen that, since both Pos2 ⊆ Pos1 and
Neg1 ⊆ Neg2 hold by hypothesis, |d ∩ Pos1| ≥ p and |d ∩ Neg1| ≤ n is verified as well, that
is, d is classified by H1

c . (Inductive step) H1
c and H2

c are two generic classifiers ⟨Pos1, Neg1, T ⟩
and ⟨Pos2, Neg2, T ⟩ in HT (F(k)) such that H1

c ≽ϕ H2
c . Thus, they can be expressed in the

following form: H1
c = H1,1

c ∨ H1,2
c and H2

c = H2,1
c ∨ H2,2

c , where H1,1
c = ⟨Pos1, Neg1, T1⟩,

H1,2
c = ⟨Pos1, Neg1, T2⟩, H2,1

c = ⟨Pos2, Neg2, T1⟩ and H2,2
c = ⟨Pos2, Neg2, T2⟩. By inductive

hypothesis, since both Pos2 ⊆ Pos1 and Neg1 ⊆ Neg2 hold, any document classified by H2,1
c is

classified by H1,1
c and any document classified by H2,2

c is classified by H1,2
c . It turns out that H1

c

classifies all documents classified byH2
c , i.e., D(H1

c) ⊇ D(H2
c).

Proposition 8.8 (HT (F(k)),≽ϕ) is a complete lattice. Indeed, for any H1
c , H2

c ∈ HT (F(k)),
there are both the greatest lower bound glbϕ(H1

c ,H2
c) and the least upper bound lubϕ(H1

c ,H2
c) as

follows:

a) lubϕ(H1
c ,H2

c) = ⟨Pos1 ∪ Pos2, Neg1 ∩Neg2, T ⟩.

b) glbϕ(H1
c ,H2

c) = ⟨Pos1 ∩ Pos2, Neg1 ∪Neg2, T ⟩.
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It is easy to recognize that the bottom element of HT (F(k) is ⟨∅, Neg∗(k), T ⟩ and the top
⟨Pos∗(k), ∅, T ⟩.
Proof Next we show that (HT (F(k)),≽ϕ) is a complete lattice. To this end, we first prove state-
ment (a) - lubϕ(H1

c ,H2
c) = ⟨Pos1 ∪ Pos2, Neg1 ∩ Neg2, T ⟩. From Definition 8.5 it immediately

follows that both lubϕ(H1
c , H2

c) ≽ϕ H1
c and lubϕ(H1

c ,H2
c) ≽ϕ H2

c hold. Now let us assume, by ab-
surd, the existence ofH′

c = ⟨Pos,Neg, T ⟩ such that lubϕ(H1
c ,H2

c) ≽ϕ H ′
c and, further, H ′

c ≽ϕ H1
c

and H ′
c ≽ϕ H2

c . From lubϕ(H1
c ,H2

c) ≽ϕ H ′
c we have that Pos ⊆ Pos1 ∪ Pos2 (see Definition

8.5). However, if so, the conditions H ′
c ≽ϕ H1

c and H ′
c ≽ϕ H2

c cannot hold, as Pos1 ⊆ Pos

and Pos2 ⊆ Pos cannot be both true (a contradiction). From which statement (a) follows. Now
we prove statement (b) - glbϕ(H1

c ,H2
c) = ⟨Pos1 ∩ Pos2, Neg1 ∪ Neg2, T ⟩. By Definition 8.5

we have that H1
c ≽ϕ glbϕ and H2

c ≽ϕ glbϕ. Now let us assume, by absurd, the existence of
H′

c = ⟨Pos,Neg, T ⟩ such that H ′
c ≽ϕ glbϕ(H1

c ,H2
c) and, further,H1

c ≽ϕ H ′
c andH2

c ≽ϕ H ′
c. From

H ′
c ≽ϕ glbϕ(H1

c ,H2
c) it turns out that Pos1 ∩ Pos2 ⊆ Pos. But, if so, the conditions H1

c ≽ϕ H ′
c

and H2
c ≽ϕ H ′

c cannot hold, as Pos is not a subset of both Pos1 and Pos2 (a contradiction). From
which statement (b) follows.

Ordering along the threshold dimension

Let HΦ(P,N) ⊆ H(F(k), P,N) be the hypothesis subspace consisting of all hypotheses having
the same Φ = ⟨Pos,Neg⟩, with Pos and Neg over F(k). We say that two classifiers in HΦ(P,N)

are ϕ-homogeneous. Next we show that a subsumption hierarchy there exists in HΦ(P,N). We call
it threshold-subsumption, or τ -subsumption, for short.
Notation. Since ϕ-homogeneous hypotheses share all the same feature sets, in the following, when-
ever no ambiguity arises, we shall represent a classifier ⟨Pos,Neg, T ⟩ simply by T .

Example 8.9 The 2-order classifier ⟨Pos,Neg, {(1, 2), (2, 3)}⟩ may be represented simply as
{(1, 2), (2, 3)}.

Definition 8.10 (Threshold-subsumption) Let T1 = {(p1, n1)} and T2 = {(p2, n2)} be two thresh-
old sets (of size 1). Then T1 τ -subsumes T2, denoted T1 ≽τ T2, if both p1 ≤ p2 and n1 ≥ n2 hold.
More in general, given two threshold sets (of any size), we say that T1 τ -subsumes T2 if, for each
element (p, n) ∈ T2, there exists an element (p′, n′) ∈ T1 such that {(p′, n′)} ≽τ {(p, n)}.
The relation ≽τ induces a relation on HΦ(P,N) as follows. Given H1

c = ⟨Pos,Neg, T1⟩ and
H2

c = ⟨Pos,Neg, T2⟩ in HΦ(P,N),H1
c τ -subsumesH2

c (andH2
c is τ -subsumed byH1

c), if T1 ≽τ T2
(writeH1

c ≽τ H2
c). H1

c is called a τ -generalization ofH2
c (andH2

c a τ -specialization ofH1
c).

Example 8.11 Given the ϕ-homogeneous atoms H1
c = {(1, 2)} and H2

c = {(2, 1)}, H1
c ≽τ H2

c

holds as the positive threshold of H1
c is smaller than that of H2

c , whereas the viceversa holds for
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the negative thresholds. As a more general case, let H1
c = {(1, 2), (2, 1)} and H2

c = {(1, 1)} be
ϕ-homogeneous classifiers. Since {(1, 2)} ≽τ {(1, 1)} holds,H1

c ≽τ H2
c follows.

Next we show that ifH1
c ≽τ H2

c then any document classified byH2
c is classified byH1

c as well.

Proposition 8.12 Let H1
c and H2

c be two classifiers in HΦ(P,N). Then H1
c ≽τ H2

c implies
D(H1

c) ⊇ D(H2
c).

Proof Let H1
c and H2

c be two classifiers in HΦ(P,N). Next we show that H1
c ≽τ H2

c implies
D(H1

c) ⊇ D(H2
c). The proof proceeds by induction. (Basis)H1

c andH2
c are atoms of the form, say,

⟨Pos, Neg, {(p1, n1)}⟩ and ⟨Pos,Neg, {(p2, n2)}⟩. By Definition 8.2, a document d is classified
by H2

c if (and only if) |d ∩ Pos| ≥ p2 and |d ∩ Neg| ≤ n2. Now, H1
c ≽τ H2

c only if p1 ≤ p2 and
n1 ≥ n2 (by Definition 8.10), which implies that a document d classified byH2

c is classified byH1
c

as well, i.e., D(H1
c) ⊇ D(H2

c). (Inductive step)H1
c ≽τ H2

c only if, for each atomH2,i
c appearing in

H2
c there exists an atom H1,j

c appearing in H1
c such that H1,j

c ≽τ H2,i
c (immediate from Definition

8.10). Since H1,j
c classifies all documents classified by H2,i

c (inductive hypothesis), it follows that
H1

c classifies all documents classified byH2
c .

Unlike ≽ϕ, the binary relation ≽τ is not a partial order.

Example 8.13 Classifiers H1
c = {(1, 2)} and H2

c = {(1, 2), (2, 2)} are such that both H1
c ≽τ H2

c

andH2
c ≽τ H1

c hold.

Definition 8.14 (Equivalence, minimality) Two ϕ-homogeneous classifiersH1
c andH2

c are equiva-
lent, denoted H1

c ≡ H2
c , if both H1

c ≽τ H2
c and H2

c ≽τ H1
c . If a classifier Hc can be expressed as

H1
c ∨H2

c such that eitherH1
c ≽τ H2

c orH2
c ≽τ H1

c , thenHc is redundant. OtherwiseHc is minimal.
IfHc = ⟨Pos,Neg, T ⟩ is minimal, T is minimal. H1

c strictly τ -subsumesH2
c , denotedH1

c >τ H2
c ,

ifH1
c ≽τ H2

c and notH1
c ≡ H2

c .

Example 8.15 Classifiers H1
c and H2

c of Example 8.13 are equivalent. Classifier Hc = {(1, 1),
(3, 1), (2, 2)} is redundant as Hc = H1

c ∨ H2
c , where H1

c = {(1, 1), (2, 2)} and H2
c = {(3, 1)} and,

further,H1
c ≽τ H2

c holds. On the contrary,H1
c is minimal. It can be easily recognized thatHc ≡ H1

c

holds.

The notion of equivalence encodes the intuition that equivalent hypotheses provide the same clas-
sification behavior. In fact, from Proposition 8.12 it immediately follows that equivalent classifiers
do classify the same documents. The next lemma and proposition show that the viceversa holds as
well, i.e., classifiers that classify the same documents are equivalent.

Lemma 8.16 Let Hc = H1
c ∨ H2

c and Ĥc = Ĥ1
c ∨ Ĥ2

c be given. Then, D(Hc) ⊇ D(Ĥc) only if
(D(H1

c) ⊇ D(Ĥ1
c) or D(H2

c) ⊇ D(Ĥ1
c)) and (D(H1

c) ⊇ D(Ĥ2
c) or D(H2

c) ⊇ D(Ĥ2
c)).
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Proof Next we prove that, givenHc = H1
c ∨H2

c and Ĥc = Ĥ1
c ∨Ĥ2

c , the following holds: D(Hc) ⊇
D(Ĥc) only if (D(H1

c) ⊇ D(Ĥ1
c) or D(H2

c) ⊇ D(Ĥ1
c)) and (D(H1

c) ⊇ D(Ĥ2
c) or D(H2

c) ⊇
D(Ĥ2

c)). The proof proceeds by induction. (Basis) H1
c = {(p1, n1)}, H2

c = {(p2, n2)} and Ĥc =

{(p̂, n̂)} are atoms. By Definition 8.2, D(Hc) = {d ∈ D s.t. |d ∩ Pos| ≥ p1 ∧ |d ∩ Neg| ≤
n1 ∨|d∩Pos| ≥ p2 ∧ |d∩Neg| ≤ n2} andD(Ĥc) = {d ∈ D s.t. |d∩Pos| ≥ p̂ ∧ |d∩Neg| ≤ n̂}.
Thus, D(H) ⊇ D(Ĥc) only if either (1) p̂ ≥ p1 and n̂ ≤ n1 or (2) p̂ ≥ p2 and n̂ ≤ n2. By Definition
8.10, condition (1) entails H1

c ≽τ Ĥc and condition (2) H2
c ≽τ Ĥc, so as D(H) ⊇ D(Ĥc) only

if D(H1
c) ⊇ D(Ĥc) or D(H2

c) ⊇ D(Ĥc). (Inductive step) D(H) ⊇ D(Ĥc) only if D(H1
c) ∪

D(H2
c) ⊇ D(Ĥ1

c) ∪ D(Ĥ2
c) only if D(H1

c) ∪ D(H2
c) ⊇ D(Ĥ1

c) and D(H1
c) ∪ D(H2

c) ⊇ D(Ĥ2
c)

only if (by inductive hypothesis) D(H1
c) ⊇ D(Ĥ1

c) or D(H2
c) ⊇ D(Ĥ1

c) and D(H1
c) ⊇ D(Ĥ2

c) or
D(H2

c) ⊇ D(Ĥ2
c).

Proposition 8.17 Let Hc and H′
c be two classifiers in HΦ(P,N). Then D(Hc) ⊇ D(H′

c) implies
Hc ≽τ H′

c.

Proof LetHc andH′
c be two classifiers in HΦ(P,N). We next show that D(Hc) ⊇ D(H′

c) implies
Hc ≽τ H′

c. The proof proceeds by induction. (Basis) Hc = {(p, n)} and H′
c = {(p′, n′)} are

atoms. By Definition 8.2, D(Hc) = {d ∈ D s.t. d ∩ Pos| ≥ p ∧ |d ∩ Neg| ≤ n} and D(H′
c) =

{d ∈ D s.t. d ∩ Pos| ≥ p′ ∧ |d ∩ Neg| ≤ n′}. Clearly, D(Hc) ⊇ D(H′
c) only if p ≤ p′ and

n ≥ n′, that is, only if Hc ≽τ H′
c. (Inductive step) Let Hc = H1 ∨ H2 and H′

c = H′
1 ∨ H′

2.
Now, D(Hc) ⊇ D(H′

c) only if D(H1) ∪ D(H2) ⊇ D(H′
1) ∪ D(H ′

2) only if (by Lemma 8.16)
(D(H1) ⊇ D(H′

1) ∨ D(H2) ⊇ D(H′
1)) ∧ (D(H1) ⊇ D(H′

2) ∨ D(H2) ⊇ D(H ′
2)) only if (by

inductive hypothesis)H1 ≽τ H′
1 orH2 ≽τ H′

1 andH1 ≽τ H′
2 orH2 ≽τ H′

2 only ifHc ≽τ H′
c.

From the above proposition and proposition 8.12 it immediately follows the following statement.

Corollary 8.18 Given classifiersH1
c andH2

c ,H1
c ≡ H2

c iff D(H1
c) = D(H2

c).

Proof We next prove that, given classifiers H1
c and H2

c , H1
c ≡ H2

c iff D(H1
c) = D(H2

c). Indeed,
H1

c ≡ H2
c iff H1

c ≽ H2
c and H2

c ≽ H1
c iff D(H1

c) ⊇ D(H2
c) and D(H2

c) ⊇ D(H1
c) (by Proposition

8.12 and Proposition 8.17) iff D(H1
c) = D(H2

c).
Next we show a number of further interesting properties of classifiers.

Proposition 8.19 LetHc = ⟨Pos,Neg, T ⟩ be given. Then:

1. Hc is redundant iff there exist (pi, ni), (pj, nj) ∈ T such that {(pi, ni)} ≽τ {(pj, nj)}.

2. Hc is minimal iff T = {(p1, n1), · · · , (pr, nr)} is such that pi < pj and ni < nj , or vice
versa, for each i, j ∈ [1, r].

3. IfHc = H1
c ∨H2

c andH1
c ≽τ H2

c , thenHc ≡ H1
c .
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Proof LetHc = ⟨Pos,Neg, T ⟩ be given. We next show that the following properties hold:

1. Hc is redundant iff there exist (pi, ni), (pj, nj) ∈ T such that {(pi, ni)} ≽τ {(pj, nj)}.

2. Hc is minimal iff T = {(p1, n1), · · · , (pr, nr)} is such that pi < pj and ni < nj , or vice
versa, for each i, j ∈ [1, r].

3. IfHc = H1
c ∨H2

c andH1
c ≽τ H2

c , thenHc ≡ H1
c .

(1) Let Hc = H1
c ∨ · · · ∨ Hr

c . By Definition 8.10, {(pi, ni)} ≽τ {(pj, nj)} iff Hi
c ≽ Hj

c, with
i, j ∈ [1, r], iffHc = H′

c∨Hj
c andH′

c ≽ Hj
c, whereH′

c = H1
c∨· · ·∨Hj−1

c ∨Hj+1
c ∨· · ·∨Hi

c∨· · ·∨Hr
c ,

iffHc is redundant (by Definition 8.14).
(2) From point 1 above,Hc is minimal iff for each pair (pi, ni), (pj, nj) ∈ T neither {(pi, ni)} ≽τ

{(pj, nj)} nor {(pj, nj)} ≽τ {(pi, ni)} iff neither (pi ≤ pj and ni ≥ nj) nor (pj ≤ pi and nj ≥ ni)
(by Definition 8.10) iff pi < pj and ni < nj , or viceversa.
(3) H1

c ≽τ H2
c only if D(H1

c) ⊇ D(H2
c) (by Proposition 8.12) only if D(Hc) = D(H1

c) ∪ (H2
c) =

D(H1
c) only ifHc ≡ H1

c (by Proposition 8.17).

Example 8.20 According to Part 1 of Proposition 8.19, the classifierHc = {(1, 1), (2, 1), (2, 2)} is
redundant, as {(1, 1)} ≽τ {(2, 1)}, while H1

c = {(1, 1), (2, 2)} is minimal. It is easily verified that
H1

c satisfies the condition p1 < p2 and n1 < n2 of Part 2 of Proposition 8.19. SinceHc = H1
c ∨H2

c ,
whereH2

c = {(2, 1)}, andH1
c ≽τ H2

c ,Hc ≡ H1
c follows from Part 3 of Proposition 8.19.

Another interesting property of HΦ(P,N) is that, for any two classifiers H1
c and H2

c in it, there
exists another classifier Hc in it (thus, Hc has the same sets of features of H1

c and H2
c) which is

a τ -specialization of both H1
c and H2

c that classifies exactly the documents classified by both H1
c

and H2
c (i.e., Hc is equivalent to the logical AND of H1

c and H2
c). We denote such a classifier

by and(H1
c ,H2

c). Next we provide the (constructive) definition of and(H1
c ,H2

c). As we will see
shortly after, this definition is a preliminary step for showing that ≽τ forms a complete lattice over
the set of minimal classifiers.

Definition 8.21 (AND of classifiers) Given H1
c ,H2

c ∈ HΦ(P,N), and(H1
c ,H2

c) is the classifier
inductively defined as follows:

• Basis: if H1
c = {(p1, n1)} and H2

c = {(p2, n2)} are atoms, then and(H1
c ,H2

c) = {(p, n)},
where p = Max{p1, p2} and n = Min{n1, n2}.

• Inductive step: ifH1
c = H1,1

c ∨H1,2
c andH2

c = H2,1
c ∨H2,2

c , then and(H1
c ,H2

c) = H1 ∨H2 ∨
H3 ∨ H4, where H1 = and(H1,1

c ,H2,1
c ), H2 = and(H1,1

c ,H2,2
c ), H3 = and(H1,2

c ,H2,1
c ) and

H4 = and(H1,2
c ,H2,2

c ).
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Example 8.22 IfH1
c = {(1, 2)} andH2

c = {(2, 3)}, then
and(H1

c ,H2
c) = {max{1, 2},min{2, 3}} = {2, 2} (base step of the definition). Intuitively, and(H1

c ,H2
c)

is more specific than H1
c and H2

c as the higher the positive threshold, the lower the negative
one, the more specific an atom is. As another example, if H3

c = {(1, 1), (2, 3)} and H4
c =

{(0, 1), (2, 2)}, then and(H3
c ,H4

c) = {(1, 1), (2, 1), (2, 2)} (inductive step of the definition). Notice
that and(H3

c ,H4
c) is not minimal.

Proposition 8.23 GivenHc, Ĥc ∈ HΦ(P,N), the classifier and(Hc, Ĥc) is such that (1) and(Hc, Ĥc) ∈
HΦ(P,N), (2) D(and(Hc, Ĥc)) = D(Hc) ∩ D(Ĥc), and (3) Hc ≽τ and(Hc, Ĥc) and Ĥc ≽τ

and(Hc, Ĥc).

Proof Next we show that, given Hc, Ĥc ∈ HΦ(P,N), the classifier and(Hc, Ĥc) is such that (1)
and(Hc, Ĥc) ∈ HΦ(P,N), (2) D(and(Hc, Ĥc)) = D(Hc) ∩ D(Ĥc), and (3) Hc ≽τ and(Hc, Ĥc)

and Ĥc ≽τ and(Hc, Ĥc). The proof proceeds by induction. Basis. Hc = {(p, n)} and Ĥc =

{(p̂, n̂)} are atoms. Statement (1). To show that and(Hc, Ĥc) is in HΦ(P,N) it suffices to observe
that both p = Max{p, p̂} ≤ P and n = Min{n, n̂} ≤ N hold. Statement (2). A document d is
classified by and(Hc, Ĥc) iff d contains x ≥ Max{p, p̂} positive features and y < Min{n1, n̂}
negative features, iff x ≥ p, x ≥ p̂, y < n and y < n̂, iff d is classified by both Hc and Ĥc, i.e.,
D(Hc) = D(Hc) ∩ D(Ĥc). Statement (3). Immediate from Statement 1 and Proposition 8.17.
Inductive step. LetHc = H1

c ∨H2
c and Ĥc = Ĥ1

c ∨Ĥ2
c be two classifiers. Statement (1). From Def-

inition 8.21, and(Hc, Ĥc) = H1 ∨H2 ∨H3 ∨H4, whereH1 = and(H1
c , Ĥ1

c),H2 = and(H1
c , Ĥ2

c),
H3 = and(H2

c , Ĥ1
c) and H4 = and(H2

c , Ĥ2
c). By the inductive hypothesis, H1,H2,H3,H4 are

in HΦ(P,N) and thus, by Definition 8.2, and(Hc, Ĥc) is in HΦ(P,N). Statement (2). By using
the inductive step of Definition 8.21, along with the inductive hypothesis of Statement 2, we get
D(and(Hc, Ĥc)) = D(H1

c) ∩ D(Ĥ1
c) ∪ D(H1

c) ∩ D(Ĥ2
c) ∪ D(H2

c) ∩ D(Ĥ1
c) ∪ D(H2

c) ∩ D(Ĥ2
c),

from whichD(and(Hc, Ĥc)) = D(H1
c)∩D(H2

c) immediately follows. Statement (3). By using the
inductive step of Definition 8.21, and applying the inductive hypothesis of Statement 3, we have
that H1

c ≽τ H1 and Ĥ1
c ≽τ H1 (as H1 = and(H1

c , Ĥ1
c)), H1

c ≽τ H2 and Ĥ2
c ≽τ H2 (as H2 =

and(H1
c , Ĥ2

c)), H2
c ≽τ H3 and Ĥ1

c ≽τ H3 (as H3 = and(H2
c , Ĥ1

c)), H2
c ≽τ H4 and Ĥ2

c ≽τ H4

(as H4 = and(H2
c , Ĥ2

c)). Thus, by Definition 8.10, it follows that both Hc ≽τ and(Hc, Ĥc) and
Ĥc ≽τ and(Hc, Ĥc) hold (that is, and(Hc, Ĥc) is more specific than bothHc and Ĥc).

Example 8.24 In Example 8.22 we have seen that and(H1
c ,H2

c) = {(2, 2)}, for H1
c = {(1, 2)}

and H2
c = {(2, 3)}. Hence, and(H1

c ,H2
c) classifies a document d if d contains x ≥ 2 positive

features and y < 3 negative features; it is immediately recognized that a document satisfying such
a condition is classified by both H1

c and H2
c . On the other hand, d is classified by both H1

c and H2
c

if it contains x ≥ max(1, 2) positive features and y < min(2, 3) negative features, that is, if d is
classified by and(H1

c ,H2
c).
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The above result shows that the inclusion of the “∧” operator in the definition of classifier would
not increase the expressivity of the language (i.e., it would be redundant).
Now we turn our attention to minimal classifiers. The following proposition shows a key result,
that is, the uniqueness of the minimal classifier for an equivalence class.

Proposition 8.25 Any equivalence class into which is partitioned the hypothesis subspace HΦ(P,N)

by the relation ≡ has a unique minimal classifier.

Proof Next we show that any equivalence class into which is partitioned the hypothesis subspace
HΦ(P,N) by the relation ≡ has a unique minimal classifier. To this end, we prove that, if Hc and
Ĥc are two minimal classifiers such that Hc ≡ Ĥc, then Hc = Ĥc. From which the statement
immediately follows. The proof proceeds by induction. Base: Hc and Ĥc are atoms. Trivial.
Induction: Hc = H1

c ∨ H2
c and Ĥc = Ĥ1

c ∨ Ĥ2
c . Note that, from the minimality of Hc and Ĥc ,

the minimality of H1
c ,H2

c , Ĥ1
c and Ĥ2

c follows. By corollary 8.18, Hc ≡ Ĥc iff D(Hc) = D(Ĥc)

iff D(Hc) ⊇ D(Ĥc) and D(Hc) ⊆ D(Ĥc). By Lemma 8.16, D(Hc) ⊇ D(Ĥc) only if D(H1
c) ⊇

D(Ĥ1
c) or D(H2

c) ⊇ D(Ĥ1
c) and D(H1

c) ⊇ D(Ĥ2
c) or D(H2

c) ⊇ D(Ĥ2
c). Likewise, D(Hc) ⊆

D(Ĥc) only if D(H1
c) ⊆ D(Ĥ1

c) or D(H1
c) ⊆ D(Ĥ2

c) and D(H2
c) ⊆ D(Ĥ1

c) or D(H2
c) ⊆ D(Ĥ2

c).
It turns out that, because of the minimality ofH1

c ,H2
c , Ĥ1

c and Ĥ2
c , either (1) D(H1

c) = D(Ĥ1
c) and

D(H2
c) = D(Ĥ2

c) or (2) D(H1
c) = D(Ĥ2

c) and D(H2
c) = D(Ĥ1

c), only if (by Corollary 8.18) either
(1)H1

c ≡ Ĥ1
c andH2

c ≡ Ĥ2
c or (2)H1

c ≡ Ĥ2
c andH2

c ≡ Ĥ1
c . By the inductive hypothesis,Hi

c ≡ Ĥj
c

only ifHi
c = Ĥj

c, from whichHc = Ĥc.
We denote by Min(Hc) the minimal classifier of the equivalence class of Hc. From now on, we
will restrict our attention to the set of minimal classifiers MΦ(P,N) ⊆ HΦ(P,N). It is immediate
to recognize that the restriction of the binary relation ≽τ to MΦ(P,N) is a partial order. More
precisely, it is a complete lattice.

Proposition 8.26 The poset (MΦ(P,N),≽τ ), where MΦ(P,N) is the set of the minimal classi-
fiers in HΦ(P,N), is a complete lattice. Indeed, for any two elements H1

c and H2
c of MΦ(P,N),

there are both the greatest lower bound glbτ (H1
c ,H2

c) and the least upper bound lubτ (H1
c ,H2

c) as
follows:

(a) lubτ (H1
c ,H2

c) = Min(H1
c ∨ H2

c), that is, the least upper bound of H1
c ,H2

c is the minimal
classifier of the equivalence class ofH1

c ∨H2
c .

(b) glbτ (H1
c ,H2

c) = Min(and(H1
c ,H2

c)), that is, the greatest lower bound ofH1
c ,H2

c is the minimal
classifier of the equivalence class of and(H1

c ,H2
c).

Proof The statement we are going to prove is that the poset (MΦ(P,N),≽τ ), where MΦ(P,N) is
the set of the minimal classifiers in HΦ(P,N), is a complete lattice. To this end, let us consider
two classifiers H1

c and H2
c in MΦ(P,N). We first show that lubτ (H1

c ,H2
c) = Min(H1

c ∨ H2
c).
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Figure 8.1: τ -subsumption lattice with threshold bounds P = 2 and N = 3

Let Hc ∈ MΦ(P,N) be a τ -generalization of both H1
c and H2

c , i.e., Hc ≽τ H1
c and Hc ≽τ H2

c .
Thus, by Proposition 8.12, both D(Hc) ⊇ D(H1

c) and D(Hc) ⊇ D(H2
c) hold. On the other hand,

D(Min(H1
c∨H2

c)) = D(H1
c)∪D(H2

c), so thatD(Hc) ⊇ D(Min(H1
c∨H2

c)). Therefore, by Propo-
sition 8.17, Hc ≽τ Min(H1

c ∨ H2
c), from which the statement lubτ (H1

c ,H2
c) = Min(H1

c ∨ H2
c)

follows.
Now we prove that glbτ (H1

c ,H2
c) = Min(and(H1

c ,H2
c)). Let Hc be a τ -specialization of both H1

c

and H2
c , i.e., H1

c ≽τ Hc and H2
c ≽τ Hc. Thus, by Proposition 8.12, both D(H1

c ) ⊇ D(Hc)

and D(H2
c) ⊇ D(Hc) hold. On the other hand, D(Min(and(H1

c ,H2
c)) = D(H1

c) ∩ D(H2
c)

by Proposition 8.23, so that D(Min(and(H1
c ,H2

c)) ⊇ D(Hc). Therefore, by Proposition 8.17,
Min(and(H1

c ,H2
c)) ≽τ Hc, from which the statement glbτ (H1

c ,H2
c) = Min(and(H1

c ,H2
c)) fol-

lows.

Example 8.27 The τ -subsumption lattice, for threshold bounds P = 2 and N = 3, is depicted
in Figure 8.1. How we can see, there are 19 classifiers; the most general one is {(0, 3)} and
the most specific one is {(2, 1)}. Further, the maximum order of a classifier is 3 (the order of
{(0, 1), (1, 2), (2, 3)}).

We conclude this section by providing a constructive definition of both lubτ and glbτ . Let H1
c =

⟨Pos,Neg, T1⟩ andH2
c = ⟨Pos,Neg, T2⟩. Now, by Proposition 8.26, lubτ (H1

c ,H2
c) = Min(H1

c ∨
H2

c), that is, lubτ (H1
c ,H2

c) = Min(⟨Pos,Neg, T1∪T2⟩) (by Definition 8.2), that is, lubτ (H1
c ,H2

c) =
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⟨Pos,Neg,Min(T1 ∪ T2)⟩, where Min(T1 ∪ T2) is obtained from T1 ∪ T2 simply by discarding
every (p, n) such that there exists (p′, n′) ∈ T1 ∪ T2 such that {(p′, n′)} ≽τ {(p, n)} (immediate
from Proposition 8.19, Part 1). We denote Min(T1 ∪ T2) by ⊔(T1, T2), so that lubτ (H1

c ,H2
c) =

⟨Pos,Neg,⊔(T1, T2)⟩. Likewise, by Proposition 8.26, we have that glbτ (H1
c ,H2

c) =

Min(and(H1
c ,H2

c)). We denote by ⊓(T1, T2) the threshold set constructed by using Definition 8.21
and then minimized as shown above, so as glbτ (H1

c ,H2
c) = ⟨Pos,Neg,⊓(T1, T2)⟩

Proposition 8.28 LetH1
c = ⟨Pos,Neg, T1⟩ andH2

c = ⟨Pos,Neg, T2⟩ be two (minimal) classifiers
in MΦ(P,N). Then

lubτ (H1
c ,H2

c) = ⟨Pos,Neg,⊔(T1, T2)⟩

glbτ (H1
c ,H2

c) = ⟨Pos,Neg,⊓(T1, T2)⟩

where ⊔(T1, T2) and ⊓(T1, T2) are constructively defined as shown in Figure 8.2.

Proof We first prove lubτ (H1
c ,H2

c) = ⟨Pos,Neg,⊔(T1, T2)⟩. By Proposition 8.26, lubτ (H1
c ,H2

c) =

Min(H1
c ∨ H2

c), that is, lubτ (H1
c ,H2

c) = Min(⟨Pos,Neg, T1 ∪ T2⟩). It is immediate to recog-
nize that this classifier is ⟨Pos,Neg, ⊔(T1, T2)⟩ (see Figure 8.2), as function ⊔(T1, T2) simply
minimizes T1 ∪ T2 by discarding all thresholds (pj, nj) such that there exists (pi, ni) such that
{(pi, ni)} ≽τ {(pj, nj)} holds (see Proposition 8.19 - Part 1).
Now we show that glbτ (H1

c ,H2
c) = ⟨Pos,Neg,⊓(T1, T2)⟩. By Proposition 8.26, we have that

glbτ = Min(and(H1
c ,H2

c)). Next we show that Min(and(H1
c ,H2

c)) = ⟨Pos,Neg,⊓(T1, T2)⟩. To
this end, we observe that lines 9-12 of Figure 8.2 are the iterative version of the inductive defi-
nition of and(H1

c ,H2
c) (Definition 8.21). Indeed, if both H1

c and H2
c are atoms, then the function

computes ⊓(T1, T2) = {(Max(p1, p2),Min(n1, n2))}, which coincides with the base step of Defi-
nition 8.21 (of course, the classifier ⟨Pos,Neg, {(Max(p1, p2), Min(n1, n2))}⟩ is minimal, being
an atom). Now, let us consider the general case. It is easy to see that the inductive step of Defini-
tion 8.21 generates, for each couple of pairs (p1, n1) ∈ T1 and (p2, n2) ∈ T2, a pair {(Max(p1, p2),

Min(n1, n2))}. And this is exactly what function ⊓(T1, T2) does at lines 9-12. Thus, after the two
nested “for” have been carried out (lines 10-12), the classifier and(H1

c ,H2
c)) is generated. How-

ever, this classifier may not be minimal (see Example 8.22), so that function Minimize is invoked.
So, we finally get ⟨Pos,Neg,⊓(T1, T2)⟩ = Min(and(H1

c ,H2
c)).

8.4.4 The minimal hypothesis space

In the previous subsection we defined the notion of minimal classifier as the representative hypoth-
esis of an equivalence class. Minimality is a desirable property of classifiers as, by guaranteeing
the uniqueness of representation, imposes an ordered structure within the hypothesis space. For
this reason, we restrict ourselves to minimal classifiers.
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—————————————————-
Functions ⊓(T1, T2) and ⊔(T1, T2)
—————————————————-

1. function Minimize(T )
2. drop from T each (p, n) s.t. ∃ (p′, n′) ∈ T s.t. (p′, n′) ≽τ (p, n).
4. return T .
—————————————————-
5. function ⊔(T1, T2)
6. return Minimize(T1 ∪ T2);

—————————————————-
8. function ⊓(T1, T2)
9. T = ∅;
10. for each (p, n) ∈ T1
11. for each (p′, n′) ∈ T2
12. T = T ∪ {(Max{p, p′},Min{n, n′})};
13. return Minimize(T );
—————————————————-

Figure 8.2: Computation of ⊔(T1, T2) and glbτ (T1, T2)

Definition 8.29 Let the feature space F(k) = ⟨Pos∗(k), Neg∗(k)⟩ and the threshold bounds P

and N be given. The minimal hypothesis space constructible over F(k), for the given P and N

values, is (M(F(k), P,N),≽τ ,≽ϕ), where

M(F(k), P,N) =
∪
Φ

MΦ(P,N) s.t. Φ ∈ {⟨Pos,Neg⟩| Pos ⊆ Pos∗(k), Neg ⊆ Neg∗(k)}.

Thus, a minimal hypothesis space is uniquely determined by k, P and N .
Using the previously defined notational convention, in the following we will denote by Mτ (F(k))
the set of (minimal) classifiers in M(F(k), P,N) with threshold set T . It is immediate to rec-
ognize that, given the minimal threshold set T , Mτ (F(k)) and Hτ (F(k)) coincide, as both con-
sist of all (minimal) classifiers with threshold set T constructible over F(k). It turns out that
(Mτ (F(k)),≽ϕ) and (Hτ (F(k)),≽ϕ) coincide as well.
Next we discuss on the structure of (M(F(k), P,N) ≽τ ,≽ϕ), as determined by the two subsump-
tion relations. Since the ϕ-subsumption and the τ -subsumption lattices are the basic building blocks
of a minimal hypothesis space, we start our discussion by preliminarily showing the size of such
lattices.



GAMoN: effective rule learning for TC 81

The size of the two types of lattice

A ϕ-subsumption lattice MT (F(k)) consists, for a given T , of all hypotheses that can be built over
a given feature space F(k), each hypothesis corresponding to a particular choice of the sets Pos

and Neg over F(k). It is immediate to recognize the following fact.

Fact 1 The size of MT (F(k)) is equal to the number of sets Pos and Neg constructible over the
feature space F(k) = ⟨Pos∗(k), Neg∗(k)⟩, that is, |HT (F(k))| = 22k.

A τ -subsumption lattice MΦ(P,N) consists, for a given Φ = ⟨Pos,Neg⟩, of all hypotheses that
can be built for the given threshold bounds P and N , each hypothesis corresponding to a particular
threshold set satisfying P and N . The next lemma and proposition show both the size of MΦ(P,N)

and the maximum order of a classifier.

Lemma 8.30 Given threshold bounds P and N , along with k ≤ Min(P + 1, N), let T+
k =

{p1, ...., pk} and T−
k = {n1, ...., nk} be sets of integers, where ∀ i ≤ k , 0 ≤ pi ≤ P and

0 < ni ≤ N . Then there exists a unique subset S ⊆ T+
k × T−

k having size k which is a minimal
threshold set.

Proof Given threshold bounds P and N , along with k ≤ Min(P + 1, N), let T+
k = {p1, ...., pk}

and T−
k = {n1, ...., nk} be sets of integers, where ∀ i ≤ k , 0 ≤ pi ≤ P and 0 < ni ≤ N . Next we

show that there exists a unique subset S ⊆ T+
k × T−

k having size k which is a minimal threshold
set. Without loss of generality, we assume that ∀pi, pj ∈ T+

k and ∀ni, nj ∈ T−
k , such that i < j,

both pi < pj and ni < nj hold.
Existence. The set S = {(p1, n1), ..., (pi, ni), ...(pk, nk)} is a subset of T+

k × T−
k of size k where,

for each pair of elements (pi, ni) and (pj, nj), with i < j, both pi < pj and ni < nj hold. Thus, by
Proposition 8.19 - Part 2, S is a minimal threshold set.
Uniqueness. We show that any another subset S ′ ̸= S of T+

k × T−
k , which is a minimal threshold

set, has size lower than k. Suppose that (pi, nj) ∈ S ′ is such that i < j (the case j < i is likewise).
Since S ′ is a minimal threshold set, by Proposition 8.19 - Part 2, for any (ps, nt) ∈ S ′, either
ps < pi and nt < nj or pi < ps and nj < nt. Now, it is immediate to recognize that, by the above
assumption on the ordering of the elements of T+

k and T−
k , the elements ps ∈ T+

k such that s < i

(i.e., smaller than pi) are i − 1, while the elements nt ∈ T−
k such that j < t (i.e., greater than nt)

are k − j. It turns out that (1) there are at most i − 1 elements (ps, nt) ∈ S ′ such that s < i, and
(2) there are at most k − j elements (ps, nt) ∈ S ′ such that j < t. That is, the size of S ′ is at most
i+ k − j < k.

Proposition 8.31 Given the threshold bounds P and N , (1) the maximum order of a classifier in
MΦ(P,N) is Min(P +1, N), and (2) the number of minimal threshold sets that can be constructed
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for the given bounds is

λ(P,N) =

Min{P+1,N}∑
j=1

(
P + 1

j

)(
N
j

)
(8.1)

Proof Part 1. Every classifier in MΦ(P,N) is of order r ≤ Min{P + 1, N}. In fact, given
T = {(p1, n1), . . . , (pr, nr)}, from Part 2 of Proposition 8.19 we have that pi ̸= pj and ni ̸= nj

for all i, j ∈ [1, r], i ̸= j. That is, in T there appear r different positive thresholds and r negative
thresholds. Since 0 ≤ pi ≤ P and 0 < ni ≤ N , for each i ∈ [1, r], it turns out that r ≤ P + 1 and
r ≤ N , i.e., r ≤Min{P + 1, N}.
Part 2. Given P,N and s = Min{P + 1, N}, let us consider the sets T+ = {0, 1, . . . , P} and
T− = {1, . . . , N}. T+ (resp. T−) is the set of possible values for the positive (resp. negative)
thresholds appearing in the classifiers of MΦ(P,N). Now, ∀r ∈ [1, s], there exist binom(P + 1, r)

subsets T+
r ⊆ T+ (made of r elements from T+) and binom(N, r) subsets T−

r ⊆ T−. Also, from
Lemma 8.30 we know that, for each pair of sets T+

r , T−
r , there is a unique minimal threshold set

S ⊂ T+
r ×T−

r or order r constructible from T+ and T−. It turns out that there are binom(P + 1, r)×
binom(N, r) minimal threshold sets of order r. Therefore, since r ≤ Min{P + 1, N}, the total
number of threshold sets in MΦ(P,N) is that given by equation 8.1.

The landscape from the τ -subsumption perspective

Given threshold bounds P and N , let us consider two lattices (MΦ(P,N),≽τ ) and (MΦ′(P,N),≽τ

), where Φ = ⟨Pos,Neg⟩ and Φ′ = ⟨Pos′, Neg′⟩. By Proposition 8.31, they have the same num-
ber λ(P,N) of classifiers, i.e., all those constructible for the given P and N . Hence, there is a one
to one correspondence g between the classifiers of MΦ(P,N) and those of MΦ′(P,N), two re-
lated classifiers having the same threshold sets. Since the τ -subsumption relation among classifiers
is determined by the τ -subsumption relation among the respective threshold sets (see Definition
8.10), clearlyH1

c ≽τ H2
c holds in (MΦ(P,N),≽τ ) iff g(H1

c) ≽τ g(H2
c) holds in (MΦ′(P,N),≽τ ).

That is, the two lattices are isomorphic. Further, all classifiers in MΦ(P,N) share the feature sets
⟨Pos,Neg⟩, while those in MΦ′(P,N) share the feature sets ⟨Pos′, Neg′⟩, so as MΦ(P,N) and
MΦ′(P,N) are disjoint. Since the number of different Φs (i.e., pairs of sets Pos and Neg) con-
structible over a given feature space F(k) is 22k, we may conclude that (M(F(k), P,N),≽τ ) has
a structure made of 22k isomorphic, disjoint lattices
(MΦ(P,N),≽τ ), each of size λ(P,N). For an instance, given P = 2 and N = 3, (M(F(k), 2, 3),≽τ

) will consists of 22k lattices whose structure is that depicted in Figure 8.1.

Fact 2 The partial order (M(F(k), P,N),≽τ ) consists of 22k isomorphic, disjoint lattices (MΦ(P,N),≽τ

), each of size λ(P,N).
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The landscape from the ϕ-subsumption perspective

The ϕ-subsumption perspective is of course dual to the τ -subsumption one. Consider two lattices
(MT (F(k)),≽ϕ) and MT ′(F(k),≽ϕ), for any T , T ′. As stated by Fact 1, their size is 22k. Since
the relationship ≽ϕ among classifiers is determined only by the inclusion relationship among the
respective sets of features (see Definition 8.5), the structure of the above lattices does not depend
on T . Hence, MT (F(k)) and MT ′(F(k)) are isomorphic under ≽ϕ. Since any hypothesis in
MT (F(k)) has threshold set T and any hypothesis in MT ′(F(k)) has threshold set T ′, MT (F(k))
and MT ′(F(k)) are disjoint. Therefore, in the hypothesis space (M(F(k), P,N),≽ϕ) there exist
λ(P,N) isomorphic, disjoint lattices (MT (F(k)),≽ϕ), each of size 22k.

Fact 3 The partial order (M(F(k), P,N),≽ϕ) consists of λ(P,N) isomorphic, disjoint lattices
(Mτ (F(k)),≽τ ), each of size 22k.

8.4.5 Decision Boundaries

There is an interesting graphical representation of a classifier Hc = ⟨Pos,Neg, T ⟩ on the 2-
dimensional space N2 (see Figure 8.3). Here, each point (x, y), with x and y non-negative integers,
is labeled by a pair of integers ⟨π(x, y), ν(x, y)⟩, where π(x, y) is the number of positive examples
(documents) and ν(x, y) the number of negative ones containing exactly x features from Pos and
y features from Neg. Intuitively, we may think of a point (x, y) as identifying the set of (both
positive and negative) examples with x positive features and y negative ones. Hence, the region of
the plane

RHc = {(x, y) | x ≤ |Pos|, y ≤ |Neg|, ∃(pi, ni) ∈ T s.t. x ≥ pi, y < ni},

whose points satisfy the threshold conditions, identifies the documents that are classified by Hc

(we call RHc classification region). It turns out that the number of documents classified by Hc is∑
(x,y)∈RHc

(π(x, y) + ν(x, y)). The border of the region RHc is the decision boundary ofHc.
As an example, the classification regions of the (ϕ-homogeneous) classifiers Hc = {(1, 2)} and
H′

c = {(1, 2), (2, 3)} are those depicted in Figure 8.3. Here, the following should be noted:

1. the decision boundary of the atom Hc is a rectangle (left side of Figure 8.3), while that of
the 2-order classifier H′

c is the overlapping of two rectangles, one for each atom (right side
of Figure 8.3), and

2. the classification region ofHc, which is a τ -specialization ofH′
c, is contained in the classifi-

cation region ofHc.

The above two statements can be generalized. In particular, concerning point (2), it can be easily
verified that, for any two classifiers H′

c, Hc such that H′
c ≽τ Hc, the condition RH′

c
⊇ RHc holds,



GAMoN: effective rule learning for TC 84

Figure 8.3: Decision boundaries of {(1, 2)} (left side) and {(1, 2), (2, 3)} (right side)

and vice versa (it suffices to use the above definition of classification region along with Definition
8.10). As for point (1), we can state that the decision boundary of a classifier H1

c ∨ · · · ∨ Hr
c is a

step-wise non-decreasing polyline in N2 consisting alternately of vertical and horizontal segments.
To see why, it suffices to observe the following:

a. the decision boundary of each single atom Hi
c = {(pi, ni)}, 1 ≤ i ≤ r, is a rectangle

subtending the points (x, y) which satisfy the test conditions pi ≤ x ≤ |Pos| and 0 ≤ y < ni,
and

b. the r atoms H1
c · · ·Hr

c are such that pi−1 < pi and ni−1 < ni, for each i ∈ [1, r] (see
Proposition 8.19, Part 2).

Intuitively, the non-decreasingness of decision boundaries implies that documents which are less
likely to belong to a category c (that is, documents with few positive features and many negative
ones) are also less likely to be classified by Hc. For an instance, consider two documents d(x, y)
and d′(x′, y), having x and x′ positive features, respectively, with x′ ≥ x, and both containing the
same number y of negative features. Intuitively, d(x, y) is less likely to be a positive example for c
than d′(x′, y) (as it holds less positive features, which are indicative of membership, for the same
number of negative ones). On the other hand, since the boundary is non-decreasing, it also happens
that d(x, y) is less likely to fall within RHc than d′(x′, y), that is, d(x, y) is less likely to be classified
byHc.

8.4.6 Remarks on the proposed language

The “family resemblance” metaphor. In a binary classification task there are two families (classes):
the positive, call it P , and the negative, call it N . Let us assume that the atom p-of-Pos ∧ ¬n-of-
Neg is used to characterize the members of P . Here, Pos is the set of features that such members
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share, while the threshold p states how many of such features each member must hold. Symmet-
rically, Neg is the set of features shared by the members of the other family N . Actually, not all
members, but more specifically only those that are most similar to the members of P (recall that, by
Definition 8.1, the features in Neg are those that characterize members of N holding some features
of the family P ). Thus, an example that exhibits p positive features is a member of P provided that
it holds less than n negative features. To use an analogy, imagine that the members of the Brown
family hold at least two of the following features: green eyes, black hair and tallness. However,
also in the White family there are members that are tall and have green eyes, but they also hold
at least two of the following features: fair hair, long nose and high forehead. Thus, an individual
that is tall and has green eyes belongs to the Brown family provided that he possesses less than two
of such features (that would play the role of negative features for the Brown family with threshold
n = 2).

On the expressivity of M -of-N{¬,∨}. M-of-N hypotheses can be regarded as M -of-N{¬,∨} atoms
with only positive features, i.e., atoms of the form p-of-Pos. Simple M-of-N hypotheses are often
sufficient for the classification of new and unseen data, but it is well known that there are cases
where the need for negative features cannot be avoided. A simple example is the following: docu-
ment {t0, t1} belongs to c, document {t0, t1, t2} belongs to c′ and document {t1, t2} belongs to c′′.
It is easy to recognize that this scenario can be modeled by the atoms Hc = ⟨{t0}, {t2}, {(1, 1)}⟩,
Hc′ = ⟨{t0, t2}, ∅, {(2, 1)}⟩, and Hc′′ = ⟨{t1}, {t0}, {(1, 1)}⟩, where the negative features are
needed to discriminate among classes.
Although M -of-N{¬,∨} atoms surpass classical M-of-N hypotheses in expressive power, there are
data sets that cannot be represented simply by atoms. As an example, assume that documents
d1 = {t0}, d2 = {t0, t1} and d3 = {t0, t1, t2} are associated with category c, while d4 = {t0, t2}
is not. Intuitively, to correctly classify such data we need a hypothesis Hc stating the following:
the occurrence of either t0 or t1 is sufficient in order for a document d be classified under c, pro-
vided that t2 does not appear in d; but, if t2 does appear in d, a stronger condition is needed,
that is, both t0 and t1 must occur in d. We can easily recognize that Hc is the 2-order classifier
⟨{t0, t1}, {t2}, {(1, 1), (2, 2)}, and that no atomic equivalent classifier there exists.
However, though the proposed language improves the expressive power of M-of-N concepts, M -
of-N{¬,∨} does not actually reach the full expressiveness of DNF. For an instance, there is no
M -of-N{¬,∨} hypothesis capable of explaining the following data: d1 = {t0}, d2 = {t1, t2} and
d3 = {t0, t2}, with d1 and d2 belonging to class c and d3 to its complement. It is easy to recognize
that the reason for this limitation is that all atoms forming a hypothesis share the same sets of pos-
itive and negative features. As we will see in the next sections, the rationale for this choice is that
it drastically restricts the search space. That is, effectiveness is traded-of against efficiency.

Why subsumption relations are important. As we have seen, the two relations≽τ and≽ϕ codify
the intuitive notion of “more-general-than” between hypotheses. That is, given H1

c and H2
c such
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thatH1
c ≽τ H2

c , any example covered by H2
c is covered byH1

c as well.
The idea of ordering the concept space by a “more-general-than” relation is not new in Inductive
Logic Programming (see, e.g., [123]). What is actually original in our approach is the ordering
along two dimensions, the feature and the threshold dimensions.
The ordering relations are important because they provide the learning algorithm with a means to
selectively search the hypothesis space. For an instance, the search strategy can move towards a
more general hypothesis whenever too few positive examples are covered by the current one or,
viceversa, towards a more specific hypothesis if too negative examples are covered.
The implementation of a selective search requires the definition of suitable operators which, by
exploiting the subsumption relations, enable the generalization/specialization of a hypothesis. This
is what we will do in the next section.

8.5 Refinement operators

Informally, a refinement operator is a function which enables to “navigate” the space of the minimal
classifiers through the partial order relations. We next provide two classes of refinement operators:
unary and binary refinement operators.
Notation. For the sake of simplicity, in the following definitions we will often denote the set of
minimal hypotheses M(F(k), P,N, ) simply by M.

8.5.1 Unary refinement operators

A unary refinement operator is a non-deterministic function which returns a “neighbor” of Hc

either in the ϕ-subsumption or in the τ -subsumption relationship. It is used to move a classifier
“one step” upward or downward in either one of the two hierarchies.

Definition 8.32 (Unary Refinement Operators) A unary refinement operator is a non-deterministic
function from M to M. In particular, the unary x-generalization operator, denoted ↑x, with x ∈
{ϕ, τ}, is a function such that: ↑x (Hc) = Hc if @H′

c ∈M such that H′
c >x Hc (i.e., Hc is the top

element); otherwise, ↑x (Hc) = H′
c where H′

c >x Hc and @H′′
c such that H′

c >x H′′
c >x Hc. The

unary x-specialization operator ↓x is defined accordingly.

We first provide a constructive definition of both ↑ϕ (Hc) and ↓ϕ (Hc) in the ϕ-subsumption lattice.
Informally, a direct ancestor of Hc in the ϕ-subsumption hierarchy is obtained from Hc either by
adding to Pos a candidate positive term or by removing any term from Neg (a direct descendent is
obtained in a dual way).

⋄ COMPUTATION of ↑ϕ (Hc) and ↓ϕ (Hc). GivenHc = ⟨Pos,Neg, T ⟩, compute:
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↑ϕ (Hc) = Hc if Pos = Pos∗(k) and Neg = ∅ (i.e., if Hc is the top element in the ϕ-
subsumption lattice), otherwise

↑ϕ (Hc) =

{
⟨Pos ∪ {t}, Neg, T ⟩ where t ∈ Pos∗(k), or
⟨Pos,Neg \ {t}, T ⟩ where t ∈ Neg

↓ϕ (Hc) = Hc if Pos = ∅ and Neg = Neg∗(k), otherwise

↓ϕ (Hc) =

{
⟨Pos \ {t}, Neg, T ⟩ where t ∈ Pos, or
⟨Pos,Neg ∪ {t}, T ⟩ where t ∈ Neg∗(k)

Correctness of the computation of ↑ϕ (Hc) We restrict the proof to the correctness of the compu-
tation of ↑ϕ (Hc). The proof concerning ↓ϕ (Hc) follows a similar framework.
Let us start by proving ↑ϕ (Hc) = ⟨Pos′, Neg′, T ⟩, where Pos′ = Pos ∪ {t}, t ∈ Pos∗(k) and
Neg′ = Neg. First of all we note that, since both Pos′ ⊇ Pos and Neg′ = Neg, ↑ϕ (Hc) ≽ϕ Hc

holds - see Definition 8.5. Now assume by absurd the existence of H′′
c = ⟨Pos′′, Neg′′, T ⟩ such

that ↑ϕ (Hc) ≽τ H ′′
c ≽τ Hc. Thus, both Pos′ ⊇ Pos′′ ⊇ Pos and Neg′ ⊆ Neg′′ ⊆ Neg. How-

ever, since Pos′ and Pos differ for exactly one term, either Pos′ = Pos′′ or Pos′′ = Pos holds.
Further, since Neg = Neg′, Neg′ = Neg′′ = Neg holds as well. That is, either H′′

c = Hc or
H′′

c =↑ϕ (Hc), a contradiction.
Now let us prove ↑ϕ (Hc) = ⟨Pos′, Neg′, T ⟩, where Pos′ = Pos, Neg′ = Neg \ {t} and
t ∈ Neg. Since both Pos′ = Pos and Neg′ ⊆ Neg, ↑ϕ (Hc) ≽ϕ Hc holds - see Definition 8.5.
Now, by absurd, assume that there existsH′′

c = ⟨Pos′′, Neg′′, T ⟩ such that ↑ϕ (Hc) ≽τ H ′′
c ≽τ Hc.

Since both Pos′ ⊇ Pos′′ ⊇ Pos and Pos = Pos′, it follows that Pos′′ = Pos. Moreover,
since Neg′ ⊆ Neg′′ ⊆ Neg and, further, Neg and Neg′ differ for exactly one feature, either
Neg′′ = Neg or Neg′′ = Neg′. That is, eitherH′′

c = Hc orH′′
c =↑ϕ (Hc), a contradiction.

Example 8.33 GivenHc = ⟨{t0, t1}, {t2}, T ⟩, let t ∈ Pos∗(k) and t′ ∈ Neg∗(k) be two candidate
features. Then, the following hypotheses are “neighbors” ofHc in the ϕ-subsumption hierarchy:

↑ϕ (Hc) = ⟨{t0, t1, t}, {t2}, T ⟩, ↑ϕ (Hc) = ⟨{t0, t1}, ∅, T ⟩

↓ϕ (Hc) = ⟨{t1}, {t2}, T ⟩, ↓ϕ (Hc) = ⟨{t0, t1}, {t2, t′}, T ⟩.

Let us now see how a neighbor ↑τ (Hc) or ↓τ (Hc) ofHc in the τ -subsumption lattice is computed.
Clearly, to obtain, say, ↑τ (Hc), we have to replace in Hc the threshold set T by an immediate
ancestor ↑ T in the τ -subsumption lattice. So as the problem reduces to the computation of ↑ T .
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—————————————————————–
Non-deterministic function ↑ T
—————————————————————–
Input: threshold bounds P and N ; a minimal threshold set T = {τ1, ...., τk}, where
τi = (pi, ni) for each i ∈ [1, k] and pi < pi+1, ni < ni+1, for each i ∈ [1, k) (see Proposition
8.19)
Output: a direct ancestor ↑ T of T ;

function NewElement(X,Y )
1. if (px > py) then swap X = (px, nx) and Y = (py, ny)
2. δ+ = |py − px|, δ− = |ny − nx|;
3. if (δ+ > 1 and δ− > 1) then compute the most specific threshold pair (p, n) such that
4. px < p < py and nx < n < ny, i.e., (p, n) = (py − 1, nx + 1)
5. else compute the most specific threshold pair (p, n) such that px ≤ p ≤ py
6. and nx ≤ n ≤ ny and:
7. if δ+ > 1 then (p, n) ≽τ Y ; set (p, n) = (py − 1, ny);
8. else if δ− > 1 then (p, n) ≽τ X; set (p, n) = (px, nx + 1)
9. else (p, n) ≽τ X and (p, n) ≽τ Y ; set (p, n) = (px, ny)
10. return {(p, n)}.

11. begin
12. if T = {(0, N)} (i.e., T is the top of the lattice) return ∅;
13. τ0 = (p0, n0) = (−1, 0); τk+1 = (pk+1, nk+1) = (P + 1, N + 1);
14. randomly select i ∈ [1, k];
15. if i = 1 and pi = 0 then adj = τi+1 // right adjacent
16. else if i = k and ni = N then adj = τi−1; // left adjacent
17. else randomly select adj ∈ {τi−1, τi+1}; ;
18. return ↑ T = Minimize(T ∪NewElement(τi, adj));

Figure 8.4: Pseudo code for the random selection of a direct ancestor of a threshold set in the
τ -subsumption lattice

⋄ COMPUTATION of ↑τ (Hc) and ↓τ (Hc) . Given Hc = ⟨Pos,Neg, T ⟩, compute ↑τ (Hc)

and ↓τ (Hc) as follows

↑τ (Hc) = ⟨Pos,Neg, ↑ T ⟩ and ↓τ (Hc) = ⟨Pos,Neg, ↓ T ⟩

where the non-deterministic operator ↑ (resp. ↓) applied to T returns an immediate ancestor
(resp. descendant) of T in the τ -subsumption hierarchy. ↑ T is constructed from T by the
algorithm of Figure 8.4 (we do not report the dual algorithm for ↓ T for space reason).

For a description of the algorithm of Figure 8.4 the reader is referred to 8.5.2.
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8.5.2 The non-deterministic function ↑ T
Next we give a description of the algorithm of Figure 8.4. It creates a direct ancestor ↑ T of
T = {τ1, . . . , τk}, where τi = (pi, ni), 1 ≤ i ≤ k, by applying to T only local changes. We
preliminarily recall that, by Proposition 8.19, the minimality of T requires that pi < pj, ni < nj ,
or vice versa, for each i, j ∈ [1, k]. In the following discussion we assume pi < pj, ni < nj (read
“τi smaller than τj”) if i < j.
The algorithm starts by checking the condition T = {0, N}, that is, if T is the top element. Clearly,
in such a case no direct ancestor exists and the algorithm returns the empty set (line 12). Since the
algorithm works on the “distance” between two elements of T , in order not to exclude the first
element τ1 and the last one τk, two fictitious elements are defined, namely, τ0 = (−1, 0) and
τk+1 = (P + 1, N + 1) (line 2). Then, an element τi of T , along with one adjacent (left or right),
are randomly selected at lines 14-17. Of course, if i = 1, i.e., τi = (pi, ni) is the smallest element
of T , and pi = 0, then the adjacent of τi will be the right one, i.e., τi+1 (line 15). Symmetrically,
if i = k, i.e., τk = (pk, nk) is the greatest element of T , and ni = N (recall that N is the negative
threshold bound), then the adjacent of τi will be the left one, i.e., τi−1 (line 16). Then, the function
NewElement is invoked by passing τi and the selected adjacent adj (line 18). This function works
as follows. First, it orders the element X = (px, nx) and its adjacent Y = (py, ny) in such a way
that X is the smallest one (line 1). Then, the distances δ+ and δ− between X and Y are computed
(line 2). Now, there are two ways for constructing an immediate ancestor of T : either (1) by
adding a suitable element τ to T , or (2) by replacing an element τi of T by the most specific τ

which generalizes τi. Which one of the two alternatives is applied depends on the distances δ+ and
δ−. In particular, if both distances are greater than one (line 3 - intuitively, this means that there is
“enough room” in between X and Y to accommodate a new element in T ), then the most specific
threshold pair (p, n) such that px < p < py and nx < n < ny is computed, i.e., p = py − 1 and
n = nx + 1 (the most specific (p, n) is the one with the highest possible p value and the lowest
possible n value). Then, ↑ T is set to Minimize(T ∪ {(p, n)}) (line 18), where Minimize is the
function sketched in Figure 8.2.
As an example, let us consider the classifier Hc = ⟨Pos,Neg, T ⟩, where T = {τ1, τ2}, τ1 =

{(0, 1)} and τ2 = {(2, 3)}, and assume that the threshold bounds are P = 2 and N = 3. Note that
τ1 is smaller than τ2. Now, suppose that the algorithm at line 13 selects i = 2 (i.e., τ2 = (2, 3)).
Since τ2 is the greatest element of T and n2 = N , the algorithm choses the left adjacent, i.e.,
τ1 (line 15). Then, the function is invoked (line 18) and the distances δ+ = p2 − p1 = 2 and
δ− = n2 − n1 = 2 are computed (line 3). Since (δ+ > 1 and δ− > 1) holds (line 3), the function
sets (p, n) = (p2−1, n1+1) = (1, 2) (line 4) and returns it to the main. The resulting threshold set
is ↑ T = Minimize(T ∪ {(1, 2)}), that is, {(0, 1), (1, 2), (2, 3)}, which is an immediate ancestor
of T (see Figure 8.1).
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If the condition on the distances at line 3 does not apply, then the most specific threshold pair (p, n)
which generalizes either X or Y is computed. Again, this is done depending on the values of two
distances δ+ and δ−. In particular, if δ+ > 1, then the algorithm generates the most specific element
(p, n) which generalizes Y , i.e., (p, n) = (py−1, ny). On the contrary, if δ− > 1, then the algorithm
generates the most specific element (p, n) which generalizes X , i.e., (p, n) = (px, nx +1). Finally,
if none of the above conditions hold (line 9), the algorithm generates the most specific element
(p, n) which generalizes both X and Y , i.e., (p, n) = (px, ny).
As an example, assume that T = {τ1, τ2}, with τ1 = {(1, 1)} and τ2 = {(2, 2)}, and let i = 2 (i.e.,
τ2 = (2, 2)). Suppose that the chosen adjacent is the left one, i.e., τ1. Since δ+ = δ− = 1, none
of the conditions at lines 3, 7 and 8 applies. Thus (p, n) = (p1, n2) = (1, 2) is computed at line
9 and returned to the main. This element is then added to T (line 18) and, after minimization, the
algorithm returns ↑ T = {(1, 2)}, which is an immediate ancestor of T (see Figure 8.1).

8.5.3 Binary refinement operators

Binary refinement operators are aimed at exploiting the lattice structure of both the ϕ-subsumption
and the τ -subsumption hierarchies. In particular, given two classifiers, they return a classifier which
is either the lub or the glb of the two classifiers in any of the two subsumption lattices, depending
on whether a generalization or a specialization is needed, respectively.

Definition 8.34 (Binary refinement operators) A binary refinement operator is a function from
M ×M to M. Let classifiers H1

c = ⟨Pos1, Neg1, T1⟩ and H2
c = ⟨Pos2, Neg2, T2⟩ be given.

There are two binary generalization operators, the τ -generalization
∨

τ and the ϕ-generalization∨
ϕ, defined as follows: ∨

τ (H1
c ,H2

c) = ⟨Pos1, Neg1,⊔(T1, T2)⟩∨
ϕ(H1

c ,H2
c) = ⟨Pos1 ∪ Pos2, Neg1 ∩Neg2, T1⟩

and two binary specialization operators
∧

τ and
∧

ϕ defined as follows:∧
τ (H1

c ,H2
c) = ⟨Pos1, Neg1,⊓(T1, T2)⟩∧

ϕ(H1
c ,H2

c) = ⟨Pos1 ∩ Pos2, Neg1 ∪Neg2, T1⟩.

It should be noted that all the above operators are not commutative. In fact,
∨

x(H1
c ,H2

c), with
x ∈ {τ, ϕ}, yields a generalization of H1

c (through H2
c), and

∧
x(H1

c ,H2
c) yields a specialization of

H1
c (throughH2

c).

Intuitively,
∨

τ (H1
c ,H2

c) is the least upper bound ofH1
c and the ϕ-homogeneous classifier having

the same threshold set of H2
c (see Figure 8.5). Dually,

∨
ϕ(H1

c ,H2
c) is the least upper bound of H1

c

and the τ -homogeneous classifier having the same feature sets of H2
c (the specialization operators

are defined accordingly).
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Figure 8.5: Given H1
c = ⟨Pos1, Neg1, T1⟩ and H2

c = ⟨Pos2, Neg2, T2⟩, the hypothesis∨
τ (H1

c ,H2
c) is the least upper bound of H1

c and the ϕ-homogeneous classifier ⟨Pos1, Neg1, T2⟩,
i.e.,

∨
τ (H1

c ,H2
c) = ⟨Pos1, Neg1,⊔(T1, T2)⟩

Example 8.35 ConsiderH1
c = ⟨Pos1, Neg1, T1⟩ andH2

c = ⟨Pos2, Neg2, T2⟩, where T1 = {(2, 2)}
and T2 = {(1, 1)}. According to Definition 8.34, we have that∨

τ (H1
c ,H2

c) = ⟨Pos1, Neg1,⊔(T1, T2)⟩) = ⟨Pos1, Neg1, {(1, 1), (2, 2)}⟩∧
τ (H1

c ,H2
c) = ⟨Pos1, Neg1,⊓(T1, T2)⟩) = ⟨Pos1, Neg1, {(2, 1)}⟩.

It is easily verified that
∨

τ (H1
c ,H2

c) is a generalization ofH1
c , while

∧
τ is a specialization ofH1

c .
Now, assume that Pos1 = {t1, t2}, Neg1 = {t3, t4}, Pos2 = {t2, t5}, Neg2 = {t3}. We generalize
H1

c (throughH2
c) by using the

∨
ϕ operator as follows:∨

ϕ(H1
c ,H2

c) = ⟨Pos1 ∪ Pos2, Neg1 ∩Neg2, T1⟩) = ⟨{t1, t2, t5}, {t3}, T1⟩

and specializeH1
c (throughH2

c) by
∧

ϕ as follows:∧
ϕ(H1

c ,H2
c) = ⟨Pos1 ∩ Pos2, Neg1 ∪Neg2, T1⟩) = ⟨{t2}, {t3, t4}, T1⟩.

It is easy to recognize that both
∨

ϕ(H1
c ,H2

c) ≽ϕ H1
c andH1

c ≽ϕ

∧
ϕ(H1

c ,H2
c) hold.
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Proposition 8.36 Given classifiersH1
c andH2

c , the following holds:

•
∨

x(H1
c ,H2

c) ≽x H1
c .

• H1
c ≽x

∧
x(H1

c ,H2
c).

where x ∈ {τ, ϕ}.

Proof Next we show that, given classifiers H1
c and H2

c , the following holds:
∨

x(H1
c ,H2

c) ≽x H1
c

and H1
c ≽x

∧
x(H1

c ,H2
c), where x ∈ {τ, ϕ}. By Definition 8.34, we have that

∨
x(H1

c ,H2
c) =

lubx(H1
c ,H1,2

c ). Since lubx(H1
c ,H1,2

c ) ≽x H1
c , it turns out that

∨
x(H1

c ,H2
c) ≽x H1

c . Dually, from∧
x(H1

c ,H2
c) = glbx(H1

c ,H1,2
c ) andH1

c ≽x glbx(H1
c ,H1,2

c ),H1
c ≽x

∧
x(H1

c ,H2
c) follows.

8.6 Learning Problem and Complexity

Before providing an effective algorithm for the learning of classifiers, in this section we give a
definition of the learning problem and show its complexity.
The goal is to find, for each category c ∈ C, a (minimal) hypothesisHc ∈M(F(k), P,N) that best
fits the training data. To this end, we assume that categories in C are mutually independent, so as
the whole learning task consists of |C| independent binary sub-tasks, one for each category.
To assess Hc we use the F -measure. This is a measure that trades off precision Pr versus recall
Re and is defined as the harmonic mean of Pr and Re as follows2:

F =
2PrRe

Pr +Re
. (8.2)

Let us denote by F (Hc, T ) the F -measure obtained by Hc when it is applied to the documents
of the training set T . Now, the learning problem can be formulated as the following optimization
problem.

Definition 8.37 (Learning problem) Let the feature space F(k) and the threshold bounds P,N be
given. The learning problem is to find a (minimal) classifier Hc ∈M(F(k), P,N) that maximizes
the F-measure F (Hc, T ) ofHc over the training set T .

The above learning problem is essentially an instance of Inductive Logic Programming (ILP) [98],
which deals with the general problem of inducing logic programs from examples in the presence
of background knowledge. It is well known that ILP problems are computationally intractable.

Proposition 8.38 The decision version of the learning problem is NP-complete.
2This is also known as the F1 measure, because recall and precision are evenly weighted.
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Proof We have to prove that the decision version of the GAMoN learning problem is NP-complete.
The proof is by a reduction from the Knapsack problem. Given an atomHc = ⟨Pos, Neg, {(p, n)}⟩,
let S ⊆ T be the set of training documents classified by Hc under c, i.e., S = {d ∈ D s.t. |d ∩
Pos| ≥ p ∧ |d ∩Neg| < n}. Precision is defined as the probability that a document in S is also
in the training set Tc of c, i.e.,

Pr(Hc, T ) =
|S ∩ Tc|
|S|

(8.3)

and Recall is defined as the probability that a document in Tc is also in S, i.e.,

Re(Hc, T ) =
|S ∩ Tc|
|Tc|

. (8.4)

By replacing equations (8.3) and (8.4) into equation (8.2), after some algebra, we get the following
formulation of the objective function

F (Hc, T ) =
2 · a

b+ |Tc|

where a = |S ∩ Tc| and b = |S \ Tc|. Hence, to maximize F (Hc, T ) we want a to be as large
as possible, while keeping b bound to some given value (note that |Tc| is a constant). Thus, the
problem of learning an atomic classifier, in its recognition version, can be formulated as follows:
LEARN-ATOM-DECISION (LAD): Given the training set T , the feature space ⟨Pos∗c(k), Neg∗c (k)⟩
and two positive integers U and V , does there exist a hypothesis Hc = ⟨Pos, Neg, {(p, n)}⟩ over
⟨Pos∗c(k), Neg∗c (k)⟩ such that a ≥ U and b ≤ V ? That is, does there exist a hypothesis which is
consistent with at least a positive examples and is not consistent with at most b negative examples?
Now KNAPSACK is the following NP-complete problem: Given 2n+2 positive integers w1, · · · , wn,
v1, · · · , vn, W and Z, does there exist X ⊆ {1, · · ·n} such that

∑
i∈X wi ≤ W and

∑
i∈X vi ≥ Z?

We claim KNAPSACK polynomially reduces to LAD. To see this, suppose I = (w1, · · · , wn, v1, · · · , vn,
W,Z) is an instance of KNAPSACK. Make the following instance for LAD: (a) U = Z and
V = W ; (b) ⟨Pos∗c(k), Neg∗c (k)⟩ = ⟨{t1, · · · , tn}, ∅⟩, i.e., the feature space consists of n positive
candidate features and no negative candidate feature; (c) the training set T is such that:

c.1 Θ(ti) ∩Θ(tj) = ∅, for each ti, tj ∈ {t1, · · · , tn}, and

c.2 vi = |Θ(ti) ∩ Tc| and wi = |Θ(ti) \ Tc|, for each i ∈ [1, n]

where Θ(ti) denotes the set of examples (documents) in T where term ti occurs. From point
(c.1) above it follows that each document contains at most one positive candidate term. Further,
from points (c.1) and (c.2) it turns out that, for a given Pos ⊆ {t1, · · · , tn}, the following holds:
a =

∑
t∈Pos vi and b =

∑
t∈Pos wi. Thus, LAD turns out to be the following problem: “does there
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existHc = ⟨Pos, ∅, {(1, ∗)}⟩ such that
∑

t∈Pos vi ≥ V and
∑

t∈Pos wi ≤ C (the symbol “*” stands
for “immaterial”, as Neg = ∅)?” Or, equivalently: “does there exist X ⊆ {1, · · ·n} such that∑

i∈X vi ≥ V and
∑

i∈X wi ≤ C?” Clearly, the answer to this LAD is “yes” iff I is an instance
of KNAPSACK, then proving our claim. To conclude the proof it suffices to notice that verifying
a YES instance of LAD requires polynomial time. Hence, problem LAD, i.e., the problem of de-
ciding whether there exists an atom satisfying the constraints a ≥ U and b ≤ V , is NP-complete.
It is immediate to realize that the decision version of the learning problem (see Definition 8.37) is
NP-complete as well.
The theory of PAC-learnability, first proposed by Valiant in [126], provides a model of approxi-
mated polynomial learning where the polynomially bound amount of resources (both number of
examples and computational time) is traded-off against the accuracy of the induced hypothesis.
However, as shown by the above proposition, there is no algorithm that produces a consistent M -
of-N{¬,∨} hypothesis on p examples in time polynomial in p, so as M -of-N{¬,∨} hypotheses are not
PAC-learnable (this should not be surprising, given that M-of-N concepts are not PAC-learnable -
see Pitt and Valiant [102]).

8.7 Learning a Classifier: a GA-based approach

So far, we have seen the structural properties of the M -of-N{¬,∨} hypothesis space and designed a
set of refinement operators that are the search abstract tools. Further, we have defined the learning
problem and showed that it is computationally difficult. In this section we provide an effective
algorithm for learning classifiers in the M -of-N{¬,∨} hypothesis space. In particular, we propose a
heuristic approach based on a Genetic Algorithm (GA).
A GA represents a well known and powerful domain-independent search technique based on nat-
ural evolutionary operators. A standard GA can be regarded as composed of three basic elements:
(1) A population, i.e., a set of candidate solutions (classifiers), called individuals or chromosomes,
that will evolve during a number of iterations (generations); (2) a fitness function used to assign
a score to each individual of the population; (3) an evolution mechanism based on operators such
as elitism, selection, crossover and mutation. A comprehensive description of GAs can be found
in [10].
GAs showed to be well suited for learning classification rules (see, e.g., [19, 129, 132]) as well
as M-of-N hypotheses [82], as they perform a thorough search of the hypothesis space, not lim-
ited by any greedy search bias. However, GAs also have some disadvantages for rule discovery.
For instance, conventional genetic operators, such as crossover and mutation, are normally applied
without directly trying to optimize the quality of the new candidate solution by exploiting the struc-
ture of the hypothesis space. A recent research trend aimed at overcoming this drawback is that of
combining the standard search strategy of GAs with that of task-specific genetic operators which
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incorporate the knowledge about the specific application [28,56,57,90] (here, by “application” we
mean the task of inducing classification rules).
Next we present GAMoN, the task-specific GA designed to induce M -of-N{¬,∨} hypotheses. As
we will see, GAMoN relies on a search strategy where ad hoc, selective reproduction operators,
aimed at exploiting the structure of the hypothesis space, are combined with standard ones.
Detecting the “best” hypothesis space M(F(k), P,N) to be explored by GAMoN is a fundamen-
tal task which strongly affects the quality of the learning process. In principle, we might either
(1) manage the model parameters k, P and N (which uniquely determines the hypothesis space)
as parameters to be manually tuned, or (2) embed them in the evolutive dynamics of the GA, let-
ting it to adaptively evolve the best values. GAMoN incorporates this latter approach. To this
end, evolution relies on a number of competing sub-populations S(k1, P1, N1), · · · , S(kn, Pn, Nn),
where each S(ki, Pi, Ni) consists of individuals encoding classifiers in the same hypothesis space
Mi(F(ki), Pi, Ni), 1 ≤ i ≤ n.
A preliminary step for the creation of the sub-populations S(k1, P1, N1), · · · , S(kn, Pn, Nn) is the
detection of a suitable range [kmin, kmax] for the feature space dimensionality ki of each subpopula-
tion. This is the subject of the next subsection. Afterward, we will discuss on individual encoding
and reproduction operators. Then, we report a detailed description of the genetic algorithm GA-
MoN and, finally, we provide some remarks on the proposed GA.

8.7.1 Detecting the feature space dimensionality

The feature space F(k) provides the basic symbols from which the classifiers of a given hypothesis
space M(F(k), P,N) are constructed. Behind its definition there is the implicit assumption that
only the selected terms are representative of the category being learned, while the rest are redun-
dant. Thus, predicting the right value of the dimensionality k is a crucial step. On one hand, a
reduced feature space is desirable as redundant or noisy features may “deceive” the learning al-
gorithm and have detrimental effect on classification results (this is particularly true in the text
classification task, where data sets are usually noisy and ambiguous). Further, reducing the num-
ber of features makes the learning process more efficient (especially in the evolutionary approach,
where large feature spaces may entail large individuals and, thus, more match operations). On the
other hand, an aggressive feature selection might discard features that carry essential information.
Next we provide a criterion, inspired to the one proposed in [53], for detecting a range of dimen-
sionality values based on the statistical characteristics of the data set at hand.

Definition 8.39 (Dimensionality range) We are given the vocabulary Vc of category c and a scoring
function σ. We define the dimensionality range [kmin, kmax] for category c as follows:

kmin = |{t ∈ Vc | σ(t, c) ≥ m+ s}|
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kmax = |{t ∈ Vc | σ(t, c) ≥ m+ 3s}|

where σ(t, c) is the score of feature t ∈ Vc w.r.t. category c, and m and s are the average and
standard deviation of the scoring values, respectively.

We notice that the above definition is essentially aimed at selecting a good set Pos∗c(k) of candidate
positive features (recall that Neg∗c (k) consists of terms co-occurring with terms in Pos∗c(k) - see
Definition 8.1). Indeed, to determine kmin (resp. kmax) we compute the scoring function σ for all
features in Vc, and then count the number of features whose score is higher than 1 (resp. 3) standard
deviations above the average, i.e., features with high discriminating power.

8.7.2 Individual Encoding

Given a hypothesis space M(F(k), P,N), a candidate (minimal) classifierHc = ⟨Pos,Neg, T ⟩ ∈
M(F(k), P,N) is encoded by a bit string I = ⟨I+, I−, I≽τ ⟩, where:

1. the positive component I+ is used to encode Pos ⊆ Pos∗c(k). It is made of k bits, each
associated with a candidate feature ti ∈ Pos∗c(k). A ‘1’ or ‘0’ in the gene I+[ti], 1 ≤ i ≤ k,
indicates whether or not ti ∈ Pos∗c(k) belongs to Pos.

2. The negative component I− is used to encode Neg ⊆ Neg∗c (k). It is made of k bits, each
associated with a candidate feature ti ∈ Neg∗c (k). A ‘1’ or ‘0’ in the gene I−[ti], 1 ≤ i ≤ k,
indicates whether or not the i-th candidate feature ti belongs to Neg.

3. The threshold component I≽τ is used to encode the threshold set T . The encoding of T
relies on a straightforward binary representation of all pairs (p, n) ∈ T , with 0 ≤ p ≤ P and
0 < n ≤ N . One additional bit for each element (p, n) is used to represent presence/absence
of that element. Thus, the length of I≽τ is Min(P + 1, N)(⌈log(N(P + 1))⌉ + 1), where
Min(P + 1, N) is the maximum order of a classifier with threshold bounds P and N (see
Proposition 8.31). In the following we will denote by enc the encoding function, i.e., I≽τ =

enc(T ).

It turns out that the length L(I) of I is the following function of k, P and N

L(I) = L(I+) + L(I−) + L(I≽τ ) = 2k +Min(P + 1, N)(⌈log(N(P + 1))⌉+ 1).

Clearly, individuals encoding classifiers in the same hypothesis space M(F(k), P,N) are of equal
length.

Example 8.40 Let the hypothesis space M(F(k), P,N) be given, where k = 50, P = 2 and
N = 3. According to Proposition 8.31, the maximum order of a classifier is Min(P + 1, N) =
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Min(3, 3) = 3 (see also Example 8.27). Thus, an individual encoding a classifier ⟨Pos,Neg, T ⟩ ∈
M(F(k), P,N) consists of 2k = 100 bits needed to represent sets Pos and Neg, and further
Min(P + 1, N)(⌈log(N(P + 1))⌉+ 1) = 15 bits to encode the threshold set T .

8.7.3 Fitness

The performance measure used for evaluating the fitness of an individual is the objective function
of the learning problem (see Definition 8.37).

Definition 8.41 (Fitness) We are given a chromosome I , encoding classifier Hc, and the training
set T . The fitness of I is F (Hc, T ).

8.7.4 Task-specific GA operators and stochastic refinement

Next we propose some application-specific reproduction operators as an implementation of the
refinement operators defined in Section 8.5. Such operators provide a concrete means whereby
the learning algorithm selectively searches the hypothesis space. In particular, we next define two
classes of Generalizing/Specializing (GS) operators: GS Crossover and GS Mutation.

Generalizing/Specializing Crossover

Crossover is the operation of swapping genetical material between two individuals (parents). GS
crossover (GSX) is a special kind of crossover aimed at making a classifier more general or more
specific.
The GSX operators we are defining are an application of the binary refinement operators given by
Definition 8.34. As we have seen, they combine two classifiers of the same hypothesis space and
provide a new classifier in the same space. Thus, GSX operators combine two parents belonging
to the same sub-population (i.e., encoding classifiers in the same hypothesis space) and yields an
individual in the same sub-population. Therefore, they operate on individuals of equal length (and
isomorphic).

Notation. With a small abuse of notation, in the following we will denote by
∨

x(I1, I2) and∧
x(I1, I2) the individuals encoding the classifiers

∨
x(H1

c ,H2
c) and

∧
x(H1

c ,H2
c), respectively, where

x ∈ {τ, ϕ} and Ii is the binary encoding of Hi
c (1 ≤ i ≤ 2). Further, we write I1 ≽x I2 if

H1
c ≽x H2

c .

Definition 8.42 (GSX operators) We are given individuals I1 and I2 encoding classifiersH1
c ,H2

c ∈
M(F(k), P,N), respectively. The generalization crossover GX(I1, I2) of I1 and I2 is the in-
dividual encoding either the binary ϕ–generalization

∨
ϕ(H1

c ,H2
c) or the binary τ -generalization
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∨
τ (H1

c ,H2
c) ofH1

c andH2
c . More precisely, using the above agreed notation

GX(I1, I2) =

{ ∨
τ (I1, I2) with probability p = 0.5∨
ϕ(I1, I2) otherwise.

The specialization crossover operator SX(I1, I2) is defined accordingly (i.e., using
∧

x in place of∨
x, with x ∈ {τ, ϕ}).

Based on Definition 8.34, the implementation of
∨

ϕ(I1, I2) and
∧

ϕ(I1, I2) can be achieved by
simple bitwise logical operations (OR and AND) on I1 and I2 as follows:

•
∨

ϕ(I1, I2) = I s.t. I+ = OR(I+1 , I
+
2 ), I

− = AND(I−1 , I
−
2 ), I

≽τ = I≽τ
1 .

•
∧

ϕ(I1, I2) = I s.t. I+ = AND(I+1 , I
+
2 ), I

− = OR(I−1 , I
−
2 ), I

≽τ = I≽τ
1 .

where I+ = OR(I+1 , I
+
2 ) stands for ∀i ∈ [1, k], I+[ti] = OR(I+1 [ti], I

+
2 [ti]) (AND is defined

accordingly).
However, there is a problem with the above implementation. In fact, by performing a “blind” OR
or AND, the two individuals exchange 0’s and 1’s with no regard for the relevance of the features
they represent. This may be detrimental, as a surplus of low-quality features may increase the risk
of overfitting the training data. To overcome this drawback, we introduce the probabilistic OR
(pOR) and the probabilistic AND (pAND), which are logical operators biased towards high-quality
features. They both rely on the notion of relevance of a candidate feature.

Definition 8.43 Given the feature space ⟨Pos∗c(k), Neg∗c (k)⟩, let σ and η be the scoring functions
for the positive and the negative candidate terms, respectively (see Definition 8.1). With each
t ∈ Pos∗(k) ∪Neg∗(k) we assign the relevance measure ρ(t) as follows:

ρ(t) =
f(t)

Max{f(ti)|ti ∈ S}
,

where f(t) = σ(t) and S = Pos∗c(k) if t is candidate positive feature3, or f(t) = η(t) and
S = Neg∗(t) otherwise. Dually, we define the irrelevance ρ̄(t) of t as

ρ̄(t) =
Min{f(ti)|ti ∈ S}

f(t)

where f and S are as above. Clearly, 0 < ρ(t) ≤ 1 takes on the value 1 for the highest scoring term
t, while 0 < ρ̄(t) ≤ 1 takes on the value 1 for the lowest scoring term t (see Figure 8.6).

3We assume that σ(t) > 0 for any t ∈ Pos∗(t)
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Figure8.6:Relevanceρ(t)andirrelevanceρ̄(t)functions.Termst0,···tnareinincreasingorder
ofscoringvalue.

Definition8.44(Probabilisticlogicaloperators)GiventwoindividualsI1andI2,andafeaturet,
definetheprobabilisticORasfollows:

pOR(I1[t],I2[t])={OR(I1[t],I2[t])withprobabilityp=ρ(t)
I1[t]alternatively.

whereρ(t)istherelevanceoft(seeDefinition8.43).ThepANDoperatorisdefinedaccordingly,
usingρ̄(t)inplaceofρ(t).

Wenotethatneitheroperatorsarecommutative.AnimportantpropertyofpORisthatpOR(I1[t],I2[t])≤
OR(I1[t],I2[t])holds,i.e.,pOR(I1[t],I2[t])maybe0whileOR(I1[t],I2[t])isnot,butnotvice
versa.Inparticular,pOR(I1[t],I2[t])=OR(I1[t],I2[t])wheneitherI1[t]=1orI1[t]=I2[t]=0.
Otherwise,i.e.,I1[t]=0andI2[t]=1,pOR(I1[t],I2[t])=OR(I1[t],I2[t])=1withprobability
p=ρ(t).Clearly,thehighertherelevanceρ(t)(recallthatρ(t)=1whentisthehighestscoring
term),thehighertheprobabilitythata1is“moved”fromI2toI1(atphenotypiclevel,thismeans
thattheclassifierencodedbyI1acquiresanewfeaturetfromtheclassifierencodedbyI2).Thus,
theoveralleffectofpORisthatof“moving”preferablythemostrelevantfeaturesfromI2toI1.
ThepANDoperatorworksinadualway.Thatis,theeffectofpANDisthatof“discarding”from
I1(bymovingzeroesfromI2toI1)preferablytheleastrelevantfeatures.
Now,byusingtheaboveprobabilisticlogicaloperatorsinplaceofthestandardones,wecompute
an“approximation”ofboth∨ϕand∧ϕasfollows.

⋄COMPUTATIONof≈∨ϕ(I1,I2)and≈∧ϕ(I1,I2).GiventheindividualsI1andI2,com-
pute≈∨ϕ(I1,I2)and≈∧ϕ(I1,I2)asfollows:

•≈∨ϕ(I1,I2)=Is.t.I
+
=pOR(I

+
1,I

+
2),I−=pAND(I−

1,I−
2),I≽τ

=I
≽τ
1

•≈∧ϕ(I1,I2)=Is.t.I
+
=pAND(I

+
1,I

+
2),I−=pOR(I−

1,I−
2),I≽τ

=I
≽τ
1.
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It can be easily verified that ≈
∨

ϕ(I1, I2) is a generalization of I1 and ≈
∧

ϕ(I1, I2) a specialization
of I1.

Unlike the implementation of the ϕ-subsumption primitives
∨

ϕ and
∧

ϕ, which relies on bit-
wise operations performed at the genotype level, the implementation of the τ -subsumption prim-
itives

∨
τ and

∧
τ is performed at phenotype level. To see this point, we preliminarily recall that∨

τ (H1
c ,H2

c) = ⟨Pos1, Neg1, ⊔(T1, T2)⟩ (see Definition 8.34). Thus, to implement
∨

τ (I1, I2), we
first extract from the individuals I1 and I2 the threshold sets T1 and T2 by using the inverse of the
encoding function, i.e., Ti = enc−1(I≽τ

i ) (1 ≤ i ≤ 2). Then, we compute ⊔(T1, T2) by using the
algorithm of Figure 8.2 and, finally, we apply the encoding function enc(⊔(T1, T2)). Therefore,∨

τ (I1, I2) is the individual having the same positive and negative components of I1 and threshold
component enc(⊔(T1, T2)).

⋄ COMPUTATION of
∨

τ (I1, I2) and
∧

τ (I1, I2). Let I1 and I2 be two individuals, and let
Ti = enc−1(I≽τ

i ) be the threshold set of the classifier encoded by Ii (1 ≤ i ≤ 2). Then
compute

•
∨

τ (I1, I2) = I such that I+ = I+1 , I− = I−1 , I≽τ = enc(⊔(T1, T2))
•
∧

τ (I1, I2) = I such that I+ = I+1 , I− = I−1 , I≽τ = enc(⊓(T1, T2))

where ⊔(T1, T2) and ⊓(T1, T2) are constructed by the algorithm of Figure 8.2.

The correctness of the above computation directly follows from Definition 8.34.

Generalizing/Specializing (GS) Mutation

The GS mutation (GSM) operators are an implementation of the unary refinement operators de-
fined in Definition 8.32. Therefore, the GSM applied to an individual encodingHc returns another
individual encoding a neighbor (generalization or specialization) of Hc in either one of the two
hierarchies.

Notation. In the following we will denote, with a small abuse of notation, by ↑x (I) (resp. ↓x (I))
the individual encoding the classifiers in ↑x (Hc) (resp. ↓x (Hc)), where x ∈ {ϕ, τ} and I is the
encoding ofHc (see Definition 8.32).

Definition 8.45 (GSM operators) Let I be an individual encodingHc ∈M(F(k), P,N). The gen-
eralization mutation GM(I) of I is an individual encoding a direct ancestor ofHc in M(F(k), P,N)

either in the τ - or in the ϕ-generalization hierarchy, i.e., either GM(I) =↑τ (I) or GM(I) =↑ϕ (I).
More precisely,

GM(I) =

{
↑ϕ (I) with probability p = 0.5
↑τ (I) otherwise.
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The specialization mutation SM(I) is defined accordingly.

That is, the GS mutation of I yields an individual encoding, with equal probability, a neighbor of
the classifier encoded by I either in the ϕ- or the τ -hierarchy (this is exactly what in our model is a
“small” change in a hypothesis).
The computation of the non-deterministic primitives ↑ϕ (I) and ↓ϕ (I) is clearly the transposition
at genotype level of the computation of the unary refinement operators ↑ϕ (Hc) and ↓ϕ (Hc) shown
in Subsection 8.5.1. Hence, we obtain the binary encoding ↑ϕ (I) of a classifier ↑ϕ (Hc) simply by
flipping either one 0 into 1 in I+ (i.e., add a positive feature toHc) or a 1 into 0 in I− (i.e., remove
a negative feature from Hc). Dually, we get the binary encoding ↓ϕ (I) of a classifier ↓ϕ (Hc) by
flipping a 1 into 0 in I+ or a 0 into 1 in I−.
However, like in the case of the GS crossover, we bias the GM mutation towards high-relevance
features. To this end, we introduce the notions of insertion probability ip(t) and removal probability
rp(t) of a candidate feature t as follows

ip(t) =
ρ(t)∑

i=1,k ρ(ti)
, rp(t) =

ρ̄(t)∑
i=1,k ρ̄(ti)

where ρ(t) and ρ̄(t) are the relevance and the irrelevance measures of t, respectively (see Definition
8.43). Intuitively, the probability ip(t) represents the chance that I[t] is flipped from 0 to 1, that
is, the chance that the candidate feature t is selected as a term (either positive or negative) for the
classifier encoded by individual I . The meaning of rp(t) is dual. We notice that, since ρ(ti) ≤ 1,
the condition

∑
i=1,k ρ(ti) ≤ k holds (recall that k is the number of both positive and negative

features). Therefore, for the highest scoring feature t (for which ρ(t) = 1) we have that ip(t) =

1/
∑

i=1,k ρ(ti) ≥ 1/k, i.e., the maximum insertion probability is not smaller than 1/k (defined
in [22] as the lower bound of the optimal mutation rate). Dually, the removal probability rp(t) is
maximum for the lowest scoring feature t, for which the relation rp(t) ≥ 1/k holds as well. We
are now ready to provide the computation of ↑ϕ (I) and ↓ϕ (I).

⋄ COMPUTATION of ↑ϕ (I) and ↓ϕ (I). Let the individual I be given. Compute ↑ϕ (I) and
↓ϕ (I) as follows:

a) ↑ϕ (I): select randomly (with probability 0.5) either one of the options below:

1. probabilistically select a bit I+[t] = 0 according to the insertion probability distri-
bution ip(t); mutate it from 0 to 1, or

2. probabilistically select a bit I−[t] = 1 according to the removal probability distri-
bution rp(t); mutate it from 1 to 0.

b) ↓ϕ (I): select randomly (with probability 0.5) either one of the options below:
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1. probabilistically select a bit I+[t] = 1 according to the removal probability distri-
bution rp(t); mutate it from 1 to 0, or

2. probabilistically select a bit I−[t] = 0 according to the insertion probability distri-
bution ip(t); mutate it from 0 to 1.

Now let us consider the τ -subsumption primitives ↑τ and ↓τ . Like in the case previously seen of
the τ -subsumption primitives

∨
τ and

∧
τ , also the implementation of ↑τ and ↓τ is performed at

phenotype level. To this end, we first extract from the individual I the threshold set T by using
the inverse of the encoding function, i.e., T = enc−1(I≽τ ). Then, we compute ↑ T by using the
algorithm of Figure 8.4 and, finally, we apply the encoding function enc(↑ T ). Therefore, ↑ T
is the individual having the same positive and negative components of I and threshold component
enc(↑ T ).

⋄ COMPUTATION of ↑τ (I) and ↓τ (I). Let the individual I be given, and let T = enc−1(I≽τ )

be the threshold set encoded by I≽τ . Now, ↑τ (I) is implemented simply by replacing the
encoding I≽τ of T by the encoding enc(↑ T ) of any direct ancestor ↑ T computed by the
algorithm of Figure 8.4. ↓τ (I) is implemented accordingly. That is:

• ↑τ (I) = I ′, where I ′+ = I+, I ′− = I−, and I ′≽τ = enc(↑ T )
• ↓τ (I) = I ′, where I ′+ = I+, I ′− = I−, and I ′≽τ = enc(↓ T ).

8.7.5 The Genetic Algorithm

First, the dimensionality range [kmin, kmax] is computed from the input vocabulary by applying
Definition 8.39. Then, given the (user-defined) input values Pmax and Nmax, for each randomly
generated triple (k, P,N), with k ∈ [kmin, kmax], 0 ≤ P ≤ Pmax and 0 < N ≤ Nmax, a random
number (> 1) of individuals of length 2k + Min(P + 1, N)(⌈log(N(P + 1))⌉ + 1) is created.
Each of such individuals encodes a classifier in the hypothesis space M(F(k), P,N). The set of
individuals created for the same triple (k, P,N) form a subpopulation S(k, P,N). Each individ-
ual I ∈ S(k, P,N) is initialized as follows: the k bits in I+ and I− are set to 1 with probabil-
ity 0.5, while I≽τ is randomly set to a (minimal) threshold set {(p1, n1), · · · , (pr, nr)} such that
0 ≤ pi ≤ P and 0 < ni ≤ N , for each i = 1, r (see Definition 8.2). Afterwards, evolution takes
place by iterating elitism, selection, crossover and mutation, until a pre-defined number of genera-
tions is created. Finally, the phenotype of the best generated chromosome is returned.
Next we give some details about selection, crossover and mutation.

Selection. We want to be able to preserve sub-populations under the pressure of selection, in
order to guarantee a certain degree of population diversity (niching methods are often used for
this purpose [17, 60]). At the same time, we want to avoid premature convergence within sub-
populations that consists of a small number of individuals. At these aims, we maintain a set of
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mating pools, each being the union of all subpopulations with the same threshold bounds P and
N , i.e., M(P,N) = ∪iS(ki, P,N). So, individuals in M(P,N) may have different length, while
belonging to isomorphic τ -subsumption lattices. In particular, the lengths of two individuals in
M(P,N) may differ only as far as the feature components are concerned, the threshold compo-
nents being of equal length (as they have the same threshold bounds P and N - see Sub-section
8.7.2). Now, selection is performed as follows: a mating pool is randomly selected, and tournament
selection is then applied over its individuals.
Crossover. We are given individuals I1 ∈ S(k1, P,N) and I2 ∈ S(k2, P,N), thus belonging to the
same mating pool M(P,N). The GAMoN crossover of I1, I2 combines a slightly modified version
of the uniform crossover (called MUX) with the GS crossover operators defined in the previous
sections. A sketch of the proposed method is shown in Figure 8.7. It basically relies on two steps:
Step 1: decide probabilistically whether or not MUX(I1, I2) takes place (line 18). This decision is
made positively with (user-defined) probability px. MUX is an adaptation of the uniform crossover
UX to deal with (i) the different lengths of the feature components of two mating individuals, and
(ii) the presence of threshold sets. Informally, MUX(I1, I2) can be regarded as UX(I1, I2) where
(1) only the first min(k1, k2) bits of the positive and negative components of I1 and I2 are proba-
bilistically exchanged (lines 2-4), and (2) I≽1 and I≽2 are swapped as if they were single bits (line
5). Note that the offspring J1 and J2 are such that J1 ∈ S(k1, P,N) and J2 ∈ S(k2, P,N) (i.e.,
they belong to the same subpopulations of their parents).
Step 2: If the decision for MUX has not been made positively in Step 1, then perform the GS
crossover by invoking function GSX(I1, I2) (line 20). This is executed with a probability equal to
the F-measure of the classifier Hc encoded by I1 (line 13). This way, we give fitter individuals a
higher chance to generalize or specialize so as to allow them for further refinement - see discussion
in Sub-section 8.7.7. Whether a generalization or a specialization of I1 is to be performed, depends
on whether Hc is too specific or too general (line 14). However, to carry out GSX(I1, I2), indi-
vidual I2 has preliminarily to be “promoted” citizen of the subpopulation S(k1, P,N) of I1 as, by
Definition 8.42, the GS crossover can be applied only to members of the same sub-population. To
this end, I2 is made of the same length of I1 by invoking function promote (line 15). The following
two cases may arise (recall that the threshold set components of I1 and I2 are of equal length):

• k1 ≤ k2. Only the first k1 bits of I+2 and I−2 are picked up (lines 7-8).

• k1 > k2. Both I+2 and I−2 are extended with further n = k1 − k2 bits. In particular, I+2
is padded with n 1’s (resp. 0’s) and I−2 with n 0’s (resp. 1’s) if a generalization (resp.
specialization) is to be performed (lines 9-12).

At this point, either GX(I1, I2) or SX(I1, I2) is computed according to Definition 8.42 (lines 16-
17). Once GSX(I1, I2) has been carried out, GSX(I2, I1) is performed likewise (line 20). Again,
the offspring J1 and J2 belong to sub-populations S(k1, P,N) and S(k2, P,N), respectively.
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Mutation. Mutation is performed by using a similar framework. This is a combination of a modified
version of standard mutation (denoted MSM), which takes into account threshold sets, with the
GS mutation (GSM) operators previously defined. In particular, MSM(I) works as follows: first,
it randomly decides (with probability 0.5) whether to operate over the feature or the threshold
component. In the former case, MSM(I) randomly flips the bits of I+ and I− with probability
1/(2k). In the latter case, MSM(I) replaces I≽ by the encoding of a randomly chosen neighbor of
the threshold set encoded by I≽ (contrary to GSM which selectively chooses either a direct ancestor
or a direct descendant depending on whether generalization or specialization is to be performed,
respectively). Note that, in all cases, MSM(I) causes small changes of position in the subsumption
lattices. Now, GAMoN mutation works as follows (for each offspring):

• Step 1: decide probabilistically whether or not GSM(I) takes place. This decision is made
positively with probability F -measure(Hc),Hc being the phenotype of I .

• Step 2: If the decision for GSM(I) has not been made positively in step 1, execute MSM(I).

8.7.6 GAMoN time complexity

It is immediate to recognize that the cost of the task-specific reproduction operators is O(k), while
the cost of the fitness computation is O(km), where k is the size of the feature space and m the
number of examples in the training set (in fact, the evaluation of the fitness of an individual requires
the evaluation of the number of candidate (both positive and negative) features occurring in each
document of the training set). Now, since the number of different features (words) occurring in the
training set is asymptotically independent of m (as the lexicon is finite), irrespective of feature se-
lection, k is (asymptotically) independent of m. Thus, technically, we have that O(km) = O(m),
that is, the asymptotic behavior of GAMoN is linear in the size of the training set. Quite obvi-
ously, for relatively small values of m (like those that characterize real-life data sets), the practical
complexity is O(km).

8.7.7 Remarks on the proposed GA

Individual Encoding. There are two basic approaches, according to whether a chromosome of the
population is used to represent a single rule or a rule set [65]. Within the former approach (i.e.,
“chromosome = one rule”) there are rule induction GAs like XCS [132], SIA [129], COGIN [61].
In the second approach (i.e., the “chromosome = set of rules”), called Pittsburgh approach, a rule
is used to code an entire classifier. GAssist [19], OlexGA [101] and BioHEL [18, 48] fall in this
category.
From one side, the “chromosome = one rule” approach makes the individual encoding simpler, but
the fitness of a genotype may not be a meaningful indicator of the quality of the phenotype [50].
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Further, under the competitive style of GA, there may be a conflict between individual and collec-
tive interests of the rules forming a classifier [65]. On the other side, the “chromosome = set of
rules” approach requires a more sophisticated encoding of individuals, but the fitness provides a
more reliable indicator [50]. Moreover, no conflict of interests can happen in this case, as compe-
tition occurs among classifiers (and not single rules).
In our approach, an individual encodes a candidate classifier - so it falls in the class of Pittsburgh
methods. Despite this, individual encoding is very simple and compact - 2k bits for the encod-
ing of Pos and Neg (a few tens of bits altogether) and a handful of bits to encode the threshold
set. Thus, GAMoN combines the advantages of both the above mentioned approaches, i.e., the
individual simplicity and compactness of the “chromosome = one rule” approach, along with the
effectiveness of both the reproductive competition and the fitness function of the “chromosome =
set of rules” approach.

Search Strategy. It is well known that standard reproduction operators are rather disruptive, in
the sense that the offspring may be very different from the parents. On one hand, this has the ad-
vantage of making unlikely the GA getting stuck into local optima but, on the other hand, the high
degree of unpredictability in the generation of new candidate classifiers may make the GA converge
very slowly. In contrast, GS operators move hypotheses from one position to another in either one
of the two hierarchies in a controlled way, depending on the “state” of the current hypothesis. Such
a search bias, however, forces a search strategy which may quickly converge to local optima.
As we have seen, GAMoN combines the space search of a standard GA with that based on GS
operators. The rationale behind this choice is that of exploiting the latter to perform a selective
search, and to compensate the selectiveness of this search by introducing a certain degree of diver-
sity through the standard operators. In particular, GAMoN runs the GS operators (both crossover
and mutation) with increasing probability, this being defined as the F -measure achieved by an in-
dividual I over the training set. This way, as the generations pass and the algorithm more and more
approaches the optimal solution, a more controlled search of the space is performed.
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GAMoN Xover(I1, I2)
Input: individuals I1 ∈ S(k1, P,N) and I2 ∈ S(k2, P,N); MUX probability px;
Output: offspring J1 ∈ S(k1, P,N) and J2 ∈ S(k2, P,N)
function MUX(I1, I2)
1. J1 = I1, J2 = I2;
2. for i = 1 to min(k1, k2) do
3. Swap(J+

1 [i], J+
2 [i]) with probability 0.5;

4. Swap(J−
1 [i], J−

2 [i]) with probability 0.5;
5. Swap(J≽τ

1 , J≽τ
2 ) with probability 0.5;

return J1, J2.
function promote(I2, generalize)

6. J≽τ = I≽τ
2 ; /* copy the threshold component of I2 into J */

7. for i = 1,min(k1, k2) do /* copy the first min(k1, k2) positive and negative features from I2 to J */
8. J+[i] = I+2 [i], J−[i] = I−2 [i];
9. for i = k2 + 1, k1 do /* when k1 > k2 add further k1 − k2 bits to both J+ and J− so that their length
becomes k1 */
10. if generalize then
11. J+[i] = 0, J−[i] = 1 /* pad J+, J− with k1 − k2 0’s and 1’s, resp., */
12. else J+[i] = 1, J−[i] = 0; /* pad J+, J− with k1 − k2 1’s and 0’s, resp. */
return J .
function GSX(I1, I2)
13. with probability equal to Fmeasure(Hc) do /*Hc is the classifier encoded by I1 */
14. generalize = (precision(Hc) > recall(Hc));
15. Î2 = promote(I2, generalize); /* I2 becomes a citizen of S(k1, P,N) */
16. if generalize then J = GX(I1, Î2)

17. else J = SX(I1, Î2) /* GX or SX are performed according to Definition 8.42 */
return j.
begin
18. with probability px set < J1, J2 >= MUX(I1, I2);
19. if MUX has not been performed then
20. J1 = GSX(I1, I2); J2 = GSX(I2, I1)
return J1, J2.

Figure 8.7: Pseudocode for the GAMoN Xover



Chapter 9

Empirical Investigation Framework

9.1 Machine learning algorithms

To evaluate the GAMoN approach proposed in this paper, we focused on comparisons with other
rule learning algorithms. To this end, we selected two rule induction GAs, namely, BioHEL and
OlexGA, and two non-evolutionary algorithms, namely, C4.5 and Ripper. Further, we included in
our study Platt’s Sequential Minimal Optimization (SMO) method for linear SVM training [76], as
it is reported to be one of the best methods for text categorization.
Our interest for OlexGA was that of assessing to what extent GAMoN is an effective extension
(see Section 8.1). BioHEL was chosen as it is one of best performing GA-based methods. We are
not aware of experimental results of BioHEL on textual data sets. Finally, C4.5 and Ripper were
selected as they are standard decision tree/rule learners widely used for text classification.
All the selected learning algorithms are implemented in Java, but not all are available on the same
platform. In particular, GAMoN runs only on the Weka platform, while BioHEL is available only
on the KEEL platform (KEEL - Knowledge Extraction based on Evolutionary Learning - is a suite
of machine learning software tools - [11]). C4.5, Ripper, SMO and OlexGA run on both platforms.
For the purpose of our work, we used Weka (version 3.5.8) for all algorithms, but BioHEL.

9.2 Benchmark Corpora

We carried out our empirical work on 13 real-world data sets whose properties are summarized
in Table 9.1. As we can see, they span over a wide range of sizes, from a minimum of around
900 (Oh15) to a maximum of nearly 204,000 (market) documents. The rarest category has 51
documents (Oh0), while the most frequent has 85,440 documents (Market). Most of these datasets
have been widely used in large scale text classification tasks, and are publicly available.

Market is a data set of 203,926 documents extracted from Reuters Corpus Volume I (RCV1),
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Table 9.1: Data set description
Name Source Original #Doc #Feat #Cat Cat Size

Format Min Max
Oh15 Ohsumed-233445 arff 913 3,100 10 53 157
Oh5 Ohsumed-233445 arff 918 3,012 10 59 149
Oh0 Ohsumed-233445 arff 1,003 3,182 10 51 194
Oh10 Ohsumed-233445 arff 1,050 3,238 10 52 165
BlogsGender Blog author gender text 3,232 15,026 2 1,548 1,684
Ohscale Ohsumed-233445 arff 11,162 11,465 10 709 1,621
R10 Reuters-21578 text 12,897 21,363 10 237 3,964
20NG 20 newsgroups csv 18,846 59,903 20 628 999
Ohsumed Ohsumed-233445 text 34,389 34,359 23 427 9,611
Cade12 Gerindo Proj. csv 40,983 69,470 12 625 8,473
SRAA UseNet text 73,218 63,966 4 4,796 41,351
ODP-S22 ODP text 107,262 25,068 22 88 28,286
Market Rcv1 text 203,926 68,604 4 26,036 85,440

(Lewis et al., 2004). R10 is the standard subset of the Reuters-21578 Distribution 1.0 which consists
of 12,897 documents and uses the 10 most frequent Topics categories [39]. Ohsumed is from
the Ohsumed-233445 collection subset of MEDLINE database [67] and is made of all 34,389
cardiovascular diseases abstracts out of 50,216 medical abstracts contained in the year 1991. The
classification scheme consists of the 23 cardiovascular diseases MeSH categories. Ohscale, Oh0,
Oh5, Oh10 and Oh15 are other subsets of Ohsumed-233445 [68]. Data sets SRAA and 20NG (20-
newsgroups) are articles from newsgroups. In particular, 20NG is a collection of 18,846 newsgroup
documents organized into 20 different categories. We used the version sorted by date, which does
not include newsgroup-identifying headers. The SRAA [1] data set contains 73,218 articles from
four discussion groups on simulated auto racing, simulated aviation, real autos, and real aviation.
BlogsGender is a binary data set of 3,232 blogs used for author gender classification [2]. Cade12 is
a subset of the CADE Web Directory consisting of 40,983 web pages classified across 12 categories
[3]. ODPS-22 is a subset of ODP (Open Directory Project) [4] whose documents are stored as
RDF files. For our experimentation, we used the subset of 107,262 documents classified under the
categories of the Top/Science subtree, which has 25 first-level categories. We first collapsed each of
the 25 subtrees into the respective root, thus obtaining a flat structure made of 25 categories. Then,
we grouped together into one category “Misc” the 4 smallest categories, namely, Search Engines
(7 documents), Charts-and-forums (16 documents), Directories (27 documents) and Events (38
documents), thus getting a set of 22 categories. From each document (web page), we extracted the
title and the description (thus, discarding the URL).
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9.3 Experimental Setup

We preliminarily pre-processed all data sets downloaded in textual format, by performing tokeniza-
tion (word unigrams) and stopword removal. We used the bag-of-words representation with binary
word weighting. Each feature was represented as a numerical attribute.
Experiments were performed in a binary classification setting. To this end, we binarized all data
sets by performing multi-class to two-class conversion. This way, the m-class learning problem is
decomposed into m independent two-class sub-problems, one for each class, with the i-th classifier
separating class i from all the remaining ones.
Finally, for each category, feature scoring by CHI square [46] was performed (on the training set).
Following are two major issues arose during the design of experiments.

1. Dimensionality of the feature space.

(a) Unlike the other systems, GAMoN automatically detects the appropriate dimensionality
of the feature space. That is, no manual feature selection is preliminarily needed. As
we will see later on this section, the feature spaces selected by GAMoN usually consist
of a few tens of features.

(b) Previous works show that systems like Ripper, C4.5 and SVM require relatively large
vocabularies (usually a few thousands of features) to learn good prediction functions.

(c) The efficiency of OlexGA, like that of most evolutionary methods, strongly depends on
the feature space dimensionality, as many features imply long individuals and, thus, low
efficiency.

(d) BioHel represents an exception in the evolutionary landscape, as it was designed to
efficiently deal with high dimensional data sets. However, the memory space limitations
of the KEEL platform severely limits the number of attributes that can actually be used
in case of large data sets.

The above observations demonstrate the difficulty of applying a single feature selection pol-
icy to all systems. In fact, it would be unfair using for the non-evolutionary methods the
feature dimensionalities detected by GAMoN (too small for their characteristics - see points
(a) and (b)). On the other hand, running OlexGA and BioHEL over the same number of
features used for the non-evolutionary methods would practically be unfeasible - see points
(c) and (d).

2. Time efficiency. As we have seen, our empirical study involves very large data sets (e.g.,
ODP-S22 and Market), on which most of the experimented systems perform quite ineffi-
ciently. In particular, Ripper and C4.5 showed to be extremely slow on such data sets, es-
pecially when we tried to use large vocabularies (for an instance, on vocabularies of 10.000
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features, we had to stop C4.5 as it was overly inefficient). This prevented us from performing
optimization over more vocabularies.

Given the above premises, the following experimental design choices were finally taken:

1. GAMoN was run with 500 individuals, 200 generations, elitism rate 0.2, MUX probability
0.6 (see Section 8.7.5). The maximum threshold bounds were Pmax = Nmax = 4.

2. OlexGA and BioHEL were executed over the same vocabularies made of 100 features. The
former was run with the default parameters shown at http://www.mat.unical.it/OlexGA),
while the latter with those provided by KEEL.

3. The remaining (non-evolutionary) systems were all executed over vocabularies made of 2000
terms, with the default settings provided by Weka. The SMO normalization option was turned
off to improve the training time.

Due to efficiency reasons, we performed 5-fold cross validation (80% training, 20% test) only on
small data sets (from Oh15 up to R10), while holdout (70% training, 30% test) was applied on the
remaining data sets.

9.4 Predictive performance measure and Statistical Tests

Performance was measured, as is common in text classification, by the arithmetic mean of Precision
and Recall - denoted PRavg (an approximation of the Precision/ Recall Break-Even Point). To
obtain global estimates over more categories, the standard definitions of micro-averaged Precision
and Recall were used, notably:

µPr =
Σc∈C|TPc|

Σc∈C(|TPc|+ |FPc|)

µRe =
Σc∈C|TPc|

Σc∈C(|TPc|+ |FNc|)
.

where TPc is the set of documents correctly assigned by the classifier to category c, FPc is the set
of documents incorrectly assigned by the classifier to category c, and FNc is the set of documents
incorrectly not assigned by the classifier to category c. We note that micro-averaging gives equal
weight to every document (it is called a document-pivoted measure) and is largely dependent on
the most common categories.
Each run of the evolutionary algorithms was repeated 3 times, and the average PRavg was taken.
In order to make comparisons statistically significant, we performed the Iman-Davenport test, with
the Holm’s post-hoc test, recommended for comparison of more classifiers on multiple data sets
in [40].
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Experimental Results

10.1 A glimpse to M -of-N {¬,∨} hypotheses

The experimental results show that GAMoN has a bias towards learning compact and readable
hypotheses. The following are examples of classifiers induced for categories “corn”, “wheat” and
“grain” from R10:

Hwheat = ⟨{wheat}, {deficit, investment, net, treasury, york}, {(1, 1)}⟩.

Hcorn = ⟨{corn,maize}, {london,money, quarter}, {(1, 1)}⟩

Hgrain = ⟨{barley, cereals, corn, grain,maize, rice, sorghum,wheat},

{acquisition, bank, earning, pay, profit, tax, york}, {(1, 1), (2, 2)}⟩

As we can see, the former two classifiers are atoms, while the latter is a 2-order classifier (for
a description see Section 8.3). It must be emphasized the high semantic correlation between the
positive features and the respective categories.

10.2 Automatic selection of the feature space dimensionality

Table 10.1 shows, for the categories from R10, the values of kmin, kmax and kopt given by one
execution of GAMoN, where kmin and kmax define the dimensionality range of the feature space,
and kopt (kmin ≤ kopt ≤ kmax) is the size of the feature space on which the “optimal” classifier
has been found. As it can be seen, the learning of all categories generally relies on small sets of
candidate features. As an example, for “corn” we have kmin = 19 and kmax = 43 (and PRavg
equal to 90.20), meaning that the positive terms for the “best” classifier are to be found among the
first k higher scoring features, with 19 ≤ k ≤ 43. This is clearly indicative of an aggressive feature
selection. To see why, let us have a look at Figure 10.1 - left side, where the distribution of features
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Table 10.1: Feature space dimensionality range [kmin, kmax], size of the feature space on which the
“optimal” classifier has been found kopt and F -measure for categories of R10

acq corn crud earn grain int mon ship trad wheat
kmin 105 16 58 37 42 59 86 53 78 18
kmax 172 43 106 60 77 102 148 97 141 41
kopt 132 21 100 41 55 68 99 61 86 21

PRavg 86.66 90.20 87.50 95.18 92.09 56.05 68.12 80.41 69.15 88.66

Figure 10.1: Distribution of features by CHI square for two categories from R10 - “corn” (left side)
and “acq” (right side). Only first 200 features are shown.

by CHI square is reported. As we can see, “corn” has a few features scoring very high, while the
remaining ones rapidly approach near-zero values. The sharply declining shape of this graph is
indicative of an “easy” category, i.e., a category for which a high performance can be achieved
with only a few discriminative words.
In contrast, “acq” is a more “difficult” category. As we can see from Figure 10.1- right side, it has
lower initial CHI square values, and the graph has a smooth (decreasing) trend. That is, no features
with highly discriminative power there exist. As a consequence, the dimensionality range is shifted
rightwards on the x-axis (kmin = 105 and kmax = 172), this being indicative of a less aggressive
reduction of the feature space.

10.3 Decision Boundaries

Figure 10.2 shows the decision boundary DBHearn of the 3-order classifier Hearn = ⟨Pos, Neg,

{(1, 1), (2, 2), (3, 3)}⟩ for category “earn” from R10. Here, Pos is made of 14 positive features
and Neg consists of 16 negative features. As we can see, DBHearn is a three-step polyline. From
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Figure 10.2: Decision boundary of the classifier ⟨Pos, Neg, {(1, 1), (2, 2), (3, 3)}⟩ for category
“earn” from R10. Each label (π(x, y), ν(x, y)) represents the number π(x, y) of positive examples
and the number ν(x, y) of negative ones with x positive features and y negative ones. Labels (0, 0)
are omitted from the figure.

the data reported in Figure 10.2, it results that the subset of documents classified byHearn consists
of the 2954 positive examples and the 113 negative ones lying in the classification region RHearn

delimited by DBHearn . The generalization error and the PRavg value ofHearn are

err =
b+ c

a+ b+ c+ d
= 0.031; PRavg =

2a2 + a+ ac

2(a+ b)(a+ c)
= 0.94

where a, b, c and d are computed as follows (see Subsection 8.4.5):

a =
∑

(x,y)∈RHhearn

π(x, y) = 2954, b =
∑

(x,y)∈RHhearn

ν(x, y) = 113,

c =
∑

(x,y)̸∈RHhearn

π(x, y) = 205, d =
∑

(x,y)̸∈RHhearn

ν(x, y) = 6988

10.4 Effect of GS operators

To see the effect of the GS reproduction operators defined in this paper, we compared the accuracy
results of GAMoN over the data sets previously seen with those obtained by running a version of
GAMoN where the GS operators (GS Xover and GS mutation) were disabled. The experimental
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results, reported in Table 10.2, show that the GS operators improve the accuracy on every single
data set, even though on some they induce only trivial improvements (e.g., Ohsu and BG), while on
other the gain is remarkable (e.g., oh15, oh10, R10, cade and Mkt). On average, the enhancement
over all data sets is of around 1.5 points. As discussed earlier in this paper, the aim of GS operators
is that of further refining fitter individuals by exploiting the structure of the hypothesis space. This
explains why often significant improvements are obtained.

Table 10.2: Micro-averaged PRavg values on each data set obtained by GAMoN and GAMoN*
(a version of GAMoN with no GS reproduction operators). Legend - BG: BlogsGender, OhS:
OhScale, Ohsu: Ohsumed, Mkt: Market
oh15 oh5 oh0 oh10 BG OhS R10 20NG Ohsu cade SRAA ODP Mkt

GAMoN 80.46 84.85 84.27 78.62 68.82 75.03 86.50 75.72 67.25 48.42 85.25 71.14 92.42
GAMoN* 77.59 82.55 82.90 75.54 68.33 74.28 84.56 75.21 67.09 46.43 84.27 70.20 90.59

10.5 Comparison with other systems

Table 10.3 shows, for each algorithm and data set, the micro-averaged PRavg. The average values
over all data sets along with the average ranking of each algorithm, are also included (bottom of the
table). The best results are stressed in bold-face. The ranking is obtained by assigning a position
to each algorithm depending on its performance on each data set. The algorithm showing the best
accuracy on a given data set is assigned rank 1.
As we can see, SMO is the best performer (PRavg=78.00), followed by GAMoN (PRavg=76.83).
The two algorithms, however, show the same average rank (2.08). We note that GAMoN outper-
forms all the other rule induction methods. In particular, it behaves uniformly better than OlexGA
on all individual data sets, and compares favorably with the other rule learners on most of the data
sets.

In order to establish whether the above differences in performance are statistically significant,
the Iman-Davenport’s test is applied. This is a non-parametric statistical test recommended in [40]
for comparing two or more classifiers on multiple data sets. In brief, with 13 data sets, 6 algo-
rithms and confidence α = 0.05, the Iman-Davenport statistics is 9.54, greater than the critical
value CV = 2.37. Thus, the null hypothesis (which states that all the algorithms are equivalent) is
rejected. Hence, we apply the Holm’s post-hoc test [40], with GAMoN as control algorithm, for
controlling the family-wise error in multiple hypothesis testing. The results of this test are sum-
marized in Table 10.4. Based on them, we can reject the null hypothesis of equivalence only for
BioHEL and OlexGA (as p-value < α/i holds). That is, with confidence 95%, we can state that
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Table 10.3: Micro-averaged PRavg results obtained by 5-fold cross-validation on Oh0, Oh5, Oh10,
Oh15, BlogsGender, Ohscale and R10 (80/20 split) and by holdout on the remaining data sets
(70/30 split)

Data set Ripper SMO C4.5 OlexGA BioHEL GAMoN
OH15 79.55 79.95 76.75 74.33 66.03 80.46
OH5 83.74 84.29 82.30 80.76 76.72 84.85
OH0 84.37 84.80 79.24 81.29 73.20 84.27
OH10 78.82 74.70 74.78 74.46 67.39 78.62
BlogsGender 60.96 60.95 58.33 66.75 62.82 68.82
Ohscale 72.96 69.52 70.77 74.36 68.26 75.03
R10 85.21 88.94 84.67 84.07 83.59 86.50
20NG 72.66 83.64 74.86 72.97 70.65 75.72
Ohsumed 60.35 66.94 63.25 65.58 63.79 67.25
cade 44.31 54.06 48.10 44.10 42.96 48.42
SRAA 81.04 90.06 86.85 79.60 81.34 85.25
ODP 66.73 80.65 74.76 69.46 71.21 71.14
Market 94.63 95.56 95.37 88.95 74.75 92.42
avg microPRavg 74.26 78.00 74.62 73.59 69,44 76.83
avg rank 3.96 2.08 3.62 4.31 5.23 2.08

GAMoN performs better than such algorithms, while it is statistically equivalent to SMO, Ripper
and C4.5.

Table 10.4: Holm’s test with GAMoN as control algorithm. The null hypothesis is rejected when
p-value < α/i

i Method z = (R0−Ri)
SE

p−value α/i

5 BioHEL -4.2980 0.0005 0.01
4 OlexGA -3.0400 0.0024 0.0125
3 Ripper -2.2014 0.0278 0.0167
2 C4.5 -2.0966 0.0366 0.025
1 SMO 0.0000 1.0000 0.05



CHAPTER 10. EXPERIMENTAL RESULTS 116

Table 10.5: Avg size of the rule-based classifiers on R10
Algorithm Avg size of classifiers
GAMoN #Pos = 20, #Neg=10, order=1.8
Ripper #Rules= 16
C4.5 #Rules= 78
BioHEL #Rules= 14, #literals/rule = 19
OlexGA #Pos = 16, #Neg=15

10.6 Size of the classifiers

Apart from SMO, the other classifiers yield models as sets of rules. Although we do not have a
unique formal definition of size of a classifier, being either the number of rules, number of features,
etc., in Table 10.5 we provide some statistical data (averaged over the five folds) giving an insight
into the quantitative characteristics of the classifiers induced on R10. As we can see, Ripper, C4.5
and BioHEL induce classifiers consisting on average of 16 rules, 78 rules and 14 rules, respectively,
each BioHEL rule having 19 literals on average. In turn, GAMoN induces classifiers of 20 positive
features and 10 negative ones on avearge, against the 16 positive features and 15 negative ones
of OlexGA classifiers. Going beyond the results given in the table, nearly 44% of the classifiers
induced by GAMoN are atoms, 38% are of order 2, 18% of order 3 and 2% of order 4 (note that
with P = N = 4, the maximum order of a classifier is Min(P +1, N) = 4 - see Proposition 8.31).

10.7 Time Efficiency

The experiments previously described were performed on an Intel Xeon 2.33 GHz machine with 4
Gb RAM.
The learning times needed to achieve the accuracy results previously seen are reported for each
method in Table 10.6 - first row. As we can see, OlexGa (46 hours) is the best performers, followed
by SMO (71), GAMoN (156), BioHEL (185), Ripper (445) and C4.5 (488) (recall that each run of
GAMoN, OlexGA and BioHEL was repeated 3 times). Table 10.6 also reports the average learning
times per category. Again, OlexGA is the fastest algorithm (0.04 h/category), followed by GAMoN
(0.12), BioHEL (0.16) and SMO (0.18). Ripper and C4.5 are ten times slower than GAMoN (1.13
and 1.23, respectively).
To see the effect of the training set size over learning times, in Figure 10.3 we plotted the average

learning times per category over each data set (data sets are ordered by increasing size). The graph
provides an empirical picture of the progression of learning times with the number of training
documents. As we can see, GAMoN asymptotically behaves similarly to OlexGA, BioHEL and
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Table 10.6: Learning times expressed in hours. Each run of GAMoN, OlexGA and BioHEL was
repeated 3 times

Ripper C4.5 SMO OlexGA BioHEL Gamon
Overall learning time (h) 445 488 71 46 185 156
# runs 395 395 395 1185 1185 1185
Avg learning time per category (h) 1.13 1.23 0.18 0.04 0.16 0.12

Figure 10.3: Comparison of the average learning time per category over each data set (data sets are
ordered by increasing size)

SMO, while its has a significantly smoother trend than both Ripper and C4.5. That is, GAMoN
scales better than the two non-evolutionary rule induction methods.



Chapter 11

Discussion and Related Work

The experimental study described in the previous sections shows that GAMoN induces classifiers
that are both accurate and compact. Interestingly, these properties have consistently been observed
over all 13 data sets, on which GAMoN showed a uniform behavior. Given the very different ap-
plication domains the corpora refer to, this is a clear proof of robustness. Further, GAMoN showed
to perform efficiently on large data sets.

M -of-N{¬,∨} Representation. As discussed in Sub-section 8.4.6, the “family resemblance”
metaphor provides us with a qualitative understanding on the basic reason why the M-of-N paradigm
is well suited for the purpose of text categorization. M -of-N{¬,∨} extends M-of-N through nega-
tion and disjunction, two constructs that enables to express hypotheses capable of best fitting the
true structure of the data (a discussion on the expressivity of M -of-N{¬,∨} has been reported in
Sub-section 8.4.6). Unlike most of the existing classifiers which focus on features that positively
discriminate a class, in our approach negation is used as a “first class citizen” allowing us to ex-
plicitly model the interactions between positive and negative features within a given example. In
turn, disjunction enables to “modulate” such interactions, by capturing the positive correlation (that
simple atoms would miss) existing between positive and negative features (see Sub-section 8.4.5).
Negation takes precision under control, while disjunction improves recall.
One advantage of the proposed language over a DNF-type representation is conciseness. Indeed,
although a M -of-N{¬,∨} hypothesis can be represented in terms of disjunctions of conjunctions (see
Section 8.4.2), a DNF-type representation of a M -of-N{¬,∨} concept would be prohibitively long
(the number of disjuncts is exponential in the size of Pos and Neg). We believe that the proposed
language is one main contribution of this paper. One interesting direction for future work could
be that of using a mathematical relationship (e.g., a linear function) between thresholds p and n,
instead of the current threshold multiple pairs.

Feature Space. M -of-N{¬,∨} hypotheses are built over a set of pre-selected candidate features.
While there has been a long history of applying dimensionality reduction methods, one contri-
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bution of this paper is represented by an original definition of the feature space, as consisting of
both terms indicative of membership and terms indicative of non-membership for a category. Un-
like in the traditional feature selection approach, where only positive terms are selected, using our
definition enables the learner to focus on negative information in the same way as it does with pos-
itive one (a similar approach distinguishing between positive and negative features was proposed
in [140]). A criterion for the automatic detection of a suitable dimension has also been provided
(see Definition 8.39). This criterion proved to be very effective in practice. Experimental results
showed indeed that a few tens of well-selected features are sufficient to build accurate prediction
functions, irrespective of the data set.

GAMoN biases. Apart from the language bias, we can characterize GAMoN in terms of both a
search bias and an overfitting avoidance bias [?]. We have extensively discussed about the former,
which refers to the way the hypothesis space is searched through the subsumption relationships
by means of the task-dependent genetic operators. The proposed approach, actually not new in
inductive learning (see, e.g., [20, 28, 41, 56, 57, 90]), overcomes a major problem in the use of con-
ventional GAs which do not take into account the structure of the search space. The overfitting
avoidance bias is a preference for simpler classifiers. GAMoN includes such a bias in the induction
mechanisms by using suitable feature probability distributions (see Sub-section 8.7.4) which enable
the reproduction operators to select few, high-quality features. In combination with the proposed
feature selection technique, which provides GAMoN with an effective lexicon, capable of express-
ing the essential patterns, the overfitting avoidance bias guarantees the induction of classifiers that
are parsimonious, made of a handful of well selected features. This makes them effective on the
unseen data, as few high-quality features drastically reduce the risk of overfitting the training data.

GAMoN, C4.5 and Ripper. Unlike GAMoN, the two rule-based non-evolutionary classifiers
used in this work, notably, C4.5 and Ripper, achieve the full expressive power of DNF. Despite
this, the conducted experimental study showed that they do not outperform GAMoN. This is a
clear proof of the effectiveness of the proposed algorithm.
In addition, GAMoN performs significantly more efficiently than both C4.5 and Ripper on large
data sets, as the graphs of Figure 10.3 show. This should not be surprising, as the time complexity
of Ripper is O(mlog2m) and that of C4.5 O(m3), while the complexity of GAMoN is O(m), where
m the number of examples in the training set (see Sub-section 8.7.6). That is, GAMoN can scale
up to large and realistic real-world domains better than the other two rule-based classifiers. We
point out that further improvements of the learning times may be obtained by, e.g., a more efficient
implementation of the task-specific reproduction operators and, in a real application environment,
by distributed approaches. Current research is likely to further improve efficiency of GAMoN.

GAMoN, OlexGA and BioHEL. GAMoN is a substantial extension of OlexGA from two re-
spects. The first is the language. An OlexGA hypothesis is the special case of a M -of-N{¬,∨}

atom where both thresholds are equal to 1, i.e., ⟨Pos,Neg, (1, 1)⟩ (thus, M -of-N{¬,∨} is strictly
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more expressive than the language of OlexGA). The second is the genetic algorithm. Since the
hypothesis space of OlexGA does not provide any structure, OlexGA relies on a simple, standard
GA, where the population is made of fixed-length individuals, and the reproduction operators are
the standard uniform crossover and mutation. That is, OlexGA is a special case of GAMoN. As
shown in Table 10.3, the proposed extension results in a statistically significant improvement over
OlexGA. Needless to say, the price for that is a slower learning procedure.
BioHEL (Bioinformatics-oriented Hierarchical Evolutionary Learning) is a state-of-the-art GA
which showed to perform very effectively on non-textual data sets [21]. To the best of our knowl-
edge, this is the first study where BioHEL has been tested on text classification problems. BioHEL
inherits several features from GAssist. It relies on the Pittsburg representation approach and applies
the iterative rule learning approach [129]. BioHEL was explicitly designed to handle large-scale
datasets. To this end, a rule, instead of coding all the domain attributes, keeps only a subset of
them, thus avoiding hundreds of irrelevant computations. Using such an approach, BioHEL is able
to handle problems with hundreds of attributes (in datasets with large sets of instances [48]) or
even tens of thousands of attributes (but with few instances). In addition, in order to further re-
duce the computational cost, BioHEL uses a windowing scheme called ILAS (incremental learning
with alternating strata). The experimental results of this paper confirm that BioHEL behaves quite
efficiently, with a learning time similar to that of GAMoN (see Table 10.6). On the contrary, in
terms of predictive accuracy, it showed to be statistically inferior to GAMoN. However, we feel
that better results could be obtained by a finer tuning of the system. For an instance, a recent
publication [?] shows that BioHEL has a parameter which is highly problem sensitive, the cover-
age breakpoint. Also, an appropriate use of the ILAS windowing scheme, as well as the usage of
the C++ implementation1 (in place of the KEEL implementation), could further improve efficiency.

Other systems learning with negation. As already mentioned, using negative evidence is deemed
important in the text classification task. However, apart from OlexGA and GAMoN, none of the
experimented systems focuses on the exploitation of negative information. In general, examples of
IRL (Inductive Rule Learning) approaches that involve the direct generation of negation are very
rare (see, e.g., [?, 111]). Outside the realm of rule learners, Complement Naive Bayes (CNB) is
among the few text classifiers that leverage negative features [109]. Its peculiarity is that of learning
the weights for a class using all training data not in that class. CNB works in a multi-class setting
(i.e., it needs at least 3 classes). In [109], the authors claim that CNB approaches the state-of-the-
art accuracy of SVMs. Unfortunately, we could not compare GAMoN with CNB in our empirical
study, as the (binary) one-versus-all technique was used to deal with multi-label classification (ba-
sically, the problem was that Weka does not provide support for a multi-label data set representation
that would be necessary in order to provide CNB with the same input of the other systems.)

Other MofN approaches. Several research works have recently been done to develop methods

1Available at http://icos.cs.nott.ac.uk/software/biohel.html



CHAPTER 11. DISCUSSION AND RELATED WORK 121

for inducing M-of-N concepts but, to the best of our knowledge, none for text categorization. For an
instance, in [119] a technique for extracting M-of-N hypotheses from neural networks is reported.
However, most work in this field has been carried out for constructive induction. ID-2-of-3 [96] is a
M-of-N induction algorithm which incorporates M-of-N tests in decision-tree learning. It is based
on a (greedy) hill-climbing approach to get the best M-of-N hypotheses at each node of a decision
tree. XofN [141] is another greedy constructive induction algorithm that learns X-of-N nominal
attributes. Both ID-2-of-3 and XofN, when building a decision tree, construct a new attribute for
each decision node using the local training set. More recently, a Genetic Algorithm for constructive
induction has been proposed in [82]. It relies on a variable length individual representation encod-
ing the set of N attribute-value pairs composing a X-of-N attribute. The fitness is defined as the
information gain ratio of the constructed attribute. The genetic operators are the standard uniform
crossover along with a mutation which is a simple variant of the standard one. A conventional
niching method to foster population diversity is also used.

11.1 Conclusions

In this paper we proposed a new language, called M -of-N{¬,∨}, for text classification, along with
a GA-based approach for constructing M -of-N{¬,∨} hypotheses from training data.
The M -of-N{¬,∨} representation generalizes the classical notion of M-of-N concepts by allowing
negation and disjunction. We conjectured that it is well-suited to express text classification condi-
tions, as it complies with the so-called “family resemblance” metaphor. We have shown that the
space of M -of-N{¬,∨} hypotheses has a structure determined by two kinds of subsumption rela-
tionships - the feature and the threshold relationships, that form complete lattices. Based on that,
suitable refinement operators for an effective exploration of the hypothesis space were designed.
To induce M -of-N{¬,∨} hypotheses, the task-specific genetic algorithm GAMoN was proposed. It
is based on the Pittsburg approach, where an individual encodes a candidate classifier, as well as on
ad hoc GS reproduction operators which are a stochastic implementation of the refinement opera-
tors. GAMoN dynamically adapts the probability of selecting the GS operators. The population is
partitioned into a number of competing sub-populations, each consisting of individuals belonging
to the same hypothesis subspace. To this end, a statistical criterion for automatically detecting the
dimensionality range of the feature space has been proposed.
This paper also presented empirical results obtained by extensive experiments on 13 real-world
test collections in a wide spectrum of sizes - from a few hundreds to a few hundreds thousands
of documents. We found that GAMoN is competitive with a large collection of state-of-the-art
learning techniques belonging to different classes, and that it provides hypotheses that are compact
and easily interpretable. In particular, though there are small differences in predictive accuracy
between GAMoN and SMO (the latter being a bit more performant), and between GAMoN and
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both Ripper and C4.5 (the latter two being a bit less performant), all such systems showed to be
statistically equivalent. Whereas, GAMoN proved to be superior to the other evolutionary algo-
rithms. In particular, it showed statistically significant improvements over its predecessor OlexGA,
thus confirming the effectiveness of the proposed extension. Finally, we observed that, as we scale
up the size of the data set, GAMoN performs much more efficiently then both Ripper and C4.5.
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