Please use this identifier to cite or link to this item: https://hdl.handle.net/10955/1470
Title: <<Ia>> catestatina migliora la risposta Frank-Starling in cuori di ratto normotesi e ipertesi agendo come attivatore fisiologico del pathway trasduzionale ossido nitrico-dipendente
Authors: Cantafio, Patrizia
Canonaco, Marcello
Angelone, Tommaso
Keywords: Fisiologia animale
Peptidi
Ratti
Issue Date: 7-Jun- 22
Series/Report no.: BIO/09;
Abstract: The myocardial response to mechanical stretch (Frank-Starling law) is an important physiological cardiac determinant. Modulated by many endogenous substances, it is impaired in the presence of cardiovascular pathologies and during senescence. Catestatin (CST: hCgA352-372), a 21-amino-acid derivate of Chromogranin A (CgA), displays hypotensive/vasodilatory properties and counteracts excessive systemic and/or intra-cardiac excitatory stimuli (e.g., catecholamines and endothelin-1). CST, produced also by the myocardium, affects the heart by modulating inotropy, lusitropy and the coronary tone through a Nitric Oxide (NO)-dependent mechanism. This study evaluated the putative influence elicited by CST on the Frank-Starling response of normotensive Wistar Kyoto (WKY) and hypertensive (SHR) hearts by using isolated and Langendorff perfused cardiac preparations. Functional changes were evaluated on aged (18-month-old) WKY rats and SHR which mimic human chronic heart failure (HF). Comparison to WKY rats, SHR showed a reduced Frank-Starling response. In both rat strains, CST administration improved myocardial mechanical response to increased end-diastolic pressures. This effect was mediated by EE/IP3K/NOS/NO/cGMP/PKG, as revealed by specific inhibitors. CST-dependent positive Frank-Starling response is paralleled by an increment in protein S-Nitrosylation, AKT/eNOS/nNOS and PLN phosphorylations. Our data suggested CST as a NO dependent physiological modulator of the stretch-induced intrinsic regulation of the heart. This may be of particular importance in the aged hypertrophic heart, whose function is impaired because of a reduced systolic performance accompanied by delayed relaxation and increased diastolic stiffness.
Description: Scuola di Dottorato Life Sciences, Indirizzo: Biologia animale, Ciclo XXVIII, a.a. 2015-2016
URI: http://hdl.handle.net/10955/1470
Appears in Collections:Dipartimento di Biologia, Ecologia e Scienze della Terra - Tesi di dottorato

Files in This Item:
File Description SizeFormat 
Tesi Dottorato Patrizia Cantafio.pdf2,56 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.