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Abstract

Direct Numerical Simulation (DNS) of a fully deveked turbulent channel flow
represents a powerful tool in turbulence researthhas been carried out to
investigate the main characteristics of wall-bouhtigbulence. It consists of solving
numerically the Navier-Stokes equations with phgiyeconsistent accuracy in
space and time. The major difficulty in performitugbulence calculations at values
of the Reynolds number of practical interest liesthe remarkable amount of
computational resources required. Recent advamckgh performance computing,
especially related to hybrid architectures basedGC#J/GPU, have completely
changed this scenario, opening the field of HighfdPmance Direct Numerical
Simulation of turbulence (HPDNS), to which new &mtouraging perspectives have
been associated with the development of an advanaatkerical methodology for
studying in detail turbulence phenomena.

The research activities related to the Ph. D. g concerns the high
performance direct numerical simulation of a walltbded turbulent flow in a plane

channel with respect to the Reynolds number depmedé& order to investigate



coherent structures of turbulence in the wall regibhe objectives of the research
have been achieved by means the construction andalidation of DNS turbulent
flow databases, that give a complete descriptiothefturbulent flow. The Navier-
Stokes equations that governs the flow of a thieesdsional, fully developed,
incompressible and viscous fluid in a plane charlvele been integrated and a
computational code based on a mixed spectral-fiditkerence scheme has been
implemented. In particular, a novel parallel impéntation of the Navier-Stokes
solver on GPU architectures have been proposeddier @0 perform simulations at
high Reynolds numbers. In order to deal with laageount of data produced by the
numerical simulation, statistical tools have be@vedoped in order to verify the
accuracy of the computational domain and deschbeshergetic budgets that govern
the energy transfer mechanisms close to the wddw Fvisualization has been
provided in order to identify and evaluate the terapand morphological evolution
of flow structures in the wall region by using numal methods for their extraction
from a three-dimensional time-dependent turbullewt atabase.

The first part of the Ph. D. thesis concerns ardiure review of the main
contributes about wall-bounded turbulence, the Dbisherent structures and high
performance Navier-Stokes solver. The historicakijeound has been described in
detail, from the earlier works until the most retcenes, underlying their importance
and limitations. The problem statement concerns #t® study of the physical-
mathematical characteristics of the system of thei®-Stokes equation for a three-
dimensional, fully developed, incompressible anstous flow. The second part is
devoted to the study of the numerical method ferititegration of the Navier-Stokes
equations. A mixed spectral-finite difference tage for the numerical integration
of the governing equations is devised: Fourier dgmmsition in both streamwise and
spanwise directions and finite difference methaxhglthe wall-normal direction are
used, while a third-order Runge-Kutta algorithm mled with the fractional-step
method are used for time advancement and for gaisfthe incompressibility
constraint. A parallel computational codes has beéeneloped for multicore
architectures; furthermore, in order to simulate tirbulence phenomenon at high
Reynolds numbers, a novel parallel computationatiehthas been developed and
implemented for hybrid CPU/GPU computing systentse third part of the Ph. D.



thesis concerns the analysis of numerical resultstder to evaluate the relationship
between turbulence statistics, energy budgets &ma $tructures, allowing to
increase the knowledge about wall-bounded turbelefar developing new

predictive models and for the control of turbulence



Sintesi

La simulazione numerica diretta (DNS, Direct Nuroaki Simulation) della
turbolenza di un fluido all'interno di un canaleapo rappresenta un utile strumento
nel campo della fluidodinamica al fine di valutarel dettaglio le caratteristiche
principali di un corrente turbolenta di parete.rhaggiore difficolta che storicamente
si e incontrata nelllambito della simulazione déilebolenza considerando valori del
numero di Reynolds di pratico interesse ingegrieast rappresentata dall’onerosita
delle risorse computazionali richieste: di consegae per un lungo periodo di
tempo, I'analisi si € concentrata su semplici chdiuidi turbolenti. | progressi nel
settore del calcolo ad alte prestazioni ha favdatmascita di una nuova filiera di
ricerca, la simulazione numerica diretta ad altesg@zioni (HPDNS, High
Performance Direct Numerical Simulation) della taldmza, consentendo lo sviluppo
di una modellistica numerica molto avanzata.

Le attivita sviluppate nel corso del Dottorato dicdétca riguardano la
simulazione numerica diretta della turbolenza defgmamediante il ricorso a tecniche

di supercalcolo, al variare del numero di Reynolalsfine di poter studiare le



strutture coerenti della turbolenza che si origm@m prossimita della parete. Tale
obiettivo e stato perseguito mediante la simulazienla validazione di database
numerici di un fluido tridimensionale, turbolentancomprimibile e viscoso
all'interno di un canale piano. Le equazioni di MaxStokes, che governano il moto
di un fluido viscoso incomprimibile all'interno din canale piano, sono state
integrate mediante il ricorso ad un codice di daldzasato su uno schema numerico
di tipo misto spettrale-differenze finite. Si & peduto allo sviluppo di un originale
modello computazionale per I'implementazione déuteose di Navier-Stokes sulle
nuove piattaforme di supercalcolo basate sulle dxhgrafiche, allo scopo di
simulare la turbolenza considerando elevati valelinumero di Reynolds. Lo studio
delle peculiarita del campo di moto simulato met#aih ricorso alla simulazione
diretta € stato condotto mediante lo sviluppo diseh di strumenti statistici per la
verifica del livello di accuratezza del dominio chlcolo e per la descrizione dei
bilanci di energia che governano i processi di peiohe, trasporto e dissipazione
dell’energia cinetica turbolenta in prossimita delparete solida. Grazie alla
visualizzazione scientifica € stato possibile, tiregl identificare e valutare
I'evoluzione temporale e morfologica delle strugturoerenti in prossimita della
parete, attraverso il ricorso a metodi per I'estnag delle strutture vorticose da un
database tridimensionale le cui variabili sono fanznote nel tempo e nello spazio.
La prima parte della tesi di Dottorato e incerrsitilla descrizione delle nozioni
fondamentali della turbolenza e fornisce una panara sui principali riferimenti di
letteratura che riguardano la DNS, il problemaal@lirbolenza in un canale piano e
le procedure numeriche per lo sviluppo di un sokitdi Navier-Stokes ad alte
prestazione e per I'estrazione delle struttureisose. La seconda parte riguarda lo
studio di un metodo numerico per lintegrazionelelequazioni di Navier-Stokes.
Tale metodo si basa su uno schema di tipo mistttralgedifferenze finite per
l'integrazione delle equazioni, mentre per quamgoarda I'avanzamento temporale
si ricorre all’algoritmo di Runge-Kutta al terzodame di accuratezza, associato al
metodo fractional-stepper il soddisfacimento del vincolo di incompriniitéi del
fluido. Sulla base dell'algoritmo numerico utilizea per lintegrazione delle
equazioni, e stato possibile sviluppare un nuovdetio computazionale: una prima

versione parallela del solutore e stata sviluppatacalcoli di tipoCPU-intensive

Vi



mentre per la generazione di database della DNSeaghti numeri di Reynolds si e
proceduto allo sviluppo di un nuovo algoritmo desistema di calcolo ibrido basato
sul co-processing tra CPU e GPU. La terza ed ulparde della tesi ha riguardato
I'analisi dei risultati numerici, allo scopo di waére le relazioni intercorrenti tra le
statistiche della turbolenza, i bilanci energdtigbrossimita della parete e le strutture
vorticose, grazie cui € stato possibile fornire wile contributo all’analisi dei

fenomeni turbolenti per elevati valori del numerdréynolds.
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Representation of vortical structurestat 48 and A, =1.44C10*: hairpin
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Representation of vortical structures and quadrant evebts=at5 and

A, =1.4410": hairpin in cyan, ejection in red and sweep in yellow......... 209

Representation of vortical structures and quadrant events=at6 and

A, =1.440010%: hairpin in cyan, ejection in red and sweep in yellow......... 209

Representation of vortical structures and quadrant evebts=at7 and
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List of Symbol

Roman Symbols (upper-case)
A= wetted area (irR,)

A, =0y, /ox, = velocity-gradient tensor

A, = area of leg 1 (of hairpin vortex)

A, = area of leg 2 (of hairpin vortex)

B, = number of bytes read per kernel

B, = number of bytes written per kernel

C =55= additive constant (in law of the wall)

C, =2r,/ pu? = bulk-velocity skin-friction coefficient
C, = constants (in structure functions)

C, 005+ 005 = Kolmogorov constant

D = discriminant of the characteristic equation/yf
D, = viscous diffusion rate

D, = viscous diffusion rate term
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D, = viscous diffusion rate term (related to the kinenhergy)
E, = efficiency of parallel calculation (processors)

E,q = efficiency of parallel calculation (processors aigk)

E, = effectiveness of parallel calculation (processors)

E,, = effectiveness of parallel calculation (processord disk)
E(k)= energy spectrum

F,.F, F, = flatness factors of velocity fluctuations

K = average kinetic energy of the turbulent field
L = reference length (generic)

L..L,,L, = dimensions of computational domain aloxgy,z

L..L;,L; = dimensions of computational domain aloxg,z (wall units)

N = grid points in each direction of computing domain

N,.N, N, = number of grid points of computing domain aloxgy,z

N, NJ¥= grid points along thg- andy directions within minimum volume
P = wetted perimeter (irR,)

P,Q,R = scalar invariants of the velocity-gradient tengpr

P’ = mixed production rate of dissipation

P2

£

production rate of the dissipation by mean-velogitadient

P3

gradient production rate

P4

£

P

turbulent production rate

turbulent kinetic-energy production term

P = Reynolds-stress production rate tensor

P’ = Reynolds-stress anisotropic production term

Q. Q,, Q, Q,= first-, second-, third- and fourth-quadrant (iraqdrant analysis)
R, = A/P = hydraulic radius

R; = velocity-correlation tensor

Re=UL/v = Reynolds number based bandL
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Re =0,h/v = bulk-velocity Reynolds number (based gnandh)

Re =T.h/v = centreline-velocity Reynolds number (basediprand h)

Re = Umd/v = Reynolds number based o andd (circular cylinder)

Re, = Reynolds number (in flow over a backward-facirgp$t

Re =u,7/v = Reynolds number based ap and#

Re =ul/v = Reynolds number based enand |

Re; = Reynolds number based on Blasius boundary-layptadisment thickness
Re =ul/v = Reynolds number based eand A

Re =u,h/v = friction-velocity Reynolds number (based onandh)

Re, =u,R, /v = Reynolds number based op and R,

Re, =U,6/v = momentum-thickness Reynolds number (based,oand &)

S = rate-of-strain tensor

S, = mean rate-of-strain tensor
S, = fluctuating rate-of-strain tensor
S, = speedup of parallel calculation (processors)
P
S,q = speedup of parallel calculation (processors aski)di

S S S, = skewness factors of velocity fluctuations
T =time as a dimension (also nondimensional runtimeoafiputational code)

T, = turbulent transport rate

T . = total mean stress of the turbulent field

tot —

T. = turbulent transport rate term

ij
'I'ijb = anisotropy transport rate
T, = turbulent transport rate term (related to theekmenergy)

U = reference velocity (generic)

V\l”. =rate-of-rotation tensor

Y = turbulent dissipation rate
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Roman Symbols (lower-case)

b, = Reynolds-stress anisotropy tensor

d = circular-cylinder diameter

d; = dissipation-rate anisotropy tensor
&« = alternating-unit tensor

f.q = fraction of elapsed time inherently sequentiélgomputational code)

feq~ = Sequential fraction of computational componémislapsed time
f oo = parallel fraction of computational componentglapsed time
fs'ego = sequential fraction of I/@omponents in elapsed time

f!’% = parallel fraction of I/Gcomponents in elapsed time

par
h = plane-channel half height

k = wavenumber

k’(np ,nd) = scaling function for overhead (in computatiooadie)
k"(np ,nd) = scaling function for overhead (in computatiooadie)
| = integral length scale (of turbulence)

|, = leg one (of hairpin vortex)

|, = leg two (of hairpin vortex)

n, = number of processors

p = pressure

P = mean pressure

p' = fluctuating pressure

r = separation distance in structure function (alslatacoordinate)

r@,z=cylindrical coordinates

s" =su /v =riblet spacing (wall units)

t = |/u=integral time scale of turbulence (also time diuate)
t. = unit tangent

t/uh = non-dimensional time unit

t* =tu?/v = time unit (wall units)
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t,s = data-base calculated time

u = integral velocity scale (of turbulence)
U = velocity vector ¢,v,w)

u = velocity vector (symbolic notation)

U = mean-velocity vector

U, = bulk mearx-velocity

U, = mean centerling-velocity (channel)

U, = free-stream velocity

u, = m = friction velocity

u, =v**e** = Kolmogorov velocity microscale

u” =U/u, = nondimensional meaxnvelocity (wall units)
u’ = fluctuating-velocity vector ¢ vV W)

- uV' = Reynolds shear stress (divided by density)

u_.v. . W__=rmsvelocity fluctuations

rms 1 Vrms'Vrms T

X = spatial coordinate,y,2

X" = spatial coordinates (wall units{ ,y z")

Greek Symbols (upper-case)

Au = velocity difference (in structure function)
A" = temporal resolution (wall units)
Ax" = spatial resolution alorng(wall units)

Ay’ = spatial resolution alongat center (wall units)

c

Ay = spatial resolution alongat wall (wall units)

w
Az" = spatial resolution along(wall units)

[1,= pressure transport rate
M, = velocity pressure-gradient term

M,; = pressure-strain term
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M,,; = pressure-diffusion term
I'IE.’ = anisotropy velocity pressure gradient term

M, = velocity pressure-gradient terms (related to ihetic energy)

Greek Symbols (lower-case)

L= base of the floating-point representation

90, = Kronecker’s delta

0, = departure from K41

& = average dissipation-rate of turbulent kinetic gger
&, = dissipation rate term

&’ = anisotropy dissipation rate

{,= (n/3)—6n = scaling exponent in K62

k = 040 = von Karman constant

n =v¥*/e¥* = Kolmogorov spatial microscale

n* = Kolmogorov spatial microscale (wall units)

6 = momentum thickess (also azimuthal coordinate)
A = Taylor scale of turbulence (also eigenvalue)

A, = real part of the complex eigenvalue pairAf

A4 = imaginary part of the complex eigenvalue pairfpf
= fluid dynamic viscosity

v = fluid kinematic viscosity

v/u, = viscous-length unit

v/u? = viscous-time unit

p© = fluid density

r,, = u(du/dy), = mean shear stress at wall

r; = yu; = Reynolds-stress tensor (divided by density)

1, =v*?/&'? = Kolmogorov temporal microscale
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r,j = Kolmogorov temporal microscale (wall units)

¢, = empirical eigenfunction (KL decomposition)
@, = vector function (KL decomposition)
@, = §, 0, /0x; = vorticity vector

o =[xu = vorticity vector

Acronyms

ALE = Arbitrarian Lagrangean Eulerian (formulation)
API = Application Programming Interface

CBE = Cell Broadband Engine

CFD = Computational Fluid Dynamics

CPU = Central Processing Unit

CUDA = Compute Unified Device Architecture
DDMP = Domain Decomposition Message Passing (progriag model)
DDR = Double Data Rate

DNS = Direct Numerical Simulation (of turbulence)
DRAM = Dynamic Random Access Memory

EB = Exa Byte 10")

ES = Earth Simulator (computer)

FDL = Fluid Dynamics Laboratory

FFT = Fast Fourier Transform

FMA = Fused Multiply Add

FPGA = Field Programmable Gate Array

FSI = Fluid Structure Interaction

Flop/s = Floating Point Operation per second

GB = Giga Byte {0°)

GB/s = Giga Byte per seconti®)

GFlop/s = Giga Floating Point Operation per secdr)
GPGPU = General Purpose Graphic Processing Unit

HPC = High Performance Computing
HPDNS = High Performance Direct Numerical Simulat{of turbulence)
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HPF = High Performance Fortran

ILP = Instruction Level Parallelism

I/O = Input/Output (operations)

KL = Karhunen Loéwe (decomposition)

LS| = Large Scale Integration

MB = Mega Byte (0°)

MB/s = Mega Byte per second@)

MFlop/s = Mega Floating Point Operation per secgi)
MIMD = Multiple Instruction Multiple Data (computer
MPI = Message Passing Interface

MPP = Massively Parallel Processors

NPB = NAS Parallel Benchmarks

PB = Peta Byte10")

PB/s = Peta Byte per secoritD®)
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Chapter 1

Introduction

Over the years, the issue of turbulence has attlaitte attention of academic
research because of the challenges that its uaddisg represents for scientists and
the impact on engineering applications. From a ghypoint of view, a turbulence
flow is unpredictable, since it is impossible teagyian exact deterministic prediction
of its evolution due to the non-linearity of the\l&-Stokes equations that represent
the governing equations of these phenomena. Ilagtedecades, researchers have
made intense efforts for trying to overcome thiffidilty, by using both the
experimental approach and the theoretical approéte scientific method; the key
element is represented byodern fluid technologyhat provides the tools for
understanding and analyzing the results of thendyexperiments.

The study of turbulence near walls has been camlgtstudied and represents
an important scientific field to understand sinicleds a strong impact in engineering,
environmental and industrial applications; for exéan it is responsible of drag on

surface and dispersion of scalars and pollutanasvariety of phenomena.



One method for studying turbulence is to use laboyatechniques such as hot
wire anemometry (HWA), laser Doppler anemometry A)lPultrasonic Doppler
velocimetry (UDV) and particle imaging velocimet(?IV). A second class of
methods involves numerical simulations related he integration of the three-
dimensional unsteady Navier-Stokes equations ororapatational domain with
adequate accuracy in space and time.

Considering the numerical approach, several methwzas be used such as the
Reynolds Averaged Navier-Stokes equations (RANSH dhe Large Eddy
Simulation (LES). The instantaneous range of scadetrbulent flows increases
rapidly with the Reynolds number. As a result, #rggineering computation of
turbulent flows therefore relies on simpler deduoips; instead of solving for the
instantaneous flow-field, the statistical evolutiohthe flow is sought. Approaches
based on the RANS equations are most prevalentramoti’e computing one-point
moments such as mean velocity and turbulent kireztergy. Instead, LES directly
computes the large energy containing scale, whiveleting the influence of small
scales. In order to avoid modeling at any scale fanca complete description of
turbulent flow, where the flow variables, such atoeity and pressure, are known as
a function of space and time can only be obtainedumerically solving the Navier-
Stokes equations. These numerical solutions are edarDirect Numerical
Simulations (DNS); it allows to deal with any rarafescale of turbulence flows and,
furthermore, allows to understand the role of véstyo that is responsible of the
balance between energy production, transport assipdition close to the walls.

One disadvantage of DNS is the necessity of a pawam number of
computational resources for the simulation of thavilr-Stokes equations at
Reynolds numbers of practical interest. Furtherméne DNS produces a large
amount of data related to the fluid flow field (@eity and pressure) that need to be
analyzed in order to understand the role of heassrand momentum transport
during the turbulent phenomena.

Recent advances in high performance computing,cesdperelated to hybrid
architectures based on CPU/GPU computing, are wgwgalzing and affecting
scientific research simulation by providing seveyalers of magnitude of increased

computing performance, allowing researchers to wevkh more accurate,



computationally expensive, approximations and nicaemethods. Clearly, one has
to rethink the computational models in order toateescalable, high performance
applications based on this new technology.

The present thesis is related to the design andemgnmtation of novel
computational models and algorithms on hybrid CFRRUGarchitectures, consisting
of multicore CPUs and discrete GPU cards in ordesdive the three-dimensional,
fully turbulent, incompressible and viscous flowsusing the DNS tool. Moreover,
in order to deal with large amount of data produbgdhe numerical simulations,
several statistical tools, event-detection techesqgand methods for the eduction of
coherent structures eduction have been considered.

The thesis is organized as follows:

= Chapter 2provides a perspective on turbulence fundamengaiisut the
scales of turbulence and mechanisms that goverrerteegy-transfers in a

fluid flow;

= Chapter 3shows the state-of-the-art about direct numemsaalulation, the
problem of the plane channel, the turbulent flowusures and high
performance computing techniques for solving nuoadly the Navier-Stokes

equations over complex computational domains;

= Chapter 4 describes the state-of-the-art of high performanoenputing
techniques and metrics for performance measur@aiticular, it describes

recent advances on hybrid architectures CPU/GPU;

= Chapter 5is devoted to the design and development of nowsiputational
models and algorithms for the numerical integratadnthe Navier-Stokes
equations related to a three-dimensional, fullyali@yed, incompressible and
viscous flow in a plane channel. The Navier-Stokebser is based on a
mixed spectral-finite difference method associaied third-order Runge-
Kutta procedure for time advancement and the fraatistep method for

satisfying the incompressibility constraint;



Chapter 6shows the results of the DNS of a fully developkdnnel flow at
Reynolds numbeRe. = 200,400, 60; in particular, turbulence statistics are
analyzed to verify the accuracy of the simulatiansd to evaluate the

relationships between the Reynolds stresses, kieegrgy, dissipation and

anisotropy budgets;

Chapter 7 presents the numerical results in terms of flowucitres,
morphological evolution in time and strength of artex population, in

conjunction with ejection and sweep events, by ictamgg the DNS results

obtained atRe, = 200, 400, 60;

Chapter 8provides conclusions, final remarks and futureksor



Chapter 2

Turbulence Fundamentals

2.1 Introduction

In fully developed turbulence — the state in whilch averaged quantities change
slowly with respect to the downstream distancere t- there is a rough equilibrium
between the rate at which turbulence energy isymed (i.e. transferred from the
mean flow to the turbulence) and the rate at witich dissipated (i.e. transferred to
the internal energy of the fluid by the action e$cosity). Such flows are called
equilibrium turbulent flows
Many turbulent flows of engineering interest arendltated by shear, such as wall-
shear layers and free-shear layers. This meanshthddrgest changes in the velocity
occur in direction that is approximately normal tbhe main-flow one. A
homogeneous turbulent flow a flow whose state is independent on the lonati
from a statistical viewpoint. This means that theasurement of any averaged
quantity gives identical results at any point ok tflow field. The simplest

homogeneous flow is thsotropic one, in which no strain of any kind exists. Thus,
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no energy is added to turbulence (there is no mtomh) and turbulence decays. In
laboratory, a homogeneous and isotropic flow carolm&ined by passing a fluid
flow through a passive grid, that produces unifountbulence. Numerically (and not
physically) it is possible to force the large seaté an isotropic flow, so that an
isotropic turbulent state is maintained in a stats steady state.

In turbulent flows there is a wide range of lengtlales The most noticeable are
the integral or outer scale and th€olmogorov scaleThe Taylor scaleis a third
length scale, lying between these two, that is usedharacterize homogeneous
flows. Thus, turbulence can be characterized byraber of length scales, at least
one for the energy-containing range and one fordigsipative range. Whether a
turbulence is simple or not depends on how manlgseae necessary to describe the
energy-containing range of scales. For example, tifirbulent flow involves more
than one production mechanism (such as shear aoyghbay) there will be more
than one important length scale. Other cases a@lpge. As an example, turbulence
may be produced by shear in a boundary layer, wisidhen subjected to a strain
rate. For a while, the turbulence will have twodtdnscales, one corresponding to the
initial boundary-layer turbulence and the otherasged to the strain rate to which
the flow is subjected.

Turbulence may also have different length scaladifferent directions. Consider
a turbulent flow having a single length scélen the energy-containing range. One
can take this scale to be the integral length dmel( be proportional to a length that
characterizes the geometry of the flow), that cainbgeneral defined in terms of the
fluctuating-velocity autocorrelation coefficient irsome direction (note that
correlations tend to emphasize large-scale effanots hide small-scales effects).
Consider also that turbulence is characterized byngle velocity scalei, that can
be in general taken as being tines fluctuating velocity. A Reynolds number can be

defined as:
ul
Re =— 2.1
&= (21)

wherev is the fluid kinematic viscosity.
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Many turbulent flows have a large mean velocity amall fluctuations. The

Taylor's hypothesis is the assumption that a laxgevection velocityU_, sweeps a

frozen turbulent state past the position of interes

The present chapter is organized as follows: ini@e@.2, the main issues on
scales are discussed; then, Section 2.3 desctieescale of turbulence, based on
Kolmogorov theory; finally, in Section 2.4 the egettransfer mechanisms in
turbulent flows are analyzed in detail, with refeze to the energy-cascade model of

Kolmogorov.

2.2 |ssueson scales

According to Reynolds decomposition, the dependmmiables of the Navier-
Stokes equations can be decomposedrmganandfluctuating parts and averaged,
so that the Reynolds Averaged Navier-Stokes equat(®@ANS) are obtaine(n
Appendix A an outline is given of a number of turbulencexg@ort equations, as

derived from the RANS equations). The equationhef imean flowqu,/2 in the

stationary-flow case is:

_ 1__ _i ot— ) _ ot Y
or also:
_ a 1_— a ot—, ot "¢
o 5 (500 =5 (7°9)- 775 23
where
-I-ijtot :Tij _pw — _—Fﬁj +2'u_§ —IOIT]U (24)
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is the total mean stress of the turbulent fielde €hntribution of the turbulent motion
to the mean stress ispuU’ , the Reynolds-stress tensoFhis tensor is symmetric,

the diagonal components are normal stresses (megptiessures) and the off-
diagonal components are shear stresses.
The dissipation term in Eq. (2.2) can be written as

TS =2u$ 5-p Uy ¢ (2.5)

where the first term on the rhs of Eq. (2.5) is Wexous part of the dissipation of
kinetic energy of the mean flow, while the secoadrt is the turbulent part. Since

the turbulent stress provides the turbulent pathefdissipation, the kinetic energy
of turbulence gains from this dissipation. For ti@ason, the termpu § is called

theturbulent kinetic energy production termy inserting Eq. (2.4) in Eq. (2.2), one

obtains:

IR TR Yy s 2/.11?'%9 (2.6)

where:
= the first three terms on the rhs of Eq. (2.6) repn¢ the flux of work
associated, respectively, with mean pressure, mesgous stress and
turbulent stress;
» the last two terms represent the dissipation relateturbulent stress and
viscous stress, respectively.

A length scalel, a velocity scaleu and a time scalé =1/u can be introduced.

These scales lead to the following relations:

ou u

= 2.7
ox ] (2.7
—UUu = (P (2.8)
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= u

Slj = I_ (29)
uu S = uls'S (2.10)
—uu § = ults (2.11)

in which both mean and fluctuating components aedesl relatively to the velocity
scaleu. By comparing Egs. (2.10) and (2.11) with thetfasd second viscous terms

of Eq. (2.6), respectively, one obtains:

“UYT e 2.12)
ZVS]- u
BUS Re (2.13)
25 S

where Re =ul/v is the Reynolds number as in Eq. (2.1), basedhenirtegral
scales. This result shows that the terms assocwitédthe turbulent stress aiRg
times larger than the terms associated with theouis terms. BeindRe usually very

large, the viscous terms in equation Eq. (2.6) usually be neglected, meaning that

the structure of a turbulent flow tends to be iretegent of viscosity.
The equation that governs the mean kinetic enefghe turbulent fieId@/Z IS
obtained by multiplying the momentum equation & thstantaneous field by ,

taking the average of all terms, and subtracting(E®). In the stationary-flow case,

one obtains:

_ 1——\_ 0 o 10— —S—— o
Y; _(_qu :_(_% Y+ ??‘_E LU= 4y s’y } (2.14)
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where

' ou
S :l %.Fi (2.15)
bo2(0x  0x

Is the strain rate tensor of the fluctuating fidldEq.(2.14):
= the first three rhs terms denote, respectivelyntteflux of work associated
with the fluctuating pressure, the fluctuating wiss stress and the turbulent
stress;

= the last two terms denote the turbulent and viscigspations.

It is to be noted that the turbulent productionrtefu{ujf—% in Egs. (2.6) and (2.14)

has opposite sign. This term allows to exchangetikirenergy between mean flow
and turbulence. In general, the exchange energyvies a loss to mean flow and a
gain to turbulence. The last term in Eq. (2.14)he rate at which the fluctuating

viscous stresses perform deformation work againet fluctuating strain rate. It
denotes a loss of energy and, being quadratiq.inis theviscous dissipation of
turbulent kinetic energyUnlike the dissipation related to mean viscoussses in

Eq. (2.14), this term is essential to the dynanuo€sturbulence and cannot be

neglected. Equation (2.15) can be written as:

K oD,
UJ- . =
]

67 PK _E_W (216)

1

stating that the mean of turbulent kinetic ener§yluctuations is balanced by the
production, the dissipation and the diffusion oktenergy. In the case of steady,

homogeneous, pure-shear flow, all averaged quesiitkcepti are independent of

position and§i is a constant, and Eq. (2.16) reduces to:

P =¢ (2.17)

10
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I.e. the balance between the production rate @ulent kinetic energy by Reynolds
stresses and the rate of viscous dissipation dlutent fluctuations. By using Egs.
(2.8) and (2.9), one has:

-uu = 18)
5 :IE (2.19)
By using Eq. (2.11), one has:
uu S = uls'S (2.20)
and from Eq. (2.17) one obtains:
u§s=vss (2.21)
or also:
S§_u_g (222)
5V
Thus, being usuallyre very large:
S $>> S S (2.23)

showing that the fluctuating-strain ra& is much larger than the mean-strain rate

§,j . Since strain rates have dimensionsTof, the eddies, contributing most to the

dissipation of kinetic energy, have very small cection time scales as compared

with the time scale of the mean flow. Accordinglye direct interaction between the

11
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fluctuating strain rate and the mean strain rataagligible for large Reynolds
numbers. The above considerations suggest thacties for fluctuations should be

different from the scales for the mean flow.

2.3 Scalesof turbulence
The integral scales, u andt =1/u previously introduced are the scales for the

large turbulence eddies and are applied to theuotah term of Eq. (2.17). Note
that the time scalé represents the life time of the large eddies daddy turn-over

time) and that to the large eddies is associatddnetic energy per unit mass
proportional tou’. Some smaller scales can be introduced, namaggiH scaley,
a velocity scaleu, and a time scale, =/7/u , Characterizing the small dissipative

turbulence scales. They are thelmogorov microscalef1], [2]) and are applied to
the dissipation term of Eq. (2.17).
Equation (2.17) can be written in terms of integi@dles and microscales as:

u2
=v,7—’;=g (2.24)

showing that, beinge ([8] = L2/T3) the same as the average rate of energy input,

the viscous dissipation of energy can be estim#éitech the large-scale inviscid
dynamics. Thus, the dissipation may be interprated passive process that proceeds
at a rate dictated by the inviscid inertial behawabthe large eddies.

For the isotropic limit of the homogeneous flow, E2}24) becomes:
E=— 2.25)

that allows an immediate estimation of the powea @drbulent flow € is the rate of
energy dissipation per unit mass) from the estinaftecharacteristic sizes and

velocities.

12
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Letting| - 7 andu - u,, one has:
u, =(ne") (2)26
and from the last proportionality of Eq. (2.25):

Y2
u, :q(fj (2.27)

By eliminating u, from Egs. (2.26) and (2.27), one obtains the Kagarov length

scale:
3\V4
n= (V_j (2)28

The insertion of Eq. (2.28) in Eq. (2.26) or Eq2{® gives the Kolmogorov velocity

scale:

u, =(ve)"* (2.29)

y2
= (Kj (2)30

Expressions (2.28)-(2.30) show that the small-scafgion of turbulence only
depends from the momentum diffusivity (kinematisodsity) and that the large-
scale energy supply for dissipatian Thus, the dissipation occurs only at the level
of small-scale motion and at this level turbulerschomogeneous and isotropic. The

Reynolds number in these scales:

13
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shows that the small-scale motion is slow and wiscdhe two sets of scales, the

scales of the large eddiégi,t and those of the small eddigsu,,7, lead to the so-

calledtwo-scale turbulence model
From Eg. (2.25) and Egs. (2.28)-(2.30), one als ha

|

— =Re¥* .32
p e 32)
u_ 4

E—Reﬂ ()3
t o

—=Rq ?

n

Another length scale can be introduced in this exintin particular referred to the

case in whichu, would be amplified tau of large scales, i.e. the (unknown so far)

length scalex associated to

c

-1 —
r,=—"1=

(2.35)

x|l

“n
i

when u, tends tou. One can expect that amplifies tol, but this is not exactly

true. By combining Egs. (2.25) and (2.35), one ioista

2 U _ u/? _
u'—=v-_L=v— (2.36)
Il n* X

and from the first and last term of Eq. (2.36):

14
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TX L 1 (2.37)

"

This result shows that the unknown scale must kalenthan the integral scale, and,
on the basis of Eq. (2.35), also greater than thienkigorov scale. The new scale is

the Taylor microscalel , such as:

Yy

n

-1 —
7, =

@3

N

Being defined by the velocity of large scales dmelttme of small scales, the Taylor
scale is neither large nor small, but rather aermediate scale. The Taylor scale is

frequently estimated as:

, _u
§ = - (2.39)
Equation (2.34) may be rearranged in terms of E8)) as follows:
Yo, v (2)40
I A?
that gives:
A1 L (2.41)
| Re, Ré¢
where
Re, = % @4

is the Reynolds number based on the Taylor scale.
Equation (2.24) may also be rearranged in terntsgo{2.31) as follows:

15
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n_1 _ 1
A 2.43
| Re R¢* (2.43)
The ratio between Eqs. (2.41) and (2.43) gives:
n_ 1 _ 1 _ 1 (2.44)
A Re R Rg*
or also:
Re, = Rg’*= R¢* (2.45)
where
Re = 48)
%
is the Reynolds number based on the Kolmogorowescal
Equations (2.41) and (2.43) also give the followaalglitional result:
2
ny _A
7| =24 2
2] = 42

2.4 Energy transfer in turbulent flows

There is a widely-accepted picture of the energggfer mechanism in turbulent
flows, theenergy-cascade model of Kolmogaréwecording to this model, the mean
flow, induced by a pressure gradient or other kihtbrces, works on the large-scale
motions of turbulence (thdargest eddies increasing the turbulent energy
production. Through a variety of processes, inclgdvortex stretching, energy is
transferred to ever small scales (8meallest eddigs until it reaches scales that are

small enough because of viscosity to dissipatekthetic energy into the internal

16
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energy of the fluid. At high Reynolds numbers, kesw the large scales at which
turbulent energy is produced and the small scdlesih is destroyed, lies a range
of scales at which neither process is very impaortdihnis is called thanertial
subrangg1]. The rate of energy input (per unit of madsiha largest scales is equal
to the energy throughput from the large to the kswlles. This rate, in turn, is equal
to the energy dissipated by the smallest scales.

As the cascade proceeds, the successive genemiti@amaller eddies lose
information on the large-scale structure of thevfld hus, the anisotropy of the large
scales fades and the small-scales become stdlystisatropic. With respect to
Kolmogorov (the K41 theory), the new concept trgintroduced is related to the
notion of local isotropy the isotropy of the small scales. Further, Koloroy
postulated that the statistics of these isotropades would have universal behavior,
independent from the way the flow is produced. T¢wmales at which this
approximately occurs are known as theiversal equilibrium subrangeThis is
further divided into a dissipation subrange (theyv@mallest scales) and the inertial
subrange, those scales larger than the dissipatiales (where viscosity become
dominant), but smaller than the large anisotropigles that define the flow. The
width of the inertial subrange increases as thenBlelg number increases, so that the
anisotropic large scales encroach less and ledsesmall scales.

In the inertial subrange, K41 provides predictiémsthe way the statistics behave of

velocity differences across a separation distand®y defining this difference:
Au(r)=u(x+r)-u(x) (2.48)
where x. is a reference point, K41 predicts that its stiaas average (ensemble or

time average) will be only a function ef andr itself.

In the inertial subrange, energy is cascaded tollemscales, and the structure

function <[Au(r)]n> (being n a positive integer) obeys the relation [1]:
<[Au(r)]n> =C,(er)"” (2.49)

17
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An exact relation exists for th&’3- order structure function [2] is:
3 4
Au(r > =——gr 2.50
([au(T)=-2 (2.50)

Known as the Kolmogorov’s “4/5” law, that showstthize energy flux from large to
small scales is unidirectional on average.

2/3

Forn=2, the variance{[Au(r)T> will increase as**, or:

<[Au(r)]2> = g2 20 (2.51)

giving the Kolmogorov’s “2/3” law. In this caseetlirourier transform of Eq. (2.51)
yields the-5/3 spectrum, that has been verified in many fldviste in particular, the
distribution of energy over the scales of turbukerm usually described in terms of
wavenumber, although this is a concept that isctbtriapplicable only to
homogeneous flows. In this case, it is possibleefmesent the velocity field as a

Fourier series. Consider the one-dimensional Foadges:

u(x)=> (k) & (2.52)
the energy spectrum is:
E(K) =2 u(K i (¥ (2.53)

where the asterisk denotes the complex conjugdte.€hergy spectrum gives the

distribution of turbulent energy in terms of waverher or inverse length scale

uy = [ E(Kdk.

18
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k-5/3
E(k)

“e i

Wavenumber, k

Figure 2.1 — Sketch of typical energy spectrunudbulence.

In the inertial subrange, energy is cascadedsrtmller scales. As there is no
production in this range, the rate at which thergyes transferred to the smaller
scales must be equal to the rate at which it sipl$ed at the smallest scales.
Kolmogorov argued on dimensional grounds that theee-dimensional energy

spectrum in this region must have the form:
E(k) = Ge7°k?? (2.54)

where E(k) is the three-dimensional energy spectrum,is the rate of energy

dissipation andC, is the Kolmogorov constant 4+ 2.2).

A sketch of typical energy spectrum of turbulenoelagarithmic coordinates is
shown in Fig. 2.1. Figure 2.2 reports experimeatadlence of Eq. (2.54) in different
flows [3]. With reference to Fig. 2.1, at low wawenber the spectrum is

proportional tok®. This region is followed by a peak at wavenumker The length

scale corresponding to the peak is an importanrackeristic length scale of
turbulence and is approximately the integral sdal@’he peak in the spectrum is
followed by the inertial subrange, whose lengthehgls on the type of flow and on
the Reynolds number.

Finally, there is a sharp decrease of the energgtapmn near the Kolmogorov length

scalen . Note that, being the integral scale the lengttlescorresponding to the peak

19
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Figure 2.2 — Experimental evidence of Eq. (2.7Q}ifferent flows [3].

of the energy spectrum, it is the length scale attaristic of the energy-containing

scales. Thus, it can also be defined as:
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The following can be noted. In 1941, Kolmogorov gesfed that, through the
cascade process, the energy would lose detailednation about the mechanism of
energy production. If the number of steps of thecade was sufficiently great, it
could be presumed that all information would be.los

The small scales would know only how much energgytheceived £, in
equilibrium). They might be expected to be isotepgiaving lost all information
about the anisotropy of the energy-containing scaldis state of isotropy would
actually exist only at infinite Reynolds numberfifitely many steps in the cascade).
At any finite Reynolds number, the small scales Mobe expected to be less

anisotropic than the energy-containing scalessbilisomewhat anisotropic. It is

20
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|
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Figure 2.3 — Time series of turbulent quantitigls [

also worth mentioning the fact that there is a @aremt anisotropy even in the
smallest scales of the velocity spectrum of a siiear [4]. The anisotropy exists
because of the energy from the mean flow is fed arte component and must be
redistributed to the other two.

However, while the amount of anisotropy remaingdixas the Reynolds number
increases, it steadily decreases when consider @®@ortion of the total mean
square velocity gradient. In this sense, it casdd that

the velocity spectrum becomes increasingly isotrapi the small scales as the
Reynolds number increases.

The situation in real turbulent flows is more compkhan the aforementioned
scenario. In three-dimensional turbulence, a sSiganit amount of energy is
transferred in both directions of the spectrumr(friarge to small scales and from
small to large ones) and the most important prasesttransferring energy to small
scales are vortex stretching and the shearing afl srortices by larger ones. The
energy transfer toward the small scales has beamdfby [5] to be about twice the
reverse flow in homogeneous isotropic turbulendeer@ is some discussion about
this reverse flow of energy, calldshckscatter This term refers to the transfer of

energy in the spectrum in the direction from srt@large scales.
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Figure 2.4 — Inertial subrange scaling exponehtsor velocity and scalar [8].

There is no question that, taking averages ovey tones or large regions of space,
the energy transfer in the spectrum of three-dinosas turbulence is from large
scales to small. In two-dimensional turbulence, émergy cascade goes in the
opposite direction, since there is no vortex shiety, vortices coalesce to form
larger vortices and this is the mechanism of enérgysfer. It is possible in three-
dimensional turbulence if one considers short tanerages or averages over small
regions of physical space, to have vortex coalescesnd hence, locally and
temporarily, energy transfer in the reverse dimttiSome initial instabilities are of
two-dimensional nature and for some time the endrgysfer will be toward the
reverse direction, until the flow will become fultigree-dimensional. On the other
hand, many flows of technological importance that young (not fully developed)
have highly anisotropic remnants of initial instal@is and turbulent structures that
are highly anisotropic may have for limited timeslaover limited regions energy
transfer in the reverse direction. Other problexisteThe dissipation rate has been
found to vary both spatially and temporally withime flow. Because the ultimate
fate of the turbulence energy is at the small scdlee dissipation rate is related to
the sharp gradients of the velocity that occurgéh@hus, the dissipation is a function
of various combinations of the velocity derivatives

If one observes a time series of turbulent quastifFig. 2.3), it can be noted that

the velocity fluctuations themselves are close au$sian, while those of their
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temporal derivatives are strongly non-Gaussian.s Thesult implies that the
dissipation in turbulent flows is spotty, or inteti@nt (see also [7]). There are
instants in which it is large, followed by quietaoments (note that in the framework
of K41 the governing parameter is the average mh$sin rate).

The intermittent character of turbulence also ieplevolutionary processes of
complex structures in the flow. If high-order stiwe functions are constructed from
a time series of turbulent velocity fluctuationdjreear trend in the scaling exponent
(as predicted by the K41) is not found. The treadnonlinear with increasing
departure from K41 with increasing (Fig. 2.4). The departure from linearity at
higher orders is caused by the intermittent natdireirbulence. It appears that the
two quantitiese and r are not sufficient to determine the form of theusture

function. Thus, a new parameter must enter. Usuaky integral length scale is
introduced, giving:

<[Au(r)]n> :(er)”/?’(l—J_dn =r (2.56)

n (257

where ¢, is the scaling exponent, any is the departure from K41 (faj, =0, Eq.

(2.57) reduces to K41, Eqg. (2.49)), where [9] assd that the dissipation rate is log-
normally distributed (the Kolmogorov-Obukhov K62ethy, or Refined Similarity
Hypothesis, RSH). Note that the cascade conceptrenpostulate of local isotropy
are tightly bound. If local isotropy does not hotbde implication is that the small
scales are not universal and that there is dirgetaction between the large and the

small scales.
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Literature Review

3.1 Introduction

The Direct Numerical Simulation of turbulence (DNS8ynsists of solving
numerically the Navier-Stokes equations with phgiyeconsistent accuracy in
space and time. If the mesh is fine enough, the step is short enough and the
numerical scheme is designed to minimize the dssperand dissipation errors, one
obtains an accurate three-dimensional time-depénselution of the governing
equations, in which the only errors are those dioed by the residual
approximations incorporated in the numerical scheare in the number-
representation technology of the computing machka. this reason, there is a
fundamental difference between a solution of the/i&taStokes equations as an
exercise of numerical mathematics — whatever coxmpi@ay result — and a solution
of the same equations with the aim to obtain aipeecorrelation of the results with
the turbulence physics; in the latter case, theiraoy of the calculations has to be

deeply monitored. It results that the major diffiguin performing turbulence
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calculations at values of the Reynolds number aguinog those of practical
engineering interest lies in the remarkable amoaintcomputational resources
required (the degree of freedom involved with tiduson of the Navier-Stokes
equations roughly increaseRe”*) and the consequence of this fact has been — for a
rather long period of time — that only simple flolwave been analyzed with the
DNS.

The advent of high performance computing systensschanpletely changed this
scenario, opening the field of the High Performabaect Numerical Simulation of
turbulence (HPDNS). Generally speaking, the procedar the execution of high
performance Navier-Stokes calculations involvesialmer of steps, such as:

= development and testing of a new numerical methodpplication of an

existing numerical technique for the solution of tHavier-Stokes equations
on a given spatial and temporal computational damai

= implementation of the Navier-Stokes solver ontoiamy high performance

computing architecture;

= execution of the numerical simulations with apprajgr resolutions in space

and time;

= use of the resulting numerical databases for theuledion of appropriate

turbulent-flow quantities.

There exist works in which DNS results are prestatgually giving the appropriate
emphasis to their physical realism, but scarcevaglee to the computational
technologies used for their attainment. There argksvin which the implementation
of Navier-Stokes solvers onto high-performance aatens is extensively described,
but afterwards no results of physical relevance mesented. There are works in
which DNS databases are presented and used foedhetion of turbulent-flow
structures with different techniques, without specg in detail how the latter
databases have been obtained. Finally, there afewaworks in which the
development of a procedure including the four absteps can be on the contrary
clearly recognized.

In this chapter, an attempt is made to presentatfoeementioned body of
literature in the most-possibly systematic mannidditional issues that are
discussed are related to the twofold relationshifat testablishes between
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computational scientists and high performance caearpuin the following sense. On
one hand the computational fluid dynamics develapSavier-Stokes solver and
afterwards he needs to implement the latter solweto a given computing

architecture. On the other hand the computatioo@nsists has also to be able to
understand how the use of a newly-introduced comguarchitecture may bring

advantages with regard to a more efficient usegi¥@n computational technique, or
even to the adoption of a completely different ntioa¢ method.

This chapter is organized as follows: Section 28cdbes the main contributes
about DNS and numerical methodologies adopteddararical simulations; Section
3.3 shows the description of turbulence in a plamanel and the major works about
it; then, Section 3.4 shows the main literatureticbates about flow structures and
theory about their identifications; finally, Sectid.5 describes the conjunction
between DNS and high performance computing, in rotdestudy wall-bounded
flows at high-Reynolds numbers.

3.2 Earlytimesin DNS

While the CDC 6600 and 7600 (rolled out in 1963 amdL.969, respectively)
have been the first (scalar) computing systems liaae been later denoted as
“supercomputers”, probably (see also the 1998 vewMoin and Mahesh [10]) the
first works to which the DNS acronym has been thssociated, are those of S.A.
Orszag and co-workers, and in particular that cdz@g and Patterson [11] where
isotropic turbulence was calculated onto & §gd-point computational volume at
Re, = 35, using a CDC-7600 computer. Rogallo [12] studied éffects of mean
shear, irrotational strain and rotation in homogerseturbulence by transforming the
governing equations using an extension of the @r®aiterson algorithm (see also
the 1984 review of Rogallo and Moin [13]). The nuita isotropic turbulence was
also investigated in terms of higher-order-derwatcorrelations by Kerr [14] on a

Cray computer, on up to a 12@rid-point volume and up toRe, = 82.9). Later, the
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Table 3.1 — Synthetic prospectus of early times fshear-flow turbulence

Authors Re Type of Flow Computing System(s)
Moser and Moin [16] Re,, = 16¢& Curved channel Cray X-MP
Kim et al. [17] Re,, =18C Plane channel Cray X-MP
Spalart [18] Re, = 225+ 141( Flat plate
Gavrilakis [19] Re, =75 Square duct Cray 2
Huser and Biringen [20] Re,, =15C Square duct
Eggels et al. [21] Re, =90 Circular pipe Cray X-MP

structure of intense vorticity in isotropic turbnte has been studied by Jiménez et
al. [15]. Right after the appearance of [11], [B2ld [14], a number of pioneering
works on wall turbulence started to appear, thafpractice, qualified as milestone
works with regard to both the type of flow consetkrand the numerical methods
used. Moser and Moin [16] studied the flow of anompressible fluid in a curved
channel. They used a numerical method based onef@xpansions in th€ - and
z-directions, and Chebychev-polynomials expansiathér - direction (normal to
the walls). This is probably the first case in whithe fully spectral Fourier-
Chebychev method is used that has characterizedasy subsequent works of P.

Moin, J. Kim, and co-workers. The Reynolds numbes\Re, = 16€, 128 Fourier

modes were used along the periodic directions,envBil Chebychev modes were

used along thez - direction. Kim et al. [17] studied the flow in tipdane channel at
Re = 18C using a4x 10 grid-point volume, on a Cray X-MP machine. With 40s

each time step, about 250 CPU hours were necessayn 10 non-dimensional
times. Spalart [18] computed the turbulent flatg@ldoundary layer with zero
pressure gradient (ZPGFPBL) upRe, = 141( and up to about 1@yrid points. The

flow in a square duct has been investigated by a&is [19] and Huser and
Biringen [20]. Respectively, fully finite differeecand mixed spectral-high-order
finite difference computational algorithms were dise these cases. The flow in a
circular pipe has been explored by Eggels et 4l \#here the fully finite difference
technique originally introduced by Schumann [22bwiged. In Table 3.1, a synthetic

prospectus of the aforementioned works is repofitecdrder to compare internal-
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flow cases with different cross-sectional geomsirieghe Reynolds number
Re,, =u,R, /v is used).

3.3 Planechannel

In this Section, DNS works in the field of sheawil turbulence are considered,
with reference to the flow in a plane channel. @llgx is the streamwise direction,
is the wall-normal directiorz is the spanwise direction, and the flow is con&de
homogeneous in the streamwise and spanwise dinsctiOverall, the aim of the
simulations is that of calculating a given numbétime steps of the statistically-
steady turbulent flow, to build up a DNS datab@ssurate DNS calculations of the
turbulent flow in a plane channel have been caroeidby Kim et al. [17], Lyons et
al. [23], Kasagi et al. [24], Antonia et al. [2Butledge and Sleicher [26], Moser et
al. [27], Abe et al. [28], Iwamoto et al. [29], DAlamo and Jiménez [30], Del
Alamo et al. [31], Tanahashi et al. [32], Iwamotak [33], Hoyas and Jiménez [34],
Hu et al. [35], Alfonsi and Primavera [36], at éifént values of the Reynolds
number. In these works the system of the goveraqations is mainly solved in the
framework of the fractional-step method, in confimt with Runge-Kutta
algorithms for time marching. More in particulam Refs. [17, 23-27, 29-31, 33, 35]
the unsteady three-dimensional Navier-Stokes eopmtin rotational form are
integrated in space by using either the fully sédtourier-Chebychev numerical
technique originally introduced by Kim and Moin [3% minor variants of the latter,
or also fully spectral techniques introduced byeotuthors.
In Ref. [28] the Navier-Stokes equations in nonsmmative form are integrated by
means of a fully finite- difference algorithm, with grid-stretching law along the
direction orthogonal to the solid walls. In Ref82] and [34] mixed spectral-high-
order finite difference numerical schemes are used.
In Ref. [36] the Navier-Stokes equations in conaBve form are integrated by
means of the mixed Fourier-finite difference metlogdinally introduced by Alfonsi
et al. [38], where a grid-stretching law of hypditdangent type is inserted along
the direction orthogonal to the walls.
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As concerns boundary conditions, periodic condgi@ie imposed along the
streamwise and spanwise directions, and no-sliglitons are enforced at the solid
walls (for an extensive review about boundary cbhods in incompressible Navier-
Stokes problems, one can refer to the 2006 rewe®Rempfer [39]). In Tab. 3.2,
some characteristic quantities of simulations osRE.7, 23-36] are reported, where
the values of the mean-flow quantities can be wetifusing the experimental
correlations suggested by Dean [40].

The numerical simulation of wall-bounded turbulesitear flows requires a
remarkably large number of grid points in all sphailirections, where the grid
spacing determines the scales that are represdntdte wall-normal direction it is
possible to distribute the grid points with vargldpacing, so that the viscous
sublayer and the buffer layer result satisfactargolved. As the Reynolds number
increases, more points are required. In the spaneirection, a reasonable criterion
to be followed is that of resolving the streaksha vicinity of the wall. A number of
works (see also the 1991 review of Robinson [4hf the 2001 review work of
Panton [42]) indicate that the mean streak spacngbout 100 wall units, i.e.
Ay =AU, /v 0100, where the mean width of the high-speed wall-lsstenctures is

020v/u, +40v/u, . Thus, in order to resolveov/u, and assuming 4 grid points for

each eddy, the grid spacing along the spanwisectdire should beAz" 05. As
concerns the streamwise direction, estimates basdtie streamwise extent of the
wall-layer structures indicate that the required gesolution is about half than that
adopted for the spanwise direction. As concerns ghmallest-scale resolution
requirements, the criterion of resolving the Kolroary space and time scales (or
appropriate multiple of the latter) is extensivéjlowed. In Tab. 3.3, a number of
characteristic computational parameters of simutatiof Refs. [17, 23-36] are
reported, while in Table (3.4) the data relatethtoresolution of the calculations are
shown, in conjunction with the computing systemdu@git is given). From the data
reported in Tables (3.2), (3.3) and (3.4) it canvbdfied that simulations of Refs.
[17, 23-36] have been globally executed in a fraorévof high temporal resolution
(the resolutions in time obey to the rather strimg€ourant-number requirements

associated to the use of a given numerical teclenuggually more demanding with
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Table 3.2 — Characteristic quantities of simulagiohRefs. [17, 23-36]

References Re, ©/u, 10C, 107¢ n* I,

[35] 90 117 1032 10 159 354
[29] 110 1.16 9.73 1.9 1.66 3.76
[35] 130 1.16 9.27 3.2 1.72 3.96
[23][24][29] 150 116  8.89 52 177 3.5
[17]25][26][27][28][30][32][35][36] 180 1.16 844 91  1.84 3.40
[29] 300 1.15 7.29 45.3 3.06 4.23
[35] 360 1.14 6.92 80.4 3.14 457
[27][28] 395 114 674 1076 3.18 4.76
[25][29][32] 400 114 671 1119 319 478
[30][31] 550 1.14  6.13 3038 3.34 5.49
[27] 500 1.14 601 3786 3.38 5.66
[28] 640 1.14 5.87 488.4 3.42 5.86
[29] 650 1.14 5.85 513.7 3.43 5.90
[35] 720 1.13 5.68 706.2 3.48 6.17
[32] 800 1.13 552 983.0 3.54 6.46
[31] 950 1.13 5.25 1680.8 3.64 6.96
[35] 1440 1.12 4.68 6163.9 3.89 8.35
[31] 1900 1.12 4.33 14633.6 3.07 9.44
[34] 2003 1.12 4.26 17251.7 3.11 9.66
[33] 2320 1.12 4.09 27270.4 3.21 10.31

respect to the Kolmogorov-time-scale requirement) high spatial resolution near

the walls, in an attempt to accurately resolveviiad turbulent-flow structures. In a

number of works, attempts have been made to deeisEble but less stringent

criteria - with respect to those of the Kolmogosmales - for the accuracy of DNS

calculations. Grotzbach [43] devised a number sfior DNS accuracy, such as:

to select a domain of size sufficiently large toamre all the relevant large-

scale structures;

to select a normal-to-the-wall grid-width distritort in such a way as to

resolve the steep gradients of the velocity fieddmthe wall (i.e. to have at

least 3 grid points in the viscous sublayer);

to select a computational grid such as the meahvgdth result smaller than

the smallest relevant turbulent elememix (7 );

to selectAt < 7,.

Other viewpoints exist. According to Ref. [10], thmallest resolved length scale has

to be O(/]) not exactly equal tey, in the sense that reliable first- and second+orde

statistics are obtained whenever the resolutidimésenough to accurately
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Table 3.3 — Computational parameters of simulatafriRefs. [17, 23-36]
[(*) simulation D, (**) series 1, (***) series 2]

Ref. Re L L, L, Lt L, L N, N, N,
[35] 90  4&  2h  24h 4320 180 2160 256 61 256
[29] 110 Sh 2h  2zh 1728 220 691 48 65 48
[35] 130 24 2h 14 3120 260 1560 196 81 196
[23]* 150 13 2h 63 1900 300 950 85 65 85
[24] 150 Sh 2h  2zh 2356 300 942 128 96 128
[29] 150 3.5%h 2h  zh 1178 300 471 64 97 64
[17] 180 4h 2h  2zh 2262 360 1131 192 129 160
[25] 180 4%h 2h  2h 810 360 360 128 129 128
[26] 180 &h  2h 473 2262 360 754 144 65 144
[27] 180 4&h  2h 473 2262 360 754 128 129 128
[28] 180 138 2h  6.4h 2304 360 1152 256 128 256
[30] 180 1%h 2h  4zh 6786 360 2262 - - -
[32] 180 4&h 2h  2zh 2262 360 1131 192 193 160
[35] 180 24h B 1h 4320 360 2160 256 121 256
[36] 180 «h 2h  zh 1131 360 565 96 129 64
[29] 300 3&%h 2h zh 235 600 942 128 193 128
[35] 360 1h 2h  6h 4320 720 2160 256 161 256
[27] 305 xh 2h  zh 2482 790 1241 256 193 192
[28] 3905 6.4 2h  32h 2528 790 1264 256 192 256
[25] 400 4% 2h 2h 1792 800 768 256 193 192
[29] 400 3%h 2h zh 3142 800 1257 192 257 192
[32] 400 xzh 2h  zh 2513 800 1257 256 385 192
[30] 550 &h 2h  4zh 13823 1100 6912

[31]** 550 8zh 2h 4zh 13823 1100 6912 1536 257 1536
[31]*** 550 zh 2h zh/2 1728 1100 864 192 257 192

[27] 590 Zh 2h zh 3707 1180 1854 384 257 384
[28] 640 6.4 2h 2h 4096 1280 1280 512 256 256
[29] 650 3.7zh 2h zh 5105 1300 2042 288 257 384
[35] 720 1h 2h 6h 8640 1440 4320 512 321 512
[32] 800 Zh 2h zh 5027 1600 2513 512 769 384

[31]* 950 8rh 2h 3zh 23876 1900 8954 3072 385 2304
[31]** 950 zh 2h zh/2 2985 1900 1492 384 385 384

[35] 1440 1h 2h 6h 17280 2880 8640 1024 481 1024
[31]*** 1900 zh 2h zh/2 5969 3800 2985 768 769 768

[34] 2003  &h 2h 3zh 50341 4006 18878 6144 633 4608
[33] 2320 &h 2h 2zh 43731 4640 14577 2304 1025 2048

capture most of the dissipation. Thus, the smaldagjth scale that must be resolved

depends on the energy spectrum, being the lafesalyy larger tharyy. Moser and

Moin [16] have shown that most of the dissipatioraicurved channel takes place at

scales larger thabh%7 . In a DNS work the number of grid points, thestdbution in

space and the time step of the calculations anglei@before running the calculation,
on the basis of a preliminary evaluation of therKogorov microscales. A widely-
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Table 3.4 — Resolution parameters of simulationRefs. [17, 23-36]

[(*) simulation D, (**) series 1, (***) series 2]

Ref. Re, Ax* Ay, Ay, A7 tos Computing System(s)
[35] 90 16.8 47 003 84 - -

[29] 110 36.0 5.4 - 14.4 - -

[35] 130 16.8 - - 8.4 - -

[23]* 150 23.4 74 018 112 - Cray 2
[24] 150 18.4 49 008 7.4 2100/u? Hitachi S-820/80
[29] 150 18.4 4.9 - 7.4 - -

[17] 180 11.8 44 005 7.1 10tu/h Cray X-MP
[25] 180 11.0 44 005 4.0 - -

[26] 180 15.7 87 021 5.23 - Cray X-MP
[27] 180 17.7 44 005 59 - -

[28] 180 9.0 59 020 4.5 43200/u? Fujitsu VPP-500
[30] 180 8.9 6.1 - 45 22ty /L, -

[32] 180 11.8 46 043 7.1 - -

[35] 180 16.8 - - 8.4 - -

[36] 180 11.8 44 087 88 10tu/h HP V-2500
[29] 300 18.4 4.9 - 7.4 - -

[35] 360 16.8 - - 8.4 - -

[27] 395 9.7 65 003 6.5 - -

[28] 395 9.9 9.6 020 4.9 15800//u? Fujitsu VPP-500
[25] 400 7.0 55 005 4.0 - -

[29] 400 16.4 4.9 - 6.5 - -

[32] 400 9.8 52 048 6.5 - -

[30] 550 8.9 6.7 - 45 10ty /h ;

[31]* 550 8.9 6.7 - 45 10tu /h -

[31]** 550 8.9 6.7 - 45 77ty /h -

[27] 590 9.7 72 004 48 - -

[28] 640 8.0 80 015 50 24800//u? Fujitsu VPP-500
[29] 650 17.7 8.0 - 5.3 - -

[35] 720 16.8 - - 8.4 - -

[32] 800 9.8 52 048 6.5 - -

[31]+ 950 7.6 7.6 - 3.8 9.2, /L, -

[31]** 950 7.8 7.8 - 39 27y /L, -

[35] 1440 16.8 94 012 84 - -
[31]** 1900 7.8 7.8 - 3.9 22y, /L, )

[34] 2003 8.2 8.9 - 4.1 10.3u/h Marenostrum
[33] 2320 19.0 - - 7.1 - Earth Simulator

used procedure for this evaluation is based oreshimmation of the rate of dissipation

per unit mass, as obtained from some mean-flow quantities.
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This method has been introduced by Bakewell andléyrf#4] in an experimental

work dealing with the pipe-flow case. In the cakthe plane channel, one has:

Q2LLrf, _2LLT g, o
pLLL, 2phLL,

(3.1)

Other relevant issues are related to the veriboatif the adequacy of the computing-
domain dimensions and grid resolution.

The size of the computational domain is adequaiteisflarge enough to capture all
the relevant large-scale turbulent structures. Thhe velocity fluctuations at
streamwise and spanwise separation distancesfahkallomain dimensions have to
be uncorrelated and this circumstance can be edriliy monitoring the two-point
correlation coefficients of the fluctuating veloeg (further observations about the
adequacy of the computing domain in DNS can bedonrFishpool et al. [45]).

As concerns grid resolution, one-dimensional enesggctra of the fluctuating
velocities are usually monitored. The grid resalntis adequate if the energy density
associated with the high wavenumbers results sevetars of magnitude lower than
the energy density corresponding to low wavenumbers

An attempt in reducing the computational resouregsiired for DNS calculations in
turbulent channel flow has been performed by Jirnéaed Moin [46], in the

framework of the minimal channel-flow domain.

Channel-flow calculations aRe, =2000, 3000 and 5000 were performed on

domains significantly smaller than a large turbtlemannel, and statistics of mean
velocity and turbulence intensity were comparedhvitiose obtained in the full
channel. Good agreement in the near-wall region el@served for domain sizes
greater that 100 wall units in the spanwise dimgtand 250-350 wall units in the
streamwise direction. Thus, the smallest domairt gwstained turbulence was
termed minimal channel representing a single unit of near-wall turbukertbat
allows the isolation of key turbulence structuresl dhe study of their dynamics
(additional observations about resolution requinetmien DNS can be found in the
2001 review of Friedrich et al. [47]).
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3.4 Turbulent-flow structures

A critical aspect in DNS is the use of a computednerical database for the
improvement of our knowledge of turbulence physidtso in this phase, high
performance computing techniques may be highly fhelfsee, among others,
Alfonsi and Primavera [48]).

3.4.1 Early times in flow structures

A useful notion for the scientific understandingtofbulence physics is that of
turbulent-flow structure. Historically, one of tfiest results in studying the structure
of the boundary layer is due to Kline et al. [4%ovshowed that, very near to the
wall, the flow organizes in alternating arrays ofsteady high- and low-speed
regions aligned in the streamwise direction, cadtiedaks Thereafter, a considerable
amount of work has been accomplished. Techniquesh® detection of turbulent
events have been introduced, &whditional Sampling and Averagir{gee also the
1981 review of Antonia [50])Quadrant AnalysigWillmarth and Lu [51]) Variable
Interval Time Averaging(VITA, Blackwelder and Kaplan [52]), an®ariable
Interval Space AveragingVISA, Johansson et al. [53]) are examples of such
techniques.
In the Quadrant Analysisthe local flow behaviour is divided into quadsant

depending on the sign of the streamwiseand normalv' velocity fluctuations.

Four quadrants are identified and, among them sdwnd-quadran@, event (
u'<0,v'>0, low-speed fluid moving away from the wall) is idiéied as an
ejection while the fourth-quadrar®, event (' >0, v'< 0 high-speed fluid moving

toward the wall) is identified assaveep One of the first contributions to the issue of
the presence of vortices in the boundary layerus tb Theodorsen [54], who
introduced thehairpin vortex modelRobinson [41] confirmed the existence of arch
vortices and quasi-streamwise vortices, on thesb#IDNS results. The composition
of a quasi-streamwise vortex with an arch vortey mesult in a hairpin vortex, but
this conclusion may strongly depends on the pdaictechnique used for vortex
detection. The process of evolution of a hairpintex involves the development of
vortex legs The leg of a vortex, considered in isolation, napear as a quasi-

streamwise vortex. Theortex headinstead, rises through the flow field, and the
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vorticity in the vortex head diminishes (Head areh8yopadhyay [55], Smith et al.
[56]). Conceptual models of boundary-layer turbuokemased on vortex dynamics
have been provided, among others, by Willmarth and57] (based on vorticity
lines), Offen and Kline [58] (in terms of lifted @nstretched horseshoe vortical
structures), Praturi and Brodkey [59] (based onrét&tion between inner and outer
region), and Thomas and Bull [60]. Acarlar and $nfji@l] described the dynamics
of hairpin vortices in the boundary layer in coniat with low-speed streaks, shear
layers and other phenomena. Robinson [41] devisedodel in which quasi-
streamwise vortices dominate the buffer regionh arartices are mainly present in
the wake region, while in the overlap layer botlucures exist, often as elements of
the same vortical structure. An extensive revieaalboundary-layer turbulence has
been performed in 2006 by Alfonsi [62].

3.4.2 Vortical structures

With the advent of DNS, turbulent-flow databasesomerical nature became
available, incorporating the possibility of implenti@g — on huge amounts of data —
mathematically-based definitions of vortical stwets, for their eduction.
Mathematically-founded methods that can be sucolgsfsed for the identification
of vortical structures of different kind in a tutbat flow have been introduced by
Perry and Chong [63] (based on the complex eigelegabf the velocity-gradient
tensor), Hunt et al. [64] (based on the secondriamt of the velocity-gradient
tensor), Jeong and Hussain [65] (based on the simabf the Hessian of the
pressure), and Zhou et al. [66] (based on the inaagi part of the complex
eigenvalue pair of the velocity-gradient tensordmparison of the effectiveness of
the four aforementioned vortex-eduction criterian d@@ found, among others, in
Alfonsi and Primavera [67n]. Perry and Chong [63ppmsed the method of
identifying vortices by means of isosurfaces of ifpas small values of the
discriminantD of the characteristic equation of the velocityelieat tensor, where it
has complex eigenvalues (tH2 criterion). Hunt et al. [64n] devised another
criterion, in defining an eddy zone as a regiorratizrized by positive values of the
second invarian@ of the velocity-gradient tensor (tligcriterion). In Wu and Moin

[68], [69] a clear evidence can be found of thesprnee of hairpin vortices in the flat-
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plate boundary layer, as extracted from the nurakyisimulated velocity field by
using the Q criterion. It is shown that the instantaneous flélds in both
transitional and turbulent regions result vividigpulated by hairpin vortices. Jeong
and Hussain [65] proposed a definition of a voltgxconsidering the problem of the

pressure minimum (thd, criterion). According to this method, a vortex is defined
as a connected region of the flow with the requeemthat the intermediate

eigenvalue ofB, be negatived, <0. The A, criterion represented the basis for a

remarkable amount of work, as performed by F. Hossend co-workers (see
Schoppa and Hussain [70] and references thereimu £t al. [66] adopted the
criterion of identifying vortices by visualizingdsurfaces of appropriate values of
the imaginary part of the complex eigenvalue pathe velocity-gradient tensor (the

Ay or swirling strength criterioi The method is frame independent and due to the

fact that the eigenvalue is complex only in regiafidocal circular or spiralling
streamlines, it automatically eliminates regionsvitig vorticity but no local
spiralling motion. Chakraborty et al. [71] proposaa enhanced criterion, the so-
called enhanced swirling strength criterion.

3.5 High performance Navier-Stokes solvers

In this section, an overview of a number of wonksshich computational codes
for the numerical integration of the Navier-Stokeguations are developed and
implemented on high performance computers of diffekinds is given (Tab. (3.5)).
Among the first, Jespersen and Levit [72] testedgrformance of a Navier-Stokes
solver on a 32768-processor Connection Machine Chllgainst that obtained on a
Cray X-MP and Cray 2 computers. Fischer et al. [F&sented a high-efficiency
medium-grained parallel spectral-element methodtliernumerical solution of the
unsteady incompressible Navier-Stokes equationglynavaluating the optimality
of the algorithm-architecture coupling. Two MIMDtéh message-passing vector-
hypercube computers (a iIPSC/1-VX/d4 and a iPSC/2d¢Xand a Cray X-MP
machine were used. The first machine was a IntéH#&ed system with store-and-
forward message passing. The second was a Inteb&8&l system with pipeline

communication routing. Different flow cases werst¢el, namely a free-surface
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Table 3.5 — Synthetic prospectus of high perforraddavier-Stokes solvers.

Author(s) Computing System(s)
Jespersen and Levit [72] Connection Machine CM+2yX-MP, Cray 2
Fischer et al. [73] Intel iPSC/1, Intel iPSC/2, €¥aMP
Pelz [74] NCUBE/1
Jackson et al. [75] Intel iPSC/860
Chen and Shan [76] Connection Machine CM-2
Johan et al. [77] Connection Machine CM-2, CM-200
Naik et al. [78] IBM Victor
Fatoohi [79] Connection Maé?;r;eYC.ZI\I;/II;Z, Intel iPSC/860,
Basu [80] Intel iPSC/860
Briscolini [81] IBM SP-1, IBM SP-2 thin, IBM SP-2ide
Floros and Reeve [82] Inmos T-800, Intel iPSC/8@6iko CS-2
Prestin and Shtilman [83] Meiko MK-096
Crawford et al. [84] IBM SP-2, SGI Power Challenge Cray C-90
Garg et al[85] Intel Paragon, Intel iPSC/860, Cray Y-MP
Wasfy et al. [86] SGI Onyx
Garbey and Vassilevski [87] Cray T-3E, DEC Alphastér
Gropp et al. [88] ASCI White, ASCI Blue, ASCI Red
Kumar et al. [89] Fujitsu VPP-700
Hoeflinger et al. [90] SGl Origin 2000
Dong and Karniadakis [91] SGI Origin 2000, IBM SPe8al.
Itakura et al. [92] Earth Simulator
Xu [95] Blue Gene/L
Behara and Mittal [96] Intel Xeon cluster
Grinberg et al. [97] IBM Blue Gene, IBM Power 4+:a@ XT-3

“levelling” problem, the external startup flow pastircular cylinder, and the startup

flow past a large “roughness” element in a chan@eferall, the efficiency of the

parallel calculations reached the level of abod675

Pelz [74] tested parallel Fourier pseudospectrgbrahms for the solution of the

unsteady incompressible Navier-Stokes equationste wie major operation

requiring parallelization was the multidimensiof&T. Tests were performed on a

1024-node NCUBE/1 hypercube computer, reportingieficies of about 83% in a

three-dimensional problem with mesh size of 1288 goints. Jackson et al. [75]

presented a detailed implementation of a paratleldospectral code for the Navier-

Stokes equations, directed toward the executiodireict numerical simulations of

homogeneous turbulence. They used a 32-node P&L/860 hypercube machine,
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reporting better performance results with respe¢hose obtained on a Cray Y-MP.
Chen and Shan [76n] presented spectral calculatioreisConnection Machine CM-2
performed with a parallel algorithm for the thraeexdnsional Navier-Stokes
equations directed toward the execution of direcmerical simulations of
homogeneous isotropic turbulence. They implementecb123 (up to) mesh
resolution with periodic boundaries, and reportomputational speed 30% faster
with respect to correspondent simulations executeda quad-processor Cray-2
vector machine. Johan et al. [77] presented a efeiément method for
computational fluid dynamics implemented on ConioectMachine systems CM-2
and CM-200. An implicit iterative solution strategyas implemented, and parallel
data structures were built on both nodal and el¢ahesets to achieve maximum
parallelization. The cases tested include the fwaund a blunt body and the flow
around a small jet plane at both negligible angfeatiack in a crosswind.
Performance comparisons were also provided witlpecsto the use of vector-
computing machines. Naik et al. [78] consideredassrelated to the parallelization
of implicit finite-difference techniques for thelgtion of Euler and Navier-Stokes
equations, requiring the solution of large linegstems in the form of block tri-
diagonal and/or scalar penta-diagonal matricesiovarpartitioning and scheduling
strategies were described, directed to the alieviadf the effects of global-data
dependencies. Analyses of computations, commuaitaind memory requirements
were presented. The performance of the methodsveréfsed on the IBM message-
passing architecture Victor. Fatoohi [79] preserttes results of the parallelization
procedure of a three-dimensional Navier-Stokesesain three different machines, a
Connection Machine CM-2, a Intel iPSC/860 and ayCrYaMP. The solver was
based on the Lower-Upper Symmetric-Gauss-Seidelligihpscheme for the
formulation of the incompressible Navier-Stokes atpns. The three computers
were fairly different. The CM-2 was massively-p&bS5IMD machine (clock rate of
7 MHz) that included 32K 1-bit serial processo@24 64-bit Weitek floating point,
4 GB of memory, and two front-end machines, a Si®@ and a Vax 6230. The
IPSC/860 is was moderately-parallel MIMD machinatthncluded 128 nodes
interconnected by a seven-dimensional hypercubeanket and a front-end machine.

Each node had a 64-bit i860 microprocessor, 8 Mimjtenemory and a direct
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connect module, responsible for communication betweodes. The Cray Y-MP
was a shared-memory MIMD machine with 8 processd®8 Mwords of main
memory, and a 6-ns clock cycle (the peak performaves 3.67 GFlops). The author
reported that reasonable performances could be\sghion all the computers tested,
resulting though the Cray Y-MP the best perfornaer,related to the algorithm at
hand. A spectral technique for the Navier-Stokasaggns was parallelized by Basu
[80], on a Intel i/860-based three-processor coepuBriscolini [81] reported on
three parallel message-passing implementations of thaee-dimensional
pseudospectral Navier-Stokes solver for homogenagbslence, on three different
IBM SP-1 and SP-2 computers. The IBM SP-1 inclutiédhodes, where each node
was based on a IBM Power Risc, model 370. The tR«2 $hcluded 16 nodes each,
where each node was based on a IBM Power 2 Risgeln390-thin and 390-wide,
respectively. Overall, the work showed that theajalized pseudospectral codes
allowed an optimal exploitation of the computatiooapabilities of the computing
machines that were tested. Floros and Reeve [&epted an implementation of a
spectral-element Navier-Stokes solver on three rgéinas of parallel architectures,
namely a Inmos T-800 transputer, an Intel iPSC/860 a Meiko CS-3. While the
performances of the older Transputer and iPSC/8&hmes was fairly predictable,
the behaviour of the code on the SPARC-10 basedkdES-2 demonstrated the
influence of the internal-memory hierarchy on tlemputational performance. A
mixed spectral-element, pseudospectral and finfterdnce scheme for the Navier-
Stokes equations has been implemented on a Metaiglacomputer by Prestin and
Shtilman [83]. The performance level achieved for $pectral-element code on the
28-node Meiko computer approached 200 MFlops imglsirprecision and 150
Mflops in double-precision arithmetics. Crawford at [84] presented benchmark
results from the parallel implementation of a hgtlihree-dimensional Navier-Stokes
solver on different parallel platforms, namely aMESP-2, a SGI Power Challenge
XL, and a Cray C-90. The solver is based on a miggéctral element-Fourier
expansion technique for complex geometries, in Wwikiourier space is used in the
two homogeneous directions, and the spectral-eledescretization in the third
direction. A method for an efficient implementatioh a combined spectral-finite

difference algorithm for the calculation of incorapsible stratified turbulent flows
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on distributed-memory computers was developed kg @aal. [85]: they consider
the case of the stratified turbulent flow in a aman as described by the Navier-
Stokes equations and the scalar-transport equafiomixed technique was used,
Fourier decomposition and finite differences incand a semi-implicit Crank-
Nicolson, third-order Runge-Kutta scheme in timespgeedup analysis of a model
problem was presented for three partitioning sclseey tested the code on a Intel
Paragon machine (128 processors), a Intel iPSGf86{puter (32 nodes), against a
Cray Y-MP. They reported efficiencies in @%-+ 91% range. Wasfy et al. [86]
reported on the development of a parallel semi-iitplterative finite- element
procedure, for the unsteady incompressible flubdvfl equations. Tests were
performed on a 6-processor SGI Onyx system, iniquéatr related to three flow
cases, the flow over a backward-facing step, tiedlasng lid-driven square cavity,
and the vortex shedding over a circular cylindewds found that, depending on the
nature of the problem, an optimum time step and bemmof iterations exists that
minimize the computing time. Garbey and Vassile\8Ki| described two different
algorithms to solve on parallel computers the wthtethree-dimensional Navier-
Stokes equations. The test case chosen was theftmwd a circular cylinder. Both
algorithms revealed a high parallel efficiency opaaallel computer with uniform
architecture as the Cray T-3E (24 processors). @md that the solver for the
momentum equation was still scalable, while thesguee solver was not. Gropp et
al. [88] presented parallel-performance resultgrgdlicit fluid-dynamic simulations
based on finite discretization on static gridgslfound that, despite of the fact that
large-scale unstructured implicit CFD computatidresse matured to a point of
practical use on distributed/shared-memory archites, a careful tuning is needed
to obtain the best product in terms of efficieney-processor and global parallel
efficiency. Moreover, the number of cache missed #re achievable memory
bandwidth are two important parameters that shbaldonsidered in determining an
optimal data-storage pattern. Kumar et al. [89]fqrared an interesting study in
which MIMD parallel performances of a three-dimemsil unsteady Navier-Stokes
solver were presented, as measured onto a digidbuemory vector parallel Fujitsu
VPP-700 computer. The numerical technique was based time-accurate cell-

centered finite-volume method, within a Euler insfiltime-marching setting. Three
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problems of practical interest in the field of biedrcal fluid mechanics were
considered as test cases, namely the unsteadyifilcan asymmetric constricted
vessel, the unsteady flow in an asymmetric dilatessel, and the unsteady flow in a
doubly-constricted vessel. The Fujitsu VPP-700 was distributed-memory-
architecture machine, based on powerful proprietagctor processors. The
performance of the parallel code was measuredrmst®f speedup- and efficiency
factors, and was found rather encouraging. Abo&t @fficiency was obtained with
large data sizes, using 16 vector CPUs. Furthemsgai the speedup could be
achieved by dynamic-load distribution and fine-eeization tuning.

Some authors also investigated on parallel-progragpmnterfaces. Hoeflinger et al.
[90] performed a study — a SGI Origin 2000 computas used — about scalability of
Navier-Stokes solvers as implemented with OpenMiJ also about MPI-to-
OpenMP code migration. OpenMP is a relatively régemgramming interface,
targeted at MIMD parallelism, that can rather eastleliver good parallel
performance in the presence of a small number efgasors (< 16). Success with
more processors become more difficult to be obthi@penMP makes use of
processors by employing them as threads of comtrch shared-address space.
Directives express the parallelism in the progrémat is then implemented in the
code, as generated by the compiler. The threade slada by default, but they can
also have private data. OpenMP is a industry stahda SMP systems, and is
usually available on distributed-memory systemsstiried by clusters of SMP
nodes. MPI is a more mature message-passing libaay there have been many
reports of highly-scalable MPI computational codes large numbers (up to
thousands) of processors. MPI is usually used okNI[3FPnode, and is based on
independent processes that do not share any meRangllelism and data transfer in
MPI are expressed through subroutine calls. MRiigely regarded as a scalable
parallel-programming paradigm because the prograimmmodel causes the user to
rewrite a serial application all at once into a d@mdecomposed program, that - by
its nature - has high locality and whose procesaotsally interact very little. The
authors explored a number of causes of poor sti#amvolved in the use of
OpenMP. A list of key issues was provided that nemde addressed to make

OpenMP a more easily-scalable paradigm. Dong andi&@akis [91] presented a
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hybrid two-level parallel paradigm with MPI/OpenMi® the context of high-order
methods as implemented in the spectral/hp elemmanteiwork, to take advantage of
the hierarchical structures arising from CFD praide The test case was the flow
around a circular cylinder. The authors took a seajrain approach to OpenMP
shared-memory parallelization and employed a woddIsplitting scheme to reduce
the OpenMP synchronizations at a minimum level. higbrid algorithm showed
good scalability with respect to both the problame sand the number of processors
with fixed problem size. With the same number afgassors, the hybrid model with
two OpenMP threads per MPI process was observpdrform better than pure MPI
and pure OpenMP on a SGI Origin 2000 computer (252 MIPS R 10000) and a
Intel IA-64 cluster (Titan, 800 MHz Itanium), whillae pure MPI model performs
the best on a IBM SP-3 (Blue Orizon, 375 MHz Po®gmland a Compaqg Alpha
cluster (Le Mieux, 1 GHz Alpha EV-68). A key newso#t was that the use of
threads facilitated effectively p-refinement, aaal issue to adaptive discretization
using high-order methods. The scalability of hylprdgramming in a CFD code on
the Earth Simulator computer has been exploredtdlyuta et al. [92]. The Earth
Simulator (ES, see Habata et al. [93], and YanagawhaSuehiro [94]) is a highly-
parallel vector supercomputing system, developedeuma Japanese Government's
initiative. In May 2002 the ES was acknowledgedbéothe most powerful computer
in the world, with 35.86 TFlops on the Linpack HB@&nchmark (87.5% of the
system peak performance) and 26.58 TFlops for mrostheric general-circulation
code. Such performances could be attributed toetimain architectural features,
such as:

= vector processor (based on NEC SX-6 vector teclgy®io

» shared memory;

= high-bandwidth non-blocking interconnection crossietwork.
The ES consists of 640 processor nodes (PN) andtentonnection network (IN),
housed in 320 PN cabinets and 65 IN cabinets. T®easHnstalled in a specially-
designed building 65m long, 50m wide and 17m highorder to build-up the
system, a number of hardware technologies have deesloped, such as high-
density and high-frequency LSI, high-frequency algtransmission, high-density

packaging, and a high-efficiency cooling and posugsply. One of the characteristic
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features of the system is the “one chip vector @ssor”, with a peak performance of
8 GFlops. This highly-integrated LSI was fabricateding 0.15 m CMOS
technology, with eight-layer copper interconnectidhe operating system for the ES
is based on SUPER-UX, the UNIX operating systemtf NEC SX series of
scientific supercomputers. There are two types afaltel-programming models
available on the ES. One is a flat programming rhode/hich a parallel program is
implemented by MPI interfaces only, both withinfdSnode and among nodes. The
other one is a hybrid programming model, in whicpaaallel program is written
using thread programming within a SMP node and pt®gramming among nodes
simultaneously. It is generally accepted that f8atilt to obtain the same high level
of performance using the hybrid programming modsl,can be achieved with the
flat programming model. ltakura et al. [92] evakditthe scalability of a
computational code for the solution of the Naviesk®s equations on the ES. They
found that the hybrid programming model achievedstained performance of 346.9
GFlop/s, as compared with the flat programming rhtttt achieved 296.4 GFlops,
with 16 PN of the ES for a DNS problem size of 256or small-scale problems
however, the hybrid programming model was found swteffective, because of
microtasking overhead. More recently, Xu [95] immpbnted a number of parallel
models directed to the exploitation of the capgbdif massively-parallel computers,
up to the tera-scale level, by a fully-spectraividaStokes solver for turbulent-
channel-flow DNS. Benchmark tests were executed ari8lue Gene/L computer. A
stabilized finite-element formulation for three-@ginsional unsteady incompressible
flows was implemented on a distributed-memory palralomputer by Behara and
Mittal [96]. The scalability of the computations ar64-processor Linux cluster was
evaluated for problems with various sizes. Theteluwas actually constituted by 32
nodes, each node equipped with two Intel Xeon m®ms, with clock rate of 3.06
GHz. Each processing unit included a main-memoryafr2 GB RAM and 512 KB
L2 cache. Grinberg et al. [97] developed and testeaffective and scalable low-
energy-basis preconditioner for elliptic solver®ntputational tests were performed
onto different high-performance computers. Somermitvork has been performed to
investigate the possibility of automatically pagile computational codes for the

Navier-Stokes equations. Among others, Agrawall.ef98] analyzed two Navier-
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Stokes solvers implemented in High-Performancer&or(HPF) and showed that it
was necessary to manually insert calls to low-lgvadallel libraries, to achieve
performances comparable to an equivalent messagagaimplementation of the
same codes. Overall, they have demonstrated tkatudtomatic parallelization of
computational codes for scientific applications a@ms largely unpractical.

As concerns processors, for a given period of tinies performance of
microprocessors was rapidly increasing, and théuéwa of their architectures was
mainly driven by two factors:

= the increasing number of transistors per processor;

» the increasing difference between processor spegdamory-access time.
The main technological advance has been a reductithe basic VLSI feature size.
By looking at the computing power of a chip (theatotransistor switching per
second), the present transistor capacity has isedeanore than one order of
magnitude with respect to the clock rates of th&t pao decades. The basic single-
chip building block has provided - for a given jeriof time - increasingly larger
capacities, so that more components could be pamkéie chip (i.e. memory).

The difference between capacity and speed is mooaopnced in the memory
technology. From the mid-1980s and the mid-1990s,dapacity of DRAM chips
has increased of about three orders of magnituctealdy quadrupling every two
years, while the memory-cycle time has increasey loy a factor of two. Processor
design attempts to exploit the large number of lalske transistors to reduce the
performance degradation due to memory latency, thstillates from few
nanoseconds for a first-level on-chip cache, tdisetonds for mass memory, i.e.
I/O devices. Caches are used to reduce the mencogss: latency, where thread-
level parallelism allow the processor to overlap themory-access time with other
useful work. Multi-threading architectures providpecial hardware to support
parallelism at the thread-level, in which indivitlureads can simultaneously
exploit instruction-level (ILP) parallelism (severastructions executed at the same
time, see, among others, Dulong [99]). As concenesnory, logically-shared but
physically-distributed memories are not easy tolemgnt. Memory hierarchy in
conventional architectures allows the data that lawand to an address, to be

migrated toward the processor that requires themadLinstructions in distributed
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shared memory architectures allow data to migraeatd the local memory of the
processor that access it. Migrating and/or rephgatlata across a distributed shared-
memory multiprocessor system presents a set ofecigas due to issues related to
coherence and remote-memory latency. A memory-stersity model for a shared-
address space specifies constraints on the ordehnich memory operations have to
be performed (i.e. become visible to the proce$sdie basic consistency model is
the sequential consistency (see Lamport [100]) #il#tough intuitive, is not easy to
be inexpensively implemented. Symmetric multipreoes usually implement the
snhooping, a general technique for cache coherdratyuses the serialization of the
memory access by the shared bus. Another way temgnt a coherence protocol is
the use of a directory, where a central home wepk track of the memory locations
shared by multiple caches, and of those that alek dreclusively. All accesses are
handled by the home that, on the basis of its thirgcrecognizes the caches that
need to be updated or invalidated at any given mgraocess. This solution is
sensitive to the speed of the interconnection nétvelue to the fact that all the
operations are handled centrally (see Hagerstah @i01]).
Nowadays, in large-scale supercomputing systenwsiypes of parallel architectures
can be mainly distinguished:
= distributed-memory parallel systems with cache-lassuperscalar
microprocessors (the option followed for exampléhwhe ASCI project in
the United States);
» distributed-memory parallel systems with vector gassors (the option

followed for example with the Earth Simulator picijen Japan).
An extensive comparison between parallel cacheebasgperscalar- and parallel
vector computing systems can be found in Olikeale{102], as related to several
different key scientific-computing areas. The fitwb vector computers appeared in
the early 1970s, and were the Texas Instrument SGAand the CDC STAR-100.
The development of vector computers actually begémthe advent of the Cray 1 in

1976 (see Russel [103]), so starting in practieehiistory of high-performance
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Table 3.6 — Vector computers manifactured 1972-1@86a from Ref. [104])

Machine Year Cycle Time (ns) Pipes Peak (Flop/skcy
TI-ASC 1972 60.0 4 4
CDC STAR-100 1973 40.0 1 2
Cray 1 1976 125 1 2
Fujitsu VP-200 1982 7.0 2 4
Cray X-MP 1983 9.5 1 2
Hitachi S-810/20 1983 19.0 2 12
NEC SX-2 1984 4.0 4 16
Cray 2 1985 4.1 1 2
Hitachi S-820/80 1987 4.0 4 12
Cray Y-MP 1988 4.3 1 2
Fujitsu VP-2600 1989 3.2 4 16
NEC SX-3 1990 2.9 4 16
Cray C-90 1992 4.0 2 4
NEC SX-4 1996 8.0 8 16

computing. The Cray 1 had 160 MFlop/s peak perfoceaand at that times, had a
tremendous impact onto the scientific-computing

community. Subsequently in Japan, Hitachi, Fujigsid NEC manufactured their
own vector computers (see Oyanagi [105]), thougteldging different architectures
from one another. In Tab. 3.6, a number of vectacmnes as manufactured from
1972 to 1996 are concisely outlined (data from Bapet al. [104]). The key aspect
of a vector architecture is the Single InstructMnltiple Data (SIMD) execution
model. In a traditional scalar processor, the basita type is a n-bit word. The
architecture often exposes a register file of wordsd the instruction set is
composed of instructions that operate on individualds. In a vector architecture, a
vector-data type is present, where a vector idlaatmn of VL n-bit words.

There may also be a vector-register file (the manovation incorporated in Cray
architectures), differently from the old-times v@cinachines in which vectors were
stored in the main memory. Vector processors perfsingle operations on entire
vectors, while classical processors execute embigo programs on each data
element of a stream. The effect of this differerscéhat in vector architectures the
intermediate vectors produced by each instructienshored in the vector-register
file, while in a scalar processor intermediate ealare consumed locally. Overall,

the code complexity in such a processor increases.
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Chapter 4

High Performance Computing

4.1 Introduction

Direct numerical simulations of turbulent flows veg@ a great amount of
computational intensive resources; as the Reynulasber increases the separation
between the largest scales and the smaller scdlesobons becomes greater,
increasing the computational cost. Thanks to reeewances in high performance
computing, it is possible to develop new poweradl$ for fundamental turbulence
research (high performance direct numerical simaradf turbulence).
The period between 1980s-1990s is referred gslden agdor parallel computing,
because of a great increasing interest on pasatielinnovative architectures in the
field of supercomputers and parallel programminglet®. From an economic point
of view, however, the impact of these types of mectures is so strong that the
spread of supercomputers for research is limitegd.o8e assists on the beginning of
distributed computing erawhich introduced the concept of massively pakalle

models applied to clusters of powerful microprooessThe technological progress
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is facilitated by the rapid improvements of microgessors: they are economic and
guarantee good performances as supercomputers.

Figure 4.1 plots the growth in processor perforneargince the mid-1980s [106]: in
particular, it shows a significantly enhancementperformance that is equal to
annual rate of over 50%. Technological improvememtsmicroprocessors enhance
the overall capability of computers, whose perfanoes are comparable with those
of supercomputers. Moreover, those improvementsroiie the spread of
microprocessor-based computer design: the archrogrowing in the number of
transistors on semiconductor devices, associatedoki advantages of mass-
produced microprocessors, produces, in generahaeasing in computer business,
especially in the field of high performance compsi{@®C and workstation).

Since 2003, the limits of energy power, availalmstruction-level parallelism and
long memory latency slowed this positive trend bowt 20% (Fig. 4.1). Because of
these limits, there was a transition from high perfance microprocessors to higher
performance multiple processors per chip, refeagdores, such as Intel and AMD
have done since 2004: it is referred as thelticore revolution because chip
manufactures scale the number of cores per chierdhan clock frequencies to
improve distributed computing. Innovation in areliural setting is reflected also in
exploiting multithreading througtinread-level parallelisnfor TLP, in which threads
are distributed across different parallel computiogles) andiata-level parallelism
(or DLP, in which data are distributed across défe parallel computing nodes):
this switch had a deep impact on the software dg@esl community, because of a
different approach from an implicit to an explipdrallel programming model.
Nowadays, computational science and numerical siioms are in the midst of a
technological revolution caused by recent trendsardware that have redefined the
concept of “parallelism”. high performance compgtins oriented towards
heterogeneous platforms, defined both by central graphics processing units
(GPUs). GPU is a processor optimized for 2D and @Bphics, video, visual
computing and display [107] and represents an ¢weolwf the video graphics array
(VGA) controller, adopted since the late 1980st thas a memory controller and
display generator connected to DRAM [107], defiraty abandoned in 2000.

48



Chapter 4 — High Performance Computing

10,000 Intel Xeon, 3.6 GHz &__Erwbil Intel Xeon, 3.6 GHz
AMD Opteron, 2.2 GHz g-8z7e 2205
intel Pentium 4,3.0 GHz o<~ "5364
AMD Athlon, 1.6 GHz
Intel Pentium II1, 1.0 GHz 2584
Alpha 21264A, 0.7 GHz_~®1779
0. 1267
4000 L Alha 21264, 0.6 GHZ
Alpha 21184, 0.6 GHz g~ 993
- Alpha 21164, 0.5 GHz g~ 848
g ,+481
~ Alpha 21164, 0.3 GHz ¢ .-
b .-" 280
g Alpha 21064A, 0.3 GHz ¢ .+
=2 ® 183 =20%
= PowerPC 604, 0.1GHz g7}
% Alpha 21064, 0.2 GHz "é[)
= HP PA-RISC, 0.05 GHz -
g /o 51
k]
g IBM RS6000/540 s%%year
o MIPS M2000 g2
MIPS W/120.87
o T GUneajseg g T
VAX 8700 5
VAX-11/780
LoentTT 25%IYRAr o 5 AX-11/785

0 &= L L L L . L L L L
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Figure 4.1 — Growth in processor performance siheemid-1980s (adopted from [106]).

Over time, the GPU becomes more and more sophiticain terms of
programming, especially in the field of advanceapinics due to OpenGL and
DirectX models implementations. These applicatioogpamming interfaces (APIS)
allow to accelerate graphics processing functionsrfore realistic 3D environments,
especially for 3D PC Gaming.

Thanks to their massively parallel processors, GB&tsame attractive also from a
parallel computing point of view, opening thkisual computing eradefined as the
intersection between all graphics advanced praegssid parallel computing.
Availability of HPC systems, especially based onUBEPU hybrid architectures,
can led to significant advances in DNS, sinceldved to achieve higher spatial and
temporal resolutions and to develop a new generatfonumerical solvers with
emphasis on high accuracy and stability.

The purpose of the present chapter is to discessitpact of HPC on DNS, with
reference to wall bounded flows. Section 4.2 giaesoverview about the most
important available and traditional programming msdin Section 4.3, metrics for
measuring performances are presented; in Sectlhnadmore detailed discussion

about GPUs as parallel computing units is preseredtion 4.5 presents CUDA,
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the new parallel environment developed by NVIDIA BPUs; finally, Section 4.6

gives an overview of multi-GPU architecture.

4.2 Historical view on programming models

Parallel computing architectures started to appedhe end of the 1970s. One
can often distinguish between SIMD machines (Sirigktruction Multiple Data)
and MIMD machines (Multiple Instruction Multiple £z (see also the 1994 review
of Fischer and Patera [108]).

In a SIMD type of architecture a large number afgassors (each with its own
memory) simultaneously carries out the same seguehdnstructions at the same
time, while operating on different local data. Riegumesh explicit algorithms that
only require nearest-neighbor communications careffieiently implemented on
such machines. In the past, a noticeable exampfm@fgrain SIMD machine has
been represented by the Connection Machine congyuteat, in some cases, have
been equipped with up to thousands one-bit processo

In MIMD architectures each node is a complete caempwith code and data
stored in the local memory. MIMD machines provide & great flexibility of use,
but they may involve a remarkable degree of conipler programming. A further
distinction can be made among MIMD machines, digtishing between machines
with shared memory and distributed local memorysivared-memory computers
(Symmetric Multiprocessors, SMP) a limited numbEpcessors, each one able to
act independently, shares a unique area of merhatyid accessed though a bus. An
example of such machines is the Cray X-MP. Usutily scaling capabilities in
shared-memory machines is poor, mainly due to tleenomy-access bottlenecks.
This happens because, when the number of processmesases, it is no longer
feasible to provide each processor with a parithaticess to the whole memory.
Differently, in distributed-memory computers, agamumber of processor (each one
with its own memory) is connected through a switghaind interconnection network,
and communicate via explicit message passing (MelgsiParallel Processors,
MPP). If the switch is fast enough, the memory rhayonsidered as shared, but this

is more a programming model than a hardware prgpert
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Since the 1990s, the development of computer psocedas evolved toward the
production of mass-produced powerful microprocesslops, that soon became
ready to replace the handcrafted processors that ¢cfaaracterized the early times in
scientific computing. Since the microprocessor isobdave been rapidly become
very fast, one of the issues today in MIMD machirees/hether the switching and
communication technology will be able to keep padé that of the microprocessor
chips. Modern powerful computing systems oftenudel a given number of nodes
connected through a network, each node being forlneé& number of shared-
memory processors. The network can be a relatsigiple infrastructure, like in the
case of the most common clusters, or be constitiypdoowerful proprietary
connecting nodes. In fact, a cluster is commonlambh@s a machine constituted by a
number of CPUs with memory, connected through ot The point of weakness
of the cluster is usually the network, that, imterof speed, in most cases represents
the main bottleneck. A (large) multiprocessor cotimq@umachine is on the contrary
constituted by a number of CPUs with memory, whieesinterconnection among the
different processors is provided by sophisticatemppetary crossbar units, that are
able to provide high-speed communication amongtbeessors.

Three main parallel-programming models exist:

= data parallel this model deals directly with multidimensionaita arrays and
is particularly useful on SIMD machines, using #artran 90 array syntax.
The data-parallel model is naturally suited to SIMBrdware. One deals
directly with data arrays and acquires neighborirfgrmation through data
shifts. Several problems in computational fluid a@ymcs, in which data are
carried on a well defined regular mesh, fit thisggamming model without
particular difficulties;

» message passinghis model, developed for MIMD machines, leavedhe
programmer the task of exchanging the appropriaiteuats of data between
the local memories and the processor nodes. Prpltlabl most immediate
way to adapt a Navier-Stokes code onto a MIMD maehs through the
Domain Decomposition Message Passing (DDMP) modkeis operation
results relatively straightforward for explicit fie-difference schemes for the

numerical integration of the compressible-flow etpres, in which only local
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space-time physics is involved. By decomposing titteal computational
domain into subdomains — each of them attribute@ farocessor node in
charge of all its arithmetics — only boundary dhtve to be transmitted
between the different subdomains. For schemesdigaire a global-solving
operation such as in the case of the incompresBdse equations, the
problem is less simple, but still it is possibleréaluce the algebraic problem
to one involving only boundary data;

= shared memorythis model treats the total memory of the mackisequally
accessible to each node. The shared-memory prograjmmodel represents
the natural extension of the multitasking modeln@yonization is the key
problem and it requires explicit use of barrierd #tks. The analysis of the
performance of a multiprocessor computing systemmportant for the
determination of the behavior of a computationalecon a given machine
and, more generally, the clarification of the adsxyuof the architectural
scheme at hand with respect to a given class diigmts (see, among others,

Cremonesi et al. [109]).

4.3 Metricsfor measuring performances

Measurements can be gathered on existing systenmelayns, for example, of
benchmark applications, the latter aimed to agbessharacteristics of an existing or
a newly-released computer. Parallel benchmarksndxtee traditional sequential
benchmarks, providing a wide set of suites thatese each system component with
a targeted workload. The PARKBENCH suite (Dongastaal. [110], especially
oriented to message-passing architectures) anNRfe (NAS Parallel Benchmarks,
http://www.nas.nasa.gov/Software/NPB) are exampled commonly-used
benchmark suites (see Alfonsi and Muttoni [111] eefdrences therein).

A frequently-used metric for the evaluation of atgalar run on a sequential
machine is the execution or elapsed time. The ethfime is a metric of high level
because it captures the effects of the softwanectstre, the system components
(CPU, memory bandwidth, 1/O transfer rate), the klmxd mix and the execution
mode (dedicated vs. multi-programmed system).
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The most commonly-used metrics in parallel compuithespeedupthat gives the
measure of the actual performance of computati@ogle on a multiprocessor
system, with respect to an ideal value (generaltyesented by the execution time of
the sequential counterpart). The speedup captheegftects of all the factors that
characterize a parallel execution, namely the numbé processors, the
communications exchanged among the processorsg/Qhactivity, the structure of
the code and - eventually - the simultaneous elmtuwif different activities. Other
metrics exist for the evaluation of specific comgots of a parallel architecture (i.e.,
Flops/s for the CPU power, MB/s for the channel dvadth) but, due to the
complexity that characterizes a multiprocessoresystthe overall performance can
hardly be derived from that of its single indivil@mponents. Scalability metrics
describe the characteristics of a computationalkeciodterms of gain or loss of
performance as a function of the number of proggsso

Being T, the elapsed time of an application when executed single processor and
T, the elapsed time of the same application withvarginumber of processors,
the speedup is defined as:
T 1
S =1=-= A
P Tp T 01

(T :Tp/'E is the non-dimensional runtime). In most caskss the elapsed time of

the sequential version considered as a benchnmaits driginal form, Amdahl’s law

states that the speedup is bounded as:

1
= N fseo)/n .

(4.2)

( fseq is the fraction of the elapsed time inherentlyusedial). Very small values of
f..q are required to achieve significant speedups,tdike fact that no code can be

executed faster than its sequential part. Ideaihyen f,, =0 the speedup is linear
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(S, = n,, the ideal value of the speedup). Two upper boumdthe speedup can be
identified from Eq. (4.2). They are expressed, enms of the structure of the
application by f., i.e. the software bound, and in terms of the ergs of the
parallel architecture by the number of processyrd.e. the hardware bound.

Other metrics can be derived from the speedup.effi@encyof an application is

defined as:

£, =0 =

p
Ny

— |a—|

0.3

p

(T4 :T1/np is the ideal time), i.e. the time spent with omecgssor divided by the

number of processors. The efficiency representérétation of time during which the

n, allocated processors are usefully employed, cerratively the speedup per
allocated processor. The maximum value of theieffity (E, =1) is obtained when

the speedup is linear.

Theeffectivenessf an application is:

TN

m
I
:|(/)

(4.4)

(also defined af, = S, / r,), that takes into account both the gain and tfs¢ eba

computation (Ghosal et al. [112]). The valuemf corresponding to the maximum

effectiveness is the processor working-set of aprdational code, i.e. the number of
processors that maximize the speedup per unit sf, identifying an optimal

operating point.
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4.4 GPUsasparalle computers

GPGPU (General Purpose Graphics Processing Ucithtdogy has drastically
influenced the HPC market, because GPUs have bessidered not only as
powerful graphics device but have been used alsbigis performance manycore
processors for accelerating a wide range of sdierdgpplications. In this context,
NVIDIA and AMD-ATI, the two most influent worldwiddeaders in the graphics
card field, proposed proprietary GPGPU programmiingmeworks: CUDA,
developed by NVIDIA, and ATI Stream, developed yB-ATI.

The introduction of CUDA, as described in the fallng sections, opened a new
era of improved performance for many applicatiosig dimpler GPU programming:
it is a general purpose parallel computing architec — with a new parallel
programming model and instruction set architecturéhat leverages the parallel
computing engine in NVIDIA GPUs to solve many coeptomputational problems
in a more efficient way than on a CPU [113]. It \pd®s also a framework built
around the C programming language, but only runs'\6iDIA GPUs.

ATI Stream technology, instead, is a set of advdncardware and software
technologies that enables AMD graphics processaxking in concert with the
system’s central processors to accelerate apmitatand to run computational-
intensive tasks more efficiently [114]. ATl Streas) more specifically, a cross
platform that only runs on AMD GPUs. Central to teehnology is the high-level
language Brook+, based on C/C++ languages. Brotkws programmers to write
CPU codes and synthetically simple GPU kernel fonst that are compiled
separately, dividing the code into CPU and GPU aamepts. For ATI Stream SDK
to become a more user-friendly programming enviremin a more mature
development tools need to be added.

Both NVIDIA and AMD support OpenCL (Open Computingainguage): it
represents the first standard for general purposeallpl programming on
heterogeneous systems and supports both datagbaralhd task-parallel
programming models. The key feature of OpenCL & this designed as a parallel
platform for programming across CPUs and GPUs #n open standard defined by
the Khronos Group [115]. This makes it differenetther NVIDIA’'s CUDA or
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Figure 4.2 — Typical scheme of a multicore CPUtfanleft) and of a GPU (on the right).

AMD’s ATI Stream, which are proprietary and desidn® only work on their
respective hardware platforms, becoming attractv@ftware developers.

Because of its robustness, actually NVIDIA CUDAcisnsidered more mature as
programming environment, especially in terms ofalepgment tools and stability:
for this reason, it is preferred at ATI's StreamkSBnd OpenCL, that is still in its
infancy.

Combining advantages carried out both from the @GRWJ GPU, one assists on
the development of heterogeneous systems, basadddferent processor types: in
the field of high performance computing, the mammavative idea consists on
executing sequential part of the CPU and numeyicallensive part on the GPU
[116] in order to increase dramatically the scdigbof the cores. More in detalil, in
the field of microprocessors, it is possible totidguish between multicore (CPU)
and manycore (GPU).

The schematic view of different architectures edato multicore (CPU) and
manycore (GPU) are shown in Fig. 4.2. A multicoregessor is designed to exploit
massive quantities of on-chip resources in an iefificand scalable manner: it
consists of two or more powerful cores (ALU, Aritatit Logic Unit) on a single
processor, which perform arithmetic and logical rapiens, a control unit for
instruction execution and a CPU cache for redudhng average time to access

memory. An example is given by Intel Core i7 micagessors, which has four

56



Chapter 4 — High Performance Computing

1200 :
AMD (GPU)

NVIDIA (GPU)

1000 | | #=# |ntel (CPU)

800 - Many-core GPU ]
w
o
S 600
L
5]

400/

200+ Multicore CPU

0 D al-clo = ~ Quad-core

2001 2002 2003 2004 2005 2006 2007 2008 2009
Year Courtesy: John Owens

Figure 4.3 — Enlarging performance gap between GidsCPUs (adopted from [116]).

processor cores, each of which is an out-of-ordeey support hyperthreading
technology, designed to maximize the execution dpdesequential programs. This
is guaranteed by a sophisticated control logiceafugntial instructions, in which a
large cache memory allows to reduce the instrustimnd data access latencies of
large complex applications. In contrast, a mangqmocessor is characterized by a
large number of much smaller cores and focuses prothe execution throughput of
parallel applications. An example is the NVIDIA GZ80 graphic processing unit
(GPU) with 240 cores, each of which is massivehtittwmeaded, in-order, single-
instruction issue processor that shares its comtnal instruction cache with seven
other cores [116]. Manycore processors, especibyGPUs, have led the race of
floating point performance since 2003. This phenoonmeis illustrated in Fig. 4.3.
While the performance improvement of general-puepogcroprocessors has slowed
significantly, the GPUs have continued to improgkemntlessly. As of 2009, the ratio
between manycore GPUs and multicore CPUs for pkekirig point calculation
throughput, is about 10 to 1 (1 Tflopsrsus100 Gflops).

In the next section, GPU architectures and CUDAgmmming paradigm are

described in detail.
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4.5 CUDA architectureand programming model
4.5.1 A parallel computing architecture

In November 2006, NVIDIA introduced CUDA, a genenalrpose parallel
computing architecture, with a new parallel progmsing model and instruction set
architecture, that leverages the parallel compaggne in NVIDIA GPUs to solve
many complex computational problems in a more ieffic way than on a CPU.
CUDA comes with a software environment that allaleselopers to use C as a high-
level programming language.
The CUDA Software Development Environment is a esufior advanced
programming, that includes numerical libraries.{IBLAS, FFT, etc.), C-runtime (as
support for executing standard C language and thigh-level languages such as
Fortran, Java and Python), tools, documentationsantples. In particular, the set of
CUDA tools includes the NVIDIA C compiler (nvechd CUDA debugger (cuda
gdb), the CUDA visual profiler (cuda prof) and motéer tools [117].
In order to understand the programming model, itdsessary to focus on hardware
architecture of a typical CUDA-capable GPU.
Figure 4.4 shows the architecture of a typical CU&apable GPU. It is organized
into an array of highly threaded streaming multgessors (SMs). In Fig. 4.4, two
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SMs form a building block; however, the number &sSin a building block can
vary from different CUDA GPUs generations. AlsocleaSM has a number of
streaming processors (SPs) that share control krgiccache. Each GPU currently
comes with up to 4 gigabytes of graphics doubla date (GDDR) DRAM, referred
as global memory in Fig. 4.4. These GDDR DRAMsdifrom the system DRAMs
on the CPU motherboard; for computing applicatitimsy function as very-high-
bandwidth, off-chip memory, though with somewhat rendatency than typical
system memory. For massively parallel applicatiding,higher bandwidth makes up
for the longer latency.

The Tesla 10-Series architecture, designed by NAXI@F scientific computing, is
based on a scalable processor array. Figure 4Wsshdlock diagram of the G80,
that introduces the CUDA architecture: it has 88BVs of memory bandwidth, plus
an 8 GB/s communication bandwidth with the CPU tha PCl Express. The
communication bandwidth is also expected to growhasCPU bus bandwidth of the
system memory grows in the future. The massivehalf G80 chip (Fig. 4.5) has
240 SPs (30 SMs, each with 8 SPs). Each SP hastialyptadd (MAD) unit and an
additional multiply unit. With 240 SPs, that’s dabof over 1 teraflop. In addition,
special function units perform floating-point fuimets such as square root (SQRT),
as well as transcendental functions. Because eRcls &assively threaded, it can
run thousands of threads per application. A goqaliegtion typically runs 5000—
12000 threads simultaneously on this chip. Foreghsko are used to simultaneous
multithreading, note that Intel CPUs support 2 othdeads, depending on the
machine model, per core. The G80 chip supportoufd®4 threads per SM and up
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to about 30000 threads for the chip. It is very am@nt to strive for such levels of
parallelism when developing GPU parallel computaipglications.

4.5.2 Programming model

The CUDA scalable parallel programming model exseritde C and C++
languages to exploit large degrees of parallelismgeneral applications on highly
parallel multiprocessors, particularly GPUs. SihdéDIA released CUDA in 2007,
developers have rapidly developed scalable parpflejrams for a wide range of
applications, that scale transparently to hundoégsocessor cores and thousands of
concurrent threads.

CUDA provides three key abstractions: a hierarchythoead groups, shared
memories and barrier synchronization, that provadelear parallel structure to
conventional C code for one thread of the hierardultiple levels of threads,
memory and synchronization provide fine-grainedadatrallelism and thread
parallelism, nested within coarse-grained datallgdisan and task parallelism. The
programming model scales transparently to large baunof processor cores: a
compiled CUDA program executes on any number ofcgssors, and only the
runtime system needs to know the physical processant. The programmer writes
a sequential program that calls paraketnels a kernel executes in parallel across a
set of parallel threads. The programmer organiaeset threads into a hierarchy of
threads blocks and grid of thread blocks. A thrgladk is a set of concurrent threads
that can cooperate among themselves through bayrehronization and through
shared access to a memory space private to thk.#ogrid is a set of thread blocks
that may each be executed independently and thysexecute in parallel. When
invoking a kernel, the programmer specifies the In@inof threads per block and the
number of blocks comprising the grid. Each threadjiven a unique thread ID
numberthreadl dx within its thread block, numbered 0,1,2blockDim1, (where
blockDimis the dimension of the block) and each threadkbis given a unique
block ID numbeiblockldx within its grid.

All thread creation, scheduling and terminatiohasdled for the programmer by
the underlying system. Indeed, a Tesla architec@RU performs all thread

management directly in hardware. The threads dbekbexecute concurrently and
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may synchronize at a synchronization barrier biirgathe _syncthreads() intrinsic.
This guarantees that no thread in the block canga until all threads in the block
have reached the barrier. After passing the bathesse threads are also guaranteed
to see all writes to memory performed by threadshin block before the barrier.
Thus, threads in a block may communicate with eztbler by writing and reading
per-block shared memory at a synchronization bar8mce threads in a block may
share memory and synchronize via barriers, thel nedide together on the same
physical processor or multiprocessor. The numbethdad blocks can, however,
greatly exceed the number of processors. The CURD8at programming model
virtualizes the processors and gives the prograntheeflexibility to parallelize at
whatever granularity is most convenient. Virtudii@a into threads and thread
blocks allows intuitive problem decompositions, the number of blocks can be
dictated by the size of the data being process#terahan by the number of
processors in the system. It also allows the saBACprogram to scale to widely
varying numbers of processors cores.

To manage this processing element virtualizaticoh novide scalability, CUDA
requires that thread blocks be able to executepem#ently. It must be possible to
execute blocks in any order, in parallel or in sgriDifferent blocks have no means
of direct communication, although they may coortbriheir activities using atomic
memory operations on the global memory visible ltdheeads. This independence
requirement allows thread blocks to be scheduleahinorder across any number of
cores, making the CUDA model scalable across aitramnp number of cores as well
as across a variety of parallel architectureslsiv &elps to avoid the possibility of
deadlock. An application may execute multiple grieisher independently or
dependently. Independent grids may execute condiyregiven sufficient hardware
resources. Dependent grids execute sequentialtig, am implicit interkernel barrier
between them, thus guaranteeing that all blockbefirst grid complete before any
block of the second, dependent grid begins.

Threads may access data from multiple memory spdwesg their execution.
Each thread has a private local memory. CUDA useal Imemory for thread-private
variables that do not fit in the thread’s registeas well as for stack frame and

register spilling. Each thread block has a sharethary, visible to all threads of the
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Fig. 4.6 — Heterogeneous programming execution inode

block, which has the same lifetime as the blockakRy, all threads have global
memory with the shared_ and_device type qualifiers. On a Tesla architecture
GPU, these memory spaces correspond to physicgfisgrate memories: per-block
shared memory is a low-latency on chip RAM, whilebgl memory resides in the
fast DRAM on the graphics board.

A program manages the global memory space visibleetnels through calls to
CUDA runtime, such asudaMalloc() andcudaFree(). Kernels may execute on a
physically separate device, as is the case whenirmgnkernels on the GPU.
Consequently, the application must wseElaMemcpy() to copy data between the
allocated space and the host system memory.

The CUDA programming model is similar in style teetfamiliar single-program
multiple data (SPMD) model — it expresses paraleliexplicitly and each kernel
executed on a fixed number of threads. However, Blbmore flexible than most
realizations of SPMD, because each kernel call aycally creates a new grid with
the right number of thread blocks and threads fwat tapplication step. The
programmer can use a convenient degree of pasafidlor each kernel, rather than
having to design all phases of the computatiorsethe same number of threads.
As illustrated by Fig. 4.6, the CUDA programming ageb assumes that the CUDA
threads execute on a physically separate devitef®ates as a co-processor to the

host running the C program. This is the case, famgle, when the kernels executes
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on a GPU and the rest of the C program executesa cdPU. The CUDA
programming model also assumes that both the hwktltee device maintain their
own separate memory spaces in DRAM, referred tthaat memory and device
memory, respectively (Fig. 4.7). Therefore, a papgmanages the global, constant
and texture memory spaces visible to kernels thrazajls to the CUDA runtime.
This includes device memory allocation and deatiocaas well as data transfer
between host and device memory (Fig. 4.6). Furtbesnthis reflects the reality that
devices are typically hardware cards that come whiir own dynamic random
access memory (DRAM). For example, the NVIDIA TX0gessor comes with up to
4 GB (billion bytes, or gigabytes) of DRAM. In omdé execute a kernel on a
device, the programmer needs to allocate memorythen device and transfer
pertinent data from the host memory to the allatalevice memory. Similarly, after
device execution, the programmer needs to trangfeult data from the device
memory back to the host memory and free up thecdewiemory that is no longer
needed. The CUDA runtime system provides applinafpopogramming interface
(API) functions to perform these activities on biélwd the programmer. From this
point on, we will simply say that a piece of dagdransferred from host to device as
shorthand for saying that the piece of data issteaned from the host memory to the
device memory. The same holds for the oppositetdatafer direction.

Figure 4.8 shows an overview of the CUDA device memmodel for programmers

to reason about the allocation, movement, and usite various memory types of
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Fig. 4.8 — CUDA device memory model (adopted aath@tated from [116]).

a device. At the bottom of the figure, we see dlabamory and constant memory.
These are the memories that the host code caridratada to and from the device, as
illustrated by the bidirectional arrows betweersthenemories and the host. Constant
memory allows read-only access by the device code.

The CUDA memory model is supported by API functiot@t help CUDA
programmers to manage data in these memories.ufleéidncudaMalloc() can be
called from the host code to allocate a piece obal memory for an object. The
reader should be able to notice the striking sintyldoetweencudaMalloc() and the
standard C runtime librargnalloc(). This is intentional; CUDA is C with minimal
extensions. CUDA uses the standard C runtime lomaalloc() function to manage
the host memory and addsdaM alloc() as an extension to the C runtime library. By
keeping the interface as close to the original @inoe libraries as possible, CUDA
minimizes the time that a C programmer needs &aralthe use of these extensions.
The first parameter of theudaM alloc() function is the address of a pointer variable
that must point to the allocated object after at@mmn. The address of the pointer
variable should be cast todfd **) because the function expects a generic pointer
value; the memory allocation function is a genduicction that is not restricted to

any particular type of objects. This address alldinescudaMalloc() function to
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write the address of the allocated object into puenter variable. The second
parameter of theudaMalloc() function gives the size of the object to be alteda
in terms of bytes. The usage of this second paemistconsistent with the size

parameter of the @alloc() function.

4.5.3 Precision on GPUs

Regarding numerical accuracy and precision, NVIDd&vices have been
designed to follow the IEEE-754-2008 standard foaty floating point arithmetics.
As reported in [118], IEEE-754-2008 governs bindigating point arithmetic,
specifying number formats, basic operations, caigas and exceptional conditions.

Floating-point representation type has a b@s@enerally assumed to be even) and a

precision p; thus, a floating-point number is represented as:
+(dy+dft+..+ d, 5 "7) g,(0< d < B) (4.5)

where td, [d, [8,[1.0,_, is called significand and haddigits [119].

Schematically, the standard can be encoded by theéfs: sign, exponent and
fraction. The 32- and 64-bit basic binary floatipgint formats corresponds to float
and double in C language (single and double pr@tisi Fortran 90): the sign can be
positive or negative, the exponent encodes therexgan base 2 and the fraction
encodes the significand. A float is a binary forringit occupies 32 bits (4 bytes) and
its significand has a precision of 24 bits, whiled@auble is a binary format that
occupies 64 bits (8 bytes) and its significand &gwecision of 53 bits. The IEEE-
754 standard supports a lot of operations, sudritemetic operations, conversion
operations, scaling, sign operations and comparisiose properties are described
in Whitehead and Fit-Florea [120]. Particular ditmm have to be focused on
mathematical function accuracy: the accuracy dbatihg-point arithmetic operation
is determinate by the maximal error introducedhmydaperation itself. Obviously, the
smaller error corresponds to the higher accuraclgeWa result cannot be exactly
represented, that is when the significand needsmaay bits to be represented

exactly [116], it is necessary to round it. Arithiiceoperations are simple enough
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that computing the best floating-point results ®sye For other mathematical
operations, such as division and transcendentakiburs, it is harder: typically, it is
necessary to implement iterative approximation rtigms and, if the hardware does
not perform a sufficient number of iterations, tesult may have an error larger than
0.5 ULP, which is the half the place value of tlkeast significant place, used to
measure the precision in numerical calculatione Tbnsequence is that different
mathematical libraries cannot achieve the sameltsedar a given input and
functions compiled for the GPU using CUDA, companeth those compiled for the
CPU, can differ slightly. It influences a lot porgi of numerical codes from the CPU
to the GPU: with respect to the CPU, the GPU hasdumultiply-add (FMA)
operations, that are able to speed up and imptovedcuracy of many operations
that involve products (i.e., dot product, matrixltimlication, polynomial evaluation
and Newton’'s method). It consists on perform a tifmgppoint multiply-add
operation in one step, with a single rounding.
Consequently, the same sequence of operations maydigferent results according
the CPU and the GPU implementation: this is re#ldcilso in parallelizing
algorithms. The arithmetic operations on newer geien GPUs are much more
accurate.
Finally, the most important key features that gntea good performances in speed
up and accuracy considering GPU’s implementationbsasynthesized as:
= use of fused-multiply-add operation,
= compare results carefully among implementationgabgse algorithms can
compute the same mathematical quantity but be noatigrdifferent,
= know the capability of GPU: device computing capgbup to 2.0 version
supports both single and double precision IEEE-Z8@8 including FMA
operations,
» take advantage of the CUDA math library functidisted onAppendix Cof
the CUDA C Programming Guidand supported in device code [120].

45.4 Performance metrics for GPUs

A correct evaluation of performances of CUDA pragsaregards not only on

traditional metrics, such as speed up and effigiertmut also measuring the
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bandwidth. The evaluation of timing kernel execatiman be done by considering
CPU or GPU timers. In order to accurately measheediapsed time for a CUDA
call or a sequence of CUDA calls, it is necessargynchronize the CPU thread with
the GPU by callingudaT hreadSynchronize() before starting and stopping the CPU
timer [121], because all kernels launcher are dsymous.

The synchronization functions concern also streand events:cudaStream-
Synchronize() is devoted to block the CPU thread until all CUD&lls previously
launched into the given stream have completedaEventSynchronize(), indeed,
blocks until a given event in a particular streass been recorded by the GPU. It is
possible to use also CUDA GPU timers, which are ARictions that provide to
create, destroy and record events, such asdaEventRecord() and
cudaEventElapsedTime() functions. The first one is devoted to assign the and
stop event into the strea@) while the second one returns the time elapseddasst
the recording of start and stop events, expresseatliiseconds.

The most important element in massively-parall@iggamming environment based
on GPUs is represented bgndwidth that represents the rate at which data can be
transferred. That rate is influenced essentiallyt®mory and the order in which it is
accessed. Its measure is done by using a thedratichan effective bandwidth.
Theoretical bandwidth depends on hardware spetditea For example, the
NVIDIA Tesla C-1060 uses DDR-RAM with a memory diaate equal to 800 MHz
and a 512-bit wide memory interface. So, the pbabkretical memory bandwidth is

calculated as follows:

800x 10 X212, 2

= =102.4GB/ s (4.6)

Effective bandwidth, indeed, depends on how dateiessed by the program and it

is calculated as follows:

Eff.Bandwidth= (L

time

B + BNJ
4.7)
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where B, is the number of bytes read per kerrgl, is the number of bytes written

per kernel and time is expressed in seconds (#lisctige bandwidth is measured in
GB/9 [121]. To achieve good performance, it is necgsgaunderstand some basic
properties related to the architecture in additmthe programming model: it allows
to find the most efficient mapping of the specifipplication’s data-structures to
CUDA'’s domain-based model, in order to minimize coumication between host
and device and maximize the bandwidth used. Finpllggrammers have to avoid
the overhead of global synchronization as much assiple because it influences

timing performances.

4.6 Multi-GPU architecture

The implementation of CUDA on heterogeneous systensslve very expensive
problems may requinaulti-GPU architecturesProgramming model of a multi-GPU
architecture is not so different than that describm a single GPU one: the key
feature is to exploit efficiently hardware paraBet. In fact, multi-GPU consists of
decomposing and distributing a working set acrogterdnt GPUs in order to
improve performances especially in those caseshichwthe working set exceeds
single GPU’s memory.
Two configurations of multi-GPU are possible: alPGs are interconnected in a
single network, otherwise GPUs are interconnecterioss network nodes.
Considering the situation about multi-GPU withimede, GPUs can be controlled
via a single CPU thread or by using multiple CPle#ds belonging to the same
process. In this case, processes have its ownssldpace on the CPU side whereas
multiple threads can share their address space.idEémification of the active (or
current) device is the only aspect that definesfferdnce between multiple cores
and multi-GPU: it can be done by using thelaSetDevice() function, that provides
the ID of the GPU used. The new multi-GPU prograngninodel can be easily
incorporated into the existing multi-threaded CPUOde; developing only the
compute-intensive portion of the application foe 8PUs and adding more calls to
transfer data between CPU and GPU. As describ§tRit], it is necessary to define

how the new programming model on multi-GPU is orgath. Because of
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collaboration between the CPU and the GPU, CUDA/iges to establish a context
between a CPU thread and the GPU. The contextidesdhe device state, such as
streams, events, allocated memory and so on, acahitbe associated only to one
GPU at any particular instant. Thus, CUDA streamd avents are created per
device: in the multi-GPU configuration, streams ased whenever an asynchronous
call is issued at the current device, while eveats be recorded only to a stream of
the same device. As previously said, multi-GPU imitonode can be controlled by a
single CPU thread: it is necessary to set the ntidevice to issue all CUDA calls,
except for asynchronous peer-to-peer memcopies.edder, asynchronous calls
(such as kernels and memcopies) do not block siwgahe GPU.

Multi-GPU can be controlled also by using multi@®U threads belonging to the
same process or by using multiple CPU processethelffirst case multiple threads
are referred to the same process, as in singladhwehile in the second case multiple
processes have their own address spaces and shace matter if they are on the

same or different nodes. Thus, in order to issuekwiop GPUs concurrently, a
program have to us@ CPU threads, each with its own context: in thisegasome

type CPU-side parallelism will be needed (OpenMRIBM).
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Chapter 5
The Navier-Stokes Solver

5.1 Introduction

Within the DNS approach and with respect to thenok& flow problem, the
unsteady three-dimensional Navier-Stokes equatiave to be solved numerically
in order to understand the mechanics of wall-bodniebulent flows [17]. Since
evaluating simulation databases of turbulence requa great amount of
computational resources, the advances in hardwarelapbments have led to
increased utilization of high performance computteghniques to perform direct
numerical simulations with increasing Reynolds nemiAn overview of the main
approaches for wall-bounded turbulent flows, bottonf a numerical and
computational point of view, is given @hapter 3.

Here, a mixed spectral-finite difference algoritHor the integration of the
Navier-Stokes equations applied to the case othia@nel flow is considered: after a
description of the main components of a Navier-8sokolver, given in Section 5.2,
the numerical scheme adopted and its propertiedem@ibed in Section 5.3; Section
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5.4 describes the computing systems on which nwadesimulations have been
carried out; Section 5.5 describes the sequentiplementation and an OpenMP
implementation of the Navier-Stokes solver; finallyection 5.6 shows a novel
parallel implementation on a hybrid CPU/GPU arddtitee (both single- and multi-
GPU).

5.2 Thecomponentsof a Navier-Stokes solver

The advent of high performance computing combinéti the development of
numerical algorithms for solving physical problenmsjich as turbulence, has
constituted a new “third approach”, the advancedmatational fluid dynamics. The
aim is to synthesize both the advantages of exgetiah and theoretical approaches
in order to analyze the mechanisms of fluid phenwame
In general, given a problem, the scientific metheased on the numerical approach,
consists on identifying the mathematical model rab&rized by a set of governing
equations, discretizing the computational domauh iategrating the equations on the
corresponding grid by using a numerical algoritimgrder to obtain an approximate
accurate solution [122].
The main components of a direct numerical simutatice reported in the following:

» the mathematical model based on the governing emsat

» the domain discretization that includes a spatiacrdtization and a
numerical discretization;

» the analysis of the stability and the accuracyhefriumerical method;

» the evaluation of an appropriate numerical schesmérhe marching in order
to integrate the governing equations at each pofnthe computational
domain;

» the analysis of the numerical databases of compugéatity and pressure
fields in order to provide information about turbal phenomena near the
wall.

More specifically, in the case of the channel flpmblem, the first step is to define
the governing equations that describe the phyditgrbulence: they are represented

by the Navier-Stokes equations that, as reportedppendix Aform a system of
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three-dimensional time-dependent non-linear padiferential equations. Once a
mathematical model is selected, it is necessayaatify the spatial domain in order
to analyze turbulent phenomena. After inserting rappate initial/boundary
conditions, the DNS provides information about weélp and pressure in the
instantaneous flow field, stored in a numericabtlase that represent the core of the
model. The database is used for quantitative ardalitgtive studies about wall-
bounded turbulence, in terms of statistical coti@tes, energy budget and vortical

structures, referred to the post-processing phase.

5.3 Numerical method
Based on the Navier-Stokes equations for an incessjsle viscous fluid in non-
dimensional conservative form, as in Egs. (A.9) &d0), a mixed spectral-finite

difference scheme has been developed.

The velocity fieldu, = (u,v,V\) is considered periodic in the streamwise and the

spanwise z — directions; moreover, Egs. (A.9) and (A.10) are ri@utransformed

accordingly:

i Iy g 2
@+ikx(u2)+ [ )+ikz(uw)+ikxio=i 9U_ ey, (5.1a)
ot ay Rel ay’
S0 \?) e e
O vt (Vi) + L i () + 2= OV ey, (5.1b)
ot dy dy Relay
oW — O(VW) = . 1(W .
Wik, (wu) + +ikz(vxf)+ ik p=—| W _ ey (5.1¢)
dy Re| oy
ikxﬁ+ﬂ+ikz\7v:0 (5.2)

ay
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where Re=u,h/v) is the Reynolds number referred as the frictiefoeity u, and

the channel half-width, the subscriptA” indicates variables in Fourier space and
K=K+ K.

The non-linear terms in the momentum Egs. (5.1a€) evaluated pseudospectrally
by anti-transforming velocities back in physicahse to perform the products (using
Fast Fourier Transforms To avoid aliasing errors in transforming theutes back

to Fourier space, the3!2” rule has been enforced [11].
The scheme uses a mesh staggered algngdirection, that enhances the
conservation properties of the numerical discrétpa Moreover, using ay-

direction staggered mesh, the pressure is collddatéhe center of each cell and all
three components of the velocity are collocatetth@tsame point in the center of the

side of the cell orthogonal tg—axes. Thus, due to steepest gradients near thg, wall

a stretching law of hyperbolic tangent type hasnbe¢&roduced for the grid points

along y —direction:

Yor = Py+(1- P)(l— (5.3)

tanh Q( 1- y)]}

tanhQ

where y indicates the uniform grid an®,Q are two parameters of the points-
distribution.
For time advancement, a third-order Runge-Kuttag@idare has been implemented;

for each Fourier mode, one has in index notation:
(5.4)

wherel =1, 2,3 denotes the Runge-Kutta sub-steps and:
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D(ai)=%?ajajq =%e(‘;;% - kzgj (5.5)
=y ofuy)
c(a)=0,(uy)=ik(vy+ Y +ik( Wy (5.6)

are, respectively, the diffusive and convectiventerboth are treated explicitly and

a3,y .4 are constant values:

4 1 1
ay =g Q=0 0= 5.7
1715 72715 * T 6 (5.73)
4 1 1
= B=n Bi= 5.7b
hrs Pme P (5.7b)
8 5 3
= Vem Vet 5.7¢c
G RCRET R (.70)
17 5
0,=0,0,=~—,0;=~— 5.7d
T 2T 60 BT 2 (5.7d)
3 3
Y +B)=>(r+q)=1 (5.7¢)

1=1 =1
Time advancement procedure is coupled with theifmal-step method: considering
Eq. (5.4), the pressure is interpreted as a pliojeciperator, so velocity and pressure

fields are decoupled. At each sub-stépand for each Fourier mode, an

intermediate velocity field is introduced (signedduperscript “*”):

LS a0l ) Ao(d)-c(d -] @n
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Since the intermediate velocity field does nots$atihe incompressibility constraint,
the pressure is used to project the intermedidigcig field into a divergence-free

one by solving a Poisson problem:

02p" =

(D (1 LD
1 (au LY +aWj (5.9)

At(a,+B) ox 9y 0z

The pressure is obtained by solving Eqg. (5.9) dedactual values of the velocity
field are computed by using the following:

a0 — g 0
-4 At” = —(a +'q)aL>g (5.10)

No-slip boundary conditions at the walls and padazbnditions in the streamwise
and spanwise directions have been applied to tlecityg while a Neumann-type

boundary condition has been used for the pressure.

5.4 Computing systems

The numerical simulations have been executed on $pecially-assembled
hybrid CPU/GPU computing systems, named respeygtivEIL-Tesla-1and FDL-
Tesla-2
FDL-Tesla-1(Fig. 5.1) includes an Intel Core i7 processoR.&6 GHz, 12 GB of
DDR3 RAM and 1 NVIDIA Tesla C-1060 board, based NWIDIA CUDA
technology. The system is also equipped with 1 N¥IBeForce GTS 240 with
1GB of GDDR3 memory at 70.4 GB/s bandwidth, whifle total number of cores is
equal to 112, at 675 MHz. The GeForce board is Inaised for visualization. The
storage unit is equipped with 5 hard drives at 7688 and 1 hard drive at 10000
rpm with a total capacity of 2.5 TB.
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Figure 5.1 — FDL-Tesla-1 computing system: (1) li@tere i7 (under fan); (2) RAM; (3)
motherboard; (5) optical drives; (5) power sup|§6); NVIDIA Tesla C-1060; (7) NVIDIA GeForce
GTS 240; (8) hard drives.

FDL-Tesla-2(Fig. 5.2) includes 2 Intel Xeon 5660 at 2.8 GHM8, GB of DDR3
RAM and 3 NVIDIA Tesla C-1060 boards. The systemaiso equipped with 1
NVIDIA GeForce GTS 450 with 1 GB of GDDR5 memoryzt.7 GB/s bandwidth,
while the total number of cores is equal to 1921&34 MHz. Also in this case, the
GeForce board is mainly used for visualization. Steage unit is equipped with 5
hard drives at 7200 rpm with a total capacity Gitb

Each Tesla board can handle 933 GFLOP/s of sirmgleigion floating point
processing, is equipped with 4 GB of GDDR3 memdr{G2 GB/s bandwidth and
contains 30 multiprocessors; each multiprocessosists of 8 scalar single-precision
floating-point processor cores, 1 double-precifioating-point unit and 16 kB of
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Figure 5.2 — FDL-Tesla-2 computing system: (1) redbloard; (2) Intel Xeon 5660 (under
coolers); (3) RAM; (4) optical drives; (5) powempgly; (6) NVIDIA Tesla C-1060; (7)
NVIDIA GeForce GTS 450; (8) hard drives.

shared memory for threads cooperation. The totalb®u of cores is equal to 240, at

1.3 GHz of processor-clock.

5.5 Parallelization strategiesfor multicore architectures
5.5.1 The sequential implementation of the Navigtekes solver
The Navier-Stokes solver is based on the equatessribed in the previous section.

The implementation of the numerical solver followese phases:
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y
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z

Figure 5.3 — The computational domain: a plane rnban

pre-processing for the domain discretization anel ¢dbmputation of flow
geometry;
the numerical integration of the Navier-Stokes égua,

post-processing for numerical databases analysis.

The plane channel is characterized by a simple gagmconsisting of two solid

walls (Fig. 5.3), in the coordinate syste(v(, Y, z): the computational domain is

discretized by usindN, x N, x N, grid points alongx—, y— andz-directions.

The numerical integration of governing equatiorb@&sed on the following main

steps:

assignment of initial conditions, regarding an éfdum velocity profile,
and of boundary conditions, that consists of np-$jipe at the walls and

periodic conditions in the streamwise and spandiseetion;
computation of the intermediate velocity field" , given the velocity field in

the spectral space: for each Runge-Kutta sub-siEp, Fast Fourier
Transforms (FFTshave been applied along— and z-axis, in order to

evaluate the non-linear terms of the momentum eguéEq. (5.8));
computation of the pressure fielff'), given the intermediate velocity field
G : it requires an implementation of a numerical rodthlong y —direction
for solving a Poisson problem;

update of the velocity fieldi”’ by implementing a third-order Runge-Kutta

procedure.
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READ VELOCITY DATA

SPATIAL
DISCRETIZATION
INITIAL/BOUNDARY
CONDITIONS

( POST-PROCESSING (

Figure 5.4 — Scheme of the serial implementatiothefNavier-Stokes solver.

A synthetic view of the algorithm is given in Fig.4: each block of the flow chart
represents a specific routine, implemented by uBorgyan 90 language.

The sequential numerical code provides a set of rostipes for
allocating/deallocating arrays of data in the hosimory space: in particular, those
procedures usallocate()/deallocate() statements that dynamically provides storage
for allocatable/deallocatable arrays, consistingvelocity components, pressure,
diffusive and convective terms and other work asray

A set of subroutine,axes x(), axes y(), axes z(), are devoted to spatial
discretization: a regular grid is used alorg and z-directions, while a block-
regular grid is used along- direction, according to Eq. (5.3), in order to @es
local refinement near the walls. All data structueee initialized by a subroutine,

namednitialization() (List. 5.1).
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call allocate_structure()

call initial_conditions()

call axes_x()

call axes_y()

call axes_z()

call initialization()

call initialize_fft(vel,Nx,Ny,Nz,fft_work)

Listing 5.1 — Scheme of the preliminary operatiohthe pre-processing phase

In order to compute the convective (non-linearmteithe following steps are

performed:

anti-transformation of the spectral velocity fieétdthe physical space;
computation of the velocity products terms;

transformation of the product terms, in the physispace, back to the
spectral one;

computation of the convective term.

The 2D complex-to-real (C2R) and real-to-comple2@R Fourier transforms have

been implemented by using th&TW (Faster Fourier Transform in the West
library, developed at MIT by Matteo Frigo and Stevke Johnson [123]. A 2D C2R

FFT has been used to transform the velocity fiebdnf spectral to physical space by

calling thesfftw_execute dft_c2r() subroutine. For each point along-direction

and over eachxz-plane it has been executed in order to computepthysical

velocity componentsR, VR, wR.

As reported in Eq. (5.6), it is necessary to coragubductsuu, uv, uw vy Wy W\

for each point of the domain. Then, for each coraguérm, a 2D R2C FFT has been

executed in order to transforming those productsk lta spectral space by calling

sfftw_execute _dft_r2c() routine. Finally, the components of the convectermen are

computed (List. 5.2).

call bck_fft(u,v,w,uR,vR,wR)
call perform_products(uR,uR,uu,iy)

call perform_products(wR,wR,ww,iy)
call fwd_fft(uu,iy)

call fwd_fft(ww,iy)
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call compute_convective_term(Cu,Cv,Cw)

Listing 5.2 — Scheme of the computation of the @mtive term.

According to EqQ.(5.5), the components of the diffasterm are computed (List.
(5.3)).

call compute_diffusive_term(Du,Dv,Dw)

Listing 5.3 — Scheme for the computation of théudifve term.

Given all components of the velocity field and thaglated to the diffusive and

convective terms, the components of the velociydfil (G*,V/ , \7v) are computed

(List. (5.4)).

call compute_velstar(ustar,vstar,wstar)

Listing 5.4 — Scheme for the computation of therintediate velocity field.

Since (' does not satisfy the incompressibility constraiitt,is necessary to

implement a fractional-step method. This is done itmplementing a set of
subroutines that, given the intermediate velodydf compute the right side of the
Eq. (5.9) by solving a Poisson problem; fifeomas algorithnj124] is used to solve

the tridiagonal system of linear equation over eagh—plane (List. 5.5)

corresponding to the Poisson problem.

call poisson_rhs()
call compute_diagonals(d,dinf,dsup)
call thomas_algorithm(p)

Listing 5.5 — Scheme for the solution of the Paispmblem.

Once the pressure has been computed, a routingflating velocities is executed,
according to Eq. (5.10) (List. 5.6).

call update_velocity(ustar,vstar,wstar,p,substep,u, vV, W)

Listing 5.6 — Scheme for the update of the velocity
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Then, a new iteration can start or data are storedthe DNS database for post-
processing phase.

5.5.2 OpenMP implementation for multicore architeces

A parallel version of the numerical procedure dlégafor multi-threading
computing is developed to exploit multicore arcttiees of Intel i7 and Intel Dual-
Xeon (onFDL-Tesla-landFDL-Tesla-2 respectively).
In order to reduce the computing time, the Naviek8s solver, described in the
previous paragraph, has been implemented in phifaieusing OpenMP library
[125], according to the steps here reported.

1. Computation of the velocity products terms (Lis%)5

$ omp parallel do
doiy =2, Ny-1
call bek_fft(uR,iy)
call bek_fft(vR,iy)
call bek_fft(wR,iy)

call perform_product(uR,vR,wR,uu,uv,uw,vv,vw,ww,iy )

call fwd_fft(uu,iy)
call fwd_fft(uv,iy)
call fwd_fft(uw,iy)
call fwd_fft(vv,iy)
call fwd_fft(vw,iy)
call fwd_fft(ww,iy)

end do

$ omp end parallel do

Listing 5.7 — Scheme for theghi@t computation of velocity products terms.

2. Application of the de-aliasing filter (List. 5.8):

call compute_filter(kx_nz,kz_nz)
$ omp parallel do
doiz=0, Nz-1
do iy =0, Ny-1
do ix = Nx/2-kx_nz+1, Nx/2
call filter_x(uu,uv,uw,vv,vw,ww)
end do
end do

82



Chapter 5 — The Navier-Stokes Solver

end do
$ omp end parallel do
$ omp parallel do
doiz =0, Nz/2-kz_nz, Nz/2+kz_nz-1
doiy =0, Ny-1
do ix = 0, Nx/2
call filter_z(uu,uv,uw,vv,vw,ww)
end do
end do
end do
$ omp end parallel do

Listing 5.8 — Scheme for the pletalomputation of the de-aliasing filter.

3. Computation of the convective and the diffusivengi(List. 5.9):

$ omp parallel do
doiz=0, Nz-1
doiy =2, Ny-1
do ix =0, Nx/2
call compute_convective_term(Cu,Cv,Cw)
call compute_diffusive_term(Lu,Lv,Lw)
end do
end do
end do
$ omp end parallel do

Listing 5.9 — Scheme for the patatemputation of the convective and diffusive terms

4. Computation of the intermediate velocity field ({.iS.10):

$ omp parallel do
doiz=0, Nz-1
doiy=1, Ny
do ix =0, Nx
call compute_intermediate_velocity()
end do
end do
end do

Listing 5.10 — Scheme for the conapionh of the intermediate velocity field.

5. Computation of the pressure field. In this casepider to access in an
efficient way the host memory, a different type dhta structures
memorization is used for solving the Poisson problthe arrays referred to
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diagonals (main diagonal, upper diagonal and lav@gonal) are duplicated
in order to solve “two” tridiagonal systems, one fioe real part and one for
the imaginary part. After solving the tridiagongk®ems, the pressure array
should be re-organized as the velocity data stractalternating real and
imaginary parts, i.e. each grid point has the spweding pressure and

velocity complex values (List. 5.11).

$ omp parallel do
doiz=0,Nz-1
do ix = 0, Nx/2
do iy = 1, nymax-1
call compute_poisson_rhs(rhs)
end do

do iy = 1, nymax-1
diag(iy) = d(ix,ly,iz)
diag(iy+nymax-1) = d(ix,ly,iz)
end do
do iy = 1, nymax-1
dinf(iy) = low_d(iy)
dinf(iy+nymax-1) = low_d(iy)
end do
do iy = 1, nymax-1
dsup(iy) = up_d(iy)
dsup(iy+nymax-1) = up_d(iy)
end do
do iy = 1, nymax-1

call solve_tridiagonal_sys(dinf,d,dsup,
rhs,pv,2*(nymax-1) )

do iy = 1, nymax-1
p(2*ix,iy,iz) = pv(iy)
p(2*ix+1,iy,iz) = pv(iy+nymax-1)
end do
end do
end do
end do
$ omp end parallel do

Listing 5.11 — Scheme for the soluof the Poisson problem.

6. Finally, for each Runge-Kutta sub-step, the velotupdated (List. 5.12).

$ omp parallel do
doiz=0, Nz-1
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doiy =2, Ny-1
do ix =0, Nx/2
update_velocity_field(ustar,vstar,wstar,p,sub,u, V,W)
end do
end do
end do
$ omp end parallel do

Listing 5.12 — Scheme for tpelate of the velocity.

5.6 Parallelization strategiesfor manycore ar chitectures
5.6.1 Single-GPU implementation of the Navier-Sésksolver

This section shows a novel parallel implementaf@nintegrating the Navier-
Stokes equations on GPU architectures by using @éDA 3.2 library
(http://developer.nvidia.com/cuda-toolkit-32-dowrdgg while the computational

code is written using C language. A synthetic saheithe numerical procedure is
given in Fig. 5.5. Considering a plane channel lenmbwhose data can completely
reside on a single-GPU and by recalling the nuraéntethod discussed in Section
5.3, the host is devoted to:
» read the numerical data related to the initial e&ycfield;
= allocate the required memory space on the device;
» transfer initial data from the host memory to tleside memory;
» Jaunch a set of kernels in order to integrate ttveegning equations that are
executed on the device;
= transfer data related to the updated velocity ffedtn the device memory to
the host memory;

= store the new data in the DNS database.
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Figure 5.5 — Scheme for the GPU implementatiomefNavier-Stokes solver.
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CUDA 3.2 provides functions to allocate, deallocatel copy device memory; in
particular, data structures are allocated usingaM alloc(), while data transfer of
u,v,w from host fi_u,h_v,h_w) to device d u,d_h,d w) memory are managed by
cudaMemcpy() (List. (5.13)).
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Figure 5.6 — Representation of tkeplanes along-direction.

cudaMalloc();

cudaMemcpy(d_u, h_u, cudaMemcpyHostToDevice, size);

cudaMemcpy(d_v, h_v, cudaMemcpyHostToDevice, size);

cudaMemcpy(d_w, h_w, cudaMemcpyHostToDevice, size);

Listing 5.13 — Scheme of data structures allocadint host-to-device transfer.

For a given velocity field stored on the memoryideybatched 2D complex-to-real
(C2R) and real-to-complex (R2C) Fourier transfotmase been implemented using
the CUFFT library provided by NVIDIA [126]. In pactular, an in-place batched 2D
R2C FFT has been used in order to transform thecitglfield from spectral to

physical space using a batch Nf xz—planes. It consists on performing a certain

number (equal to the total number of grid pointsngl y—direction) of Fourier
transforms over eackz-plane, obtained by cutting the computational donaéomg
y —direction, as represented in Fig. 5.6.

After that, each product between the mutual comptnef the velocity field has
been computed by a kernel, nanpedduct_kernel; then, for each produciuAu, uv,
UW, WV, VW, Ww, an in-place batched 2D C2R FFT has been execdutedder to

transform those quantities back to spectral sdaseng 5.14 shows the pseudo-code

that describes those steps.
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cufftExecC2R(batchBackPlan, (cufftComplex *) d_u, ( float *) d_u);
cufftExecC2R(batchBackPlan, (cufftComplex *) d_v, ( float *) d_v);
cufftExecC2R(batchBackPlan, (cufftComplex *) d_w, ( float *) d_w);
product_kernel<<<blocksPerGrid, threadsPerBlock>>>( du,dv,dw,

d uu,d uv,d uw,d vv,d vw, d ww);
cufftExecR2C(batchFwdPlan, (float *)d_uu, (cufftCom plex *)d_uu);

cufftExecR2C(batchFwdPlan, (float *)d_ww, (cufftCom plex *)d_ww);

Listing 5.14 — Scheme of FFT operations for thetsm on non-linear terms.

For each Runge-Kutta sub-step, the diffudiveand the convectiv€ terms of Eq.
(5.8) are computed by using two kernalgfusive kernel andconvective kernel,
properly designed in order to minimize memory asd®g using memory coalescing
and increasing the computation/memory ratio. Thermediate velocity field has
been calculated using a kernel, nameldtar _kernel; given all components of the
velocity field and all components of diffusive amdnvective terms, the three
components of the intermediate velocity fiedd (fstar, d_vstar, d_wstar) according
to Eq. (5.8a) (List. 5.15) are computed.

convective_kernel<<<blocksPerGrid, threadsPerBlock> >>(d_uu, d_uv,
d uw,d vv,d_wv,d_ww, d_nu,d_nv,d _nw);

diffusive_kernel<<<blocksPerGrid, threadsPerBlock>> >(d_u,d_v,d_w,
d_lu,d_Iv,d_Iw);
velstar_kernel<<<blocksPerGrid, threadsPerBlock>>>( du,dv,dw,

d_nu, ...,d_lu, ...,d_ustar, d_vstar,d_wstar);

Listing 5.15 — Scheme for th&cokation of the intermediate velocity field.
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Figure 5.7 — Partitioning of multiple tridiagorglstems among GPU threads.

As said in the previous sectiof{,(')does not satisfy the incompressibility constraint,

SO it is necessary to implement a fractional-stepthaod. This is done by
implementing a set of kernels that, given the miliate velocity field, compute the
right side of Eq. (5.9) and solve a Poisson problem

In order to solve a Poisson probleM, x N, tridiagonal systems of linear equations

are solved on GPU by redesign the Thomas algorifhnparticular, each thread
solves a tridiagonal linear system by using a mediThomas algorithm, optimized
for the GPU (re-use of GPU registers and coalesuexiory data access) (Fig. 5.7).
Regarding the principal diagonal of the coefficiemdtrix of the tridiagonal system,
for threads belonging to the same warp memory soadg for load/store instructions
Is guaranteed. Finally, memory access for the upped lower diagonals are
optimized by storing them in the device constantmey (List. 5.16).

tn_kernel<<<blocksPerGrid, threadsPerBlock>>>(rk, h _dt, d_tn,
d_ustar, d_vstar, d_wstar);

solve_poisson_kernel<<<blocksPerGrid,threadsPerBloc k>>>(d_dpri,
d_tn, d_p, d_work);

Listing 5.16 — Scheme for the solution of theésBon problem.
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Figure 5.8 — Representation of the slicing andicgag computational domain.

After pressure component is computed, a kernelufmtating of the velocity field
(update velocity kernel) has been executed, according to Eq. (5.10); thelevice
to host data transfer of computed values is perdrivoth for a new iteration or for
storing the velocity field into the DNS databases{L5.17).

update_velocity kernel<<<blocksPerGrid,

threadsPerBlock>>>(d_ustar, d_vstar, d_wstar, d_p, rk, h_dt, d_u,
d v,d w);

cudaMemcpy(h_u, d_u, cudaMemcpyDeviceToHost, size);

cudaMemcpy(h_v, d_v, cudaMemcpyDeviceToHost, size);

cudaMemcpy(h_w, d_w, cudaMemcpyDeviceToHost, size);

Listing 5.17 — Scheme for the updating of the e#jofield and for the device-to-host transfer.

5.6.2 Multi-GPU implementation of the Navier-Stokaolver

In this section, a novel multi-GPU implementatisndescribed that is needed
when numerical data cannot completely reside onnglesGPU. In this case,
OpenMP library is used for driving devices avai@alon the same computational
node, such as iRDL-Tesla-2 The code has been implemented such that eacdthre
Is responsible for managing its corresponding dgvior allocating data on the
device and for executing kernels for data transtan and to the device.

In order to solve the problem on several devides,nmost efficient way consists of
partitioning data along —axes for computing the intermediate velocity fiéidand

updating the actual velocity field and partitionith@ta alongz - axes for solving

90



Chapter 5 — The Navier-Stokes Solver

Nx x Ny x Nz

DEVICE 0 DEVICE 1 DEVICE 2

S e

0 Ny/3 Ny/3+1 2Ny/3 2Nw3+] Ny

Figure 5.9 — Representation of domain decompostimrsidering 3 available devices.
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Figure 5.10 — Local data transfers of partitionstibdaries.

the tridiagonal system of linear equations. FiguBdescribes, in particular, how the
slicing and the re-slicing of the computational @mis performed in order to
compute the actual velocity field: at first, a sl of the computational domain
along z—axes is required for solving the Poisson probldment a re-slicing of the
same domain along —axes is performed in order to update the velocity.

With regards to each partition (Fig. 5.9) and idesrto compute some intermediate
terms, such as the rhs of the Poisson problem (9)), a local data transfer of

boundary layers has to be performed; as represémtédy. 5.10, each partitiorp,
needs neighbouring data computed by the devicesponding to partitiorp,,,, for
(i =1,N,, —1), with N, number of available devices.

An overall scheme of the numerical algorithm iswhan Fig. 5.11: it is based

essentially on the single-GPU implementation, ekéapthe OpenMP library and
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the slicing/re-slicing operations among partitionisting (5.18) shows the main of

the parallel code.

void simulation_step
\\ conpute C, D and Vstar

velocity product()
convective_term()
diffusive_term()
velstar_computation()
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\\ boundaries copy from device p+1l to host
nx = d-> slice_xz.nx
ny = d-> slice_xz.ny
nz = d-> slice_xz.nz

cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id], d->us + nx*nz,
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id], d->vs + nx*nz,
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id], d->ws + nx*nz,

nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));

\\ boundaries data transfer fromhost to device p
#pragma omp barrier
cutilSafeCall(cudaMemcpy(d->us + (ny-1)*nx*nz,
d->h->us_buf[d->id+1], nx*nz*sizeof(float2),
cudaMemcpyHostToDevice));
cutilSafeCall(cudaMemcpy(d->vs + (ny-1)*nx*nz,
d->h->vs_buf[d->id+1], nx*nz*sizeof(float2),
cudaMemcpyHostToDevice));
cutilSafeCall(cudaMemcpy(d->ws + (ny-1)*nx*nz,
d->h->ws_buf[d->id+1], nx*nz*sizeof(float2),
cudaMemcpyHostToDevice));

\\ conpute rhs tridiagonal system

\\ slicing along y-direction (xz-pl ane)

if (d->id == 0) {

cudaMemcpy(d->h->tn_xz + d->slice_xz.memory_offset,

d->tn, d->slice_xz.nx*d->slice_xz.nz*(d->slice_xz.n y-1)
*sizeof(float2), cudaMemcpyDeviceToHost);

} else {

cudaMemcpy(d->h->tn_xz + d->slice_xz.memory_offset +
d->slice_xz.nx*d->slice_xz.nz, d->tn + d->slice_xz. nx*
d->slice_xz.nz, d->slice_xz.nx*d->slice_xz.nz*(d->s lice_xz.ny-2)
*sizeof(float2), cudaMemcpyDeviceToHost);

}

#pragma omp barrier

for (inti=0;i<p->NY ;i++){

memcpy(d->h->tn_xy + d->slice_xy.memory_offset +
i*d->slice_xy.nx*d->slice_xy.nz,

d->h->tn_xz + i*d->slice_xz.nx*d->slice_xz.nz +
d->slice_xy.domain_offset*d->slice_xy.nx ,
d->slice_xy.nx*d->slice_xy.nz*sizeof(float2));

}

#pragma omp barrier

cudaMemcpy(d->tn, d->h->tn_xy + d->slice_xy.memory_ offset,
d->slice_xy.nx*d->slice_xy.nz*d->slice_xy.ny*sizeof (float2),

cudaMemcpyHostToDevice);
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\\ solve tridiagonal system

solve_tridag(p, d);

cudaMemcpy(d->h->p_xy + d->slice_xy.memory_offset, d->p,
d->slice_xy.nx*d->slice_xy.nz*d->slice_xy.ny*sizeof (float2),
cudaMemcpyDeviceToHost);

#pragma omp barrier

\\ re-slicing fromxy-plane to xz-plane pattern
for (inti=0;i<p->NY;i++) {

memcpy(d->h->p_xz + i*d->slice_xz.nx*d->slice_xz.nz +
d->slice_xy.domain_offset*d->slice_xy.nx,
d->h->p_xy + d->slice_xy.memory_offset + i*d->slice _Xy.nx*

d->slice_xy.nz,

d->slice_xy.nx*d->slice_xy.nz*sizeof(float2));
d->h->p_xz[i*d->slice_xz.nx*d->slice_xz.nz].x = 0.0 ;
d->h->p_xz[i*d->slice_xz.nx*d->slice_xz.nz].y = 0.0 ;

}

#pragma omp barrier

cudaMemcpy(d->p, d->h->p_xz + d->slice_xz.memory_of fset,
d->slice_xz.nx*d->slice_xz.nz*d->slice_xz.ny*sizeof (float2),

cudaMemcpyHostToDevice);

\\ update velocity field

update_velocity(p, d);

\\ boundaries data transfer fromdevice p+1l to host

cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id], d->u + nx*nz,
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id], d->v + nx*nz,
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id], d->w + nx*nz,

nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));

\\ boundaries data transfer fromhost to device p
#pragma omp barrier

if (d->id < d->h->num_devices-1) {
cutilSafeCall(cudaMemcpy(d->u + (ny-1)*nx*nz,
d->h->us_buf[d->id+1], nx*nz*sizeof(float2),
cudaMemcpyHostToDevice));

cutilSafeCall(cudaMemcpy(d->v + (ny-1)*nx*nz,
d->h->vs_buf[d->id+1], nx*nz*sizeof(float2),
cudaMemcpyHostToDevice));

cutilSafeCall(cudaMemcpy(d->w + (ny-1)*nx*nz,
d->h->ws_buf[d->id+1], nx*nz*sizeof(float2),
cudaMemcpyHostToDevice));

}

\\ boundaries data transfer from device p+1l to host
#pragma omp barrier
cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id],

d->u + (ny-2)*nx*nz, nx*nz*sizeof(float2),
cudaMemcpyDeviceToHost));
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cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id],
d->v + (ny-2)*nx*nz, nx*nz*sizeof(float2),
cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id],
d->w + (ny-2)*nx*nz, nx*nz*sizeof(float2),
cudaMemcpyDeviceToHost));

\\ boundaries data transfer fromhost to device p
#pragma omp barrier

if (d->id > 0) {

cutilSafeCall(cudaMemcpy(d->u, d->h->us_buf[d->id-1 1,
nx*nz*sizeof(float2), cudaMemcpyHostToDevice));
cutilSafeCall(cudaMemcpy(d->v, d->h->vs_buf[d->id-1 1,
nx*nz*sizeof(float2), cudaMemcpyHostToDevice));
cutilSafeCall(cudaMemcpy(d->w, d->h->ws_buf[d->id-1 1,
nx*nz*sizeof(float2), cudaMemcpyHostToDevice));

}
}

Listing 5.18 — Scheme of the main program.

With reference to List. 5.18, the main steps of¢bmputational procedure are here

discussed.

1. After domain decomposition and reading velocityagatored into the host
memory, each thread executes a host-to-device nyeroopy to its

corresponding slice (List. 5.19).

slice s = d->slice_xz;
update_velocity kernel<<<blocksPerGrid, d-

>threadsPerBlock>>>(s.nx, s.ny, s.nz, d->us, d->vs, d->ws,
d->p, p->rk[p->step], p->dt, d->u, d->v, d->w);
cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id], d->us + nx*nz,
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id], d->vs + nx*nz,
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id], d->ws + nx*nz,

nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));

s = d->slice_xz

cudaMemcpy(d->u, sizeof(float2),cudaMemcpyHostToDev ice);
cudaMemcpy(d->v, sizeof(float2),cudaMemcpyHostToDev ice);
cudaMemcpy(d->w, sizeof(float2),cudaMemcpyHostToDev ice);

Listing 5.19 — Scheme for the host-to-dedata transfer.
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2. As in the single-GPU implementation, also in thelt®PU one, each
device executes, for eactz—plane, a batched 2D complex-to-real (C2R) and

real-to-complex (R2C) Fourier transforms (List.(®.2

cufftExecC2R(d->batchBckPlan, (cufftComplex *)d->ut ,
(cufftReal *)d->ut);

cufftExecC2R(d->batchBckPlan, (cufftComplex *)d->vt

(cufftReal *)d->vt);

cufftExecC2R(d->batchBckPlan, (cufftComplex *)d->wt

(cufftReal *)d->wt);

product_kernel<<<blocksPerGrid, d->threadsPerBlock> >>(N,
scale,

d->ut, d->vt, d->wt, d->uu, d->uv,

d->uw, d->vv, d->wv, d->ww);

cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->uu,
(cufftComplex *)d->uu);
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->uv,
(cufftComplex *)d->uv);
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->uw,
(cufftComplex *)d->uw);
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->vv,
(cufftComplex *)d->wv);
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->wv,
(cufftComplex *)d->wv);
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->ww,
(cufftComplex *)d->ww);

Listing 5.20 — Scheme for the compotabf the product terms.

3. Each device executes a set of kernels, as listedhén following, for
computing the convective and the diffusive termist(l5.21).

convective_kernel<<<blocksPerGrid,d->threadsPerBloc k>>>
(s.nx, s.ny, s.nz, s.nx - p->kx_nz+1, s.nx-1, s.nz/ 2,
p->kz_nz, s.nz/2 + p->kz_nz - 1,

d->uu, d->uv, d->uw, d->vv,

d->wv, d->ww, d->nu, d->nv, d->nw);

diffusive_kernel<<<blocksPerGrid, d->threadsPerBloc k>>>
(s.nx, s.ny, s.nz,

d->u, d->v, d->w,

d->lu, d->lv, d->lw);

velstar_kernel<<<blocksPerGrid, d->threadsPerBlock> >>
(s.nx, s.ny, s.nz, rk, dt, tau,
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d->u, ..., d->nu, ..., d->lu,
d->ustar, d->vstar, d->wstar);

Listing 5.21 — Scheme for the computattbthe convective and diffusive terms

4. Before executing the kernel related to the fractietep method, a clipping

of the computational domain alorg-direction is necessary, as represented

in Fig. (5.17). Thus, each device executes the GR&dlified Thomas

algorithmfor solving the Poisson problem (List. 5.22).

num_ele_z = ceil(Nz/num_devices)

for (i=0; i < h->num_devices; i++) {
h->d_datali].slice_xy.nx = p->NX;
h->d_data]i].slice_xy.ny = p->NY;
h->d_datali].slice_xy.nz = num_ele_z;
h->d_datali].slice_xy.memory_offset =
i*num_ele_z*p->NX*p->NY;
h->d_datali].slice_xy.domain_offset = i*num_ele_z;
}
tn_kernel<<<blocksPerGrid, d->threadsPerBlock>>>

(s.nx, s.ny, s.nz,

p->rk[p->step], p->dt,

d->tn, d->us, d->vs, d->ws);

solve_poisson_kernel <<<blocksPerGrid, d->threadsPe rBlock>>>
(s.nx, s.ny, s.nz,

d->dpri, d->tn, d->p,

d->work);

Listing 5.22 — Scheme for the solutiontw Poisson problem.

5. Before updating the velocity field, a re-slicingomad) y-—direction

is

performed; thus, each device executes the kernelmeda

update velocity kernel (List. 5.23).

slice s = d->slice_xz;

update_velocity kernel<<<blocksPerGrid, d->threadsP erBlock>>>
(s.nx, s.ny, s.nz,

d->us, d->vs, d->ws,

d->p, p->rk[p->step], p->dt,

d->u, d->v, d->w);

cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id], d->us + nx*nz,
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id], d->vs + nx*nz,
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id], d->ws + nx*nz,
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nx*nz*sizeof(float2), cudaMemcpyDeviceToHost));

Listing 5.23 — Scheme for the updating @f Welocity field and
for the device-to-host transfer.

6. Finally, each thread transfers the new velocitidffeom the device memory
to the host memory and stores data in the DNS dagaflist. 5.23).
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Chapter 6

Results of the Simulations:
Turbulence Statistics

6.1 Introduction

The evaluation of the behavior of fluctuatoand pressure of fluid flow
variables in wall-bounded turbulence is of fundatakmterest in many engineering
applications involving the development of efficiéatbulence control techniques and
closure models. For this reason, it is necessarynvestigate the relationships
between turbulence statistics, Reynolds-stressipdison and anisotropy budgets
and, finally, to consider the relevant informatidhat derives from coherent
structures, especially with reference to the Reymalumber dependence.

The objective of the present chapter is &sent the statistical-energetic results
of the numerical simulations of a turbulent chanrieiv and to evaluate
performances of the parallel implementations ofNaeier-Stokes solver, described

in Chapter §5 setting the Reynolds number to Be, = 200,400, 60.

The present chapter is organized as follows: Se@i@ shows the validation of
the numerical solver against existing results; i8ad.3 describes the rate budget of

the Reynolds shear stress, kinetic energy, dissipand anisotropy; Section 6.4
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analyzes the turbulence statistics with respe¢h@oReynolds number dependence;
finally, in Section 6.5 the evaluation of the penfiances of the parallel codes is

described, both in terms of speedup and efficiency.

6.2 Validation against existing results

Besides the aspect of the strictly numeniehhbility of the computational code,
it is necessary to verify the ability of the mixegdectral-finite difference method
adopted for the numerical integration of the gowrggnequations to simulate the
physical properties of turbulence in a plane chhrfa this reason, a comparison of
the computed results with numerical data obtaingdother authors has to be
consider.
The comparisons concern all the most importantatées, in terms of turbulence
intensities and mean flow properties, that allowéoify the reliability both of the
spatial/temporal domain in wall turbulence analyand statistical properties of the
numerical databases simulated.
A first screening of the effectiveness of the nuparsimulations may be done by
determining the accuracy of the computational gridspace and time, by computing
two-point correlation coefficients of velocity flumtions and energy spectra;
furthermore, it is necessary to estimate the Kolonog microscale as required by
[43].
After this step, it is necessary to evaluate méan properties, for a more complete
description of the main characteristics of the $atad turbulent flows. Mean flow

properties have been evaluated by calculating titlehean velocityU, , the related
Reynolds numberRReg,, the mean centerline velocity, and the related Reynolds

numberRe, as follows:

u, :ljadilj (6.1)
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Table 6.1 — Characteristic parameters of the sitiaus.

Computational domain Grid points Grid spacing
rRe [ L L L © o4 oL NN N a0 A A, A
200 4mh 2h 2mh 256 181 256 2513 400 1257 9.82 3.87 0.25 6.91
180[4] | #7 h on  437h 128 129 128 2262 360 754 177 64 005 6.9
400 4rth 2h 2mh 343 321 343 5026 800 2513 16.65 6.36 0.28 7.33
395 [4] 2mmh 2h h 256 193 182 2482 790 1241 10.0 6.5 - 6.5
600 Arth 2h 2mh 512 451 512 7540 1200 3770 16.73 6.66 0.30 7.36
590[4] | 27 h o mh 384 257 384 2482 790 1241 9.7 6.5 - 7.2
Re, = 2" 6.)
14
Re, = U;h (6.3)

Furthermore, both the values of /U, and C, are obtained from experimental

correlations suggested by [40]:

S—c =1.28( 2Rg) """ (6.4)
b
C, =0.079 2Rg)™* (6.5)

while the computed skin friction coefficient ardatdated by using the related value

of the shear stress at the wall, actually obtaindde computations as follows:

2T,

Cp=—2 6.
AUy ¥
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c, =2l (6.7)
oy

C

The statistical analysis helps to describe momeiail the wall-bounded phenomena
and, in particular, to understand the role of thattons of the wall flow variables and
their effects in terms of coherent structures.ohgists on the evaluation of the root-
mean-square of the velocity fluctuations, the skesgnand flatness factors and,

finally, the Reynolds-shear stress within a planannel.

Thus, for each database consideredRat= 200,400, 60, a description of the main
characteristics parameters of the simulations leas Ipresented in comparison with
those of [27].

The generic computational domain is represented=im 5.3; furthermore, by

recalling the wall formalism, one as:

: u*:i, Re =1 (6.8)
uT

where U denotes a meanx — velocity, averaged on a generxz—plane and time,
h=v/u, is the viscous length arlgfu, is the viscous time unit.

The characteristic parameters of the simulatioeseported in Tab. 6.1: it is evident
that the grid spacing adopted is in good agreeméhtthat of [27].

In the following sections, a more detailed evalatof statistical terms and
mean-flow variables is presented and analyzedrderao verify the accuracy of the
calculations, both in space and time, and the b#iky of the computational domain

to capture the most relevant structures.

6.2.1 Plane channel aRe =200

Considering the numerical database e = 20(, the Kolmogorov spatial
microscale, estimated by using the criterion ofdalierage dissipation rate per unit of

mass across the width of the channel, is equal te 1.89.
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It can be verified that there are 14 grid pointghay-direction, within the viscous
sublayery <5, that satisfies the following requirements (acaugdo [43]):
* to select a normal-to-the-wall grid width distrilmut, able to resolve the steep
gradients of the velocity field near the wall,
» to select a normal-to-the-wall grid such as the nmgrad width (AU ) results

smaller than the relevant turbulent elements fie< 777) and,

= tohave At<7).

The initial velocity profile evolving with time isnterpolated onto the considered
computational domain by using the statisticallyadiestate profile obtained by [36]:
thus, given an appropriate initial condition, théial transient flow in the channel is
simulated until the turbulent statistically steadtate is reached. Five-hundred

thousand time steps are calculated with a tempesalution of At =1[10* h/u, (that

corresponds toAt* =0.02), while the Kolmogorov time microscale results
7, =3.54.

With reference on Tab. 6.1, the adequacy of thepcational domain and its
grid resolution can be verified by evaluating the{point correlation coefficients
and the energy spectra. In Figs. 6.1-6.4, the gwiot correlation coefficients are
shown, both inx— and z - directions at twgy-locations: in particular, Figs. 6.1 and

6.2 are referred toy/h=0.99C that is very close to the wall, while Figs. 6.31d4

are referred toy/h=0.0194 that is very close to the centerline. Becausehef t

fluctuations atx— and z-directions are uncorrelated for large separatidhs,
computational domain is considered adequate taucayall the relevant large-scale
turbulent structure.

Figure 6.5 shows the one-dimensional energy spaaniademonstrates the adequacy
of grid resolutions adopted, being the energy dgnassociated with the high
wavenumbers several orders of magnitude lower thia®m energy density
corresponding to low wavenumbers: furthermore gl&no evidence of energy pile-

up at high wavenumbers, thanks to numerical filbased on the 3/2 rule”, that

avoids aliasing errors.

103



Chapter 6 — Results of the Simulations: TurbulenSgatistics

1 N T T T T T T
08 [}
06} |
@ !
e i
CﬁN 04+ '.“‘ -
3 }
02+ 4 i
0F it RN wmmmaan ey S
_0‘2 1 1 1 1 1 1
0 1 2 3 4 5 6
x/h
Figure 6.1 — Two-point correlation coefficientstbé velocity fluctuations. Streamwise
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Figure 6.2 — Two-point correlation coefficientstbé velocity fluctuations.

Spanwise separation at
y/h: _0-990(Wa”): (_) R11; (“') Rzz; () R33'
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Figure 6.4 — Two-point correlation coefficientstbé velocity fluctuations. Spanwise separation at
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Figure 6.5 — One-dimensional energy spectra. (@)lnat y/h=-0.990(wall), (c) and (d) at
y/h=-0.0194 (center): €) E,,; (-); E,i () By

About mean flow properties, the mean-velocity geofiormalized by the centerline
velocity across the section of the channel in dla®rdinatesti/U, is shown in
Fig. 6.6; in Fig. 6.7, the mean velocity profilermalized by the friction velocity in

wall coordinatesu”is compared with the law of the wall and with tesults of [27]
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Figure 6.6 — Mean-velocity profilé/U, across the channel in global coordinagés.

0‘1 i i i PR S T S | i i i PR S S 1
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Figure 6.7 — Mean-velocity profile” in wall coordinatesy”: (+) present case study;)data from
[27]; (--) law at the wall.

at Re =18(. Also in this case, the comparison between congpuésults and

numerical data is satisfactory.
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Table 6.2 — Computed mean flow variables (normRel= 20C).
Rer Reo Rec Ub/ur Uc/ur Uc/Ub Cfb Cfc
200.23 3197.67 3706.26 16.97 18.51 1.16 186 6.8510°

In order to complete the mean flow analysis, TaB. $hows the computed mean

flow variables by using Eqgs. 6.1-6.3 and 6.6-6igufe 6.7 shows that the viscous
sublayer is well solved, yielding the linear vetgdistributionu® = y* for y<5.

Figures 6.8 and 6.9 report the turbulent intersitie,., V, ., W, — the root mean

rms?
square values of the velocities fluctuations noireal by the friction velocity — in
global and wall coordinates, respectively. It iddent the symmetry of profiles about
the centerline, that confirms the adequacy of theukation sample taken for the
average. The agreement of computed results wittetbb[27] is good.

Figures 6.10 and 6.12 show the skewness facgrsS, § of the velocity
fluctuations in global and wall coordinates, respety, in comparison with the

results of [27] atRe, = 18(. Similar comparisons are presented in Figs. 61d a

6.13 for the flatness factork,,F,,F,. Considering both skewness and flatness

factors, the profiles in global coordinates showakrasymmetries and oscillations
and the related values are significantly differesoim the Gaussian ones (0 and 3,
respectively), showing a satisfactory agreemenh whe computed results of [27].
The same conclusion can be done for the profilegailhcoordinates.
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Figure 6.8 -Rmsof velocity fluctuation in global coordinates. Beat case study: (#),,.; (X) V,.s;
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Figure 6.9 -Rmsof velocity fluctuation in wall coordinates. Prasease study: (+),; (X) Vi : (©)
W Data from [27]:6) Uy () Vi () W,

ms * ms *
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Figure 6.11 — Flatness factors of the velocitytilations in global coordinates. Present case s{ddly:
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Fig. 6.13 — Flatness factors of the velocity flattons wall coordinates: (x) present wor) data
from [27].

6.2.2 Plane channel aRe =400
In this section, the same analysis, done for DN&me atRe = 20( is

performed for DNS database BRe, = 40(, in order to verify the reliability of the

computational domain, whose parameters are reportdab. 6.1.
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Table 6.3 — Computed mean flow variables (nonfrel= 400).

Re, Re, Re, Ub/ur 0./u Uc/Ub Ch Ce
399.94 6966.95 7978.80 17.42 19.95 1.14 468 6.0210°

About numerical accuracy, the Kolmogorov spatiatnmscale, estimated by using
the criterion of the average dissipation rate pait mass across the width of the
channel, results7” =2.19. Along y—direction, 16 grid points have been used,
within the viscous sublayer, to satisfy the requieats defined by [43].

The initial velocity profile evolving with time isnterpolated onto the considered
computational domain by using the statisticallyadiestate profile obtained from the
database atRe, = 20C: thus, given an appropriate initial condition, titial
transient flow in the channel is simulated unte tarbulent statistically steady state
is reached.

Five-hundred thousand time steps are calculatett wittemporal resolution of

At=1010"h/u, (that corresponds toAt* =0.04), while the Kolmogorov time
microscale results, = 4.79.

With reference on Tab. 6.1, the adequacy of thepcdational domain and its grid
resolution can be verified by evaluating the twaapcorrelation coefficients and the
energy spectra.

In Figs. 6.14-6.17, the two-point correlation ca@énts are shown, both ix—and

z-directions at twoy —locations: in particular, Figs. 6.14 and 6.15 afemred to
y/h=0.988 that is very close to the wall, while Figs. 6.161&n17 are referred to
y/h=0.022 that is very close to the centerline. Also in tltiase, because of

fluctuations alongx—and z—directions are uncorrelated for large separatitimes,
computational domain is considered adequate tauoagatll the relevant large-scale
turbulent structure [43]. Figure 6.18 shows the-dimensional energy spectra and
demonstrates the adequacy of grid resolutions addptcause of the energy cascade

and there is no evidence of energy pile-up at liglienumbers.
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Figure 6.14 — Two-point correlation coefficientstié velocity fluctuations. Streamwise separation a
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Figure 6.15 — Two-point correlation coefficientstioé velocity fluctuations. Spanwise separation at
y/h: _0-988(Wa"): (_) Rll; ('“) Rzz; () R33'

About mean flow properties, the mean-velocity geofiormalized by the centerline

velocity across the section of the channel in dlabardinatesi/U, is shown in
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Figure 6.16 — Two-point correlation coefficientstié velocity fluctuations. Streamwise separation a
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Figure 6.17 — Two-point correlation coefficientstioé velocity fluctuations. Spanwise separation at
y/h=-0.022(center): ) Ry;; () R, () Ras.

Fig. 6.19; in Fig. 6.20, the mean velocity profilermalized by the friction velocity
in wall coordinatesu™ is compared with the law of the wall and with tlesults of

[27] at Re, = 39E. Also in this case, the comparison is rather featiory.
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Figure 6.18 — One-dimensional energy spectra.n@)h) aty/h=-0.988(wall), (c) and (d) at
y/h=-0.022 (center): €) E,: () E,yi (*) Eyu-

Fig. 6.20 shows that the viscous sublayer is wailed, yielding the linear velocity
distributionu® = y* for y<5. In order to complete the mean flow analysis, TaB.

shows the computed mean flow variables by using &€4s6.3 and 6.6-6.7.
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Figure 6.19 — Mean-velocity profild/U, across the channel in global coordinageg.
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Figure 6.20 — Mean-velocity profile” in wall coordinatesy’: (+) present case study;)data from
[27]; (--) law at the wall.
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Figure 6.22 -Rmsof velocity fluctuation in wall coordinates. Prasease study: (+},.; (X) V,
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Figure 6.23 — Skewness factors of the velocitytflatons in global coordinates. Present case study:
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Figure 6.24 — Flatness factors of the velocitytilations in global coordinates. Present case s{ddly:
F,: (%) F,;(c) F,. Datafrom[27]:€) F,; (") F,; (—) F,.
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Figure 6.25 — Skewness factors of the velocitytflatons wall coordinates: (x) present work) (
data from [27].

Figures 6.21 and 6.22 report the turbulent intessu__,V

ms? “rms?

W, — the root mean

square values of the velocities fluctuations noipeal by the friction velocity — in
global and wall coordinates, respectively. It isdent the symmetry of the profiles
about the centerline, that confirms the adequadii@timulation sample
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Figure 6.26 — Flatness factors of the velocitytilations wall coordinates: (x) present work) flata
from [27].

taken for the average. The agreement of compustadtsewith those of [27] is good.
Figures 6.23 and 6.25 report the skewness factrsS, § of the velocity
fluctuations in global and wall coordinates, respety, in comparison with the

results of [27] atRe, = 39E. Similar comparisons are presented in Figs. 6r24 a
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6.26 for the flatness factors,,F,,F,. As observed for the last database for both

skewness and flatness factors, the profiles in ajlotoordinates show small
asymmetries and oscillations and the related vadwessignificantly different from

the Gaussian ones (0 and 3, respectively) anddimparison with numerical data of
[27] is rather satisfactory. The same conclusiam lba done for the same profiles in

wall coordinates.

6.2.3 Plane channel aRe, =600
The Kolmogorov spatial microscale, estimated byngsihe criterion of the

average dissipation rate per unit mass across fidéh vof the channel, results
n* =2.42, while along the y-direction the total number dfigpoint available within
the viscous sublayer is equal to 16. The initidboiy profile evolving with time is
interpolated onto the considered computational dontay using one of the
statistically steady state profiles obtained frome simulation atRe = 40C the

initial transient flow in the channel is simulatextil the turbulent statistically steady
state is reached. Two-hundred thousand time stepsadculated with a temporal

resolution of At=1[10"h/u (that corresponds toAt* =0.06), while the

Kolmogorov time microscale resultg+ =5.87.

With reference on Table 6.1, the adequacy of theprdational domain and its grid
resolution can be verified by evaluating the twanpaorrelation coefficients and the
energy spectra. In Figs. 6.27-6.30, the two-poartatation coefficients are shown,

both in Xx— and z—directions at twoy —locations: in particular, Figs. 6.27 and 6.28
are referred toy/h=-0.99C that is very close to the wall, while Figs. 6.2f18.30
are referred toy/h=-0.015¢ that is very close to the centerline. Becausehef t

fluctuations atx— and z-directions are uncorrelated for large separatidhs,
computational domain is considered adequate tauoa@all the relevant large-scale
turbulent structures. Figure 6.31 is referred te tme-dimensional energy spectra
and demonstrates the adequacy of grid resolutidoptad, being the energy density
associated with the high wavenumbers several omfersagnitude lower than the
energy density corresponding to low wavenumberghéumore, also in this case
there is no evidence of energy pile-up.
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Figure 6.27 — Two-point correlation coefficientsté velocity fluctuations. Streamwise separation a
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Figure 6.28 — Two-point correlation coefficientstioé velocity fluctuations. Spanwise separation at
y/h=-0.990(wall): (=) Ry;; (=) Ry, () Ry

123



Chapter 6 — Results of the Simulations: TurbulenSgatistics

0.2 1 L L 1 1 1

Figure 6.29 — Two-point correlation coefficientsté velocity fluctuations. Streamwise separation a
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Figure 6.30 — Two-point correlation coefficientstioé velocity fluctuations. Spanwise separation at
y/h=-0.0155(center): €) Ry;; () Ry, () Ras.

About mean flow properties, the mean-velocity geofiormalized by the centerline
velocity across the section of the channel in dlabardinatest/U, is shown in Fig.

6.32; in Fig. 6.33, the mean velocity profile notimed by the friction velocity in
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Figure 6.31 — One-dimensional energy spectra.r@d)) aty/h=-0.990(wall), (c) and (d) at
y/h=-0.0155 (center): €) E,; () B,y i () Eyy-

wall coordinatesu”is compared with the law of the wall and with tesults of [27]

at Re, = 59C. Also in this case, the comparison is satisfactéig. 6.33 shows that
the viscous sublayer is well solved, yielding theér velocity distributionu™ = y*

for y" <5.
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Figure 6.32 — Mean-velocity profild/U, across the channel in global coordinagg4.
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Figure 6.33 — Mean-velocity profila” in wall coordinatesy”: (+) present case study;)Ydata from
[27]; (--) law at the wall.

In order to complete the mean flow analysis, TaB. hows computed mean flow
variables by using Egs. 6.1-6.3 and 6.6-6.7.
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Table 6.4 — Computed mean flow variables (nonfrel= 60C).

Rer Reo Re, Ub/ur Uc/ur Uc/Ub Cfb Cfc

C

600.55 11106.17 12701.63 18.49 21.15 1.14 -6@6 6.4810°
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-1 -0.5 0 0.5 1

y/h

Figure 6.34 -Rmsof velocity fluctuation in global coordinates. Beat case study: (#);,¢; (X)V,
(O) V\/rms' Data from [27] '6) u;ms ; () V;ms; ('") V\/rms'

ms?
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+

Figure 6.35 -Rmsof velocity fluctuation in wall coordinates. Prasease study: (+¥;,<; (X) Vi <;
(O) V\/rms' Data from [27] '6) u;ms ; () V;ms; ('") V\/rms'

127



Chapter 6 — Results of the Simulations: TurbulenSgatistics

T

0.6 .

S(u’), S(v*), S(w’)

-1 -0.8 -0.6 -0.4 -0.2 0
y/h

Figure 6.36 — Skewness factors of the velocitytfiations in global coordinates. Present case study:
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Figure 6.37 — Flatness factors of the velocitytiations in global coordinates. Present case s{ddy:

Figures 6.34 and 6.35 report the turbulent intessit Vv, ., W, — the root mean

square values of the velocities fluctuations norreal by the friction velocity — in

global and wall coordinates, respectively.
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Figure 6.38 — Skewness factors of the velocitytflatons wall coordinates: (x) present work) (
data from [27].

It is evident the symmetry of the profiles abou¢ ttenterline, that confirms the
adequacy of the simulation sample taken for theraee The agreement of

computed results with those of [27] is good.
Figures 6.36 and 6.38 show the skewness factgfsS, Sof the velocity

fluctuations in global and wall coordinates, respety, in comparison with the
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Figure 6.39 — Flatness factors of the velocitytilations wall coordinates: (x) present work) flata
from [27].

results of [27] atRe, = 59C. Similar comparisons are shown in Fig. 6.37 ai3® 6or

the flatness factors, ,F, ,F, . For both skewness and flatness factors, thelgsafi

global coordinates show small asymmetries and lagoihs and the related values

are significantly different from the Gaussian or@sand 3, respectively). The
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profiles of both skewness and flatness factors,gliobal coordinates, show a
satisfactory agreement with the computed resulf26f. The same conclusion can

be done for the profiles of both skewness anddlsgrfactors in wall coordinates.

6.3 Reynoldsshear stress. distribution and budgets

In the field of wall-bounded turbulence, the Reysolshear stress play an
important role for understanding how an active sandf the physical mechanisms
that occur in the near-wall regions is possiblenans models and flow structures

analysis. In this section, a detailed descriptibthe numerical results obtained from
the DNS of a plane channel Be, = 200,400, 60are shown.

The analysis has been done considering, at fhst,values of the Reynolds shear
stressu'v in comparison with those of the total shear stresslefined as:
1 du

=—UV+—— 6.9
o = UV R By (6.9)

Then, starting from the Reynolds stress transpqpuragons, as described Appendix
A, the terms referred to the Reynolds stress budigetdissipation-rate budget and

the anisotropy-rate budget are calculated and sssxlifor each numerical database

simulated. The relevant non-zero stresses in #ss areuu, Uu, U U, U U.

6.3.1 Analysis of the terms &e_=200

Figures 6.40 and 6.41 report the values of the Blegnshear stress'v
computed, normalized by the friction velocity, iholgal and wall coordinates,
respectively. Figure 6.40 reports, also, the comghudtal shear stress,,, as in Eq.

6.9. The straight dotted line developing acrossdi@nnel width in an indicator of

the fully developed condition reached in the nugarsimulation. In Fig. 6.42, the

numerical results are compared with the data of ¢ptained atRe, = 18C.
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Figure 6.40 — Computed values of Reynolds sheasstind total shear stress normalized by the
friction velocity in global coordinates. Presentriuq—) u'v () r,
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Figure 6.41 — Reynolds shear stress normalizetidoyriction velocity in wall coordinates. Present
work: (+); data from [27] aRe, = 18C: (—).

Figures 6.42-6.45 show the terms in the budgdaho$e stresses, while Fig. 6.46
shows the terms of the budget for the turbulen¢tiirenergyk .

132



Chapter 6 — Results of the Simulations: TurbulenSgatistics

0-5 T T T T

0.4 L 1 1 1
0 20 40 60 80 100

y+
Figure 6.42 — Terms in the budgetmj_t{ in wall coordinatesP,, = Production;T,, = Turbulent
transport; D,, = Viscous diffusion;&,, = Dissipation ratef1,,, = Velocity pressure strain gradient

term; N, ,, = Velocity pressure diffusion gradient term.
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Figure 6.43 — Terms in the budget@ in wall coordinates P, = Production;T,, = Turbulent
transport; D,, = Viscous diffusion;&,, = Dissipation ratef1,,, =Velocity pressure strain gradient

term; N, ,, =Velocity pressure diffusion gradient term.

Considering Eq. (A.78), Fig. 6.47 shows the terhret defined the combination of

the turbulence kinetic energy and the dissipataia term.
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Figure 6.44 — Terms in the budgetwfu, in wall coordinatesT,, = Turbulent transportpD,, =

Viscous diffusion;&,, = Dissipation ratefT,,, = Velocity pressure strain gradient terf;, ,, =
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Figure 6.45 — Terms in the budget@ in wall coordinatesT,, = Turbulent transportD,, =

Viscous diffusion;&,, = Dissipation ratef1 ,; =Velocity pressure strain gradient terfil; ,, =

Velocity pressure diffusion gradient term.
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Finally, Figs. 6.48-6.51 show the terms referredthe transport equation for the

Reynolds stress anisotropy tengpr as in Eq. (A.68).
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Figure 6.46 — Terms in the budget of the turbulémetic energyk in wall coordinatesP, =
Production;T, = Turbulent transportD, =Viscous diffusion;&, = Dissipation ratef1_, = Velocity

pressure strain gradient teriii,  =Velocity pressure diffusion gradient term.
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Figure 6.47 — Terms in the budget of the dissipataie of the turbulence kinetic energy in wall
coordinates.P, ; = Production by mean velocity gradier®; , = Mixed production;P, , = Gradient

production; P, , = Turbulent productionT, = Turbulent transportD, = Viscous diffusion;Y =

Dissipation ratef1, =Pressure transport.
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Figure 6.48 — Terms in the budget of the anisotmapg of the turbulence kinetic energy in wall
coordinates R, ;, = Production;T,,, = Turbulent transportg, ,, = Dissipation rate.
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Figure 6.49 — Terms in the budget of the anisotrag of the turbulence kinetic energy in wall
coordinates.R, ;, = Production;T, ,, = Turbulent transportg, ,, = Dissipation rate.
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Figure 6.50 — Terms in the budget of the anisotmapg of the turbulence kinetic energy in wall
coordinatesT, ,, = Turbulent transportg, ,, = Dissipation rate.
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Figure 6.51 — Terms in the budget of the anisotrag of the turbulence kinetic energy in wall
coordinatesT, 5, = Turbulent transportg, ,; = Dissipation rate.
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6.3.2 Analysis of the terms &e_ =400
Figures 6.52 and 6.53 report the values of thenBlelg shear stressV computed,

normalized by the friction velocity, in global andall coordinates, respectively.

Figure 6.52 reports, also, the computed total sk#assr,,, as in Eq. (6.9). The

ot ?

straight dotted line developing across the chamndih in an indicator of the fully
developed condition reached in the numerical sittaraln Fig. 6.52, the numerical
results are compared with the data of [27] obtastdde, = 395, Figures 6.54-(6.57)
show the terms in the budget of these stressetg Wwig. 6.58 shows the terms of the
budget for the turbulent kinetic energy.

Figure 6.59 shows the terms that defined the coatioin of the turbulence kinetic
energy and the dissipation rate term.

Finally, Figs. 6.60-6.63 show the terms referredthe transport equation for the

Reynolds stress anisotropy tengpr

=] 1 1 | ~
-1 0.5 0 0.5 1
y/h
Figure 6.52 — Computed values of Reynolds sheassaind total shear stress normalized by the

friction velocity in global coordinates. Presentriug—) W, () r,

ot *
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Figure 6.53 — Reynolds shear stres¢ normalized by the friction velocity in wall coordites.
Present work: (+); data from [274H].
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Figure 6.54 — Terms in the budgeth_tji in wall coordinatesB, = Production;T,, = Turbulent
transport; D,, = Viscous diffusion;,, = Dissipation ratef1,, = Velocity pressure strain gradient

term; I, ,, = Velocity pressure diffusion gradient term.

139



Chapter 6 — Results of the Simulations: TurbulenSgatistics

0.12 - : T
0.1 ?\'\‘,'”‘\,\‘ /] 71 5,12 i
0.08 | ¥ 4

0.06
0.04

0.02 -/

-0.02
-0.04

-0.06

-0.08 |/

0 50 100 150 200
'

Figure 6.55 — Terms in the budgetut), in wall coordinatesB, = Production;T,, = Turbulent

transport; D,, = Viscous diffusion;¢,, = Dissipation ratefT1,,, = Velocity pressure strain gradient

term; N, ,, =Velocity pressure diffusion gradient term.
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Figure 6.56 — Terms in the budgetwiu, in wall coordinatesT,, = Turbulent transportD,, =
Viscous diffusion;&,, = Dissipation ratef1, ,, = Velocity pressure strain gradient terfly ,, =
Velocity pressure diffusion gradient term.
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Figure 6.57 — Terms in the budgetwi, in wall coordinatesT,, = Turbulent transportD,, =
Viscous diffusion;&,, = Dissipation ratef1, ,; =Velocity pressure strain gradient terfil;, ,; =

Velocity pressure diffusion gradient term.

0.25 T ;
0.2 & -
0.15 1 E
0.1 E

0.05

-0.05

-0.1

-0.15

02 F .

_0_25 1 1 1
0 50 100 150 200

y+
Figure 6.58 — Terms in the budget of the turbulemetic energy in wall coordinate®), =

Production;T, =Turbulent transportD, = Viscous diffusion;&, = = Dissipation ratef1, =

Velocity pressure gradient terml, , = Velocity pressure diffusion gradient term.
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Figure 6.59 — Terms in the budget of the dissipataie of the turbulence kinetic energyin wall
coordinates.P, , = Production by mean velocity gradier®, , = Mixed production;P, ; = Gradient

production; P, , = Turbulent production], = Turbulent transportD, = Viscous diffusion;y =

Dissipation ratef1, = Pressure transport.
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Figure 6.60 — Terms in the budget of the anisotmag of the turbulence kinetic energy in wall

coordinates B, ;; =Production; T, ,, = Turbulent transportg, ,, = Dissipation rate.
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Figure 6.61 — Terms in the budget of the anisotrag of the turbulence kinetic energy in wall
coordinates R, ;, = Production;T, ,, = Turbulent transportg, ,, = Dissipation rate.
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Figure 6.62 — Terms in the budget of the anisotmapg of the turbulence kinetic energy in wall
coordinates, ,, = Turbulent transportg, ,, = Dissipation rate.
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Figure 6.63 — Terms in the budget of the anisotmag of the turbulence kinetic energy in wall
coordinates, 5, = Turbulent transportg, ,, = Dissipation rate.

6.3.3 Analysis of the terms &e_ =600

Figures 6.64 and 6.65 report the values of the Bégnshear stress-u'v
computed, normalized by the friction velocity, iholgal and wall coordinates,
respectively. Figure 6.65 reports, also, the coexgptvtal shear stress,, , as in Eq.
(6.9). The straight dotted line developing acrdssdhannel width in an indicator of
the fully developed condition reached in the nucarsimulation. In Fig. 6.67, the
numerical results are compared with the data df ¢pTained atRe, = 59C.

Figures 6.66-6.69 show the terms in the budgéhede stresses, while Fig. 6.70
shows the terms of the budget for the turbulen¢tienenergyk .
Figure 6.71 shows the terms that defined the coatioin of the turbulence kinetic
energy and the dissipation rate term.

Finally, Figs. 6.72-6.75 show the terms referredthe transport equation for the

Reynolds stress anisotropy tengpr
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Figure 6.64 — Computed values of Reynolds sheasstind total shear stress normalized by the
friction velocity in global coordinates. Presentriug—) —W, (),
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Figure 6.65 — Reynolds shear stress normalizetidoyriction velocity in wall coordinates. Present
work: (+); data from [27]-€).
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Figure 6.66 — Terms in the budgetm in wall coordinatesB; = Production;T;; =Turbulent
transport; D,; = Viscous diffusion;&,; = Dissipation ratef1,,, = Velocity pressure strain gradient

term; 1, ,, = Velocity pressure diffusion gradient term.
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Figure 6.67 — Terms in the budget@ in wall coordinatesP, = Production;T,, = Turbulent

transport; D,, =Viscous diffusion;&,, = Dissipation ratef1,, = Velocity pressure strain gradient

term; 1, ,, =Velocity pressure diffusion gradient term
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Figure 6.68 — Terms in the budgetwfu, in wall coordinatesT,, = Turbulent transportD,,
Viscous diffusion;&,, = Dissipation rate{1, ,, = Velocity pressure strain gradient terify, ,, =
Velocity pressure diffusion gradient term.
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Figure 6.69 — Terms in the budget@ in wall coordinatesT,, = Turbulent transportp,, =
Viscous diffusion; &;, = Dissipation ratef1, ,, =Velocity pressure strain gradient terfil; ,, =
Velocity pressure diffusion gradient term.
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Figure 6.70 — Terms in the budget of the turbulémetic energyK in wall coordinatesP,

Production; T, =Turbulent transportD, = Viscous diffusion;&, = Dissipation ratef1, , =

Velocity pressure strain gradient terf, , = Velocity pressure diffusion gradient term.
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Figure 6.71 — Terms in the budget of the dissipataie of the turbulence kinetic energyin wall
coordinates.P, , = Production by mean velocity gradier®, , = Mixed production;P, ; = Gradient

production; P, , = Turbulent production], = Turbulent transportD, = Viscous diffusion;y =

Dissipation ratef1, = Pressure transport.
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Figure 6.72 — Terms in the budget of the anisotmapg of the turbulence kinetic energy in wall
coordinates.R, ;, = Production;T,,, = Turbulent transportg, ,, =Dissipation rate.
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Figure 6.73 — Terms in the budgetlyf in wall coordinatesR, ;, = Production;T, ,, = Turbulent

transport;&, ,, = Dissipation rate.
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Figure 6.74 — Terms in the budget of the anisotmapg of the turbulence kinetic energy in wall
coordinatesT, ,, = Turbulent transportg, ,, = Dissipation rate.
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Figure 6.75 — Terms in the budget of the anisotrag of the turbulence kinetic energy in wall
coordinates, 5, = Turbulent transportg, ,, = Dissipation rate.
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6.4 Analysis of Turbulence Statistics with respect to the Reynolds

number dependence

The essentially nature of the wall-bounded flowguiees a deep analysis of the
Reynolds number effects on turbulence quantitiegshm near-wall region. The
availability of accurate DNS databases allows taneixe, in particular, the Reynolds
number dependence on turbulence statistics, refféor¢he inner region, in order to
understand the behavior and the main characterisficoherent structures. For this
reason, after introducing statistical tools for themerical scheme validation and
showing the most important Reynolds shear stresiydiuterms, for each DNS
database, this section is focused on the analysiseecame statistical variables with
respect to the increasing Reynolds number, for pmiaspection of the interaction
between the inner and the outer layers. In padicuwarious turbulence statistics,
such as the root-mean-square of fluctuations, e8lds shear stress, the skewness

and flatness factors and the budget terms are aealin detail.

6.4.1 Turbulence intensities: discussion
The root mean square of the velocity fluctuatiolimas to verify the adequacy of
the simulation sample taken for the average throtigh evaluation of the

symmetrical trend of its values across the chariigl.6.76 shows the distribution of

the rms of the velocity fluctuations with the increasetbé Reynolds numbeRe.
considered. It is evident how the peak of thie, progressively moves toward the

wall with the increase ofRe,: for high Reynolds numbers, the compression of

vortices is strongest than that occurring for laves, facilitating the development of

ordered streamwise vortical structures.

The Reynolds shear stress distribution along tlaaiél guarantees not only that the
statistically steady state of the numerical simaiat is reached, but also that the
region where viscosity plays an important rolentaeged near walls as the Reynolds
number is reduced. Figure 6.77, in particular, sholme shear stress and the total
shear stress distributions at varying Reynolds rermBurthermore, the peak value
of the Reynolds shear stress increases and mowgsfeam the wall as the Reynolds

number increases.
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Figure 6.76 — Rms of velocity fluctuations in glbbaordinates. Present case stuey) (¢, (-—-)
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Figure 6.77 — Computed values of Reynolds sheassaind total shear stress normalized by the
friction velocity in global coordinates. Presenseatudy: ) W, (---) 7, ; (red) DNS200, (green)

DNS400, (blue) DNS600.

Figure 6.78 reports the skewness factors in globatdinates, computed for each of

the numerical databases available and indicateasyrametry of the probability
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Figure 6.78 — Skewness factors of the velocitytflatons in global coordinates. Present case study:
=) S, S, () S,; (red) DNS200, (green) DNS400, (blue) DNS600.
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Figure 6.79 — Flatness factors of the velocitytiations in global coordinates. Present case study:
=) k.. () F.. () F,; (red) DNS200, (green) DNS400, (blue) DNS600.

density function of the variables considered. 8, an indicator of the excursions of
velocity fluctuations: it means that vorticity praction increases as the Reynolds
number increases. Figure 6.79 reports, instead, fliteess factors in global

coordinates for the numerical databases avail#thledicates the intermittent
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Table 6.5 — Effect of the Reynolds numirethe main turbulence statistics.

DB200 DB400 DB600 Percentage increase

% % %
max y* max y max y' (DB200 vs (DB400vs (DB200 vs

DB400) DB600)  DB600)

u'v  0.739 33.238 0.828  40.170 0.866  33.238 12 5 17
Uns  2.680 16.509 2.660 16.599 2.701 16.444 -1 2 1
Vi 0.867 56.702 0.982 71.436 1.030 83.068 13 5 19
W, 1.127 37.252 1.310 36.467 1.385  37.464 16 6 23
S 1.003 1.315 1.096 1.423 1.141 1.504 9 4 14
S, 0.452 126.944 0.296 133.543 0.208 96.248 -35 -30 4 -5

S, 0.013 180.773  -0.003 36.467 0.005 86.188 -119 -292  -64
F, 6.488 0.761 6.070 1.131 6.366 0.897 13 6 20
F, 26.679 0.249 19.424 0.280 20.882 0.298 -27 8 -22
F, 7.902 0.249 8.752 0.280 9.094 0.298 11 4 15

character of velocity fluctuations: a higher flaaadactor suggests that the relatively
large excursion from the mean value are more pilebdlable 6.5 shows the effect

of the Reynolds number on the main turbulencessiedi such as the Reynolds shear
stress, the root-mean-square of the velocity flatobms, skewness and flatness

factors.

6.4.2 Budget in the near-wall region: discussion

This section reports the budgets of the Reynoldssst the turbulent kinetic
energy, dissipation and anisotropy computed consigiethe DNS databases
available in order to evaluate the role of the élase of the Reynolds number and its

influence on budget distributions in terms of gaimd/or loss energy.
Figure 6.80 shows the Reynolds stress budgetiidgr component: in particular, the
peak value of the production ter®, and the turbulent transpofi, increase as the

Reynolds number increases. Those two terms, assdaiath the viscous diffusion

term D,,, represent the gain energy contribution in ther veall region and are

balanced by the velocity pressure-gradient tefy, and the dissipation terme,,

that represent the loss energy contribution. Tlogv fstructures in the near wall
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region, with respect to thm{_u; component, will be characterized by intense

production energy activity and regions of intensgsigation energy activity along

the streamwise direction.

With reference to the buffer layer and the rolehef uu, component, instead, the
production termB, diminishes because of the Reynolds shear stressighes, too,
while the dissipation termd,, increases (Fig. 6.81).

The effect of the Reynolds number is strongest idenisg the u,u, and theu.u,

components (Figs. 6.82 and 6.83, respectivelyparticular, the pressure diffusion

correlation contributes a lot in the budget of tﬁ component and its role is very
important especially if it considerRe, = 40C. Turbulent diffusionT,, is not so
determinant in the overall budget, while dissipatierm &£,,is the main responsible
of the lost energy. Considering thTQJ’g component, it assists on the increasing of the
viscous diffusion D,; and velocity pressure-gradient terhh,, as the Reynolds
number increases, turbulence transpigytdo not play a role in the balance because

its values are quasi-zero along the channel, whéalissipation terng,, remains the

main responsible of the lost energy in the spandiisetion.

The budget of the turbulence kinetic enelgy(Fig. 6.84) has a similar trend as the
budget of the Reynolds stress and, in conjunctigh the budget of the dissipation

rate, represents an important quantity for undedstey theoretically turbulence

phenomena. In particular, it is possible to notd #il terms gradually increase with

the increase of the Reynolds numii®e, ; in particular, in the viscous sublayer, the
turbulence kinetic energy is gained by the viscaliffusion D, but lost by
dissipation &,, while in the logarithmic-law region turbulencen&tic energy is

gained exclusively by production terR)y and lost by dissipatios, .
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Figure 6.80 — Terms in the budgetm in wall coordinatesB; = Production;T;; =Turbulent
transport; D,; = Viscous diffusion;&,; = Dissipation ratef1,,, = Velocity pressure strain gradient
term; 1, ,, = Velocity pressure diffusion gradient term; (red) 200, (green) DNS400, (blue)

DNS600.
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Figure 6.81 — Terms in the budget@ in wall coordinatesP, = Production;T,, = Turbulent
transport; D, =Viscous diffusion;&,, = Dissipation ratef1,, = Velocity pressure strain gradient.
term; 1, ,, =Velocity pressure diffusion gradient term; (red) 200, (green) DNS400, (blue)

DNS600.
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Figure 6.82 — Terms in the budgetwfu;, in wall coordinatesT,, = Turbulent transportD,, =

Viscous diffusion;&,, = Dissipation rate{1, ,, = Velocity pressure strain gradient terify, ,, =
Velocity pressure diffusion gradient term; (red) 8200, (green) DNS400, (blue) DNS600.
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Figure 6.83 — Terms in the budgetwf, in wall coordinatesT,; = Turbulent transportD,, =

Viscous diffusion;&,, = Dissipation ratef1, ,, = Velocity pressure strain gradient term, ,, =

s,33

Velocity pressure diffusion gradient term; (red) 8200, (green) DNS400, (blue) DNS600.
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Figure 6.84 — Terms in the budget of the turbulemetic energyK in wall coordinatesP, =
Production;T, = Turbulent transportD, =Viscous diffusion;&, = Dissipation ratef1,, = Velocity
pressure strain gradient term, , =Velocity pressure diffusion gradient term; (red) 8200, (green)

DNS400, (blue) DNS600.

The dissipation process, instead, is determinedhleyscalar dissipation rate
tensor £and it is of great interest especially in turbukenmoodeling: the related

values of all the terms that characterized Eqg. §A.&re reported on Fig. 6.85 at
varying Reynolds numbers as a functionyof. As observed in the graph referred to

turbulence kinetic energK also in this case the terms gradually increash thié
increase of the Reynolds number. The most impottms that characterized the

balance are the production ter and the viscous dissipation terf, while very
near the walls molecular dynamics are prevalernthswiscous diffusiorD, and the
viscous dissipation ternY, reaches a local minimum. Figure 6.85 shows, dlewy

the dissipation rate budget is important as thenBlels number increase, revealing
the strongly non-isotropic nature of the dissipatiprocess at high Reynolds

numbers.

158



Chapter 6 — Results of the Simulations: TurbulenSgatistics

0.02

0.01

-0.01
-0.02

-0.03 [

_0_04 | 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

y+

Figure 6.85 — Terms in the budget of the dissipataie of the turbulence kinetic energyin wall
coordinates.P, , = Production by mean velocity gradier®, , = Mixed production;P, , = Gradient

production; P. , = Turbulent production(, = Turbulent transportD, = Viscous diffusion;y =

Dissipation ratef1, =Pressure transport; (red) DNS200, (green) DNS4fl0e) DNS600.

The last set of graphics here analyzed are refdadlde anisotropy rate budget, as
defined in Eq. (A.68), with respect to the Reynofdsnbers considered. For the
relevant non-zero stresses, the anisotropy rategdiudiescribed the highly

anisotropic behavior of fluctuations in the neattwagion. About the (Ii_Ui)

component, within the inner region, it assists osubstantial balance between the

production termsR, ,, and the dissipation term,,, (Fig. 6.86), while considering the

uu, component and with reference to the viscous sebJdie most important term

that ensures a gain energy is the dissipation temnch an increase in turbulence
transport corresponds (Fig. 6.87). At high Reynaldmber, the production term is

predominant and is balanced by the turbulence pahserm. The last two figures,
Figs. 6.88 and 6.89, show the terms referredit§ and U, components. It is

evident that the dissipation becomes isotropicha dentral region, confirming that

fluctuations are characterized by a strong anipgtio the near wall region.
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Figure 6.86 — Terms in the budgetlaf in wall coordinatesR, ,, = Production;T, ,, = Turbulent
transport; &, ,, = Dissipation rate; (red) DNS200, (green) DNS400,¢bIDNS600.
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Figure 6.87 — Terms in the budgetlyf in wall coordinatesR, ,, = Production;T, ,, = Turbulent
transport; &, ,, = Dissipation rate; (red) DNS200, (green) DNS400,¢bIDNS600.
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Figure 6.88 — Terms in the budgetlnf in wall coordinatesT, ,, = Turbulent transportg, ,, =
Dissipation rate; (red) DNS200, (green) DNS400,€bIDNS600.
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Figure 6.89 — Terms in the budgethyf in wall coordinatesT, ., = Turbulent transportg, ,, =
Dissipation rate; (red) DNS200, (green) DNS400,¢bIDNS600.
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6.5 Parallel performancesof the numerical codes

After investigating the numerical accuracy of thendations and the related
main turbulence statistics, this section showscim@putational results in terms of
performance of the parallel implementations of Nevier-Stokes solver, described
in Chapter 5
The parallel performance has been monitored consgléhe three different spatial

discretizations of the computational domain, orreefich direct numerical simulation
performed, atRe, = 200,400, 60: the main characteristics are reported on Tab. 6.1

In order to evaluate the performance of the NaS8tekes solver, the CPU/GPU
implementations, referred to single- and multi-GRitchitectures, have been
compared with the sequential code (1 CPU) and {en®IP parallel codes (2, 4, 8,
12 CPUs).

The parallel performance has been evaluated by uriegsthe overall code

execution time at each Runge-Kutta step. The medscomputing times do not
include the 1/O operations. In Tab. 6.6, the rumes with the number of CPUs and
of CPUs/GPUs used for each computational domainegrarted.

For each of the computational domains considetexn be noticed thdt decreases

with the number of processors: this result is ineagent with the Amdahl's law

[127] about the level of efficiency that can becdtead in a parallel computational
process by using a multicore architecture. Thengest breakdown of the run-time is
performed by using the heterogeneous architec{@B®)/GPU), whose values are
two-orders of magnitude lower than the sequentighlementation (almost three-
orders of magnitude lower than the sequential @msidering the greatest

Table 6.6 — Run-tim@& for one Runge-Kutta step with the number of preces

Processors Run-time T (s)

DNS atRe, = 20C DNS atRe, = 400 DNS atRe, = 60C

(DB200) (DB400) (DB600)

1 CPU 7.98 32.19 84.60

2 CPUs 4.23 16.80 43.26

4 CPUs 2.31 9.36 24.45

8 CPUs 1.44 5.37 15.06

12 CPUs 1.20 4.41 12.33

1 CPU +1 GPU 0.37 1.71 -
3 CPUs + 3 GPUs - - 3.32
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Figure 6.90 — Speedup S with the number of proeegso each numerical database: (red) DNS at
Re, = 200; (green) DNS aRe, = 400C; (blue) DNS atRe, = 600

computational domain, used to perform the simutetid Re. = 60(). Figure 6.90

reports the speedup of the calculations with theersé architectures for each
computational domain: as in Eq. (4.1), the speefligpdefined as the run-time per
time step with one processor divided by the rametiper time step with a given
number of processors. As concerns the parallel a@mphtation on a CPU/GPU
computing system, the speedup is defined as the batween the total execution
time on a CPU and that one on a GPU. The graptefspeedup provides an
immediate perception of the performance of the agmtpnal code with respect to
the linear theoretical value: considering also texrformance of the parallel
implementation on a CPU/GPU system, it is evideaw lthe CUDA Navier-Stokes
solver outperforms significantly the different péelimplementations based on
multicore architectures.

Table 6.7 reports the related values of the contpspeedups.
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Table 6.7 — Parallel performance: spee8up

Processors Speedup S (-)

DNS atRe, = 20C DNS atRe, = 40C DNS atRe, = 60C

(DB200) (DB400) (DB600)
1 CPU 1.0 1.0 1.0
2 CPUs 1.9 1.9 1.9
4 CPUs 3.5 3.4 3.5
8 CPUs 5.5 6.0 5.6
12 CPUs 6.7 7.3 6.9
1 CPU +1 GPU 21.6 18.8 -
3 CPUs + 3 GPUs - - 255

Finally, in Tab. 6.8, the efficiency of the parallel implementations is reported: as
defined in Eq. 4.3, the efficiency represents titerbetween the theoretical parallel
run-time and the actually measured run-time witiiven number of processors. The
efficiency of the CPU/GPU parallel implementatioasiot so significant because of
the nature of the computing architecture, based anassively parallel processor
array.

As the efficiency values indicate, the OpenMP pakalimplementation of the
Navier-Stokes solver ensure good performances assite of the computational
domain increases with the increasing of the nundieprocessors. However, an

appreciable degradation of efficiency is observetdenv running 12 threads

considering the computational domain used for satmg turbulence aRe, = 60(,

due to memory access overhead.

Table 6.8 — Parallel performance: efficieriey

Processors Efficiency E (-)

DNS atRe, = 20C DNS atRe, = 40C DNS atRe, = 60C

(DB200) (DB400) (DB600)
1 CPU 1.0 1.0 1.0
2 CPUs 0.94 0.96 0.98
4 CPUs 0.86 0.86 0.87
8 CPUs 0.69 0.75 0.70
12 CPUs 0.55 0.61 0.57
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Chapter 7

Results of the Simulations:
Flow Structures

7.1 Introduction
A significant advance in wall bounded turbulenwftois achieved by considering
studies about coherent structures in a turbulentntbary layer, thanks to the
availability of high-quality numerical simulations.
The concept of coherency and evolution of coheserattures offer the possibility to
clarify the physical mechanisms through which tlebti energy of mechanical
nature is dissipated into heat. Thus, the desonptif energy transformations brings
new perspectives in the modern fluid technologghsas:
= the control of turbulence, that has a relevant regjiing impact on the
reduction of skin friction in wall bounded flowd)et delay of separation in
wake flows, the enhancement of mixing in free steaws and controlled

sediment transport in multiphase flows;
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the development of new predictive models for thenercal calculation of

high Reynolds number turbulent flows, useful in évaluation of closures in

numerical modeling.

Considering the mean-flow properties of wall-bowhdi®ws in wall units and as

concerns the mean-velocity profile, different lssyean be distinguished:

viscous sublayeQ)< y* <5, whereu® = y*;

the buffer layer,5<y* <50 (recently estimated up to 200 by [128]), the

region of maximum average production of turbulanekc energy;

overlap layer,y" >50, characterized by the logarithmic law

u*zlln y'+C (7.1)
K

where k and C are empirical constants. Some authors ([129], JJ1331],

[132]) claim that the pipe-flow data of [133] aratisfactorily interpreted in
the overlap layer by a power law in which the iielatbetweenu” and y* is

Reynolds number dependent:

ut = (im Re+§j( y+)3/2('”Re’ (7.2)

J3 2

where Re is the Reynolds number based on the mean velacéyaged over
the cross section. More recent results confirmhendontrary the validity of

the logarithmic law, with the constant parametesttmeated as« =0.38 and

C=4.1[128];

far outer layer, where the law-of-the-wake is valid

At sufficiently high Reynolds number, two regiorancbe distinguished: the inner

region, the near-wall region in which viscous efffeare present and includes the

viscous sublayer, the buffer layer and the ovelgger in part; the outer region,

essentially inviscid, that includes the rest of tagers. The two region are

overlapped and the extent of the overlap increaseése Reynolds number increases.
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In the present chapter, the flow structures ofrbulent flow in a plane channel
are investigated, in terms of morphological evaatin time and strength of a vortex
population, in conjunction with ejection and swesnts, by considering the DNS
results obtained aRe, = 200,400,60: Section 7.2 contains an overview of some
widely-used vortex-identification methods; in Senti 7.3, the event-detection
techniques are described; finally, in Section #le results of the numerical

simulations performed are presented and discussed.

7.2 Vortical structureseduction methods
7.2.1 The D criterion

Perry and Chong [63] proposed the method of idgntf vortices by means of
isosurfaces of positive small values of the disarant of the characteristic equation
of the velocity-gradient tensor (deformation-raendor), where it has complex
eigenvalues.
By considering the system of the Navier-Stokes #gug, an arbitrary point can be
chosen in the flow field and a Taylor series expan®f each velocity component

can be performed in terms of space coordinatestivdlorigin in that point:

U=A+AX+ A XX+.. (7.3)

u=A+AXx 4.

(A =0y /0xis the velocity-gradient tensor). If the origin liscated at a critical
point, the zero-order termg\ are equal to zero. Thus, from the characteristic

equation of A, one has:

det(A-A1)=0 .5
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A2+PA2+Q1+ R=0 (7.6)
where:
P=-tr(A) A
Q=2{[u(A)]-u () (7.9
R=-det(4) (7.9)

(tr is trace,det is determinant) are the scalar invariants of tedaity-gradient
tensor. In the case of incompressible flow=0 (from continuity) and Eq. (7.6)

becomes:
A*+QA1+R=0 (7.10)

The characteristic Eq. (7.10) admits three roots tteat the eigenvalued that
determine the topology of the local flow pattera farmed on the basis of the values
of the remaining non-zero invariant &ndR).

The discriminant of Eq. (7.10) is:

_(RY ,(QY _27_,
D_(Ej +(§j ——4R +Q (7.11)

and two cases are possible:
= D >0, sothat Eq.(7.11) admits two complex and onegelaition;
= D<0, sothat Eq.(7.11) admits three — all real — sohsi

Thus, complex eigenvalues of the velocity gradiensér occur wher > 0.
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7.2.2 The Q criterion

Hunt et al. [64] devised another criterion, defqian eddy zone a region
characterized by positive values of the secondriamt of the velocity-gradient
tensor Q > 0). The rate-of-deformation tensor can be sptid symmetric and anti-

symmetric parts:

A=9+W (7.12)

S being the rate-of-strain tensor (correspondinthéopure irrotational motion) and

W the rate-of-rotation tensor (corresponding to hee rotational motion), so that

the second invariant oiﬁﬁ can be written as:

Q=3(Ww- 53 7.19

where the first term of the right-hand-side of E@.13) is proportional to the
enstrophy density and the second term is propatitm the rate of dissipation of
kinetic energy. If Q is large and positive, the rate-of-rotation domentte strain
rate, while if Q is large and negative, the vorticity is low ane tlate-of-strain

(proportional to the rate-of-dissipation) is large.

7.2.3 The, criterion

Jeong and Hussain [65] proposed a definition ofostex by considering the
problem of the pressure minimum. The gradienof the Navier-Stokes equation is
taken and the result is decomposed into a symmnegtdcan anti-symmetric part.

By considering the symmetric part (the anti-symmeportion is the vorticity-

transport equation), one has:

DS, : 2
S‘ -y 6§ +B; :—l& (7.14)
Dt ox0% ' pOxdX
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where:

B=3+WW (7.16)

The existence of a local pressure minimum requisespositive eigenvalues of the

Hessian tensor of the press@?qo/am)g .

By neglecting the contribution of the first two nes on the left-hand side of Eq.
(7.14), only tensor in Eq. (7.15) is considerediébermine the existence of a local

pressure minimum due to vortical motion, i.e. theespnce of two negative

eigenvalues ofB, . TensorB; is symmetric by construction, all its eigenvalaes
real and can be orderetl = A, > A,. According to this method, a vortex is defined as
a connected region of the flow with two negativgeeivalues ofB; .The tensorB, is

symmetric by construction, all its eigenvalues aeal and can be ordered

A =2A,2A,. A vortex is then defined as a connected regiotthef flow with the

requirement that the intermediate eigenvalueBpf A, <0.

7.2.4 Thejcriterion

Zhou et al. [66] adopted the criterion of identifyi vortices by visualizing
isosurfaces of values of the imaginary part of ¢benplex eigenvalue pair of the
velocity-gradient tensor. This method is also kn@srthe swirling strength criterion.

When D >0, the velocity-gradient tensor has one real eigerevd, and a pair of

complex-conjugate eigenvaluds, A,, that can be written as:

A=A (7.16)
AZ = Acr + i/1ci 17)
A=A, —iA, 18)
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The swirling strength, given by, is a measure of the local swirling rate inside th
vortex, while the strength of stretching or compres is given by, .

Isosurfaces of the imaginary part of the complegeevalue pair of the velocity-
gradient tensor can be used to visualize vortitas. method is frame independent
and due to the fact that the eigenvalue is comgidy in regions of local circular or
spiraling streamlines, it automatically eliminategions having vorticity but no local

spiraling motion. With reference to Eq. (7.10) algining the quantities:

3
J =[—5 E+QJ (7.19)
2 \'4 27
1
3
K=- w1y E+g (7.20)
2 V4 27
one has:
A=A =J+K 17)
A=A +iy, =KL I K (7.22)
2 2
A=Ay —iAg =2 ;K ——J_ZK«/—_S (7.23)

7.2.5 Enhanced. criterion

Chakraborty et al. [71] proposed an enhanced witercalled the enhanced
swirling strength criterion, as follows. In the r@gs where the eigenvalues of Eq.

(7.10) are complex, two parameters are identified:

» the imaginary part of the complex eigenvalue pair, (the swirling rate);
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= the ratio of the real to the imaginary part of gtwmplex eigenvalue pair
(A,/A;, the inverse spiraling compactness) that measties orbital
compactness of the fluid particles involved in Woetical motion.

A vortical region is identified as the points iretifiow field that satisfy the dual

requirement:

A z(Ay), =€ (7.24)
Ay < A | o o (7.25)
Aci Aci th

(th is threshold). However, inside an intense vortatalicture, the swirling motion

dominates andﬂcr//lci| takes negligible values. In [71], the relationshiy@tween the

previous vortex-eduction methods and the two patareel, and A,/A, are

determined.

7.2.6 On), threshold value
The issue of determining an appropriate threshalda/()lCi )th (T, whereT is

time) has been addressed by Alfonsi and Primave&4] |

An adequate threshold value 4f is needed, keeping in mind that small threshold

values will represent a large number of weak valtgtructures — so that the flow-
field representation tends to be volume filling il large threshold values will

represent only the most intense vortical coreseritbn is given onto the legs of a
generic hairpin vortex and the concept is raiseat the value of the circulation
around a closed circuit delimiting the external dess of the hairpin legs will

discriminate the vortical structure from the refsthe flow field.

The characteristic inverse time scale is introduced

tiuids+gﬁlzwds

7.26
A A, (7:26)

Cl

(/1 ')th :% Sﬁll
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(11 is the first leg)2 is the second led, is unit tangenty, is velocity, A, is the
cross-sectional area of the first ledy, is the cross-sectional area of the second leg),

i.e. the average (over the two legs) of the cibotaaround the closed circuit that
delimits each of the hairpin's legs, divided by déinea of the legs themselves.
In Eq. (7.26), the area of the hairpin’s legs i$ @&sy to evaluate, mainly because it

depends on the threshold value &f that is chosen for the representation of the

hairpin itself. Moreover, for the determinationtbe line integral around the closed
circuit that delimits each of the hairpin's legswould be necessary to know the
distribution of the velocity around these circuithis distribution is also difficult to

be determined, mainly due to the highly non unifaimaracter of the velocity field.

In fact, slow-moving fluid is lifted away from theall on the updraft side of the
hairpin legs, while fast-moving fluid is moved tawdhe wall on the downdraft side.
The application of the Stokes theorem to Eq. (7r2@uces the calculation of the

characteristic time scal(aACi )th to the evaluation of a prescribed val@e of the

streamwise component of the vorticidy, in the legs of the hairpin.

The following calculation is performed. Once a pair vortex is qualitatively
identified in the flow field, the minimum volume m@ining the vortical structure is
strictly considered, on the basis of a first-sigétception of the vortex itself.

Then, Q is calculated as:

N

(7.27)

>, 3 e (% z)}

Q(Z):{ vava
x 1y

obtaining therms «),, averaged along the streamwise- and vertical y—
directions, inside the minimum volume&{™ and N/"are the grid points along the

streamwise and vertical directions in the minimumtume, respectively).
Then Q is investigated along the spanwige-direction. The distribution ofQ
along z—direction in the minimum volume exhibits two wekdfthed peaks, besides

some other smaller spikes.
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The two peaks reflect the distribution Qf inside the hairpin legs, i.e. the values that
have to be taken into account for the calculatibthe characteristic time scale. The

final result is obtained:

(A), =2t ;Q' 2 (7.28)

by further averaging2 along z—-direction inside the hairpin legs.

The characteristic inverse time scale (7.27) is ttaculated, in the non-dimensional

form [()ICi )., h/Re, uT], by evaluating the field o€ in the legs of the hairpin. This

evaluation univocally depends on the flow fielchand.

7.3 Event-detection techniques
7.3.1 Conditional sampling and averaging

Conditional sampling and averaging is a group chméques for quantitatively
distinguishing particular regions of a flow, inclng coherent structures (Antonia
[50]). A conditional average can be seen as a apégpbe of generalized cross-

correlation:

1

R(x.Ax.7 )= lim =3 d % ) f( %8 x,t+7,) (7.29)
k=1

Wherec(x,y) is the conditioning function at a poimt in space and at a tinte, f

is a digital function,N is a number of points to be averaged ang) (s the time

delay.

7.3.2 Quadrant analysis

A useful tool for unambiguous definition of the lutent events occurring in the
boundary layer is the quadrant analysis, introduzgdVillmarth and Lu [51] (see
also [57], [135], [136], [137], [138], [139], [140]141], [142]). Considering the
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quadrant analysis, the local flow behavior is daddnto quadrants, depending on the
sign of the streamwise and normal velocity fludored u' and V', identified as
follows:
= Q- first quadrant, where' >0 andVv > (, denoting an event in which high-
speed fluid moves toward the center of the flowdfie
= Q,- second quadrant, wheng <0 andv > (, denoting an event in which
low-speed fluid moves toward the center of the flogdd, away from the
wall (ejectior);
» Q,;- third quadrant, where' <0 andv < (, denoting an event in which low-
speed fluid moves toward the wall;
= Q,- fourth quadrant, where' >0 andV < (, denoting an event in which high-
speed fluid moves toward the wasi\eep.
The most relevant events are those of the secahdhanfourth quadrants. Ejections
are frequent at a distance from the wall, whileegvgeare frequent near the wall. The
ejection and sweep events — the events most raldtedhe production of Reynolds
stress — are the manifestation of the dynamic e of evolution of turbulent

structures in the boundary layer.

7.3.3 Linear stochastic estimation
The LSE (Linear Stochastic Estimation) techniqua isrocedure that allows to

obtain the best linear approximation to a condaln averaged flow field

(U (%) 1y (x)) wherey (x) is a velocity event specified at poist, upon which
the flow is conditioned. The best linear estimétéhe fluctuating flow fieIdJ{(X)

is formulated in terms of an event vectqr(x ) as follows:

F00=2 4 (4 1)y (7.20)
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where (L ) are the linear estimation coefficients to be deteed such that the mean

square error between the linear estimaf¢x) and the conditional average
(u(X)1u(x)) is minimized. The estimated flow field dependstiom event vector.

The LSE technique is used by [143] and [144] fo #stimation of conditional
eddies in the case of homogeneous shear flow, 4%] [ib the case of the turbulent
channel flow and by [66] for the eduction of artiaditurbulent structure associated

to aQ, event to be followed numerically in its subsequentporal evolution.

7.3.4 VITA Analysis

Another tool is the VITA Analysis (Variable-IntevaTime-Averaging),
introduced by Blackwelder and Kaplan [146]. In penfing the VITA analysis, in a
time series of pointwise velocity data one wantslétect the instants in which the
highest velocity fluctuations occur. The notatidnlacal average is introduced, an
averaging operation over a time interval of theeordf the time scale of the
phenomenon under study. The method basically dsnisighe identification of the
instants in which the variance of the velocity detaa significant time interval is
greater than the variance of the entire seriesodalized measure of the turbulent
energy is obtained by applying the VITA technigaghe square of the velocity and
subtracting the localized squared mean value. lksrsicope, a localized variance is
formulated, defined as:

var(x ,t,T) :<u2( X ,t,T)>—< u x.t 'I)>2 (7.31)

Where T is the averaging time. The detection criteriorcaenpleted by using a
threshold level on the VITA variance signal.
In an analogous way, also the spatial countergavi A can be defined, the VISA

analysis (Variable-Interval Space-Averaging, se)[5

176



Chapter 7 — Results of the Simulations: Flow Struces

7.4 Results

The present study shows the existence and the en¢quccurrence of hairpin
packets in wall bounded flows by using high acaustulations at high Reynolds
numbers. The results of the DNS, performedRat = 200, 400, 60in terms of flow
structures, are presented. The scientific visuatimaof vortical structures is done by

using Paraview, an open-source, multi-platform datelysis and visualization

application fttp://www.paraview.org/

Working with DNS data of turbulent channel flow,6]6adopt the criterion of
visualizing isosurfaces (of the square) of the imagy part of the complex
eigenvalue pair of the velocity gradient tensogtthepresents the local swirling
strength of the vortex. The method is frame inddpehand, due to the fact that the
eigenvalue is complex only in regions of local alex or spiraling streamline, it
automatically eliminates regions having vorticityt Imo local spiraling motion, such
as shear layers. The evolution of a single haiyairiex-like structure in turbulent
channel flow is considered. The initial vorticatusture is obtained from the two-
point spatial correlation of the velocity field lyear stochastic estimation, given a
second-quadrant event vector. Initial vortices hgwvorticity that is weak with
respect to the mean value gradually evolve Qteshaped vortices that persist for a
relatively long time and decay slowly.

Initial vortices that exceed a threshold strengithwespect to the mean flow
generate new hairpin vortices upstream from thengmy vortex. The mechanism of
the upstream-process generation is similar to graposed by [56], with some
differences in the details. It is also found thawrhairpins generate downstream of
the primary hairpin forming, together with the upaim hairpins, a hairpin’s packet
that propagate coherently. The low-Reynolds numbBIS results of [66] are
integrated by the PIV measurements of [147] atikedly higher Reynolds numbers,
giving rise to a conceptual model founded on theplrapacket paradigm (the term
hairpin is used here to indicate cane, hairpinsésinoe, omega-shaped vortices,
being these structures as variations of a commait Bebw structure at different

stages of evolution).
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Fig. 7.1 — Scheme of nested packets of hairpirnicggtgrowing up from the wall (adapted from
[147]).

In this model (Fig. 7.1) packets of vortices orgm at the wall from a
disturbance. Firstly, the primary hairpin is formétdis stretched and intensified by
the difference between the streamwise velocitytsitlegs and head and grows
continuously in time evolving into an omega-shapedex. If its strength is high
enough, it generates a new hairpin, inducing angt@, event that interacts with the
high-speed fluid behind the primary hairpin.

As time progresses, the secondary hairpin grows kmegins to create a tertiary
hairpin. The resulting packet of hairpins in notnsyetric and, with time, the pattern
of the vortices in the packet become rather comglexhe buffer layer low-speed
streaks form between the hairpin’s legs. On theames larger packets propagate
downstream more rapidly with respect to the smadled the overall dynamics of
hairpins does not appear to be governed by justrianouter variables.

After the application of the swirling-strength erion, the quadrant analysis of the
flow field is considered, in order to visualize aithe events that characterized the
motion of hairpin-vortical structures and evaluditeir coherency, stability and
persistency.

More details about coherent structures and thebvprdical structures may be found
in [134] and references therein.
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7.4.1 Vortical structures in the wall region &e_=200

The DNS database related to the plane channBeat 20(, whose numerical
results are described @hapter 6 is employed in this study.
Thus, after the application of thd, vortex detection method to the fluctuating
portion of the computed velocity field, a flow fiebppears, filling the computing
domain of turbulent structures adjacent to bothengmnd lower walls. An overall

view of vortical structures af” =1 is shown in Fig. 7.2: hairpins distribution among
the two solid walls is shown in Fig. 7.3, while wie of hairpin structures over each
wall are shown in Figs. 7.4 and 7.5, at the upperthe lower wall, respectively. In

these figures, the non-dimensional value of therlswgistrength parameter that

characterizes the external surfaces of the vorsicattures isl,, = 9.25[10".

Figure 7.2 — Vortical structures in the computirgréin atRe, = 200C.
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Figure 7.3 — Vortical structures in the computirgréiin atRe, = 20C: lateral view.

Figure 7.5 — Vortical structures in the computirgréiin atRe, = 20C: superior wall.
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Figure 7.6 — Representation of hairpin vortices quadrant events at = 23and A, =9.2510":

hairpin in cyan, ejection in red and sweep in yllo

Considering the DNS databaseR¢, = 20(, it is possible to capture and study the

temporal evolution of an isolated turbulent vortexorder to explain many of the
features observed in wall turbulence models by [&84dl [55]. Furthermore, the
interaction between turbulent events, detected fipylyang the quadrant analysis
technique, and vortical structures is investigated, In the following, the analysis
of some interesting sequences extracted from th& Database is described. Cyan

color is used to represent vortical structures, geldr is used to represent tigg
quadrant event (ejections), while yellow color &ed to represent th@, quadrant

event (sweeps).

The first sequence analyzed regards the evaluafighe relationship betweerd'®2
and 4" quadrant events and dynamics of vortical strustu¢Bigs. 7.6-7.11)
considering the time evolution of two hairpin-vods at the lower wall.

Two main persistent hairpin vortices are visiblel @enoted , in Fig. 7.6 43) and
(2), at t* =23: both of them are characterized by a quite elewatif their heads,
while the legs are hidden by the presence of adhrerctures nearby solid walls. In

particular, the main primary hairpin is visible azmmpletely developed, while the
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Figure 7.7 — Representation of hairpin vortices quadrant events at =24 and A, = 9.25(10":

hairpin in cyan, ejection in red and sweep in yello

Figure 7.8 — Representation of hairpin vortices qnadrant events at =25 and A, = 9.25010":

hairpin in cyan, ejection in red and sweep in yello

second one is characterized by the complete dewanpof one leg on the left-side.
Below the head of each one, the internal spacé&efstructure is occupied by the

ejection isosurfaces, showing th@ event is the main mechanism through which

the head of a hairpin is raised upwards (and baakwa< 0,V > 0). Two sweep
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Figure 7.9 — Representation of hairpin vortices quadrant events at =26 and A, = 9.25(10":

hairpin in cyan, ejection in red and sweep in yello

isosurfaces start to appear at both side of thginai but they do not play a relevant
role in this phase.

Figure 7.7, att® =24, shows how both the two hairpins continue to griwe
exclusively for the pushing up action of ejectiomghile sweeps isosurfaces are
totally irrelevant.

At t* =25 (Fig. 7.8), the primary hairpin is mature and weifined, assuming the
typical Q —shaped, while the effect of push-up of ejectiorsistace on the second
hairpin starts to become more evident with the ftram of the leg on the right-side.

The primary hairpin continues its development, In@iog a persistent and symmetric

vortical structure in the flow field at® =26 (Fig. 7.9), while the second one
continues its development under a residual infleesicejection, until its disruption
(Figs. 7.10 and 7.11). Observing the sequencedeseribed, it is evident the action
of the ejections in the first phase of hairpinsnfation, that allows the growing of
their heads upwards and defining the persistentactexr of theQ — shaped vortices

in the flow field with no presence of sweep events.

183



Chapter 7 — Results of the Simulations: Flow Strucgs

Figure 7.10 — Representation of hairpin vortices quadrant events at =27 and A, = 9.25(10":

hairpin in cyan, ejection in red and sweep in yllo

Figure 7.11 — Representation of hairpin vortices @nadrant events at =28 and A, = 9.25010%:

hairpin in cyan, ejection in red and sweep in yllo
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Figures 7.12-7.17 show another sequence of haugitical structures, characterized
by a couple of hairpins. As shown in Fig. 7.12, fin& hairpin is visible, while the
second one is going to rise. Also in this case gfbetion isosurface fills the internal
space of both the hairpins, while a consistent pvisasurfaces starts to appear along

the right-side of the legs, surrounding also thekra the primary hairpin.

Figure 7.12 — Representation of hairpin vortices quadrant events at = 220 and A, = 9.25(10":

hairpin in cyan, ejection in red and sweep in yello

Figure 7.13 — Representation of hairpin vortices qmadrant events at =221 and A, = 9.25(10":

hairpin in cyan, ejection in red and sweep in yello
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Figure 7.14 — Representation of hairpin vortices quadrant events at = 222 and A, =9.25(10":

hairpin in cyan, ejection in red and sweep in yllo

Figure 7.15 — Representation of hairpin vorticed quadrant events at =223 and A; = 9.25010":

hairpin in cyan, ejection in red and sweep in yllo

Figure 7.13 shows, more in detail, the interacti@tween ejections and sweeps in
the primary hairpin. They are responsible of twpagte actions: ejection isosurface
tries to push up the hairpin, while sweep isos@fiet its legs stay close to the solid
wall, providing a downward action also to the nedkis combined mechanism

guarantees the morphological evolution and thegpvasion of the stability of the
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Figure 7.16 — Representation of hairpin vortices quadrant events at = 224 and A, =9.25(10":

hairpin in cyan, ejection in red and sweep in yllo

Figure 7.17 — Representation of hairpin vorticed @uadrant events at = 225 and A; = 9.25010":

hairpin in cyan, ejection in red and sweep in yllo

primary hairpin. The second hairpin, indeed, isngdb define its structure under the
action of only ejection isosurface. Figures 7.185/%&how the predominant event
action for defining the time evolution of hairpih): the sweep isosurface wraps up
the hairpin’s neck, forcing to stay close to thidswall by deforming the head. The
hairpin (2) is more visible and defined in this phase, charatd only by the action
of the ejections. Figures 7.16-7.17, finally, shitve disruption of hairpitfl) and the
evolution and development of hairp{8), similar to that observed in the previous

sequence.
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Figure 7.18 — Representation of hairpin vortices quadrant events at = 220 and A, = 9.25(10":

hairpin colored by usingl, values from light-blue to light-red, ejection irdrand sweep in yellow.

Figures 7.18-7.20 show some plots of the same segquaeviously analyzed, whose
hairpins are colored by using the values, that represent a measure of the local
strength of stretching or compression of vorticalictures. In this case, the intensity
of A is defined by using a chromatic scale from lighteb(the lowest values) to
light-red (the higher values).

Considering the initial phase (Fig. 7.18), the eggrisosurfaces are responsible of
the stretching of the heads, for both hairphy and (2), while sweep isosurfaces
determine the compression of the corresponding legs

In Fig. 7.19, the compression involves also thedhefahairpin(1) because of the

predominant effect of sweeps, causing the breadawgn of structures (Fig. 7.20).
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Figure 7.19 — Representation of hairpin vortices quadrant events at = 222 and A, =9.25(10":

hairpin colored by usingl, values from light-blue to light-red, ejection idrand sweep in yellow.

Figure 7.20 — Representation of hairpin vortices quadrant events at =225 and A, = 9.25(10":

hairpin colored by usingl, values from light-blue to light-red, ejection iedrand sweep in yellow.
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Finally, an interesting sequence (Figs. 7.20-7@03a single Q —shaped hairpin-
vortex is described. Also in this case, flow stames are colored by using the

values, while events are represented by usingsfeolored in red and yellow for

ejections and sweeps, respectively.
Figure 7.21 shows an isolated structuré’at 450: the growing phase is determined

only by the ejection isosurfaces. At =451 (Fig. 7.22), two sweep isosurfaces
adjacent to the external side of the neck and lmgsear: the sweep event is

responsible of the legs compression, while ejectietermines the stretching of the

head, ensuring the stability of the vortex unti tihstantt” = 452is reached (Fig.
7.23).

Figure 7.24 shows how sweep isosurfaces is goingvéslap also the head of the
vortex, forcing the vortex itself to stay closethe wall (Figs. 7.24-(7.27).

The predominant action of sweep isosurfaces detesrthe disruption of the hairpin
(Figs. 7.29-7.31).

Figure 7.21 — Representation of a single vortexguratirant events at = 450 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection idrand sweep in yellow.
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Figure 7.22 — Representation of a single vortexguratirant events at =451 and A, = 9.25(10":

hairpin colored by usingl, values from light-blue to light-red, ejection idrand sweep in yellow.

Figure 7.23 — Representation of a single vortexguatirant events at = 452 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection iedrand sweep in yellow.
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v &
Figure 7.24 — Representation of a single vortexquatirant events at = 453 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection idrand sweep in yellow.

Figure 7.25 — Representation of a single vortexguatirant events at = 454 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection iedrand sweep in yellow.
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Figure 7.26 — Representation of a single vortexquratirant events at = 455 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection idrand sweep in yellow.

Figure 7.27 — Representation of a single vortexguatirant events at = 456 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection iedrand sweep in yellow.
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Figure 7.28 — Representation of a single vortexguatirant events at = 457 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection idrand sweep in yellow.

AR

Figure 7.29 — Representation of a single vortexguatirant events at = 458 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection iedrand sweep in yellow.
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Figure 7.30 — Representation of a single vortexquratirant events at = 459 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection idrand sweep in yellow.

Figure 7.31 — Representation of a single vortexguatirant events at = 460 and A, =9.25[10*:

hairpin colored by usingl, values from light-blue to light-red, ejection iedrand sweep in yellow.

The major finding of this discussion consists ia thear evidence that the process of
morphological evolution of the primary hairpin vext(the head rises upwards, while

the legs stay close to the wall) and the conseqpendistency and stability of
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vortical structures is due to the combined actiohsejection and sweep events.
Where this combined effect is not present the meod development of a persistent
hairpin is not successful, as demonstrated by ite dequence analyzed, while the
last two sequences described a more stable andie@omorphological evolution of
a single hairpin in the turbulent flow field.

7.4.2 Vortical structures in the wall region &Re_ =400
Considering the DNS databaseRe. = 40C and applying thel, criterion to the

velocity fluctuations, it is possible to show tHew structures that fill the plane
channel. Figure 7.32 shows an overall 3D view & fihysical domain: hairpin-
vortices are, in this case, many more with resp@¢he morphological consistency
of flow structures educed from the DNS databasBR&t= 20(, determining a more
composite and ordered flow pattern. Hairpins disttion among the two solid walls

is shown in Fig. 7.33, while views of hairpin stiures over each wall are shown in
Figs. 7.34-7.35, at the lower and the upper walipectively.

Figure 7.32 — Vortical structures in the computitegnain atRe, = 40C.
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Figure 7.33 — Vortical structures in the computitognain atRe, = 40C: lateral view.

Figure 7.35 — Vortical structures in the computittgnain atRe, = 40C: superior wall.
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One of the first results in studying the structuoéshe turbulent boundary layer at
high Reynolds number, confirmed by numerical resust related to the visualization
of streaks, that describe the flow organization mhaternating unsteady arrays of
high- and low-speed regions are aligned in theastreise direction. Figures 7.36-
7.38 show the distribution of streaks in the planannel, considering only the lower
wall, in terms of interaction between turbulent®geand vortical structures.

Figure 7.36 — Representation of vortical structunes quadrant events on the lower walt'at 3 and

A, =2.625110" : hairpin in cyan, ejection in red and sweep iriowel

Figure 7.37 — Representation of vortical structumed quadrant events on the lower waltat 4and

A, =2.625110" : hairpin in cyan, ejection in red and sweep iriowel
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Figure 7.38 — Representation of vortical structumed quadrant events on the lower walt’at 5 and

A, =2.625110" : hairpin in cyan, ejection in red and sweep iriowel

In this case, the presence of vortical structureghe turbulent boundary layer,
organized as a forest of hairpins, is of directewice, thanks to the availability of
high accurate DNS database. Moving outward fromwad, many vortices whit
different scale, size, strength and orientationeappthis transition suggests the
presence of an inner region, with persistent syresiiuctures, and an outer region,
dominated by vortex motions of various size.

Figures 7.39-7.42 show the isosurfacesigfcolored by using the local values of the
streamwise velocity, where highemu are represented by red color. A typical flow
field organization, where low speed zone (in grear® characterized by smaller
scale hairpins in the inner region, overlapped drgéd scale hairpins in the outer

region, characterized by high velocity (in red).
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Figure 7.39 — Representation of vortical structates =180and A, = 2.62510" : hairpin colored

by using the local value afvelocity.

Figure 7.40 — Representation of vortical structaets =18land A, = 2.625110% : hairpin colored

by using the local value afvelocity.
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Figure 7.41 — Representation of vortical structates =182and A, = 2.6251.0" : hairpin colored

by using the local value afvelocity.

Figure 7.42 — Representation of vortical structarets =183and A, = 2.625110" : hairpin colored

by using the local value afvelocity.

The arrows indicate vortices that are grouped togeh streamwise-aligned packets,
that grow upwards and propagate with small velocgp that their spatial

arrangement has a long lifetime.
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The same flow structure distribution can be analyimeterms of interaction between
hairpins and events, detected by applying the quadmalysis (Figs. 7.43-7.46). As
represented in Fig. 7.43, ejections occur oftetemporal succession: in fact, the
most relevant part of the turbulent production psscin the boundary layer occurs
during outward ejections of low-speed fluid andusfires of high-speed fluid flow
towards the wall. Thus, the near-wall turbulencedpction process appears as an
intermittent cyclic sequence of events, typicakled bursting phenomenon. Arrows
indicate the vortical structures and events helpetmognize more specifically the
hairpins that form the packet. While the packetntans its symmetry within the
flow field, vortices are asymmetric with legs ofagual size, characterized by
distortions caused by the stretching and compressitions of other vortices.

Figure 7.43 — Oblique view of vortical structuresl@vents at* =180and A, = 2.6251L0" : hairpin

colored by usingd, values from light-blue to light-red, ejection iedrand sweep in yellow.

202



Chapter 7 — Results of the Simulations: Flow Strucgs

Figure 7.44 — Oblique view of vortical structuresl@vents at* =181and A, = 2.625110" : hairpin

colored by using), values from light-blue to light-red, ejection iedrand sweep in yellow.

Figure 7.45 — Oblique view of vortical structuresia@vents at* =182and A = 2.625110" : hairpin

colored by usingd, values from light-blue to light-red, ejection iedrand sweep in yellow.
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Figure 7.46 — Oblique view of vortical structuresl@vents at* =183and A, = 2.6251.0" : hairpin

colored by using), values from light-blue to light-red, ejection iedrand sweep in yellow.

Thanks to these results, hairpins packets are widenost clearly, confirming that
these configurations (packets and envelope of pgclkee most frequently at high
Reynolds number flows than in low Reynolds one [134

7.4.3 Vortical structures in the wall region &e_ =600

All the previously conclusions done considering tHew structures at
Re, = 200, 40(are confirmed and synthesized by those extracted the computed
velocity field atRe, = 60C. Also in this case, after the application of the criterion
for vortex-detection to the fluctuations of veloes, it is possible to visualize the
flow field, that appears full of turbulent struatsradjacent to both the upper and the
lower walls, respectively. The representation oftical structures att”™ =1 and
A, =1.44010% is shown in Fig. 7.47; Fig. 7.48 shows a lateral vathe channel,
in order to appreciate the density of vortical structures close to dlis; iinally,

Figs. 7.49 and 7.50 show the representation of vortical struatitee lower and the
upper wall, respectively.
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Figure 7.47 — Vortical structures in the compuftitegnain atRe, = 60C.

Figure 7.48 — Vortical structures in the computitognain atRe, = 60C: lateral view.

Observing figures about flow field &e, = 60C, it is possible to note how complex

is the flow structure morphological distributiohetstreaks are better defined and the
corresponding packets are many more with respecthése founded at lower
Reynolds numbers considered in this work.
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Figure 7.50 — Vortical structures in the computittgnain atRe, = 600C: superior wall.

Figures 7.51-7.54 show the representation of \arstructures where hairpins are
colored by using the local values of the streamwedecity , in order to evaluate the
propagation of the streaks within the plane chamamel their interaction near the
centerline. There are hairpins with a remarkabéwagion of their heads because of
stressed by high values af velocity and hairpins characterized by low valoés

velocity that are responsible of the propagatiothefpackets. Interactions
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Figure 7.51 — Representation of vortical structate$ =45 and A, =1.440010%: hairpin colored by

using the streamwise velocity valuas

Figure 7.52 — Representation of vortical structaet =46 and A, =1.440010*: hairpin colored by

using the streamwise velocity valuas
between vortices increase the complexity of thewflpattern, making the

interpretation, understanding and visualization tbé channel sometimes very
difficult.
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Figure 7.53 — Representation of vortical structaets =47 and A, =1.44(110*: hairpin colored by

using the streamwise velocity valuas

Figure 7.54 — Representation of vortical structaes = 48and A, =1.4410° : hairpin colored by

using the streamwise velocity valuas
Figures 7.55-7.58 show the same sequence of sanfpbes t* =45to t* =48,

focusing on the interaction between vortical stnoes and events: the lower wall is

considered because here turbulence manifests itsaffacts.

208



Chapter 7 — Results of the Simulations: Flow Strucgs

Figure 7.55 — Representation of vortical structaes quadrant events &t =45 and

A, =1.44010" : hairpin in cyan, ejection in red and sweep irloyel

Figure 7.56 — Representation of vortical structuned quadrant events &t =46 and

A, =1.44010" : hairpin in cyan, ejection in red and sweep irioyel
It is evident how complex are the events that oeturigh-Reynolds numbers: there

are many more hairpins that form a lot of packet®se coherent alignment created

an induced backflow region inside the flow fieldisimuch longer than the backflow
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Figure 7.57 — Representation of vortical structaes quadrant events &t =47 and

A, =1.44010" : hairpin in cyan, ejection in red and sweep irloyel

Figure 7.58 — Representation of vortical structunes quadrant events &t =48 and

A, =1.44010" : hairpin in cyan, ejection in red and sweep irioyel
induced by a single vortex, as observed by [148] [@49]. Arrows, in particular,

indicate some of the packets that are present enfldw field, that confirm the

observations done by [150] and [151] about theuesgy of ejection events, that

210



Chapter 7 — Results of the Simulations: Flow Struces

allow the grouping of vortices in turbulent bursisth respect to sweep events, that
pump fluid downward from the outer region of thachel.

Furthermore, the intense action of ejection andegpwevents close to the walls
suggests how events strongly contribute to the niRapnolds stress with the

increase of the Reynolds number.
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Conclusions

This thesis has proposed a novel implementationtlfier Direct Numerical
Simulation of a three-dimensional, fully turbulemg¢ompressible and viscous flow
on high performance architectures. In particulae, ise of CPU/GPU hybrid parallel
paradigms has allowed the design and implementafiorew computational models
and algorithms, suitable for single- and multi-GRdd more accurate computational
domain has been considered, both in space and tmarder to produce a large
amount of simulation data related to the problertudfulent flow in a plane channel

at Re, = 200,400, 60.

The advanced methodology proposed is based on itmeetasks: the DNS as a
tool of research for obtaining numerical databasteghe fluid flow field with
adequate accuracy in space and time; the high rpeaifce computing techniques,
based on the most advanced parallel architectuisash(as hybrid CPU/GPU
systems) for developing a high performance Naviek& solver, able to simulate
the turbulent flow in a plane channel at high Régasmumbers; the statistical tools
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and the analysis of flow structures for performingpdeling and controlling
turbulence.

The DNS databases have allowed to analyze in detdililence statistics for
verifying the adequacy of the computational domaimd energetic budgets for
understanding turbulence dynamics in the near weglions. The analysis revealed
that, with respect to the normal stresses, the walharacterized by regions with an
intense energy production activity and regions ati@rized by intense energy
dissipation activity along the streamwise directidarthermore, the velocity

pressure-gradient plays a very important role a®rsig Re = 40C, since it

determines a loss of energy due to the increasedggrdissipation. About the
Reynolds stress budget related to the Reynolds stesss, the energy production
diminishes as the shear stress diminishes, toairga@an increase in dissipation in
the inner region. For the first time, the analylsased on DNS results has been
extended to the dissipation and the anisotropy baidggets, giving an important
contribute in turbulence modeling. About dissipatiate budget, it was possible to
note the strongly non-isotropic nature of the giggon process at high Reynolds
numbers, that caused the loss of energy near tlis. widout the anisotropy rate
budget, for the relevant non-zero stresses, it rdest the highly anisotropic
behavior of fluctuations in near-wall region, whdensidering the central region of
the channel the behavior of fluctuations is esaéptisotropic.

In order to investigate deeply the role of Reynofdeesses in production,
transport mean momentum, dissipation of turbulémétic energy of inhomogeneous
flow, the organized motion of wall turbulence haseb analyzed by extracting
coherent structures from the fluid flow field, catesing DNS numerical data. The
coherent structures have been qualitatively andlyby using a scientific
visualization approach, based on plotting the idases of the turbulent swirling
strength, that describes the interaction betweépiha and events, observed in data
time series. Flow structures educed from the flakg portion of the velocity field

at Re, = 20C confirmed the classical theory about vortical stinees, allowing to

show the morphological evolution of a single hairpihat provided a means of
producing turbulent kinetic energy, and its intéi@c with events, such as ejections

and sweeps, in order to describe its birth, grovand disruption close to the walls.
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The flow structures analysis d&e. = 40C allowed to describe the mechanism of

hairpin packets generation: they populate a sicgfi fraction of the boundary layer
and occur in the streamwise direction with incnegssize along the downstream

direction and characterized by small dispersiotheir propagation. Thanks to high

accurate numerical results, the complete view efflbw structures aRe, = 60C is

shown for the first time, revealing how ejectiordasweep events strongly contribute
to the mean Reynolds stress with the increaseeoR#tynolds number. The analysis
of the time series revealed the intense activityflofv structures close to the
boundary layer, playing a crucial role in determgskin friction and on dynamics
for producing and dissipating turbulent kinetic igye

Future works will be addressed in order to integthe Navier-Stokes equations
at higher Reynolds numbers to increase signifigatite knowledge about wall-
bounded turbulence. It may be done by re-thinking ianplementing a new parallel
implementation on multi-node multi-GPU, startingrfr the algorithms designed for
the present thesis. Furthermore, since coherenttstes actually represent a
challenging task for the physical description abtudence phenomena, an interesting
application may be related to the use of the prop#rogonal decomposition (POD)
technique for flow structures eduction, in ordeatalyze from an energetic point of

view their evolution and eduction from the fluctagtportion of the velocity field.
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Equations

A.1 Massconservation equation
In incompressible-fluid flows, the conservation mfass is expressed by the

continuity equation:

g—:i =0 (A.1)

In Eg. (A.1) no time dependence appears, so tieatdhtinuity equation exhibits the
same form in both steady and unsteady flows. Atsswitching from a dimensional
to a non-dimensional formulation — besides the that non-dimensional variables
are involved — Eq. (A.1) has the same form. No disn@nless groups are involved,
meaning that continuity has a kinematic charactet,being influenced by any flow

parameter.
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A.2 System of Navier-Stokes equations

The fluid-flow momentum equation can be written as:

E:%+u aq :—i%+%

— (A.2)
Dt ot 'ox;, podx 0x
where g; is the viscous-stress tensor (Newtonian fluid):
0, =§ (A.3)
and S, is the strain-rate tensor (in constant-densitydus; = 0):
- du.
b o2(0x,  0x
so that:
. 0S.
0 ,94y__190p , 95 (A.5)
o0 'ox,  pox 0x
and being:
u ou. 0
oy :i{a_hij: LE] A6)
ox,0x, 0% (0x 0X d X

The system of the Navier-Stokes equations (momerancd continuity equations)

can be written as:

2
%+u aq :—1@+V 4 Y

3 o — (A7)
t 0X pOx  0x0X
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ou.
—_1 = A.8
ox (A.8)

where the convective term of Eqg. (A.7) in expressedon-conservative form and
body forces do not appear explicitly.

A widely-used non-dimensional form of Eq. (A.7) aAd8) is:

2
L, 04 __ o, 1 oy

3 = — (A.9)
t 0X; 0x Re 0x0X

ou
— 1 = A.10
ox ( )

where the dependent variables are nowy/u, and p/,ou,2

Re, = pu,h/u=uhv, and for simplicity their symbols have not beeterad in

switching from the dimensional to the dimensionlesmalism.

Equation (A.7) can be written in symbolic notatian a

aa—ltl+(u [ﬂ])u:—%ﬂpﬂ/ﬂzu (A.8)

Making use of the vector identities:

D[@uu):(u[ﬂj)u+u(ﬂﬁh)=(uﬂﬂ)u (A.9)
(uDD)uZ%D(uEh)—uX(DXu)Z—;D(uﬁh)—uxm (A.10)
(um)u%u(m m):(um)u:_;[m fuu) +(uM)u] (A11)

where:
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w=0xu (A.12)
ou

=&, — AR

a%( ijk an )

Is the vorticity, Eqg. (A.8) can be written, respeely, in conservative, rotational and

skew-symmetric form:

g_‘tu 1 fun) = —%DpH/DZu (A14)
a—u—uXm:—D(£+1(uﬁh)]+VD2u (A.15)
ot p 2
Ou 1 1
E+§|:D[quu)+(uﬂ]])u]:—;Dp"‘VDzu (A.16)

The momentum Eq. (A.8) can also be written by ateréng different forms of the
diffusive term.

Making use of the vector identities:
OfCu) =0% =0(0m)-0x(0xu) =-0x(0Oxu) =-0xe  (A.17)
u+0(0@) = 00(0u) +(0u)' | (A.18)

one obtains'(is transpose):

aa_l:+(u|]]])u:—%ﬂp+v|][qﬂu) (A.19)
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aa_ltl+(uD]])u:—%Dp—|/Dx(Dxu) (A.20)
a_“+(um)u:_lgp_vgxw (A.21)
ot p '

du+(u)u =—Op+i0) ((0u) + ()" | (A.22)

0

that are forms of Eqg. (A.8) in which the viscousras expressed, respectively, in

conservative, divergence-curl, curl and stresstdmece form.

A.3 The Reynolds-Averaged Navier-Stokes equations

According to Reynolds decomposition, the dependarniables in Egs. (A.7) and
(A.8) can be decomposed into mean and fluctuatartspand averaged, so that the
Reynolds-Averaged Navier-Stokes (RANS) equatiorsoatained:

U ou ] 00, O0r,
%:%.Fg_a_q:_i@.y_"__” (A.23)
Dt ot 'ox, pdx 0x 0
%o (A.24)
0x
where J; is the mean viscous-stress tensor:
g, = 2§ A.25)

and §i is the mean strain-rate tens@, (= 0):
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_ o Ju
j =l(ﬂ+_lj (A.26)
2\ 0x;  0x
Substituting, one has:
) V] 2y or;
o, 90 _ 10, 0’7 0% (n.27

% _y (A.28)

where:

pr; = pyd ()2

is the Reynolds-stress tensor.

A.4 Transport equation of the mean-field kinetic ener gy
The equation governing the kinetic energy of theumgeld GG /2 is:

R(Eg—j =E(E——j+— i(_l——uj -
ptlz ) atl2 1" ljlaxj 2"
5 _ (A.30)
_ P_ e o= T
_a_xj _;“i +2vy§ - UP'U+'(:jUiiS_2'/ii 3

where:
the first three terms on the rhs of Eq. (A.30) esent, respectively, the net

flux of work associated with the mean pressure, meiacous stress and

turbulent stress;
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= the last two terms on the rhs of Eqg. (A.30) repmeseespectively, the
dissipation related to turbulent stress (the pradocof turbulent kinetic

energy, P, ) and mean viscous stress.

A.5 Transport equation of the mean turbulent kinetic energy

The equation governing the mean kinetic energyhefttirbulent fieldﬂ/Zis

[152]:

(A.31)

where:
= the first three terms on the rhs of Eq. (A.31) denihe net flux of work
associated, respectively, with fluctuating presstltuetuating viscous stress,
and turbulent stress;

» the subsequent turbulence-production teRp reflects the exchange of

kinetic energy between mean flow and turbulencex(iibits an opposite sign
with respect to Eq. (A.30) due to the fact thatrgpeexchange involves in
general a loss to mean flow and a gain to turbagnc
= the last terme on the rhs of Eq. (A.31) is the viscous dissipatd turbulent
kinetic energy. Unlike the dissipation relatedie mean viscous stress in Eq.
(A.30), this term is essential to the dynamicsuobtilence.
The turbulent kinetic energy transport Eq. (A.3d)obtained from a contraction of

indexes in the Reynolds-stress transport equation.

Equation (A.31), non-dimensionalized byf/v, can be written in the form

K =r,/2=UY/2 as follows:

221



Appendix A - Equations

DK _oK  _ oK
Dt o g ket Bes
ou ,op oyay 10 0°K (A.32)
u ———
:_Tik_l_ui_p__q____(qql-;l)'i'
0X, 0x 0% 0% 20% 0 %0 %

representing the balance between the local ratehahge and the convective
transport of turbulent kinetic energy on the lh€£qgt (A.32) and the following terms
on the rhs:

= the turbulent kinetic energy production term:

ou

P =-T, a_x; (A.33)
» the velocity pressure-gradient term:
M, =-u o (A.34)
ox

» the dissipation rate term (in the form of the isptc dissipation):

T

= (A.35)
0x, 0%,
= the turbulent transport rate term:
_ 10 (=
Te __ER(MLM) (A.36)
= the viscous diffusion rate term:
2
K = oK (A.37)
0% 0%,
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All the terms described above can be calculatedvgyaging the diagonal terms of
the Reynolds-stress tensor Eq. (A.29).

A.6 Reynolds-stresstransport equation
The Reynolds-stress transport equatil‘i]n:q'_uj’ is obtained from the second

moment:
UNU +( Nyi=0 (A.38)

The Reynolds-stress transport equation, non-dirnaaized byuf/v, can be cast

as [152]:

Dr. 0t 0T,

l=—4+0 L =P+MN -+ +D =
Dt 0t k axk 1] 1 1] -'l- [i? ( )
- A.39
ou. 7} ' ] ' OU —\ 01,
- — Tiki+rjk% — ui'a_p+u;a_p —Za_qi—i( L{lé)+ TIJ
0X, 0X, X, 0X ox0x 0dXx 0 X

representing the balance between the local ratehahge and the convective
transport of Reynolds-stress on the lhs of Eq. §Aahd the following terms on the
rhs:

» the Reynolds-stress production rate term:

ou, 0
P :_(rik T, ﬂj (A.40)
0% 0%

= the velocity pressure gradient terms:
op , ,op
M =-ju—+u A.41
ij {q an ] ] ( )

ox
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It can be split into the pressure-strdily; and the pressure-diffusiodl  ;

terms as follows:

It is well known that the pressure-strain term play important role on the
energy redistribution;

= the dissipation rate term:

' ou'
g =224 M (A.43)
0%, 0%,
= the turbulent transport rate term:
__ 0 (——
T = &(”W) (A.44)
= the viscous diffusion rate term:
0°r.
D, = : (A.45)
0%,0%,

Repeated indices imply summation oveR,3and the indiceq1,2,3 are used to

denote the streamwise’, the normal to the wally”™ and the spanwise’ directions,
respectively. In the above equatigris a non-dimensional kinematic pressure. In a

fully developed channel, the flow is homogeneousthe streamwise and the

spanwise directions. The relevant non-zero stresges this case are

uu, uu, 4,0, 4 4. The main expressions of the Reynolds stress lisidge here

reported.
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The Reynolds-stress production rate:

P, = _(@ ‘Zil + Uy ZL;:] =2q5%h= —2(ﬁa—uj (A.46)

0% oy
——0U, —0dU —0uU
P,=-| y 2+ Ll=— v'v/— A.47
# Maxk uzqaxkj [ ayj (A47)
The velocity pressure gradient term:

,ou’ 0 —,

|_|S’11:2p &7 nd,llz_z(&u p} (A.48)
ou’ ov' 0 ——— 0——

n,=p—+p'—,N,=—-|=—V p+—u'p' A.49
s;2— P dy p FVERRLE: {ax Y Ix p} ( )

LoV a 0 ——
M,,,=2p a—y,l‘ldzz——Z[&v p} (A.50)

,aWI _ 0 —
|_|533:2p E,ndss—_Z(&W pJ (A5l)

The dissipation rate term:
ou oy, _|(ouY (ov)  (ow)’

g, =221 = (—j + & +(—j (A52)

0X, 0%, 0X oy 0z
g, 220U 0%, (G_UO_VJJ, ou'ov’ +(0_u6_vzj (A53)

0X, 0%, 0X 0X oyoy 0z0
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. _20u2 ou, _ 5 (alj ov' {avj (A54)
2 T ox, 0% ax) | ay 0z
37 A i\ 2 N\ 2 N\ 2
€33 = 26u3 L 2 (6W j + ow +(6Wj (A.55)
0X, 0%, X oy 0z

» The turbulent transport rate term:

T, = o ( E _a%( uu'v) (A.57)
T,= —&(w) = —%( uv' v) (A.58)
T, = —&(u’zuzq) = —%( vv'y) (A.59)
T, = —%(m) = —%(m) (A.60)

=  The viscous diffusion rate term:

() _o°(i)

11~ % 9%, = 0y (A.61)
_o(usg) _o*(uv)
12 = ox, 9%, = 2y (A.62)
D,, = > (u;u;) = aZ(V' V') (A.63)

0X, OX, oy’
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(i) _or(ww)
D,, = an;ng =5y (A.64)

A.7 The Reynolds-stress anisotropy transport equation
The Reynolds-stress tensor can be written as drofso part and a deviatoric

part, the latter related with the Reynolds-str@ssaropy tensob, [153]:

T = Tijl + iJ.D (A.65)
2
T :ngu. +2Kq (A.66)
So that:
. O
b =_4 1 (A.67)
' 2K 3

The transport equation &@f can be written ag = ¢, /2:

oh _1(Pn § DK)_
Dt K Dt

ek

representing the balance between the local ratehahge and the convective

(A.68)

transport of turbulent anisotropy of Reynolds-sren the Ihs of Eq. (A.61) and the
following terms on the rhs:

» the Reynolds-stress anisotropic production term:
b Tij an Tij Iy
= R-2LR |=-f —+ 2—-T, (A.69)
X, K
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= the anisotropy velocity pressure gradient term:

,0p' , ,0p
M =—|y —+U — A.70
ij {q an ] aXJ ( )
= the anisotropy dissipation rate:
T, 'ou T oy
=g -1 :Zﬂ_l_ia_qﬂ (A.71)

A T ox, 0%, Kax 0x

» the anisotropy transport rate:

—("a00) (A.72)

Different forms of Eg. (A.68) can be obtained byca®posing the mean-velocity

gradient tensooU, /6x‘. into a symmetric parf_ﬁj (the mean strain-rate tensor) and an

anti-symmetric parWIj (the mean rotation-rate tensor):

ou = ~
—_ 1 =9 + A.73
=9 (A73)
where:
_ g ou.
5 =1 %, (A.74)
b2\ ox,  0x
_ o ou.
VViA :1 %_i (A.75)
b2 ax; 0
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A.8 Turbulent dissipation-rate transport equation
The turbulent scalar dissipation-rate transporéiqn € = ¢; /2 is obtained from

the moment equation as follows:

ou o
2v——(Nu)=0 A.76
o ox (NY) (A76)

Equation (A.76), non-dimensionalized b$/v, can be cast as [152]:
TES I =R R P RN+ T4 DY (ATH)

Explicating Eq. (A.78), one obtains:

0 _ 0€ _
g ==
ot ' ox
T A AT AT ae. T Aar— -
- p0u U 0U 0y ooy _,, 00 0" 0o lou,
0X; 0% 0% 0% 0%, 0, %0 % 0 %0 %0 X
A A —= 57 A.79
20 (e o[, aqau), 79
“0x,0 X,

0% 0%, 0%0%, 0 X0 X

5 o°u_ 9y , 9%

Equation (A.79) represents the balance between rébe of change and the
convective transport of turbulent dissipation ratethe Ihs of Eq. (A.78) and the
following terms on the rhs:

» the mixed production rate of dissipation:

Plz—a_ui,% a_q+ai (A.80)
T 0x 0% (0% 0X

» the production rate of the dissipation by mean-sigfagradient:
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o2 O 6u’(aq +aunJ

A (A.81)
0% 0%,\ 0%, 0%,
the gradient production rate:
T AT 2—
pr= oy 4 90U (A.82)
0%, 0%0%,
the turbulent production rate:
pt = 0 04 04 (A.83)
0%, 0%, 0%,
the pressure transport rate:
g:_Ei(a_p%J 84
P 0%\ 0%, 0%,
the turbulent transport rate:
_ [ou"ou' oav'ov'  ow' aw
T=-|V|———+——+—
¢ 0x 0x O0x dx O0X 6x
+aia_u+a_va_v+a_wa_w (A_85)
oy dy 0y oy 0y ady
o, VoV aw w
0z 0z 0zdz 02z0z
the viscous diffusion rate:
2
=_0¢ (A.86)
0%, 0%,
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= the turbulent dissipation rate:

T a2 A2
—p du Oy (A.87)
0%0%, 0X0 X,
The main expressions of the dissipation rate teasohere reported.
= The mixed production rate of the dissipation:
|:>£1 = _26_u a_ua_v +6_u6_v +6_ua_v (A.88)
oyl Ox 0x 0yody 0z0z
» The production rate of dissipation by mean-velogitgdient:
e = p0U(QUOU OVOV W w (A.89)
oy\ 0x dy 0x0dy O0x0dy
»= The gradient production rate:
2= A
pr= U 0U (A.90)
oyoy 0y

The turbulent production rate:
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axaxax ayaxax azaxax
du'du'ou’ odu'du'ou’ 6u6u6v+6u6u6v

OX 0y 0y 0X0z0zZ O0yoyody 0 yo 20 z
au au ow' auauaw avavau avavav

azayay azazaz axaxaxaya o) x
av 6v6vv av ov' ou' avavau avavav (A.91)

62 9% 0x ax ay ay axazaz 0 yo yo y
ov'ov'ov' ov'ov'ow dvovow Jdwodwadu

oy 020z 0zdyody 0z0 z0 z 0 X ¥ X
oy OX 0X 0z 0Xx0Xx 0x0ydy 0 x0 zd z
ow' ow' 6v+aw ow'ov' oV 6v6v+awaw6w

ay oy 0y o0y 0z 0z 0z0yoy 0 zd wo

__Z(GU Ju' au' auauau auauaw

= The pressure transport rate:

&

_20(3pTav opTov, 3p'dv (Ag2)
poyl 0Xx 0x 0y oy 0zdz

» The turbulent transport rate:

SN GACAE
(CINORCIN
BEEEE

= the viscous diffusion rate:

D, =0%c=— (A.94)
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The turbulent dissipation rate:

_| 9%’ o*u’ N a°u' 62u'+62u' 62u'+62u'62u'+6 u'o 2u'+
0X0X0X0X 0YX0Y X 0@ X & X0 X § 0Xx yo 0yozoy .

+62u' o°u' N 0°u' 0°u’ N d°u' azu'+62u'6 2u'+
oyoyoyy 0Yz09z o0& Yk yoozdoz z
+<92v' A N 0%v' 9%V N %' 0%V N 0%v' 0%V N o' 04! N
0X0X0XIX 0YX0Y X 020X0DX 0XYWRAY 0§ D dy z
+62v' 0%V N 0%v' 9%V N 0%V azv'+ FRYA azv'+
0yoyoywy 0Yz09z o0& Y & yooz&odz z
+02W' o°w' N 0°wW' 0°wW' N 9°w'a 2W'+ d°w'o 2W'+ 0 w'd 2W'+
0X0X0X0X 0YX0Y X 0@ ¥ & X0 X § 0Xx yo oyozoy z
+62W' o°w' N 9°w' 9 °w' N 9°w'o 2W'+0 “W'o ‘w'
oyoyoyy 0yYzog9z 0@ yYad yooz&oz|z

(A.95)
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