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Abstract 
 

 

 

Direct Numerical Simulation (DNS) of a fully developed turbulent channel flow 

represents a powerful tool in turbulence research: it has been carried out to 

investigate the main characteristics of wall-bounded turbulence. It consists of solving 

numerically the Navier-Stokes equations with physically-consistent accuracy in 

space and time. The major difficulty in performing turbulence calculations at values 

of the Reynolds number of practical interest lies in the remarkable amount of 

computational resources required. Recent advances in high performance computing, 

especially related to hybrid architectures based on CPU/GPU, have completely 

changed this scenario, opening the field of High Performance Direct Numerical 

Simulation of turbulence (HPDNS), to which new and encouraging perspectives have 

been associated with the development of an advanced numerical methodology for 

studying in detail turbulence phenomena. 

 The research activities related to the Ph. D. Program concerns the high 

performance direct numerical simulation of a wall-bounded turbulent flow in a plane 

channel with respect to the Reynolds number dependence in order to investigate 



iii  

 

coherent structures of turbulence in the wall region. The objectives of the research 

have been achieved by means the construction and the validation of DNS turbulent 

flow databases, that give a complete description of the turbulent flow. The Navier-

Stokes equations that governs the flow of a three-dimensional, fully developed, 

incompressible and viscous fluid in a plane channel have been integrated and a 

computational code based on a mixed spectral-finite difference scheme has been 

implemented. In particular, a novel parallel implementation of the Navier-Stokes 

solver on GPU architectures have been proposed in order to perform simulations at 

high Reynolds numbers. In order to deal with large amount of data produced by the 

numerical simulation, statistical tools have been developed in order to verify the 

accuracy of the computational domain and describe the energetic budgets that govern 

the energy transfer mechanisms close to the wall. Flow visualization has been 

provided in order to identify and evaluate the temporal and morphological evolution 

of flow structures in the wall region by using numerical methods for their extraction 

from a three-dimensional time-dependent turbulent flow database.  

 The first part of the Ph. D. thesis concerns a literature review of the main 

contributes about wall-bounded turbulence, the DNS, coherent structures and high 

performance Navier-Stokes solver. The historical background has been described in 

detail, from the earlier works until the most recent ones, underlying their importance 

and limitations. The problem statement concerns also the study of the physical-

mathematical characteristics of the system of the Navier-Stokes equation for a three-

dimensional, fully developed, incompressible and viscous flow. The second part is 

devoted to the study of the numerical method for the integration of the Navier-Stokes 

equations. A mixed spectral-finite difference technique for the numerical integration 

of the governing equations is devised: Fourier decomposition in both streamwise and 

spanwise directions and finite difference method along the wall-normal direction are 

used, while a third-order Runge-Kutta algorithm coupled with the fractional-step 

method are used for time advancement and for satisfying the incompressibility 

constraint. A parallel computational codes has been developed for multicore 

architectures; furthermore, in order to simulate the turbulence phenomenon at high 

Reynolds numbers, a novel parallel computational model has been developed and 

implemented for hybrid CPU/GPU computing systems. The third part of the Ph. D. 
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thesis concerns the analysis of numerical results, in order to evaluate the relationship 

between turbulence statistics, energy budgets and flow structures, allowing to 

increase the knowledge about wall-bounded turbulence for developing new 

predictive models and for the control of turbulence. 
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Sintesi 
 

 

 

La simulazione numerica diretta (DNS, Direct Numerical Simulation) della 

turbolenza di un fluido all’interno di un canale piano rappresenta un utile strumento 

nel campo della fluidodinamica al fine di valutare nel dettaglio le caratteristiche 

principali di un corrente turbolenta di parete. La maggiore difficoltà che storicamente 

si è incontrata nell’ambito della simulazione della turbolenza considerando valori del 

numero di Reynolds di pratico interesse ingegneristico è rappresentata dall’onerosità 

delle risorse computazionali richieste: di conseguenza, per un lungo periodo di 

tempo, l’analisi si è concentrata su semplici casi di fluidi turbolenti. I progressi nel 

settore del calcolo ad alte prestazioni ha favorito la nascita di una nuova filiera di 

ricerca, la simulazione numerica diretta ad alte prestazioni (HPDNS, High 

Performance Direct Numerical Simulation) della turbolenza, consentendo lo sviluppo 

di una modellistica numerica molto avanzata. 

Le attività sviluppate nel corso del Dottorato di Ricerca riguardano la 

simulazione numerica diretta della turbolenza di parete mediante il ricorso a tecniche 

di supercalcolo, al variare del numero di Reynolds, al fine di poter studiare le 
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strutture coerenti della turbolenza che si originano in prossimità della parete. Tale 

obiettivo è stato perseguito mediante la simulazione e la validazione di database 

numerici di un fluido tridimensionale, turbolento, incomprimibile e viscoso 

all’interno di un canale piano. Le equazioni di Navier-Stokes, che governano il moto 

di un fluido viscoso incomprimibile all’interno di un canale piano, sono state 

integrate mediante il ricorso ad un codice di calcolo basato su uno schema numerico 

di tipo misto spettrale-differenze finite. Si è proceduto allo sviluppo di un originale 

modello computazionale per l’implementazione del solutore di Navier-Stokes sulle 

nuove piattaforme di supercalcolo basate sulle schede grafiche, allo scopo di 

simulare la turbolenza considerando elevati valori del numero di Reynolds. Lo studio 

delle peculiarità del campo di moto simulato mediante il ricorso alla simulazione 

diretta è stato condotto mediante lo sviluppo di un set di strumenti statistici per la 

verifica del livello di accuratezza del dominio di calcolo e per la descrizione dei 

bilanci di energia che governano i processi di produzione, trasporto e dissipazione 

dell’energia cinetica turbolenta in prossimità della parete solida. Grazie alla 

visualizzazione scientifica è stato possibile, inoltre, identificare e valutare 

l’evoluzione temporale e morfologica delle strutture coerenti in prossimità della 

parete, attraverso il ricorso a metodi per l’estrazione delle strutture vorticose da un 

database tridimensionale le cui variabili sono funzioni note nel tempo e nello spazio. 

 La prima parte della tesi di Dottorato è incentrata sulla descrizione delle nozioni 

fondamentali della turbolenza e fornisce una panoramica sui principali riferimenti di 

letteratura che riguardano la DNS, il problema della turbolenza in un canale piano e 

le procedure numeriche per lo sviluppo di un solutore di Navier-Stokes ad alte 

prestazione e per l’estrazione delle strutture vorticose. La seconda parte riguarda lo 

studio di un metodo numerico per l’integrazione delle equazioni di Navier-Stokes. 

Tale metodo si basa su uno schema di tipo misto spettrale-differenze finite per 

l’integrazione delle equazioni, mentre per quanto riguarda l’avanzamento temporale 

si ricorre all’algoritmo di Runge-Kutta al terzo ordine di accuratezza, associato al 

metodo fractional-step per il soddisfacimento del vincolo di incomprimibilità del 

fluido. Sulla base dell’algoritmo numerico utilizzato per l’integrazione delle 

equazioni, è stato possibile sviluppare un nuovo modello computazionale: una prima 

versione parallela del solutore è stata sviluppata per calcoli di tipo CPU-intensive, 
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mentre per la generazione di database della DNS ad elevati numeri di Reynolds si è 

proceduto allo sviluppo di un nuovo algoritmo per il sistema di calcolo ibrido basato 

sul co-processing tra CPU e GPU. La terza ed ultima parte della tesi ha riguardato 

l’analisi dei risultati numerici, allo scopo di valutare le relazioni intercorrenti tra le 

statistiche della turbolenza, i bilanci energetici in prossimità della parete e le strutture 

vorticose, grazie cui è stato possibile fornire un utile contributo all’analisi dei 

fenomeni turbolenti per elevati valori del numero di Reynolds. 
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Roman Symbols (upper-case) 

=A  wetted area (in HR ) 

iiij xuA ∂∂= = velocity-gradient tensor 

1l
A = area of leg 1 (of hairpin vortex) 

2l
A = area of leg 2 (of hairpin vortex) 

rB = number of bytes read per kernel 

wB = number of bytes written per kernel 

== 55.C  additive constant (in law of the wall) 

== 22 bwf uC ρτ  bulk-velocity skin-friction coefficient 

=nC  constants (in structure functions) 

05050 ..CK ±≅  = Kolmogorov constant  

D  = discriminant of the characteristic equation of ijA
 

Dε = viscous diffusion rate 

ijD = viscous diffusion rate term 
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KD = viscous diffusion rate term (related to the kinetic energy) 

=pE  efficiency of parallel calculation (processors) 

=pdE  efficiency of parallel calculation (processors and disk) 

=fE  effectiveness of parallel calculation (processors)  

=fdE  effectiveness of parallel calculation (processors and disk)  

( ) =kE  energy spectrum 

=′′′ wvu F,F,F  flatness factors of velocity fluctuations 

=K  average kinetic energy of the turbulent field 

L = reference length (generic) 

=zyx L,L,L  dimensions of computational domain along z,y,x  

=+++
zyx L,L,L  dimensions of computational domain along z,y,x  (wall units) 

=N  grid points in each direction of computing domain 

=zyx N,N,N  number of grid points of computing domain along z,y,x  

mv
xN , mv

yN = grid points along the x- and y directions within minimum volume 

=P  wetted perimeter (in HR ) 

P ,Q , =R  scalar invariants of the velocity-gradient tensor ijA
 

1Pε =  mixed production rate of dissipation 

2Pε =  production rate of the dissipation by mean-velocity gradient 

3Pε =  gradient production rate 

4Pε =  turbulent production rate 

=KP  turbulent kinetic-energy production term 

ijP = Reynolds-stress production rate tensor 

b
ijP = Reynolds-stress anisotropic production term 

1 2 3 4, , ,Q Q Q Q =  first-, second-, third- and fourth-quadrant (in quandrant analysis) 

== PARH  hydraulic radius 

ijR = velocity-correlation tensor 

νULRe= = Reynolds number based on U and L 
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== νhuRe bb  bulk-velocity Reynolds number (based on bu  and h ) 

== νhuRe cc  centreline-velocity Reynolds number (based on cu  and h )  

== ∞ νduRed  Reynolds number based on ∞u  and d  (circular cylinder) 

=hRe  Reynolds number (in flow over a backward-facing step) 

νηηuReK =  = Reynolds number based on ηu  and η  

νulRel =  = Reynolds number based on  u  and  l  

=δRe Reynolds number based on Blasius boundary-layer displacement thickness 

νλλ uRe =  = Reynolds number based on u and λ  

== νττ huRe  friction-velocity Reynolds number (based on τu  and h ) 

== νττ HH RuRe  Reynolds number based on τu  and HR  

== ∞ νθθ uRe  momentum-thickness Reynolds number (based on ∞u  and θ ) 

=ijS  rate-of-strain tensor 

=ijS  mean rate-of-strain tensor 

=′ijS  fluctuating rate-of-strain tensor 

=pS  speedup of parallel calculation (processors) 

=pdS  speedup of parallel calculation (processors and disk) 

=′′′ wvu S,S,S  skewness factors of velocity fluctuations 

T = time as a dimension (also nondimensional runtime of computational code) 

Tε = turbulent transport rate 

totT =  total mean stress of the turbulent field 

ijT = turbulent transport rate term 

b
ijT = anisotropy transport rate 

KT = turbulent transport rate term (related to the kinetic energy) 

U = reference velocity (generic) 

=ijW rate-of-rotation tensor 

Y = turbulent dissipation rate 
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Roman Symbols (lower-case) 

=ijb  Reynolds-stress anisotropy tensor 

=d  circular-cylinder diameter 

=ijd  dissipation-rate anisotropy tensor 

=ijke  alternating-unit tensor 

seqf  = fraction of elapsed time inherently sequential (of computational code) 

CPU
seqf  = sequential fraction of computational components in elapsed time  

CPU
parf  = parallel fraction of computational components in elapsed time 

O/I
seqf  = sequential fraction of I/O components in elapsed time  

O/I
parf  = parallel fraction of I/O components in elapsed time 

=h  plane-channel half height 

k = wavenumber 

( )dp n,nk′  = scaling function for overhead (in computational code) 

( )dp n,nk ′′  = scaling function for overhead (in computational code) 

=l  integral length scale (of turbulence) 

=1l  leg one (of hairpin vortex) 

=2l  leg two (of hairpin vortex) 

=pn  number of processors 

=p  pressure 

=p  mean pressure 

=′p  fluctuating pressure 

=r  separation distance in structure function (also radial coordinate) 

=z,,r θ cylindrical coordinates 

ντsus =+  = riblet spacing (wall units) 

ult = = integral time scale of turbulence (also time coordinate) 

=it  unit tangent 

hut τ  = non-dimensional time unit 

==+ ντ
2tut  time unit (wall units) 
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=DBt  data-base calculated time 

=u  integral velocity scale (of turbulence) 

iu = velocity vector (u,v,w) 

=u  velocity vector (symbolic notation) 

=iu  mean-velocity vector 

=bu  bulk mean x-velocity 

=cu  mean centerline x-velocity (channel) 

=∞u  free-stream velocity 

ρττ wu =  = friction velocity 

4141 ενη =u  = Kolmogorov velocity microscale 

==+
τuuu  nondimensional mean x-velocity (wall units) 

iu′  = fluctuating-velocity vector ( w,v,u ′′′ )  

vu ′′−  = Reynolds shear stress (divided by density) 

=′′′ rmsrmsrms w,v,u  rms velocity fluctuations 

ix = spatial coordinates (x,y,z) 

=+
ix  spatial coordinates (wall units, +++ z,y,x ) 

 

Greek Symbols (upper-case) 

=u∆  velocity difference (in structure function) 

+t∆ = temporal resolution (wall units) 

+x∆ = spatial resolution along x (wall units) 

+
cy∆ = spatial resolution along y at center (wall units) 

+
wy∆ = spatial resolution along y at wall (wall units)  

+z∆ = spatial resolution along z (wall units) 

εΠ = pressure transport rate 

ijΠ =  velocity pressure-gradient term 

,s ijΠ =  pressure-strain term 
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,d ijΠ =  pressure-diffusion term 

b
ijΠ = anisotropy velocity pressure gradient term 

KΠ =  velocity pressure-gradient terms (related to the kinetic energy) 

 

Greek Symbols (lower-case) 

β = base of the floating-point representation 

=ijδ  Kronecker’s delta 

nδ  =  departure from K41 

=ε  average dissipation-rate of turbulent kinetic energy 

ijε = dissipation rate term 

b
ijε = anisotropy dissipation rate 

( ) =−= nn n δζ 3  scaling exponent in K62 

400.=κ  = von Kármán constant  

4143 ενη = = Kolmogorov spatial microscale 

=+η  Kolmogorov spatial microscale (wall units) 

=θ  momentum thickess (also azimuthal coordinate) 

=λ  Taylor scale of turbulence (also eigenvalue) 

=crλ  real part of the complex eigenvalue pair of ijA  

=ciλ  imaginary part of the complex eigenvalue pair of ijA  

µ = fluid dynamic viscosity 

=ν  fluid kinematic viscosity 

=τν u  viscous-length unit 

=2
τν u  viscous-time unit 

ρ  = fluid density 

( )ww dyudµτ = = mean shear stress at wall 

=′′= jiij uuτ  Reynolds-stress tensor (divided by density) 

2121 εντη = = Kolmogorov temporal microscale 
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=+
ητ  Kolmogorov temporal microscale (wall units) 

iϕ  = empirical eigenfunction (KL decomposition) 

iψ = vector function (KL decomposition) 

jiijkk xue ∂∂=ω = vorticity vector 

uω ×∇=  = vorticity vector 

 

Acronyms 

ALE = Arbitrarian Lagrangean Eulerian (formulation) 

API = Application Programming Interface 

CBE = Cell Broadband Engine 

CFD = Computational Fluid Dynamics 

CPU = Central Processing Unit 

CUDA = Compute Unified Device Architecture 

DDMP = Domain Decomposition Message Passing (programming model) 

DDR = Double Data Rate 

DNS = Direct Numerical Simulation (of turbulence) 

DRAM = Dynamic Random Access Memory 

EB = Exa Byte ( 1810 ) 

ES = Earth Simulator (computer) 

FDL = Fluid Dynamics Laboratory 

FFT = Fast Fourier Transform 

FMA = Fused Multiply Add 

FPGA = Field Programmable Gate Array  

FSI = Fluid Structure Interaction  

Flop/s = Floating Point Operation per second 

GB = Giga Byte ( 910 ) 

GB/s = Giga Byte per second (910 ) 

GFlop/s = Giga Floating Point Operation per second ( 910 ) 

GPGPU = General Purpose Graphic Processing Unit 

HPC = High Performance Computing 

HPDNS = High Performance Direct Numerical Simulation (of turbulence) 
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HPF = High Performance Fortran 

ILP = Instruction Level Parallelism 

I/O = Input/Output (operations) 

KL = Karhunen Loèwe (decomposition) 

LSI = Large Scale Integration 

MB = Mega Byte ( 610 ) 

MB/s = Mega Byte per second (610 ) 

MFlop/s = Mega Floating Point Operation per second ( 610 ) 

MIMD = Multiple Instruction Multiple Data (computer) 

MPI = Message Passing Interface 

MPP = Massively Parallel Processors 

NPB = NAS Parallel Benchmarks 

PB = Peta Byte ( 1510 ) 

PB/s = Peta Byte per second (1510 ) 

PFlop/s = Peta Floating Point Operation per second ( 1510 ) 

RAM = Random Access Memory 

rhs = right-hand-side 

rms = root mean square 

RSH = Refined Similarity Hypothesis 

SIMD = Single Instruction Multiple Data (computer) 

SISD = Single Instruction Single Data (computer) 

SMP = Symmetric Multi Processor 

SMT = Symmetric Multi Threaded 

SPMD = Single Program Multiple Data (computer) 

TB = Tera Byte ( 1210 ) 

TB/s = Tera Byte per second (1210 ) 

TFlop/s = Tera Floating Point Operation per second  ( 1210 ) 

ULP = Unit of Least Precision 

VIV = Vortex Induced Vibration 

VL = Vector Length 

VLSI = Very Large Scale Integration 
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Chapter 1 

Introduction 

 

 

 

 

Over the years, the issue of turbulence has attracted the attention of academic 

research because of the challenges that its understanding represents for scientists and 

the impact on engineering applications. From a physical point of view, a turbulence 

flow is unpredictable, since it is impossible to give an exact deterministic prediction 

of its evolution due to the non-linearity of the Navier-Stokes equations that represent 

the governing equations of these phenomena. In the last decades, researchers have 

made intense efforts for trying to overcome this difficulty, by using both the 

experimental approach and the theoretical approach of the scientific method; the key 

element is represented by modern fluid technology that provides the tools for 

understanding and analyzing the results of theory and experiments.  

The study of turbulence near walls has been consistently studied and represents 

an important scientific field to understand since it has a strong impact in engineering, 

environmental and industrial applications; for example, it is responsible of drag on 

surface and dispersion of scalars and pollutants in a variety of phenomena.  



 

2 

 

One method for studying turbulence is to use laboratory techniques such as hot 

wire anemometry (HWA), laser Doppler anemometry (LDA), ultrasonic Doppler 

velocimetry (UDV) and particle imaging velocimetry (PIV). A second class of 

methods involves numerical simulations related to the integration of the three-

dimensional unsteady Navier-Stokes equations on a computational domain with 

adequate accuracy in space and time.  

Considering the numerical approach, several methods can be used such as the 

Reynolds Averaged Navier-Stokes equations (RANS) and the Large Eddy 

Simulation (LES). The instantaneous range of scales in turbulent flows increases 

rapidly with the Reynolds number. As a result, the engineering computation of 

turbulent flows therefore relies on simpler descriptions; instead of solving for the 

instantaneous flow-field, the statistical evolution of the flow is sought. Approaches 

based on the RANS equations are most prevalent and involve computing one-point 

moments such as mean velocity and turbulent kinetic energy. Instead, LES directly 

computes the large energy containing scale, while modeling the influence of small 

scales. In order to avoid modeling at any scale and for a complete description of 

turbulent flow, where the flow variables, such as velocity and pressure, are known as 

a function of space and time can only be obtained by numerically solving the Navier-

Stokes equations. These numerical solutions are named Direct Numerical 

Simulations (DNS); it allows to deal with any range of scale of turbulence flows and, 

furthermore, allows to understand the role of viscosity, that is responsible of the 

balance between energy production, transport and dissipation close to the walls.  

One disadvantage of DNS is the necessity of a paramount number of 

computational resources for the simulation of the Navier-Stokes equations at 

Reynolds numbers of practical interest. Furthermore, the DNS produces a large 

amount of data related to the fluid flow field (velocity and pressure) that need to be 

analyzed in order to understand the role of heat, mass and momentum transport 

during the turbulent phenomena. 

Recent advances in high performance computing, especially related to hybrid 

architectures based on CPU/GPU computing, are revolutionizing and affecting 

scientific research simulation by providing several orders of magnitude of increased 

computing performance, allowing researchers to work with more accurate, 
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computationally expensive, approximations and numerical methods. Clearly, one has 

to rethink the computational models in order to create scalable, high performance 

applications based on this new technology. 

The present thesis is related to the design and implementation of novel 

computational models and algorithms on hybrid CPU/GPU architectures, consisting 

of multicore CPUs and discrete GPU cards in order to solve the three-dimensional, 

fully turbulent, incompressible and viscous flows by using the DNS tool. Moreover, 

in order to deal with large amount of data produced by the numerical simulations, 

several statistical tools, event-detection techniques and methods for the eduction of 

coherent structures eduction have been considered.  

The thesis is organized as follows: 

 

� Chapter 2 provides a perspective on turbulence fundamentals, about the 

scales of turbulence and mechanisms that govern the energy-transfers in a 

fluid flow; 

 

� Chapter 3 shows the state-of-the-art about direct numerical simulation, the 

problem of the plane channel, the turbulent flow structures and high 

performance computing techniques for solving numerically the Navier-Stokes 

equations over complex computational domains; 

 

� Chapter 4 describes the state-of-the-art of high performance computing 

techniques and metrics for performance measure. In particular, it describes 

recent advances on hybrid architectures CPU/GPU; 

 

� Chapter 5 is devoted to the design and development of novel computational 

models and algorithms for the numerical integration of the Navier-Stokes 

equations related to a three-dimensional, fully developed, incompressible and 

viscous flow in a plane channel. The Navier-Stokes solver is based on a 

mixed spectral-finite difference method associated to a third-order Runge-

Kutta procedure for time advancement and the fractional-step method for 

satisfying the incompressibility constraint; 
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� Chapter 6 shows the results of the DNS of a fully developed channel flow at 

Reynolds number Re 200,400,600τ = ; in particular, turbulence statistics are 

analyzed to verify the accuracy of the simulations and to evaluate the 

relationships between the Reynolds stresses, kinetic energy, dissipation and 

anisotropy budgets; 

 

� Chapter 7 presents the numerical results in terms of flow structures,  

morphological evolution in time and strength of a vortex population, in 

conjunction with ejection and sweep events, by considering the DNS results 

obtained at Re 200,400,600τ = ; 

 

� Chapter 8 provides conclusions, final remarks and future works. 
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Chapter 2 
 
Turbulence Fundamentals 
 

 

 

 

2.1   Introduction 

In fully developed turbulence – the state in which the averaged quantities change 

slowly with respect to the downstream distance or time – there is a rough equilibrium 

between the rate at which turbulence energy is produced (i.e. transferred from the 

mean flow to the turbulence) and the rate at which it is dissipated (i.e. transferred to 

the internal energy of the fluid by the action of viscosity). Such flows are called 

equilibrium turbulent flows.  

Many turbulent flows of engineering interest are dominated by shear, such as wall-

shear layers and free-shear layers. This means that the largest changes in the velocity 

occur in direction that is approximately normal to the main-flow one. A 

homogeneous turbulent flow is a flow whose state is independent on the location 

from a statistical viewpoint. This means that the measurement of any averaged 

quantity gives identical results at any point of the flow field. The simplest 

homogeneous flow is the isotropic one, in which no strain of any kind exists. Thus, 
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no energy is added to turbulence (there is no production) and turbulence decays. In 

laboratory, a homogeneous and isotropic flow can be obtained by passing a fluid 

flow through a passive grid, that produces uniform turbulence. Numerically (and not 

physically) it is possible to force the large scales of an isotropic flow, so that an 

isotropic turbulent state is maintained in a statistical steady state.  

In turbulent flows there is a wide range of length scales. The most noticeable are 

the integral or outer scale and the Kolmogorov scale. The Taylor scale is a third 

length scale, lying between these two, that is used to characterize homogeneous 

flows. Thus, turbulence can be characterized by a number of length scales, at least 

one for the energy-containing range and one for the dissipative range. Whether a 

turbulence is simple or not depends on how many scales are necessary to describe the 

energy-containing range of scales. For example, if a turbulent flow involves more 

than one production mechanism (such as shear and buoyancy) there will be more 

than one important length scale. Other cases are possible. As an example, turbulence 

may be produced by shear in a boundary layer, which is then subjected to a strain 

rate. For a while, the turbulence will have two length scales, one corresponding to the 

initial boundary-layer turbulence and the other associated to the strain rate to which 

the flow is subjected.  

Turbulence may also have different length scales in different directions. Consider 

a turbulent flow having a single length scale l  in the energy-containing range. One 

can take this scale to be the integral length one (it will be proportional to a length that 

characterizes the geometry of the flow), that can be in general defined in terms of the 

fluctuating-velocity autocorrelation coefficient in some direction (note that 

correlations tend to emphasize large-scale effects and hide small-scales effects). 

Consider also that turbulence is characterized by a single velocity scale u , that can 

be in general taken as being the rms fluctuating velocity. A Reynolds number can be 

defined as: 

 

Rel

ul

ν
=                                                     (2.1) 

 

where ν  is the fluid kinematic viscosity. 
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Many turbulent flows have a large mean velocity and small fluctuations. The 

Taylor’s hypothesis is the assumption that a large convection velocity cU  sweeps a 

frozen turbulent state past the position of interest. 

The present chapter is organized as follows: in Section 2.2, the main issues on 

scales are discussed; then, Section 2.3 describes the scale of turbulence, based on 

Kolmogorov theory; finally, in Section 2.4 the energy-transfer mechanisms in 

turbulent flows are analyzed in detail, with reference to the energy-cascade model of 

Kolmogorov. 

 

 

2.2   Issues on scales 

According to Reynolds decomposition, the dependent variables of the Navier-

Stokes equations can be decomposed into mean and fluctuating parts, and averaged, 

so that the Reynolds Averaged Navier-Stokes equations (RANS) are obtained (in 

Appendix A, an outline is given of a number of turbulence-transport equations, as 

derived from the RANS equations). The equation of the mean flow 2iiuu  in the 

stationary-flow case is:  

 

( )1

2
tot tot i

j i i ij i ij
j j j

u
u u u T u T

x x x
ρ ∂∂ ∂  = − ∂ ∂ ∂ 

                          (2.2) 

 

or also:  

 

( )1

2
tot tot

j i i ij i ij ij
j j

u u u T u T S
x x

ρ ∂ ∂  = − ∂ ∂ 
                           (2.3) 

 

where 

 

2tot
ijij i j ij ij i jT T u u p S u uρ δ µ ρ′ ′ ′ ′= − = − + −                         (2.4) 
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is the total mean stress of the turbulent field. The contribution of the turbulent motion 

to the mean stress is i ju uρ ′ ′− , the Reynolds-stress tensor. This tensor is symmetric, 

the diagonal components are normal stresses (negative pressures) and the off-

diagonal components are shear stresses. 

The dissipation term in Eq. (2.2) can be written as: 

 

2tot
ij ij ij ij i j ijT S S S u u Sµ ρ ′ ′= −                                     (2.5) 

 

where the first term on the rhs of Eq. (2.5) is the viscous part of the dissipation of 

kinetic energy of the mean flow, while the second term is the turbulent part. Since 

the turbulent stress provides the turbulent part of the dissipation, the kinetic energy 

of turbulence gains from this dissipation. For this reason, the term i j iju u Sρ ′ ′−  is called 

the turbulent kinetic energy production term. By inserting Eq. (2.4) in Eq. (2.2), one 

obtains: 

 

1
2 2

2j i i j i ij i j i i j ij ij ij
j j

p
u u u u u S u u u u u S S S

x x
ν ν

ρ
 ∂ ∂  ′ ′ ′ ′= − + − + −   ∂ ∂   

      (2.6) 

 

where: 

� the first three terms on the rhs of Eq. (2.6) represent the flux of work 

associated, respectively, with mean pressure, mean viscous stress and 

turbulent stress; 

� the last two terms represent the dissipation related to turbulent stress and 

viscous stress, respectively. 

A length scale l , a velocity scale u  and a time scale t l u=  can be introduced. 

These scales lead to the following relations: 

 

i

i

u u

x l

∂ ≈
∂

                                                    (2.7) 

 

2
i ju u u′ ′− ≈                                                    (2.8) 
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ij

u
S

l
≈                                                      (2.9) 

 

i j ij ij iju u S ulS S′ ′ ≈                                             (2.10) 

 

i j ij iju u S uluS′ ′− ≈                                              (2.11) 

 

in which both mean and fluctuating components are scaled relatively to the velocity 

scale u . By comparing Eqs. (2.10) and (2.11) with the first and second viscous terms 

of Eq. (2.6), respectively, one obtains: 

 

Re
2

i j i
l

ij i

u u u

S uν
′ ′−

≈                                             (2.12) 

 

Re
2

i j ij
l

ij ij

u u S

S Sν
′ ′

≈                                            (2.13) 

 

where Rel ul ν=  is the Reynolds number as in Eq. (2.1), based on the integral 

scales. This result shows that the terms associated with the turbulent stress are Rel  

times larger than the terms associated with the viscous terms. Being Rel  usually very 

large, the viscous terms in equation Eq. (2.6) can usually be neglected, meaning that 

the structure of a turbulent flow tends to be independent of viscosity.  

The equation that governs the mean kinetic energy of the turbulent field 2i iu u′ ′  is 

obtained by multiplying the momentum equation of the instantaneous field by iu ,  

taking the average of all terms, and subtracting Eq. (2.6). In the stationary-flow case, 

one obtains: 

 

1 1
2 2

2 2
j i i j i ij i i j i j ij ij ij

j j

p
u u u u u S u u u u u S S S

x x
ν ν

ρ
′∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − + − − −

∂ ∂
  
  

   
          (2.14) 
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where 

                                        
1

2
ji

ij
j i

uu
S

x x

 ′∂′∂′ = +  ∂ ∂ 
                                           (2.15) 

 

is the strain rate tensor of the fluctuating field. In Eq.(2.14): 

� the first three rhs terms denote, respectively, the net flux of work associated 

with the fluctuating pressure, the fluctuating viscous stress and the turbulent 

stress; 

� the last two terms denote the turbulent and viscous dissipations. 

It is to be noted that the turbulent production term i j iju u S′ ′−  in Eqs. (2.6) and (2.14) 

has opposite sign. This term allows to exchange kinetic energy between mean flow 

and turbulence. In general, the exchange energy involves a loss to mean flow and a 

gain to turbulence. The last term in Eq. (2.14) is the rate at which the fluctuating 

viscous stresses perform deformation work against the fluctuating strain rate. It 

denotes a loss of energy and, being quadratic in ijS′ , is the viscous dissipation of 

turbulent kinetic energy. Unlike the dissipation related to mean viscous stresses in 

Eq. (2.14), this term is essential to the dynamics of turbulence and cannot be 

neglected. Equation (2.15) can be written as: 

 

j
j K

j j

DK
u P

x x
ε

∂∂ = − −
∂ ∂

                                        (2.16) 

 

stating that the mean of turbulent kinetic energy of fluctuations is balanced by the 

production, the dissipation and the diffusion of this energy. In the case of steady, 

homogeneous, pure-shear flow, all averaged quantities except iu  are independent of 

position and ijS  is a constant, and Eq. (2.16) reduces to: 

 

KP ε=                                                     (2.17) 
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i.e. the balance between the production rate of turbulent kinetic energy by Reynolds 

stresses and the rate of viscous dissipation of turbulent fluctuations. By using Eqs. 

(2.8) and (2.9), one has: 

 

2
i ju u u′ ′− ≈                                                 (2.18) 

 

ij

u
S

l
≈                                                    (2.19) 

 

By using Eq. (2.11), one has: 

 

i j ij ij iju u S ulS S′ ′ ≈                                             (2.20) 

 

and from Eq. (2.17) one obtains: 

 

ij ij ij ijulS S S Sν ′ ′≈                                             (2.21) 

 

or also: 

 

Reij ij
l

ij ij

S S ul

S S ν
′ ′

≈ =                                            (2.22) 

 

Thus, being usually Rel very large: 

 

ij ij ij ijS S S S′ ′ >>                                              (2.23) 

 

showing that the fluctuating-strain rate ijS′  is much larger than the mean-strain rate 

ijS . Since strain rates have dimensions of 1T − , the eddies, contributing most to the 

dissipation of kinetic energy, have very small convection time scales as compared 

with the time scale of the mean flow. Accordingly, the direct interaction between the 
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fluctuating strain rate and the mean strain rate is negligible for large Reynolds 

numbers. The above considerations suggest that the scales for fluctuations should be 

different from the scales for the mean flow. 

 

 

2.3   Scales of turbulence 

The integral scales l , u  and t l u=  previously introduced are the scales for the 

large turbulence eddies and are applied to the production term of Eq. (2.17). Note 

that the time scale t  represents the life time of the large eddies (large eddy turn-over 

time) and that to the large eddies is associated a kinetic energy per unit mass 

proportional to 2u . Some smaller scales can be introduced, namely a length scale η , 

a velocity scale uη  and a time scale uη ητ η= , characterizing the small dissipative 

turbulence scales. They are the Kolmogorov microscales ([1], [2]) and are applied to 

the dissipation term of Eq. (2.17). 

Equation (2.17) can be written in terms of integral scales and microscales as: 

 

2
2

2K

uu
P u

l
ην ε

η
= = =                                        (2.24) 

 

showing that, being ε  ([ ] 2 3L Tε = ) the same as the average rate of energy input, 

the viscous dissipation of energy can be estimated from the large-scale inviscid 

dynamics. Thus, the dissipation may be interpreted as a passive process that proceeds 

at a rate dictated by the inviscid inertial behavior of the large eddies. 

For the isotropic limit of the homogeneous flow, Eq. (2.24) becomes: 

 

3u

l
ε =                                                   (2.25) 

 

that allows an immediate estimation of the power of a turbulent flow (ε  is the rate of 

energy dissipation per unit mass) from the estimate of characteristic sizes and 

velocities.  
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Letting l η→  and u uη→ , one has: 

 

( )1 3uη ηε=                                               (2.26) 

 

and from the last proportionality of Eq. (2.25): 

1 2

uη
εη
ν
 =  
                                              

(2.27) 

 

By eliminating uη  from Eqs. (2.26) and (2.27), one obtains the Kolmogorov length 

scale: 

 

1 43νη
ε

 
=  
 

                                              (2.28) 

 

The insertion of Eq. (2.28) in Eq. (2.26) or Eq. (2.27) gives the Kolmogorov velocity 

scale: 

 

( )1 4
uη νε=                                               (2.29) 

 

and the ratio between Eqs. (2.28) and (2.29) gives the Kolmogorov time scale: 

 

1 2

η
ντ
ε
 =  
 

                                              (2.30) 

 

Expressions (2.28)-(2.30) show that the small-scale motion of turbulence only 

depends from the momentum diffusivity (kinematic viscosity) and that the large-

scale energy supply for dissipation ε . Thus, the dissipation occurs only at the level 

of small-scale motion and at this level turbulence is homogeneous and isotropic. The 

Reynolds number in these scales: 
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Re 1K

uηη
ν

= =                                              (2.31) 

 

shows that the small-scale motion is slow and viscous. The two sets of scales, the 

scales of the large eddies , ,l u t  and those of the small eddies , ,uη ηη τ  lead to the so-

called two-scale turbulence model. 

From Eq. (2.25) and Eqs. (2.28)-(2.30), one also has: 

 

3 4Rel

l

η
=                                                  (2.32) 

 

1 4Rel

u

uη

=                                                (2.33) 

 

1 2Rel

t

ητ
=                                                 (2.34) 

 

Another length scale can be introduced in this context, in particular referred to the 

case in which uη  would be amplified to u  of large scales, i.e. the (unknown so far) 

length scale x  associated to 

 

1 u u

x
η

ητ
η

− = =
                                               

(2.35)  

 

when uη  tends to u . One can expect that η  amplifies to l , but this is not exactly 

true. By combining Eqs. (2.25) and (2.35), one obtains: 

 

2 2
2

2 2

uu u
u

l x
ην ν

η
= =                                          (2.36) 

 

and from the first and last term of Eq. (2.36): 
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1 2

1
1

Rel

x

l
= <<

                                              
(2.37) 

 

This result shows that the unknown scale must be smaller than the integral scale, and, 

on the basis of Eq. (2.35), also greater than the Kolmogorov scale. The new scale is 

the Taylor microscale λ , such as: 

 

1 u uη
ητ

η λ
− = =                                                (2.38) 

 

Being defined by the velocity of large scales and the time of small scales, the Taylor 

scale is neither large nor small, but rather an intermediate scale. The Taylor scale is 

frequently estimated as: 

ij

u
S

λ
′ =                                                    (2.39) 

 

Equation (2.34) may be rearranged in terms of Eq. (2.38) as follows: 

 

2
2

2

u u
u

l
ν

λ
=                                               (2.40) 

 

that gives: 

 

1 2

1 1

Re Rell λ

λ
= =

                                          
(2.41) 

 

where 

 

Re
u

λ
λ

ν
=                                                (2.42) 

 

is the Reynolds number based on the Taylor scale. 

Equation (2.24) may also be rearranged in terms of Eq. (2.31) as follows: 
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3 3 4

1 1

Re Rell η

η = =
                                            

(2.43) 

 

The ratio between Eqs. (2.41) and (2.43) gives: 

 

1 2 1 4

1 1 1

Re Re Relη λ

η
λ

= = =                                    (2.44) 

 

or also: 

1 2 1 4Re Re Relη λ= =                                         (2.45) 

 

where 

 

Re
u

η
η

ν
=                                                 (2.46) 

 

is the Reynolds number based on the Kolmogorov scale. 

Equations (2.41) and (2.43) also give the following additional result: 

 

2

l

η λ
λ

  = 
 

                                                (2.47) 

 

 

2.4   Energy transfer in turbulent flows 

There is a widely-accepted picture of the energy-transfer mechanism in turbulent 

flows, the energy-cascade model of Kolmogorov. According to this model, the mean 

flow, induced by a pressure gradient or other kind of forces, works on the large-scale 

motions of turbulence (the largest eddies), increasing the turbulent energy 

production. Through a variety of processes, including vortex stretching, energy is 

transferred to ever small scales (the smallest eddies), until it reaches scales that are 

small enough because of viscosity to dissipate the kinetic energy into the internal 
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energy of the fluid. At high Reynolds numbers, between the large scales at which 

turbulent energy is produced and the small scales at which is destroyed, lies a range 

of scales at which neither process is very important. This is called the inertial 

subrange [1]. The rate of energy input (per unit of mass) at the largest scales is equal 

to the energy throughput from the large to the small scales. This rate, in turn, is equal 

to the energy dissipated by the smallest scales. 

As the cascade proceeds, the successive generation of smaller eddies lose 

information on the large-scale structure of the flow. Thus, the anisotropy of the large 

scales fades and the small-scales become statistically isotropic. With respect to 

Kolmogorov (the K41 theory), the new concept that is introduced is related to the 

notion of local isotropy, the isotropy of the small scales. Further, Kolmogorov 

postulated that the statistics of these isotropic scales would have universal behavior, 

independent from the way the flow is produced. The scales at which this 

approximately occurs are known as the universal equilibrium subrange. This is 

further divided into a dissipation subrange (the very smallest scales) and the inertial 

subrange, those scales larger than the dissipation scales (where viscosity become 

dominant), but smaller than the large anisotropic scales that define the flow. The 

width of the inertial subrange increases as the Reynolds number increases, so that the 

anisotropic large scales encroach less and less on the small scales. 

In the inertial subrange, K41 provides predictions for the way the statistics behave of 

velocity differences across a separation distance r . By defining this difference: 

 

( ) ( ) ( )i iu r u x r u x∆ = + −                                      (2.48) 

 

where ix  is a reference point, K41 predicts that its statistical average (ensemble or 

time average) will be only a function of ε  and r  itself. 

In the inertial subrange, energy is cascaded to smaller scales, and the structure 

function ( ) n
u r∆     (being  n  a positive integer) obeys the relation [1]: 

 

( ) ( ) 3n n

nu r C rε∆ =                                        
(2.49) 
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An exact relation exists for the 3rd – order structure function [2] is: 

 

( ) 3 4

5
u r rε∆ = −                                            (2.50) 

 

Known as the Kolmogorov’s “4/5” law, that shows that the energy flux from large to 

small scales is unidirectional on average. 

For 2n = , the variance ( ) 2
u r∆    will increase as 2/3r , or: 

 

( ) 2 2/3 2/3u r rε∆ =                                          
(2.51) 

 

giving the Kolmogorov’s “2/3” law. In this case, the Fourier transform of Eq. (2.51) 

yields the -5/3 spectrum, that has been verified in many flows. More in particular, the 

distribution of energy over the scales of turbulence is usually described in terms of 

wavenumber, although this is a concept that is strictly applicable only to 

homogeneous flows. In this case, it is possible to represent the velocity field as a 

Fourier series. Consider the one-dimensional Fourier series: 

 

( ) ( )ˆ ikxu x u k e=∑                                        (2.52) 

 

the energy spectrum is: 

 

( ) ( ) ( )1

2
E k u k u k∗=                                       (2.53) 

 

where the asterisk denotes the complex conjugate. The energy spectrum gives the 

distribution of turbulent energy in terms of wavenumber or inverse length scale 

( )i i iu u E k dk′ ′ = ∫ . 
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Figure 2.1 – Sketch of typical energy spectrum of turbulence. 

 

 

In the inertial subrange,  energy  is  cascaded  to  smaller  scales.  As there is no 

production in this range, the rate at which the energy is transferred to the smaller 

scales must be equal to the rate at which it is dissipated at the smallest scales. 

Kolmogorov argued on dimensional grounds that the three-dimensional energy 

spectrum in this region must have the form: 

 

( ) 2 3 5 3
KE k C kε −=                                          (2.54) 

 

where ( )E k  is the three-dimensional energy spectrum, ε  is the rate of energy 

dissipation and KC  is the Kolmogorov constant (1.4 2.2÷ ).  

A sketch of typical energy spectrum of turbulence in logarithmic coordinates is 

shown in Fig. 2.1. Figure 2.2 reports experimental evidence of Eq. (2.54) in different 

flows [3]. With reference to Fig. 2.1, at low wavenumber the spectrum is 

proportional to 4k . This region is followed by a peak at wavenumber ck . The length 

scale corresponding to the peak is an important characteristic length scale of 

turbulence and is approximately the integral scale l . The peak in the spectrum is 

followed by the inertial subrange, whose length depends on the type of flow and on 

the Reynolds number. 

Finally, there is a sharp decrease of the energy spectrum near the Kolmogorov length 

scale η . Note that, being the integral scale the length scale corresponding to the peak  
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Figure 2.2 – Experimental evidence of Eq. (2.70) in different flows [3]. 

 

 

of the energy spectrum, it is the length scale characteristic of the energy-containing 

scales. Thus, it can also be defined as: 

 

( )

( )
0

0

E k dk

l
E k

dk
k

∞

∞=
∫

∫
                                                (2.55) 

 

The following can be noted. In 1941, Kolmogorov suggested that, through the 

cascade process, the energy would lose detailed information about the mechanism of 

energy production. If the number of steps of the cascade was sufficiently great, it 

could be presumed that all information would be lost.  

The small scales would know only how much energy they received (ε , in 

equilibrium). They might be expected to be isotropic, having lost all information 

about the anisotropy of the energy-containing scales. This state of isotropy would 

actually exist only at infinite Reynolds number (infinitely many steps in the cascade). 

At any finite Reynolds number, the small scales would be expected to be less 

anisotropic than the energy-containing scales, but still somewhat anisotropic. It is  
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Figure 2.3 –  Time series of turbulent quantities [6]. 

 

 

also worth mentioning the fact that there is a permanent anisotropy even in the 

smallest scales of the velocity spectrum of a shear flow [4]. The anisotropy exists 

because of the energy from the mean flow is fed into one component and must be 

redistributed to the other two. 

However, while the amount of anisotropy remains fixed as the Reynolds number 

increases, it steadily decreases when consider as a proportion of the total mean 

square velocity gradient. In this sense, it can be said that  

the velocity spectrum becomes increasingly isotropic in the small scales as the 

Reynolds number increases. 

The situation in real turbulent flows is more complex than the aforementioned 

scenario. In three-dimensional turbulence, a significant amount of energy is 

transferred in both directions of the spectrum (from large to small scales and from 

small to large ones) and the most important processes of transferring energy to small 

scales are vortex stretching and the shearing of small vortices by larger ones. The 

energy transfer toward the small scales has been found by [5] to be about twice the 

reverse flow in homogeneous isotropic turbulence. There is some discussion about 

this reverse flow of energy, called backscatter. This term refers to the transfer of 

energy in the spectrum in the direction from small to large scales. 
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Figure 2.4 –  Inertial subrange scaling exponents nζ  for velocity and scalar [8]. 

 

 

There is no question that, taking averages over long times or large regions of space, 

the energy transfer in the spectrum of three-dimensional turbulence is from large 

scales to small. In two-dimensional turbulence, the energy cascade goes in the 

opposite direction, since there is no vortex stretching, vortices coalesce to form 

larger vortices and this is the mechanism of energy transfer. It is possible in three-

dimensional turbulence if one considers short time averages or averages over small 

regions of physical space, to have vortex coalescence and hence, locally and 

temporarily, energy transfer in the reverse direction. Some initial instabilities are of 

two-dimensional nature and for some time the energy transfer will be toward the 

reverse direction, until the flow will become fully three-dimensional. On the other 

hand, many flows of technological importance that are young (not fully developed)  

have highly anisotropic remnants of initial instabilities and turbulent structures that 

are highly anisotropic may have for limited times and over limited regions energy 

transfer in the reverse direction. Other problems exist. The dissipation rate has been 

found to vary both spatially and temporally within the flow. Because the ultimate 

fate of the turbulence energy is at the small scales, the dissipation rate is related to 

the sharp gradients of the velocity that occur there. Thus, the dissipation is a function 

of various combinations of the velocity derivatives.   

If one observes a time series of turbulent quantities (Fig. 2.3), it can be noted that 

the velocity fluctuations themselves are close to Gaussian,  while  those  of their 
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temporal derivatives are strongly non-Gaussian. This result implies that the 

dissipation in turbulent flows is spotty, or intermittent (see also [7]). There are 

instants in which it is large, followed by quieter moments (note that in the framework 

of K41 the governing parameter is the average dissipation rate). 

The intermittent character of turbulence also implies evolutionary processes of 

complex structures in the flow. If high-order structure functions are constructed from 

a time series of turbulent velocity fluctuations, a linear trend in the scaling exponent 

(as predicted by the K41) is not found. The trend is nonlinear with increasing 

departure from K41 with increasing n  (Fig. 2.4). The departure from linearity at 

higher orders is caused  by the intermittent nature of turbulence. It appears that the 

two quantities ε  and r  are not sufficient to determine the form of the structure 

function. Thus, a new parameter must enter. Usually the integral length scale is 

introduced, giving: 

 

( ) ( ) 3
n

n
n n l

u r r r
r

δ
ζε

−
 ∆ = =    
 

                          (2.56) 

 

3n n

nζ δ= −                                               (2.57)  

 

where nζ  is the scaling exponent, and nδ  is the departure from K41 (for 0nδ = , Eq. 

(2.57)  reduces to K41, Eq. (2.49)), where [9] assumed that the dissipation rate is log-

normally distributed (the Kolmogorov-Obukhov K62 theory, or Refined Similarity 

Hypothesis,  RSH). Note that the cascade concept and the postulate of local isotropy 

are tightly bound. If local isotropy does not hold, the implication is that the small 

scales are not universal and that there is direct interaction between the large and the 

small scales. 
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3.1    Introduction 

The Direct Numerical Simulation of turbulence (DNS) consists of solving 

numerically the Navier-Stokes equations with physically-consistent accuracy in 

space and time. If the mesh is fine enough, the time step is short enough and the 

numerical scheme is designed to minimize the dispersion and dissipation errors, one 

obtains an accurate three-dimensional time-dependent solution of the governing 

equations, in which the only errors are those introduced by the residual 

approximations incorporated in the numerical scheme and in the number-

representation technology of the computing machine. For this reason, there is a 

fundamental difference between a solution of the Navier-Stokes equations as an 

exercise of numerical mathematics – whatever complex it may result – and a solution 

of the same equations with the aim to obtain a precise correlation of the results with 

the turbulence physics; in the latter case, the accuracy of the calculations has to be 

deeply monitored. It results that the major difficulty in performing turbulence 



Chapter 3 – Literature Review 
 

25 
 

calculations at values of the Reynolds number approaching those of practical 

engineering interest lies in the remarkable amount of computational resources 

required (the degree of freedom involved with the solution of the Navier-Stokes 

equations roughly increase 49Re≈ ) and the consequence of this fact has been – for a 

rather long period of time – that only simple flows have been analyzed with the 

DNS.  

The advent of high performance computing systems has completely changed this 

scenario, opening the field of the High Performance Direct Numerical Simulation of 

turbulence (HPDNS). Generally speaking, the procedure for the execution of high 

performance Navier-Stokes calculations involves a number of steps, such as: 

� development and testing of a new numerical method or application of an 

existing numerical technique for the solution of the Navier-Stokes equations 

on a given spatial and temporal computational domain; 

� implementation of the Navier-Stokes solver onto a given high performance 

computing architecture; 

� execution of the numerical simulations with appropriate resolutions in space 

and time; 

� use of the resulting numerical databases for the calculation of appropriate 

turbulent-flow quantities. 

There exist works in which DNS results are presented actually giving the appropriate 

emphasis to their physical realism, but scarce relevance to the computational 

technologies used for their attainment. There are works in which the implementation 

of Navier-Stokes solvers onto high-performance computers is extensively described, 

but afterwards no results of physical relevance are presented. There are works in 

which DNS databases are presented and used for the eduction of turbulent-flow 

structures with different techniques, without specifying in detail how the latter 

databases have been obtained. Finally, there are a few works in which the 

development of a procedure including the four above steps can be on the contrary 

clearly recognized. 

In this chapter, an attempt is made to present the aforementioned body of 

literature in the most-possibly systematic manner. Additional issues that are 

discussed are related to the twofold relationship that establishes between 
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computational scientists and high performance computers, in the following sense. On 

one hand the computational fluid dynamics develops a Navier-Stokes solver and 

afterwards he needs to implement the latter solver onto a given computing 

architecture. On the other hand the computational scientists has also to be able to 

understand how the use of a newly-introduced computing architecture may bring 

advantages with regard to a more efficient use of a given computational technique, or 

even to the adoption of a completely different numerical method.  

This chapter is organized as follows: Section 3.2 describes the main contributes 

about DNS and numerical methodologies adopted for numerical simulations; Section 

3.3 shows the description of turbulence in a plane channel and the major works about 

it; then, Section 3.4 shows the main literature contributes about flow structures and 

theory about their identifications; finally, Section 3.5 describes the conjunction 

between DNS and high performance computing, in order to study wall-bounded 

flows at high-Reynolds numbers. 

 

 

3.2    Early times in DNS 

While the CDC 6600 and 7600 (rolled out in 1963 and in 1969, respectively) 

have been the first (scalar) computing systems that have been later denoted as 

“supercomputers”, probably (see also the 1998 review of Moin and Mahesh [10]) the 

first works to which the DNS acronym has been then associated, are those of S.A. 

Orszag and co-workers, and in particular that of Orszag and Patterson [11] where 

isotropic turbulence was calculated onto a 323 grid-point computational volume at 

Re 35λ = , using a CDC-7600 computer. Rogallo [12] studied the effects of mean 

shear, irrotational strain and rotation in homogeneous turbulence by transforming the 

governing equations using an extension of the Orszag-Patterson algorithm (see also 

the 1984 review of Rogallo and Moin [13]). The numerical isotropic turbulence was 

also investigated in terms of higher-order-derivative correlations by Kerr [14] on a 

Cray computer, on up to a 1283 grid-point volume and up to (Re 82.9λ = ). Later, the  
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Table 3.1 – Synthetic prospectus of early times DNS of shear-flow turbulence 

Authors Re Type of Flow Computing System(s) 

Moser and Moin [16] Re 168Hτ =  Curved channel Cray X-MP 

Kim et al. [17] Re 180Hτ =  Plane channel Cray X-MP 

Spalart [18] Re 225 1410θ = ÷  Flat plate - 

Gavrilakis [19] Re 75Hτ =  Square duct Cray 2 

Huser and Biringen [20] Re 150Hτ =  Square duct - 

Eggels et al. [21] Re 90Hτ =  Circular pipe Cray X-MP 

 

 

structure of intense vorticity in isotropic turbulence has been studied by Jiménez et 

al. [15]. Right after the appearance of [11], [12] and [14], a number of pioneering 

works on wall turbulence started to appear, that, in practice, qualified as milestone 

works with regard to both the type of flow considered and the numerical methods 

used. Moser and Moin [16] studied the flow of an incompressible fluid in a curved 

channel. They used a numerical method based on Fourier expansions in the θ −  and 

z − directions, and Chebychev-polynomials expansion in the r − direction (normal to 

the walls). This is probably the first case in which the fully spectral Fourier-

Chebychev method is used that has characterized so many subsequent works of P. 

Moin, J. Kim, and co-workers. The Reynolds number was Re 168τ = , 128 Fourier 

modes were used along the periodic directions, while 64 Chebychev modes were 

used along the z − direction. Kim et al. [17] studied the flow in the plane channel at 

Re 180τ =  using a 64 10× grid-point volume, on a Cray X-MP machine. With 40s for 

each time step, about 250 CPU hours were necessary to run 10 non-dimensional 

times. Spalart [18] computed the turbulent flat-plate boundary layer with zero 

pressure gradient (ZPGFPBL) up to Re 1410θ =  and up to about 107 grid points. The 

flow in a square duct has been investigated by Gavrilakis [19] and Huser and 

Biringen [20]. Respectively, fully finite difference and mixed spectral-high-order 

finite difference computational algorithms were used in these cases. The flow in a 

circular pipe has been explored by Eggels et al. [21] where the fully finite difference 

technique originally introduced by Schumann [22] was used. In Table 3.1, a synthetic 

prospectus of the aforementioned works is reported (in order to compare internal-
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flow cases with different cross-sectional geometries, the Reynolds number 

Re H Hu Rτ τ ν=  is used). 

 

 

3.3    Plane channel 

In this Section, DNS works in the field of shear-flow turbulence are considered, 

with reference to the flow in a plane channel. Overall, x is the streamwise direction, y 

is the wall-normal direction, z is the spanwise direction, and the flow is considered 

homogeneous in the streamwise and spanwise directions. Overall, the aim of the 

simulations is that of calculating a given number of time steps of the statistically-

steady turbulent flow, to build up a DNS database. Accurate DNS calculations of the 

turbulent flow in a plane channel have been carried out by Kim et al. [17], Lyons et 

al. [23], Kasagi et al. [24], Antonia et al. [25], Rutledge and Sleicher [26], Moser et 

al. [27], Abe et al. [28], Iwamoto et al. [29], Del Alamo and Jiménez [30], Del 

Alamo et al. [31], Tanahashi et al. [32], Iwamoto et al. [33], Hoyas and Jiménez [34], 

Hu et al. [35], Alfonsi and Primavera [36], at different values of the Reynolds 

number. In these works the system of the governing equations is mainly solved in the 

framework of the fractional-step method, in conjunction with Runge-Kutta 

algorithms for time marching. More in particular, in Refs. [17, 23-27, 29-31, 33, 35] 

the unsteady three-dimensional Navier-Stokes equations in rotational form are 

integrated in space by using either the fully spectral Fourier-Chebychev numerical 

technique originally introduced by Kim and Moin [37] or minor variants of the latter, 

or also fully spectral techniques introduced by other authors.  

In Ref. [28] the Navier-Stokes equations in non-conservative form are integrated by 

means of a fully finite- difference algorithm, with a grid-stretching law along the 

direction orthogonal to the solid walls. In Refs. [32] and [34] mixed spectral-high-

order finite difference numerical schemes are used. 

In Ref. [36] the Navier-Stokes equations in conservative form are integrated by 

means of the mixed Fourier-finite difference method originally introduced by Alfonsi 

et al. [38], where a grid-stretching law of hyperbolic-tangent type is inserted along 

the direction orthogonal to the walls. 
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As concerns boundary conditions, periodic conditions are imposed along the 

streamwise and spanwise directions, and no-slip conditions are enforced at the solid 

walls (for an extensive review about boundary conditions in incompressible Navier-

Stokes problems, one can  refer to the 2006 review of Rempfer [39]). In Tab. 3.2, 

some characteristic quantities of simulations of Refs. [17, 23-36] are reported, where 

the values of the mean-flow quantities can be verified using the experimental 

correlations suggested by Dean [40]. 

The numerical simulation of wall-bounded turbulent shear flows requires a 

remarkably large number of grid points in all spatial directions, where the grid 

spacing determines the scales that are represented. In the wall-normal direction it is 

possible to distribute the grid points with variable spacing, so that the viscous 

sublayer and the buffer layer result satisfactorily resolved. As the Reynolds number 

increases, more points are required. In the spanwise direction, a reasonable criterion 

to be followed is that of resolving the streaks in the vicinity of the wall. A number of 

works (see also the 1991 review of Robinson [41], and the 2001 review work of 

Panton [42]) indicate that the mean streak spacing is about 100 wall units, i.e. 

100m muτλ λ ν+ = ≅ , where the mean width of the high-speed wall-layer structures is 

20 40u uτ τν ν≅ ÷ . Thus, in order to resolve 20 uτν and assuming 4 grid points for 

each eddy, the grid spacing along the spanwise direction should be 5z+∆ ≅ . As 

concerns the streamwise direction, estimates based on the streamwise extent of the 

wall-layer structures indicate that the required grid resolution is about half than that 

adopted for the spanwise direction. As concerns the smallest-scale resolution 

requirements, the criterion of resolving the Kolmogorov space and time scales (or 

appropriate multiple of the latter) is extensively followed. In Tab. 3.3, a number of 

characteristic computational parameters of simulations of  Refs. [17, 23-36] are 

reported, while in Table (3.4) the data related to the resolution of the calculations are 

shown, in conjunction with the computing system used (if it is given). From the data 

reported in Tables (3.2), (3.3) and (3.4) it can be verified that simulations of Refs. 

[17, 23-36] have been globally executed in a framework of high temporal resolution 

(the resolutions in time obey to the rather stringent Courant-number requirements 

associated to the use of a given numerical technique, usually more demanding with  
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Table 3.2 – Characteristic quantities of simulations of Refs. [17, 23-36] 
 

References Reτ  c bu u  310 fC  710 ε−  η +  ητ +  

[35] 90 1.17 10.32 1.0 1.59 3.54 
[29] 110 1.16 9.73 1.9 1.66 3.76 
[35] 130 1.16 9.27 3.2 1.72 3.96 
[23][24][29] 150 1.16 8.89 5.2 1.77 3.15 
[17][25][26][27][28][30][32][35][36] 180 1.16 8.44 9.1 1.84 3.40 
[29] 300 1.15 7.29 45.3 3.06 4.23 
[35] 360 1.14 6.92 80.4 3.14 4.57 
[27][28] 395 1.14 6.74 107.6 3.18 4.76 
[25][29][32] 400 1.14 6.71 111.9 3.19 4.78 
[30][31] 550 1.14 6.13 303.8 3.34 5.49 
[27] 590 1.14 6.01 378.6 3.38 5.66 
[28] 640 1.14 5.87 488.4 3.42 5.86 
[29] 650 1.14 5.85 513.7 3.43 5.90 
[35] 720 1.13 5.68 706.2 3.48 6.17 
[32] 800 1.13 5.52 983.0 3.54 6.46 
[31] 950 1.13 5.25 1680.8 3.64 6.96 
[35] 1440 1.12 4.68 6163.9 3.89 8.35 
[31] 1900 1.12 4.33 14633.6 3.07 9.44 
[34] 2003 1.12 4.26 17251.7 3.11 9.66 
[33] 2320 1.12 4.09 27270.4 3.21 10.31 

 

 

respect to the Kolmogorov-time-scale requirement) and high spatial resolution near 

the walls, in an attempt to accurately resolve the wall turbulent-flow structures. In a 

number of works, attempts have been made to devise reliable but less stringent 

criteria - with respect to those of the Kolmogorov scales - for the accuracy of DNS 

calculations. Grötzbach [43] devised a number of rules for DNS accuracy, such as:  

� to select a domain of size sufficiently large to record all the relevant large-

scale structures;  

� to select a normal-to-the-wall grid-width distribution in such a way as to 

resolve the steep gradients of the velocity field near the wall (i.e. to have at 

least 3 grid points in the viscous sublayer);  

� to select a computational grid such as the mean-grid width result smaller than 

the smallest relevant turbulent elements (πη∆ ≤ );   

� to select t ητ∆ ≤ . 

Other viewpoints exist. According to Ref. [10], the smallest resolved length scale has 

to be ( )O η  not exactly equal to η , in the sense that reliable first- and second-order 

statistics are obtained whenever the resolution is fine enough to accurately 
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Table 3.3 – Computational parameters of simulations of Refs. [17, 23-36] 
[(*) simulation D, (**) series 1, (***) series 2] 

 

Ref. Reτ  xL  yL  
zL  xL+  yL+  

zL+  xN  yN  
zN  

[35] 90 48h 2h 24h 4320 180 2160 256 61 256 
[29] 110 5πh 2h 2πh 1728 220 691 48 65 48 
[35] 130 24h 2h 12h 3120 260 1560 196 81 196 
[23]* 150 13.7h 2h 6.3h 1900 300 950 85 65 85 
[24] 150 5πh 2h 2πh 2356 300 942 128 96 128 
[29] 150 3.5πh 2h πh 1178 300 471 64 97 64 
[17] 180 4πh 2h 2πh 2262 360 1131 192 129 160 
[25] 180 4.5πh 2h 2h 810 360 360 128 129 128 
[26] 180 4πh 2h 4πh/3 2262 360 754 144 65 144 
[27] 180 4πh 2h 4πh/3 2262 360 754 128 129 128 
[28] 180 13.8h 2h 6.4h 2304 360 1152 256 128 256 
[30] 180 12πh 2h 4πh 6786 360 2262 - - - 
[32] 180 4πh 2h 2πh 2262 360 1131 192 193 160 
[35] 180 24h 2h 12h 4320 360 2160 256 121 256 
[36] 180 2πh 2h πh 1131 360 565 96 129 64 
[29] 300 3.5πh 2h πh 2356 600 942 128 193 128 
[35] 360 12h 2h 6h 4320 720 2160 256 161 256 
[27] 395 2πh 2h πh 2482 790 1241 256 193 192 
[28] 395 6.4h 2h 3.2h 2528 790 1264 256 192 256 
[25] 400 4.5h 2h 2h 1792 800 768 256 193 192 
[29] 400 3.5πh 2h πh 3142 800 1257 192 257 192 
[32] 400 2πh 2h πh 2513 800 1257 256 385 192 
[30] 550 8πh 2h 4πh 13823 1100 6912 - - - 
[31]** 550 8πh 2h 4πh 13823 1100 6912 1536 257 1536 
[31]*** 550 πh 2h πh/2 1728 1100 864 192 257 192 
[27] 590 2πh 2h πh 3707 1180 1854 384 257 384 
[28] 640 6.4h 2h 2h 4096 1280 1280 512 256 256 
[29] 650 3.5πh 2h πh 5105 1300 2042 288 257 384 
[35] 720 12h 2h 6h 8640 1440 4320 512 321 512 
[32] 800 2πh 2h πh 5027 1600 2513 512 769 384 
[31]** 950 8πh 2h 3πh 23876 1900 8954 3072 385 2304 
[31]*** 950 πh 2h πh/2 2985 1900 1492 384 385 384 
[35] 1440 12h 2h 6h 17280 2880 8640 1024 481 1024 
[31]*** 1900 πh 2h πh/2 5969 3800 2985 768 769 768 
[34] 2003 8πh 2h 3πh 50341 4006 18878 6144 633 4608 
[33] 2320 6πh 2h 2πh 43731 4640 14577 2304 1025 2048 

 

 

capture most of the dissipation. Thus, the smallest length scale that must be resolved 

depends on the energy spectrum, being the latter typically larger than η . Moser and 

Moin [16] have shown that most of the dissipation in a curved channel takes place at 

scales larger than 15η . In a DNS work the number of grid points, their distribution in 

space and the time step of the calculations are decided before running the calculation, 

on the basis of a preliminary evaluation of the Kolmogorov microscales. A widely- 
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Table 3.4 – Resolution parameters of simulations of Refs. [17, 23-36] 
[(*) simulation D, (**) series 1, (***) series 2] 

 

Ref. Reτ  x+∆  cy+∆  wy+∆  z+∆  DBt  Computing System(s) 

[35] 90 16.8 4.7 0.03 8.4 - - 
[29] 110 36.0 5.4 - 14.4 - - 
[35] 130 16.8 - - 8.4 - - 
[23]* 150 23.4 7.4 0.18 11.2 - Cray 2 

[24] 150 18.4 4.9 0.08 7.4 22100 uτν  Hitachi S-820/80 

[29] 150 18.4 4.9 - 7.4 - - 

[17] 180 11.8 4.4 0.05 7.1 10tu hτ  Cray X-MP 

[25] 180 11.0 4.4 0.05 4.0 - - 
[26] 180 15.7 8.7 0.21 5.23 - Cray X-MP 
[27] 180 17.7 4.4 0.05 5.9 - - 

[28] 180 9.0 5.9 0.20 4.5 24320 uτν  Fujitsu VPP-500 

[30] 180 8.9 6.1 - 4.5 22 b xtu L  - 

[32] 180 11.8 4.6 0.43 7.1 - - 
[35] 180 16.8 - - 8.4 - - 

[36] 180 11.8 4.4 0.87 8.8 10tu hτ  HP V-2500 

[29] 300 18.4 4.9 - 7.4 - - 
[35] 360 16.8 - - 8.4 - - 
[27] 395 9.7 6.5 0.03 6.5 - - 

[28] 395 9.9 9.6 0.20 4.9 215800 uτν  Fujitsu VPP-500 

[25] 400 7.0 5.5 0.05 4.0 - - 
[29] 400 16.4 4.9 - 6.5 - - 
[32] 400 9.8 5.2 0.48 6.5 - - 

[30] 550 8.9 6.7 - 4.5 10tu hτ  - 

[31]** 550 8.9 6.7 - 4.5 10tu hτ  - 

[31]*** 550 8.9 6.7 - 4.5 77tu hτ  - 

[27] 590 9.7 7.2 0.04 4.8 - - 

[28] 640 8.0 8.0 0.15 5.0 224800 uτν  Fujitsu VPP-500 

[29] 650 17.7 8.0 - 5.3 - - 
[35] 720 16.8 - - 8.4 - - 
[32] 800 9.8 5.2 0.48 6.5 - - 

[31]** 950 7.6 7.6 - 3.8 9.2 b xtu L  - 

[31]*** 950 7.8 7.8 - 3.9 27 b xtu L  - 

[35] 1440 16.8 9.4 0.12 8.4 - - 

[31]*** 1900 7.8 7.8 - 3.9 22 b xtu L  - 

[34] 2003 8.2 8.9 - 4.1 10.3tu hτ  Marenostrum 
[33] 2320 19.0 - - 7.1 - Earth Simulator 

 

 

used procedure for this evaluation is based on the estimation of the rate of dissipation 

per unit mass ε , as obtained from some mean-flow quantities. 
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This method has been introduced by Bakewell and Lumley [44] in an experimental 

work dealing with the pipe-flow case. In the case of the plane channel, one has: 

 

22 2

2
x z w b x z w b

b
x y z x z

L L u L L u
u u

L L L hL L τ
τ τε

ρ ρ
≅ = =                                 (3.1) 

 

Other relevant issues are related to the verification of the adequacy of the computing-

domain dimensions and grid resolution.  

The size of the computational domain is adequate if it is large enough to capture all 

the relevant large-scale turbulent structures. Thus, the velocity fluctuations at 

streamwise and spanwise separation distances of half the domain dimensions have to 

be uncorrelated and this circumstance can be verified by monitoring the two-point 

correlation coefficients of the fluctuating velocities (further observations about the 

adequacy of the computing domain in DNS can be found in Fishpool et al. [45]).  

As concerns grid resolution, one-dimensional energy spectra of the fluctuating 

velocities are usually monitored. The grid resolution is adequate if the energy density 

associated with the high wavenumbers results several orders of magnitude lower than 

the energy density corresponding to low wavenumbers.  

An attempt in reducing the computational resources required for DNS calculations in 

turbulent channel flow has been performed by Jiménez and Moin [46], in the 

framework of the minimal channel-flow domain.  

Channel-flow calculations at Rec = 2000, 3000 and 5000 were performed on 

domains significantly smaller than a large turbulent channel, and statistics of mean 

velocity and turbulence intensity were compared with those obtained in the full 

channel. Good agreement in the near-wall region was observed for domain sizes 

greater that 100 wall units in the spanwise direction, and 250-350 wall units in the 

streamwise direction. Thus, the smallest domain that sustained turbulence was 

termed minimal channel, representing a single unit of near-wall turbulence that 

allows the isolation of key turbulence structures and the study of their dynamics 

(additional observations about resolution requirements in DNS can be found in the 

2001 review of Friedrich et al. [47]). 
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3.4   Turbulent-flow structures 

A critical aspect in DNS is the use of a computed numerical database for the 

improvement of our knowledge of turbulence physics. Also in this phase, high 

performance computing techniques may be highly helpful (see, among others, 

Alfonsi and Primavera [48]). 

 

3.4.1   Early times in flow structures 

A useful notion for the scientific understanding of turbulence physics is that of 

turbulent-flow structure. Historically, one of the first results in studying the structure 

of the boundary layer is due to Kline et al. [49] who showed that, very near to the 

wall, the flow organizes in alternating arrays of unsteady high- and low-speed 

regions aligned in the streamwise direction, called streaks. Thereafter, a considerable 

amount of work has been accomplished. Techniques for the detection of turbulent 

events have been introduced, and Conditional Sampling and Averaging (see also the 

1981 review of Antonia [50]), Quadrant Analysis (Willmarth and Lu [51]), Variable 

Interval Time Averaging (VITA, Blackwelder and Kaplan [52]), and Variable 

Interval Space Averaging (VISA, Johansson et al. [53]) are examples of such 

techniques.   

In the Quadrant Analysis, the local flow behaviour is divided into quadrants, 

depending on the sign of the streamwise u′  and normal v'  velocity fluctuations. 

Four quadrants are identified and, among them, the second-quadrant 2Q  event   (

0  0u' , v'< > , low-speed fluid moving away from the wall) is identified as an 

ejection, while the fourth-quadrant 4Q  event  ( 0  0u' , v'> <  high-speed fluid moving 

toward the wall) is identified as a sweep. One of the first contributions to the issue of 

the presence of vortices in the boundary layer is due to Theodorsen [54], who 

introduced the hairpin vortex model. Robinson [41] confirmed the existence of arch 

vortices and quasi-streamwise vortices, on the basis of DNS results. The composition 

of a quasi-streamwise vortex with an arch vortex may result in a hairpin vortex, but 

this conclusion may strongly depends on the particular technique used for vortex 

detection. The process of evolution of a hairpin vortex involves the development of 

vortex legs. The leg of a vortex, considered in isolation, may appear as a quasi-

streamwise vortex. The vortex head instead, rises through the flow field, and the 
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vorticity in the vortex head diminishes (Head and Bandyopadhyay [55], Smith et al. 

[56]). Conceptual models of boundary-layer turbulence based on vortex dynamics 

have been provided, among others, by Willmarth and Tu [57] (based on vorticity 

lines), Offen and Kline [58] (in terms of lifted and stretched horseshoe vortical 

structures), Praturi and Brodkey [59] (based on the relation between inner and outer 

region), and Thomas and Bull [60]. Acarlar and Smith [61] described the dynamics 

of hairpin vortices in the boundary layer in connection with low-speed streaks, shear 

layers and other phenomena. Robinson [41] devised a model in which quasi-

streamwise vortices dominate the buffer region, arch vortices are mainly present in 

the wake region, while in the overlap layer both structures exist, often as elements of 

the same vortical structure. An extensive review about boundary-layer turbulence has 

been performed in 2006 by Alfonsi [62]. 

 

3.4.2   Vortical structures 

With the advent of DNS, turbulent-flow databases of numerical nature became 

available, incorporating the possibility of implementing – on huge amounts of data –  

mathematically-based definitions of vortical structures, for their eduction. 

Mathematically-founded methods that can be successfully used for the identification 

of vortical structures of different kind in a turbulent flow have been introduced by 

Perry and Chong [63] (based on the complex eigenvalues of the velocity-gradient 

tensor), Hunt et al. [64] (based on the second invariant of the velocity-gradient 

tensor), Jeong and Hussain [65] (based on the analysis of the Hessian of the 

pressure), and Zhou et al. [66] (based on the imaginary part of the complex 

eigenvalue pair of the velocity-gradient tensor). A comparison of the effectiveness of 

the four aforementioned vortex-eduction criteria can be found, among others, in 

Alfonsi and Primavera [67n]. Perry and Chong [63] proposed the method of 

identifying vortices by means of isosurfaces of positive small values of the 

discriminant D of the characteristic equation of the velocity-gradient tensor, where it 

has complex eigenvalues (the D criterion). Hunt et al. [64n] devised another 

criterion, in defining an eddy zone as a region characterized by positive values of the 

second invariant Q of the velocity-gradient tensor (the Q criterion). In Wu and Moin 

[68], [69] a clear evidence can be found of the presence of hairpin vortices in the flat-



Chapter 3 – Literature Review 
 

36 
 

plate boundary layer, as extracted from the numerically-simulated velocity field by 

using the Q criterion. It is shown that the instantaneous flow fields in both 

transitional and turbulent regions result vividly populated by hairpin vortices. Jeong 

and Hussain [65] proposed a definition of a vortex by considering the problem of the 

pressure minimum (the 2λ  criterion). According to this method, a vortex is defined 

as a connected region of the flow with the requirement that the intermediate 

eigenvalue of ijB  be negative 2 0λ < . The 2λ  criterion represented the basis for a 

remarkable amount of work, as performed by F. Hussain and co-workers (see 

Schoppa and Hussain [70] and references therein). Zhou et al. [66] adopted the 

criterion of identifying vortices by visualizing isosurfaces of appropriate values of 

the imaginary part of the complex eigenvalue pair of the velocity-gradient tensor (the 

ciλ  or swirling strength criterion). The method is frame independent and due to the 

fact that the eigenvalue is complex only in regions of local circular or spiralling 

streamlines, it automatically eliminates regions having vorticity but no local 

spiralling motion. Chakraborty et al. [71] proposed an enhanced criterion, the so-

called enhanced swirling strength criterion.  

 

 

3.5   High performance Navier-Stokes solvers 

In this section, an overview of a number of works in which computational codes 

for the numerical integration of the Navier-Stokes equations are developed and 

implemented on high performance computers of different kinds is given (Tab. (3.5)). 

Among the first, Jespersen and Levit [72] tested the performance of a Navier-Stokes 

solver on a 32768-processor Connection Machine CM-2, against that obtained on a 

Cray X-MP and Cray 2 computers. Fischer et al. [73] presented a high-efficiency 

medium-grained parallel spectral-element method for the numerical solution of the 

unsteady incompressible Navier-Stokes equations, mainly evaluating the optimality 

of the algorithm-architecture coupling. Two MIMD Intel message-passing vector-

hypercube computers (a iPSC/1-VX/d4 and a iPSC/2-VX/d4) and a Cray X-MP 

machine were used. The first machine was a Intel 286-based system with store-and-

forward message passing. The second was a Intel 386-based system with pipeline 

communication routing. Different flow cases were tested, namely a free-surface  
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Table 3.5 – Synthetic prospectus of high performance Navier-Stokes solvers. 

Author(s) Computing System(s) 

Jespersen and Levit [72] Connection Machine CM-2, Cray X-MP, Cray 2 

Fischer et al. [73] Intel iPSC/1, Intel iPSC/2, Cray X-MP 

Pelz [74] NCUBE/1 

Jackson et al. [75] Intel iPSC/860 

Chen and Shan [76] Connection Machine CM-2 

Johan et al. [77] Connection Machine CM-2, CM-200 

Naik et al. [78] IBM Victor 

Fatoohi [79] 
Connection Machine CM-2, Intel iPSC/860, 

Cray Y.MP 
Basu [80] Intel iPSC/860 

Briscolini [81] IBM SP-1, IBM SP-2 thin, IBM SP-2 wide 

Floros and Reeve [82] Inmos T-800, Intel iPSC/860, Meiko CS-2 

Prestin and Shtilman [83] Meiko MK-096 

Crawford et al. [84] IBM SP-2, SGI Power Challenge XL, Cray C-90 

Garg et al. [85] Intel Paragon, Intel iPSC/860, Cray Y-MP 

Wasfy et al. [86] SGI Onyx 

Garbey and Vassilevski [87] Cray T-3E, DEC Alpha cluster 

Gropp et al. [88] ASCI White, ASCI Blue, ASCI Red 

Kumar et al. [89] Fujitsu VPP-700 

Hoeflinger et al. [90] SGI Origin 2000 

Dong and Karniadakis [91] SGI Origin 2000, IBM SP-3, et al. 

Itakura et al. [92] Earth Simulator 

Xu [95] Blue Gene/L 

Behara and Mittal [96] Intel Xeon cluster 

Grinberg et al. [97] IBM Blue Gene, IBM Power 4+, Cray XT-3 

 

 

“levelling” problem, the external startup flow past a circular cylinder, and the startup 

flow past a large “roughness” element in a channel. Overall, the efficiency of the 

parallel calculations reached the level of about 75%. 

Pelz [74] tested parallel Fourier pseudospectral algorithms for the solution of the 

unsteady incompressible Navier-Stokes equations, were the major operation 

requiring parallelization was the multidimensional FFT. Tests were performed on a 

1024-node NCUBE/1 hypercube computer, reporting efficiencies of about 83% in a 

three-dimensional problem with mesh size of 1283 grid points. Jackson et al. [75] 

presented a detailed implementation of a parallel pseudospectral code for the Navier-

Stokes equations, directed toward the execution of direct numerical simulations of 

homogeneous turbulence. They used a 32-node Intel iPSC/860 hypercube machine, 
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reporting better performance results with respect to those obtained on a Cray Y-MP. 

Chen and Shan [76n] presented spectral calculations on a Connection Machine CM-2 

performed with a parallel algorithm for the three-dimensional Navier-Stokes 

equations directed toward the execution of direct numerical simulations of 

homogeneous isotropic turbulence. They implemented a 5123 (up to) mesh 

resolution with periodic boundaries, and report a computational speed 30% faster 

with respect to correspondent simulations executed on a quad-processor Cray-2 

vector machine. Johan et al. [77] presented a finite-element method for 

computational fluid dynamics implemented on Connection Machine systems CM-2 

and CM-200. An implicit iterative solution strategy was implemented, and parallel 

data structures were built on both nodal and elemental sets to achieve maximum 

parallelization. The cases tested include the flow around a blunt body and the flow 

around a small jet plane at both negligible angle of attack in a crosswind. 

Performance comparisons were also provided with respect to the use of vector-

computing machines. Naik et al. [78] considered issues related to the parallelization 

of implicit finite-difference techniques for the solution of Euler and Navier-Stokes 

equations, requiring the solution of large linear systems in the form of block tri-

diagonal and/or scalar penta-diagonal matrices. Various partitioning and scheduling 

strategies were described, directed to the alleviation of the effects of global-data 

dependencies. Analyses of computations, communications and memory requirements 

were presented. The performance of the methods was verified on the IBM message-

passing architecture Victor. Fatoohi [79] presented the results of the parallelization 

procedure of a three-dimensional Navier-Stokes solver on three different machines, a 

Connection Machine CM-2, a Intel iPSC/860 and a Cray Y-MP. The solver was 

based on the Lower-Upper Symmetric-Gauss-Seidel implicit scheme for the 

formulation of the incompressible Navier-Stokes equations. The three computers 

were fairly different. The CM-2 was massively-parallel SIMD machine (clock rate of 

7 MHz) that included 32K 1-bit serial processors, 1024 64-bit Weitek floating point, 

4 GB of memory, and two front-end machines, a Sun 4/490 and a Vax 6230. The 

iPSC/860 is was moderately-parallel MIMD machine that included 128 nodes 

interconnected by a seven-dimensional hypercube network, and a front-end machine. 

Each node had a 64-bit i860 microprocessor, 8 Mbyte of memory and a direct 
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connect module, responsible for communication between nodes. The Cray Y-MP 

was a shared-memory MIMD machine with 8 processors, 128 Mwords of main 

memory, and a 6-ns clock cycle (the peak performance was 3.67 GFlops). The author 

reported that reasonable performances could be achieved on all the computers tested, 

resulting though the Cray Y-MP the best performer, as related to the algorithm at 

hand. A spectral technique for the Navier-Stokes equations was parallelized by Basu 

[80], on a Intel i/860-based three-processor computer. Briscolini [81] reported on 

three parallel message-passing implementations of a three-dimensional 

pseudospectral Navier-Stokes solver for homogeneous turbulence, on three different 

IBM SP-1 and SP-2 computers. The IBM SP-1 included 16 nodes, where each node 

was based on a IBM Power Risc, model 370. The two SP-2 included 16 nodes each, 

where each node was based on a IBM Power 2 Risc, model 390-thin and 390-wide, 

respectively. Overall, the work showed that the parallelized pseudospectral codes 

allowed an optimal exploitation of the computational capabilities of the computing 

machines that were tested. Floros and Reeve [82] presented an implementation of a 

spectral-element Navier-Stokes solver on three generations of parallel architectures, 

namely a Inmos T-800 transputer, an Intel iPSC/860 and a Meiko CS-3. While the 

performances of the older Transputer and iPSC/860 machines was fairly predictable, 

the behaviour of the code on the SPARC-10 based Meiko CS-2 demonstrated the 

influence of the internal-memory hierarchy on the computational performance. A 

mixed spectral-element, pseudospectral and finite-difference scheme for the Navier-

Stokes equations has been implemented on a Meiko parallel computer by Prestin and 

Shtilman [83]. The performance level achieved for the spectral-element code on the 

28-node Meiko computer approached 200 MFlops in single precision and 150 

Mflops in double-precision arithmetics. Crawford et al. [84] presented benchmark 

results from the parallel implementation of a hybrid three-dimensional Navier-Stokes 

solver on different parallel platforms, namely a IBM SP-2, a SGI Power Challenge 

XL, and a Cray C-90. The solver is based on a mixed spectral element-Fourier 

expansion technique for complex geometries, in which Fourier space is used in the 

two homogeneous directions, and the spectral-element discretization in the third 

direction. A method for an efficient implementation of a combined spectral-finite 

difference algorithm for the calculation of incompressible stratified turbulent flows 
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on distributed-memory computers was developed by Garg et al. [85]: they consider 

the case of the stratified turbulent flow in a channel, as described by the Navier-

Stokes equations and the scalar-transport equation. A mixed technique was used, 

Fourier decomposition and finite differences in space and a semi-implicit Crank-

Nicolson, third-order Runge-Kutta scheme in time. A speedup analysis of a model 

problem was presented for three partitioning schemes. They tested the code on a Intel 

Paragon machine (128 processors), a Intel iPSC/860 computer (32 nodes), against a 

Cray Y-MP. They reported efficiencies in a 60% 91%÷  range. Wasfy et al. [86] 

reported on the development of a parallel semi-implicit iterative finite- element 

procedure, for the unsteady incompressible fluid-flow equations. Tests were 

performed on a 6-processor SGI Onyx system, in particular related to three flow 

cases, the flow over a backward-facing step, the oscillating lid-driven square cavity, 

and the vortex shedding over a circular cylinder. It was found that, depending on the 

nature of the problem, an optimum time step and number of iterations exists that 

minimize the computing time. Garbey and Vassilevski [87] described two different 

algorithms to solve on parallel computers the unsteady three-dimensional Navier-

Stokes equations. The test case chosen was the flow around a circular cylinder. Both 

algorithms revealed a high parallel efficiency on a parallel computer with uniform 

architecture as the Cray T-3E (24 processors). On found that the solver for the 

momentum equation was still scalable, while the pressure solver was not. Gropp et 

al. [88] presented parallel-performance results of implicit fluid-dynamic simulations 

based on finite discretization on static grids. It is found that, despite of the fact that 

large-scale unstructured implicit CFD computations have matured to a point of 

practical use on distributed/shared-memory architectures, a careful tuning is needed 

to obtain the best product in terms of efficiency-per-processor and global parallel 

efficiency. Moreover, the number of cache misses and the achievable memory 

bandwidth are two important parameters that should be considered in determining an 

optimal data-storage pattern. Kumar et al. [89] performed an interesting study in 

which MIMD parallel performances of a three-dimensional unsteady Navier-Stokes 

solver were presented, as measured onto a distributed-memory vector parallel Fujitsu 

VPP-700 computer. The numerical technique was based on a time-accurate cell-

centered finite-volume method, within a Euler implicit time-marching setting. Three 
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problems of practical interest in the field of biomedical fluid mechanics were 

considered as test cases, namely the unsteady flow in an asymmetric constricted 

vessel, the unsteady flow in an asymmetric dilated vessel, and the unsteady flow in a 

doubly-constricted vessel. The Fujitsu VPP-700 was a distributed-memory-

architecture machine, based on powerful proprietary vector processors. The 

performance of the parallel code was measured in terms of speedup- and efficiency 

factors, and was found rather encouraging. About 90% efficiency was obtained with 

large data sizes, using 16 vector CPUs. Further gains in the speedup could be 

achieved by dynamic-load distribution and fine-vectorization tuning. 

Some authors also investigated on parallel-programming interfaces. Hoeflinger et al. 

[90] performed a study – a SGI Origin 2000 computer was used – about scalability of 

Navier-Stokes solvers as implemented with OpenMP, and also about MPI-to-

OpenMP code migration. OpenMP is a relatively recent programming interface, 

targeted at MIMD parallelism, that can rather easily deliver good parallel 

performance in the presence of a small number of processors (< 16). Success with 

more processors become more difficult to be obtained. OpenMP makes use of 

processors by employing them as threads of control in a shared-address space. 

Directives express the parallelism in the program, that is then implemented in the 

code, as generated by the compiler. The threads share data by default, but they can 

also have private data. OpenMP is a industry standard on SMP systems, and is 

usually available on distributed-memory systems constituted by clusters of SMP 

nodes. MPI is a more mature message-passing library, and there have been many 

reports of highly-scalable MPI computational codes for large numbers (up to 

thousands) of processors. MPI is usually used on SPMD mode, and is based on 

independent processes that do not share any memory. Parallelism and data transfer in 

MPI are expressed through subroutine calls. MPI is widely regarded as a scalable 

parallel-programming paradigm because the programming model causes the user to 

rewrite a serial application all at once into a domain-decomposed program, that - by 

its nature - has high locality and whose processors actually interact very little. The 

authors explored a number of causes of poor scalability involved in the use of 

OpenMP. A list of key issues was provided that need to be addressed to make 

OpenMP a more easily-scalable paradigm. Dong and Karniadakis [91] presented a 
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hybrid two-level parallel paradigm with MPI/OpenMP in the context of high-order 

methods as implemented in the spectral/hp element framework, to take advantage of 

the hierarchical structures arising from CFD problems. The test case was the flow 

around a circular cylinder. The authors took a coarse-grain approach to OpenMP 

shared-memory parallelization and employed a work-load splitting scheme to reduce 

the OpenMP synchronizations at a minimum level. The hybrid algorithm showed 

good scalability with respect to both the problem size and the number of processors 

with fixed problem size. With the same number of processors, the hybrid model with 

two OpenMP threads per MPI process was observed to perform better than pure MPI 

and pure OpenMP on a SGI Origin 2000 computer (250 MHz MIPS R 10000) and a 

Intel IA-64 cluster (Titan, 800 MHz Itanium), while the pure MPI model performs 

the best on a IBM SP-3 (Blue Orizon, 375 MHz Power-3) and a Compaq Alpha 

cluster (Le Mieux, 1 GHz Alpha EV-68). A key new result was that the use of 

threads facilitated effectively p-refinement, a crucial issue to adaptive discretization 

using high-order methods. The scalability of hybrid programming in a CFD code on 

the Earth Simulator computer has been explored by Itakura et al. [92]. The Earth 

Simulator (ES, see Habata et al. [93], and Yanagawa and Suehiro [94]) is a highly-

parallel vector supercomputing system, developed under a Japanese Government's 

initiative. In May 2002 the ES was acknowledged to be the most powerful computer 

in the world, with 35.86 TFlops on the Linpack HPC benchmark (87.5% of the 

system peak performance) and 26.58 TFlops for an atmospheric general-circulation 

code. Such performances could be attributed to three main architectural features, 

such as: 

� vector processor (based on NEC SX-6 vector technology);  

� shared memory;  

� high-bandwidth non-blocking interconnection crossbar network.  

The ES consists of 640 processor nodes (PN) and an interconnection network (IN), 

housed in 320 PN cabinets and 65 IN cabinets. The ES is installed in a specially-

designed building 65m long, 50m wide and 17m high. In order to build-up the 

system, a number of hardware technologies have been developed, such as high-

density and high-frequency LSI, high-frequency signal transmission, high-density 

packaging, and a high-efficiency cooling and power supply. One of the characteristic 
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features of the system is the “one chip vector processor”, with a peak performance of 

8 GFlops. This highly-integrated LSI was fabricated using 0.15 m CMOS 

technology, with eight-layer copper interconnection. The operating system for the ES 

is based on SUPER-UX, the UNIX operating system for the NEC SX series of 

scientific supercomputers. There are two types of parallel-programming models 

available on the ES. One is a flat programming model in which a parallel program is 

implemented by MPI interfaces only, both within a SMP node and among nodes. The 

other one is a hybrid programming model, in which a parallel program is written 

using thread programming within a SMP node and MPI programming among nodes 

simultaneously. It is generally accepted that is difficult to obtain the same high level 

of performance using the hybrid programming model, as can be achieved with the 

flat programming model. Itakura et al. [92] evaluated the scalability of a 

computational code for the solution of the Navier-Stokes equations on the ES. They 

found that the hybrid programming model achieved a sustained performance of 346.9 

GFlop/s, as compared with the flat programming model that achieved 296.4 GFlops, 

with 16 PN of the ES for a DNS problem size of 2563. For small-scale problems 

however, the hybrid programming model was found not so effective, because of 

microtasking overhead. More recently, Xu [95] implemented a number of parallel 

models directed to the exploitation of the capability of massively-parallel computers, 

up to the tera-scale level, by  a fully-spectral Navier-Stokes solver for turbulent-

channel-flow DNS. Benchmark tests were executed onto a Blue Gene/L computer. A 

stabilized finite-element formulation for three-dimensional unsteady incompressible 

flows was implemented on a distributed-memory parallel computer by Behara and 

Mittal [96]. The scalability of the computations on a 64-processor Linux cluster was 

evaluated for problems with various sizes. The cluster was actually constituted by 32 

nodes, each node equipped with two Intel Xeon processors, with clock rate of 3.06 

GHz. Each processing unit included a main-memory unit of 2 GB RAM and 512 KB 

L2 cache. Grinberg et al. [97] developed and tested an effective and scalable low-

energy-basis preconditioner for elliptic solvers. Computational tests were performed 

onto different high-performance computers. Some other work has been performed to 

investigate the possibility of automatically parallelize computational codes for the 

Navier-Stokes equations. Among others, Agrawal et al. [98] analyzed two Navier-
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Stokes solvers implemented in High-Performance Fortran (HPF) and showed that it 

was necessary to manually insert calls to low-level parallel libraries, to achieve 

performances comparable to an equivalent message-passing implementation of the 

same codes. Overall, they have demonstrated that the automatic parallelization of 

computational codes for scientific applications remains largely unpractical. 

As concerns processors, for a given period of time, the performance of 

microprocessors was rapidly increasing, and the evolution of their architectures was 

mainly driven by two factors:  

� the increasing number of transistors per processor;  

� the increasing difference between processor speed and memory-access time.  

The main technological advance has been a reduction of the basic VLSI feature size. 

By looking at the computing power of a chip (the total transistor switching per 

second), the present transistor capacity has increased more than one order of 

magnitude with respect to the clock rates of the past two decades. The basic single-

chip building block has provided - for a given period of time - increasingly larger 

capacities, so that more components could be packed on the chip (i.e. memory).  

The difference between capacity and speed is more pronounced in the memory 

technology. From the mid-1980s and the mid-1990s, the capacity of DRAM chips 

has increased of about three orders of magnitude, actually quadrupling every two 

years, while the memory-cycle time has increased only by a factor of two. Processor 

design attempts to exploit the large number of available transistors to reduce the 

performance degradation due to memory latency, that oscillates from few 

nanoseconds for a first-level on-chip cache, to milliseconds for mass memory, i.e. 

I/O devices. Caches are used to reduce the memory-access latency, where thread-

level parallelism allow the processor to overlap the memory-access time with other 

useful work. Multi-threading architectures provide special hardware to support 

parallelism at the thread-level, in which individual threads can simultaneously 

exploit instruction-level (ILP) parallelism (several instructions executed at the same 

time, see, among others, Dulong [99]). As concerns memory, logically-shared but 

physically-distributed memories are not easy to implement. Memory hierarchy in 

conventional architectures allows the data that are bound to an address, to be 

migrated toward the processor that requires them. Load instructions in distributed 
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shared memory architectures allow data to migrate toward the local memory of the 

processor that access it. Migrating and/or replicating data across a distributed shared-

memory multiprocessor system presents a set of challenges due to issues related to 

coherence and remote-memory latency. A memory-consistency model for a shared-

address space specifies constraints on the order in which memory operations have to 

be performed (i.e. become visible to the processors). The basic consistency model is 

the sequential consistency (see Lamport [100]) that, although intuitive, is not easy to 

be inexpensively implemented. Symmetric multiprocessors usually implement the 

snooping, a general technique for cache coherency that uses the serialization of the 

memory access by the shared bus. Another way to implement a coherence protocol is 

the use of a directory, where a central home unit keeps track of the memory locations 

shared by multiple caches, and of those that are held exclusively. All accesses are 

handled by the home that, on the basis of its directory, recognizes the caches that 

need to be updated or invalidated at any given memory access. This solution is 

sensitive to the speed of the interconnection network due to the fact that all the 

operations are handled centrally (see Hagersten et al. [101]). 

Nowadays, in large-scale supercomputing systems, two types of parallel architectures 

can be mainly distinguished:  

� distributed-memory parallel systems with cache-based superscalar 

microprocessors (the option followed for example with the ASCI project in 

the United States);  

� distributed-memory parallel systems with vector processors (the option 

followed for example with the Earth Simulator project in Japan).  

An extensive comparison between parallel cache-based superscalar- and parallel 

vector computing systems can be found in Oliker et al. [102], as related to several 

different key scientific-computing areas. The first two vector computers appeared in 

the early 1970s, and were the Texas Instrument TI-ASC and the CDC STAR-100. 

The development of vector computers actually began with the advent of the Cray 1 in 

1976 (see Russel [103]), so starting in practice the history of high-performance  
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Table 3.6 – Vector computers manifactured 1972-1996 (data from Ref. [104]) 

Machine Year Cycle Time (ns) Pipes Peak (Flop/s)/cycle 

TI-ASC 1972 60.0 4 4 
CDC STAR-100 1973 40.0 1 2 

Cray 1 1976 12.5 1 2 
Fujitsu VP-200 1982 7.0 2 4 

Cray X-MP 1983 9.5 1 2 
Hitachi S-810/20 1983 19.0 2 12 

NEC SX-2 1984 4.0 4 16 
Cray 2 1985 4.1 1 2 

Hitachi S-820/80 1987 4.0 4 12 
Cray Y-MP 1988 4.3 1 2 

Fujitsu VP-2600 1989 3.2 4 16 
NEC SX-3 1990 2.9 4 16 
Cray C-90 1992 4.0 2 4 
NEC SX-4 1996 8.0 8 16 

 

 

computing. The Cray 1 had 160 MFlop/s peak performance, and at that times, had a 

tremendous impact onto the scientific-computing  

community. Subsequently in Japan, Hitachi, Fujitsu and NEC manufactured their 

own vector computers (see Oyanagi [105]), though developing different architectures 

from one another. In Tab. 3.6, a number of vector machines as manufactured from 

1972 to 1996 are concisely outlined (data from Espasa et al. [104]). The key aspect 

of a vector architecture is the Single Instruction Multiple Data (SIMD) execution 

model. In a traditional scalar processor, the basic data type is a n-bit word. The 

architecture often exposes a register file of words, and the instruction set is 

composed of instructions that operate on individual words. In a vector architecture, a 

vector-data type is present, where a vector is a collection of VL n-bit words. 

There may also be a vector-register file (the main innovation incorporated in Cray 

architectures), differently from the old-times vector machines in which vectors were 

stored in the main memory. Vector processors perform single operations on entire 

vectors, while classical processors execute entire micro programs on each data 

element of a stream. The effect of this difference is that in vector architectures the 

intermediate vectors produced by each instruction are stored in the vector-register 

file, while in a scalar processor intermediate values are consumed locally. Overall, 

the code complexity in such a processor increases. 
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4.1   Introduction 

Direct numerical simulations of turbulent flows require a great amount of 

computational intensive resources; as the Reynolds number increases the separation 

between the largest scales and the smaller scales of motions becomes greater, 

increasing the computational cost. Thanks to recent advances in high performance 

computing, it is possible to develop new powerful tools for fundamental turbulence 

research (high performance direct numerical simulation of turbulence). 

The period between 1980s-1990s is referred as a golden age for parallel computing, 

because of a great increasing interest on parallelism, innovative architectures in the 

field of supercomputers and parallel programming models. From an economic point 

of view, however, the impact of these types of architectures is so strong that the 

spread of supercomputers for research is limited. So, one assists on the beginning of 

distributed computing era, which introduced the concept of massively parallel 

models applied to clusters of powerful microprocessors. The technological progress 
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is facilitated by the rapid improvements of microprocessors: they are economic and 

guarantee good performances as supercomputers.  

Figure 4.1 plots the growth in processor performances since the mid-1980s [106]: in 

particular, it shows a significantly enhancement in performance that is equal to 

annual rate of over 50%. Technological improvements on microprocessors enhance 

the overall capability of computers, whose performances are comparable with those 

of supercomputers. Moreover, those improvements determine the spread of 

microprocessor-based computer design: the architectural growing in the number of 

transistors on semiconductor devices, associated to cost advantages of mass-

produced microprocessors, produces, in general, an increasing in computer business, 

especially in the field of high performance computers (PC and workstation). 

Since 2003, the limits of energy power, available instruction-level parallelism and 

long memory latency slowed this positive trend to about 20% (Fig. 4.1). Because of 

these limits, there was a transition from high performance microprocessors to higher 

performance multiple processors per chip, referred as cores, such as Intel and AMD 

have done since 2004: it is referred as the multicore revolution, because chip 

manufactures scale the number of cores per chip rather than clock frequencies to 

improve distributed computing. Innovation in architectural setting is reflected also in 

exploiting multithreading through thread-level parallelism (or TLP, in which threads 

are distributed across different parallel computing nodes) and data-level parallelism 

(or DLP, in which data are distributed across different parallel computing nodes): 

this switch had a deep impact on the software developer community, because of a 

different approach from an implicit to an explicit parallel programming model. 

Nowadays, computational science and numerical simulations are in the midst of a 

technological revolution caused by recent trends in hardware that have redefined the 

concept of “parallelism”: high performance computing is oriented towards 

heterogeneous platforms, defined both by central and graphics processing units 

(GPUs). GPU is a processor optimized for 2D and 3D graphics, video, visual 

computing and display [107] and represents an evolution of the video graphics array 

(VGA) controller, adopted since the late 1980s, that was a memory controller and 

display generator connected to DRAM [107], definitively abandoned in 2000. 
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Figure 4.1 – Growth in processor performance since the mid-1980s (adopted from [106]). 

 

 

Over time, the GPU becomes more and more sophisticated, in terms of 

programming, especially in the field of advanced graphics due to OpenGL and 

DirectX models implementations. These application programming interfaces (APIs) 

allow to accelerate graphics processing functions for more realistic 3D environments, 

especially for 3D PC Gaming. 

Thanks to their massively parallel processors, GPUs became attractive also from a 

parallel computing point of view, opening the visual computing era, defined as the 

intersection between all graphics advanced processing and parallel computing.  

Availability of HPC systems, especially based on CPU/GPU hybrid architectures, 

can led to significant advances in DNS, since it allows to achieve higher spatial and 

temporal resolutions and to develop a new generation of numerical solvers with 

emphasis on high accuracy and stability. 

The purpose of the present chapter is to discuss the impact of HPC on DNS, with 

reference to wall bounded flows. Section 4.2 gives an overview about the most 

important available and traditional programming models; in Section 4.3, metrics for 

measuring performances are presented;  in Section 4.4, a more detailed discussion 

about GPUs as parallel computing units is presented; Section 4.5 presents CUDA, 
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the new parallel environment developed by NVIDIA for GPUs; finally, Section 4.6 

gives an overview of multi-GPU architecture. 

 

 

4.2   Historical view on programming models 

Parallel computing architectures started to appear at the end of the 1970s. One 

can often distinguish between SIMD machines (Single Instruction Multiple Data) 

and MIMD machines (Multiple Instruction Multiple Data) (see also the 1994 review 

of Fischer and Patera [108]).  

In a SIMD type of architecture a large number of processors (each with its own 

memory) simultaneously carries out the same sequence of instructions at the same 

time, while operating on different local data. Regular-mesh explicit algorithms that 

only require nearest-neighbor communications can be efficiently implemented on 

such machines. In the past, a noticeable example of fine-grain SIMD machine has 

been represented by the Connection Machine computers, that, in some cases, have 

been equipped with up to thousands one-bit processors.  

In MIMD architectures each node is a complete computer, with code and data 

stored in the local memory. MIMD machines provide for a great flexibility of use, 

but they may involve a remarkable degree of complexity in programming. A further 

distinction can be made among MIMD machines, distinguishing between machines 

with shared memory and distributed local memory. In shared-memory computers 

(Symmetric Multiprocessors, SMP) a limited number of processors, each one able to 

act independently, shares a unique area of memory that is accessed though a bus. An 

example of such machines is the Cray X-MP. Usually the scaling capabilities in 

shared-memory machines is poor, mainly due to the memory-access bottlenecks. 

This happens because, when the number of processors increases, it is no longer 

feasible to provide each processor with a parithetic access to the whole memory. 

Differently, in distributed-memory computers, a large number of processor (each one 

with its own memory) is connected through a switching and interconnection network, 

and communicate via explicit message passing (Massively Parallel Processors, 

MPP). If the switch is fast enough, the memory may be considered as shared, but this 

is more a programming model than a hardware property.  
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Since the 1990s, the development of computer processors has evolved toward the 

production of mass-produced powerful microprocessor chips, that soon became 

ready to replace the handcrafted processors that have characterized the early times in 

scientific computing. Since the microprocessor nodes have been  rapidly become 

very fast, one of the issues today in MIMD machines is whether the switching and 

communication technology will be able to keep pace with that of the microprocessor 

chips. Modern powerful computing systems often include a given number of nodes 

connected through a network, each node being formed by a number of shared-

memory processors. The network can be a relatively simple infrastructure, like in the 

case of the most common clusters, or be constituted by powerful proprietary 

connecting nodes. In fact, a cluster is commonly meant as a machine constituted by a 

number of CPUs with memory, connected through a network. The point of weakness 

of the cluster is usually the network, that, in terms of speed, in most cases represents 

the main bottleneck. A (large) multiprocessor computing machine is on the contrary 

constituted by a number of CPUs with memory, where the interconnection among the 

different processors is provided by sophisticated proprietary crossbar units, that are 

able to provide high-speed communication among the processors.   

Three main parallel-programming models exist:  

� data parallel: this model deals directly with multidimensional data arrays and 

is particularly useful on SIMD machines, using the Fortran 90 array syntax. 

The data-parallel model is naturally suited to SIMD hardware. One deals 

directly with data arrays and acquires neighboring information through data 

shifts. Several problems in computational fluid dynamics, in which data are 

carried on a well defined regular mesh, fit this programming model without 

particular difficulties;  

� message passing: this model, developed for MIMD machines, leaves to the 

programmer the task of exchanging the appropriate amounts of data between 

the local memories and the processor nodes. Probably the most immediate 

way to adapt a Navier-Stokes code onto a MIMD machine is through the 

Domain Decomposition Message Passing (DDMP) model. This operation 

results relatively straightforward for explicit finite-difference schemes for the 

numerical integration of the compressible-flow equations, in which only local 
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space-time physics is involved. By decomposing the total computational 

domain into subdomains – each of them attributed to a processor node in 

charge of all its arithmetics – only boundary data have to be transmitted 

between the different subdomains. For schemes that require a global-solving 

operation such as in the case of the incompressible-flow equations, the 

problem is less simple, but still it is possible to reduce the algebraic problem 

to one involving only boundary data;  

� shared memory: this model treats the total memory of the machine as equally 

accessible to each node. The shared-memory programming model represents 

the natural extension of the multitasking model. Synchronization is the key 

problem and it requires explicit use of barriers and locks. The analysis of the 

performance of a multiprocessor computing system is important for the 

determination of the behavior of a computational code on a given machine 

and, more generally, the clarification of the adequacy of the architectural 

scheme at hand with respect to a given class of problems (see, among others, 

Cremonesi et al. [109]).  

 

 

4.3   Metrics for measuring performances 

Measurements can be gathered on existing systems by means, for example, of 

benchmark applications, the latter aimed to assess the characteristics of an existing or 

a newly-released computer. Parallel benchmarks extend the traditional sequential 

benchmarks, providing a wide set of suites that exercise each system component with 

a targeted workload. The PARKBENCH suite (Dongarra et al. [110], especially 

oriented to message-passing architectures) and the NPB (NAS Parallel Benchmarks, 

http://www.nas.nasa.gov/Software/NPB) are examples of commonly-used 

benchmark suites (see Alfonsi and Muttoni [111] and references therein).  

A frequently-used metric for the evaluation of a particular run on a sequential 

machine is the execution or elapsed time. The elapsed time is a metric of high level 

because it captures the effects of the software structure, the system components 

(CPU, memory bandwidth, I/O transfer rate), the workload mix and the execution 

mode (dedicated vs. multi-programmed system).  
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The most commonly-used metrics in parallel computers is the speedup, that gives the 

measure of the actual performance of computational code on a multiprocessor 

system, with respect to an ideal value (generally represented by the execution time of 

the sequential counterpart). The speedup captures the effects of all the factors that 

characterize a parallel execution, namely the number of processors, the 

communications exchanged among the processors, the I/O activity, the structure of 

the code and - eventually - the simultaneous execution of different activities. Other 

metrics exist for the evaluation of specific components of a parallel architecture (i.e., 

Flops/s for the CPU power, MB/s for the channel bandwidth) but, due to the 

complexity that characterizes a multiprocessor system, the overall performance can 

hardly be derived from that of its single individual components. Scalability metrics 

describe the characteristics of a computational code in terms of gain or loss of 

performance as a function of the number of processors.  

Being 1T  the elapsed time of an application when executed on a single processor and 

pT  the elapsed time of the same application with a given number of processors pn , 

the speedup is defined as: 
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( 1pT T T=  is the non-dimensional runtime). In most cases, 1T  is the elapsed time of 

the sequential version considered as a benchmark. In its original form, Amdahl’s law 

states that the speedup is bounded as: 
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( seqf  is the fraction of the elapsed time inherently sequential). Very small values of 

seqf  are required to achieve significant speedups, due to the fact that no code can be 

executed faster than its sequential part. Ideally, when 0seqf =  the speedup is linear   
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( p pS n= , the ideal value of the speedup). Two upper bounds on the speedup can be 

identified from Eq. (4.2). They are expressed, in terms of the structure of the 

application by seqf , i.e. the software bound, and in terms of the properties of the 

parallel architecture by the number of processors pn , i.e. the hardware bound.  

Other metrics can be derived from the speedup. The efficiency of an application is 

defined as: 
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( 1id pT T n=  is the ideal time), i.e. the time spent with one processor divided by the 

number of processors. The efficiency represents the fraction of time during which the 

pn  allocated processors are usefully employed, or alternatively the speedup per 

allocated processor. The maximum value of the efficiency ( 1pE = ) is obtained when 

the speedup is linear.  

The effectiveness of an application is: 
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(also defined as f p pE S n= ), that takes into account both the gain and the cost of a 

computation (Ghosal et al. [112]). The value of pn
 
corresponding to the maximum 

effectiveness is the processor working-set of a computational code, i.e. the number of 

processors that maximize the speedup per unit of cost, so identifying an optimal 

operating point.  
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4.4   GPUs as parallel computers 

GPGPU (General Purpose Graphics Processing Unit) technology has drastically 

influenced the HPC market, because GPUs have been considered not only as 

powerful graphics device but have been used also as high performance manycore 

processors for accelerating a wide range of scientific applications. In this context, 

NVIDIA and AMD-ATI, the two most influent worldwide leaders in the graphics 

card field, proposed proprietary GPGPU programming frameworks: CUDA, 

developed by NVIDIA, and ATI Stream, developed by AMD-ATI. 

The introduction of CUDA, as described in the following sections, opened a new 

era of improved performance for many applications as a simpler GPU programming: 

it is a general purpose parallel computing architecture – with a new parallel 

programming model and instruction set architecture – that leverages the parallel 

computing engine in NVIDIA GPUs to solve many complex computational problems 

in a more efficient way than on a CPU [113]. It provides also a framework built 

around the C programming language, but only runs on NVIDIA GPUs.  

ATI Stream technology, instead, is a set of advanced hardware and software 

technologies that enables AMD graphics processors working in concert with the 

system’s central processors to accelerate applications and to run computational-

intensive tasks more efficiently [114]. ATI Stream is, more specifically, a cross 

platform that only runs on AMD GPUs. Central to the technology is the high-level 

language Brook+, based on C/C++ languages. Brook+ allows programmers to write 

CPU codes and synthetically simple GPU kernel functions, that are compiled 

separately, dividing the code into CPU and GPU components. For ATI Stream SDK 

to become a more user-friendly programming environment, a more mature 

development tools need to be added.  

Both NVIDIA and AMD support OpenCL (Open Computing Language): it 

represents the first standard for general purpose parallel programming on 

heterogeneous systems and supports both data-parallel and task-parallel 

programming models. The key feature of OpenCL is that it is designed as a parallel 

platform for programming across CPUs and GPUs. It is an open standard defined by 

the Khronos Group [115]. This makes it different to either NVIDIA’s CUDA or  
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Figure 4.2 – Typical scheme of a multicore CPU (on the left) and of a GPU (on the right). 

 

 

AMD’s ATI Stream, which are proprietary and designed to only work on their 

respective hardware platforms, becoming attractive to software developers. 

Because of its robustness, actually NVIDIA CUDA is considered more mature as 

programming environment, especially in terms of development tools and stability: 

for this reason, it is preferred at ATI’s Stream SDK and OpenCL, that is still in its 

infancy. 

Combining advantages carried out both from the CPU and GPU, one assists on 

the development of heterogeneous systems, based on a different processor types: in 

the field of high performance computing, the main innovative idea consists on 

executing sequential part of the CPU and numerically intensive part on the GPU 

[116] in order to increase dramatically the scalability of the cores. More in detail, in 

the field of microprocessors, it is possible to distinguish between multicore (CPU) 

and manycore (GPU). 

The schematic view of different architectures related to multicore (CPU) and 

manycore (GPU) are shown in Fig. 4.2. A multicore processor is designed to exploit 

massive quantities of on-chip resources in an efficient and scalable manner: it 

consists of two or more powerful cores (ALU, Arithmetic Logic Unit) on a single 

processor, which perform arithmetic and logical operations, a control unit for 

instruction execution and a CPU cache for reducing the average time to access 

memory. An example is given by Intel Core i7 microprocessors, which has four  
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Figure 4.3 – Enlarging performance gap between GPUs and CPUs (adopted from [116]). 

 

 

processor cores, each of which is an out-of-order: they support hyperthreading 

technology, designed to maximize the execution speed of sequential programs. This 

is guaranteed by a sophisticated control logic of sequential instructions, in which a 

large cache memory allows to reduce the instructions and data access latencies of 

large complex applications.  In contrast, a manycore processor is characterized by a 

large number of much smaller cores and focuses more on the execution throughput of 

parallel applications. An example is the NVIDIA GTX280 graphic processing unit 

(GPU) with 240 cores, each of which is massively multithreaded, in-order, single-

instruction issue processor that shares its control and instruction cache with seven 

other cores [116]. Manycore processors, especially the GPUs, have led the race of 

floating point performance since 2003. This phenomenon is illustrated in Fig. 4.3. 

While the performance improvement of general-purpose microprocessors has slowed 

significantly, the GPUs have continued to improve relentlessly. As of 2009, the ratio 

between manycore GPUs and multicore CPUs for peak floating point calculation 

throughput, is about 10 to 1 (1 Tflops versus 100 Gflops). 

In the next section, GPU architectures and CUDA programming paradigm are 

described in detail.  
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Fig. 4.4 – Architecture of a CUDA-capable GPU (adopted and elaborated from [116]). 

 

 

4.5   CUDA architecture and programming model 

4.5.1   A parallel computing architecture 

In November 2006, NVIDIA introduced CUDA, a general purpose parallel 

computing architecture, with  a new parallel programming model and instruction set  

architecture, that leverages the parallel compute engine in NVIDIA GPUs to solve 

many complex computational problems in a more efficient way than on a CPU. 

CUDA comes with a software environment that allows developers to use C as a high-

level programming language.  

The CUDA Software Development Environment is a suite for advanced 

programming, that includes numerical libraries (i.e., BLAS, FFT, etc.), C-runtime (as 

support for executing standard C language and others high-level languages such as 

Fortran, Java and Python), tools, documentation and samples. In particular, the set of 

CUDA tools includes the NVIDIA C compiler (nvcc), the CUDA debugger (cuda 

gdb), the CUDA visual profiler (cuda prof) and more other tools [117].  

In order to understand the programming model, it is necessary to focus on hardware 

architecture of a typical CUDA-capable GPU.  

Figure 4.4 shows the architecture of a typical CUDA-capable GPU. It is organized 

into an array of highly threaded streaming multiprocessors (SMs). In Fig. 4.4, two  
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Fig. 4.5 – NVIDIA Tesla 10-Series GPU: a scheme. 

 

SMs form a building block; however, the number of SMs in a building block can 

vary from different CUDA GPUs generations. Also, each SM has a number of 

streaming processors (SPs) that share control logic and cache. Each GPU currently 

comes with up to 4 gigabytes of graphics double data rate (GDDR) DRAM, referred  

as global memory in Fig. 4.4. These GDDR DRAMs differ from the system DRAMs 

on the CPU motherboard; for computing applications they function as very-high-

bandwidth, off-chip memory, though with somewhat more latency than typical 

system memory. For massively parallel applications, the higher bandwidth makes up 

for the longer latency.  

The Tesla 10-Series architecture, designed by NVIDIA for scientific computing, is 

based on a scalable processor array. Figure 4.5 shows a block diagram of the G80, 

that introduces the CUDA architecture: it has 86.4 GB/s of memory bandwidth, plus 

an 8 GB/s communication bandwidth with the CPU via the PCI Express. The 

communication bandwidth is also expected to grow as the CPU bus bandwidth of the 

system memory grows in the future. The massively parallel G80 chip (Fig. 4.5) has 

240 SPs (30 SMs, each with 8 SPs). Each SP has a multiply–add (MAD) unit and an 

additional multiply unit. With 240 SPs, that’s a total of over 1 teraflop. In addition, 

special function units perform floating-point functions such as square root (SQRT), 

as well as transcendental functions. Because each SP is massively threaded, it can 

run thousands of threads per application. A good application typically runs 5000–

12000 threads simultaneously on this chip. For those who are used to simultaneous 

multithreading, note that Intel CPUs support 2 or 4 threads, depending on the 

machine model, per core. The G80 chip supports up to 1024 threads per SM and up 
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to about 30000 threads for the chip. It is very important to strive for such levels of 

parallelism when developing GPU parallel computing applications. 

 

4.5.2   Programming model 

The CUDA scalable parallel programming model extends the C and C++ 

languages to exploit large degrees of parallelism for general applications on highly 

parallel multiprocessors, particularly GPUs. Since NVIDIA released CUDA in 2007, 

developers have rapidly developed scalable parallel programs for a wide range of 

applications, that scale transparently to hundreds of processor cores and thousands of 

concurrent threads.  

CUDA provides three key abstractions: a hierarchy of thread groups, shared 

memories and barrier synchronization, that provide a clear parallel structure to 

conventional C code for one thread of the hierarchy. Multiple levels of threads, 

memory and synchronization provide fine-grained data parallelism and thread 

parallelism, nested within coarse-grained data parallelism and task parallelism. The 

programming model scales transparently to large number of processor cores: a 

compiled CUDA program executes on any number of processors, and only the 

runtime system needs to know the physical processor count. The programmer writes 

a sequential program that calls parallel kernels: a kernel executes in parallel across a 

set of parallel threads. The programmer organizes these threads into a hierarchy of 

threads blocks and grid of thread blocks. A thread block is a set of concurrent threads 

that can cooperate among themselves through barrier synchronization and through 

shared access to a memory space private to the block. A grid is a set of thread blocks 

that may each be executed independently and thus may execute in parallel. When 

invoking a kernel, the programmer specifies the number of threads per block and the 

number of blocks comprising the grid. Each thread is given a unique thread ID 

number threadIdx within its thread block, numbered 0,1,2,…,blockDim-1, (where 

blockDim is the dimension of the block) and each thread block is given a unique 

block ID number blockIdx within its grid. 

All thread creation, scheduling and termination is handled for the programmer by 

the underlying system. Indeed, a Tesla architecture GPU performs all thread 

management directly in hardware. The threads of a block execute concurrently and 
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may synchronize at a synchronization barrier by calling the _syncthreads() intrinsic. 

This guarantees that no thread in the block can proceed until all threads in the block 

have reached the barrier. After passing the barrier, these threads are also guaranteed 

to see all writes to memory performed by threads in the block before the barrier. 

Thus, threads in a block may communicate with each other by writing and reading 

per-block shared memory at a synchronization barrier. Since threads in a block may 

share memory and synchronize via barriers, they will reside together on the same 

physical processor or multiprocessor. The number of thread blocks can, however, 

greatly exceed the number of processors. The CUDA thread programming model 

virtualizes the processors and gives the programmer the flexibility to parallelize at 

whatever granularity is most convenient. Virtualization into threads and thread 

blocks allows intuitive problem decompositions, as the number of blocks can be 

dictated by the size of the data being processed rather than by the number of 

processors in the system. It also allows the same CUDA program to scale to widely 

varying numbers of processors cores.  

To manage this processing element virtualization and provide scalability, CUDA 

requires that thread blocks be able to execute independently. It must be possible to 

execute blocks in any order, in parallel or in series. Different blocks have no means 

of direct communication, although they may coordinate their activities using atomic 

memory operations on the global memory visible to all threads. This independence 

requirement allows thread blocks to be scheduled in any order across any number of 

cores, making the CUDA model scalable across an arbitrary number of cores as well 

as across a variety of parallel architectures. It also helps to avoid the possibility of 

deadlock. An application may execute multiple grids either independently or 

dependently. Independent grids may execute concurrently, given sufficient hardware 

resources. Dependent grids execute sequentially, with an implicit interkernel barrier 

between them, thus guaranteeing that all blocks of the first grid complete before any 

block of the second, dependent grid begins. 

Threads may access data from multiple memory spaces during their execution. 

Each thread has a private local memory. CUDA uses local memory for thread-private 

variables that do not fit in the thread’s registers, as well as for stack frame and 

register spilling. Each thread block has a shared memory, visible to all threads of the  
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Fig. 4.6 – Heterogeneous programming execution model. 

 

 

block, which has the same lifetime as the block. Finally, all threads have global 

memory with the _shared_ and _device_ type qualifiers. On a Tesla architecture 

GPU, these memory spaces correspond to physically separate memories: per-block 

shared memory is a low-latency on chip RAM, while global memory resides in the 

fast DRAM on the graphics board. 

A program manages the global memory space visible to kernels through calls to 

CUDA runtime, such as cudaMalloc() and cudaFree(). Kernels may execute on a 

physically separate device, as is the case when running kernels on the GPU. 

Consequently, the application must use cudaMemcpy() to copy data between the 

allocated space and the host system memory. 

The CUDA programming model is similar in style to the familiar single-program 

multiple data (SPMD) model – it expresses parallelism explicitly and each kernel 

executed on a fixed number of threads. However, CUDA is more flexible than most 

realizations of SPMD, because each kernel call dynamically creates a new grid with 

the right number of thread blocks and threads for that application step. The 

programmer can use a convenient degree of parallelism for each kernel, rather than 

having to design all phases of the computation to use the same number of threads. 

As illustrated by Fig. 4.6, the CUDA programming model assumes that the CUDA 

threads execute on a physically separate device that operates as a co-processor to the 

host running the C program. This is the case, for example, when the kernels executes  



Chapter 4 – High Performance Computing 

63 
 

 
Fig. 4.7 – Memory Architecture of a CUDA-capable GPU. 

 

 

on a GPU and the rest of the C program executes on a CPU. The CUDA 

programming model also assumes that both the host and the device maintain their 

own separate memory spaces in DRAM, referred to as host memory and device 

memory, respectively (Fig. 4.7). Therefore, a program manages the global, constant 

and texture memory spaces visible to kernels through calls to the CUDA runtime. 

This includes device memory allocation and deallocation as well as data transfer 

between host and device memory (Fig. 4.6). Furthermore, this reflects the reality that 

devices are typically hardware cards that come with their own dynamic random 

access memory (DRAM). For example, the NVIDIA T10 processor comes with up to 

4 GB (billion bytes, or gigabytes) of DRAM. In order to execute a kernel on a 

device, the programmer needs to allocate memory on the device and transfer 

pertinent data from the host memory to the allocated device memory. Similarly, after 

device execution, the programmer needs to transfer result data from the device 

memory back to the host memory and free up the device memory that is no longer 

needed. The CUDA runtime system provides application programming interface 

(API) functions to perform these activities on behalf of the programmer. From this 

point on, we will simply say that a piece of data is transferred from host to device as  

shorthand for saying that the piece of data is transferred from the host memory to the 

device memory. The same holds for the opposite data transfer direction. 

Figure 4.8 shows an overview of the CUDA device memory model for programmers 

to reason about the allocation, movement, and usage of the various memory types of  
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Fig. 4.8 – CUDA device memory model (adopted and elaborated from [116]). 

 

 

a device. At the bottom of the figure, we see global memory and constant memory. 

These are the memories that the host code can transfer data to and from the device, as 

illustrated by the bidirectional arrows between these memories and the host. Constant 

memory allows read-only access by the device code. 

The CUDA memory model is supported by API functions that help CUDA 

programmers to manage data in these memories. The function cudaMalloc() can be 

called from the host code to allocate a piece of global memory for an object. The 

reader should be able to notice the striking similarity between cudaMalloc() and the 

standard C runtime library malloc(). This is intentional; CUDA is C with minimal 

extensions. CUDA uses the standard C runtime library malloc() function to manage 

the host memory and adds cudaMalloc() as an extension to the C runtime library. By 

keeping the interface as close to the original C runtime libraries  as possible, CUDA 

minimizes the time that a C programmer needs to relearn the use of these extensions. 

The first parameter of the cudaMalloc() function is the address of a pointer variable 

that must point to the allocated object after allocation. The address of the pointer 

variable should be cast to (void **) because the function expects a generic pointer 

value; the memory allocation function is a generic function that is not restricted to 

any particular type of objects. This address allows the cudaMalloc() function to 
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write the address of the allocated object into the pointer variable. The second 

parameter of the cudaMalloc() function gives the size of the object to be allocated, 

in terms of bytes. The usage of this second parameter is consistent with the size 

parameter of the C malloc() function. 

 

4.5.3   Precision on GPUs 

Regarding numerical accuracy and precision, NVIDIA devices have been 

designed to follow the IEEE-754-2008 standard for binary floating point arithmetics. 

As reported in [118], IEEE-754-2008 governs binary floating point arithmetic, 

specifying number formats, basic operations, conversions and exceptional conditions. 

Floating-point representation type has a base β  (generally assumed to be even) and a 

precision p ; thus, a floating-point number is represented as: 

 

( )( ) ( )11
0 1 1... , 0p e

p id d d dβ β β β− −−
−± + + + ≤ <                       (4.5) 

 

where 0 1 2 1... pd d d d −± ⋅ ⋅ ⋅ ⋅  is called significand and hasp digits [119]. 

Schematically, the standard can be encoded by three fields: sign, exponent and 

fraction. The 32- and 64-bit basic binary floating-point formats corresponds to float 

and double in C language (single and double precision in Fortran 90): the sign can be 

positive or negative, the exponent encodes the exponent in base 2 and the fraction 

encodes the significand. A float is a binary format that occupies 32 bits (4 bytes) and 

its significand has a precision of 24 bits, while a double is a binary format that 

occupies 64 bits (8 bytes) and its significand has a precision of 53 bits. The IEEE-

754 standard supports a lot of operations, such as arithmetic operations, conversion 

operations, scaling, sign operations and comparison, whose properties are described 

in Whitehead and Fit-Florea [120]. Particular attention have to be focused on 

mathematical function accuracy: the accuracy of a floating-point arithmetic operation 

is determinate by the maximal error introduced by the operation itself. Obviously, the 

smaller error corresponds to the higher accuracy. When a result cannot be exactly 

represented, that is when the significand needs too many bits to be represented 

exactly [116], it is necessary to round it. Arithmetic operations are simple enough 



Chapter 4 – High Performance Computing 

66 
 

that computing the best floating-point results is easy. For other mathematical 

operations, such as division and transcendental functions, it is harder: typically, it is 

necessary to implement iterative approximation algorithms and, if the hardware does 

not perform a sufficient number of iterations, the result may have an error larger than 

0.5 ULP, which is the half the place value of the least significant place, used to 

measure the precision in numerical calculations. The consequence is that different 

mathematical libraries cannot achieve the same results for a given input and 

functions compiled for the GPU using CUDA, compared with those compiled for the 

CPU, can differ slightly. It influences a lot porting of numerical codes from the CPU 

to the GPU: with respect to the CPU, the GPU has fused-multiply-add (FMA) 

operations, that are able to speed up and improve the accuracy of many operations 

that involve products (i.e., dot product, matrix multiplication, polynomial evaluation 

and Newton’s method). It consists on perform a floating-point multiply-add 

operation in one step, with a single rounding. 

Consequently, the same sequence of operations may give different results according 

the CPU and the GPU implementation: this is reflected also in parallelizing 

algorithms. The arithmetic operations on newer generation GPUs are much more 

accurate.  

Finally, the most important key features that guarantee good performances in speed 

up and accuracy considering GPU’s implementation can be synthesized as: 

� use of fused-multiply-add operation, 

� compare results carefully among implementations, because algorithms can 

compute the same mathematical quantity but be numerically different, 

� know the capability of GPU: device computing capability up to 2.0 version 

supports both single and double precision IEEE-754-2008 including FMA 

operations, 

� take advantage of the CUDA math library functions, listed on Appendix C of 

the CUDA C Programming Guide and supported in device code [120]. 

 

4.5.4   Performance metrics for GPUs 

A correct evaluation of performances of CUDA programs regards not only on 

traditional metrics, such as speed up and efficiency, but also measuring the 
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bandwidth. The evaluation of timing kernel execution can be done by considering 

CPU or GPU timers. In order to accurately measure the elapsed time for a CUDA 

call or a sequence of CUDA calls, it is necessary to synchronize the CPU thread with 

the GPU by calling cudaThreadSynchronize() before starting and stopping the CPU 

timer [121], because all kernels launcher are asynchronous. 

The synchronization functions concern also streams and events: cudaStream-         

Synchronize() is devoted to block the CPU thread until all CUDA calls previously 

launched into the given stream have completed; cudaEventSynchronize(), indeed, 

blocks until a given event in a particular stream has been recorded by the GPU. It is 

possible to use also CUDA GPU timers, which are API functions that provide to 

create, destroy and record events, such as cudaEventRecord() and 

cudaEventElapsedTime() functions. The first one is devoted to assign the start and 

stop event into the stream 0, while the second one returns the time elapsed between 

the recording of start and stop events, expressed in milliseconds.  

The most important element in massively-parallel programming environment based 

on GPUs is represented by bandwidth, that represents the rate at which data can be 

transferred. That rate is influenced essentially by memory and the order in which it is 

accessed. Its measure is done by using a theoretical and an effective bandwidth. 

Theoretical bandwidth depends on hardware specifications. For example, the 

NVIDIA Tesla C-1060 uses DDR-RAM with a memory clock rate equal to 800 MHz 

and a 512-bit wide memory interface. So, the peak theoretical memory bandwidth is 

calculated as follows: 

 

6

9

512
800 10 2

8 102.4
10

GB s
× × ×

=                               (4.6) 

 

Effective bandwidth, indeed, depends on how data is accessed by the program and it 

is calculated as follows: 
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where rB  is the number of bytes read per kernel, wB  is the number of bytes written 

per kernel and time is expressed in seconds (also effective bandwidth is measured in 

GB/s) [121]. To achieve good performance, it is necessary to understand some basic 

properties related to the architecture in addition to the programming model: it allows 

to find the most efficient mapping of the specific application’s data-structures to 

CUDA’s domain-based model, in order to minimize communication between host 

and device and maximize the bandwidth used. Finally, programmers have to avoid 

the overhead of global synchronization as much as possible because it influences 

timing performances. 

 

 

4.6   Multi-GPU architecture 

The implementation of CUDA on heterogeneous systems to solve very expensive 

problems may require multi-GPU architectures. Programming model of a multi-GPU 

architecture is not so different than that described for a single GPU one: the key 

feature is to exploit efficiently hardware parallelism. In fact, multi-GPU consists of 

decomposing and distributing a working set across different GPUs in order to 

improve performances especially in those cases in which the working set exceeds 

single GPU’s memory. 

Two configurations of multi-GPU are possible: all GPUs are interconnected in a 

single network, otherwise GPUs are interconnected across network nodes. 

Considering the situation about multi-GPU within a node, GPUs can be controlled 

via a single CPU thread or by using multiple CPU threads belonging to the same 

process. In this case, processes have its own address space on the CPU side whereas 

multiple threads can share their address space. The identification of the active (or 

current) device is the only aspect that defines a difference between multiple cores 

and multi-GPU: it can be done by using the cudaSetDevice() function, that provides 

the ID of the GPU used. The new multi-GPU programming model can be easily 

incorporated into the existing multi-threaded CPU code, developing only the 

compute-intensive portion of the application for the GPUs and adding more calls to 

transfer data between CPU and GPU. As described in [121], it is necessary to define 

how the new programming model on multi-GPU is organized. Because of 
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collaboration between the CPU and the GPU, CUDA provides to establish a context 

between a CPU thread and the GPU. The context describes the device state, such as 

streams, events, allocated memory and so on, and it can be associated only to one 

GPU at any particular instant. Thus, CUDA streams and events are created per 

device: in the multi-GPU configuration, streams are used whenever an asynchronous 

call is issued at the current device, while events can be recorded only to a stream of 

the same device. As previously said, multi-GPU within a node can be controlled by a 

single CPU thread: it is necessary to set the current device to issue all CUDA calls, 

except for asynchronous peer-to-peer memcopies. Moreover, asynchronous calls 

(such as kernels and memcopies) do not block switching the GPU.  

Multi-GPU can be controlled also by using multiple CPU threads belonging to the 

same process or by using multiple CPU processes. In the first case multiple threads 

are referred to the same process, as in single thread, while in the second case multiple 

processes have their own address spaces and there is no matter if they are on the 

same or different nodes. Thus, in order to issue work to p GPUs concurrently, a 

program have to use p  CPU threads, each with its own context: in this case, some 

type CPU-side parallelism will be needed (OpenMP or MPI). 
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Chapter 5 

The Navier-Stokes Solver 

 

 

 

 

5.1   Introduction 

Within the DNS approach and with respect to the channel flow problem, the 

unsteady three-dimensional Navier-Stokes equations have to be solved numerically 

in order to understand the mechanics of wall-bounded turbulent flows [17]. Since 

evaluating simulation databases of turbulence require a great amount of 

computational resources, the advances in hardware developments have led to 

increased utilization of high performance computing techniques to perform direct 

numerical simulations with increasing Reynolds number. An overview of the main 

approaches for wall-bounded turbulent flows, both from a numerical and 

computational point of view,  is given on Chapter 3.  

Here, a mixed spectral-finite difference algorithm for the integration of the 

Navier-Stokes equations applied to the case of the channel flow is considered: after a 

description of the main components of a Navier-Stokes solver, given in Section 5.2, 

the numerical scheme adopted and its properties are described in Section 5.3; Section 
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5.4 describes the computing systems on which numerical simulations have been 

carried out; Section 5.5 describes the sequential implementation and an OpenMP 

implementation of the Navier-Stokes solver; finally, Section 5.6 shows a novel 

parallel implementation on a hybrid CPU/GPU architecture (both single- and multi-

GPU).  

 

 

5.2    The components of a Navier-Stokes solver 

The advent of high performance computing combined with the development of 

numerical algorithms for solving physical problems, such as turbulence, has 

constituted a new “third approach”, the advanced computational fluid dynamics. The 

aim is to synthesize both the advantages of experimental and theoretical approaches 

in order to analyze the mechanisms of fluid phenomena. 

In general, given a problem, the scientific method, based on the numerical approach, 

consists on identifying the mathematical model, characterized by a set of governing 

equations, discretizing the computational domain and integrating the equations on the 

corresponding grid by using a numerical algorithm, in order to obtain an approximate 

accurate solution [122]. 

The main components of a direct numerical simulation are reported in the following: 

� the mathematical model based on the governing equations; 

� the domain discretization that includes a spatial discretization and a 

numerical discretization; 

� the analysis of the stability and the accuracy of the numerical method; 

� the evaluation of an appropriate numerical scheme for time marching in order 

to integrate the governing equations at each point of the computational 

domain; 

� the analysis of the numerical databases of computed velocity and pressure 

fields in order to provide information about turbulent phenomena near the 

wall.  

More specifically, in the case of the channel flow problem, the first step is to define 

the governing equations that describe the physics of turbulence: they are represented 

by the Navier-Stokes equations that, as reported on Appendix A, form a system of 
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three-dimensional time-dependent non-linear partial differential equations. Once a 

mathematical model is selected, it is necessary to identify the spatial domain in order 

to analyze turbulent phenomena. After inserting appropriate initial/boundary 

conditions, the DNS provides information about velocity and pressure in the 

instantaneous flow field, stored in a numerical database that represent the core of the 

model. The database is used for quantitative and qualitative studies about wall-

bounded turbulence, in terms of statistical correlations, energy budget and vortical 

structures, referred to the post-processing phase. 

 

 

5.3   Numerical method 

Based on the Navier-Stokes equations for an incompressible viscous fluid in non-

dimensional conservative form, as in Eqs. (A.9) and (A.10), a mixed spectral-finite 

difference scheme has been developed. 

The velocity field ( )iu u,v,w=  is considered periodic in the streamwise x−  and the 

spanwise z− directions; moreover, Eqs. (A.9) and (A.10) are Fourier transformed 

accordingly: 
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where (Re u hτ ν= ) is the Reynolds number referred as the friction velocity uτ and 

the channel half-width h , the subscript “˄” indicates variables in Fourier space and 

2 2 2
x zk k k= + . 

The non-linear terms in the momentum Eqs.  (5.1a-c)  are evaluated pseudospectrally 

by anti-transforming velocities back in physical space to perform the products (using 

Fast Fourier Transforms). To avoid aliasing errors in transforming the results back 

to Fourier space, the “3 2” rule has been enforced [11]. 

The scheme uses a mesh staggered along y− direction, that enhances the 

conservation properties of the numerical discretization. Moreover, using a y−

direction staggered mesh, the pressure is collocated in the center of each cell and all 

three components of the velocity are collocated at the same point in the center of the 

side of the cell orthogonal to y− axes. Thus, due to steepest gradients near the walls, 

a stretching law of hyperbolic tangent type has been introduced for the grid points 

along y− direction: 
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                             (5.3) 

 

where y  indicates the uniform grid and ,P Q are two parameters of the points-

distribution. 

For time advancement, a third-order Runge-Kutta procedure has been implemented; 

for each Fourier mode, one has in index notation: 
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where 1,2,3l =  denotes the Runge-Kutta sub-steps and: 
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are, respectively, the diffusive and convective terms; both are treated explicitly and    

, , ,l l l lα β γ δ  are constant values: 
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Time advancement procedure is coupled with the fractional-step method: considering 

Eq. (5.4), the pressure is interpreted as a projection operator, so velocity and pressure 

fields are decoupled. At each sub-step l  and for each Fourier mode i , an 

intermediate velocity field is introduced (signed by superscript “*”): 
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Since the intermediate velocity field does not satisfy the incompressibility constraint, 

the pressure is used to project the intermediate velocity field into a divergence-free 

one by solving a Poisson problem: 
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The pressure is obtained by solving Eq. (5.9) and the actual values of the velocity 

field are computed by using the following: 
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No-slip boundary conditions at the walls and periodic conditions in the streamwise 

and spanwise directions have been applied to the velocity, while a Neumann-type 

boundary condition has been used for the pressure. 

 

 

5.4   Computing systems 

The numerical simulations have been executed on two specially-assembled 

hybrid CPU/GPU computing systems, named respectively FDL-Tesla-1 and FDL-

Tesla-2. 

FDL-Tesla-1 (Fig. 5.1) includes an Intel Core i7 processor at 2.66 GHz, 12 GB of 

DDR3 RAM and 1 NVIDIA Tesla C-1060 board, based on NVIDIA CUDA 

technology. The system is also equipped with 1 NVIDIA GeForce GTS 240 with 

1GB of GDDR3 memory at 70.4 GB/s bandwidth, while the total number of cores is 

equal to 112, at 675 MHz. The GeForce board is mainly used for visualization. The 

storage unit is equipped with 5 hard drives at 7200 rpm and 1 hard drive at 10000 

rpm with a total capacity of 2.5 TB.  
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Figure 5.1 – FDL-Tesla-1 computing system: (1) Intel Core i7 (under fan); (2) RAM; (3) 

motherboard; (5) optical drives; (5) power supply; (6) NVIDIA Tesla C-1060; (7) NVIDIA GeForce 

GTS 240; (8) hard drives. 

 

 

FDL-Tesla-2 (Fig. 5.2) includes 2 Intel Xeon 5660 at 2.8 GHz, 48 GB of DDR3 

RAM and 3 NVIDIA Tesla C-1060 boards. The system is also equipped with 1 

NVIDIA GeForce GTS 450 with 1 GB of GDDR5 memory at 57.7 GB/s bandwidth, 

while the total number of cores is equal to 192, at 1804 MHz. Also in this case, the 

GeForce board is mainly used for visualization. The storage unit is equipped with 5 

hard drives at 7200 rpm with a total capacity of 5 TB.  

Each Tesla board can handle 933 GFLOP/s of single-precision floating point 

processing, is equipped with 4 GB of GDDR3 memory at 102 GB/s bandwidth and 

contains 30 multiprocessors; each multiprocessor consists of 8 scalar single-precision 

floating-point processor cores, 1 double-precision floating-point unit and 16 kB of 



 Chapter 5 – The Navier-Stokes Solver 
 

77 
 

 
Figure 5.2 – FDL-Tesla-2 computing system: (1) motherboard; (2) Intel Xeon 5660 (under 

coolers); (3) RAM; (4) optical drives; (5) power supply; (6) NVIDIA Tesla C-1060; (7) 

NVIDIA GeForce GTS 450; (8) hard drives. 

 

 

shared memory for threads cooperation. The total number of cores is equal to 240, at 

1.3 GHz of processor-clock. 

 

 

5.5   Parallelization strategies for multicore architectures 

5.5.1  The sequential implementation of the Navier-Stokes solver 

The Navier-Stokes solver is based on the equations described in the previous section. 

The implementation of the numerical solver follows these phases: 
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Figure 5.3 – The computational domain: a plane channel. 

 

 

� pre-processing for the domain discretization and the computation of flow 

geometry; 

� the numerical integration of the Navier-Stokes equations, 

� post-processing for numerical databases analysis. 

The plane channel is characterized by a simple geometry, consisting of two solid 

walls (Fig. 5.3), in the coordinate system ( ), ,x y z : the computational domain is 

discretized by using x y zN N N× ×  grid points along ,  and x y z− − − directions. 

The numerical integration of governing equation is based on the following main 

steps: 

� assignment of initial conditions, regarding an equilibrium velocity profile, 

and of boundary conditions, that consists of no-slip type at the walls and 

periodic conditions in the streamwise and spanwise direction; 

� computation of the intermediate velocity field *( )ˆ l
iu , given the velocity field in 

the spectral space: for each Runge-Kutta sub-step, 2D Fast Fourier 

Transforms (FFTs) have been applied along x−  and z− axis, in order to 

evaluate the non-linear terms of the momentum equation (Eq. (5.8)); 

� computation of the pressure field ( )ˆ lp , given the intermediate velocity field 

*( )ˆ l
iu : it requires an implementation of a numerical method along y− direction 

for solving a Poisson problem; 

� update of the velocity field ( )ˆ l
iu  by implementing a third-order Runge-Kutta 

procedure. 
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Figure 5.4 – Scheme of the serial implementation of the Navier-Stokes solver. 

 

A synthetic view of the algorithm is given in Fig. 5.4: each block of the flow chart 

represents a specific routine, implemented by using Fortran 90 language. 

The sequential numerical code provides a set of subroutines for 

allocating/deallocating arrays of data in the host memory space: in particular, those 

procedures use allocate()/deallocate() statements that dynamically provides storage 

for allocatable/deallocatable arrays, consisting of velocity components, pressure, 

diffusive and convective terms and other work arrays. 

A set of subroutine, axes_x(), axes_y(), axes_z(), are devoted to spatial 

discretization: a regular grid is used along x−  and z− directions, while a block-

regular grid is used along y −  direction, according to Eq. (5.3), in order to ensure 

local refinement near the walls. All data structures are initialized by a subroutine, 

named initialization() (List. 5.1). 
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call allocate_structure() 
call initial_conditions() 
call axes_x() 
call axes_y() 
call axes_z() 
call initialization() 
call initialize_fft(vel,Nx,Ny,Nz,fft_work) 

 
Listing 5.1 – Scheme of the preliminary operations of the pre-processing phase 

 

In order to compute the convective (non-linear) term, the following steps are 

performed: 

� anti-transformation of the spectral velocity field to the physical space; 

� computation of the velocity products terms; 

� transformation of the product terms, in the physical space, back to the 

spectral one; 

� computation of the convective term. 

The 2D complex-to-real (C2R) and real-to-complex (R2C) Fourier transforms have 

been implemented by using the FFTW (Faster Fourier Transform in the West) 

library, developed at MIT by Matteo Frigo and Steven J. Johnson [123]. A 2D C2R 

FFT has been used to transform the velocity field from spectral to physical space by 

calling the sfftw_execute_dft_c2r() subroutine. For each point along y − direction 

and over each xz− plane it has been executed in order to compute the physical 

velocity components uR, vR, wR.  

As reported in Eq. (5.6), it is necessary to compute products ,  ,  ,  ,  ,  uu uv uw vv wv ww 

for each point of the domain. Then, for each computed term, a 2D R2C FFT has been 

executed in order to transforming those products back to spectral space by calling 

sfftw_execute_dft_r2c() routine. Finally, the components of the convective term are 

computed (List. 5.2). 

 
call bck_fft(u,v,w,uR,vR,wR) 
call perform_products(uR,uR,uu,iy) 
… 
call perform_products(wR,wR,ww,iy) 
call fwd_fft(uu,iy) 
… 
call fwd_fft(ww,iy) 
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call compute_convective_term(Cu,Cv,Cw) 
 

Listing 5.2 – Scheme of the computation of the convective term.  

 

According to Eq.(5.5), the components of the diffusive term are computed (List. 

(5.3)). 

 
call compute_diffusive_term(Du,Dv,Dw) 

 
Listing 5.3 – Scheme for the computation of the diffusive term.  

 

Given all components of the velocity field and those related to the diffusive and 

convective terms, the components of the velocity field ( )* * * *ˆ ˆ ˆ ˆ, ,iu u v w  are computed 

(List. (5.4)). 

 
call compute_velstar(ustar,vstar,wstar) 

 
Listing 5.4 – Scheme for the computation of the intermediate velocity field. 

 

Since *ˆiu  does not satisfy the incompressibility constraint, it is necessary to 

implement a fractional-step method. This is done by implementing a set of 

subroutines that, given the intermediate velocity field, compute the right side of the 

Eq. (5.9) by solving a Poisson problem; the Thomas algorithm [124] is used to solve 

the tridiagonal system of linear equation over each xy− plane (List. 5.5) 

corresponding to the Poisson problem. 

 
call poisson_rhs() 
call compute_diagonals(d,dinf,dsup) 
call thomas_algorithm(p) 

 

Listing 5.5 – Scheme for the solution of the Poisson problem. 

 

Once the pressure has been computed, a routine for updating velocities is executed, 

according to Eq. (5.10) (List. 5.6). 

 
call update_velocity(ustar,vstar,wstar,p,substep,u, v,w) 

 

Listing 5.6 – Scheme for the update of the velocity. 
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Then, a new iteration can start or data are stored into the DNS database for post-

processing phase. 

 

5.5.2  OpenMP implementation for multicore architectures 

A parallel version of the numerical procedure suitable for multi-threading 

computing is developed to exploit multicore architectures of Intel i7 and Intel Dual-

Xeon (on FDL-Tesla-1 and FDL-Tesla-2, respectively).  

In order to reduce the computing time, the Navier-Stokes solver, described in the 

previous paragraph, has been implemented in parallel by using OpenMP library 

[125], according to the steps here reported. 

 

1. Computation of the velocity products terms (List. 5.7): 

 
$ omp parallel do 
do iy = 2, Ny-1 
 call bck_fft(uR,iy) 
 call bck_fft(vR,iy) 
 call bck_fft(wR,iy) 
 
 call perform_product(uR,vR,wR,uu,uv,uw,vv,vw,ww,iy ) 
 
 call fwd_fft(uu,iy) 
 call fwd_fft(uv,iy) 
 call fwd_fft(uw,iy) 
 call fwd_fft(vv,iy) 
 call fwd_fft(vw,iy) 
 call fwd_fft(ww,iy) 
end do 
$ omp end parallel do 
 

                   Listing 5.7 – Scheme for the parallel computation of velocity products terms. 

 

2. Application of the de-aliasing filter (List. 5.8): 

 
call compute_filter(kx_nz,kz_nz) 
$ omp parallel do 
do iz = 0, Nz-1 
 do iy = 0, Ny-1 
  do ix = Nx/2-kx_nz+1, Nx/2 
   call filter_x(uu,uv,uw,vv,vw,ww) 
  end do 
 end do 
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end do 
$ omp end parallel do 
$ omp parallel do 
do iz = 0, Nz/2-kz_nz, Nz/2+kz_nz-1 
 do iy = 0, Ny-1  
  do ix = 0, Nx/2 
   call filter_z(uu,uv,uw,vv,vw,ww) 
  end do 
 end do 
end do 
$ omp end parallel do 
 

                 Listing 5.8 – Scheme for the parallel computation of the de-aliasing filter. 

 

3. Computation of the convective and the diffusive terms (List. 5.9): 

 
$ omp parallel do 
do iz = 0, Nz-1 
 do iy = 2, Ny-1 
  do ix = 0, Nx/2 
   call compute_convective_term(Cu,Cv,Cw) 
   call compute_diffusive_term(Lu,Lv,Lw) 
  end do 
 end do 
end do 
$ omp end parallel do 
 

               Listing 5.9 – Scheme for the parallel computation of the convective and diffusive terms. 

 

4. Computation of the intermediate velocity field (List. 5.10): 

 
$ omp parallel do 
do iz = 0, Nz-1 
 do iy = 1, Ny 
  do ix = 0, Nx 
   call compute_intermediate_velocity() 
  end do 
 end do 
end do 
 

               Listing 5.10 – Scheme for the computation of the intermediate velocity field. 

 

5. Computation of the pressure field. In this case, in order to access in an 

efficient way the host memory, a different type of data structures 

memorization is used for solving the Poisson problem: the arrays referred to 
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diagonals (main diagonal, upper diagonal and lower diagonal) are duplicated 

in order to solve “two” tridiagonal systems, one for the real part and one for 

the imaginary part. After solving the tridiagonal systems, the pressure array 

should be re-organized as the velocity data structure, alternating real and 

imaginary parts, i.e. each grid point has the corresponding pressure and 

velocity complex values  (List. 5.11). 

 
$ omp parallel do 
do iz = 0, Nz-1 
 do ix = 0, Nx/2 
      do iy = 1, nymax-1 
     call compute_poisson_rhs(rhs) 
      end do 
 
      do iy = 1, nymax-1 
         diag(iy) = d(ix,iy,iz) 
         diag(iy+nymax-1) = d(ix,iy,iz) 
      end do 
      do iy = 1, nymax-1 
         dinf(iy) = low_d(iy) 
         dinf(iy+nymax-1) = low_d(iy) 
      end do 
      do iy = 1, nymax-1 
         dsup(iy) = up_d(iy) 
         dsup(iy+nymax-1) = up_d(iy) 
      end do 
      do iy = 1, nymax-1 
 
    call solve_tridiagonal_sys(dinf,d,dsup, 
                                 rhs,pv,2*(nymax-1) ) 
 
         do iy = 1, nymax-1 
            p(2*ix,iy,iz) = pv(iy) 
            p(2*ix+1,iy,iz) = pv(iy+nymax-1) 
         end do 
  end do 
 end do 
end do 
$ omp end parallel do 
 

                Listing 5.11 – Scheme for the solution of the Poisson problem. 

 

6. Finally, for each Runge-Kutta sub-step, the velocity is updated (List. 5.12). 

 
$ omp parallel do 
do iz = 0, Nz-1 
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 do iy = 2, Ny-1 
  do ix = 0, Nx/2 
   update_velocity_field(ustar,vstar,wstar,p,sub,u, v,w) 
  end do 
 end do 
end do 
$ omp end parallel do 

 

                    Listing 5.12 – Scheme for the update of the velocity. 

 

 

5.6   Parallelization strategies for manycore architectures 

5.6.1  Single-GPU implementation of the Navier-Stokes solver 

This section shows a novel parallel implementation for integrating the Navier-

Stokes equations on GPU architectures by using the CUDA 3.2 library 

(http://developer.nvidia.com/cuda-toolkit-32-downloads), while the computational 

code is written using C language. A synthetic scheme of the numerical procedure is 

given in Fig. 5.5. Considering a plane channel problem whose data can completely 

reside on a single-GPU and by recalling the numerical method discussed in Section 

5.3, the host is devoted to: 

� read the numerical data related to the initial velocity field; 

� allocate the required memory space on the device; 

� transfer initial data from the host memory to the device memory; 

� launch a set of kernels in order to integrate the governing equations that are 

executed on the device; 

� transfer data related to the updated velocity field from the device memory to 

the host memory; 

� store the new data in the DNS database. 
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Figure 5.5 – Scheme for the GPU implementation of the Navier-Stokes solver. 

 

 

CUDA 3.2 provides functions to allocate, deallocate and copy device memory; in 

particular, data structures are allocated using cudaMalloc(), while data transfer of 

u,v,w from host (h_u,h_v,h_w) to device (d_u,d_h,d_w) memory are managed by 

cudaMemcpy() (List. (5.13)).  
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Figure 5.6 – Representation of the xz-planes along y-direction. 

 

 

 
cudaMalloc(); 
cudaMemcpy(d_u, h_u, cudaMemcpyHostToDevice, size);  
cudaMemcpy(d_v, h_v, cudaMemcpyHostToDevice, size);  
cudaMemcpy(d_w, h_w, cudaMemcpyHostToDevice, size);  

 

Listing 5.13 – Scheme of data structures allocation and host-to-device transfer. 

 

For a given velocity field stored on the memory device, batched 2D complex-to-real 

(C2R) and real-to-complex (R2C) Fourier transforms have been implemented using 

the CUFFT library provided by NVIDIA [126]. In particular, an in-place batched 2D 

R2C FFT has been used in order to transform the velocity field from spectral to 

physical space using a batch of yN xz−planes. It consists on performing a certain 

number (equal to the total number of grid points along y− direction) of Fourier 

transforms over each xz−plane, obtained by cutting the computational domain along 

y− direction, as represented in Fig. 5.6. 

After that, each product between the mutual components of the velocity field has 

been computed by a kernel, named product_kernel; then, for each product   �uu , �uv ,

�uw, �vv, �vw, �ww, an in-place batched 2D C2R FFT has been executed in order to 

transform those quantities back to spectral space. Listing 5.14 shows the pseudo-code 

that describes those steps. 



 Chapter 5 – The Navier-Stokes Solver 
 

88 
 

 
cufftExecC2R(batchBackPlan, (cufftComplex *) d_u, ( float *) d_u); 
cufftExecC2R(batchBackPlan, (cufftComplex *) d_v, ( float *) d_v); 
cufftExecC2R(batchBackPlan, (cufftComplex *) d_w, ( float *) d_w); 
 
product_kernel<<<blocksPerGrid, threadsPerBlock>>>( d_u, d_v, d_w,   
d_uu, d_uv, d_uw, d_vv, d_vw, d_ww); 
 
cufftExecR2C(batchFwdPlan, (float *)d_uu, (cufftCom plex *)d_uu); 
… 
cufftExecR2C(batchFwdPlan, (float *)d_ww, (cufftCom plex *)d_ww); 
 

 Listing 5.14 – Scheme of FFT operations for the solution on non-linear terms. 

 

For each Runge-Kutta sub-step, the diffusive D and the convective C terms of Eq. 

(5.8) are computed by using two kernels, diffusive_kernel and convective_kernel, 

properly designed in order to minimize memory access by using memory coalescing 

and increasing the computation/memory ratio. The intermediate velocity field has 

been calculated using a kernel, named velstar_kernel; given all components of the 

velocity field and all components of diffusive and convective terms, the three 

components of the intermediate velocity field (d_ustar, d_vstar, d_wstar) according 

to Eq. (5.8a) (List. 5.15) are computed. 

 
convective_kernel<<<blocksPerGrid, threadsPerBlock> >>(d_uu, d_uv, 
d_uw, d_vv, d_wv, d_ww, d_nu, d_nv, d_nw); 
 
diffusive_kernel<<<blocksPerGrid, threadsPerBlock>> >(d_u,d_v,d_w,   
d_lu,d_lv,d_lw);  
 
velstar_kernel<<<blocksPerGrid, threadsPerBlock>>>( d_u ,d_v, d_w, 
d_nu, …,d_lu, …,d_ustar, d_vstar,d_wstar); 
 

                   Listing 5.15 – Scheme for the calculation of the intermediate velocity field. 
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 Figure 5.7 – Partitioning of multiple tridiagonal systems among GPU threads. 

 

 

As said in the previous section, ( )*ˆ l
iu does not satisfy the incompressibility constraint, 

so it is necessary to implement a fractional-step method. This is done by 

implementing a set of kernels that, given the intermediate velocity field, compute the 

right side of Eq. (5.9) and solve a Poisson problem.  

In order to solve a Poisson problem, x zN N× tridiagonal systems of linear equations 

are solved on GPU by redesign the Thomas algorithm. In particular, each thread 

solves a tridiagonal linear system by using a modified Thomas algorithm, optimized 

for the GPU (re-use of GPU registers and coalesced memory data access) (Fig. 5.7). 

Regarding the principal diagonal of the coefficient matrix of the tridiagonal system, 

for threads belonging to the same warp memory coalescing for load/store instructions 

is guaranteed. Finally, memory access for the upper and lower diagonals are 

optimized by storing them in the device constant memory (List. 5.16). 

 
tn_kernel<<<blocksPerGrid, threadsPerBlock>>>(rk, h _dt, d_tn,  
d_ustar, d_vstar, d_wstar); 
 
solve_poisson_kernel<<<blocksPerGrid,threadsPerBloc k>>>(d_dpri, 
d_tn, d_p, d_work); 
 

    Listing 5.16 – Scheme for the solution of the Poisson problem. 
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Figure 5.8 – Representation of the slicing and re-slicing computational domain. 

 

 

After pressure component is computed, a kernel for updating of the velocity field 

(update_velocity_kernel) has been executed, according to Eq. (5.10); then, a device 

to host data transfer of computed values is performed both for a new iteration or for 

storing the velocity field into the DNS database (List. 5.17). 

 
update_velocity_kernel<<<blocksPerGrid, 
threadsPerBlock>>>(d_ustar, d_vstar, d_wstar, d_p, rk, h_dt, d_u, 
d_v, d_w); 
cudaMemcpy(h_u, d_u, cudaMemcpyDeviceToHost, size);  
cudaMemcpy(h_v, d_v, cudaMemcpyDeviceToHost, size);  
cudaMemcpy(h_w, d_w, cudaMemcpyDeviceToHost, size);  
 

 Listing 5.17 – Scheme for the updating of the velocity field and for the device-to-host transfer. 

 

 

5.6.2  Multi-GPU implementation of the Navier-Stokes solver 

 In this section, a novel multi-GPU implementation is described that is needed 

when numerical data cannot completely reside on a single-GPU. In this case, 

OpenMP library is used for driving devices available on the same computational 

node, such as in FDL-Tesla-2. The code has been implemented such that each thread 

is responsible for managing its corresponding device, for allocating data on the 

device and for executing kernels for data transfer from and to the device.  

In order to solve the problem on several devices, the most efficient way consists of 

partitioning data along y − axes for computing the intermediate velocity field *û  and 

updating the actual velocity field and partitioning data along z− axes for solving  
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Figure 5.9 – Representation of domain decomposition considering 3 available devices. 

 

 
Figure 5.10 – Local data transfers of partitions’ boundaries. 

 

 

the tridiagonal system of linear equations. Figure 5.8 describes, in particular, how the 

slicing and the re-slicing of the computational domain is performed in order to 

compute the actual velocity field: at first, a slicing of the computational domain 

along z− axes is required for solving the Poisson problem; then, a re-slicing of the 

same domain along y− axes is performed in order to update the velocity. 

With regards to each partition (Fig. 5.9) and in order to compute some intermediate 

terms, such as the rhs of the Poisson problem (Eq. (5.9)), a local data transfer of 

boundary layers has to be performed; as represented in Fig. 5.10, each partition ip  

needs neighbouring data computed by the device corresponding to partition 1ip + , for 

( 1, 1DEVi N= − ), with DEVN  number of available devices. 

An overall scheme of the numerical algorithm is shown in Fig. 5.11: it is based 

essentially on the single-GPU implementation, except for the OpenMP library and  
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Figure 5.11 – Scheme for the multi-GPU implementation of the Navier-Stokes solver. 

 

 

the slicing/re-slicing operations among partitions. Listing (5.18) shows the main of 

the parallel code. 

 
void simulation_step 
\\ compute C, D and Vstar 
 
velocity_product() 
convective_term() 
diffusive_term() 
velstar_computation() 
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\\ boundaries copy from device p+1 to host 
nx = d-> slice_xz.nx 
ny = d-> slice_xz.ny 
nz = d-> slice_xz.nz 
cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id], d->us  + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id], d->vs  + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id], d->ws  + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
 
\\ boundaries data transfer from host to device p 
#pragma omp barrier 
cutilSafeCall(cudaMemcpy(d->us + (ny-1)*nx*nz,  
d->h->us_buf[d->id+1], nx*nz*sizeof(float2), 
cudaMemcpyHostToDevice));  
cutilSafeCall(cudaMemcpy(d->vs + (ny-1)*nx*nz,  
d->h->vs_buf[d->id+1], nx*nz*sizeof(float2), 
cudaMemcpyHostToDevice)); 
cutilSafeCall(cudaMemcpy(d->ws + (ny-1)*nx*nz,  
d->h->ws_buf[d->id+1], nx*nz*sizeof(float2), 
cudaMemcpyHostToDevice)); 
 
\\ compute rhs tridiagonal system 
\\ slicing along y-direction (xz-plane) 
if (d->id == 0) { 
cudaMemcpy(d->h->tn_xz + d->slice_xz.memory_offset,   
d->tn, d->slice_xz.nx*d->slice_xz.nz*(d->slice_xz.n y-1) 
*sizeof(float2), cudaMemcpyDeviceToHost); 
} else { 
cudaMemcpy(d->h->tn_xz + d->slice_xz.memory_offset +  
d->slice_xz.nx*d->slice_xz.nz, d->tn + d->slice_xz. nx* 
d->slice_xz.nz, d->slice_xz.nx*d->slice_xz.nz*(d->s lice_xz.ny-2) 
*sizeof(float2), cudaMemcpyDeviceToHost); 
} 
 
#pragma omp barrier 
for (int i = 0; i < p->NY ; i++) { 
memcpy(d->h->tn_xy + d->slice_xy.memory_offset +  
i*d->slice_xy.nx*d->slice_xy.nz, 
d->h->tn_xz + i*d->slice_xz.nx*d->slice_xz.nz +  
d->slice_xy.domain_offset*d->slice_xy.nx , 
d->slice_xy.nx*d->slice_xy.nz*sizeof(float2)); 
} 
 
#pragma omp barrier 
cudaMemcpy(d->tn, d->h->tn_xy + d->slice_xy.memory_ offset,  
d->slice_xy.nx*d->slice_xy.nz*d->slice_xy.ny*sizeof (float2), 
cudaMemcpyHostToDevice); 
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\\ solve tridiagonal system 
solve_tridag(p, d); 
cudaMemcpy(d->h->p_xy + d->slice_xy.memory_offset, d->p,  
d->slice_xy.nx*d->slice_xy.nz*d->slice_xy.ny*sizeof (float2), 
cudaMemcpyDeviceToHost); 
#pragma omp barrier 
 
\\ re-slicing from xy-plane to xz-plane pattern 
for (int i = 0; i < p->NY; i++) { 
memcpy(d->h->p_xz + i*d->slice_xz.nx*d->slice_xz.nz  +  
d->slice_xy.domain_offset*d->slice_xy.nx, 
d->h->p_xy + d->slice_xy.memory_offset + i*d->slice _xy.nx* 
d->slice_xy.nz, 
d->slice_xy.nx*d->slice_xy.nz*sizeof(float2)); 
d->h->p_xz[i*d->slice_xz.nx*d->slice_xz.nz].x = 0.0 ; 
d->h->p_xz[i*d->slice_xz.nx*d->slice_xz.nz].y = 0.0 ; 
} 
 
#pragma omp barrier 
cudaMemcpy(d->p, d->h->p_xz + d->slice_xz.memory_of fset,  
d->slice_xz.nx*d->slice_xz.nz*d->slice_xz.ny*sizeof (float2), 
cudaMemcpyHostToDevice); 
\\ update velocity field 
update_velocity(p, d);  
\\ boundaries data transfer from device p+1 to host 
cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id], d->u + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id], d->v + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id], d->w + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
 
\\ boundaries data transfer from host to device p 
#pragma omp barrier 
if (d->id < d->h->num_devices-1) { 
cutilSafeCall(cudaMemcpy(d->u + (ny-1)*nx*nz,  
d->h->us_buf[d->id+1], nx*nz*sizeof(float2), 
cudaMemcpyHostToDevice)); 
cutilSafeCall(cudaMemcpy(d->v + (ny-1)*nx*nz,  
d->h->vs_buf[d->id+1], nx*nz*sizeof(float2), 
cudaMemcpyHostToDevice)); 
cutilSafeCall(cudaMemcpy(d->w + (ny-1)*nx*nz,  
d->h->ws_buf[d->id+1], nx*nz*sizeof(float2), 
cudaMemcpyHostToDevice)); 
} 
 
\\ boundaries data transfer from device p+1 to host 
#pragma omp barrier 
cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id],  
d->u + (ny-2)*nx*nz, nx*nz*sizeof(float2), 
cudaMemcpyDeviceToHost)); 
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cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id],  
d->v + (ny-2)*nx*nz, nx*nz*sizeof(float2), 
cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id],  
d->w + (ny-2)*nx*nz, nx*nz*sizeof(float2), 
cudaMemcpyDeviceToHost)); 
 
\\ boundaries data transfer from host to device p 
#pragma omp barrier 
if (d->id > 0) { 
cutilSafeCall(cudaMemcpy(d->u, d->h->us_buf[d->id-1 ], 
nx*nz*sizeof(float2), cudaMemcpyHostToDevice)); 
cutilSafeCall(cudaMemcpy(d->v, d->h->vs_buf[d->id-1 ], 
nx*nz*sizeof(float2), cudaMemcpyHostToDevice)); 
cutilSafeCall(cudaMemcpy(d->w, d->h->ws_buf[d->id-1 ], 
nx*nz*sizeof(float2), cudaMemcpyHostToDevice)); 
} 
} 

 

 Listing 5.18 – Scheme of the main program. 

 

With reference to List. 5.18, the main steps of the computational procedure are here 

discussed. 

 

1. After domain decomposition and reading velocity data, stored into the host 

memory, each thread executes a host-to-device memory copy to its 

corresponding slice (List. 5.19). 

slice s = d->slice_xz; 
update_velocity_kernel<<<blocksPerGrid, d-
>threadsPerBlock>>>(s.nx, s.ny, s.nz, d->us, d->vs,  d->ws,  
d->p, p->rk[p->step], p->dt, d->u, d->v, d->w); 
cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id], d->us  + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id], d->vs  + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id], d->ws  + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
 
s = d->slice_xz 
 
cudaMemcpy(d->u, sizeof(float2),cudaMemcpyHostToDev ice); 
cudaMemcpy(d->v, sizeof(float2),cudaMemcpyHostToDev ice); 
cudaMemcpy(d->w, sizeof(float2),cudaMemcpyHostToDev ice); 

 

       Listing 5.19 – Scheme for the host-to-device data transfer. 
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2. As in the single-GPU implementation, also in the multi-GPU one, each 

device executes, for each xz−plane, a batched 2D complex-to-real (C2R) and 

real-to-complex (R2C) Fourier transforms (List. 5.20). 

 
cufftExecC2R(d->batchBckPlan, (cufftComplex *)d->ut , 
(cufftReal *)d->ut); 
cufftExecC2R(d->batchBckPlan, (cufftComplex *)d->vt , 
(cufftReal *)d->vt); 
cufftExecC2R(d->batchBckPlan, (cufftComplex *)d->wt , 
(cufftReal *)d->wt); 
 
product_kernel<<<blocksPerGrid, d->threadsPerBlock> >>(N, 
scale,  
d->ut, d->vt, d->wt, d->uu, d->uv,  
d->uw, d->vv, d->wv, d->ww); 
 
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->uu, 
(cufftComplex *)d->uu); 
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->uv, 
(cufftComplex *)d->uv); 
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->uw, 
(cufftComplex *)d->uw); 
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->vv, 
(cufftComplex *)d->vv); 
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->wv, 
(cufftComplex *)d->wv); 
cufftExecR2C(d->batchFwdPlan, (cufftReal *)d->ww, 
(cufftComplex *)d->ww); 

 

            Listing 5.20 – Scheme for the computation of the product terms. 

 

3. Each device executes a set of kernels, as listed in the following, for 

computing the convective and the diffusive terms (List. 5.21). 

 
convective_kernel<<<blocksPerGrid,d->threadsPerBloc k>>>  
(s.nx, s.ny, s.nz, s.nx - p->kx_nz+1, s.nx-1, s.nz/ 2,  
p->kz_nz, s.nz/2 + p->kz_nz - 1,  
d->uu, d->uv, d->uw, d->vv,  
d->wv, d->ww, d->nu, d->nv, d->nw); 
 
diffusive_kernel<<<blocksPerGrid, d->threadsPerBloc k>>> 
(s.nx, s.ny, s.nz,  
d->u, d->v, d->w,  
d->lu, d->lv, d->lw); 
 
velstar_kernel<<<blocksPerGrid, d->threadsPerBlock> >> 
(s.nx, s.ny, s.nz, rk, dt, tau,  
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d->u, …, d->nu, …, d->lu,  
d->ustar, d->vstar, d->wstar); 

 

         Listing 5.21 – Scheme for the computation of the convective and diffusive terms. 

 

4. Before executing the kernel related to the fractional-step method, a clipping 

of the computational domain along z− direction is necessary, as represented 

in Fig. (5.17). Thus, each device executes the GPU modified Thomas 

algorithm for solving the Poisson problem (List. 5.22). 

 
num_ele_z = ceil(Nz/num_devices) 
for (i=0; i < h->num_devices; i++) { 
h->d_data[i].slice_xy.nx = p->NX; 
h->d_data[i].slice_xy.ny = p->NY; 
h->d_data[i].slice_xy.nz = num_ele_z; 
h->d_data[i].slice_xy.memory_offset =  
i*num_ele_z*p->NX*p->NY; 
h->d_data[i].slice_xy.domain_offset = i*num_ele_z; 
} 
tn_kernel<<<blocksPerGrid, d->threadsPerBlock>>> 
(s.nx, s.ny, s.nz,  
p->rk[p->step], p->dt,  
d->tn, d->us, d->vs, d->ws); 
solve_poisson_kernel <<<blocksPerGrid, d->threadsPe rBlock>>> 
(s.nx, s.ny, s.nz,  
d->dpri, d->tn, d->p,  
d->work); 

 

        Listing 5.22 – Scheme for the solution of the Poisson problem. 

 

5. Before updating the velocity field, a re-slicing along y− direction is 

performed; thus, each device executes the kernel named  

update_velocity_kernel (List. 5.23). 

 
slice s = d->slice_xz; 
update_velocity_kernel<<<blocksPerGrid, d->threadsP erBlock>>>  
(s.nx, s.ny, s.nz,  
d->us, d->vs, d->ws,  
d->p, p->rk[p->step], p->dt,  
d->u, d->v, d->w); 
cutilSafeCall(cudaMemcpy(d->h->us_buf[d->id], d->us  + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->vs_buf[d->id], d->vs  + nx*nz, 
nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 
cutilSafeCall(cudaMemcpy(d->h->ws_buf[d->id], d->ws  + nx*nz, 
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nx*nz*sizeof(float2), cudaMemcpyDeviceToHost)); 

 

       Listing 5.23 – Scheme for the updating of the velocity field and  

         for the device-to-host transfer. 

 

6. Finally, each thread transfers the new velocity field from the device memory 

to the host memory and stores data in the DNS database (List. 5.23). 
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Chapter 6 
 
Results of the Simulations: 
Turbulence Statistics 
 
 
 

6.1   Introduction 

      The evaluation of the behavior of fluctuations and pressure of fluid flow 

variables in wall-bounded turbulence is of fundamental interest in many engineering 

applications involving the development of efficient turbulence control techniques and 

closure models. For this reason, it is necessary to investigate the relationships 

between turbulence statistics, Reynolds-stress, dissipation and anisotropy budgets 

and, finally, to consider the relevant information that derives from coherent 

structures, especially with reference to the Reynolds number dependence.  

      The objective of the present chapter is to present the statistical-energetic results 

of the numerical simulations of a turbulent channel flow and to evaluate 

performances of the parallel implementations of the Navier-Stokes solver, described 

in Chapter 5, setting the Reynolds number to be Re 200,400,600τ = .  

The present chapter is organized as follows: Section 6.2 shows the validation of 

the numerical solver against existing results; Section 6.3 describes the rate budget of 

the Reynolds shear stress, kinetic energy, dissipation and anisotropy; Section 6.4 



 Chapter 6 – Results of the Simulations: Turbulence Statistics 
 

100 
 

analyzes the turbulence statistics with respect to the Reynolds number dependence; 

finally, in Section 6.5 the evaluation of the performances of the parallel codes is 

described, both in terms of speedup and efficiency. 

 
 
6.2   Validation against existing results 

      Besides the aspect of the strictly numerical reliability of the computational code, 

it is necessary to verify the ability of the mixed spectral-finite difference method 

adopted for the numerical integration of the governing equations to simulate the 

physical properties of turbulence in a plane channel. For this reason, a comparison of 

the computed results with numerical data obtained by other authors has to be 

consider.  

The comparisons concern all the most important variables, in terms of turbulence 

intensities and mean flow properties, that allow to verify the reliability both of the 

spatial/temporal  domain in wall turbulence analysis and statistical properties of the 

numerical databases simulated. 

A first screening of the effectiveness of the numerical simulations may be done by 

determining the accuracy of the computational grid, in space and time, by computing 

two-point correlation coefficients of velocity fluctuations and energy spectra; 

furthermore, it is necessary to estimate the Kolmogorov microscale as required by 

[43]. 

After this step, it is necessary to evaluate mean flow properties, for a more complete 

description of the main characteristics of the simulated turbulent flows. Mean flow 

properties have been evaluated by calculating the bulk mean velocity bU , the related 

Reynolds number Reb , the mean centerline velocity cu  and the related Reynolds 

number Rec  as follows: 

 

1

1

1

2b

y
U ud

h−

 =  
 

∫                                             (6.1) 
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Table 6.1 – Characteristic parameters of the simulations. 

 Computational domain Grid points Grid spacing 

Reτ  
xL  yL  zL  xL+  yL+  

zL+  xN  yN  zN  x+∆  yc
+∆  yw

+∆  z+∆  

200 
4 hπ

 
2h  2 hπ  256 181 256 2513 400 1257 9.82 3.87 0.25 6.91 

180 [4] 4 hπ
 

2h  4 3 hπ  128 129 128 2262 360 754 17.7 6.4 0.05 6.9 

400 
4 hπ

 
2h  2 hπ  343 321 343 5026 800 2513 16.65 6.36 0.28 7.33 

395 [4] 
2 hπ

 
2h  hπ  256 193 182 2482 790 1241 10.0 6.5 - 6.5 

600 4 hπ
 

2h  2 hπ  512 451 512 7540 1200 3770 16.73 6.66 0.30 7.36 

590 [4] 
2 hπ

 
2h  hπ  384 257 384 2482 790 1241 9.7 6.5 - 7.2 

 
 
 

Re b
b

U h

ν
=                                                   (6.2) 

 

Re c
c

u h

ν
=                                                    (6.3) 

 

Furthermore, both the values of c bu U  and fbC  are obtained from experimental 

correlations suggested by [40]: 

 

( ) 0.0116
1.28 2Rec

b
b

u

U

−=                                       (6.4) 

 
 

( ) 0.25
0.073 2Refb bC

−=                                       (6.5) 

 

while the computed skin friction coefficient are calculated by using the related value 

of the shear stress at the wall, actually obtained in the computations as follows: 

 

2

2 w
fb

b

C
U

τ
ρ

=                                                   (6.6) 
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2

2 w
fc

c

C
u

τ
ρ

=                                                    (6.7) 

 

The statistical analysis helps to describe more in detail the wall-bounded phenomena 

and, in particular, to understand the role of fluctuations of the wall flow variables and 

their effects in terms of coherent structures. It consists on the evaluation of the root-

mean-square of the velocity fluctuations, the skewness and flatness factors and, 

finally, the Reynolds-shear stress within a plane channel. 

Thus, for each database considered, at Re 200,400,600τ = , a description of the main 

characteristics parameters of the simulations has been presented in comparison with 

those of [27]. 

The generic computational domain is represented in Fig. 5.3; furthermore, by 

recalling the wall formalism, one as: 

 

i i

u
x x τ

ν
+ = ,  

2u
t t τ

ν
+ = ,  

h
h

hτ

+ = ,  
u

u
uτ

+ = ,  Re
u hτ

τ ν
=                (6.8) 

 
where u  denotes a mean x− velocity, averaged on a generic xz−plane and time,   

h uτν=  is the viscous length and h uτ  is the viscous time unit. 

The characteristic parameters of the simulations are reported in Tab. 6.1: it is evident 

that the grid spacing adopted is in good agreement with that of [27].  

In the following sections, a more detailed evaluation of statistical terms and 

mean-flow variables is presented and analyzed, in order to verify the accuracy of the 

calculations, both in space and time, and the reliability of the computational domain 

to capture the most relevant structures. 

 

6.2.1   Plane channel at τRe = 200  

Considering the numerical database at Re 200τ = , the Kolmogorov spatial 

microscale, estimated by using the criterion of the average dissipation rate per unit of 

mass across the width of the channel, is equal to 1.89η+ = .  
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It can be verified that there are 14 grid points in the y-direction, within the viscous 

sublayer 5y ≤ , that satisfies the following requirements (according to [43]):  

� to select a normal-to-the-wall grid width distribution, able to resolve the steep 

gradients of the velocity field near the wall,  

� to select a normal-to-the-wall grid such as the mean grid width ( u∆ ) results 

smaller than the relevant turbulent elements (i.e. u πη∆ ≤ ) and,  

� to have ( t ητ∆ ≤ ).  

 

The initial velocity profile evolving with time is interpolated onto the considered 

computational domain by using the statistically steady state profile obtained by [36]: 

thus, given an appropriate initial condition, the initial transient flow in the channel is 

simulated until the turbulent statistically steady state is reached. Five-hundred 

thousand time steps are calculated with a temporal resolution of 41 10t h uτ
−∆ = ⋅ (that 

corresponds to 0.02t +∆ = ), while the Kolmogorov time microscale results 

3.54ητ + = . 

With reference on Tab. 6.1, the adequacy of the computational domain and its 

grid resolution can be verified by evaluating the two-point correlation coefficients 

and the energy spectra.  In Figs. 6.1-6.4, the two-point correlation coefficients are 

shown, both in x−  and z− directions at two y-locations: in particular, Figs. 6.1 and 

6.2 are referred to 0.990y h=  that is very close to the wall, while Figs. 6.3 and 6.4 

are referred to 0.0194y h=  that is very close to the centerline. Because of the 

fluctuations at x−  and z− directions are uncorrelated for large separations, the 

computational domain is considered adequate to capture all the relevant large-scale 

turbulent structure. 

Figure 6.5 shows the one-dimensional energy spectra and demonstrates the adequacy 

of grid resolutions adopted, being the energy density associated with the high 

wavenumbers several orders of magnitude lower than the energy density 

corresponding to low wavenumbers: furthermore, there is no evidence of energy pile-

up at high wavenumbers, thanks to numerical filter, based on the “3 2 rule”, that 

avoids aliasing errors. 
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Figure 6.1 – Two-point correlation coefficients of the velocity fluctuations. Streamwise 

separation at 0.990y h = − (wall): (─) 11R ; (---) 22R ; (···) 33R . 

 

 
Figure 6.2 – Two-point correlation coefficients of the velocity fluctuations. Spanwise separation at 

0.990y h = − (wall): (─) 11R ; (---) 22R ; (···) 33R . 

 

 



 Chapter 6 – Results of the Simulations: Turbulence Statistics 
 

105 
 

 
Figure 6.3 – Two-point correlation coefficients of the velocity fluctuations. Streamwise separation at 

0.0194y h = − (center): (─) 11R ; (---) 22R ; (···) 33R . 

 

 
Figure 6.4 – Two-point correlation coefficients of the velocity fluctuations. Spanwise separation at 

0.0194y h = − (center): (─) 11R ; (---) 22R ; (···) 33R . 
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Figure 6.5 – One-dimensional energy spectra. (a) and (b) at 0.990y h= − (wall), (c) and (d) at  

0.0194y h= −  (center): (─) ' 'u uE ; (---); ' 'v vE ; (···) ' 'w wE . 

 
 

About mean flow properties, the mean-velocity profile normalized by the centerline 

velocity across the section of the channel in global coordinates cu U  is shown in 

Fig. 6.6; in Fig. 6.7, the mean velocity profile normalized by the friction velocity in 

wall coordinates u+ is compared with the law of the wall and with the results of [27] 
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Figure 6.6 – Mean-velocity profile cu U across the channel in global coordinates y h . 

 

 
Figure 6.7 – Mean-velocity profile u+ in wall coordinates y+ :  (+) present case study, (─) data from 

[27]; (---) law at the wall. 

 
 

at Re 180τ = . Also in this case, the comparison between computed results and 

numerical data is satisfactory. 
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Table 6.2 – Computed mean flow variables (nominalRe 200τ = ). 

Reτ  Reb  Rec  bU uτ  cu uτ  c bu U  fbC  fcC  

200.23 3197.67 3706.26 16.97 18.51 1.16 7.86·10-3 6.85·10-3 

 
 
In order to complete the mean flow analysis, Tab. 6.2 shows the computed mean 

flow variables by using Eqs. 6.1-6.3 and 6.6-6.7. Figure 6.7 shows that the viscous 

sublayer is well solved, yielding the linear velocity distribution u y+ +=  for 5y < .  

Figures 6.8 and 6.9 report the turbulent intensities , ,rms rms rmsu v w′ ′ ′  – the root mean 

square values of the velocities fluctuations normalized by the friction velocity – in 

global and wall coordinates, respectively. It is evident the symmetry of profiles about 

the centerline, that confirms the adequacy of the simulation sample taken for the 

average. The agreement of computed results with those of [27] is good. 

Figures 6.10 and 6.12 show the skewness factors , ,u v wS S S′ ′ ′  of the velocity 

fluctuations in global and wall coordinates, respectively, in comparison with the 

results of [27] at Re 180τ = . Similar comparisons are presented in Figs. 6.11 and 

6.13 for the flatness factors , ,u v wF F F′ ′ ′ . Considering both skewness and flatness 

factors, the profiles in global coordinates show small asymmetries and oscillations 

and the related values are significantly different from the Gaussian ones (0 and 3, 

respectively), showing a satisfactory agreement with the computed results of [27]. 

The same conclusion can be done for the profiles in wall coordinates. 
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Figure 6.8 – Rms of velocity fluctuation in global coordinates. Present case study: (+) rmsu′ ; (×) rmsv′ ; 

(○) rmsw′ . Data from [27]: (─) rmsu′ ; (…) rmsv′ ; (---) rmsw′ . 

 

 
Figure 6.9 – Rms of velocity fluctuation in wall coordinates. Present case study: (+) rmsu′ ; (×) rmsv′ ; (○) 

rmsw′ . Data from [27]: (─) rmsu′ ; (…) rmsv′ ; (---) rmsw′ . 
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Figure 6.10 – Skewness factors of the velocity fluctuations in global coordinates. Present case study: 

(+) uS ′ ; (×) vS ′ ; (○) wS ′ . Data from [27]:  (─) uS ′ ; (
…) vS ′ ; (---) wS ′ . 

 

 
Figure 6.11 – Flatness factors of the velocity fluctuations in global coordinates. Present case study: (+) 

uF ′ ; (×) vF ′ ; (○) wF ′ . Data from [27]:  (─) uF ′ ; (
…) vF ′ ; (---) wF ′ . 
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Figure 6.12 – Skewness factors of the velocity fluctuations wall coordinates: (×) present work; (─) 

data from [27]. 
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Fig. 6.13 – Flatness factors of the velocity fluctuations wall coordinates: (×) present work; (─) data 

from [27]. 

 
 

6.2.2   Plane channel at τRe = 400  

In this section, the same analysis, done for DNS database at Re 200τ = , is 

performed for DNS database at Re 400τ = , in order to verify the reliability of the 

computational domain, whose parameters are reported on Tab. 6.1. 
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Table 6.3 – Computed mean flow variables (nominalRe 400τ = ). 

 

Reτ  Reb  Rec  bU uτ  cu uτ  c bu U  fbC  fcC  

399.94 6966.95 7978.80 17.42 19.95 1.14 6.58·10-3 6.02·10-3 

 

About numerical accuracy, the Kolmogorov spatial microscale, estimated by using 

the criterion of the average dissipation rate per unit mass across the width of the 

channel, results 2.19η+ = . Along y − direction, 16 grid points have been used, 

within the viscous sublayer, to satisfy the requirements defined by [43]. 

The initial velocity profile evolving with time is interpolated onto the considered 

computational domain by using the statistically steady state profile obtained from the 

database at Re 200τ = : thus, given an appropriate initial condition, the initial 

transient flow in the channel is simulated until the turbulent statistically steady state 

is reached.  

Five-hundred thousand time steps are calculated with a temporal resolution of 

41 10t h uτ
−∆ = ⋅ (that corresponds to 0.04t +∆ = ), while the Kolmogorov time 

microscale results 4.79ητ + = . 

With reference on Tab. 6.1, the adequacy of the computational domain and its grid 

resolution can be verified by evaluating the two-point correlation coefficients and the 

energy spectra. 

In Figs. 6.14-6.17, the two-point correlation coefficients are shown, both in x− and 

z− directions at two y − locations: in particular, Figs. 6.14 and 6.15 are referred to 

0.988y h=  that is very close to the wall, while Figs. 6.16 and 6.17 are referred to 

0.022y h=  that is very close to the centerline. Also in this case, because of 

fluctuations along x− and z− directions are uncorrelated for large separations, the 

computational domain is considered adequate to capture all the relevant large-scale 

turbulent structure [43]. Figure 6.18 shows the one-dimensional energy spectra and 

demonstrates the adequacy of grid resolutions adopted because of the energy cascade 

and there is no evidence of energy pile-up at high wavenumbers. 
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Figure 6.14 – Two-point correlation coefficients of the velocity fluctuations. Streamwise separation at 

0.988y h = − (wall): (─) 11R ; (---) 22R ; (…) 33R . 

 

 
Figure 6.15 – Two-point correlation coefficients of the velocity fluctuations. Spanwise separation at 

0.988y h = − (wall): (─) 11R ; (---) 22R ; (…) 33R . 

 
 

About mean flow properties, the mean-velocity profile normalized by the centerline 

velocity across the section of the channel in global coordinates cu U  is shown in  
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Figure 6.16 – Two-point correlation coefficients of the velocity fluctuations. Streamwise separation at 

0.022y h = − (center): (─) 11R ; (---) 22R ; (…) 33R . 

 

 
Figure 6.17 – Two-point correlation coefficients of the velocity fluctuations. Spanwise separation at 

0.022y h = − (center): (─) 11R ; (---) 22R ; (…) 33R . 

 
 
Fig. 6.19; in Fig. 6.20, the mean velocity profile normalized by the friction velocity 

in wall coordinates u+  is compared with the law of the wall and with the results of 

[27] at Re 395τ = . Also in this case, the comparison is rather satisfactory. 
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Figure 6.18 – One-dimensional energy spectra. (a) and (b) at 0.988y h= − (wall), (c) and (d) at  

0.022y h = −  (center): (─) ' 'u uE ; (---); ' 'v vE ; (…) ' 'w wE . 

 
 
Fig. 6.20 shows that the viscous sublayer is well solved, yielding the linear velocity 

distribution u y+ +=  for 5y < . In order to complete the mean flow analysis, Tab. 6.3 

shows the computed mean flow variables by using Eqs. 6.1-6.3 and 6.6-6.7. 
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Figure 6.19 – Mean-velocity profile cu U across the channel in global coordinates y h . 

 

 
Figure 6.20 – Mean-velocity profile u+

 in wall coordinates y+ : (+) present case study, (─) data from 

[27]; (---) law at the wall. 
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Figure 6.21 – Rms of velocity fluctuation in global coordinates. Present case study: (+) rmsu′ ; (×) rmsv′ ; 

(○) rmsw′ . Data from [27]: (─) rmsu′ ; (…) rmsv′ ; (---) rmsw′ . 

 

 
Figure 6.22 – Rms of velocity fluctuation in wall coordinates. Present case study: (+) rmsu′ ; (×) rmsv′ ; 

(○) rmsw′ . Data from [27]: (─) rmsu′ ; (…) rmsv′ ; (---) rmsw′ . 
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Figure 6.23 – Skewness factors of the velocity fluctuations in global coordinates. Present case study: 

(+) uS ′ ; (×) vS ′ ; (○) wS ′ .  Data from [27]: (─) uS ′ ; (
…) vS ′ ; (---) wS ′ . 

 

 
Figure 6.24 – Flatness factors of the velocity fluctuations in global coordinates. Present case study: (+) 

uF ′ ; (×) vF ′ ; (○) wF ′ .  Data from [27]: (─) uF ′ ; (
…) vF ′ ; (---) wF ′ . 
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Figure 6.25 – Skewness factors of the velocity fluctuations wall coordinates: (×) present work; (─) 

data from [27]. 

 
 

Figures  6.21 and 6.22 report the turbulent intensities , ,rms rms rmsu v w′ ′ ′ – the root mean 

square values of the velocities fluctuations normalized by the friction velocity – in 

global and wall coordinates, respectively. It is evident the symmetry of the profiles 

about the centerline, that confirms the adequacy of the simulation sample  
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Figure 6.26 – Flatness factors of the velocity fluctuations wall coordinates: (×) present work; (─) data 

from [27]. 

 
 
taken for the average. The agreement of computed results with those of [27] is good. 

Figures 6.23 and 6.25 report the skewness factors , ,u v wS S S′ ′ ′  of the velocity 

fluctuations in global and wall coordinates, respectively, in comparison with the 

results of [27] at Re 395τ = . Similar comparisons are presented in Figs. 6.24 and  
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6.26 for the flatness factors , ,u v wF F F′ ′ ′ . As observed for the last database for both 

skewness and flatness factors, the profiles in global coordinates show small 

asymmetries and oscillations and the related values are significantly different from 

the Gaussian ones (0 and 3, respectively) and the comparison with numerical data of 

[27] is rather satisfactory. The same conclusion can be done for the same profiles in 

wall coordinates. 

 

6.2.3   Plane channel at τRe =600  

The Kolmogorov spatial microscale, estimated by using the criterion of the 

average dissipation rate per unit mass across the width of the channel, results 

2.42η+ = , while along the y-direction the total number of grid point available within 

the viscous sublayer is equal to 16. The initial velocity profile evolving with time is 

interpolated onto the considered computational domain by using one of the 

statistically steady state profiles obtained from the simulation at Re 400τ = : the 

initial transient flow in the channel is simulated until the turbulent statistically steady 

state is reached. Two-hundred thousand time steps are calculated with a temporal 

resolution of 41 10t h uτ
−∆ = ⋅  (that corresponds to 0.06t +∆ = ), while the 

Kolmogorov time microscale results 5.87ητ + = . 

With reference on Table 6.1, the adequacy of the computational domain and its grid 

resolution can be verified by evaluating the two-point correlation coefficients and the 

energy spectra. In Figs. 6.27-6.30, the two-point correlation coefficients are shown, 

both in x−  and z− directions at two y − locations: in particular, Figs. 6.27 and 6.28 

are referred to 0.990y h= −  that is very close to the wall, while Figs. 6.29 and 6.30 

are referred to 0.0155y h= −  that is very close to the centerline. Because of the 

fluctuations at x−  and z− directions are uncorrelated for large separations, the 

computational domain is considered adequate to capture all the relevant large-scale 

turbulent structures. Figure 6.31 is referred to the one-dimensional energy spectra 

and demonstrates the adequacy of grid resolutions adopted, being the energy density 

associated with the high wavenumbers several orders of magnitude lower than the 

energy density corresponding to low wavenumbers; furthermore, also in this case 

there is no evidence of energy pile-up. 
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Figure 6.27 – Two-point correlation coefficients of the velocity fluctuations. Streamwise separation at 

0.990y h = − (wall): (─) 11R ; (---) 22R ; (…) 33R . 

 

 
Figure 6.28 – Two-point correlation coefficients of the velocity fluctuations. Spanwise separation at 

0.990y h = − (wall): (─) 11R ; (---) 22R ; (…) 33R . 
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Figure 6.29 – Two-point correlation coefficients of the velocity fluctuations. Streamwise separation at 

0.0155y h = − (center): (─) 11R ; (---) 22R ; (…) 33R . 

 

 
Figure 6.30 – Two-point correlation coefficients of the velocity fluctuations. Spanwise separation at 

0.0155y h = − (center): (─) 11R ; (---) 22R ; (…) 33R . 

 
 
About mean flow properties, the mean-velocity profile normalized by the centerline 

velocity across the section of the channel in global coordinates cu U is shown in Fig. 

6.32; in Fig. 6.33, the mean velocity profile normalized by the friction velocity in  
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Figure 6.31 – One-dimensional energy spectra. (a) and (b) at 0.990y h = − (wall), (c) and (d) at  

0.0155y h = −  (center): (─) ' 'u uE ; (---); ' 'v vE ; (…) ' 'w wE . 

 
 

wall coordinates u+ is compared with the law of the wall and with the results of [27] 

at Re 590τ = . Also in this case, the comparison is satisfactory. Fig. 6.33 shows that 

the viscous sublayer is well solved, yielding the linear velocity distribution u y+ +=

for 5y+ < . 
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Figure 6.32 – Mean-velocity profile cu U across the channel in global coordinates y h . 

 

 
Figure 6.33 – Mean-velocity profile u+ in wall coordinates y+ : (+) present case study, (─) data from 

[27]; (---) law at the wall. 

 
 
In order to complete the mean flow analysis, Tab. 6.4 shows computed mean flow 

variables by using Eqs. 6.1-6.3 and 6.6-6.7. 
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Table 6.4 – Computed mean flow variables (nominalRe 600τ = ). 

 

Reτ  Reb  Rec  bU uτ  cu uτ  c bu U  fbC  fcC  

600.55 11106.17 12701.63 18.49 21.15 1.14 6.86·10-3 6.48·10-3 

 

 
Figure 6.34 – Rms of velocity fluctuation in global coordinates. Present case study: (+) rmsu′ ; (×) rmsv′ ; 

(○) rmsw′ . Data from [27]: (─) rmsu′ ; (…) rmsv′ ; (---) rmsw′ . 

 

 
Figure 6.35 – Rms of velocity fluctuation in wall coordinates. Present case study: (+) rmsu′ ; (×) rmsv′ ; 

(○) rmsw′ . Data from [27]: (─) rmsu′ ; (…) rmsv′ ; (---) rmsw′ . 
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Figure 6.36 – Skewness factors of the velocity fluctuations in global coordinates. Present case study: 

(+) 'uS ; (×) 'vS ; (○) 'wS . Data from [27]: (─) 'uS ; (…) 'vS ; (---) 'wS . 

 

 
Figure 6.37 – Flatness factors of the velocity fluctuations in global coordinates. Present case study: (+) 

'uF ; (×) 'vF ; (○) 'wF . Data from [27]: (─) 'uF ; (…) 'vF ; (---) 'wF . 

 
 
Figures 6.34 and 6.35 report the turbulent intensities , ,rms rms rmsu v w′ ′ ′  – the root mean 

square values of the velocities fluctuations normalized by the friction velocity – in 

global and wall coordinates, respectively.  
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Figure 6.38 – Skewness factors of the velocity fluctuations wall coordinates: (×) present work; (─) 

data from [27]. 

 
 
It is evident the symmetry of the profiles about the centerline, that confirms the 

adequacy of the simulation sample taken for the average. The agreement of 

computed results with those of [27] is good. 

Figures 6.36 and 6.38 show the skewness factors , ,u v wS S S′ ′ ′ of the velocity 

fluctuations in global and wall coordinates, respectively, in comparison with the  
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Figure 6.39 – Flatness factors of the velocity fluctuations wall coordinates: (×) present work; (─) data 
from [27]. 

 

 

results of [27] at Re 590τ = . Similar comparisons are shown in Fig. 6.37 and 6.39 for 

the flatness factors , ,u v wF F F′ ′ ′ . For both skewness and flatness factors, the profiles in 

global coordinates show small asymmetries and oscillations and the related values 

are significantly different from the Gaussian ones (0 and 3, respectively). The 
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profiles of both skewness and flatness factors, in global coordinates, show a 

satisfactory agreement with the computed results of [27]. The same conclusion can 

be done for the profiles of both skewness and flatness factors in wall coordinates. 

 

 

6.3   Reynolds shear stress: distribution and budgets 

In the field of wall-bounded turbulence, the Reynolds shear stress play an 

important role for understanding how an active control of the physical mechanisms 

that occur in the near-wall regions is possible by means models and flow structures 

analysis. In this section, a detailed description of the numerical results obtained from 

the DNS of a plane channel at Re 200,400,600τ = are shown.  

The analysis has been done considering, at first, the values of the Reynolds shear 

stress u v′ ′  in comparison with those of the total shear stress totτ  defined as: 

 

1

Retot

u
u v

yτ

τ ∂′ ′= − +
∂

                                            (6.9) 

 

Then, starting from the Reynolds stress transport equations, as described in Appendix 

A, the terms referred to the Reynolds stress budget, the dissipation-rate budget and 

the anisotropy-rate budget are calculated and discussed for each numerical database 

simulated. The relevant non-zero stresses in this case are 1 1 1 2 2 2 3 3, , ,u u u u u u u u. 

 

6.3.1   Analysis of the terms at τRe =200  

Figures 6.40 and 6.41 report the values of the Reynolds shear stress u v′ ′

computed, normalized by the friction velocity, in global and wall coordinates, 

respectively. Figure 6.40 reports, also, the computed total shear stress totτ , as in Eq. 

6.9. The straight dotted line developing across the channel width in an indicator of 

the fully developed condition reached in the numerical simulation. In Fig. 6.42, the 

numerical results are compared with the data of [27] obtained at Re 180τ = . 
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Figure 6.40 – Computed values of Reynolds shear stress and total shear stress normalized by the 

friction velocity in global coordinates. Present work: (─) u v′ ′ , (---) totτ . 

 

 
Figure 6.41 – Reynolds shear stress normalized by the friction velocity in wall coordinates. Present 

work: (+); data from [27] at Re 180τ = : (─). 

 

 

Figures  6.42-6.45 show the terms in the budget of those stresses, while Fig. 6.46 

shows the terms of the budget for the turbulent kinetic energy K . 
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Figure 6.42 – Terms in the budget of 1 1u u′ ′  in wall coordinates. 11P = Production; 11T = Turbulent 

transport; 11D = Viscous diffusion; 11ε =  Dissipation rate; ,11sΠ = Velocity pressure strain gradient 

term; ,11dΠ = Velocity pressure diffusion gradient term. 

 

 
Figure 6.43 – Terms in the budget of 1 2u u′ ′

 in wall coordinates. 12P = Production; 12T = Turbulent 

transport; 12D = Viscous diffusion; 12ε =  Dissipation rate; ,12sΠ = Velocity pressure strain gradient 

term; ,12dΠ = Velocity pressure diffusion gradient term. 

 
 
Considering Eq. (A.78), Fig. 6.47 shows the terms that defined the combination of 

the turbulence kinetic energy and the dissipation rate term. 
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Figure 6.44 – Terms in the budget of 2 2u u′ ′  in wall coordinates. 22T = Turbulent transport; 22D =

Viscous diffusion; 22ε =  Dissipation rate; ,22sΠ = Velocity pressure strain gradient term; ,22dΠ =

Velocity pressure diffusion gradient term. 
 

 
Figure 6.45 – Terms in the budget of 3 3u u′ ′  in wall coordinates. 33T = Turbulent transport; 33D =

Viscous diffusion; 33ε =  Dissipation rate; ,33sΠ = Velocity pressure strain gradient term; ,33dΠ =

Velocity pressure diffusion gradient term. 
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Finally, Figs. 6.48-6.51 show the terms referred to the transport equation for the 

Reynolds stress anisotropy tensor ijb , as in Eq. (A.68). 

 
Figure 6.46 – Terms in the budget of the turbulent kinetic energy k  in wall coordinates. kP =

Production; kT = Turbulent transport; kD = Viscous diffusion; kε =  Dissipation rate; ,s kΠ =  Velocity 

pressure strain gradient term; ,d kΠ = Velocity pressure diffusion gradient term. 

 

 
Figure 6.47 – Terms in the budget of the dissipation rate of the turbulence kinetic energy in wall 

coordinates. ,1Pε = Production by mean velocity gradient; ,2Pε =  Mixed production; ,3Pε = Gradient 

production; ,4Pε = Turbulent production; Tε = Turbulent transport; Dε =  Viscous diffusion; Y =  

Dissipation rate; εΠ = Pressure transport. 
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Figure 6.48 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,11bP = Production; ,11bT = Turbulent transport; ,11bε =  Dissipation rate. 

 

 
Figure 6.49 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,12bP = Production; ,12bT = Turbulent transport; ,12bε =  Dissipation rate. 
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Figure 6.50 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,22bT = Turbulent transport; ,22bε =  Dissipation rate. 

 

 
Figure 6.51 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,33bT = Turbulent transport; ,33bε =  Dissipation rate. 
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6.3.2  Analysis of the terms at τRe =400  

Figures  6.52 and 6.53 report the values of the Reynolds shear stress u v′ ′computed, 

normalized by the friction velocity, in global and wall coordinates, respectively. 

Figure 6.52 reports, also, the computed total shear stress totτ , as in Eq. (6.9). The 

straight dotted line developing across the channel width in an indicator of the fully 

developed condition reached in the numerical simulation. In Fig. 6.52, the numerical 

results are compared with the data of [27] obtained at Re 395τ = . Figures 6.54-(6.57) 

show the terms in the budget of these stresses, while Fig. 6.58 shows the terms of the 

budget for the turbulent kinetic energy K . 

Figure 6.59 shows the terms that defined the combination of the turbulence kinetic 

energy and the dissipation rate term. 

Finally, Figs. 6.60-6.63 show the terms referred to the transport equation for the 

Reynolds stress anisotropy tensor ijb . 

 
Figure 6.52 – Computed values of Reynolds shear stress and total shear stress normalized by the 

friction velocity in global coordinates. Present work: (─) u v′ ′ , (---) totτ . 
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Figure 6.53 – Reynolds shear stress u v′ ′  normalized by the friction velocity in wall coordinates. 

Present work: (+); data from [27] (─). 
 

 
Figure 6.54 – Terms in the budget of 1 1u u′ ′  in wall coordinates. 11P =  Production; 11T = Turbulent 

transport; 11D = Viscous diffusion; 11ε = Dissipation rate; ,11sΠ = Velocity pressure strain gradient 

term; ,11dΠ = Velocity pressure diffusion gradient term. 
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Figure 6.55 – Terms in the budget of 1 2u u′ ′ in wall coordinates. 12P =  Production; 12T = Turbulent 

transport; 12D = Viscous diffusion; 12ε = Dissipation rate; ,12sΠ = Velocity pressure strain gradient 

term; ,12dΠ = Velocity pressure diffusion gradient term. 

 

 
Figure 6.56 – Terms in the budget of 2 2u u′ ′ in wall coordinates. 22T = Turbulent transport; 22D =

Viscous diffusion; 22ε = Dissipation rate; ,22sΠ = Velocity pressure strain gradient term; ,22dΠ =

Velocity pressure diffusion gradient term. 
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Figure 6.57 – Terms in the budget of 3 3u u′ ′ in wall coordinates. 33T = Turbulent transport; 33D =

Viscous diffusion; 33ε = Dissipation rate; ,33sΠ = Velocity pressure strain gradient term; ,33dΠ =

Velocity pressure diffusion gradient term. 
 

 
Figure 6.58 – Terms in the budget of the turbulent kinetic energy in wall coordinates. KP =  

Production; KT = Turbulent transport; KD = Viscous diffusion; Kε = = Dissipation rate; ,s KΠ =

Velocity pressure gradient term; ,d KΠ = Velocity pressure diffusion gradient term. 
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Figure 6.59 – Terms in the budget of the dissipation rate of the turbulence kinetic energy ε  in wall 

coordinates. ,1Pε = Production by mean velocity gradient; ,2Pε =  Mixed production; ,3Pε = Gradient 

production; ,4Pε = Turbulent production; Tε = Turbulent transport; Dε =  Viscous diffusion; Y =  

Dissipation rate; εΠ =  Pressure transport. 

 

 
Figure 6.60 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,11bP = Production; ,11bT = Turbulent transport; ,11bε = Dissipation rate. 
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Figure 6.61 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,12bP = Production; ,12bT = Turbulent transport; ,12bε = Dissipation rate. 

 

 
Figure 6.62 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,22bT = Turbulent transport; ,22bε = Dissipation rate. 
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Figure 6.63 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,33bT = Turbulent transport; ,33bε = Dissipation rate. 

 
 

6.3.3  Analysis of the terms at τRe =600  

Figures 6.64 and 6.65 report the values of the Reynolds shear stress u v′ ′−  

computed, normalized by the friction velocity, in global and wall coordinates, 

respectively. Figure 6.65 reports, also, the computed total shear stress  totτ  , as in Eq. 

(6.9). The straight dotted line developing across the channel width in an indicator of 

the fully developed condition reached in the numerical simulation. In Fig. 6.67, the 

numerical results are compared with the data of [27] obtained at Re 590τ = .  

Figures  6.66-6.69 show the terms in the budget of these stresses, while Fig. 6.70 

shows the terms of the budget for the turbulent kinetic energy K . 

Figure 6.71 shows the terms that defined the combination of the turbulence kinetic 

energy and the dissipation rate term. 

Finally, Figs. 6.72-6.75 show the terms referred to the transport equation for the 

Reynolds stress anisotropy tensor ijb . 
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Figure 6.64 – Computed values of Reynolds shear stress and total shear stress normalized by the 

friction velocity in global coordinates. Present work: (─) u v′ ′− , (---) totτ . 

 

 
Figure 6.65 – Reynolds shear stress normalized by the friction velocity in wall coordinates. Present 

work: (+); data from [27] (─). 
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Figure 6.66 – Terms in the budget of 1 1u u′ ′  in wall coordinates. 11P =  Production; 11T = Turbulent 

transport; 11D = Viscous diffusion; 11ε = Dissipation rate; ,11sΠ = Velocity pressure strain gradient 

term; ,11dΠ = Velocity pressure diffusion gradient term. 

 

 
Figure 6.67 – Terms in the budget of 1 2u u′ ′  in wall coordinates. 12P =  Production; 12T = Turbulent 

transport; 12D = Viscous diffusion; 12ε = Dissipation rate; ,12sΠ = Velocity pressure strain gradient 

term; ,12dΠ = Velocity pressure diffusion gradient term. 
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Figure 6.68 – Terms in the budget of 2 2u u′ ′  in wall coordinates. 22T = Turbulent transport; 22D =

Viscous diffusion; 22ε = Dissipation rate; ,22sΠ = Velocity pressure strain gradient term; ,22dΠ =

Velocity pressure diffusion gradient term. 

 
Figure 6.69 – Terms in the budget of 3 3u u′ ′  in wall coordinates. 33T = Turbulent transport; 33D =

Viscous diffusion; 33ε = Dissipation rate; ,33sΠ = Velocity pressure strain gradient term; ,33dΠ =

Velocity pressure diffusion gradient term. 
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Figure 6.70 – Terms in the budget of the turbulent kinetic energy K  in wall coordinates. KP =

Production; KT = Turbulent transport; KD =  Viscous diffusion; Kε = Dissipation rate; ,s KΠ =

Velocity pressure strain gradient term; ,d KΠ = Velocity pressure diffusion gradient term. 

 

 
Figure 6.71 – Terms in the budget of the dissipation rate of the turbulence kinetic energy ε  in wall 

coordinates. ,1Pε = Production by mean velocity gradient; ,2Pε =  Mixed production; ,3Pε = Gradient 

production; ,4Pε = Turbulent production; Tε = Turbulent transport; Dε =  Viscous diffusion; Y =  

Dissipation rate; εΠ =  Pressure transport. 
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Figure 6.72 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,11bP = Production; ,11bT = Turbulent transport; ,11bε = Dissipation rate. 

 
Figure 6.73 – Terms in the budget of 12b  in wall coordinates. ,12bP = Production; ,12bT = Turbulent 

transport; ,12bε = Dissipation rate. 
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Figure 6.74 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,22bT = Turbulent transport; ,22bε = Dissipation rate. 

 

 
Figure 6.75 – Terms in the budget of the anisotropy rate of the turbulence kinetic energy in wall 

coordinates. ,33bT = Turbulent transport; ,33bε = Dissipation rate. 

 
 
 
 
 
 
 



 Chapter 6 – Results of the Simulations: Turbulence Statistics 
 

151 
 

6.4  Analysis of Turbulence Statistics with respect to the Reynolds 

number dependence 

The essentially nature of the wall-bounded flows requires a deep analysis of the 

Reynolds number effects on turbulence quantities in the near-wall region. The 

availability of accurate DNS databases allows to examine, in particular, the Reynolds 

number dependence on turbulence statistics, referred to the inner region, in order to 

understand the behavior and the main characteristics of coherent structures. For this 

reason, after introducing statistical tools for the numerical scheme validation and 

showing the most important Reynolds shear stress budget terms, for each DNS 

database, this section is focused on the analysis of the same statistical variables with 

respect to the increasing Reynolds number, for a major inspection of the interaction 

between the inner and the outer layers. In particular, various turbulence statistics, 

such as the root-mean-square of fluctuations, the Reynolds shear stress, the skewness 

and flatness factors and the budget terms are evaluated in detail. 

 
6.4.1   Turbulence intensities: discussion 

The root mean square of the velocity fluctuations allows to verify the adequacy of 

the simulation sample taken for the average through the evaluation of the 

symmetrical trend of its values across the channel. Fig. 6.76 shows the distribution of 

the rms of the velocity fluctuations with the increase of the Reynolds number Reτ

considered. It is evident how the peak of the rmsu′  progressively moves toward the 

wall with the increase of Reτ : for high Reynolds numbers, the compression of 

vortices is strongest than that occurring for low ones, facilitating the development of 

ordered streamwise vortical structures.  

The Reynolds shear stress distribution along the channel guarantees not only that the 

statistically steady state of the numerical simulations is reached, but also that the 

region where viscosity plays an important role is enlarged near walls as the Reynolds 

number is reduced. Figure 6.77, in particular, shows the shear stress and the total 

shear stress distributions at varying Reynolds number. Furthermore, the peak value 

of the Reynolds shear stress increases and moves away from the wall as the Reynolds 

number increases. 
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Figure 6.76 – Rms of velocity fluctuations in global coordinates. Present case study: (─) '

rmsu , (---) 

'
rmsv , (···) '

rmsw ; (red) DNS200, (green) DNS400, (blue) DNS600. 

 

 
Figure 6.77 – Computed values of Reynolds shear stress and total shear stress normalized by the 

friction velocity in global coordinates. Present case study: (─) u v′ ′ , (---) totτ ; (red) DNS200, (green) 

DNS400, (blue) DNS600. 

 
 
Figure 6.78 reports the skewness factors in global coordinates, computed for each of 

the numerical databases available and indicates the asymmetry of the probability  
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Figure 6.78 – Skewness factors of the velocity fluctuations in global coordinates. Present case study: 

(─) 'uS , (---) 'vS , (···) 'wS ; (red) DNS200, (green) DNS400, (blue) DNS600. 

 

 
Figure 6.79 – Flatness factors of the velocity fluctuations in global coordinates. Present case study: 

(─) 'uF , (---) 'vF , (···) 'wF ; (red) DNS200, (green) DNS400, (blue) DNS600. 

 
 
density function of the variables considered. So, it is an indicator of the excursions of 

velocity fluctuations: it means that vorticity production increases as the Reynolds 

number increases. Figure 6.79 reports, instead, the flatness factors in global 

coordinates for the numerical databases available. It indicates the intermittent  
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          Table 6.5 – Effect of the Reynolds number on the main turbulence statistics. 
 

 DB200 DB400 DB600 Percentage increase 

 max y+  max y+  max y+  
% 

(DB200 vs 
DB400) 

% 
(DB400 vs 
DB600) 

% 
(DB200 vs 
DB600) 

u v′ ′  0.739 33.238 0.828 40.170 0.866 33.238 12 5 17 

rmsu′  2.680 16.509 2.660 16.599 2.701 16.444 -1 2 1 

rmsv′  0.867 56.702 0.982 71.436 1.030 83.068 13 5 19 

rmsw′  1.127 37.252 1.310 36.467 1.385 37.464 16 6 23 

'uS  1.003 1.315 1.096 1.423 1.141 1.504 9 4 14 

'vS  0.452 126.944 0.296 133.543 0.208 96.248 -35 -30 -54 

'wS  0.013 180.773 -0.003 36.467 0.005 86.188 -119 -292 -64 

'uF  6.488 0.761 6.070 1.131 6.366 0.897 13 6 20 

'vF  26.679 0.249 19.424 0.280 20.882 0.298 -27 8 -22 

'wF  7.902 0.249 8.752 0.280 9.094 0.298 11 4 15 

 
 

character of velocity fluctuations: a higher flatness factor suggests that the relatively 

large excursion from the mean value are more probable. Table 6.5 shows the effect 

of the Reynolds number on the main turbulence statistics, such as the Reynolds shear 

stress, the root-mean-square of the velocity fluctuations, skewness and flatness 

factors. 

 

6.4.2  Budget in the near-wall region: discussion 

This section reports the budgets of the Reynolds stress, the turbulent kinetic 

energy, dissipation and anisotropy computed considering the DNS databases 

available in order to evaluate the role of the increase of the Reynolds number and its 

influence on budget distributions in terms of gain and/or loss energy. 

Figure 6.80 shows the Reynolds stress budget for 1 1u u′ ′  component: in particular, the 

peak value of the production term 11P  and the turbulent transport 11T  increase as the 

Reynolds number increases. Those two terms, associated with the viscous diffusion 

term 11D , represent the gain energy contribution in the near wall region and are 

balanced by the velocity pressure-gradient term  11Π  and the dissipation term  11ε  

that represent the loss energy contribution. The flow structures in the near wall 
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region, with respect to the 1 1u u′ ′  component, will be characterized by intense 

production energy activity and regions of intense dissipation energy activity along 

the streamwise direction. 

With reference to the buffer layer and the role of the 1 2u u′ ′  component, instead, the 

production term 12P  diminishes because of the Reynolds shear stress diminishes, too, 

while the dissipation term 12ε  increases (Fig. 6.81).  

The effect of the Reynolds number is strongest considering the 2 2u u′ ′  and the 3 3u u′ ′  

components (Figs. 6.82 and 6.83, respectively); in particular, the pressure diffusion 

correlation contributes a lot in the budget of the 2 2u u′ ′  component and its role is very 

important especially if it considers Re 400τ ≥ . Turbulent diffusion 22T  is not so 

determinant in the overall budget, while dissipation term 22ε is the main responsible 

of the lost energy. Considering the 3 3u u′ ′  component, it assists on the increasing of the 

viscous diffusion 33D  and velocity pressure-gradient term 33Π  as the Reynolds 

number increases, turbulence transport 33T  do not play a role in the balance because 

its values are quasi-zero along the channel, while the dissipation term 33ε  remains the 

main responsible of the lost energy in the spanwise direction. 

The budget of the turbulence kinetic energy K  (Fig. 6.84) has a similar trend as the 

budget of the Reynolds stress and, in conjunction with the budget of the dissipation 

rate, represents an important quantity for understanding theoretically turbulence 

phenomena. In particular, it is possible to note that all terms gradually increase with 

the increase of the Reynolds number Reτ ; in particular, in the viscous sublayer, the 

turbulence kinetic energy is gained by the viscous diffusion KD  but lost by 

dissipation Kε , while in the logarithmic-law region turbulence kinetic energy is 

gained exclusively by production term KP  and lost by dissipation Kε .  
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Figure 6.80 – Terms in the budget of 1 1u u′ ′  in wall coordinates. 11P =  Production; 11T = Turbulent 

transport; 11D = Viscous diffusion; 11ε =  Dissipation rate; ,11sΠ = Velocity pressure strain gradient 

term; ,11dΠ = Velocity pressure diffusion gradient term; (red) DNS200, (green) DNS400, (blue) 

DNS600. 
 

 
Figure 6.81 – Terms in the budget of 1 2u u′ ′  in wall coordinates. 12P =  Production; 12T = Turbulent 

transport; 12D = Viscous diffusion; 12ε = Dissipation rate; ,12sΠ = Velocity pressure strain gradient. 

term; ,12dΠ = Velocity pressure diffusion gradient term; (red) DNS200, (green) DNS400, (blue) 

DNS600. 
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Figure 6.82 – Terms in the budget of 2 2u u′ ′  in wall coordinates. 22T = Turbulent transport; 22D =

Viscous diffusion; 22ε = Dissipation rate; ,22sΠ = Velocity pressure strain gradient term; ,22dΠ =

Velocity pressure diffusion gradient term; (red) DNS200, (green) DNS400, (blue) DNS600. 
 

 
Figure 6.83 – Terms in the budget of 3 3u u′ ′  in wall coordinates. 33T = Turbulent transport; 33D =

Viscous diffusion; 33ε = Dissipation rate; ,33sΠ = Velocity pressure strain gradient term; ,33dΠ =

Velocity pressure diffusion gradient term; (red) DNS200, (green) DNS400, (blue) DNS600. 
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Figure 6.84 – Terms in the budget of the turbulent kinetic energy K   in wall coordinates. KP =

Production; kT = Turbulent transport; kD = Viscous diffusion; kε =  Dissipation rate; ,s kΠ = Velocity 

pressure strain gradient term; ,d kΠ = Velocity pressure diffusion gradient term; (red) DNS200, (green) 

DNS400, (blue) DNS600. 
 
 

The dissipation process, instead, is determined by the scalar dissipation rate 

tensor ε and it is of great interest especially in turbulence modeling: the related 

values of all the terms that characterized Eq. (A.78) are reported on Fig. 6.85 at 

varying Reynolds numbers as a function of y+ . As observed in the graph referred to 

turbulence kinetic energy K  also in this case the terms gradually increase with the 

increase of the Reynolds number. The most important terms that characterized the 

balance are the production term Pε  and the viscous dissipation term Yε , while very 

near the walls molecular dynamics are prevalent so the viscous diffusion Dε  and the 

viscous dissipation term Yε  reaches a local minimum. Figure 6.85 shows, also, how 

the dissipation rate budget is important as the Reynolds number increase, revealing 

the strongly non-isotropic nature of the dissipation process at high Reynolds 

numbers. 
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Figure 6.85 – Terms in the budget of the dissipation rate of the turbulence kinetic energy ε  in wall 

coordinates. ,1Pε = Production by mean velocity gradient; ,2Pε =  Mixed production; ,3Pε = Gradient 

production; ,4Pε = Turbulent production; Tε = Turbulent transport; Dε =  Viscous diffusion; Y =  

Dissipation rate; εΠ = Pressure transport; (red) DNS200, (green) DNS400, (blue) DNS600. 

 
 

The last set of graphics here analyzed are referred to the anisotropy rate budget, as 

defined in Eq. (A.68), with respect to the Reynolds numbers considered. For the 

relevant non-zero stresses, the anisotropy rate budget described the highly 

anisotropic behavior of fluctuations in the near-wall region. About the (1 1u u′ ′ ) 

component, within the inner region, it assists on a substantial balance between the 

production terms ,11bP  and the dissipation term ,11bε  (Fig. 6.86), while considering the 

1 2u u′ ′  component and with reference to the viscous sublayer, the most important term 

that ensures a gain energy is the dissipation term, which an increase in turbulence 

transport corresponds (Fig. 6.87). At high Reynolds number, the production term is 

predominant and is balanced by the turbulence transport term. The last two figures, 

Figs. 6.88 and 6.89, show the terms referred to 2 2u u′ ′  and 3 3u u′ ′  components. It is 

evident that the dissipation becomes isotropic in the central region, confirming that 

fluctuations are characterized by a strong anisotropy in the near wall region. 
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Figure 6.86 – Terms in the budget of 11b  in wall coordinates. ,11bP = Production; ,11bT = Turbulent 

transport; ,11bε = Dissipation rate; (red) DNS200, (green) DNS400, (blue) DNS600. 

 

 
Figure 6.87 – Terms in the budget of 12b  in wall coordinates. ,12bP = Production; ,12bT = Turbulent 

transport; ,12bε = Dissipation rate; (red) DNS200, (green) DNS400, (blue) DNS600. 
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Figure 6.88 – Terms in the budget of 22b  in wall coordinates. ,22bT = Turbulent transport; ,22bε =

Dissipation rate; (red) DNS200, (green) DNS400, (blue) DNS600. 
 

 
Figure 6.89 – Terms in the budget of 33b  in wall coordinates. ,33bT = Turbulent transport; ,33bε =

Dissipation rate; (red) DNS200, (green) DNS400, (blue) DNS600. 
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6.5   Parallel performances of the numerical codes 

After investigating the numerical accuracy of the simulations and the related 

main turbulence statistics, this section shows the computational results in terms of 

performance of the parallel implementations of the Navier-Stokes solver, described 

in Chapter 5.  

The parallel performance has been monitored considering the three different spatial 

discretizations of the computational domain, one for each direct numerical simulation 

performed, at Re 200,400,600τ = : the main characteristics are reported on Tab. 6.1. 

In order to evaluate the performance of the Navier-Stokes solver, the CPU/GPU 

implementations, referred to single- and multi-GPU architectures, have been 

compared with the sequential code (1 CPU) and the OpenMP parallel codes (2, 4, 8, 

12 CPUs). 

The parallel performance has been evaluated by measuring the overall code 

execution time at each Runge-Kutta step. The measured computing times do not 

include the I/O operations. In Tab. 6.6, the run-times with the number of CPUs and 

of CPUs/GPUs used for each computational domain are reported. 

For each of the computational domains considered, it can be noticed that T decreases 

with the number of processors: this result is in agreement with the Amdahl’s law 

[127] about the level of efficiency that can be reached in a parallel computational 

process by using a multicore architecture. The strongest breakdown of the run-time is 

performed by using the heterogeneous architectures (CPU/GPU), whose values are 

two-orders of magnitude lower than the sequential implementation (almost three-

orders of magnitude lower than the sequential one considering the greatest  

 

Table 6.6 – Run-time T for one Runge-Kutta step with the number of processors 

Processors Run-time T (s) 

 
DNS at Re 200τ =  

(DB200) 

DNS at Re 400τ =  

(DB400) 

DNS at Re 600τ =  

(DB600) 
1 CPU 7.98 32.19 84.60 
2 CPUs 4.23 16.80 43.26 
4 CPUs 2.31 9.36 24.45 
8 CPUs 1.44 5.37 15.06 
12 CPUs 1.20 4.41 12.33 

1 CPU + 1 GPU 0.37 1.71 - 
3 CPUs + 3 GPUs - - 3.32 
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Figure 6.90 – Speedup S with the number of processors for each numerical database: (red) DNS at 

Re 200τ = ; (green) DNS at Re 400τ = ; (blue) DNS at Re 600τ =  

 

 

computational domain, used to perform the simulation at Re 600τ = ). Figure 6.90 

reports the speedup of the calculations with the several architectures for each 

computational domain: as in Eq. (4.1), the speedup S is defined as the run-time per 

time step with one processor divided  by the run-time per time step with a given 

number of processors. As concerns the parallel implementation on a CPU/GPU 

computing system, the speedup is defined as the ratio between the total execution 

time on a CPU and that one on a GPU. The graph of the speedup provides an 

immediate perception of the performance of the computational code with respect to 

the linear theoretical value: considering also the performance of the parallel 

implementation on a CPU/GPU system, it is evident how the CUDA Navier-Stokes 

solver outperforms significantly the different parallel implementations based on 

multicore architectures. 

Table 6.7 reports the related values of the computed speedups. 
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Table 6.7 – Parallel performance: speedup S. 

Processors Speedup S (-) 

 
DNS at Re 200τ =  

(DB200) 

DNS at Re 400τ =  

(DB400) 

DNS at Re 600τ =  

(DB600) 
1 CPU 1.0 1.0 1.0 
2 CPUs 1.9 1.9 1.9 
4 CPUs 3.5 3.4 3.5 
8 CPUs 5.5 6.0 5.6 
12 CPUs 6.7 7.3 6.9 

1 CPU + 1 GPU 21.6 18.8 - 
3 CPUs + 3 GPUs - - 25.5 

 

 

Finally, in Tab. 6.8, the efficiency  E of the parallel implementations is reported: as 

defined in Eq. 4.3, the efficiency represents the ratio between the theoretical parallel 

run-time and the actually measured run-time with a given number of processors. The 

efficiency of the CPU/GPU parallel implementations is not so significant because of 

the nature of the computing architecture, based on a massively parallel processor 

array.  

As the efficiency values indicate, the OpenMP parallel implementation of the 

Navier-Stokes solver ensure good performances as the size of the computational 

domain increases with the increasing of the number of processors. However, an 

appreciable degradation of efficiency is observed when running 12 threads 

considering the computational domain used for simulating turbulence at Re 600τ = , 

due to memory access overhead. 

 

Table 6.8 – Parallel performance: efficiency E. 

Processors Efficiency E (-) 

 
DNS at Re 200τ =  

(DB200) 

DNS at Re 400τ =  

(DB400) 

DNS at Re 600τ =  

(DB600) 
1 CPU 1.0 1.0 1.0 
2 CPUs 0.94 0.96 0.98 
4 CPUs 0.86 0.86 0.87 
8 CPUs 0.69 0.75 0.70 
12 CPUs 0.55 0.61 0.57 
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Chapter 7 
 
Results of the Simulations:  
Flow Structures 
 

 

 

7.1   Introduction 

A significant advance in wall bounded turbulent flows is achieved by considering 

studies about coherent structures in a turbulent boundary layer, thanks to the 

availability of high-quality numerical simulations. 

The concept of coherency and evolution of coherent structures offer the possibility to 

clarify the physical mechanisms through which turbulent energy of mechanical 

nature is dissipated into heat. Thus, the description of energy transformations brings 

new perspectives in the modern fluid technology, such as: 

� the control of turbulence, that has a relevant engineering impact on the 

reduction of skin friction in wall bounded flows, the delay of separation in 

wake flows, the enhancement of mixing in free shear flows and controlled 

sediment transport in multiphase flows; 
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� the development of new predictive models for the numerical calculation of 

high Reynolds number turbulent flows, useful in the evaluation of closures in 

numerical modeling. 

Considering the mean-flow properties of wall-bounded flows in wall units and as 

concerns the mean-velocity profile, different layers can be distinguished: 

� viscous sublayer, 0 5y+< < , where u y+ += ; 

� the buffer layer, 5 50y+< <  (recently estimated up to 200 by [128]), the 

region of maximum average production of turbulent kinetic energy; 

� overlap layer, 50y+ > , characterized by the logarithmic law 

 

1
lnu y C

κ
+ += +

                                        
(7.1) 

 

where κ  and C  are empirical constants. Some authors ([129], [130], [131], 

[132]) claim that the pipe-flow data of [133] are satisfactorily interpreted in 

the overlap layer by a power law in which the relation between u+  and y+  is 

Reynolds number dependent: 

 

( )3/2(lnRe)1 5
ln Re

23
u y+ + = + 

 
                          (7.2) 

 

where Re is the Reynolds number based on the mean velocity averaged over 

the cross section. More recent results confirm on the contrary the validity of 

the logarithmic law, with the constant parameters estimated as 0.38κ =  and 

4.1C =  [128]; 

� far outer layer, where the law-of-the-wake is valid. 

At sufficiently high Reynolds number, two regions can be distinguished: the inner 

region, the near-wall region in which viscous effects are present and includes the 

viscous sublayer, the buffer layer and the overlap layer in part; the outer region, 

essentially inviscid, that includes the rest of the layers. The two region are 

overlapped and the extent of the overlap increases as the Reynolds number increases. 
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In the present chapter, the flow structures of a turbulent flow in a plane channel 

are investigated, in terms of morphological evolution in time and strength of a vortex 

population, in conjunction with ejection and sweep events, by considering the DNS 

results obtained at Re 200,400,600τ = : Section 7.2 contains an overview of some 

widely-used vortex-identification methods; in Section 7.3, the event-detection 

techniques are described; finally, in Section 7.4, the results of the numerical 

simulations performed are presented and discussed.  

 

 

7.2   Vortical structures eduction methods 

7.2.1   The D criterion  

Perry and Chong [63] proposed the method of identifying vortices by means of 

isosurfaces of positive small values of the discriminant of the characteristic equation 

of the velocity-gradient tensor (deformation-rate tensor), where it has complex 

eigenvalues.  

By considering the system of the Navier-Stokes equations, an arbitrary point can be 

chosen in the flow field and a Taylor series expansion of each velocity component 

can be performed in terms of space coordinates with the origin in that point: 

 

.....i i ij j ijk j ku A A x A x x= + + +                                 (7.3) 

 

where the first-order pointwise linear approximation is: 

 

i i ij ju A A x= +                                                 (7.4) 

 

( ij i iA u x= ∂ ∂ is the velocity-gradient tensor). If the origin is located at a critical 

point, the zero-order terms iA  are equal to zero. Thus, from the characteristic 

equation of ijA  one has: 

 

( )det 0λ− =A I                                                (7.5) 
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3 2 0P Q Rλ λ λ+ + + =                                          (7.6) 

 

where: 

( )ijP tr A= −                                                  (7.7) 

 

( ) ( ){ }2
21

2 ij ijQ tr A tr A = −                                       (7.8) 

 

( )det ijR A= −                                               (7.9) 

 

(tr is trace, det is determinant) are the scalar invariants of the velocity-gradient 

tensor. In the case of incompressible flow, 0P =  (from continuity) and Eq. (7.6) 

becomes: 

 

3 0Q Rλ λ+ + =                                              (7.10) 

 

The characteristic Eq. (7.10) admits three roots, so that the eigenvalues λ  that 

determine the topology of the local flow pattern are formed on the basis of the values 

of the remaining non-zero invariants (Q and R). 

The discriminant of Eq. (7.10) is: 

 

2 3
2 327

2 3 4

R Q
D R Q

   = + = +   
   

                                (7.11) 

 

and two cases are possible: 

� 0D > , so that Eq.(7.11) admits two complex and one real solution; 

� 0D ≤ , so that Eq.(7.11) admits three – all real – solutions.  

Thus, complex eigenvalues of the velocity gradient tensor occur when 0D > . 
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7.2.2   The Q criterion  

Hunt et al. [64] devised another criterion, defining an eddy zone a region 

characterized by positive values of the second invariant of the velocity-gradient 

tensor (Q > 0). The rate-of-deformation tensor can be split into symmetric and anti-

symmetric parts: 

 

ij ij ijA S W= +
                                              

(7.12) 

 

ijS  being the rate-of-strain tensor (corresponding to the pure irrotational motion) and 

ijW  the rate-of-rotation tensor (corresponding to the pure rotational motion), so that 

the second invariant of  ijA  can be written as: 

 

( )1

2 ij ij ij ijQ W W S S= −
                                        

(7.13) 

 

where the first term of the right-hand-side of Eq. (7.13) is proportional to the 

enstrophy density and the second term is proportional to the rate of dissipation of 

kinetic energy. If  Q is large and positive, the rate-of-rotation dominate the strain 

rate, while if Q is large and negative, the vorticity is low and the rate-of-strain 

(proportional to the rate-of-dissipation) is large. 

 

7.2.3   The 2λ criterion 

Jeong and Hussain [65] proposed a definition of a vortex by considering the 

problem of the pressure minimum. The gradient ∇  of the Navier-Stokes equation is 

taken and the result is decomposed into a symmetric and an anti-symmetric part.  

By considering the symmetric part (the anti-symmetric portion is the vorticity-

transport equation), one has: 

 

21ij ij
ij

k k i j

DS S p
B

Dt x x x x
ν

ρ
∂ ∂− + = −

∂ ∂ ∂ ∂                               
(7.14) 
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where: 

ij ik kj ik kjB S S W W= +                                            (7.16) 

 

The existence of a local pressure minimum requires two positive eigenvalues of the 

Hessian tensor of the pressure 2
i jp x x∂ ∂ ∂ .  

By neglecting the contribution of the first two terms on the left-hand side of Eq. 

(7.14), only tensor in Eq. (7.15) is considered to determine the existence of a local 

pressure minimum due to vortical motion, i.e. the presence of two negative 

eigenvalues of ijB . Tensor ijB  is symmetric by construction, all its eigenvalues are 

real and can be ordered 1 2 3λ λ λ≥ ≥ . According to this method, a vortex is defined as 

a connected region of the flow with two negative eigenvalues of ijB .The tensor ijB  is 

symmetric by construction, all its eigenvalues are real and can be ordered 

1 2 3λ λ λ≥ ≥ . A vortex is then defined as a connected region of the flow with the 

requirement that the intermediate eigenvalue of  ijB , 2 0λ < . 

 

7.2.4   The ciλ criterion 

Zhou et al. [66] adopted the criterion of identifying vortices by visualizing 

isosurfaces of values of the imaginary part of the complex eigenvalue pair of the 

velocity-gradient tensor. This method is also known as the swirling strength criterion. 

When 0D > , the velocity-gradient tensor has one real eigenvalue 1λ  and a pair of 

complex-conjugate eigenvalues 2 3,λ λ , that can be written as: 

 

1 rλ λ=                                                      (7.16)   

     

2 cr ciiλ λ λ= +                                                 (7.17) 

 

3 cr ciiλ λ λ= −                                                 (7.18) 
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The swirling strength, given by ciλ , is a measure of the local swirling rate inside the 

vortex, while the strength of stretching or compression is given by rλ .  

Isosurfaces of the imaginary part of the complex eigenvalue pair of the velocity-

gradient tensor can be used to visualize vortices. The method is frame independent 

and due to the fact that the eigenvalue is complex only in regions of local circular or 

spiraling streamlines, it automatically eliminates regions having vorticity but no local 

spiraling motion. With reference to Eq. (7.10) and defining the quantities: 

 

1

32 3

2 4 27

R R Q
J

 
= − + + 
 
 

                                        (7.19) 

 

1

32 3

2 4 27

R R Q
K

 
= − + + + 

 
                                        

 (7.20) 

 

one has: 

 

1 r J Kλ λ= = +                                                 (7.21) 

 

2 3
2 2cr ci

J K J K
iλ λ λ + −= + = − + −                               (7.22) 

 

3 3
2 2cr ci

J K J K
iλ λ λ + −= − = − − −                                (7.23) 

 

 

7.2.5   Enhanced ciλ  criterion 

Chakraborty et al. [71] proposed an enhanced criterion, called the enhanced 

swirling strength criterion, as follows. In the regions where the eigenvalues of Eq. 

(7.10) are complex, two parameters are identified: 

� the imaginary part of the complex eigenvalue pair (ciλ , the swirling rate); 
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� the ratio of the real to the imaginary part of the complex eigenvalue pair                     

( cr ciλ λ , the inverse spiraling compactness) that measures the orbital 

compactness of the fluid particles involved in the vortical motion. 

A vortical region is identified as the points in the flow field that satisfy the dual 

requirement: 

 

( ) *
ci ci th

λ λ ε≥ =
                                            

 (7.24) 

 

*cr cr

ci ci th

λ λ δ
λ λ

 
≤ = 
 

                                           (7.25) 

 

(th is threshold). However, inside an intense vortical structure, the swirling motion 

dominates and cr ciλ λ  takes negligible values. In [71], the relationships between the 

previous vortex-eduction methods and the two parameters ciλ  and cr ciλ λ  are 

determined. 

 

7.2.6   On ciλ  threshold value 

The issue of determining an appropriate threshold value ( )ci th
λ  (T-1, where T is 

time) has been addressed by Alfonsi and Primavera [134].  

An adequate threshold value of ciλ  is needed, keeping in mind that small threshold 

values will represent a large number of weak vortical structures – so that the flow-

field representation tends to be volume filling – while large threshold values will 

represent only the most intense vortical cores. Attention is given onto the legs of a 

generic hairpin vortex and the concept is raised that the value of the circulation 

around a closed circuit delimiting the external borders of the hairpin legs will 

discriminate the vortical structure from the rest of the flow field.  

The characteristic inverse time scale is introduced: 

 

( ) 1 2

1 2

1

2

i i i il l
ci th

l l

t u ds t u ds

A A
λ

 
 = +
 
 

∫ ∫� �
                                   (7.26) 



 Chapter 7 – Results of the Simulations: Flow Structures 
 

173 
 

(l1 is the first leg, l2 is the second leg, it  is unit tangent, iu  is velocity, 1lA  is the 

cross-sectional area of the first leg, 2lA  is the cross-sectional area of the second leg), 

i.e. the average (over the two legs) of the circulation around the closed circuit that 

delimits each of the hairpin's legs, divided by the area of the legs themselves. 

In Eq. (7.26), the area of the hairpin’s legs is not easy to evaluate, mainly because it 

depends on the threshold value of ciλ  that is chosen for the representation of the 

hairpin itself. Moreover, for the determination of the line integral around the closed 

circuit that delimits each of the hairpin's legs, it would be necessary to know the 

distribution of the velocity around these circuits. This distribution is also difficult to 

be determined, mainly due to the highly non uniform character of the velocity field. 

In fact, slow-moving fluid is lifted away from the wall on the updraft side of the 

hairpin legs, while fast-moving fluid is moved toward the wall on the downdraft side. 

The application of the Stokes theorem to Eq. (7.26) reduces the calculation of the 

characteristic time scale ( )ci th
λ  to the evaluation of a prescribed value Ω  of the 

streamwise component of the vorticity xω  in the legs of the hairpin. 

The following calculation is performed. Once a hairpin vortex is qualitatively 

identified in the flow field, the minimum volume containing the vortical structure is 

strictly considered, on the basis of a first-sight perception of the vortex itself.  

Then, Ω  is calculated as: 

 

( )
( )

1
2 2, ,xx y

mv mv
x y

x y z
z

N N

ω 
Ω =  

  

∑ ∑
                                  (7.27) 

 

obtaining the rms xω , averaged along the streamwise x−  and vertical y−  

directions, inside the minimum volume (mv
xN  and mv

yN are the grid points along the 

streamwise and vertical directions in the minimum volume, respectively). 

Then Ω  is investigated along the spanwise z− direction. The distribution of Ω  

along z− direction in the minimum volume exhibits two well-defined peaks, besides 

some other smaller spikes.  
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The two peaks reflect the distribution of Ω  inside the hairpin legs, i.e. the values that 

have to be taken into account for the calculation of the characteristic time scale. The 

final result is obtained: 

 

( ) 1 2

2
l l

ci th
λ Ω + Ω=                                             (7.28) 

 

by further averaging Ω  along z− direction inside the hairpin legs. 

The characteristic inverse time scale (7.27) is then calculated, in the non-dimensional 

form ( ) Reci th
h uτ τλ   , by evaluating the field of Ω  in the legs of the hairpin. This 

evaluation univocally depends on the flow field at hand. 

 

 

7.3   Event-detection techniques 

7.3.1   Conditional sampling and averaging 

Conditional sampling and averaging is a group of techniques for quantitatively 

distinguishing particular regions of a flow, including coherent structures (Antonia 

[50]). A conditional average can be seen as a special type of generalized cross-

correlation: 

 

( ) ( ) ( )
1

1
, , lim , , ,

N

i i j i k i i k jN
k

R x x c x t f x x t
N

τ τ
→∞ =

∆ = ∆ +∑                    (7.29) 

 

where ( ),i kc x t  is the conditioning function at a point ix  in space and at a time kt , f  

is a digital function, N  is a number of points to be averaged and (jτ ) is the time 

delay. 

 

7.3.2   Quadrant analysis 

A useful tool for unambiguous definition of the turbulent events occurring in the 

boundary layer is the quadrant analysis, introduced by Willmarth and Lu [51] (see 

also [57], [135], [136], [137], [138], [139], [140], [141], [142]). Considering the 



 Chapter 7 – Results of the Simulations: Flow Structures 
 

175 
 

quadrant analysis, the local flow behavior is divided into quadrants, depending on the 

sign of the streamwise and normal velocity fluctuations u′  and v′ , identified as 

follows: 

� 1Q - first quadrant, where 0 and 0u v′ ′> > , denoting an event in which high-

speed fluid moves toward the center of the flow field; 

� 2Q - second quadrant, where 0 and 0u v′ ′< > , denoting an event in which 

low-speed fluid moves toward the center of the flow field, away from the 

wall (ejection); 

� 3Q - third quadrant, where 0 and 0u v′ ′< < , denoting an event in which low-

speed fluid moves toward the wall; 

� 4Q - fourth quadrant, where 0 and 0u v′ ′> < , denoting an event in which high-

speed fluid moves toward the wall (sweep). 

The most relevant events are those of the second and the fourth quadrants. Ejections 

are frequent at a distance from the wall, while sweeps are frequent near the wall. The 

ejection and sweep events – the events most related with the production of Reynolds 

stress – are the manifestation of the dynamic processes of evolution of turbulent 

structures in the boundary layer. 

 

7.3.3   Linear stochastic estimation 

The LSE (Linear Stochastic Estimation) technique is a procedure that allows to 

obtain the best linear approximation to a conditionally averaged flow field 

( ) ( )|i i i iu x u x′ ′  where ( )i iu x  is a velocity event specified at point ix , upon which 

the flow is conditioned. The best linear estimate of the fluctuating flow field � ( )i iu x′ ′  

is formulated in terms of an event vector ( )j iu x  as follows: 

 

� ( ) ( )
3

1

,i i ij i i j
j

u x L x x u
=

′ ′ ′=∑                                       (7.30) 
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where ( ijL ) are the linear estimation coefficients to be determined such that the mean 

square error between the linear estimate � ( )i iu x′ ′  and the conditional average 

( ) ( )|i i i iu x u x′ ′  is minimized. The estimated flow field depends on the event vector. 

The LSE technique is used by [143] and [144] for the estimation of conditional 

eddies in the case of homogeneous shear flow, by [145] in the case of the turbulent 

channel flow and by [66] for the eduction of an initial turbulent structure associated 

to a 2Q  event to be followed numerically in its subsequent temporal evolution. 

 

7.3.4   VITA Analysis 

Another tool is the VITA Analysis (Variable-Interval Time-Averaging), 

introduced by Blackwelder and Kaplan [146]. In performing the VITA analysis, in a 

time series of pointwise velocity data one wants to detect the instants in which the 

highest velocity fluctuations occur. The notation of local average is introduced, an 

averaging operation over a time interval of the order of the time scale of the 

phenomenon under study. The method basically consists in the identification of the 

instants in which the variance of the velocity data in a significant time interval is 

greater than the variance of the entire series. A localized measure of the turbulent 

energy is obtained by applying the VITA technique to the square of the velocity and 

subtracting the localized squared mean value. For this scope, a localized variance is 

formulated, defined as: 

 

( ) ( ) ( ) 22var , , , , , ,i i ix t T u x t T u x t T= −                          (7.31) 

 

Where T  is the averaging time. The detection criterion is completed by using a 

threshold level on the VITA variance signal.  

In an analogous way, also the spatial counterpart of VITA can be defined, the VISA 

analysis (Variable-Interval Space-Averaging, see [53]). 
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7.4   Results 

The present study shows the existence and the frequent occurrence of hairpin 

packets in wall bounded flows by using high accurate simulations at high Reynolds 

numbers. The results of the DNS, performed at Re 200,400,600τ = in terms of flow 

structures, are presented. The scientific visualization of vortical structures is done by 

using Paraview, an open-source, multi-platform data analysis and visualization 

application (http://www.paraview.org/).   

Working with DNS data of turbulent channel flow, [66] adopt the criterion of 

visualizing isosurfaces (of the square) of the imaginary part of the complex 

eigenvalue pair of the velocity gradient tensor, that represents the local swirling 

strength of the vortex. The method is frame independent and, due to the fact that the 

eigenvalue is complex only in regions of local circular or spiraling streamline, it 

automatically eliminates regions having vorticity but no local spiraling motion, such 

as shear layers. The evolution of a single hairpin vortex-like structure in turbulent 

channel flow is considered. The initial vortical structure is obtained from the two-

point spatial correlation of the velocity field by linear stochastic estimation, given a 

second-quadrant event vector. Initial vortices having vorticity that is weak with 

respect to the mean value gradually evolve into Ω -shaped vortices that persist for a 

relatively long time and decay slowly. 

Initial vortices that exceed a threshold strength with respect to the mean flow 

generate new hairpin vortices upstream from the primary vortex. The mechanism of 

the upstream-process generation is similar to that proposed by [56], with some 

differences in the details. It is also found that new hairpins generate downstream of 

the primary hairpin forming, together with the upstream hairpins, a hairpin’s packet 

that propagate coherently. The low-Reynolds number DNS results of [66] are 

integrated by the PIV measurements of [147] at relatively higher Reynolds numbers, 

giving rise to a conceptual model founded on the hairpin packet paradigm (the term 

hairpin is used here to indicate cane, hairpin, horseshoe, omega-shaped vortices, 

being these structures as variations of a common basic flow structure at different 

stages of evolution). 
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Fig. 7.1 – Scheme of nested packets of hairpin vortices growing up from the wall (adapted from 

[147]). 

 

In this model (Fig. 7.1) packets of vortices originate at the wall from a 

disturbance. Firstly, the primary hairpin is formed. It is stretched and intensified by 

the difference between the streamwise velocity at its legs and head and grows 

continuously in time evolving into an omega-shaped vortex. If its strength is high 

enough, it generates a new hairpin, inducing a strong 2Q  event that interacts with the 

high-speed fluid behind the primary hairpin.  

As time progresses, the secondary hairpin grows and begins to create a tertiary 

hairpin. The resulting packet of hairpins in not symmetric and, with time, the pattern 

of the vortices in the packet become rather complex. In the buffer layer low-speed 

streaks form between the hairpin’s legs. On the average, larger packets propagate 

downstream more rapidly with respect to the smaller and the overall dynamics of 

hairpins does not appear to be governed by just inner or outer variables. 

After the application of the swirling-strength criterion, the quadrant analysis of the 

flow field is considered, in order to visualize also the events that characterized the 

motion of hairpin-vortical structures and evaluate their coherency, stability and 

persistency.  

More details about coherent structures and theory of vortical structures may be found 

in [134] and references therein. 
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7.4.1  Vortical structures in the wall region at τRe = 200  

The DNS database related to the plane channel at Re 200τ = , whose numerical 

results are described in Chapter 6, is employed in this study.  

Thus, after the application of the ciλ  vortex detection method to the fluctuating 

portion of the computed velocity field, a flow field appears, filling the computing 

domain of turbulent structures adjacent to both upper and lower walls. An overall 

view of vortical structures at 1t+ =  is shown in Fig. 7.2: hairpins distribution among 

the two solid walls is shown in Fig. 7.3, while views of hairpin structures over each 

wall are shown in Figs. 7.4 and 7.5, at the upper and the lower wall, respectively. In 

these figures, the non-dimensional value of the swirling-strength parameter that 

characterizes the external surfaces of the vortical structures is 49.25 10ciλ −= ⋅ . 

 

Figure 7.2 – Vortical structures in the computing domain at Re 200τ = . 
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Figure 7.3 – Vortical structures in the computing domain at Re 200τ = : lateral view. 

 

 

Figure 7.4 – Vortical structures in the computing domain at Re 200τ = : inferior wall. 

 

Figure 7.5 – Vortical structures in the computing domain at Re 200τ = : superior wall. 
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Figure 7.6 – Representation of hairpin vortices and quadrant events at 23t+ = and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

 

Considering the DNS database at Re 200τ = , it is possible to capture and study the 

temporal evolution of an isolated turbulent vortex, in order to explain many of the 

features observed in wall turbulence models by [54] and [55]. Furthermore, the 

interaction between turbulent events, detected by applying the quadrant analysis 

technique, and vortical structures is investigated, too. In the following, the analysis 

of some interesting sequences extracted from the DNS database is described. Cyan 

color is used to represent vortical structures, red color is used to represent the 2Q  

quadrant event (ejections), while yellow color is used to represent the 4Q  quadrant 

event (sweeps). 

The first sequence analyzed regards the evaluation of the relationship between 2nd 

and 4th quadrant events and dynamics of vortical structures (Figs. 7.6-7.11) 

considering the time evolution of two hairpin-vortices at the lower wall.  

Two main persistent hairpin vortices are visible and denoted , in Fig. 7.6 as (1) and 

(2), at 23t+ = : both of them are characterized by a quite elevation of their heads, 

while the legs are hidden by the presence of other structures nearby solid walls. In 

particular, the main primary hairpin is visible and completely developed, while the  
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Figure 7.7 – Representation of hairpin vortices and quadrant events at 24t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

Figure 7.8 – Representation of hairpin vortices and quadrant events at 25t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

second one is characterized by the complete development of one leg on the left-side. 

Below the head of each one, the internal space of the structure is occupied by the 

ejection isosurfaces, showing that 2Q  event is the main mechanism through which 

the head of a hairpin is raised upwards (and backward, 0, 0u v′ ′< > ). Two sweep  
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Figure 7.9 – Representation of hairpin vortices and quadrant events at 26t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

isosurfaces start to appear at both side of the hairpins, but they do not play a relevant 

role in this phase. 

Figure 7.7, at 24t+ = , shows how both the two hairpins continue to grow due 

exclusively for the pushing up action of ejections, while sweeps isosurfaces are 

totally irrelevant. 

At 25t+ =  (Fig. 7.8), the primary hairpin is mature and well-defined, assuming the 

typical Ω − shaped, while the effect of push-up of ejection isosurface on the second 

hairpin starts to become more evident with the formation of the leg on the right-side. 

The primary hairpin continues its development, becoming a persistent and symmetric 

vortical structure in the flow field at 26t+ =  (Fig. 7.9), while the second one 

continues its development under a residual influence of ejection, until its disruption 

(Figs. 7.10 and 7.11). Observing the sequence here described, it is evident the action 

of the ejections in the first phase of hairpins formation, that allows the growing of 

their heads upwards and defining the persistent character of the Ω − shaped vortices 

in the flow field with no presence of sweep events.  
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Figure 7.10 – Representation of hairpin vortices and quadrant events at 27t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

 

 

 

Figure 7.11 – Representation of hairpin vortices and quadrant events at 28t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 
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Figures 7.12-7.17 show another sequence of hairpin-vortical structures, characterized 

by a couple of hairpins. As shown in Fig. 7.12, the first hairpin is visible, while the 

second one is going to rise. Also in this case, the ejection isosurface fills the internal 

space of both the hairpins, while a consistent sweep isosurfaces starts to appear along 

the right-side of the legs, surrounding also the neck of the primary hairpin. 

 

 

Figure 7.12 – Representation of hairpin vortices and quadrant events at 220t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

Figure 7.13 – Representation of hairpin vortices and quadrant events at 221t + =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 
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Figure 7.14 – Representation of hairpin vortices and quadrant events at 222t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

Figure 7.15 – Representation of hairpin vortices and quadrant events at 223t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

Figure 7.13 shows, more in detail, the interaction between ejections and sweeps in 

the primary hairpin. They are responsible of two opposite actions: ejection isosurface 

tries to push up the hairpin, while sweep isosurface let its legs stay close to the solid 

wall, providing a downward action also to the neck. This combined mechanism 

guarantees the morphological evolution and the preservation of the stability of the  
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Figure 7.16 – Representation of hairpin vortices and quadrant events at 224t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

Figure 7.17 – Representation of hairpin vortices and quadrant events at 225t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin in cyan, ejection in red and sweep in yellow. 

 

primary hairpin. The second hairpin, indeed, is going to define its structure under the 

action of only ejection isosurface. Figures 7.14-7.15 show the predominant event 

action for defining the time evolution of hairpin (1): the sweep isosurface wraps up 

the hairpin’s neck, forcing to stay close to the solid wall by deforming the head. The 

hairpin (2) is more visible and defined in this phase, characterized only by the action 

of the ejections. Figures 7.16-7.17, finally, show the disruption of hairpin (1) and the 

evolution and development of hairpin (2), similar to that observed in the previous 

sequence. 
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Figure 7.18 – Representation of hairpin vortices and quadrant events at 220t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Figures 7.18-7.20 show some plots of the same sequence previously analyzed, whose 

hairpins are colored by using the rλ  values, that represent a measure of the local 

strength of stretching or compression of vortical structures. In this case, the intensity 

of rλ  is defined by using a chromatic scale from light-blue (the lowest values) to 

light-red (the higher values). 

Considering the initial phase (Fig. 7.18), the ejection isosurfaces are responsible of 

the stretching of the heads, for both hairpins (1) and (2), while sweep isosurfaces 

determine the compression of the corresponding legs.  

In Fig. 7.19, the compression involves also the head of hairpin (1) because of the 

predominant effect of sweeps, causing the breaking down of structures (Fig. 7.20).    
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Figure 7.19 – Representation of hairpin vortices and quadrant events at 222t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Figure 7.20 – Representation of hairpin vortices and quadrant events at 225t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 
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Finally, an interesting sequence (Figs. 7.20-7.30) of a single Ω − shaped hairpin-

vortex is described. Also in this case, flow structures are colored by using the rλ  

values, while events are represented by using surfaces colored in red and yellow for 

ejections and sweeps, respectively.  

Figure 7.21 shows an isolated structure at 450t+ = : the growing phase is determined 

only by the ejection isosurfaces. At 451t+ =  (Fig. 7.22), two sweep isosurfaces 

adjacent to the external side of the neck and legs appear: the sweep event is 

responsible of the legs compression, while ejection determines the stretching of the 

head, ensuring the stability of the vortex until the instant 452t+ = is reached (Fig. 

7.23).  

Figure 7.24 shows how sweep isosurfaces is going to overlap also the head of the 

vortex, forcing the vortex itself to stay close to the wall (Figs. 7.24-(7.27).  

The predominant action of sweep isosurfaces determines the disruption of the hairpin 

(Figs. 7.29-7.31).  

 

 

Figure 7.21 – Representation of a single vortex and quadrant events at 450t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 
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Figure 7.22 – Representation of a single vortex and quadrant events at 451t + =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Figure 7.23 – Representation of a single vortex and quadrant events at 452t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 
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Figure 7.24 – Representation of a single vortex and quadrant events at 453t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Figure 7.25 – Representation of a single vortex and quadrant events at 454t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 
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Figure 7.26 – Representation of a single vortex and quadrant events at 455t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Figure 7.27 – Representation of a single vortex and quadrant events at 456t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 
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Figure 7.28 – Representation of a single vortex and quadrant events at 457t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Figure 7.29 – Representation of a single vortex and quadrant events at 458t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 
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Figure 7.30 – Representation of a single vortex and quadrant events at 459t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Figure 7.31 – Representation of a single vortex and quadrant events at 460t+ =  and 49.25 10ciλ −= ⋅ : 

hairpin colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

The major finding of this discussion consists in the clear evidence that the process of 

morphological evolution of the primary hairpin vortex (the head rises upwards, while 

the legs stay close to the wall) and the consequent persistency and stability of 
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vortical structures is due to the combined actions of ejection and sweep events. 

Where this combined effect is not present the process of development of a persistent 

hairpin is not successful, as demonstrated by the first sequence analyzed, while the 

last two sequences described a more stable and complex morphological evolution of 

a single hairpin in the turbulent flow field. 

 

7.4.2   Vortical structures in the wall region at τRe = 400  

Considering the DNS database at Re 400τ =  and applying the ciλ  criterion to the 

velocity fluctuations, it is possible to show the flow structures that fill the plane 

channel. Figure 7.32 shows an overall 3D view of the physical domain: hairpin-

vortices are, in this case, many more with respect to the morphological consistency 

of flow structures educed from the DNS database at Re 200τ = , determining a more 

composite and ordered flow pattern. Hairpins distribution among the two solid walls 

is shown in Fig. 7.33, while views of hairpin structures over each wall are shown in 

Figs. 7.34-7.35, at the lower and the upper wall, respectively.  

 

 

Figure 7.32 – Vortical structures in the computing domain at Re 400τ = . 
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Figure 7.33 – Vortical structures in the computing domain at Re 400τ = : lateral view. 

 

Figure 7.34 – Vortical structures in the computing domain at Re 400τ = : inferior wall. 

 

Figure 7.35 – Vortical structures in the computing domain at Re 400τ = : superior wall. 
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One of the first results in studying the structures of the turbulent boundary layer at 

high Reynolds number, confirmed by numerical results, is related to the visualization 

of streaks, that describe the flow organization where alternating unsteady arrays of 

high- and low-speed regions are aligned in the streamwise direction. Figures 7.36-

7.38 show the distribution of streaks in the plane channel, considering only the lower 

wall, in terms of interaction between turbulent events and vortical structures. 

 

Figure 7.36 – Representation of vortical structures and quadrant events on the lower wall at 3t+ = and 

42.625 10ciλ −= ⋅ : hairpin in cyan, ejection in red and sweep in yellow. 

 

Figure 7.37 – Representation of vortical structures and quadrant events on the lower wall at 4t+ = and 

42.625 10ciλ −= ⋅ : hairpin in cyan, ejection in red and sweep in yellow. 
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Figure 7.38 – Representation of vortical structures and quadrant events on the lower wall at 5t+ = and 

42.625 10ciλ −= ⋅ : hairpin in cyan, ejection in red and sweep in yellow. 

 

 

In this case, the presence of vortical structures in the turbulent boundary layer, 

organized as a forest of hairpins, is of direct evidence, thanks to the availability of 

high accurate DNS database. Moving outward from the wall, many vortices whit 

different scale, size, strength and orientation appear: this transition suggests the 

presence of an inner region, with persistent streaky structures, and an outer region, 

dominated by vortex motions of various size.  

Figures 7.39-7.42 show the isosurfaces of ciλ  colored by using the local values of the 

streamwise velocity u , where higher u  are represented by red color. A typical flow 

field organization, where low speed zone (in green) are characterized by smaller 

scale hairpins in the inner region, overlapped by large scale hairpins in the outer 

region, characterized by high velocity (in red).  



 Chapter 7 – Results of the Simulations: Flow Structures 
 

200 
 

 

Figure 7.39 – Representation of vortical structures at 180t + = and 42.625 10ciλ −= ⋅ : hairpin colored 

by using the local value of u velocity. 

 

 

Figure 7.40 – Representation of vortical structures at 181t + = and 42.625 10ciλ −= ⋅ : hairpin colored 

by using the local value of u velocity. 
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Figure 7.41 – Representation of vortical structures at 182t + = and 42.625 10ciλ −= ⋅ : hairpin colored 

by using the local value of u velocity. 

 

Figure 7.42 – Representation of vortical structures at 183t + = and 42.625 10ciλ −= ⋅ : hairpin colored 

by using the local value of u velocity. 

 

The arrows indicate vortices that are grouped together in streamwise-aligned packets, 

that grow upwards and propagate with small velocity, so that their spatial 

arrangement has a long lifetime. 
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The same flow structure distribution can be analyzed in terms of interaction between 

hairpins and events, detected by applying the quadrant analysis (Figs. 7.43-7.46). As 

represented in Fig. 7.43, ejections occur often in temporal succession: in fact, the 

most relevant part of the turbulent production process in the boundary layer occurs 

during outward ejections of low-speed fluid and inrushes of high-speed fluid flow 

towards the wall. Thus, the near-wall turbulence production process appears as an 

intermittent cyclic sequence of events, typical of the bursting phenomenon. Arrows 

indicate the vortical structures and events help to recognize more specifically the 

hairpins that form the packet. While the packet maintains its symmetry within the 

flow field, vortices are asymmetric with legs of unequal size, characterized by 

distortions caused by the stretching and compression actions of other vortices. 

 

 

Figure 7.43 – Oblique view of vortical structures and events at 180t + = and 42.625 10ciλ −= ⋅ : hairpin 

colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 
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Figure 7.44 – Oblique view of vortical structures and events at 181t + = and 42.625 10ciλ −= ⋅ : hairpin 

colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Figure 7.45 – Oblique view of vortical structures and events at 182t + = and 42.625 10ciλ −= ⋅ : hairpin 

colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 
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Figure 7.46 – Oblique view of vortical structures and events at 183t + = and 42.625 10ciλ −= ⋅ : hairpin 

colored by using rλ  values from light-blue to light-red, ejection in red and sweep in yellow. 

 

 

Thanks to these results, hairpins packets are observed most clearly, confirming that 

these configurations (packets and envelope of packets) are most frequently at high 

Reynolds number flows than in low Reynolds one [134]. 

 

7.4.3   Vortical structures in the wall region at τRe = 600  

All the previously conclusions done considering the flow structures at 

Re 200,400τ = are confirmed and synthesized by those extracted from the computed 

velocity field at Re 600τ = . Also in this case, after the application of the ciλ  criterion 

for vortex-detection to the fluctuations of velocities, it is possible to visualize the 

flow field, that appears full of turbulent structures adjacent to both the upper and the 

lower walls, respectively. The representation of vortical structures at 1t+ =  and 

41.44 10ciλ −= ⋅  is shown in Fig. 7.47; Fig. 7.48 shows a lateral view of the channel, 

in order to appreciate the density of vortical structures close to the walls; finally, 

Figs. 7.49 and 7.50 show the representation of vortical structures at the lower and the 

upper wall, respectively. 
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Figure 7.47 – Vortical structures in the computing domain at Re 600τ = . 

 

 

 

Figure 7.48 – Vortical structures in the computing domain at Re 600τ = : lateral view. 

 

 

Observing figures about flow field at Re 600τ = , it is possible to note how complex 

is the flow structure morphological distribution: the streaks are better defined and the 

corresponding packets are many more with respect to those founded at lower 

Reynolds numbers considered in this work. 
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Figure 7.49 – Vortical structures in the computing domain at Re 600τ = : inferior wall. 

 

Figure 7.50 – Vortical structures in the computing domain at Re 600τ = : superior wall. 

 

Figures 7.51-7.54 show the representation of vortical structures where hairpins are 

colored by using the local values of the streamwise velocity , in order to evaluate the 

propagation of the streaks within the plane channel and their interaction near the 

centerline. There are hairpins with a remarkable elevation of their heads because of 

stressed by high values of u  velocity and hairpins characterized by low values of u

velocity that are responsible of the propagation of the packets. Interactions  
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Figure 7.51 – Representation of vortical structures at 45t+ =  and 41.44 10ciλ −= ⋅ : hairpin colored by 

using the streamwise velocity values u . 

 

Figure 7.52 – Representation of vortical structures at 46t+ =  and 41.44 10ciλ −= ⋅ : hairpin colored by 

using the streamwise velocity values u . 

 

between vortices increase the complexity of the flow pattern, making the 

interpretation, understanding and visualization of the channel sometimes very 

difficult. 
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Figure 7.53 – Representation of vortical structures at 47t+ =  and 41.44 10ciλ −= ⋅ : hairpin colored by 

using the streamwise velocity values u . 

 

Figure 7.54 – Representation of vortical structures at 48t+ = and 41.44 10ciλ −= ⋅ : hairpin colored by 

using the streamwise velocity values u . 

 

Figures 7.55-7.58 show the same sequence of samples, from 45t+ = to 48t+ = , 

focusing on the interaction between vortical structures and events: the lower wall is 

considered because here turbulence manifests its main effects. 



 Chapter 7 – Results of the Simulations: Flow Structures 
 

209 
 

 

Figure 7.55 – Representation of vortical structures and quadrant events at 45t+ =  and   

41.44 10ciλ −= ⋅ : hairpin in cyan, ejection in red and sweep in yellow. 

 

 

Figure 7.56 – Representation of vortical structures and quadrant events at 46t+ =  and  

41.44 10ciλ −= ⋅ : hairpin in cyan, ejection in red and sweep in yellow. 

 

It is evident how complex are the events that occur at high-Reynolds numbers: there 

are many more hairpins that form a lot of packets whose coherent alignment created 

an induced backflow region inside the flow field: it is much longer than the backflow  
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Figure 7.57 – Representation of vortical structures and quadrant events at 47t+ =  and  

41.44 10ciλ −= ⋅ : hairpin in cyan, ejection in red and sweep in yellow. 

 

 

Figure 7.58 – Representation of vortical structures and quadrant events at 48t+ =  and  

41.44 10ciλ −= ⋅ : hairpin in cyan, ejection in red and sweep in yellow. 

 

induced by a single vortex, as observed by [148] and [149]. Arrows, in particular, 

indicate some of the packets that are present in the flow field, that confirm the 

observations done by [150] and [151] about the frequency of ejection events, that 
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allow the grouping of vortices in turbulent bursts, with respect to sweep events, that 

pump fluid downward from the outer region of the channel. 

Furthermore, the intense action of ejection and sweep events close to the walls 

suggests how events strongly contribute to the mean Reynolds stress with the 

increase of the Reynolds number. 
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Chapter 8 

Conclusions 

 

 

 

 

This thesis has proposed a novel implementation for the Direct Numerical 

Simulation of a three-dimensional, fully turbulent, incompressible and viscous flow 

on high performance architectures. In particular, the use of CPU/GPU hybrid parallel 

paradigms has allowed the design and implementation of new computational models 

and algorithms, suitable for single- and multi-GPU, and more accurate computational 

domain has been considered, both in space and time, in order to produce a large 

amount of simulation data related to the problem of turbulent flow in a plane channel 

at Re 200,400,600τ = .  

The advanced methodology proposed is based on three main tasks: the DNS as a 

tool of research for obtaining numerical databases of the fluid flow field with 

adequate accuracy in space and time; the high performance computing techniques, 

based on the most advanced parallel architectures (such as hybrid CPU/GPU 

systems) for developing a high performance Navier-Stokes solver, able to simulate 

the turbulent flow in a plane channel at high Reynolds numbers; the statistical tools 
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and the analysis of flow structures for performing modeling and controlling 

turbulence. 

The DNS databases have allowed to analyze in detail turbulence statistics for 

verifying the adequacy of the computational domain and energetic budgets for 

understanding turbulence dynamics in the near wall regions. The analysis revealed 

that, with respect to the normal stresses, the wall is characterized by regions with an 

intense energy production activity and regions characterized by intense energy 

dissipation activity along the streamwise direction; furthermore, the velocity 

pressure-gradient plays a very important role considering Re 400τ ≥ , since it 

determines a loss of energy due to the increased energy dissipation. About the 

Reynolds stress budget related to the Reynolds shear stress, the energy production 

diminishes as the shear stress diminishes, too, causing an increase in dissipation in 

the inner region. For the first time, the analysis based on DNS results has been 

extended to the dissipation and the anisotropy rate budgets, giving an important 

contribute in turbulence modeling. About dissipation rate budget, it was possible to 

note the strongly non-isotropic nature of the dissipation process at high Reynolds 

numbers, that caused the loss of energy near the walls. About the anisotropy rate 

budget, for the relevant non-zero stresses, it described the highly anisotropic 

behavior of fluctuations in near-wall region, while considering the central region of 

the channel the behavior of fluctuations is essentially isotropic. 

In order to investigate deeply the role of Reynolds stresses in production, 

transport mean momentum, dissipation of turbulent kinetic energy of inhomogeneous 

flow, the organized motion of wall turbulence has been analyzed by extracting 

coherent structures from the fluid flow field, considering DNS numerical data. The 

coherent structures have been qualitatively analyzed by using a scientific 

visualization approach, based on plotting the isosurfaces of the turbulent swirling 

strength, that describes the interaction between hairpins and events, observed in data 

time series. Flow structures educed from the fluctuating portion of the velocity field 

at Re 200τ =  confirmed the classical theory about vortical structures, allowing to 

show the morphological evolution of a single hairpin, that provided a means of 

producing turbulent kinetic energy, and its interaction with events, such as ejections 

and sweeps, in order to describe its birth, growing and disruption close to the walls. 
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The flow structures analysis at Re 400τ =  allowed to describe the mechanism of 

hairpin packets generation: they populate a significant fraction of the boundary layer 

and occur in the streamwise direction with increasing size along the downstream 

direction and characterized by small dispersion in their propagation. Thanks to high 

accurate numerical results, the complete view of the flow structures at Re 600τ =  is 

shown for the first time, revealing how ejection and sweep events strongly contribute 

to the mean Reynolds stress with the increase of the Reynolds number. The analysis 

of the time series revealed the intense activity of flow structures close to the 

boundary layer, playing a crucial role in determining skin friction and on dynamics 

for producing and dissipating turbulent kinetic energy. 

Future works will be addressed in order to integrate the Navier-Stokes equations 

at higher Reynolds numbers to increase significantly the knowledge about wall-

bounded turbulence. It may be done by re-thinking and implementing a new parallel 

implementation on multi-node multi-GPU, starting from the algorithms designed for 

the present thesis. Furthermore, since coherent structures actually represent a 

challenging task for the physical description of turbulence phenomena, an interesting 

application may be related to the use of the proper orthogonal decomposition (POD) 

technique for flow structures eduction, in order to analyze from an energetic point of 

view their evolution and eduction from the fluctuating portion of the velocity field. 
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Appendix A 
 
Equations 
 

 

 

 

A.1   Mass conservation equation 

In incompressible-fluid flows, the conservation of mass is expressed by the 

continuity equation: 

 

0i

i

u

x

∂ =
∂

                                                     (A.1)  

 

In Eq. (A.1) no time dependence appears, so that the continuity equation exhibits the 

same form in both steady and unsteady flows. Also in switching from a dimensional 

to a non-dimensional formulation – besides the fact that non-dimensional variables 

are involved – Eq. (A.1) has the same form. No dimensionless groups are involved, 

meaning that continuity has a kinematic character, not being influenced by any flow 

parameter. 
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A.2   System of Navier-Stokes equations 

The fluid-flow momentum equation can be written as: 

 

1 iji i
j

j i j

u uDu p
u

Dt t x x x

σ
ρ

∂∂ ∂ ∂= + = − +
∂ ∂ ∂ ∂

                              (A.2) 

 

where ijσ is the viscous-stress tensor (Newtonian fluid): 

   

2ij ijSσ ν=
                                                 

 (A.3) 

 

and ijS is the strain-rate tensor (in constant-density fluids 0iiS = ): 

 

1

2
ji

ij
j i

uu
S

x x

 ∂∂= +  ∂ ∂ 
                                            (A.4) 

 

so that: 

 

1
2 iji i

j
j i j

Su u p
u

t x x x
ν

ρ
∂∂ ∂ ∂+ = − +

∂ ∂ ∂ ∂
                                 (A.5) 

 

and being: 

 

2

2j iji i

j j j j i j

u Su u

x x x x x x

 ∂ ∂∂ ∂∂= + =  ∂ ∂ ∂ ∂ ∂ ∂ 
                              (A.6) 

 

The system of the Navier-Stokes equations (momentum and continuity equations) 

can be written as: 

 

21i i i
j

j i j j

u u up
u

t x x x x
ν

ρ
∂ ∂ ∂∂+ = − +
∂ ∂ ∂ ∂ ∂

                              (A.7) 
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0i

i

u

x

∂ =
∂

                                                     (A.8) 

 

where the convective term of Eq. (A.7) in expressed in non-conservative form and 

body forces do not appear explicitly. 

A widely-used non-dimensional form of Eq. (A.7) and (A.8) is: 

 

21

Re
i i i

j
j i j j

u u up
u

t x x x xτ

∂ ∂ ∂∂+ = − +
∂ ∂ ∂ ∂ ∂

                                 (A.9) 

 

0i

i

u

x

∂ =
∂                                                   

 (A.10) 

 

where the dependent variables are now iu uτ  and 2p uτρ                                                                                                                              

Re u h u hτ τ τρ µ ν= = , and for simplicity their symbols have not been altered in 

switching from the dimensional to the dimensionless formalism. 

Equation (A.7) can be written in symbolic notation as: 

 

         
( ) 21

p
t

ν
ρ

∂ + ⋅∇ = − ∇ + ∇
∂
u

u u u                                   (A.8) 

 

Making use of the vector identities: 

 

( ) ( ) ( ) ( )∇⋅ = ⋅∇ + ∇⋅ = ⋅∇uu u u u u u u                             (A.9) 

 

( ) ( ) ( ) ( )1 1

2 2
⋅∇ = ∇ ⋅ − × ∇× = ∇ ⋅ − ×u u u u u u u u u ω                (A.10) 

 

( ) ( ) ( ) ( ) ( )1 1

2 2
⋅∇ + ∇⋅ = ⋅∇ = ∇⋅ + ⋅∇  u u u u u u uu u u              (A.11) 

 

where: 
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= ∇ ×ω u                                                    (A.12) 

 

i
k ijk

j

u

x
ω ε ∂=

∂
                                                 (A.13) 

 

is the vorticity, Eq. (A.8) can be written, respectively, in conservative, rotational and 

skew-symmetric form: 

 

( ) 21
p

t
ν

ρ
∂ + ∇⋅ = − ∇ + ∇
∂
u

uu u
                                  

 (A.14) 

 

( ) 21

2

p

t
ν

ρ
 ∂ − × = −∇ + ⋅ + ∇ ∂  

u
u ω u u u                            (A.15) 

 

( ) ( ) 21 1

2
p

t
ν

ρ
∂ + ∇⋅ + ⋅∇ = − ∇ + ∇  ∂
u

uu u u u                        (A.16) 

 

The momentum Eq. (A.8) can also be written by considering different forms of the 

diffusive term.  

Making use of the vector identities: 

 

( ) ( ) ( ) ( )2∇⋅ ∇ = ∇ = ∇ ∇⋅ −∇× ∇× = −∇× ∇× = −∇×u u u u u ω         (A.17) 

 

( ) ( ) ( )2 T ∇ + ∇ ∇ ⋅ = ∇ ⋅ ∇ + ∇
 

u u u u                              (A.18) 

 

one obtains (T is transpose): 

 

( ) ( )1
p

t
ν

ρ
∂ + ⋅∇ = − ∇ + ∇⋅ ∇
∂
u

u u u                               (A.19) 
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( ) ( )1
p

t
ν

ρ
∂ + ⋅∇ = − ∇ − ∇× ∇×
∂
u

u u u                               (A.20) 

 

( ) 1
p

t
ν

ρ
∂ + ⋅∇ = − ∇ − ∇×
∂
u

u u ω                                    (A.21) 

 

( ) ( ) ( )1 T

t p ν
ρ

 ∂ + ⋅∇ = − ∇ + ∇⋅ ∇ + ∇
 

u u u u u                        (A.22) 

 

that are forms of Eq. (A.8) in which the viscous term is expressed, respectively, in 

conservative, divergence-curl, curl and stress-divergence form. 

 

 

A.3   The Reynolds-Averaged Navier-Stokes equations 

According to Reynolds decomposition, the dependent variables in Eqs. (A.7) and 

(A.8) can be decomposed into mean and fluctuating parts, and averaged, so that the 

Reynolds-Averaged Navier-Stokes (RANS) equations are obtained: 

 

1 ij iji i
j

j i j j

u uDu p
u

Dt t x x x x

σ τ
ρ

∂ ∂∂ ∂ ∂= + = − + −
∂ ∂ ∂ ∂ ∂

                         (A.23) 

 

0i

i

u

x

∂ =
∂

                                                    (A.24) 

 

where ijσ  is the mean viscous-stress tensor: 

 

2ij ijSσ ν=                                                   (A.25) 

 

and ijS is the mean strain-rate tensor ( 0iiS = ): 
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1

2
ji

ij
j i

uu
S

x x

 ∂∂= +  ∂ ∂ 
                                           (A.26) 

 

Substituting, one has: 

 

21 iji i i
j

j i j j j

u u up
u

t x x x x x

τ
ν

ρ
∂∂ ∂ ∂∂+ = − + −

∂ ∂ ∂ ∂ ∂ ∂                         
 (A.27) 

 

0i

i

u

x

∂ =
∂                                                   

(A.28) 

 

where: 

ij i ju uρτ ρ ′ ′=                                                (A.29) 

 

is the Reynolds-stress tensor. 

 

 

A.4   Transport equation of the mean-field kinetic energy 

The equation governing the kinetic energy of the mean-field 2i iu u  is: 

 

1 1 1

2 2 2

2 2

K

i i i i j i i
j

j i ij i j i i j ij ij ij
j

P

D
u u u u u u u

Dt t x

p
u u S u u u u u S S S

x
ν ν

ρ

∂ ∂     = + =     ∂ ∂     

 ∂  ′ ′ ′ ′= − + − + −
 ∂
 

����	

                 (A.30) 

 

where: 

� the first three terms on the rhs of Eq. (A.30) represent, respectively, the net 

flux of work associated with the mean pressure, mean viscous stress and 

turbulent stress; 
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� the last two terms on the rhs of Eq. (A.30) represent, respectively, the 

dissipation related to turbulent stress (the production of turbulent kinetic 

energy, KP ) and mean viscous stress. 

 

 

A.5   Transport equation of the mean turbulent kinetic energy 

The equation governing the mean kinetic energy of the turbulent field 2i iu u′ ′ is 

[152]: 

 

1 1 1

2 2 2

1
2 2

2
K

i i i i j i i
j

j i ij i i j i j ij ij ij
j

P

D
u u u u u u u

Dt t x

p
u u S u u u u u S S S

x
ε

ν ν
ρ

∂ ∂     ′ ′ ′ ′ ′ ′= + =     ∂ ∂     

 ′∂  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − + − − −
 ∂
 

����	����	

               (A.31)  

 

where: 

� the first three terms on the rhs of Eq. (A.31) denote the net flux of work 

associated, respectively, with fluctuating pressure, fluctuating viscous stress, 

and turbulent stress;  

� the subsequent turbulence-production term KP  reflects the exchange of 

kinetic energy between mean flow and turbulence (it exhibits an opposite sign 

with respect to Eq. (A.30) due to the fact that energy exchange involves in 

general a loss to mean flow and a gain to turbulence);   

� the last term ε  on the rhs of Eq. (A.31) is the viscous dissipation of turbulent 

kinetic energy. Unlike the dissipation related to the mean viscous stress in Eq. 

(A.30), this term is essential to the dynamics of turbulence. 

The turbulent kinetic energy transport Eq. (A.31) is obtained from a contraction of 

indexes in the Reynolds-stress transport equation. 

Equation (A.31), non-dimensionalized by 4uτ ν , can be written in the form              

2 2ii i iK u uτ ′ ′= =  as follows: 
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( )
21

2

k K K K K
k

i i i
ik i i i k

k i k k k k k

DK K K
u P T D

Dt t x

u u up K
u u u u

x x x x x x x

ε

τ

∂ ∂= + = + Π − + + =
∂ ∂

′ ′′∂ ∂ ∂∂ ∂ ∂′ ′ ′ ′= − − − − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

              (A.32) 

 

representing the balance between the local rate of change and the convective 

transport of turbulent kinetic energy on the lhs of Eq. (A.32) and the following terms 

on the rhs: 

� the turbulent kinetic energy production term: 

 

i
K ik

k

u
P

x
τ ∂= −

∂                                           
(A.33) 

 

� the velocity pressure-gradient term: 

 

K i
i

p
u

x

′∂′Π = −
∂                                            

(A.34) 

 

� the dissipation rate term (in the form of the isotropic dissipation): 

 

i i

k k

u u

x x
ε

′ ′∂ ∂=
∂ ∂                                              

(A.35) 

 

� the turbulent transport rate term: 

 

( )1

2K i i k
k

T u u u
x

∂ ′ ′ ′= −
∂                                     

(A.36) 

 

� the viscous diffusion rate term: 

 

2

K
k k

K
D

x x

∂=
∂ ∂                                            

(A.37) 
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All the terms described above can be calculated by averaging the diagonal terms of 

the Reynolds-stress tensor Eq. (A.29). 

 

 

A.6   Reynolds-stress transport equation 

The Reynolds-stress transport equation ij i ju uτ ′ ′=  is obtained from the second 

moment: 

 

0i j j iu Nu u Nu′ ′ ′ ′+ =                                         (A.38) 

 

The Reynolds-stress transport equation, non-dimensionalized by 4uτ ν , can be cast 

as [152]: 

 

( )
2

2

ij ij ij
k ij ij ij ij ij

k

j j iji i
ik jk i j i j k

k k j i k k k k k

D
u P T D

Dt t x

u uu up p
u u u u u

x x x x x x x x x

τ τ τ
ε

τ
τ τ

∂ ∂
= + = + Π − + + =

∂ ∂

  ′∂ ∂ ∂  ′′ ′∂ ∂∂ ∂ ∂′ ′ ′ ′ ′= − + − + − − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

(A.39) 

 

representing the balance between the local rate of change and the convective 

transport of Reynolds-stress on the lhs of Eq. (A.39) and the following terms on the 

rhs: 

� the Reynolds-stress production rate term: 

 

j i
ij ik jk

k k

u u
P

x x
τ τ

∂ ∂= − + ∂ ∂                                     

(A.40) 

 

� the velocity pressure gradient terms: 

 

ij i j
j i

p p
u u

x x

 ′ ′∂ ∂′ ′Π = − +  ∂ ∂                                      

(A.41) 
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It can be split into the pressure-strain ,s ijΠ  and the pressure-diffusion ,d ijΠ  

terms as follows: 

 

j i
ij s ,ij d ,ij ij j i

i j i j

u u
p' u p' u p'

x x x x

   ′∂ ′∂ ∂ ∂′ ′Π = Π + Π = Π = + − +      ∂ ∂ ∂ ∂         
(A.42) 

 

It is well known that the pressure-strain term plays an important role on the 

energy redistribution; 

� the dissipation rate term: 

 

2 ji
ij

k k

uu

x x
ε

′∂′∂=
∂ ∂                                           

(A.43) 

 

� the turbulent transport rate term: 

 

( )ij i j k
k

T u u u
x

∂ ′ ′ ′= −
∂                                       

(A.44) 

 

� the viscous diffusion rate term: 

 

2
ij

ij
k k

D
x x

τ∂
=

∂ ∂                                             
(A.45) 

 

Repeated indices imply summation over 1,2,3and the indices ( )1,2,3  are used to 

denote the streamwise x+ , the normal to the wall y+ and the spanwise z+ directions, 

respectively. In the above equation,p is a non-dimensional kinematic pressure. In a 

fully developed channel, the flow is homogeneous in the streamwise and the 

spanwise directions. The relevant non-zero stresses in this case are                               

1 1 1 2 2 2 3 3, , ,u u u u u u u u′ ′ ′ ′ ′ ′ ′ ′ . The main expressions of the Reynolds stress budgets are here 

reported. 
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� The Reynolds-stress production rate: 

 

1 1 1
11 1 1 1 2

2

2 2k k
k k

U U U U
P u u u u u u u' v'

x x x y

   ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′= − + = − = −   ∂ ∂ ∂ ∂           
(A.46) 

 

2 1
12 1 2k k

k k

U U U
P u u u u v' v'

x x y

   ∂ ∂ ∂′ ′ ′ ′= − + = −   ∂ ∂ ∂                        
(A.47) 

 

� The velocity pressure gradient term: 

 

,11 ,112 ' , 2 's d
i

u
p  u p

x x

 ′∂ ∂ ′Π = Π = −  ∂ ∂                             
(A.48) 

 

12 12s, d ,

u v'
p' p' , v' p' u' p'

y x x x

′∂ ∂ ∂ ∂ Π = + Π = − + ∂ ∂ ∂ ∂                 
(A.49) 

 

22 222 2s , d ,
i

v'
p' , v' p'

y x

 ∂ ∂Π = Π = −  ∂ ∂                            
(A.50) 

 

33 332 2s , d ,
i

w'
p' , w' p'

z x

 ∂ ∂Π = Π = −  ∂ ∂                           
(A.51) 

 

� The dissipation rate term: 

 

22 2

1 1
11 2 2

k k

u u u' v' w'

x x x y z
ε

 ′ ′  ∂ ∂ ∂ ∂ ∂    = = + +    ∂ ∂ ∂ ∂ ∂                            

(A.52) 

 

1 2
12 2 2

k k

u u u' v' u' v' u' v'

x x x x y y z z
ε

 ′ ′  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = = + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                     
(A.53) 
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22 2

2 2
22 2 2

k k

u u v' v' v'

x x x y z
ε

 ′ ′  ∂ ∂ ∂ ∂ ∂    = = + +    ∂ ∂ ∂ ∂ ∂                             

(A.54) 

 

22 2

3 3
33 2 2

k k

u u w' w' w'

x x x y z
ε

 ′ ′  ∂ ∂ ∂ ∂ ∂    = = + +    ∂ ∂ ∂ ∂ ∂                            

(A.55) 

 

� The turbulent transport rate term: 

 

( ) ( )11 1 1 k
k

T u u u u' u' v'
x y

∂ ∂′ ′ ′= − = −
∂ ∂                              

(A.57) 

 

( ) ( )12 1 2 k
k

T u u u u' v' v'
x y

∂ ∂′ ′ ′= − = −
∂ ∂                              

(A.58) 

 

           
( ) ( )22 2 2 k

k

T u u u v' v' v'
x y

∂ ∂′ ′ ′= − = −
∂ ∂                             

(A.59) 

 

( ) ( )33 3 3 ' ' 'k
k

T u u u w w v
x y

∂ ∂′ ′ ′= − = −
∂ ∂                             

(A.60) 

 

� The viscous diffusion rate term: 

 

                    

( ) ( )2 2
1 1

11 2
k k

u u u u
D

x x y

′ ′ ′ ′∂ ∂
= =

∂ ∂ ∂
                                     (A.61) 

 

( ) ( )2 2
1 2

12 2
k k

u u u' v'
D

x x y

′ ′∂ ∂
= =

∂ ∂ ∂                                      
(A.62) 

 

( ) ( )2 2
2 2

22 2
k k

u u v' v'
D

x x y

′ ′∂ ∂
= =

∂ ∂ ∂                                     
(A.63) 
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( ) ( )2 2
3 3

33 2
k k

u u w' w'
D

x x y

′ ′∂ ∂
= =

∂ ∂ ∂                                    
(A.64) 

 

 

A.7   The Reynolds-stress anisotropy transport equation 

The Reynolds-stress tensor can be written as an isotropic part and a deviatoric 

part, the latter related with the Reynolds-stress anisotropy tensor ijb [153]: 

 

I D
ij ij ijτ τ τ= +

                                                
(A.65) 

 

2
2

3ij ij ijK Kbτ δ= +
                                          

(A.66) 

so that: 

 

2 3
ij ij

ijb
K

τ δ
= −

                                              
(A.67) 

 

The transport equation of ijb can be written as 2iiε ε= : 

 

1

2

1

2

ij ij ij ij

ij ij ij
ij K ij ij K ij

K

Db b D DK

Dt t K Dt K Dt

P P T
K K K T

τ τ

τ τ τ
ε ε

∂  
= = − = ∂  

     
= − + Π − − + −     

                     

(A.68) 

 

representing the balance between the local rate of change and the convective 

transport of turbulent anisotropy of Reynolds-stress on the lhs of Eq. (A.61) and the 

following terms on the rhs: 

� the Reynolds-stress anisotropic production term: 
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τ τ τ
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(A.69) 
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� the anisotropy velocity pressure gradient term: 

 

b
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p p
u u

x x

 ′ ′∂ ∂′ ′Π = − +  ∂ ∂                                      

(A.70) 

 

� the anisotropy dissipation rate: 
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(A.71) 

 

� the anisotropy transport rate: 

 

( ) ( )
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k k

T T T u u u u u u
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τ τ∂ ∂′ ′ ′ ′ ′ ′= − = − +
∂ ∂                

(A.72) 

 

Different forms of Eq. (A.68) can be obtained by decomposing the mean-velocity 

gradient tensor i ju x∂ ∂ into a symmetric part ijS (the mean strain-rate tensor) and an 

anti-symmetric part ijW  (the mean rotation-rate tensor): 
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(A.73) 

 

where: 
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(A.74) 
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A.8  Turbulent dissipation-rate transport equation 

The turbulent scalar dissipation-rate transport equation 2iiε ε=  is obtained from 

the moment equation as follows: 

 

( )2 0i
i

j j

u
Nu

x x
ν

′∂ ∂ ′ =
∂ ∂

                                      (A.76) 

 

Equation (A.76), non-dimensionalized by 4uτ ν , can be cast as [152]: 
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        (A.78) 

 

Explicating Eq. (A.78), one obtains: 
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     (A.79) 

 

Equation (A.79) represents the balance between the rate of change and the 

convective transport of turbulent dissipation rate on the lhs of Eq. (A.78) and the 

following terms on the rhs: 

� the mixed production rate of dissipation: 
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u u u u
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x x x xε
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(A.80) 

 

� the production rate of the dissipation by mean-velocity gradient: 
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(A.81) 

 

� the gradient production rate: 
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� the turbulent production rate: 
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� the pressure transport rate: 
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� the turbulent transport rate: 
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(A.85) 

� the viscous diffusion rate: 
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� the turbulent dissipation rate: 
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(A.87) 

 

The main expressions of the dissipation rate tensor are here reported. 

 

� The mixed production rate of the dissipation: 

 

1 2
u u' v' u' v' u' v'

P
y x x y y z zε

 ∂ ∂ ∂ ∂ ∂ ∂ ∂= − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂                        

(A.88) 

 

� The production rate of dissipation by mean-velocity gradient: 
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� The gradient production rate: 
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� The turbulent production rate: 
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� The pressure transport rate: 
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� The turbulent transport rate: 
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� the viscous diffusion rate: 
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� The turbulent dissipation rate: 
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