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Summary in Italian

L’ attività di ricerca svolta durante il corso di dottorato, sotto la guida della Prof.ssa
Francesca Guerriero e in collaborazione con l’Ing.Giovanna Miglionico, ha condotto alla
stesura del presente lavoro di tesi dal titolo “Models and Policies for Service Industries
via Revenue Management”, sintesi dei risultati della ricerca concentrata sulla definizione,
la progettazione, l’implementazione e la validazione di modelli e politiche di revenue man-
agement (RM) per aziende di servizi. In particolare, sono stati affrontanti i seguenti
problemi:

1. gestione ottimale delle richieste di prenotazione di mezzi di trasporto per aziende di
noleggio attraverso la definizione di:

- politiche di RM e approcci di ottimizzazione robusta per l’autonoleggio;

- politiche di RM per il noleggio di mezzi di trasporto con differente capacità di
carico;

2. gestione ottimale delle richieste di prenotazione presso aziende operanti nel settore
della ristorazione attraverso la definizione di politiche di RM per i ristoranti.

Per ogni problema sono stati definiti approcci innovativi di soluzione, sono state
analizzate le proprietà teoriche dei metodi proposti e sono state validate le loro prestazioni
in termini di efficienza ed efficacia mediante una articolata fase sperimentale.

Il presente lavoro di tesi è organizzato in 7 capitoli. Nel seguito viene riportata una
breve descrizione del contenuto di ciascun capitolo.

Il Capitolo 1 presenta una introduzione al lavoro.

Nel Capitolo 2 viene presentato lo stato dell’arte relativo al RM e vengono analizzate
e approfondite le differenti problematiche e i diversi campi di applicazione propri del RM
([34], [35],[75],[113], [157]), che svolge ormai un ruolo importante per molte aziende di
servizio appartenenti a differenti settori [75], [73], [30]. Il RM può essere visto come
un’efficace ed efficiente strumento per la massimizzazione del ricavo, obiettivo che viene
raggiunto allocando in maniera ottimale la capacità limitata e deperibile tra i diversi
prodotti/servizi, che vengono assegnati a segmenti eterogenei di clientela e generalmente
venduti in anticipo rispetto al momento del consumo effettivo, tramite le tecniche di
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prenotazione, considerando i diversi livelli di incertezza della domanda. Le tecniche di
RM inizialmente applicate al settore del trasporto aereo [123], sono state successivamente
importate e sviluppate in altri contesti di interesse pratico, quali quello alberghiero, quello
del noleggio di mezzi di trasporto e quello della ristorazione.

Nel Capitolo 3 viene introdotto il problema dell’autonoleggio e ci si sofferma sull’
applicazione delle tecniche di RM al caso della gestione ottimale di una flotta di mezzi di
trasporto (automobili) messa a disposizione da parte di un operatore logistico per servizi
di noleggio. L’obiettivo principale è quello di definire approcci innovativi per gestire in
maniera appropriata il servizio offerto in modo tale da massimizzare i ricavi. La decisione
fondamentale alla base della gestione del rendimento consiste nel decidere se accettare o
rifiutare una richiesta di prenotazione che arriva in un certo istante di tempo, e, in caso di
rifiuto, gestire la disponibilità residua delle risorse in maniera opportuna. Le applicazioni
del RM all’autonoleggio descritte in letteratura sono molto limitate, i contributi principali
sono stati i lavori di Carroll e Grimes [27] e Geraghty e Johnson [49], che offrono una det-
tagliata descrizione dell’implementazione e dei contributi derivati dall’applicazione delle
tecniche di RM nelle compagnie di noleggio internazionali Hertz e National, rispettiva-
mente, ma non definiscono dei modelli nè dei metodi di validità generale per affrontare il
problema descritto. In una prima fase del lavoro, sono stati definiti dei modelli di pro-
grammazione lineare per l’ottimizzazione di un classico servizio di noleggio di automobili
e mezzi commerciali, suddivisi in gruppi a seconda del prezzo e delle caratteristiche. Cias-
cuna richiesta di noleggio, che può arrivare al sistema tramite una prenotazione (booking),
può essere soddisfatta con il mezzo richiesto oppure con uno appartenente ad un gruppo
superiore (upgrading). È stato formulato a tale scopo un modello di programmazione
lineare intera che non è altro che l’estensione al campo del car rental del modello deter-
ministico standard del RM [113]. Il modello deterministico permette di definire sulla base
del rispetto dei vincoli sulla domanda e sulla disponibilità di mezzi, quali e quante richi-
este di noleggio accettare. Per gestire in modo adeguato l’incertezza della domanda, sono
stati applicati al problema base prodotto in precedenza diversi criteri di robustezza [36],
[9], [117], [116]. In particolare, sono stati considerati il criterio max-min (applicazione del
criterio di robustezza assoluta in cui si considera la massimizzazione del caso peggiore),
il criterio di deviazione robusta (min-max regret) e il criterio di p-robustezza. Inoltre, è
stato formulato un modello che considera la deviazione media assoluta basata su criteri
di variabilità [165], [97], che permette di individuare una sequenza di soluzioni progres-
sivamente meno sensibili alle realizzazioni dei parametri del modello. È stata condotta
un’ampia fase di sperimentazione e i risultati ottenuti mostrano una buona applicabilità
dei modelli per gestire i problemi considerati.

Tali risultati sono stati riportati nel lavoro “Modelling and solving a car rental
revenue optimisation problem” pubblicato sulla rivista internazionale Int. J. Mathematics
in Operational Research [52].

Nel Capitolo 4 vengono descritti gli sviluppi per il modello presentato in [52] e gli
approcci di RM utilizzati per definire politiche di gestione delle richieste e della disponi-
bilità. In particolare, è stato sviluppato un modello di programmazione dinamica [130],
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[151] e differenti politiche di RM (booking limits e bid prices [19], [143]) sono state definite
e applicate al problema descritto. In particolare, con l’obiettivo di attenersi il più fedel-
mente possibile all’attività reale di un’agenzia di noleggio, è stato introdotto nei modelli
di programmazione un aspetto tipico del car rental, quale il one-way rentals, cioè la pos-
sibilità di lasciare il mezzo noleggiato in un’agenzia o punto di rilascio diverso da quello
di partenza, sviluppando di conseguenza i modelli dinamici e le dovute approssimazioni
lineari che hanno portato alla definizione delle opportune politiche di gestione delle richi-
este e della capacità disponibile, quindi anche in questo caso politiche di controllo basate
sul booking limit. Inoltre, anche per questo caso il modello contenente il one-way e le
politiche associate sono state ampliate considerando la possibilità di trasferire i mezzi
tra le diverse stazioni di noleggio, garantendo una certa mobilità della flotta e un più
adeguato utilizzo delle risorse. I modelli di programmazione lineare intera definiti per il
caso base di car rental sono stati inoltre modificati apportando un rilassamento dei vincoli
di interezza dovuto alla proprietà della matrice dei vincoli di poter essere ridotta ad una
matrice intervallo 0 − 1, che si dimostra essere totalmente unimodulare. Gli esperimenti
computazionali condotti su istanze che ricalcano l’attività di piccole-medie aziende di no-
leggio e di un’agenzia di noleggio locale opportunamente analizzata e i risultati ottenuti
mostrano che l’applicazione pratica delle politiche decisionali portano ad un miglioramento
del profitto e ad una più corretta utilizzazione dei mezzi disponibili, e sottolineano una
gestione più efficace delle richieste rispetto ad approcci tradizionali quali la politica del
first-come first-served o il caso della perfetta conoscenza della domanda. L’estensione e i
miglioramenti del caso base appena descritti, hanno condotto alla stesura di un lavoro dal
titolo “Revenue Models and Policies for the Car Rental Industry”, attualmente in fase di
revisione sulla rivista internazionale Mathematical Methods of Operations Research.

La rilevanza dei lavori appena descritti è sottolineata dall’assenza in letteratura di
studi che considerano contemporaneamente gli aspetti tipici di un’attività di noleggio,
quali l’upgrade, lo sharing, il one-way e il riposizionamento dei mezzi, nonchè l’adozione
di politiche di RM basate sul booking limits e il bid prices, che richiedono di risolvere
dinamicamente un modello di programmazione lineare a differenza di approcci di pro-
grammazione dinamica più noti in letteratura [151].

Nel Capitolo 5 vengono presentati i modelli e i metodi di RM definiti per il problema
del noleggio di mezzi di trasporto. È stato analizzato il problema di un operatore logistico
che possiede una flotta di mezzi, caratterizzati da una capacità di carico differente, con
la quale deve soddisfare le richieste di trasporto di una certa quantità di merce da una
origine ad una destinazione da parte dei propri clienti. In particolare, l’operatore deve
decidere se accettare o rifiutare la richiesta di noleggio da parte di un potenziale cliente
non sapendo se in futuro arriveranno richieste che potranno portare un ricavo maggiore.
Il problema preso in esame è stato rappresentato mediante un modello di programmazione
dinamica [113], [130]. Nel modello, inoltre, sono stati considerati i seguenti aspetti: ogni
richiesta può essere soddisfatta con un mezzo con una capacità maggiore o uguale alla
quantità da trasportare richiesta (upgrading); può essere effettuato lo sharing tra i mezzi,
che consiste nell’utilizzo di uno stesso automezzo per soddisfare contemporaneamente la
domanda di clienti diversi, che richiedono il trasporto verso una stessa destinazione e nello
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stesso istante di tempo. Inoltre, è stato formulato un modello in cui si tiene conto an-
che della possibilità e della convenienza per l’operatore di movimentare a “vuoto” mezzi
per riportarli su un nodo dal quale potranno essere utilizzati per soddisfare altre richi-
este, che altrimenti rimarrebbero insoddisfatte per mancanza di risorse al nodo. Sono
state sviluppate diverse tipologie di politiche proprie del RM, per supportare il decisore
nell’accettazione o meno della richiesta e per la valutazione della corretta gestione dalle
risorse disponibili. In particolare, sono state considerate le politiche di booking limits e
bid prices per decidere se accettare o rifiutare una richiesta di trasporto in un certo peri-
odo di tempo. Tali politiche sono basate su approssimazioni lineari della formulazione di
programmazione dinamica. In particolare, il booking limits utilizza informazioni primali,
mentre il bid prices duali. Le politiche sono state confrontate anche con la politica classica
del first-come first-served. Inoltre, per il caso del noleggio di mezzi con una certa capacità
di carico per il trasporto merci, sono stati formulati nuovi modelli che presentano nella
stessa formulazione lo sharing e il riposizionamento dei mezzi non utilizzati. In entrambi i
casi, sono state sviluppate le politiche di RM opportune. L’ampia gamma di esperimenti
computazionali condotti su istanze generate in maniera random, dovute all’assenza in let-
teratura di lavori confrontabili, contiene risultati incoraggianti riguardo all’applicazione
pratica delle politiche definite e ai miglioramenti che se ne potrebbero ricavare dal punto
di vista della massimizzazione del ricavo, nonchè della più corretta gestione operativa delle
richieste di prenotazione, considerazioni ottenute dal confronto tra le diverse politiche in-
novative proposte e quelle più tradizionali. Il lavoro presenta inoltre un’appendice in cui
viene descritta un’analisi asintotica che conduce ad un’estensione del modello di program-
mazione lineare per il controllo della capacità su reti proposto da Talluri e van Ryzin in
[144]. Inoltre, per il modello base viene riportata una formulazione di programmazione
lineare con il rilassamento dei vincoli di interezza [119], [53].

Il lavoro dal titolo “Revenue Management Policies for the Truck Rental Industry” è
stato pubblicato sulla rivista internazionale Transportation Research Part E [53].

Il lavoro di ricerca svolto ha permesso di sviluppare un’opportuna base di conoscenza
dello stato dell’arte nell’ambito del RM con l’approfondimento delle metodologie, delle tec-
niche risolutive e delle politiche di gestione proprie di questo approccio, il cui obiettivo
principale è la massimizzazione del ricavo. Inoltre, una più ampia conoscenza delle carat-
teristiche dei settori più adatti all’applicazione di tale strumento di gestione, ha condotto
all’opportunità di individuare nuovi ambiti di sviluppo e applicabilità reali.

Nel Capitolo 6 vengono presentati gli studi condotti nell’ambito del settore della ris-
torazione preso in considerazione per le caratteristiche distintive che permettono un’efficace
applicabilità dei principi del RM, nonchè per la bassa o recente attenzione mostrata in let-
teratura per alcuni aspetti che riguardano l’implementazione del RM in questo particolare
settore. Il RM è stato ampiamente utilizzato nell’ambito delle linee aeree e degli hotels.
Non sono moltissimi in letteratura i lavori che prendono in considerazione l’applicazione
delle metodologie basate sul RM alla gestione dei ristoranti e sono tutti abbastanza re-
centi. I primi lavori sono i seguenti [73], [76] e [82], in cui si discute l’applicabilità del RM
ai ristoranti e si introduce il RevPASH (the revenue per available seat-hour) come base
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per la corretta applicazione delle tecniche basate sulla massimizazione del profitto. La
maggior parte dei lavori si concentra sulle politiche di gestione riguardanti l’arrivo delle
richieste ([148], [20]) e le implicazioni della durata dei pasti non determinabile a priori
([72], [78]). Mentre, il pricing, strategia di RM fondamentale, è un aspetto considerato
solo in pochi lavori [88]. Un’ altro aspetto che riguarda i ristoranti, non ancora molto
studiato dal punto di vista del RM, è il problema della configurazione ottimale dei tavoli
(the table mix problem) [148], [149], [85], [86]. Lo studio condotto durante l’attività di
ricerca ha portato alla definizione di modelli e di approcci risolutivi propri del RM ap-
plicati ai ristoranti. In particolare, il problema è stato affrontato da un punto di vista
strategico e da un punto di vista operativo. Da un punto di vista strategico, il problema è
quello di decidere la configurazione della sala ossia il numero di tavoli di diverse dimensioni
che costituiranno il ristorante. In tale decisione intervengono numerose variabili quali la
dimensione della sala, la domanda di tavoli di una data dimensione, la durata media del
pasto di gruppi di varie dimensioni, la combinabilità o meno dei tavoli. In relazione al
problema strategico sono state definite diverse formulazioni ottenute a partire da un mod-
ello base arricchito di volta in volta di nuovi aspetti. Dal punto di vista operativo, è stata
considerata la necessità di prendere delle decisioni riguardanti l’assegnazione dei tavoli a
gruppi di clienti nel modo più vantaggioso possibile. A questo scopo è stato formulato un
modello di programmazione dinamica e successivamente una sua approssimazione lineare
che permette di definire opportune politiche di accettazione/rifiuto di una prenotazione
da parte di un gruppo di persone. In particolare, sono state definite politiche di booking
limits e bid prices e un’estensione della politica booking limits che tiene in considerazione
la possibilità di accettare una richiesta se il cliente accetta di attendere un certo tempo
prima di occupare il tavolo. I risultati ottenuti sono piuttosto incoraggianti dal momento
che mostrano un miglioramento in termini di rendimento rispetto a quelle che sono le
tradizionali politiche di gestione delle richieste, come la first-come first-served.

Nel Capitolo 7 infine vengono riportate le conclusioni del lavoro di tesi.



VIII



Contents

I Introduction 3

1 Introduction 5

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Revenue Management: basic concepts and applications 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The origins of RM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Key areas of RM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The applications of RM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 RM preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 RM in traditional industries . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Car Rentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 RM recent industries adoptions . . . . . . . . . . . . . . . . . . . . . 25

2.4.5 Restaurants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

II Car Rental RM 31

3 Large Modeling and Solving a Car Rental Revenue Optimization Prob-
lem 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

IX



CONTENTS X

3.3 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Robust scenario-based formulations . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 The absolute robustness criterion . . . . . . . . . . . . . . . . . . . . 42

3.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Deterministic car rental revenue optimization model . . . . . . . . . 50

3.5.2 Robust car rental revenue optimization models . . . . . . . . . . . . 51

3.6 Concluding remarks and ongoing work . . . . . . . . . . . . . . . . . . . . . 54

4 Revenue Models and Policies for the Car Rental Industry 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Dynamic programming formulations . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 A Dynamic Programming Formulation for the BRp . . . . . . . . . . 60

4.3.2 A Dynamic Programming Formulation for the OWRp . . . . . . . . 62

4.4 Linear Programming Formulations . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 A Deterministic Linear Programming Formulation for the BRp . . . 63

4.4.2 A Linear Programming Formulation for the OWRp . . . . . . . . . . 65

4.5 Revenue-based primal and dual acceptance policies . . . . . . . . . . . . . . 67

4.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Numerical results for the BRp . . . . . . . . . . . . . . . . . . . . . 70

4.6.2 Numerical results for the OWRp . . . . . . . . . . . . . . . . . . . . 75

4.6.3 A real case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Revenue Management Policies for the Truck Rental Industry 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 A dynamic programming formulation for the TRP . . . . . . . . . . . . . . 89

5.3 A linear programming formulation for the TRP . . . . . . . . . . . . . . . . 92

5.3.1 Revenue-based primal and dual acceptance policies . . . . . . . . . . 94

5.3.2 A partitioned booking limits policy with sharing . . . . . . . . . . . 95

5.4 The TRP with Sharing (TRPS) and Repositioning (TRPR) . . . . . . . . . 96

5.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



1 Chapter 0

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

III Restaurant RM 109

6 Strategic and Operational Decisions in Restaurant Revenue Manage-
ment 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 The Tables Mix Problem (TMP) . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 The Parties Mix Problem (PMP) . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 A Linear Programming Formulation for the Party Mix Problem
(LPMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Revenue-based Primal and Dual Acceptation Policies . . . . . . . . . 122

6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.1 Preliminary Results for TMP . . . . . . . . . . . . . . . . . . . . . . 127

6.4.2 Preliminary Results for PMP . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

IV Conclusions 137

7 Conclusions 139

7.1 Summing up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3 Direction for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



CONTENTS 2



Part I

Introduction

3





Chapter 1

Introduction

The work presented in this thesis collects the main results achieved in the three years
of the PhD program in Operational Research. The research activities have been focused
in developing and designing innovative revenue management (RM, for short) models and
policies to handle the service sector, with focus in car rental and restaurant industries.

1.1 Motivation

RM represents a set of techniques of data collection, estimation, forecasting, optimization
and controls that helps service and product companies to improve their profits through a
better management of capacity and demand, by correctly identifying the customer groups
that the company has to serve, establishing the right quantity of products and services
and the optimal prices to be offered to these customers. RM has been practiced for many
years in the airline and hospitality industries, but recently plays an important role in other
industries. The RM literature suggests that many businesses are using RM approach and
that many businesses would benefit from adopting RM systems.

In this thesis, we propose the application of RM in car rental and restaurant in-
dustries since, for these two service businesses, the literature provides a less number of
RM applications and solution approaches compared to airlines or hotels. Furthermore,
car rentals and restaurants have the framework and general characteristics to an effective
and efficient implementation of a RM process.

One of the main objective of RM is managing the capacity allocation for various
demand classes and one of the most important decision is to determine whether accept
o reject a reservation request. In this thesis we develop mathematical models to allocate
limited capacity, cars and tables in the context of rental and restaurant, respectively. We
also provide innovative policies to manage booking requests, by using booking limits and
bid prices controls.

The practice of RM was used first in a car rental setting in the early 1990s. The
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car rental industry displays similar characteristics to the airline industry, but there are
not many papers in literature that provide RM models or policies to manage capacity
allocation and the dynamics or the randomness of the booking process. Geraghty and
Johnson [49] propose simple algorithms that implement models for demand forecasting,
planned upgrades, pricing, and overbooking in order to integrate the collected information
in a yield management system (YMS) useful for deciding the optimal combination and
utilization of available cars. Furthermore, different papers provide RM pricing models
applied to the car rental industry to set the price of renting a car. Another vein of the
literature considers the fleet planning problem for a car rental.

Since scarce attention has been devoted to the operational problems arising in the
car/truck rental industry, this thesis analyzes the operational steps related to receiving
and meeting demand in the car/truck rental management process and proposes solution
approaches based on RM methods and techniques.

In this thesis we provide new RM mathematical programming approaches and pro-
cedures for car and truck rental problems. We have two main areas of interest. The first is
aimed at understanding and managing the car rental problem. The problem is how assign
cars of several categories to different segments of customers, who make a rental request for
a given type of car, for a given number of days at a given pickup time. The second area of
interest is the problem of managing a fleet of trucks. We consider the problem of a logistic
operator that offers a transportation service from a given set of origins to a given set of
destinations. The transportation service consists in renting trucks of different capacities
to different customers on a given time horizon. In both cases, the logistic operator has to
decide whether to accept or reject a rental request.

First of all, we provide a detailed description of the typical car/truck rental activities.
We show that the car/truck rental problem is characterized by several kinds of options.
A car/truck may be rented by a booking made in advance of the day of rental. A rental
booking specifies the car/truck group required, the start and end dates/times, the origin
and destination stations of the rental. Companies usually offer an upgrade if car/truck
required is not available. Optionally, the reservation may specify a one-way rental (in
which the car is returned to a branch different from the pick-up branch) and may request
a specific car model within the required group. Generally, the car/truck rental businesses
have different rates depending on the type/group of car rented, and on the rental period.

For the first area, we propose two different approaches to car rental problem: ro-
bustness measures and the related scenario-based formulations; linear programming ap-
proximations and the related RM decision policies.

The robust approaches aim at balancing expected revenue with feasibility, perfor-
mance or regret in given scenarios. To the best of our knowledge, this work represents
the first attempt to apply robust optimization approaches to the car rental industry. We
present a mathematical formulation of the considered car rental revenue optimization prob-
lem, which can be viewed as an extension of the deterministic linear programming model
used in standard RM [144]. The proposed model allows to determine, for each category
and for each time period, the number of vehicles to be rented and the number of upgrades,
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with the objective of maximizing the expected revenue, while satisfying demand and ca-
pacity constraints. Then, we focus our attention on proactive approaches to deal with
uncertainty. In particular, the problem under study is represented by considering robust
scenario-based formulations. Indeed, it is assumed that the uncertainty is represented by a
set of possible realizations, called scenarios. Furthermore, different measures of robustness
are considered. More specifically, the attention has been focused on the maxmin criterion
(i.e., the application of a simple absolute robustness measure, maximizing the worst-case
performance), the robust deviation criterion, the stochastic p-robustness criterion and a
standard deviation based variability criterion. The results collected indicate that it is not
possible to find a criterion that allows to obtained the best expected revenue value in all
the test problems. In addition, on average the mean absolute deviation based variability
criterion shows the best performance in terms of solution quality.

The second approach to car rental problem considers a dynamic programming for-
mulation for the problem of assigning cars of several categories to different segments of
customers, with the possibility of upgrading, i.e the rental firm can satisfy the demand for
a given product with either the product requested or with a car of at most one category
superior to that initially required. We also address the one-way rental scenario, which al-
lows the possibility of the rental starting and ending at different locations, and we model
a new real aspect of rental process, that is car transferring, i.e the ability to move the fleet
from one station to another when the benefit of such operation is greater than the cost of
moving the car. Since the proposed dynamic programming formulations are impractical
due to the curse of dimensionality, linear programming approximations are used to derive
RM decision policies to establish whether to accept or reject a rental request. Indeed,
primal and dual acceptance policies are developed (i.e. booking limits, bid prices) and
their effectiveness is assessed on the basis of an extensive computational phase. In order
to evaluate their effectiveness, we compared these approaches with a typical first-come
first-served policy and with the case of a perfect knowledge of the realized demand. We
also assess the validity of the proposed policies in a real setting. Experiments reveal that
the use of the proposed policies could help the logistic operator to control the capacity
levels, to improve customer service and fleet utilization, by maximizing the revenue.

The second area of interest considers the problem of a logistic operator that rent
trucks of different capacities for transportation service from a given set of origins to a given
set of destinations on a given time horizon, with the possibility to apply the upgrading
strategy, i. e to assign a truck of greater capacity to a certain customer. For this problem,
a dynamic programming formulation and linear approximations are defined and primal
and dual acceptance policies, that use partitioned booking limits and bid prices controls,
are provided to accept or reject a request at a certain time. We also provide mathemat-
ical formulations and the related RM policies to consider specific aspects of truck rental
process, such as the possibility of loading multiple demands on the same truck (i.e., truck
sharing) and the repositioning of empty trucks from nodes, where they are not used, to
nodes from which a new transportation request could be satisfied.

In a second part of the thesis, we consider the application of RM to restaurant
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industry. We investigate the restaurant RM problem from both a strategic and operational
point of view. From a strategic perspective, we formulate different variants for the table
mix problem by considering different aspects, such as the number of potential customers,
the expected meals duration and the available space or restaurant dimensions. We also
consider the possibility of combining tables, i.e satisfy the demand of a group of people not
only by table with number of seats equal to the number of customers or greater but also
by combining tables with seats less than customers. From an operational point of view,
we assess the decision about how to assign tables or combination of tables to customers
in a more profitable way. The problem is formulated as a dynamic program. Due to the
curse of dimensionality, a linear programming approximation is proposed and RM policies,
based on partitioned booking limits and bid prices controls, are presented. Moreover, we
propose a new policy called later accommodation booking limit policy to consider the
possibility of proposing to the customer, requiring for a table at a certain time of the meal
horizon, a later starting time for the meal.

1.2 Goals

The scientific literature provides several solution approaches to solve the different RM
problems. This management technique is widely applied in many service/product indus-
tries. Because of this, we analyze the RM applications in traditional and recent businesses
industries from different perspectives in order to increase the knowledge on RM. In the
light of RM success, we try to adapt RM approaches to the needs of car/truck rental and
restaurant industries. Not a large body of literature deals with the RM applications in
these two business fields. But we show how the RM methodologies can be implemented in
the car rental and restaurant industries in a very innovative, effective and efficient manner.

The main goal of this thesis is to provide innovative RM models and policies to
solve the capacity allocation problem, i.e how efficiently allocate a limited resource (cars
or tables) among requests for service, by determining whether or not each service request
received should be accepted or rejected, with the objective of increasing the organization’s
profit.

1.3 Contribution

In this thesis we propose innovative models and policies to address the following problems.

1. Optimal strategies to manage capacity and booking reservations for car/truck rental
service through the definition of:

- RM policies and robust optimization approach to deal with car rental problems;

- RM policies to deal with truck (i.e means of transport with different load capacity)
rental problems;



9 Chapter 1

2. Optimal strategies to manage capacity and booking reservations for restaurant ser-
vice through the definition of RM policies.

The proposed research problems are of both theoretical and practical importance.
First of all, the detailed analysis and description of the car/truck rental process will
contribute further to the effective application and growing understanding of RM techniques
to manage capacity allocation and demand. This is the first time, to our knowledge,
that RM techniques are applied to the problem of a car/truck rental on a network by
considering at the same time several aspects of this business process. In fact, the possibility
of considering upgrades, one way rentals, truck sharing, car transfer and repositioning of
empty truck in the same mathematical model to optimally allocate limited capacity and the
applicability of these models to develop acceptation policies to decide dynamically when
to accept an incoming rental request, are our main contributions within the RM literature.
Furthermore, dynamic programming models, that include upgrades and one-way rentals,
are developed to represent the optimal management of a car/truck rental business, that are
not presented within the RM literature up to now. In order to validate the performance of
the developed policies and their applicability, an extensive computational study is carried
out by considering a large set of randomly generated test problems, defined trying to be
quite close to the reality of medium-sized car rental agencies. The computational results
collected are very encouraging, showing that the proposed models can be used to address
the problem under consideration and the proposed policies can be used to take profitable
decisions in assigning resources. We also underline that, to the best of our knowledge, our
robust optimization approach represents the first attempt to apply robust optimization to
the car rental industry.

The main contribution of this thesis for RM restaurant field reside in presenting
different models and solution approaches revenue based for two type of problems. The
strategic problem, i.e to decide the best table configuration for a new restaurant. The
operative problem, i.e to assign tables to customers in the more profitable way. For
the first problem, we present different formulations at crescent level of details and the
extensions at the tables combinability case. For the second problem, we give a dynamic
formulation and a linear programming approximation of the novel parties mix problem
to deal with the possibility of combining tables. In order to decide about accepting or
denying booking requests, different control policies are developed.

1.4 Organization of the thesis

The rest of the thesis is organized as follows.

In chapter 2 we provide an overview of the literature, covering both RM, car rental
and restaurant related papers. The chapter presents the origins, the key characteristics
and the main business applications of RM and the necessity of extension of RM practices
within the car rental and restaurant industries is emphasized.

Chapter 3 gives a description of the main characteristics of the car rental process.
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In this chapter an innovative mathematical model, defined to represent the car rental RM
problem, is presented. To incorporate demand uncertainty, several additional robustness
measures and the related scenario-based formulations are provided.

Chapter 4 covers some strategic and tactical planning aspects of the car rental
process considered in RM literature. First, the car rental problem, more detailed than
the problem illustrated in the previous chapter, is described. Dynamic programming
formulations of the problem are given for the basic rental problem (BRp, for short) and
for an extension version, which considers the one-way rental strategy (OWRp, for short)
and the related linear programming approximations are presented. Finally, in the chapter
we provide a RM approach to these car rental problems with description of the proposed
RM policies, based on the solution of the linear problems.

In Chapter 5 the trucks rental problem (TRP, for short) is discussed and its dynamic
programming formulation is given. The linear programming formulation for the TRP,
together with the description of some RM primal and dual acceptance policies, based on
the solution of the linear problem are given. The theoretical issues of the proposed policies
are also investigated. Furthermore, a new policy that considers the possibility to apply
sharing is defined. New versions of the TRP, incorporating sharing and the repositioning
of empty trucks, are also exploited and related partitioned booking limits and bid prices
policies are defined.

In Chapter 6 the restaurant RM problem is investigated. Different formulations,
at crescent level of details, of the table mix problem are given for a new restaurant that
have to decide the best table configuration. Extensions at the tables combinability case
are presented. We give a dynamic formulation of the new parties mix problem followed
by a linear programming approximation of the problem. The chapter concludes with the
description of the several proposed RM control policies.

Conclusions are given in Chapter 7. This chapter summarizes the results of research
activities illustrated in the thesis and discusses the potential applications of the proposed
models and policies. The Chapter concludes with direction for future research.



Chapter 2

Revenue Management: basic
concepts and applications

2.1 Introduction

Every day all industries and firms face the challenge of maintaining or improving their
revenues. Yet greater competitive pressures are making it more difficult to generate these
additional revenues. This is especially true in industries where the inventory or sales
opportunities are perishable, in that they cannot be used after a certain time: the potential
revenue from an airline seat is lost if it is not filled by the time the flight leaves; a railway
seat is lost if it is not filled by the time the train leaves; the revenue from a hotel room
left empty for a night is lost; a rental car left idle during a day is a revenue loss.

To react to dynamic economic changes and increasing competition, firms usually
implement actions intended to increase profits by reducing costs. In contrast, evidence
indicates that companies that focus on revenue growth are more profitable than compa-
nies that concentrate on cost reduction. Traditional solutions such as cost-cutting will
always play a role, but on their own they are unlikely to create a lasting competitive
advantage because companies will be following similar strategies and may take turns to
be market leader, often with lower prices and profits. As a result, more companies try
to apply revenue management (RM), which can lead to a sustainable advantage, and this
advantage is generally enhanced if competitors choose the same route. RM refers to the
process of generating incremental revenues from existing inventory or capacity through a
better administration of the sale of a perishable product or service and is the collection
of strategies and tactics firms use to manage customer behavior and demand to maximize
profits.

One definition of RM is defined as “an order acceptance and refusal process that
employs differential pricing strategies and stops sales tactics to reallocate capacity, enhance
delivery reliability and speed and realize revenue from change order responsiveness in order
to maximize revenue from preexisting capacity” [59]. More simply, RM can be defined

11
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as “selling the right product to the right customer at the right time for the right price”
[35]. Despite its widespread use, many researchers have asserted that there is no standard
definition of RM in the literature (e.g [67], [157]), because the definition is evolving over
the years depending on the focus of a specific RM paper.

RM tools and techniques developed in the airlines (see Section 2.2) but during the
past decades spread to other industries, such as car rental, restaurant, banking, broadcast-
ing, electric utilities, healthcare, hospitality, telecommunications, transportation, printing,
etc. The general principles of RM are widely applicable. The application of RM principles
depends on each company’s competitive situation and specific activities, but the imple-
mentation process is similar for all firms. The applications of RM are discussed in the
following Section 2.4.

RM has recently gained attention as one of the most economically significant and
rapidly growing applications of operations research. RM deals with sales decisions, de-
mand management decisions and supply decisions, so the term RM refers to a wide range
of techniques, decisions, methods, processes and technologies. In reality “RM is a very
old idea...What is new about RM is how these decisions are made...a technologically so-
phisticated, detailed, and intensely operational approach to making decisions driven by
advances in science and technology managed by a human decision makers” [154].

In addition to researchers who examined RM in the context of specific industries
(see Section 2.4), some provided overviews or general models and applications. The most
comprehensive survey articles are those of Weatherford and Bodily, McGill and VanRyzin,
van Ryzin and Talluri.

Weatherford and Bodily in [157] give an overview, examining over 40 articles, of the
types of problems addressed and some of the models applied and, in order to categorize
RM problems, propose a taxonomy of 14 distinguishing elements, such as the type of
resources (discrete or continuous), the prices (predetermined, set optimally, set jointly
with inventory decisions), the number of discount classes, decision rule types, etc. They
examine some of the currently addressed problems and suggest realistic problems that
have not been considered yet.

McGill and van Ryzin [113] give a research overview of transportation RM in its
four key areas of forecasting, overbooking, seat inventory control and pricing. The survey
reviews the forty-year history of RM, by analyzing over 190 references and includes a
glossary of RM terminology.

van Ryzin and Talluri [154] provide an introduction to RM, based on excerpts
from their book “The Theory and Practice of Revenue Management”[144]. They give
an overview of the field, its origins, applications, models and methods used.

In addition, several books on RM have been published that address several issues
about RM.

In “Revenue management: hard-core tactics for market domination” Cross [35],
draws on case studies to present revenue generating strategies. Cross describes no-tech,
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low-tech, and high-tech methods that managers can use to increase revenue by meeting
the challenge of matching supply with demand; to predict consumer behavior; to tap into
new markets and to deliver products and services to customers effectively and efficiently.

The most important and best-known tome on RM is “The Theory and Practice
of Revenue Management” of Talluri and van Ryzin [144]. It is the first comprehensive
reference book to be published about RM. It covers theory, relevant research, industrial
practices and details of implementation the entire field of RM. A central objective of the
book is to unify the various forms of RM and to link them closely to each other and to
the supporting fields of statistics and economics. The purpose of the book is to provide a
comprehensive, accessible synthesis of the state-of-the-art in RM and of its related topics.

Another book that should be mentioned is “Revenue Management” of Danilo Zatta,
who gives a comprehensive description of different aspects of RM and illustrates several
case studies [167].

Finally, one of the most recent overviews on RM is the paper written by Chiang
et al.[30]. The paper provides a comprehensive review of the recent development and
progress of RM in different industries in recent years, especially after 1999 and examines
221 articles.

In the following, we focus on publications that are more related to our work, paying
attention to point out the recent literature on different RM problems, methodologies and
applications.

2.2 The origins of RM

RM, initially called yield management, originates from the airline industry in the ′70s
[123]. The first application of RM came after the Airline Deregulation Act of 1978 in
the USA as a need for airline companies to protect their business from aggressive new
competitors in the post-deregulation era. Before 1978 the American airline routes, fares
and frequency of flights were controlled by the Civil Aeronautics Board (CAB). The intro-
duction of the Airline Deregulation Act established the elimination of all fare restrictions
on domestic routes and the loss of CAB control and led to the introduction of new services
to encourage new entrants into the airline business. These new airlines were able to price
profitably much lower than the major carriers, by determining a significant reduction of
price-sensitive or leisure travelers for the American Airline. In order to recapture these
customers and to compete against the public charters, the strategy of American Airline
was based on the control of surplus seats on each flight and of their fixed costs together
with finding a way to increase revenue. To this aim, American Airline introduced different
strategies like purchase restrictions, i.e additional discounts (Super Saver Fares) for travel-
ers that purchased the seat a certain number of days before departure; capacity controlled
fares, i.e number of discount seats that are limited on each flight, in fact, by offering the
lower fare the airline could, in principle, risk losing the passengers paying the full fare.
To this aim, American Airline segmented the market between leisure travelers, who were
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able to book early and who were more price sensitive, and business travelers, who were
less price sensitive but needed seat availability at the last minute; used differentiated pric-
ing to attack competitors, which allows every seat to be sold at a low fare. After few
years, a Dynamic Inventory Allocation and Maintenance Optimizer (DINAMO) system
was developed and implemented. This system constitutes the first large-scale RM system
application. As a consequence of the positive results obtained in American Airline, which
generated an additional incremental revenue of $1.4 billion in three years [138], other
major companies (United, Delta, Continental) implemented computerized RM systems.
Furthermore, in the ′70s, the deregulation of the air travel markets was taking place also
in Europe and Asia and other airlines companies began to adopt RM. As an example, in
1972 British Overseas Airways Corporation (now British Airways) offered the so called
“Earlybird” discount for bookings that arrive at least twenty-one days in advance. The
effective control of discount seats required the development of solution methods for the
airline RM problem and the application of specific seat inventory control rules. A first
rule, proposed by Littlewood in [108], established that discount fare bookings should be
accepted as long as their revenue value exceeded the expected revenue of future full fare
bookings [113]. Even if a variety of solution methods have since been introduced, the
Littlewood’ rule constitutes the basis of modern RM stategies.

2.3 Key areas of RM

The four main research areas in RM are forecasting, overbooking, inventory control and
pricing [113], [128]. These critical topics have been addressed independently in several
works or some of these aspects were studied jointly.

Overbooking. The practice of overbooking involves selling more capacity than
actually exists to counterbalance the effect of cancellations and no-shows. Overbooking
balances the risks of spoilage and denied boarding. In fact, overbooking as an integral part
of RM has received significant attention in the literature. This is the most studied RM
problem, particularly in the airlines, and exhaustive list of references of overbooking are
given in [157],[113],[30]. Rothstein in [133] provides the first dynamic programming formu-
lation for the overbooking problem in airline and hotel industries. The paper of Karaesmen
and van Ryzin is particularly interesting, who in [70] propose a generic method for co-
ordinating overbooking and seat allocation decisions in general networks and provide a
comprehensive overview of the main papers addressing appropriate overbooking and ca-
pacity control models and methods. The overbooking problem has been widely handled
also in hotels [96], [95], [105]. In addition to surveys mentioned above, a recent publica-
tions about overbooking in the hotel industry is [65], in which mathematical models and
techniques for calculating the optimal number of overbookings are proposed and a rich
literature review is presented. Other recent papers are [55], which examines the practice of
overbooking in hotels dealing with multiple tour-operators; [10] which develops two algo-
rithms that integrate overbooking with the allocation decisions, by simulations modelling
realistic hotel operating environments, and comparing the performance of five heuristics
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under 36 realistic hotel operating environments. Moreover, we can find good applications
of overbooking in other service industries, for example [104] applies the thought of the real
options analysis to construct a cruise line overbooking risk decision model.

Forecasting. One of the key principles of RM is the firm’s ability to forecast
demand. This issue is also strongly correlated to overbooking because correct overbooking
calculations depend on forecasting of demand, cancellations and no-shows. Lee [100]
divides RM forecasting methods into three types: historical booking models, advances
booking models and combined models. For a review of forecasting in RM see [155] and [30].
In [113] models for demand distributions and customers’ arrival processes are presented
in chronological order, and aggregate and disaggregate forecasting in the airline industry
are compared. Zaky [166] examines forecasting for airline RM; In [159], [158] a variety of
forecasting methods for hotel RM systems using data from Choice Hotels and Marriott
Hotels are presented and tested. A recent work about demand is [152], which reports some
considerations on the limitations of RM current demand models. In [141] a novel model
for airline demand forecasting by estimating the model from historical data is investigated.

Pricing. Most firm that practice RM rely on competitive pricing methods. The
pricing problem is how to determine the price for each customers class and how to vary
prices over time to maximize revenues. Research into pricing and related issues is extremely
widespread and spans a variety of disciplines. The papers by McGill and van Ryzin,
Elmghraby and Keskinocak, Bitran and Caldentey, and the book by Talluri and van Ryzin
provide comprehensive overviews of the areas of dynamic pricing and RM. In [113], [30]
a detailed collection of the main papers that investigate the pricing strategies in RM is
given. Desiraju and Shugan [39] investigate pricing strategies based on RM, such as early
discounting, overbooking and limiting early sales for capacity constrained services. Bitran
and Caldentey [22] examines the research and results of different dynamic pricing models
and policies and the different optimisation techniques for the deterministic solution of the
pricing problem. Elmaghraby and Keskinocak in [44] provide an overview of dynamic
pricing practices in the presence of inventory considerations. Anjos et al. in [5] present
a family of continuous pricing functions for which the optimal pricing strategy can be
explicitly characterized and easily implemented. A noteworthy work in these fields is the
book of Phillips,“ Pricing and Revenue Optimization” [128], which can be considered the
first comprehensive introduction to the concepts, theories, and applications of pricing and
revenue optimization. Recent related papers are [33], where major milestones in the field
of pricing and RM are identified and the adaptation of these concepts to diverse industries
are described; in [112] multiproduct dynamic pricing models for a revenue maximizing
monopolist firm are reviewed and a connection between these dynamic pricing models and
the closely related model where prices are fixed is described. Moreover, it is possible for the
seller to control dynamically how to allocate capacity to requests for the different products.
Given the current importance of RM and dynamic pricing, a special issue of EJOR [102], is
dedicated to them. This issue contains contributions in network airline passenger RM, air
cargo overbooking, optimal pricing in airline and general service settings, dynamic pricing
in competition, and dynamic pricing with strategic customers. See also Gallego and van
Ryzin ([46], [47]) for discussions about how to address pricing and inventory decisions
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simultaneously, particularly in the airlines.

Capacity control. Another critical problem in RM is capacity control (or seat
inventory control in the airline industry). The objective of capacity control methodologies
is to define how to allocate capacity optimally to differentiated classes of demand. The
aim of this thesis is to develop and apply capacity control policies based on RM in specific
service settings. These policies aim to accept or reject requests for a given product, by
optimally allocating the available capacity to customers classes.

Many articles on capacity control have been published by authors who provide var-
ious models and methods for making capacity decisions since 1972 when Littlewood pro-
posed his rule for two fare classes [108]. Inventory control problems have usually been
analyzed by considering two topics: single-resource and multiple resource or network ca-
pacity control. A review is provided by McGill and van Ryzin in [113] and for recent
articles see [30].

Single-resource capacity control : refers to allocating capacity of a single resource
to different demand classes, for example the sale of a single flight leg to different fare
classes. Littlewood’s rule for two fare classes, defined for airline problem, represents the
earliest single-resource model. The question is how much demand for a class should be
accepted so that the optimal mix of passengers is achieved and the highest revenue is
obtained. By assuming demand in lower fare class precedes demand in higher fare classes,
Littlewood suggests closing down a class when the certain revenue from selling another
low fare seat is exceeded by the expected revenue of selling the same seat at the higher
fare. This suggests that there is an optimal protection limit, i.e the total number of seats
restricted to booking in one or more fare classes. Littlewood’s model is limited to two
classes. Belobaba in [14], [13] and [15] developed heuristic extensions of Littlewood’s rule
to multiple fare classes, assuming the probability distribution of demand in each fare class
is known, and developed a model based on this rule called Expected marginal seat revenue
(EMSR) which is an n-class model, and then correlated heuristics (EMSR-a, EMSR-b).
Subsequently, a number of authors have discussed the single-resource capacity control, see
[113] and [30] for a review. Netessine and Shumsky [120] focused on how allocate perishable
inventory among a variety of customers segments and applied RM tools in airlines, hotels
and car rentals, by considering the basic EMSR model. More recently, Talluri and van
Ryzin [145] analyzed the multiple-fare class problem based on consumer choice. While this
approach is more sophisticated and realistic than many, it requires information not only on
the arrival process but also on the customers’ choice behavior. Lan et al. [99] considered
the classical multifare, single-resource (leg) problem in RM when the only information
available is lower/upper bounds on demand. They provided also a consistent literature
review. See also, [154] for a complete and deep recent examination of the single-resource
RM problems and relative models and methods of solution.

To address the single-resource capacity case there are different RM approaches or
types of controls (see [154] for relevant references). Among them, the most important are
described in what follows. Booking limits that limit the amount of capacity that can be
sold to any particular class at a given point in time. Booking limits are either partitioned
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or nested: a partitioned booking limit divides the available capacity into separate blocks
(or buckets), one for each class, which can be sold only to the designated class. With a
nested booking limit, the capacity available to different classes overlaps in a hierarchical
manner, with higher ranked classes having access to all the capacity reserved for lower
ranked classes (and perhaps more); Protection levels specify an amount of capacity to
reserve (protect) for a particular class or set of classes. Again, protection levels can be
nested or partitioned; Bid Prices are revenue-based, rather than class-based, controls.
A bid-price control sets a threshold price (which may depend on variables such as the
remaining capacity or time). Bid prices must be updated after each sale and possibly also
with time.

The tutorial of van Ryzin and Talluri [154] contains a comprehensive review of mod-
els used to approach single-resource problem. In [154] the main static models, Littlewood’
two-class model, n-class models and the RM heuristics used to calculate booking limits
and protection levels are examined and the main assumptions that characterized the static
models are explained. Among these, there are assumptions about demand for different
classes that arrives in nonoverlapping intervals and in a low-to-high revenue order, about
demands that are independent random variables, in the sense that do not depend on the
availability of other classes; about the group bookings that can be partially accepted, etc.

Furthermore, the n-class models can be formulated as a dynamic program. The for-
mulation and structural properties of dynamic models are described in [154], [28], [146].
Dynamic models are formulated to make optimal decisions over time under uncertain con-
ditions and to control the state variables. In the RM field, dynamic models help to decide
whether to accept or reject a booking reservation and to control the capacity. Dynamic
programming considers an arbitrary order of arrival, the relaxation of the assumption of
low-to-high revenue order, the limitations on the distributions of demand to use, and other
assumptions that are similar to static case.

Multiple resource or Network capacity control : considers the capacity allocation
when customers require a bundle of different resources simultaneously, for example a
room occupied for multi-night stays in a hotel, a car rented for a certain number of
days, two connecting flights etc. There are significant revenue benefits from using network
approaches, but they require an increasing complexity and volume of data, in fact opti-
mization methods are more complex and require several approximations because an exact
optimization became computationally intractable [161], [146]. Several methods to address
this RM problem have been developed from the origin-destination control problem in the
airline industry. For the earliest contributions see [113], which presents a review of the
Origin-Destination problem (also called origin-destination fare control ODF) mathemati-
cal formulations from 1982 to 1999 and three approaches that have been taken to address
network RM problem: segment control, that considers a partial solution to the O-D control
problem because does not involves connections between flights but only the single flight
segment or leg; virtual nesting, which represents a technique to grouped multiple ODF
classes into virtual buckets, i.e a set of fare classes, on the basis of revenue characteristics;
bid-price methods, which establish marginal values for incremental resources by using dual
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variables of the basic linear programming model in order to accept or reject a booking
request. The survey of Chiang et al. [30] contains references about network RM in other
industries, like hotels [97]. For a simple examination of the major categories of network
controls, see [146]. The authors consider the Virtual nesting controls, developed in airlines
[138], uses single-resource nested booking controls at each resource in the network, the
classes used are based on a set of virtual classes and products are assigned to a virtual
class through a clustering (or indexing) process [113]; Furthermore, they analyzes the
Network bid-price controls are a simple extension of their single-resource versions. These
controls use dual prices from a deterministic LP model to estimate marginal values for
incremental unit of the resources capacity [137],[161]. A request for a product is accepted
if the revenue exceeds the sum of the bid prices related to the resources that constitute
the product, otherwise it is rejected [113], [144].

In [146] the authors also describe the basic model of the network allocation problem
and the construction of the typical dynamic program to determine optimal decisions for
accepting or rejecting a request. Then they look at two approximations methods for
dynamic formulations that cannot be solved exactly, i.e a deterministic linear programming
model (DLP) and a randomized linear programming model (RLP). In the DLP stochastic
demand is substituted by its mean value so that it became computationally simple to solve,
the RLP method consists of simulating a sequence of realizations of itinerary demand and
solving deterministic linear programs to allocate capacity to itineraries for each realization.
The dual prices from this sequence are then averaged to form a bid price approximation
[143]. Several models and algorithms for solving the stochastic and dynamic network
RM problem have been provided by Bertsimas and Popescu in [19], they proposed a new
efficient control algorithm, based on a certainty equivalent approximation and compared
it with the widely used bid-price control policy.

A significant limitation of the applicability of these methods is the assumption, made
for analytical convenience, of independent demand for different classes of customers [154].
In response to this, in recent years interest has arisen to incorporate customer choice into
these models, further increasing their complexity, see for example [144], [109], [153], [168].
Recently, new tools to manage the more realistic situation of dependent demand RM have
been designed [160].

RM problems are typically modeled as dynamic stochastic optimization problems
(DP), with future demand unknown but that can be described by a stochastic process
or a probability distribution. The DP usually suffers from intractability due to the curse
of dimensionality, i.e. the size of the problem increases exponentially with the horizon
considered. There is another important field of stochastic optimization, called robust
optimization. The idea is to restore mathematical tractability, using mathematical pro-
gramming techniques, while making fewer assumptions about the demand [147], [126].
Different decision-making criteria can be used: the maximin revenue, minimax regret,
competitive ratio, etc. An overview of robust optimization approaches will be provided in
Chapter 3.
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2.4 The applications of RM

There are numerous demonstrations of the effective impact of RM in various industries.
Generally, companies using RM have reported increases in revenue ranging from 2 to 5
percent [57], [138]. All major international airlines have already implemented RM systems.
American Airlines, one of the pioneers, increased its yearly revenue by 500 million as a
result. Delta Airlines has gained 100 million/ year [26]. Many other airlines in Europe and
East Asia have reported significant gains. In the mid-1990s, at the Marriott Hotels, the
execution of RM have added between $150 million and $200 million to the annual revenue
[35], [62]. Orkin in [121] suggests that hotels can benefit from adopting RM systems. In
particular, he claims that Hyatt Regency’s average rate for all reservations increased after
the adoption of RM techniques. He also states that many Hilton hotels have set revenue
records since instituting RM. Harrahs Cherokee Casino and Hotel, in the USA has used
RM and improved yield by 3-7 percent and revenue by 15 percent in 2008. IBM initiated a
broad, analytics-based project called On TARGET. It provides a set of analytical models
designed to improve revenue. These systems had a revenue impact of approximately $500
million. National Car Rental was saved from bankruptcy by RM and has increased its
revenue by $56 million/year [49]. Ford Motor Co. has been quietly enjoying a huge
surge in profitability, from 1995 to 1999 revenue was up from about $3 billion to $7.5
billion, of that $4.5 billion about $3 billion came from a series of RM initiatives [101].
National Broadcasting Corporation has increased its annual revenues by $50 million/year
in improved ad sales from 1996 to 2000. The French National Railway has increased its
revenue by 110 million francs/year. German Railways are using RM. GMAC in 2002
launched an early implementation of web-based RM in the financial services industry.
Texas Children Hospitals is using RM had competitive advantage [25]. RM has improved
the contribution to profit for a major steel company (Tata Steel) in India by $73 million
in 1986/87 and given a cumulative impact of hundreds of millions of dollars in later years.
In addition analytics driven Operations Research and RM techniques have helped Intel,
CSX Railway, USA, Canadian Pacific Railway, Netherlands Railways, to improve their
bottom line significantly.

“RM concepts will be applied to almost everything that can be sold and will prove to
be such a powerful competitive weapon that major firms will be living, and in many cases
dying, according to revenue management algorithms. The firms with the best revenue
management will prosper and grow; the remainder will struggle to survive by restricting
themselves to local or niche markets” 1.

2.4.1 RM preconditions

There are a number of characteristics common to industries where RM is traditionally
applicable and these features seem to be valid pre-conditions and prerequisites for the

1Professor Peter Bell, Richard C. Ivey School of Business and former President of International Feder-
ation of Operational Research Societies.
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success of RM applications [73],[157]:

• Perishable inventory. RM techniques can be applied to services or products that
perish or lose all of their value after a specific date and cannot be stored. For
example, an airline seat is unavailable for sale after a flight has departed, seats for
the theater, a sporting event, or a restaurant; space on any means of transportation,
in lodging, or for apartment rental; fashion or high technology goods; broadcast
advertising time periods; etc.

• Relatively fixed capacity. RM is suitable for service industries where capacity is fixed
or rather relatively fixed because it is possible to add or subtract inventory but it is
usually very expensive or impractical in the short run.

• Segmentable markets. Customer heterogeneity is critical for implementing RM. De-
mand for the service can be divided into market segments characterized by different
sensitivity to prices. The common mechanism used to segment customers in RM sit-
uations is the time of purchase, i.e the less price-sensitive customer generally waits
until the last minute to make reservations, whereas the more price sensitive people
make their reservations early for a reduced price.

• High fixed costs, low variable costs. The cost of selling an additional unit of the
existing capacity is low relative to the price of the service.

• Advance reservations. Booking requests can be evaluated and accepted or rejected
in advance of the performance of the service using logic programmed into the com-
puterized reservation system. Advance purchasing also requires dealing with the
following problem: accept a request and sell the product or service at the current
rate, or reject and wait for a new better request until a later date and possibly a
higher purchase price?

• Time variable demand. Demand varies over time (seasonally, weekly, daily, and so
on). There are definite peaks and valleys in demand, which can be predicted, but
not with a high degree of certainty so decisions became difficult. RM can be used
to smooth the demand variability, by increasing the price during periods of high
demand and decreasing the price during periods of low demand.

Equally important are the two following conditions underlined in [154]:

• Data and information system infrastructure: RM require database and transactions
systems to collect and store demand data and automate demand decisions.

• Management culture: it is important to implement a RM system in a realistic con-
text, that a firm’s management had a culture of innovation and problem solving and
a sufficient familiarity with the concepts of RM.
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Many sectors, including transport, travel, hospitality, communication etc., are con-
cerned mainly with the sale of perishable goods and services. Firms in these industries can
increase their profits significantly by applying the principles of RM. More recently com-
pared to development in airlines, RM practices can be encountered in many other service
industries, such as car rental and hotels, considered with airlines traditional RM applica-
tions, and restaurants, cruise lines, sporting events, to name a few, considered recent and
non-traditional applications of RM. The book “Revenue management and pricing: Case
studies and applications” [163] contains a wealth of new cases, best practices and a broad
range of experiences covering many industries and service sectors. It also complements
the book “Yield Management: Strategies for the Services Industries” [64], as it shows how
RM really works in practice.

In what follows some of the most relevant applications of RM in different industries
are presented [30] [33].

2.4.2 RM in traditional industries

Airlines, hotels and car rentals industries represent the traditional applications of RM
[120]. In the following sub-sections, some directions on recent RM problems and researches
are given, paying particular attention to car rental industries.

Airlines. The development of RM techniques began in the airlines in the 1960s,
with published work by Littlewood [108] on a two-fare single-leg problem and Rothstein
[133] on overbooking policies. Since then, many researchers have extended RM techniques
and the types of problems considered in the airlines. Its first application was optimizing
revenue associated with individual passengers on a single flight leg [14]. A discussion of
the earliest applications within airlines is provided by [138], that describes in detail the
history and implementation of RM at American Airline. The paper contains the milestones
in the airline industry that have affected the new RM techniques: overbooking, discount
allocation, clustering fares, estimations and modeling of demand. An important survey
paper of the past airline literature and main results in RM is provided by [113] and a
recent research study that should be required reading is the overview of Chiang et al. [30].

The seats on a flight are perishable products which can be offered to different cus-
tomer segments for different prices (fare classes). The seat inventory control problem
concerns the allocation of the finite seat inventory to the demand that occurs over time
before the flight is scheduled to depart. The objective is to find the right combination of
passengers on the flights such that revenues are maximized. The optimal allocation of the
seat inventory can be managed with a booking control policy, which determines whether
or not to accept a booking request when it arrives. Airlines deal with the importance
of demand forecasting because booking control policies make use of demand forecasts to
determine the optimal booking control strategy. In order to prevent a flight from taking
off with vacant seats, airlines tend to overbook a flight to avoid cancellation and no show.
The level of overbooking for each type of passenger has been the topic of research for
many years. Airlines also adopt pricing because price differentiation is the core issue of
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RM [123]. The identification of these key issues and the applications of the basic principles
to solve the problems in other industries determined the spread and the ongoing innovative
implementation of RM.

Hotels. The hotel industry has made effective use of RM principles and Marriott
International was a pioneer in implementing a RM system for the hospitality industry [8],
[57], [35]. Recently, Chiang et al. in [30] and Anderson and Xie in [4], provide a chronolog-
ical list of papers dealing with hotel RM; Cross et al. in [32] give a summary of the current
and future status of hotel RM. [81] provides the results of an online survey of nearly 500
RM professionals and a framework on how hotels can best position themselves for the fu-
ture. A general overview of RM practice in the hotel industry is provided by [73] and [41].
Orkin in [121] outlines some of the ideas behind RM for hotels and provides examples of
the types of calculations. Early work on overbooking of hotel reservations was performed
by [134], and stochastic cancellations of customers in a single day period was considered
by [105]. Bitran and Gilbert in [24] modeled hotel reservations incorporating uncertain
arrivals, and [23] extended previous models to include multiple day stays. Weatherford
[156] concentrates on a booking control policy (see also [50]). Baker and Collier in [10]
compare the performances of five booking control policies under 36 hotel operating envi-
ronments. Hotels have to decide whether or not to accept a specific reservation request
and the best use of the limited number of rooms, considering the number of reservations
and customers show up without reservations (walk-ins). In hotels there is the possibility of
downgrading rooms, i.e to give a customers a suite for the price of a standard room when
the latter is not available. Rooms in hotels are perishability resources and overbooking
is usually applied in order to maximize the expected profit. Three main segments can
be identified in hotels: tourists, corporate travelers and groups, characterized by different
types of room required and different prices for room, different rejection costs associated
with turning them down and different days in which the booking is made.

2.4.3 Car Rentals

The first applications of RM in the car rental industry started in the early 1990s. In fact,
only Carroll and Grimes and Geraghty and Johnson provide accounts of the state-of-the-
art in car rental RM. In particular, Carroll and Grimes give a detailed description of the
implementation of RM at National Car Rental, whereas Geraghty and Johnson analyze
the RM approach in Hertz. Carroll and Grimes in [27] describe the story of car rental
business, from the first local operators activity in 1918 to 1990 when Hertz began using
price and RM system to control the price and availability of cars. Airline deregulation
increased the demand for rental cars and small business low-priced entered the market
because the percentage of leisure segments increased, changing company market shares.
Hertz, initially the major car rental firm in the US, to respond to demand changes, de-
veloped system to support decisions about rental fleet and geographic redistribution of
vehicles. Hertz developed RM decision support systems to decide: fleet size and composi-
tion using historical rental information; how to move cars among locations within a pool,
by considering that demand can vary at different locations at different period of time;
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rental car products to meet the needs of commercial (or corporate) customers and leisure
customers, by establishing rates by car type and advance reservations and by offering price
discounts; capacity control to set maximum availability for particular rates and car types,
using a capacity management system (CAPS); integration between supply and demand
information, developing a new Yield Management System (YMS). Carroll and Grimes give
an accurate description of YMS, underlining its potentiality and benefits for Hertz. They
also provide the main aspects of car rental RM and the distinct differences from its appli-
cation to airlines. The rental car perishable product is the car rental day since an unrented
car is considered to be a lost revenue opportunity to the business. A characteristic of RM
is the ability of the business to segment the market into price-sensitive or time-sensitive
customers. Specifically, in the car rental business, customers are categorized into corpo-
rate and leisure customers. The following characteristics differentiate the corporate (or
business, or commercial) customer from the leisure customer: the different types of cars,
the commercial customer typically rents full or mid-size cars, whereas the leisure customer
prefers economy cars; to reserve in advance in order to get a discounted rate, commercial
customers rent on weekdays for shorter time periods, whereas leisure customers can book
multiple reservation with no prepayment required and they do not have to pay any can-
cellation fees, rent over weekends and for longer periods of time and book several days in
advance to obtain discounted rates; the rate paid, corporate customers pay a fixed rate
contracted with companies, whereas leisure users pay themselves.

The main differences of car rental RM from its application to airlines are the degree
in which price changes, i.e. car rental firms have discrete price classes for the different
types of cars (economy versus luxury), but actively change the prices within these classes
on a daily basis. A car rental must deal with a restricted fleet but the mobility of inventory
is greater; a car rental is characterized by a more decentralized management of inventory
and by a large set of customers options: variable duration of rent and the possibility that
a car can be returned to a different point from the departure location [27].

Geraghty and Johnson in [49] initially explain the state of the car rental industry in
the U.S. from 1980 to 1990, when the car rental companies were taken over by automobile
manufacturers, because low margins of profit and the disappearance of tax credits. Then
they describe the crisis and the rebirth of National in 1993 due to RM techniques. The
implementation of RM analytic models and the development of a RM system (RMS) to
manage capacity, pricing and reservation saved National Car Rental. National had a rev-
enue improvement of $56 million in the first year of RMS application. The National RMS
processed the forecasting and analytical models to generate recommendations concerning
availability, rate and length of rent control in order to make, accept or reject decisions.
The analytic models were supported by sophisticated demand forecasts patterns. The
business process was characterized by three steps: capacity management, that included
fleet planning (how much of the available fleet should be at each inventory location) and
planned upgrades (how many high-valued vehicles to make available to lower booking
classes); overbooking (more reservations are accepted than can be accommodated to com-
pensate for cancellations and no-shows); pricing, that recommends increased or decreased
rates based on on-rent demand; reservations inventory control to identify the length of
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rent categories on each arrival day that provide the greatest revenue, it processes each
booking request and decides if accept or reject it on the basis of a constrained day indi-
cator. Geraghty and Johnson also propose algorithms that implement models for demand
forecasting, planned upgrades, pricing, and overbooking.

Nobody, apart from Carroll and Grimes and Geraghty and Johnson, gives a detailed
overview of car rental RM. In the recent literature new approaches to RM in the car rental
business about problems of pricing and dynamic pricing and fleet planning are proposed.

Anderson and Blair in [2] give an accurate account of RM approaches to pricing for
goods and/or services, analyze the practice of dynamically pricing a perishable product
across different market segments and outlines Performance Monitor, a phased approach
to performance measurement designed and implemented at Dollar Thrifty Automotive
Group, Inc.

Anderson, Davison and Rasmussen [3], falls into the pricing model category of RM.
They develop a new approach to dynamic pricing, one in which price itself is a random
variable. They derived a novel approach to modeling price as a stochastic differential
equation and applied it to car rentals. This model is based on the concepts of real option
theory ([40], [1]) and is related to the swing options used in the power industries. The
model produces minimally acceptable prices and the number of cars available for rent at
a given price, but does not include multiple rental periods and multiple car classes.

The PhD thesis of Kopliku [93] evaluate and find an optimal management strategy
for pricing problem for a car rental business using the principles of RM, by the following
assumptions: the car rental business price like the competition at times of low demand,
it offers only one product, i.e. the same type of car that can be rented only for one day,
and finally the model does not account for cancellations, overbooking. They provide an
overview of the existing literature of RM in the airline and car rental industries and review
the theory of dynamic programming and use Bellmans principle of optimality to obtain
a partial differential equation (pde) which describes the value of the car rental business
with respect to reservation time and price and solve it with a finite difference scheme and
Monte Carlo simulations.

One of the primary functions of RM for a car rental company is fleet planning, i.e.
to determine the optimal mixture and size of the vehicle fleet that should be available for
rent at each location on a daily basis. These locations can be independent or part of a
pool, that are a group of rental agencies that shares a fleet of vehicles [122]. Pachon et
al. [122] decompose the tactical fleet planning problem into two disjoint subproblems: the
fleet deployment subproblem and the transportation subproblem and develop a heuristic
to reduce the gap between the optimal solution and the solution provided by the decom-
position of the problem into two disjoint subproblems. They present three extensions of
the fleet deployment model to include the costs for unsatisfied demand and fleet surplus,
service level, and a general price demand function.

For a large-scale car rental company, fleet resource sharing problem can be solved
by pool segmentation. Leasing sites in the same pool can share a fleet of cars in a certain
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period, dispatching of vehicles among leasing sites are mainly realized through the spe-
cialized truck or return from remote places by clients naturally [162]. Yang et al. in [162]
provide a dynamic model for pool segmentation in the car rental industry, and a heuristic
algorithm is given to solve practical problems.

Fink and Reiners in [45] consider logistics management in the car rental business.
After giving an overview of car rental operations, they present a novel quantitative decision
model to solve efficiently short-term car rental logistics problems by means of network
flow optimization. Their decision model includes essential practical aspects such as multi-
period planning, a country-wide network, specific transportation relations, fleeting and
defleeting, and different car groups.

Other researches closely related to the literature on RM and car rental industries
are papers that consider general rental businesses, i.e. rental companies that acquires and
maintains an inventory of items which are used by the customers for a limited period of
time.

Savin et al. in [135] formulate the rental capacity allocation problem as a problem
in the control of queues for a fleet of identical vehicles accessed by two customer classes
whose arrival processes are independent, and use dynamic programming to investigate
properties of the optimal control policies.

Gans and Savin in [48] consider a rental firm with multiple classes of two types
of customers, contract customers and walk-in customers. Rental requests and durations
are stochastic. They provide a stochastic model and policies for the treatment of the
interaction between different classes of customers.

Papier and Thonemann in [124] present a stochastic model of a rental system with
two customer classes that can choose between premium and classic service. Under premium
service, customers reserve cars in advance, and they receive a service guarantee in return.
Under classic service, customers do not make a reservation and do not receive a service
guarantee. Because both demand classes access a common pool of cars, the company
must decide which demands to accept and which to reject, without knowing the rental
duration, which is an exponentially distributed random variable. They propose an ADI
policy applied to a rail cargo operations.

2.4.4 RM recent industries adoptions

More recently, applications of RM are appearing in other non-traditional industries includ-
ing restaurant (see Section 2.4.5), function space, spa or fitness centre, golf courses, casinos,
palapas, tour operators, rail transport, freight and cargo, cruise line, TV broadcasting,
Internet services, hospitals, etc. [88], [30], [4], [163]. In what follows some examples and
literature references of RM non-traditional applications are provided.

Hospital and health care. This deals with large fluctuations in demand depending on
time of day and day of week. Hospital surgeries are often overflowing on weekday morn-
ings but sit empty and underutilized on the weekend. Hospitals may experiment with
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optimizing their inventory of services and products based on different demand points. Ad-
ditionally, RM techniques allow hospitals to mitigate claim underpayments and denials,
thus preventing significant revenue leakage. Stanciu in [140], provides models and heuris-
tics implemented it in the healthcare industry, more specifically in the operating room
area and develops advance patient scheduling and capacity allocation policies. Born et al.
in [25] describe the collaboration between Texas Childrens Hospital and the tool PROS
RM Solution and their interaction with the Hospital Optimization System (HOS) that
have given Texas Childrens a competitive edge in the health-care marketplace, by using
RM forecasting and optimization tools. Lieberman in [106], suggests that the application
of RM can be extended to healthcare as well, by describing the case of a high quality
primary care health centre in California, the Mid-Peninsula Medical Center (MMC).

Cruise lines. Cruise RM has received little attention in the academic literature. The
primary goal of RM in the cruise-line industry is to maximise the net revenue received from
the sale of cabins at each sailing. Lieberman and Dieck in [107] present decision support
tools and modelling approach for the case of the purchase of airfare for cruise passengers.
An optimal air planning programme is proposed with emphasis on decision support for
routing passengers on flights and negotiating contract fares with the airlines. Toh et al. in
[150] describe how rooms are managed in the North American cruise industry (individual
as well as group reservations), and then explain why the cruise lines have out-performed
the hotels in average cabin/room occupancies. Biehn [21] argues that cruise ships are
not floating hotels (contrary to what is stated in Talluri and van Ryzin [144]). Ji and
Mazarella in [66] investigate the unique characteristics of cruise line inventory and discuss
how RM practices can be adapted to cruise inventory, present an effective solution for
cruise inventory application that incorporate a nested class allocation (NCA) model and
a dynamic class allocation (DCA) model. Maddah et al. in [111] develop a discrete-time
dynamic capacity control model for a cruise ship characterized by multiple constraints on
cabin and lifeboat capacities. Ayvaza and Huh in [7] develop a dynamic programming
model to solve the resource allocation problem of a health-care facility, and presented
the characteristics of the optimal policy and a simple heuristic policy that performs well.
Li in [103] proposes a static model which considers two-dimensional capacity constraints,
demand uncertainty and different customer types including families and singles and applies
four methods to solve it: constrained programming, robust optimization, deterministic
programming, and bid-price control. Then proposes a dynamic capacity allocation model
to gain an accepting or rejecting optimal policy. Li in [104] employs the real options
approach to construct a cruise line overbooking risk decision model with multiple price
classes, incremental cost and nonlinear goodwill loss.

Park industry. The nature of the theme park industry suggests potential for en-
hancing revenue by exercising a variety of RM techniques. Heo and Lee [60] propose
applications of RM to the theme park industry, and conduct an empirical analysis of
theme park customers perceived fairness of RM.

Nonprofit Operations. Metters and Vargas in [115] extend RM concepts to the non-
profit sector. A general heuristic is presented to assist decision makers in pricing decisions.



27 Chapter 2

The technique is demonstrated at a nonprofit child care center that provides discounts to
low-income families. Véricourt and Lobo [38] investigate how a nonprofit organization
should dynamically allocate its assets over time between its revenue-generating activities
and its mission, in order to maximize the organizations social impact. They model this
problem as a multiperiod stochastic dynamic program.

Tourism industry-Tour operators. Harewood [58] proposes a bid price control method
for coordinating a decentralized tourism supply chain. In [4] some of the basic complexi-
ties that originate with the acquisition of hotel rooms for a reseller of bundled vacations
are considered. They present a series of optimization models used by Sunquest Vacations,
Canadas number one travel provider. The room-risk management problem is formulated
as a math program with the objective of minimizing wasted rooms.

Financial Services. Offer a wide range of products to a wide range of customers.
Banks have applied segmented pricing tactics to loan holders, often utilizing heavy amounts
of data and modeling to project interest rates based on how much a customer is willing
to pay [68].

Golf courses. The characteristics that make a business suited to RM are also com-
mon to the golf industry. Tee times are perishable inventory. Courses have a limited
capacity and are booked via reservations. Different times and courses have different pric-
ing structures. There is a negligible cost to booking an additional tee time, and unit
pricing can have a dramatic impact on overall revenue. The golf course business is simi-
lar enough to hotel and airline operations that golf courses should be able to apply RM
principles [77]. Kimes and Schruben in [84] explain that golf courses have two strategic
levers, round duration control and demand-based pricing. This paper uses simulation to
study the most controllable factor of capacity: the tee time interval. A dynamic simu-
lation model is developed, which can be used to quantify the trade-offs in determining
an appropriate tee time interval. Rasekh and Li in [132] give an analysis of golf course
tee-time reservation practice and present a unique linear model that can be used to assign
the demand to the available tee-times, and thus, maximize their utilization and the total
revenue.

Broadcasting and Media. Advertisers place orders for commercials. Typically, each
order consists of multiple spots, and the airdates of the spots are not fixed by the advertiser.
Therefore, the channel has to decide simultaneously which orders to accept or to reject
and when spots from accepted orders should be scheduled. Kimms and Muller in [92]
present a mathematical model and five heuristics, develop a rigorous method to generate
a test bed and evaluate the performance of the heuristics on over 10, 000 instances of
various sizes. The broadcasting company allocates limited advertising space, called airtime
or media capacity, between two customer classes: upfront (market) clients and scatter
(market) clients. Optimally managing and valuing limited advertising space is one of the
key problems faced by media companies today. Araman and Popescu in [6] provide formal
models and solutions for the problem of managing broadcast advertising capacity.

For a review of RM innovations in retailers, energy sector and manufacturing indus-
tries ([59], [61]) we refer to [154]. For casinos, function space and spa, palapas, table-games
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applications of RM and related literature references, we recommend [4].

2.4.5 Restaurants

Restaurants are considered non-traditional RM applications, because the number and
depth of studies on RM in restaurants are not extensive and recent when compared to
airlines, hotels and car rentals. In restaurant RM the aim is to obtain higher revenue
by optimizing the allocation of the tables among the different type of customers. This
involves managing the time for which seats are occupied and optimizing menu options and
prices.

[73], [83], [76] and [82] are the first articles addressing the issue and the potential
benefits of restaurant RM. The first two papers discuss the applicability of RM techniques
to restaurant. Kimes in [76] develops guidelines for restaurant operators to maximize
revenue, in particular five steps to develop and apply a restaurant RM systems are pro-
vided. Kimes et al. in [82] define revenue per available seat-hour (RevPASH) as the best
indicator of the revenue generating performance of a restaurant, it indicates the rate at
which revenue is generated and is calculated as the ratio between revenue (or profit) for a
certain time period and the number of seat-hours available during that interval. They also
underline the importance of price and meal duration, the two main strategic levers [71]
in restaurants, and the influence of duration uncertainty on RevPASH and on restaurant
booking policies. They also provide some strategies for restaurant operators to deal with
high and low RevPASH periods, using a combination of point of sale (POS) data and time
study data.

One of the most important aspect of restaurant RM is considered the mix of table
sizes [4] first analyzed by Thompson. Thompson in [148] focuses on restaurants with only
walk-in customers (i.e. no reservations are taken), and examines the case of restaurants
with tables of different sizes dedicated to particular party sizes and restaurant with the
possibility of combining tables to seat larger parties. Thompson compares the two config-
urations by measuring performance based on the RevPASH. The results suggest that, in
general, if one does not have the best mix of tables in ones restaurant, it is better to have
combinable tables. He develops a restaurant table simulation model, called TABLEMIX,
that simulates the best restaurant configuration (position of each table and table that can
be combined) knowing the number of tables and the number of seats. TABLEMIX can be
used to evaluate a specific restaurant configuration or it can be used to search for the best
restaurant configuration. According to the result of Thompson’s simulation study, fixed
tables are best suited for large restaurant (200 seats), whereas small restaurants (50 seats)
can benefit from combinable tables. Thompson in [149] identifies which tables should
be combinable and resulted in better profitability, developing a guidelines that can help
restaurant managers and designers to configure restaurants. He focuses on Contribution
Margin per Available Seat Hour (CMPASH) instead of RevPASH, because RevPASH, as a
measure, is limited to revenue maximization, rather than profit maximization. The study
found that the optimal table configuration for profit improvement is the configurations
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with longer sequences of smaller combinable tables. Kimes el al. in [90] study the reduc-
tion of customer dining time as a duration control tool. If dining times can be reduced
during peak periods, the number of customers served and profitability will increase. If cus-
tomers feel rushed, however, satisfaction will decrease and the restaurant may lose future
business. This paper first examines the relationship between meal duration and consumer
behaviour and then proposes a model for the measurement of time sensitivity, called “
Time Sensitivity Measurement” or TSM to derive the expected dining time, the optimal
and indifference duration points. The results show that the time could be decreased by
approximately 20 per cent without a decrease in customer satisfaction. Bertsimas and
Shioda in [20] develop optimization models using mathematical models and simulated real
data to determine when to seat a party to achieve higher revenue, taking into account ex-
pected waiting time and perceived fairness. They develop integer programming, stochastic
programming, and approximate dynamic programming models to provide efficiently im-
plementable policies for restaurant RM and propose a stochastic gradient algorithm to
address with reservations. The results show that models improve revenue, compared to
FCFS policies usually used to seat parties, without increasing the average waiting time.
Pricing, although an important aspect of any RM strategy, has received limited attention.
Kimes and Wirtz in [87] investigate the reaction and perceptions of fairness of customers
when restaurants adopt differential RM pricing policies. They compare surcharges with
discounts for different period of day or week and for different table location and analyze the
customers perception. The results indicate restaurants should be able to smooth demand
by encouraging off-pick dining through promotions. Kimes and Wirtz in [88], test a variety
of demand-based pricing policies and found the most approaches were generally considered
to be fair. In particular, coupons, time of day and lunch/dinner pricing were considered as
fair; weekday/weekend was perceived as neutral and table location pricing was considered
unfair. They investigate the customers expectations in Asia, America and Europe. Kimes
and Wirtz in [89] describe the case of Prego Italian restaurant and the development of a
RM strategy to increase revenues without damage diner satisfaction. The case deals with
the typical challenges in demand and supply in capacity management in the restaurant
business and services management. Susskind et al. in [142] evaluate the ability of price to
balance demand by offering discounts menus, unusual food and service. They study the
reaction of restaurant guests to these tactics and show that more than 77 percent of clients
would be willing to shift their dining time to off-peak hours in exchange for discounts on
menu items and promotional offers. Kimes and Robson in [72] examines the dining ta-
ble characteristics and the measurable effects on duration and average check, which were
combined to show average spending per minute (SPM). The analysis performed on four
weeks of POS data found that the SPM for parties at booths was slightly higher than
average, while the SPM for diners at banquette tables was below the average. These find-
ings are based solely on a single restaurant, but they suggest that there may be interesting
relationships between a restaurant’s environment and its customers’ behavior. Kimes in
[78] discusses how Chevys Freshmex Restaurant developed, implemented, and evaluated
a RM program involving process analysis and duration control at one of its restaurants.
She analyzes the restaurant’s baseline performance, including seat occupancy, revenue per
available seat hour (RevPASH), party size mix, and dining duration. After reviewing the
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RM strategies for duration control, Kimes discusses how managers implemented those
strategies. Kimes and Thompson in [85] focus on developing an optimal supply (table)
mix, applying a simulation-based table enumeration system that allowed to determine the
optimal table mix using data from a 230 seat Chevys Freshmex Restaurant. Compared
to the restaurant’s existing table mix, the optimal mix resulted in more effective capacity
and increased RevPASH with a 35% increase in customer volume and a 5.1% increase
in revenue, without increasing waiting times. Kimes and Thompson in [86] provide dif-
ferent approaches to capacity planning and RM; they discuss the full-service restaurant
table mix problem that finds the optimal number of different size tables for a restaurant
to maximize its revenue; they examine the effectiveness of eight heuristic techniques for
the problem; finally, they observe that altering the table mix on a daily basis increased
performance by over 1% compared to maintaining the optimal weekly table mix. Hwang
in [63] investigates the impact of table assignment polices on waiting time performance
and the effects of key demand features (party size distribution and arrival rate) on best
policy selection. A restaurant simulation model with the spatial priority concern for table
location and combination showed the best policy varied by party size distribution and
arrival rate. Kimes in [79] and Kimes in [80], provide a framework for the adoption of
technology in the implementation of restaurant RM strategies and an analysis of the inno-
vative online reservations, the use of mobile reservations applications and third-party sites
that will continue to grow as restaurant IT systems begin to become more integrated.
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Chapter 3

Large Modeling and Solving a Car
Rental Revenue Optimization
Problem 1

Abstract

We address the problem of a car rental agency that is confronted with how to
decide to accept or reject a booking request to optimise the revenue. An innovative
integer programming model is devised, which incorporates particularities of the car rental
business, like multi-day rents and non-cascading upgrades. To capture the randomness of
the unknown demand, robustness measures and the related scenario-based formulations
are presented. An extensive computational study is carried out, by considering a set
of randomly generated instances. The collected computational results show the relation
between problem size and computation time and the effect of risk-aversion on revenue.

Keywords: Revenue Management, Car Rental, Integer Linear Programming, Robust Op-
timization.

3.1 Introduction

In this paper, we consider a Revenue Management (RM) problem, arising in the context
of the car rental industry. According to a classic definition, revenue management (RM,
for short) is a strategy, that involves the application of quantitative techniques, aimed at

1Accepted for pubblication in the journal Int. J. Mathematics in Operational Research, Vol. 3, No. 2,
2011, DOI: 10.1504/IJMOR.2011.038911
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maximizing revenue, generated from a limited capacity of a product over a finite hori-
zon, by selling each product to the right customer at the right time for the right price
([73]). However, as underlined by Karadjov and Farahmand in [69], the application of this
methodology allows companies to obtain sustainable benefits only if they integrate RM in
all their business activities.

RM has been originally developed in the airline industry: the earliest works date
back to the beginning of 1970s, with the paper of Littlewood [108], on a two-fare single-leg
problem, and the contribution of Rothstein [133] on overbooking policies. Since then,
RM techniques have been extended not only to other types of problems in the airlines
(the reader is referred to the recent papers [118], [42] and [29]), but also other numerous
retail and service industries, which have similar charateristics, began adopting RM strate-
gies. These include hotels, car rental, restaurants, cargo, cruise ship, internet services,
apartment renting, only to cite few of them ([113]; [30]; [91]; [12]; [114]).

It is worth noting that it is not possible to devise an unique standard revenue
optimization model, that can be used in all sectors of applications. Indeed, it is necessary
to develop tailored RM models and methods, defined by taking into account the specific
characteristics of the application under study.

As mentioned above, the car rental industry represents one of the application areas of
RM. Indeed, it possesses the characteristics that, if managed opportunely, could determine
the success of a process of RM (relatively fixed capacity, perishable inventory, advanced
reservations, time variable and stochastic demand, segmentable market, appropriate cost
and pricing structure ([73]). But despite that, the RM concepts in the car rental industry
has not well developed ([30]) and the number of scientific works, considering the definition
of RM techniques, tailored to the car rental business, are very limited.

The pioneer contributions are due to Carroll and Grimes [27] and Geraghty and
Johnson [49], who provide a detailed description of RM techniques, tailored for the car
rental process, and analyze the impact of adopting RM to real car rental companies. Car-
roll and Grimes in [27] consider the implementation of a RM system at Hertz car rentals,
whereas Geraghty and Johnson in [49] define RM policy for the National car rentals. Even
though the aforementioned papers address all aspects of the business managed through
RM (i.e., demand forecast, upgrades, pricing and overbooking), the descriptions are very
specific to the considered car rental companies.

Recently, the development of methods for the dynamic pricing, in the car rental
business, has been addressed by Anderson, Davison and Rasmussen [3] and Kopliku [93].
In particular, the car rental operator is considered as “the holder of a swing-like option
on car rental” and the price process is modelled as a stochastic differential equation.

On the basis of the previous considerations, in this work we propose an innovative
integer programming model, to mathematically represent the revenue optimization prob-
lem in the context of the car rental industry. The developed model allows to determine the
appropriate number of cars to be rented and incorporates the possibility of implementing
an upgrading policy.
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To handle demand uncertainty, some robustness criteria are applied to the formu-
lated problem and the related scenario-based representations are described. These robust
approaches aim at balancing expected revenue with feasibility, performance or regret in
given scenarios. To the best of our knowledge, this work represents the first attempt to
apply robust optimization approaches to the car rental industry.

The remainder of the paper is organized as follows. In the next section, we outline
the main characteristics of the car rental process. Section 3 is devoted to a detailed de-
scription of the innovative mathematical model, defined to represent the car rental revenue
management problem. In Section 4, to incorporate demand uncertainty, several additional
scenario-based formulations are presented. The proposed models are evaluated, on the ba-
sis of an extensive computational experimentation: the related results are presented and
discussed in Section 5. The paper closes with some concluding remarks in Section 6.

3.2 Problem description

The problem under consideration is that of a car rental agency, that wants to rent its
products, i.e., cars and commercial vehicles, in order to maximize the total revenue. In
what follows, the terms cars, commercial vehicles and vehicles are used interchangeably,
to indicate the products of the rental agency.

The car rental capacity is essentially given by a limited number of vehicles, that is
fixed in the sense that it cannot be subjected to excessive variations, that imply high costs.
It is organized in groups/categories. Each group is characterized by a given number of
vehicles, that is determined at the beginning of the booking horizon by the decision maker
on the basis of the requirements of the rental agency. The vehicles, belonging to the same
group, can be of different models, but they are charged at the same rates and at the same
rental conditions. Thus, each group is identified above all by the rate. Consequently, a
lower group/category is a category of smaller price but also of smaller performance and
value, while the advanced categories have greater rates and higher performances.

A car may be rented by a booking made in advance or by a walk-in customer on
the day of rental. A rental booking specifies the car group required, the start and end
dates/times of the rental. Optionally, the reservation may specify a one-way rental (in
which the car is returned to a branch different from the pick-up branch) and may request a
specific car model within the required group. One-way rentals are not within the scope of
this paper and we do not consider walk-in customers; thus we focus only on the customers
that use a reservation system. For each rental request the management of the rental
company decides, based on available rental capacity, whether to accept or to deny the
request.

The revenue management process of a typical car rental agency, when a car rental
reservation request arrives, can be viewed as characterized by the execution of the following
main steps.
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• If a car in the specified group is available for the specified rental period, the request
is accepted and the rental reservation is recorded.

• The rental request is rejected if:

– all equipment units are rented out;

– a car in the requested group is available, but the company’s management feels
that the rental capacity should be reserved for potentially more profitable re-
quests;

– a car in the requested group is not available and the customer is not willing to
rent a different group car.

• The demand for car rental vehicles has a nested structure: the demand for vehicles
of a specific type may be satisfied by

– upgrading customers with higher priced vehicles (i.e., when customers cannot
be provided with the type of car they had required, companies usually offer
them an upgrade by providing them with a higher priced car at the same rate),
but not vice versa;

– offering an available lower category car at the corresponding lower price.

It is important to note that if either the rental capacity is entirely utilized or more cars
have been requested than are available, the company’s management can decide to:

• not satisfy the excess demand and to deny the reservations, with possible negative
consequences above all for the image and the customer’s satisfaction;

• to ask other branches to transfer to him/her a certain number of cars, if available.
In this situation, a known cost has to be paid. In this paper, we don’t consider this
aspect.

In addition, the residual capacity, that is the set of vehicles that are un-rented in
a given period, remains unused until a new rental request arrives and this represents a
cost for the car rental agency. In this paper, we investigate only the maximization of the
revenue.

Generally, the car rental businesses have different rates depending on the type/group
of car rented, and on the rental period. In what follows, for the sake of simplicity, we
assume that the rental rate depends only on the type of car rented and the revenue
obtained from renting a car is equal to the rate charged per day for the given car, times
the number of day the car was rented out.

3.3 Mathematical formulation

In this section, we present a mathematical formulation of the considered car rental revenue
optimization problem, which can be viewed as an extension of the deterministic linear
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programming model used in standard revenue management ([144]). Following, the main
elements of the proposed model are introduced.

The objective of the car rental agency is to maximize the total revenue, while sat-
isfying the unknown demand on a given booking horizon. We assume that the infinite
booking horizon is divided into finite planning intervals. Each of them is characterized
by T time periods, indexed by t = 1, . . . , T − 1. Generally, a time period corresponds to
a day. In each time period t, t = 1, . . . , T − 1, the car rental agency has to decide on
accepting requests for a car belonging to a given group k, k = 1, . . . ,K from the day i
to the day j, i = t, . . . , T − 1, j = i + 1, . . . , T . A minimum rental period of 24 hours is
required for all rentals.

To give a formal representation of the proposed mathematical models, in what fol-
lows the major notations for parameters and variables used in this paper are given.

Parameters

K available groups/categories of vehicles;

pk daily rental rate for a car of category k, k = 1, . . . ,K;

Qk total capacity of group k, k = 1, . . . ,K, (i.e., number of available cars belonging to
the k − th group);

t = 1, . . . , T − 1 time periods of the booking horizon;

i = t, . . . , T − 1 starting time of the rent period; j = 2, . . . , T ending time of the rent
period; 1 ≤ i < j ≤ T , j = i+ 1, . . . , T ; (j − i) length of rent;

Dk
ij expected number of booking requests for cars belonging to the group k,k = 1, . . . ,K,

from day i to day j ;

Decision Variables

xlkij number of cars belonging to the group k, k = 2, . . . ,K, that are rented from day i
to day j to satisfy the rental request of cars belonging to the group l, l = k − 1 or
l = k, in the same period. The variable x11

ij is associated to the first category, for
which a lower group is not defined.

In the proposed models, by following an approach similar to the one presented in
[97], [98], [16], the check-ins and the check-outs are viewed as the flows in and out of the
nodes in a network.

Since the number of available cars of the group k is limited by the group capacity
Qk, the following capacity constraints are defined:
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(3.1)
t∑
i=1

T∑
j=t+1

(xk−1,k
ij + xkkij ) ≤ Qk, t = 1, . . . , T − 1, k = 2, . . . ,K;

(3.2)

t∑
i=1

T∑
j=t+1

x11
ij ≤ Q1, t = 1, . . . , T − 1.

Constraints (3.1) and (3.2) establish that, for each group and for each time period,
the number of vehicles used to satisfy the car rental requests cannot exceed the maximum
available capacity. The aggregate demand constraints can be represented as follows:

(3.3) xllij + xl,l+1
ij ≤ Dl

ij , i = 1, . . . , T − 1, j = i+ 1, . . . , T, l = 1, . . .K − 1;

(3.4) xKKij ≤ DK
ij ; i = 1, . . . , T − 1, j = i+ 1, . . . , T.

In particular, conditions (3.3) impose that, for each rent period (j − i) and for each
group k, the total number of vehicles rented to satisfy the demand of cars belonging to the
k-th group (i.e., cars belonging to the groups k and k+1) must be smaller than or equal to
the expected number of requests of vehicles of the group k. Indeed, since the upgrading is
allowed, the k− th group requests are satisfied with both the available vehicles of category
k and with the vehicles belonging to the superior group of k, l = k + 1.

On the other hand, conditions (3.4) establish that, for each rent length and for the
K − th group, for which a superior group does not exist and thus the upgrading is not
possible, the number of vehicles used to satisfy the rental requests must be smaller than
or equal to the total demand for this group.

The main goal is to maximize the revenue gained from all possible rentals, satisfying
the demand and capacity constraints introduced above. The objective function repre-
sents the revenue, obtained from the rentals during the considered booking horizon. In
particular, it can be represented mathematically as follows:

Maximize

T−1∑
i=1

T∑
j=i+1

K∑
k=2

(j − i)[pk−1xk−1,k
ij + pkxkkij ] +

T−1∑
i=1

T∑
j=i+1

(j − i)p1x11
ij



The proposed model allows to determine, for each category and for each time period,
the number of vehicles to be rented and the number of upgrades, with the objective of
maximizing the expected revenue, while satisfying demand and capacity constraints.
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On the basis of the previous considerations, the complete mathematical representa-
tion of the problem under study is given in what follows.

Maximize

T−1∑
i=1

T∑
j=i+1

K∑
k=2

(j − i)[pk−1xk−1,k
ij + pkxkkij ] +

T−1∑
i=1

T∑
j=i+1

(j − i)p1x11
ij



(3.5) xllij + xl,l+1
ij ≤ Dl

ij , i = 1, . . . , T − 1, j = i+ 1, . . . , T, l = 1, . . . ,K − 1

(3.6) xKK
ij ≤ DK

ij , i = 1, . . . , T − 1, j = i+ 1, . . . , T

(3.7)

t∑
i=1

T∑
j=t+1

(xk−1,k
ij + xk,kij ) ≤ Qk, t = 1, . . . , T − 1, k = 2, . . . ,K

(3.8)

t∑
i=1

T∑
j=t+1

x11
ij ≤ Q1, t = 1, . . . , T − 1

xlkij , x
11
ij ≥ 0, integer k = 2, . . . ,K, l = k − 1 or l = k,(3.9a)

i = 1, . . . , T − 1, j = i+ 1, . . . , T.(3.9b)

3.4 Robust scenario-based formulations

The car rental optimization model, presented in the previous section, is an integer pro-
gramming model. In addition, the parameters Dl

ij , i = 1, . . . , T − 1, j = i+ 1, . . . , T − 1,
l = 1, . . . ,K in constraints (3.3) and (3.4) are usually unknown at the beginning of the
booking horizon. The revenues may also not be fixed, since the car rental agency would
like to set different pricing, which in turn results in different demands.

In general, two different strategies can be considered to deal with uncertainty: the
reactive and the proactive approaches ([117]). In the former, the unknown parameters are
replaced by appropriate estimates, generally the expected values. The main drawback of
this approach is that the obtained solutions could be infeasible. Thus, a post-optimality
analysis is required to identify some corrective actions. The latter tries to reduce the conse-
quences of uncertainty, by determining solutions that are less sensitive to the model data
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than traditional mathematical programming models. Indeed, probabilistic information
about the problem data are taken into account.

A conventional way to address problem with probabilistic information is represented
by stochastic programming (see for instance [117], [116] and [36]), which employs a sce-
nario decomposition method to solve large-scale probabilistic optimization problems. It is
worth observing that, stochastic programming concerns only minimizing expected costs or
maximizing expected profits, where the expectation is taken over the assumed probability
distribution, which may not reflect the decision makers true utility function, it ignores
decision maker’s preferences toward risk and fails to reduce the variability of the solution
and constraints.

In order to overcome the aforementioned drawbacks, in [117] and [116], an improved
method, i.e., robust programming, has been introduced. This approach allows to represent
the decision makers’ favored risk aversion ([11]) and to generate a set of solutions, that are
progressively less sensitive to realizations of the model data from a scenario set ([165]).

On the basis of the previous considerations, in this paper, we focus our attention
on proactive approaches to deal with uncertainty. In particular, the problem under study
is represented by considering robust scenario-based formulations. Indeed, it is assumed
that the uncertainty is represented by a set of possible realizations, called scenarios. Each
scenario occurs with a certain probability and provides one possible course of future events
and can be defined as a possible realization, which describes the behavior of the aleatory
components of the problem.

Robust optimization is defined as an approach to find a solution whose objective
value is close to that of the optimal solution for each scenario ([116]). Indeed, a solution is
robust if it achieves the best worst-case deviation from optimality. This definition is used
in regret models of robust optimization ([94]), where the regret of a solution in a given
scenario is the difference between the revenue of the optimal solution for that scenario and
the revenue of the solution in that scenario.

In particular, Kouvelis and Yu [94] define two regret measures for robustness: the
robust deviation and the relative robustness criteria. The former is defined as a criterion
that selects the solution that achieves the smallest deviation from the best possible perfor-
mance for each scenario. The latter is defined as a criterion that selects the solution that
has the smallest percentage from the best possible behaviour for each scenario. There is
also a definition of absolute robustness presented by Kouvelis and Yu [94], it evaluates the
objective function value in each scenario without reference to the best possible decision
that could have been made in that scenario. Absolute robustness defines a solution that
maximizes (minimizes) the minimum (maximum) total profits (costs).

In [54] and [139] a different robustness measure is considered, that is the stochastic p-
robustness. More specifically, the aim is to find a solution that is within p% of the optimal
solution for any realizable scenario. It is worth observing that this last approach can lead
to infeasibility for small value of p. An alternative definition of robustness is given in [9],
where it is underlined that the main goal of robust optimization is to find a near-optimal
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solution that is not overly sensitive to any specific realization of the uncertainty. This
definition is generally used in the so-called variability models, which include variability
measures (i.e., variance, standard deviation, etc.) in the objective function ([117]).

Recently, Perakis and Roels [125] investigate the classical problem of allocating
network capacity in RM. The authors propose robust formulations and control policies for
this problem, considering the maxmin and the minmax regret criteria. Their numerical
results indicate that the robust policies generally appear to be comparable and sometimes
even better than traditional heuristics for network RM.

In this paper, different measures of robustness are considered. More specifically, the
attention has been focused on the maxmin criterion (i.e., the application of a simple ab-
solute robustness measure, maximizing the worst-case performance), the robust deviation
criterion, the stochastic p-robustness criterion and a standard deviation based variability
criterion.

With the aim to introduce the considered robust formulations, it is useful to intro-
duce the following notations and definitions. In all the robust formulations, S represents
the number of possible scenarios, which differ for the demand values and the daily rental
rates. To each scenario s = 1, . . . , S is associated the occurrence probability P (s), such

that
S∑
s=1

P (s) = 1. Πs denotes a deterministic car rental revenue optimization problem,

that depends on the considered scenario s. Indeed, for each scenario s = 1, . . . , S, there is
a different problem Πs. These problems have an identical structure, but they are charac-
terized by different data, in particular demands and daily rental rates. For each scenario
s = 1, . . . , S, z∗s represents the optimal objective value for Πs, whereas let X be a feasible
solution for Πs, zs(X) denotes the objective value of the problem Πs under the solution
X.

The models parameters and the decision variables, with their meanings, are reported
in what follows.

Parameters

S number of possible scenarios s = 1, . . . , S, each of them is characterized by different
demand values and the daily rental rates.

P (s) probability of occurrence of scenario s, such as
S∑
s=1

P (s) = 1

K available groups/categories of vehicles;

pk,s daily rental price for a vehicle of group k, under scenario s

Dk,s
ij number of requests (bookings) for vehicles of group k,k = 1, . . . ,K, from i to j,

under the scenario s

The decision variables are described below.
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Decision variables

xl,kij vehicles of group k, k = 2, . . . ,K, rented from i to j to satisfy the request for group
l (l = k − 1 or l = k).

x1,1
ij vehicles of group 1, for which a lower group is not defined, rented from i to j.

3.4.1 The absolute robustness criterion

As mentioned above, the common measure of absolute robustness is the maxmin (or min-
max in minimizing problem) criterion. In this case the problems yields very conservative
solutions based on the anticipation that the worst-case will happen ([94]). This criterion
will select a solution for which the minimum revenue, taken across all possible realizations,
is as greater as possible. Indeed, the aim is to find a solution that maximizes the minimum
revenue.

In this model, the optimal value will be the greatest revenue among the lowest
revenue obtained in the various scenarios. The related formulation is reported in what
follows.

Maximixe γ

such that

γ ≤

T−1∑
i=1

T∑
j=i+1

K∑
k=2

[(j − i)(pk−1,sxk−1,k
ij + pk,sxkkij )] +

T−1∑
i=1

T∑
j=i+1

(j − i)p1,sx11
ij



xllij + xl,l+1
ij ≤ Dl,s

ij i = 1, . . . , T − 1, j = i+ 1, . . . , T,(3.10a)

l = 1, . . . ,K − 1, s = 1, . . . , S(3.10b)

(3.11) xKK
ij ≤ DK,s

ij , i = 1, . . . , T − 1, j = i+ 1, . . . , T, s = 1, . . . , S

(3.12)

t∑
i=1

T∑
j=t+1

(xk−1,k
ij + xk,kij ) ≤ Qk, t = 1, . . . , T − 1, k = 2, . . . ,K

(3.13)

t∑
i=1

T∑
j=t+1

x11
ij ≤ Q1, t = 1, . . . , T − 1
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xlkij , x
11
ij ≥ 0, integer k = 2, . . . ,K, l = k − 1 or l = k,(3.14a)

i = 1, . . . , T − 1, j = i+ 1, . . . , T.(3.14b)

The robust deviation criterion

The robust deviation measure was chosen in this work, because it incorporates more
information in the solution than absolute robustness and thus it is believed to provide
a better answer about the objective of the model. The main measure of the robustness
deviation is the minmax regret (MinMax for short).

For a given optimization problem with uncertain parameters, the minmax regret
problem is to find a solution that minimizes the maximum regret across all scenarios. The
basic minmax models presented in [94] are conservative models that try to minimize the
effect of the worst-case scenario by minimizing the largest observed deviation from the
optimal for all scenarios. The first step is to compute the regret associated with each
combination of decision and input data scenario. The regret of a scenario is measured
as the closeness between the optimal objective function value for that scenario and the
objective function value of the chosen solution for that scenario. The minimax criterion
is then applied to the regret values and the decision with the least maximum regret is
chosen.

The minmax regret formulation of the proposed car rental revenue management
problem assumes the following form, in which the parameters and the variable have the
same meaning introduced in the previous subsection.

Minimize β

such that

(3.15) β ≥ z∗s − zs(X); s = 1, . . . , S

and constraints (3.10)-(3.14) should be also satisfied.

Stochastic p-robustness criterion

In this section, we apply to the proposed car rental revenue optimization problem the ro-
bustness measure, introduced by Snyder and Daskin [139] (i.e., the stocastic p-robustness
criterion, SpRC, for short) that combines the advantages of stochastic and robust opti-
mization approaches by maximizing the expected revenue, while bounding the relative
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regret in each scenario. The definition of stochastic p-robustness considers relative regret,
but it could easily be modified to consider absolute regret or cost/profit ([139]).

The main aim is to find the maximum expected revenue solution, subject to the
constraint that the chosen solution is p-robust, that is the corresponding relative regret
should not exceed p in every scenario, for a given p ≥ 0. To introduce the stochastic
p-robustness measure, it is useful to introduce the following definition.

Definition 3.4.1. Let p ≥ 0 be a constant. Let X be a feasible solution of the problem Πs

for all s, s = 1, . . . , S, and let zs(X) be the objective value of problem Πs under solution
X. X is said to be p-robust if for all s, s = 1, . . . , S, the following condition holds:

z∗s−zs(X)
z∗s

≤ p;

or equivalently

zs(X) ≥ (1− p) ∗ z∗s .

From definition 3.4.1, it is evident that, in order to apply the stochastic p-robustness
criterion, it is necessary to solve the problem for each scenario to obtain the value of z∗s ,
that, together with the other parameters already introduced, represent the input for the
mathematical formulation, reported in what follows.

Maximize

S∑
s=1

P (s)


T−1∑

i=1

T∑
j=i+1

K∑
k=2

[(j − i)(pk−1,sxk−1,k
ij + pk,sxkkij )] +

T−1∑
i=1

T∑
j=i+1

(j − i)p1,sx11
ij


such that

(3.16) zs(X) ≥ (1− p) ∗ z∗s , s = 1, . . . , S

and constraints (3.10)-(3.14) should be also verified.

It is evident from the formulation given above that, the objective function (to be
maximized) represents the sum of the revenues, calculated for all scenarios and that verify
the robustness condition, multiplied for the relative probability of occurrence. Conse-
quently, the final value represents the maximum expected revenue, for the setting values
and the considered scenarios.

The value of the parameter p is established according to a sensibility analysis. How-
ever, it is reasonable to associate to p a value in the interval [0, 1]. Indeed, negative values
are not admitted, because they would change the meaning of the constraints, and values
greater than 1, for which the constraint always would be verified.
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A mean absolute deviation based variability criterion - MADbVC

The following robust optimization model has been formulated because it overcomes the
limits of stochastic programming and includes a measure of variability rather than regret.

The idea of integrating goal programming formulations with a scenario-based de-
scription of the problem data in the context of robust optimization was firstly introduced
by Mulvey, Vanderbei and Zenios [117]. The main aim is to generate a sequence of solu-
tions that are progressively less sensitive to realizations of the model parameters. They
introduce the concept of “solution robustness” as the case when the optimal overall solu-
tion is near optimal for every possible demand scenarios. They define “model robustness”
as the case when the optimal overall solution is almost feasible for all scenarios. They
add norms, such as variance or utility functions, to the objective function to encourage
solution robustness. They also add a feasibility penalty function to the objective function
to encourage model robustness.

Yu and Li (2000) reformulate the robust optimization model proposed in [117] into
a linear program that requires only half as many variables. The main drawback of the
proposed formulation is that it can be applied only to linear models. The aforementioned
robust optimization concepts have been considered in [97] and [110], to address the hotel
revenue optimization problem, under an uncertain environments and in [98] to handle
the service firms revenue optimization problem. In particular, measurement of robustness
and mean absolute deviation terms are used to transform the proposed mathematical
formulations into robust optimization models.

By applying this approach to the problem under consideration, we obtain the robust
formulation reported in what follows. In particular, we introduce an utility function that
embodies a trade-off between mean value and variability in this mean value and a feasibility
penalty function, used to penalize violations of the demand constraints under some of the
scenarios.

Maximize

S∑
s=1

P (s)∗ξs−

λ ∗
S∑

s=1

P (s)∗

∣∣∣∣∣ξs −
S∑

s=1

P (s)∗ξs
∣∣∣∣∣−

S∑
s=1

P (s) ∗
T−1∑
i=1

T∑
j=i+1

K−1∑
l=1

wl
i,j

∣∣∣Dl,s
i,j − (xl,li,j + xl,l+1

i,j )
∣∣∣−

S∑
s=1

P (s) ∗
T−1∑
i=1

T∑
j=i+1

wK
i,j

∣∣∣DK,s
i,j − x

K,K
i,j

∣∣∣

xllij + xl,l+1
ij ≤ min{Dl,s

ij } i = 1, . . . , T − 1, j = i+ 1, . . . , T,(3.17a)

l = 1, . . . ,K − 1, s = 1, . . . , S(3.17b)
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xKK
ij ≤ min{DK,s

ij } i = 1, . . . , T − 1, j = i+ 1, . . . , T,(3.18a)

s = 1, . . . , S(3.18b)

(3.19)

t∑
i=1

T∑
j=t+1

(xk−1,k
ij + xkkij ) ≤ Qk t = 1, . . . , T − 1, k = 2, . . . ,K

(3.20)

t∑
i=1

T∑
j=t+1

x11
ij ≤ Q1 t = 1, . . . , T − 1

xlkij , x
11
ij ≥ 0, integer k = 2, . . . ,K, l = k − 1 or l = k,(3.21a)

i = 1, . . . , T − 1, j = i+ 1, . . . , T(3.21b)

where

ξs =

T−1∑
i=1

T∑
j=i+1

K∑
k=2

[(j − i)(pk−1,sxk−1,k
ij + pk,sxkkij )] +

T−1∑
i=1

T∑
j=i+1

(j − i)p1,sx11
ij


and λ and ws,ki,j , k = 1, . . . ,K, are non-negative weighting parameters.

The first term in the objective function represents the expected revenue, while the
second term is the mean absolute deviation of the revenue. The parameter λ can be re-
garded as a risk trade-off factor, between expected revenue and deviation, for the decision-
maker. The absolute deviation in the third term is a model robustness measurement while
the parameters ws,ki,j , k = 1, . . . ,K, are the penalty weights for the constraints violations.

By using the mean absolute values as penalties, the model can generate solutions
which are robust in all scenarios. Since the mean absolute value increases complexity
and the number of artificial variables, it is transformed in a linear term by a linearization
method.

In particular, the method proposed in [165] to solve a goal programming (GP, for
short) problem is considered. Such an approach is theoretically justified by the results
reported in the following theorem, which proof can be found in [165].

Theorem 3.4.2. A GP problem:

Minimize Z = |f(X)− g|

subject to
X ∈ F ;
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where F is a feasible set, can be linearized using the following form:

Minimize ZZ = f(X)− g + 2δ

subject to

g − f(X)− δ ≤ 0

δ ≥ 0

To apply Theorem 3.4.2 to our problem, we set f(X) = ξs and g = (
S∑
s=1

P (s)∗ξs)

in the objective function; f(X) =
l+1∑
k=l

xlkij or xKKij and g = Dl,s
i,j in the constraints. In

addition, we introduce a set of non-negative variables zs and ys,ki,j for all scenarios where
s, s = 1, . . . , S. Our robust optimization model assumes the following form.

Maximize

S∑
s=1

P (s)∗ξs − λ ∗
S∑

s=1

P (s)∗

[
ξs − (

S∑
s=1

P (s)∗ξs) + 2zs

]
−

S∑
s=1

P (s) ∗
T−1∑
i=1

T∑
j=i+1

K−1∑
l=1

wl
i,j

[
Dl,s

i,j − (xlli,j + xl,l+1
i,j ) + 2yl,si,j

]
−

S∑
s=1

P (s) ∗
T−1∑
i=1

T∑
j=i+1

wK
i,j

[
DK,s

i,j − x
K,K
i,j + 2yK,s

i,j

]

(xlli,j + xl,l+1
i,j ) ≤ min{Dl,s

ij } i = 1, . . . , T − 1, j = i+ 1, . . . , T,(3.22a)

l = 1, . . . ,K − 1, s = 1, . . . , S(3.22b)

xKK
ij ≤ min{DK,s

ij } i = 1, . . . , T − 1, j = i+ 1, . . . , T,(3.23a)

s = 1, . . . , S(3.23b)

(xlli,j + xl,l+1
i,j )− yl,si,j ≤ D

k,s
i,j i = 1, . . . , T − 1, j = i+ 1, . . . , T,(3.24a)

l = 1, . . . ,K − 1, s = 1, . . . , S(3.24b)

xKK
ij − yK,s

i,j ≤ D
K,s
ij i = 1, . . . , T − 1, j = i+ 1, . . . , T,(3.25a)

s = 1, . . . , S(3.25b)

ξs − (

S∑
s=1

P (s)∗ξs) + zs ≥ 0 s = 1, . . . , S(3.26)
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t∑
i=1

T∑
j=t+1

(xk−1,k
ij + xk,kij ) ≤ Qk t = 1, . . . , T − 1, k = 2, . . . ,K(3.27)

t∑
i=1

T∑
j=t+1

x11
ij ≤ Q1 t = 1, . . . , T − 1(3.28)

xlkij , x
11
ij ≥ 0, integer k = 2, . . . ,K, l = k − 1 or l = k,(3.29a)

i = 1, . . . , T − 1, j = i+ 1, . . . , T(3.29b)

zs, yk,si,j ≥ 0 s = 1 . . . , S, k = 1, . . . ,K,(3.30a)

i = 1, . . . , T − 1, j = i+ 1, . . . , T(3.30b)

In order to satisfy the constraints (3.26), the variable zs tends to take a value equal

to the difference between ξs and (
S∑
s=1

P (s)∗ξs), when this difference assumes a negative

value. It is zero when this difference is either positive or zero. In order to avoid a null
penalty term corresponding to the first case, in the objective function the variable zs is
multiplied by two.

Thus, the following situations can occur:

• if ξs ≥ (
S∑
s=1

P (s)∗ξs) then zs = 0 and the penalty term, related to the deviation from

the expected revenue, depends on the difference between these two quantities, the
value of λ and also on the probability value associated to each scenario;

• if ξs < (
S∑
s=1

P (s)∗ξs) then zs 6= 0 and the penalty is given by the value of zs , λ and

P (s).

The third and fourth terms of the objective function represent a penalty term related
to the constraints violation.

In this case, the difference between the required number of car rental requests (Dl,s
i,j)

(or DK,K
i,j , for the last group) and the quantity of satisfied demand (xllij + xl,l+1

ij )(or xKKij ,
for the last group) in each scenario are taken into account.

Consequently, the following three mutually excludently situations can occur:
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1. if the difference (Dl,s
i,j−(xllij+x

l,l+1
ij )) (or (DK,K

i,j −xKKij ), for the last group) is positive,
that is the demand is greater than the number of car rental requests satisfied in each
scenario, the variable yk,si,j , k = 1, . . . ,K are equal to zero and the penalty term

in the objective function depends on this difference and on the parameters wki,j ,
k = 1, . . . ,K;

2. if the difference ( Dl,s
i,j − (xllij + xl,l+1

ij ) ) (or (DK,K
i,j − xKKij ), for the last group) is

equal to zero, that is the car rental requests are satisfy exactly, the variable yk,si,j has
a value equal to zero and the penalty term in the objective function will be zero,
even if the parameters wki,j are not null;

3. if the difference ( Dl,s
i,j − (xllij + xl,l+1

ij ) ) (or (DK,K
i,j − xKKij ), for the last group) is

negative, that is the number of effective car rentals are greater than the number of
requests in some scenario, the variable yk,si,j assumes a value equal to this difference
in order to satisfy the constraints and to have the penalty term that depends only
on yk,si,j and wki,j . This case can be verified, because the tie between the effective
rentals and demand is established by constraints (3.24) and (3.25); consequently, in
some scenarios the number of rentals could exceed the requests, these cases involve
a decrease in yield, but a penalty is associated to these situations. Obviously, the
greater is the deviation, the greater will be the value associated to the variable and
therefore the penalties associated to the violated constraints.

3.5 Computational experiments

In this section, we present the computational experiments carried out to assess the practical
performance of the proposed models for the car rental industry.

The models have been implemented in the AIMMS mathematical modeling language
(www.aimms.com) and solved by using the ILOG CPLEX solver (www.ilog.com). The
AIMMS implementations were run on a PC Pentium IV with 3.2 GHz and 2 GB of RAM,
under the Windows XP operating system.

To the best of our knowledge, the problem under consideration has not been taken
into account in the revenue management literature previously. Thus, benchmark instances
are not available. For this reason, the computational experiments have been carried on
test examples, defined trying to be quite close to the reality of medium-sized car rental
agencies. A static evaluation of the models is performed.

Three different classes of instances, defined by considering an increasing number of
groups K, have been considered. In particular, K has been chosen equal to 8, 10 and 15.
The total number of available cars Q has been set equal to 180 and a booking horizon of 7
time periods (i.e., a week) has been considered. The rental rates were randomly generated
into the interval [50; 100] and increasing with the category of cars. The characteristics of
the test problems are reported in Table 1.
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Problem Class K T
1 8 7
2 10 7
3 15 7

Table 3.1: Characteristics of the test problems.

The number of requests has been randomly generated according to a normal distri-
bution, with a given expected demand and a given coefficient of variation. The expected
demand and the coefficient of variation have been generated randomly from the interval
[7, 20] and [0, 1], respectively. Also, the demand requests within a time interval in a single
scenario are generated independently one of each other. The process has been simulated
50 times.

3.5.1 Deterministic car rental revenue optimization model

In the first stage of the investigation, computational experiments have been carried out by
considering a single scenario. Indeed, the car rental optimization problem under certain
demand and daily rental rate has been considered.

The main aims of this experimentation are to give an idea of the models evaluating
in terms of computational effort the proposed programming formulations; For the sake
of brevity, in what follows we report the computational results obtained on a specific
instance, that represents the case of a medium-large car rental agency, characterized by a
total number of available cars equal to 180. The number of groups has been chosen equal
to 4, 8, 15 and 30, whereas the value of the time periods has been set equal to 5, 15, 30
and 60. A similar behavior has been observed for the other considered instances.

A graphical representation of the computational effort required to solve the proposed
model, by varying the number of groups, while keeping fixed the length of the booking
horizon is reported in Fig. 3.1, whereas in Fig. 3.2, the case in which the number of group
is fixed and the number of time periods varies is considered.

The results depicted in Fig.3.1 clearly underline that when a constant number of
time periods are considered, if the number of groups is increased, the execution time
increases.

A similar behavior has been observed when the capacity is kept fixed, while the
number of time periods in the booking horizon is increased (see Fig.3.2). The collected
results also underline that the influence of the number of time periods, that constitute
the booking horizon, on the execution time is greater than the influence of the number of
groups.
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Figure 3.1: Execution times required to solve the proposed model, by varying the value of K,
while keeping fixed the length of the booking horizon T = 7.
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Figure 3.2: Execution times required to solve the proposed model, by varying the value of T ,
while keeping fixed the number of groups K = 15.

3.5.2 Robust car rental revenue optimization models

The computational results have been collected on the basis of an increasing number of
scenarios. In particular, S has been set equal to 10, 20, and 30. We have considered
equiprobable scenarios: to each scenario s, s = 1, . . . , S is associated the same probability
of occurrence given by P (s) = 1

S .

In the first stage of investigation, experiments have been carried out to evaluate
the influence of the parameters’ models on the solution quality. Under this respect, it is
important to point out that the stochastic p-robustness model depends on the value of the
parameter p, whereas the solution of the mean absolute deviation model depends on the
value of λ and wkij .

A sensibility analysis on the value of the parameter p has been conducted. Since
this parameter naturally lies in the range [0, 1], experiments have been carried out by
considering p equal to 0.25, 0.50, 0.75. The best results, obtained by letting p = 0.75,
are reported in Table 2, in which for each instances and for each value of S, the expected
revenue values are highlighted.
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S K Revenue
8 72652.05

10 10 55929.33
15 66684.44

8 70871.40
20 10 76570.60

15 49884.74

8 78552.35
30 10 88519.15

15 86738.10

Table 3.2: Revenue values obtained by applying the stochastic p-robustness criterion, by
setting p = 0.75.

As far as the results obtained by applying the mean absolute deviation based vari-
ability model is concerned, it is important to note that the values of λ give a representation
of the different degrees of the decision maker’s risk aversion, whereas the penalty weights
wkij allow to control the feasibility robustness.

The relationship between the parameter λ and the expected revenue, when all
weights wkij are set equal to 1 is depicted in Fig.3.3, for K = 10 and S = 10. A sim-
ilar behavior has been observed for the other instances.

Figure 3.3: Expected revenue for different values of λ, wk
ij = 1.

Fig.3.3 clearly underlines that the expected revenue decreases as the λ parameter
increases. In addition, when λ is very large, the model gives a zero optimal solution and
results in either zero or negative (given the presence of the fixed costs) expected revenue.
Indeed, if the decision maker is very adverse to the risk and thus a high value of λ is
chosen, the model suggests him/her to not run a business.

As far as the influence of the parameters wkij is concerned, it is worth observing that
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Problem Class S MinMax MaxMin MADbVC SpRC
10 2.92 2.88 3.67 4.15

1 20 3.54 3.25 5.20 5.85
30 4.42 4.35 8.70 7.82

10 3.29 2.94 4.89 5.64
2 20 4.18 4.47 8.14 7.92

30 7.64 7.20 10.18 9.26

10 6.43 6.41 7.40 11.34
3 20 9.41 9.44 12.89 12.17

30 10.48 10.58 20.57 16.65

Table 3.3: Execution times required to solve the proposed robust optimization models.

the decision maker can choose these weights in such a way that some specific requests,
characterized, for example, by a predetermined length of rent or related to a specific car
group, are more likely to be satisfied than the others. In this case, it is sufficient to either
increase the corresponding weight or decrease the weights associated to other requests.

In order to evaluate the performance of the proposed models, in terms of computa-
tional effort, we report in Table 3 the average execution time for each class of test problems
and for each number of scenarios S. The related results have been collected by letting
λ = 1 and wkij = 0.2 in the MADbV C model and p = 0.75 in the SpRC model.

The experimental results clearly underline that the computational cost depends on
the size of the problem to be solved, on the number of scenarios and on the specific robust
criterion adopted. In particular, if the number of groups is kept constant, the higher the
number of scenarios, the higher the computational overhead. On the other hand, if we
fix the number of scenarios and we increase the number of groups, the execution time
is increased. In addition, Table 3 underlines that solving the mean absolute deviation
based variability model is the most time consuming task, requiring in the worst case 20.57
minutes. The computational costs required to solve the other models are comparable.
However, it is important to point out that, since the car rental agency has to solve the
problem once a week, the execution time required to solve the problem can be considered
acceptable.

In order to evaluate the performance of the proposed models in terms of solution
quality, in the following table (i.e., Table 4), we report the expected revenue obtained by
applying the considered robust criteria to each class of instances. The results reported in
Table 4 indicate that it is not possible to find a criterion that allows to obtained the best
expected revenue value in all the test problems. In addition, on average the MADbV C
shows the best performance in terms of solution quality.
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Problem Class S MinMax MaxMin MADbVC SpRC
10 90258.47 90259.54 92630.63 72652.05

1 20 58836.60 58836.60 60428.00 55929.33
30 77014.76 77014.93 80224.57 66684.44

10 69319.47 69319.47 70871.40 70871.40
2 20 105938.10 100847.04 102664.33 76570.60

30 56810.01 56810.01 58163.13 49884.74

10 97507.63 97507.63 98848.00 78552.35
3 20 102208.80 102208.80 103572.00 88519.15

30 92397.72 92397.72 93753.67 86738.10

Average 83365.73 82800.19 84572.86 71822.46

Table 3.4: Expected revenues obtained by applying the robust criteria to the considered
test problems.

3.6 Concluding remarks and ongoing work

In the present paper, we have addressed a car rental management problem. More specifi-
cally, an integer linear programming model has been defined to mathematically represent
the problem of a car agency that has to decide to accept or reject a booking request.
The proposed model allows to determine the number of cars to be rented and incorpo-
rates the possibility of implementing an upgrade policy. In order to take into account the
uncertainty in the demand, different measures of robustness are applied and the related
scenario-based formulations are presented.

To assess the performance of the proposed models, in terms of efficiency and solution
quality, an extensive computational phase has been carried out, by considering a large set of
randomly generated problems. The computational results collected are very encouraging,
showing that the proposed models can be used to address the problem under consideration.

It is important to point out that an alternative approach to handle the problem
studied in this paper, relies on the definition of a so-called control policy, that is used to
apply the results of the optimization model throughout the booking horizon. The definition
and the computational evaluation of a primal control policy, based on partitioned booking
limits, is the subject of current investigations.
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Revenue Models and Policies for
the Car Rental Industry 1

Abstract

In this paper, we consider the application of revenue management techniques in
the context of the car rental industry. In particular, the paper presents a dynamic pro-
gramming formulation for the problem of assigning cars of several categories to different
segments of customers, with rental requests arising dynamically and randomly with time.
Customers make a rental request for a given type of car, for a given number of days at
a given pickup time. The rental firm can satisfy the demand for a given product with
either the product requested or with a car of at most one category superior to that ini-
tially required, in this case an “upgrade” can take place. The one-way rental scenario,
which allows the possibility of the rental starting and ending at different locations, is also
addressed. In the framework considered, the logistic operator has to decide whether to
accept or reject a rental request. Since the proposed dynamic programming formulations
are impractical due to the curse of dimensionality, linear programming approximations
are used to derive revenue management decision policies for the operator. Indeed, pri-
mal and dual acceptance policies are developed (i.e. booking limits, bid prices) and their
effectiveness is assessed on the basis of an extensive computational phase.

Keywords: Car Rental, Dynamic Programming, Revenue Management Policies.

1Submitted for pubblication in the journal Mathematical Methods of Operations Research October 2011
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4.1 Introduction

The main contribution of this paper is the description of innovative solution methodolo-
gies, which can support car hire operators in effectively and efficiently allocating their
limited, perishable and reusable resources to satisfy the rental requests of different market
segments, with the objective of maximizing total revenues.

In the literature, some strategic and tactical planning aspects of the car rental pro-
cess (i.e., pool segmentation and allocation, multi-period planning, optimal mixture and
size of the vehicle fleet) have been discussed and analysed in-depth. For example, we cite
the work of Yang et al. [162], where a dynamic model and a heuristic algorithm to manage
a leasing network, in which different rental sites share a fleet of cars in a certain period of
time, are proposed in order to determine the most profitable way (revenue maximization)
to dispatch the cars among all sites. An approach to modeling the short-term car rental
logistics problem as a specific instance of the minimum cost network flow problem has
been presented in [45]. Haensel et al., in [56], give a stochastic programming approach
for a car rental network with the fleet capacity per station not fixed and the possibility
of deciding the optimal fleet distribution on the network, day by day, at given transfer
costs. In [122], models for tactical fleet planning, the deployment and the transportation
of vehicles are provided. The models determine the number of vehicles to allocate to each
location, in order to maximize the expected total pool revenue and to move between each
pair of locations, in order to minimize the total transhipment.

Furthermore, in the literature several studies about the application of revenue man-
agement (RM) techniques to rental business can be found. We cite, for example, the
papers [135], [136], which consider generic rental company problems, the work of Papier et
al. [124], which analyzes the case of a rail cargo company and the contribution of Powell
et al. [130], related to freight transportation.

It is important to observe that the car rental industry has some great features that
make it different from other RM target industries.
One of the most important difference is the possibility of controlling the capacity ( [27],
[56]). Indeed, a car rental company can transfer the cars between different rental stations
and modify the total fleet, in order to response to market needs, by buying or selling cars.
The ability of fine-tuning capacity to customer needs is not present in the majority of RM
settings. This is surely true for the hotel industry. Indeed, it is not possible to move rooms
between different locations or build new rooms, to adjust capacity in the immediate term.
It is important to observe that, when a single car station is considered, the car rental
revenue optimization problem presents some similarities with the revenue maximization
in the hotel. In particular, in the hotel context, the capacity is the room nights, whereas
in the car rental industry it is given by the available days of cars; the length of stay in
the hotel setting is equivalent to the length of the rent in the car rental industry. Despite
the aforementioned common characteristics, some differences arise also in the single car
station setting. Indeed, hotels and car rental firms have discrete price classes, but in the
hotels the prices are fairly constant across the classes, whereas in the car rental industries
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the prices within these classes change actively on a daily basis. In addition, in a car rental
agency the number of different types of car is on average greater than the possible number
of different rooms in a hotel.
Since scarce attention has been devoted to the operational problems arising in the car
rental industry, this paper analyzes the operational steps related to receiving and meeting
demand in the car rental management process and solution approaches are proposed based
on RM methods and techniques.

RM originated in the airline industry [15], [113]. In particular, Littlewood in [108]
began approaches for the management of inventories of perishable services and goods, in-
troducing the result (Littlewood’s rule) that a request for a seat should be fulfilled only
if its revenue exceeds the expected future value of the seat. The beginning of intensive
development of RM techniques dates from the deregulation of the American Airlines in-
dustry in the late 1970’s [138]. For a detailed discussions about the origins and the basic
concepts of RM and for an overview of the extensive RM literature, the reader is referred
to [14], [22], [34], [73],[75], [113], [127], [144] and more recently [30].

From its origins in the airline industry, RM techniques have been extended to var-
ious areas of service and manufacturing businesses. Indeed, RM is suitable for many
service/goods companies (i.e. restaurants, casinos, cargo, cruise lines, Internet services,
broadcasting and media, gas trasmission etc.), which show similar characteristics (per-
ishability, relatively fixed capacity, ability to segment markets, product sold in advance,
variable demand [74]), allowing an appropriate and effective application of the RM key
strategies: overbooking, pricing, capacity control and forecasting [30], [102], [157].

The car rental industry has been included in traditional RM applications, but only
in the early 1990’s the car rental industry began to pay attention to the development of
RM techniques. Carroll and Grimes in [27] and Geraghty and Johnson in [49] provide
accounts of the state-of-the-art in car rental RM. In particular, in [49] the application of
a RM program to save National Car Rental and analytical models to manage capacity,
pricing and reservation are described, whereas the development of a sophisticated decision
support system to determine rental fleet size and strategies for geographically redistribut-
ing vehicles as demand varies is considered in [27].

Innovative RM approaches to model dynamic price strategies are defined and applied
to car rentals in [3] and [93]. Anderson and Blair in [2] give an accurate account of the
Performance Monitor approach implemented at the Dollar Thrifty Automotive Group to
measure the impact of RM, considering the lost revenue opportunities of historic decisions
and pricing activities. In [52], novel RM models, considering particularities of the car
rental business, are defined and robust optimization approaches are provided.

The purpose of this paper is to devise optimal RM policies for a car rental operator
to accept or reject a customer’s class-specific rental booking request. The traditional
booking rental process is enriched considering and modeling new real car rental aspects,
such as one-way rental and car transferring. In addition, dynamic programming models
are defined to represent the car rental process, by taking into account future possible
booking decisions in evaluating a current decision ([130], [151], [164]).
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This paper makes the following research contributions: first of all, dynamic program-
ming models are developed to represent the optimal management of a car rental business;
in addition, RM policies are developed to decide dynamically when to accept an incoming
rental request; finally, in a computational study the performance of the developed policies
are assessed and their applicability is illustrated by considering a real case study.

The rest of the paper is organized as follows: in the next section the problem under
consideration is described; in section 3 the dynamic programming formulations of the
problem are given for the basic rental problem (BRp, for short) and for an extension
version, which considers the one-way rental strategy (OWRp, for short); while in section
4, the related linear programming approximations are presented; Section 5 contains the
description of the proposed RM policies, based on the solution of the linear problems;
Section 6 presents computational experiments and concluding remarks are found in Section
7.

4.2 Problem Description

This section presents a description of a typical car rental process, the relevant operations
and introduces the core decision problems.

A typical selling strategy is aimed at selling services/products to customers arriving
successively within a given booking period. As a customer arrives and requests a specific
rate, the operator has to decide whether to accept or not the customer’s request. When
making this decision, companies do not know what types of booking requests will come in
the future. If most of the customers’ booking requests are accepted independently of rate
class, the operator may lose a lot of customers who are willing to pay higher rates. On
the other hand, if companies reject most of the lower rate booking requests, they run the
risk of remaining with many unused resources. This is a typical decisional process that
can be managed in accordance with the rules of RM. In particular, we consider the arrival
of rental requests and the relative decision process of a car rental operator.

A car rental company usually operates with a certain number of car groups, where
each group contains different cars of comparable quality (e.g., concerning size and equip-
ment). Each group represents a homogeneous unit with a base rental rate per day. If a
customer makes a reservation for a certain group in advance and no corresponding car
is available at the time of check-out, an upgrade to a superior car group can be made.
The car assigned to a customer becomes unavailable for the length of the rent. When
the rental period ends, the unit becomes available again. A car rental company has often
to manage the problems of no-shows, i.e. people who book inventory and then do not
show up to use it or pay for it, and cancellations of booking. To compensate for no-shows
and cancellations, firms have developed different overbooking policies ([27], [49]) that are
concerned with increasing the total volume of sales by selling reservations above capacity.
However, this aspect of the rental process are not within the scope of this paper.

In this work, we assume that the revenue due to a rental is the base rate per day
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multiplied by the rental days. In the case of an upgrade, the revenue is based on the rate
of the car group originally reserved. In general, the rate may depend on different factors
such as the season, day of the week, or special contracts with certain groups or companies
[45]. This work does not consider these aspects.

A rental starts at some location where there is a car rental agency (usually an
airport, railway station) and ends either at the same or at a different point where the car
is returned. Here the case in which the car returns to the same check-out is separated
from the case of one-way rentals, for which the initial and final station can be different.
In particular, to illustrate these different situations, in the first case only, the starting and
the ending time of the rental period is considered. In the case of one-way rental the set of
origins and destinations nodes is specified, i.e the check-out and check-in stations of each
request.

At each period of booking horizon, the numbers of arriving customers may be un-
certain, and managers must develop effective policies for controlling the rental capacity
and optimizing total revenue, taking into account that complete information about the
future demand is not available.

4.3 Dynamic programming formulations

The use of dynamic programming in RM (see [18], [19], [20], [43], [135]) helps to decide
whether to accept or reject an incoming booking reservation with more realism than other
methods, at each point in time, taking the decision that would imply higher future expected
revenues. In order to compute and optimize the expected revenue, obtained applying a
control policy, we provide dynamic programming formulations to represent the problems
related to the optimal management of a car rental process.

It is assumed that time is discrete and the booking horizon is divided into T̄ decision
periods t̄ = 1, . . . , T̄ such that, at most, one request arrives per period. It is important
to point out that in our work the Bellman equation is evaluated in a forward manner. In
each time period t̄ of the booking horizon, the logistic operator has to decide on accepting
the rental request of a car in a certain rental class, from day i to day j of the rental period
[and from origin o to destination d in the one-way rental case] with the goal of maximizing
the total expected revenue. The rental horizon is divided into T decision periods and
i = 1, . . . , T − 1 represents the starting time of the rent period, j = 2, . . . , T is the ending
time of the rent period, with 1 ≤ i < j ≤ T , j = i + 1, . . . , T and (j − i) indicates the
length of rent. We assume that the booking horizon and the rental horizon do not overlap.
Demand for each product is time-dependent and modeled by a random variable.

The number of booking classes is denoted as K̄ and represents the available
groups/categories of vehicles. For each group, Qk represents the total capacity of group k
(i.e., number of available cars belonging to the k − th group), k = 1, . . . , K̄.

A daily rental rate pk, k = 1, . . . , K̄, is associated with each category of cars. We
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assume that the higher the category, the higher the rental rate, that is p1 < p2 < . . . < pK̄ .
Each accepted booking request results in revenue Rkij = (j − i)pk.

In what follows, the term “product” indicates a car of category k to be rented in a
certain time interval (j − i), i = 1, . . . , T − 1 , j = 2 . . . , T .

Customers can be viewed as partitioned into K̄ different classes. A customer is of
class k, k = 1, . . . , K̄, if he/she requires to rent a car of category k. A request for class k
can be satisfied with cars of superior neighboring class, in this case we have an upgrade.

Let
[
A1|A2| . . . |AK̄

]
, A ∈ RK̄×(2K̄−1), denote a binary matrix, partitioned into K̄

sub-matrices. Each sub-matrix (Ak ∈ RK̄×2, k = 1 . . . , K̄ − 1 and AK̄ ∈ RK̄×1) contains
the set of possible products to satisfy the demand for a class k customer. In particular,
sub-matrix A1 contains the products that can be used to satisfy the first group rental
request, that is, the first and the second car class, whereas the last sub-matrix AK̄ is the
product constituted of the car of the highest category, a request for this group can be
satisfy only with a car of the same category; thus AK̄ contains only one column.

We indicate each column of matrixA asAvk , vk= vmin(k), . . . ,vmax(k), where vmin(k)=

(2k − 1) for k = 1, . . . , K̄ and vmax(k) = (2K̄ − 1)−
k+1∑
s=k

(K̄ − s) for k = 1, . . . , K̄ − 1 and

vmax(k) = vmin(k) for k = K̄.

Each element akvk , k = 1, . . . , K̄, vk=vmin(k), . . . ,vmax(k), of matrix A is equal to
one if car k is used in the product vk, and 0 otherwise. It is worth noting that a product
indicates the type of car that the logistic operator can use to satisfy the demand for a
certain class k; in fact, owing to the upgrade, a class k request can be satisfied with cars
of category k or next-higher class (i.e. k + 1).

The use of this matrix to define the dynamic programming formulations for the basic
and the one-way rental problems is highlighted in the following subsections.

4.3.1 A Dynamic Programming Formulation for the BRp

When a rental request for class k with starting day i and ending day j arrives at time t̄,
the car rental operator has to decide how to manage the available resources in order to
obtain the maximum possible performance (i.e., maximize the revenue).

The state of the system is described by a matrix Q = [Q1|Q2| . . . |QT ], where each
column Qt = (q1

t , . . . , q
K̄
t )>, ∀t = 1, . . . , T represents the number of cars of type k, k =

1, . . . , K̄ available at time t.

It is assumed that at each booking period t̄, at most one rental request arrives. We
denote with λt̄kij , the probability that at time t̄ one rental request for class k with pickup

day i and return day j, is made. It holds that
T̄∑̄
t=1

K̄∑
k=1

T∑
i=1

T∑
j=i+1

λt̄kij + λt̄0 = 1, where λt̄0 is

the probability that no request arrives at booking period t̄.
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Let us introduce boolean variables ut̄vkij , with ut̄vkij = 1 if the k rental request at

time t̄, from day i to day j, is accepted and satisfied by using product vk and ut̄vkij = 0
otherwise.

The problem can be formulated as a dynamic programming by letting Vt̄(Q) the
maximum expected revenue obtainable from periods t̄, t̄+ 1, . . . , T̄ , given that at booking
time t̄ the capacity of the system is Q.

The Bellman equation for Vt̄(Q) is reported in what follows:

(4.1)

Vt̄(Q) =
K̄∑

k=1

T−1∑
i=1

T∑
j=i+1

λt̄kij max
u
t̄vk
ij ∈ {0, 1}

vk ∈
{
vmin(k), . . . vmax(k)

}
[
(j − i)pkut̄vkij + Vt̄+1(Q̃)

]
+ λt̄0Vt̄+1(Q)

with the following boundary conditions:

Vt̄(0) = 0, ∀t̄;

Vt̄(Q) = −∞, if qkt < 0, for somet, k, ∀t̄;

VT̄+1(Q) = 0, if qkt ≥ 0,∀t, k.

VT̄+1(Q) = −∞, if qkt < 0, for somet, k.

The update of Q at time t̄ is related to the following events.

• When a certain request from time i is accepted, the capacity at time ĩ,∀ĩ = i, . . . , T
is represented by the term Q̃ĩ = (Qĩ −Avku

t̄vk
ij ). Indeed, the car used to satisfy the

request will not be available anymore from time i until the end of the rental horizon.

• When a certain request with ending day j is accepted, the capacity at time j̃, ∀j̃ =
j, . . . , T is represented by the term Q̃j̃ = (Qj̃ +Avku

t̄vk
ij ). Indeed, the car used to

satisfy the request from day i to day j will be available from time j until the end of
the rental horizon.

• When a request from i to j is accepted, the term Q̃l = Ql, ∀l 6= [i, j] updates capacity
on the rest of the system.

In other words, given a request, the decision maker either accepts the request, re-
ceiving the associated revenue and reducing the inventory level, or denies the request,
moving to the next period with the same inventory.
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4.3.2 A Dynamic Programming Formulation for the OWRp

While the previous subsection was focused on a simplified version of the rental process,
in which it is assumed that the origin and destination of all rentals are the same, thus
the rented car must be returned to the pick up agency, in this subsection, we analyze a
typical aspect of the car rental process that arises when a customer needs to pick up the
car at one location and leave it at a different destination point. In what follows, a dynamic
model to represent this case (i.e. car rental with one-way possibility) is described.

Let N be the total number of stations and let O be a given set of origins and D a
given set of destinations, we assumed that O ≡ D, i.e. each station can be both origin
and destination for a rental.

We indicate with the term “product” a car of group k, k = 1, . . . , K̄ to be rented in a
certain time interval (j−i), i = 1, . . . , T−1 and j = 2, . . . , T , from origin o to destination d.
The state of the system is described by a matrix Q= [Q11| . . . |Q1|N || . . . |QT1| . . . |QT |N |],
where each column Qtn = (q1

tn, . . . , q
K̄
tn)>, ∀t = 1, . . . , T , n = 1, . . . , N , represents the

number of cars of type k, k = 1, . . . , K̄ available at station n, that can be used to satisfy
a car rental request starting at day t.

Similarly to the notations used in the basic car rental formulation, we define λt̄kodij ,
the probability that at time t̄ one rental request for class k from day i to day j, from
station o to station d, is made; λt̄0 is the probability that no request arrives at time t̄;

boolean variables ut̄vkij,od, with ut̄vkij,od = 1 if the k rental request at time t̄, from day i to day
j and from origin o to destination d, is accepted and satisfied by using product vk and
ut̄vkij,od = 0 otherwise. It is assumed that at each booking period t̄, at most one request for

rent can arrive, that is
T̄∑̄
t=1

K̄∑
k=1

T∑
i=1

T∑
j=i+1

N∑
o=1

N∑
d=1

λt̄kodij + λt̄0 = 1

The Bellman equation for Vt̄(Q) is reported in what follows:

(4.2)

Vt̄(Q) =
K̄∑

k=1

T−1∑
i=1

T∑
j=i+1

N∑
o=1

N∑
d=1

λt̄kodij max
u
t̄vk
ij,od

∈ {0, 1}
vk ∈

{
vmin(k), . . . vmax(k)

}
[
(j − i)pkut̄vkij,od + Vt̄+1(Q̃)

]
+λt̄0Vt̄+1(Q)

The boundary conditions of the Bellman equation are the following:

Vt̄(0) = 0, ∀t̄;

Vt̄(Q) = −∞, if qktn < 0, for somet, n, k,∀t̄;

VT̄+1(Q) = 0, if qktn ≥ 0,∀t, n, k.

VT̄+1(Q) = −∞, if qktn < 0, for somet, n, k.

The update of Q at time t̄ is related to the events reported below:
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• Q̃ĩo = (Qĩo −Avku
t̄vk
ij,od),∀ĩ = i, . . . , T : this term represents capacity at station o at

time ĩ when a certain request from station o at pickup time i is accepted.

• Q̃j̃d = (Qj̃d +Avku
t̄vk
ij,od), ∀j̃ = j, . . . , T : this term updates capacity at station d at

time j̃ when a certain request to station d at return time j is accepted.

• Q̃lm = Qlm, ∀l 6= [i, j], ∀m 6= o, d: this term represents capacity on the rest of the
system when a request from station o to station d, from time i to time j, is accepted.

4.4 Linear Programming Formulations

The proposed dynamic programming models are characterized by increasing computation
difficulties according to the dimension of the problem. For this reason, owing to the large
size of the solutions space, the dynamic models are unlikely to be solved optimally. This
section presents linear programming approximations of the problems under consideration,
which are used to define appropriate RM policies [144]. The proposed models are static but
are solved in a “dynamic way” by appropriately updating the demand and the capacity
information at the beginning of each time period. The aim is to support the logistic
operator in taking decisions by adopting RM policies.

4.4.1 A Deterministic Linear Programming Formulation for the BRp

To illustrate the linear formulation we report the major notations for parameters and
variables used. Let:

Dk
ij be the expected number of booking requests for cars belonging to the group k,

k = 1, . . . , K̄, from day i to day j ;

xvkij number of products of type vk = vmin(k), . . . , vmax(k) to be used to satisfy the rental

request for a k class customer, k = 1, . . . , K̄, from day i to day j.

We assume that there are no requests before day 1 and all the requests have to be
satisfied on or before day T . It is also assumed that any type of car has to be booked for
at least one day. On the basis of the previous considerations, the complete mathematical
representation of the problem under study is given in what follows.

(4.3) RBRp(Q) = Max

T−1∑
i=1

T∑
j=i+1

K̄∑
k=1

vmax(k)∑
vk=vmin(k)

(j − i)pkxvkij



(4.4)

vmax(k)∑
vk=vmin(k)

xvkij ≤ D
k
ij ∀i = 1, . . . , T − 1, j = i+ 1, . . . , T, k = 1, . . . , K̄
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(4.5)
T∑

j=i+1

2K̄−1∑
vk=1

akvx
vk
ij +

i−1∑
t=1

T∑
j=t+1

2K̄−1∑
vk=1

akvx
vk
tj −

i−1∑
j=1

2K̄−1∑
vk=1

akvx
vk
ji ≤ Q

k
i ∀k = 1, . . . , K̄, i = 1, . . . , T − 1

(4.6) xvkij ≥ 0, integer ∀vk = 1, . . . , 2K̄ − 1, i = 1, . . . , T − 1, j = i+ 1, . . . , T

The objective function (5.2) represents the total revenue obtainable when the ca-
pacity on the network is Q. Conditions (5.3) impose that, a demand of class k can be
satisfied with product vk. Constraints (5.4) establish that, for each group and for each
time period, the number of vehicles used to satisfy the car rental requests cannot exceed
the maximum available capacity. In particular, constraints (5.4) are composed of three
terms: the first indicates the total number of cars rented from day i to day j; the second
indicates cars that start before i and end the rent after i; the third represents cars rented
at time less than i and returned at time i.

The proposed model allows the number of vehicles to be rented and the number of
upgrades to be determined, with the objective of maximizing the expected revenue, while
satisfying demand and capacity constraints.

In the objective function (5.2), the total revenue is determined by introducing a
rental rate per day pk, k = 1, . . . , K̄ for each class k, that does not depend on the length
of the rental period. However, in general, the higher the rental period, the lower the day
rental price. The proposed model can be easily modified to handle this specific situation.
In particular, it is sufficient to replace the objective function (5.2) with the following:

(4.7) Max

T−1∑
i=1

T∑
j=i+1

K̄∑
k=1

vmax(k)∑
vk=vmin(k)

(j − i)pk(1− πj−i)xvkij


where πj−i is a non-negative scalar such that π1 = 0 and π1 < π2 < . . . < πT .

In general, car rental companies can follow different upgrade policies; indeed, the
next size car should be offered to the renter only when it is really necessary or upgrades
should be encouraged. In the model presented above, the car rental company’s attitude to
making upgrades is not explicity represented. However, as will be shown in the computa-
tional experiments section, upgrades are driven by the fare structure, that is, the relative
price difference between two consecutive car categories.
However, the optimization model (5.2)-(5.5) can be easily extended to represent the car
rental companies’ willingness to make upgrades ([52].

In the programming formulation for the BRp, reported above, we have imposed
the satisfaction of integer constraints for the decision variables. However, given the spe-
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cific structure of the constraint matrix (CM, for short) associated with BRp, its linear
relaxation yields an integral solution, thus these constraints can be relaxed.

In particular, as reported in Appendix A, it is possible to show that CM can be
reduced to an interval matrix, that is, a 0 - 1 matrix where the ones appear consecutively,
that is totally unimodular [119].

4.4.2 A Linear Programming Formulation for the OWRp

To present the mathematical formulation of the problem, in what follows we report only
the parameters and variables used to represent the one-way rentals problem. We do not
report the notations that have already been introduced for the BRp.

Qkio total capacity of group k, k = 1, . . . , K̄, available at origin station o = 1, . . . , N at
time i = 1 . . . , T (i.e., number of available cars belonging to the k − th group);

Dk,od
ij expected number of booking requests for cars belonging to the group k, k =

1, . . . , K̄, from day i to day j and from origin o to destination d.

xvk,odij number of products of type vk = vmin(k), . . . , vmax(k) to be used to satisfy the rental

request of k, k = 1, . . . , K̄, from day i to day j and from origin o to destination d.

(4.8) ROWRp(Q) = Max

T−1∑
i=1

T∑
j=i+1

N∑
o=1

N∑
d=1

K̄∑
k=1

vmax(k)∑
vk=vmin(k)

(j − i)pkxvk,odij



(4.9)

vmax(k)∑
vk=vmin(k)

xvk,odij ≤ Dk,od
ij ∀k = 1, . . . , K̄, i = 1, . . . , T − 1, j = i+ 1, . . . , T, o, d = 1, . . . , N

T∑
j=i+1

N∑
d=1

2K̄−1∑
vk=1

akvx
vk,od
ij +

i−1∑
t=1

T∑
j=t+1

N∑
d=1

2K̄−1∑
vk=1

akvx
vk,od
tj −

i−1∑
j=1

N∑
d=1

2K̄−1∑
vk=1

akvx
vk,do
ji ≤ Qk

io(4.10a)

∀k = 1, . . . , K̄, i = 1, . . . , T − 1, o = 1, . . . , N(4.10b)

(4.11) xvk,odij ≥ 0, integer ∀vk = 1, . . . , 2K̄ − 1, i = 1, . . . , T − 1, j = i+ 1, . . . , T, o, d = 1, . . . , N

Conditions (4.9) impose that a class k rental request from day i to day j and from
station o to station d can be satisfied with product of type vk. Constraints (4.10) control
the availability of cars of category k at station o at time i.
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An important operational problem that needs to be addressed in the car rental
industry is related to the ability to move the fleet from one station to the other. Decisions
for transferring cars among locations are crucial for different reasons: in the car rental with
one-way possibility, rentals with different pickup and return stations can create chaos in the
fleet distribution; at each station, the demand varies during the week between weekdays
and weekends: there is greater demand for car rentals near the airports on weekdays
and in city downtowns on weekends. The decision to transfer car from one station to
another must take into account the trade-off between the incremental revenue and the
transhipment cars costs.

The mathematical model introduced above can be modified to take into account the
transfer of a car of category k from station o to station d on day i, when the benefit of
such operation is greater than the cost of moving the car. To present the mathematical
formulation, we need to introduce the following quantities:

• zk,odi number of cars of category k moved from station o to station d on day i;

• γod the cost of moving a car from station o to station d;

• τod the average travel time from station o to station d.

It is assumed that the cost of moving a car from o to d does not depend on the
car category, but it is related only to the distance travelled; the average travel time is an
integer multiple of days. The new objective function takes the following form:

(4.12)

ROWRTR
p (Q) = Max

T−1∑
i=1

T∑
j=i+1

N∑
o=1

N∑
d=1

K̄∑
k=1

vmax(k)∑
vk=vmin(k)

(j − i)pkxvk,odij −
T∑
i=1

N∑
o=1

N∑
d=1

K̄∑
k=1

γodz
k,od
i



Constraints (4.9), (4.11) are still valid whereas constraints (4.10) need to be restated as
follows:

T∑
j=i+1

N∑
d=1

2K̄−1∑
vk=1

akvx
vk,od
ij +

i−1∑
t=1

T∑
j=t+1

N∑
d=1

2K̄−1∑
vk=1

akvx
vk,od
tj −

i−1∑
j=1

N∑
d=1

2K̄−1∑
vk=1

akvx
vk,do
ji(4.13a)

+
N∑

d=1d6=o
zk,odi +

i−1∑
t=1

N∑
d=1d 6=o

zk,odt −
N∑

d=1d6=o

i−τdo∑
t=1

zk,dot ≤ Qkio(4.13b)

∀k = 1, . . . , K̄, i = 1, . . . , T − 1, o = 1, . . . , N(4.13c)
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4.5 Revenue-based primal and dual acceptance policies

The solution to the models presented in the previous sections can be used to implement
two different forms of booking control that are used in practice, one based on booking
limits and the other based on bid prices [18], [144]: both defined to accept or reject a
request at a certain time. These policies are presented in the following.

At a certain point of the booking horizon, decisions about accepting or rejecting a
rental request are to be made.

At each time t̄, RBRp(Q) [ROWRp(Q)] is solved and its solution used to make a
decision. In particular, a request arrived at a booking time t̂ less than or equal to t̄ is
chosen and one of the following proposed policies is used to make the accept/deny decision.

It is important to observe that, in defining these policies, we relax the assumption
that at most one rental request occurs in each booking period (see Section 3). The rationale
is that, in real settings, it is not practical to solve the proposed models each time a booking
request arrives.

From a primal viewpoint, the strategy to be adopted is a booking limits policy
(BLP, for short), which assumes the following form.

for t̄ = 1, . . . , T̄ do

solve RBRp(Q) [ROWRp(Q)]. Let x?vij [x?v,odij ]denote its optimal solution.

for each rental request for class k from day i to day j [from origin o to
destination d, for a request in OWRp] arrived at booking time t̂kij ≤ t̄

[t̂kij,od ≤ t̄] do

if x?vij > 0 [x?v,odij > 0 ] for some v= vmin(k), . . . ,vmax(k) (where vmin(k)=

(2k− 1) and vmax(k) = 2k for k = 1, . . . , K̄ − 1 and vmin(k)=vmax(k) for
k= K̄) then

accept the request with upgrade if v > vmin(k);

set xvij = xvij − 1 [xv,odij = xv,odij − 1];

set k̃ = v−vmin(k)+k i.e. determine the type of car used in product
v;

update appropriately the capacity:

Qk̃
ĩ

= Qk̃
ĩ
− 1,∀ ĩ = i, . . . , T − 1 and Qk̃

j̃
= Qk̃

j̃
+ 1, ∀ j̃ = j, . . . , T

and j > i; if Qk̃
î
> Qk̃i then Qk̃

î
= Qk̃

î
− 1, ∀ î = 1, . . . , i− 1.

[Qk̃˜i,o = Qk̃˜i,o−1,∀ ĩ = i, . . . , T −1, and Qk̃˜j,d = Qk̃˜j,d+1, ∀ j̃ = j, . . . , T

and j > i; if Qk̃ˆi,o > Qk̃i,o then Qk̃ˆi,o = Qk̃ˆi,o − 1, ∀ î = 1, . . . , i− 1].

calculate the revenue obtained from accepting the request;

else

reject the request.
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end if

end for

end for

We move to the next booking time period when there are no more requests, arrived
before t̄, that need to be evaluated.

It is important to point out that we have also defined a booking limits policy based
on the solution of ROWRTR

p (Q) and referred to as BLPT R . In this case, ROWRTR
p (Q) is

solved instead of ROWRp(Q) and the capacity is updated by taking into account the cars
that are transferred among stations.

An alternative booking policy is based on bid prices (i.e. the minimum amount of
money to accept in exchange for a unit of capacity) [18], [137], [144].

It is not possible to define dual acceptance policies for both OWRTRp and OWRp
because they are formulated as integer programming problems. While, for the BRp, it is
necessary to solve the problem RBRp(Q) and to deal with the dual variables associated
with the capacity constraints. We will indicate with BPP the bid price policy associated
with the linear programming formulation.

Letting πki , i = 1, . . . , T−1, k = 1, . . . , K̄, be the optimal values of the dual variables
associated with constraints (5.4), we can use πki as an estimate of the bid-prices of a unit
of capacity in group k, which can be used to decide whether to accept or reject a request.
The decision rule is that if the revenue from a rental request exceeds the sum of the bid
prices of the request k from pickup day i to return day j that arrives at booking time
t̄, then we accept the car rental request subject to the capacity availability. The related
decision strategy can be described as follows:

for t̄ = 1, . . . , T̄ do

solve the RBRp(Q) to obtain the dual variables πki , i = 1, . . . , T − 1, k = 1, . . . , K̄.

for each rental request for class k from day i to day j arrived at booking time
t̂kij ≤ t̄ do

if there is a k̃ ≥ k and k̃ ≤ k + 1 such that (j − i)pk ≥
∑j−1

τ=i π
k̃
τ

and Qk̃
ĩ
> 0 ∀ ĩ = i, . . . , T − 1 then

accept the request with upgrade if k̃ > k;

update appropriately the capacity;

calculate the revenue obtained from accepting the request;

else

reject the request.

end if

end for
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end for

It is worth noting that the procedure used to update the capacity is the same as
that described in the previous section for the booking limits policy.

In addition to the BPP outlined above, an alternative policy based on bid price has
been defined. In this strategy, referred to as initial bid price policy ( IBPP , for short)
an incoming rental request for class k from day i to day j is accepted if there is a k̃ ≥ k
and k̃ ≤ k + 1 such that (j − i)pk ≥ (j − i)πk̃i .

4.6 Computational Experiments

We carried out computational experiments aimed at studying the performance of the
developed models for the car rental problems and assessing the behaviour of the proposed
RM policies.

The tests were carried out on a PC Pentium IV with 3.2 GHz and 2 GB of RAM,
under the Windows XP operating system. The AIMMS 3.7 mathematical modeling lan-
guage (www.aimms.com), with ILOG solver (www.ilog.com), was used to implement the
proposal models and policies, whereas Cplex 10.1 was used to solve the implemented
models.

The computational experiments were carried out on randomly generated test exam-
ples, defined trying to be quite close to the reality of medium-sized car rental agencies.
Indeed, the problem under consideration has not been taken into account in the RM
literature so far, thus, benchmark instances are not available.

In addition, to assess the validity of the proposed policies, a real case study has also
been considered.

The experiments, on randomly generated test problems, were performed dynami-
cally. In each simulation run, the rental requests are generated by applying the following
procedure. First, the number of rental requests is randomly generated according to a
normal distribution, with a given expected demand and a given coefficient of variation.

The expected demand was generated randomly in such a way as to have three
different scenarios characterized by a low, medium and high load factor (defined as the
the ratio of average expected demand to available capacity), whereas the coefficient of
variation was generated randomly from the interval [0, 1]. Then, for each request, booking
arrival times are randomly generated according to a uniform distribution.

For each test problem, the booking process was simulated 100 times. In each of
100 simulation runs, all the requests for each test example, generated by applying the
strategy described above, are processed based on the policies presented in Section 5. In
particular, at each booking period t̄, a rental request with the booking arrival time less
than or equal to the considered booking instant, is chosen and the accept/deny decision
is made based on one of the proposed policies. The capacity is then updated and another
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booking request is processed. We move to the next booking time period when there are
no more requests, arrived before t̄, that need to be evaluated.

The daily price for the rental of one unit belonging to each category of cars is chosen
in the interval [80, 200], the higher the category the greater the price.

For each problem class all the proposed policies were implemented by considering a
booking horizon of 2, 3, 5 and 7 time periods. Booking starts from the first day and demand
forecasts for all products are updated every day of the booking horizon. In particular, on
each day of the booking horizon we resolved the problems with updated capacities and
future demand.

4.6.1 Numerical results for the BRp

The following three policies were implemented in the case of BRp:

• BLP: booking limits policy;

• BPP: bid price policy;

• IBPP: initial bid price policy.

The test problems, used in the computational study, are characterized by an increas-
ing number of groups K = 5, 10, 15. A rental horizon T of 7 periods (i.e., a week) was
considered. In addition, the number of cars Qk available for each group was randomly
generated in the interval [1, 10].

The characteristics of the test problems are reported in Table 4.1, where the number
of groups and the load factor values are given.

Test Problem Groups Load Factor

TL1 5 0.235
TM1 5 0.784
TH1 5 1.520

TL2 10 0.381
TM2 10 0.702
TH2 10 1.227

TL3 15 0.461
TM3 15 0.709
TH3 15 1.264

Table 4.1: Characteristics of test problems

A first phase of the experimental tests was carried out with the aim of evaluating the
influence of the length of the booking horizon on the revenue that is possible to achieve. In
this respect it is worth observing that given the assumption that at most one rental request
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occurs in each booking period, the magnitude of a booking period should be small enough
that the probability of having two bookings in the same period is negligible. However, this
hypothesis is necessary to define the Bellman equation, but from a practical point of view
solving the problem at the occurrence of each request is not a viable strategy, especially
in real settings.

Fig.4.1 gives , for the test problem TL1 , the trend of the average revenue value,
obtained by applying the proposed policies, as a function of the length of the booking
horizon. A similar trend has also been observed for the other test problems. From this
figure, it is evident that a booking horizon of 7 periods gives the best compromise results
between the computational overhead, that increases when the length of booking horizon is
increased, and the revenues achieved for both the policies. For this reason, in what follows
we focus on the results obtained by letting T̄ = 7.

Figure 4.1: Trend of the average revenue values, obtained with the BLP, BPP and IBPP, as a
function of the length of booking horizon for the test problem TL

1 .

The proposed optimization models do not take into account explicitely the car rental
companies’ attitude to make upgrades. In order to assess the influence of the fare struc-
ture on the number of upgrades, in Fig. 4.2 the trend of the average number of upgrades
as function of the relative price difference (RPD, for short) between two consecutive car
groups is depicted.
This figure clearly underlines that for BLP the higher the relative price difference between
a car group and its superior neighboring class, the lower the average number of upgrades,
whereas BPP and IBPP are less sensitive to this factor and the trend is fairly constant.
Similar perfomance has also been obtained on the other test problems. These computa-
tional results highlight that the BLP allows the RPD to be properly taken into account.
As far as the infuence of the load factor on the number of upgrades is concerned, Table 4.2
underlines that BLP performs upgrades only if they are really necessary. In particolar,
for BLP the higher the load factor the lower the number of upgrades, whereas this trend
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is inverted for BPP and IBPP.

Figure 4.2: Trend of the average number of upgrades as function of the fare structure, for the test
problem TL

2 .

Test Problem BLP BPP IBPP
TL1 4.88 14.33 10.19
TM1 5.86 17.63 15.49
TH1 0.12 15.07 14.56

TL2 13.45 24.62 20.73
TM2 6.54 21.31 20.33
TH2 3.34 23.65 21.68

TL3 16.18 43.46 35.30
TM3 9.06 40.40 35.95
TH3 3.28 47.84 41.92

Table 4.2: Average number of upgrades

In order to evaluate the quality of the policies, we compared RBLP , RBPP and
RIBPP , with the revenues obtained in case of a perfect knowledge of the realized demand
PKRD, and with that achieved when a first-come first-served policy, FCFSP, is applied,
i.e. all incoming requests are accepted as long as they can fulfil, by considering also the
possibility of renting a car in at most one category superior to that initially required .

Table 4.3 gives the computational results obtained by the proposed policies. In
particular, for each test problem, we report the average revenue value, obtained with the
proposed policies (i.e., RBLP , RBPP and RIBPP), and its 95% confidence interval.

Table 4.3 clearly underlines that BLP behaves the best, whereas BPP and IBPP
show comparable performance. In particular, the average revenue value obtained with
BLP is 32797.95, whereas the average revenues achieved when the bid price policies are
considered, are equal to 29310.70 and 29313.56 for BPP and IBPP, respectively.
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Test Problem RBLP RBPP RIBPP

TL
1 12796.67 13577.12 12498.96

12323.45 12869.89 13253.47 13900.77 12245.50 12752.42
TM

1 16420.18 12497.97 12728.88
16119.78 16720.58 12402.95 12592.99 12635.24 12822.52

TH
1 16870.52 11968.14 13056.27

16773.75 16967.29 11833.14 12103.14 12987.37 13125.17

TL
2 32072.47 32420.49 31556.11

31157.15 32987.79 32234.49 32606.49 31244.84 31867.38
TM

2 35854.26 31933.87 33069.35
34998 36710.5 31809.6 32058.11 32812.7 33326

TH
2 37643.45 29690.42 31046.97

36939.39 38347.51 29489.13 29891.71 30791.72 31302.22

TL
3 46972.24 44848.47 44106.12

45769.7 48174.7 44598.4 45098.56 43776.2 44436
TM

3 47032.12 43837.08 42441.39
45520.34 48543.90 43687.65 43986.51 42205.38 42677.40

TH
3 50519.62 43022.73 43318.03

49132.33 51906.91 42904.2 43141.26 43167.03 43469.03

Table 4.3: Average revenue value and its 95% confidence interval

Figure 4.3: Trend of the average revenue as function of the load factor

The gain of BLP over BPP and IBPP generally increases with the load factor, as
shown in Fig. 4.3, where the average revenue values as fuction of the load factor is given.
The results reported in this figure underline that the higher the load factor the higher
the revenue achieved by BLP and the lower that obtained by applying BPP, whereas the
behaviour of IBBP is relatively insensitive to the ratio between demand and capacity. In
particular, for high load factor, an average 19.38% and 16.77% improvement over BPP
and IBPP, respectively, is observed.

In order to compare BLP, BPP and IBPP with PKRD and FCFSP, we evaluated
the average percentage error (APE) and the average percentage gain (APG) defined as
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follows:

(4.14) APE =
RPKRD −Ri

RPKRD
× 100, i = BLP,BPP, IBPP;

(4.15) APG =
Ri −RFCFSP

RFCFSP
× 100, i = BLP,BPP, IBPP;

APG
Test Problem BLP BPP IBPP

TL
1 6.06% 12.53% 3.59%

TM
1 34.29% 2.21% 4.10%

TH
1 41.08% 0.08% 9.18%

TL
2 9.60% 10.79% 7.84%

TM
2 17.03% 4.23% 7.94%

TH
2 26.84% 0.04% 4.61%

TL
3 12.81% 7.71% 5.93%

TM
3 14.03% 6.28% 2.90%

TH
3 20.91% 2.97% 3.68%

Average 20.29% 5.21% 5.53%

Table 4.4: Average percentage gain values obtained by applyig the proposed policies.

The related computational results, reported in Tables 4.4 and 4.5, underline that
the proposed policies outperform FCFSP: the average percentage gain is equal to 20.29%
, 5.21% and 5.53% for BLP, BPP and IBPP, respectively.

APE
Test Problem BLP BPP IBPP

TL
1 24.68% 20.08% 26.43%

TM
1 7.89% 29.89% 28.59%

TH
1 5.41% 32.90% 26.80%

TL
2 15.24% 14.32% 16.60%

TM
2 8.83% 18.80% 15.91%

TH
2 5.07% 25.13% 21.71%

TL
3 12.13% 16.11% 17.49%

TM
3 13.14% 19.04% 21.62%

TH
3 8.29% 21.90% 21.36%

Average 11.19% 22.02% 21.84%

Table 4.5: Average percentage error values obtained by applyig the proposed policies.

As for as the comparison with PKRD is concerned, the results of Table 4.5 highlight
a good behaviour of the proposed policies. Indeed, an average percentage error of 22.02%
is obtained in the worst case.

In order to assess the applicability of the proposed policies in real settings, it is useful
to consider the results depicted in Table 4.6, in which the computational effort required
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by BLP, BPP and IBPP as a function of the problems size and the load factor is given.
From Table 4.6, it is evident that the execution time is very limited and increases with
the number of groups and the load factor. In particular, the minimum average execution
times is less than 1 second and it is achieved with problem classes of 5 groups and low
load factor, whereas the maximum average execution time is of about 16 seconds and it
was obtained for problem classes with 15 groups and high load factor.

Test Problem BLP BPP IBPP
TL1 0.13 0.17 0.08
TM1 1.41 1.29 1.54
TH1 5.90 6.89 5.35

Average 2.48 2.78 2.32

TL2 1.21 1.26 1.24
TM2 3.98 4.48 4.39
TH2 11.85 11.46 12.43

Average 5.68 5.73 6.02

TL3 1.92 1.91 1.86
TM3 4.77 5.14 5.01
TH3 15.54 11.88 13.13

Average 7.41 6.31 6.67

Table 4.6: Average computational time values (in sec), obtained with the BLP, BPP and
IBPP

4.6.2 Numerical results for the OWRp

This section reports and discusses the computational results obtained by testing the poli-
cies defined for the OWRp and the OWRTRp . It is important to point out that the

mathematical models defined to represent OWRp and OWRTRp are integer linear pro-
gramming model, whose solution requires a great computational effort. In particular, the
execution time increases with the number of stations. The minimum average computation
time registered was about 50 seconds for an instance with 5 groups and 3 stations, whereas
the maximum execution time was about 15000 seconds for an instance with 7 groups and
5 stations.

Consequently, in the computational experiments, we considered test problems of
small size, characterized by an increasing number of groups K=5,7 and a number of stations
equal to 3 and 5. A rental horizon of 7 periods was considered. Also in this case, three
different demand scenarios, characterized by a low, medium and high load factor value,
have been considered. The capacity of cars Qko , available for each type of group, at each
origin station, has been randomly generated into the interval [1, 5] and we set γod = 0 and
τod = 1 for each pair of stations. The other parameters were chosen exactly as for the
rental basic case.

The main characteristics of the considered test problems are given in Table 4.7,
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where for each instance the number of car groups, the number of stations and the load
factor value are reported.

Test Problem Groups Stations Load Factor

TL5x3 5 3 0.496
TM5x3 5 3 0.759
TH5x3 5 3 1.387

TL7x3 7 3 0.388
TM7x3 7 3 0.699
TH7x3 7 3 1.187

TL5x5 5 5 0.382
TM5x5 5 5 0.654
TH5x5 5 5 1.182

TL7x5 7 5 0.354
TM7x5 7 5 0.654
TH7x5 7 5 1.182

Table 4.7: Characteristics of the test problems

Similarly to what we did for the BRp, BLP and BLPT R were compared with PKRD
and FCFSP. The related results are reported in Table 4.8, where for each class of test
problems the average revenue values are given.

Test Problem BLP BLPT R
TL5x3 23058.9 89927.8
TM5x3 24100.8 133048.9
TH5x3 23409.6 216569.9

TL7x3 27100.6 108160.8
TM7x3 28645.1 170258.0
TH7x3 28181.2 279235.2

TL5x5 24491.0 186404.8
TM5x5 27366.2 352404.3
TH5x5 27063.1 390405.0

TL7x5 47835.2 413808.0
TM7x5 50218.1 660745.2
TH7x5 55295.9 815973.2

Table 4.8: Average revenue values obtained by solving ROWRp and ROWRTR
p and applying

BLP and BLPT R.

The results of Table 4.8 show that the booking limits policy incorporating car trans-
ferring behaves the best. Indeed, an average revenue of 32230.50 is obtained with BLP
, whereas the average revenue determined by applying BLPT R is equal to 318078.40. In
addition, the benefit of using BLPT R is more evident when the load factors are high.
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In order to compare BLP and BLPT R with PKRD and FCFSP, we also determined
the average percentage error APE and the average percentage gain APG, on the basis of
conditions (4.15) and (4.14). It is important to point that to evaluate APE the revenue
achieved by applying BLPT R [BLP] was compared with that determined by solving the

ROW
TR
p [ROWRp ] model and considering a perfect knowledge of the realized demand. The

related computational results are reported in Table 4.9. They underline that the revenue
obtained by applying BLP and BLPT R is quite close to that achieved in the case of perfect
information on the demand. In addition, the proposed policies outperform the FCFS. In
particular, the average percentage gain is equal to 10.14% and 926.58% for BLP and
BLPT R, respectively. It is worth observing that the large value of APG in Table 4.9
are due the fact that in calculating the average percentage gain the comparison is made
between the revenue determined by BLPT R that lets the possibility of car transferring
among stations and the revenue obtained from FCFS that does not allow fleet reallocation.

BLP BLPT R
Test Problem APE APG APE APG

TL
5x3 18.23% 3.44% 47.34% 303.41%

TM
5x3 14.54% 7.20% 45.86% 491.83%

TH
5x3 16.99% 6.18% 49.52% 882.34%

TL
7x3 19.50% 4.35% 47.13% 316.46%

TM
7x3 14.91% 13.59% 49.86% 575.13%

TH
7x3 16.29% 12.50% 50.08% 1014.67%

TL
5x5 24.74% 6.30% 49.62% 709.05%

TM
5x5 15.91% 9.70% 33.19% 1312.63%

TH
5x5 16.84% 12.08% 39.49% 1516.87%

TL
7x5 28.00% 3.80% 40.56% 797.90%

TM
7x5 24.41% 13.14% 42.90% 1388.67%

TH
7x5 16.77% 29.43% 47.61% 1810.00%

Average 18.93% 10.14% 45.26% 926.58%

Table 4.9: Average percentage gain and error values obtained by applying the BLP and the
BLPT R.

4.6.3 A real case study

In this section, we assess the validity of the proposed policies in a real setting. To this
aim, computational experiments have been carried out on a realistic scenario, by taking
as use case the Maggiore, a leading car rental company in Italy. The real data, provided
by the Maggiore agency of Cosenza (Italy), have been collected from December 2006 to
January 2007.

Within the considered real context, the booking requests are processed by follow-
ing a first-come first-served policy. This strategy is quite similar to the policy followed
by medium size car rental agencies. Thus the conclusions drawn in this study can be
considered of general validity.

The company operates with 12 car groups, whose characteristics are given in Table
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4.10, where for each car class, an example of a car type in that class, the rental rate per
day and the number of car available are given.

Groups Car Type Capacity Daily Rate (in Euros)
Mini Smart Passion 61cv 2 86

Economy Volkswagen Polo 1.2 Comfortline 2 86
Economy Comfort Fiat Grande Punto 1.3 Multijet Dynamic 9 86

Compact Alfa 147 1.9 JTD M-jet Progression 9 104
Intermediate Volkswagen Passat 1.9 TDI Trendline 8 119

Wagon Ford Focus 1.6 TDCI Style Wagon 7 128
Comfort Wagon Volvo V50 4 142

Fully Size Mercedes C220 CDI Elegance Berlina 5 153
MonoVolume Fiat Ulisse 2.0 JTD Dynamic 6 153

Premium Alfa 166 2.4 JTD M-Jet Classic 3 160
Automatic Mercedes E280 CDI Elegance 2 181

Minivans Fiat Ducato Panorama 2.8 JTD 2 181

Table 4.10: Characteristics of the fleet for the real case study.

The real data collected refer to rental requests in which the rental starts and ends
at the same station. Thus, the basic rental formulation and the corresponding policies can
be applied.

A rental horizon of 70 days and a booking horizon of length 7 were considered.
The customers’ rental requests have been processed in the order of their arrival and we
adopted the best performing policy, that the BLP to take a decision. In order to adequately
represent the real situation under consideration, a modified version of model BRp, in which
the objective function (3) is replaced by (7), was considered. To represent the dependence
of the rental rate per day on the length of the rental period, the values of the non-negative
scalar π(j−i), introduced in (7), were calculated for each length of rent performed during
the two months of agency’s activity; the corresponding values are reported in Table 4.11.

The computational results collected are very encouraging and highlight the supe-
riority of the BLP over the policy actually adopted by the car rental agency: indeed a
revenue improvement of the 51% has been observed.

4.7 Conclusions

This paper considers the application of the revenue management methodologies to the con-
text of the car rental industry. In particular, we present innovative mathematical models
and solution approaches to handle the car rental company’s problem of accepting or re-
jecting a car rental request. Two different situations were considered: 1) the origin and
the destination of the rental request are the same; 2) the one-way rentals case, in which
a rental car is returned to a location different from its origin. For both the scenarios, our
objective is to maximize the revenue of the car rental agency by satisfying the demand and
the capacity constraints. Dynamic programming models were proposed to represent math-
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Length of rent π(j−i)
1 0
2 0.910
3 1.180
4 1.670
5 1.824
6 1.910
7 2.180
8 3.014
9 3.413
10 3.899
12 4.873
13 5.360
14 5.851
15 6.167
17 7.119
20 8.546
24 10.183
28 11.263
30 11.263

Table 4.11: Values of π(j−i) used in the computazional experiments.

ematically the problems under study. In order to deal with “the curse of dimensionality”,
linear programming approximations were defined. We have also developed appropriate
primal and dual acceptance policies that use booking limits and bid price controls. In
order to evaluate their effectiveness, we compared these approaches with a typical first-
come first-served policy and with the case of a perfect knowledge of the realized demand.
We presented numerical results collected on small-medium size test instances and on a
real case. Experiments reveal that the use of the proposed policies could help the logistic
operator to control the capacity levels, to improve customer service and fleet utilization,
by maximizing the revenue.
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Appendix A

In what follows we show that the constraint matrix CM can be reduced to an interval
matrix, which is a 0 - 1 matrix where the ones appear consecutively [119].

The typical structure of the CM in the case of a car rental agency with 3 groups of
vehicles in a rental horizon of 4 periods is reported in Figure 4.4. In particular, the rows
of CM are associated with the model constraints (capacity and demand constraints, for
each category of cars and for each period), whereas the columns are associated with the

decision variables. CM is a square matrix of order K̄
[(

T !
2!(T−2)!

)
+ T

]
× (2K̄ − 1) T !

2!(T−2)! .

In what follows, we indicate the quantity T !
2!(T−2)! as ω.

Figure 4.4: Graphical representation of CM in case of 3 groups and 4 periods.

In the general case of K̄ vehicle groups and T rental periods, CM assumes the
form reported in Figure 4.5, where three different types of submatrices are highlighthed:
matrices of type B, whose structure is reported in Figure 4.6, identity matrices I and null
matrices 0.

More specifically, for the first group there is only a matrix of type B (related to
the capacity constraints) and two identity matrices I (corresponding to the demand con-
straints), for the last group we have two matrices of type B and an identity matrix I,
while for the other groups there are two matrices of type B and two identity matrices I
(see Ck and Dk, k = 1, .. . . . , K̄, in Figure 4.5).

In order to define the general procedure to reduce CM to an 0 - 1 matrix, it is
important to consider the specific structure of B (Figure 4.6). Some examples for different
value of the rental periods are reported in Figure 4.7.
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Figure 4.5: Graphical Representation of the original CM.

Figure 4.6: Graphical representation of a generic submatrix B.

As shown in Figure 4.8, B is a matrix of order Txω, characterized by (T − 1)
submatrices of order (n+ 1)× n, n = T − 1, T − 2, . . . , 1, denoted as Mr, r = T − 1, . . . , 1
(see Figure 4.9).

The first row of Mr, r = T − 1, . . . , 2 is a unit vector of dimension r and the last n
rows form a particular unit matrix Ur, r = T − 1, . . . , 2, of order n× n, with the diagonal
elments equal to 0 (see Figures 4.8 and 4.9). The submatrix M1 reduces to the vector
[1, 0]T .

In what follows, we show that CM can be transformed into an interval matrix, by
performing linear operations on its rows.

Denote the rows of the block Ck, k = 1, . . . , K̄ as ck1, c
k
2, . . . , c

k
T and the rows of each
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Figure 4.7: Examples of graphical representation of the block B for different T values.

Figure 4.8: The dimensions of B.

Figure 4.9: A graphical representation of matrix Mr.

block Dk, k = 1, . . . , K̄, as dk1, d
k
2, . . . , d

k
ω.

For each block Ck, k = 1, . . . , K̄ execute the following operations.
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• Add to each row ckl , l = 1, . . . , T :

– the row ck̃l of the other blocks C k̃, k̃ 6= k (see for example Figure 4.10);

– the rows dkβ, β = 1, . . . , ω, of each block Dk, k = 1, . . . , K̄, such as β = δ, where
δ, δ = 1, . . . , ω, indicates the column of B, such that the element bl,δ of B is
equal to zero (see for example Figures 4.11, 4.12, 4.13, 4.14, 4.15).

Figure 4.10: Result of sum between the rows of C1 and the rows of blocks C2 and C3.

Figure 4.11: The first row of C1 must be added to rows 4,5,6 of blocks D1, D2 and D3.

For each block Dk, k = 1, . . . , K̄ execute the following operations.

• Add to row dkβ, β = 1, . . . , ω:

– the rows dkh, h = β + 1, . . . , ω of the current block Dk;

– the rows dkβ, β = 1, . . . , ω of the other blocks Dk+1, . . . , DK̄ (see for example

Figure 4.16). Obviously, this point is not applicable to rows of DK̄ (Figure
4.17).

The final matrix is an interval matrix and then it is totally unimodular (Figure
4.18).
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Figure 4.12: The second row of C1 must be added to rows 1, 6 of blocks D1, D2 and D3.

Figure 4.13: The third row of C1 must be added to rows 2, 4 of blocks D1, D2 and D3.
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Figure 4.14: The fourth row of C1 must be added to rows 3, 5, 6 of blocks D1, D2 and D3.

Figure 4.15: A graphical representation of C1 after operations.

Figure 4.16: The second row of D2 must be added to rows 3, 4, 5, 6 of blocks D2 and rows
1,2,3,4,5,6 of block D3.
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Figure 4.17: The third row of D3 must be added to rows 4, 5, 6 of block D3.

Figure 4.18: The resulting interval matrix for example in Figure 4.4



Chapter 5

Revenue Management Policies for
the Truck Rental Industry 1

Abstract

In this paper, we consider the problem of managing a fleet of trucks with different
capacity to serve the requests of different customers that arise randomly over time. The
problem is formulated via dynamic programming. Linear programming approximations of
the problem are presented and their solutions are exploited to develop partitioned booking
limits and bid prices policies. The numerical experiments show that the proposed policies
can be profitably used in supporting the decision maker.

Keywords: Resource Allocation Problems, Dynamic Programming, Revenue Management,
Booking Limits, Bid Prices

5.1 Introduction

Revenue management methods are very effective to help companies in finding optimal poli-
cies to allocate their products in a given planning horizon. Indeed, revenue management
capacity control is used by companies for maximizing revenue, by optimally allocating
constrained and perishable capacity on differentiated products/services, that are targeted
to heterogeneous customer segments and generally sold through advance booking in the
face of uncertain levels of demand for service. One of the fundamental capacity control

1Accepted for pubblication in the journal Transportation Research Part E: Logistics and Transportation
Review, August 2011, DOI: 10.1016/j.tre.2011.07.006
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decision is either accept or reject an arriving booking request for a specific service and, in
the latter case, preserve the availability for probably more valuable demand in subsequent
periods.

Today, revenue management plays an important role for service firms in many dif-
ferent industries. While airlines have the longest history of development in revenue man-
agement, the techniques also apply to other industries with similar business character-
istics, such as hotels, restaurants and car rental, freight transportation and passenger
railways, telecommunications and financial services, internet service provision, electric
utilities, broadcasting and even manufacturing companies ([30]).

McGill and van Ryzin in [113] give a comprehensive overview of the history of
revenue management in transportation, where it has had the greatest impact.

In this paper, we apply revenue management methods and policies to a truck rental
problem. We define, on the basis of the arrival process of the requests, the policy for
either accept or reject a booking request of rent once it arrives. We address the question
of how to coordinate the decisions on fleet management and to treat the randomness in the
demand arrivals explicitly by decomposing the problem into time periods and assessing the
impact of the current decisions on the future, through the managing of available capacity.

The problem addressed here is a dynamic resource allocation problem, that involves
the assignment of a set of reusable resources (vehicles) to tasks (customer demands) that
occur over time. The assignment of a resource to a task produces a reward, removes the
task from the system, and modifies the state (typically, a geographical location) of the
resource ([131]; [130]; [151]; [129], Chapter 12). We were confronted with this problem
within the context of managing a fleet of trucks rented by a logistic operator to serve
customers who request the freight transportation between different nodes in a network. It
is a fleet management problem where a vehicle is assigned to a request from one location
to another at a given time. The fleet is composed of different type of trucks. At each
decision epoch, a certain number of customers arrive in, each requesting a transportation
of a certain quantity of goods from a certain origin to a destination. Each customer
demand can be satisfy with a truck with a capacity greater or equal to the request.

We give a dynamic formulation of the problem at hand. Dynamic models arise in a
great variety of transportation applications as a result of the need to capture the evolution
of activities over time. These models allow to find an answer to the following crucial
question: “Which truck should assign to a customer given the unknown but, probably,
more profitable demand that will arrive in the system in the future?” Due to “the curse
of dimensionality”, the dynamic programming model cannot be solved optimally. For this
reason, in order to provide the decision maker with a tool useful in taking decisions, we
develop a linear programming formulation of the problem and apply revenue management
techniques to take the best decision.

The present work shares some similarities with that of Topaloglu and Powell ([151]).
However, the following main differences can be found. First of all, in [151], it is assumed
that the customers can ask for different types of vehicles, on the basis of their preferences.



89 Chapter 5

In our work, instead, the logistic operator, by evaluating appropriately the convenience,
can decide to assign a truck of greater capacity to a certain customer. Indeed, an “upgrade”
can take place. In addition, to address the problem under consideration, we do not follow
the approximate dynamic programming approach used by Topaloglu and Powell in [151].
In taking decisions we in fact adopt revenue management policies, based on booking limits
and bid prices, that require to solve, dynamically, a linear programming model. A policy
that allows the logistic operator to use the same truck to satisfy multiple demands is also
devised. This possibility is not exploited in [151].

The rest of the paper is organized as follow. In section 5.2, the “Trucks Rental
Problem” (TRP, for short) is introduced and its dynamic programming formulation is
given. Section 5.3 contains the linear programming formulation for the TRP, together
with the description of some revenue management policies, based on the solution of the
linear problem. The theoretical issues of the proposed policies are also investigated. In
the same section, a new policy that considers the “sharing”, i.e. the possibility for the
logistic operator of using a certain truck for serving multiple demand, is defined. New
versions of the TRP, incorporating sharing and the repositioning of empty trucks, are
also exploited in section 5.4. Numerical experiments are presented in section 5.5. Some
concluding remarks are stated in section 5.6. The paper ends with an appendix containing
some theoretical properties of the policies presented in section 5.3.

5.2 A dynamic programming formulation for the TRP

We consider the problem of a logistic operator that offers a transportation service from
a given set of origins to a given set of destinations. The transportation service consists
in renting trucks of different capacities to different customers on a given time horizon.
Each customer is associated with a certain level of demand. At each time of the booking
horizon, the transportation operator has to decide how to manage the overall capacity in
the most profitable way, taking into account that complete information about the future
demand are not available.

Let O = {1, . . . , o} be a given set of origins and let E = {1, . . . , e} denote a given
set of destinations. It is assumed that O ≡ E, i.e. each node can be serve as origin
and destination of the transportation request. The logistic operator transports goods
from an origin i, i ∈ O to a destination j, j ∈ E by r types of trucks. A truck of type
k ∈ K = {1, . . . , r} is associated with a given value of capacity a(k), k = 1, . . . r.

Customers can be viewed as partitioned in r different classes. A customer is of class
k if he/she requires the transportation of a quantity qk of goods, such that a(k−1) < qk ≤
a(k), k = 1, . . . , r and a(0) = 0. The demand of a class k customer can be satisfied with
trucks with capacity a(k) or greater, i.e. an “upgrade” can take place. We also assume
that customers requests cannot be partitioned among different trucks.

In each time period t = 1, . . . , T of the booking horizon, the logistic operator has to
decide on accepting the request of transferring a given quantity of goods from i ∈ O to
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j ∈ E with departure time t̄, t̄ = 1, . . . T̄ , with the goal of maximizing the total revenue.
In the sequel we will refer to 1, . . . , T̄ as the “operation horizon” i.e. the horizon where the
transportation service takes place. We assume that the booking horizon and the operation
horizon do not overlap.

Let A = [A1|A2| . . . |Ar], A ∈ Rr×u, u = r + (r − 1) + . . . + [r − (r − 1)] = r2 −
r−1∑
l=1

l = maxprod denote a binary matrix, partitioned in r sub-matrices. Each sub-matrix

Ak ∈ Rr×[(r−k)+1], k = 1, . . . , r contains the set of possible products to satisfy the demand
of a class k customer. In particular, the first column of sub-matrix Ak is the product
constituted by the truck of minimum capacity a(k) useful to satisfy the demand of class
k, whereas the last column is the product constituted by the truck of maximum capacity
a(r) that can be used to satisfy the class k customer.

We indicate each column of matrix A as Ap p = 1, . . . ,maxprod. Each element akp,
p = 1, . . . ,maxprod of matrix A is equal to one if truck k is used in product p and 0
otherwise. It is worth noting that a product indicates the type of truck that the logistic
operator can use to satisfy the demand of a certain class k; in fact, due to the upgrade, a
class k request can be satisfied with trucks of capacity k or greater. In particular, given a

class k request, the products p = vkmin, . . . , vkmax , with vkmin = (k−1)r−
k−1∑
s=1

[(k−1)−s]+1

and vkmax = kr −
k−1∑
s=1

[k − s], can be used to meet the customer demand.

The state of the system is described by a matrix

X = [X1
1|X1

2| . . . |X1
|E|| . . . |X T̄

1|X T̄
2| . . . |X T̄

|E|],

each column X t̄
i = (xt̄i1, . . . , x

t̄
ir)
>,∀i ∈ O, t̄ = 1, . . . T̄ representing the capacity of

node i at time t̄. In particular xt̄ik is the number of trucks of type k, k = 1, . . . , r available
at node i ∈ O at time t̄ = 1, . . . , T̄ .

Time is discrete, there are T booking periods indexed by t, which runs forward;
consequently, t = 1 is the first possible booking time.

In each time-period t, at most one request of transportation can arrive. Let λtijt̄k
denote the probability that at time t one transportation request of class k from i ∈ O to

j ∈ E, with departure at time t̄ = 1, . . . , T̄ , is made. It holds that
∑
i∈E

∑
j∈E,j 6=i

T̄∑̄
t=1

r∑
k=1

λtijt̄k+

λt0 = 1, where λt0 = 1, represents the probability that no request arrives at time t.

We, further, assume that the travel times are random and we indicate with µτij the
probability that the average travel time from node i, i ∈ O to node j, j ∈ E will be
τ, τ = 1, . . . , τ̄ time units.

Let us introduce boolean variables utijt̄p, with utijt̄p = 1 if the transportation request

from node i to node j with departure time at t̄, is accepted, at time t, by using product
p and utijt̄p = 0 otherwise.
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Let Rkij be the revenue obtained by satisfying a request from i to j with a truck of
type k, k = 1, . . . , r.

The problem can be formulated as a dynamic program by letting Vt(X) be the
maximum expected revenue obtainable from periods t, t + 1, . . . , T given that, at time t,
the capacity of the system is X.

The Bellman equation for Vt(X) is reported in what follows:

(5.1)
Vt(X) =

r∑
k=1

∑
i∈E

∑
j∈Ej 6=i

λtijt̄k max
ut
ijt̄p ∈ {0, 1}

p ∈ {vkmin, . . . vkmax}

[Rkiju
t
ijt̄p + Vt+1(X̃)]

+λtij0kVt+1(X)

where

• X̃ t̃
i = (X t̃

i − Aputijt̄p), ∀t̃ = t̄, . . . , T̄ . This term updates capacity on node i when a
certain request from node i is accepted.

• X̃ τ̄
j = (X τ̄

j + Apu
t
ijt̄p), ∀τ̄ = (t̄ +

τ̄∑
τ=1

τµτij), . . . , T̄ . This term updates capacity on

node j when a certain request to node j is accepted.

• X̃ t̄
l = X t̄

l ,∀t̄, l 6= i, j. This term updates capacity on the rest of the system when a
request from i to j is accepted.

It is worth noting that the update of X, at time t happens when a customer of
class k requires the transportation service from i to j with departure time t̄. In this case
we need to change the state of the system by considering that, if the customer request is
accepted by using product p, we need to update the capacity on node i considering that
the truck used in product p will be not anymore in node i from time t̄ (departure time)
until the end of the operation horizon (unless the truck will return on node i in the future).
Moreover we need to adjust the capacity on node j by considering that the truck moved
from i to j will be on node j starting from a time equal to the departure time from node

i plus the average travel time
τ̄∑
τ=1

τµτij and until the end of the operation horizon. On the

rest of the system the capacity will not be varied until the end of the operation horizon.

The boundary conditions of the Bellman equation are the following:

Vt(0) = 0, ∀t;

Vt(X) = −∞ if xt̄ir < 0 for some i, t̄, r; ∀t

VT+1(X) = 0, if xt̄ir ≥ 0 ∀ i, t̄, r;

VT+1(X) = −∞ if xt̄ir < 0 for some i, t̄, r.
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The proposed dynamic programming (DP) model is unlikely to be solved optimally due to
the curse of dimensionality. For this reason, in the next section, we propose a linear pro-
gramming approximation of the DP which is an extension of well-known approximations
for the DP of traditional network capacity management. In particular, we are interested
in approximations by deterministic linear programming (DLP) ([37] and [161]). Solving
the Bellman equation, by approximating the function Vt(X), falls in the general class of
approximate dynamic programming (ADP) methods ([17]), in which an approximate value
to the exact value function is used in the Bellman equation. The main difference among
various ADP methods comes from the specific approximating mathematical programming
problem that is built and solved to calculate the value function. It is evident that the type
of approximation used influences the complexity of the function evaluation. Our DLP
approximation is a simpler alternative to other approximations (like those presented in
[151] for the dynamic resource allocation problem) and offer the possibility to construct
revenue management policies, based on easy to solve deterministic optimization problems,
that perform well in comparison to optimal policies.

5.3 A linear programming formulation for the TRP

Starting from the dynamic programming problem, in the linear programming approxima-
tion, we replace stochastic quantities by their mean values and assume that capacity and
demand are continuous.

Let be:

• d the random cumulative future demand at time t, and d̄ its mean. In particular dt̄kij
is the aggregate number of transportation requests from i to j with departure time
t̄ belonging to class k.

• yt̄pij the number of products of type p = 1, . . . ,maxprod to be used to satisfy the
transportation request from i, i ∈ O to j, j ∈ E with departure time t̄.

• Rkij the revenue obtained by satisfying a transportation request from node i to node
j with a truck of type k.

• xt̄ik the number of trucks of capacity a(k) available on node i at time t̄.

• τ̄ij the average travel time from node i ∈ O, to node j ∈ E, i 6= j.

In the sequel the assumption that each node is both an origin and a destination
node, with |O| = |E| = N , will always hold.

The total revenue achievable by the logistic operator at time t, when the network
capacity is x, can be calculated by solving the the following optimization problem:
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(5.2) RTRP (x, t) = max
T̄∑
t̄=1

∑
i∈O

∑
j∈Ej 6=i

r∑
k=1

vkmax∑
p=vkmin

Rkijy
t̄p
ij

(5.3)

vkmax∑
p=vkmin

yt̄pij ≤ d̄
t̄k
ij ∀k, i 6= j, t̄

(5.4)

t̄−1∑
t̃=1

∑
j∈Ej 6=i

maxprod∑
p=1

akpy
t̃p
ij ≤ x

t̄
ik +

∑
j∈Ej 6=i

maxprod∑
p=1

akp

t̄−τ̄ij∑
t̃=1

yt̃pji ∀k, i, t̄

(5.5) yt̄pij ≥ 0 ∀ t̄, p, i, j

Constraints (5.3) state that the demand of class k can be satisfied with a truck of
capacity a(k) or greater. Constraints (5.4) control the availability of a truck of capacity
a(k) on node i at time t.

In the programming formulation for the TRP reported above, we have not imposed
the satisfaction of integer constraints on the decision variables. Indeed, given the specific
structure of the constraint matrix (CM, for short) associated with TRP, its linear relax-
ation yields an integral solution, thus these constraints can be relaxed. In particular, it is
possible to demonstrate that CM can be reduced to an interval matrix (i.e., a 0−1 matrix
where the ones appear consecutively), that is totally unimodular ([119]). For the proof
the reader is referred to the technical report version of this paper ([51]).

In a revenue management setting, based on the solution of a linear programming
formulation of the problem, we define booking limits or bid price controls to accept or
reject a request at a certain time.

In fact, it is well known ([144]) that by solving the DLP model we can use either
the primal variables to construct a partitioned booking-limit control directly or the dual
variables to define a bid-price control. In the partitioned booking-limit control, a fixed
amount of capacity of each resource is allocated to every product offered. The demand for
each product has access only to its allocated capacity and no other product may use this
capacity. In contrast, a bid-price control policy sets a threshold price or bid price for each
resource in the network ([143]). Roughly this bid price is an estimate of the marginal cost
of consuming the next incremental unit of the resources capacity.

When a booking request for a product arrives, the revenue of the request is compared
to the sum of the bid prices of all the resources required by the product. If the revenue
exceeds the sum of the bid prices, the request is accepted provided that all the resources
associated with the requested product are still available; if not, the request is rejected.
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5.3.1 Revenue-based primal and dual acceptance policies

In the context of the DLP, optimal solutions y?t̄pij give partitioned booking limits while

bid prices are formed from optimal dual variables πt̄ki, t̄ = 1, . . . , T̄ , k = 1, . . . , r, i ∈ O of
constraints (5.4). The partitioned booking-limit policy and the bid-price policy based on
the DLP can be formally defined as follows.

At a certain point of the booking horizon, decisions about either accepting or denying
transportation requests are to be made.

The model is driven by the following event: a request of class k̄ from origin node i to
destination node j with departure time t̄ arrives at time t to the transportation operator.

When this event happens, RTRP (x, t) is solved and its solution used to make a
decision.

From a primal viewpoint, the strategy to be adopted is a partitioned booking limits
policy (BLP, for short), that assumes the following form.

BLP Scheme

Solve RTRP (x, t). Let y?t̄pij denote its optimal solution.

if y?t̄pij > 0 for some p = vk̄min, . . . , vk̄max then

accept the request with upgrade if p > vk̄min;

set yt̄pij = yt̄pij − 1;

set k̃ = p− vk̄min + k̄ i.e. determine the truck used in product p;

update appropriately the capacity:

xt̃
ik̃

= xt̃
ik̃
− 1,∀t̃ = t̄, . . . T̄ and xt̃

jk̃
= xt̃

jk̃
+ 1 ∀t̃ = t̄ + τ̄ij , . . . , T̄ ; if

xt̂
ik̃
> xt̄

ik̃
then xt̂

ik̃
= xt̂

ik̃
− 1 ∀t̂ = 1, . . . t̄− 1.

calculate the revenue obtained from accepting the request;

else

deny the request.

end if

From a dual viewpoint, it is necessary to solve the problem RTRP (x, t) and to deal
with the dual variables associated to the capacity constraints. We will indicate with BPP
the bid price policy associated with the linear programming formulation.

Let us indicate with πt̄ki, t̄ = 1, . . . , T̄ , k = 1, . . . , r, i ∈ O the dual variables associ-
ated with constraints (5.4).

A possible strategy to either accept or deny a request of class k̄, from origin node i
to destination node j with departure time t̄ that arrives at time t to the transportation
operator, can be described as follows:
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BPP Scheme

Solve the RTRP (x, t) to obtain the dual variables πt̄ki, t̄ = 1, . . . , T̄ , k = 1, . . . , r, i ∈ O.

if there exists a k̃ ≥ k̄ such that Rk̄ij ≥ πt̄
k̃i
− πt̄+τij

k̃j
and xt̃

ik̃
> 0 ∀t̃ = t̄, . . . , T̄

then

accept the request with upgrade if k̃ > k̄;

update appropriately the capacity;

calculate the revenue obtained from accepting the request;

else

deny the request.

end if

It is worth noting that the procedure used to update the capacity is the same as
that in the previous case.

5.3.2 A partitioned booking limits policy with sharing

If more than one request, from the same origin i toward the same destination j with the
same departure time t̄, arrives to the transportation operator, multiple demands can be
loaded on the same truck. Indeed, a policy, incorporating the truck sharing (BLPS, for
short) can be defined.

The model is always driven by the same event: a request of class k̄ from origin
node i to destination node j with departure time t̄ arrives at time t to the transportation
operator.

Let Qt̄ij = {q1t̄
ij , . . . , q

ξt̄
ij } denote the set of the goods quantities that should be trans-

ported from the same origin i to the same destination j at the same departure time t̄,
belonging to the class k̄ request.

The main operations executed by BLPS can be represented as follows.

BLPS Scheme

Solve RTRP (x, t). Let y?t̄pij denote its optimal solution.

if y?t̄pij > 0 for some p = vk̄min, . . . , vk̄max then

accept the class k̄ request with upgrade if p > vk̄min;

set k̃ = p− vk̄min + k̄ i.e. determine the truck k̃ used in product p;

set rescap = a(k̃)− a(k̄);

Repeat

Select a request qξ̄t̄ij from Qt̄ij , such that qξ̄t̄ij ≤ rescap;
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delete qξ̄t̄ij from Qt̄ij ;

accept the new request;

set rescap = rescap − qξ̄t̄ij ;
Until {Qt̄ij = � or rescap <= 0}

set yt̄pij = yt̄pij − 1;

update appropriately the capacity;

calculate the revenue obtained from accepting all the selected requests;

else

deny the requests.

end if

Following the same idea it is also possible to define a bid price policy incorporating
sharing (BPPS). We will consider this policy while making numerical experiments in
section 5.5.

5.4 The TRP with Sharing (TRPS) and Repositioning (TRPR)

In section 5.3.2 we considered the possibility for the logistic operator of using the same
truck for satisfying requests coming from customers that share origins, destinations and
departure time. In this section we present a new formulation of the TRP that incorporate
sharing in its decisions by making explicitly the total revenue dependent on the quantities
transported between each couple of nodes.

Assume that the aggregate number of transportation requests dt̄kij from i to j with
departure time t̄ belonging to class k, are available. Remembering that a customer is of
class k if he/she requires the transportation of a quantity qk of goods, such that a(k−1) <
qk ≤ a(k), k = 1, . . . , r and a(0) = 0, it is easy to associate to each request the quantity
to be transported.

Let be:

• M = {1, . . . ,m} the set of the trucks owned by the logistic operator;

• b(m) the capacity of each truck in M ;

• ct̄ij =
∑r

k=1 d
t̄k
ij the aggregate number of transportation request from i to j with

departure time t̄ from period t to the end of the planning horizon;

• Qt̄δij the quantity associated to the δ − th request from i to j with departure time t̄;

• Rij the revenue obtained by transferring a single unit of good from node i to node
j;
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• xt̄δmij = 1 if truck m is used to satisfy the δ − th request from i to j with departure
time t̄ and 0 otherwise;

• yt̄mij = 1 if xt̄δmij = 1 AND 0 otherwise. The introduction of variables yt̄mij is necessary
to control the availability of truck m on node i at time t̄;

• Qmi = 1 if truck m is on node i at the beginning of the booking horizon and AND 0
otherwise;

• τ̄ij the average travel time from node i ∈ O, to node j ∈ E, i 6= j.

The revenue obtainable by the logistic operator at time t, when the network capacity
is Q, can be calculated by solving the following problem:

(5.6) RTRPS(Q, t) = max

T̄∑
t̄=1

∑
i∈O

∑
j∈Ej 6=i

ct̄ij∑
δ=1

M∑
m=1

Rijx
t̄δm
ij Qt̄δij

(5.7) xt̄δmij ≤ Qt̄δij ∀ i 6= j, t̄, m, δ = 1, . . . , ct̄ij

(5.8)

ct̄ij∑
δ=1

xt̄δmij Qt̄δij ≤ b(m) ∀ m, i 6= j t̄

(5.9)
M∑
m=1

xt̄δmij ≤ 1 ∀ i 6= j t̄, δ = 1, . . . , ct̄ij

(5.10) yt̄mij ≤
ct̄ij∑
δ=1

xt̄δmij ∀ m, i 6= j t̄

(5.11)

ct̄ij∑
δ=1

xt̄δmij ≤ Gyt̄mij ∀m , i 6= j t̄

(5.12)
∑

j∈E,j 6=i
yt̄mij −

∑
j∈E,j 6=i

t̄−τ̄ij∑
τ=1

yτmji +
∑

j∈E,j 6=i

t̄−1∑
τ=1

yτmij ≤ Qmi ∀ m, i 6= j t̄
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(5.13) yt̄mij , x
t̄δm
ij binary ∀ t̄, m, δ, i, j

The objective function (5.6) is the revenue obtainable at time t when the residual
capacity on the network is Q. Notice that the total revenue increase while increasing the
total quantity transferred on the network. Constraints (5.7) let the movement of a truck
be possible only if the δ − th request refers to a quantity not equal to zero. Constraints
(5.8) state that the total quantity transferred by truck m cannot exceed its capacity.
Constraints (5.9)state that the δ − th request cannot be partitioned on different trucks.
Constraints (5.10) and (5.11) (where G >> 0 is a large parameter) are introduced to
impose the logical link between variables xt̄δmij and yt̄mij . Constraints (5.12) controls the
presence of each truck on each node of the network.

A further development of the model takes into account the repositioning of an empty
truck on a node ī, when the benefit of such operation is greater than the cost of moving
the truck empty.

To this aim, we need to introduce the following quantities:

• z t̄mij = 1 if truck m is moved empty from i to j at time t̄ AND 0 otherwise;

• γij the cost of moving an empty truck from i to j.

The new objective function takes the following form:

(5.14)

RTRPR(Q, t) = max

 T̄∑
t̄=1

∑
i∈O

∑
j∈Ej 6=i

ct̄ij∑
δ=1

M∑
m=1

Rijx
t̄δm
ij Qt̄δij −

T̄∑
t̄=1

∑
i∈O

∑
j∈Ej 6=i

M∑
m=1

γijz
t̄m
ij


Constraints (5.7), (5.9), (5.8),(5.10) and (5.11) are still valid, whereas constraints

(5.12) need to be restated as follows:

(5.15)

∑
j∈E,j 6=i y

t̄m
ij −

∑
j∈E,j 6=i

∑t̄−τ̄ij
τ=1 yτmji +

∑
j∈E,j 6=i

∑t̄−1
τ=1 y

τm
ij +∑

j∈E,j 6=i z
t̄m
ij −

∑
j∈E,j 6=i

∑t̄−τ̄ij
τ=1 zτmji +

∑
j∈E,j 6=i

∑t̄−1
τ=1 z

τm
ij ≤ Qmi ∀ m, i 6= j t̄

A possible partitioned booking limits policy BLPSM based on RTRPS(Q, t) is re-
ported below.

The model is again driven by the same event: a request of class k̄ from origin node
i to destination node j with departure time t̄ arrives at time t to the transportation
operator.
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BLPSM Scheme

Solve RTRPS(Q, t). Let x∗t̄δmij denote its optimal solution.

if x∗t̄δ̄m̃ij = 1 for some δ̄ ∈ ct̄ij and for some m̃ ∈M then

accept the class k̄ request with upgrade if b(m̃) > a(k̄);

set rescap = a(m̃)-a(k̄);

Repeat

Select a request δ̃ from ct̄ij , such that Qt̄δ̃ij ≤ rescap;
delete δ̃ from ct̄ij ;

accept the new request;

set rescap = rescap −Qt̄δ̃ij ;
Until {ct̄ij = � or rescap <= 0}
set set x∗t̄δ̄m̃ij = 0;

update appropriately capacity:yt̄m̃ij = 0 ∀t̄ = 1, . . . , T̄ and yt̄m̃ij = 1 ∀t̃ =

t̄+ τ̄ij , . . . , T̄ ;

calculate the revenue obtained from accepting all the selected requests;

else

deny the requests.

end if

Analogously, taking into account the variables z in updating capacity, it is possible
to define a partitioned booking limits policy BLPR based on RTRPR(Q, t).

5.5 Computational experiments

In this section, we present the numerical results obtained by testing the policies described
in sections 5.3.1, 5.3.2 and 5.4. All the numerical experiments have been carried out in
AIMMS 3.7, with Cplex 10.1 as solver, on a Pentium Intel Core 2 T200 2.0 GHz PC.

To the best of our knowledge, the problem under consideration has not previously
taken into account in the revenue management literature. Thus, benchmark instances are
not available and the computational experiments have been carried out on a set of test
problems randomly generated.

The test problems we considered, reported in Table 5.1, are characterized by an
increasing number of origin and destination nodes, a different number of trucks type and
different lengths of the operation horizon T̄ . Moreover, for each node i ∈ O and for each
type of truck k, the number of trucks xik available at node i is randomly chosen from the
ranges [a, b], given in Table 5.1.
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In all the instances, we assume that each node can be both origin and destination
for the transportation request, and that the booking horizon consists of two periods i.e.
T = 2.

Test Problem |O| = |E| = N Type of Trucks T̄ [a, b]

T1 5 3 5 [1,5]

T2 5 5 5 [1,5]

T3 5 3 10 [1,5]

T4 5 5 10 [1,5]

T5 10 3 5 [1,3]

T6 10 5 5 [1,3]

T7 10 3 10 [1,3]

T8 10 5 10 [1,3]

T9 15 3 5 [1,2]

T10 15 5 5 [1,2]

T11 15 3 10 [1,2]

T12 15 5 10 [1,2]

Table 5.1: Characteristics of the test problems

For each truck k and for each origin-destination pair (i, j), i ∈ O and j ∈ E, the
value of the revenue Rkij was randomly generated into the interval [50, 330] and considering
the revenue increasing with both the trucks capacity a(k) and the distance between the
nodes i and j. The average travel time from node i to node j was randomly generated
into the interval [1, T̄ ].

For each test problem, the booking process was simulated 1000 times. In each
simulation run, the transportation requests are randomly generated by applying a two
phases procedure. In the first phase, for each origin-destination pair, and each departure
time, the number of transportation requests for each class is randomly generated according
to a normal distribution, with a given expected demand and a given coefficient of variation,
chosen randomly from the interval [1, 10] and [0, 1], respectively. In the second phase,
for each request, booking arrival times are randomly generated according to an uniform
distribution.

The requests generated by the procedure outlined above are then processed.

In particular, at each time instant t in the booking horizon, a transportation request,
for which the booking arrival time is less than or equal to the considered booking instant,
is chosen and the accept/deny decision is made based on one of the proposed policies. The
trucks’ availability is then updated and another booking request is processed. We move
to the next booking time period when there are no more requests, arrived before t, that
need to be evaluated. It is worth observing that the value of the revenue is affected by
the order in which the booking requests are processed. In our experiments, we solve the
models, used to define the policies, a number of times equal to the length of the booking
horizon.
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In each of the 1000 simulation runs, all the requests for each test problem, are
processed considering the policies BLP, BPP, BLPS, BPPS, BLPSM and BLPR and
the 95% confidence intervals of average revenue are introduced.

Policies BLPSM and BLPR are based on the solution of the binary modelsRTRPS(Q, t)
and RTRPR(Q, t) and even the MIP CPLEX solver was unable to find the optimal solution
in a reasonable amount of time. Therefore a time-limit of 2-h CPU (referred as TO in
Figure 5.2) was imposed and the obtained feasible solution used to implement the related
policies. Moreover, the solver was able to find a feasible solution, within the imposed time
limit, only for the 5 nodes instances T1, T2, T3 and T4.

Tables 5.2 contains the value of the average revenue values and its 95% confidence
interval obtained applying each policies to our test problems. The last row ATP is the
average revenue of each policy, on the 12 test problems.

The results of Table 5.2 show that, the partitioned booking limits policy incorporat-
ing the truck sharing outperforms the bid price counterpart, whereas the average revenue
determined by applying BPP is on average 1.13 times greater than the one determined
by BLP. Moreover the policies incorporating sharing provide better solutions. Indeed,
an average revenue of 42423.44 is obtained with BLP, whereas the average revenue deter-
mined by applying BPP is equal to 48194.51. In addition an average revenue of 84213.37
and 67210.28 is determined by applying BLPS and BPPS, respectively.

With reference to BLPSM and BLPR, results suggest that for the smallest in-
stances T1 − T4, higher revenue values can be obtained when truck sharing and truck
repositioning are considered. Indeed, an average revenue of 47658.39 is obtained by apply-
ing BLPR, whereas the average revenue is equal to 47504.30 when BLPSM is considered.

However, by considering the revenue values achieved with these two policies and
those obtained by applying BLPS, in which the possibility of satisfying different com-
patible requests by the same truck is considered only in the policy, it is evident that
the performance are comparable. Consequently, in real applications, it is reasonable
adopt the BLPS, avoiding the excessive computational cost for solving RTRPS(Q, t) and
RTRPR(Q, t),

In order to assess the quality of the partitioned booking limits and bid price strate-
gies, we also compared the revenues RBLP , RBLPS , RBPP and RBPPS determined by
applying respectively policies BLP, BLPS, BPP and BPPS, with the revenue obtained
by solving the RTRP and considering a perfect knowledge of the realized demand (RHSP)
and with that achieved when a first-come first-served policy is applied (RFCFSP).

In particular, we considered the average percentage error APE and the average
percentage gain APG with respect to the revenue RHSP and the revenue RFCFSP defined
as follows:

APE =
RHSP −Ri
RHSP

× 100, i = BLP,BPP,BLPS,BPPS;

APG =
Ri −RFCFSP

RFCFSP
× 100, i = BLP,BPP,BLPS,BPPS.
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The related results are reported in Tables 5.3 and 5.4. Table 5.3 clearly underlines
that the revenue obtained by applying the partitioned bid price policy is quite close to the
revenue achieved in the case of perfect information on the demand. Indeed, the average
percentage error is equal to 31.60% and 38.36% for BPP and BLP, respectively. In
addition all the proposed policies outperform the FCFSP. In particular, the average
percentage gain is equal to 80.20% and 61.58% for BPP and BLP, respectively. It can be
noted that better performance are achieved with BLPS and BPPS, as shown in Table 5.4.
In particular, for almost all the test problem the revenue obtained from BLPS and BPPS
is greater than the one with perfect information on demand. It is worth nothing that
the negative values of APE in Table 5.4 are due to the fact that in calculating APE the
comparison is made between the revenue that is obtained by applying the policy described
in Section 5.3.2, that lets the possibility of load multiple demands on the same trucks,
and the revenue obtained from the solution of the RTRP model (that does not incorporate
sharing) considering a perfect knowledge of the realized demand.

5.6 Conclusions

In this paper, we considered the optimal managing of a fleet of trucks rented by a logistic
operator, to serve customers. The logistic operator has to decide whether to accept or
reject a request and which type of truck should be used to address it. For this purpose,
a dynamic programming formulation and linear approximations of the problem under
consideration have been defined. Based on the proposed linear programming models,
borrowing revenue management techniques primal and dual acceptance policies have been
defined, that use partitioned booking limits and bid prices controls. The possibility of
loading multiple demands on the same truck (i.e., “truck sharing”) has been also exploited.
The repositioning of empty trucks from nodes, where they are not used, to nodes from
which a new transportation request could be satisfied, has been also considered. The
contributions of the paper to the literature are several. Indeed this is the first time, to our
knowledge, that revenue management techniques are applied to the problem of operating
trucks on a network with the possibility of “upgrades” and consolidation. Moreover,
the faced problem implies the possibility of reusing resources during the booking period.
Finally, the paper exploits an alternative way to solve the dynamic Resource Allocation
Problem by linear models and to use their solutions to define revenue based policies to
take profitable decisions in assigning resources.
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Table 5.2: Average revenue of the proposed policies and its 95% confidence interval
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Test Problem BLP BPP

APE APG APE APG

T1 28.23% 26.33% 32.25% 19.26%

T2 30.99% 74.10% 30.74% 74.73%

T3 36.64% 83.70% 31.97% 97.26%

T4 36.64% 66.43% 23.92% 99.83%

T5 39.42% 49.22% 30.28% 71.74%

T6 32.95% 77.53% 29.14% 87.62%

T7 41.84% 46.15% 27.26% 82.81%

T8 22.45% 133.84% 9.23% 173.70%

T9 40.91% 40.24% 33.62% 57.53%

T10 44.32% 57.61% 37.97% 75.60%

T11 48.93% 46.02% 43.70% 59.31%

T12 57.03% 37.77% 49.14% 63.04%

ATP 38.36% 61.58% 31.60% 80.20%

Table 5.3: Average percentage error and average percentage gain for BLP and BPP

Test Problem BLPS BPPS

APE APG APE APG

T1 -0.14% 76.27% -12.52% 98.07%

T2 -0.44% 153.38% 2.53% 145.90%

T3 -13.51% 229.12% 6.92% 169.89%

T4 14.90% 123.54% 8.69% 139.86%

T5 8.63% 125.08% -2.57% 152.66%

T6 -11.01% 193.91% -1.55% 168.88%

T7 -52.72% 283.79% 0.74% 149.44%

T8 -31.01% 295.04% -0.12% 201.91%

T9 -36.29% 223.44% -23.08% 192.08%

T10 -40.94% 298.97% -4.57% 196.00%

T11 -39.32% 294.27% 7.11% 162.86%

T12 -11.73% 258.20% 23.71% 144.56%

ATP -17.80% 212.92% 0.44% 160.18%

Table 5.4: Average percentage error and average percentage gain for BLPS and BPPS
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Appendix

The aim of this appendix is to rewrite the linear programming problem presented in section
5.3 in a form that can be viewed as an extension of the well known deterministic linear
programming model arising in the network capacity control ([144]) and for which the
asymptotic analysis of network problems still holds. Indeed, we do not report any proof
on the asymptotic analysis because the theoretical findings reported in [31] and [143] can
be easily extended to our case.

The asymptotic optimality property basically states that the expected revenue gen-
erated from the partitioned booking limit policy, based on the optimal primal solution
of the linear programming formulation, is asymptotically convergent to the optimal ex-
pected revenue Vt(X), when both the available capacity and the demand are scaled up
proportionally. Moreover, it can be shown that the bid-price policy is also asymptotically
optimal, when capacities and demand are large provided, that the right bid prices are
used.

It is worth noting that because we assumed that the sets of origins and destinations
are the same, when we refer to a pair of nodes (i, j), we always assume that i 6= j. We

∆ O O O O ...

O ∆ O O O ...

O O ∆ O O ...

... ... ... ... ... ...

O O O O ∆ ...

... ... ... ... ... ∆

Figure 5.1: Graphical representation of the D Matrix

first concentrate our attention on constraints (5.3). Let D be the block matrix, with
[T̄ × r××N × (N −1)] rows and [N × (N −1)×maxprod× T̄ ] columns, reported in Figure
5.1. Each block of the ∆ type is also a block matrix with [T̄ × r] rows and [maxprod × T̄ ]
columns, whose structure is given in Figure 5.2, whereas each block of the O type has
[T̄ × r] rows and [maxprod × T̄ ] with all zero entries.

The ∆ type matrices are also block matrices with r rows and maxprod columns.
Each row k, k = 1, . . . , r of the ∆ matrices contains a block of ones with dimension vkmax
and the remaining elements equal to zero. Figure 5.3 reports the structure of matrix D,
for the case N = 3, r = 2, T̄ = 2.

11 . . . 1 00. . . 0 00. . . 0 00. . . 0

00. . . 0 11 . . . 1 00. . . 0 00. . . 0

... ... ... ...

00. . . 0 00. . . 0 00. . . 0 1

Figure 5.2: Graphical representation of the structure of the ∆ blocks

Also constraints (5.4) can be rewritten in compact form in the following way. Let C
denote the block matrix with [r×N × T̄ ] rows and [T̄ ×maxprod×N × (N − 1)] columns,



5.6. Conclusions 106

110000 000000 000000 000000 000000 000000
001000 000000 000000 000000 000000 000000
000110 000000 000000 000000 000000 000000
000001 000000 000000 000000 000000 000000
000000 110000 000000 000000 000000 000000
000000 001000 000000 000000 000000 000000
000000 000110 000000 000000 000000 000000
000000 000001 000000 000000 000000 000000
000000 000000 110000 000000 000000 000000
000000 000000 001000 000000 000000 000000
000000 000000 000110 000000 000000 000000
000000 000000 000001 000000 000000 000000
000000 000000 000000 110000 000000 000000
000000 000000 000000 001000 000000 000000
000000 000000 000000 000110 000000 000000
000000 000000 000000 000001 000000 000000
000000 000000 000000 000000 110000 000000
000000 000000 000000 000000 001000 000000
000000 000000 000000 000000 000110 000000
000000 000000 000000 000000 000001 000000
000000 000000 000000 000000 000000 110000
000000 000000 000000 000000 000000 001000
000000 000000 000000 000000 000000 000110
000000 000000 000000 000000 000000 000001

Figure 5.3: Representation of the D Matrix when N = 3, r = 2, T̄ = 2

reported below:

C =

 C1
C2

.

.

.
CN


where Ci, i = 1, . . . , N is a block matrix with [r× T̄ ] rows and [T̄ ×maxprod×N × (N −1)]
columns, that takes the form given in Figure 5.4.

(1, 2) . . . (1, i) . . . (i-1, i) . . . (i, 1) . . . (i, N) (i+1, 1) . . . (i+1, N) . . . (N, i) . . . (N, N-1)

[O O −Ã O −Ã O Ã O Ã O O O O −Ã O O]

Figure 5.4: Graphical representation of the structure of the Ci block

The blocks of O type are matrices with all the entries equal to zero with [T̄ × r]
rows and [T̄ ×maxprod] columns while matrix Ã is a block matrix with [T̄ × r] rows and
[T̄ ×maxprod] columns and has the form reported in Figure 5.5. Matrix A is the binary
matrix described in section 5.2.

A O O O O ...

O A O O O ...

O O A O O ...

... ... ... ... ... ...

O O O O A ...

... ... ... ... ... A

Figure 5.5: Graphical representation of the Ã Matrix

In Figure 5.6, the structure of matrix C is highlighted in the case N = 3, r = 2, T̄ =
2.
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100000 100000 000000 000000 000000 000000
011000 011000 000000 000000 000000 000000
000100 000100 -100000 000000 -100000 000000
000011 000011 0-1-1000 000000 0-1-1000 000000
000000 000000 100000 100000 000000 000000
000000 0001000 011000 011000 000000 000000
-100000 000000 000100 001000 000000 -100000
0-1-1000 000000 000011 000011 000000 0-1-1000
000000 000000 000000 000000 100000 100000
000000 000000 000000 000000 011000 011000
000000 -100000 000000 -100000 000100 000100
000000 0-1-1000 000000 0-1-1000 000011 000011

Figure 5.6: Representation of the C Matrix when N = 3, r = 2, T̄ = 2

The vectors of decision variables y ∈ RN(N−1)T̄maxprod and of the revenues r ∈
RN(N−1)T̄maxprod take the following form:

y = (y11
12 . . . y

T̄maxprod
12 . . . y

T̄maxprod
1N y11

21 . . . y
T̄maxprod
2N . . . y

T̄maxprod
N1 . . . y

T̄maxprod
N(N−1) )>;

r = (r1
12 . . . r

1
12 . . . r

r
12 . . . r

r
12r

1
12 . . . r

1
12 . . . r

r
12 . . . r

r
12 . . . r

1
N1 . . . r

1
N1 . . . r

r
N(N−1) . . . r

r
N(N−1))

>.

Revenues vector r contains, for each pair of origin and destination nodes (i, j), the
same set of elements. In particular, for each (i, j), r contains, v1 elements of the r1 types
representing the value of the revenue associated with a class 1 request, v2 elements of the
r2 types representing the value of the revenue associated with a class 2 request and so on.
The v1 + . . .+ vr elements, for each pair of nodes are replicated T̄ times.

The vectors of demand d ∈ RN(N−1)×T̄×r and capacity x ∈ T̄ ×N × r at time t can
be represented as follows:

d = (d11
12 . . . d

1r
12d

21
12 . . . d

T̄ r
12 . . . d

T̄ r
1N . . . d

T̄ r
N(N−1))

>

x = (x1
12 . . . x

1
1rx

1
21 . . . x

1
2r . . . x

1
Nr . . . x

T̄
11 . . . x

T̄
Nr)
>

On the basis of the definitions and notations introduced, the model RTRP (x, t) can
be rewritten in a compact form as follows:

RLP (x, t) = max r>y
Dy ≤ d
Cy ≤ x
y ≥ 0

It is easy to verify that the mathematical model reported above is an extension of the
deterministic linear programming model for the network capacity control given in [144],
Chapter 3, p. 93.
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Chapter 6

Strategic and Operational
Decisions in Restaurant Revenue
Management

Abstract

Strategic decisions in restaurant are mainly related to choose the best table config-
uration while respecting space and capacity constraints. We propose several formulations
for the “Tables Mix Problem” taking into account different features of the real problem.
From an operational point of view, decisions are to be made in order to assign tables
to customers in the more profitable way. Indeed the “Parties Mix Problem” consists in
deciding on accepting or denying a booking request coming from a group of customers.
A dynamic formulation of the “Parties Mix Problem” is presented together with a lin-
ear programming approximation which solution can be used in decision making. In fact,
to decide on accepting or denying a customer booking request, different control policies,
based on booking limits and bid prices, are defined. Computational results show that
the proposed policies lead higher revenues than the traditional strategies used to support
decision makers.

Keywords: restaurant, dynamic programming, revenue management policies

6.1 Introduction

Restaurant revenue management is a quite recent discipline. The first work in restaurant
revenue management is [83] in which the authors discuss the applicability of revenue
management techniques to restaurant and [76] in which the RevPASH (the revenue per

111
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available seat-hour) is defined as a good indicator of revenue performance and as base to
establish strategies oriented to improve the revenue. In the same paper the author presents
a five step approach to develop a revenue management strategy at the restaurants. This
approach is then applied to a real case in [78].

In [148] questions related to the combinability of the tables are discussed. In partic-
ular, if it is better to have combinable or dedicated tables and how the better mix of tables
change by considering dedicated or configurable table design. In [85] the best table mix
is evaluated by using simulation on data coming from a real case. In [86] eight different
heuristics are compared to find the best number of different size tables for a restaurant to
maximize its revenue.

From an optimization point of view the most relevant paper on restaurant revenue
management is [20] in which integer programming, stochastic programming and approxi-
mate dynamic programming methods are used to control the arrival of walk-in customers
in order to maximize restaurant revenue. A reservation-booking model together with a
stochastic gradient algorithm are then presented to determine the optimal booking level.

In this paper we investigate the restaurant revenue management problem from both
strategic and operational point of view. In particular, from a strategic point of view we
formulate the table mix problem for a new restaurant that have to decide the best table
configuration. In choosing the best tables configuration we consider both the aspects
concerning the expected demand and the available space. In section 6.2 we present different
formulations of the problem at crescent level of details and the extensions at the tables
combinability case. In section 6.3 we give a dynamic formulation of the parties mix
problem followed by a linear programming approximation of the problem, due to the curse
of dimensionality. We conclude the section with the description of the several revenue
management control policies proposed. Finally, in 6.4, we present computational results.
The last section summarizes our conclusions.

6.2 The Tables Mix Problem (TMP)

Strategic decisions in restaurant are typically connected with the opening of a new restau-
rant or with the renovation of an exiting one. The Tables Mix Problem is to find the
combination of tables, with different sizes, that will constitute the restaurant. Decisions
about the “best” table mix are influenced by several factors like the number of potential
customers and the expected meal duration, the dimension and the layout of the restaurant,
and the possibility of combining tables of different dimensions.

We start by considering the simplest formulation of the problem ( TMP1). Let be:

• yip the number of parties of size p, p ∈ P = {1, 2, 3, 4...pmax} that can fit in a table
sized i, i ∈ I = {2, 4, 6, 8..};

• Rp the revenue obtained from a party of size p ∈ P ;
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• si the occupancy (in square meters) of a table sized i ∈ I;

• TD the total dimension (in square meters) of the restaurant;

• ADp the average number of a party sized p ∈ P .

The objective function, representing the revenue of the actual combination of tables,
is:

(6.1) max
∑
p∈P

Rp
∑
i≥p

yip − η
∑
i≥p

(i− p)yip

The term η
∑

i∈I(i− p)yip, for opportune values of η, discourages the assignment of
parties sized p to tables greater than p.

The constraints are given by: ∑
i∈I

∑
p ∈ P
p ≤ i

yipsi ≤ TD;(6.2)

∑
i≥p

yip ≤ ADp ∀p ∈ P ;(6.3)

yip ≥ 0, integer ∀i ∈ I, ∀p ∈ P .(6.4)

Constraint (6.2) state that the occupancy of all the tables can not exceed the total
area of the restaurant. Each table is considered to be rectangular. The dimension of each
rectangle (representing a table of a given capacity) is increased to take also into account
the space required among adjacent tables. Constraints (6.3) impose that the demand of a
party sized p can be satisfied with tables sized p or greater.

Restaurant rooms have different shapes so it is important to appropriately consider
the restaurant layout while deciding the best table mix. In the TMP2 below, we impose
space constraints on portions of the room restaurant so that it is possible to better fit
tables into the restaurant area. To this aim let be:

• xis the number of tables sized i ∈ I assigned to space portion s = 1, . . . , S;

• zis = 1 if for some i, xis > 0; zis = 0 otherwise;

• li the length of a table sized i ∈ I;

• hi the height of a table sized i ∈ I;

• Ls the length of the s− th portion of space, s = 1, . . . , S;
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• Hs the height of the s− th portion of space, s = 1, . . . , S.

The objective function, representing the revenue of the actual combination of tables,
is:

(6.5) max
∑
i∈I

∑
p∈P

Rpyip

(6.6)
∑
i∈I

lixis ≤ Ls ∀s = 1, . . . , S;

(6.7) hizis ≤ Hs ∀i ∈ I, ∀s = 1, . . . , S;

(6.8)
∑
i≥p

yip ≤ ADp ∀p ∈ P ;

(6.9)
∑
p≤i

yip =
S∑
s=1

xis ∀i ∈ I;

(6.10) xis ≤Mzis ∀i ∈ I, ∀s = 1, . . . , S;

(6.11) zis ≤ xis ∀i ∈ I, ∀s = 1, . . . , S;

(6.12) yip ≥ 0, integer ∀i ∈ I, ∀p ∈ P ;

(6.13) xis ≥ 0, integer ∀i ∈ I, ∀s = 1, . . . , S;

(6.14) zis binary ∀i ∈ I, ∀s = 1, . . . , S.

A length and a height are associated to tables and to portions respecting the total
area of the restaurant. Constraints (6.6) and (6.7), impose that the tables, used to satisfy
the demand, are placed in an appropriate portion of the restaurant area.

Another important issue in formulating the TMP is the average duration of meals.
The number of tables of a certain dimension depends on the turnover of the group that
fit in that dimension, in fact could be possible to gain a greater revenue from small tables
having a faster turnover than from larger tables, usually having a greater “unit value”, but
that are busy longer. Considering the average duration of meals, tables become reusable
resources in a given planning horizon.

To state the problem TMP3 let be:
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• yipt the number of tables sized i ∈ I combinable with parties sized p ∈ P that start
dining at time t = 1, . . . , T ;

• xit the number of tables sized i ∈ I at time t ;

• Rp the revenue obtained from a party of size p ∈ P ;

• TD the total dimension (in square meters) of the restaurant;

• Dp the average meal duration of a party sized p ∈ P ;

• ADpt the average number of parties sized p ∈ P at time t.

The total revenue of the actual combination of tables is:

(6.15) max

T∑
t=1

∑
i∈I

∑
p ∈ P
p ≤ i

Rpyipt

Constraints are given by:

(6.16)
∑
i∈I

xitsi ≤ TD ∀t = 1, . . . , T ;

(6.17)
∑
i≥p

yipt ≤ ADpt ∀p ∈ P, ∀t = 1, . . . , T ;

(6.18)
∑
p≤i

yipt ≤ xit +
∑
p ∈ P
p ≤ i

t−Dp∑
τ = 1

yipτ ∀i ∈ I, ∀t = 1, . . . , T ;

(6.19) xit ≥ 0, integer ∀i ∈ I;

(6.20) yipt ≥ 0, integer ∀i ∈ I, ∀p ∈ P, ∀t = 1, . . . T.

Constraints (6.18) assure that the number of tables sized i, assignable to groups of
dimension greater or equal to i, at time t, don’t exceed the whole availability given by
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the number of tables sized i at t plus the number of tables sized i that, considering the
average meal duration of the eating groups, will become free at t.

Also TMP3 can be extended by better considering the shape of the restaurant room.
The new formulation TMP4 can be stated as follows.

The objective function (6.15) and constraints, (6.7), (6.14), (6.17) e (6.20) are still
valid, whereas constraints (6.6), (6.10), (6.11),(6.13) and (6.18) need to be restated as
follows:

(6.21)
∑
i∈I

lixist ≤ Ls ∀s = 1, . . . , S ∀t = 1, . . . T ;

(6.22) xist ≤Mzis ∀i ∈ I, ∀s = 1, . . . , S ∀t = 1, . . . T ;

(6.23) zis ≤ xist ∀i ∈ I, ∀s = 1, . . . , S ∀t = 1, . . . T ;

(6.24) xist ≥ 0, integer ∀i ∈ I ∀s = 1, . . . , S ∀t = 1, . . . T ;

(6.25)
∑
p≤i

yipt ≤
S∑
s=1

xist +
∑
p ∈ P
p ≤ i

t−Dp∑
τ = 1

yipτ ∀i ∈ I, ∀t = 1, . . . , T.

We now consider the possibility of combining tables while deciding the number
of tables that will constitute the restaurant. In particular, we admit the possibility of
satisfying the demand of a group sized p not only by table sized p or greater but also by
combining tables smaller than p. We associate to each group sized p a set of “products”
that can be used to accommodate the group. A product is a table or a combination of
tables.

We need to introduce the following quantities:

• yptj is the number of products j, j = np−1 + 1, . . . , np with n0 = 0, used to satisfy a
group sized p ∈ P at time t = 1, . . . , T .

• apij is the number of tables sized i ∈ I used in product j to accommodate a group
sized p ∈ P .

Extensions of problems TMP1, TMP2, TMP3 and TMP4 to the combinability case
are reported in what follows.
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Problem TMP1C is:

(6.26) max

pmax∑
p=1

np∑
j=n(p−1)+1

Rpypj

(6.27)
∑
i∈I

xisi ≤ TD;

(6.28)

n(p)∑
j=n(p−1)+1

ypj ≤ ADp ∀p ∈ P ;

(6.29)

pmax∑
p=1

n(p)∑
j=n(p−1)+1

apijypj ≤ xi ∀i ∈ I;

(6.30) ypj ≥ 0, integer ∀i ∈ I, ∀p ∈ P ;

(6.31) xi ≥ 0, integer ∀i ∈ I.

Problem TMP2C, which is the extension of TMP2 to the case of combinability, can
be formulated by considering the same objective function of TMP1C (6.26). Constraints
(6.6), (6.7), (6.10), (6.11), (6.13), (6.14), (6.28) (6.30) are still valid, whereas constraints
(6.9) need to be redefined as follows:

(6.32)

pmax∑
p=1

np∑
j=n(p−1)+1

apijypj =

S∑
s=1

xis ∀i ∈ I;

The extensions of TPM3 and TPM4 to the case of combinability are presented in
what follows.

Problem TMP3C is:

(6.33) max

T∑
t=1

pmax∑
p=1

np∑
j=n(p−1)+1

Rpyptj
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(6.34)
∑
i∈I

xitsi ≤ TD ∀t = 1, . . . , T ;

(6.35)

n(p)∑
j=n(p−1)+1

yptj ≤ ADpt ∀p ∈ P, ∀t = 1, . . . , T ;

(6.36)

pmax∑
p=1

n(p)∑
j=n(p−1)+1

apijyptj ≤ xit +

pmax∑
p=1

n(p)∑
j=n(p−1)+1

t−Dp∑
τ=1

apijypτj , ∀i ∈ I ∀t = 1, . . . , T ;

(6.37) yptj ≥ 0, integer ∀i ∈ I, ∀p ∈ P, ∀t = 1, . . . T ;

(6.38) xi ≥ 0, integer ∀i ∈ I

For problem TMP4C the objective function (6.33) and constraints (6.6), (6.7),
(6.10),(6.11), (6.13), (6.14), (6.35), (6.37) are still valid, whereas constraints (6.36) can to
be stated as follows:

(6.39)
pmax∑
p=1

np∑
j=n(p−1)+1

apijyptj ≤
S∑
s=1

xist +

pmax∑
p=1

np∑
j=n(p−1)+1

t−Dp∑
τ=1

apijyipτ , ∀i ∈ I ∀t = 1, . . . , T.

6.3 The Parties Mix Problem (PMP)

Once the table mix problem is solved, i.e. the number of the tables of dimension i, i ∈ I
is decided, it is necessary to decide about how to assign tables to customers in the more
profitable way. Every day restaurant manager have to deal with the problem of accepting
or refusing booking requests coming from groups of customers.

In the sequel we assume that the restaurant have the possibility of combining tables
of different dimensions. We present a formulation of what we called “The Parties Mix
Problem”.

Let G = g1, g2, . . . , gK the set of all possible groups dimension. We assume that the
demand of a party sized gk, k = 1, . . . ,K can be satisfied both with a table of dimension
greater or equal to gk or with a combination of tables, each of them, with size less than
gk. In our setting we will use the term “product” to indicate both a single table or a
combination of two or more tables that can be used to satisfy the demand of a party sized
gk.
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Therefore a product is a combination of the different sized tables (resources) that
can be sold with a certain price that depends on the dimension of each party.

Let A = [A1|A2| . . . |Ak| . . . |AK ] the product matrix. Sub matrix Ak ∈ Rm×nk , k =
1, . . . ,K refers to a group sized gk. In particular an element akij of sub-matrix Ak indicate
the number tables of size i, i = 1, . . . ,m used in product j, j = n(k−1) + 1, . . . , nk,

to satisfy the demand of a group sized gk. A column of matrix A, Aj
k k = 1, . . . ,K

j = n(k−1) + 1, . . . , nk, n0 = 0 indicates the j − th product that can be used to satisfy the
demand of a group sized gk .

It is worth noting that apij introduced in Section 6.2, when models TMP1C, TMP2C,

TMP3C, TMP4C are presented, have the same meaning of akij . Here k is substituted with
p just for notation convenience.

Just for an example consider requests coming from group sized 2, 4, 6, 8 and tables
of dimension 4, 6, 8. Matrix A is shown in Figure 6.1. The first product is a table of
dimension 1 that can be used to satisfy a group sized 1. The same group could be satisfied
with the product constituted by a table sized 4, or by table sized 6, or by a table sized 8.
The third group, sized 6, could be satisfied with a product constituted by 2 tables sized
4, or by 1 table sized 6 or by 1 table sized 8; the fourth 4 sized 8 could be satisfied with
the product constituted by 2 tables sized 4, or by 2 tables sized 6, or by 1 table sized 8 or
by 1 table sized 4 and 1 table sized 6.

Figure 6.1: A graphical representation of matrix A

The initial capacity of the network, i.e the number of tables sized i available at the
beginning of the booking horizon is c = (c1, . . . , cm)>. The state of the network is described
by a vector x = (x1, . . . , xm)> of tables capacities. In each time period t = 1, . . . , T of
the booking horizon the restaurant has to decide on accepting the request of a group
sized gk that ask for a table at time t̄, t̄ = 1, . . . T̄ , with the goal of maximizing the total
revenue. In the sequel we will refer to 1, . . . , T̄ as the “meal horizon”, i.e the horizon where
customers consume their lunch/dinner. The state of the system is described by a matrix
X = [X1|X2| . . . |XT̄ ], each column Xt̄ = (xt̄1, . . . , x

t̄
m)>, ∀i ∈ I, t̄ = 1, . . . T̄ representing

the capacity, i.e the number of tables sized i available at time t̄.

Time is discrete, there are T booking periods indexed by t, which runs forward;
consequently, t = 1 is the first possible booking time.

In each time-period t, at most one request of eating can arrive. Let λt̄tk denote the
probability that at time t one eating request from a group sized gk is made. It holds that
λt0 +

∑T
t̄=1

∑K
k=1 = 1, where λt0 = 1 represents the probability that no request arrives at

time t.
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We, further, assume that the meal durations are random and indicate with qτk the
probability that the meal duration of a group sized gk will be τ, τ = 1, . . . , τ̄ time units.

Let us introduce boolean variables ut̄ktj , with ut̄ktj = 1 if and only if a request, with
lunch (dinner) time at t̄, coming from a group sized gk is satisfied at time t with product
j.

Let Rk be the revenue obtained by satisfying a request of a group sized gk.

The problem can be formulated as a dynamic program by letting Vt(X) be the
maximum expected revenue obtainable from periods t, t + 1, . . . , T given that, at time t,
the capacity of the system is X.

The Bellman equation for Vt(X) is reported in what follows:

(6.40) Vt(X) =
∑K

k=1 λtk max uk
tj ∈ {0, 1}

j ∈ {n(k−1) + 1, . . . nk}

[rkuktj + Vt+1(X̃)] + λt0Vt+1(X)

with boundary conditions

Vt(0) = 0,∀t;

Vt(X) = −∞ if xt̄j < 0 for some j, t̄;∀t

VT+1(X) = 0, if xt̄j ≥ 0 ∀ j, t̄;

VT+1(X) = −∞ if xt̄j < 0 for some j, t̄.

where

• X̃t̃ = (Xt̃−Akjukt̄j), ∀t̃ = t̄, . . . , T̄ . This term updates capacity when a certain request
of products j from a group sized gk is accepted.

• X̃l̃ = Xl̃ +Akju
k
t̄j ,∀l̃ = (t̄+

∑τ̄
τ=1 τqτk), . . . , T̄ . This term updates capacity when the

release of products j from a group sized gk happens.

• X̃w = Xw,∀w 6= t̃, l̃. This term updates capacity on the rest of the system when a
request of products j from a group sized gk is accepted.

It is worth noting that the update of X, at time t happens when a group sized gk
requires a meal with starting time t̄. In this case we need to change the state of the system
by considering that, if the group request is accepted by using product j, we need to update
the capacity considering that the tables used in product j will be not anymore available
from time t̄ (start dining) until the end of the meal horizon (unless the product will return
available in the future). Moreover, we need to adjust the capacity by considering that the
tables used in product j will be available again starting from a time equal to the start
dining time plus the average meal duration

∑τ̄
τ=1 τqτk and until the end of the operation

horizon. On the rest of the system the capacity will not be varied until the end of the
operation horizon.
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The proposed dynamic programming (DP) model is unlikely to be solved optimally
due to the curse of dimensionality. For this reason, in the next section, we propose a
linear programming approximation of the DP, which is an extension of well-known ap-
proximations for the DP of traditional network capacity management. In particular, we
are interested in approximations by deterministic linear programming (DLP) [37], [161].
Solving the Bellman equation, by approximating the function Vt(X), falls in the general
class of approximate dynamic programming (ADP) methods [17], in which an approximate
value to the exact value function is used in the Bellman equation. The main difference
among various ADP methods comes from the specific approximating mathematical pro-
gramming problem that is built and solved to calculate the value function. It is evident
that the type of approximation used influences the complexity of the function evaluation.
Our DLP approximation is a simpler alternative to other approximations (like those pre-
sented in [151] for the dynamic resource allocation problem) and offers the possibility to
construct revenue management policies, based on easy to solve deterministic optimization
problems, that perform well in comparison to optimal policies.

6.3.1 A Linear Programming Formulation for the Party Mix Problem
(LPMP)

In the LPMP, we replace stochastic demand quantities by their mean values and assume
that capacity and demand are continuous.

Let:

• d be the random cumulative future demand at time t, and d̄ its mean. In particular
dt̄k is the aggregate number of requests from a group sized gk requiring to have a
meal starting at t̄.

• ykt̄j be the number of products of type j = 1, . . . , nK used to satisfy the request of a
group sized gk with starting meal time t̄.

• rk be the revenue obtained by satisfying a request of a group sized gk.

• xt̄i be the number of tables of dimension ci, i = 1, . . . ,m available at time t̄.

• Durk be the average meal duration of a group sized gk.

The total revenue obtainable at time t when the capacity of the restaurant is x can
be obtained by solving the following optimization problem:

(6.41) RLPMP (x, t) = max

T∑
t̄=t

K∑
k=1

nk∑
j=n(k−1)+1

rkykt̄j
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(6.42)
K∑
k=1

nk∑
j=n(k−1)+1

t̄∑
t̃=1

akijy
kt̃
j ≤ xt̄i +

K∑
k=1

nk∑
j=n(k−1)+1

t̄−Durk∑
t̃=1

akijy
kt̃
j ∀i, t̄ = t, . . . , T

(6.43)

nk∑
j=n(k−1)+1

ykt̄j ≤ d̄t̄k ∀k, t̄ = 1, . . . , T

(6.44) ykt̄j ≥ 0 and integer ∀j, k, t̄ = t, . . . , T

The objective function (6.41) represents the total revenue obtainable at time t when
the residual capacity of the restaurant is x. Constraints (6.43) state that the demand of
a group sized gk can be satisfied both with tables of dimension gk or greater and with a
combination of tables each of them with dimension less than gk. Constraints (6.42) control
the availability of a table of dimension si at time t̄.

It is well known [144] that by solving the LPMP model we can use either the primal
variables to construct a partitioned booking limit control directly or the dual variables
to define a bid price control. In the partitioned booking limit control, a fixed amount of
capacity of each resource is allocated to every product that is offered. The demand for
each product has access only to its allocated capacity and no other product may use this
capacity. In contrast, a bid price control policy sets a threshold price or bid price for each
resource in the network. Roughly speaking this bid-price is an estimate of the marginal
cost of consuming the next incremental unit of the resource’s capacity. When a booking
request for a product arrives, the revenue of the request is compared to the sum of the
bid prices of all the resources required by the product. If the revenue exceeds the sum of
the bid prices, the request is accepted provided that all the resources associated with the
requested product are still available; if not, the request is rejected.

In the context of the PMP, optimal solutions y∗ktj give partitioned booking limits
while bid prices are formed from optimal dual variables of constraint (6.42). The revenue
based policies are presented in the next section.

6.3.2 Revenue-based Primal and Dual Acceptation Policies

At a certain point of the planning horizon decisions about accepting or denying a meal
request are to be made.

The model is driven by the arrival to the restaurant, at time t, of a booking request
from a group sized gk asking to have a meal at time t̄.

When this event happens model RLPMP (x, t) is solved and its solution is used to
take a decision.
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From a primal viewpoint, the strategy to be adopted is a partitioned booking limits
policy, BLPMP, and assumes the following form.

BLPMP Scheme

Solve RLPMP (x, t). Let y∗kt̄
j̄

denote its optimal solution.

if y∗kt̄
j̄

> 0 for some j̄ = n(k−1) + 1, . . . , nk and there is enough capacity ( xt̃i > ak
ij̄
∀i :

ak
ij̄
6= 0 and ∀t̃ = t̄, . . . , T ) then

accept the request;

set y∗kt̄
j̄

= y∗kt̄
j̄
− 1;

update appropriately capacity:

xt̃i = xt̃i − akij̄ , ∀i : ak
ij̄
6= 0 and ∀t̃ = t̄, . . . T ;

calculate the revenue obtained from accepting the request;

else

deny the request.

end if

Now we present a new policy called Later Accommodation for Party Mix Problem
(LAPMP ). The model is driven by the arrival at time t of a request from a group sized
gk asking to have a meal at time t̄. In the LABLP the restaurant has the possibility of
suggesting later starting time tnew for the meal.

LAPMP Scheme

Solve RLPMP (x, t). Let y∗kt̄
j̄

denote its optimal solution.

if y∗kt̄
j̄

> 0 for some j̄ = n(k−1) + 1, . . . , nk and there is enough capacity then

accept the request;

set y∗kt̄
j̄

= y∗kt̄
j̄
− 1;

update appropriately capacity i.e.

xt̃i = xt̃i − akij̄ , ∀i : ak
ij̄
6= 0 and ∀t̃ = t̄, . . . T ;

calculate the revenue obtained from accepting the request;
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else

if y∗kt
new

j̃
> 0 for some j̃ = n(k−1) + 1, . . . , nk and tnew > t̄ and tnew ≤ T then;

if the group sized gk accept to wait for (tnew − t̄) and there is enough capacity then;

accept the request with later accommodation; set y∗kt
new

j̃
= y∗kt

new

j̃
− 1;

update appropriately capacity i.e.

xt̂i = xt̂i − akij̃ , ∀i : ak
ij̃
6= 0 and ∀t̂ = tnew, . . . T ;

calculate the revenue obtained from accepting the request;

else

deny the request.

end if

From a dual viewpoint, we solve the linear relaxation of the problem RLPMP (x, t)
and use the dual variables associated to constraints (6.42). We will indicate with BPPMP
the Bid Price Policy associated with the linear relaxation of the PMP problem.

Let us indicate with πt̄ = πt̄1, . . . , π
t̄
m t̄ = t, . . . , T the vectors of dual variables

associated with constraints (6.42).

A possible strategy to accept or deny a request from a group sized gk, asking to have
a meal at time t̄, that arrives at time t to the restaurant is the following:

BPPMP Scheme.

Solve the linear relaxation of RLPMP (x, t) to obtain the dual variables πt̄, t̄ = t, . . . , T ,
i = 1, . . . ,m.

if rk ≥ Ak
j̄
πt̄ for some j̄ = n(k−1) + 1, . . . , nk and xt̃i > 0 ∀t̃ = t̄, . . . , T then

accept the request;

update appropriately capacity;

calculate the revenue obtained from accepting the request;

else

deny the request.

end if
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It is worth noting that the update of the capacity is the same that in the previous
case.

We also implemented an Average Bid Price Policy BPPMP. In this case an the
average bid price value on the time interval [t̄, T ] is considered and the revenue rk is

compared with πaverage =
Ak

j̄
(πt̄+πt̄+1+...+πt̄+Durk )

{min[(t̄+Durk),T ]−t̄} .

6.4 Numerical Results

In this section, we report the numerical results obtained by testing the policies described
in Section 6.3.2.

All the numerical experiments have been carried out in AIMMS 3.7, with Cplex
10.1 as solver, on a Pentium Intel(R) Core(TM) i7 CPU Q720 1.60GHz 4GB of RAM PC,
under Windows 7 operating system.

The test problems we considered, reported in Table 6.1, refer to restaurant with
capacity of 50, 100, and 200 seats. The dimension of the rooms, in square meters, are
calculated by considering that Italian rules recommend 1.2 square meters for each seats.

In Table 6.2 are reported the tables characteristics, in particular for each table of
a given dimension its length and height. These follows Italian rules for restaurants room
and are comprehensive of the required distances between tables.

In Table 6.2 are reported the group characteristics, in particular the number of
people constituting each group, the value of the revenue associated with each group and
the expected meal duration.

In 6.3, with reference to TMP2, TMP4, TMP2C and TMP4C formulations, portions
of different dimensions, which can be used to deal with restaurant rooms of different shapes,
are reported. More in details, we considered the restaurant as constituted by three portions
(rectangles), whose dimensions (in cm) are reported in Table 6.3.

Restaurant Capacity (Seats) Dimension (m2)

1 50 60
2 100 120
3 200 240

Table 6.1: Characteristics of the restaurants

The meal horizon is taken as T = 9 periods of time. Each period of time corresponds
to a quarter, so that, lunches can start at 12:00 a.m. and terminate at 14:00 a.m.

With reference to ADp parameter, i.e the average number of a party sized p ∈ P ,
we considered both the case in which the number of customers is dimensioned equal to
the number of seats (Low demand setting) and the case in which the number of customers
is increased by the 80% of the number of seats (Hight demand setting). Moreover, for
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Tables Seats Length Height

1 4 237.5 215
2 6 307.5 215
3 8 367.5 215

Groups Number of people Revenue Duration meal

1 2 60 2
2 4 100 2.5
3 6 150 3
4 8 210 3.5
5 10 260 3.5

Table 6.2: Characteristics of the tables and parties

Restaurant Dimensions Portion 1 Portion 2 Portion 3

1 Length 1000 1000 790.75
Height 215 215 215

2 Length 2000 2000 1581.5
Height 215 215 215

3 Length 4000 4000 3163
Height 215 215 215

Table 6.3: Portion Characteristics

each demand setting, we generated three different scenarios, see Table 6.4. The first
scenario corresponds to the case in which the higher percentage of demand is from groups
of small dimensions, the second scenario is relative to the case of balanced percentage of
demand between all the groups and the third scenario refers to the case in which the higher
percentage of demand comes from groups of eight and ten people. The ADpt parameters,
i.e the average number of parties sized p ∈ P at time t, was calculated by imposing that
the 65% of customers ask for a meal between the third and the seventh period of time,
the 20% of customers ask for a meal between the eight and the tenth period of time and
the left 15% at the first and the last periods of time.

Group Scenario 1 Scenario 2 Scenario 3

2 50% 20% 10%
4 30% 20% 10%
6 10% 20% 10%
8 6% 20% 40%
10 4% 20% 30%

Table 6.4: Demand scenarios

As discussed above, several formulations of TMP are considered and Section 6.4.1
presents numerical results for such problems. In addition, the results related to PMP and
to the application of the primal and dual acceptation policies are illustrated in Section
6.4.2.



127 Chapter 6

6.4.1 Preliminary Results for TMP

In what follows, we indicate the test problems for TMP with TPsij, where the index i,
i = 1, 2, 3, indicates the type of restaurant (see Table 6.1), the index j, j = 1, 2, 3, indicates
the demand scenario (see Table 6.4) and s refers to strategic level. For instance, the test
problem TPs23 is related to the case of a restaurant of 100 seats and 120 square meters
and the values of demand are generated by considering the second scenario.

For models TMP1, we have considered η = 0.

The results of the three base cases are shown in Table 6.5 in which the values of the
average revenue are reported.

As expected the average revenue for TMP3 and TMP4 is always greater than the
revenue of TMP1 and TMP2 and in fact in the first two cases tables are managed as
reusable resources in a given planning horizon. We can also observe that the revenue
values for TMP2 and TMP4 are lower or equal than the revenue of TMP1 and TMP3,
respectively, and this can be justified by the fact that considering a specific layout for a
restaurant restricts the number of tables that can be used.

We also studied the effect of combining tables and results are summarized in Table
6.6. The average revenue in the case of combinability is always greater than the revenue
without the possibility of combine tables. The benefit of combinability is shown in Table
6.7, it can be noticed that the gain in revenue is higher when the duration of meals is
considered. Therefore we can conclude that combining tables is an important way to
improve revenue.

6.4.2 Preliminary Results for PMP

In this subsection, we report the results related to the control policies defined in Section
6.3.2 for the PMP. We simulated the performances of BL, LABL, BPP and ABPP policies
and compared the results with the performances of a simple first-come first-served policy
(FCFSP) and of a hindsight policy (HSP) with the perfect knowledge of the realized
demand.

We considered two possibility in accepting reservations: the overlap and the no-overlap
settings. While in the case of no-overlap the decision about accept or reject a meal reser-
vation is made in advance, the case of overlap between the meal and the booking horizon
can be considered as a way of satisfy the walk-in customers.

To test the control booking policies, we considered an instance characterized by 3
tables sized 4, 6, 8 seats, respectively, and 4 parties of 2, 4, 6, 8 people. We considered the
three types of restaurant with the same dimensions of the previous case (see Table 6.1), and
the same scenarios (see Table 6.4). We report only the results obtained with the scenarios
of low demand and high demand, in order to illustrate the two extreme situations.

For the test problems, we used the following notation. The first index indicates
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Table 6.5: Average revenue for TMP1, TMP2, TMP3, TMP4
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the type of restaurant while the second refers to the demand scenario (i.e TP11 indicates
the test problem related to a restaurant of 50 seats, when the first demand scenario is
considered, while TP32 indicates the test problem related to a restaurant of 200 seats,
when the second type of demand scenario is considered). Moreover, the test problems for
the overlap case are indicated with TPO, while TPNO is related to the no-overlap case.
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Table 6.6: Average revenue for TMP1C, TMP2C, TMP3C, TMP4C
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For the no-overlap case, the policies are tested by considering a booking horizon of
3 and 7 periods.

We measured the performances of policies over 2000 simulated booking processes
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Table 6.7: Average percentage gain applying combinability
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for each test problem.

In each simulation run, the dinner requests are randomly generated by applying
a two phases procedure. In the first phase, for each group of a given dimension, and
each meal time, the number of dinner requests is randomly generated according to a
normal distribution, with a given expected demand and a given coefficient of variation,
chosen randomly from the interval [1, 10] and [0, 1], respectively. In the second phase,
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for each request, booking arrival times are randomly generated according to an uniform
distribution.

The requests generated by the procedure outlined above are then processed.

In particular, when no-overlap is considered, at each time instant t̄ in the booking
horizon, a request, for which the booking arrival time is less than or equal to the considered
booking instant, is chosen and the accept or deny decision is made based on one of the
proposed policies. The tables availability is then updated and another booking request is
processed. We move to the next booking time period when there are no more requests,
arrived before t̄, that need to be evaluated. Moreover, the value of the revenue is influenced
by the order in which the booking requests are processed. In our experiments, we solve the
models, used to define the policies, a number of times equal to the length of the booking
horizon.

In the overlap case, the requests generated by the procedure described are processed
by considering the accept or deny decision at each time instant t in the meal horizon.

The results for the optimal BL, LABL, BPP and ABPP booking control policies,
are presented in Tables 6.9 and 6.10 for the no-overlap and overlap cases, respectively.
For each test problem the average revenue values are given. We also report the average
revenues for FCFSP and HSP in Table 6.8. We determined the 95% confidence intervals
of average revenues and the average percentage error (APE) and the average percentage
gain (APG) defined as follows:

APE =
RHSP −Ri
RHSP

× 100, i = BLP,BPP,ABPP,LABLP;

APG =
Ri −RFCFSP

RFCFSP
× 100, i = BLP,BPP,ABPP,LABLP.

The related results to APE and APG are reported in Tables 6.11 and 6.12, for
no-overlap and overlap cases, respectively. The Tables 6.13 and 6.14 contain the value
of the average revenue and its 95% confidence interval, for no-overlap and overlap cases,
respectively.

All the policies have required few seconds and this why we don’t present evaluations
on computational times.

Test Problem FCFS HSP

TP11 161.16 225.84
TP12 885.00 1239.36

TP21 545.52 773.88
TP22 943.65 1332.12

TP31 1376.40 1965.84
TP32 3524.28 5066.40

Table 6.8: Average revenue values for RLPMP by applying HSP and FCFSP
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Test Problem BLP BPP ABPP LABLP

TPNO11-b3 197.04 166.44 186.60 225.24
TPNO11-b7 188.52 167.28 185.40 219.24
TPNO12-b3 988.56 901.20 1034.40 1221.36
TPNO12-b7 969.96 895.68 1055.16 1193.52

TPNO21-b3 624.12 545.76 614.16 761.40
TPNO21-b7 622.44 547.08 627.84 757.92
TPNO22-b3 1048.20 974.52 1121.40 1246.08
TPNO22-b7 1050.00 973.32 1141.32 1288.80

TPNO31-b3 1556.04 1388.64 1584.48 1855.92
TPNO31-b7 1611.12 1387.80 1622.40 1882.32
TPNO32-b3 4017.24 3575.04 4280.16 4862.16
TPNO32-b7 4175.28 3610.68 4357.15 4940.52

Table 6.9: Average revenue for RLPMP by applying BLP, BPP, ABPP and LABLP with no-
overlap

Test Problem BLP BPP ABPP LABLP

TPO11 197.28 182.76 200.52 228.48
TPO12 983.88 947.59 1077.05 1173.76

TPO21 649.20 614.40 664.08 777.96
TPO22 1073.88 1011.00 1174.32 1257.36

TPO31 1635.60 1470.12 1685.64 1886.64
TPO32 4162.32 3827.76 4551.60 4908.72

Table 6.10: Average revenue for RLPMP by applying BLP, BPP, ABPP and LABLP in case of
overlap

Table 6.11 shows that in the no-overlap case, LABLP performs better on average
than the all other policies. In particular, the better values for each policy are when a
booking horizon of 7 periods is considered. On average, the LABLP obtains an error of
3.11% and a gain of 37.23%. The BPP does not seem to perform very well, with an error
of 28.01% and a gain of only 1.95% for a booking horizon of 7 periods. The ABPP, when
the booking periods are 7, is the policy with the greatest gain after LABLP and followed
by BLP.

The same considerations can be written for the performances of the policies in the
case of overlap.

It must be remembered that the LABLP considers the possibility for each party to
wait for meal and to be served after a certain period of time, therefore the results obtained
by comparing LABLP with the other policies, were predictable.

But by comparing the two cases, in particular the results for no-overlap case with 7
booking periods and the results for overlap, we can affirm that with overlap all the policies
perform best.
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It is worth nothing that the negative values of APE in Table 6.12 are due to the
fact that in calculating APE the comparison is made between the revenue that is obtained
by applying the policy LABLP, that lets the possibility of proposing to the customer a
later starting time for the meal, and the revenue obtained from the solution of the LPMP
model,that does not incorporate this possibility, considering a perfect knowledge of the
realized demand.

Tables 6.13 and 6.14 contains the value of the average revenue values and its 95%
confidence interval obtained applying each policies to our test problems for no-overlap and
overlap cases, respectively. The last row ATP is the average revenue of each policy, on
the test problems and for the two different booking horizon considered. The results show
that the LABLP and the ABPP outperform BLP, while the average revenue for BPP is
the worse than the other policies in both the cases. Moreover the policies with overlap
provide better solutions.

Test Problem BLP BPP ABPP LABLP
APE APG APE APG APE APG APE APG

TPNO11-b3 12.75% 22.26% 26.30% 3.28% 17.38% 15.79% 0.27% 39.76%
TPNO11-b7 16.52% 16.98% 25.93% 3.80% 17.91% 15.04% 2.92% 36.04%
TPNO12-b3 20.24% 11.70% 27.29% 1.83% 16.54% 16.88% 1.45% 38.01%
TPNO12-b7 21.74% 9.60% 27.73% 1.21% 14.86% 19.23% 3.70% 34.86%

TPNO21-b3 19.35% 14.41% 29.48% 0.04% 20.64% 12.58% 1.61% 39.57%
TPNO21-b7 19.57% 14.10% 29.31% 0.29% 18.87% 15.09% 2.06% 38.94%
TPNO22-b3 21.31% 11.08% 26.84% 3.27% 15.82% 18.84% 6.46% 32.05%
TPNO22-b7 21.18% 11.27% 26.93% 3.14% 14.32% 20.95% 3.25% 36.58%

TPNO31-b3 20.85% 13.05% 29.36% 0.89% 19.40% 15.12% 5.59% 34.84%
TPNO31-b7 18.04% 17.05% 29.40% 0.83% 17.47% 17.87% 4.25% 36.76%
TPNO32-b3 20.71% 13.99% 29.44% 1.44% 15.52% 21.45% 4.03% 37.96%
TPNO32-b7 17.59% 18.47% 28.73% 2.45% 14.00% 23.63% 2.48% 40.19%

ATP b=3 19.20% 14.42% 28.12% 1.79% 17.55% 16.78% 3.24% 37.03%

ATP b=7 19.11% 14.58% 28.01% 1.95% 16.24% 18.64% 3.11% 37.23%

Table 6.11: Average percentage gain and error values for BLP, BPP, ABPP, LABLP, with 3 and
7 booking periods

6.5 Conclusions

In this paper we studied the restaurant revenue management problem from both strategic
and operational point of view. We formulated the table mix problem by considering dif-
ferent aspects like the expected demand, the available space and the tables combinability.
From the operational point of view, we considered several booking control policies and
showed how to apply them in the case of overlap and no-overlap between decision periods.
Next to the well known deterministic model, we also looked at a dynamic model unlikely to
be solved due to the curse of dimensionality so to construct the control policy we defined
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Test Problem BLP BPP ABPP LABLP
APE APG APE APG APE APG APE APG

TPO11 12.65% 22.41% 19.08% 13.40% 11.21% 24.42% -1.17% 41.77%
TPO12 20.61% 11.17% 23.54% 7.07% 13.10% 21.70% 5.29% 32.63%
TPO21 16.11% 19.01% 20.61% 12.63% 14.19% 21.73% -0.53% 42.61%
TPO22 19.39% 13.80% 24.11% 7.14% 11.85% 24.44% 5.61% 33.24%
TPO31 16.80% 18.83% 25.22% 6.81% 14.25% 22.47% 4.03% 37.07%
TPO32 17.84% 18.10% 24.45% 8.61% 10.16% 29.15% 3.11% 39.28%

ATP 17.23% 17.22% 22.83% 9.28% 12.46% 23.99% 2.73% 37.77%

Table 6.12: Average percentage gain and error for the BLP, BPP, ABPP, LABLP with overlap

Test Problem BLP BPP ABPP LAP

TPNO11-b3 205.44 165.6 183.84 200.88
[201.87, 209.00] [162.15, 169.05] [180.11, 187.57] [196.51, 205.25]

TPNO11-b7 202.8 170.52 192.36 194.28
[199.31, 206.29] [167.03, 174.01] [188.76, 195.96] [189.78, 198.78]

TPNO12-b3 1024.56 928.44 1056.12 1149.12
[1012.11, 1037.01] [917.17, 939.71] [1045.16, 1067.08] [1131.89, 1166.35]

TPNO12-b7 1008.84 919.92 1054.08 1124.04
[996.39, 1021.29] [908.85, 930.99] [1042.70, 1065.46] [1108.21, 1139.87]

TPNO21-b3 646.32 552.36 622.2 710.76
[637.82, 654.82] [551.25, 563.31] [629.28, 643.44] [708.51, 728.85]

TPNO21-b7 643.32 557.28 636.36 718.68
[635.07, 651.57] [551.25, 563.31] [629.28, 643.44] [708.51, 728.85]

TPNO22-b3 1071.96 974.88 1127.16 1195.44
[1061.41, 1082.51] [965.59, 984.17] [1115.99, 1138.33] [1181.20, 1209.68]

TPNO22-b7 1074.12 977.88 1148.88 1216.2
[1063.22, 1085.02] [968.60. 987.16] [1138.99, 1158.77] [1199.16, 1233.24]

TPNO31-b3 1600.44 1398 1597.68 1805.16
[1585.42, 1615.46] [1388.14, 1407.86] [1585.75, 1609.61] [1789.96, 1820.36]

TPNO31-b7 1635.12 1392.84 1627.92 1850.04
[1620.06, 1650.18] [1383.01, 1402.67] [1617.08, 1638.76] [1836.78, 1863.30]

TPNO32-b3 4059.96 3586.56 4302.96 4829.64
[4026.48, 4093.44] [3563.34, 3609.78] [4275.53, 4330.39] [4801.69, 4857.59]

TPNO32-b7 4202.64 3612.24 4364.88 4915.68
[4169.55, 4235.73] [3588.82, 3635.66] [4336.82, 4392.94] [4892.05, 4939.31]

ATP b=3 1434.78 1267.64 1481.66 1648.50

ATP b=7 1461.14 1271.78 1504.08 1669.82

Table 6.13: Average revenue of the proposed policies and its 95% confidence interval with no-
overlap

a linear programming formulation of the DP. The performances of the different booking
control policies are evaluated in a simulated environment. The results show that all the
booking control policies perform better than the simple FCFS policy or than the case of
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Test Problem BLP BPP ABPP LABLP

TPO11 202.80 184.68 202.08 203.28
[199.65, 205.95] [181.54, 187.82] [198.73, 205.43] [198.73, 207.83]

TPO12 1019.88 952.30 1099.32 1105.80
[1008.12, 1031.64] [940.43, 964.17] [1088.27, 1110.37] [1090.99, 1120.61]

TPO21 674.76 616.08 664.08 727.56
[667.12, 682.40] [609.60, 622.56] [656.82, 671.34] [717.39, 737.73]

TPO22 1101.60 1024.92 1190.28 1209.24
[1091.17, 1112.03] [1015.90, 1033.94] [1181.39, 1199.17] [1196.11, 1222.37]

TPO31 1663.20 1477.56 1692.00 1849.56
[1649.61, 1676.79] [1468.00, 1487.12] [1680.78, 1703.22] [1835.64, 1863.48]

TPO32 4206.60 3845.04 4571.52 4867.56
[4175.45, 4237.75] [3821.46, 3868.62] [4547.92, 4595.12] [4841.86, 4893.26]

ATP 1478.14 1350.10 1569.88 1660.50

Table 6.14: Average revenue of the proposed policies and its 95% confidence interval with overlap

perfect knowledge of demand. Especially the BLLAP and the ABPP seem to give the
greatest benefits.
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Chapter 7

Conclusions

This thesis addressed the Revenue Management (RM, for short) optimization approaches
and its main fields of applications. This work summarized the main results achieved in
the three years of the Ph.D. program on this research topic. In particular, innovative
RM optimization models and policies have been defined for two specific service sectors:
car/truck rentals and restaurants.

More in details, in this thesis we considered:

• RM basic concepts and applications;

• A robust optimization approach for the car rental problem;

• A RM based approach for the car rental problem;

• A RM based approach for the truck rental problem;

• A RM based approach for strategic and operational decisions in restaurants.

Ad-hoc RM models and policies have been designed, developed and implemented.
The obtained theoretical results have been validated by an extensive and exhaustive ex-
perimental phase in order to assess the behaviour of the proposed solution approaches in
terms of robustness and practical applications in real contexts.

7.1 Summing up

In the thesis we started by summarizing the existing literature of RM and its main appli-
cations and solution approaches for service industries. Considerable attention was devoted
to RM applications in car rentals and restaurants.

Regarding the car rental problem, we provided a detailed description of the typi-
cal car rental activities and proposed the first attempt to apply robust optimization to

139
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the car rental industry. To handle demand uncertainty, we proposed several robustness
measures and the related scenario-based formulations for the car rental revenue optimiza-
tion problem. More specifically, the attention has been focused on the maxmin criterion
(i.e., the application of a simple absolute robustness measure, maximizing the worst-case
performance), the robust deviation criterion, the stochastic p-robustness criterion and a
standard deviation based variability criterion. The results collected indicate that these
scenario-based formulations and these robustness measures can be used to obtained im-
portant considerations about expected revenue values during a car rental process.

Innovative RM models and policies to address the car rental problem have been
proposed. We proceeded to evaluate the typical car rental process by considering same
specific aspects, such as upgrades, one-way rentals and car transferring. In particular, we
presented innovative mathematical models and solution approaches to manage a car rental.
Dynamic programming models and the related linear programming approximations have
been proposed to represent mathematically the problems under study. Primal and dual
acceptance policies, which use booking limits and bid price controls, have been developed
to handle the car rental company’s problem of accepting or rejecting a car rental request. In
order to evaluate the effectiveness of the proposed policies we compared these approaches
with a typical first-come first-served policy and with the case of a perfect knowledge of
the realized demand. An extensive computational phase has been conducted in order to
demonstrate the validity of the proposed approaches as decisions support tools to maximize
the revenue of the car rental agency by satisfying the demand and the capacity constraints.

Regarding the truck rental problem, we considered the optimal managing of a fleet
of trucks, characterized by different load capacity, rented from a given set of origins to a
given set of destinations, by a logistic operator, to serve customers. Many components
of the truck rental business that affect its revenues have been considered. In particu-
lar, the possibility of loading multiple demands on the same truck and the repositioning
of empty trucks have been exploited. The problems have been formulated as dynamic
programs, unlikely to be solved optimally due to the curse of dimensionality and approx-
imated by deterministic linear programming. In a RM settings, based on the solution of
the linear programming formulations of the problems, we defined booking limits and bid
price controls to accept or reject a request at a certain time. All defined revenue based
linear models and policies suggested efficient and effective management approach to take
profitable decisions in assigning resources and handling booking requests.

Regarding restaurant RM, we have suggested strategic and operational approaches
to manage profitably the table mix problem and the booking requests problem. From
the strategic point of view, the table mix problem has been formulated by considering
several factors like the number of potential customers, the expected meal duration, the
available space, i.e layout of the restaurant, and the tables combinability. We assumed
that the restaurant have the flexibility of combining tables of different dimensions and
we presented the new parties mix problem formulation. From the operational point of
view we considered a dynamic formulation of the problem under consideration and several
booking control policies: partitioned booking limit, bid price and the innovative later
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accommodation booking limit.

7.2 Concluding remarks

The contribution of this thesis can be summarized as follows.

The objective of the thesis was to evaluate and find an innovative and optimal man-
agement strategy for the car/truck rentals and restaurants businesses using the principles
of RM. We believe we have fulfilled the objective, because the collected results are very en-
couraging and our models and policies are different than anything else in the RM literature
in car/truck rental and restaurant fields.

Well studied aspects of the car/truck rental have been addressed and innovative
RM models and policies have been proposed. To the best of our knowledge, the proposed
robust approach represents the first attempt to apply robust optimization to the car rental
industry to manage resources and demand in order to maximize the revenue. Furthermore,
the dynamic programs, which consider in the same formulation the several and different
aspects of a typical car/truck rental or restaurant process, have not previously taken into
account in the RM literature.

For the aforementioned businesses no attention has been paid from the scientific
literature to the definition of RM decision policies, such as booking limits and bid prices,
to address the constrained and perishable capacity allocation problem. Thus, we believe
the proposed RM acceptance policies be novel and valuable approaches.

7.3 Direction for future research

The main goal of future work will be to consider some of the aspects of rental industry
not yet explored and to provide the definition and the computational evaluation of the
related RM solution approaches and new controls to better respond to customers demand
and management necessities.

Some things to consider are pricing, fleet planning, overbooking, bonus or penalty
for upgrading. Furthermore, the validity of the proposed models and policies should be
tested on a more realistic examples and practical settings.

Despite the encouraging results and the demonstrated great potential to apply RM
approaches in the restaurant industries, this business field need to be studied further.

The models and policies presented in this thesis could be extended for modeling and
solving the problems of other service industries.

A preliminary work related to the developments of models for planning problem
at a tv broadcasting company was presented at Annual Conference of the Italian Oper-
ational Research Society (AIRO 2010 Conference). The aim of the work was to develop
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optimization models to support television networks in accepting and scheduling advertise-
ments in Italy. Future research will be mainly focused on the development of efficient RM
approaches and the definition of appropriate policies to support the negotiation process
between advertisers and television networks.

By defining flexible RM pricing policy techniques, we will also address the problem
for hotels to change dynamically the price in order to increase the total number of products
sold and the customers willing to pay, by using mechanisms such as promotion, markdown,
markup, to name a few.
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