
Università della Calabria

Dipartimento di Matematica

Dottorato di Ricerca in Matematica ed Informatica

xxv ciclo

Settore Disciplinare INF/01 – INFORMATICA

Tesi di Dottorato

ASPIDE:

Integrated Development Environment for
Answer Set Programming

Kristian Reale

Supervisori Coordinatore

Prof. Francesco Ricca Prof. Nicola Leone

A.A. 2011 – 2012

Acknowledgments

I would like to express my sincere gratitude to my supervisor Francesco Ricca,
who has encouraged me to do my work during these years with patient guidance
and constant support. Through his energy and enthusiasm in research and in
my work, he gave me all the inspiration and motivation to achieve the results
presented in this thesis in a care way and supporting me on the development
phase of ASPIDE.

I am deeply grateful to Nicola Leone particularly because he has supported
me in these years and for all the opportunities for personal and professional
growth he ensured me.

I would like to thank also the research group of the Department of Mathe-
matics at Unical, which has been a source of friendships as well as good advice
and collaboration. Among them, a sincere and grateful thanks goes to the
colleagues who shared the office with me, especially Pierfrancesco Veltri and
Onofrio Febbraro for their friendship and constant help.

Particular thanks to Onofrio Febbraro because his collaboration for the de-
velopment of ASPIDE has been crucial and many implementation solutions have
been possible thanks to his professional skills.

I wish to thank also all the long-standing friends for always keeping in con-
tact and do not let the miles set us apart. Their friendship has helped me to get
through tough periods. Lastly, and most importantly, I owe my deepest grat-
itude to my mother, my father and my brother for their care, moral support,
and love.

This work has been partially supported by the Calabrian Region under PIA
(Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project
DLVSYSTEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373
del 06/05/2009.

i

Abstract

Answer Set Programming (ASP) is a truly-declarative programming paradigm

proposed in the area of non-monotonic reasoning and logic programming. The

successful application of ASP in a number of advanced projects, has renewed the

interest in ASP-based systems for developing real-world applications. Nonethe-

less, to boost the adoption of ASP-based technologies in the scientific commu-

nity and especially in industry, it is important to provide effective programming

tools, supporting the activities of researchers and implementors, and simplifying

user interactions with ASP solvers. In the last few years, several tools for ASP-

program development have been proposed, including (more or less advanced)

editors and debuggers. However, ASP still lacks an Integrated Development

Environment (IDE) supporting the entire life-cycle of ASP development, from

(assisted) programs editing to application deployment.

In this thesis we present ASPIDE, a comprehensive IDE for ASP. It inte-

grates a cutting-edge editing tool (featuring dynamic syntax highlighting, on-

line syntax correction, auto-completion, code-templates, quick-fixes, refactoring,

etc.) with a collection of user-friendly graphical tools for program composi-

tion, debugging, profiling, database access, solver execution configuration and

output-handling.

A comprehensive feature-wise comparison with existing environments for

developing logic programs is also reported in this thesis, which shows that AS-

PIDE is a step forward in the present state of the art of tools for ASP programs

development.

iii

Sommario

L’Answer Set Programming (ASP) è un paradigma di programmazione total-

mente dichiarativo proposto nell’area del ragionamento non-monotono e della

programmazione logica. Il successo dell’applicazione di ASP in un vasto numero

di progetti avanzati, ha rinnovato l’interesse di sistemi basati su di esso per lo

sviluppo di applicazioni nel mondo reale. Ciononostante, per incentivare l’ado-

zione di tecnologie basate su ASP nella comunità scientifica e specialmente in

ambito industriale, è importante fornire efficaci strumenti di sviluppo che sup-

portino le attività di ricercatori e sviluppatori e che semplifichino l’interazione

degli utenti con i solver ASP.

Negli ultimi anni sono stati proposti diversi tool per lo sviluppo di program-

mi ASP, compresi editor e debugger (più o meno avanzati). Tuttavia, ASP è

carente di un ambiente di sviluppo integrato (IDE) per lo sviluppo di program-

mi ASP nel loro intero ciclo di vita, dalla scrittura (assistita) di programmi, al

deployment delle applicazioni.

In questo lavoro di tesi presentiamo il sistema ASPIDE, un ambiente di

sviluppo completo per ASP. ASPIDE integra un innovativo strumento di editing

ed offre caratteristiche come la sintassi colorata, l’evidenziazione automatica

degli errori di sintassi, l’auto-completamento, i code template, i quick-fix, il

refactoring, ecc. Inotre, ASPIDE include una collezione di strumenti grafici ed

intuitivi per la composizione di programmi, il debugging, il profiling, l’accesso ai

database, la configurazione dell’esecuzione di un solver e la gestione dei risultati.

La tesi riporta anche un confronto dettagliato delle caratteristiche del si-

stema con quelle degli ambienti esistenti per lo sviluppo di programmi logici,

mostrando che ASPIDE rappresenta un importante passo avanti nel presente

stato dell’arte per gli strumenti di sviluppo di programmi ASP.

v

Contents

1 Introduction 1

2 Integrated Development Environments 5

2.1 Overview . 5

2.2 A broad classification of IDEs . 6

2.2.1 Language-centered environments 7

2.2.2 Structure-oriented environments 7

2.2.3 Toolkit environments . 8

2.2.4 Method-based environments 8

2.3 Microsoft Visual Studio . 8

2.3.1 Main Features . 9

2.4 Eclipse . 10

2.4.1 Main Features . 11

2.5 Common features of IDEs . 12

3 Answer Set Programming 15

3.1 ASP Language . 15

3.1.1 Syntax . 15

3.1.2 Semantics . 17

3.2 Aggregates and Language Extension 19

3.2.1 Aggregate Functions . 19

3.2.2 Weak contraints . 20

3.2.3 Language extensions for Database Management 20

3.3 Dependency Graphs . 21

3.4 Relevant Sub-Classes . 22

3.4.1 Stratified Programs . 22

3.4.2 Head-Cycle Free Programs 23

3.5 Modularity aspects . 23

3.5.1 Splitting an ASP program 24

3.5.2 DLP-functions . 24

3.6 Knowledge Representation . 26

3.6.1 Reachability . 27

3.6.2 Hamiltonian Path . 28

3.6.3 Maximal Clique . 29

3.6.4 Maze Generation . 29

vii

viii CONTENTS

4 ASPIDE 33
4.1 ASPIDE Graphical Interface Overview 33
4.2 System Features . 34

4.2.1 Workspace organization 35
4.2.2 Advanced text editor . 38
4.2.3 Automatic completion . 38
4.2.4 Code template . 41
4.2.5 Annotation management for ASP programs 49
4.2.6 Outline navigation . 50
4.2.7 Errors and Warnings management 53
4.2.8 Dynamic code checking and errors highlighting 54
4.2.9 Quick fix . 55
4.2.10 Dependency graph . 59
4.2.11 Configuration of the execution 59
4.2.12 Presentation of the results 63
4.2.13 Debugger and Profiler . 67

4.3 System Architecture and Implementation 72

5 Visual Editor for drawing logic programs 75
5.1 Visual Editor overview . 76
5.2 The Visual Editor by a Use Case Example 77

5.2.1 Drawing Rule r1 . 79
5.2.2 Drawing Rules r2 and r3 81
5.2.3 Drawing Constraint r4 . 83
5.2.4 Drawing Constraint r5 and r6 86
5.2.5 Switching from Visual Mode to Textual Mode 88
5.2.6 Specifying DLV Directives and comments 88
5.2.7 Other features of the Visual Editor 90

6 Unit Testing in ASPIDE 93
6.1 Context and Motivation . 93
6.2 Contribution . 94
6.3 Unit Testing in ASP . 95

6.3.1 Testing Language . 96
6.3.2 Test case example . 98
6.3.3 Modularity aspects . 100
6.3.4 Testing methodology . 101

6.4 Implementation in ASPIDE . 102
6.4.1 Unit testing in ASPIDE 102
6.4.2 Visual Editor for building Test Suites 105

7 Extending ASPIDE with user-defined Plugins 109
7.1 Motivation and Contribution . 109
7.2 Input Plugin . 110

7.2.1 An Input Plugin for ASP RuleML 110
7.3 Rewriting Plugin . 114

7.3.1 A Rewriting Plugin for Shifting ASP Rules 114
7.4 Output Plugin . 116

7.4.1 An Output Plugin for a Custom XML Output 117
7.5 The SDK Library for Plugins Development 119

CONTENTS ix

7.5.1 Input Plugins classes description 119
7.5.2 Rewriting Plugins classes description 123
7.5.3 Output plugins classes description 127
7.5.4 The AspideEnvironment Java interface 128
7.5.5 Implementation, Deploy and Installation of ASPIDE plugins128

8 Database Management in ASPIDE 131
8.1 Schema Management and Table Mappings 132

8.1.1 TYP Files . 132
8.1.2 Import/Export Directives 135
8.1.3 Schema Annotations . 136

8.2 Database Interaction Plugin . 138
8.3 Use Case: A Data Integration Scenario 139

9 Related Work 143
9.1 IDEs for Declarative and Logic Programming Languages 143

9.1.1 Logic and Database-based environments 144
9.1.2 Ontology-based environments 145
9.1.3 Prolog-based envoronments 146
9.1.4 Answer Set Programming based environments 148

9.2 Comparison with ASPIDE . 150

10 Conclusion 155

Bibliography 157

x CONTENTS

List of Tables

9.1 System Comparison for General Features. 151
9.2 System Comparison for the Project Management Features. 152
9.3 System Comparison for the Text Editor Features. 152
9.4 System Comparison for the Visual Editor Features. 153
9.5 System Comparison for Supported Languages and Solvers. 154

xi

List of Figures

2.1 Taxonomy on Integrated Development Environments. 6
2.2 Visual Studio IDE overview for C#. 9
2.3 Eclipse for Java IDE overview. 11

3.1 Graphs (a) DG(P4), and (b) DG(P5) 21
3.2 Graphs (a) DG+(P5), and (b) SCC(DG+(P5)) 22

4.1 The ASPIDE graphical user interface. 33
4.2 Project and Workspace Explorer panels. 36
4.3 Select the workspace. 37
4.4 Create a new project. 37
4.5 Create a new DLV File. 38
4.6 On-line auto-completion of a disjunction. 39
4.7 On-line auto-completion of an atom. 39
4.8 On-line auto-completion of a variable. 40
4.9 Atom auto-completion using a new predicate. 41
4.10 On-request auto-completion of a variable. 41
4.11 Auto-completion using the keywork DIS for writing a disjunction. 42
4.12 Code template using the keyword DIS3inPath2 for building a

disjunction. 42
4.13 Code template using the keyword guess for writing a disjunction

that guesses paths. 43
4.14 Code template using the keyword guessStrict for writing a dis-

junction containing a normal atom and its true negated version. . 44
4.15 Code template for writing the aggregate #count. 44
4.16 Code template for writing a key constraint. 45
4.17 Code template for writing an inclusion constraint. 46
4.18 Code template for writing an AtMost constraint. 46
4.19 Code template for defining a transitive closure. 47
4.20 Template creation and definition. 48
4.21 Specify the input predicates of the template path. 48
4.22 Create a new template. 49
4.23 Outline for a TYP file on the left and for a TEST file on the right. 51
4.24 Different views for the outline representing a program. 51
4.25 Outline for the Maximal Clique program and accessing to a line

of code. 53
4.26 Select the rule with the safety error. 54
4.27 Error and Warning highlighting. 55

xiii

xiv LIST OF FIGURES

4.28 Applying a quick fix for a safety error. 55
4.29 Complete, Positive and Connected Components Dependency Graphs

of the Hamiltonian Path program. 59
4.30 Run Configuration Dialog. 60
4.31 Run Button. 61
4.32 Quick Run of files. 61
4.33 Workflow execution Editor. 62
4.34 Tabular results for the Hamiltonian Path program. 63
4.35 Hamiltonian Path program solver output printed to the Console. 64
4.36 Graphical visualization of a Maze Generation result. 64
4.37 Open the Query Window. 65
4.38 The Query Window. 65
4.39 Debug the current program. 68
4.40 Applicable and blocked rules on the debugging process. 68
4.41 Check rule abnormalities for rules. 69
4.42 Check supporting atoms abnormalities. 70
4.43 Check unfounded atoms abnormalities. 70
4.44 Run the DLV Profiler for the current Run Configuration. 71
4.45 DLV Profiler GUI in ASPIDE. 71
4.46 System architecture of ASPIDE. 72

5.1 Overview of the Visual Editor. 76
5.2 Creating a new Predicate. 77
5.3 The predicate node in the Outline and the attribute NodeLabel

inserted in node. 78
5.4 Insert facts in edge. 79
5.5 Dialog window for setting the head of the new disjunctive rule. . 79
5.6 Dragging of the predicate edge from the Outline to the Body Graph. 80
5.7 Projecting the attribute Target of the predicate edge. 80
5.8 Join the predicates inPath e reached. 81
5.9 Join the attribute Source of the predicate inPath and Node of

the predicate reached. 82
5.10 Details of the join. 82
5.11 Applying a quick fix for a Safety Error. 83
5.12 Specifying a name to the constraint. 84
5.13 Created a new constraint and made a join between the predicates

node and reached inserted in the body. 84
5.14 Negation of the predicate reached. 85
5.15 Creating a quick negation for the predicate start. 85
5.16 Defining an inequality for attributes. 86
5.17 Aggregation of the predicate inPath. 87
5.18 Result of the aggregation of the predicate inPath. 87
5.19 Result of the aggregation of the predicate inPath. 88
5.20 Specifying an Import Directive. 89
5.21 Specifying a comment to the Visual Editor. 89
5.22 A rule with built-in literals. 90
5.23 Collapsing two body literals. 91

6.1 Input graphs of the Maximal Clique program. 98
6.2 Test case creation. 103

LIST OF FIGURES xv

6.3 Test case execution and assertion management. 104
6.4 Visual Editor for TEST File definition. 106
6.5 Creating a test case by exploiting the Visual Editor. 107

7.1 Input Plugin interfaces Diagram. 111
7.2 ASP RuleML plugin at work. 113
7.3 Rewriting Plugin interfaces Diagram. 115
7.4 Shifter Plugin at work. 116
7.5 Output Plugin interfaces Diagram. 117
7.6 Custom XML plugin at work. 119
7.7 Opening of an ASP RuleML file using the DLV Editor. 126
7.8 ASPIDE Script Executor plugin at work. 126
7.9 AspideEnvironment Java interface. 128
7.10 Installing a new plugin in ASPIDE. 130
7.11 Installing a new plugin in ASPIDE by checking available plugins

on the web. 130

8.1 Text Editor and outline of a TYP file. 134
8.2 Visual Editor of a TYP file. 134
8.3 Schema visualization in the Outline panel. 137
8.4 Database Plugin Architecture. 138
8.5 Creating a new source. 140
8.6 Mapping of database tables. 140
8.7 Switch among mapping rewritings. 141
8.8 Use mapped tables. 141
8.9 Execution of the global schema. 142
8.10 Results of the global schema execution. 142

xvi LIST OF FIGURES

Chapter 1

Introduction

Context and Motivation. Answer Set Programming (ASP) [51] is a truly-
declarative programming paradigm proposed in the area of non-monotonic rea-
soning and logic programming. The language of ASP is very expressive [30]
and the idea consists in representing a given computational problem by a logic
program whose answer sets correspond to solutions and then using a solver to
find such solutions [66]. ASP applications belong to several fields, from Arti-
ficial Intelligence [47, 4, 7, 8, 44, 43, 71] to Information Integration [62], and
Knowledge Management [5, 9, 52]. These applications of ASP have confirmed
the viability of the exploitation in real application settings and, very recently,
stimulated some interest also in industry [53]. Furthermore, the availability of
some efficient ASP systems [63, 82, 83, 94, 68, 3, 46, 58, 65, 28, 47, 26] make
ASP a powerful tool for developing advanced applications.

The mentioned ASP applications, however, have evidenced the lack of “com-
plete” and “effective” development environments capable of supporting the
programmers in managing large and complex projects [27]. Nowadays it is
recognized [27] that this may discourage the usage of the ASP programming
paradigm, even if it could provide the needed reasoning capabilities at a lower
(implementation) price than traditional imperative languages. Note also that,
the most diffused programming languages always come with the support of In-
tegrated Development Environments (IDEs) featuring a rich set of tools that
significantly simplify both programming and maintenance tasks. The general
goal of an IDE is to help programmers in easy writing programs in an assisted
way and, mostly, to support the entire life-cycle of software development from
(assisted) programs editing to application deployment. Many IDEs exploit tools
for graphical composition of entire programs or portions of code, for example
visual editors for drawing window forms available in some IDEs for imperative
programming languages.

In order to facilitate the design of ASP applications, some tools for ASP-
program development have recently been proposed that range from specialized
editors [54, 74, 85, 75, 73, 80] to debuggers [15, 13, 33, 73, 14]. The task
of designing the programs consists, currently, of writing text files (more or less
computer-assisted) and this task might be uncomfortable for novice users; more-
over, programmers often have to know the details of a specific ASP input dialect.
This, together with the intrinsic differences between commonly-employed imper-
ative languages and a purely declarative one, makes writing ASP programs an

1

2 CHAPTER 1. INTRODUCTION

activity for ASP-experts (or, even worse, for experts in a specific ASP-system).
Faced with a similar problem in the field of databases, for facilitating the spec-
ification of queries, researchers proposed a number of tools and graphical user
interfaces [93, 77, 76, 81] starting from the 70s. Moreover, people from the
logic programming community, and especially Prolog programmers are already
exploiting tools for assisted program development. Some support to the develop-
ment of logic programs is also present in environments conceived for logic-based
ontology languages, which, besides graphical ontology development, also allow
for writing logic programs (e.g., to reason on top of the knowledge base). How-
ever, these tools cannot be completely ported to ASP because of its different
approach.

This thesis deals with the mentioned issues by the implementation of an IDE
for ASP which embraces a wide number of features already implemented in the
most diffused IDEs for imperative languages. The IDEs, in fact, offer a wide
set of features helping programmers with composing, editing, fixing errors in a
guided way, executing, testing, debugging and more and more.

Contribution. The work presented in this thesis provides a contribution in
this setting, through the realization of ASPIDE, a comprehensive and advanced
IDE for Answer Set Programming. The system ASPIDE is a result of sev-
eral analyses and considerations on existing IDEs for imperative programming
languages. Nonetheless, the approach for writing ASP programs is different
from imperative languages because of the declarative nature of ASP and, con-
sequently, features which are already and commonly exploited by other IDEs
have been re-designed to deal with ASP programs.

The following are the main features of ASPIDE that we have developed and
are described in this work:

1. Kernel Editing Features: they consist of features which are basically
provided by almost all IDEs. The features, offering a minimal support for
writing programs, are listed below:

• Projects organization: organizing several files in projects is useful
in the case where a program should be organized in modules. This
organization helps programmers when a software is big and needs
some project organization.

• Text Editor: it offers features which ease writing programs like dy-
namic syntax highlighting, on-line syntax correction, auto-completion,
code-templates and so on.

• Error Detecting: a feature which automatically detects syntax errors
and allows the user to apply some quick fixes. Detected errors are
signaled directly to the editor and collected to an Error Console.

2. Visual Editor: IDEs for imperative programming languages, as well as
tools for database querying, offer visual editors useful for drawing parts of
code or for graphical composition of queries. For example, Visual Studio
and Eclipse offer a Visual Editor for drawing window forms. Regarding
databases, many commercial and free relational database query tools offer
fully graphical Query By Example (QBE) interfaces for facilitating the
end approach of users to systems and languages. The practical relevance

3

of graphic tools is now well-recognized: a QBE interface is, indeed, the
default in the user-oriented Microsoft Access. ASP still lacks also these
kinds of tool, which might serve for reducing the difficulty of producing
ASP programs for both novice and inexperienced programmers, and easing
the encoding tasks for experts that prefer graphic tools. In this setting we
have defined a visual language, inspired by QBE editors, which supports
all the constructs available in ASP, and we have implemented a Visual
Editor which exploits the language. In this way users can draw ASP
programs on the screen in a full graphical environment.

3. Program execution: the following features regard program execution in
its various aspects:

• Execution and presentation of results: an important feature offered
by IDEs for imperative programming languages is the possibility of
executing programs inside the same environment. However, execut-
ing an ASP programs has a different effect because the result of the
execution consists in showing, textually or visually, answer sets or
query results. ASPIDE allows users to call external solvers by pre-
configuring the execution with files to be executed and solver options.
Results are visualized in the environment in different ways like tex-
tual way, graphical way and customized way. Moreover, results can
be rewritten to some other formats or saved to some files for sub-
sequent execution. For query execution, having different reasoning
modes (brave and cautious reasoning) [30], results are displayed in a
comfortable view and a specific output for Epistemic queries [48, 49]
is available.

• Debugging: every IDE for software development always come with
a debugger. However, the task of debugging ASP programs needs
a totally different approach compared with the ones available for
imperative programming languages. Since many solutions were pro-
posed in literature, we give a contribution by embedding the existing
debugging tool spock [15] and providing a user-interface.

• Tracing and Profiling: on the execution phase of a program, tracing
consists in recording information about the execution for debugging
or optimization purposes. Also in this setting we provide a contribu-
tion by embedding the graphical tool proposed in [20] which allows
the DLV solver to be traced in the execution phase.

4. Unit Testing: testing programs consists in checking whether a program
behaves as expected. However, the crucial task of testing ASP programs
received less attention in the literature and the current proposals [56,
57, 72, 90] do not support users on programs development. In ASPIDE,
a solution inspired by the JUnit framework for Java was implemented
by generalizing previous definitions of Test Case of ASP programs and
introducing the concept of “Unit” in ASP programs.

5. DBMS access: in our setting, database interactions allows the import of
schemas and metadata, retrieval of data, definition of mappings between
predicates and database tables, exploitation of the language directives of
DLV

DB [88] and interaction with it. We offer a graphical interface that

4 CHAPTER 1. INTRODUCTION

helps to interact with databases in an intuitive way. For example, the user
can easily map tables in predicates in order to import facts from the table.
With these features, a data integration scenario [62] can be implemented.

6. Extensibility via Plugins: In real-world applications input data is usu-
ally not encoded in ASP, and the results of a reasoning task specified by an
ASP program is expected to be saved in an application-specific format. In
addition, during the development of an ASP program, the developer might
need to apply “refactoring”, which often means “rewriting some rule”, e.g.,
by applying magic sets, disjunctive rule shifting, etc., for optimizing per-
formance, for compliance with solver formats or for modeling purposes.
To deal with these purposes we have implemented an SDK which allows
users to introduce plugins in ASPIDE which allow dealing with new imput
formats, performing program rewriting and even customizing the format
of solver results. Note that our setting of plugins is different compared
with the definition of Eclipse plugins which allow extension of the IDE
with new general features. Plugins in ASPIDE also extend the IDE, but
for specific purposes related to logic programming.

Finally, ASPIDE is able to load and store ASP programs in the syntax of
the ASP system DLV [63], and supports the ASPCore language profile employed
in the ASP System Competition 2011 [18].

In this thesis we also show, by a comprehensive feature-wise comparison with
existing environments for developing logic programs, that ASPIDE is a step
forward in the present state of the art of tools for ASP programs development.

Organization. The remainder of the thesis is structured as follows. Chapter 2
describes a brief introduction to Integrated Development Environments, with a
description of some of the well-known ones. Chapter 3 presents an overview of
Answer Set Programming. Chapter 4 describes all the main features of ASPIDE
with use case examples and screenshots. In Chapter 5 the Visual Editor for
drawing ASP programs is described, and Chapter 6 provides a detailed descrip-
tion of the Unit Testing methodology proposed in ASPIDE. Chapter 7 describes
the proposed SDK for implementing and using user-defined plugins. Chapter 8
describes the use of ASPIDE for schema and database management. Chapter 9
shows a comprehensive feature-wise comparison with existing environments for
developing declarative programs and, finally conclusions are reported.

Chapter 2

Integrated Development
Environments

2.1 Overview

In Software Engineering environments refer to a collection of software tools
used by programmers to build (more or less complex) software systems. The
terms Programming Environment and Software Development Environment are
generally used as synonym, but in reality they should be distinct. In particular
the first term refers to environments suitable for building programs only, whereas
the second one considers environments supporting the entire life-cycle of the
software development process, consisting also of the project management phase,
debugging, testing and validation, prototypes definitions, version control and so
on.

An Integrated Development Environment (IDE) consists in a set of (inte-
grated) tools supporting program creation, modification, execution and debug-
ging. This is a well-known classical definition proposed in the 1980s [24] that
emphasizes the importance of integrating different tools in a unique environ-
ment. The basic tool of an IDE consists of a Text Editor used for the program
composition phase. Programming languages, in fact, are defined by a text-based
grammar and allow the programmer to compose a set of text based instructions
(at lower or high level) that a computer must execute for purposes like auto-
matic solving of problems. Another important tool that an IDE should have is a
debugger, used to help the programmer to detect the reason for wrong behavior
of the program on the execution phase.

Currently, available IDEs have been expanded to include many other tools
supporting, for example, testing, advanced run configurations, advanced syntax
error detections on the editing phase, and version control of files. However,
having different tools inside an environment is not enough in case they are
not integrated with each other. Integrating the tools to enable them to share
the same data structures and purposes, is crucial from the programmer’s point
of view because he can have total control in the entire life-cycle of software
development.

In this Chapter, a first classification of Integrated Development Environ-
ments is outlined by evidencing general roles that IDEs currently have. Im-

5

6 CHAPTER 2. INTEGRATED DEVELOPMENT ENVIRONMENTS

perative programming languages come with a wide assortment of IDEs offering
different tools which help programmers to design, compile and build any kind of
sofware like stand alone softwares, web applications, smart phones applications
and so on. Since Microsoft Visual Studio and Eclipse are the two most impor-
tant and well-known IDEs for imperative programming, they are described in
detail in this Chapter because the features included in them give a clear view
on what users accustomed to IDEs would expect in an IDE for Answer Set
Programming. Finally, a list of common features included in various IDEs is
described.

2.2 A broad classification of IDEs

Integrated development environments evolved, in the history, with the intro-
duction of new important features that are oriented to the entire life-cycle of
software development. The first environments were console oriented from the
user interface point of view and focussed on the program composition and ex-
ecution only. Commands written on console windows, were used to exploit
compiling, error checking, execution and debugging. Given that the evolution
of IDEs moved forward a lot, a broad classification of them has been proposed
in [23] just for describing trends that they had in history. The classification
consists of four categories:

• Language-centered environments;

• Structure-oriented environments;

• Toolkit environments;

• Method-based environments.

That classification can be seen as a taxonomy depicted in Figure 2.1.

Figure 2.1: Taxonomy on Integrated Development Environments.

The base of the taxonomy is represented by Language-centered environments
because all IDEs are generally oriented to at least one language. The top of the
taxonomy represents Method-based environments which include the features of
the other (lower) environments of the taxonomy and, moreover, support the
entire life-cycle of software development process.

2.2. A BROAD CLASSIFICATION OF IDES 7

2.2.1 Language-centered environments

Language-centered environments are completely customized for a specific lan-
guage. They propose a minimal set of tools for easy program composition by
exploiting a text editor generally colored to highlight specific keywords used
by the language. Most of them offer also some auto-completion features, can
detect syntax errors and can offer to the user semantic information related to
the language. Programs can be immediately executed in the same environment
(development and runtime environments are the same) and can be halted every
time a programmer needs to take debugging actions.

Those kinds of environment are very useful in the case where programmers
would like to build small application fast or to implement prototypes to be pre-
sented to the final user (before the real implementation of the entire software).
These environments encourage especially the incremental software development
method. This method allows programmers to write program in an incremental
way by writing, executing and continuing writing once the correctness of the
code portion is verified through the execution. Programmers make program-
ming decisions according to the passing or the failing of a specific execution.
Some environments for the languages Lisp, Smalltalk and ADA are examples of
language-centered environments.

2.2.2 Structure-oriented environments

A first attempt to move away from environments that are strictly language
oriented is represented by structure-oriented environments. These environments
consist in building a structure representation of the program. In particular,
blocks of code like if and for are internally inserted in a data structures and
are used to suggest to the programmer possible auto-completion and advanced
editing ways to fill missing values in blocks. For example a for block can be filled
using variables and collections that the interface suggests to the user using a
dedicated panel or the editor itself. These kinds of suggestion can be activated
by special key combinations or by exploiting commands offered by the user
interface. The user interface of some environments offers also various ways to
introduce entire portions of code fastly. For example, available templates for
building common portion of codes that follow a pattern can be exploited and
customized.

An inportant advantage of these environments is the possibility of building
different views of the same program. Exploiting trees or dependency graphs,
can be a good way to represent some programs; programmers are allowed to
better read programs and edit them without any need to act on the original
programming language. In this way environments are more language indepen-
dent.

Structures on environment allow a sophisticated semantic checking of the
code. Environments need only to verify the correctness of the data structure
and to build semantic information to be shown to the user. Possible quick fix
suggestions can be made in case the structure contains errors.

Structure-oriented environments have been accepted primarily as teaching
aids in universities, but little acceptance has been found in industry.

8 CHAPTER 2. INTEGRATED DEVELOPMENT ENVIRONMENTS

2.2.3 Toolkit environments

Toolkit environments are a set of tools that support the programmer in the
coding phase and in other features like compiling, linking and debugging. They
are strictly based on operating systems that offer some support for installing
tools, updating existing ones and using them together. Starting from tools for
simple editing and compiling, new tools can be easily installed to support other
advanced features like file versioning and specialized editors. However, these
environments offer less support for integration of tools; consequently, the task
of integrating them to work together in the correct way is up to the programmer
who, in general, has to control information exchange between the tools.

The scenario just described offers extensibility and also portability between
other environments because of the using of simple and uniform data modeling
that helps the communication between different kinds of tool. Other tools that
support the same data model can easily be introduced and, consequently, the
extensibility is made easier.

The environments just described, however, do not greatly assist the mainte-
nance of large software systems because of the independence between tools and
because they can frequently change.

2.2.4 Method-based environments

A challenge to the software development process consists in controlling the entire
software development cycle by exploiting graphical tools. In software engineer-
ing, building a software is an activity consisting of different phases: require-
ments analysis, design, validation and verification, and reuse. The purpose of
method-based environments consists in supporting a team of developers in those
single phases. For every phase, different languages and (also graphical) repre-
sentation formalisms (informal, semi-formal and formal) were proposed. These
formalisms ease communication with end-users, in the requirements analysis
phase, and boost team collaboration in the software designing phase. An ex-
ample of formalisms is UML (Unified Modeling Language), exploited for the
requirements analysis and designing phases, and E-R schemas, exploited for the
designing of relational databases.

The set of tools that aim to support developers in the mentioned phases,
define well-known Computer-Aided Software Engineering (CASE) tools. By
exploiting these tools, team of developers can easily design, for example, software
architectures using UML. Difficulties for CASE tools consist in integrating them
into a single environment; this is motivated in the case where developers have
different tasks (e.g. modeling or database designing phase) and do not need
some tools or prefer certain tools rather than others. The problem is now
faced through tools which enable users to add functionalities by defining plugins
(see for example Eclipse); in this way developers can customize environments
according to their preferences.

2.3 Microsoft Visual Studio

Microsoft Visual Studio1 is a commercial IDE that supports the entire life-

1http://www.microsoft.com/visualstudio

2.3. MICROSOFT VISUAL STUDIO 9

cycle of software development oriented to imperative languages. In particular,
it allows development of the following kind of both console and graphical user
interface applications:

• Windows Forms applications;

• Web sites, Web Applications, and Web Services.

The IDE is customized for Microsoft Windows environments and includes
a code editor supporting IntelliSense as well as code refactoring. Visual Stu-
dio supports different programming languages like C/C++ (via Visual C++),
VB.NET (via Visual Basic .NET), C# (via Visual C#), and supports also
other languages such as Python and web oriented languages like XML/XSLT,
HTML/XHTML, JavaScript and CSS.

Figure 2.2 shows an overview of the Visual C# tool included in Visual Studio.

Figure 2.2: Visual Studio IDE overview for C#.

The figure shows panels useful for workspace organization (organizing file in
projects), for editing the code by exploiting a colored text editor, for showing a
tree representation of elements of code and project through an outline, and for
visualizing and editing properties.

2.3.1 Main Features

Visual Studio includes a Code Editor for syntax highlighting and code com-
pletion (using IntelliSense) for variables, functions and methods as well as loops
and queries. Auto-completions are shown in a popup list box, appearing on top
of the code editor. The editor also supports setting bookmarks in code for quick
navigation, offers an advanced search, allows code blocks to be collapsed and
includes a task list.

10 CHAPTER 2. INTEGRATED DEVELOPMENT ENVIRONMENTS

Refactoring is also included in the editor. It allows for parameter reordering,
variable and method renaming, interface extraction and encapsulation of class
members inside properties, among others.

The editor provides feedback about syntax and compilation errors, which
are flagged with a red underline; warnings are marked with a green underline.

Visual Studio provides a Debugger that can be used for debugging appli-
cations written in any language supported by Visual Studio. In the running
phase, the debugger can display the code as it is being run. In this case a step-
by-step code execution can be exploited by setting breakpoints, which allows
execution to be stopped temporarily, with the purpose of monitoring the values
of variables at the current state of the execution. Breakpoints can be triggered
when conditions are met in the execution phase. The code can be also modified
in the debugging phase; in this case the program is automatically re-run from
the modified points.

Visual Studio offers the following tools of visual designing:

• Windows Forms Designer : is used to build graphical user interface appli-
cations by exploiting a visual editor for drawing windows forms;

• Web designer/development : a web-site editor and designer;

• Class designer : is used to edit classes, including its members, using UML
modeling. The UML diagrams are translated into the source code. Recent
releases of Visual Studio offer the reverse-reengineering feature from source
code to UML diagrams;

• Data designer : can be used to graphically edit database schemas, typed
tables, primary and foreign keys and constraints. It can also be exploited
to design queries from the graphical view;

• Mapping designer : is used to design mappings between database schemas
and classes that encapsulate data.

Visual Studio allows developers also to write plugins for extending its func-
tionality. Packages of plugins are created using the Visual Studio SDK providing
tools and allowing also other programming languages to be extended.

2.4 Eclipse

The Eclipse Platform2 can be seen as a “set” (not just one) of integrated devel-
opment environments that can be installed, expanded and configured inside the
platform. In particular, the system can be entirely configured to introduce a
complete IDE for writing software programs using different languages like C++,
Perl, Python and so on. The flexibility of the architecture allows also arbitrary
tools to be introduced which can potentially do anything.

Importantly, Eclipse is frequently used to develop Java applications. To
this end it offers a wide set of tools supporting Java developers on the entire
software development process. Figure 2.3 shows an overview of Eclipse in the
Java perspective.

2http://www.eclipse.org

2.4. ECLIPSE 11

Figure 2.3: Eclipse for Java IDE overview.

2.4.1 Main Features

For a description of the main features of Eclipse, we refer especially to Eclipse
for Java because it offers a wider set of interesting features compared to the
versions of Eclipse for other languages.

Eclipse for Java

The main features of Eclipse for Java are summarized in the following:

• Project Organization : allows organization of Java source files laid out
in Java package directories. Moreover, unrestricted other files, such as
program resources and design documentation can be managed by the en-
vironment. Users can easy browse Java projects in terms of Java-specific
elements: packages, types, methods, and fields;

• Java Source Code Editor : allows editing of Java files in an advanced ed-
itor that offers keyword and syntax coloring, code formatter, automatic
indentation, and code completion for legal completions of method, vari-
ables and so on. The editor offers also “fast auto-completion” when users
write keywords; for example, if the user writes syso and makes a keystroke
on CTRL+SPACE, the editor writes System.out.println automatically;

• Visual Editor : useful for drawing windows and panels in a graphical way;

• Outline Navigation : shows declaration structure, represented by a tree, of
the program. In the outline, methods, static fields, as well as visibility of
objects (private, protected, public), are presented to users in the graphical
way. The outline is updated automatically while editing;

12 CHAPTER 2. INTEGRATED DEVELOPMENT ENVIRONMENTS

• Error Management and Quick Fixes : errors are shown in different places:
(i) on an Error Console, (ii) on the editor near the wrong part of the code,
(iii) and on the outline nearness wrong Java methods. Errors are detected
while writing and can be immediately fixed by exploiting Quick Fixes;

• Annotations and Javadoc Management : Java annotations and Javadocs
are easy managed by Eclipse. Javadocs are extracted from source files and
used to be shown to the user in an easy way by exploiting specific panels;

• Refactoring : allows editing of parts of code in a controlled way for im-
proving code structure without changing behavior; for example, renaming
of methods and update of references can be made in a safe way. A preview
utility allows users to see the results of the refactoring before of performing
it;

• Search : the search utility allows users to find declarations of references
to packages, types, methods, and fields. Matches are highlighted as anno-
tations in the editor;

• Compare : useful to compare Java compilation units showing, for example,
the changes to individual Java methods;

• Run : a Run Configuration can be set up to Run, from the environment,
the Java program in a separate target Java virtual machine. The results of
the execution can be printed to the internal console which provides stan-
dard output (stdout), standard input (stdin) and standard error (stderr)
streams;

• Debug : debug of Java programs is performed by exploiting graphical
tools and views. The tools allow users to view threads and stack frames,
set breakpoints and step through method source code and inspect and
modify fields and local variables. The program code can be edited in the
debugging phase; in this case classes are dynamically reloaded.

Other Features and Extensibility

Eclipse offers also other features, not mentioned in the previous list, which are in
general available in all versions of Eclipse accustomized to other programming
languages.

The creation and the installation of new plugins allows, finally the instal-
lation of more and more features and tools. In particular, plugins allow the
introduction of new types of editors and views and set new perspectives which
arrange old and new views in order to suit new user tasks. Moreover, the
available standard tools of Eclipse can be extended by introducing new actions,
pop-up content menu, action sets and shortcuts.

2.5 Common features of IDEs

Integrated Development Environments usually present a wide variety of common
features that are used so much by novice and domain expert users. Managing
large project softwares, for example, requires a structured organization of the

2.5. COMMON FEATURES OF IDES 13

project elements (like files).In the following, common features present in imper-
ative and declarative IDEs are presented:

• Workspace organization : for easy management of a large number of files
that probably need some compiling/building;

• Automatic completion : is activated in the writing phase of a program and
consists in asking to the IDE suggestions for completing the code the user
is currently writing. For example, in the case where the user started to
write a variable, the system can suggest the entire variable to be completed
automatically;

• Code Template : is also an automatic completion but, in this case, the
system tries to recognize whether the code written by the user, belongs
to some common pattern. For example if the user starts to write a “for”
cycle, the system recognizes that it is a for and can ask the user just to
fill some field composing the for (e.g. counters); the system, finally, will
automatically write the entire code;

• Error checking : helping users to discover errors easily;

• Syntax highlighting : offered in text editors for keywords coloring (e.g.
a different color for the “if” keyword in Java) and for highlighting line
containing errors;

• Quick fixes : offering a list of suggestions for automatic fixing of errors;

• Testing Tools : offering a suite of tools to help the user for automatic
errors discovery by asserting an expected result on the execution;

• Debugger : a crucial feature for detecting why the program has an unex-
pected behaviour. In Imperative Programming Languages different debug-
ging techniques were proposed like a step-by-step execution where for each
step, a line (or a set of lines) of code is (are) executed and the state of the
program (e.g. variables values at the current step) is shown. Declarative
programming languages have fewer debugging techniques and tools;

• Visual Editor : helping programmers to write programs fast by exploiting
a full graphical interface. For example, Eclipse and Visual Studio offer
a visual editor to easily draw window forms, while some tools for the
declarative language SQL offer a QBE editor for query composition;

• Configuration of the execution : allows the user to set the execution prop-
erties before running the program. It is useful in the case where a user
wants to pass to the executable some execution options or wants to con-
figure piping between execution processes;

• Execution in the same environment : this feature is very useful because
the user is not obliged to compile the program in an external executable
file but can ask the IDE to execute the program directly. The feature is
important for checking the correctess of the program at any moment or
for debugging purposes;

14 CHAPTER 2. INTEGRATED DEVELOPMENT ENVIRONMENTS

• Refactoring : is an important feature that the user exploits every time he
needs to edit something in the code and wants to be sure that the editing
does not affect other parts of the program. For example, renaming a class
in Java means that other files that use this class must refer to the class
using the new name;

• Customizable user interface and tools : useful to allow the user to add and
organize internal or external (plugins) tools that he needs.

The features listed above were object of several analisys and considerations
in our work. To face with the ASP approach, since it is different from imperative
languages because of the declarative nature of ASP, these features have been
re-designed to deal with ASP programs.

Chapter 3

Answer Set Programming

In this Chapter some preliminaries notions concerning Answer Set Program-
ming (ASP) [51] are first presented with a brief introduction of some common
language extensions used in the examples of this thesis. Some relevant modu-
larity properties of ASP programs are introduced and, finally, the use of ASP as
a tool for Knowledge Representation (KR) is described. We assume the reader
to be familiar with logic programming, and refer to both paper [5] and [50] for
some introductory material on ASP.

3.1 ASP Language

3.1.1 Syntax

Let V be a set of variables, C be a set of constants, and S be a set of predicates
symbols. We assume variables to be strings starting with uppercase letters
and constants to be non-negative integers or strings starting with lowercase
letters. Moreover, predicates (represented by strings starting with lowercase
letters) have each one an associated arity (non-negative integer) representing
the number of terms contained in the predicate. Moreover, the language allows
the use of built-in predicates (i.e., predicates with a fixed meaning) for the
common arithmetic operations (i.e., =, ≤, ≥, +, ×, etc.; usually written in infix
notation).

A variable or a constant is a term. A standard atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n and t1, . . . , tn are terms. An
atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants.

A set term is either a symbolic set or a ground set. A symbolic set is a pair
{Terms : Conj}, where Terms is a list of terms (variables or constants) and
Conj is a conjunction of standard atoms, that is, Conj is of the form a1, . . . , ak
and each ai (1 ≤ i ≤ k) is a standard atom.

Example 3.1.1. For example, consider the set term

{X :p(X, a), q(X)}.

Suppose that ground atoms p(1,a), p(2,a), q(1) and q(2) are true.
The set term stands for the set of all the possible values of the variable X

such that the conjunction a(X,a), p(X) is true, i.e., {X |p(X, a) and q(X) are

15

16 CHAPTER 3. ANSWER SET PROGRAMMING

true}. In this case, the possible values are

{X :p(X, a), q(X)} X ∈ {1, 2}.

2

A ground set is a set of pairs of the form 〈consts : conj 〉, where consts is a
list of constants and conj is a conjunction of ground standard atoms.

A literal is either a standard atom, or a standard atom preceded by the
negation as failure symbol not, or an aggregate atom (see Section 3.2). Com-
plementary standard literals are of the form a and not a, where a is a standard
atom. For a standard literal ℓ, we denote by ¬.ℓ the complement of ℓ. If L is
a set of standard literals, we denote with ¬.L, by a little abuse of notation, the
set {¬.ℓ | ℓ ∈ L}.

Example 3.1.2. Example of literals are person(joe), father(joe,john),
not father(joe,joseph), #max{X: age(X,Y), person(Y)} < 18.

2

A rule r is a construct of the form

a1 v · · · v an :− ℓ1, · · · , ℓm.

where a1 · · · an are standard atoms, ℓ1, . . . , ℓm are literals, n ≥ 0 , and m ≥ 0.
The disjunction a1 v · · · v an is the head of r, and the conjunction ℓ1, . . . , ℓm
is the body of r. If the body is empty (m = 0), the rule is called fact, while
if the head is empty (n = 0), the rule is called integrity constraint (or simply
constraint). We denote the set of head atoms by

H(r) = {a1, . . . , an},

and the set of body literals by

B(r) = {ℓ1, . . . , ℓm}.

Moreover, the set of positive standard body literals is denoted by B+(r) and
the set of negative standard body literals by B−(r). We denote also the set of
atoms of the body as At(B(r)); the set of atoms of a rule are denoted by

At(r) = H(r) ∪At(B(r))

A rule r is ground if all the literals in H(r) and in B(r) are ground.
A program P is a set of rules and it is ground if all its rules are ground. In

this case At(P) are all atoms contained in P. Accordingly with the database
terminology, a predicate occurring only in facts is an EDB predicate, while all
the other ones are IDB predicates; the set of facts of P is denoted by EDB(P).

The variables of a rule can be local when they appear solely in sets terms of
r, or global otherwise. A rule r is safe if both the following conditions hold:

1. for each global variable X of r there is a positive standard literal ℓ ∈ B+(r)
such that X appears in ℓ;

2. each local variable of r appearing in a symbolic set {Terms : Conj} also
appears in Conj .

3.1. ASP LANGUAGE 17

Note that the first condition is the standard safety condition adopted in Logic
Programming to guarantee that the variables are range restricted [89]. A pro-
gram is considered safe if all its rules are safe.

Example 3.1.3. Consider the following rules:

person(X) :− father(X, Y).

animal(X) v mineral(X) :− not plant(X).

p(X) :− q(X, Y, V), #max{Z : r(Z), a(Z, V)} > Y.

p(X) :− q(X, Y, V), #sum{Z : r(X), a(X, S)} > Y.

The first rule is safe, while the second is not because it violates the first condition
due to variable X. The third rule is safe, while the fourth is not because variable
Z violates the second condition. 2

3.1.2 Semantics

Given an ASP program P, the universe of P, denoted by UP , is the set of all
constants appearing in P. The base of P, denoted by BP , is the set of standard
atoms constructible from predicates of P with constants in UP .

A substitution is a mapping from a set of variables to UP . A global substitu-
tion for a rule r consists in substituting the set of the global variables of r to UP ;
a local substitution for a rule r consists on substituting the set of local variables
of r to UP . Given a set term without global variables S = {Terms :Conj}, the
instantiation of S is the following ground set:

inst(S) = {〈σ(Terms) :σ(Conj)〉 | σ is a local substitution for S}.

A ground instance of a rule r is obtained by applying a global substitution σ for
r, and then replacing every set term S in rσ by its instantiation inst(S). The
instantiation Ground(P) of a program P is the set of instances of all the rules
in P.

Example 3.1.4. Consider the following program P1:

q(1) :− not p(2, 2). q(2) :− not p(2, 1).

p(2, 2) :− not q(1). p(2, 1) :− not q(2).

t(X) :− q(X), #sum{Y : p(X, Y)} > 1.

The instantiation Ground(P1) of P1 is the following program:

q(1) :− not p(2, 2). q(2) :− not p(2, 1).

p(2, 2) :− not q(1). p(2, 1) :− not q(2).

t(1) :− q(1), #sum{〈1 : p(1, 1)〉, 〈2 : p(1, 2)〉} > 1.

t(2) :− q(2), #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1.

2

An interpretation I for an ASP program P is a consistent set of standard

18 CHAPTER 3. ANSWER SET PROGRAMMING

ground literals, that is, I ⊆ BP ∪ ¬.BP . The set of all the interpretations of P
is denoted by IP .

The evaluation of a standard literal ℓ with respect to an interpretation I

results in one of the following alternatives:

• if ℓ ∈ I, then ℓ is true with respect to I;

• if ¬.ℓ ∈ I, then ℓ is false with respect to I;

• otherwise, if ℓ 6∈ I and ¬.ℓ 6∈ I, then ℓ is undefined with respect to I.

Also Set Terms can be evaluated with respect to an interpretation, giving
rise to a multiset, a value, and a truth value, respectively.

An interpretation I satisfies a rule r if at least one of the following conditions
is satisfied:

• H(r) is true with respect to I;

• a literal in B(r) is false with respect to I;

• all the atoms in H(r) and a literal in B(r) are undefined with respect to
I.

An interpretation M is a model of an ASP program P if all the rules r in
Ground(P) are satisfied with respect to M . A model M for P is minimal if no
model N for P exists such that N+ ⊂M+.

Example 3.1.5. Consider again the program P1 of Example 3.1.4. Let I1 be an
interpretation for P1 such that I1 = {q(2), p(2, 2), t(2)}. Then I1 is a minimal
model of P1. 2

Definition 3.1.6 ([34]). Given a ground ASP program P and an interpretation
I, let PI denote the transformed program obtained from P by deleting all rules
in which a body literal is false w.r.t. I. I is an answer set of a program P if it
is a minimal model of Ground(P)I .

Example 3.1.7. Consider the following program:

P2 : {p(a) :− p(X).}

then, we have that

Ground(P2) = {p(a) :− p(a).}

and two interpretation I1 = {p(a)}, I2 = ∅. Consequently, Ground(P2)I1 =
Ground(P2) and Ground(P2)I2 = ∅ hold. I2 is the only answer set of P2

(because I1 is not a minimal model of Ground(P2)I1).
2

Note that any answer set A of P is also a model of P because Ground(P)A ⊆
Ground(P), and rules in Ground(P)−Ground(P)A are satisfied w.r.t. A.

Another possible characterization is given by the notion of supportedness.
Given an interpretation I for a ground program P, we say that a ground atom

3.2. AGGREGATES AND LANGUAGE EXTENSION 19

A is supported in I if there exists a supporting rule r in the ground instantiation
of P such that the body of r is true w.r.t. I and A is the only true atom in the
head of r.

Proposition 3.1.8. [69, 64, 6] If M is an answer set of a program P, then all
atoms in M are supported.

In the remainder of this thesis, the set of all answer sets of a program P will
be denoted with ANS(P).

3.2 Aggregates and Language Extension

In this Section we describe aggregate functions supported by ASP and extended
constructs to solve optimization problems and interact with databases. These
constructs are supported in the DLV [63] system as well as in other ASP systems.

3.2.1 Aggregate Functions

An aggregate function in DLV [25] is an expression of the form f(S), where S

is a set term, and f is an aggregate function symbol. Intuitively, an aggregate
function can be thought of as a (possibly partial) function mapping multisets
of constants to a constant. According to the notation of the DLV system for
representing aggregates, S is a set term of the form {Vars :Conj}, where Vars
is a list of variables and Conj is a conjunction of standard atoms, and f is an
aggregate function symbol.

The most common aggregate functions are listed below. All these functions
consider the element of the set term as integers:

• #min: The function identifies the minimal term among the elements of the
set term. This function is undefined for the empty set;

• #max: The function identifies the maximal term among the elements of
the set term. This function is undefined for the empty set;

• #count: The function determines the number of elements of the set term;

• #sum: The function determines the sum of the elements of the set term;

• #times, The function determines the product of the elements of the set
term;

• #avg, The function determines the average value of the elements of the
set term. This function is undefined for the empty set.

An aggregate atom is a structure of the form f(S) ≺ T , where f(S) is an
aggregate function, ≺ ∈ {<, ≤, >,≥} is a comparison operator, and T is a term
(variable or constant). An aggregate atom f(S) ≺ T is ground if T is a constant
and S is a ground set.

Example 3.2.1. The following is a rule with an aggregate atom that counts
the number of true instances of predicate p:

numP(X) :− #count{X : p(X)} = X.

2

20 CHAPTER 3. ANSWER SET PROGRAMMING

3.2.2 Weak contraints

Weak constraints [16] allow one to express desiderata, on the contrary to stan-
dard constraints that always have to be satisfied, that is, to express conditions
that should be satisfied. They are useful to formulate several optimization prob-
lems in an easy and natural way.

Weak constraints can be weighted according to their importance. In par-
ticular a higher weight indicates a more important constraint. In the presence
of weights, best models minimize the sum of the weights of the violated weak
constraints. Weak constraints can also be prioritized; in this case the semantics
minimizes the violation of the constraints of the highest priority level first; then
the lower priority levels are considered one after the other in descending order.

Weak constraints are specified as follows.

 Conj.[Weight : Level]

where Conj is a conjunction of literals, while Weight and Level are positive
integers. Weight and Level can also be variables that also appear in a positive
literal of Conj. The weight or the priority or both can be also omitted.

The informal meaning of a B is “try to falsify B,” or “B should preferably
be false.” Intuitively, the semantics coincides with the answer sets minimizing
the number of violated (unsatisfied) weak constraints.

3.2.3 Language extensions for Database Management

Predicates used in ASP programs can be (possibly complex) views on database
tables, which are stored in different DBMSs. In this case the facts of a program
can be imported from an external database and solvers can use DBMSs also for
performing reasoning that needs a large quantity of memory and for storing the
results of the execution. Database functionalities were implemented in DLV

and DLV
DB [88] which support the following features:

• Import/Export directives: Import and Export commands are used for in-
teracting with databases. The Import command retrieves data from a
table through the query specified by the user in the SQL syntax and cre-
ates one atom for each retrieved tuple. The Export command generates a
new tuple into a table for each new truth value derived for that predicate
by the program evaluation;

• TYP files: store advanced database mappings through definition of TYP
directives. TYP files are supported by the DLV

DB solver.

DLV
DB has also the ability to evaluate logic programs directly on databases

with a very limited use of main-memory resources. Program predicates can
be mapped to (possibly complex and distributed) database views and data can
be easily specified as input or output for the program. The evaluation requires
some explicit specifications for the mappings between input and output data and
program predicates, as well as proper indications for the temporary relations
possibly needed for the mass-memory evaluation.

Import/Export directives and TYP directives will be illustrated in details in
Chapter 8 by introducing syntax and mapping examples.

3.3. DEPENDENCY GRAPHS 21

(b)

e d

Z
Z

ZZ}
-�

6
@

@@IZ
Z
Z~

c

ba
�
���

(a)

@
@@I

c

ba
�

���

Figure 3.1: Graphs (a) DG(P4), and (b) DG(P5)

3.3 Dependency Graphs

In this Section, relevant properties are described with syntactic sub-classes of
ASP programs; moreover, modularity aspects consideration of programs are
faced. The definition of Dependency Graph is given first.

Definition 3.3.1 (Dependency Graph). A Dependency Graph of a ground
program P is a directed graph DG(P) = (N,E) of P, where:

1. the nodes in N are the atoms of P;

2. there is an edge in E from a node a to a node b iff there is a rule r in P
such that b appears in H(r) and a appears in B+(r);

3. there is an edge, “marked” with a stroke, in E from a node a to a node
b iff there is a rule r in P such that b appears in H(r) and a appears in
B−(r);

The graph DG(P) singles out the dependencies of the head atoms of a rule
r from the atoms in its body.

Example 3.3.2. Consider the following two programs:

P4 = {a v b. c :− a. c :− b.}

P5 = P4 ∪ {d v e :− a. d :− e. e :− d. a :− not e.}

The dependency graph DG(P4) is depicted in Figure 3.1 (a), while the depen-
dency graph DG(P5) is depicted in Figure 3.1 (b).

2

Definition 3.3.3 (Positive Dependency Graph). A Positive Dependency
Graph, denoted as DG+(P), is a dependency graph having only the properties
1 and 2 of the Definition 3.3.1.

The graph DG+(P) singles out the dependencies of the head atoms of a
rule r from the positive atoms in its body. Negatives edges in this case are not
represented in the graph.

Definition 3.3.4 (Strongly Connected Components). Given a program P
and its dependency graph DG(P), a Strongly Connected Component (SCC) of
DG(P), denoted by SCC(DG(P)), is a maximal set of atoms S ⊂ At(P) such
that a← b for every a, b ∈ S.

22 CHAPTER 3. ANSWER SET PROGRAMMING

(a)

e d

Z
Z

ZZ}
-�

6 6

c

ba
�

���

(b)

e,d

6
@

@@I

c

ba
�
���

Figure 3.2: Graphs (a) DG+(P5), and (b) SCC(DG+(P5))

SCC(DG(P)) singles out that all atoms belonging to a Component depend
upon each other.

Example 3.3.5. Consider the program P5 of the Example 3.3.2. The positive
dependency graph DG+(P5) is depicted in Figure 3.2 (a), while the Strongly
Connected Components of positive dependency graph SCC(DG+(P5)) is de-
picted in Figure 3.2 (b). Note that the SCC groups the nodes e and d because
there is a cycle between them.

2

The dependency graphs presented here are “atom-oriented” (the nodes of the
graph are atoms). However, in particular for non-ground programs, a Predicate
Dependency Graph can be considered, having the same properties as the atom
dependency graph. In this case nodes are represented by predicate symbols
instead of atoms. For example, in the rule

a(X) :− c(X), d(Y)

the nodes are a, c, and d and there is an edge from c to a and an edge from d

to a.

3.4 Relevant Sub-Classes

The class of stratified programs and the class of head-cycle free programs are
now presented along with some examples.

3.4.1 Stratified Programs

Definition 3.4.1. Functions from ‖ ‖ : BP → {0, 1, . . . } from the ground set
of literal BP to finite ordinals are called level mappings of P.

Level mapping is used now for defining (locally) stratified programs.

Definition 3.4.2. A disjunctive ASP program P is called (locally) stratified [2,
78] if there is a level mapping‖ ‖s of P such that, for every rule r of Ground(P),

(1) for any l ∈ B+(r), and for any l′ ∈ H(r), ‖ l‖s ≤ ‖ l
′‖s;

(2) for any l ∈ B−(r), and for any l′ ∈ H(r), ‖ l‖s < ‖ l
′‖s;

3.5. MODULARITY ASPECTS 23

(3) for any l, l′ ∈ H(r), ‖ l‖s = ‖ l′‖s.

Example 3.4.3. Consider the following two programs.

P6: p(a) v p(c) :− not q(a). P7: p(a) v p(c) :− not q(b).

p(b) :− not q(b). q(b) :− not q(a).

It is easy to see that program P6 is stratified, while program P7 is not. A suit-
able level mapping for P6 is the following:

‖p(a)‖s = 2 ‖p(b)‖s = 2 ‖p(c)‖s = 2 ‖q(a)‖s = 1 ‖q(b)‖s = 1 ‖q(c)‖s = 1

As for P6 , an admissible level mapping would need to satisfy ‖p(a)‖s < ‖q(b)‖s
and ‖q(b)‖s < ‖p(a)‖s, which is impossible. 2

An important property of locally stratified ASP programs is given by the fol-
lowing proposition.

Proposition 3.4.4. [50] A locally stratified normal (non-disjunctive) ASP
programs has at most one answer set.

It is worthwhile noting that the presence of disjunction invalidates Propo-
sition 3.4.4. Indeed, the program {a v b.} has two answer sets, namely {a}
and {b}.

3.4.2 Head-Cycle Free Programs

Another relevant property of disjunctive ASP programs is head-cycle freeness
(HCF) [10]; the dependency graphs allow us to define HCF programs.

Definition 3.4.5. A program P is HCF iff there is no rule r in P such that
two atoms occurring in the head of r occur in a single cycle of G(P).

Example 3.4.6. The dependency graphs given in Figure 3.1 reveal that pro-
gram P4 of Example 3.3.2 is HCF and that program P5 is not HCF, as rule d v

e :− a. contains in its head two atoms belonging to the same cycle of G(5).
2

It has been shown that HCF programs are computationally easier than gen-
eral (non-HCF) programs.

Proposition 3.4.7. [10, 30] Deciding whether an atom belongs to some answer
set of a ground HCF program P is NP-complete, while deciding whether an atom
belongs to some answer set of a ground (non-HCF) program P is ΣP

2 -complete.

3.5 Modularity aspects

Programming languages, in general, allows the programmer to split a program
into several modules which interact through well-defined input/output inter-
faces. Consequently the entire program can be viewed as a composition of its
component modules. For Answer Set Programming, various modularity inves-
tigations have been exploited in order to decompose ASP programs in modules
that are logically linked by an input/output interface. The modularity tech-
niques presented here consists in splitting an ASP program into two modules
and, a more complex operation, decomposing a ground ASP program into dif-
ferent modules by exploiting the DLP-functions definition [59].

24 CHAPTER 3. ANSWER SET PROGRAMMING

3.5.1 Splitting an ASP program

An important result presented in [67] allows an ASP program P to be splitted
into two modules that have a clear interface.

Definition 3.5.1. (Splitting Set). A splitting set [67] of a program P is any
subset U of atoms in P such that, for each rule r ∈ P, if H(r) ∩ U 6= ∅ then
At(r) ⊂ U .

In this case we say that U splits P into two distinct sub-programs Pb and
Pt. Pb, called the bottom of P w.r.t. U , consists of all the rules that satisfy the
property of Definition 3.5.1, and Pt, called the top of P w.r.t. U , is composed
of all the rules contained in P \Pb. A consequence is the fact that all the atoms
contained in the head of some rule of Pt are not contained in U .

Theorem 3.5.2. (Splitting Theorem). Let a program P with a splitting set
U of P, let Pb the bottom of P w.r.t. U , and Pt the top of P w.r.t. U . A
set M of atoms is a consistent answer set for P iff M = X ∪ Y where X is an
answer set of Pb and Y is an answer set of Pt ∪X.

In other words, this theorem says that an answer set of P can be found by
calculating an answer set X of Pb and giving X as input to Pt for calculating
an answer set of Pt.

The splitting theorem by Lifschitz and Turner [67] was also generalized to the
non-ground case [31] by considering, as splitting sets, predicates of the program
instead of ground atoms and taking in consideration the Predicate Dependency
Graph of the program.

3.5.2 DLP-functions

Definition 3.5.3. (DLP-function). A DLP-function Π [59], is a quadruple
〈R, I,O,H〉 where I, O, and H are pairwise distinct sets of input atoms, output
atoms and hidden atoms, respectively and R is a (disjunctive) ground program
such that for each rule r ∈ R,

• At(r) ⊆ I ∪O ∪H, and

• if H(r) 6= ∅, then H(r) ∩ (O ∪H) 6= ∅.

The atoms I ∪ O are visible atoms and accessible by other DLP-functions.
The atoms H are not visible and, consequently, not accessible by other DLP-
functions.

The second property of the definition 3.5.3 ensures that at least one atom
of the head must be either an output atom or a hidden atom; this is to ensure
that no rules must interfere with the input. In this way, when a head contains
some output or hidden atom, and also some input atom, the input atoms act
very much as atoms contained in negative body.

Definition 3.5.4. Given two DLP-functions Π1 = 〈R1, I1, O1, H1〉 and Π2 =
〈R2, I2, O2, H2〉, they respect the input/output interfaces of each other iff the
following properties are respected:

• (I1 ∪O1 ∪H1) ∩H2 = ∅

3.5. MODULARITY ASPECTS 25

• (I2 ∪O2 ∪H2) ∩H1 = ∅

• (O1 ∩O2) = ∅

• DefR1
(O1) = DefR1∪R2

(O1)

• DefR2
(O2) = DefR1∪R2

(O2)

In such a way, the composition of Π1 and Π2 consists of:

Π1 ⊕Π2 = 〈R1 ∪R2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2, H1 ∪H2〉.

The first two properties of definition 3.5.4 say that the hidden atoms of
Π2 must not interfere with the atoms of Π1 and vice-versa. The third property
assumes that the output atoms of Π1 and Π2 are disjoint. The last two properties
say that the output atoms O1 are defined by rules contained in R1 and the output
atoms O2 are defined by rules contained in R2. When two DLP-functions are
composed together, the result is also a DLP-function composed by the rules R1

and R2. From the input atoms of one function, it is important to remove the
output atoms of the other function and vice-versa.

Definition 3.5.5. Given two DLP-functions Π1 and Π2 defined as before, given
the composition Πc = Π1 ⊕ Π2, and given DG+(Πc) the positive dependency
graph of Πc, the DLP-functions Π1 and Π2 are mutually independent iff does
not exist a strongly connected component S in DG+(Πc) such that S ∩ O1 6= ∅
and S ∩O2 6= ∅. In this case, the join Πu = Π1 ⊔Π2 = Πc is defined.

The following definitions are useful for calculating the answer sets of a pro-
gram, by calculating the answer sets of the respective DLP-functions.

Definition 3.5.6. Given two DLP-functions Π1 and Π2, two interpretations
M1 ⊆ At(Π1) and M2 ⊆ At(Π2) are mutually compatible w.r.t. Π1 and Π2 if

M1 ∩ (O2 ∪H2) = M2 ∩ (O1 ∪H1).

Definition 3.5.7. Given two DLP-functions Π1 and Π2 such that Π1 ⊔ Π2 is
defined. Given any sets of interpretations A1 of Π1 and A2 of Π2, the natural
join of A1 and A2, denoted by A1 1 A2, is the set of interpretations

A1 1 A2 = {M1 ∪M2|M1 ∈ A1,M2 ∈ A2 , and M1 and M2 are mutually
compatible. }

Definition 3.5.8. For DLP-functions, the following semantic operator is given:

SM(F) = {M ⊆ At(Π)|M ∈MM(ΠM)} where Π is a DLP-function.

Using the definitions just introduced, the following module theorem is de-
fined.

Theorem 3.5.9. (Module Theorem [59]). For all DLP-functions Π1 and
Π2 such that Π1⊔Π2 is defined, and for any mutually compatible interpretations
M1 ⊆ At(Π1) and M2 ⊆ At(Π2), M1 ∪M2 is an answer set of Π1 ⊔ Π2, if and
only if M1 is an answer set of Π1 and M2 is an answer set of Π2.

26 CHAPTER 3. ANSWER SET PROGRAMMING

3.6 Knowledge Representation

Answer Set Programming is a tool for knowledge representation and reasoning
applied in several application domains, from classical deductive databases to ar-
tificial intelligence. ASP is particular useful for handling incomplete knowledge
and non-monotonic reasoning, and allows for encoding problems in a declarative
way. Writing an ASP program is easy as describing the problem domain and
the complexity of the reasoning task is hidden by using a dedicated ASP sys-
tem. Moreover, the (optional) separation of a fixed non-ground program from
an input database allows one to obtain uniform solutions over varying instances.

ASP is a powerful formalisms, and allows complex problems to be expressed.
The expressiveness of ASP captures all problems belonging to the second level
of the polynomial hierarchy (the complexity class ΣP

2). This high expressive
power is significantly relevant for approaching hard problems like, for example,
solving planning and diagnosis problems, or, in the field of Artificial Intelligence,
for solving problems not reducible to SAT instances.

ASP allows the encoding of problems in an intuitive and concise way fol-
lowing a Guess&Check programming methodology (originally introduced in [29]
and refined in [63]). According to this approach a program P which encodes a
problem P consists of the following parts:

Input Instance: An instance F of the problem P is specified in input using a
database of facts.

Guess Part: A set of disjunctive rules G ⊆ P, referred to the guessing part, is
used the define the search space.

Check Part: The search space is then pruned by the checking part, consisting
of a set of constraints C ⊆ P which impose some properties to be verified.

Basically the input instance and the guessing part, represent the candidate
solutions to the problem. By adding the check part those solutions are filtered
in order to guarantee that the answer sets of the resulting program represent
exactly the admissible solutions for the input instance. The following example
represents the typical application of the Guess&Check methodology.

Example 3.6.1. Suppose that we want to partition a set of people into two
groups, but we also know that some pairs of people dislike each other, thus we
have to keep those two in different groups. Assume that the input instance
consists of the following facts:

person(bob). person(eve). dislike(bob, eve).

Applying the guess&check methodology, the guess part would model the possible
partition of persons to groups:

group(P, 1) v group(P, 2) :− person(P).

The resulting program (input instance + guess) produces the following answer

3.6. KNOWLEDGE REPRESENTATION 27

sets:

{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 1)}

{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 2)}

{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 1)}

{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 2)}

However, we want to discard assignments in which people that dislike each other
belong to the same group. To this end, we add the checking part by writing the
following constraint:

:− group(P1, G), group(P2, G), dislike(P1, P2).

Now, by adding the constraint to the original program we obtain the intended
answer sets (the checking part acted as a sort of filter):

{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 2)}

{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 1)}

2

In the following, we illustrate some ASP programs examples referred to
knowledge representation. More in details, we present some problems that can
be naturally encoded using ASP. The programs will be used in the remainder
of this thesis.

3.6.1 Reachability

Given a finite directed graph G = (V,A), we want to compute all pairs of nodes
(a, b) ∈ V × V such that b is reachable from a through a nonempty sequence of
edges in A. In different terms, the problem amounts to computing the transitive
closure of the relation A.

The input graph is encoded by assuming that A is represented by the binary
predicate edge(X,Y), where a fact edge(a,b) means that G contains an edge
from a to b, i.e., (a, b) ∈ A; whereas, the set of nodes V is not explicitly
represented, since the nodes appearing in the transitive closure are implicitly
given by these facts.

The following program defines a predicate reachable(X,Y) containing all
facts reachable(a,b) such that b is reachable from a through the edges of the
input graph G:

r1 : reachable(X, Y) :− edge(X, Y).

r2 : reachable(X, Y) :− edge(X, U), reachable(U, Y).

The first rule states that the node Y is reachable from the node X if there is an
edge in the graph from X to Y , whereas the second rule represents the transitive
closure by stating that node Y is reachable from node X if there is a node U

such that U is directly reachable from X (there is an edge from X to U) and Y

is reachable from U .
As an example, consider a graph represented by facts: edge(1,2). edge(2,3).

28 CHAPTER 3. ANSWER SET PROGRAMMING

edge(3,4). The answer set of the program together with the facts is

{reachable(1, 2), reachable(2, 3), reachable(3, 4), reachable(1, 3),

reachable(2, 4), reachable(1, 4), arc(1, 2), arc(2, 3), arc(3, 4)}

The atoms {reachable(1,2), reachable(2,3), reachable(3,4)} are inferred
by exploiting the rule r1, whereas the other atoms containing the predicate
reachable are inferred by using rule r2.

3.6.2 Hamiltonian Path

Given a finite directed graph G = (V,A) and a node a ∈ V of this graph, does
there exist a path in G starting at a and passing through each node in V exactly
once?

This is a classical NP-complete problem in graph theory. Suppose that graph
G is specified by using facts over predicates node (unary) and edge (binary),
and the starting node a is specified by the predicate start (unary). Then, the
following program Php solves the Hamiltonian Path problem:

% Guess arcs of the path

r1 : inPath(X, Y) v outPath(X, Y) :− edge(X, Y).

% Auxiliary rules

r2 : reached(X) :− start(X).

r3 : reached(X) :− reached(Y), inPath(Y, X).

% Checking part : specify constraints on solution.

% Each vertex in the path must have

% at most one incoming and one outgoing edge.

r4 : :− inPath(X, Y), inPath(X, Y1), Y <> Y1.

r5 : :− inPath(X, Y), inPath(X1, Y), X <> X1.

% All vertexes must be in the path.

r6 : :− node(X), not reached(X), not start(X).

The disjunctive rule (r1) guesses a subset S of the edges to be in the path, while
the rest of the program checks whether S constitutes a Hamiltonian Path. Here,
an auxiliary predicate reached is defined, which specifies the set of nodes which
are reached from the starting node. Doing this is very similar to reachability,
but the transitivity is defined over the guessed predicate inPath using rule r3.
Note that reached is completely determined by the guess for inPath, no further
guessing is needed.

In the checking part, the first two constraints (namely, r4 and r5) ensure that
the set of edges S selected by inPath meets the following requirements, which
any Hamiltonian Path must satisfy: (i) there must not be two edges starting at
the same node, and (ii) there must not be two edges ending in the same node.
The third constraint enforces that all nodes in the graph are reached from the
starting node in the subgraph induced by S. The mentioned constraints can be
also written in a different way by introducing aggregate functions. In particular,

3.6. KNOWLEDGE REPRESENTATION 29

the constraints r4 and r5 can be written in the following way:

r4 : :− node(X2), 2 <= #count{X1 : inPath(X1, X2)}.

r5 : :− node(X2), 2 <= #count{X1 : inPath(X2, X1)}.

3.6.3 Maximal Clique

The maximum clique is a classical hard problem in graph theory requiring to find
the largest clique (i.e., a complete subgraph of maximal size) in an undirected
graph. Suppose that the graph G is specified by using facts over predicates node
(unary) and edge (binary), then the following program solves the problem.

% Guess the clique

r1 : inClique(X1) v outClique(X1) :− node(X1).

% Order edges in order to reduce checks

r2 : uedge(X1, X2) :− edge(X1, X2), X1 < X2.

r3 : uedge(X2, X1) :− edge(X1, X2), X2 < X1.

% Ensure property.

r4 : :− inClique(X1), inClique(X2), not uedge(X1, X2), X1 < X2.

r5 : :∼ outClique(X2).

The disjunctive rule (r1) guesses a subset S of the nodes to be in the clique,
while the rest of the program checks whether S constitutes a clique, and the
weak constraint (r5) maximizes the size of S (since it prefers interpretations
in which the number of true outClique instances is minimized). An auxiliary
predicate uedge exploits an ordering to reduce the time spent in checking.

3.6.4 Maze Generation

A maze is an M x N grid where two distinct cells are indicated as entrance
and exit and each cell of the grid can be empty or a wall. The maze we are
considering must satisfy the following properties:

• all the cells placed near the edges of the grid are walls, except entrance
and exit that are empty;

• in a 2 x 2 square of the grid, cells can be neither all empty nor all walls;

• if two walls are placed on a diagonal of a 2 x 2 square, then not both of
their common neighbors are empty;

• each wall cell cannot be completely surrounded by empty cells;

• there is always a path (a finite sequence of cells horizontally or vertically
adjacent to the next cell in the sequence) from the entrance to every empty
cell of the grid.

The Maze Generation problem consists in generating mazes with fixed dimen-
sions of the grid. The problem has recently been proved to be NP-Complete [1].

30 CHAPTER 3. ANSWER SET PROGRAMMING

The following program Pmz solves the Maze Generation problem:

% Startup

grid(X, Y) :− col(X), row(Y).

adjacent(X, Y, X, Y1) :− grid(X, Y), Y1 = Y + 1, row(Y1).

adjacent(X, Y, X, Y1) :− grid(X, Y), Y1 = Y− 1, row(Y1).

adjacent(X, Y, X1, Y) :− grid(X, Y), X1 = X + 1, col(X1).

adjacent(X, Y, X1, Y) :− grid(X, Y), X1 = X− 1, col(X1).

border(1, Y) :− row(Y).

border(X, 1) :− col(X).

border(X, Y) :− row(Y), maxCol(X).

border(X, Y) :− col(X), maxRow(Y).

% Input

empty(X, Y) :− input empty(X, Y).

wall(X, Y) :− input wall(X, Y).

% Condition 1 :

wall(X, Y) v empty(X, Y) :− grid(X, Y), not border(X, Y),

not entrance(X, Y), not exit(X, Y).

% Condition 2 :

wall(X, Y) :− border(X, Y), not entrance(X, Y), not exit(X, Y).

empty(X, Y) :− entrance(X, Y).

empty(X, Y) :− exit(X, Y).

% Condition 3 :

:− wall(X, Y), wall(X1, Y), wall(X, Y1), wall(X1, Y1),

X1 = X + 1, Y1 = Y + 1.

:− empty(X, Y), empty(X1, Y), empty(X, Y1), empty(X1, Y1),

X1 = X + 1, Y1 = Y + 1.

% Condition 4 :

:− wall(X, Y), wall(Xp1, Yp1), empty(Xp1, Y), empty(X, Yp1),

Xp1 = X + 1, Yp1 = Y + 1.

:− wall(Xp1, Y), wall(X, Yp1), empty(X, Y), empty(Xp1, Yp1),

Xp1 = X + 1, Yp1 = Y + 1.

% Condition 5 :

:− wall(X, Y), not border(X, Y), not wallWithAdjacentWall(X, Y).

wallWithAdjacentWall(X, Y) :− wall(X, Y), adjacent(X, Y, W, Z), wall(W, Z).

% Condition 6 :

reach(X, Y) :− entrance(X, Y).

reach(XX, YY) :− adjacent(X, Y, XX, YY), reach(X, Y), empty(XX, YY).

:− empty(X, Y), not reach(X, Y).

3.6. KNOWLEDGE REPRESENTATION 31

The input of the problem is represented by a number of row and column facts,
defining the rows and the columns of the grid. These facts are represented by
the predicates row(X) and col(X) and are given as a range of consecutive, as-
cending integers, starting from 1. The maximum number of rows and columns
are provided too and they are represented by the predicates maxRow(X) and
maxCol(X). Two facts are provided, indicating the entrance and the exit; they
are represented by the predicates entrance(X,Y) and exit(X,Y) and are com-
posed of the column and row index. The entrance and the exit are placed on the
edges of the grid. Finally, one or more facts, indicating cells that are known to
be empty or contain walls, can be given; they are represented by the predicates
wall(X, Y) and empty(X, Y).

The rules belonging to Startup part of the program initialize the grid by
identifying cells, adjacent cells and borders. The predicates maxCol and maxRow
are used to limitate the dimension of the grid. The Input part initializes some
cells as empty or walls according to the elements contained in the predicates
input empty and input wall. The rule of Condition 1 guesses cells to be empty
or walls. The rules of Condition 2 state that each cell at an edge of the grid is a
wall, except entrance and exit that are empty. The rules of Condition 3 forbid
the existance of a 2 x 2 square of empty cells or walls. The rules of Condition
4 state that if two walls are on a diagonal of a 2 x 2 square, then not both of
their common neighbors are empty. The rules of Condition 5 state that no wall
is completely surrounded by empty cells. Finally, the rules of Condition 6 state
that there is a path from the entrance to every empty cell.

32 CHAPTER 3. ANSWER SET PROGRAMMING

Chapter 4

ASPIDE

This Chapter describes ASPIDE in its various aspects. A graphical interface
overview is first delineated and, subsequently, all the features offered by the IDE
are listed and described in detail. Moreover, use case examples are exploited that
illustrate the single features. At the end of the Chapter, the system architecture
and implementation of ASPIDE is depicted. ASPIDE can be freely downloaded
from the system web site http://www.mat.unical.it/ricca/aspide.

4.1 ASPIDE Graphical Interface Overview

The system interface of ASPIDE is depicted in Figure 4.1, where the main
components are outlined in different numbered zones.

Figure 4.1: The ASPIDE graphical user interface.

33

34 CHAPTER 4. ASPIDE

In the upper part of the interface (zone 1) a toolbar allows the user to
call the most common operations of the system (from left to right: save files,
undo/redo, copy & paste, find & replace, switch between visual to text editor,
run the solver/profiler/debugger). In the center of the interface there is the
main editing area (zone 4), organized in a multi-tabbed panel possibly collecting
several open files. The left part of the interface is dedicated to the explorer panel
(zone 2), and to the error console (zone 3). The explorer panel lists projects
and files included in the workspace, while the error console organizes errors and
warnings according to the project and files where they are localized. On the
right, there are the outline panel (zone 5) and the templates panel (zone 6). The
first shows an outline of the currently edited file, while the latter reports a list
of user-defined templates for exploiting common ASP patterns to be inserted
in programs. The one shown in figure 4.1 is the standard appearance of the
system, which can be however modified, since panels can be moved as the user
likes.

4.2 System Features

In the following the features of ASPIDE are first listed and then described
in details by exploiting examples of use. For the examples, we start with an
empty workspace and we use some of the programs described in Section 3.6 of
Chapter 3 to illustrate single features. By stressing and modifying the program
encodings, many possible ways and shortcuts will be shown in order to create
files, edit the program, fix problems and execute the program by exploiting the
DLV solver.

The features of ASPIDE are listed below:

• Workspace organization: the system allows ASP programs to be organized
in projects à la Eclipse, which are collected in a special directory (called
workspace);

• Advanced text editor: the editing of ASP files is simplified by an advanced
text editor, which provides several functionalities: from simple text color-
ing to auto-completion of predicates and variables names;

• Code template: ASPIDE provides support for assisted writing of rules
(guessing patterns, aggregates, etc.), as well as automated writing of entire
sub-programs (e.g., transitive closure rules) by exploding code templates;

• Visual Editor: the users can draw logic programs by exploiting a full
graphical environment that offers a QBE-like tool for building logic rules.
This feature is described in Chapter 5;

• Annotation management for ASP programs: ASPIDE exploits annota-
tions for ASP programs for indicating, e.g., rule names, predicate schemas
(name, arity, optional data-type), handle database connectivity and so on;

• Outline navigation: ASPIDE creates an outline view which graphically
represents program elements;

• Schema management and interaction with databases: interaction with ex-
ternal databases is made easy by a fully graphical import/export tool for

4.2. SYSTEM FEATURES 35

specifying tables mappings in an assisted way. Advanced schema manage-
ment and interaction with databases are described in Chapter 8;

• Errors and Warnings management: errors and warnings in ASPIDE can
be easy managed by exploiting specific panels and actions;

• Dynamic code checking and errors highlighting: syntax errors and relevant
conditions (like safety) are checked while typing programs: portions of code
containing errors or warnings are immediately highlighted;

• Quick fix: the system suggests quick fixes to reported errors or warnings,
and applies them (on request) by automatically changing the affected part
of the code;

• Dependency graph: the system provides a graphical representation of the
dependency graph of a program;

• Configuration of the execution: this feature allows configuration of input
programs and execution options;

• Presentation of results: the output of the program (either answer sets, or
query results) are visualized in a tabular representation, in a text-based
console or in a custom way;

• Unit Testing for ASP: ASPIDE provides a unit testing framework in the
style of JUnit and allows developers to compose units, inputs and asser-
tions on expected outputs. This feature is described in Chapter 6;

• Debugger and Profiler: semantic errors detection as well as code optimiza-
tion can be done by exploiting graphic tools.;

• User-defined Plugins: Developers can implement user-defined plugins for
extending ASPIDE to deal with new input formats, program rewritings,
and even customizing the format of solver results. This feature is described
in Chapter 7.

In the following, the above mentioned functionalities are described in details.

4.2.1 Workspace organization

The system allows one to organize ASP programs in projects similar to Eclipse,
which are collected in a special directory (called workspace). This facilitates the
development of complex applications by organizing modules (or projects) in a
space where either different parts of an encoding or several equivalent encodings
solving the same problem are stored. When ASPIDE is open, the system asks for
specifying a folder to be used as workspace; ASPIDE will show all the projects,
files and folders that are contained in the workspace.

The workspace is organized in several kinds of file which ASPIDE manages
according to their nature. In particular, ASPIDE allows one to manage:

• DLV files, defining ASP programs in both DLV syntax [63] and the syntax
of the Third Answer-Set Programming System Competition ASPCore [19];

36 CHAPTER 4. ASPIDE

• TYP files, specifying a mapping between program predicates and database
tables in the DLV

DB syntax [88];

• TEST files, defining unit tests;

• TEXT files, that are opened in a standard text editor;

• PLUGIN files, associated with any file format handled by a user defined
plugin.

Predicates defined in both DLV files and TYP files are shown to the user so
that he can use them for some purpose like drag/drop to some other file and for
arity error checking with predicates defined in other files of the same project.
PLUGIN files, that will be described in Chapter 7, can also be configured to
contain predicates.

For the workspace elements, two kinds of view are associated (fig. 4.2):

• Project Explorer which shows, in a tree view, only projects and files that
are associated with some nature;

• Workspace Explorer which shows, in a tree view, all the projects, folder
and all kinds of file that are contained physically in the workspace.

Figure 4.2: Project and Workspace Explorer panels.

4.2. SYSTEM FEATURES 37

Acting on these views, the user can do simple file operations (renaming,
deleting, moving...) and complex file operations like changing the nature of
a file according to the file extension, and disabling files, so that ASPIDE can
ignore it, avoiding error checking operations. The operations can be done by
exploiting both the File menu of ASPIDE and the popup menu. At the bottom
of both panels there are also buttons useful for files ordering.

Example 4.2.1. For defining a new workspace we open ASPIDE and choose a
folder as workspace (fig. 4.3). In the main window of ASPIDE we use the menu
File to create a new project and we give HamiltonianPath as project name
(fig. 4.4). We create a new DLV File, named encoding.dl, by right-clicking on
the Workspace Explorer (fig. 4.5); the file will contain the program encoding of
the Hamiltonian Path problem.

2

Figure 4.3: Select the workspace.

Figure 4.4: Create a new project.

38 CHAPTER 4. ASPIDE

Figure 4.5: Create a new DLV File.

4.2.2 Advanced text editor

The presence of an editor that provides a set of advanced features is indispens-
able for a good development environment. In particular, besides the core func-
tionality that basic text editors offer (like, code line numbering, find/replace,
undo/redo, copy/paste, etc.), ASPIDE offers others advanced functionalities
that are shown in the following.

The editor performs keyword outlining (such as “ :− ”) and dynamic high-
lighting of predicate names, variables, strings, and comments. Specific colors
are also exploited for indicating predicates mapped to external databases or
properly defined by annotations (more details about annotations are reported
in the next).

The refactoring tool allows one to modify predicate names and variables,
among others, in a guided way. For instance, variable renaming in a rule is done
by considering bindings of variables, so that common side effects of find/replace
are avoided by ensuring that variables/predicates/strings occurring in other ex-
pressions remain unchanged. Another interesting feature regarding refactoring
consists in selecting rules and applying some rewriting (possibly implemented
in a user-defined plug-in, more details follow in Chapter 7).

4.2.3 Automatic completion

The system is able to perform automatic completion of the editing phase on the
text editor to complete predicate names, as well as variable names and to apply
common ASP patterns. There are two different ways to perform automatic
completion:

• on line, suggestions are made while writing, so that the user can choose
to confirm what the editor suggests or continue writing normally;

• on request, by key-stroking CTRL+SPACE a popup window is opened
and the user can choose possible suggestions.

4.2. SYSTEM FEATURES 39

For both on line and on request suggestions, predicate names are learned
while writing, and extracted from the files belonging to the same project; vari-
ables are suggested by taking into account the rule we are currently writing;
common ASP patterns are identified by actions and keywords we are currently
writing on the editor. This helps while developing either an alternative encod-
ing for the same problem (input/intermediate predicate names are ready to be
suggested after the first file is completed) or when the same solution is divided
in several files.

For the on line auto-completion, the possible suggestions are:

• Disjunction completion, when the user starts writing a disjunction, the
editor suggests a possible way to complete the disjunction;

• Atom completion, when the user starts writing something on the editor,
it suggests a possible atom to be written by considering predicates that
start with the string that the user is currently writing; in case of n-ary
predicates, the terms of the atom are filled with fresh variables. If the
user types CTRL in this phase, other predicates starting with the same
string are sequentially suggested;

• Variable completion, on the writing phase of variables in atoms, already
used variables are suggested. This suggestion is useful because users often
re-use the same variables introduced to the head, in the body of the rule
they are writing.

Example 4.2.2 (Disjunction Completion). To insert the disjunctive rule
r1 of the Hamiltonian Path problem, we start writing inPath(X1, X2) v and
the editor automatically suggests, as a possible way to complete the disjunction,
inPath(X1, X2) v notInPath(X1, X2) (fig. 4.6). 2

Figure 4.6: On-line auto-completion of a disjunction.

Example 4.2.3 (Atom completion). For the Hamiltonian Path problem,
suppose that rule r2, defining in which case a node is reached, was already added
to the editor; in this way the new predicate reached with arity 1 was introduced.
If we start writing rule r3 by typing the first characters of reached, the editor
suggests the atom reached filling the term with a new variable (fig. 4.7). 2

Figure 4.7: On-line auto-completion of an atom.

40 CHAPTER 4. ASPIDE

Example 4.2.4 (Variable completion). For the Hamiltonian Path problem,
we will add rule r3. When in the body of the rule we write start, the editor
suggests variable X1 that we have already used in the head of the rule (fig. 4.8).
2

Figure 4.8: On-line auto-completion of a variable.

On request auto-completion is activated when the user key-strokes CTRL+
SPACE on the editing phase; in this case a popup window is opened showing pos-
sible (contextual) suggestions. The popup that appears is useful for completing,
for example, predicate and variables names, in the same way as common IDEs
for imperative programming language that suggest possible variables, functions
and class names. Some IDEs offer also the possibility of using specific keywords
for building quickly specific language constructs (e.g. if in Eclipse for Java we
write syso and type CTRL+SPACE, the editor automatically substitutes syso

with System.out.println). In ASPIDE were also introduced keywords that
automatically build language constructs and common patterns.

The possible on request suggestions are:

• Atom completion, the user can complete the atom that he is currently
writing; using CTRL+SPACE a popup window is opened showing the
possible predicates, already used in the files of the projects, which can be
used to complete the atom. In the same way the user can also add new
atoms with predicates (which still do not exist) by specifying the arity of
the predicate; in this way the atom is automatically built;

• Variable completion, variable in atoms can be suggested also using on-
request auto-completion. Also in this case, already used variables in the
rule will be suggested;

• Common ASP patterns completion, using specific keywords and typing
CTRL+SPACE, the user can insert complex and common language con-
struct fast. ASPIDE supports a set of code templates that helps the user
to define the preferred construct (see next Paragraph for more details).

Example 4.2.5 (On Request Atom completion). Suppose we want to write
again rule r2 using the on request auto-completion. We write reached and type
CTRL+SPACE; since the predicate reached still does not exist in the program,
the editor gives to the user some feedback to build the new predicate. Using
the suggestion the user can specify the arity of the predicate, so that the atom
can be automatically built (fig. 4.9). 2

4.2. SYSTEM FEATURES 41

Figure 4.9: Atom auto-completion using a new predicate.

Example 4.2.6 (On Request Variable completion). For rule r3 of the
Hamiltonian Path problem, on writing the atom start, we use CTRL+SPACE
and the editor suggests the variable X1 that we have already used in the head
of the rule (fig. 4.10). 2

Figure 4.10: On-request auto-completion of a variable.

4.2.4 Code template

Common patterns for ASP like guessing patterns, aggregates, as well as sub-
programs like transitive closure rules, can be written in ASPIDE in an assisted
way by exploiting code templates. Some code templates are available at the
on-request auto-completion feature of the text editor; to this end the user must
write the correct keyword and, by using CTRL+SPACE, the editor suggests
code templates associated with the keyword. According to the chosen code tem-
plate, the popup window provides a preview of the result and some information
that the user can edit to make the code template as he prefers. ASPIDE allows
users also to introduce new user-defined templates by exploiting a particular
syntax.

42 CHAPTER 4. ASPIDE

In the following the code templates supported by ASPIDE and the user-
defined code templates definition process are described. The descriptions are
integrated by examples of use on the Hamiltonian Path problem.

Quick disjunction definition. The user can quickly define a new disjunc-
tion by using the keyword DIS,. When the user writes this word and types
CTRL+SPACE, the editor asks the user, using the popup, how many new
predicates (with default arity 1) should be added to the disjunction (fig. 4.11).
Note that using this code template only one predicate can be specified.

Figure 4.11: Auto-completion using the keywork DIS for writing a disjunction.

By expanding the same keyword, the editor can suggest disjunction with dif-
ferent number of atoms, a different arity for each atom and a different predicate
name.

Example 4.2.7. If the user would like to write fast the disjunction inPath(X1,

X2) v inPath(X1, X2) v inPath(X1, X2) he can write DIS3inPath2 where
the integer 3 is the number of atoms of the disjunction, the string inPath is the
name of the predicate to appear in the disjunction and the integer 2 is the arity
of the predicate (fig. 4.12). 2

Figure 4.12: Code template using the keyword DIS3inPath2 for building a dis-
junction.

A user can exploit the code template also in a faster way. Suppose the
user would like to write a disjunction over a predicate, deciding whether cor-
responding atoms are either true or not, he can write a keyword in the form
DNOTpredname where predname indicates the name of a predicate. For ex-
ample the user can write the keyword DNOTedge to generate the disjunction
edge(X,Y) v notEdge(X,Y).

4.2. SYSTEM FEATURES 43

Guessing subsets in search space. As described in Chapter 3, guessing
part of a program is generally composed of disjunctive rules performing the
candidate solutions search. By using the keyword Guess, the user can write
disjunctive rules that guess a subset of elements belonging to a set (e.g. in ASP,
for guessing a subset of a set of elements represented by the predicate element

a rule like inSubset(X) v notInSubset(X) :− element(X). can be used).

Example 4.2.8. For writing fast rule r1 of the Hamiltonian Path problem we
use the keyword guess and, by exploiting the popup window, we specify the
predicate path with arity 2 (fig. 4.13). 2

Figure 4.13: Code template using the keyword guess for writing a disjunction
that guesses paths.

A user can exploit the code template also in a faster way. For example, if
the user would like to guess values of a predicate, he can write a keyword in the
form GUESSpredname where predname indicates the name of a predicate. For
example, if the user would like to guess a subset of edges, he can write the key-
word GUESSedge to generate the disjunction inEdge(X,Y) v outEdge(X,Y)

:− edge(X,Y).

Another keyword similar to Guess, named GuessStrict, allows users to guess
a subset of elements (in the same way) but changing the atoms involved in the
head. In particular, the head will contain an atom and its true negated version
(eg. a v¬a).

Example 4.2.9. We can write rule r1 of the Hamiltonian Path problem in a dif-
ferent way, using guessStrict and specifying, in the popup window, the predicate
inPath with arity 2; the editor will write the disjunction inPath(X1) v¬inPath(X1)
(fig. 4.14). 2

44 CHAPTER 4. ASPIDE

Figure 4.14: Code template using the keyword guessStrict for writing a disjunc-
tion containing a normal atom and its true negated version.

Aggregates definition. The keywords involved in the code template for
definining aggregates functions are #count, #min, #max, #sum, #times. Writing
one of these keywords, the popup window allows one to set values of the aggre-
gate atom, like lower and upper guards, compare operators and an atom to be
included in the aggregate.

Example 4.2.10. We want to write the constraint r4 of the Hamiltonian Path
problem; once we have written node(X2), we write the character # and type
CTRL+SPACE. After selecting #count from the popup window, we fill the
template with the value 2 as lower guard, select <= as lower operator and
select inPath(X1, X2) as atom of the aggregate. At the end of the operation,
the aggregate is written to the editor (fig. 4.15). 2

Figure 4.15: Code template for writing the aggregate #count.

Key constraints definition. The keyword Key allows one to create key con-
straints for predicates. Given a set of attributes S of a predicate, the purpose
of a key constraint is to forbid, in the same Answer Set, the existence of two or
more atoms with the same values for the attributes S and different values for
the remaining attributes.

4.2. SYSTEM FEATURES 45

Example 4.2.11. For the Hamiltonian Path problem, the constraint r5 says
that, given a node, it must not have two or more outgoing edges. In other words
the first attribute of inPath must be unique in any answer set; consequently
the first attribute can be seen as a (primary) key. We now write the constraint
r5 in a different way: we use the keyword key and we exploit the code template
to set the predicate inPath and specify the first attribute as key attribute; the
constraint :− inPath(X1,X2), inPath(X1,Y2), X2 <> Y2. will be written
to the editor (fig. 4.16). 2

Figure 4.16: Code template for writing a key constraint.

A user can exploit the code template also in a faster way. For example, if the
user would like to generate a key for a predicate, he can write a keyword in the
form KPredAttrpos, where Pred indicates the predicate name, while Attrpos is
an integer representing the attribute position where the user wants to applicate
the key constraint. For example, the previous constraint :− inPath(X1,X2),

inPath(X1,Y2), X2 <> Y2. can be written using the keyword KinPath1.

Inclusion constraints definition. The keyword Inclusion allows the user to
define an inclusion constraint saying that elements (also obtained after some
attributes projection) of a predicate must be a subset of elements of some other
predicate. The code template allows one to specify the predicates involved and
the attributes of the predicate to be considered.

Example 4.2.12. Despite the Hamiltonian Path problem of the example be-
ing complete, we can add more supporting rules ensuring, for example, that a
property is really satisfied. For the inclusion constraint we add a constraint en-
suring that all the elements of inPath must be a subset of edge; to this end we
write Inclusion, type CTRL+SPACE and use the popup to specify the predi-
cate inPath as subset of edge and selecting all the attributes of both predicates;
the constraint :− inPath(Y1,Y2), not edge(Y1,Y2). will be written to the
editor (fig. 4.17). 2

46 CHAPTER 4. ASPIDE

Figure 4.17: Code template for writing an inclusion constraint.

Numbers of elements constraints. The keywords AtLeast and AtMost al-
low one to set bounds on the number of elements contained in a predicate
(projected to exactly one attribute). Using this code template the user can gen-
erate a constraint containing the aggregate #count with a predicate, and set an
integer, representing the bound, as lower guard if the code template is AtLeast,
and as upper guard if the code template is AtMost.

Example 4.2.13. Other supporting rules that we can add to the Hamiltonian
Path encoding can be constraints that check whether the number of reached
nodes is exactly the number of nodes of the graph (i.e. all the nodes of the
graph must be effectively reached). On the program we suppose that the input
graph is composed of exactly 5 nodes, so we add two constraints ensuring that
the number of elements of the predicate reached must be neither lower than 5
nor greater than 5. For the upper case we use the keyword AtMost and we insert
the predicate reached on the popup window of the code template specifying the
value 5 for the attribute of reached (fig. 4.18). 2

Figure 4.18: Code template for writing an AtMost constraint.

Transitive Closure. This code template, activable by exploiting the key-
words TC and TCC is used for defining transitive closures on binary predicates.
TC defines a classical transitive closure by exploiting one rule only that com-
pletes a predicate including other elements representing the transitive closure of
the same predicate; for example, the rule edge(X,Y) :− edge(X,Z),edge(Z,Y).

defines a classical transitive closure for the predicate edge. TCC defines a closed

4.2. SYSTEM FEATURES 47

transitive closure, represented by two rules that populate a new predicate with
the transitive closure of the selected predicate; for example, rules define a closed
transitive closure for the predicate edge:

edge closed(X, Y) :− edge(X, Y).

edge closed(X, Y) :− edge(X, Z), edge closed(Z, Y).

To activate this code template (suppose the closed one) the user must write
TCCpredname where predname indicates a binary predicate in which the tran-
sitive closure has to be applied.

Example 4.2.14. We want to use the code template in our Hamiltonian Path
program. Suppose we want to verify the effective reachability of all the nodes
of the graph. To this end we use the keyword TCCedge, to activate the code
template defining the transitive closure for the predicate edge. We confirm and
the rules of the transitive closure are inserted (fig. 4.19). 2

Figure 4.19: Code template for defining a transitive closure.

User-defined code templates

In the main window of ASPIDE there is a panel named Template that shows a
list of other available code templates; they allow one to build other commonly
used ASP patterns like union, intersection, subset, permutation and so on. Using
the panel the user can both use them in the current file where he is currenctly
working and create a new user-defined code template that works how he prefers.

The creation process of a new code template consists in writing a DLT [17]
file. DLT introduces the concept of template predicate that can be seen as a way
to define intensional predicates by means of a sub-program.

The following example:

#template path{p(1), h(2)}(2){

path(X, Y) :− p(X), p(Y), h(X, Y).

path(X, Y) :− path(X, Z), h(Z, Y).

}

introduces a generic template program, defining the predicate path, intended
to compute the transitive closure of a generic binary predicate h where the
domain of h is composed by the elements of the generic unary predicate p. The

48 CHAPTER 4. ASPIDE

template can be seen as a graph reachability program where the predicate h

represents edges, the predicate p represents nodes and path contains a pair of
nodes that are reachable between each other. The predicates p and h contained
in the header of the DLT template are signatures of input predicate that can be
passed to the template for the transitive closure computation.

The mentioned code templates can be used in ASPIDE by exploiting a win-
dow that guides the user to specify input predicates. When the user uses this
kind of template in a program, DLT is called with a particular option and the
result of DLT will be a sub-program obtained by substituting the predicates of
the input predicate signatures with the predicates passed as input; the resulting
sub-program will be inserted in the editor.

Example 4.2.15. We want to use the code template path in our Hamiltonian
Path program. Suppose we want to verify (using this different method of the one
proposed before) the effective reachability of all the nodes of the graph; in this
case the input predicate of p is represented by the unary predicate node and the
input predicate of h is represented by the binary predicate edge. We select the
template path from the templates panel and click on the Insert Template button
(fig. 4.20). A dialog window is opened where the user can specify the input
predicates of the program and ask for a preview of the sub-program obtained
from DLT. We click on OK, and the obtained sub-program is inserted in the
editor (fig. 4.21). 2

Figure 4.20: Template creation and definition.

Figure 4.21: Specify the input predicates of the template path.

4.2. SYSTEM FEATURES 49

New user-defined templates can be created in ASPIDE. To create a new
template we click on the Create New Template button of the templates panel
(fig. 4.20); a dialog will be opened where the user can write the new template
in accordance with the DLT files syntax (fig. 4.22). The new template will be
saved and inserted in the templates panel.

Figure 4.22: Create a new template.

4.2.5 Annotation management for ASP programs

Meta-information is used in many programming languages to give more expres-
siveness to them for both programmers and compilers. For example, Java uses
annotations to add meta-information to classes, methods, functions and so on.
ASPIDE offers also annotations for ASP programs for indicating rule names,
specify predicate schemas (name, arity, optional data-type), handling database
connectivity and so on. Each annotation in ASPIDE is included within a com-
ment (so that the solvers can ignore it) and starts by “@”. Meta-information
given through annotations is exploited by the IDE to enrich the information
displayed in the outlines and to provide the user with smarter editing facilities
(such as auto-completion, test case composition, etc.).

In the following, the list of annotations introduced in ASPIDE are described.

Simple ASP annotaions

Simple ASP annotations, described in the following, allow simple meta infor-
mation to be specified like rule names and comments:

• @name = ruleName: by writing this kind of annotation before a rule, the
name ruleName is assigned to the rule;

• @start-program-comment ... @end-program-comment: all comments that
are written between these two keywords represent comments to the entire
program;

• @start-comment ... @end-comment: all comments that are written be-
tween these two keywords refer to rules that are also written between the
keywords. This is a way to introduce explicitly comments to rules.

Example 4.2.16 (Rule name annotation). We can set the name guess to

50 CHAPTER 4. ASPIDE

the disjunctive rule of the Hamiltonian Path program in the following way:

%@name = guess

inPath(X1, X2) v notInPath(X1, X2) :− edge(X1, X2).

2

Example 4.2.17 (Program Comment annotation). We can comment the
Hamiltonian Path program in this way:

%@start− program− comment

% The following program resolves the Hamiltonian Path problem

% that is a well known NP− complete problem

% in graph theory.

%@end− program− comment

2

Example 4.2.18 (Rule Comments annotation). To introduce comments to
rules r4 and r5 of the Hamiltonian Path program, by explicitly telling ASPIDE
that those comments refer to those rules we write:

%@start− comment

% Checking part : specify constraints on solution.

% Each vertex in the path must have

% at most one incoming and one outgoing edge.

:− node(X2), 2 <= #count{X1 : inPath(X1, X2)}.

:− node(X2), 2 <= #count{X1 : inPath(X2, X1)}.

%@end− comment

2

Note that exploiting comments annotations, the comments used for programs
can be separated by the ones used for rules and the ones that are not explicitly
associated with anything. Program comments information can be also exploited
by the Visual Editor for DLV files (see Chapter 5).

Schema and Database oriented annotations

ASPIDE introduces also annotations for specifying predicates schema and TYP
file directives [88] on DLV files. The most relevant annotation is @schema which
allows to specify schemas on predicates like attributes names and datatypes.
This annotation, together with annotations for TYP file directives, are use-
ful for advanced schema management and interaction with databases, and are
described in details in Chapter 8.

4.2.6 Outline navigation

ASPIDE creates a graphic outline of programs, TYP files and TEST files, and
it represents language statements. Outlines can be introduced also in PLUGIN

4.2. SYSTEM FEATURES 51

files; in this case it is managed by the ASPIDE plugin associated with the files
(see Chapter 7 for more details).

Regarding TYP files and TEST files the outlines allow one to see a tree
representation of elements contained in files. The figure 4.23 shows TYP file
and TEST file outline examples; the TEST file outline shows a list of test cases
contained in the file (see Chapter 6).

Figure 4.23: Outline for a TYP file on the left and for a TEST file on the right.

Figure 4.24: Different views for the outline representing a program.

52 CHAPTER 4. ASPIDE

Regarding programs, there are three kinds of outline (fig. 4.24) described in
the following:

• Rules: it represents all the rules and constraints, contained in the program,
using a tree view where in the first level of the tree there are head atoms,
while the second level corresponds to bodies;

• Expressions: it classifies the elements of the program in groups. The first
group is named Predicates and consists in organizing rules by predicates,
showing all the rules that “define” a specific predicate (i.e. all the rules
containing the predicate in the head) as children of the predicate. The
groups Constraints and Weak Constraints contain, respectively, all the
constraints and weak constraints of the program. The group Queries con-
tains the queries of the program and, finally, the group Directives contains
all the DLV directives (eg. #import, #maxint) defined to the program.
Rules contained in groups are represented in the same way as the “Rules”
based outline;

• Schemas: it shows, using a tree representation, all the schemas defined
in the program in case the user has explicitly defined a schema or a
#import directive. The outline shows attributes and datatypes and in-
dicates whether a schema comes from the #import directive or not.

Each item in the outline can be used to access quickly the corresponding line
of code (a very useful feature when dealing with long files), and also provides a
graphical support for building rules in the graphical editor (see Chapter 5).

Example 4.2.19. Figure 4.25 shows the Maximal Clique program including an
#import directive for the predicate edge, and schemas for the predicates node

and inClique. The outline shows all the elements of the program based on the
“Expressions” visualization. By exploiting icons, the user can easily identify
predicates and:

• the rules that define them;

• more information indicating attributes and datatypes if the predicates
have an associated schema or are associated with an external source like
a database;

• names associated with rules and queries.

To access the corresponding line of the disjunctive rule quickly, we double-click
on rule guess in the outline and the editor highlights the corresponding line
(fig. 4.25). 2

4.2. SYSTEM FEATURES 53

Figure 4.25: Outline for the Maximal Clique program and accessing to a line of
code.

4.2.7 Errors and Warnings management

ASPIDE can detect errors and warnings in the files of the current workspace.
When a workspace is initially loaded, files are parsed and syntax errors/warnings
are shown in the console window of ASPIDE. Errors and warnings checking
is done also when files are saved using the editors of ASPIDE. In the case
where a file contains errors or warnings, the Project and Workspace Explorer
panels highlight this file to signal the presence of errors to the user. Errors that
ASPIDE can detect are described in the next Paragraphs.

Syntax errors. Syntax errors are detected when a file does not respect the
relative syntax. In this case the Error Console indicates a description of the
error and the position of it in the file. A syntax error is detected also in the case
where a file is well-formed from the syntax-grammar point of view, but contains
some construct that does not respect a property (e.g. safety).

Possible syntax errors are:

• Safety Error, detected when a rule is not safe;

• Arity Error, detected when a predicate defined in the program has a dif-
ferent arity compared to the same predicate previously defined in the same
program. Arity errors can also be detected when a rule contains a pred-
icate that has a different arity compared to the schema that was defined
in the same file.

Warnings. Warnings represent possible errors a user might have made which
are not considered, in general, as real errors from the point of view of the solver
and do not need to be highlighted in ASPIDE as errors (they are highlighted in

54 CHAPTER 4. ASPIDE

a different way). For example, if a file contains a predicate that has a different
arity compared to the same predicate used in another file of the same project,
it is a warning; it is in reality considered an error if the user chooses to execute
the two files together in the same solver calling. The possible warnings for DLV
files are:

• No definition for predicates used in body, detected when a predicate is
used in the body of a rule, but it was never defined in the files of the
same project, neither by specifying it in the head of another rule, nor as
predicate imported from an external source;

• Arity Error in different files, detected when a predicate used in a file has
a different arity compared to the same predicate used in another file of
the same project.

By exploiting the error console, an error (warning) can be opened by a
double-click on the Error Console; in this case ASPIDE opens the default editor
(if an editor of the file is not already open) and moves the cursor to the position
of the error (warning).

Example 4.2.20. Suppose that on the Hamiltonian Path problem encoding we
have the following rule:

:− node(X1), not reached(X1), not start(X).

It has a safety error on the variable X of the atom start(X); the error console
signals the error. By a double-click on the error, ASPIDE opens the editor
evidencing the line containing the error (fig. 4.26). 2

Figure 4.26: Select the rule with the safety error.

Other errors and warnings concern schemas definitions. For example, if
a used predicate has a different arity compared to its respective schema, the
error is signaled. Moreover, a user might also specify a schema by the @schema

annotation and a USE directive of a TYP file that refers to the same predicate.
In this case, if the two schema definitions are different (different attributes names
or different arity) errors and warnings are signaled.

4.2.8 Dynamic code checking and errors highlighting

Programs are parsed while writing, and arity and safety errors or possible warn-
ings are immediately outlined without the need to save files. In particular,
syntax errors as well as mismatching predicate arities and safety conditions are
checked. Note that, the checker considers the entire project for errors and warn-
ings, indicating e.g., that atoms with the same predicate name have different

4.2. SYSTEM FEATURES 55

arity in several files. This condition is usually revealed only when programs
divided into multiple files are run together. It is applied to any error condition,
and a specific support was introduced also for checking some annotations.

Example 4.2.21. The figure 4.27 shows the unsafe rule of Example 4.2.20 that
is highlighted in red, and for the disjunctive rule, we are supposing that the user
has wrongly written the predicate edge as edg that is never defined to any file;
consequently ASPIDE has highlighted the rule (in yellow). 2

Figure 4.27: Error and Warning highlighting.

4.2.9 Quick fix

The system suggests quick fixes to reported errors or warnings, and applies them
(on request) by automatically changing the affected part of the code. This can
be activated by clicking on the line of code which contains an error/warning
and choosing the desired fix among several suggestions from a popup window,
e.g., safety problems can be fixed by correcting variable names or by project-
ing “unsafe” variables through an auxiliary rule (which will be automatically
added).

Example 4.2.22. Suppose we have the rule

:− node(X1), not reached(X1), not start(X).

it is clearly unsafe. To apply the quick fix that transforms the rule into

:− node(X1), not reached(X1), not start(X1).

we double-click on the portion of code containing the error and we apply the
suggested quick fix; the wrong rule is substituted with the correct rule (fig. 4.28).
2

Figure 4.28: Applying a quick fix for a safety error.

For all errors and warning described in the previous Paragraph, there are a
collection of quick fixes that can be applied; quick fixes can depend also on the

56 CHAPTER 4. ASPIDE

context and on the available predicates and variables. In the following, possible
quick fixes for each error are described.

Fix Safety Errors. For safety errors, the following quick fixes can be applied:

• Rename unsafe variable: the system suggests changing the unsafe variable
with another, also suggested, variable appearing in a positive literal of the
body of the rule;

• Remove negation from the unsafe literal: in the case where the safety error
is in a negated literal, the system suggests removing the keyword not;

• Substitute the unsafe atom with an auxiliary atom: in the case where the
safety error is in a negated literal, the system suggests substituting the
atom of the literal with an auxiliary atom where the unsafe attribute is
removed. The old unsafe atom is inserted in the body of a new rule that
defines the auxiliary atom;

• Add to the unsafe rule a domain literal: unsafe variables are not bound to
any domain; the quick fix suggests adding a new positive domain literal
that resolves the error by binding the unsafe variable to the new literal.
The user can rename the domain literal;

• Remove unsafe guard in aggregate atom: in the case where the safety
error is on a guard of an aggregate atom, the system suggests removing
the guard.

Example 4.2.23 (Rename unsafe variable). The unsafe rule

:− node(X1), not reached(X1), not start(X).

is substituted by

:− node(X1), not reached(X1), not start(X1).

2

Example 4.2.24 (Remove negation from the unsafe literal). The unsafe
rule

:− node(X1), not reached(X1), not start(X).

is substituted by

:− node(X1), not reached(X1), start(X).

2

Example 4.2.25 (Substitute the unsafe atom with an auxiliary atom).
The unsafe rule

:− node(X1), not reached(X1), not start(X).

4.2. SYSTEM FEATURES 57

is substituted by the rules

:− node(X1), not reached(X1), not start AUX.

start AUX :− start(X).

2

Example 4.2.26 (Add to the unsafe rule a domain literal). The unsafe
rule

:− node(X1), not reached(X1), not start(X).

is substituted by the rule

:− node(X1), not reached(X1), not start(X), DOMAIN PREDICATE(X).

The user can easily rename DOMAIN PREDICATE with a significant name. 2

Example 4.2.27 (Remove unsafe guard in aggregate atom). The unsafe
rule

:− node(X2), 2 <= #count{X1 : inPath(X1, X2)} < X.

is substituted by the rule

:− node(X2), 2 <= #count{X1 : inPath(X1, X2)}.

2

Fix Arity Errors and Warnings. For arity errors and arity warnings, the
following quick fixes can be applied:

• Remove terms: this quick fix is suggested in the case where a literal has
more attributes than the original predicate. It allows one to remove ex-
cessive attributes;

• Add a used variable: this quick fix is suggested in the case where a literal
has fewer attributes than the original predicate. It allows one to fill the
literal with new variables, already used in the rule but never used at the
same literal, until the arity error is fixed or no used variables are available;

• Add underscores for other attributes: this quick fix is suggested in the case
where a literal has fewer attributes than the original predicate. It allows
one to fill the literal with underscores until the arity error is fixed;

• Add new variables: this quick fix is suggested in the case where a literal
has fewer attributes than the original predicate. It allows one to fill the
literal with new never used variables until the arity error is fixed.

Example 4.2.28 (Remove terms). The rule

reached(X1) :− reached(X2, 1), inPath(X2, X1).

58 CHAPTER 4. ASPIDE

can be substituted by the rule

reached(X1) :− reached(X2), inPath(X2, X1).

or by the rule

reached(X1) :− reached(1), inPath(X2, X1).

2

Example 4.2.29 (Add a used variable). The rule

reached(X1) :− reached(X2), inPath(X2).

has a problem because inPath has arity 2 but in this rule it has arity 1; it is
substituted by the rule

reached(X1) :− reached(X2), inPath(X2, X1).

2

Example 4.2.30 (Add underscores for other attributes). The rule

reached(X1) :− reached(X2), inPath(X2).

is substituted by the rule

reached(X1) :− reached(X2), inPath(X2,).

2

Example 4.2.31 (Add new variables). The rule

reached(X1) :− reached(X2), inPath(X2).

is substituted by the rule

reached(X1) :− reached(X2), inPath(X2, Var 2).

2

Another possible arity warning arises in the case where a predicate used in
a program has different arity compared to a schema defined for this predicate.

Fix undefined predicate warning. In the case where a predicate used in
the body of some rule is not defined, the only quick fix proposed consists in
renaming the predicate with another predicate already defined in the project.

Example 4.2.32. The rule

inPath(X1, X2) v notInPath(X1, X2) :− edg(X1, X2).

has an warning because the user has wrongly written edg and not edge; the
quick fix can suggest a renaming with a defined predicate (in our case edge)

4.2. SYSTEM FEATURES 59

and the resulting rule will be

inPath(X1, X2) v notInPath(X1, X2) :− edge(X1, X2).

2

4.2.10 Dependency graph

The system provides a graphical representation of several variants of the (non-
ground) dependency graphs associated with the project depending on whether
both positive and negative dependencies are considered.

Also the graph of strongly connected components (playing an important role
in the instantiation of the program) can be displayed.

Thus, ASPIDE offers three different visualizations of the dependency graph:
Complete, Positive and Strongly Connected Components (fig. 4.29).

Figure 4.29: Complete, Positive and Connected Components Dependency
Graphs of the Hamiltonian Path program.

4.2.11 Configuration of the execution

Files contained in the current workspace can be executed by exploiting a solver/
system. ASPIDE provides a form for configuring and managing execution and
allows one to set the solver/system executable, setup invocation options and
input files, ask to perform a rewriting procedure before the execution and choose
one of the possible views proposed for results visualization. The chosen options
compose a Run Configuration that ASPIDE exploits on the execution phase;
Run Configurations can be used by the user for configuring execution options
of other features of ASPIDE like unit testing execution, debugging, querying
and so on. Figure 4.30 shows the Run Configuration Dialog for executing the
Hamiltonian Path program files.

60 CHAPTER 4. ASPIDE

Figure 4.30: Run Configuration Dialog.

On the left, the dialog shows a tree view that organizes Run Configurations
in projects and it can be used to create/rename/delete Run Configurations.
By a double-click on a Run Configuration of the tree, the panel placed on the
right shows all the properties of the Run Configuration. The user can choose
the executable solver by setting a default one1 or by selecting one from the
file system. Regarding the Output property of the Run Configuration, the user
can choose to visualize the execution results among a table representation, a
query specific window, the tool IDPDraw [92] for graphical visualization of the
answer sets, and a classical console window; moreover, the user can specify a
user-defined plugin of ASPIDE for managing the results in a different way (see
Chapter 7). Other properties that can be set on a Run Configuration, are solver
specific options like “Max Int” and “Max Model Number”. The last part of the
Run Configuration dialog allows one to select the files to be executed; the user
can select both project files, external files and, for each file, some rewriting
procedure to be applied on single files before the execution (see Chapter 7). If
no files are specified on the Run Configuration dialog, all the enabled files of the
current project will be executed. By clicking on the button Run, the execution
will start.

ASPIDE exploits also the concept of Default Run Configuration, which is a
ready Run Configuration where the executable file is set to the default DLV

solver and all the files of the project are selected by default. In this way a
user currently working on a project, before creating any Run Configuration,
can immediately run the project by clicking directly on the execution button
(fig. 4.31).

1Default solvers are DLV, DLV +ODBC and DLVDB and can be set using a properties
window of ASPIDE.

4.2. SYSTEM FEATURES 61

Figure 4.31: Run Button.

Note that the execution button shows the last Run Configuration that was
executed for the current project; the Default Run Configuration is set to the
button as long as the user does not execute a different one for the same project.

A Default Run Configuration can be exploited for quickly running single
files without the need to create new Run Configurations; in particular the user
can select, from the workspace explorer panel, a set of files and ask ASPIDE to
execute them directly; in this case ASPIDE proposes, on a popup menu, pos-
sible ways for executing the files, like normal execution, querying or debugging
(fig. 4.32).

Figure 4.32: Quick Run of files.

This feature is particularly useful in the case where a user would like to
test single files in the same project by avoiding the creation of new Run Con-
figurations. Using the same procedure, the user can quicly create a new Run
Configuration starting from the selected files.

ASPIDE introduces also a prototypical, workflow based way, to configure
execution.

62 CHAPTER 4. ASPIDE

Figure 4.33: Workflow execution Editor.

In particular a user can exploit a graphical interface for building an execution
process (fig. 4.33) consisting in combining several solver/system calls or piping
results of a solver to:

• other solver(s) configured using different Run Configurations;

• an external executable system(s);

• a text file(s);

• the console or on the tabular results window of ASPIDE.

The user can easily decide combinations or piping and solvers calls; the entire
workflow is transparently compiled in perl scripts for the execution. Figure 4.33
shows a workflow example on which the output obtained with the execution of
the Run Configuration Run HamiltonianPath is ‘‘forked’’ in three parallel flows:

• the first flow shows the output of the execution in ASPIDE using a tabular
view;

• the second flow sends both standard output and possible errors of the
execution to the console placed on the bottom of the panel;

• the third flow saves possible errors of the execution in a log file.

Using the Workflow Editor, the user can exploit also the tool join (opposed
to fork) and the tool for setting a generic executable object in which the user
can specify the path of the executable and execution options.

4.2. SYSTEM FEATURES 63

4.2.12 Presentation of the results

Execution results are presented to the user in different modalities:

1. in a comfortable view combining tabular representation of predicates and
a tree-like representation of answer sets;

2. in a console window where the output of the solver is printed;

3. by exploiting the IDPDraw tool [92] for graphical visualization of results;

4. in a customized way by exploiting an Output Plugin;

5. in the Query Dialog in the case where the user wants to execute a query.

Regarding modality 1, ASPIDE wraps the results of the DLV solver and
builds a tree representation of the answer sets. Figure 4.34 shows the results of
the Hamiltonian Path program; on the left of the window there is a tree repre-
senting the list of generated answer sets and, for each one, a list of computed
predicates are shown as children.

Figure 4.34: Tabular results for the Hamiltonian Path program.

By clicking on a predicate (e.g. inPath), on the right of the window a table
is shown containing the set of computed tuples of the predicate. In the case
where the program has associated a schema with the predicate, the results
shows attributes names specified to the schema (in this case source and target
for the predicate inPath). By exploiting the window, the user can choose to
save the results in an external file, open the current Run Configuration directly,
and expand the window in testing modality (see Chapter 6).

For modality 2, the results of the solver are simply printed to the results
console of ASPIDE (fig. 4.35).

64 CHAPTER 4. ASPIDE

Figure 4.35: Hamiltonian Path program solver output printed to the Console.

Also in this case the user can save the results to an external file and can open
the current Run Configuration directly.

Modality 3 allows the user to exploit the IDPDraw tool [92]; in this case
a configuration program file that allows one to draw, in IDPDraw, the correct
solution customized to the problem, must also be included to the Run Con-
figuration under execution. In the execution phase, ASPIDE calls IDPDraw
externally by passing to it the results of the execution, augumented with the
special drawing atoms of the configuration program file. Figure 4.36 shows a
result of the Maze Generation program described in Chapter 3; in this case the
configuration program is customized for drawing mazes.

Figure 4.36: Graphical visualization of a Maze Generation result.

Modality 4 allows the user to exploit different ways to manage the results
depending on an Output Plugin that he chooses for the execution; the user can
also implement new user defined Output Plugins. For a detailed explanation of
Output Plugins see Chapter 7.

Modality 5 allows the user to write queries in a confortable way by exploiting
a Query Window. The Query Window can be open by exploiting the dedicated

4.2. SYSTEM FEATURES 65

button of the toolbar (fig. 4.37) and it works on a Run Configuration choosen
by the user.

Figure 4.37: Open the Query Window.

For a quick query composition and execution, the window (fig. 4.38) offers a text
field for writing a query, a button Execute for running the query, a button Query
Visual for creating a query by exploiting the Visual Editor (see Chapter 5) and
reasoning options (brave or cautious). By clicking on the button Execute the
query is executed, the results are shown into the window and the written query
is saved in a Queries History (fig. 4.38).

Figure 4.38: The Query Window.

66 CHAPTER 4. ASPIDE

The window offers also other options enabling the Epistemic Mode query execu-
tion proposed in [48] and revised with a new version in [49]. The idea of query
execution in epistemic mode consists in affirming that an atom, which is neither
true nor strong negated in an answer set, is considered unknown for the answer
set.

Example 4.2.33. Consider the program

p(a).

¬p(b).

q(c).

The answer set of the program is {p(a),¬p(b), q(c)}. If we execute, in epis-
temic mode the query p(a)?, the answer will be true, for the query p(b)? the
answer will be false and for the query p(c)? the answer will be unknown.

2

In case of multiple answer sets, the statement is valid by considering the
union of all the answer sets for brave reasoning and the intersection of all the
answer sets for cautious reasoning.

Example 4.2.34. Suppose now we have the following program:

a v ¬a.

c.

¬ b.

The answer sets of the program are {a, c,¬b} and {¬a, c,¬b}. The atom a

is bravely true (there is an answer set in which it occurs), ¬a is bravely true
(there is an answer set in which it occurs) and both a and ¬a are cautiously
false (they do not occur in the intersection of all answer sets). If we execute the
query a? in epistemic mode using the cautious reasoning option the results will
be unknown since the intersection of the answer sets is {c,¬b}.

2

The Query Window allows the user the choose different execution modalities
for Epistemic Mode. In particular the modality Single run and Single run all
truth values for unary queries allows the epistemic execution with one run of
the solver by rewriting a query q(X)? in:

query(X, true) :− q(X).

query(X, false) :− ¬q(X).

query(X, Y)?

Regarding non-ground conjunctive queries, the modality Single run gets true
results only, while the modality Single run all truth values gets true and false
results. The modality Multiple run for a query q(X)? allows the epistemic
execution by calling the solver twice; the first time with q(X)? and the second
time with ¬q(X)? to get both true and false answers. The user will not notice
any significant difference in use with the methods mentioned above, but in hard
cases execution time may change.

4.2. SYSTEM FEATURES 67

The caching option allows one to save the results (oversimplifying the union/
intersection of the answer sets) in way that subsequent executions will not re-
quire an expensive evaluation. By running several queries on the same program,
this option is expected to improve performance in some cases.

The window offers also a possibility of exploiting one or more query rewriters
before the execution; in this way the user can, for example, apply an optimiza-
tion before the execution. The user can create and/or exploit a Query Rewriter
Plugin (see Chapter 7 for more details) that rewrites the query also as a function
of the program files contained in the current Run Configuration. The window
also allows the user to exploit, sequentially, more than one rewriter. By using
the Query rewriting part of the window, query rewriters can be specified and
the ordering of the rewriters can be easily changed. For example, in the Query
Window shown in Figure 4.38, two query rewriters, namely Euristic Rewriting
and Optimize Query were applied before the execution. The query inPath(X,

Y)? was passed to the rewriter Euristic Rewriting and the resulting rewritten
query, together with some supporting program also generated by the rewriter,
were passed to the rewriter Optimize Query; finally the new resulting query was
executed.

4.2.13 Debugger and Profiler

This Paragraph describes the integration/embedding of two external tools, spock
and the DLV Profiler for debugging and profiling purposes. In ASP there are no
standard methodologies for debugging programs, and tracing a solver execution
can be a practical, but solver implementation dependent, way for debugging
purposes.

Debugging ASP programs in ASPIDE with spock

The debugging interface of ASPIDE exploits the debugging methodology for
ground programs proposed in [14], and implemented in the debugging tool
spock [15]. The interface calls externally spock and wraps the results reported by
the tool for presenting, in ASPIDE, debugging information about the program
the user is currectly debugging.

The purpose of a debugger consists in explaining why, rather than how, a
program is wrong. The basic idea of [14] is to show, given an interpretation, the
rules that were applicable (i.e. the rules that are true for the given interpretation)
and blocked (i.e. the rules that are false for the given interpretation). The
solution proposed by the paper is ASP-based and was implemented in spock to
detect applicable and blocked rules and to do more sophisticated analysis on
any abnormal behavior.

Example 4.2.35. Consider the problem of inviting guests to a party and peo-
ple would appear only if certain others do or do not attend the festivity. By
considering that, the following program that tries to resolve the problem can be

68 CHAPTER 4. ASPIDE

carried out by knowing people preferences:

r1 : jim :− uhura.

r2 : jim :− not chekov.

r3 : uhura :− chekov, not scotty.

r4 : chekov :− not bones.

r5 : bones :− jim.

r6 : scotty :− not uhura.

The program has the two answer sets {chekov, scotty} and {bones, jim,

scotty}. Supposing that the user was expecting different results, the program
is probably buggy. By exploiting the debugger tool we can see which rules have
been applicable or blocked for the two answer sets. To this end we open the
debugger by clicking on the Debug button of the toolbar (fig. 4.39). The debug-
ging window is open by executing the program and showing, for each answer
set, which rules were applicable or blocked; the Figure 4.40 shows applicable
and blocked rules of the first answer set. 2

Figure 4.39: Debug the current program.

Figure 4.40: Applicable and blocked rules on the debugging process.

The basic idea just described analizes the program as a function of the real
generated answer sets. However, the user would try to do more analysis by

4.2. SYSTEM FEATURES 69

considering incoherent situations like: “what happens to applicability of rules
in case a different interpretation is considered” or “what happens in case an
atom is considered true but it has no support in the program”. To reply on
these questions, we can exploit the user interface to check abnormalities related
to:

• falsified rules;

• not supported atoms;

• unfounded atoms.

Those three abnormalities checking will be explained by presenting three
examples on the party program of previous examples.

Example 4.2.36 (falsified rules). Suppose we would like to check abnor-
malities for rules defining jim by considering different possible intepretation
scenarios for the two rules (i.e. what happens if jim is true and what happens
if jim is false); we select rules r1 and r2 only and ask to the interface to check
abormalities for falsified rules. Spock carries out that in the case where the
interpretation {chekov, uhura} is considered, it would falsify, in the program,
rule r1 because it is applicable but jim is false (fig. 4.41). 2

Figure 4.41: Check rule abnormalities for rules.

Example 4.2.37 (not supported atoms). Suppose now we would like to
check supporting atoms abnormalities considering possible cases in which both
jim and chekov are in the same answer set or not. We check the option not
supported atoms, write the two atoms on the text area labelled List of atoms
to check and select them in the Atoms tabbed pane. Spock carries out that
considering the interpretation {jim, chekov, bones, uhura} where jim and
chekov are together, chekov has no supporting rule in the program (fig. 4.42).
2

70 CHAPTER 4. ASPIDE

Figure 4.42: Check supporting atoms abnormalities.

Example 4.2.38 (unfounded atoms). Suppose now we would like to check
unfounded atoms abnormalities considering possible cases in which both uhura

and scotty are in the same answer set or not. We check the option unfounded
atoms and write the two atoms in the same way as the previous example. Spock
carries out that considering the interpretation {jim, bones, uhura, scotty}
where uhura and scotty are together, both atoms are considered unfounded in
the program (fig. 4.43). 2

Figure 4.43: Check unfounded atoms abnormalities.

4.2. SYSTEM FEATURES 71

Profiling through the Visual Tracer for DLV

In software engineering, tracing is a specialized way for recording information
about the execution of a program for debugging purposes or (depending on the
type and detail of information provided by the tracing system) by experienced
system developers to diagnose problems or optimize implementations.

In paper [20], a suitable solution to the problem of tracing the execution of
an ASP system is presented by offering also an implementation into the ASP
system DLV that features a graphical user interface and an on-line tracing
method that sets it on the way between tracing and debugging. The graphical
interface was fully embedded in ASPIDE by enabling the possibility of profiling
the DLV solver inside the environment. The embedded GUI allows the user to
exploit the full power of DLV features for tracing in a simple and intuitive way.

For using the GUI the user chooses to profile a program contained in a Run
Configuration. To open the profiler, the user must click on the Profiler button of
the toolbar (fig. 4.44) and the graphical interface is open (fig. 4.45); the system
starts and the session is initialized.

Figure 4.44: Run the DLV Profiler for the current Run Configuration.

Figure 4.45: DLV Profiler GUI in ASPIDE.

The central area of the main window is divided into two parts: the main
available commands and a tracing management area are placed in the upper side,
while the lower consists of a Console. The tracing management area features

72 CHAPTER 4. ASPIDE

Figure 4.46: System architecture of ASPIDE.

some fields that remember the overall status of the application. Fields are in
charge of showing: the current status of DLV, the last command given by the
user, DLV options that are currently enabled, and the grain and detail levels
set during the last tracing analysis. Under these fields a table, initially empty,
is placed which show all the information printed by DLV during the session.
The information printed at each breakpoint changes according to the detail
level; however, the user can also customize the current configuration by means
of appropriate buttons. Finally, a Console is shown in the lowest area of the
window. This text-area shows the output of the DLVController [20] as it is
released; thus, when a command is invoked, the user can view the results.

4.3 System Architecture and Implementation

ASPIDE is written in Java by following the Model View Controller (MVC)
pattern. Figure 4.46 shows the general architecture of ASPIDE. In particular
a core module manages, by means of suitable data structures, projects, files
content, system status (e.g., error lists), and external components management
(e.g., interaction with solver/debugger/profiler). For the execution, the user
can exploit a Workflow module that combines several system/solver calls. The
Text Editor module allows the user to write program in a textual way, while the
Visual Editor module allows him to draw ASP programs by means of a set of
graphical tools. A plugins manager module allows the system to interact with
user-defined plugins that offer the possibility of introducing rewriters and to
manage different input/output formats. The database management of ASPIDE
is assigned to a user-defined plugin that can interact with the external databases
by exploiting the JDBC library. Any update to the information managed by
ASPIDE is obtained by invoking methods of the core, while, view modules
(graphically implemented by interface panels) are notified by proper events in

4.3. SYSTEM ARCHITECTURE AND IMPLEMENTATION 73

case of changes in the system status. ASPIDE exploits:

• the JGraph2 library in the Visual Editor, in the dependency graph and in
the workflow modules;

• the DLV Wrapper [79] for interacting with DLV;

• JDBC libraries for database connectivity.

Debugging and profiling are implemented by wrapping the tool spock [15],
and the DLV profiler [20], respectively. In the integration phase of the tool
spock, a work on the adaptation of the tool for dealing with the syntax of the
DLV system has been done.

2http://www.jgraph.com/

74 CHAPTER 4. ASPIDE

Chapter 5

Visual Editor for drawing
logic programs

In general the main task of designing a logic program consists of writing text
files (more or less computer-assisted). However, although the basic syntax of
ASP is not particularly difficult, writing ASP programs might be uncomfortable
for novices and error-prone users; moreover, programmers are often required to
know the details of a specific ASP input dialect. This means that writing ASP
programs is mainly an activity for ASP-experts (or, even worse, for experts in
a specific ASP-system).

This Chapter presents a contribution for enabling users to write logic pro-
grams by exploiting a graphical way. In particular the Chapter describes the
Visual Editor for writing ASP programs by exploiting a full graphical environ-
ment. It is integrated in ASPIDE and accessible by opening a DLV File in
graphical modality; moreover, every time a user needs, a text/visual (and vice-
versa) switching is possible thanks to a reverse-rengineering mechanism from
text to graphical format. The Visual Editor allows the drawing of an ASP-
program on the screen and the user is not required to edit files textually or
know the details of a specific ASP dialect, since the fully graphic environment
is inspired by QBE editors. As a consequence, the system should reduce the
difficulty of producing ASP programs for both novice and inexperienced pro-
grammers, ease the encoding tasks for experts who prefer graphic tools, and
reduce the probability of making syntax mistakes. Currently, the Visual Editor
supports all the main advanced language features (i.e. disjunction, aggregates
and constraints), and, since the core of the system is modular, it can be easily
extended to support other language features and/or other input formats (e.g.
lparse/gringo syntax [70, 86, 22]).

In the following, the Visual Editor, and the relative drawing methodology,
are described with a short overview and a use case example. Note that, the sys-
tem supports many different ways of creating modifying rules and constraints.
The example reports only one of the possibile combination of commands and
shortcuts that can be exploited for designing a program to solve the consid-
ered problem. Anyway, the described example is quite complete and helps in
understanding how the Visual Editor effectively works.

75

76 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

5.1 Visual Editor overview

Figure 5.1 shows an overview of the Visual Editor.

Figure 5.1: Overview of the Visual Editor.

In the Figure, zone 1 represents the Body Graph panel where the user can
have a general view of the body of a rule. In particular, it is a graph represen-
tation of the literals inserted in the body of a rule and shows associations (join,
union, intersection, not) between the body literals. Each literal represents an
entity shown in the graph as a rectangular shape. Inside each entity there are
also the join conditions of the respective attributes among:

• the attributes of the same entity;

• the attributes of this entity with other entities of the body;

• the attributes of this entity with atoms of the head.

By selecting the entities of the Body Graph, zone 2 shows their details; in
particular we can see all the attributes belonging to the selected entities. We
can also do operations like Joins between attributes of the body and binding
(unbinding) of the attributes with one or more attributes of the head. We can set
also join conditions like equality/inequality of attributes with other attributes
or constants.

Zone 3 shows the details of single entities that we have selected. For each
entity we can add, edit or delete attributes and set the datatypes. An entity can
also be a rule, so we can use the same section to insert static constant values to
the head of the rule, give a name to the rule, disable the rule, and so on. If the

5.2. THE VISUAL EDITOR BY A USE CASE EXAMPLE 77

selected entity is a literal of the body, the zone can show which attributes (if
any) are not safe; we can also negate the literal of the rule by using the zone.

Zone 4 shows the outline of the program that we are building. We can view
the program by Predicates, Rules or Schema1. In the views containing rules, we
can do a mouse double-click on the rules to open them in the Body Graph for
editing. To insert the facts to a predicate we have to use the Predicates view,
and select the node Facts of ‘predicateName’ where predicateName is the name
of the corresponding predicate. After the selection, the Entity Details panel
shows a table where we can insert, edit and delete facts.

5.2 The Visual Editor by a Use Case Example

In this Section the Visual Editor is exploited for drawing the Hamiltonian Path
program presented in Chapter 3. For the program, the following facts are con-
sidered:

node(1). node(2). node(3). node(4). node(5).

edge(1, 2). edge(2, 3). edge(3, 4). edge(4, 5).

edge(3, 2). edge(1, 3). edge(2, 4). edge(5, 1).

start(1).

Creating Predicates and Facts

Supposing we have already created an empty DLV File and opened it with the
Visual Editor, we start by adding the input predicates node, edge and start.
To add a predicate to the program, we click on the menu Program and select
New Predicate (fig. 5.2).

Figure 5.2: Creating a new Predicate.

A dialog will ask for the name of the predicate to be inserted, and after spec-
ifying the required information and confirming the command, a new predicate
icon appears on the Outline panel (fig. 5.3).

1See Chapter 4.

78 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

Figure 5.3: The predicate node in the Outline and the attribute NodeLabel
inserted in node.

In order to simplify the program specification, the system allows one to spec-
ify a name for each attribute, and a datatype. This additional information is
very useful during the editing phase, since it allows for rapidly identifying and
joining attributes. To insert attributes, the user can exploit the panel placed in
the bottom-center, labelled Entity Details (fig. 5.3), which shows the details of
current predicate selected in the Outline. Note that in the Outline, near the new
predicate, inserted attribute names and datatypes are shown (this visualization
is done only in case the user has specified attribute names or datatypes). In the
textual way it corresponds to specifying a @schema annotation2 for that predi-
cate. Similar steps have to be performed for adding the other input predicates
start and edge.

In order to insert the facts to a predicate, e.g. edge, we select Facts of ‘edge’
on the Outline panel; the Entity Details panel will show a table where we can
insert the facts (fig. 5.4).

2See Chapters 4 and 8.

5.2. THE VISUAL EDITOR BY A USE CASE EXAMPLE 79

Figure 5.4: Insert facts in edge.

5.2.1 Drawing Rule r1

We now insert the disjunctive rule r1 by selecting New Disjunctive Rule on the
menu Program. The system opens a dialog window used to specify the head of
the rule (fig. 5.5).

Figure 5.5: Dialog window for setting the head of the new disjunctive rule.

For inserting atoms in the head, the window allows the user to choose existing
predicates and/or insert new predicates. We specify the new predicates inPath
and outPath and click on the OK button; the new disjunctive rule will be
inserted in the program and visualized at the Visual Editor both in the Outline
panel and in the Body Graph panel situated at the top-center (fig. 5.6). Note

80 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

that in the Outline, showing a visualization by predicates, the disjunctive rule is
inserted twice under both the predicates inPath and outPath (the rule defines
both predicates). Then, one can specify the body of the disjunctive rule by
dragging predicates from the Outline panel to the Body Graph panel. In our
example we drag the predicate edge in the Body Graph of the disjunctive rule
(fig. 5.6).

Figure 5.6: Dragging of the predicate edge from the Outline to the Body Graph.

Figure 5.7: Projecting the attribute Target of the predicate edge.

5.2. THE VISUAL EDITOR BY A USE CASE EXAMPLE 81

A box representing the just added body predicate appears in the Body Graph
(fig. 5.7). By selecting the box, the Body Details panel shows details of the pred-
icate like the list of attributes and joins with other attributes (if defined). By
clicking on the button Link placed near a particular attribute of the predicate
edge, a pop-up menu allows for rapidly projecting the attribute with an at-
tribute of the head (fig. 5.7). In this case the predicates inPath and outPath

have no attributes, so we will select New Attribute on the pop-up menu and the
system will create a new attribute both in inPath and outPath, simultaneously
making projections. We do the same action also for the second attribute of edge
(fig. 5.7). Finally, the Body Graph, the Body Details and Entity Details panels
show information regarding the linking (projection).

5.2.2 Drawing Rules r2 and r3

The creation of rule r2 is a bit more involved, since its body features two literals
sharing variables. We insert a new rule by selecting New Rule on the menu
Program and we name its head atom reached. Then we select the predicate
reached and, using the Entity Details panel, we add a new attribute to the
predicate naming it Node. Now we drag the predicates inPath and reached in
the body panel of the new rule; note that this definition is recursive. Then, we
join the two body literals by selecting both of them (this is done by clicking
on the corresponding boxes in the body panel while pressing the shift key) and
clicking on the join icon that appears near the selected boxes (fig. 5.8).

Figure 5.8: Join the predicates inPath e reached.

The system will show a dialog window where one can setup the join (fig. 5.9).
The details of the join are reported in the Body Details panel (fig. 5.10), where
the joined attributes can be further modified. As before, we properly link head

82 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

and body attributes, in this case by acting on the button Link placed near the
second attribute of inPath.

Figure 5.9: Join the attribute Source of the predicate inPath and Node of the
predicate reached.

Figure 5.10: Details of the join.

Regarding rule r3 we insert a new rule by selecting New Rule on the menu
Program and drag the predicate start in the Body Graph (fig. 5.11).

5.2. THE VISUAL EDITOR BY A USE CASE EXAMPLE 83

Figure 5.11: Applying a quick fix for a Safety Error.

Note that there is a Safety Error because the attribute Node of the predicate
reached is still not bound. To resolve the problem we can apply a quick fix
by double-clicking on the “lamp” on the Entity Details panel (fig. 5.11) and
choosing to bind the attribute Node of reached with the one of start.

5.2.3 Drawing Constraint r4

To create the constraint defined by rule r4 we select New Constraint from the
menu Program. The constraint, having a “forbidden” icon, appears on the
Outline panel. We can specify a name to the constraint, in this case OneOut-
goingEdge, by clicking on it and acting on the Entity Details panel (fig. 5.12).
The body of constraints can be specified in the same way as before by dragging
predicates from the Outline panel. In our case we drag node and reached and
make a join between the two predicates (fig. 5.13).

To negate the literal reached of the body, we select that predicate in the
Body Graph panel and, on the Entity Details panel, we tick the checkbox “Not”;
in the Body Graph panel, the join arc between the two predicates will become
an “arrow” from the literal node to the negated literal reached, the colour of
the negated literal will become different and, in the Outline panel, the literal
reached of the rule will have the keyword “not” (fig. 5.14).

84 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

Figure 5.12: Specifying a name to the constraint.

Figure 5.13: Created a new constraint and made a join between the predicates
node and reached inserted in the body.

5.2. THE VISUAL EDITOR BY A USE CASE EXAMPLE 85

Figure 5.14: Negation of the predicate reached.

To also add the predicate start in the body, a quick way can be exploited
allowing the user to bind a literal quickly with an other new negated literal.
To this end we select the predicate node on the Body Graph panel and choose
NOT from the popup window (fig. 5.15a); at this point we select start as target
predicate of node (fig. 5.15b) and a “negated” binding will be quickly performed
(fig. 5.15c).

Figure 5.15: Creating a quick negation for the predicate start.

86 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

5.2.4 Drawing Constraint r5 and r6

For defining constraints r5 and r6 the procedure is the same as for previous
rules. The only difference consists in the presence of built-ins atoms (see Y

<> Y1 and X <> X1). Consider rule r5, the inequality is between the second
attribute (Target) of the first literal inPath and the second one (Target) of the
second literal inPath. To introduce the inequality we select the two literals and,
by acting on the Body Details panel, we exploit a small panel placed between
the two literals and insert the inequality between the attributes Target of the
literals (fig. 5.16). In the same way we build rule r6.

Figure 5.16: Defining an inequality for attributes.

At this point the entire graphical representation of our program solving the
Hamiltonian Path problem was drawn. In order to show the specification of ag-
gregates in the system, we modify the problem encoding by replacing constraints
r5 and r6 with the following equivalent ones that use aggregates:

r5a : :− node(X2), 2 <= #count{X1 : inPath(X1, X2)}.

r6a : :− node(X2), 2 <= #count{X1 : inPath(X2, X1)}.

In order to remove r5 and r6 from the program, we right-click on their spec-
ification and select Remove. Then, we specify r5a and r6a. To aggregate the
information contained in the predicate inPath we select the corresponding lit-
eral in the body of the constraint and, by a right-click, we click on Aggregate
and select Count from a drop-down menu (fig. 5.17).

5.2. THE VISUAL EDITOR BY A USE CASE EXAMPLE 87

Figure 5.17: Aggregation of the predicate inPath.

In the Outline panel, the aggregate will be added, and in the Body Graph
panel, a new entity with the aggregate will be created (fig. 5.18).

Figure 5.18: Result of the aggregation of the predicate inPath.

Note that, in the Body Details panel, an aggregate-specific box allows for
setting guards, local variables, and so on. Finally, in a similar way we can add

88 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

constraint r6a.

5.2.5 Switching from Visual Mode to Textual Mode

The program that we have just built graphically can be switched from visual
mode to textual mode by clicking of the Switch icon available in the toolbar; in
this way ASPIDE will show the program built in textual mode. (fig. 5.19).

Figure 5.19: Result of the aggregation of the predicate inPath.

Note that @schema annotations are written to the text editor because we have
specified attribute names on the predicates in the Visual Editor. This feature
is very useful since we can exploit the Visual Editor for specifying predicate
schemas in an intuitive way and, moreover, we can have an easy way to manage
database tables mapped in predicates (see Chapter 8 for more details). At
this point, if we switch again to the visual mode, schema annotations will be
interpreted and (visual) predicates will be filled with the attributes specified
in the annotations. Note that also the constraint name OneOngoingEdge of
:− node(X1), reached(X1). was added as annotation.

5.2.6 Specifying DLV Directives and comments

DLV offers the possibility of exploiting directives for different purposes like
setting the maxint value or mapping tables of external database. Suppose that
now, in our example, instead of using facts for the predicate edge we want to
import values contained in some external database table named edge, we do a
right-click on the Outline panel and select Import from the menu New Directive.
A new Import directive will be shown in the Outline (fig. 5.20a). By clicking on
the tab Directives placed near the tab Body Graph, a panel is proposed where
we can specify our directive (fig. 5.20b).

5.2. THE VISUAL EDITOR BY A USE CASE EXAMPLE 89

Figure 5.20: Specifying an Import Directive.

Chapter 4 describes the possibility of adding comments to programs by ex-
ploiting annotations. In particular, two annotations allow one to specify com-
ments to the program and comments to some rules; the annotations are used by
the Visual Editor to show graphically which are the comments of the program
and which are comments of single rules. By clicking on the tab Comments placed
near the tab Entity Details, program comments can be written (fig. 5.21a).

Figure 5.21: Specifying a comment to the Visual Editor.

Moreover, to add a comment to a rule, the same panel can be exploited; we
select the constraint that we have named OneOutgoingEdge, and we write the
comment in the opened panel that refers to the constraint (fig. 5.21b). If we
switch to the text editor, annotations will be inserted containing the comments
(fig. 5.21c).

90 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

5.2.7 Other features of the Visual Editor

The Visual Editor allows also to specify built-in predicates. For example the
rule

a(X) :− X = Y, Y = Z + 3, b(Z).

is represented in the Visual Editor by using special entities. In particular, X
= Y is an entity and Y = Z + 3 is an other entity; the two entities share the
variable Y so a join between the entities in defined as we have previous seen.
Figure 5.22 shows the graphical representation of the rule.

Figure 5.22: A rule with built-in literals.

Another feature consists in the possibility of “collapsing” two or more entities
by creating a new sub-rule. For example, given the rule

:− node(X1), not start(X1), not reached(X1).

we can compact the body of the rule by collapsing, for example, the literals
node(X1) and not start(X1), so that we can see more emphasis on the reach-
ability of nodes that are not the start node of the graph. In particular the rule
is transformed to:

:− nodeNotStart(X1), not reached(X1).

nodeNotStart(X1) :− node(X1), not start(X1).

To collapse the two literals we select them in the Body Graph and click on
the Collapse icon appearing as popup (fig. 5.23a). The result is depicted in
figure 5.23b showing the collapsed entity as a sub-rule (see the Outline).

5.2. THE VISUAL EDITOR BY A USE CASE EXAMPLE 91

Figure 5.23: Collapsing two body literals.

The last feature is the Weak Constraint definition. A Weak Constraint is
specified in the same way as a constraint and, moreover, cost and level values
can be specified using the Entity Details panel.

92 CHAPTER 5. VISUAL EDITOR FOR DRAWING LOGIC PROGRAMS

Chapter 6

Unit Testing in ASPIDE

6.1 Context and Motivation

In software engineering the task of testing and validating programs is a crucial
part of the life cycle of the software development process. Software testing [84] is
an activity aimed at evaluating the behavior of a program by verifying whether
it produces the required output for a particular input. The goal of testing is
not to provide a means for establishing whether the program is totally correct.
Conversely testing is a pragmatic and cheap way of finding errors. There are
two kinds of testing methods:

• black-box testing, conceived for verifying some functionalities of an ap-
plication without knowing the code internals. The programmer, in fact,
is only interested in verifying whether a software functionality works cor-
rectly by considering input and output data only, without worrying about
the behaviour of the internal code. For exploiting this method, a good
choice of input data (possibly extreme and critical) is important. For
black-box testing, the concept of test coverage for input data is defined,
indicating possible ranges of input data to be considered. A set of tests
are considered good if they can, together, cover large input data ranges.

• white-box testing, conceived for verifying the behavior of a specific part
of a program. White box testing is an activity usually carried out by de-
velopers and it is a key component of agile software development [84]. The
programmer is interested, in particular, in the behaviour of the internal
code (eg. testing whether a function works correctly, whether a while cycle
never loops and so on). For white-box testing, the concept of test coverage
for code is introduced; the goal is to cover a large part of the lines of the
code, and the tester tries to force the execution of specific parts of the code
(if blocks, function calls, ...) to verify that single parts work correctly.

One of the most diffused white-box testing techniques is unit testing. The
idea of unit testing is to assess an entire software by testing its subparts called
units, which correspond to small testable parts of a program; in imperative
object-oriented languages, unit testing corresponds to assessing separately por-
tions of the code like class methods. Unit testing methodology is demonstrated
to be valid in practice in programming languages (where unit testing has been

93

94 CHAPTER 6. UNIT TESTING IN ASPIDE

introduced), especially when development is driven by testing. Indeed, if some
class is modified/removed then unit tests have to be rewritten. Unit tests may
help the programmer to fix bugs and implement regression testing, but also:

• they help to understand/correct requirements, and

• they help to detect designs mistakes (e.g., the impossibility of fulfill-
ing a condition may lead to changing the current implementation of a
class/library interface).

In these cases (requirement understanding/refactoring) both test cases and pro-
gram may change.

The crucial task of testing ASP programs received less attention [56, 57,
72, 90], and it is an Achilles’s heel of the available programming environments.
Indeed, the majority of available graphic programming environments for ASP
does not provide the user with a testing tool (see Chapter 9). Testing ASP
programs was approached for the first time in [56, 57] where the notion of
structural testing for ground normal ASP programs is defined and methods for
automatically generating tests is introduced. The paper [90] describes the tool
supporting the language Lana that allows one to define and execute test cases in
ASP by exploiting annotations. Regarding imperative programming languages,
a high proportion of errors can be found by testing a program for all test inputs
within some small scope (Small-Scope Hypothesis); the paper [72] presents some
experiments proving that the Small-Scope Hypothesis is valid also for testing
ASP programs by using small instances as test input.

Moreover, it is worth noting that testing approaches developed for other
logic languages, like PROLOG [55, 91, 21], cannot be straightforwardly ported
to ASP because of the differences between the languages1.

6.2 Contribution

In ASPIDE, a pragmatic solution for testing ASP programs was introduced
through the implementation of a framework for Unit Testing. In particular,
the framework exploits the notion of unit test for an ASP program and a new
language inspired by the JUnit [60] framework for specifying and running unit
tests on ASP programs. The testing language allows the developer to specify
the rules composing one or several units, specify one or more inputs and assert
a number of conditions on both expected outputs and the expected behavior of
sub-programs. The obtained test case specification can be run by exploiting an
ASP solver, and the assertions are automatically verified by analyzing the output
of the execution. Notably, the test case specification language herein presented
is general and applicable to any variant/dialect of ASP. The framework also
provides the user with some graphic tools that make the development of test
cases simpler.

Concerning the papers [56, 57, 90], the presented results are, somehow, or-
thogonal to the ASPIDE contribution. Only paper [90] proposes a language/

1As an example, note that the semantics of a Prolog program changes if we modify the
rule order in the program, but this is not true in ASP where rule order is immaterial. Thus,
meaningful unit tests in ASP can be obtained by collecting rules without taking care of their
“position” in the program, the same does not hold for Prolog.

6.3. UNIT TESTING IN ASP 95

implementation for specifying/running the produced test cases, while there is
no implementation for test case generation. However, the language presented
for ASPIDE can be used for encoding the output of a test case generator based
on the methods proposed in [56].

6.3 Unit Testing in ASP

The methodology of the testing framework of ASPIDE is inspired by the JU-
nit [60] framework; given an ASP program the developer can select the program
unit, specify one or more inputs, and assert a number of conditions on the
expected output. The obtained test case specification can be run, and the as-
sertions are automatically verified by calling an ASP solver and checking its
output. An introduction of the notion of a unit test for a given ASP program
is given, and a new language for specifying and running unit tests is presented.

Definition 6.3.1. (Unit Test). Given a program P, a unit test T for P is a
triple T = 〈U , I,A〉 where U ⊆ P is the program unit to be tested, I the input
program, and A is a set of assertions modeling properties that have to be verified
by ANS(U ∪ I). A test case T passes if all the assertions in A are satisfied,
and fails otherwise.2 A test suite for a program P is a set of test cases.

Basically, a unit test T focuses on a portion of the ASP program to be tested
denoted by U and called program unit. The inputs for U are specified by an
additional program I, which, in the simplest scenario, can be made of input
facts. Since I can be specified by means of an ASP program, ASP itself can
be exploited for modeling different inputs in the same unit test. In order to
specify a significant test case both U and I have to be specified with care. In
particular, the program unit to be tested should “act as a module” so that its
behavior can be effectively tested outside the original program. Moreover, I
should only be exploited for specifying the test inputs for U , and should not
interfere with the usual “behavior” of U . To this end, the framework provides
a way for exploiting the notion of splitting set [67] both for specifying the unit
program and checking that I only provides an input for U and not “interfering”
with its execution. In addition, the framework also gives the possibility to the
programmer of enforcing checking whether a test case satisfies the more fine
grained notion of DLP-function [59], so that a more precise modularity of units
can be exploited if needed3.

For example, the testing language of ASPIDE that is described in the fol-
lowing allows one to specify the program unit as the bottom program [67] of a
given splitting set.

The output of the test case are the answer sets of U ∪I, and A contains the
specification of a number of properties that have to be satisfied to pass the test.
For example, one might require that a given ground atom a is contained in all
answer sets U ∪I, or that the unit program is expected to have a given number
of answer sets.

2Note that this definition of test case is more general than the one of [56]. Indeed, all test
cases in [56] are such that: U = P, I is the set of ground inputs, and A contains the assertions
stating that the set of expected outputs is in ANS(U ∪ I).

3Note that the notion of DLP-function does not allow the program to be split in a unique
deterministic way, thus we decided pragmatically to support this notion only for checking
units.

96 CHAPTER 6. UNIT TESTING IN ASPIDE

6.3.1 Testing Language

Test cases are specified in the framework by means of text files. A test file can
be written according to the following grammar:4

1 : invocation("invocationName" [,"solverPath", "options"]?);

2 : [[input("program");] | [inputFile("file");]]*

3 : [

4 : testCaseName([SELECTED RULES | SPLIT PROGRAM | PROGRAM])

6 : {
7 : [newOptions("options");]?

8 : [[input("program");] | [inputFile("file");]]*

9 : [[excludeInput("program");]

10 : | [excludeInputFile("file");]]*

11 : [

12 : [filter | pfilter | nfilter]

13 : [[(predicateName [,predicateName]*)]

14 : | [SELECTED RULES]] ;

15 :]?

16 : [checkModularity([SPLITTING SET | DLP FUNCTION] [,"atoms"]?);]*

17 : [[selectRule("ruleName");]

18 : | [selectRulesWithPredicateInHead("predicateName");]

19 : | [selectRulesWithPredicateInBody("predicateName");]

20 : | [selectRulesWithPredicateInPositiveBody("predicateName");]

21 : | [selectRulesWithPredicateInNegativeBody("predicateName");]

22 : | [selectRulesWithPredicateInAggregates("predicateName");]

23 :]*

24 : [[assertName([intnumber,]? [["atoms"] | ["constraint"]]?);]

25 : | [assertBestModelCost(intcost [, intlevel]?);]]*

26 : }
27 :]*

28 : [[assertName([intnumber,]? [["atoms"] | ["constraint"]]?);]

29 : | [assertBestModelCost(intcost [, intlevel]?);]]*

A test file might contain a single test or a test suite (a set of tests) including
several test cases for the same program to be tested. Each test case includes
one or more assertions on the results.

The invocation statement (line 1) sets the global invocation settings, which
apply to all tests specified in the same file (name, solver, and execution options).
The invocation name might correspond to an ASPIDE run configuration (see
Chapter 4). In this latter case, both the solver path and invocation options are
automatically imported from the corresponding run configuration.

The user can specify the program to be tested by writing one or more input
and inputFile statements (line 2). The first kind of statement allows one to write
the program to be tested; the second statement indicates a file that contains an
input program in ASP format.

A unit test declaration (line 4 and 5) is composed of a name and an optional
parameter that allows one to choose whether the unit program corresponds to
the entire program (option PROGRAM), or is made of exactly the selected
rules (option SELECTED RULES), or whether the unit program to consider
corresponds to the splitting set containing the atoms occurring on the selected
rules (option SPLIT PROGRAM). In the latter case, the “interface” between
two splitting sets can be tested (e.g., one can assert some expected properties
on the candidates produced by the guessing part of a program by excluding
the effect of some constraints in the checking part). Note that, this feature of
the language allows specification in a declarative way where parts of the tested
program have to be considered in a unit test.

4Non-terminals are in bold face, token specifications are omitted for simplicity.

6.3. UNIT TESTING IN ASP 97

The user can specify particular solver options (line 7), as well as certain
inputs (line 8) which are valid in a given unit test. Moreover, global inputs of
the test suite can be excluded by exploiting excludeInput and excludeInputFile
statements (lines 9 and 10). The optional statements filter, pfilter and nfilter
(lines 12, 13, and 14) are used to filter out output predicates from the test
results (i.e., specified predicate names are filtered out from the results when the
assertion is executed)5.

The statement checkModularity (line 16) can be added to a unit test to
require verification that the selected rules compose either a correct DLP-function
[59] or correspond to a splitting set for the tested program. The list of atoms,
which can be specified by the user, represents either the input signature if the
rules define a DLP-function (which can be joined with the remaining part of
the program for a given choice of input/output) or the splitting set if the rules
define a split of the program6.

The statement selectRule (line 17) allows one to select rules among the ones
composing the tested program. A rule r to be selected must be identified by
a name, which is expected to be specified in the input program in a comment
appearing in the row immediately preceding r. Actually, in the implementation
rule names are added automatically as comments. The selection of the rules
can be made also by using predicate names; in particular the statements (lines
18/22) allow one to select rules where a given predicate appears in the head,
in the body, in the positive body, in the negative body and in an aggregate
atom. Note that, this feature is very useful for selecting the rules composing
the definition of a predicate in an easy way.

The expected output of a test case is expressed in terms of assertion state-
ments (lines 24/29). The assertions supported by the language are:

• assertTrue(”atomList”)/assertCautiouslyTrue(”atomList”): asserts that
all atoms of the atom list must be true in any answer sets;

• assertBravelyTrue(”atomList”): asserts that all atoms of the atom list
must be true in at least one answer set;

• assertTrueIn(number, ”atomList”): asserts that all atoms of the atom list
must be true in exactly number answer sets;

• assertTrueInAtLeast(number, ”atomList”): asserts that all atoms of the
atom list must be true in at least number answer sets;

• assertTrueInAtMost(number, ”atomList”): asserts that all atoms of the
atom list must be true in at most number answer sets;

• assertConstraint(”:-constraint.”): asserts that all answer sets must satisfy
the specified constraint;

• assertConstraintIn(number, ”:-constraint.”): asserts that exactly number
answer sets must satisfy the specified constraint;

• assertConstraintInAtLeast(number, ”:-constraint.”): asserts that at least
number answer sets must satisfy the specified constraint;

5pfilter excludes the strongly negated ones, while nfilter has opposite behavior.
6DLP-Functions offer a fine way of decomposing a program in modules that can be joined

together to construct P. The interested reader is referred to [59] for a formal definition.

98 CHAPTER 6. UNIT TESTING IN ASPIDE

Figure 6.1: Input graphs of the Maximal Clique program.

• assertConstraintInAtMost(number, ”:-constraint.”): asserts that at most
number answer sets must satisfy the specified constraint;

• assertBestModelCost(intcost) and assertBestModelCost(intcost, intlevel):
in case of execution of programs with weak constraints, they assert that
the cost of the best model with level intlevel must be intcost ;

• assertAnswerSetsNumber(number): asserts that the tested program is ex-
pected to generate exactly number answer sets.

• assertNoAnswerSet: asserts that the tests is expected to have no answer
set.

together with the corresponding negative assertions: assertFalse, assertCau-
tiouslyFalse, assertBravelyFalse, assertFalseIn, assertFalseInAtLeast, assertFal-
seInAtMost. The atomList specifies a list of atoms that can be ground or non-
ground; in the case of non-ground atoms the assertion is true if some ground
instance matches in some/all answer sets. Assertions can be global (line 20-21)
or local to a single test (line 16-17). Note that, the set of supported assertions
is redundant; actually, this is on purpose, indeed, having different possibilities
to assert the same property eases the task of test case specification for the
programmer, who can specify its requirements in the way he prefers.

In the following we report a test case example.

6.3.2 Test case example

We consider, as example, the Maximal Clique program introduced in Chapter 3
by considering that graph G is specified by using facts over predicates node

(unary) and edge (binary). Suppose that the encoding is stored in a file named
clique.dl and suppose also that the graph instance, composed of facts :

node(1).node(2).node(3).node(4).node(5).node(6).node(7).

edge(1, 2).edge(2, 3).edge(2, 4).edge(1, 4).edge(1, 5).edge(4, 5).

edge(2, 5).edge(4, 6).edge(5, 7).edge(3, 7).

is stored in the file named graphInstance.dl (the corresponding graph is depicted
in Figure 6.1a).

The following is a simple test suite specification for the above-reported ASP
program:

6.3. UNIT TESTING IN ASP 99

invocation("MaximalClique", "/usr/bin/dlv", "");

inputFile("clique.dl");

inputFile("graphInstance.dl");

maximalClique() {

assertBestModelCost(3);

}

constraintsOnCliques() {

excludeInput(":~ outClique(X2).");

assertConstraintInAtLeast(1,":- inClique(1),

inClique(4).");

assertConstraintIn(5,":- #count{ X1: inClique(X1) } < 3.");

}

checkNodeOrdering(SELECTED RULES) {

inputFile("graphInstance.dl");

selectRule("r2");

selectRule("r3");

assertTrue("uedge(1,2).");

assertFalse("uedge(2,1).");

}

guessClique(SPLIT PROGRAM) {

selectRule("r1");

assertFalseInAtMost(1,"inClique(X).");

assertBravelyTrue("inClique(X).");

}

Here, we first set the invocation parameters by indicating DLV as solver, then
we specify the file to be tested clique.dl and the input file graphInstance.dl, by
exploiting a global input statement. Then, we add the test case maximalClique,
in which we assert that the best model is expected to have a cost (i.e., the
number of weak constraint violations corresponding to the vertices out of the
clique) of 3 (assertBestModelCost(3)).

In the second test case, named constraintsOnCliques, we require that (i)
vertices 1 and 4 do not belong to at least one clique, and (ii) for exactly five
answer sets the size of the corresponding clique is greater than 2. (The weak
constraint is removed to ensure the computation of all cliques by DLV).

In the third test case, named checkNodeOrdering, we select rules r2 and
r3, and we require to test selected rules in isolation, discarding all the other
statements of the input. We are still interested in considering ground facts that
are included locally (i.e., we include the file graphInstance.dl). In this case we
assert that uedge(1,2) is true and that uedge(2,1) is false, since edges should be
ordered by rules r2 and r3.

Test case guessClique is run in SPLIT PROGRAM modality, which requires
to test the sub-program containing all the rules belonging to the splitting set
corresponding to the selection (i.e., {inClique, outClique, node}). In this test
case the sub-program that we are testing is composed of the disjunctive rule
and by the facts of predicate node only. Here we require that there is at most
one answer set modeling the empty clique, and there is at least one answer set
modeling a non-empty clique.

100 CHAPTER 6. UNIT TESTING IN ASPIDE

6.3.3 Modularity aspects

The notion of DLP-function allows one to decompose ASP programs in mod-
ules only in case the program is ground. DLP FUNCTION differs from SPLIT-
TING SET mainly because the first one would not allow to unambiguously select
rules for test cases; whereas it is unambiguous how to collect rules belonging to
the same “splitting set”, the same does not hold in the case of DLP-functions.
For this reason, in the specification language, SPLITTING SET can be used
for both selecting automatically rules (by setting the SPLITTING SET option)
and checking (via checkModularity option) whether the selected rules satisfy the
condition.

To see why both features cannot be used in the same way for DLP FUNCTION,
consider the following example:

a v c :− not b.

b :− not e, a.

d :− not a.

Suppose we select the disjunctive rule, in the case of the splitting set, the
program can be split into:

%Module 1

a v c :− not b.

b :− not e, a.

%Module 2

d :− not a.

By the definition of splitting set, one has “two” splits (upper and lower
component), thus given a set of rules there is an “intuitive” way to complete
the test case by adding rules until we split the program in two parts (that can
be tested in isolation) in the spirit of the definition.

Now we try to do the same thing with DLP FUNCTION. The first obstacle
arises through input/output/hidden set atoms, which can be arranged in several
different ways. This obstacle makes it already not possible in general to generate
automatically (in a deterministic way) a test case corresponding to a DLP-
function that can be composed with the remaining rules.

Now, we go further. Even if we could define a default way of selecting inputs
and outputs, automatic DLP-function generation would still not be unique.
Suppose we select the disjunctive rule in our example, and suppose that our
“choice” of input/output is Input={b}, Output={a}, we still have at least two
valid options for splitting the program:

6.3. UNIT TESTING IN ASP 101

Option 1 Option 2

%Module 1 %Module 1

a v c :− not b. a v c :− not b.

%Module 2 d :− not a.

b :− not e, a. %Module 2

d :− not a. b :− not e, a.

it is, thus, impossible to determine/define which module is the “intended one”
in a straight way simply because there are too many degrees of freedom.

Since there is no unique way of exploiting the composition of DLP-functions
ASPIDE supports this notion of modularity only in checking modality (check-
Modularity option). In this case, we check whether the selected set of rules M

(selected by the programmer) can be combined with the remaining part R of
the program if we can find an input/output setting where the DLP-functions
corresponding to R and M can be joined according to the original definition.

6.3.4 Testing methodology

In an expressive and concise language like ASP also testing small modules (and
even one single rule) in isolation may help the programmer to detect bugs. Unit
test cases may help the programmer to fix bugs as well as to understand/correct
requirements. It might happen that both test cases and programs change if the
requirements (i.e., the problem specification) are not well understood, but, in
most cases, buggy rules (referenced by name) can be updated without the need
to update the corresponding unit tests.

As an example, suppose that the first time we wrote the ASP program of
our example we introduced a bug, and in particular a typo on the guessing rule:

%@name = r1

inClique(X1) v outClique(X1) :− nod(X1).

Note that rule r1 has a bug since, in the body, node is written without the
final e. When the test case guessClique is run it fails since the extension of nod
(without e) is empty.

After fixing the rule r1 the test case can be now re-run and will pass. In
the above example, selecting one rule and testing it in isolation helped to fix
the program without the need to update the test case. Note that the possibility
of testing parts (i.e., units) of the original program (up to one single rule at
time) helps detection by exploiting simple tests to find which specific part of
the program does not behave as expected.

The test file described in this Section can be created and executed in ASPIDE
as described in the next Section. The results can be inspected using the results
window that marks the atoms that have participated in the passing/failure of
test cases. Actually, in the IDE, test cases can be also created graphically,
i.e., without the need to write (textual) test case specifications by hand. This

102 CHAPTER 6. UNIT TESTING IN ASPIDE

can be done, starting from the results of an execution, by selecting and marking
wanted and unwanted results in an intuitive and “by example” test case creation
interface. This is another distinguishing feature of the approach of ASPIDE to
unit testing, which is described in the following.

6.4 Implementation in ASPIDE

In this Section, after overviewing the ASPIDE [41] development environment,
the graphic tools conceived for developing and running test cases are described.

6.4.1 Unit testing in ASPIDE

ASPIDE allows the user to create and execute test suites specified in the lan-
guage presented in Section 6.3. The user can both manually edit test case files,
and he can create test cases by exploiting a number of visual tools. In order to
provide a description that immediately gives an idea about the capabilities of
the visual testing interface of ASPIDE, a step by step guide on how to imple-
ment the example illustrated in the previous Section is described. Suppose that
we have created a project named MaxClique in ASPIDE, which contains the
files clique.dl and graphInstance.dl storing the encoding of the maximal clique
problem and a graph instance, respectively. Moreover we assume that both
input files are included in a run configuration named MaximalClique, and we
assume that the DLV system is the solver of choice in this run configuration.

Since the file that we want to test in our example is clique.dl, we select it in
the Workspace Explorer, then we click the right button of the mouse and select
New Test from the popup menu (fig. 6.2a). The system shows the test creation
dialog (fig. 6.2b), which allows both the setting of the name of the test file and
the selection of a previously-defined run configuration (storing execution options
and input files). By clicking on the Finish button, the new test file is created (see
fig. 6.2c) where a statement regarding the selected run configuration is added
automatically. We add the first unit test (called maximalClique) by exploiting
the text editor (fig. 6.2d), whereas we build the remaining ones (working on
some selected rules) by exploiting the logic program editor. After opening the
clique.dl file, we select rules r2 and r3 inside the text editor, we right-click on
them and we select Add selected rules in test case from the menu item Test
of the popup menu (fig. 6.2e). The system opens a dialog window where we
indicate the test file in which we want to add the new test case (fig. 6.2f). We
click on the Create test case button. The system will ask for the name of the
new test case and we write guessClique. After that, in the window, we select the
option execute selected rules and click on the Finish button. The system will
add the test case guessClique filled with the selectRule statements indicating
the selected rules. To add project files as input of the test case, we select them
from the Workspace Explorer and click on Use file as input in the menu item
Test (fig. 6.2g). We complete the test case specification by adding the assertion,
thus the test created up to now is shown in Figure 6.2h.

Following an analogous procedure we create the remaining test cases (fig. 6.3a).
To execute our tests, we right-click on the test file and select Execute Test. The
Test Execution Dialog appears and the results are shown to the programmer
(fig. 6.3b). Failing tests are indicated by a red icon, while green icons indicate

6.4. IMPLEMENTATION IN ASPIDE 103

Figure 6.2: Test case creation.

104 CHAPTER 6. UNIT TESTING IN ASPIDE

Figure 6.3: Test case execution and assertion management.

6.4. IMPLEMENTATION IN ASPIDE 105

passing tests. At this point we add the following additional test:

checkNodeOutClique() {
excludeInput("edge(2,4).edge(2,5).");

assertFalse("inClique(2). inClique(5).");

}
This additional test (purposely) fails, this can be easily seen by looking

at Figure 6.1b. The reason for this failure is indicated (fig. 6.3b) in the test
execution dialog. In order to know which literals of the solution do not satisfy
the assertion, we right-click on the failed test and select Manage Asserts from
the menu. A dialog showing the outputs of the test appears where, in particular,
predicates and literals correctly matching the assertions are marked in green,
whereas the ones violating the assertion are marked in red (gray icons may
appear to indicate missing literals which are expected to be in the solution). In
our example, the assertion is assertFalse(”inClique(2). inClique(5).”); however,
in our instance, node 5 is contained in the maximal clique composed of nodes
1, 4, 5 ; this is the reason for the failing test. Assertions can be modified
graphically, and, in this case, we act directly on the result window (Fig. 6.3c).
We remove node 5 from the assertion by selecting it. Moreover, we right-click on
the instance of inClique that specifies node 5 and we select Remove from Assert.
The atom node(5) will be removed from the assertion and the window will be
refreshed marking the test case as passed (fig. 6.3e). The same window can
be used to manage constraint assertions. In particular, by clicking on Manage
Constraint Assert of the popup menu, a window appears that allows the user
to set/edit constraints (fig. 6.3d).

6.4.2 Visual Editor for building Test Suites

A TEST file can be created also by exploiting the Visual Editor for Test Suite
composition (fig. 6.4). The Visual Editor offers a set of buttons and graphical
tools for creating and editing single Test Cases by introducing input files, easy
selecting of rules in a program and allowing one to launch the execution for
creating/managing assert conditions by exploiting the results.
At the top of the Visual Editor (fig. 6.4) a user can set invocation options
by either selecting one available Run Configuration or defining directly solver
and execution options. The Visual Editor also offers tools for specifying global
inputs, for creating test cases in which the user can set all the components on
which a test case can be composed, and for specifying global assert conditions.

Suppose we want to create, by exploiting the Visual Editor, the test case
checkNodeOrdering shown on the previous Subsection. We open the Visual Edi-
tor and we click on the button New test Case (fig. 6.5a). A popup window is open
where we set the name of the test case and select the option SELECTED RULES
(fig. 6.5b); the new test case is created (fig. 6.5c). Now we click on the button
Input file and select graphInstance.dl as input file (fig. 6.5d). For selecting the
rules, we click on the button Select rule (fig. 6.5e) and set the rules r2 and r3
(fig. 6.5f). For inserting the assertion assertTrue("uedge(1,2)."); we click
on the button Manage asserts; ASPIDE starts the execution, gets the results
in accordance with the test case specification and shows the results window
in testing modality (fig. 6.5g). We select the predicate edge from the results
window and, by right-click on the tuple representing edge(1,2), we select New

106 CHAPTER 6. UNIT TESTING IN ASPIDE

Assert, Assert True on the popup window (fig. 6.5g) and the assertion will be
inserted to the test case.

Figure 6.4: Visual Editor for TEST File definition.

6.4. IMPLEMENTATION IN ASPIDE 107

Figure 6.5: Creating a test case by exploiting the Visual Editor.

108 CHAPTER 6. UNIT TESTING IN ASPIDE

Chapter 7

Extending ASPIDE with
user-defined Plugins

7.1 Motivation and Contribution

In real-world applications input data is usually not encoded in ASP, and the
results of a reasoning task specified by an ASP program is expected to be saved
in an application-specific format. In addition, during the development of an ASP
program, the developer might need to apply “refactoring”, which often means
“rewriting some rule” (e.g., by applying magic sets, disjunctive rule shifting,
etc.), for optimizing performance, for compliance with solver formats or for
modeling purposes.

An important feature of ASPIDE, devised with the goal of improving the
support to application development, is that it allows one to extend it with user
defined plugins. Developers can create libraries that extend ASPIDE for:

• handling new input formats;

• performing program rewritings;

• customizing the format of solver results.

A rewriting plugin may encode a procedure that can be applied to rules in
the editor (e.g., disjunctive rule shifting can be applied on the fly by selecting
rules in the editor and applying the mentioned rewriting).

Now consider a scenario where: input data is generated from a spreadsheet;
some complex reasoning task has to be performed on it, and the output has
to be loaded back on the spreadsheet for further processing. Thus, data has
to be first transformed in a database of facts by applying a suitable knowledge
representation. One might export data in CSV and apply a transformation
script to obtain this; in turn, the programmer develops an ASP program for
reasoning on the input data; finally, the results printed by an ASP solver might
be converted back in CSV. An input plugin can take care of the CSV input files
that appear in ASPIDE as a logic program, and an output plugin can handle
the external conversion of the computed answer sets in CSV.

109

110CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

An entire ASP-based application can, in this way, be developed and tested
in ASPIDE with minimal (or no) need for external conversion tools. To ex-
tend ASPIDE by introducing features for custom program rewritings, new in-
put/output formats and application-specific features, a programmer must ex-
ploit an SDK contained in a JAR library named AspidePluginKit.jar. The SDK
is distributed under the LGPL licence (freely available at the ASPIDE web site
https://www.mat.unical.it/ricca/aspide/) and provides Java classes and
interfaces to be exploited. Everyone can extend ASPIDE with custom features,
since the plugin development kit is publicly available to the community.

This Chapter describes the creation process of three plugins examples for:
(i) handling the ASP RuleML input format, (ii) performing disjunctive pro-
gram shifting, and (iii) generating custom XML output. Afterwards, the com-
plete SDK library for plugins development is described in details and deploy-
ment/installation processes on ASPIDE are shown.

7.2 Input Plugin

The goal of an Input Plugin is to allow ASPIDE to load new kind of files and
to manage them in the environment. Files stored in an ASPIDE workspace can
be bound with an Input Plugin so that, new editors can be opened, new input
formats can be managed and new commands on those files can be introduced.

The class diagram of Figure 7.1 summarizes the interfaces, contained in the
SDK, which must be used to create a new Input Plugin. In the next Subsec-
tion the Input Plugin creation process will be illustrated by exploiting a usage
example, showing a possible way to use the classes of the SDK for creating an
Input Plugin.

7.2.1 An Input Plugin for ASP RuleML

We design a new Input Plugin for handling and loading files containing program
written in the ASP RuleML syntax [32]. The goal of the plugin is to enrich
ASPIDE with tools to open and edit ASP RuleML programs in two modalities:
(i) in the original format, so that an editor, working as XML editor, shows
the content of the file; (ii) in its ASP version, so that an editor, working as
ASP editor, shows the program using the usual ASP syntax. When this plugin
is installed in ASPIDE, a user can identify easily, in the Workspace Explorer
panel, ASP RuleML files by the corresponding icon specified in the plugin.

Typical Input-plugin usage scenario

The user opens one of the available ASP RuleML files with the default editor
of the plugin and ASPIDE shows the pure content of the file. When the user
switches to the ASP editor of the plugin, the current program is translated to
the ASP version and shown to the user. In this way the user has the possibility
of editing the program in the DLV syntax editor. Finally, the user saves the
program and, in this case, the ASP version of the program is translated again
to the ASP RuleML syntax and saved in the original format of the source file.

7.2. INPUT PLUGIN 111

Figure 7.1: Input Plugin interfaces Diagram.

Creating the plugin

To define this plugin we develop a new class RuleMLPlugin (the core of our
plugin) that implements the interface InputPlugin (fig. 7.1). We specify also
a new class RuleMLProgramHandler that implements InputStorageHandler and
represents our ASP RuleML input file (ASPIDE manages instances of Input-
StorageHandler as storage handlers).

On the class RuleMLProgramHandler we implement the function getIcon-
Name() to return the name of the icon that will be associated with the file.
ASPIDE will retrieve the corresponding icon by accessing to the Utils folder
that must be contained in the jar library defining our plugin.

On RuleMLPlugin we implement the function createFileHandler that, given
an object File and an object AspideProject (representing a Project of ASPIDE),
creates a new instance of RuleMLProgramHandler and returns it to the ASPIDE
environment.

112CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

As said before, we need two kinds of editors: a simple XML editor, that
shows an ASP RuleML file, and a simple ASP editor which shows the ASP
syntax version of the file. To design the editors we define two classes named
SimpleEditorXML and SimpleEditorASP that extend DefaultEditorView and
DLVEditorView (both extending the class EditorView) respectively. Both ed-
itors include a reference to the current Input Plugin and to a RuleMLPro-
gramHandler indicating the current storage handler that the editor will load (or
has loaded in the case where the editor is currently shown in ASPIDE). The
two editors are textual editors, so the function getTextComponent() must return
an object of type JTextComponent and the function isTextEditor() must return
true (false in case the editor is a generic JPanel); in this way ASPIDE can get
and show these editors to the GUI. The editors that we have just designed need
to be managed by ASPIDE. To this end we implement, in RuleMLPlugin, the
functions:

• getViews() to return the editor views of the plugin; in this case SimpleEd-
itorXML and SimpleEditorASP;

• nextView(EditorView) to return the EditorView that is the successor of
the past EditorView; this is useful when the user has opened an editor in
ASPIDE and he wants to switch explicitly to another editor of the same
plugin;

• getDefaultView() to return the editor view that we want to consider as
default; in this case we consider SimpleEditorASP as default.

When the content of an editor changes, the editing must be notified to
the ASPIDE environment, so that the GUI can, for example, say to the user
that the file can be saved. To notify editings, we add a caret listener on both
the JEditorPane instances of the editor views, containing a call to the method
notifyModified(EditorView) of the singleton class AspideEnvironment.

The next step of the creation of the ASP RuleML plugin is the saving and
the loading process of an editor view content. When the user opens or saves
the content of an editor view in ASPIDE, the load() and save() methods of
EditorView are called. If the editor view is a SimpleEditorXML, the method
save (load) has to save (load) the pure content of the editor (file), because it is
already on the ASP RuleML format. If the editor view is a SimpleEditorASP,
the load method consists on translating the content of the file in the ASP format
and showing the translated program on the editor. On the other hand, the save
method consists in translating the content of the editor (written in the ASP
syntax) to the ASP RuleML syntax before the writing to the file. As a conse-
quence we need to implement a rewriting procedure that exploits a rewriting
plugin (see next Section for a detailed description of the rewriting plugin cre-
ation). For this purpose we make our class RuleMLPlugin to implement also the
interface RewritingPlugin (fig. 7.3) that contains methods, to be implemented,
supporting the rewriting; we implement those methods to make a rewriting pro-
cedure from ASP RuleML format to ASP format. Finally, we insert, in the class
SimpleEditorASP a reference to this rewriting plugin so that the method load
can (i) read the content of the file, (ii) rewrite the content in the ASP format
using the plugin, (iii) show the rewritten content in the editor. When a Sim-
pleEditorASP, showing the content in the ASP format, is open in ASPIDE, the

7.2. INPUT PLUGIN 113

saving procedure has to rewrite the program in the ASP RuleML format. To do
this we create another class, named ASPToRuleML, which works as rewriting
plugin and translates a program written in ASP to the syntax of ASP RuleML.
We include this new plugin in SimpleEditorASP and enable the method save to
call this new rewriting procedure for getting the ASP RuleML version to store
on the file.

The last step of the ASP RuleML plugin creation process is the managing of
errors. When a user saves a file using the SimpleEditorXML, if the content of
the file contains some syntax errors or wrong tags, an error notification is needed
in ASPIDE. To this end, we implement the function getErrors() on the class
RuleMLProgramHandler to return a list of errors. When an error is detected
in the file, the list of errors is updated; ASPIDE will call getErrors() when it
needs to update the program error panel.

Use in ASPIDE

We now show the use of the ASP RuleML plugin in ASPIDE.

Figure 7.2: ASP RuleML plugin at work.

114CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

After the installation of it, we create a new project that includes an XML
file containing the MaximalClique problem encoding (described in Chapter 3)
in the ASP RuleML format. By a right-click on the file we choose to open it
using the plugin and selecting Simple RuleML Editor (fig. 7.2a). The file that
we are opening is still a simple file; by loading it using an Input Plugin, the
type of the file is changed in a new PLUGIN file related to the ASP RuleML
plugin and, consequently, the icon is updated. ASPIDE shows the editor (see
the SimpleEditorXML class) with the content on the file (fig. 7.2b). To switch
to the ASP editor to show the program in the DLV format we click on the switch
button; ASPIDE opens the editor (see the SimpleEditorASP class) showing the
translated version of the program (fig. 7.2c). We now modify the program by
adding facts in the Simple ASP Editor (fig. 7.2d) and we switch again (after
saving) to the ASP RuleML Editor; the editor will show the modified ASP
RuleML version of the file that also includes the facts we have added (fig. 7.2e).

7.3 Rewriting Plugin

The role of a Rewriting Plugin consists in enriching ASPIDE with new rewriting
procedures. A user can perform rewriting procedures to:

• workspace files, by acting on the Project and Workspace explorer panels;
in this case new files will be created containing the rewritten version of
the selected files;

• portions of text or sub-programs contained in text editors; selected portions
will be substituted with the rewritten version of them;

• files inserted in Run Configurations; files will be rewritten before the ex-
ecution; the rewritten versions will be passed to the executable system;

• queries, before executing a query using the query panel.

The class diagram of figure 7.3 summarizes the interfaces, contained in the
SDK, which must be used to create a new Rewriting Plugin. In this Section
we describe the creation process of a Rewriting Plugin in ASPIDE; as before,
a simple scenario representing a typical use of rewriting plugins is described,
showing a possible way to use the classes of the SDK for creating a Rewriting
Plugin.

7.3.1 A Rewriting Plugin for Shifting ASP Rules

We design a Rewriting Plugin that allows one to rewrite disjunctive rules in
order to obtain a “shifted” version, where disjunction is replaced by cyclic non-
mononic negation (this rewriting produces an equivalent encoding in case of
Head-Cycle Free programs [11]). For example, rule a v b is rewritten in a

:− not b and b :− not a, the intuition here is that “disjunction is shifted
in the body”.

7.3. REWRITING PLUGIN 115

Figure 7.3: Rewriting Plugin interfaces Diagram.

Typical rewriting plugin usage scenario

The user can apply a rewriting procedure to ASP files or to a part of them by
selecting a DLV file on the Workspace Explorer panel, and using the shifting
function of the Rewriting Plugin. In this case, the whole file is analyzed and
rewritten to the shifted version. This operation can also be directly performed
on a part of the program by selecting rules involved in the DLV editor; in this
way only the selected rules are translated into the shifted version.

The user can also find that a solver does not support the disjunction while
the files contain disjunctions. In the case that the user does not want to edit the
files, the execution can be configured to ask for applying the shifting procedure
internally before executing.

Creating the plugin

We specify a new class ShifterPlugin that implements the interface Rewriting-
Plugin (fig. 7.3). The programmer must override three methods used for dealing
with an entire file, with multiple files and with ASP code usually corresponding
to some rules selected in the editor. The results of the rewriting procedure will
be stored to a file or written to the OutputStream parameter.

Use in ASPIDE

We now show the use of the ASP Shifter plugin in ASPIDE.

116CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

Figure 7.4: Shifter Plugin at work.

After the installation, new menu items are introduced in ASPIDE, allow-
ing one to use rewriting procedures. A first way of using the ASP Shifter
plugin consists in exploiting the popup menu on a DLV file (in this example
MaximalClique.dl); the user selects the menu item Rewrite As, ASP shifter
(fig. 7.4a). The result of this action is an automatic creation of a new rewritten
file (fig. 7.4b). The ASP Shifter plugin can be directly used on a DLV edi-
tor, in this case selecting a set of rules and using the command Rewrite, ASP
Shifter (fig. 7.4c); selected code is rewritten and replaced with the corresponding
shifted code (fig. 7.4d). The shifting rewriter can be applied also to files before
execution; by opening the Run Configuration dialog, the user sets, on the file
MaximalClique and by using a popup menu, the ASP Shifter as rewriter to be
applied before execution (fig. 7.4e/f).

7.4 Output Plugin

The goal of an Output Plugin is to handle the solver output, generated on the
execution process, and to write it in a new format. The generated output can

7.4. OUTPUT PLUGIN 117

Figure 7.5: Output Plugin interfaces Diagram.

be:

• piped to some other solver as input;

• translated into some other format;

• shown in the Output Console of ASPIDE (also after a translating process);

• shown in a new user-defined window created by the plugin developer;

• handled by the DLVWrapper for some easy results management;

The class diagram of the figure 7.5 summarize the interfaces, contained in
the SDK, which must be used to create a new Output Plugin. In this Section
we exploit an example for creating an Output Plugin giving a step-by-step
description of the creation process. A simple scenario representing a typical use
of output plugins is described, showing also a possible way to exploit the classes
of the SDK for creating an Output Plugin.

7.4.1 An Output Plugin for a Custom XML Output

We design an Output Plugin that captures the answer sets generated by DLV
and rewrites them in a custom XML format to be shown in the Console Window
of ASPIDE.

Typical output-plugin usage scenario

The user opens the Run Configuration dialog by adding program files that
resolve the Maximal Clique problem. Exploiting the window, the user chooses
to visualize the results using the plugin, so that, after the execution, the Console
Window is open with answer sets formatted to the custom XML format.

118CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

Creating the plugin

We start by designing the class CustomXMLOutput that implements the inter-
face OutputPlugin (fig. 7.5). This class allows one to:

• capture the answer sets of the DLV solver;

• rewrite the answer sets in the XML format;

• print the result to the Console Window;

• notify the plugin that the execution is finished.

To capture the answer sets of the solver for applying, if needed, a rewrit-
ing procedure, we can exploit the DLVWrapper by creating the class Wrapper-
Console that implements DLVOutput (fig. 7.5). In the class we implement the
function getHandlers() for making it to return a list containing a DLVInvoca-
tionHandler (belonging to the DLVWrapper). The DLVInvocationHandler han-
dles the answer sets of the solver as Java objects, so that a rewriting procedure
can be easily applied (by working directly with data structures) and the results
stored to an XML object. The function getHandlers() can be implemented in
this way:

public List<DLVInvocationHandler> getHandlers(){
List<DLVInvocationHandler> handlers

= new LinkedList<DLVInvocationHandler>();

handlers.add(new ModelHandler() {
public void handleResult(... , ModelResult model) {
...REWRITING CODE FOR THE MODEL...

}
});
return handlers;

}

For showing the rewritten results to the console we make the same class
WrapperConsole also implement ConsoleView (fig. 7.5) and we override the
method process(OutputStream) allowing it to write the custom XML output re-
sults to the OutputStream; ASPIDE redirects the OutputStream to the Console
Window on the execution phase. When the execution of the solver and the
rewriting procedure are finished, the method notifyExecutionFinished to the
singleton class AspideEnvironment must be called so that ASPIDE can show
the result window. To complete the procedure, in the class CustomXMLOut-
put we make the functions getDLVOutput (which returns a DLVOutput object)
and getConsoleOutput (which returns a ConsoleOutput object) to both return
WrapperConsole so that ASPIDE can correctly manages all the implemented
procedures of the plugin.

Use in ASPIDE

In ASPIDE we open the Run Configuration window by the menu Execute.

7.5. THE SDK LIBRARY FOR PLUGINS DEVELOPMENT 119

Figure 7.6: Custom XML plugin at work.

After the setting of the solver and the specification of the Maximal Clique
encoding, we choose to show the results in the Custom XML Output format.
We select the plugin (fig. 7.6a) and click on the Run button. The solver is exe-
cuted, the output of the solver is passed to the plugin (activating the rewriting
procedure) and the result is shown in the console (fig. 7.6b).

7.5 The SDK Library for Plugins Development

The ASPIDE plugins creation process consists in creating a library contain-
ing classes and interfaces that extend and implement the ones defined in the
SDK. To install a plugin, ASPIDE reads a special folder containing JAR files
representing plugin packages; internally ASPIDE instantiates the classes of the
plugin libraries and calls methods contained in the plugins. On the other hand,
installed plugins need also to notify some event or use explicitly some function-
alities of ASPIDE; to this end, a special interface, named AspideEnvironment
(fig. 7.9) and provided by the SDK, can be used by plugins to make an explicit
notification or request to the ASPIDE environment (the AspideEnvironment
interface will be later described in details).

In this Section, all classes/interfaces of the SDK, involved in new input/
rewriting/output plugins definition, are presented and described including a
detailed description of relevant functions/methods1. Afterwards, procedures for
deploying and installing a created plugin in ASPIDE are shown.

7.5.1 Input Plugins classes description

• InputPlugin. The main interface of the Input Plugin management; by
creating a new class that implements this interface, a new Input Plugin is
defined and made available in ASPIDE.

Functions/Methods:
1Functions and methods signatures are written using the UML notation.

120CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

– createFileHandler(File, AspideProject):InputStorageHandler.
Given a File and an AspideProject, creates a new InputStorageHan-
dler, which can be managed by the plugin, and returns it to the
ASPIDE environment.

– getViews():List<EditorView>. Returns the list of the editors de-
fined in the plugin.

– nextView(EditorView):EditorView. Returns the next EditorView
of the one given as parameter.

– getDefaultView():EditorView. Returns the EditorView promoted
as default editor of the plugin.

– getFileMenuItems(InputStorageHandler):List<CustomMenuItem>.
Given an InputStorageHandler file of the plugin, returns a list of Cus-
tomMenuItem objects representing additional actions that the user
can do on the PLUGIN file.

• CustomMenuItem. CustomMenuItem objects represent custom menu
items defined in the plugin. In particular, when the user is doing a right-
click on an InputStorageHandler file of the current plugin, the popup menu
includes also CustomMenuItem objects.

Functions/Methods:

– getLabel():String. Returns a string representing the menu item
name that will be used to identify the action on the popup menu.

– callBack(InputStorageHandler). This method is called when the
user clicks on the menu item in ASPIDE. The method should conse-
quently be implemented properly by considering what action should
happen. The parameter is the PLUGIN file on which the action is
performed.

• InputStorageHandler. Instances of any classes that implement this
interface represent PLUGIN files associated with the Input Plugin that
we are currently creating. Only classes of type InputPlugin must create
InputStorageHandler instances. The interface implements StorageSupport
that represents any files handled in ASPIDE (DLV files, TYP files, ...).

Functions/Methods:

– setView(EditorView). When the open action of the PLUGIN file
is done in ASPIDE, this method is called that sets the current view
in the InputStorageHandler.

– getView():EditorView. Returns the current view used to open the
PLUGIN file.

– getFile():File. Returns the File Java object representing, phisi-
cally, the PLUGIN file.

– getErrors():List<GuiErrorDescriptor>. Returns a list of the er-
rors contained in the PLUGIN file.

– getIconName():String. Returns the name of the icon to be asso-
ciated to the PLUGIN file. The icon must be inserted in the Utils
folder included in the final JAR distribution package of the plugin.

7.5. THE SDK LIBRARY FOR PLUGINS DEVELOPMENT 121

– getErrorIconName():String. Returns the name of the icon to be
associated with the PLUGIN file as icon signaling that there is an
error on the file. The icon must be inserted in the Utils folder included
in the final JAR distribution package of the plugin.

– getWarningIconName():String. Returns the name of the icon with
be associated to the PLUGIN file as icon signaling that there is a
warning on the file. The icon must be inserted in the Utils folder
included in the final JAR distribution package of the plugin.

• InputStorageHandlerWithTree. This interface extends InputStorage-
Handler and provides functions/methods that allows one to define a sub-
tree on the PLUGIN file. The sub-tree must be composed of a list of
MutableTreeNode Java objects; complex sub-trees can be built thanks to
the possibility of inserting other nodes as children of the MutableTreeN-
ode objects. Trees will be visible in the Project Explorer Panel and in the
Workspace Explorer Panel.

Functions/Methods:

– getTreeNodes():List<MutableTreeNode>. Returns a list of Mu-
tableTreeNode objects to be inserted as a sub-tree of the PLUGIN
file.

– getTreeCellRenderer():SubNodeRenderer. Returns a SubNodeRen-
derer object specifying the rendering of the sub-tree nodes.

• SubNodeRenderer. Represents the node renderer of the sub-trees spec-
ified in InputStorageHandlerWithTree objects.

Functions/Methods:

– getText():String. Returns the text label value to be assigned to
the node.

– getFont():Font. Returns the font type to be assigned to the node.

– getIcon():Icon. Returns the icon to be assigned to the node.

• ASPInputStorageHandler. This interface extends InputStorageHan-
dler with ASP specific methods and functions. A PLUGIN file that im-
plements this interface can be seen as a simple ASP file.

Functions/Methods:

– getPredicates():List<ProgramPredicate>. Returns a list of ASP
predicates contained in the PLUGIN file.

• EditorView. Any editors of the plugin can be created by implementing
this interface. The editors are shown in ASPIDE every time the user
chooses to open a PLUGIN file using one of them. The editors can be
configured to show either a text editor or a generic custom panel containing
editing components.

Functions/Methods:

– getEditorName():String. Returns the name of the editor. The
name is used in ASPIDE to allow the user to easily identify the
editor.

122CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

– getTextComponent():JTextComponent. In case the editor works as
text editor, the function must return a JTextComponent object to be
visualized and used in ASPIDE.

– getEditorPanel():JPanel. In case the editor does not work as text
editor, ASPIDE calls this function for getting a custom JPanel object
to be visualized as editor.

– isTextEditor():boolean. The function is used by ASPIDE to de-
terminate which function between getTextComponent() and
getEditorPanel() should be called for getting the editor compo-
nent.

– setInputStorageHandler(InputStorageHandler). Sets the Input-
StorageHandler file to be loaded in the editor.

– getInputStorageHandler():InputStorageHandler. Returns the
InputStorageHandler file that was loaded in the editor.

– load(). The method is called when ASPIDE opens a file with the
editor. Using this method the plugin can decide in which way the
file should be interpreted and visualized in the editor. For example
a rewriting procedure can be performed before the real loading.

– save(). The method is called when the user chooses to save the
content of the editor from the GUI. Using this method the plugin
can decide in which way the editor content should be interpreted
before the physical writing on the file. For example, if the editor is
a JPanel the plugin can perform a building procedure to a language
(eg. XML) and write the result to the file.

– selectError(Error). Highlights the error (syntax or generic error),
in the editor, which is passed as a parameter.

– selectPosition(position:int). Inside the editor, moves the cur-
sor, or sets the focus, to the specified position. The position can be
seen as a line number in the case of text editors, while in the case of
JPanel editors, the plugin developer can decide the meaning of the
position parameter.

– getEditorOutline():EditorOutline. Returns the outline associ-
ated with the editor as JPanel object.

• EditorOutline. The interface represents an outline that can be asso-
ciated with one or more editors of the plugin. In general, outlines give
a graphical representation of the content of an editor and can be used
to quickly access a specific point of the editor that contains a selected
graphical object.

Functions/Methods:

– getPanel():JPanel. Returns the JPanel object that works as out-
line.

– setEditorView(EditorView). Sets the current editor view associ-
ated with the outline.

– getEditorView():EditorView. Returns the editor view currently
associated to the outline.

7.5. THE SDK LIBRARY FOR PLUGINS DEVELOPMENT 123

• InputStorageAdapter. A utility class that implements the InputStor-
ageHandler interface. It already implements, by default, the main func-
tions and methods of the interface, so that a plugin developer can, by
subclassing InputStorageAdapter, define a PLUGIN file more quickly (by
avoiding implementing all the methods).

• DefaultEditorView. An utility class that implements the EditorView
interface. It already implements, by default, the main functions and meth-
ods of the interface, so that a plugin developer can, by subclassing Edi-
torView, define an editor with default features. In particular, this imple-
mentation of the editor gives line numbering and a minimal coloring on
some keywords.

• DLVEditorView. A utility class that extends the DefaultEditorView
class. In addition to the features offered by the superclass DefaultEdi-
torView, it also offers minimal suggestions for auto-completion and more
coloring for DLV keywords like v and not.

7.5.2 Rewriting Plugins classes description

• RewritingPlugin. The main interface of the Rewriting Plugin man-
agement; by creating a new class that implements this interface, a new
Rewriting Plugin is defined and made available in ASPIDE. The interface
offers functions suitable for implementing rewriting algorithms.

Functions/Methods:

– rewrite(in:InputStream,out:OutputStream). Receives an input
stream object representing the data flow to be rewritten. When a
user asks to perform a rewriting procedure in ASPIDE using the
plugin, in the most cases this method is called giving as input stream
the content to be rewritten. The method must write the result of the
rewriting procedure to the output stream out; ASPIDE will manage
the output stream getting the result for a purpose (e.g. storing it in
a file, showing it in editors).

– rewrite(files:List<File>):File. Reads the contents of the passed
files and rewrites them to a new file that will be returned by the func-
tion. The destination folder of the output file can be decided by the
function itself. The function is called when a user asks for a rewriting
procedure to files using the Workspace explorer panel.

– rewrite(in:File):File. Reads the content of the passed file and
rewrites it to a new file that will be returned by the function. The
destination folder of the output file can be decided by the function it-
self. The function is called when a user asks for a rewriting procedure
before the execution.

• ProgramRewritingPlugin. Classes that implement this interface will
be considered by ASPIDE as specific ASP rewriters. The interface allows
the programmer to exploit ASP Java objects offered by the DLVWrap-
per [79] for performing rewriting procedures.

Functions/Methods:

124CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

– rewrite(in:Program):Program. Receives a Program object of the
DLVWrapper that must be transformed into another Program object
representing the rewritten version of the passed Program. Exploiting
objects makes the rewriting procedure easy, because a parsing pro-
cedure is not necessary. The function is called by ASPIDE when the
user asks, on the DLV editor, to perform the rewriting procedure to
a sub-program.

• QueryRewriter. Allows one to perform query rewriting procedures for
an ASP program.

Functions/Methods:

– rewrite(files:List<File>,Program,Query):File. Given a list of
files, a program and a query, the function returns a new file containing
the results of the rewriting procedure. ASPIDE expects the resulting
file to contain a rewritten query. The function is called by ASPIDE
when the user asks through the query panel, to carry out a query by
applying, at first, a query rewriting procedure. The list of files passed
as parameter represent either files contained in a Run Configuration
or a file resulting from a previous query rewriting procedure. The
Program parameter represents an additional program inserted to the
query panel, and the Query parameter represents either the query
specified to the query panel or a query resulting from a previous
query rewriting procedure.

• RewritingToASPPlugin. The interface is used by Input Plugins. In
particular, if an Input Plugin implements this interface, it becomes also
a Rewriting Plugin that allows files to be loaded, written in a format, in
the ASP format to be shown directly to the DLV Editor of ASPIDE (by
enabling the possibility to exploit the DLV Editor features for editing the
program). The Rewriting Plugin must consequently implements a rewriter
to the ASP format. By exploiting this interface the programmer does not
need to define a custom editor in the case when the user needs only to
open files (of some format) in ASPIDE using the ASP syntax.

Functions/Methods:

– rewrite(InputStream):Program. Given an input stream represent-
ing the content of a PLUGIN file, rewrites the content to ASP by
building an object Program of the DLVWrapper. ASPIDE will open
the content of the rewritten program to the DLV Editor.

• RewritingFromASPPlugin. Differently from the interface Rewriting-
ToASPPlugin, this interface allows one to perform the reverse operation,
from the ASP syntax to the original format. If an Input Plugin imple-
ments RewritingToASPPlugin only, when the user opens a PLUGIN file
(handled by the same Input Plugin) in ASPIDE by exploiting the “Open
in ASP” procedure, the save procedure is disabled; if the programmer
makes the Input Plugin to implement also RewritingFromASPPlugin, a
reverse rewriting from ASP to the original format is introduced. In this
way the “save” procedure (became enabled) can exploit it to store to the
file the rewritten DLV Editor content.

Functions/Methods:

7.5. THE SDK LIBRARY FOR PLUGINS DEVELOPMENT 125

– rewrite(in:Program,out:OutputStream). Given an object Pro-
gram of the DLVWrapper, representing the content of a DLV Editor,
rewrites the content to the original format of the PLUGIN file and
writes it to the OutputStream.

• RewritingPluginCollector. The interface extends RewritingPlugin and
allows the programmer to define a collection of rewriting plugins by using
a unique rewriting plugin. In addition to the collection, the programmer
can also add custom commands that the user can invoke in ASPIDE; in
this case the programmer can, for example, allow the user to set some
property on the rewriting process. ASPIDE collects both the collection of
rewriting plugins and the custom commands in sub menu items where the
parent menu is the Rewriting Plugin collector.

Functions/Methods:

– getRewritingItems():List<RewritingPluginItem>. Returns a list
of RewritingPluginItem representing, each one, either other Rewrit-
ing Plugins to be added to the collector or action components that
the user can invoke in ASPIDE.

• RewritingPluginItem. A class that implements this interface can repre-
sent either a Rewriting Plugin or a custom command; the class can decide,
itself, if it is a Rewriting Plugin or not.

– getItemName():String. Returns the name of the rewriting plugin
item.

– getRewritingPlugin():RewritingPlugin. If the rewriting plugin
item represents a Rewriting Plugin, the function returns a not null
RewritingPlugin object. In the case where the item represents a cus-
tom command, the function returns null.

– callBack(). In the case where the item represents a custom com-
mand, this method will be called by ASPIDE when the user exploits
this item. In this method a custom procedure can be implemented.

• RewritingPluginAdapter. A utility class that already implements the
rewriting functions for files. In particular, they call the function rewrite

(in:InputStream,out:OutputStream) by passing, as input stream, the
content of the received files; the results are written to a new file that will be
saved to the same project folder. The function rewrite that receives the
input and output stream still must be implemented by the programmer.

• QueryRewriterAdapter. A utility class, extending the RewritingPlug-
inAdapter class, that implements QueryRewriter. In this class, the func-
tion rewrite(f:List<File>,p:Program,q:Query):File, of the Query-
Rewriter, as default behaviour, calls the method rewrite(List<File>):

File passing, as parameters, the list of files f and a temporary file con-
taining both the passed program p and the query q. By using this class the
programmer has to implement, only, the method rewrite(InputStream,

OutputStream) of the RewritingPlugin interface.

Example 7.5.1. Let us consider the ASP RuleML plugin of the previous Sec-
tion. Suppose we want to open an ASP RuleML file directly to the DLV Editor.

126CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

We make the class RuleMLPlugin to implement the interface RewritingToASP-
Plugin and we implement the contained method. In this way a user can open
an ASP RuleML file by exploiting the command Open in ASP, Text Editor of
the popup menu; the DLV Editor shows, consequently, the rewritten content of
the file (fig. 7.7). 2

Figure 7.7: Opening of an ASP RuleML file using the DLV Editor.

Example 7.5.2. ASPIDE Scripts Executor is a Rewriting Plugin, already avail-
able in ASPIDE as built-in plugin, which has been implemented using Rewriting-
PluginCollector. In particular, the collection of rewriting plugins are represented
by script files contained in a folder; each script file is a rewriting plugin belong-
ing to the collection. The folder can be also changed by exploiting a particular
command that is added to the same collection. For example, suppose that the
folder, set previously, contains two script files, named shifter and magicSet, per-
forming the shifting and the magic set rewriting procedures respectively; the
plugin will create two Rewriting Plugins, namely shifter and magicSet and will
put them to the collection. When the user exploits the Script Executor plugin,
he can use one of the two plugins (fig. 7.8). 2

Figure 7.8: ASPIDE Script Executor plugin at work.

7.5. THE SDK LIBRARY FOR PLUGINS DEVELOPMENT 127

7.5.3 Output plugins classes description

• OutputPlugin. The main interface of the Output Plugin management;
by creating a new class that implements this interface, a new Output
Plugin is defined and made available in ASPIDE. The interface offers
functions suitable for getting directly the solver results (in this case the
plugin can choose to parse or pipe it to a destination) or handling the
results by using the Java object of the DLVWrapper.

Functions/Methods:

– getSolverOutput():SolverOutput. Returns a SolverOutput object
that will use ASPIDE to pass the solver results directly to the plugin.

– getDLVOutput():DLVOutput. Returns a DLVOutput object that con-
tains handlers of the DLVWrapper. In this way, by using the solver
results, ASPIDE builds objects of the DLVWrapper and calls the
handlers passing those objects.

– getConsoleView():ConsoleView. If the function returns a not null
ConsoleView, ASPIDE opens the console writing the results inserted
to the ConsoleView object by the plugin.

– kill(). If ASPIDE detects that the execution was killed (by the
user or by the solver itself), this method is called to notify the plugin
that the execution was killed.

• SolverOutput. Receives the solver results directly in the execution
phase.

Functions/Methods:

– process(InputStream). When the execution is started, the solver
results are passed to this method via the InputStream object.

– notifyExecutionFinished(). When the execution of the solver is
finished, this method is called to notify the end of the execution.

• DLVOutput. Provides, to the ASPIDE environment, a way to give to
the plugin the solver results as DLVWrapper Java objects.

Functions/Methods:

– getHandlers():list<DLVInvocationHandler>. Returns a list of
DLVWrapper handlers that will be called passing the DLVWrapper
Java objects generated using the solver results.

– process(). When the execution is started, the plugin is notified by
this method.

– notifyExecutionFinished. When the execution of the solver is fin-
ished, this method is called to notify the end of the execution.

• ConsoleView. It is used to get, from the plugin, the content that must
be written to the console of ASPIDE.

Functions/Methods:

– process(OutputStream). The content that this method writes to
the OutputStream will be visualized to the console.

128CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

– shouldGetResultsOnExecutionFinished():boolean. Returns true
if the results should be written to the console only when the execution
is finished; false if everything is written to the OutputStream passed
to the method process should immediately be written to the console.

7.5.4 The AspideEnvironment Java interface

Many times, ASPIDE needs to be notified for some event from plugins; for this
purpose some calls to functions of the AspideEnvironment interface are needed
for notification or for getting some request. For example, an Input Plugin must
call the method notifyModified to tells ASPIDE that an editor was modified by
the plugin. We now describe in detail the function/methods available in the
AspideEnvironment interface2 (fig. 7.9).

Figure 7.9: AspideEnvironment Java interface.

• notifyModified(EditorView). In the case where ASPIDE has opened a
custom editor defined by the plugin and it edits something on the editor,
the plugin must also call this method to notify the event to ASPIDE.

• notifyExecutionFinished(p:OutputPlugin,killed:boolean). In the
case where an Output Plugin has finished working with the output of the
solver, the plugin must call this method to notify the ending to ASPIDE.

• getIcon(IconType):ImageIcon. A plugin can invoke this function to get
an icon that is already available in ASPIDE by default.

• getIcon(p:Plugin,iconName:String):ImageIcon. The function pro-
vides a quick way to get icons contained in the Utils folder of the JAR
library defining the plugin.

• showErrorWithQuickFix(GuiErrorDescriptor,actions

:List<QuickFixErrorAction>,parentComponent:Component

,position:Point). Every plugin can exploit an easy way to use the
quick fixes mechanism of ASPIDE. By calling this method, an error with
possible custom quick fixes can be visualized to the user.

7.5.5 Implementation, Deploy and Installation of ASPIDE

plugins

When a plugin was totally implemented, the final step that allows one to use
it in ASPIDE consists in preparing a JAR (Java Archive) file to be installed in

2Functions/methods signatures are written using the UML notation.

7.5. THE SDK LIBRARY FOR PLUGINS DEVELOPMENT 129

the environment. The JAR file must contain all compiled classes that compose
the plugin; moreover, an XML configuration file (called plugin.xml) must be
inserted to the root of the JAR file providing specific information. In the follow
an XML configuration file example:

<pluginpack name="packName" version="X.Y.Z" author="Name">

sdk version="U.W.T">

<plugin name="PluginName1" type="input|rewrite|output"

class="package1.ClassName1">

<filetype extension="fileExtension1"/>

<filetype extension="fileExtension2"/>

...

<lib jarname="jarName1.jar"/>

<lib jarname="jarName2.jar"/>

...

</plugin>

<plugin name="PluginName2" type="input|rewrite|output"

class="package2.ClassName2">

...

</plugin>

</pluginpack>

An ASPIDE plugin JAR file may contain more than one plugin. In the
XML configuration file, for each plugin defined to the JAR file, a tag <plugin>
must be specified containing the name, the type (input and/or output and/or
rewrite), the version, the author of the plugin and the version of the SDK used
to build the plugin (useful for compatibility of plugins with different versions
of ASPIDE). File extensions for associating each plugin with specific files can
be introduced using a tag <filetype>. To enable plugins to exploit external
libraries, a tag <lib> for each library must be specified with the library name.
For including icons to plugins, a folder Utils must be created, to the root of the
JAR file, containing icon files (for setting inserted icons to the PLUGIN files in
ASPIDE, see Section 7.2).

When the JAR file is complete, it can be installed in ASPIDE by exploiting
a dedicated dialog for plugins management.

130CHAPTER 7. EXTENDING ASPIDE WITH USER-DEFINED PLUGINS

Figure 7.10: Installing a new plugin in ASPIDE.

We open the installation dialog by selecting the menu File and clicking on
Manage Plug-ins contained on the sub-menu Plug-ins (fig. 7.10a). The dialog
shows plugins that are already installed in ASPIDE (fig. 7.10b). In the dialog
we click on the New Plugin button; ASPIDE opens a new dialog where we
choose, from either the local hard disk or remotely, a JAR plugin file and other
needed JAR libraries (if any) (fig. 7.10c). We confirm the operation and the
choosen JAR plugins become candidate to be installed (fig. 7.10d); the plugin
will be effectively installed only when ASPIDE is restarted. The installation
process can detect incompatibility issues, missing libraries, and allows the user
to enable/disable plugins.

An alternative way to install plugins consists in checking the ones that are
available on the web. To install a new plugin in this way, we open a dedicated
dialog by selecting the menu File and clicking on Available Plug-ins contained
on the sub-menu Plug-ins. We select a url location and click on the Get Plug-
ins button; a list of plugins will be shown. We select one plugin and install it
immediately (fig. 7.11).

Figure 7.11: Installing a new plugin in ASPIDE by checking available plugins
on the web.

Chapter 8

Database Management in
ASPIDE

The high expressiveness of Answer Set Programming allows the modelling of
advanced knowledge-based tasks arising in modern application-areas. When the
applications of interest become data intensive, it is important to exploit systems
like databases in order to access large amounts of data for performing reasoning
tasks. However, ASP systems which work in main memory only, cannot be
well suited for huge data and, consequently, reasoning tasks need more efficient
solutions and more working space. To deal with this problem, some interesting
solutions have been proposed and implemented in the DLV

DB [88, 87] system,
allowing reasoning tasks in mass memory to be performed by exploiting DBMSs.
Moreover, since in real-world applications big input data is usually stored in
databases, for performing reasoning in those data, tuples must be ported in
ASP systems as facts. Also the results of a reasoning task specified by an ASP
program (for example a query) is expected to be stored in a database. DLV

DB

allows tables to be mapped in predicates, tuples to be transformed in ASP facts
and update data stored in database with, for example, new inferred tuples1.

To deal with these mentioned issues regarding databases, in ASPIDE we
offer graphical solutions for generating mappings between database tables and
predicates, managing predicate schemas, and performing database access for
easy retreiving data and metadata of tables. As a consequence, users can ex-
ploit ASPIDE for Database Management tasks customized for ASP solutions.
Database Management features allow, in a intuitive way, following actions:

• creation/editing of schemas, TYP files, and Import/Export directives by
advanced editors;

• automatic generation of schemas, TYP files, and Import/Export directives
by direct connection to DBMSs;

• rewritings between schemas, TYP files, and Import/Export directives;

• retrieving tuples to be rewritten to a set of ASP facts.

1See Chapter 3 for more details.

131

132 CHAPTER 8. DATABASE MANAGEMENT IN ASPIDE

Schemas can be defined in the DLV Text Editor exploiting specific anno-
tations and in the Visual Editor in a graphical way (see Chapter 5). In the
follow we deal in-dept with the schema management of ASPIDE and describe
database interaction. Regarding database, an input/rewriting plugin2 has been
implemented allowing to access to database and perform mappings. In such a
way, database oriented applications can be run by setting DLV

DB as solver in a
Run Configuration and a data integration scenario [62] can be implemented by
exploiting these features.

8.1 Schema Management and Table Mappings

In Chapter 3 we overviewed Import/Export directives, exploited by DLV, and
TYP files, exploited by DLV

DB , for defining mappings between database tables
and predicates. These features are exploited by ASPIDE for schema manage-
ment that allow one to have support for schema definitions, Import/Export di-
rectives of DLV and fully-graphical composition of TYP files. We now describe
these features in detail.

8.1.1 TYP Files

The DLV
DB solver can manage advanced mappings by exploiting TYP direc-

tives. These directives are stored in TYP files which are passed to the DLV
DB

solver together with DLV files. The solver will perform mappings by retrieving
data and storing the inferred data to one or more databases. The grammar of
the TYP directives is specified in the following:

Init− Section ::=

1. USEDB databaseName : username : password [System− Like]?.

System− Like ::=

LIKE [POSTGRES|ORACLE|DB2|SQLSERVER|MYSQL]

Table− Definition (EDB definition) ::=

2. USE tableName [(attribute [, attribute]∗)]?

3. [AS (SQL− Statement)]?

4. [FROM DatabaseName : UserName : Password]?

5. MAPTO predName [(type [, type])]? [ALLOW APPEND(1)]?.

Table− Definition (IDB definition) ::=

6. CREATE tableName [(attribute [, attribute]∗)]?

7. MAPTO predName [(type [, type])]?

8. [KEEP AFTER EXECUTION]?.

Table− Definition (Querydefinition) ::=

9. QUERY tableName.

Final− Section ::=

10. DBOUTPUT DatabaseName : UserName : Password.

2See Chapter 7 for more details about ASPIDE plugins.

8.1. SCHEMA MANAGEMENT AND TABLE MAPPINGS 133

|

11. OUTPUT [Write− Option]? predName

12. [AS AliasTableName]?

13. IN DatabaseName : UserName : Password.

Write− Option ::=

14. APPEND

|

15. OVERWRITE

(1) ALLOW APPEND clause is allowed only if the table is

on the working database.

The USEDB command (line 1) is used to define connection properties with
the working database. For example USEDB MyDatabase:scott:tiger LIKE

POSTGRES. allows connection to the database MyDatabase telling explicitly that
the database is POSTGRES in order to let the system know the SQL dialect.
The DBMSs that can be specified are POSTGRESQL, MySQL, ORACLE, SQL
Server, DB2.

The USE directive (line 2) is used to specify a mapping between a table and
a predicate of the program. When a [AS (SQL-Statement)] (line 3) clause
is specified, the tablename is expected to be updated by means of the tuples
resulting from execution of the SQL-Statement.

The CREATE directive (line 6) allows definition of the mapping of a logic predi-
cate predName with a table; this table will be created in the working database. If
the directive KEEP AFTER EXECUTION (line 8) is present, the table is not deleted
at the end of the evaluation. Intuitively, a USE directive is intended to map
a predicate that the tuples cannot change during processing. In this case the
associated table is read-only. On the other hand, a CREATE directive creates a
new table on the working database in order to store new data inferred for the
related predicate. In the case where we need also to add new tuples derived
during the computation, we have to explicitly allow for “append” operations.
In particular, we have to specify a USE ... ALLOW APPEND directive.

The QUERY option (line 9), allows definition of the name of the query table
where the results of the query possibly processed by the solver are stored. The
DBOUTPUT directive (line 10) allows specification of the working database in
which the program stores the computation. The OUTPUT directive (line 11)
allows a specified predName only to be stored, that is mapped to a table.

To write TYP files, an advanced text editor can be exploited in ASPIDE,
offering syntax coloring and auto-completion, and an outline identifying, with
a tree representation, elements contained in the TYP file (fig. 8.1). ASPIDE
offers also a Visual Editor (fig. 8.2) allowing easy composition of TYP files in
a graphical way.

134 CHAPTER 8. DATABASE MANAGEMENT IN ASPIDE

Figure 8.1: Text Editor and outline of a TYP file.

Figure 8.2: Visual Editor of a TYP file.

8.1. SCHEMA MANAGEMENT AND TABLE MAPPINGS 135

The Visual Editor panel is partitioned in sections where each section iden-
tifies a TYP directive (e.g. USEDB, USE, CREATE, ...). The panel allows easy
composition of single directives using text fields and buttons. In the same way
as DLV files, users can switch from visual mode to textual mode (and vice-versa)
everytime he needs thanks to the reverse-reengineering process of the TYP files
content.

8.1.2 Import/Export Directives

Import/Export Directives are exploited by DLV for mapping database tables
in predicates. In particular, the syntax of the Import directive of DLV is:

#import(databasename, username, password, query, predname, typeConv).

The name of each imported atom (tuple) is set to predicate predname, and is
considered as a fact of the program. typeConv represents the data conversion
rules to be applied for converting datatypes of the database into DLV datatypes.

Example 8.1.1. Supposing information about a person is stored in a specific
table of a database, the predicate person of Example 8.1.2 can be specified on
a DLV file in the following way:

#import(People, “root”, “root”, “SELECT ∗ FROM person”,

person, type : CONST, CONST, U INT).

Here, we are telling the program to populate the predicate person with the
result of the specified query on the database identified by the ODBC source
People. Note that attributes names cannot be directly set since the directive
allows only simple “conversion” datatypes on attributes to be specified.

2

The Export directive generates a new tuple into a table for each new truth
value derived for that predicate by the program evaluation. The syntax of the
command is:

#export(databasename, username, password, predname, tablename).

predname indicates the predicate to be stored and tablename the destination
table.

These directives are written in DLV files and, when the file is passed to
DLV, the solver performs database access, retrieves data specified by the Import
directives and inserts inferred data to tables specified by the Export directives.

In the case where a DLV file is open in ASPIDE, all predicates specified in
Import directives are marked with a different color because these predicates come
from external sources. ASPIDE can also detect arity errors in the case where a
predicate used in a rule has a different arity compared to the one specified to
the Import directive.

136 CHAPTER 8. DATABASE MANAGEMENT IN ASPIDE

8.1.3 Schema Annotations

In ASPIDE we can define schemas to predicates of ASP programs by introducing
specific annotations3 in DLV files. These annotations are listed below:

• @schema predicateName(attr1:Datatype,attr2:Datatype,...): allows
one to define a schema for a given predicate by assigning attributes names
and datatypes (possibly followed by precision and scale values);

• @workingDatabase database:username:password: allows one to set the
specific working database by setting a database name, a username and a
password;

• @useTable tableName MAPTO predicateName(attr1:VARCHAR, attr2

:VARCHAR) FROM database:username:password: allows one to map an
external table, defined by tableName, in a predicate, defined by predicate-
Name, having the specified attributes names with datatypes;

• @createTable tableName MAPTO predicateName(attr1:VARCHAR)

KEEP AFTER EXECUTION: allows one to map an internal predicate, defined
by predicateName, to an external table, defined by tableName and stored
in the working database;

• @dbQuery queryTable: allows a table name to be specified where results
of a query execution must be stored;

• @outputDatabase databaseName:username:password: allows setting of
the output database where some inferred tables will be stored;

• @outputTable predicateName AS tableName IN databaseName

:username:password: allows setting of an output table for a specified
predicate where results inferred by this predicate will be stored.

The most important annotation is @schema which allows to specify, directly,
schemas on predicates. ASPIDE parses the schema annotation and gets the
schema of a predicate (attributes names and datatypes).

Example 8.1.2. Suppose we have predicate person, with arity 3 (a name,
a surname and an age) the following annotation can be used to represent the
schema information of the predicate:

%@schema person(name : VARCHAR, surname : VARCHAR(45), age : INTEGER)

2

The other annotations are used to specify TYP file directives directly on
DLV files; in fact they have the same semantics as TYP directives as shown in
the follow:

• @workingDatabase corresponds to the USEDB directive;

• @useTable corresponds to the USE directive;

3Note that annotations introduces specific ASP meta-information which are managed by
ASPIDE; see Chapter 4 for more details.

8.1. SCHEMA MANAGEMENT AND TABLE MAPPINGS 137

• @createTable corresponds to the CREATE directive;

• @dbQuery corresponds to the QUERY directive;

• @outputDatabase corresponds to the DBOUTPUT directive;

• @outputTable corresponds to the OUTPUT directive of TYP files.

In ASPIDE, the DLV
DB solver can be executed by passing a DLV file con-

taining annotations defining TYP directives; in this case, by setting an option, a
TYP file is automatically generated from the annotations and passed to DLV

DB

as a new file.
Schemas associated with predicates are visualized in the Outline panel of

ASPIDE in two different views:

• on the Expressions view, showing, near each predicate with an associated
schema, attributes and datatypes, and, as child of the predicate, informa-
tion stating that the schema was specified by exploiting an annotation;

• on the Schemas view, where all schemas contained in the program are
visualized in a tree representation. Attributes and datatypes of schemas
are also visualized.

Example 8.1.3. Supposing we have defined schemas for predicates node and
edge of the Hamiltonian Path program, Figure 8.3 shows, on the Expressions
view, the schema spefication for the predicates node and edge (fig. 8.3a) and,
on the Schemas view, the specified schemas (fig. 8.3b). 2

Figure 8.3: Schema visualization in the Outline panel.

Since the @schema and @useTable annotations define a predicate schema,
arity errors are detected if a predicate used in a rule has a different arity com-
pared to its schema defined by them. Note that, in a DLV file a user can write
different schema annotations for the same predicates or a mix between an Import
directive, a @schema annotation and a @useTable annotation, defining the same
predicate. In this case ASPIDE checks errors also between them for finding arity
problems on schemas or different attributes names and datatypes. Moreover,
predicates schemas can be also easy edited in a graphical way by exploiting the
Visual Editor: see Chapter 5 for more details.

138 CHAPTER 8. DATABASE MANAGEMENT IN ASPIDE

8.2 Database Interaction Plugin

In the previous Section we showed how schema annotations, Import/Export di-
rectives and TYP files can be composed for defining predicate schemas and
external sources. However, it is important to note that those operations were
done directly in ASPIDE “by hand”, supposing the existence of the database
containing those tables, attributes and datatypes. Suppose now users do not
know any details about the database, in this case it could be useful to access
directly the interested database and automatically map containing tables in
predicates. In ASPIDE we have implemented this feature through the defini-
tion of a input/rewriting plugin allowing the user to easy direct access tables
contained in a database through the ODBC interface. The plugin allows one to:

• access to databases and create mappings between tables and predicates;

• automatically generate TYP files, schema annotations and import direc-
tives from the mappings;

• retrieve tuples from mapped tables and transform them in ASP facts.

The architecture of the plugin, depicted in Figure 8.4, is composed by an
Input Module and a Rewriting Module.

Figure 8.4: Database Plugin Architecture.

The Input Plugin module allows one to create Source files where each file rep-
resents a database source. The user can open the Source file by using the Map-
ping GUI, which is the main visual editor of the plugin where he can perform
a database connection, through the ODBC interface, for retrieving tables to be
mapped. The user chooses some tables and decide to which predicates they
have to be mapped. By exploiting the switch button placed on the top-center
of ASPIDE, a specific editor is opened in accordance with one of the following
rewritings, performed by the Rewriting Module, from mappings to:

• Schema annotations;

8.3. USE CASE: A DATA INTEGRATION SCENARIO 139

• TYP files;

• Import/Export directives;

• ASP facts.

For ASP facts rewriting, a connection to the database is performed to retrieve
tuples from the database.

When a table is mapped in predicates, each predicate becomes available, in
the Workspace Explorer, to be dragged, e.g., in other files. DLV files of the
same project will check, in this way, schema and arity errors by considering also
these predicates. Moreover, DLV text and visual editors highlight the mapped
predicates evidencing the mapped predicates using a specific color.

Once a user has created a set of Source files for mapping predicates of dif-
ferent databases, he can execute them together with one or more DLV files.
For this purpose, the user can exploit a Run Configuration and specify, on files,
which rewritings he wants to perform before the execution. For example, in
the case where the user wants to start execution using the DLV solver, he can
choose to rewrite Source files in ASP facts, so that tuples are retrieved as facts
and passed to the solver. Also in the case where the user wants to exploit the
DLV

DB solver he can choose to rewrite Source files to TYP files.

8.3 Use Case: A Data Integration Scenario

In the case where information about a domain is distributed among various
sources, a data integration scenario is useful to integrate them into just one
global schema which unifies the sources. In more detail, data integration con-
sists in combining data residing at different sources and providing the user with
a unified view of them, called global schema. Users formulate queries over the
global schema, and the system queries the sources in a suitable way, providing
an answer to the user; the user is not obliged to have any information about
the sources. Recent improvements in Information Technology such as expansion
of the Internet and the World Wide Web, have made available to users a large
number of information sources which are generally autonomous, heterogeneous
and widely distributed. Consequently, information integration has emerged as
a crucial issue in many application domains, e.g., distributed databases, coop-
erative information systems, data warehousing, or on-demand computing.

By exploiting database features, ASPIDE can be used as data integration
system for integrating information contained in different database sources. In
particular, users can:

• define mappings from different database sources;

• create a global schema by defining GAV/LAV mappings in DLV files;

• perform a query on the global schema and retrieve query results.

We now show how to exploit ASPIDE for data integration by exploiting a
use case scenario of data integration. Suppose we want to unify information
of two database related to bank branches. The first database is stored in the
MySQL DBMS and contains table employees (code, name, role). The sec-
ond database is stored in the Postgres DBMS and contains table emp(code,

140 CHAPTER 8. DATABASE MANAGEMENT IN ASPIDE

name) and manager(code, name). Suppose we want to create a global schema
in accordance with the following rules:

e(C, N) :− emp(C, N).

e(C, N) :− employees(C, N,).

m(C) :− manager(C,).

m(C) :− employees(C, , man).

In this way the predicate e will have the tuples containted in both tables emp and
employees, while the predicate m will have the tuple contained in manager and
employees by filtering employees that are managers. To define these mappings
by exploiting the plugin, we create a new project named bank and we define a
new source; we name the source bankPostgres.source (fig. 8.5). This source has
to contain mappings for our database Postgres.

Figure 8.5: Creating a new source.

Figure 8.6: Mapping of database tables.

8.3. USE CASE: A DATA INTEGRATION SCENARIO 141

We now connect to the database in order to see tables contained in it and
we choose the tables to be mapped (fig. 8.6). To map the tables of MySQL, the
same actions have to be made. The mapping procedure is finished. If we want
to have a look at the possible rewritings that the plugin performs we can click
on the switch button placed on the toolbar. At every click, the current editor
is changed with other editors (fig. 8.7).

Figure 8.7: Switch among mapping rewritings.

Figure 8.7a shows the TYP directives version of the mappings, Figure 8.7b
the corresponing annotations, Figure 8.7c the #import directives and, finally
Figure 8.7d shows facts representing tuples contained in the tables.

The global schema presented above can be easily defined by creating a DLV
File. Supposing we want to use the Visual Editor, we have to drag the predicates
contained under the sources in the Workspace Explorer panel and make the
specific operations (fig. 8.8).

Figure 8.8: Use mapped tables.

142 CHAPTER 8. DATABASE MANAGEMENT IN ASPIDE

We now execute the described program. We create a new Run Configuration
by including the two sources and the created DLV file (fig. 8.9a). The Run
Configuration is open where we ask to rewrite the sources before the execution.
In this case, we set the facts rewriting for the bankMySql.source file and the
TYP rewriting for the bankPostgres.source (fig. 8.9b). As solver we set DLV

DB

because we are passing a source as TYP file. The results are shown in figure 8.10.

Figure 8.9: Execution of the global schema.

Figure 8.10: Results of the global schema execution.

Chapter 9

Related Work

In the literature, some support for assisted program development of logic pro-
grams is present but the available tools do not completely support the entire
life-cycle of logic programs development. Despite particular attention being
given to environments supporting the language Prolog, they still provide lit-
tle graphical support for the end-user. Regarding databases systems, owing to
the declarative nature of the most-used query language SQL, different environ-
ments were introduced to help users with easy writing queries. In the field of
ontologies, which is also correlated to logic programming, some tools for ontol-
ogy definition and querying were also proposed. Regarding ASP, in the last few
years different tools for developing ASP programs have been proposed, including
editors [54, 74, 85, 75, 73, 80] and debuggers [15, 13, 33].

Subsequently to ASPIDE, since developing tools for ASP is a brand-new
trend of the ASP community, more advanced IDEs are now under develop-
ment but they still do not totally implement a wide set of features for helping
ASP users in the Software Development Cycle. In summary, development of
Integrated Development Environments for declarative and logic programming
languages received less attention compared with the wide set of environments
available for Imperative Languages.

The enviroments for Prolog, database querying, and ontologies, are closer to
ASPIDE because of their declarative nature. As as a consequence, comparing
the features of ASPIDE with the features of these tools makes sense. The aim
of this Chapter, in fact, is to compare ASPIDE with the available tools for ASP
and with the other tools just mentioned. Known IDEs for declarative and logic
programming are described in detail and their features are compared with the
ones available in ASPIDE in order to see which features are offered by our tool
that are not offered by the others and vice-versa.

9.1 IDEs for Declarative and Logic Program-
ming Languages

In this Section a description of the most complete and important tools for sup-
porting applications oriented to declarative and logic programming languages,
and in particular for ASP, is made. In particular, we describe:

143

144 CHAPTER 9. RELATED WORK

• Logic and Database-based environments;

• Ontology-based environments;

• Prolog-based envoronments;

• Answer Set Programming-based environments.

9.1.1 Logic and Database-based environments

Database oriented declarative programming tools are in general specialized to
support the designing of queries. Different methodologies for designing queries
were proposed and implemented in a variety of tools. In particular, the method-
ologies for graphical composition of queries can be generally classified in Query
by Example (QBE), Query by Navigation (QBN) Query by Construction (QBC),
Query by Browsing (QBB), Query by Diagram (QBD). All these methods offer
different approaches to building queries, and the most used, for writing simple
queries, is QBE that allows the user to search for database tuples by inserting,
as result example, a text string in a form. QBE is clearly easier to learn than
formal query languages such as SQL. In the following the tool Datalog Educa-
tional System is described since it supports in particular the Datalog language
for reasoning in deductive databases.

Datalog Educational System

The Datalog Educational System (DES)1 is a multiplatform implementation of a
deductive database system and offers the languages Datalog, Relational Algebra
and SQL [45]. The system supports:

• ODBC connections for external relational database management systems
(RDBMSs) interoperability;

• Datalog and SQL tracers;

• textual API for external applications;

• declarative debugging of Datalog/SQL queries;

• aggregate predicates;

• test case generation for SQL

The declarative debugger relies on program semantics rather than on the
computation mechanism and exploits views for asking the user whether the re-
sult of a given view is as expected. The system is implemented on top of Prolog,
can be used from a Prolog interpreter and supports predicate persistency in ex-
ternal databases where the processing is directed). Finally, as several ODBC
connections are allowed at a time, different predicates can be made persistent
in different DMBSs, which allows for interoperability among external relational
engines and the local deductive engine. The system was developed for students,
so that they can get the fundamental concepts behind a deductive database
(exploiting Datalog), Relational Algrebra and SQL as query languages.

1http://www.fdi.ucm.es/profesor/fernan/des/

9.1. IDES FOR DECLARATIVE AND LOGIC PROGRAMMING LANGUAGES145

9.1.2 Ontology-based environments

An ontology describes concepts and relationships that are important in a par-
ticular domain and provides a vocabulary for that domain as well as a comput-
erized specification of the meaning of terms used in the vocabulary. Ontologies,
generally can consist in taxonomies, classifications and database schemas and,
recently, have been adopted in many business and scientific communities as a
way to share, reuse and process domain knowledge. Some tools for designing
and managing ontologies were proposed and this paragraph describes someone
of them.

OntoDLV

The OntoDLV system [80] is an ASP-based system for ontology management and
reasoning on top of ontologies. It implements a logic-based ontology representa-
tion language, called OntoDLP, which is an extension of (disjunctive) ASP with
all the main ontology constructs (classes, inheritance, relations and axioms).
The language is strongly typed, and includes also complex type constructors,
like lists and sets. OntoDLV supports a powerful interoperability mechanism
with OWL, allowing the user to retrieve information from external OWL On-
tologies and to exploit this data in OntoDLP ontologies and queries. Moreover,
OntoDLV facilitates the development of complex applications in a user-friendly
visual environment; it is endowed with a persistency-layer for saving informa-
tion transparently on a DBMS, and it seamlessly integrates the DLV system.
Using OntoDLV, domain experts can create, modify, store, navigate and query
ontologies by exploiting the user-friendly visual environment.

OntoStudio

OntoStudio2 is a modeling environment for creating and maintening ontologies.
It allows the user to exploit comprehensive functions in an intuitive ontology
modeling and it is also able to import many structures, schemas and models.
Important functions of OntoStudio are the mapping tool, which can be used
to quickly match heterogeneous structures, and an intuitive graphic rule editor
which can be used to model complex correlations between concepts. OntoStudio
offers also a graphical mapping tool for an easy connection of databases and
knowledge bases and the possibility to expand the environment with additional
plugins. The system allows one to manage object in the ontology formats of
OWL, RDF(S), RIF, SPARQL, F-Logic and ObjectLogic. Created queries can
be also exported as a Web service and integrated into any applications. There is
also a light version of OntoStudio, namely Web OntoStudio which can be easily
used via browsers; it is ideal for large distributed teams who edit ontologies
collaboratively.

Protégé

Protégé3 provides a suite of tools to construct domain models and knowledge-
based applications with ontologies. It allows creation, visualization, and manip-
ulation of ontologies in different representation formats. The Protégé platform

2http://www.ontoprise.de
3http://protege.stanford.edu

146 CHAPTER 9. RELATED WORK

is composed of two main ways of modeling ontologies depending whether the on-
tologies are classical or Semantic Web based (in the last case the system exploits
the Web Ontology Language OWL). For classical ontologies the provided edi-
tor supports users in constructing and storing domain ontologies, customizing
data entry forms, and entering instance data; for Semantic Web-based ontolo-
gies a wide set of user interface elements that can be customized to enable users
to model knowledge and enter data in domain-friendly forms. For building
knowledge-based tools and applications, Protégé can also be extended by ex-
ploiting a plugin architecture based on a Java-based Application Programming
Interface (API). The architecture allows one to introduce graphical components
(e.g., graphs and tables), media (e.g., sound, images, and video), various stor-
age formats (e.g., RDF, XML, HTML, and database back-ends), and additional
support tools (e.g., for ontology management, ontology visualization, inference
and reasoning, etc.).

9.1.3 Prolog-based envoronments

SWI-Prolog4 is an open source implementation of the programming language
Prolog. The tool, usable by exploiting a command line, offers the following
features for prolog programming:

• libraries for constraint logic programming;

• multi-threading;

• unit testing;

• a graphical user interface;

• interfacing to Java, ODBC and others;

• a web server, SGML, RDF, RDFS, developer tools (including an IDE with
a GUI debugger and GUI profiler), and extensive documentation.

Several environments for Prolog programming use the SWI-Prolog tool for
offering new suitable graphical interfaces capable to exploit the power of SWI-
Prolog.

In this paragraph, different tools for Prolog, both oriented and non-oriented
to SWI-Prolog, are described.

J-Prolog

J-Prolog5 is a very simple editor for SWI-Prolog providing syntax highlighting,
an embedded Prolog interpreter and other simple features like text coloring and
a console view for textual results visualization. Ways for debugging, testing and
profiling are also offered and can be activated by exploiting buttons.

4http://www.swi-prolog.org/
5http://www.trix.homepage.t-online.de/JPrologEditor

9.1. IDES FOR DECLARATIVE AND LOGIC PROGRAMMING LANGUAGES147

ProDT

Prolog Development Tools (ProDT)6 is a Prolog Integrated Development Envi-
ronment that attempts to offer rich functionalities like the Eclipse Java platform,
by giving the developer a single environment where it can control the Prolog
project development from code edition, test execution, debugging, and more.
The environment is an Eclipse plugin and, consequently, takes advantage of its
already existent features. A ProDT project is organized in Source Folders con-
taining directories and project source files. The editor offers highlighting for
predicates and for matching brackets so that a user has an easy way to identify
which bracket corresponds to another. By pressing Ctrl-SPACE in the editor a
list of rules and predicates defined in the file will be displayed, followed by the
list of predicates and operators built-in of the Prolog interpreter. By exploiting
the enviroment, the user can configure interpreters by specifying also which one
of them will be default; also wizards allow one to easily set interpreters. The
outline is a schematic listing of the predicates and rules defined in a file which
can be used to have a general overview of a file and as a navigation tool. The
outline is composed of two different views: Outline View, offering a fast way
to jump the cursor of the editor in the corresponding position by selecting an
element in the Outline View, and a Quick Outline, which can be activated, as
popup view. Detected compilation errors are marked in different views like the
Outline and Quick Outline views, used for direct navigation to the problematic
predicate, the Problems view, collecting the list of problems and warnings of all
the projects, and the editor view that marks errors in the left and right side
bars and by underlining the line containing the error. Source compilation is in-
tegrated with this IDE using the Eclipse builder mechanism. The environment
also offers a Console View showing results of the interpreter execution. By using
the console, the user can exploit an autocompletion mechanism for displaying
the predicates loaded in the current file; finally, the user can save its content on
a file using the toolbar of the view.

PDT

The Prolog Development Tool (PDT)7 is a Prolog IDE provided as a plugin
for the Eclipse Platform. The system offers a Project Explorer showing source
and external files, and a highlighting for entry points and consulted files. The
editor offers syntax highlighting, singleton variable highlighting, code comple-
tion, errors/warnings annotations, breakpoints for the debugger and keyboard
shortcuts. Outline and Quick Outline can be exploited; in particular, the Quick
Outline displays predicate documentation. The console of the system offers
bash-like completion and command history and allows one to interact with mul-
tiple Prolog processes, for direct access to code with errors in case of errors
and warnings, and to interact with SWI-Prolog tools. A reusable Java API
for communiating with SWI-Prolog can be also exploited. A Context View vi-
sualizes call relations, dead code and predicate properties (exported, dynamic,
...). Finally and also importantly, the system allows one to exploit debugging
at source level by introducing breakpoints (connected to PDT editor), to see
variable bindings and to use the SWI-Prolog Profiler.

6http://prodevtools.sourceforge.net
7http://roots.iai.uni-bonn.de/research/pdt

148 CHAPTER 9. RELATED WORK

ProClipse

ProClipse [12] is a Prolog plugin for Eclipse providing many features such as
semantic-aware syntax highlighting, outline view, error marking, content assist,
hover information, documentation generation, and quick fixes. The system,
mainly, offers syntax highlighting by exploiting full syntactical and semantical
analysis, and other important tools for helping the user to compose Prolog pro-
grams. In particular, an Outline view is an overview of the Prolog file or module,
containing exported or non-exported predicates, and import directives. Each el-
ement in the outline view can be used to access the respective line code quickly.
Syntax and semantic errors are highlighted in the editor view by underlining the
erroneous part of the source code. A dedicated view lists all errors of all Prolog
files in a Prolog project and can also be used to recall an erroneous source code
line directly. A Content Assist tool offers sensitive proposals to automatically
complete the word the developer types and can also be used to retrieve infor-
mation about predicates. Quick fixes offer the possibility of auto-correcting an
erroneous source code directly. A suitable set of fixes is shown to the user. For
automatic generation of documentation, the system offers PrologDoc used to at-
tach a documentation to a predicate; a comment containing PrologDoc entries
must be written above the first appearance of a clause defining this predicate.
Documentation can also be attached to entire modules; in this case the Pro-
logDoc comment field must be written above the module definition. Another
important feature regards Text Hovering used for quick retrieving of informa-
tion of a lexical token in the editor view. For instance, if a developer wants to
know how a certain predicate has been defined, he or she has simply to point
the cursor at the predicate.

Amzi! Prolog + Logic Server

Amzi! Prolog8 is an Eclipse plugin composed of core components that are avail-
able on all platforms, and additional components that are platform dependent.
The system allows organizing files in projects, running, debugging and advanced
execution that exploits compiling, linking and running. The editor offers color
highlighting of system predicates, comments, constants, mathematical opera-
tors and functions. Syntax errors are marked and error messages are inserted in
a Tasks View. By pressing CTRL-SPACE, system predicate names, constants,
mathematical operators and functions are suggested with content assistant de-
scribing system predicates and their arguments. Text hovering is also offered
by the system.

The Logic Server part allows one to deploy projects as part of a stand-alone
application. It can run by connecting directly to software written in languages
such as Java, C++, VB, C# and Delphi.

9.1.4 Answer Set Programming based environments

In the following, known tools for Answer Set Programming are described.

8http://www.amzi.com/products/prolog_products.htm

9.1. IDES FOR DECLARATIVE AND LOGIC PROGRAMMING LANGUAGES149

SeaLion

SeaLion [74] is an IDE, developed as Eclipse plugin, for ASP supporting a
large extent of the languages of DLV and Gringo. The editor provides syn-
tax highlighting, syntax code checking, error reporting, error highlighting, and
a program outline. External tools like answer set solvers can be managed by
defining, also, arbitrary pipes between them (this feature is important in case
of using separate grounders and solvers). To run an answer set solver on the
created programs, run congurations can be defined in which the user can choose
input files, a solver, command line arguments and output-processing strate-
gies. Resulting answer sets can be either parsed and stored in a view, or can
be displayed in the Eclipse console view. An important feature of the system
is the capability for visualisation and visual editing of interpretations through
the system Kara [61]. This follows ideas from the visualisation tools like ID-
PDraw [92] where a visualisation program is joined to an interpretation to be
visualised. However, the editing feature of SeaLion allows one also to graphically
manipulate the interpretations under consideration. SeaLion exploits program
comments to extract meta-statements like assigning properties to elements; an
example of meta-statements is rule name assignments.

Visual DLV

Visual DLV [75] is a graphical programming environment which integrates sev-
eral tools for developing, testing and executing DLV programs in a quite simple
way. It helps programmers during the development phases, supports the inter-
action with external DBMS and features a näıve debugging tool. The system
organizes files in a project for gathering in a single logical unit several DLV

program files. The editor helps the user with automatic completion that sug-
gests to the user how to complete the portions of programs he is writing. In the
editing phase, dynamic syntax checking goes into action for checking syntactical
correctness of the program by warning the user in case of errors. The system is
able to interact with databases, so it allows the user to easily, and graphically,
specify which input data resides in external databases, and which parts of the
program output must be permanently stored in a database. A Run Configura-
tion for executing programs can be set with execution options for DLV and the
results can be visualized on the same environment. Finally, the systems allows
the user to debug programs, an activity consisting in interacting with DLV in
order to understand why a program does not produce the expected output.

APE

AnsProlog Environment (APE) [85] is an Eclipse plugin that supports users
in the development phases of ASP programs in the lparse/gringo language. It
offers a general user interface for running SMODELS, exploiting LPARSE, and
for generating/visualizing dependency graphs. The interface defines a working
directory, a current editor with open files, different views of the active program
like the syntactic outline or the dependency graph, a console with either the
answer sets of the program (in case SMODELS is called) or errors/warnings
that the system has detected in the active program. The editor offers syntax
highlighting and automatic syntax checking.

150 CHAPTER 9. RELATED WORK

iGROM

iGROM [54] is an IDE, developed as Eclipse plugin, for ASP, in particular it
supports DLV and SMODELS programs. It can be also extended with user-
defined editors for such languages. The system allows the user to organize
programs in projects and offers features like syntax highlighting for DLV and
its dialects, errors detection both syntactic and semantic like safety, testing,
debugging and run configurations management. Moreover, the Eclipse platform
offers extension mechanisms and Subversion support.

VIDEAS

VIDEAS [73] focuses its attention on the separation of answer set programs in
three parts: facts, representing some knowledge base, rules for some reasoning
task, and constraints for asserting integrities on facts and rules. Building these
three parts requires users to have ASP skills. The solution proposed by VIDEAS
regards the separation of these parts with the purpose of assigning the facts
representation (with integrity constraints on facts) to people having modeling
skills; ASP skills are not needed. Graphical visualisation is easy for human users
and models can be easy transformed into executable code in an automatic way.
This mean that there are no inconsistencies between the models and the code.
Using VIDEAS, users can define facts (with integrity constraints) by exploiting
E-R diagrams; the E-R diagrams are translated into facts and constraints and
included in an ASP program for further execution in ASP solvers. The purpose
of VIDEAS is to encourage programmers to construct their programs as data
models in order to draw attention to design decisions.

DLV!sual

DLV!sual9 is a GUI frontend for DLV that allows one to experiment with DLV
easily. The system, indeed, allows users to graphically-browse the answer sets
in a comfortable way. If the user changes selected files, the output will be
automatically refreshed.

Digg

Digg10 is a simple Java application conceived for learning ASP and experiment-
ing with DLV. It offers a minimal set of tools like a text editor, allows for token
pair highlighting and offers a textual result visualization.

9.2 Comparison with ASPIDE

This Section describes detailed comparisons between the features of ASPIDE
and the features offered by the systems described in the previous Section. Dif-
ferent tables that evidence different perspectives of comparison are presented.
In particular, a table shows general features comparisons whereas other tables
compare some single tools commonly offered by all the IDEs, like text editor
and visual editor. Finally, also languages that are supported by the IDEs are

9http://thp.io/2009/dlvisual
10http://www.ezul.net/2010/09/gui-for-dlv.html

9.2. COMPARISON WITH ASPIDE 151

compared. For each table, a check symbol indicates that a system provides (in
a more or less sophisticated way) a feature.

Table 9.1 shows a comparison of general desirable features.

General Features

A
S
P
ID

E

O
n
to

D
L
V

O
n
to

S
tu

d
io

P
r
o
té

g
é

V
ID

E
A
S

D
E
S

S
e
a
L
io
n

iG
r
o
m

D
L
V
!S

U
A
L

V
IS

U
A
L

D
L
V

D
ig
g

A
P
E

J
-P

r
o
lo
g

P
r
o
D
T

P
D
T

P
r
o
C
li
p
se

A
m

z
i!

P
r
o
lo
g

Text Editor V V V V V V V V V V V V V V V V V

Visual Editor V V V V V

Project Management V V V V V V V V V V V V

File Content Outline V V V V V V V V V V V V

Test Suite V V V V V V

Integration
with databases V V V V V V

Debugger V V V V V V V V V

Command line V V V V V V

Visual
Dependency Graph V V V V

Profiler/Tracer V V V V V V

Global Error Console V V V V V V V V V V V

Textual
Result Visualization V V V V V V V V V V V V V V V

User Friendly
Result Visualization V V V V V

Visual
Workflow Definition V

Detect Error on editing V V V V V V V V V V

Dynamic Layout V V V V V V V V V V V

Refactor
variables and predicates V V V V V

Configuration
of the execution V V V V V V V V V V V V

Data Integration V V V

Datatype Management V V V V V V

Table 9.1: System Comparison for General Features.

We first note that ASPIDE is the most complete proposal, followed by the
products OntoStudio and Protégé; and, if we restrict our attention to competing
systems tailored for ASP, SeaLion and APE strictly follow ASPIDE.

Note that, execution results are reported by most systems only in a textual
form whereas ASPIDE, OntoDLV, OntoStudio, Protégé and VIDEAS offer a
graphical view of them in intuitive tables. The outline of the program is often
missing, and the execution of systems/solvers is not handled in an effective way.
Moreover, only ASPIDE, OntoStudio, Protégé and APE show the dependency
graphs in a graphical way, and the detection of errors during the editing phase,
as well as (some form of) debugging and testing are offered by few systems.
Interaction with databases, often required by applications, is supported by only
6 systems out of 17 (data integration only by three).

Conversely, text editing is supported by all systems and, in order to provide
a more precise picture regarding this central feature, the analysis has been
deepened by considering also more advanced editing functionalities and support

152 CHAPTER 9. RELATED WORK

for project management. Table 9.2 evidences that almost all systems support
multi-files management but fewer systems support project management.

Project Management Features

Feature

A
S
P
ID

E

O
n
to

D
L
V

O
n
to

S
tu

d
io

P
r
o
té

g
é

V
ID

E
A
S

D
E
S

S
e
a
L
io
n

iG
r
o
m

D
L
V
!S

U
A
L

V
IS

U
A
L

D
L
V

D
ig
g

A
P
E

J
-P

r
o
lo
g

P
r
o
D
T

P
D
T

P
r
o
C
li
p
se

A
m

z
i!

P
r
o
lo
g

Multi Project V V V V V V V V V V V

Multi File V V V V V V V V V V V V V V V V

Sub Folder
Organization V V V V V V V V V V

Table 9.2: System Comparison for the Project Management Features.

Text Editor Features

Feature

A
S
P
ID

E

O
n
to

D
L
V

O
n
to

S
tu

d
io

P
r
o
té

g
é

V
ID

E
A
S

D
E
S

S
e
a
L
io
n

iG
r
o
m

D
L
V
!S

U
A
L

V
IS

U
A
L

D
L
V

D
ig
g

A
P
E

J
-P

r
o
lo
g

P
r
o
D
T

P
D
T

P
r
o
C
li
p
se

A
m

z
i!

P
r
o
lo
g

Text Coloring V V V V V V V V V V V V

Parenthesis
pair highlighter V V V V V V

Token pair highlighter V V V V V V V V

Undo/Redo V V V V V V V V V V V

Syntactic
Error highlighter V V V V V V V

Find/Replace V V V V V V V V V V

Quick Fix V V V V

Auto completion V V V V V V V V

Code Templates V V V V V

Dynamic Code
Template Definition V V V

Code Annotation V V V

Automatic
Code intentation V

Text Hover (quick
info of predicates) V

Code Documentation
(like JavaDoc) V V V

Table 9.3: System Comparison for the Text Editor Features.

Table 9.3 summarizes features offered by the text editors of the systems; it
evidences that also in this case ASPIDE is the system offering more features.
Surprisingly, OntoStudio lacks advanced text editing features, which are con-
versely provided by the more mature environments for Prolog. It is worth not-
ing that, systems based on the Eclipse platform, which eases the development of
text editors, provide quite a number of editing and project management features
(see, e.g., APE and SeaLion). In general, many existing tools provide syntax
coloring, but few systems for ASP support code completion and quick fix of er-

9.2. COMPARISON WITH ASPIDE 153

rors. It is quite strange that very basic features like undo/redo and find/replace
are not supported by all systems. Code annotation is offered only by ASPIDE,
Protégé and SeaLion. The SeaLion system in particular supports the language
Lana [90] which, similarly to ASPIDE, allows one to add meta-information to
rules, terms and atoms. By exploiting the Lana language, documentation for
ASP programs and test cases for selected blocks of rules can be automatically
generated.

Although every considered system supports a textual editor, the systems
which offer a complete graphical editing environment for writing programs (or
part of them) are ASPIDE, OntoDLV, OntoStudio, Protégé and VIDEAS. Thus,
in Table 9.4 we report only the systems allowing for graphic composition of
programs.

Visual Editor Features

Feature

B
u
il
d
in

g
o
f
R
u
le
s

B
u
il
d
in

g
o
f
Q
u
e
r
ie
s

E
d
it
in

g
o
f
fa
c
ts
/
in

st
a
n
c
e
s

Q
B
E
/
D
ia
g
r
a
m

li
k
e
st
y
le

C
o
ll
a
p
si
n
g

p
r
e
d
ic
a
te

s

J
o
in

A
tt
r
ib

u
te

s

T
e
m

p
la
te

s

D
is
ju

n
c
ti
o
n

A
g
g
r
e
g
a
te

s

B
u
il
t-
in

s

C
o
n
st
r
a
in
t

W
e
a
k

C
o
n
st
r
a
in
t

T
r
u
e
n
e
g
a
ti
o
n

N
e
g
a
ti
o
n

a
s
fa
il
u
r
e

B
a
si
c
a
r
it
h
m

e
ti
c
fu

n
c
ti
o
n

E
r
r
o
r
M

a
n
a
g
e
m

e
n
t

R
e
v
e
r
se

e
n
g
in

e
e
r
in

g
(t
e
x
t/

v
is
u
a
l)

ASPIDE V V V V V V V V V V V V V V V V V

OntoDLV V V V V V V V

OntoStudio V V V V V V V V V V V V V

Protégé V V V V V V V V V V

VIDEAS V V V V V

Table 9.4: System Comparison for the Visual Editor Features.

Focusing on ASP-based systems, ASPIDE easily beats OntoDLV, which sup-
ports only queries, and VIDEAS, which supports only modeling of schemas and
relations between schemas. VIDEAS does not allow logic rules to be drawn up
but, on the other hand, it supports a more advanced schema definition com-
pared with ASPIDE. An interesting plan that can be made could be a fusion
between VIDEAS and the Visual Editor of ASPIDE in order to have the possi-
bility of exploiting the same environment for both schema modeling and rules
definition. OntoStudio, which supports a different logic language, clearly misses
many ASP-specific constructs, but provides a rich environment that supports
ontology constructs. Protégé offers many features but it also lacks a graphical
way to build logic rules or queries.

Table 9.5, finally, summarizes languages and system/solvers supported by
the IDEs.

154 CHAPTER 9. RELATED WORK

System Compare for Supported Languages and Solvers

Language/Solver

A
S
P
ID

E

O
n
to

D
L
V

O
n
to

S
tu

d
io

P
r
o
té

g
é

V
ID

E
A
S

D
E
S

S
e
a
L
io
n

iG
r
o
m

D
L
V
!S

U
A
L

V
IS

U
A
L

D
L
V

D
ig
g

A
P
E

J
-P

r
o
lo
g

P
r
o
D
T

P
D
T

P
r
o
C
li
p
se

A
m

z
i!

P
r
o
lo
g

DLV/DLVDB V V V V V V V

Lparse V V V V

Datalog V V V V V V V V V V

Prolog V V V V V

SQL V

DLP+ V

DLV K V

ASP RuleML V

OWL V V

RDF(S) V V

RIF V

Object Logic V

Source-to-source
transformation V V V V

Table 9.5: System Comparison for Supported Languages and Solvers.

All the systems for ASP (and also OntoDLV) support the Datalog language
while only DES supports the SQL language. Compared with OntoStudio and
Protégé, OntoDLV does not support well-known languages for ontologies like
OWL; it supports Datalog and DLP+ only. The Source-to-Source transfor-
mation feature merits a particular mention, which allows for translating one
language to another. Actually, despite OntoStudio and DES supporting this
feature for specific translation (e.g. from Dataolog To SQL or between F-Logic
and RDF), ASPIDE allows the introduction of user-defined plugins for extend-
ing it with rewriters useful for the translating process (see Chapter 7). Currently
ASPIDE plugins allow translation between ASP RuleML and the syntax of ASP
and, moreover, for convertion of tuples of an external database to ASP facts.

The feature-wise comparison with existing environments for developing logic
programs clearly shows that ASPIDE is a step forward in the present state of
the art of tools for ASP programs development.

Chapter 10

Conclusion

The most diffused programming languages always come with the support of soft-
ware development tools. These tools are often collected in powerful IDEs that
significantly simplify both programming and maintenance tasks. In this thesis
we have presented ASPIDE, an advanced Integrated Delelopment Environment
supporting the entire life-cycle of the ASP software development process.

ASPIDE is the result of a careful study and analysis of existing IDEs for im-
perative programming languages and of tools which perform graphical database
queries. The features offered by ASPIDE are summarized in the following:

• Text Editor: ASPIDE offers dynamic syntax highlighting, on-line syntax
correction, auto-completion, code-templates and so on. Moreover, anno-
tations have been also introduced for annotating rule names, predicates
schemas and database connectivity;

• Error Detecting: Syntax errors are automatically detected, signaled
directly to the editor and collected to an Error Console. Errors can be
managed by applying quick fixes;

• Execution and presentation of results: external solvers are called
from ASPIDE and the results are shown to users in: (i) tabular form; (ii)
a console window; (iii) a graphical way; (iv) a custom way by exploiting
an output plugin. A pre-configuration of the execution can be set that
allows users to specify files to be executed and solver options. For query
execution, having different reasoning modes (brave and cautious reason-
ing) [30], results are displayed in a comfortable view and a specific output
for Epistemic queries [48, 49] is available;

• Unit Testing: the crucial task of testing ASP programs has received less
attention in the literature and the current proposals [56, 57, 72, 90] do
not support users on programs development. ASPIDE offers a solution
to test ASP programs consisting in a framework inspired by the JUnit
framework for Java. For this purpose a testing language has been defined
and the concept of “Unit” in ASP programs has been introduced;

• Visual Editor: Since ASP lacked a full graphical tool for ASP programs
composition, we have defined a visual language, inspired by QBE editors,

155

156 CHAPTER 10. CONCLUSION

which supports all the constructs available in ASP, and we have imple-
mented a Visual Editor which exploits the language. In this way users can
draw ASP programs on the screen in a full graphical environment;

• Extensibility via Plugins: in real-world applications input data is usu-
ally not encoded in ASP and, during the development of an ASP program,
the developer might need to apply a rewriting to some rules”, e.g., by
applying magic sets, disjunctive rule shifting, etc., for optimizing perfor-
mance. To deal with these issues we have implemented an SDK which
allows users to introduce plugins in ASPIDE which allow one to deal with
new imput formats, performing program rewriting and even customize the
format of solver results;

• DBMS access: database interactions allows import of schemas and meta-
data, data retrieval, definition of mappings between predicates and database
tables, exploitation of the language directives of DLV

DB [88] and interac-
tion with it. ASPIDE offers a graphical interface that helps to interact
with databases in an intuitive way. For example, the user can easily map
tables in predicates in order to import facts from the table. With these
features, a data integration scenario [62] can be implemented;

• Additional Features : we also implemented the following features to
make aspide a complete IDE:

– Projects organization: organizes programs in files and folders and
helps programmers when a software is big and needs some project
organization;

– Outline navigation: ASPIDE creates a graphic outline showing lan-
guage statements. By exploiting the outline the user can directly
access to a specific line of code;

– Debugging: since many solutions were proposed in the literature for
debugging ASP programs, we give a contribution by embedding the
existing debugging tool spock [15] and providing a user-interface;

– Tracing and Profiling: we provide a contribution of profiling by em-
bedding the graphical tool proposed in [20] which allows the DLV

solver to be traced in the execution phase;

– Workflow Execution: we have introduced a prototypical graphic tool
for building an execution process consisting in combining several/system
calls or for piping results between solvers/files;

– Dependency Graph: the system offers several graphical variants of
the dependency graph of ASP programs.

Related implementation of IDEs for ASP came only subsequently to ASPIDE
and currently there are other IDEs under development and improvement [54,
74, 85]. Features comparisons of ASPIDE, made in Chapter 9, among these
IDEs and other IDEs for Prolog and ontologies, evidenced that ASPIDE is the
most complete and powerful available in the state-of-the-art of IDEs for ASP.

ASPIDE was the object of several publications in international conferences,
in particular in the following [41, 36, 39, 38, 42, 37, 35, 40].

Bibliography

[1] Mario Alviano. The maze generation problem is np-complete. In ICTCS,
pages 12–18, 2009.

[2] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a Theory
of Declarative Knowledge. In Jack Minker, editor, Foundations of Deduc-
tive Databases and Logic Programming, pages 89–148. Morgan Kaufmann
Publishers, Inc., Washington DC, 1988.

[3] Yuliya Babovich and Marco Maratea. Cmodels-2: Sat-based answer sets
solver enhanced to non-tight programs. Available on http://www.cs.

utexas.edu/users/tag/cmodels.html, 2003.

[4] Marcello Balduccini, Michael Gelfond, Richard Watson, and Monica No-
geira. The USA-Advisor: A Case Study in Answer Set Planning. In Thomas
Eiter, Wolfgang Faber, and Miros law Truszczyński, editors, Proceedings of
the 6th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-01), volume 2173 of LNCS, pages 439–442. Springer,
2001.

[5] Chitta Baral. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[6] Chitta Baral and Michael Gelfond. Logic Programming and Knowledge
Representation. Journal of Logic Programming, 19/20:73–148, 1994.

[7] Chitta Baral and Michael Gelfond. Reasoning Agents in Dynamic Domains.
In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 257–279.
Kluwer Academic Publishers, 2000.

[8] Chitta Baral and Cenk Uyan. Declarative Specification and Solution of
Combinatorial Auctions Using Logic Programming. In Thomas Eiter, Wolf-
gang Faber, and Miros law Truszczyński, editors, Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR-01), volume 2173 of Lecture Notes in AI (LNAI), pages
186–199. Springer Verlag, 2001.

[9] Victor A. Bardadym. Computer-Aided School and University Timetabling:
The New Wave. In Edmund Burke and Peter Ross, editors, Practice and
Theory of Automated Timetabling, First International Conference 1995,
volume 1153 of LNCS, pages 22–45. Springer, 1996.

157

158 BIBLIOGRAPHY

[10] Rachel Ben-Eliyahu and Rina Dechter. Propositional Semantics for Dis-
junctive Logic Programs. Annals of Mathematics and Artificial Intelligence,
12:53–87, 1994.

[11] Rachel Ben-Eliyahu and Luigi Palopoli. Reasoning with Minimal Mod-
els: Efficient Algorithms and Applications. In Proceedings Fourth Interna-
tional Conference on Principles of Knowledge Representation and Reason-
ing (KR-94), pages 39–50, 1994.

[12] J. Bendisposto, I. Endrijautzki, M. Leuschel, and D. Schneider. A
Semantics-Aware Editing Environment for Prolog in Eclipse. In Proc. of
WLPE’08, 2008.

[13] Martin Brain and Marina De Vos. Debugging Logic Programs under the
Answer Set Semantics. In Marina de Vos and Alessandro Provetti, editors,
Proceedings ASP05 - Answer Set Programming: Advances in Theory and
Implementation, Bath, UK, July 2005.

[14] Martin Brain, Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tom-
pits, and Stefan Woltran. Debugging asp programs by means of asp. In
Chitta Baral, Gerhard Brewka, and John Schlipf, editors, Logic Program-
ming and Nonmonotonic Reasoning — 9th International Conference, LP-
NMR’07, volume 4483 of Lecture Notes in Computer Science, pages 31–43,
Tempe, Arizona, May 2007. Springer Verlag.

[15] Martin Brain, Martin Gebser, Jorg Pührer, Torsten Schaub, Hans Tompits,
and Stefan Woltran. That is Illogical Captain! The Debugging Support
Tool spock for Answer-Set Programs: System Description. In Marina De
Vos and Torsten Schaub, editors, Proceedings of the Workshop on Software
Engineering for Answer Set Programming (SEA’07), pages 71–85, 2007.

[16] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing Dis-
junctive Datalog by Constraints. IEEE Transactions on Knowledge and
Data Engineering, 12(5):845–860, 2000.

[17] Francesco Calimeri and Giovambattista Ianni. Template programs for Dis-
junctive Logic Programming: An operational semantics. AI Communica-
tions, 19(3):193–206, 2006.

[18] Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca. The third
answer set programming system competition, since 2011. https://www.

mat.unical.it/aspcomp2011/.

[19] Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano,
Annamaria Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber,
Onofrio Febbraro, Nicola Leone, Marco Manna, Alessandra Martello, Clau-
dio Panetta, Simona Perri, Kristian Reale, Maria Carmela Santoro, Marco
Sirianni, Giorgio Terracina, and Pierfrancesco Veltri. The third answer set
programming competition: Preliminary report of the system competition
track. In LPNMR, volume 6645 of Lecture Notes in Computer Science,
pages 388–403. Springer, 2011.

BIBLIOGRAPHY 159

[20] Francesco Calimeri, Nicola Leone, Francesco Ricca, and Pierfrancesco Vel-
tri. A Visual Tracer for DLV. In Proc. of SEA’09, Potsdam, Germany,
September 2009.

[21] Claudio Cancinos. Prolog Development Tools - ProDT. http://

prodevtools.sourceforge.net.

[22] Potassco answer set solving collection. http://potassco.sourceforge.

net/.

[23] Susan A. Dart, Robert J. Ellison, Peter H. Feiler, A. Nico Habermann, and
Edited Peter Fritzson. Overview of software development environments.

[24] Norman M. Delisle, David E. Menicosy, and Mayer D. Schwartz. Viewing
a programming environment as a single tool. SIGSOFT Softw. Eng. Notes,
9(3):49–56, April 1984.

[25] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald
Pfeifer. Aggregate Functions in Disjunctive Logic Programming: Seman-
tics, Complexity, and Implementation in DLV. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI) 2003,
pages 847–852, Acapulco, Mexico, August 2003. Morgan Kaufmann Pub-
lishers.

[26] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and
Miroslaw Truszczyński. The second answer set programming competition.
In LPNMR, pages 637–654, 2009.

[27] A. Dovier and E. Erdem. Report on application session
@lpnmr09, 2009. http://www.cs.nmsu.edu/ALP/2010/03/

report-on-application-session-lpnmr09/.

[28] Christian Drescher, Martin Gebser, Torsten Grote, Benjamin Kaufmann,
Arne König, Max Ostrowski, and Torsten Schaub. Conflict-Driven Dis-
junctive Answer Set Solving. In Gerhard Brewka and Jérôme Lang, ed-
itors, Proceedings of the Eleventh International Conference on Principles
of Knowledge Representation and Reasoning (KR 2008), pages 422–432,
Sydney, Australia, 2008. AAAI Press.

[29] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declar-
ative Problem-Solving Using the DLV System. In Jack Minker, editor,
Logic-Based Artificial Intelligence, pages 79–103. Kluwer Academic Pub-
lishers, 2000.

[30] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog.
ACM Transactions on Database Systems, 22(3):364–418, September 1997.

[31] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schind-
lauer, and Hans Tompits. Combining answer set programming with de-
scription logics for the semantic web. Artif. Intell., 172:1495–1539, August
2008.

160 BIBLIOGRAPHY

[32] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tom-
pits. H.: A ruleml syntax for answer-set programming. In Informal Pro-
ceedings of the Workshop on Applications of Logic Programming in the
Semantic Web and Semantic Web Services (ALPSWS06). (2006) 107108.

[33] Omar El-Khatib, Enrico Pontelli, and Tran Cao Son. Justification and
debugging of answer set programs in ASP. In Clinton Jeffery, Jong-Deok
Choi, and Raimondas Lencevicius, editors, Proceedings of the Sixth Inter-
national Workshop on Automated Debugging, California, USA, September
2005. ACM.

[34] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates in
disjunctive logic programs: Semantics and complexity. In José Júlio Alferes
and João Leite, editors, Proceedings of the 9th European Conference on
Artificial Intelligence (JELIA 2004), volume 3229 of Lecture Notes in AI
(LNAI), pages 200–212. Springer Verlag, September 2004.

[35] Onofrio Febbraro, Giovanni Grasso, Nicola Leone, Kristian Reale, and
Francesco Ricca. Datalog development tools. In Pablo Barcel and Reinhard
Pichler, editors, Datalog in Academia and Industry, volume 7494 of Lec-
ture Notes in Computer Science, pages 81–85. Springer Berlin / Heidelberg,
2012.

[36] Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca. Unit
testing in aspide. CoRR, abs/1108.5434, 2011.

[37] Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca. AS-
PIDE the Integrated Development Environment for Answer Set Program-
ming: Progress Report. In Proceedings of 14th International Workshop on
Non-Monotonic Reasoning (NMR‘12), Rome, Italy, July 8 – July 10 2012.

[38] Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca. Ex-
tending aspide with user-defined plugins. In CILC, pages 236–240, 2012.

[39] Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca. Unit
testing in aspide. (LNAI) In Printing, 2012.

[40] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. A Visual Interface
for Drawing ASP Programs. In Proc. of CILC2010, Rende(CS), Italy, July
2010.

[41] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. ASPIDE: Inte-
grated Development Environment for Answer Set Programming. In James
Delgrande and Wolfgang Faber, editors, Logic Programming and Nonmono-
tonic Reasoning — 11th International Conference, LPNMR’11, Vancou-
ver, Canada, May 2011, Proceedings, volume 6645 of Lecture Notes in AI
(LNAI), pages 317–330. Springer Verlag, May 2011.

[42] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. Testing ASP pro-
grams in ASPIDE. In Proc. of CILC2011, Pescara, Italy, sep 2011.

[43] Enrico Franconi, Antonio Laureti Palma, Nicola Leone, Simona Perri, and
Francesco Scarcello. Census Data Repair: a Challenging Application of

BIBLIOGRAPHY 161

Disjunctive Logic Programming. In Logic for Programming, Artificial In-
telligence, and Reasoning, 8th International Conference, LPAR 2001, vol-
ume 2250 of Lecture Notes in Computer Science, pages 561–578. Springer,
2001.

[44] G. Friedrich and V. Ivanchenko. Diagnosis from first principles for
workflow executions. Technical report, Alpen Adria University, Ap-
plied Informatics, Klagenfurt, Austria, 2008. http://proserver3-iwas.uni-
klu.ac.at/download area/Technical-Reports/technical report 2008 02.pdf.

[45] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
systems - the complete book (2. ed.). Pearson Education, 2009.

[46] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten
Schaub. Conflict-driven answer set solving. In Twentieth International
Joint Conference on Artificial Intelligence (IJCAI-07), pages 386–392.
Morgan Kaufmann Publishers, January 2007.

[47] Martin Gebser, Lengning Liu, Gayathri Namasivayam, André Neumann,
Torsten Schaub, and Miros law Truszczyński. The first answer set program-
ming system competition. In Chitta Baral, Gerhard Brewka, and John
Schlipf, editors, Logic Programming and Nonmonotonic Reasoning — 9th
International Conference, LPNMR’07, volume 4483 of Lecture Notes in
Computer Science, pages 3–17, Tempe, Arizona, May 2007. Springer Ver-
lag.

[48] Michael Gelfond. Strong introspection. In Proceedings of the ninth National
conference on Artificial intelligence - Volume 1, AAAI’91, pages 386–391.
AAAI Press, 1991.

[49] Michael Gelfond. New semantics for epistemic specifications. In LP-
NMR’11, pages 260–265, 2011.

[50] Michael Gelfond and Nicola Leone. Logic Programming and Knowledge
Representation – the A-Prolog perspective . Artificial Intelligence, 138(1–
2):3–38, 2002.

[51] Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Pro-
grams and Disjunctive Databases. New Generation Computing, 9:365–385,
1991.

[52] Giovanni Grasso, Salvatore Iiritano, Nicola Leone, and Francesco Ricca.
Some DLV Applications for Knowledge Management. In Esra Erdem,
Fangzhen Lin, and Torsten Schaub, editors, Proceedings of the 10th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2009), volume 5753 of Lecture Notes in Computer Science, pages
591–597. Springer, 2009.

[53] Giovanni Grasso, Nicola Leone, Marco Manna, and Francesco Ricca. Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning:
Essays in Honor of Michael Gelfond, volume 6565 of Lecture Notes in AI
(LNAI). Springer Verlag, 2010.

[54] iGrom. iGrom on sourceforge, 2010. http://igrom.sourceforge.net/.

162 BIBLIOGRAPHY

[55] Oliver Jack. Software Testing for Conventional and Logic Programming.
Walter de Gruyter & Co., Hawthorne, NJ, USA, 1996.

[56] Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and Hans
Tompits. On testing answer-set programs. In Proceeding of the 2010 confer-
ence on ECAI 2010: 19th European Conference on Artificial Intelligence,
pages 951–956, Amsterdam, The Netherlands, The Netherlands, 2010. IOS
Press.

[57] Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and Hans
Tompits. Random vs. structure-based testing of answer-set programs: An
experimental comparison. In James P. Delgrande and Wolfgang Faber,
editors, LPNMR, volume 6645 of Lecture Notes in Computer Science, pages
242–247. Springer, 2011.

[58] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Simons, and Jia-
Huai You. Unfolding Partiality and Disjunctions in Stable Model Seman-
tics. ACM Transactions on Computational Logic, 7(1):1–37, January 2006.

[59] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran.
Modularity aspects of disjunctive stable models. J. Artif. Intell. Res.
(JAIR), 35:813–857, 2009.

[60] JUnit.org community. JUnit, Resources for Test Driven Development.
http://www.junit.org/.

[61] Christian Kloimüllner, Johannes Oetsch, Jörg Pührer, and Hans Tompits.
Kara: A system for visualising and visual editing of interpretations for
answer-set programs. CoRR, abs/1109.4095, 2011.

[62] Nicola Leone, Georg Gottlob, Riccardo Rosati, Thomas Eiter, Wolfgang
Faber, Michael Fink, Gianluigi Greco, Giovambattista Ianni, Edyta Ka lka,
Domenico Lembo, Maurizio Lenzerini, Vincenzino Lio, Bartosz Nowicki,
Marco Ruzzi, Witold Staniszkis, and Giorgio Terracina. The INFOMIX
System for Advanced Integration of Incomplete and Inconsistent Data. In
Proceedings of the 24th ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2005), pages 915–917, Baltimore, Maryland,
USA, June 2005. ACM Press.

[63] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Got-
tlob, Simona Perri, and Francesco Scarcello. The DLV System for Knowl-
edge Representation and Reasoning. ACM Transactions on Computational
Logic, 7(3):499–562, July 2006.

[64] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive Stable
Models: Unfounded Sets, Fixpoint Semantics and Computation. Informa-
tion and Computation, 135(2):69–112, June 1997.

[65] Yuliya Lierler. Disjunctive Answer Set Programming via Satisfiability. In
Chitta Baral, Gianluigi Greco, Nicola Leone, and Giorgio Terracina, ed-
itors, Logic Programming and Nonmonotonic Reasoning — 8th Interna-
tional Conference, LPNMR’05, Diamante, Italy, September 2005, Proceed-
ings, volume 3662 of Lecture Notes in Computer Science, pages 447–451.
Springer Verlag, September 2005.

BIBLIOGRAPHY 163

[66] Vladimir Lifschitz. Answer Set Planning. In Danny De Schreye, editor,
Proceedings of the 16th International Conference on Logic Programming
(ICLP’99), pages 23–37, Las Cruces, New Mexico, USA, November 1999.
The MIT Press.

[67] Vladimir Lifschitz and Hudson Turner. Splitting a Logic Program. In Pascal
Van Hentenryck, editor, Proceedings of the 11th International Conference
on Logic Programming (ICLP’94), pages 23–37, Santa Margherita Ligure,
Italy, June 1994. MIT Press.

[68] Fangzhen Lin and Yuting Zhao. ASSAT: Computing Answer Sets of a Logic
Program by SAT Solvers. In Proceedings of the Eighteenth National Confer-
ence on Artificial Intelligence (AAAI-2002), Edmonton, Alberta, Canada,
2002. AAAI Press / MIT Press.

[69] V. Wiktor Marek and V.S. Subrahmanian. The Relationship between Logic
Program Semantics and Non-Monotonic Reasoning. In Proceedings of the
6th International Conference on Logic Programming – ICLP’89, pages 600–
617. MIT Press, 1989.

[70] Ilkka Niemelä and Patrik Simons. Smodels – An Implementation of the
Stable Model and Well-founded Semantics for Normal Logic Programs. In
Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proceedings of the
4th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97), volume 1265 of Lecture Notes in AI (LNAI), pages
420–429, Dagstuhl, Germany, July 1997. Springer Verlag.

[71] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson,
and Matthew Barry. An A-Prolog Decision Support System for the Space
Shuttle. In I.V. Ramakrishnan, editor, Practical Aspects of Declarative
Languages, Third International Symposium (PADL 2001), volume 1990 of
Lecture Notes in Computer Science, pages 169–183. Springer, 2001.

[72] Johannes Oetsch, Michael Prischink, Jörg Pührer, Martin Schwengerer,
and Hans Tompits. On the small-scope hypothesis for testing answer-set
programs. In KR, 2012.

[73] Johannes Oetsch, Jörg Pührer, Martina Seidl, Hans Tompits, and Patrick
Zwickl. Videas: A development tool for answer-set programs based on
model-driven engineering technology. In LPNMR, pages 382–387, 2011.

[74] Johannes Oetsch, Jörg Pührer, and Hans Tompits. The sealion has
landed: An ide for answer-set programming—preliminary report. In
INAP2011/WLP2011, volume abs/1109.3989, 2011.

[75] Simona Perri, Francesco Ricca, Giorgio Terracina, D. Cianni, and P. Veltri.
An integrated graphic tool for developing and testing DLV programs. In
Marina De Vos and Torsten Schaub, editors, Proceedings of the Workshop
on Software Engineering for Answer Set Programming (SEA’07), pages
86–100, 2007.

[76] S. Polyviou and G. Samaras P. Evripidou. Query by Browsing: A Visual
Query Language Based on the Relational Model and the Desktop User
Interface Paradigm. University of Cyprus, Department of Computing, 2004.

164 BIBLIOGRAPHY

[77] H. A. Proper. Interactive Query Formulation using Query by Navigation.
Asymetrix Research Report 94-4, Asymetrix Research Laboratory, 1994.

[78] Teodor C. Przymusinski. On the Declarative Semantics of Deductive
Databases and Logic Programs. In Jack Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 193–216. Morgan Kauf-
mann Publishers, Inc., 1988.

[79] Francesco Ricca. The DLV Java Wrapper. In Marina de Vos and Alessandro
Provetti, editors, Proceedings ASP03 - Answer Set Programming: Advances
in Theory and Implementation, pages 305–316, Messina, Italy, September
2003. Online at http://CEUR-WS.org/Vol-78/.

[80] Francesco Ricca, Lorenzo Gallucci, Roman Schindlauer, Tina Dell’Armi,
Giovanni Grasso, and Nicola Leone. OntoDLV: an ASP-based system for
enterprise ontologies. Journal of Logic and Computation, 2009.

[81] G. Santucci and P. A. Sottile. Query by Diagram: a Visual Environment
for Querying Databases. Dipartimento di Informatica e Sistemistica, Uni-
versitá degli Studi di Roma ′La Sapienza′, 1993.

[82] Patrik Simons. Smodels Homepage, since 1996. http://www.tcs.hut.fi/
Software/smodels/.

[83] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and Imple-
menting the Stable Model Semantics. Artificial Intelligence, 138:181–234,
June 2002.

[84] Ian Sommerville. Software Engineering. Addison-Wesley, 2004.

[85] Adrian Sureshkumar, Marina De Vos, Martin Brain, and John Fitch. APE:
An AnsProlog* Environment. In Marina De Vos and Torsten Schaub, edi-
tors, Proceedings of the Workshop on Software Engineering for Answer Set
Programming (SEA’07), pages 101–115, 2007.

[86] Tommi Syrjänen. Lparse 1.0 User’s Manual, 2002. http://www.tcs.hut.

fi/Software/smodels/lparse.ps.gz.

[87] Giorgio Terracina, Erika De Francesco, Claudio Panetta, and Nicola Leone.
Enhancing a DLP system for advanced database applications. In Proceed-
ings of the International Conference on Web Reasoning and Rule Systems
(RR 2008), Karlsruhe, Germany, 2008. Springer Verlag.

[88] Giorgio Terracina, Nicola Leone, Vincenzino Lio, and Claudio Panetta.
Experimenting with recursive queries in database and logic programming
systems. Theory and Practice of Logic Programming, 8:129–165, 2008.

[89] Jeffrey D. Ullman. Principles of Database and Knowledge Base Systems.
Computer Science Press, 1989.

[90] Marina De Vos, Doga Gizem Kisa, Johannes Oetsch, Jörg Pührer, and Hans
Tompits. Annotating answer-set programs in lana. TPLP, 12(4-5):619–637,
2012.

BIBLIOGRAPHY 165

[91] Jan Wielemaker. Prolog Unit Tests. http://www.swi-prolog.org/pldoc/
package/plunit.html.

[92] Johan Wittocx. IDPDraw, a tool used for visualizing answer sets, since
2009. http://dtai.cs.kuleuven.be/krr/software/visualisation.

[93] D. Young and B. Shneiderman. A Graphical Filter/Flow Representa-
tion of Boolean Queries: A Prototype Implementation and Evaluation.
Human-Computer Interaction Laboratory & Department of Computer Sci-
ence, 1993.

[94] Yuting Zhao. ASSAT homepage, since 2002. http://assat.cs.ust.hk/.

